
MAXIMAL LEFT IDEALS AND IDEALIZERS 

IN MATRIX RINGS 

by 

ANDREW FRANSMAN 

Assignment submitted in partial fulfilment of 

the requirements for the degree of 

MASTER OF SCIENCE 

in 

MATHEMATICS 

at the 

UNIVERSITY OF STELLENBOSCH 

JANUARY 1984 

http://etd.uwc.ac.za



(i) 

PREFACE 

The main objective of this work is to give a detailed dis­

cussion of a paper by Stone [S]. Numerous examples are 

provided in order to clarify concepts and results as far as 

possible. 

In Chapter 1 we supply all the basic tools which will be 

needed later on. 

Chapter 2 deals with a characterization of the maximal ideals 

Moreover,once we know the maximal ideals of the 

base ring R, we can exactly tell the form of the maximal ideals 

We also provide alternative visualizations of D(A:u) 

In Chapter 3 the focus is mainly on idealizers and contractions. 

We use the concept of the idealizer to find a connection between 

We also show that a contraction of any 

maximal ideal in M (R) is maximal in R, provided that R is left n 

quasi-duo. 

The emphasis in Chapter 4 is on necessary and sufficient con­

ditions for the equality of maximal ideals D(M:u) and D(M:v). 

It is most interesting to note importance of the role of the 

idealizer in this regard. 

In Chapter 5 we give discussion of how the property of conjugacy 

of ideals is propagated in matrix rings. 
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-

CHAPTER l 

PRELIMINARIES 

In this chapter we supply all the necessary definitions as 

well as the required results needed in this work. All the 

notation and terminology will also be explained carefully. 

§1 DEFINITIONS AND NOTATION 

R will always denote a ring with identity and Mn(R) will 

denote the ring of nxn matrices over R. As usual the ring 

of integers, the ring of integers modulo n and the field of 

rational numbers will be denoted by z, Zn and Q respectively. 

R[x] will denote the ring of polynomials in the indeterminate 

x. The constant term of any polynomial fER[x] will be de­

noted by const(f). 

Ideal (or module) will always mean left ideal (or module). 

In order to simplify notation we shall adopt the convention 

M,N, M/N, etc. in stead of RM' RN, RM/N, etc., for left R­

modules. It will however always be evident from the context, 

to which ring R we are referring. 

Max(R) will denote the collection of all maximal left ideals 

of R. Mand N will be generic symbols for maximal left ideals. 

The elements of Rn will be thought of as nx1 columns which 

are normally written as the transposed of rows; i.e. 

u = (u 1 , ••• , un) '. For a matrix X we shall let Xi denote the 
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i-th row~ whenever needed, X will be denoted by its entries 

i.e. X = [x .. ]. 
l. J 

e .. denotes the matrix having 1 in the 
l.J 

(i,j)-position and O elsewhere. e. denotes the nxl column 
l. 

with 1 in the i-th position and O elsewhere. 

Normally mappings will be written on the left except in the 

cases of Proposition 1.12 and 1.15. R will be considered as 

a subring of Mn(R) via the natural embedding r + diag(r, ••• ,r). 

If a and bare integers, then their greatest common divisor is 

denoted by (a,b). aln will mean a divides b orb is multiple of 

a. 

Let C and D be arbitrary categories. Then a covariant functor 

F: C +Dis a category equivalence in case there is a covariant 

functor G D + C and natural isomorphisms GF ~ le and FG ~ lD. 

A functor G with this property (also a category equivalence) is 

called an inverse equivalence of F. Two categories are equiva-

lent in case there exists a category equivalence from one to the 

other. In this case we write C ~ D. 

1.1 Definition 

Two rings Rand Sare Morita equivalent in case their categories 

RM and 5M are equivalent. 

a Morita equivalenae. 

1. 2 Definition 

The equivalence is referred to as 

M1 is called a maximal submodule of M if for every submodule M2 

of M such that M1 C M2 CM it follows that M1 = M2 or M2 = M. 
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For M € Max(R),End(R/M) will denote the ring of all R-endomor­

phisms of R/M. 

1. 3 Definition 

For a left ideal A of R, I(A) = {rCR: Arc A} is called the 

idealizer of A in R. 

1. 4 Definition 

A ring which is isomorphic to an nxn matrix ring over a division 

ring is referred to as a simple artinian ring. 

1. 5 Definition 

The center C of a ring R is defined as the set C = {xER 

for every a ER} . 

1.6 Definition 

xa = ax 

A set of elements of a ring which is closed under multiplication 

of its elements is called a multiplicative subset of R. 

If A and Bare sets,then the relative complement of Bin A is 

denoted by A -B. The number of elements of A is denoted by 

card (A). If R is a commutative ring and ME Max(R) we shall let 

qM stand for card(R/M). For u, vERn-Mn we write u=v(modM) if 

and only if ui-vi EM for each i = 1, ... ,n. 

1. 7 Definition 

A ring R is called semi-local if it has a finite number of 

maximal ideals. 
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GLn(R) will denote the set of nxn invertible matrices with 

entries from R. 

The phrases for eaah, for all and for every·will all 

have the same interpretation. The symbol a will be used to 

indicate the end of a proof. or well-known result. 

§2 RESULTS NEEDED 

The following results are well-known and their proofs can be 

found in many standard text-books; e.g. [l] and [2]. 

1.8 Proposition 

If ME Ma~ (R), then (R/M) n is a simple Mn (R)-modu le. 

1. 9 Proposition 

A left R-modu le T is simple if and only if T ~ R/M for some 

maximal left ideal M of R. 

1.10 Proposition 

a 

a 

If M is a maximal submodule of R and if x E R-M, then M+Rx=R. □ 

1.11 Proposition 

If ME Max (R) , then End (R/M) is a division ring. 

1.12 Proposition 

If f, g E: End (R/M) , then f+g E End (R/M) and fg E End (R/M) where 

addition and multiplication is defined by 

(r+M) (f+g) = (r+M)f + (r+M)g and 

(r+M) fg = ( (r+M) f) g. 

a 

a 
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1.13 Proposition 

Let R be a commutative ring, Sa non-empty multiplicative sub­

set of R with O ¢Sand let T be the set of non-zero divisors of 

R. If Sis a subset of T, then we can construct fractions r/s 

with denominators in Sas follows. We define a relation on 

the product set RXS by setting (r,s) ~ (r' ,s') if and only if 

rs' = sr'. Then 

1.13.1 ~ defines an equivalence relation on RXS; 

1.13.2 if we write r/s for the equivalence class containing (r,s) 

and if we define addition and multiplication by the rules 

r/s + r'/s' = (rs' + sr')/ss' and (r/s). (r'/s') = rr'/ss', then 

the set s- 1 R of equivalence classes forms a ring, called the 

ring of fractions with denominators in S, under these operations; 

1.13.3 R can be considered as a subring of s- 1 R. 

1.14 Proposition 

For all m,n ~ 1 , Mm (Mn (R)) Q,! Mmn (R). 

The next result is due to Fitting [3] and was also proved by 

Goldie [4]. 

1.15 Proposition 

If ME Max (R) , then I (M) /M Q,! End (R/M) • 

Proof 

Our aim is to define a ring isomorphism from I(M)/M onto 

End(R/M) by associating an element of I(M)/M with an R­

endomorphism of R/M. This is achieved as follows. For 

□ 

□ 
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x+M E I(M)/M let f be defined by the rule f : x+M + gx' where 

gx : r+M + rx+M for any r+M E R/M. We claim that gx E End (R/M) 

and that f is the required ring isomorphism. 

gx E End (R/M). gx is well-defined, for if r+M = r' +M, then 

r-r' EM. But x E I(M) and so (r-r')xEM; i.e. rx-r'xEM. 

Hence rx+M=r'x+M and so (r+M)g -= (r'+M)g. g is an R-endo-x X X 

morphism, for if r+M, r'+MER/M and a ER, then ((r+M)+(r'+M))gx= 

((r+r')+M)g = (r+r')x+M = (rx+r'x)+M =(rx+M) + (r'x+M) = 
X 

(r+M)g + (r'+M)g and (a(r+M))g = (ar+M)g = (ar)x+M = 
X X X X 

a (rx) +M = a (rx+M) = a ( (r+M) gx). Thus g E End (R/M), as required. 

f is a ring isomorphism. f is well-defined, for suppose that 

x+M = y+M where x,y E I (M). Then x = y+m for some m EM. Let 

r E R. Then (r+M) g = rx+M = ry+rm+M = ry+M = (r+M) g and 
X y 

hence g = g. Thus (x+M)f = g = g = (y+M)f. f is a ring 
X y X y 

homomorphism. Let x+M, y+M E I (M) /M and let gx and gy be the 

corresponding R-endomorphisms. Then by Proposition 1.12 

gx +gy and gxgy are R-endomorphisms. Now let r+M E R/M. Then 

(r+M) (g +g) = (r+M)g + (r+M)g = (rx+M) + (ry+M) = (rx+ry)+M = 
X y X y 

r(x+y)+M = (r+M)g and (r+M)g g = ((r+M)g )g = (rx+M)g = x+y X y X y y 

(rx)y+M = r(xy)+M = (r+M)g • Therefore g +g = g + and g g = xy X y X y X y 

gxy· But then it follows that ((x+M) + (y+M))f = ((x+y)+M)f = 

gx+y = gx + gy = (x+M) f + (y+M) f and ( (x+M) (y+M)) f = (xy+M) f = 

gxy = gxgy = (x+M)f(y+M)f. Thus we have established that f is 

indeed an R-homomorphism. f is one-to-one, for if (x+M)f = 

(y+M)f, then gx = gy. Therefore x+M = (l+M)gx = (l+M)gy = 

y+M. Finally we see that f is onto, for given any g € End (R/M) 

such that g : l+M + x+M for some x E I (M). Then g is the re­

quired image of x+M under f. Hence f is a ring isomorphism. 

Thus I(M)/M ~ End(R/M). □ 
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The remaining three results will be useful in the construction 

of examples. 

1.16 Proposition 

Let R = Z[x], n a positive integer and pa prime number. 

