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Abstract

Handwritten signature verification is defined as the classification process that

strives to learn the manner in which an individual makes use of the muscular

memory of their hands, fingers and wrist to reproduce a signature. A handwritten

signature is captured by a pen input device and sampled at a high frequency which

results in time series with several hundred data points. A novel recurrent neural

network architecture known as long short-term memory was designed for modelling

such long time series. This research investigates the suitability of long short-term

memory recurrent neural networks for the task of on-line signature verification.

We design and experiment with various network architectures to determine if this

model can be trained to discriminate between authentic and fraudulent signatures.

We further determine whether the complexity of a signature impacts on the

performance level of the network when applied to fraudulent signatures. We also

investigate the performance level of the network when varying the number of

signature features.

The results obtained are a clear indication that long short-term memory recurrent

neural networks can model handwritten signatures. Our experiments also show

that complex signatures are more difficult to forge. Also, the network's ability to

discriminate between authentic and fraudulent signatures improves when we

increase the size of the signature feature vector.
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Chapter 1

Introduction

Recurrent neural networks (RNNs) are difficult to understand due to their high

dimensional, nonlinear and dynamic nature [3a]. They are, however, ideally suited

for modelling dynamical systems with hidden states whose output is typically

recorded in the form of time series. The two primary objectives of time series

analysis are prediction of future values, i.e. given observations y(1), y(2), ..., y(r),

predict future values y(n+1), y(n+2), ... and time series classification. Various

machine learning methods have been applied to time series prediction and

classification tasks such as speech recognition [38], electroencephalogram

classification [60] and dynamic gesture recognition [9].

A considerable amount of research has been carried out in the area of handwritten

signature verification using both offiine and online approaches. The best results

reported in the literature have been attained for on-line signature verification

where the entire signing process is monitored; thus, dynamic signature information

is available. In this thesis, we apply a novel RNN known as long short-term

memory (LSTM) for time series classification that is able to discriminate between

genuine signatures and forgeries. The high sampling frequency of on-line signatures

1
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results in time series with several hundred data points. LSTM RNNs were designed

for modelling such long series.

1.1 RpsBeRcH HYPoTHESES

An individual's handwritten signature is a dynamic time-varying process and can

be captured and represented as a time series,

lx (t), y (t), p(t), 0,(t), 0 a(t)l

where r(t) and y(t) represent the x and y pen-tip co-ordinates, p(t) the pen-tip

pressure, 0"(t) and 0r(t) the polar angles of the pen. The complexity of signatures

is established through visual inspection and fall into the following categories: easy,

moderately easy, and difficult to forge.

The hypothesis of our research is that LSTM RNNs can be trained to discriminate

between genuine and fraudulent signatures. Secondly, we believe that the complexity

of a signature impacts on the performance level of a LSTM RNN when applied to

casual, skilled and forensic forgeries. Lastly, an increase in the number of significant

features used to discriminate between genuine and fraudulent signatures of varying

complexity results in a diminished misclassification rate of fraudulent signatures by

the network.

L.2 TpcuNrcAL OBJEcTTvES

The primary aim of this thesis is to apply Long Short-Term Memory Recurrent

Neural Networks to the task of on-line signature verification, which to our knowledge

has not yet been attempted.

http://etd.uwc.ac.za
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Traditional RNNs have difficulties in dealing with time series that contain

long-term dependencies. The result of experimentation conducted on these

networks will indicate if this can be done, as well as the suitability of this

modelling technique in discriminating between these signature exemplars. In this

thesis, we further seek to determine how the complexity of a signature affects the

performance of the model. Finally, we will identify how signature features affect

the performance of the model on casual, skilled and forensic forgeries.

1.3 Mpruoool.ocY

Handwritten signature reproduction is based on muscular movement. The sequence

of states of the muscles involved in this process is not available, i.e. they are hidden

and hence verification can only be applied to the output of these processes. Various

methods including hidden Markov models (HMMs) and support vector machines

(SVMs) have been applied to this problem with varying degrees of success [39, 66].

However, since signature classification involves modelling of hidden states, recur-

rent neural networks are computationally better suited than other adaptive models.

HMMs do not contain continuous internal states, i.e. hidden states must be modelled

explicitly, whereas feedforward neural networks and SVMs contain no internal states

at all [1].

We have applied LSTM to handwritten signatures and adjusted various network

parameters to obtain the desired results through training. Experimentation was con-

ducted to investigate if a single LSTM RNN is capable of discriminating between

genuine and fraudulent signatures. We then trained three LSTM RNNs to model

signatures belonging to various complexity groups. Finally, we varied the number

of signature features to determine how it impacts on the performance level of the

http://etd.uwc.ac.za
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network. These results are reported in receiver operating characteristic curves that

estimate the performance of this learning system.

I.4 ACCOIT,IPLISHMENTS

We applied LSTM RNNs to the problem of on-line handwritten signature verifica-

tion. We give the reader insight into various time series modelling approaches and

supply sufficient motivation for using LSTM RNNs as a solution to our problem

statement. The performance levels attained by the network were sufficiently

satisfactory to prove the feasibility of applying LSTM RNNs to dynamic signature

verification and also provided sufficient evidence to validate our hypotheses.

1.5 TuBsrs OuruNp

The content of this thesis is arranged as follows: In Chapter 2, we present various

neural network time series prediction techniqucs as well as some application domains;

we conclude with problems pertaining to modelling long time series. In Chapter 3,

we present the theory of long short-term memory recurrent neural networks and

discuss a few of its applications. We then present our application of long short-term

memory recurrent neural networks to on-line signature verification in Chapter 4, as

well as various aspects of this problem domain. In Chapter 5, we discuss the results

of our experiments and conclude with possible directions for future research.

http://etd.uwc.ac.za



Chapter 2

Time Series Prediction with

Artificial Neural Networks

2.L INrRooucrroN

Human beings are capable of gathering vast amounts of sensory data from their

surroundings which in turn enables them to formulate logical decisions. This data

can be represented as a time series which the brain organizes and performs complex

operations that allow us to predict and classify sequences in nature. Artificial neural

networks (ANNs) are simple mathematical models devised in an attempt to emulate

some of these human brain functions.

Recurrent neural networks (RNNs) are ideally suited for modelling dynamical sys-

tems with hidden states. The output of such processes are typically recorded in

the form of time series. The two primary objectives of time series analysis are pre-

diction of future values, i.e. given observations y(1), y(2), ..., y(n), predict feature

values y(n+1), y(n+2),... and time series classification such as in the recognition of

phonemes for speech processing [38].

Various machine learning methods have been applied to time series prediction and

5
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classification tasks such as electroencephalogram classification [60] and dynamic ges-

ture recognition [9]. In our presentation, we will focus on the classification of sig-

nature time series data using RNNs. Throughout this thesis, we assume that time

is quantized into discrete steps, since a handwritten signature extends for a fixed

number of time steps.

We give a brief introduction to neural networks followed by various neural network

topologies that have been applied to time series prediction tasks. We conclude with

an explanation of the long-term dependency problem that is inherent in traditional

RNNs.

2.2 NpuRel NprwoRKS OvERVTEw

ANNs are subdivided into two classes, namely feedforward and recurrent. Feedfor-

ward neural networks (FNNs) [56] contain no explicit feedback connections. Conven-

tional FNNs are able to approximate any finite function as long as there are enough

hidden nodes to accomplish this [23].

ANNs store knowledge in synaptic weights. During this learning process, these

weights are adjusted in order to approximate a desired input-output mapping with

a some degree of accuracy.

Two types of learning methods exist: supervised or associative learning and unsu-

pervised or self-organizing learning. The former requires an input pattern along with

matching output patterns which is given by an external teacher whereas the latter

requires input patterns from which it develops its own representation of the input

stimuli.

http://etd.uwc.ac.za
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2.3 FppopoRwRRo NpuRal NnrwoRKS

A multi-layer feedforward neural network (FFNN) (Figure 2.1) consists of layers of

neurons which are connected via weights which may either be fixed or random values.

These networks also comprise of one or more hidden layers containing hidden units

which are able to extract higher-order statistics [23]. This is particularly valuable

when the size of the input layer is large. Activation functions in the network may be

those whose output is a nonlinear differential function, e.g. sigmoid function, of its

inputs and hence suitable for gradient descent learning.

orjlpul
nodes

Figure 2.1

The backpropagation learning algorithm and the generalised delta rule are common

gradient descent approaches that are used to train these static networks. The error

backpropagation algorithm is defined according to [23] as follows:

Tbaining examples are presented to a neural network in the form (7,7) where 7 is a

vector of input data, and 7 is the vector of desired teacher signals.

hiddon
nodeS

hput
rcdes

A FeedForward Neural Network

http://etd.uwc.ac.za
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. We construct a feedforward network with n;, inputs, Tlhidden units, &td rloul

output units.

o We initialise the networks synaptic weights to a random value.

o We repeat the following steps until the termination condition is met:

- For each (r,7) in the training set, propagate the input forward through

the network.

- backpropagate the error through the network:

x For each network output unit k, calculate its error term d6

6r-or(1 -op)(tp-oe)

* For each hidden unit h, calculate its error term d7,

fi <- o1(L - on)D*."utputsukhdk

+ The following weight update rule is then applied

Lwy: rlSirit

Two basic methods exist for backpropagation learning [23]: They are sequential or

stochastic mode and batch mode backpropagation. The former learning approach

updates weights after each training example is presented to the network, whereas

the latter approach requires that the entire training set be presented to the network

followed by the weight updates.

Conventional FFNNs are not able to deal with time-varying input since they are

static learning devices, i.e. the number of input nodes in the network are fixed

based on the task at hand. They can, however, be adapted to deal with temporal

relationships as we will see in the next section.

http://etd.uwc.ac.za
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2.4 Trup Dpr,ev NpuRal NprwoRxs

Time delay neural networks (TDNN) is an architecture developed bV [63] specifi-

cally for speech recognition. The purpose of this architecture is to have a network

that contains context which is able to represent sequences. In TDNNs, context or

short-term memory is represented as input history. The number of time steps that a

TDNN is able to process depends entirely on the time window that stores the input

sequence. [40] notes that the buffer size limits the length of longest sequence which

can successfully be differentiated by these networks. When dealing with time series

problems, we must have a good idea of what the size of the longest sequence in the

dataset will be.

