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SEARCH FOR TETRAHEDRAL BANDS IN YB ISOTOPES

Shumani Maurice Maliage

iThemba Laboratory for Accelerator Based Science, P O BOX 722, Somerset West 7129 South
Africa

Abstract

Calculations by Dudek et al. predict shell gaps for tetratredrally shaped nuclei at various

proton and neutron numbers. '60Yb is expected to be a favourable nucleus, with

tetratredral bands predicted to lie I MeV above the ground state. A search for such states

has been performed using the Afrodite Ge detector array at iThemba LABS. A 73MeV
t6O beam bombarded a laTsm target of thickness 3mg/cm2 to produce l60Yb at low spin

and high excitation energy. After analysis of the datq new rotational bands have been

added to the level scheme. Although these bands are in the expected energy interval for

the tetratredral states, they do not show the expected decay properties of the tetratredral

bands. Rather, we interpret them as vibrational y and B bands.
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CHAPTER 1

Introduction

Due to the combination of a short-range nuclear force, a long-range repulsive Coulomb

force, and centrifugal forces, the nucleus can take a variety of different shapes. Such

shapes can possibly be spherical, oblate or prolate quadrupole deformations, octupole and

tetrahedral shape. The most corlmon shapes are the quadrupole shapes. A positive

intrinsic quadrupole moment means that the nuclear shape is prolate, with its polar radius

longer than its equatorial radius. On the other hand, a negative quadrupole deformation is

one in which the nucleus has an oblate shape, with the equatorial radius longer than its

polar radius, as shown in Fig l.l,

II r:o

Oblate Qs negative Spherical Qo =0 Prolate Qo positive

Figure l,l: Intrinsic quadrupole moments Qs [Bur79]

I
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The tetrahedral shape is rare in atomic nuclei and can be described as a pyramid like

structure with rounded edges and corners and four equilateral three-sided surfaces as

depicted in Fig 1.2.

The main goal of this project was to search for tetrahedral shape in the r60Yb isotope by

investigating the rotational bands in this nucleus.

Figure l.2z Diagram representing a tetrahedral shape [Dud|2J

1.1 Nuclear surface deformation

In general, the shape of nuclei may be described in terms of an expansion of spherical

harmonics, weighted by the coefficients ar,

1.1

where R(O,il is the distance from the centre of the nucleus to the surface at angle (e,O) ,

Ro is the radius of the spherical sphere and Yro(e,6) are the spherical harmonics. The

R(o,O)= 
^. {, 

*lo rY^,@,r\

2
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coefficients aoo describe the monopole shape corresponding to a sphere, since loo is a

constant. The coefficient arudescribes the quadrupole shapes of the nucleus, while a.o

describe the octupole shapes, of which is a' a special case, coresponding to the

tetrahedral shapes.

Dudek et al. [Dud02] predicted where the tetrahedral bands might be found. Fig 1.3

shows proton single particle energies calculated by Dudek et al. [Dud03] as a fi,rnction of

the tetrahedral deformation parameter a32. A large gap is seen at particle number 82,

corresponding to vanishing tetrahedral deformation. Such shell gaps give rise to stable

deformations because there are no nuclear forces acting on the deformation of the

nucleus. At particle numbers 70 and 90, gaps are also seen corresponding to a tetrahedral

deformation with cln:0.26. The calculated shell gaps are similar for protons and neutrons

and are appropriate for heavier mass nuclei. The gaps at Z:70 and N:90 correspond to

the nucleus t'Yb, and it is therefore expected to be a favourable case for tetrahedral

shapes

-.2 -.1 .0 .1 .2 .3 .4

Tetrahedral Deformation

Figure 1.3: Tetrahedral shell gaps for protons in heavy nuclei [Dud03J

Ytterbium-160 was calculated by Dudek et al. to have an oblate minimum at p2:0.22
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which lies 100 keV above the prolate ground state, while the tetrahedral minimum was

predicted to be approximately I MeV higher in energy, as shown in Fig 1.4. Although

this is still high in excitation energy, toYb is still predicted to be one of the best cases to

observe tetrahedral states, which is why it was chosen for the present study.

6

4

2

C)

OD
LI
rI]
c,
oF

0

Elongation p,

Figure l.4z The result of multidimensional minimization of the total nuclear energies
projected on the quadrupole deformation axis. Left hand side show an exaggerated
tetrahedral shape and the right hand side an oblate shape with P2:0.2 and y:60' which
correspond to the predicted iuclear deformations o7t60Yb [DudL2J.

1.2 Nuclear Rotations

If a nucleus is deformed, quantum mechanically, rotation is allowed not at symmetry

axis. There are different types of rotational "bands" depending on the intrinsic nuclear

configuration and the nuclear deformation. The ground state bands of even-even nuclei

with a quadrupole deformation consist of stretched E2 transitions connecting levels above

the 0*ground state. All the nucleons are paired and the nucleus rotates as a whole. The

energies of the levels for a rigidly rotating nucleus are given by

E(I\ = Lsr, - (3ai' - I(I +l)h2

22323
4

u-
alfo """"""""'
lm-
nLfs """"""

'flvu*
242-
lorm rar-

1.2
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where s represents the effective moment of inerti4 at the angular frequency of the

rotation from the rotational energy formula and 1 the angular momentum. This equation

was obtained from the classical rotational energy relation, by substituting the angular

momentum with its expectation value: L2 = I(I +l)hz .

|.z.LOctupole bands

If a nucleus has a static pear shaped octupole shapea36 +0, we expect an alternating

parity band with levels connected by El and E2 transition as shown in Fig 1.5

1.2.2 Tetrahedral bands

In Fig I .5, the rotation of a tetratredral nucleus (an + 0 ) is compared with that of a pear-

shape a3s + 0. In pear-shaped nuclei a dipole moment is present unlike in the tetrahedrally

shaped nuclei. Two parity doublet sequences, with levels connected by stretched E2

transitions are predicted in the tetratredral nuclei, but now no El's are expected. We shall

see that this presents a unique signature of tetratredral shape.

Dlpole Momentr0 Dlpole Momentd)

4+ 4- 1+ 4-

3- 3+ 3-

2

I
o

It
tt
lr rlt: :t-Tt-
It ll
It ll:Y Y:-Tt-
!l alY: :Y

-TF:V V:
VV

3+

2+

l-
O+

2- 2+

l+
o-

Pear-shape (Octupote)

Figure 1.5: Schematic illustration of expected transitions in rotation bands based on
pear-shaped and tetrahedrally shaped nuclei. Dashed lines: quadrupole, solid lines:
dipole transitions [DudL2J.

1-
O+

+

Tetrahedra

5
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1.2.3 Location of tetrahedral bands

Fig 1.6 illustrates the expected location of hypothetical tetratredral shape isomers and

rotational bands in energy and spin.

Spin
10

Figure l.6z Schematic illustration showing location of hypothetical tetrahedral shape
isomers and bands [Dud03J.

This diagram indicates that the tetratredral bands can lie above to the lSESg MeV

approximately I MeV above the ground state, and remain well above the yrast line. (The

yrast line constitutes the set of states having lowest energy for a given spin)

1.3 Vibrational Bands

ln a similar region of spin and energy expected for the tetratredral bands, we also expect

vibrational bands. The most important nuclear vibrations are quadrupole and octupole

vibrations. Quadrupole vibrations in prolate nuclei are categorized into two different

vibrations, beta (F) and gamma (y) vibrations. For B vibrations, the size of the nucleus

along the x and y ixes of the body fixed coordinate system are always equal to each

e
H

u0h
€)
E
rI]
Eo.-+J
GII.-Ix
H

I

6

4

2

0

0

6
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other, and the size along the z axis is changing with respect to time. Such vibrations have

no angular momentum, they have states with K : 0 and spin and parity of 0*, 2*,4* etc.

For gamma vibrations, the vibrations change in x and y ixes. Such vibrations carry two

units of angular momentum. The states have K = 2with spin and parity of 2*,3*, and

4*......

The lowest vibrational band structure for a prolate quadrupole deformed even-even

nucleus is shown in Fig 1.7, which are labelled by the set of quantum number K nz, no.

(n2 and no are the oscillation number of the vibrations, given by n^ =Zro = 0;1;2, where
tt

2 is the integral and n, is the number of oscillation quanta in a state (1, p) and K define

the spin projection of the vibrational state).

-to-r.
-6+

-5+

-1+ -.6.
-1.

Ea -2+
I- o+
I K.o.
a" o'

ffi-
-it

-!r

2+

G.lu.
vlbmddhl

I -*,
E- n t0,
't %*

-2,

,- o)
lGO, nr.O,
no-O
groundstol.

Figure l.7z The typical bqnd structurefor a deformed even-even nucleus. Phonon no

and n, directed to the types ofvibration

An octupole vibration (X = 3) carries three units of angular momentum and has negative

parity. Fig 1.8 shows an exarnple of an octupole vibrational band in 236U 
lZaySTl.