1.16.1 A= {f ER const(f) E nZ} is an ideal of R; 

1.16.2 M = {f ER : const(f) E pZ} is a maximal ideal of R. 

Proof 

1.16.1 A is non-empty, since the zero polynomial lies in A. 

Let f, g EA and let const (f) = an and const (g) = bn. Then 

con st (f-g) = const (f) - const (g) = an-bn = (a-b) n E nZ and 

Then 

hence f-g E A. Let f ER, g EA with const (f) = c and const (g) = 

an. Then const(fg) = const(f).const(g) = canEnZ. 

fore fg EA and hence A is an ideal of R. 

There-

1.16.2 Then there Let N be an ideal of R such that M ~ N. 
n . 

exists a polynomial g E N such that g ¢ M. Put g = b + r a.xi 
. 1 i i= n . 

and let f =a+ la.xi EM. 
. 1 i 

Then (a,b) = 1 and so there exist 
i= 

integers rands such that rb+sa=l. 
n 

Now rg+sf = rb + l ra.x
1 

+ 
i=l i 

n . 
sa + 

n i 
l sa.x 

i=l i 

n . 
= rb+sa + l (r+s)a.xi 

i=l i 
= 1 + l (r+s)a.xi. 

. 1 i i= 

we also have that xi E M for all i > O, because p E M and 

-p + xi EM imply that p-p+xi EM; i.e. xi EM. Thus 

n . 
l (r+s)a.xi EN. 

. 1 i i= 
However, since f ,g EN, it follows that 

But 

rg+sf E N and hence 1 E N. Therefore N=R and so M is a maximal 

ideal of R. □ 
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In the proof of the next result we use similar arguments than 

those in the previous one~ However, the main reason for 

its inclusion is that it is a non-commutative ring and as 

such it provides us with a large collection of maximal left 

ideals which will turn out to be rather useful later on. 

1.17 Proposition 

Let R = M2 (Z) [x], n a positive integer and pa prime number. 

Then 

1.17.1 A = {f ER const(f) E 
rnz :J} is an ideal, of R; Lnz 

1.17.2 M = {f ER . const(f) E 
fPZ :]} is a maximal, ideal,, . 
LPZ 

of R; 

1.17.3 I (M) = {g ER . const(g) E [p: 
zl} . zj . 

Proof 

1.17.1 A is non-empty since the zero polynomial lies in it. 

Let f ,g € A. Put const(f) = [
na 

nb 
cl [na' 
dJ and const (g) = b, n 

- n (a-a') 
Then const(f-g) = const(f) - const(g) = [n(b-b') 

c-c' 
d-d I] E 

[
nz 

nZ Thus f-g € A. Let f E R, g EA and suppose that 

const(f) = [: 
cl 
dj and const(g) 

const(f).const(g) 
= [n(aa'+cb') 

n (ba' +db') 

na' 
= [nb' 

ac'+cd' 

be' +dd'] E 

fg EA. Therefore A is an ideal of R. 

Then const(fg) = 

Hence 
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Let N be an ideal of R such that Mc N. 
* 

Then there 

exists a polynomial g E N-M, say g = [~ cl ~ i 
dj + l a. X • 

i=l 1 
So 

at least one of a orb is not a multiple of p; suppose it is a. 

Then there exist integers rands such that ra + sp = 1. Now 

since h C l d-rj EM, it follows that g' = g - h EN; i.e. 

g' = 
n i l a.x E N-M. 

i=l 1 Since f = [6 
ol n · 
PJ + }: a.x1 EM, 

i=l 1 

it follows that [ r -b 

[-~ ~][~ ol = 
rJ 

+ 
n 
I 

i=l 

[r~ 
01 

+ [s6 o] + = raj sp 

ol , [s 
aJg + O 

r r ol ·a.xi + [~ L-b aJ l. 

n 
o l i I [r+s Ja.x 

i=l -b a+s 1. 

[r~+sp 0 l + k, say = ra+spJ 

~][6 ~] + 
n [~ ~] I a.x 

i=l l. 

[~ ol + k. Now for each i > O it follows that r1 ol i = lj Lo ljx EM, 

since for example[~ 
0
1 ] EM and [-_pp 

0
] [

1 
-1 + O 

hence their sum, which equals r1 ol i E M. 
Lo 1J 

X 

~] xi EM and 

Thus k EN. 

i 

However, since both f, g' EN, it follows that r r 
L-b 

olg' 
aJ 

+ [~ ~]fEN. 

Hence.[; ~] EN and so N=R. Thus M is a maximal ideal R. 

The other case is proven similarly. 
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1. 17. 3 Let g ER and let f be any polynomial of M. Suppose 

a c pa' 
that const(g) = [b d] and const(f) = [pb' Then 

fg EM if and only if const (fg) = [
pa' 

pb' 

rpaa ~+:c 'b 

Lpb' a+.d' b 
pa'c+c'dl [pZ 
pb'c+d'dJ E pZ 

z] z • Hence paa'·+c:~};),· pb'a+d'b E pZ 

for ·all a', c', b', d' E z. Thus b E pZ and so I (M) = { g E R : 

r z 
const.(g) E LPZ 

1.18 Proposition 

Let p be a prime number and 7,et A = { (a,b) E Z2 
: Pl a+b}, 

!] E M2 (Z): i>la(x+y)+b(z+w), where (a~b)f:A} and 

P] (x+y)- (z+w)} · Then 

1.18.1 B=C; 

1.18.2 B and C are subrings of M2 (Z). 

Proof 

1. 18 . 1 Let [: Y7 
J 

EB. Then p 1 a (x+y) +b (z+w) for all (a, b) E A. 
w 

In particular, if we choose a=l and b=-1, then a+b=O, which is 

certianly divisible by p; i.e. [: !] EC and hence BC C. 

. - [X y] For the converse we let z w E C be an arbitrary element. 

□ 
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Let (a,b) EA. Then there exists an integer k such that 

a=kp-b. Hence a(x+y)+b(z+w) = kp(x+y)-b(x+y)+b(z+w)=kp(x+y)-

b ( (x+y)- (z+w)). But by hypothesis Pl (x+y)-(z+w) and hence 

Plkp(x+y)-b«x+y)-(z+w)); i.e. pla(x+y)+b(z+w). Thus 

Y7 
wj EB and so Cc B. Hence B=C. 

1.18.2 Since we have just proved that B=C, it suffices to 

show the subring condition for one of B or Conly, say for C. 

C is non-empty, because[~ 
07 
oj E C. 

Y = [x' 
z' 

y' l 
be elements of C. 

w' J Then X-Y = [
x-x' 

z-z' 
y-y' l 
w-w' J • 

Now (x-x')+(y-y')-((z-z')+(w-w'))=x+y-(x'+y')-(z+w)+z'+w'= 

((x+y)-(z+w))-((x'+y')-(z'+w')) and since X,Y E c, it follows 

that p divides the above difference; i.e. X-Y E c. Next we 

r: y x' 
y'] = [xx'+yz' xy' +yw' ]· see that XY = 

wHz• 
Now 

w' zx'+wz' zy'+ww' 

we have that (xx'+yz')+(xy'+yw')-(zx'+wz'+zy'+ww')=(x-z)x'+ 

(x-z)y'+y(z'+w')-w(z'+w' )= (x-z) (x'+y' )+(y-w) (z'+w'). However, 

since X,Y E C,it follows that x+y=kp+z+w and x'+y'=k'p+z'+w'. 

Hence (x-z) (x'+y')+(y-w) (z'+w')=(kp-y+w) (k'p+z'+w')+(y-w) (z'+w') 

=kpk'p+k'p(w-y),which is certainly divisible by p; i.e. XY EC. 

Therefore C is a subring, as required. a 
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CHAPTER 2 

THE MAXIMAL LEFT IDEALS OF Mn(R) 

In this chapter we give a characterization of the maximal 

ideals of Mn (R) • In fact, the main result (Proposition 2.7) 

tells us exactly how to find all the maximal ideals of Mn(R) 

once the maximal ideals of Rare known. We also provide 

alternative visualizations of D(A:u) in the M (R)-module Rn, n 

in Rn/An and finally in the module M (R). 
n 

§3 A CHARACTERIZATION OF THE MAXIMAL LEFT IDEALS OF Mn(R) 

n Let A be a left ideal of R, let u = (u 1 , ••• ,u ) ' E R and con­n 

sider the M (R)-linear maps n 

f Rn g 
Mn (R) -+ -+ 

defined for XE Mn(R), v = (v 1 , .•. ,vn)' E Rn by f(X)=Xu and 

g(v)=(v1+A, ••• , vn+A)'; i.e. g is the natural surjection modA. 

Let XE ker(gof). Then (gof) (X) = (A, •.. ,A)'. Thus g(Xu)= 

(X1u+A, ••• , Xnu+A)' = (A, ••• ,A)' and hence Xiu+A=A for each 

i=l, ••• ,n; i.e. X.u EA for each i=l, ••• ,n. But then we also 
l. 

have that Xu= (X1, •.• , xi, ••• , Xn)u = (X1u, .•• , Xiu, .•• ,xnu)' EAn. 

Thus ker (gof) = {XE M (R) n 

We adopt the notation D(A:u) = ker(gof). 

2.1 Proposition 

D (A:u) is a proper left ideal of Mn (R) for any u E Rn-An. 

http://etd.uwc.ac.za
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Proof 

Consider any X,Y E D(A:u). 

we have that X-Y E D(A:u). 

n Then (X-Y)u = Xu-Yu EA and so 

Since A is a left ideal of R, it 

follows that X*u* E An· for any X* E Mn(R) and u* E An. So 

suppose that XE Mn(R) and Y E D (A: u). Then Yu E An and hence 

by the above observation we have that (XY)u = X(Yu) E An. 

Therefore it follows that XY E D(A:u) and hence D(A:u) is a 

left ideal of Mn(R). Suppose next that u ¢ An. Then there 

exists ui ER such that ui ¢ A. Let X be the matrix having 

the entry 1 in the (1,i) position and zero's elsewhere • Then 

Xu 
. . . ol . 