The reason for this is simply that, in TDNNs, a fixed input window size has

to be selected based on the longest sequence length. If this prior information is not

known, the sequence of course cannot be stored in the time window, thus making

processing of the sequence impossible. The number of input to hidden layer weights

increases with increasing window size. The increased number of parameters increases

the time complexity of the learning algorithm.

The input layer of a TDNN consists of a sliding window whose weight vector

is shared amongst other inputs. The output of the activation units is computed

by taking a weighted sum of the nodes residing in the input window over a time

period and then applying a squashing function to it. TDDNs are trained with the

conventional error-backpropagation learning algorithm.

http://etd.uwc.ac.za
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hiddsn
nodes

inpul
nodes

x{l-n)x(r)

Figure 2.2: A Time Delay Neural Network

TDNNs have been applied to a control problem in [35]. Data was recorded from a

model-based controller for a robot performing a peg-into-hole assembly task, see

Figure 2.3.

Figure 2.3: The Robot Controller: This figure illustrates the peg-into-hole task.

The data set consisted of 3000 single samples each of which represents an insertion

of a peg into a hole. The samples comprise three forces Fr, Fy, .P, three torques

about a point M,, My, M",three translational velocities V,V,V, and three angular

http://etd.uwc.ac.za
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velocities u)a1 u)yt r,lr. These samples are represented as signals in Figure 2.4

Forces during peg insertion
lo

-lo
Forca

o

-x)

.30

-{(,

.50

40
o J0 l0) t50 !00 250

liminmillismds
300 3J0 400 {50

Figure 2.4: Force signals recorded during peg insertion

The TDNN's purpose was to approximate a mapping of f orcef torque ----+ velocity.

An error rate of 0.072for the output W ,0.125 for the output Vu, and 0.021 for the

output V, was achieved, which indicates that a TDNN is able to model such a task.

2.5 FrNtrp Iupur,sp RpspoNsE AND INprNrrp IrrapulsB RpspoNsB

NpuRel NprwoRxs

F inite impulse response (FIR) and infinite impulse response (IIR) neural networks,

in Figure 2.3, were developed by [3] specifically for the task of nonlinear time series

prediction. They are based on the traditional FPNN architecture with the exception

that each weight is replaced by a FIR/IIR linear filter. FIR networks contain time

delays and they do not have recurrent connections, whereas the IIR networks have

-tt

tz

!

w
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connections that are locally recurrent. Both of these networks are still globally feed-

forward in nature.

The FIR filter allows input to be stimulated for a finite period of time, which results

in the output activation of the filter also being produced for a finite period of time.

An important point that [64] mentions is that FIR networks are functionally equiv-

alent to TDNNs.

nodes

llR lFlR filter
hidden

input
nodes

Figure 2.5: A FFN network with FIR/IIR synapses

This FIR filter produces an output, y(k), that represents the weighted sum of the

current and past inputs, x(k).

a&) : t;:, u(n)r(k - N)

oulp

W u--u-u I
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FIR Filter

u-l
{k-2)

llR Flfter

u-r

Figure 2.6: FIR/IIR filters

This is then passed through a squashing function, i.e. sigmoid function which

results in the activation of the neuron.

z(k): f (a@))

The IIR filter has the form:

a@) : DT=ra(n)r(k - n) +D[:ob(m)y(k - m)

Figure 2.6 illustrates FIR and IIR filters which contain weighted tapped delay lines.

The unit delay operator u-l represents the input at a given time step, i.e. r(k -
l) : u-'r(k). The learning algorithm for these networks is known as temporal

backpropagation. The reader may consult [64] and [3] for its derivation.

WN

--------{>

y(k)

k)
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[3] tested the performance of both FIR and IIR networks on a time series generated

by the following function:

aQ) :sin {* [^ti) - o,(s-') - az?-\x(l)\ Q'\

where z(t) is a zero mean white noise source, low-pass filtered with a cut-off fre-

quency of 7 rad/sec, with ar : 0.8227, d2 : -0.9025, and B1 : 0.99. [3] notes

that these parameters highlight the dynamics of the system and its nonlinearity.

This problem stems from nonlinear control systems which occurs in a wide range

of applications used in engineering and science. Some examples include nonlinear

circuits, mechanical systems, robotics, chemical processes, flight control, jet engine

control, evolutionary systems and biological systems. The time series generated by

Equation 2.1 approximates a particular real-world control system.

e(t)

o

,0c .c0 too ao0 r !00

Iterations

Figure 2.7: FIR Testing Mean Square Error: This figure illustrates the testing
mean square error of 0.0664.

Error

I
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The FIR and IIR networks were trained by [3] on 5 x 106 data points generated

from the above equation. The test set consisted of unseen generated data of 1000

points. A testing mean square error of 0.0664 in Figure 2.7 was obtained for the

tr'IR network. For the IIR network, a testing mean square error of 1.2 x 10-5 was

achieved as depicted in Figure 2.8.

[3] concludes that the IIR network achieves a lower error rate thus making it a more

efficient model than a FIR network for this given task. The reason for this is that

networks which have local-feedback connections, i.e. IIR networks, perform better

than those with only local feedforward connections, i.e. FIR networks [3].

e(t)
o

loo .00 aca 400 t a!a
Iteralions

tr'igure 2.8: IIR Testing Mean Square Eerror: This figure illustrates the testing
mean square error of 7.2 x 10-5.

Error
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2.6 Br-orRpcrroNAr, NpuRal NprwoRxs

A bi-directional computation is able to improve future value prediction by adding

values that are predicted from the past [68]. The reason for this is that past values

are related to those that occur in the future [69]. The bi-directional neural network

thus makes use of past and future values.

y-out 7/
f.dE drnd

PaslFufurc

Lln

predica0on z_out
network

y_rn prodica0on
network

ffi^
vl&Atrl,<U

statc
layer -t6il#z+6iP #"il

tr'igure 2.9: A Bi-Directional Neural Network Model: A pattern which fed into
the future prediction network flows in the opposite direction to a pattern which had
been fed into the past prediction network.

http://etd.uwc.ac.za
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A pattern which fed into the future prediction network flows in the opposite

direction to a pattern which had been fed into the past prediction network. This

model, Figure 2.9, consists of an input layer, ,[0], two hidden layers y[1] and AL2) arrd

an output layer, ylsJ. [68] further notes that for a pattern flowing in a given

direction is computed as follows:

alo) : lan.ln,

u['] : /r (Di rl',t aP + l, w[l) st'] * D, -fft rtf)),

,atl,'l lat + sfl : ,:'l ,

v:'t : fr(Dir[]rut't),

la-"rln: al') : fs(Dir[]ruf),

fr(r): fr(*): r**k=,,
fr(*) : *,

where f'represents the future prediction network and P the past prediction network.

During training, the future prediction network weights are updated according to

the real-time recurrent learning algorithm. The function for minimizing the error is

defined as:

e r : DrD n{la',,(t)lo - al') (t)}'

where 4ir) ir simply the desired teacher signal.

The error and the weight updates for the past prediction network are computed in

the same way. This bi-directional network as well as a uni-directional network have

been applied to sunspotsr data in [68] which is one of the most popular data sets

often used for time series prediction tasks. The data set consisted of 280 years (A.D.

1700-1979) of normalised annual data.

lsunspots are dark spots found on the surface of the sun, which are really areas of
intense magnetic enerry which tend to cool down the area residing within it, thus resulting
in a darker appeaxance compared with the surrounding solar atmosphere.
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The training set consisted of the first 100 years and the rest was used for testing

purposes. In the future prediction network, r(t) is fed as input to y6.(t') and

r(t + a) is assigned a teacher signal at yo6(t'). In the past prediction network,

r(t + a) is fed as input to an(t') and r(t) is assigned a teacher signal at zo6(t'),

where z(t) is simply that sunspot input data at time t (in years), a is the

prediction step and t' is the time step of the network.

Both networks consisted of 4 layers, i.e. 1 input node, t hidden layer 1 nodes , 9

hidden layer 2 nodes, and 1 output node. A learning rate of 0.005 was used to

avoid instability. The results of the experiments conducted by [68] is as follows:
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Figure 2.10: The F\rture Prediction Network: This figure illustrates the response
of the input and output neurons.

Figure 2.10 and Figure 2.11 [68] shows the response of the input and output neurons

for the bi-directional neural network.

0
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Figure 2.11: The Past Prediction Network: This figure illustrates the response

of the input and output neurons.

[68] measured the models generalisation performance by an index known as the

average relative variance (ARV). The ARV is defined as :

A RV : I I o2 T ll =r( o e s tr ed,O utput (t) - Actual O utput (t))2

A perfect prediction has an ARV: 0, while an average one yields an ARV : 1.

It can be seen in Figure 2.L2 that the prediction quality of the bi-directional model

is better than the standard uni-directional network. This future-past information

integration helps the bi-directional model to predict future points more accurately

(see Figure 2. 11) and it results in better performance rates versus that of conventional

uni-directional models [68].

17t0 1710 l75t 1760 1770
prcdlctlon ycer (4.D.)
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Figure 2.13: Elman RNN, Jordan RNN and a F\rlly RNN: This Figure illus-
trates RNNs without explicitly showing time delays.

the weight space that produce the minimum margin of error. Learning in recur-

rent networks is accomplished by finding the minimum of an error function E over

all sequences which measures the difference between desired target outputs tp and

actual outputs 41.