7
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l6'
t3-

374.6 289

lL' fi-
215.0

31 1.0

9-
12' r98.8

7-
303.5 r5t.5

l0' r03.4
5-

3-
l - 3.8ns2 60.1

212.5

r60.3

612,1

687.6

t'
101.2

236 u

Figure l.8z Level scheme of isotope'iofl 7Zoy8l1

Thus we see that none of the competing vibrational bands have a decay pattern that

resembles that of the tetrahedral band, and the signature of a tetrahedral band should be

rather unique. The challenge is to populate a band that is predicted to lie at excitation

energy high above the yrast line.

g'

6'

2'
0'

8
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CHAPTER 2

Experiment and Experimental Equipment

2.1 Creation of t6\rb

A heavy-ion fusion evaporation (FE) reaction was used to create the radioactive nucleus

'trYb. In this reaction, fusion occurs when the incident particle or projectile has enough

energy to overcome the Coulomb barrier that exists between it and the target nucleus.

The heavy ion fusion evaporation process is explained below.

(a) The beam is accelerated in anergy of 73MeV, which is enough to overcome the

Coulomb barrier.

(b) The projectile and the target nucleus fuse together in a very short time interval of

10-20s [Won90]. After fusing, a loss of identity of the two original nuclei occurs,

because of the numerous interactions of many nucleons between the incident particle and

the target nucleus. The two nuclei form a single nucleus, called a compound nucleus,

with high excitation energy, which subsequently decays by emitting neutrons (n), protons

(p) or alpha particles (o). The emitted particles carry away most of the excitation energy

from the compound nucleus. The decay process is determined by the amount of excitation

energy available in the system.

9
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(a) (b) (c)

Fuio Panicb

D (D-
J lra 
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Projcailc Tuter
NEbB Nwburo-o

Grqrdnrts

Figure 2.lz Schematic representation of theformation and decay of a compound nucleus
through an FE reaction.

Finally the nucleus decays to the ground state in a time greater than a few hundred

picoseconds by emitting gamma rays. The entire process, shown in Fig 2.1, is also

indicated in the excitation energy and spin diagram shown Fig 2.2. tn this case the y-ray

decay process is subdivided into two different stages, the so-called statistical emission

where a large amount of energy in the form of El T-rays is released and discrete emission

which involves the cascades of y-rays near the yrast line where large amount of angular

momentum is removed from the system.

t0
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Figure 2.22 Schematic representation of how an excited compound nucleus formed in FE
reaction decay.

2.2 Obseruing y-rays from non-yrast states

We want to enhance the population of non yrast states, as this is where the tetratredral

bands are expected to lie.

The reaction used in this experiment employed at6O beam of 73MeV energy to bombard

a 'o'Sm target. A thick target of about 3mg / cmz was used in order to stop the reaction

0

COMPOT'ND NUCLEUS

FONMATIONNEoloN

11
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products from recoiling out of the target. The compound nucleus, '63Ybrr, in a highly

excited state, may decay initially by evaporating 3 neutrons and forms the residual

nucleus 'uoYb, which was the nucleus of interest. The nucleus is stopped by the time the

nuclear decay reaches spin -20h. Gamma rays emitted from states below this spin will

not be Doppler broadened by the motion of the nucleus, thus improving the energy

resolution for the states of interest, which were expected to lie at low spin. The excitation

function for the reaction is given in Fig 2.3, as calculated using the statistical model code

PACE? [Gav93]. The predictions were used to select the beam energy appropriate to

perform the experiment using this reaction.

,uO*147Sm

1000

100

10

1

65 70 75 80 85 90
Beam Energy (MeV)

Figure 2.32Ihe calculated cross section andfor the reaction that has been used in this
experiment performed with the AFRODITE affay at iThemba LABS. The small diagram
above indicates an approximation of the angular momentum of the compound nucleus as

afunction of the beam energt in the relevant beam energt interval.

At 73 MeV energy, the beam would lose sufficient energy while transiting the target so

that all the projectile nuclei that cross the Coulomb barrier contribute to the compound

30

E
saJ

5

0

5

0

5

-o
E
c
o
ooa
aoo
Lo
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nucleus formation, but at lower excitation energy, thereby enhancing the population of

the low-spin states in l@Yb. The gamma rays emitted from the evaporation residue,

''Yb, were detected with the Ge detectors of the AFRODITE aray shown in Fig 2.4.

There are two types of high purity germanium (HP Ge) detectors. These are 6 LEPS (low

energy photon spectroscopy) detectors, which are optimized to detect low energy y {ays

(below -200 keV) and X-rays, and the 8 clover detectors, which are suited to detect low

and high energy y -rays. AFRODITE has a target chamber, which is made of an

aluminium frame with 19 facets. All these facets on the target chamber have their own

specific use. Two square facets at angles 0" and 180' were connected to the beam line, the

one facet which was at an angle 90' perpendicular to the beam direction was used to

support the hydraulic target positioner or target ladder and the remaining facets were used

to allow the particle to pass through in order to interact with all 8 Clover and 6 LEPS

detectors situated at different angles, but 6 LEPS were used instead of 8 LEPS which left

two facets empty. Every clover detector is housed in a Compton suppression shield, that

is made up of bismuth germanate which was used to detect Compton scattered gamma

rays that escape from the clover detector. Such events are rejected by the signal

processing hardware (see section 2.4).

The target, a ruby and an ernpty frame used for focussing the beam were loaded on the

aluminium target. The target ladder was mounted on a haudraulic positioner, which can

be controlled from the control room during the focussing of the beam. The beam was

positioned from the control room by focusing it first through a hole in the center of the

ruby.

Even if the beam is focussed through the center-hole of the ruby, the beam may still have

a halo, which might interact with the aluminium frame of the target. If an empty target

frame is placed in the target position and an increase in the count rate of the detectors is

observed, the halo is interacting with the target frame. Once this count rate was reduced

by additional focussing, the target ('o'S-) was positioned at the beam location. The

reaction commenced when the beam and target nuclei interact each other. Once reactions

occur, the germanium detectors detect the y-rays and produce signals which are treated by
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the processing electronics modules. Then the information is conveyed to the computer

system in the data room where the energy and the other spectra are of the detected T rays

observed.

Figure 2.42 AFRODITE array with itsframe, which supports the LEPS and clover
detectors [Afr05].

Fig 2.4 indicates how the clover and LEPS detectors are arranged in the AFRODITE

array at iThemba LABS.

2.3 Clover and LEPS detectors

2.3.1Clover detectors

The clover detectors are made up of four separated coaxial n-type germanium crystals,
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which are -0.2mm apart as depicted in Fig 2.5. These crystals are 70mm in length, 50mm

in diameter and 36mm in tapering length. Their front face has approximately square

shape with 41mm sides, see Fig 2. 5. Each crystal has its own preirmplifier in order to

take the information from it separately. If the garnma rays are Compton scattered from

one crystal to an adjacent one, the energy detected in both crystals can be added back to

get the full energy of the gamma ray. This is known as "add-back". The clover detector

Dewars (Fig 2.6) are filled automatically with liquid nitrogen (LNz).

2.3.2 Compton Suppression

The main use of the BGO Compton suppression shield was to reduce the unwanted y-ray

Compton background. When the gamma ray interacts with the detector material, it can be

fully absorbed by the clover detector or Compton scattered out of the clover detector and

then may be detected by the BGO. This bismuth germanate (BGO) is a pure inorganic

scintillator. The large atomic number of Bi (Z:83) and high density of BGO (7.3 glcm2)

make it possible for the detection of gamma rays with high efficiency. Gamma-rays

detected in the shield are used to veto r -rays detected simultaneously in the clover

detector, thereby suppressing the Compton scattering events.

The BGO Compton suppression shield has the shape of pyramid as depicted in Fig 2.7.lt

also has a heavy metal collimator in front of it, which prevents gamma rays from the

produced nuclei interacting directly with the BGO material, because once they interact

with the BGO material they will veto any giunma rays that have been detected directly by

the Ge detector when the reaction occurs.

2.3.3 LEPS detectors

LEPS detectors consist of a single crystal of p-type Ge. Each crystal is elecrically

segmented into four quadrants. LEPS detectors have a ma"rimum effrciency at low energy

below -200 keV [New98]. Only 6 LEPS detectors were mounted and a:ranged in the
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array at different angles. The LEPS detector Dewars are filled with liquid nitrogen (LN,

from the storage tank for every 24hrs.

$'(r$$

Figure 2.52 ThefourJeaf HPGE crystals are crafted and packed together in a clover
detector [Jon95J.
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+- LNz dewar

<- Cryostat

Figure 2.62 A clover detector, showing the tapered rectangular cryostat and cylindrical
nitrogen (LN2) Dauar [Duc99J.

{- BGO shield

<r HeavY metal

collimator

Figure 2.7: A BGO Compton suppression shield, showing the tapered heavy metal
collimator at thefront end [Duc99J.
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2.4Electronics and Data acquisition system

The iThemba LABS data acquisition system is based on the MIDAS software package.