: (u1, ... , u., •.. , u )' = (O, ••• ,u., ••. ,O)' 
• i n 1 

• • • 0 

Therefore X ¢ D(A:u) and so we indeed have that D(A:u) is a 

proper ideal of Mn(R). c 

2.2 Proposition 

If ME Max(R) and if u E Rn-Mn, then the following hold. 

2.2.1 gof, as defined above, is onto; 

2.2.2 

2.2.3 D(M:u) is a maximal left ideal of Mn(R). 

Proof 

2.2.1 Let (u1 +A, ..• , u +A) ' E (R/A) n. n 

let X=I, the nxn identity matrix of M (R). n n 
Then (gof) (X) = 

g (Xu).·= g ( (u1 , ••• ,un) ') = (u 1 +A, ... , un +A)' and hence it follows 

that gof is onto. 
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Define a map f 

f : X+D(M:u) n 
-+ Xu+M. 

14 

M (R)/D(M:u) -+ Rn/Mn by the rule 
n 

f is well-defined, for if x+D(M:u) = 

Y+D(M:u), then X-Y C D(M:u) and hence we have that (X-Y)u E Mn; 

i. e • Xu-Yu E Mn. 

f( Y+D(M:u)). 

Therefore Xu+Mn = Yu+Mn and so f(X+D(M:u)) = 

f is an Mn(R)-linear map. Let X+D(M:u), 

Y+D(Mu) E Mn(R)/D(M:u). Then f((X+D(M:u)) + (Y+D(M:u)))= f((X+Y) + 

D(M:u)) = (X+Y)u+Mn = (Xu+Yu) +Mn= (Xu+Mn) + (Yu+Mn) = f(X+D(M:u)) + 

f(Y+D(M:u)). Let YE Mn(R) and X+D(M:u) E Mn(R)/D(M:u). Then 

f(Y(X+D(M:u))) = f(YX+D(M:u)) = (YX)u+Mn = Y(Xu)+Mn = Y(Xu+Mn) = 

Yf(X+D(M:u)). f is one-to-one. Suppose that X+D(M:u) E ker f. 

Then Xu E Mn and so we have that X E D (M: u) • Therefore it follows 

that X+D(M:u) = D(M:u), the zero submodule of Mn(R)/D(M:u) and so 

f is one-to-one. f is onto. 

module, it follows by Proposition 1.9 that Mn is a maximal sub-

module of Rn. By hypothesis u € Rn-Mn and hence by Proposi-

tion 1.10 we have that M (R)u +Mn= Rn. 
n 

given. Then there exists a matrix Xv€ Mn(R) such that Xvu+w=v, 

for some w E Mn. Hence f(X +D(M:u)) = X u+Mn = v-w+Mn = v+Mn. 
V V 

Thus f is onto. Hence we conclude that Mn(R)/D(M:u) ~ Rn/Mn. 

2.2.3 By 2.2.2 above M (R)/D(M:u) ~ Rn/Mn. 
n 

and hence Mn(R)/D(M:u) ~ (R/M)n. Since (R/M)n is a simple M (R)­n 

module, it follows that M (R)/D(M:u) is also simple and so by n 

Proposition 1.9 D(M:u) is a maximal left ideal of Mn(R). □ 
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2.3 Example 

x11 ... xli . . . xln 

Let X = E D(O:e.). Then we have that . 
l. 

X nl X ni X nn 

= X. = 0. 
Ill. 

I
R••• ••• ~- ••• ~:1 

, where the zero's appear in 

R O R 

the i-th column·. Next we assert D(O:ei) is a maximal left 

ideal of Mn(R) if and only if Risa division ring. Suppose 

that Risa division ring. Then O and Rare the only left 

ideals of Rand hence D(O;ei) is indeed a maximal left ideal of 

For the converse we suppose that D(O:e.) is a maximal 
l. 

left ifeal of Mn(R). Let x ER such that x!O. Then, since 

1 ER, we have that Rx is a left ideal of R such that Rx#O. 

Hence D(O:e.) = 
l. 

R 

R 

0 R 

0 ••• R 

C 

* 

R 

R 

D(O:ei) is maximal we conclude that Rx=R. 

Rx R • 

But since 

Rx R 

Hence there exists 

x' ER, x'#O, such that x'x=l. Similarly as above,it can be 

proved that Rx'=R. So there exists x" ER, x"#O, such that 

x"x'=l. However x"=x" l = x" (x' x) = (x"x') x = lx = x and so 

x' is the multiplicative inverse of x. 

division ring. 

2.4 Example 

Let K be any field, M=O and u=(l,-1) '. 

Therefore Risa 

Consider any 
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ra 
X = 

Lb 
cl 
dJ € D(O:u). Then it follows that[: 

[a-cl = (O,O) I. Thus a=c and b=d. 
b-dJ 

Therefore 0(0:u) 

= {[: cl 
E M2 (K) a-c=O and b-d=o} dJ 

= {[: al 
E M2 (K) . a,b E K}. bJ 

. 

Indeed, D(O:u) is a maximal left ideal of M2 (K). 

that D(O:u)" ~ N, for some left ideal N of M2 (K). 

For suppose 

Then there 

exists an eiemen~ [: :JEN - D(O:u). Therefore a-c/0 or 

b-d#O. Suppose that a-c#O and b-d=O. In this case [: 

and it is also clear that a~O or c#O, say a#O. Since 

ro 01, ro :J ~- [: cl 
are elements of D(O:u), they also 

Lb bj La oJ 

lie in N. Therefore [~ cl 
= 

ra cl [~ o,-
€ N. Hence 

OJ Lb bJ - bJ 

ra :J = [~ cl 
+ 

ro 01 
E N and so [:-c 01 

= 
ra cl 

La OJ La aJ aJ La aJ -

[~ cl 
EN. However, since (a-c)- 1 and a-1 exist, it follows 

oJ 

- [(a-c)- 1 
O Fa-c 01 

that -(a-c)- 1 a-1 La aJ 
E N; i.e. 

N = M2 (K) and hence D(O:u) is a maximal 

other cases are proven similarly. 

2.5 Example 

Let R = Z1s, M = SZ1s and u = (0,1) '. 

[~ 01 ' 
lJ EN. Thus 

ideal of M2 (K). 

rzis 
Then D(M:u) = LZis 

The 
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which is certainly a maximal left ideal of M2 (R). 

2.6 Example 

In R=Z let M=pZ, where p is a prime number, and let u=(l,-1)'. 

Consider any X = [~ ~] E D(pZ:u). Then Xu= [~ ~] (1,-1) I = 

[a-b] 
c-d E (pZ) 2 • Thus a-b, c-d E pZ; i.e. a= b (modp) and c = d (modp) . 

Hence D(pZ:u) = {[~ bl E M2 ( Z) . a= b (modp) and c = d ( mod p) } • 
dj 

. 

Moreover, D(pZ:u) is a maximal left ideal of M2 (Z). For let 

A be a left ideal of M2 (Z) such that D(pZ:u) c A and suppose 
* 

that [~ ~] E A - D (pZ: u) • Then a¢ b (modp) or c "¢ d (modp); 

i.e. pf a-b or pl c-d, say pl c-d. Then there are integers 

rands such that r(c-d)+sp = 1. Now [~ 

O] f c-d 
r Lo 

o ] [
0
r(c-d) 

r(c-d)+sp = 

ol 
pj• 

o ] [
0
sp 

r(c-d) + 

Our next aim is to show 

that the above sum is an element of A. This can be seen as 

follows. 

rs 
Lo 

~] E D(pZ:u) and so we have that 

~]EA, since D(pZ:u) is contained in A. On the 

other hand we see that [~-d 0 1 c-dj can be expressed as follows, 

fc-d 
Lo 
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Now r-g -gJ ro ol · and since fa bl E A we , Le jED(pZ:u) 
~c dJ C ' 

also have that (g ;][~ bl EA and (g -~] [~ bl EA; i.e. dj dj 

[~ gJ E A and [-~ -~] EA. Hence [~-d ~-d] E A and so 

[~ olf c-d 0 l F: A. Therefore we have that[; ~] E A rJLo c-dj 

and so A=M2 (Z). 

ideal of M2 (Z). 

This means that D(pZ:u) is indeed a maximal 

The other case is proved in a similar manner. 

2.7 Proposition 

n n The aolleation of D(M:u), for MC Max(R) and u ER -M, gives 

all the maximal left ideals of Mn(R). 

Proof 

From 2.2.3 we have seen that for ME Max(R) and u E Rn-Mn, 

D(M:u) is a maximal left ideal of Mn(R). We shall therefore 

only show that every maximal ideal of Mn(R) has this form. 

So let M' be such an ideal of Mn(R). Then by Proposition 1.9 

Mn(R)/M' is a simple Mn(R)-module. By the Morita-equivalence 

between Rand Mn(R), it follows that Mn(R)/M' ~ En, where Eis 

a simple left R-module. Thus, again by Proposition 1.9, it 

follows that E ~ R/M for some ME Max(R). We therefore have 

an isomorphism f from Mn(R)/M' to Rn/Mn built up as follows: 

M (R)/M' En (R/M)n ~ Rn/Mn. n -+ -+ ~ 

Suppose f(l+M') = u+Mn. Then we assert that M' = D(M:u). 

Indeed, if XE D(M:u), then Xu E Mn and therefore f(X+M') = 

But since f is an isomorphism,it follows that 

X+M' = M'; i.e. X E M'. Thus D(M:u) CM'. Since D(M:u) is 
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maximal as well, equality follows. 

It may happen that D(A:u) is maximal even though A is not 

maximal in R. The following example illustrates this point. 

2.8 Example 

Let R=Z, A=4Z and u=(2,0) ¢ A2
• 

However D (A:u) = {[~ ~] E M2 (Z) 

= { [ ~ ~] E M2 ( Z ) : 

= {ra le 

Then A is not maximal in Z. 

[~ ~](2,0)' E A2
} 

2a E 4Z and 2c E 4Z} 

a E 2 Z and c E 2 Z} 

= [2Z 
2Z 

Z] which is indeed a maximal ideal z ' 

§4 ALTERNATIVE VISUALIZATIONS OF D(A:u) 

In order to construct alternative visualizations of D(A:u) in 

any Mn(R),we make use of the following two results. 