E (t) : u 2D(tk(t) - ax(t))'

The error at a time t is calculated for a particular pattern; thus, E(t) represents the

sum of all the errors over all the patterns residing in the dataset. The weights are

then updated according to the following rule:

Lw: _TE(t)

where 4 represents the learning rate constant which determines the step size in the

gradient descent search. With a small learning rate, a network will take a consid-

erable period of time to converge to the desired solution if one exists. Too large a

learning rate may result in divergence; the learning rate parameter is increased, the

settling time of the network also increases which is the result of overshooting the
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solution. After the error signals have been calculated, they are added together and

contribute to one big change for each weight, this is known as batch learning. An

alternative approach is on-line learning which allows the weights to be updated after

each pattern is presented to the network.

RNNs have been applied to speech recognition with promising results. [48] applied

RNNs to speech recognition whose dataset contain missing speech values. In exper-

iments performed, incomplete speech values were replaced by estimated ones. An

Elman RNN was used to estimate these missing values in the speech input vector.

This is known as imputation2.

20 30 40

o o trlissing

50 60 70 80

Figure 2.I4: The RNNs Classification Performance: This figure illustrates that
the RNN used for imputation and classification produced the best results.

2lmputation is a technique in which missing features are replaced by estimated values
to allow the recognition process proceed in a normal way.
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The same network was used to classify these speech signals. The dataset consisted

of 30 male speakers, which were split into training and testing sets. This was

obtained from the TIDIGIT database [a8]. The network contained 20 features per

time frame from a Hamming window which overlapped by 50%. The RNN consisted

of 20 inputs,65 hidden nodes, and 11 ouput units. In Figure 2.l4we can clearly

see that the RNN used for imputation and classification produced the best results.

Common approaches based on gradient descent learning for recurrent networks

include backpropagation-through-time (BPTT) [56] and real-time recurrent learning

(RTRL) [67] which follows.

2.7.1 BacxpRopRGATroN THRoucH TrME

This learning algorithm was first proposed by [56] and is based on the conven-

tional error backpropagation algorithm. The backpropagation through time (BPTT)

learning algorithm computes the error gradient on a RNN that is unfolded in time.

This is accomplished by creating a copy of the network for each time step. The

weights are then shared amongst these copies.

The total error of the unfolded network is defined by:

E:DliD,r1z1"11'

where el : error of node i at time t : 4 - al

ej will : 0 if d| is not specified.

The learning procedure computes weight updates as follows:

1. The forward pass for the given data is performed, and the error for each time

step t is computed.

2. The error is backpropagated in order to calculate the local gradients for time

step t.
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6l : -6E l6I! : s'(I!)e! f or tr: tn

otherwise

6l : g'(Il)(e'o +Diw46j*')

where g(Ij) represents the squashing function.

3. The weight change is then computed

6wu: -a 6El6wij: cr dDf-' 6l*'€t

where €j represents the input to node j at time step t

2.7.2 Rpar,-rrup RECURRENT LEARNTNG

Real-time recurrent learning (RTRL) 123,26,67] is another gradient descent learning

approach for training RNNs. This learning algorithm calculates the derivatives of

states and outputs with respect to all weights in the network. This means that the

network is not unfolded in time.

We define input units as: I : ,o(t), where 0 < k ( rn, hidden or output units as:
.,1.-'
A- yp(t), where 0 < k ( n and arbitrary units are indexed by: zy(t): rn(t) if k e

I or yy(t) if k e U.

Let W represent the weight matrix which contains n rows and n*m columns and

u.rai will represent a weight from unit i to unit j.

The network activation for a given unit is:

net p(t) : D r eu. t w 1,1 zi(t)

where t denotes a given time step.

The network activation is then passed through a squashing function:

ak(t+I): f{netp(t))
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A teacher signal may not be assigned for each input signal, i.e. a target is provided

only for the last input in the sequence. An error defined over the output units needs

to be time dependent. The reason for this is that if no target exists at a particular

time step, an error produced at the output layer will be undefined or zero.

The output unit error is therefore defined as:

ep(t) : dx(t) - 9;(t) for k e r(t) or 0 elsewhere

where T(t) is simply the set of indices in U where there exists a teacher signal d7.(t).

The cost or error function for a given time step is defined as:

E(t) : Il2Do.u 
"r(t)'

This error function needs to be minimized over all past steps of the network.

Erorot(to,tl) : D 1,8(r)
to*1

The total error is now the sum of the current error and the error of the previous

time steps. It then follows that E61o1is the sum of the gradient for the preceding

time steps and the current time step.

V -Eb1o1(ts,, + 1) : V -Etotot (r0, r) + V.E(t + 1)

where V,, is simply the gradient of w. For every sequence that is presented to the

network we can compute the weight change A-.

L-,,(t) : - p,0 E (t) I O*ni
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So each weight within the network is adjusted by

tl

I A-,,(t)
t:to*l

2.8 Tup VaxrssrNc GRaoIENT PRoBLEM

According to [6], a task will exhibit long-term dependencies if the computation of

a teacher signal at a given time step depends on the input signal presented at a

much earlier instance. This means that current activation states within the network

influence states in the distant future.

RNN's iile appropriate tools for modelling short sequences; however, training is

unlikely to converge when sequences have long-term dependencies t6]. t6] further

notes that the vanishing gradient problem is really the main reason why gradient

descent learning is not powerful enough to discover the temporal relationship that

exists between current and past inputs.

[27] analysed the problem which these networks suffer from and explains it as follows:

Using the conventional BPTT algorithm devised by [67], the premise is based on the

fact that we initially have a fully connected RNN whose hidden and output unit

indices range from 1 to n. We note that the local error flow for arbitrary unit u at

a given instant will be backpropagated for q time steps to unit v. This then results

in scaling3 the error by the following component:

a19"(t - fl l a$"(t) : ft (net"(t - 7))r,, for q : 1

and

A$"(t): fi(net,(l - q))DL, A0{l - q+t)1A19"(t)*,, for s > 1

3Adjusting the weights by a small amount at a time so as to reduce the error of the
network.
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Thus, with l, : v and lo : t, we have:

A$"(t - fllA$"(t): D[:, . . .D[_,:, 17,*:, fi^(net1*(t - m))whh_,

where IIL:, fi^(netm(t - m))wuu-, results in the total error flowing back into

time.

Thus, if the absolute value lf i,^(netm(t - m))w1^r--, | ) 1.0, then the error increases

without bound and conflicting signals arriving at unit u will result in network insta-

bility and oscillating weight magnitude.

Additionally, if the absolute value

lfi^@ett*(t - m))u1*r*-, | < 1.0

the error tends to vanish.

Since /1- represents a sigmoid function, the upper bound of f;* is 0.25. If yI- , 1.

kept constant and I 0, then lfl^(r"t,*rtmt* rl will have upper bound values where

lDt*t^-r: lf Yt*-r coth(lf 2net6)

tends to zero for lrr*r^-,1 r - and is smaller than 1.0 for lw7^1*-,1 a a.O . With

a conventional sigmoid transfer function, the error flow will therefore diminish

when the weights have absolute values below 4.0. This occurs mostly in the initial

stages of the training phase.

[27] further notes that this local error flow results in the global error flow

diminishing as well. It can be seen from the above analysis that the gradient

descent learning technique is inadequate to deal with this problem. We will now

review some solutions that various researchers' have devised, most of which is

described in 127) and [28].
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2.8.1 Tttr,tp CoNsreNrs

[45] proposed the idea of time constants. A time constant affects the changes in

a networks unit activations. [59] proposed an alternative approach in which the

activation of a feedback unit is updated by additions of a past activation value with

the current network input.

2.8.2 RrwG's AppRoacs

[SS] determined that when conflicting error signals enter a unit in a network, partic-

ular error signals promote in increasing the activity of the unit by adding a higher

order unit which will influence the appropriate connections. The dilemma that was

confronted by this approach is that bridging gaps of n time steps may involve the

addition of n units.

2.8.3 SpeRcsrruc wrrHour GRlorpurs

Network weights are randomly initialised until the resulting network is able to

classifii all the training patterns correctly. It has been shown by [29] that simple

weight guessing solves several popular tasks faster than RNN learning algorithms.

Other proposed methods include probabilistic target propagation and adaptive

sequence chunkers, which can be found in [28].

We will now direct our focus on a gradient based-method which [27] devised.

2.8.4 LoNc-SuoRT TERM MpruoRy

[28] developed this model after theoretically analysing the long-term dependency

problem. This model is a gradient descent based method which truncates the net-

works gradient. This model is described in detail in Chapter 3.
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2.9 SuuueRy

Neural networks have been successfully applied to time series modelling, i.e. time

series analysis and prediction. In this chapter, we have defined what time series

modelling is. We then introduced the theory of neural networks and discussed how

various architectures have been applied to numerous problem domains. We then

extended the idea to networks that contain feedback connections as well as learning

algorithms adapted to deal with it. F\rrthermore, we highlighted a short-coming of

recurrent neural networks which was evident when dealing with extremely long time

series. Finally, we concluded by defining the long-term dependency problem as well

as a few solutions discussed in literature. This then motivates and explains why wc

will be using the modelling approach discussed in Chapter 3.
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Chapter 3

Long Short-Term Memory

Recurrent Neural Networks

The theory of long short-term memory (LSTM) recurrent networks was first intro-

duced by [27) in the early 1990's. It is a gradient based method specifically used for

modelling time series with long-term dependencies. Since the work described in this

thesis makes use of LSTM RNNs, we have included a chapter on the topic.

3. 1 IlrRooucrroN

In the past, it used to be extremely difficult to train recurrent neural networks from

examples because their parameters ofben settle in sub-optimal solutions which only

take into account short-term dependencies and not long-term dependencies [16].

A novel RNN architecture and learning algorithm proposed in l27l overcomes the

problem of learning long-term dependencies. The LSTM RNN architecture allows

an error to be backpropagated through time further than any other method that

exists, with the exception of the echo state approach to training RNNs [33].

30
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LSTM enforces constant error flow over extremely long temporally extended pat-

terns. We will first introduce traditional LSTM RNNs [27], followed by LSTM with

forget gates then finally move on to LSTM RNNs with peephole connections, [18].