2.4.1Electronics

In this experimant six LEPS and eight clover detectors were used to detect the gamma

rays emiffed when a reaction occurs. Referring to Fig 2.8, the LEPS detectors provide

four channels per detector; the N568 amplifiers amplify the signals from the LEPS

preamplifiers and shape them in a convenient form for both linear and fast signals. The

fast signal produced by the amplifier then goes to the Constant Fraction Discriminator

(CFD) where the signal is changed to a logic form and then goes to the FAN IN circuit

which accepts input signals from all the 4 channels to form an "OR" output. After passing

through a gate and delay generator (G & DG), the "OR"ed LEPS signals are fed into the

multiplicity unit which gives a logic output depending on the number, (or multiplicity) of

not zero inputs. The fast signals also go to the Gate and Delay generator (G & DG) which

delays the signals until after the arrival of a start signal for the 4418fi TDC, where the

LEP times are measured.
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Figure 2.82 AFRODITE array electronics

The "RIS" modules handle the signal processing for the clover detectors. These modules

have integrated circuits, which perform many of the functions already described for the

LEPS, in one unit. It includes the standard fast-slow processing and the anti-Compton

veto of events with a BGO signal as shown schematically in Fig 2.9 and2.l0,to produce

the "Clean Ge" signal. The "Clean Ge" signal is fed to two multiplicity units, the first of

which was set to 2, i.e. the trigger demanded that two suppressed clovers had fired in

coincidence. The second unit accepted also logic signals from the LEPS detectors. The

output from both multiplicity units may then be "AND"ed in the 365 AL coincidence

unit. In this way, more complex trigger conditions could be demanded. For instance if the

clover/LEPS multiplicity unit was set to 3, and the clover multiplicity unit set to 2, the
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AND of the outputs of the two coincidence units would at least demand 3 detectors, and

at least two of which were clovers, to fire in coincidence. Once the trigger was generated,

it was fanned out to the various ADC and TDC and RIS modules. One branch gated the

Silena 4418N ADC's, which digitised the LEP's energies. Another branch would enable

digitisation of energy and time in the RIS module by gating the clean Ge signal of the

RIS module where the signal conversion starts.

Finally, a branch of the trigger fan-out was used to create an RF-gated trigger, which is

used both to gate the various TDC's and as the time reference. The timing diagram is

shown in Fig 2.11. The cycloton RF signal provides the time reference. In this

experimurt, the pulse separation was 366ns. The arrival of trvo clean Ge signals, Gel and

Ge2 at the coincidence unit, generates a trigger signal, with fixed length. The width of the

clean Ge signals is set to half the time between beam pulses, in this case about l80ns.

This defines the coincidence window. In this example, Ge2 is delayed with respect to

Gel, and a delayed trigger is generated, at trigger B (see also Fig 2. 8). The trigger is

stretched by a gate & delay generator at C and gated with the RF signal to produce the

RF-gated kigg"r, at D. (see also Fig 2. 8)

Therefore the RF gated trigger signal is fanned out to the LEPS TDC (4418/T) where it

serves as a "common start" that starts the time measurement in the TDC. The individual

timing signals are delayed so as to arrive after the common start, and each signal "stops"

the TDC allowing the time to be measured. The RIS modules also have an internal TDC,

but it operates in common stop mode. The RF gated trigger is used as the common stop,

by applying it to the trigger 2 input. The RIS modules, 4418TDC 's and 44l8ADC 's are

readout on a FERA BUS by a VME module called the F2VB and thereafter the data is

sent out to a Linux workstation, which writes the data to tape.

During readout, acquisition is inhibited by vetoing the 365AL coincidence unit where the

trigger is generated. The diagram in Fig 2.9 and Fig 2.10 are the process occurs in RIS

module.
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CHAPTER 3

Data Analysis

3.1 Experiment

Two weekends of beam time were allocated for the experiment. The beam used was

delivered by the Separated Sector Cyclotron at iThemba LABS. The detectors used in the

AFRODITE aray were HPGe 8 clovers and 6 LEPS. About 2.9xl0ey-y coincidence

events were successfully collected (onto the magnetic DLT tapes).

3.2 The Energy Calibrations

The anergy calibration was done on the first weekend before starting to run the

experiment and also after the second weekend, after finishing the experimant, by using
l52Eu and l33Ba radioactive sources. When taking measurements, one of the sources was

mounted on the target ladder inside the target chamber, and the spectra were recorded.

The SFIT program was used to determine the centroids of the photo peaks from the

source ("'Eu and l33Ba; spectra. The SFIT program automatically finds the centroids of

the photo peaks from the source ("'Eu) but did not function for the '3'Ba source spectra.

The program GF3 [Rad95] was used to "manually" fit the centroids of the photo peaks

from the l33Ba spectra [n order to determine the energy calibration coefficients and gain

matching coefficients, the program SCAL was used to take the peak positions found by
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the SFIT and GF3 programs and fit an energy calibration for each detector, of the

form,E = ao * arx + arx2, where x is the channel number.

3.2.1 Energy gain matching

E{.5x'

x(Channels)

Figure 3.lz This figure shows how the energl gain match was done. The arrows indicate
mapping direction from one equation to the other with X' on the x-axis which shows the
new required channels.

Fig 3.1 shows how the gain matching is performed. For the clover detectors we wanted to

map the channels, x, with a quadratic energy calibration of the form E = ao * a,x + arx2

onto new channels x', with a linear calibration of the kind E = 0.5x'. ln order to do that

we equate the two of energy expressions as follows

0.5x' = ao + a{ + arxz ,

which implies that,

E

E3

E2

EI
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x' = Zao + 2arx + 2arx2 ,

This means that every energy calibration coefficient that we obtained must be multiplied

by 2 as indicated in the equation above.

The program DOP_COR was used to produce the gain matching coeflicients, to map the

channels to calibrations of E = 0.2x and E = 0.5x for the LEPS and clovers

respectively.

3.2.2 Time gain matching

The time gain matching was done for both LEPS and clover detectors. ln order to

determine the time gain matching for the clovers, we used the clover time spectra, one of

which is depicted in Fig 3.2.|t comprises a prompt peak at a channel xe and some small

peaks extending on the right hand side of it, which represent beam pulses with time

separation of 366ns. These pulses have smaller amplitudes than the "prompt" peak since

they are caused by y-rays being detected outside of the coincidence window.
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Figure 3.2: The time spectrum.

The diagram below shows how the time gain matching was done

Fmx+C

to:I000

'o:1000

Figure 3.32 Time gain matching
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t
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SOns

Prompt peak
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First, the time dispersion, m, was determined from the separation of the peaks in the time

spectrum.Theslope m canbeobtainedbyusing: *-366nsx-numbel(pulse). where x,
(x, - x1)

and x, are the centroids of the initial and final time peaks. The prompt peak at channel

Xs wos assumed to occur at time to:1000. ln this case we want to map the time

t = m)c+C onto, = r', where x' arethe new channels and C is a constant. In order to

determiner', we equate the two expressions as follows

and especially

then

x'=t=mx +C

lo=1000=msco*C,

C=1000-mxo

(1)

(2)

(3)

(4)

(5)

By substituting equation (3) into equation (1), we get

x'=mx+1000-z.ro

So finally we have x' = m(x - xo) + 1000

ln the case of the LEPS, the slope was obtained differently compared with the clovers,

because their TDC have fixed dispersion. Some of the LEPS TDC's had a range of

200ns, the others l000ns. If the TDC had a 200ns time range, only a single time peak

could be observed. Then the corresponding slope for such a TDC was given by

^ -2oons = o.o488ns / channel
4096

as each LEP TDC had 4096 channels. For the TDC's which produce l000ns full

. l000ns
scale. z = -:::= = 0.244ns / channels .' 

4096
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3.3 Gamma-gamma matrix construction

The calibration parameters that were found were used in the MTsort progftIm which

matched the energies and times and then updated a two-dimensional (E r,, &z) histogram,

or matrix. After y-y coincidence matrix was created the egpmat progftrm was used to

convert the two-dimensional spectra into a (.mat) Radware format [Rad95], which could

be analysed using the GF3 and escl8r progftrm. The y-y matrix with dimension of (4096

x4096) channels and with dispersion of 0.SkeV/channels had equivalent to 35000000 of

counts for a clover detector as depicted in Fig 3. 4.

t+zgr1tog,3n;16oYb

35000000

25000000

U'
c
f
oo 1 5000000

5000000

100 300 500 700 900

Energy (kev)

Figure 3.4t Total projection spectra of clover matrix wilh background not subtracted,

3.3.1 Time gates

Fig 3.5 shows a gain matched clover time spectrum. The time increases towards lower

values of x, and is represented by an .urow pointing on the left as depicted in the Figure
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3.5. Late and early represent the late and early detection of gamma rays by the clover

germanium detectors relative to the prompt beam pulse. The time measure occurred in the

common stop mode, where the time measurement in the RIS module is started by an

individual clean Ge signal (e.g. A in Fig 2.1l) and stopped (delayed) by the RF gated

master gate (D in Fig 2.ll). Thus, the later the signal A occurs, the smaller the time

difference with the RF gated master gate, so that "late" signals appear at lower channels

than "early" or "prompt" signals.