2.9 Proposition 

Let F be a submodule of the left R-module E and for x EE let 

(F:x) = {r E R rx E F}. Then 

2.9.1 (F:x) is a left ideal of R; 

2.9.2 (F:x) is proper if and only if x ¢ F. 

□ 
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Proof 

2.9.1 Let r,r' E (F:x). Then (r-r')x=rx-r'x E F and '.so 

r-r' E (F:x). 

for some b E F. 

Let r ER and a E (F:x). Then (ra)x=r(ax)=rb 

But Fis an R-module and so rb E F. Thus 

ra E (F:x) and hence (F:x) is a left ideal of R. 

2.9.2 Suppose that (F:x) is a proper ideal of R. Then 

1 ¢ (F:x) and so lx=x ¢ F. Conversely, if x ¢ F then lx ¢ F 

and hence 1 ¢ (F:x). Thus (F:x) is proper. 

2.10 Proposition 

If Fis a maximal submodule of the R-module E and if x € E-F, 

then 

2.10.l (F:x) E Max(R); 

2.10.2 R/(F:x) ~ E/F. 

Proof 

2.10.l By the previous result (F:x) is a left ideal of R. 

Suppose that I is an ideal of R such that (F:x) c I, where 
* 

x E E-F. Then there exists r EI such that rx ¢ F. Since 

Fis a maximal submodule of E it follows by Proposition 1.10 

that 

F +Rx= E (i) 

But then there exists a E F such that a+rx=x. Thus 

(1-r)x = x-rx =a€ F. Therefore 1-r € (F:x) ~ I. So 

1-r=r' EI and hence l=r+r' EI. 

maximality of (F:x). 

Thus I=R, which proves the 

a 
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2.10.2 Define a map f : R/(F:x) + E/F by the rule 

f: r+(F:x) + rx+F. f is well-defined, for if r+(F:x) = 

r'+(F:x), then r-r' € (F:x). Hence (r-r')x ~ rx-r'x E F. 

Therefore rx+F = r'x+F; i.e. f(r+(F:x)) = f(r'+(F:x)). f is 

an R-linear map. Given any r+(F:x), r+(F:x) E R/(F:x). Then 

f((r+(F:x)) + (r'+(F:x))) = f((r+r')+(F:x)) = (r+r')x+F = 

(rx+r'x)+F = (rx+F)+(r'x+F) = f(r+(F:x))+f(r'+(F:x)). Also 

if r ER and r'+(F:x) E R/(F:x), then f(r(r'+(F:x))) = 

f(rr:+(F:x)) = (rr')x+F = r(r'x+F) = rf(r'+(F:x)). f is one­

to-one. Let a= r+(F:x) E ker f. Then f(a) = F. Thus 

rx+F = F and so rx E F. But then it follows that r E (F:x) 

and hence a = (F:x), the zero of R/ (F:x). Thus ker f = O and 

so f is one-to-one. f is onto, for suppose that y+F E E/F. 

Then by (i) above y=b+rx for some b E F, r ER. Thus 

f(r+(F:x)) = rx+F = y-b+F = y+F. Therefore the map f defined 

above is an R-isomorphism; i.e. R/(F:x) ~ E/F. 

2.11 Corollary 

If ME Max(R) and if u E R-M, then in M1 (R)=R we have 

D(M:u) = (M:u). 

Proof 

Let XE (M:u). Then XE R = M1(R) such that Xu EM= M1 . 

Thus XE D(M:u) and so (M:u) c D(M:u). Since both (M:u) 

and D(M:u) are maximal ideals, equality follows. 
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2.12 Example 

In Proposition 1.17 choose n=4 and p=2. Thus 

A = { f E R : con st ( f) E [:: :]} and 

{ 
f2z 

M = f E R : con st ( f) E L 2 Z z]' Z} where R = M2 (Z)[x]. Now 

since Mis a maximal ideal of Rand since Ac M, it follows 

that F = M/A is a maximal R-submodule of E = R/A. Let 

f* = f+A, where 

(F: f *) = {r ER 

r E (F:f*) and 

r(f+A) E F and 

it follows that 

a+b] F f 2Z 
c+d - L2z 

const (r) E [~ 

const(f) _ fo i]· We assert that - L 1 

fz 2zn Let therefore const (r) E L z 2zJJ· 

assume that const(r) = [~ ~]- Then 

hence rf+A E F = M/A; i.e. rf E M. But then 

const(rf) = [~ ~][~ l] € [2Z 
1 2Z :]; i.e. 

Therefore b,d E 2Z and hence 

2zl 
2 zJ and the assertion follows. The proof that 

(F:f*) is a maximal ideal of R proceeds along the same lines 

as the one in Proposition 1.17 and is therefore omitted. 

2.13 Example 

Let E=Z/6Z and let F=3Z/6Z be Z-modules. Let x=5+6Z ¢ F. Then 

Fis a maximal submodule of E. Moreover, (F:x)=3Z, for if 

r E (F:x), then r(5+6Z) E 3Z/6Z. Therefore 5r+6Z E 3Z/6Z. 

Hence Sr E 3Z and so r E 3Z. Thus (F:x) c 3Z. But by 2.10.l 

(F:x) is a maximal ideal of z and so (F:x) = 3Z. 

Z/(F:x) = Z/3Z Q:! (Z/6Z)/ (3Z/6Z) = E/F. 

Indeed, 
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2.14 Example 

In Example 2.6 we have seen that M = D(pZ: (1,-1) ') = · 

{[~ ~] E M2 ( Z) . a=b(modp) and C=d (modp)} is a maximal left . 
ideal of R = M2 ( Z) • Now let u = [; gJ E R-M. Consider 

any X ra bl (M: u) • Then Xu E M. Thus[~ ~][~ g] = Le dJ E 

ra ol EM; i.e. pla and pie. Hence XE fpz zl and so 
Le oJ LPZ zJ 

(M :u) = [pZ ~] = D(M:u) in M1 (R) . 
pZ 

In view of the preceding discussion we are now able to give 

three alternative visualizations of D(A:u) in any Mn(R), for 

any left ideal A of Rand u E Rn. 

2.15 Proposition 

n D(A:u) = (A :u) computed in the M (R)-module Rn. n 

Proof 

For XE D(A:u) it follows that Xu E An. So regarding Fas 

being An and E as being the Mn(R)-module Rn, we indeed have 

n that X E ( A : u) . 

n (A :u) C D(A:u). 

2.16 Proposition 

Hence D(A:u) c (An:u). Conversely, if 

Thus XE D(A:u) and so 

Hence D(A:u) = (An:u). 

n n n D(A:u) = (0: u+A) computed in the M (R)-moduZe R /A. n 

= 

□ 
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Proof 

Let XE D(A.:_u). Then Xu E An. 

Hence XE (0: u+An). 

Conversely, if XE (0: u+An), then X(u+An) E O = An/An. 

Therefore Xu+An E An/An and so Xu E An; i.e. XE D(A:u). Thus 

D(A:u) = (O: u+An). □ 

2 .17 Proposition 

Let Ube the nxn matPix having u down the fiPst aoZumn and 

2er-o's eZsewhePe. Then D(A:u) = (Mn(A) :U) in the moduZe Mn(R). 

Proof 

Suppose that X, € D (A: u) . Then X.u EA for each i = l, ... ,n. 
J. 

[I: 
0 !] Therefore XU = (X1, .•• , xn) ' 

0 

[u 0 . . . 

!] = (X 1 , ••• , xn) ' 

0 

= [X~u? ... ?] . . . . . . E: M (A). n Hence XE (Mn(A) :U) 

X u O 0 n 

and so D(A:u) C (Mn(A) :U). For the converse we let 

X E (Mn (A) : U) • 

[
X!u? ... ?] . . . . . . Xu 0 0 

n 

XE D(A:u). 

Then it follows that XUE M (A); i.e. n 

E M (A) • n Thus Xiu EA for each i=l, ••• ,n; 

Therefore (Mn(A) :U) c D(A:u) and so combining 

the above inclusions, equality follows. 

i.e. 

□ 
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2.18 Corollary 

For n=l, Max(R) = { (M:u) ME Max(R), u E R-M}. 

Proof 

Let ME Max(R) and let u E R-M. Then by Corollary 2.11 

D(M:u) = (M:u) computed in the M1(R)-module R. But by Proposi-

tion 2.7 all the maximal ideals of M1(R)=R are of this form. 

Thus Max(R) is as predicted. 

Consider the following example. 

2.19 Example 

Let R = M3 (Z 9 ), N = 3Z 9 and u = Put 

- - -MI = D (N (1,0,8) ') and let Y Then 

(1,0,8) I = E N3
• So by Proposi-

is a maximal ideal of M3 (Zg). Let X = 
[~

=_

1 

_-2

1

3 ~~-l € M3 (Zg)-M'. 

- - -
= (1,0,0) I E R 3 -N 3 • Consider any 

Then YX 

I 
2 
3 

!] E M' 

□ 
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and 

x1+2x2+3x3 
y1+2y2+3y3 
z1+2z2+3z3 

000=_] E M'. Therefore we have 

X1, Y11 Z l E N 

But then it follows that Y(Xu) = 
[

~l ~2 

Y1 Y2 
Z1 Z2 

(x1, y1, zi) E N3 and hence YE D(N:Xu). Thus 

But from (i) above we indeed have that (MI : X) = 

which is a maximal ideal of M3 (Z9). 

(M' :X) 

[: 
Z9 

Z9 

Z9 

(i) 

c D (N:Xu). 

z. l Z9 , 

Z9 

it follows that D(N:Xu) is also a maximal ideal of M3 (Z 9 ). 

Thus (MI : X) -- [NNN = D(N:Xu). 

The preceding example is a motivation for the following general 

result. 

2.20 Proposition 

Let R = Mn(S) for some ring S. If N is a maximal ideal of S, 

u E Sn-Nn, M' = D(N:u) and XE R-M', then 

2.20.l M' is a maximal ideal of R; 

2.20.2 (M' :X) is a maximal ideal of R; 

2. 20. 3 {M' : X) = D (N: Xu) . 
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Proof 

2.20.l Since N is a maximal ideal of Sand u E Sn-Nn it follows 

by Proposition 2.7 that D(N:u) is a maximal ideal of Mn(S); i.e. 