Forget gates allow the network to process continuous input signals that do not have

clear beginning and end markers which indicate the start and end points of a pat-

tern. Peephole connections allow the gates to inspect and use information in their

decisions which is contained in the networks hidden layer. The result of this improves

the networks performance. LSTM RNNs have better temporal generalization capa-

bilities than time window based methods such as TDNNs. Temporal generalisation

means that the temporal distance of unseen events in the training set are recognised

and processed in the verification phase. Time window approaches suffer from the

fact that relevant events must be learned for each position in the window that they

occur.

3.2 TReorrroNAL LSTM RNNs

ln 127), empirical evidence demonstrates that LSTM can learn temporal patterns

with long-term dependencies which traditional RNNs struggle to learn. A LSTM

RNN (Figure 3.1) consists of an input layer, a recurrent hidden layer and an output

layer. It is similar in structure to a conventional fully RNN in Figure 2.13, with the

exception that the hidden layer is replaced by a memory block layer. Each memory

block is further subdivided into memory cells and gating units. The input to a cell is

connected to every gating unit. The gating units control input and output access to

every single cell residing within a memory block and bridge the connection to every

cell within the hidden layer. When the gating units of a cell produce an activation

close to zero, no erroneous input enters that cell and thus does not contribute to the

state of the cell.
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Figure 3.1: A LSTM RNN

Figure 3.2: A Memory Block with One Cell

The memory cell in Figure 3.2 contains a unit known as the constant error carousel

(CEC). The CEC is a linear function and has a weighted connection of 1.0 fed back

to itself. The CEC produces an activation which reflects the state of the cell at a

given instant. When the CEC does not receive any input, its activation state will

be maintained over time.
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3.2.1 FoRwRRo PRopecetroN

In [27], only discrete-time steps are considered. A memory block is denoted by 7 and

a denotes a memory cell within block j. net" represents the input to a cell, netan the

input to the input gate and neto6 the input to the output gate. w1^ are the weights

on the connection from unit rn to unit l.

The input gate activation:

The input to the cell is passed through a sigmoid function and is then multiplied by

the activation of the input gate. Its main function is to govern the flow of the input

layer activation to the cell.

netan,(n): D* upns*a*(n - 1) ; ti(") : fmi(neti"i(n)) (3.1)

The output gate activation:

The output of the cell also passes through a sigmoid function and is then multiplied

by the activation of the output gate. The output gate thus governs the flow of the

output layer activation from the cell.

neto6,(n) : D*u)(mt;m y^(n - 1) ; a7'(") : f ̂ ,ti(net*t1(n)) (3.2)

The gating units make use of a sigmoid function with range [0,1].

/(r) : ,*! (3 3)

The input to the cell is calculated as follows:

net.t (n) : D* w q*a* (n - l) (3.4)

This activation is scaled by a sigmoid function with range [-2,2]

g(r):#--z (3.5)

http://etd.uwc.ac.za



34

The state of the memory cell at a given instant is calculated as follows:

s";(0) :0 ; s.t(n) : s";(" - 1) + ainj(n)g(net.i(n)) (3.6)

foralln)0.
The output from the cell:

yci(n) : y*tj 1n)h(s"i(n)) (3.7)

where h is a sigmoid function with range [-1,1]

h(r):i--t (3.8)

The output of the network

netp(n):Dwx*A*(" - 1); Ao(n): f6(net{t)) (3.e)

where /p represents the sigmoid function expressed in Equation 3.3.

3.3 LSTM RNNs wrrH FoRcpr Garps

LSTM RNNs fail to determine how to correctly handle long time series such as

those that emanate from dynamical systems [17]. If any training pattern has no

clear beginning and end, the internal state values of a given memory cell can grow ad

infinitum. These beginning and end markers of a cell allow the cells state to be reset.

[17] proposed a solution to this problem by modifying the traditional LSTM RNN

to forget the unit activations which represents the short term memory within the

network. Forget gates are introduced to circumvent this problem as shown in Figure

3.3. The forget gates task is to gradually reset a memory block. The traditional

LSTM CEC self recurrent connection of 1.0 is replaced by a forget gate activation

yt.The forget gate activation,gl is computed in the same way as in Equations 3.1

and 3.2 respectively.
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Figure 3.3: A Memory Block with Forget Gates

The forget gate activation is as follows

net.r,(n) : D^u.,/j* y*(n - 1) ; {(n) : f.ri(net.ri@)) (3.10)

where f"ri is a sigmoid function as in Equation 3.3.

The cell state now changes slightly, which now includes the forget gate activation

s"; (0) : 0 i s"i (") : il @)sq(n - t) + yi"i (n)s(net"i@)) (3.11)

3.4 LSTM RNNs wrrH pEEpHoLE coNNECTToNS

The limitation of LSTM RNNs with forget gates is that there exists no explicit

connection from the CEC which it controls. This results in essential information

being lost since the forget gate can only directly observe the output of a cell. The

networks performance is then adversely affected by not being able to inspect the

CEC. Weighted peephole connections from the CEC to all the gates residing within

the same memory block are therefore introduced. These peephole connections (Figure

3.4) shield the CEC from unwanted information during the forward and backward

phases.
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Peephole connections are able to utilize the cells contents when decisions need to

be made.

Figure 3.4: A Memory Block with Peephole Connections

The input and forget gate activation with peephole connections are as follows

aoi
dEI

(p.,
9e

irprt
9t0

tor9el
gab

iipai

net6nr(n) : D*wmi^A*(n - 1) + Dl,t:r.n,4s.t(n - l) ,

yo., (n) : fai(net;^r(n))

net.r,(n) :D*w1,^U*(n - 1) + Lilrrn^,4s"y(n - 7) ,

y, i (n) : f .r, (net.,, (n))

The output gate activation with peephole connections:

net^1r(r) : D^u^ti^a*(n - 1) + D",i:tu*r,4sq(n - l) ,

y*', (n) : fouti(net*1,(n))

(3.r2)

(3.13)

(3.14)

3.5 LpaRNTNG rN LSTM RNNs

Learning in LSTM RNNs is based on a fusion of truncated BPTT and a modified

version of RTRL which was devised in [27). This learning algorithm includes forget

gates and peephole connections which has been extcndcd by [t8] to deal with
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t conmdd
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continuous time-series and precise timing.

During this training phase, the multiplicative gates learn to open and close, thus

allowing the next set of input in enter the cell.

The sum of square errors is defined as follows:

E(n) : llzDrex(n)2; ep(n) :: dk(n) - vk(n)

where de represents the desired teacher signal and yk represents the actual output

of the network.

The learning procedure is as follows:

Stepl:

The errors are backpropagated by engaging the following procedure:

Compute the derivative of the output units:

6o : f o(net1")ep;

For all memory blocks j compute the derivatives of the output gates:

6 o,tj : f',,r, (n"t*ri) (Di':r r"; Du wH.6 o)

Por the v-th cells in the j-th block compute the cell state error:

es"u:y"-ti 72x-r"i6*)

Note that the Kronecker delta which is the discrete version of the delta function

defined by:

5u : L l2tri f, t- 
j-'d,

Step2:

Update the weights within the network:

Output unit weight updates:

Lwx^ - a6xA*
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For all memory blocks j

Output gate weight updates:

L?D*r,*: ad-"tQ 1 Lu*r,.i : o,6or1s.i;

Input gate weight updates:

Lu)n,* : oDi':r e"* dStni,*

For all peephole connections, u'

L?nnn,* : aDi.,-t e 
" 
* dSti,.i,

Forget gate weight updates:

Lw tn,"i' : aD||t e 
"7, 

d SJ'r',*

For all peephole connections, ,u'

Lw t,4 : rrD",j:t e 
" ", 

dStr",r,

Update the cells for the v-th cells in j-th block:

Lr.i,*: ae"",dSJf,

where the partial derivative dS:0.

This learning algorithm is of course local in space and time. It has a computational

complexity per time step and weights of O(1), that means O(r') where n represents

the number of hidden units. This is in cssence determined by the network topology.
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3.6 ApplrcRuoNs Op LSTM RNNS

We will now discuss a few applications of LSTM RNNs.

3.6.1 Br,ups ItvtpRovlserrou

[12] showed that LSTM RNNs are able to learn a form of blues music and are able

to compose novel melodies with the same style. [12] notes that the compositions of

music have a distinct global temporal structure in the form of nested periodicities.

Music therefore has some notes that are more distinctive than others. A LSTM RNN

is able to successfully learn to predict notes at time t*l by making use of input data

at times ( t.

3.6.2 Aurouarrc SpEECH RpcocrsrrroN

Since traditional RNNs suffer from the vanishing gradient problem (see Section 2.8),

they are unable to learn correlations between inputs and errors which span long

time intervals [13]. This then leads to a general failure to find long-term dependen-

cies spanning several phonesr. Tladitional RNNs are not able to discover transition

probabilities among sequences of words at a very slow timescale. The authors note

that even at faster timescales, time warping and co-articulation effects tend to stretch

phones which in turn blur their boundaries. LSTM seeks to address these problems

that traditional RNNs face. A LSTM RNN maps every frame of an acoustic speech

signal onto a set of fixed phone targets. The training involved using a collection

of hand-labelled data. Two LSTM RNNs are used: the first network estimates the

frame-level phone probability; the second network computes a mapping of the phone

predictions into words, i.e. when the network is trained, it predicts sequences of words

from sequences of phones which has been obtained

lA small unit of speech sound that assists to distinguish one word from another
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from the first network. Results indicate that LSTM RNNs performs well at the

frame-level phone prediction.

3.6.3 Neupo ENrrry RBcocNruoN

Involves identifying atomic elements of information in text, such as names, locations

and monetary values, etc. [21] trained a LSTM RNN on English and German atomic

elements. A self-organising map for sequences is used to generate representations for

the lexical items presented to the network [21]. The network is trained to output a

vector which represents a particular tag, i.e. for the tag O a vector representation

of 0100000 is produced. Promising results were yielded. The reader can consult [21]

for the results.