The bump shown on the left hand side of the prompt peak is caused by x-rays. Because

they have relatively low energy, they interact near the surface of the Ge crystal and

therefore the charge deposited takes longer to collect, resulting in a delayed signal.

teoy6

250000

150000

50000

goo 1000088
Time(ne)

Figure 3.52 The prompt gate on the gain matched time spectrum

When the T-T matrices were constructed, a gate was set on the clover time, shown in Fig

3.5, to ensure only "prompt" y-rays contributed to be matrix.

400 1800

+
Lah

X-rlelo

Fqk
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3.3.2 Addback

The clover detector is made up of four crystals, as depicted in the previous section in Fig

2.6. AT-ray canbe detected in a first crystal, which could then be Compton scattered and

detected again by a second crystal. So the energy from the first crystal can be added to

the second crystal energy to recover the total energy. This is what we call add back. This

add-back is very important because it increases the photo peak eff,rciency. The progrulm

MTsort also carried out the add-back operation.

3.4 Efficiency Calibration

The efficiency Calibration measurements of the LEPS and clover detectors in

AFRODITE were performed at the end of the experiment by using ls2Eu 
at d '338a

radioactive sources. These data were recorded in event-by event mode and later sorted

offline, in order to perform the add-back of the energies deposited in the various crystal

elements. The sources were mounted on the ladder one after another inside the target

chamber. The relative efficiency (e) curve for the 8 clover and 6 LEPS detectors in the

AFRODITE array when using t52Eu radioactive source are depicted in the Figures 3.6

and3.7 respectively. The equation for the efficiency calibration was given as

In(eff) =L(A+ Bx+Cxz)-o +(D+ Ey + py')-ol o (6)

In equation (6), A, B, and C describe the effrciency at low energies and D, E, and F

describe the efficiency at high energies. The relative efficiency curve for both clovers and

LEPS detectors was determined using the RadWare Software Effit program [Rad95]. The

efficiency for clover and LEPS detectors dropped at energies below 150 keV and 100

keV, respectively. The maximum detection efficiency occurs at 150 keV and 100 keV for

clover and LEPS detectors and decreased smoothly as the energy increases.
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Figtlre 3.62 The relative eficiency curvefor the 6 LEPS detectors measured with
thet33Ba radioactive sottrce mounted on the target ladder in the AFRODITE array.
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Figure 3.72 The relative eficiencyfor the 8 clover detectors measured with thets2Eu
radioactive source mounted on the target ladder in the AFRODITE aruay.
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3.5 Construction of level scheme

The ESCLST is an interactive program for graphics-based analysis of gamma-gafirma

data for the deduction of level schemes. It allowed us to display three graphics windows

at the same time. Each of those windows has its own specific uses. The first window

displays the spectra which were used to build the level scheme, the second window is

used to enter the commands in order to tell the program what to do, and the third graphics

is used to display the level scheme constructed from the y-7 coincidence matrix.

3.6 Angular Distribution

Transitions of multipolarity L between the initial and final substates m2and n, of two

levels of spin t, and r,are depicted in Fig 3. 8.

E2

L,M

Et T1

Figure 3.82 The radiative line of multipolarity L between two nuclear levels of spin Iz and
11, each ofwhich has 2I+ I substates characterized by the magnetic quantum number m

[Bur79J.
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The transition [2--+ll can have more than one multipolarity according to the selection rule,

I;*[1>L2lIi-Irl

The electric multipole radiation of order L(L is the angular momentum quantum number

of the radiation) has opposite parity to that of the magnetic radiation of the same

multipolarity L according to the parity selection rule. Electric multipole radiation of

order Z has parity n, = (- l)r and magnetic multipole radiation of order Z has parity

n, =-(-t)t =(-t)'.' tMa69l. In general, the angular distribution of multipole

radiation can be written in the form of a polynomial in even powers of cos0:

w(o)=t+forucos'r o (8)
k=l

is known generally that the angular distribution, W(0) depends on the value of mi and

W(e) =\f@)W^,-,,(0)

(7)

rnd

(e)
mi

where p(m;) is the population of the initial substate, therefore the fraction of nuclei that

occupies the substate. The angular distribution W(O)of the transition will be anisotropic

if the relative populations P(2,) of the angular momentum substates are unequal, that is,

P(m,)= P(mj).

ln heavy-ion induced reactions, a Gaussian distribution of substates is formed with the

P(m) given by

P(m) =
exp(-m'l2o2)

f"*p1-*'' l2o'1

Here o represents the width of the substate distribution.
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3.7 Angular Correlations

Anisofiopic angular correlations can be observed when we detect 2 y-rays from a cascade

even when P(m)=p1-') because detecting the first y-ray selects a certain substate

population. Although in heavy ion reaction, oriented excited states are produced angular

correlations could be applied.

ORIENTATION

AXIS

0
Figure 3.9t The angles in a directional correlation of two successive radiations Xt and
X2 emittedfrom an axial swmetric oriented source [Kra73J.

By measuring the angular correlation of two g:unma rays emitted from oriented states,

information about the multipolarity of transitions can be found. In order to determine the

angular correlation, the two detectors are placed at an angle 0:0r- Q, from each other, as

shown in Fig 3.9, with the beam travelling along the z a,ris. We can express the intensity

(the correlation function) with respect to their angles W(q,ez,Q) as

w (e t, 0 z, 0) = Ze o 
B 7,(1,) A 

^44 
(x r) A r" (x r) H au. 2(0,, 0 r, 0) ( I 0)

kl

0l

\
- \-.

'\

8?+

h?\

411,

34

http://etd.uwc.ac.za/



The B^(1,) are the orientation parameters, which depend on the substate population

parameters and k indicate the direction of the successive radiations with respect to angle

d on the oriented oris:

I

BtU)=elt+t)r' et)4*^ <11-ml1mt )"0> p(m) (l l)

The A^4h coefficients contain information on the nuclear wavefunction, and they

depend on the mixing ratiod =<Illt1',.11!'>, if a second transition in the cascade is<rrlllllrr>'
mixed.

A 
^4^' 

(6) =lr 
^,0 

(LLI, I t) + 26F aa (LL' I 2I t1 + 6' F 
^k4 

(L' L' I zI trl J$ f r zl

The F-coefficients are products of Wigner 3-j and 9-j symbols. Finally the angular

dependencies are contained in the H^Ah@r?2il coefficients, which are linear

combinations of aproduct of spherical harmonics [Kra73].

The role of the Qr is to correct all geometric effects on the observed distribution

function, including finite source as well as finite detector size lKra72]. The Qrvalue

depends on the energy of a given gamma ray and also depends on the size, and shape of

the detector and its distance from the source. The Qr values that have been used have

been estimated by referring to the previous paper written by K.S Krane lka72).In order

to determine these values, we first measured the source-to-detector distance (l9a.5mm)

in the AFRODITE array at iThemba LABS as depicted in the Fig 3.10. This distance was

used to read out the Qr values from Fig 3.11.
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Figure 3.102 The AFRODITE array detectors tAfrlsl

These Q values that are read out from Fig 3.11 by using source-to-detector distance are

as follows, Qr = 0.99 , Qz = 0.98 , Qt = 0.96 and Q+ = 0.93 .
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Figure 3.ll: Dependence of Qp on source-to-detector distance [Kra72J

3.8 DCO ratios for the geometry of AFRODITE

A by product of the recording of T-y coincidence data with AFRODITE is the angular

correlations between the detectors. By gating on one transition, cleaner spectra are

obtained with no other interference of some other transition which doesn't correlate with

gated transition. However, to obtain the necessary statistics, it is usual to sum

coincidences between detectors at the same angles and then to form a ratio, which

minimizes uncertainties due to the effrciency calibration that have been made. Such ratios

are called DCO (Directional Corrections from Oriented states) ratios. They are useful

because by knowing them, we can sometimes distinguish between transitions of different

multipolarities and also determine mixing ratios. The detectors of the AFRODITE aray

o
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are placed in rings at 135"(45o) and 90' with respect to the beam direction as shown in

Fig 3.12. The DCO ratios were measured by constructing three different matrices; the

first matrix consisted of the coincidences between detectors situated at l35o(y-axis) and

90' (x-oris). The projections of this two transpose matrices are shown in Fig 3.13 and Fig

3.14. Then the ratios of the y-ray intensities are found by taking a gate on (135'-90') and

to (90'-135') matrix:

(13)

Another two types of matrices were constructed "135o-135ou and"9Oo-90"u, (with

projections shown in Fig 3.15 and 3.16). The "135o-135o" matrix included only co-

incidences between detectors placed at 135o, while the "90o-90o" matrix involved only

coincidences between detectors at 90o. These matrices were used for determining the de-

alignment parameter, o / I by forming the following DCO ratio:

D _r(t3s" - 90.)A^y,- rcgr-O

D _ r(t:s'-135")
rrsym - 

fr-g._r0r)-
(14)

where 1(135'- 135") and l(10'- 90') are the intensities of the peaks in the spectra gated

on 135o and 90o detector respectively. The matrix was gated on time and the background

subtraction was made by using a special programme called GF3.