M' is a maximal ideal of R. 

2.20.2 Since M' is a maximal R-submodule of the R-module R 

such that XE R-M', we invoke Proposition 2.10 to obtain the 

required result. 

2.20.3 Let Y € (M':X). Then YX EM' = D(N:u). Therefore 

Y(Xu) = (YX)u ENnand so it follows that YE D(N:Xu); i.e. 

(M' :X) c D(N:Xu). But since (M' :X) is a maximal ideal of R 

it follows that (M':X) = D(N:Xu). C 
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CHAPTER 3 

IDEALIZERS AND CONTRACTIONS 

The focus in'this chapter is mainly on idealizers and con­

tractions. We use the concept of the idealizer to find a 

connection between. Mn(A) and D(A:u). We in fact show that 

a contraction of any maximal ideal in Mn(R) is maximal in R, 

provided that R is left quasi-duo. On the other hand, if R 

is an integral domain with Kits field of fractions, then no 

maximal left ideal of Mn(K) contracts to a maximal left ideal 

of Mn (R). 

§5 IDEALIZERS 

3.1 Example 

Since B = 6Z12 is an ideal of Z12 it follows that 

A= [B[x] 
B[x] 

I (A) 

Zidx]l is a left ideal of M2 (Z 12 [x]). Hence 
Z12 [x] 

Z12[x]l· 
Z12 [x] 

3.2 Proposition 

The following hold for a left ideal A of R. 

3.2.1 I(A) is a subring of R. 

3.2.2 I(A) is the largest subring of R in which A sits as a 

a two-sided ideal. 
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Proof 

3.2.1 Since Ac I(A), it follows that I(A) is non-empty. Let 

x,y f. I(A) and let a EA. Then a(x-y) = ax-ay EA and so it 

follows that A(x-y) c A. Hence x-y E I(A). We also have 

that a(xy) = (ax)y EA, because ax EA and y E I(A). Thus 

I(A) is a subring of R. 

3.2.2 Since ar f. A for every a EA and r E I(A), it follows 

that A is a right ideal of I(A). However, by hypothesis A 

is a left ideal of Rand hence also of I(A). So A is a two­

sides ideal of I(A). Next we let B be any subring of R such 

that A is a two-sided ideal of B. Let b EB be given. Then 

Ab c A and so it follows that b E I(A); i.e. B c I(A) and the 

result follows. 

3.3 Corollary 

I(A)=R if and only if A is a two-sided ideal of R. 

3.4 Proposition 

Let ME Max(R). Then the following hold. 

3.4.1 I(M)/M is a division ring; 

3.4.2 Mis also a maximal ideal of I(M). 

Proof 

3.4.1 By Proposition 1.15 I(M)/M ~ End(R/M and by Proposition 

1.11 End(R/M) is a division ring. Therefore I(M)/M is a divi­

sion ring. 

□ 

□ 
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3.4.2 Suppose that N is a left ideal of I(M) such that Ml N. 

Then there exists an element x EN such that x ¢ M. Therefore 

x+M is a non-zero element of I(M)/M, which is a division ring, 

by the first part. So there exists a non-zero element y+M of 

I(M)/M such that (y+M) (x+M) = l+M. So yx+m=l, for some m EM. 

However, since x,m EN and since N is a left ideal of I(M), it 

follows that yx+m EN; i.e. 1 EN. 

a maximal ideal of I(M). 

Thus N=I(M) and hence Mis 

3.5 Proposition 

If ME Max(R), then the following hold. 

3 . 5 • 2 I ( Mn ( M ) ) = Mn ( I ( M ) ) . 

Proof 

3.5.1 Mn{M) is non-zero, since the zero matrix lies in it. 

Since Mis closed under addition of its elements as well as 

under multiplication of the elements of R from the left, it 

follows that Mn(M) is indeed a left ideal of Mn(R). 

3.5.2 Let XE Mn(I(M)) and suppose that X = [xij]. Then 

for all i,j = l, •.. ,n it follows that xij E I(M) and hence 

Mx .. 
1] 

c M. Consider any nxn matrix [mij] E Mn(M). Then 

pl ··· m~nl[x~l ··· x~n [c;1 ... :t] [m .. ] [x . . ] = = I 

1] 1] . . . 
mnl m X X cnl nn nl nn nn 

where each cij is a sum of products of elements of Mand I(M) 

□ 
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Therefore each c .. EM and hence 
1) 

[mij][xij] E Mn(M). But this means that XE I(Mn(M)) and so 

Mn(I(M)) c I(Mn(M)). For the converse we suppose that 

Let m EM be arbitrary. Define for 

each pair of indices i and j an nxn matrix Mij = [ml having 

the entry min the (i,j)-positionand zero's elsewhere. So it 

follows that M .. E Mn(M) for each i,j=l , ••• +n. But since 
1J 

X E I (Mn (M) ) we indeed have that M .. X E M (M) for all .-
1J n 

i, j=l I • • • I n • However, M .. Xis an nxn matrix having the 
1) 

entry mxij in (i, j )-position and zer.o' s elsewhere. Therefore 

mx .. EM for each i,j=l , •.• , n. So each entry x .. E I(M) 
1) 1J 

and hence it follows that XE Mn(I(M); i.e. I(Mn(M)) c Mn(I(M)). 

Combining the above inclusions, equality follows. 

3.6 Corollary 

If ME Max(R), then the foZZowing hoZd. 

3.6.1 

3.6.2 I(M (M))/M (M) is a simple artinian ring. n n 

Proof 

3.6.1 In view of Proposition 3.5,I(Mn(M) = Mn(I(M)) and so 

I (M (M)) /M (M) = M (I (M)) /M (M). n n n n In order to prove the 

required ring isomorphism, we define a map 

+ M (I(M)/M) by the rule n 

f [aij] + Mn(M) + [aij+M]. f is well-defined, for suppose 

that [a .. ]+ M (M) = [b .. ] + M (M). Then [a .. ] - [b .. ] EM (M) 
iJ n 1J n . 1J iJ n 

and so [a
1
. J' - b .. ] C M (M); i.e. a. J. - b .. E M for each 

iJ n 1 1J 

□ 
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i,j=l , •.. , n. Thus a .. +M = b .. +M for each i,j=l , ••. ,n; i.e. l.J l.J 
[a . . +M] = [b .. +M] and so f([a .. ] + M (M)) = f([b .. ] + Mn(M)). l.J l.J l.J n l.J 
f is a ring homomorphism,for suppose that a= [a .. ] + Mn(M) and 

l.J 
b = [b .. ]+M (M). l.J n Then we have that f (a+b) = f ( [a .. ] + [b .. ] + M (M)) l.J . l.J -11 

= f([a .. +b .. ] + M (M)) = [a .. + b .. + M] = [a . . +M] + [b . . +M] = l.J l.J n l.J l.J l.J l.J 
f([a .. ] + M (M)) + f([b .. ] + M (M)) = f(a) + f(b) and l.J n l.J n 

f (ab): f / I 

\ 

= 

= 

... . 
n 
l a .b · 1 

j=l nJ J 

n 
I a 1 .b. 1 j=l J J 
. 
• 

n 
la .b. 1 j=-1 nJ J 

all+M 

. . 
anl+M 

+M 

+M 

n 
l al .b. 

j=l J Jn 

n 
I a .b. 

j=l nJ Jn 

n 
l a 1 .b. 

j=l - J Jn 

. . 
n 

. . . I a .b. 
j=l nJ Jn 

aln +M bll+M 

a +M nn b nl+M 

+M 

+M 

bln+M 

= f(a)f(b). 

b +M nn 

f is one-to-one, for if a = [a .. ] + M (M) E ker f , then l.J n 
f(a) = [a .. +M] = Mn(M). l.J So for each i,j=l , .•• ,nit follows 

that a .. +M 
l. J = M; i.e. a .. 

l.J EM. Thus [a .. ] 
l.J E Mn(M) and hence 

a = Mn (M), the zero element of Mn(I(M))/Mn(M). f is onto, for 

let b E Mn (I (M) /M) be given. Then there exist n2 elements 

bij E I(M) such that b = [bij+M]. So a = [b .. ] + M (M) is the l.J n 

required element in Mn(I(M))/Mn(M) such that f(a)=b. It follows 

that the rings under discussion are indeed isomorphic. 
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3.6.2 By 3.4.1 it follows that I(M)/M is a division ring and 

by definition 1.4 it in turn follows that M (I(M)/M) is a n 

simple artinian ring. Thus I(M (M))/M (M), being isomorphic n n 

to Mn(I(M)/M), is also a simple artinian ring. 

§6 A CONNECTION BETWEEN M (A) AND D(A:u) n 

3.7 Proposition 

Let A be a left ideal of R. Then a left ideal of Mn(R) contains 

A if and only if it contains Mn(A). 

Proof 

Suppose that the left ideal 

ideal I of Mn(R). Then [I 

A of R is contained in the left 

... oa·:] E I for any a EA. Now I 

is of the form Mn(B), where Bis a left ideal of R such that 

B contains A. So let [aij] be any element of Mn(A). Then 

it follows that each aij E A c B. Hence [a .. ] E M (B) = I and 
1) n 

so Mn(A) c I. For the converse we suppose that Mn(A) is con-

tained in the left ideal I of Mn(R). Let a EA. Then since [I ... ] 
EM (A) CI, it follows that AC I and the result n 

follows. 

3.8 Proposition 

If A is a left ideal of R, then B = {r ER 

sided ideal of R. 

rR c A} is a two-

C 

C 
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Proof 

OE Band so we have that Bis non-empty. Let a,b EB and let 

XE R. Then (a-b)x = ax-bx EA and so a-b EB. By defini-

tion Bis a right ideal of R. It remains to show that it is 

also a left ideal of R. So let x,y ER and let b EB. Then 

(xb)y = x(by) = xa for some a EA. But since A is a left 

ideal of R, it follows that xa EA; i.e. xb EB. 

a left ideal of Rand the result follows. 