3.7 SuuveRy

Long Short-Term Memory RNNs are extensions of RNNs. They are able to overcome

the long-term dependency problem which traditional RNNs suffer from. This chapter

provided a brief overview on how LSTM RNNs work and briefly highlighted some

tasks that LSTM has been applied to. This will be useful in understanding the next

chapter which applies LSTM RNNs to signature verification.
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Chapter 4

An Application: Automatic

Signature Verification

4.1 IrurRooucrroN

In this chapter, we will present a brief overview of the science of biometrics. We will

then introduce signature verification to give a clear distinction between on- and off-

line techniques and various modelling approaches that have applied to the former.

We will then use signature verification time series as our testbed to indicate how

well LSTM RNNs perform on these long time series.

4.2 Tsp SclpNcp op BlouETRrcs

Biometrics is the field of study that is primarily concerned with identifying the

unique physical characteristics or behaviour of an individual in order to grant or deny

them access to some type of computer resource or system. The science of biometrics

can be divided into two classes, those that comprise physiological characteristics

and those that comprise behavioural ones. The former include physical parts of

the human body that can be used to uniquely identify an individual, whereas the

4t
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latter deals with the measurement of a behaviour performed by the central nervous

system. A brief discussion of these characteristics will enable the reader to have clear

perspective.

4.2.L PHvsror-ocICAL cHARACTERISTICS

Fingerprint Recognition

The scanning of a fingerprint is performed by detecting ridges and valleys found on

the surface tip of a human finger to identify an individual. A 3-dimensional image is

captured and then converted into a usablc digitized greyscale image. Preprocessing

such as binarization is performed on this greyscale image. A unique feature vector

is then generated and fed into a classifier (i.e. neural network). Finally, the result of

the classification process is the identity of the fingerprint.

Face Recognition

An individual's facial features are used for authenticating his/her identity. The

majority of face recognition systems tend to use either eigenfaces or local feature

analysis. In the eigenfaces technique, eigenvectors are computed for the covariance

matrix of a training set of images which represent the features. Any image residing

in the training set can therefore be reconstructed identically which in turn makes

authentication possible.

Retinal Scanning

The patterns of veins that reside in the layer at the back of the eye can be used

for authentication. A small laser beam scans the retina and an image is constructed

from the descanned reflected light. The image for each individual will thus be unique.

Authentication can therefore be carried out by comparing a test image against a con-

structed model of an image of an individual.
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4.2.2 BBURvToURAL CHARACTERISTICS

The behavioural characteristics are those aspects that describe a person's behaviour.

Speaker Verification

The acoustic speech signal contains unique information about the speaker, such as

vocal tract length, vocal tract shape, vibration of vocal cords, etc. A model is then

constructed to represent the speech signal.

Keystroke Dynamics

This behavioural biometric is also known as typing rhythms. This method analyses

the way a user types at a terminal by monitoring keyboard input at a rate of 1,000H2.

No enrolment and verification phase is necessary; since the individual's keystrokes

are monitored, so there is no need for the individual to detract from regular work

flow.

4.3 SrcNeruRE VERIFICATIoN AS A BpsevlouRAl BlouprRIc

TncuNrque

The science of Handwritten Signature Verification (HSV) falls within the category

of behavioural biometrics. These behavioural characteristics are dictated by a com-

bination of psychological and physical actions that are inherently unique to each

individual.

HSV is defined as the classification process which ultimately strives to learn the

manner in which an individual makes use of the muscular memory of their hands,

fingers and wrist to reproduce a signature. The two core components of HSV are the

quality of the signature exemplars and the process of verifying them.
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4.3.L SlcNaruRBs

[31] states that signatures have at least three attributes which include form, move-

ment and variation; of which movement is probably the most important. The reason

is that movement is produced by muscles of the fingers, hand and wrist and these

muscles are controlled by nerve impulses which are in turn controlled by the brain

without any particular attention to detail [31].

[20] shows that a high degree of variability exists across a large population of indi-

vidual signers; in some cases, the appearance of a signature might be extremely

complex while others appear to be simple.

Handwritten signatures can be identified from two groups of distinct features: static

features are concerned with the overall shape, e.g. length to width ratio of the sig-

nature; signature dynamics represents the manner in which a signature is produced

during the acquisition process, e.B. pen tip pressure, positional information etc. It is
important to highlight that no two genuine signatures of an individual are identical

as they tend to vary in their statics and dynamics [20]. As a result, the process of

verifying human signatures is a challenging pattern recognition problem. Signatures

are a unique way of accurately identifying individuals. A good model will thus yield

a robust, accurate and non-intrusive method to the biometrics toolbox.

4.3.2 TUB PnocESS oF VpRrprcerroN

The verification of signatures can either be done manually or computationally. The

former requires a human to physically analyse the signature. The dilemma which

we are confronted with in a commercial environment is that there is a tendency

to conduct minimal checking when a purchase is made via a credit card: either no

checking is done or a paper copy of your signature is compared very briefly to the

one residing on the card without much thought going into it. As a result, credit card
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fraud becomes that much simplcr to accomplish.

Computational techniques are seen to be more complicated but provide a far greater

level of security. These techniques fall into one of two categories, namely that of

off-line and on-line signature verification.

To measure the performance level of signature verification modelling technique,

results are traditionally reported in terms of the false rejection rate (FRR) or type

I error and the false acceptance rate (FAR) or type II error, [50]. We define these

terms to enable the reader to interpret the results of the on-line signature verifica-

tion techniques presented in Section 4.4.2.In our experiments we report the results

in terms of the true acceptance rate (TAR) versus the F'AR (see Sections 4.5.5 and

4.6.2).

The FRR is the probability that a genuine signature will be incorrectly classified

as a forgery by the model. The FAR is the probability that a fraudulent signature

will be incorrectly classified as a genuine signature by the given model. At the point

where the FRR and FAR intersect we have the Equal Error Rate (EER). The lowest

EER is therefore achieved by a adjusting the FRR and FAR respectively, and by

reducing the FRR by adjusting the decision threshold, a higher FAR is obtained.

4.4 SrcNeruRE MoDELLTNG TecuNlquos

An important decision in HSV design is the choice of modelling technique. This mod-

elling segment is an important component of the HSV technique, since it ultimately

distinguishes genuine signatures from those that are fraudulent. In this section, we

will review a few modelling approaches that have been applied to on-line HSV.
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4.4.L Orr'-lrr.rp SrcNRruRp VpRrprcerroN

off-line HSV [2, 4, 22, 25, b7,58, z1] involves optically scanning a signature, using

a scanner, that was written on a piece of paper. The signature acquisition phase

therefore leads to binary images of signature that have been captured. These binary

images are then normalised to discard any irrelevant information, e.g. noise pro-

duced by the scanning process. Most methods then make use of a neural network

classifier whose input layer size is dependent on the size of the signature image. For

a further in-depth discussion on off-line techniques the references in this section may

be consulted.

4.4.2 Ox-r,rur SrcxaruRp VBRrplcauoN

On-line HSV systems capture an individual's signature via a graphical tablet and

stylus or even an instrumented pen, which digitizes and stores the signature on

computer. The time-varying signals that can be sampled from the signature include

position, pen tip pressure and orientation in space. The digitized signature can then

be represented as a time series and can thus be analysed using well founded modelling

techniques. we will briefly discuss a few of these modelling techniques.

DYNeurc Trrrle WeRprwc

Dynamic Time Warping (DTW) is a well-known technique which is ideally suited

for quantifying the similarities of handwritten signatures, [43, 46]. DTW takes two

sequences and aligns them by calculating the distance between them.

There exists various approaches which determine the similarity between time series.

[10] states that the Euclidean distance measure may not always produce a correct

measure of similarity between two patterns that are very easily distorted along the

time axis. It is for that reason that the DTW approach is adopted.
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[10] further notes that DTW allows an elastic shifting of the x-axis so as to detect

the same shapes. The authors mention that a pitfall of the DTW approach is that

performance seems to be limited on large datasets. Apart from HSV, DTW has

been successfully applied in the fields of chemical engineering, [51] and ECG

pattern matching [62].

The DTW algorithm [10], is defined as follows:

Given two time series A and B of lengths n and m we have, A : ar,....an and

B : bt,...,b*. In order to align these two patterns an n-by-m matrix has to be

constructed. The (ith, jth) element of this matrix contains the distance d(ai,bi)

between two points ai and bi. We then have a warping path W : 'u)rt...,uk, which

defines a mapping between patterns A and B. One is then required to find the path

that minimises the warping cost.

DTW(A, B) : min llnrt{rW-\
were k is used to compensate for warping paths of varying length. A further expla-

nation of the DTW algorithm can be found in [10].

Figure 4.1 illustrates the result of applying DTW to a signal. In HSV, DTW is mainly

being used to compare the similarity of signatures, [a6]. In [46], no Normalisation is

performed on the signature set since the assumption is made that the signers repro-

duce their signatures consistently. DTW essentially aligns various signature features

such as velocities and accelerations. In [46], an EER of 2.6% is achieved. For an in

depth overview on how DTW is applied to two-dimensional curves the reader can

consult [46].
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Figure 4.1: Dynamic Time Warping: This figure illustrates how two signals are

aligned.

HrooBN MaRxov Moopls

Hidden Markov models (HMMs) have been used quite extensively in the area of

speech recognition [32] and bioinformatics [36] with a great deal of success. They

have also been applied to HSV and have produced notable results 137,54,66]. It

is important to note that the vanishing gradient problem is also present for HMMs

as has been shown in [8]. A Markov model is defined as a stochastic process over a

set of states, Sr,...,,S, with transitions occurring between these states. A transition

matrix defines what the probability of the next state will be for the time step that
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follows, which of course depends on the current state

So we have:

Ptt Ptn

A-

Pnl Pnn

where A represents the transition matrix with p6 indicating the probability of

making a transition from state I to state m. Since this process is stochastic, any

given probability p;- must be greater than 0 as well as the sum of each row of prob-

abilities equal to 1.

A zeroth order Markov Model is similar to a multinomial probability distribution

and contains no context.

P(fu: St) : P(ht, : S)

where S are simply the model states.