The experimental DCO ratios would then be compared with the DCO ratios calculated

using the program DCOPLOT, for various combinations of I;, Is, Ll, L2,6 and o/1. The

DCO ratios were calculated by individually calculating the angular correlation for each

detector combination, summing them together and forming the average DCO ratio. This

was necessary because the 0=90" detectors of AFRODITE are not placed symmetrically

around the beam axis as shown in Fig 3.12. The angular correlation function can be

expressed in terms of even powers of cos2kg, the different /'s reduceto Q:0,45o and

90o. A number of detector combinations for these angles are listed in table 3. I . Due to the

asymmetric placement of the 0=90o detectors, the angle 0=45" is the most frequent with
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equal numbers (DCO ratios) at 0o and 90o. To an accuracy of a few percent it was found

that w(fi,02,135") could be used to calculate the DCO ratios for AFRODITE, which can

be seen for example by comparing Fig 3.17 with Fig 3.18.

Table 3.1

Example of a few detectors combinations situated in different angles which have been

used to calculate the DCO ratios,

Energy Detectors 0l 0' Energy 02 0, 0=10,-Q,l

/r CI 135 0 /z C8 90 315 135

Tr C8 90 315 Tz CI 135 0 135

/r CI 135 0 Tz C7 90 270 90

Tt C7 90 270 7z CI 135 0 90

Tt C1 135 0 /z C6 90 225 135

/r C5 90 180 Tz C2 r35 90 90

315 cl
c8

B€am lire

LO

225

Figure 3,122lllustrating how the detectors are arranged in the AFRODITE array at
iThemba L,ABS. Cl to C8 represent clover detectors 5 from I to 8.

90
c2

270
cl

270
c4

c3
100

c5
180
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Figure 3.13 to Figure 3.16 represents the specta for the matrices that have been created

by using different angles of the clover detectors.

147sm1160,3n 16oyb

2500000

o
c) 1500000o()

500000

100 300 500 700 900

Energy (kev)

Figure 3.13: The total projection spectrumfor the" I35-90" matrix. The matrixfor y-
coincidence were created from two clover detectors situated at angle I 3 5 o and 90 o with
respect to beam direction.

147Sm 60,3n t6oy6

2sooooo

U)
C
= 1500000o
c)

500000

100 300 500 7o,0 900
Energy (keV)

Figure 3.142 This is the total projection spectrumfor the "90-135" matrix. This is the

transposed matrixfor " 135-90" matrix when the detector placed at 135 "(y-axis) and
9|'(x-axis) with respect to beam direction.
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700 900

Figure 3.152 The total projection spectrumfor the " l,35-l,35" matrix.

1479, 60,gn t6oy6

o
E)oo

100 300 500
Energy (KeV)

700 900

Figure 3.162 The total projection spectrumfor the "90-90" matrix.
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arctan(m ixing ratios)

Figure 3.172 Calculated DCO ratios, Rps6:W(135-90)/W(90-135), as afunction of
arctan (6)for o/I:0.33. This diagram isfor one detector combination correspond to
w(r35,90,135).
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Figure 3.182 Calculated DCO ratios, Rpgs=W(l35-90)/W(90-l35), as afunction of
arctan (6) fo, o/I=0.33. This diagram represents the average DCO ratio for all
combinations of detectorsfor AFRODITE aruay.
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In Fig 3.19 calculated ratios of the corelation function for the two symmetrical

geometries, W(135-135) and W(90-90) the angular correlations, are presented as a

function of o/I for different quadrupole cascades l-+I-2+l-4.

5

4

__ _.x

3 '1, \
t
ED
(a
Ch2<
lft
o't

Ilfl(n
(F

E

x

2

x

'l

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 8 0.9 1 1.1 1.2

De-ali0nment parameter(u,U

+
--t. -

---l---

--x--

#

12-10-8

1 0-8-6

8-6-4

6-4-2

4-2-O

Figure 3.192 Calculated rattos, W(L35-l 35)/W(90-90), as afunction of o/I for dffirent
quadntpole cascades I+ I- 2 +I- 4.

Thus a measurement of W(135'-135')nM(90'-90') allows o/l to be read offthese curves.

Using the experimental values of ,(o,r, obtained by gating on the strong transitions of the

ground state band, the dependence of o/l as a function of spin was determined, as shown

43
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in Fig 3.20. These values of o/l were then used in the calculations of.R^r,. Some

examples are shown in Fig 3.21 to 3. 24 where the DCO ratios are calculated as a

function of the mixing ratio for various combinations of spin ando I I .

0.7

0.6

0.5

olJ

0.4

0.3

0.2
2 4 6 I 10 ',t2

Spin

3.20: Illustrating the average spinsfrom dffirent bands in the level scheme ofFigure
t60y6.

Table 3.2

This table shows the calculated DCO ratios for a few different combinations of pure ML

transitions.

*
" "'t'

-+. -

spin vs weighted me
spin2 vs error wght -
spin 1 vs error wght +

Cascade MLI }"dLz DCO

7-5-4 2 1 0.58

8-6-6 2 I 0.72

9-7-6 2 I 0.95

4-2-2 2 1 0.77
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-60 -40 

arctanlr,r,nn'rl,,o, 
40 60 8o

Figure 3.212 Calculated DCO ratios, R*r^:W(|35-90)/W(90-135), as afunction of
arctan(6)for dffirent values of o/1. The DCOI, DCO2 and DCOj indicate the DCO
ratios ofeach curve on the y axes.
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-60 -40 -20 0 20
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40 60

Figure 3.222 Calculated DCO ratios, R*^:ll/(l35-90)/W(90-li5), as afunction of
arctan(6)for dffirent values of o/1. The DCOI, DCO2 and DCO3 indicate the DCO
ratios ofeach curve on the y axes.
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Figure 3.23: Calculated DCO ratios, Ro,r^=W([35-90)/W(90-135), as afunction of
arctan(6) for dffirent values of o/1. The DCOI, DCO2 and DCO3 indicate the DCO
ratios of each cur-t)e on the y axes.
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Figure 3.242 Calculated DCO ratios, R^r^:W(l35-90)/W(90-135), as afunction of
arcton(6) for dffirent values of o/L The DCOI , DCO2, DCOj and DCO4 indicate the
DCO ratios of each curve on the y axes.
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3.9 Mixing ratios

The mixing ratios were obtained for some transitions in the constructed level scheme of

'trYb. As an example we used a plot such as that shown in Fig 3.25 to determine the

mixing ratios. The measured DCO ratio (y-axes) was used during the determination of

mixing ratio. We read out the values of the mixing ratios on the x-a:ris as depicted from

the figure.

1.1

1.0

o.7

0.6
-60 -40 -20 o 20 40 60 80

arctan(m ixing ratio)

Figure 3.25: Calculated DCO ratios, Roco:W(l35-90)/W(90-135), as afunction of
arctan(6) for dffirent values of o/I

In general, one sees that there is an ambiguity in the mixing ratio obtained from a

measurement of R**- usually two values are possible, and additional information is

required to choose between the two.
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CHAPTER 4

Results of data analysis

The level scheme of l60Yb, deduced in the present work is shown in Fig 4.1. Gamma-ray

energies, intensities and DCO ratios are listed in table 4.1. Bands are labelled as band I to

12. The previous level schemes [Byr87], [Rie80], [Aue84] and [Gar82], from B-decay

and the 1160, 3n; reaction are shown in Fig 4.2 to 4.5. Several new bands have been

added, such as bands 7 to 12. However, the present level scherne does not extend to as

high a spin as that of Byrski et al [Byr87] shown in Fig 4.2. This of course, is due to the

use of a thick target, which has caused the states at high spin to be Doppler broadened.

The p-decay work had already identified some of the low-lying levels of bands l, 3 and

6-8. However, there are some conflicts with the spin and parity assignments of the

present work and that of Auer et al. [Aue84].

48

http://etd.uwc.ac.za/



tI*N
Ec
d
dt

Ec6
ro

o

E
fi

o
E
66

@
oc
E

ts
E
E

@
E
c
d

a
E
6
rlt

i
E
3

pl
J
$':

C,-'l

;i-

-o
o(0

;F

q

:

8

o
E
d
dt

EcI

L

:

i,9
oo,f

E
i

-e

g
B

:i

-z'

E
6

ao

---'r'.-l a-
I 
--3IIt!il
i

I
rfl'
I

I

Figure 4.1: Level scheme of 'ooYb with new additional bands,

49

.Ealr.

http://etd.uwc.ac.za/



{{2-) ---r-*- ri49z

(4(}*l ---
r I13

--- I,|AS{ 4O-
106r

14205

1158 39'
r304?

t0f6 37'
11369

9$-

t0$62 33-

r06?