3.9 Definition 

If A is a left ideal of R, then B = (A:R) = {r ER 

is called the transporter ideal of A. 

3.10 Example 

Let A = [: ::] and let R = M2 (Z). Let r = [~ 

Thus Bis 

rR c A} 

~] E (A:R) 

·rx 
and r' = Lz Yl C R 

w J - • Then rr' EA and so the equations 

ay+bw = 4s and cy+dw = 4t must hold for all y, w, s, t E Z. 

So in particular, if we first choose y=O and w=l and then y=l 

and w=O, we see that a, b, c, d E 4Z; i.e. r E M2 (4Z). Hence 

rrz 
\Lz 

4Zl . 
4Zj . 

We can now say precisely how Mn(A) is related to D(A:u). 

3.11 Proposition 

Let A be a left ideal of R, C the center of Rand B the trans-

porter ideal of A. Then it follows that 

Mn (An C) C Mn (An B) C n D(A:u) c M (A), where the intersection 
u n 

□ 
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is taken over al 7,. u f Rn. 

Proof 

Mn ( A n C ) C Mn ( A n B) • 

Let X = [ a i j ] E Mn ( A n C ) • 

follows that a .. E Anc. 
1) 

35 

Now for each i,j=l , •.• ,nit 

So a. . E A and a .. r = ra. . for each 
1) 1) 1) 

r E R. But since A is a left ideal of R,it follows that 

ra. . E A and so a .. r E A. 
1) 1) 

Thus aij E B and hence aij E An B; 

i.e. X E Mn (An B) , proving the required inclusion. 

M (AnB) C n D(A:u). n u 

Let X = (x1 , ••• , Xi, ... , Xn)' E Mn(AnB) and suppose that 

Then 

Xiu = xi 1u 1 + ••• + xinun f. A, because xil , ••• , xinEAnB c B. 

Thus XE D(A:u) for every u E Rn and hence it follows that 

XE n D(A:u). 
u 

Therefore M (An B) n c n D(A:u), where u range 
u 

over all the elements of Rn. 

go(A:u) C Mn(A). 

En D(A:u), where 
u 

Let X = (Xl , •.. , xj , 

X. = [ x. l • . . x . ] for 
J J Jn 

j=l , •.. , n. Then for each u E Rn 

it follows that Xu E An. So in particular for u = ei and 

i=l , ••• , n, we have that Xe. E An; i.e. X.e. EA for each 
1 J 1 

i,j=l , ... , n. So if we fix j and let i range over all the 

indices i=l , .•. , n, then it follows that xjl , •.• , xjn EA. 

If we now let j range over all the indices from 1 ton, it 

follows that xij EA. 

inclusion follows. 

Hence XE Mn(A) and so the required 

□ 
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3.12 Proposition 

For a Zeft ideai A of R, the fotiowing hotd. 

3 .12 .1 Mn (A) c D (A: u) if and on Zy if eaeh ui E I (A) ; 

3.12.2 Mn(A) = nD(A:u), where the interseetion is taken over 
u 

aii u E Rn, if and onty if A is two-sided. 

Proof 

3.12.1 Suppose that Mn(A) c D(A:u). Let a EA be given. Let 

X be the matrix of Mn(A) having the entry a in the (i,i)-posi-

tion and zero's elsewhere. Then XE D(A:u) and so Xu E An; 

i.e. aui E A. Hence ui E I(A). Since for each i we can 

construct such a matrix X, it indeed follows that each ui E I (A). 

For the converse we suppose that each ui E: I (A) • Let X E Mn (A) 

and assume that X. = [x. 1 1 1 
Then for each i=l , ••. , n 

it follows that x. 1 , ••. , x. EA. 
1 1.n 

But by hypothesis we have 

that u1 , ••• , un E I(A) and hence it follows that 

Xiu. = [xil •.• xin](u1 , ••. , un)' = xilul + ••• + xinun EA fur 

each i=l , ••• , n. Thus Xu E An and so XE D(A:u); i.e. 

3.12.2 Suppose that M (A) c n D (A:u), where u range over all 
n u 

the elements of Rn. Let a EA and r ER be given. If Xis 

the matrix of Mn(A) having the entry a in the (1,1)-position 

and zero's elsewhere and if u = (r ,o , ... , O) ' , then in parti­

cular for this choice of u,it follows that Xu E An; i.e. 

(ar , ••• , O)' E An. Hence ar EA, proving that A is a right 

ideal of R. But since A is a left ideal of R by hypothesis, 
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it follows that A is a two-sided ideal of R. Suppose converse-

ly that A is a two-sided ideal of R. Since, by Proposition 

3.11, we have already shown that QD(A:u) c Mn(A), it suffices 

to show that Mn (A) c n D (A:u) only. So let X E Mn (A) and let 
u 

n u f. R • As before, let the rows X. of X be denoted by 
1 

Now, using the hypothesis that A is also 

a right ideal of R, we indeed have that Xiu = xi1u1 + ••• + xinun EA 

for each i=l , ••• , n; i.e. XE D(A:u). But the element u E Rn 

was chosen arbitrarily and so XE D(A:u) for each u E Rn; i.e. 

X (: n D (A: u) • 
u 

Thus Mn (A) c a D (A: u) , as required. 

In view of the preceding result it may well happen that Mn(A) 

fails to equal n D (A:u) if we dispense with the condition that 
u 

A be a two-sided ideal of R. 

illustrates this point. 

3.13 Counter-example 

Consider the left ideal A= [~ 

a3 
a2] 
a4 

[bi 
b3 b4 j 

The following counter-example 

gJ of M2 ( Z) • let X En D(A:u). 
u 

Ira, 
Put X = [~: 

b, 11 
and u = 1[~: ~: l I Then it 

C2 l [di d2 l [ul u;] 
C4j d3 d4 j u' ui 3 4 

follows that [ai a2 ] r Ui ll2 l + rbi b2 Hu~ u~] E [: gJ a4 L U3 U4 j lb3 b4 Jl u~ u' a3 4 

and [Ci c2l[ui U2 l + [di d2 l(ul u~l E rz gJ C3 C4j U3 U4 j d3 d4j u; u~j Lz 
, 

for all ui, ui E Z, where i=l,2,3,4. Hence the following 

equations must hold for all u2 , u4, u~, ui E z. 

C 

http://etd.uwc.ac.za



38 

a1U2 + a2U1t + b1U2 + b2U4 = 0 

a3U2 + a1tU1t + b3U2 + b1tU4 = 0 

C1U2 + C2U1t + d 1u; + d 2u~ = 0 

C3U2 + C1tU1t + d 3 u~ + d1tut = o. 

So in particular for u2=1 and U1t = u~ = u 4 = o, it follows that 

a1 = a 3 = c1 = c 3 = O. Similarly one can prove that all the 

other entries of X are zero. Hence Xis the zero matrix of 

n D(A:u). 
u 

Thus n D (A: u) = 0 ~ M2 (A) • 
u 

§7 CONTRACTIONS 

In this section we are concerned about the question of whether 

maximal ideals of Mn(R) lie over and thus contract to maximal 

ideals of R. We in fact provide a necessary and sufficient 

condition (see Proposition 3.25) for such a contraction to hold. 

Some of the following results, each of which is preceded by an 

appropiate example, would be helpful in this regard. 

3.14 Example 

Let R = M2 (Za[x]) and let B = 2Z 8 • Since B[x] is a maximal 

ideal of Za[x] it follows that M = 
[B[x] 
B[x] 

Za[x]l 
Z a [x] maximal 

[ z 8 [x] Z,[x]]• Let left ideal of R. Moreover, I (M) = B[x] Z a [x] 

[ x' ~] E I(M)-M. Consider any [f' f, l E (M: u) • u = 
0 f3 f 1t 

Then we have that [fi f, W' ~] EM and so [f,x2 ~] EM. 
. f3 f1t 0 f 3 x2 

m i 
Thus f1X 2

1 f 3X2 E B[x]. Suppose next that f1 = I a.x Then 
i=O 1. 
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it follows that f1x 2 = 
m i+2 l a.x 

i=O 1 
Thus each aiEB; i.e. 

f1 E B[x]. The proof that f 3 E B[x] follows in a similar 

manner. Thus [~~ ~:] EM and hence (M:u) c M. Since we are 

dealing with maximal ideals, equality follows; i.e. (M:u) = M 

for u E I(M)-M. 

3.15 Proposition 

Fo~ ME Max(R), (M:u) = M if and only if u E I(M)-M. 

Proof 

Suppose that (M:u) =Mand assume that u ¢ I(M)-M. Then we 

are left with two possibilities, namely u EM or u E R-I(M). 

If u EM, then since Mis a left ideal of R, Ru c M; i.e. 

R c (M:u) =Mand so R=M, an obvious contradiction. On the 

other hand, u E R-I(M) would also lead to a contradiction, 

since (M:u) = M implies that Mu c M; i.e. u E I(M), by its 

definition. Hence u r: I(M)-M. For the converse we suppose 

that u E I(M)-M. Then Mu c Mand so it follows that Mc (M:u). 

But since Mis a maximal ideal of Rand u E R-M, it follows 

that (M:u) = M. 

3.16 Example 

Let R = Z8 [x], A= 4Z 8 [x], B = 2Z 8 [x], n=2 and u = (3x,O)' E R2
• 

Then Ac B. Now D(A:u) = [~Zs[x] 
4Za[x] 

Zs [x] l and 
Z a [x] 

D(B:u) = [~Za[x] 
2Za[x] 

Za[x]l . 
Za[x] 

Thus D(A:u) C D(B:u). 

C 
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3.17 Proposition 

If A c B are ideals of R and if u E: Rn, then D (A:u) c D (B:u). 

Proof 

LetXED(A:u). Then Xu E An C Bn, since AC B. Hence 

XE D(B:u) and so D(A:u) C D(B:u). 