A first order Markov Model on the other hand contains a context size of I and is

represented by a matrix of probabilities:

P(ht : St) : P(hr-r : Sr), for 1 ( I I N,mn

We finally have a v-th order Markov Model, where the length of the context depends

on the state transition probabilities. It follows from this that HMMs are simply

Markov chains in which we have hidden states. A compact way of defining it is as

follows:

So the HMM ) : (S, il., A, B)

where S: hidden states, fl: starting state probabilities, A: transition matrix proba-

bilities and B: a probability density function which may be discrete or continuous.

An example of applying a HMM to a trivial problem is to compute the probability
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of a coin toss either being heads or tails for a given time period, since it impossible

to determine the result exactly.

Thaining involves determining the likely hidden state sequence that can best explain

a sequence that was observed. This learning approach is known as the Viterbi algo-

rithm, whose roots stem from dynamic programming.

[37] applied hidden Markov models to an on-line signature verification. The system

created a universal prototype of signatures from a database. During the features

extraction phase, 21 global features and only a single local feature were considered.

Global features referred to the pen-down segments of the signer or the signature as

a whole. Local features referred to the equally spaced sub-segments or every signa-

tures sample point. The global features included the total signature time, time of pen

down, root mean square speed, average horizontal speed, integrated absolute cen-

tripetal acceleration, length-to width ratio, horizontal span ratio, 8 directional his-

tograms, 4 directional change histograms, x,y speed correlation and the first moment

of the moment generating function. The local feature only included the slope of the

tangent at each point. Each new signature type was assigned a distance from the

prototype along a few measurements. Model parameters were estimated from a list

of valid signatures. To model a signature the system made use of the handwriting

tangent and its derivative as a vector. The model was trained using the Viterbi algo-

rithm. A EER of.2.5% was achieved due to a LVo FRR and a 5% FAR.

The main advantage of HMMs over other methods is that negative training samples

are not needed for a HSV system to function efficiently [66].

ARrrprcrer, NEURAL NBrwoRrs

Neural Networks are robust classifiers and are used today in many application

domains such as medical diagnosis, seismic event prediction and stock market pre-

diction. The reader can consult [23] for a concise introduction to neural networks.
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In 1421, a standard graphics tablet was used along with a pressure sensitive stylus.

Signatures were collected from a single subject, it consisted of 1000 genuine signa-

tures and 450 skilled forgeries which were reproduced by 18 trained forgers. [42]

notes that very little preprocessing was carried out on the data. This was namely

linear time normalisation and signal time resampling. The main aim of this phase

was to transform a signature into a sequence which can be fed into a neural network

as input. Linear time normalisation scales two signatures in terms of its timescale,

i.e. two signatures with differing time frames will be scaled in such a way that the

time it takes to reproduce it is equivalent. Signal time resampling is carried out by

linearly interpolating a signatures spatial co-ordinates (x(t),y(t)).

The absolute velocity lu(n)l is then computed as the only feature. This is calculated

as follows from each component of the signature time series:

lu(n)l :W

where A,r(n): r(n+l)-r(n), Ly("): y(n*t)-y(") and At(n) :t(ni-t)-t(n).

A feature vector of a signature was therefore represented as a sequence of absolute

velocity values.

Three neural network architectures were investigated, namely a Bayes feedforward

neural network (BFNN), a TDNN and a input-oriented neural network (IONN).

The BFNN are similar to conventional feedforward networks with the exception

that during training, the backpropagation algorithm computes the minimum mean

squared error approximation to the Bayes discriminate function. [42] mentions that

this minimizes the networks misclassification error probability. The input layer con-

sisted of 100 input neurons into which the entire feature vector was fed. The hidden

and output layers contained 5 and 1 neurons respectively. The TDNNs (see section

2.4) input was buffered using a feature vector size of 20. It consisted of two hidden

layers; hidden layer one contained three neurons and hidden layer two contained
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7 neurons. The output layer contained a single neuron. IONNs are also similar to

conventional FFNNs in that the following constraints are placed on the weighted

connections to and from a .rod", ,jl) connecting neuron i of layer k-1 and neuron j

of layer k is constrained to be the same for a fixed i and any i, i.e. u[k) : -[n) fo,

any j and k,142]. After training and testing on set of 100 genuine signatures and 18

forgeries the equal misclassification error rates for the BFNN, IONN and the TDDN

were 2,67T0,3.82% and 6.39% respectively.

On-line systems yield the best results since dynamic features increase the discrimi-

native capability of the classifier simply on the basis that more relevant information

is available from the signing process. The problem inherent in most off-line systems

is that one is able to trace a signature with the result that it will be accepted. To our

knowledge no published research application has been conducted based on applying

RNNs to HSV. RNNs, however, been applied to handwriting recognition [41], which

is not a biometric.

4.5 ON-lrNB HaNowRrrrEN SrcNeruRE MoDELLTNG

It is within the process of HSV that we extract the attributes associated with the

behavioural characteristics of an individual and model it, using a classifier which

conclusively determines the identity of the subject in question. This modelling pro-

cess can hence be divided into five major phases: data acquisition, preprocessing,

feature extraction, classification, and performance evaluation. The task of modelling

a handwritten signature involves the processes illustrated in Figure 4.1.

4.5.L TUB SrcNaruRE DATA AcqursrrroN PHAsE

A graphics tablet and stylus or digitizer is generally used to capture a handwritten

signature as a 5-dimensional vector (see Figure 4.2). This vector consists of a pair x
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Figure 4.2: T}re On-line Signature Verification Modelling Process: a signa-
ture is modelled using the process depicted in this figure

and y co-ordinates, axial pen tip pressure and polar angles of the stylus. The x and

y co-ordinates represent the positional information of the signature. The axial pen

tip pressure indicates the amount of force that the signer is applying to the tablet

surface with the stylus. While signing the polar angles 0, and 0r, simply indicate

the position at which the stylus is being held at a given instant in space (sec Figure

4.3). A digitizer samples a signature at a rate of approximately 100H2 to 200H2.

4.5.2 Tsp SrcNRruRE PREpRocESSTNG PuesB

When an individual signs his/her signature on a graphics tablet, nothing prohibits

them from signing in a certain position or a particular size, i.e. a signature may be

slanted, small or large etc. Even if a common baseline is given for the signer to start

from, chances are that this might not be accurate or consistent. Normalisation of

a signature with respect to size and orientation is therefore carried out. In essence,

SlgndJru D!t!bu.

Chrrltlcr
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t tilng Yca I No

http://etd.uwc.ac.za



54

2000

19m

r8m

1700

x-coflponent

100 200 300
pen tip pfcssurc

lm 2@ 3m /t00
pen angts2

100 200 300 400

ycomponerl

0 r00 m0
pen angle l

signatre

3200

3000

28@

2600

2M

50

4m 300 ,+00

60

40

m

45

tl0

35

45

40

45

'!00300200100

10

35

30
0 o 100 No 300 400

Figure 4.3: Digitised Signature Signals: A signature is reduced into these com-

ponents.

preprocessing seeks to take the signature signals and convert them into a derivable

form. Normalisation as defined in [66] seeks to make a signature invariant to rotation,

scale and position.

Low-Pess FrlreRrxc

During the signature acquisition phase, the analog output from the tablet is con-

verted into binary values. During this process, a sampling phenomenon known as

aliasing may occur that results in errors and also reduces the accuracy of the col-

lected data. Aliasing is the process when a high frequency signal assumes the identity
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Figure 4.4: Polar Angles: The spatial position of the stylus while signing

of a lower frequency signal. This normally occurs when an input signals frequency

components is equal to or greater than half of the given sampling rate. One finds

aliased signals at higher frequencies, but they are converted by the sampling process

to a false frequency below half the sampling rate, e.g. given a sampling rate of 200H2,

a signal at l60Hz will be aliased 40Hz which is really the false lower frequency. A

Fast Fourier Transform is applied to the data to minimise the likelihood of aliasing.

Figure 4.4, illustrates the result low-pass filtering using filter widths of 10,30, and

50. We apply this to user 18 in our signature database as an example.

RorarroNAr. INVARTANCE

This ensures that a signature will not deviate from a given baseline. A signature is

rotated by an angle 0, Figure 4.3, which aligns it through a centroid. According to

[66], an angle 0 of corrective rotation about the centroid of (2, gr) co-ordinate pairs is

computed. The signature is then normalised by rotating the signature by a certain

Y
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Figure 4.5: Low-Pass Filtering: A Fast Fourier transform is applied to the data
to minimise the likelihood of aliasing.

angle d. For a in-depth algorithm on how this is computed, the reader may consult

[66]

TRenslerroN INvaRTANCE

This procedure compensates for the fact that a signer may not necessarily always

sign on the exact place when given a common baseline. It can be carried out by

taking the smallest x and y component vectors and subtracting them from the rest

of the positional components.

Scar.luc INvlRtaNcp

Generally, signature exemplars may be of different sizes, since it is well known that

an individual cannot reproduce the same signature more than once, [20]. This is

achieved by transforming a signal into a particular aspect ratio.
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4.5.3 FeeruRB ExrRecrlou

A feature is defined by 122) as a measurement derived from a given input signal that

is to be subjected to classification. The correct number of features should also be

selected without discarding vital information. Various features then combine to form

a feature vector. The entire feature space consists of n feature vectors.

4.5.4 Cl.a.sstrtpR TRetNrNc AND TESTING

The training procedure involves feeding a pattern through a classifier. The classifier

learns which class the given pattern belongs to, given sufficient positive and negative

examples.

During classification an input signal is preselected into a one of two classes, which

is based on the analysis of significant features. It then constructs a suitable deci-

sion boundary by partitioning a feature space into classes. If a given input signal

activation falls within a particular class, then it is assigned that particular class

Iabel.

lh.i-n

Figure 4.6: Two Class Classification: This figure illustrates the decision space of
a two class problem.