954

817
r0O08 gt-

9t30 29-

829a 27'

I45S zS-

66?7 25-

5fl31 2t-

5094 rs"

837

861

664

a
a
I

+
,
l
I

3f

36'

3.t-

32-

30"

28-

26'

24'

22'

eo-

t&-

16-

lrl-

12-

fooo

s35

8AE

e53

847

838

774

712

739

654

5,* 1

12231

I tesS

to.t t4

9560

87 13

?8?$

7A*?

63e5

{917

4t?T

3523
2Sa2
258e

e6'

?{'

s2.

30"

28'

e6'

24'

20'

tB"
t6'
14'
tr
to'

836

?s
r$?

579
48.{

587

6$7

590

.t430

388 I
3367
2963

e*t6

1r-
t5-

3B

1 1{9
6,e{
744
0

688
5697 (4

78r

r3efi 38. 1000

95S

a77

8r8

060

st3

765

747

77t

r{9
67?

r37{f

1 t7{!

t tTgE

los93

lo{}r6

913 7

g2?7

7464

6699

5s52

5rB!

4432

37€0
t3*
I t-
a-

3r98
276$
zdfi?

433
,8:
6-

Figure 4.22 Level scheme of 'ooYb [Byr87J

50

http://etd.uwc.ac.za/



S

2

3

a

243.6 (90)

ro

rt
<t

(l

t?- 4

I

(\,

t7'

or
I

t4'
14-

tl,

<rt{

a
(1.r

fa

dr

ro

3t2.6
9
tr'

4

gsb

Figure 4.3: The Level scheme o7160Yb7ro* (oO, 3n) measurements of [RieS|J

dF

5l

http://etd.uwc.ac.za/



t*
C

!
i
! iH

!_I

t:

)t\t(\rur t

I

II

I

I

AH
ELD

ta.5l
tt.2.3l

ETo

1676 _5

1567.S
l52q-5

,i?#:l

18I.7

r358.7
t293.0
rnl,7

2

3

?+

Icr;2+,3i1'l

2*

ilt3.
1086. I

6f]
-t
a'+\,

820.s

638.8

213.1

o
E(keV)

2'

0'
I

bro

Figure 4.42 The decay scheme of 'ooYb, where the intensities are normalized to I(243
keV):100 fromfi-decay work of [Aue84J.

n

?3Y

52

'rC

lr

I

http://etd.uwc.ac.za/



t'

1.8

li

EXPT

Figure 4.52 Experimental level schemesfor'ooYbfro* thefi-decay work of Garret et al
[Gar82J.

6

fr
0'
It

?'

aE
IJ

l T

2'

0'

53

rltf

r ttttttl
tT[It{l

http://etd.uwc.ac.za/



Table 4.1

This table indicates the gamma-ray energies(E,,), intensities(1r), DCO ratios, and

mixing ratios 6 which have been measured. The gate was almost taken on stretched E2
transition.

Er(keY) I/ {(kev) Er(keV) J,(h) J t(h) DCO 6
e8.37(4) 2.4(t) 2s80.4(3) 2482.0 l0- 9-
108.73(6) 1.4(r) 2482.0(3\ 2373.6 9- 9-
r 1s.78(3) r.5(r) 2697.7(31 2582.0 (8) (7-)
184.47(6\ 1.80) 2764.8(3',) 2580.4 1l- l0-
206.82(3) 10.3( 4) 2580.4(3) 2373.6 l0- 9-

209.06(10) 1.0(1) 2482.0(3) 2272.9 9- 7- 1.05(l l)
209.28(3\ 4.0(2) 2e06.e(3) 2697.7 (e) (8)
214.90( 4l 4.1(2\ 2979.8(3\ 2764.8 t2- I l- 1.00(8)
2t6.s6(3\ 63.7(20) 2580.4(3) 2364.0 10- 8- 0.e0(7)
243.s0(3\ s6.e(57) 243.s0(3) 0.0 2+ Gl- 0.97(7\
249.se(s) 2.6(2\ 3128.3(3) 2879.1 1l- l1-
2s4.0e(3) e.7(3) 2364.0(2) 2110.0 8 7+ 0.57(6)
261.96( 4\ 3. l(l) 3 r 68.e(3) 2906.9 (10) (e,
271.92(4\ 1.7(l) 3440.7(3\ 3r68.9 (11-) (10-)
282.89(3) 80.1(2s) 2764.8(3\ 2482.0 l1- 9- l.l4(9)
2e2.62(4) 4.1(2) r l 13.3(2) 820.7 3+ 2+ 0.6e(8)
298.67(10\ t'2(3\ 2879.t(31 2580.4 1l- 10-

299.s4(2r) 0.4(r) 1s92.4(3) 1293.7 4+ 2+
312.58(3) 24.7(8) 2364.0(2\ 2051.3 8- 6- 0.ee(8)
313.29(5'.) 2.0(l) 3753.7(4\ 3440.7 (12-) (l l-)
3 r 9.38(s) 2.8(l l) ts75.t(2\ 1256.0 5+ 4+
323.46(s) 2.8(1) 3s20.7(3) 3197.2 l4- l3-
324.71(s\ 1.e(l) 2906.9(3\ 2582.0 (e-) (7-\
32s.21(s\ 3.8(2) 19s4.3(3) 1629.1 (s+) (4+) 0.s7(6)
336.44(9\ 1.4( 4\ l6es.4(3) 1358.9 4- 2-
346.29(4) e. l (s) 2719.9(3\ 2373.6 9- 9- 0.98(13)
34e.e0(6) 2.7(2) 3114.7(4) 2764.8 l3- I l-
355.99(4\ 8.7(4\ 2051.3(2\ t695.4 6- 4- l.l0(10)
3s9.60( 4) 6.2(s) 1928.0(2\ 1568.4 7- 5- 1.00(l l)
365.8s(6) 2.9(2) 1e58.2(3) 1592.4 6+ 4+ l.l0(18)
366.03(6) l.e(r) 2110.0(2) 1744.4 7+ 6+
373.20(9\ 2.3(2\ 1629.1(21 1256.0 (4+) 4+ 1.18(10)
3e1.10(3) 36.2(r2) 2764.8(3) 2373.6 I l- 9- 0.88(7)
39s.69(3) 1000.0(301) 63e.r(2) 243.3 4+ 2+ 0.e3(7)
3ee.38(3) 74.2(23\ 2e79.8(3) 2580.4 t2- l0- l. t 3(9)
404.32(3\ 100.4(30) 3366.1 (3) 2961.9 l4+ l2+ 1.00(8)
407.12(4) 8.3(3) 236s.4(3) 19s8.2 8+ 6+ 1.20(l l)
408.s3(s) 3.2(2) 3128.3(3) 2719.9 (ll) (e-) 1.03(14)
42s.83(s\ 4.8(2\ 27e1.2(3) 2365.4 l0+ 8+ 0.80(e)
427.38(s\ 6.0(3) ts7s.t(2) 1148.0 5+ 6+ 0.e8(10)
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E, (kev) I
7 {(kev) Er(keY) J,(h) J t(h) DCO 5

432.42(3) 7s.6(23) 3te7.2(3) 2764.8 l3 ll 1.17(10)
43s.4t(3\ 21.2(7) r2s6.0(2) 820.7 4+ 2+ r.02(9\
435.97(3',) 36.0(12) 2364.0(2) t928.0 8- 7- 0.47(4)
44s.64(3\ 38. l(14) 2373.6(3\ 1928.0 9- 7- t.l6(10)
461.61(3) 28.6(e) ts7s.t(2) 1113.3 5+ 3+ 1.02(12)
463.76(4) 7.4(3) 2418.0(3) 1954.3 (7+) (s+) 0.el(8)
471.19(sl 3.0(2\ 3168.e(3) 2697.7 (10-) (8)
474.3e(s) 7.4(4) l l13.3(2) 639.1 3+ 4+ 0.72(7)
476.46(6) 4.r(2) 2841.e(3) 2365.4 l0+ 8+
477.41( 4) l 1.7(5) 2s28.7(3) 2051.3 6-
478.6t(6',) 3.8(2) 3320.3(3) 2841.9 l2+ 10+ 0.68(7)
482.92(4'.) r0.e( 4) 2051.3(2'.) 1568.4 6- 5- 0.7s(8)
484.37(3\ 6s.7(20\ 38s0.s(3) 3366. I l6+ l4+ l.0l(8)
488.32(3\ 40.9(13) 1744.4(2) t256.0 6+ 4+ 0.ee(e)
503.73(3) 23.0(l l) 2879.1(3) 2375.1 I l- t0+ 0.e3(8)
s05.73(3) 7s.6(26\ 2879.1(3) 2373.6 I l- 9-
s09.0s(3) 8s8.8(2s8) 1148.0(2) 639.1 6+ 4+ 0.e7(8
51s.78(5) 7.4(4) t62e.t(2) 1113.3 (4+) 3+ 0.66(l l
s 15.86(s) s.4(2\ 2791.2(3\ 2275.4 10+ 8+ 0.e2(8)
s29.01(4\ tt.4(4\ 3320.3(3) 2791.2 12+ l0+ 0.e8(e)
sze.06(s\ 7.6(3\ 2e47.1(4) 2418.0 (9+) (7+)
53 r.1 8(3) 27.2(e) 227s.4(3) 1744.4 8+ 6+ r.1s(l0)
533.e3(s) 3'4(21 3440.7(3) 2906.9 (l 1-) (e,
s34.e0(3) 38.s(12) 2110.0(2\ t575.1 7+ 5+ 1.0e(10)
s37.r2(8) s.4(4\ 227s.4(3) 1737.6 8+ 8+
540.88(3) 43.8(14) 3s20.7(3) 2979.8 t4- t2- 1.02(8))
545.03(3) 31.6(12) 3424.1(3) 2879.t l3- I l- 1.04(e)
ss0.ee(4) 7.0(3) 3871.3( 4) 3320.3 l4+ 12+
ss3.e2(3) 24.8(e\ 2482.0(3) r928.0 9- 7- 1.02(e
s5s.33(s) 6.0(3) 3683.6( 4) 3t28.3 l3- l1-
s62.28(3) 3e.8(12) 37s9.s(3\ 3197.2 l5- 13-
s66.59( 4\ 10.4( 4) 2841.9(3\ 227s.4 lGl- 8+
s77.41(3) 32.9(r2\ 820.7(2\ 243.3 2+ 2+ 0.77(6) 6 < -0.1;6 > 3
s78.s4(3) 3s.l(1 1) 4429.1(4) 3850.5 l8+ l6+ 0.e8(8)
s82.44(9\ 2.6(3\ l6es.4(3) 1113.3 4- 3+
s84.4s(6) 3.2(2') 37s3.7(4\ 3168.9 (r2-) (10-)