3.18 Example 

Let R = Z12, A1 = 2Z12, A2 = 3Z12 and u = (5,0)'. Then the 

pz,, 
Z12 l following hold. A1 n A2 = 6Z12, D (A1: u) = 2Z12 Z12 ' 

D(A2:U) = [~Z12 Z12 l and D(A,:u)n D(A,:u) = [~Zi, Z12 l = 
3Z12 Z12 6Z12 Z12 

3.19 Proposition 

If A= n A 
i i 

is the intersection of a aolleation of ideals of R, 

then D(A:u) = 

Proof 

Let A = n A. be an intersection of left ideals of R, where i E I, 
i 1 

for some index set I. Suppose that XE D(A:u). 

). E {l, ..• ,n} , it follows that X .u E A = n A .• 
J i l. 

i.e. n Xu E: A. 
l. 

for each i E I. 

Then for each 

Thus Xju E Ai 

Hence XE D (Ai :u) for each i E I; 

for each i EI; i.e. X EnD(A.:u). Therefore D(A:u) cnD(A.:u). 
i l. i l. 

Conversely, let X E n D (A.: u) . 
i l. 

Then XE D(Ai:u) for each i EI. 

Hence Xju E Ai for each j E {l, ..• ,n} and for each i EI. Thus 

x.u En A.= A 
J i l. 

for each j E {l, ... ,n}. Hence XE D(A:u) and 

□ 

so n D(A. :u) C 
i 1 

D(A:u). By the' ab:>ve inclusions the equality follows. □ 
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3.20 Example 

Let R = M2 ( Z) , A [4Z gJ n=2 and let = 4Z , 

u = ([; ~] r-1 gJ)' E R2 -A2 • Then U1 = [; ~] and , 
L o 

[a1 a2 l fb1 b2] 
r -1 gJ. 

a3 a4J Lb3 b4 
U2---= .. L o Let X = E D(A:u). 

[C1 C;z l fd1 d2] 
C3 C1t J Lal d1t 

Then the following equations must hold. 

a2 l = r 4r 
a1tJ L4r' 

r, r', s, s' E z. 

D(A:u) = { 

ci = di (mod4), for 

ol 
oJ 

gJ 

i = 

Next we consider any X 

[4a gJ ro ol 
4b Lo oJ 

X= 

[g gJ f4a ol 
L4b oJ 

D(A:u)nR = { m~ 
Furthermore, if [~ 
so[~ b] c f4Z ~] d '- L4z 

1,3}. 
E D(A:u) n R. Then X 

[
4s 
4s' gJ , for all 

a. = l::L (mod4) and 
1 1 

is of the form 

, where a,b E Z. Thus 

ol [g g] I oJ 
a,b E z}. E M2 (R) 

gJ [4a ol 
4b oJ 

bl E (A:u1), then[~ ~][; ol EA and 
dJ 1J 

; i.e. a,c E 4Z and b=d=O. Thus 
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[
4Z 

(A:ui) = 4Z gJ. 
ra bJ[-1 
Le d O gJ E A; 

On the other hand, if 

[
-a i.e. -c 

[ca 
~] E (A:U2) 1 then 

Thus a,c E 4Z 

and so (A:u2) = [4Z 
4Z But then we have that 

L = (A:u1) n (A:U2) = [4Z 
4Z g]. Now regarding L as a subring 

of M2 (R) under the embedding r4a ol -+ 
r4a ol [g L4b oJ l4b oJ 

[g gJ [4a 
4b 

we observe that D (A:u) n R = (A:ui) n (A: U2 ) • 

3.21 Proposition 

Rn 
n 

Far A an ideal of R and u E D(A:u)nR = n (A:u.). I . 1 1 1= 

Proof 

Let X E D (A:u) n R. Then X is of the form 

r ... 0 0 

X = 0 r 0 for some r E R such that , 

0 . . . 0 r 

r 0 0 . 
0 . . . r 0 (U1, • • •, ui I • • • I 

U ) I E An. Hence n 

0 . . . 0 r 

(ru1 , •.• , ru1. , ••• , ru )' E An; i.e. ru. EA for each n 1 

i=l , ••. , n. 
n 

Thus r E (A:ui) for each i=l , ••• , n; i.e. 

g] 

g] 

r E n (A: u. ) . 
i=l 1 However, regarded as an element of M (R), r n 

, 
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:: . . . or·:] 

n 
D(A:u) n RC n (A:ui). 

i=l 
n 

43 

= X. 
n 

Hence x E n (A:ui) and so 
i=l 

For the converse inclusion we let 

r E n (A: u. ) . 
i=l 1. 

Then r E (A:ui) for each i=l , ••• , n. How-

ever, regarded as an element of Mn(R), r has the form [: . . . ?] . . . 
0 ... ; 

Hence ru = [ I ... ?](u , ... ,u )' = . n 
r 

r E R such that ru E An; i.e. r E D(A::u) n R. 
n 
n (A:u.) C D (A:u) n R. 

i=l 1. 
Therefore D (A:u) n R = 

3.22 Corollary 

Thus 
n 
n (A: u. ) • 

i=l 1. 

Thus 

If M ~ Max(R) is a two-sided ideal of R, then D(M:u) aontraats 

to M. 

Proof 

Since Mis a two-sided ideal of R, it follows that I(M) = R. 

So there is at 

least one ui f. M. Therefore u1 E R-M; i.e. ui E I(M)-M. 

Thus by Proposition 3.15 it follows that (M:ui) = M for such 

ones. On the other hand for j # i, we have that (M:u.) = R, 
J 

since these u1 •s are in M. So we see by Proposition 3.21 that 

n 
D(M:u)nR = n (M:u.) = M, since the intersection contairts ·at 

. 1 l. 1.= 

least one Mas a member. Therefore D(M:u) contracts to M. 

□ 

□ 
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3.23 Definition 

3.23.1 A ring R is called left duo if every left ideal of R 

is two-sided. 

3.23.2 A ring R is called left quasi-duo if every maximal left 

ideal of R is two-sided. 

3.23.3 A ring R is called a loaal ring if it has a unique 

maximal left ideal. 

3.24 Examples 

3.24.1 Every left duo ring is left quasi-duo. 

3.24.2 R = {[~ ~] : a,b E z} is a left duo ring. We first 

show that Risa ring. 

ra 
Lo 

bl[x 
aj O 

Let[~ :] , [~ !] ER. Then we 

ay+bxl E 
J R. ax 

b+y] ER and 
a+x 

The other ring properties 

follows from the fact that Risa subset of M2 (Z). In order 

to prove that R is indeed left duo, we observe that the ideals 

of Rare all of the type 

A -- {[oa ba] ER: a EI, b E J where I and ideals of Z such 

that I c J}. We assert that each such A is a left ideal of R. 

A is non-empty, because [ 00 oo] EA. 

Then there exist ideals I and J of z such that I c J with a;xE I 
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and b,y E J. Thus fa 
Lo 

a-x EI and b-y E J. 

bl -
aJ 

Let fa 
Lo 

45 

bJl E R and let 
a 

b-yl EA, because 
a-xJ 

fx 
Lo 

Yl 
xJ E A. 

ay+bxl EA because ax EI and 
ax J ' 

ay+bx E J (since x EI c J). Thus A is a left ideal of R, as 

asserted. Moreover, A is also a right ideal of R. For 

suppose that [oa ba] 

[~ ~][; ~]=[~a 

ER and[~ ~]EA. Then we have that 

xb+ya] EA, since the ideals I and J of 
xa 

z are two-sided. So each left ideal of R is also a right ideal 

and hence R is indeed a left duo ring. 

3.24.3 The ring R of 2x2 lower triangular matrices over a 

division ring Dis a left quasi-duo ring which is not left duo. 

Let R = [~ ~] , for some division ring D. 

ideals of Rare A1 = fo 
Lo 

ol 
0 J, 

Then the left 

fo 
Lo 

01 
OJ' 

gJ~_and As = R. A2 is the only maximal left ideal of 

R. Moreover since ol[o 
OJ D 

ol _ 
oJ -

follows that A2 is also a right ideal of R. Thus.Ris left quasi-

duo. However, since A4R = [g 
follows that the left ideal A4 is not a right ideal; i.e. R is 

not a left duo ring. 
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3.24.4 Any field is a local ring. 

3.24.5 Z9 is a local ring, because 3Z9 is its only maximal 

ideal. 

3.24.6 Example 3.24.3 above is also an example of a local ring. 

3.25 Proposition 

For n ~ 2, every maximal, left ideal of Mn (R) contracts to a maximal 

left ideal of R if and only if R is left quasi-duo. 

Proof 

Suppose that R is not left quasi-duo. Then there exists a 

maximal left ideal M of R such that Mis not two-sided. Let 

r E R-I(M). Then u = (1,r, •.. ,O)' E Rn-Mn and so by Proposi-

tion 3.21 D(M:u) n R = (M:l) n (M:r) = Mn (M:r). By Proposi-

tion 3.15 (M:r) 'I- M and so Mn (M:r) c M; for if Mn (M:r) = M, 
* 

then M ~ (M:r) 'I- R, which is obviously a contradiction since M 

is a maximal ideal of R. Hence the contraction D (M:u) n R is 

not maximal. For the converse we suppose that R is left quasi-

duo. Let M' be any maximal left deal of Mn(R). Then by 

Proposition 2.7 M' is of the form D(M:u) for some ME Max(R) 

n n and u ER -M. But by hypothesis Mis a two-sided ideal of R. 

We can therefore apply Corollary 3.22 to see that D(M:u) con-

tracts to M; i.e. M' contracts to the maximal ideal M of R. □ 

3.26 Proposition 

The contraction of a maximal ideal of Mn(R) is always an inter­

section of maximal ideals of R. 
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Proof 

Let M' be a maximal ideal of Mn(R). Then by Proposition 2.7 

M' = D(M:u) for some ME Max(R) and u E Rn-Mn. But by Propo-

sition 3.21 we have the following contraction of M', namely 

it follows that some ui ¢ M. For such ui's we have by 

Corollary 2.18 that (M: ui) is a maximal ideal of R. On the 

other hand, if uj E M for j f i, then (M: uj) = R. So in any 

case we have M' n R is an intersection of maximal ideals of R, 

since (M:u.) n R = (M:u.), which is maximal. 
J. J. 