HSV is in essence a twoclass classification problem. An individual's signature is

either genuine or it is a fake produced by a fraudster.
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TuRpsuot o DorpRvrrNATIoN

Once the classifier produces an activation at the output layer, we need to decide

on the authenticity of signature. Class A is assigned a value of 1 and class B a

value of 0. Once the behaviour of the activations are known, a single global or local

decision threshold can be chosen based on what activation is produced by the suspect

signature.

4.5.5 PpRpoRueNCE EvALUATToN

The objective of learning classifications from sample data is to classify and success-

fully predict on unseen data [2]. In classification problems a particular classification

rule, e.g. if r is then greater than 0.5 then r belongs to class 1, will always lead

to some sort of misclassification or error, i.e. positive and negative examples are

presented to a model and classifies it incorrectly. [2] notes that this is the result of

having features common to two or more classes.

The true acceptance rate (TAR) is the probability of detecting a genuine signature

and the false acceptance rate (FAR) is the probability that a forgery will be mis-

classified as a genuine signature (as mentioned in Section 4.3.2).

The performance of a learning system is evaluated using a receiver operating char-

acteristic (ROC) curve. The ROC curve graphically represents the trade off between

the TAR and FAR for every possible threshold.

4.6 LSTM RNNs

This section describes the results of our experiments. We present the result of our

experiments in the form of RMSE learning curves and ROC curves which plot the

TAR versus the FAR.
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4.6.L Tse SrcNeruRB Deresesp

It is important to note that a good signature database can represent a real-world

scenario and plays an important role in the development of a HSV schema.

Our training and testing data originate from the same database that was used in [11].

The database contained signatures of 51 individuals, 45 male and 6 female which

was collected over a long period of time. The total genuine signature count was 1530.

The number of amateur, home-improved and over-the-shoulder fraudulent signatures

totaled 3000. Additionally, there were also 240 forensic forgeries; each individual con-

tributed 30 genuine, 30 fraudulent home-improved and over-the.shoulder signatures;

for 6 of the individual signatures four forensic document examiners contributed 60

professional forgeries each.

N

rrrur

Figure 4.7: Signature Complexities:'This figure illustrates the signatures that we

will use in our experiments for the three types of complexity classes.
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These individuals (see Figure 4.7) were examples of signatures of varying

complexity, i.e. 'easy','moderately easy'and'difficult'to forge [11]' Signature

complexity is based on the visual inspection of the signature in question, i.e. is a

signature complex in its visual appearance.

Wry*-M
MvAeL
W%br-

Figure 4.8: Sample Signatures from Database: The first column contains genuine

signatures, the second column over-the.shoulder forgeries, and the third column

home-improved forgeries.

4.6.2 StcNarunB Moopr-lINc ExpeRlupNts

For each experiment, we trained a fully connected LSTM RNN architecture in which

every node is connected to every other node. Forget gates (Section 3'3) and peephole

connections (Section 3.4) were added to each memory block. The network architec-

tures used in our experiments were determined by extensive testing, i.e. a given

architecture was selected, training and testing was carried out, finally the process

was repeated until the desired network architecture was obtained. We selected the

networks that converged to the desired solution in the least amount of time. We

found training a large network on the entire dataset to be computionally expensive,

i.e. to reduce the RMSE to 0.1 it took approximately two weeks on an amd athlon

barton 2l67mhz processor. Ten sets of experiments were conducted on signature

features and signature complexity. The results of each experiment fall within a 95%
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confidence interval; thus we can safely conclude that they are a consistent represen-

tation of the other sets and thus these results are statistically significant.

Our dataset is randomly divided into training and testing sets and are normalised

according to the standard normal distribution, i.e. z-distribution, with a mean of

0 and a standard deviation of 1. In the experiments that involve smaller sample

sizes, this transformation is applied to the data which then forms a new statistical

distribution which is representative of a larger sample set. The magnitude of the

initial random weights was chosen to be 0.1. In all our experiments the following is

discussed:

o Network Input

o Network Architecture

o Learning

We derived two additional signature features namely, velocity and path tangent

This is described in the next section.

FBer:uRB DpRrve:uoN

From the original sampled signature signals in Figure 4.2, we derived two more to

be used in our experiments.

Velocity

[22] notes that an experienced forger might succeed in duplicating the static aspect

of a signature but will find it difficult to do the same for the dynamical information.

The velocity at a point t can be calculated from the positional components as:

v(t):JAWTq@
where t:0,..,n.
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Figure 4.9: Velocity Signal with Minima: The figure illustrates the velocity profile
and its minima of a given signer which is sampled at a rate of 100H2.

Path Tangent

This is simply the directional component of the velocity signal. The path tangent is

calculated by:

Te: tan-rv"lvu

Mooor,t twG THE ENTTRE SrcxaruRo Deregaso usrNc A STNGLE LSTM RNN

This section covers the design and implementation of the signature modelling experi-

ment that was conducted to determine if a single LSTM RNN is capable of modelling

signatures for all users that exists in the signature database. This is accomplished by

training the nctwork to a desired error rate. The entire signature database, i.e. 4530

(

J
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signatures, is used in this experiment. This dataset was split into 70To for training

and the remaining 30% unseen samples for testing.

Numerous experiments were conducted to determine what network architecture is

sufficient to accomplish the task given that 5 sampled signature components, as dis-

cussed in Section 4.5.1, are used as input. A LSTM RNN with an input layer of 5

neurons into which the normalised signature data is input. The hidden Iayer contains

12 memory blocks which consists of 4 memory cells each. The output layer contained

a single neuron whose activation is squashed through a 8020 sigmoid function in the

range of [0.2,0.8]. The network contained 4482 weights and 55 unit activations.

The learning procedure is on-line in which the weights within the network are

updated after the presentation of each pattern. A small learning rate of 0.0001 and

a high momentum rate of 0.9 was chosen to minimize the instability of the network'

Figure 4.10 illustrates the learning curve of the network which was terminated once

an average testing RMSE of 0.1 was attained. A class label is only assigned at the

end of a pattern and this indicates what class the pattern belongs to. Hence, an error

is only generated at the end of each pattern. If the error is generated at each time

step, i.e. each point in the pattern has a corresponding class label, a forger would

only need to forge a single point in the pattern in order to forge the signature.

A testing RMSE of 0.082 and a training RMSE of 0.05 was obtained after 1480

cpochs. These results are based over an average of 10 runs and are a clear indication

that LSTM can model these signatures. Also, based only on the testing RMSE value

we can conclude that the network is able to generalize fairly well on the testing set.
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Figure 4.10: Average Ttaining and Testing RMSE: The figure illustrates the
RMSE which quantifies both the differences between the actual and the predicted
output of the network by computing the average errors across 2 or more time series.

SrcNRruRp Corrlpr,pxITy EXpERIMENTS

This section covers the design and implementation of the signature complexity exper-

iments that were conducted to determine what effect the complexity of a signature

has on the performance level of the network when considering casual, skilled and

forensic forgeries. It must be stressed that no comparison will be made against other

proposed methods since a common signature database is not available.

Three different experiments were conducted for the three varying complexities of sig-

natures, i.e. casual, skilled, and forensic, using two users from each category. Three

LSTM RNNs were trained per signature complexity level. As mentioned in Section

4.5.1, all signatures consist of various features of which we have used 5, namely x and

y pen tip co-ordinates, pen-tip pressure and polar angles of the stylus. The networks

used for the experiments are LSTM RNNs with an input layer of 5 neurons into

o.25

RTISE

o2

al

testing

talnlng
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which the normalised signature data is input. The hidden layer contains 8 memory

blocks that consists of 4 memory cells each. The output layer for the networks that

were trained on easy and moderately easy complexity signatures contained a single

neuron whose activation is squashed through a sigmoid function in the range of [0,1].

The network that was trained on the difficutt complexity signature set consisted of

a 8020 sigmoid function, which has a range of [0.2,0.8]. The value 0.8 will represent

1 and the value 0.2 will represent 0. The network contained 2262 weights and 39

unit activations. The learning procedure is on-line in which the weights within the

network are updated after the presentation of each pattern. A small learning rate of

0.0001 and a high momentum rate of 0.9 was chosen to minimize the instability of

the network.

Statistics Easy Moderate Difficult
Average Tfaining RMSE 0.070 0.1 0.072

Average Testing RMSE 0.095 0.099 0.093

Epoch Count 2003 2602 1 153

Output unit activation function sig[0,1 sig[0,1 slg 0.2,0.8]

Table 4.1: LSTM RNN Learning Statistics

RTSE

,&D EO rrllo &o
Epoc+ Coutd

toding

lr.lnlng

Figure 4.11: RMSE for Easy Complexity Level
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Figures 4.LL,4.12 and 4.13 show the learning curves of the networks for the 3

complexity levels and Table 4.1 indicates the precise values. Learning is terminated

once the average RMSE reaches 0.1.

RISE

60,0 D.0 uo
Epodr Count

Figurc 4.12: RMSE for Moderately Easy Complexity Level
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to.o ao E.0 tzE!
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Figure 4.13: RMSE for Difficult Complexity Level
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Table 4.2 represents the results obtained from the analysis of the testing when

evaluating the classifiers performance using ROC curves. For our evaluation the

ROC curves utilize TAR and FAR.

Forgery
Type

Easy Moderately Difficult

TAR FAR TAR FAR TAR FAR

Casual e5% 4.5% 9L.7% 5.3% 92.3% 0%

Skilled 97.7% 5.3% 100% 5.6% t00% 0%
Forensic 92.37 6.77 t00% 5.6%; t00T 0%

Table 4.2: Signature Complexity Performance Summary: This table illustrates
the performance rate of the network on signatures of varying complexity.

Forgery
Typ"

Easy Moderately Difficult

C.I C.I C.I
Casual 0.990 to 1 0.838 to 1 0.948 to 1

Skilled 0.838 to 1 0.920 to 1 1to1
Forensic 0.948 to 1 1to1 1to1

Table 4.3: Confidence Intervals for Signature Complexity Experiments: This
table illustrates the corresponding confidence intervals (C.I) for experiments in Table
4.2.