586.80(3) 1s6.4(47) 296t.9(3) 2375.t l2+ l0+ 0.8e(7)
58e.56(3) s76.3(r73) t737.6(2) 148.0 8+ 6+ 1 .1 1(e)

592.78(4\ 16.8(6) 2702.7(3) 2l10.0 9+ 7+ 1.11(ll)
se6.se(4) 26.0(9\ 1744.4(2',) 1148.0 6+ 6+ 0.72(6\ 6 <-0.7; 6 >29
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Er(keY) Ir {(kev) Er(kev) J,(h) Jf(h) DCO 5
606.02(3\ l8.s(7) 4030.1(3) 3424.1 t5- 13- 1.05(e)
609.3s( 4) 8.6( 4) 3748.4(3\ 3139.0 l4+ l2+ 0.86(e)
6r6.e8(3) 4e.e(18) 12s6.0(2) 639.1 4+ 4+ 0.78(7) 6 <-0.6; 6 >7
626.34(3) 37.3(13) 2364.0(2\ 1737.6 8- 8+ 1.01(8)
627.63(6) 3.8(2) 43tr.3(4) 3683.6 l5- 13-

629.93( 4\ 8.7(3) 3332.7(3) 2702.7 1l+ 9+ 0.41(6)
630.84( 4) t2.4(5) 4379.4(3\ 3748.4 16+ l4+
636.22(3) 14s.6(60) 2373.6(3) t737.6 9- 8+
637.31(3) 230.t(6e) 237s.t(3) 1737.6 l0+ 8+ 0.8e(7)
654.08(3) 22.4(7\ 4174.8(3) 3520.7 t6- t4- 0.e3(8)
6s4.14(s) 7.7(4) 2s82.0(3\ 1928.0 (7-) 7-
66l.el(e) 2.3(2) 504r.3(5) 4379.4 l8+ 16+
663.86(3) r3.0( 4) s0e2.e(4) 4429.r 20+ 18+
671.76(3) t7.6(6) 4431.3(3\ 3759.5 t7- 15-

673.23(e) 3.0(2) 2418.0(3) 174r''.4 (7+) 6+
673.60(4\ 6.0(3) 4703.t(4\ 4030.1 t7- 15- o.ee(e)
688.0s(l l) 2.8(l) 2263.1(s) r575.1 5+
6e8.40(5) 8.2(4) 1e54.3(3) 1256.0 (5+) 4+ 0.5e(s)
703.84(7\ 2.2(2) s407.6(s\ 4703.7 t9- t7-
736.68(s) 4.2(2) s829.6(4\ 5092.9 22+ 20+
73e.39( 4) 8.6(3) 49t4.2(4\ 4174.8 l8- t6- 0.e7(e)
744.34(3) 103.s( 41) 2482.0(3\ 1737.6 9- 8+ 0.64(s)
748.78(4) 8. l(3) 5180.1(4) 4431.3 t9- t7- 0.55(5)
7s4.0s(6\ 6.s(s) 3128.3(3) 2373.6 l1- 9- 0.72(8)
763.70(tt) 1.7(1) 4s23.2(6\ 37s9.5 t5-
763.83(3) 2s.e(8) 3139.0(3) 2375.1 t2+ l0+
771.14(7\ l.e(1). 59s r.2(s) 5 1 80.1 2t- t9-
77e.e3(3) 145.8(1se) 1e28.0(2) I148.0 7- 6+ 0.5s(5)
786.48(4) 13.1(6) 3748.4(3) 296t.9 l4+ l2+

791.98(13) 2.3(2) 27t9.9(3',) 1928.0 9- 7-
7e3.4e(8) 3.3(l) 2s37.9( 4\ 1744.4 6+
7e5.8e(6) 2.7(t) 6625.5(s) s829.6 24+ 22+
808.40(6) 8.s(3) t62e.t(2) 820.7 (4+) 2+ l.0s( l3)

810.17(10) 3.0(3) les8.2(3) 1148.0 6+ 6+ 0.s4(s)
812.e0(8) 4.2(2) 2ss7.3(4) 1744.4 6+
820.70(5) 17.e(8) 820.7(2) 0.0 2+ 0+ o.e8(10)
837.53(3) t4.7(6) 2582.0(3',) 1744.4 (7-\ 6+

841.04(6) 6.5(3) 1es4.3(3)
3 1 1l

3

3
5+ 3+ 0.68(8)

854.00(e) 2.8(2) 4051.2(s) 3197.2 l3-
865. I 8(7) 3.r(2) 47|s.7(s) 3850.5 16+
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Er(keY) I/ { (kev) Er(keV) J,(h) J r@) DCO 5
86e.8e(3) 47.7(26) ttt3.3(2) 243.3 3+ 2+ 0.67(6) 6<0.2;6 >29
e03.30(3) 31.0(12) 20st.3(2) I148.0 6- 6+ 0.87(8)
e21.27(18) 0.e(1) s3s0.3(e) 4429.1 l8+
e2e.32(4) 38.5(12) 1568.4(3) 639.1 5- 4+ 0.67(6

e3s.80( 4) 3s.7(13) tsTs.tQ) 639.1 5+ 4+ 0.s8(s)
-19<6<-2.0;
-0.4<6<0.0

e47.80(21) t.t(2) 414s.0(e) 3197.2 13-

9s3.s3(18) 1.3(4) tse2.4(3) 639.1 4+ 4+ 0.es(12\
e6t.e6(6) 8.e(4) 2t10.0(2) I148.0 7+ 6+
e63.s4(43) 1.0(3) 2702.7(3) 1737.6 9+ 8+
e82.33(38) 1.3(7) 27t9.9(3\ 1737.6 9- 8+
98s.68(14) s.l (3) 2133.7(7) 1148.0 6+
1012.93(6) 10.3(s) t2s6.0(2) 243.3 4+ 2+ 1.00(l l)
1015.00(ls) 1.7(2) 437e.4(3) 3366.1 l6+ l4+
l0s0.es(r7) 7.e(s\ 1293.7(6) 243.3 2+ 2+
1053.46(6) 8.7(5) 2791.2(3) t737.6 lOr 8+ 0.86(8)
10s6.27(5) 25.6(8) t6es.4(3) 639.1 4- 4+ 1.12(1 1)

107s.39(19) 3.8(3) 2223.4(e) I148.0 6+
ttos.42(14) 5.1(4) 17M.4(2) 639.1 6+ 4+
l l0s.6e(28) r.e(4) 284t.e(3) 1737.6 l0+ 8+
l l15.36(17) 1.3(2) 1358.e( 4) 243.3 2- 2+ 0.46(8)
l124.8s(8) e.1(4) 2272.e(4) 1148.0 7- 6+
tt27.s2(20) 2.e(4) 227s.4(3) 1148.0 8+ 6+ 0.62(7e)
l l3s.4e(16) 1.4(2) 4e86.0(8) 3850.s 16+
t2t7.t6(8) 7.2( 4',) 236s.4(3\ 1148.0 8+ 6+ 0.e7(10)

1269.70( 4t) r.2(2) 2418.0(3) 1148.0 (7+) 6+
1292.48(140) s.2(2s\ r2e3.7(6) 0.0 2+ GF

1319.02(7) 8.2(6) les8.2(3) 639.1 6+ 4+ 0.ez(e)
1348.93(l s) 2.4(8) 1592.4(3') 243.3 4+ 2+
1439.34(19) 4.6(3) 2s87.3(e) 1148.0 6+
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4.1y - y Coincidences

Gates showing transitions associated with the new bands in the level scheme depicted

in Fig 4.2 are shown in figures 4.6 and 4.7

1a7g,n1l0O,3n)r60yU

10000

6000

2000

100 300 500 700 900 1100 1300

Energy (keV)

Figure 4.62 The y-ray coincidence spectra extractedfrom the gated matrix. Gates
taken at 425 keY and 406 keY transitionsfrom Band 7
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In order to get the coincidence spectra illustrated in Figure 4.6 arrd 4.7, gates were set

on transitions subsequently placed in the constructed level scheme of l60Yb. The gate

at 426 keV (Fig 4.6) is taken from a transition in band 7 in the level scherne. In that

case we can only see the transitions which are below and above the gated transition

i.e. that follow the decay path of the gated transition. The transitions which are in the

other bands and do not follow the decay path of the gated fiansition are not obserued.

In general, when taking gates on different transitions in the same band, the transitions

that can be observed in the first gates must also be observed in the other gates,

because those gates will follow the same decay path. The peaks labelled as 'flEr,

'trTm etc, are from contaminating nuclei which are formed in the reaction. These

appear in the spectrum because it is possible for a transition of the same energy to be

present in different nuclei, or in the same nucleus but in different bands.

The gates taken at 929keY, l3l9keV and 535keV have different decay paths, even

though there are some other transitions that are linked together by crossing bands

from one band to another. The transitions observed after taking a gate from one of the

transitions in the bands are shown inFig4.7. All these transitions have different

characteristics and multipolarities.
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4.2 Construction of level scheme

Bands I to 3 form a set of negative parity bands, which have been extended to lower

spin in the present work. The placonent of the level at 1568 keV, as the 5- mernber of

band 3 by Reidinger et al [Rie80] (see Fig 4.3) is now confirmed with a connection to

the 7- level via a transition of 360 keV, as shown in the 929 keY coincidence gate of

Fig 4. 7a. Band I is instead now extended down to the 2- level, first reported by Garret

et al [Gar82], at 1359 keV. Finally, Band 2 is extended to a 7- state with the placernent

of a 209 keV transition in the band, and by its decay to the ground band via a

transition of I125 keV energy.

Beta-decay work has established numerous levels at low spin in '*Yb. In particular,

levels at82l and 1113 keV were assigned to the 2* and 3* mernbers of the garnma

band [Aue85] (see Fig a.q. The gamma band is now extended to spin 11, with the

observation of Bands 8 and 9. Spectra dernonstrating the existence of these bands are

shown in Fig 4. 7c-e. However, the level at 1256 keV in Band 8, was assigned spin

and parity of 3- by Auer et al [Aue84], based on measured conversion coeflicients for

the 617 and 435 keV transitions. This assignment is rejected here because our DCO

ratio for the 435 keV transition, 1.02(9) is inconsistent with stretched El, and if a 3-

assignment were adopted, M2 multipolarity would be required for the 319 and 366

keV transition linking band 8 to band 9. Limits on mixing ratios have been extracted

for some of the transitions depopulating the levels in these bands to the ground state

band. In particular, those for the 577 and 870 keV transitions are consistent with the

pure E2 assignment favoured in the angular correlation analysis of Garet et al

[Gar82], and therefore we adopt this alternative from our analysis. Visible in Fig 4.7d

are the 516 and 479 keY transitions, which link band 7 to band 8. Apparently, these

transitions, and the 47 6 keY transition from band 8 to band 7 , are the result of mixing

due to the chance degeneracy of levels at 2791 and 2842 keV. On this basis the 2791

keV level of band 7 is assigned as a 10* state, which in turn fixes the spins and

parities of all the members of band 7, which is observed down to the 2+ state.

Members of band 7 are also visible in Fig 4.7b which shows the spectrum produced

by gating on the l3l9 keV line.
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Band 4, 10, 1 1 and 12 are new bands added to the level scheme. The spins assigned to

band 4 rely on the presence of the 7 54 and 792 keY transitions between bands 3 and 4

and the DCO ratio of the 346 keV transition linking band 4 to band 3, which is close

to unity. The spin of band 10 rernains tentative because of the contradiction with the

small DCO ratio (0.68(8)) of the 841 keV transition, which is assigned as a stretched

82. The transitions on band l0 are stretched E2, when gating on E2 transition and

even the calculate DCO ratio indicate that transitions on band 10 are stretched E2. In

this case the AI:2 is correlating with the calculated DCO ratios.
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Chapter 5 Discussion

Several new bands have been observed, including Band 7, 8, 9, 10, ll and 12 as

depicted in the constructed level scherne of l60Yb. These bands are characterizdby

di fferent confi gurations.

In the upper panel of Fig 5.1, the energies of the positive parity bands are plotted

relative to a rigid rotor, while the lower panel shows the negative parity bands. Each

band has its own signature depending on its configuration. Note that band I and band

7 lie over 1 MeV above the yrast line- thus the region where tetrahedral bands are

expected has been populated, at least indirectly, as these bands are fed from higher

spins.

5.1 Band 5 and Band 6

The ground states band (Band 5) is seen (Fig 5.1) to increase smoothly in energy as a

function of spin until a discontinuity above spin 10, where the slope changes

suddenly. This has been interpreted [Rie80] as a band crossing, where the ground

state band is crossed by a band in which a pair of inn neutrons has aligned their

angular momentum with the rotation of the core, due to the Coriolis force.

Thus Band 6 represents the continuation of the ground state band through the

crossing, No other positive parity bands show such a crossing, but a crossing band is

there in Band l, a negative parity band.
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5.2 Band I to 4

The negative parity side bands have been extended to lower spins states; at low spin

(<8) these are interpreted as likely octupole vibrational bands. The octupole bands are

on the left side of the constructed level scheme of r60Yb in Fig 4.2. Octupole

vibrations carry from 0 to 3 units of angular momentum.

Band I shows a crossing near spin 8, (Fig 5.1) which has been interpreted as a change

in character from octupole to two particles. The suggested configuration is

")tuttl}ulfxzl [RieSO]. Band2and band 1, and is interpreted as simply the odd

spin partner of band l[Rie8O]. At higher spin, band 3 has also been interpreted as a

two-particle band, based on the, lfeeOlO u 16lZ1 confi guration [Rie80].2" 2'

Band 4 behave differently compare with other bands and not showing any crossing

band (Fig 5.1). The spin of band 4 extended up to 15h.
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Band 7 is presumably the p band, but due to the loss of intensity through I-I-2 and

I+I transitions to the ground band, the 0* bandhead could not be identified. The

0+state shown on the level scherne is the 0* state, identified in p decay [Aue84]. The

assignment of this level to the bandhead of band 7 is seen to be quit plausible when it

is plotted as a mernber of the band in Fig 5.1, which shows the energies of the levels

of the bands of l60Yb, less a rigid rotor reference, as a function of spin, as it falls on

the smooth extrapolation of the band to spin 0h.

5.4 Band 8 and Band 9

These two bands are interpreted as the even and odd spin sequences of the 1

vibrational bands. In gamma vibration, the nucleus deforms into ellipsoidal shape in

the equatorial direction (all the axis are not the same). Such a vibration carries two

units of angular momentum parallel to the 3 axis. The components of angular

momentum of orientation remain zero, since the moment of inertia is zero. In this

case, the states of the band are 2* , 3*, and 4* etc and K: 2. G=0 because there is no

other states that lie below them.

5.5 Band 10

Since only three levels of bands of band l0 have been determined, and their spin and

parity is uncertain, the configuration assignment of this band is problematic. It is
possibly of vibrational character, considering its decay to the 1-band.

5.6 Band 11 and 12

Band I I and 12 occur at high excitation energy, slightly higher in energy than the 2

particle bands that cross the ground state band and the octupole band (see Fig 5.1).

Therefore it is likely that they are 2-particle bands. There are only two possible

configurations, namely,
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,l vosl*rl. [65r] or ,f,- rzlaof,. vo+)
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CHAPTER 6

Summary and Conclusion

The work presented in this thesis was based on the study of gamma coincidence data,

which have been collected from the two weekends experiment performed in

AFRODITE at iThernba LABS. Low spin states in r601rb produced from

'a7sm1l6o,3n)toYb have been studied. The data analysis comprises of analysis of
gamma-garnma coincidence and Directional Correlation of Oriented (DCO) states

measurements.

During the analysis of the data, we obtained new rotational bands and added to the

constructed level scheme of l@Yb. The experiment has been successful in observing

states more than I MeV above the yrast line, where the proposed tetratredral bands

could be expected, but those bands that have been obtained in the expected energy

interval, do not show the expected decay of tetratredral bands. We interpret those new

bands as beta (F) and garnma (1) vibration bands.

The Directional Correlation of Oriented (DCO) states were measured in order to

assign multipolarities of transitions from the bands in the constructed level scherne of
roYb.
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