The results in Table 4.2 suggest that complex signatures are more difficult to

forge. Even forensic experts had difficulties in forging the dynamic aspects of sig-

natures, eg. velocity of the signing process. This leads to a better discrimination

performance for more complex signatures if we use dynamic features for classifica-

tion. This can be seen from the decreasing FAR for the three categories of signatures

across the three complexity levels for those signatures. It should be noted that for

casual and skilled signatures, the FAR values from easy to moderately easy signa-

tures actually increase, but by such a small margin as to be insignificant, 0.9 and

0.3 respectively. The forensic signatures performance provide the best example in

that FAR values decrease across all complexity categories for the signatures. This

http://etd.uwc.ac.za



68

can be explained by the fact that forensic forgeries are very accurate in terms of

the shape of a genuine signature, i.e. x and y co-ordinates, because of slow careful

forging, but are in turn extremely poor with respect to the dynamic information

such as pen-tip pressure and pen-tip angles. As a result, the forensic examiner

finds it easier to forge an easy signature and hence provide a greater propensity for

the model to misclassify these forgeries as genuine. By the same token, the forger

finds it more complex to forge a difficult signature and hence our model perfectly

classifies each forgery. The overall results show a relatively low misclassification

rate across all complexities with an average of. 5.5% misclassification for easy and

moderaly easy signatures and 0% misclassification for all difficult signatures. This

low misclassification rate can be attributed to the fact that dynamic features when

forged result in poor accuracy and hence make them easier to detect.

SIcueruRp FoRruRp ExppRurlpNrs

This section covers the design and implementation of the signature feature discrimi-

nation experiments that were conducted to determine the effect that varying amounts

of significant features has on the performance level of the network. The features used

in the various features sets are as follows: for 3 features; x, y co-ordinates and pen-

tip pressure, for 5 features; x, y coordinates, pen-tip pressure and the two pen-tip

angles 0, and 0u, for 7 features; x, y co-ordinates, pen-tip pressure, the two pen-tip

angles 0, and 0r, pen-tip velocity V(t) and path-tangent 76. Discussion for Network

connectivity is the same as that in section 4.6.3.

Three different experiments were conducted for the three signature feature sets, i.e.

3, 5 and 7 features. The data set consisted of 15 users of varying signature com-

plcxities. Within the 3 feature sets the x and y co-ordinates represented the static

features while the remaining features were dynamic in nature. Also of note is the
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fact that within the 7 feature set both velocity and path-tangent are derived features

where velocity is computed using the x and y co-ordinates and path-tangent is then

calculated based on the velocity.

Three identical networks were utilized to conduct the experiments based on 3, 5

and 7 features. The networks used for the experiments are LSTM RNNs with an

input layer of 3, 5 and 7 neurons respectively, into which the normalised signature

data is input. The hidden layer contains 10 memory blocks that consists of 4

memory cells each. The output layer for the networks that were trained contained

a single neuron whose activation is squashed through a sigmoid function in the

range of [0.2,0.8]. The network contained 2948,3774,3408 weights and 45, 47, 49

unit activations for 3, 5 and 7 inputs respectively.

Once again a small learning rate of 0.0001 and a high momentum rate of 0.9 was

chosen. The network was trained to an RMSE of 0.1. The test results in Table 4.3

for the 3 feature sets were obtained from the ROC curves in Figures 4.74 - 4.16 at

their respective operating points and are as follows:

Forgery
Type

3 Features 5 Features 7 Features

TAR FAR TAR FAR TAR FAR
Casual 88 34.1 89 2t% 91.7% 14.6%
Skilled s0.5% 26.6% 91.2% t6.6% 94.9% 10.7%
Forensic 75% 25% 86.6% 16.3% 90% t4.3%

Table 4.4: Signature Feature Set Performance Summary: This table illustrates
the performance rate of the network on feature vector sizes of 3, 5 and 7.
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Forgery
Type

3 Features 5 Features 7 Features

C.I C.I C.I
Casual 0.982 to 1 0.962 to 1 0.931 to I
Skilled 0.920 to 1 0.936 to 1 0.983 to 1

Forensic 1to1 0.995 to 1 1to1

Table 4.5: Confidence Intervals for Signature Feature Experiments: This
table illustrates the corresponding confidence intervals (C.I) for experiments in Table
4.4.

It can be seen in Table 4.3 and Figures 4.13 - 4.15 that an increase in signature

features from 3 to 7 results in a decrease in the FAR and an increase in the TAR of

the network. Firstly, it should be reiterated dynamic features are extremely

difficult to reproduce 122). Added to this is the fact that the same two features

within each feature set is static in nature and therefore any additional features

used across the 3 feature sets will be dynamic. As a result, the skill of the signer

will not be taken into account within this analysis as all signers regardless of skill

have an equal propensity to incorrectly reproduce these dynamic features. Our

conclusion is then that if more dynamic features are used, the likelihood of the

network misclassifying a forgery is dramatically reduced. This can be observed

when looking at the feature set containing 3 features. In this case, the static

features outweigh the dynamic features 2:n-2, where n represents the total number

of features; as a result, the misclassification rates are much higher than when 5 and

7 features are considered. The rationale for this is that the network has fewer

dynamic features to use for its classification process and hence fewer instances of

incorrectly reproduced data from the forger to correctly classify the forgery as

such. It can then be noted that by increasing the dynamic features from 3 to 5 in

the 5 and 7 feature set respectively results in a decrease of the FAR, i.e. As per
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Table 4.3 within the casual signers category the FAR fell from 34.7% to 27To to

14.6% when dynamic features totalled 1,3 and 5 respectively. The same trend can

also be noted across the skilled and forensic categories. To obtain the ROC curves

a descision threshold value was varied as mentioned in section 4.5.5.

The ROC curves for casual forgeries, skilled forgeries and forensic forgeries based on

3,5 and 7 feature sets are as follows:

Caeual
Forgcd.r

Sklllrd
Forgcrl.r

TAR

Actrd Outrut
Actud Output

No Dlrcrimindon
No Dl:crimlnation

FAR

TAR

FAR

Forcnrlc
Forg.rlcr

TAR

Actud Ou@ut

No Dlscrlmlnadon

FAR

Figure 4.14: ROC Curves: 3 features
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Figure 4.15: ROC Curves: 5 features
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ActudOutpd

No Dlrcrlmlndon
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No Dlacrlmlndon

FAR

Figure 4.16: ROC Curves: 7 features

4.7 SuuvnRy

In Chapter 4, we have presented the results of our experiments, which have

enabled us to deduce a number of conclusions based on LSTM RNNs to the task of

modelling signature time series data.

FAR
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Chapter 5

Conclusions and Directions for

Future Research

5. 1 CoNcr,usroN

The main focus of this thesis has been to investigate LSTM RNNs and its

application to handwritten signature time series data. To our knowledge, LSTM

RNNs and traditional RNNs, have not yet been applied to the task of signature

verification. The most probable reason for this is that signature time series are long

therefore traditional RNNs fail to learn such time series due to the long-term

dependency problem.

In Chapter 4, we have presented the results of our experimcnts. These results have

enabled us to draw a number of conclusions of relevance to HSV and LSTM RNNs.

We have shown that a single LSTM RNN is able to model a entire signature

database with a high degree of accuracy. To avoid instability within the network,

the learning rate needs to be kept small and the momentum rate needs to be kept

large. We have further proved that the signature complexity aflects the

performance level of a LSTM RNN when considering casual, skilled and forensic

74
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forgeries. We also have experimented with feature sets of varying sizes and

determined that the performance level of the network improves as the number of

significant features increase. Bxperiments also show that dynamic signature

features are the most difficult to forge since the forger places more emphasis on

correctly reproducing the static signature features. Finally, this study provided us

with a first time look at the application of LSTM RNNs to HSV since to our

knowledge no published research has been carried out.

5.2 DrRpcrroNs FoR FUTURE RESEARCH

5.2.L KellraN FrlrpRs

[49] determined that LSTM training algorithms applied to time series depends on

the instantaneous estimation of the gradient, i.e. the derivatives of the error

function only take into account the distance between the current output and the

corresponding desired target signal, which means that no prior gradient

information is utilised.

A Decoupled Extended Kalman Filter (DEKF') 115,24), on the other hand,

computes the solution by making use of the derivatives at each time step in a

sequence. The best curve fit for a set of data is found by minimising the standard

deviation, i.e. the average distance between the data and the curve.

[49] applied LSTM with DEKF to predict symbols of a continual symbolic input

stream with long-term dependencies that was not initially segmented into

subsequences. [a9] then found that LSTM RNNs combined with DEKF resulted in

a faster convergence rate and improved the overall network performance when

compared to the original gradient descent based algorithm.

http://etd.uwc.ac.za



76

It would certainly be useful to apply this improved algorithm to signature

modelling and for that matter any task involving long time series, since the

network is able to settle to a more accurate solution in a shorter space of time

5.2.2 GnowrNc LSTM RNNs

[53] proposed a method for growing LSTMs (GLSTM) RNNs in order to improve

learning in signal prediction tasks. [53] notes that an important issue in ANNs

topology design is that of determining a method for finding the number of hidden

nodes in a network required for a given task, which results in satisfactory

performance. This is known as the constructive or growing technique. [53] further

notes that growing methods are specifically designed to automate the process of

network topology estimation. This is accomplished by modifying both the synaptic

weights as well as the network connectivity during training. [53] applied GLSTM

and conventional LSTM RNNs to a forecasting problem in the biomedical domain.

Numerous experiments were carried out using central nervous system control

signals such as: the signals produced from the heart rate controller, the peripheric

resistance controller and so on. The results indicated that GLSTM clearly

outperforms conventional LSTM.

Since this task is similar to any other signal processing task such as signature

verification, it would indeed be very useful. Trying to determine the number of

hidden nodes in a network, to a large extent, is an art form. The approach that we

used to determine our network topology in our experiments was merely that of

observation followed by careful fine tuning. Training and fine tuning a network on

such a large amount of data is extremely time consuming. Although this method

proposed by [53] might add to the overall computation time, it will possibly

contribute to reducing the element of guessing.
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