3.27 Example 

Since O is a maximal ideal of Q, the rational field of Z, we 

have that each D(O:ei) is a maximal ideal of Mn(Q). Now we 

[

Q ••• 
have D ( O : e i ) n Mn ( z ) = : 

Q ••• 

? . . . 9] . . . . 
0 • • • Q 

[

z - . 
- ~ ... 

which is not a maximal ideal of Mn(Z). 

In the above example we have noticed that the maximal left 

ideals D(O:e.) of M (Q), where Q is the rational field of z, 
J. n 

do not contract to maximal ideals of Mn(Z). It is therefore 

natural to investigate whether this behaviour is typical. 

We in fact look at a more general situation: Let R, Sand 

S- 1 R, be as in Proposition 1.13. For A' an ideal of s- 1 R, 

we let A = A' n R denote its contraction to R. 

able to prove the following result. 

We are now 

□ 
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3.28 Proposition 

Let P' be a prime ideal of s- 1R and let u = (U1/S1, U2/S21•••1 

u /s ) 'E (S- 1R)n. 
n n If some entry of u is not in P' 7 then 

3.28.1 D(P':u) is a proper left ideal of Mn (S- 1R); 

3.28.2 for s = s1s 2 ••• sn' D(P:su) is a proper left ideal of 

Mn(R); 

3 • 2 8 • 3 the a on tr a at ion of P' to Mn ( R) is D ( P : s u) • 

Proof 

3.28.1 The proof is similar to the one in Proposition 2.1. 

3.28.2 We remark thats is a unit of s- 1R; indeed 

Thus s ¢ P ' , for 

if. s E P', then 1 = s- 1s E P' and so P' = s- 1R which is a contra-

~ictionjtbeca~se, some ui/si E P' by hypothesis. It there-

fore follows that s(u./s.) 
l. l. ~ P' I for if not the case, it would 

then mean that s- 1 (s(u./s.)) 
l. l. 

E p Ii i.e. ui/si E p I I which is a 

contradiction. Now s(ui/si) = (s1/l) ••• (si/1) (ui/si) .•• (sn/1) 

= (si/1) • • • (si u/si) • • . (sn/1) = (s /1) . . . (ui/1) • • . (sn/1), since 

s . u . Is . = u
1
. I l. 

l. l. l. 
By Proposition 1.13 R can be considered as a 

the element s1 ..• ui 

p' • 

• • • s E R. n So s(ui/si) ER, but not in 

n n Hence su ER - P and so 

by Proposition 2.1 D(P:su) is a proper left ideal of Mn(R). 

3. 2 8. 3 Let X E D (P: su) . Then for each i=l, ..• ,n 

Xi (su) E P = P' n R. But since R is commutative, it follows that 

each s(Xiu) E P'. Since P' is a prime ideal ands¢ P',it 
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follows that each X.u E P'. 
1 

Hence XE D(P':u). But since we 

are concerned about those X's in M (R) only, it follows that n 

D(P:su) c D(P' :u) n M (R). The converse inclusion follows even n 

without the primality assumption. 

Then Xiu E P' for each i=l, ••• ,n. 

For let x E D (P': u) n Mn (R) • 

However, since s E R c s-'1R, 

it follows that s(Xiu) E P'. But R is commutative and so 

Xi(su) E P'. On the other hand. we have that 

su= (s1/l) ••• (sn/l)(u1/s 1 , ••. , un/sn)' = ((s1u1/s1 ••• sn/l), ••• , 

(s1/l snun/sn))' = ( (u 1/l ..• sn/1) , ••• , (s 1/l ••• un/1))' 

) ' c Rn s n , • • • , s 1 • • • un "' • However, since each entry 

in Xi lies inside R, it is therefore evident that Xi(su) ER. 

Hence Xi(su) E P' nR = P for each i=l , •.• , n; i.e. XED(P:su) 

and so D (P' :u) n Mn (R) c D (P: su). Therefore D (P' :u) n Mn (R) = 

D(P:su), as required. □ 

3.29 Proposition 

Let R be an integral domain, S the set of non-zero elements of 

Rand Kits field of fractions. Then no maximal left ideal ~f 

M~(K) aontraats to a maximal left ideal of Mn(R). 

Proof 

Since O is the only maximal ideal of K, we see by Proposition 2.7 

that all the maximal left ideals of Mn(K) have the form D(O:u), 

n n where u EK -o. On the other hand, since O is also a prime 

ideal of K, we can invoke Proposition 3.28 to obtain 

D ( 0 : u) n Mn ( R) = D ( 0 : s u) • However, since R is an integral 

domain, O is not a maximal ideal of R. So again by Proposi-

tion 2.7 D(O:su) cannot be a maximal ideal of Mn(R). Hence no 
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maximal left ideal of Mn(K) contracts to a maximal left ideal 

of Mn (R) . □ 

3.30 Remark 

The integral domain R, regarded as a subring of K trivially has 

the property described in Proposition 3.29, since the maximal 

ideal O of K contracts to the non-maximal ideal O of R. How­

ever, in the matrix ring case the non-zero maximal ideals of 

Mn(K) all contract to non-zero, non-maximal ideals of Mn(R). 
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CHAPTER 4 

EQUALITY OF D(M:u) AND D(M:v) 

We wish to know under which circumstances it so happens that 

D(M:u) equals D(M:v) for u, v E Rn-Mn. We provide necessary 

and sufficient conditions for such equalities. It is interes-

ting to note the importance of the role of the idealizer in 

this regard. In the second part of the chapter we attempt to 

count the number of maximal ideals of Mn(R) in the case where 

Risa commutative ring. 

§8 NECESSARY AND SUFFICIENT CONDITIONS FOR D (M:u) 'ID EQUAL D(M:v) 

4.1 Example 

Consider the maximal ideal M = 3ZG of Z6 • Let n=2 and let 

u = (2,5)', v = (2,2,)' E z~ - M2 • Then u = v (modM). Let 

d
b-] E D(M:u). Then :]<2,5)\ EM' and hence it 

follows that 2a + Sb EM and 2c + Sd EM. However, 2a +Sb= 

2a +Sb+ 3b = 2a + 2b and similarly we have that 2c + 5d = 

2c + 2d; i.e. 2a + 2b, 2c + 2d EM. Thus [~ ~] E D(M:v) 

and so in view of the maximality of the ideals,it follows that 

D(M:u) = D(M:v). 

4.2 Proposition 

If U=V(modM), then D(M:u) = D(M:v). 
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Proof 

Suppose that u = v (modM) • 

m. EM such that u. = 
l. l. 

for each i=l, ••• ,n. 

52 

Then for each i=l, .•• ,n there exists 

+ m .• 
l. 

Let X E D(M:v). Then X.v EM 
l. 

+ X. (v +m ) = x.v1 + •.• + X.v + m' = x.v+m', where 
1. n n 1. 1. n 1. 

Hence X E D (M:u) and so D (M:v) CD (M:u). 

Since we are dealing with maximal ideals, equality follows. □ 

4.3 Example 

Take p=2 in Proposition 1.16. Then we have the maximal ideal 

M = {f E Z[x]: const(f) E 2Z} of Z[x]. Now since Z[x] is 

commutative, I(M) = Z[x]. Let n = 3 , u = ( O , 1-x 2 
, 2 x 3 

) ' , 

V = (2,3-x,x2
)

1 and C = S+x 5 E I(M)-M. Then v-uc = (2 ,3-x,x2
)' -

Let XE D(M:u), say X = Then we have that 

But this will hold only if const(f2 ), 

const(fs), const(fe) E 2Z. 
[Z[x] M Z[x]l 

Hence D(M:u) = Z[x] M Z[x] 

Z[x] M Z[x] 

On the other hand, D(M:v) if and only if 

3const{fi), 3const(f 5 ), 3const(f 8 ) E 2Z. But since (2,3) =1, 

we have that const(f 2 ), const(f 5 ), const(fe) E 2Z. Thus 
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D(M:v) = 
[

Z[x] 

Z[x] 

Z[x] 

4.4 Proposition 

M 

M 

M 
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Z[x]] 
Z[x] =D(M:u). 

Z[x] 

n n If u,v E R -M and v = uc (modM) for some cE I(M), then D(M:u) = D(M:v). 

Proof 

Since we are dealing with maximal ideals it suffices to prove 

one inclusion only. Let X E D (M: u) • Then each Xiu EM. 

hypothesis there exists m E Mn such that v=uc+m. Therefore 

c ~ I (M) • Thus XE D(M:v). Hence D(M:u) c D(M:v) and so 

D(M:u) = D(M:v), by the observation at the beginning of the 

proof. 

4.5 Proposition 

By 

v = uc (modM) for some c E I (M)-M if and on Zy if u = vc (modM) for 

some c E I(M)-M. 

Proof 

Suppose that v = uc (modM) for some c E I (M)-M. Then for each 

We also have that the 

coset c+M is invertible in the division ring I(M)/M; i.e. there 

exist elements c' E I(M)-M and m' EM such that cc'=l+m'. So 

for each i=l, ••• ,n we have that u. = u.l = u. (cc'-m') = u.cc' -
1 1 1 1 

u.m' = (v.-m)c' - u.m' = v.c' - me' - u.m' = v.c' + m", where 
1 1 i· 1 1 1 

m" = -me ' - u . m ' E M. 
1 

Thus u = vc' (modM), where c' E I (M) - M. 

□ 
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By interchanging the roles of u and v, it is clear that the 

converse statement follows similarly. 

4.6 Remark 

We observe that if A is a left ideal of Rand D(A:u) = D(A:v), 

then then-tuples u and v must behave alike (with respect to A) 

at each coordinate. 

4.7 Proposition 

Let D(A:u) = D(A:v) and let i E {l, ..• ,n}. Then 

4.7.1 ui EA if and only if vi EA; 

4.7.2 ui E I(A)-A if and only if vi E I(A)-A 

4.7.3 ui E R-I(A) if and only if vi E R-I(A). 

Proof 

In view of Remark 4.6 above it suffices to prove each statement 

for the coordinates ui only, since the proofs concerning the 

vi's would proceed along the same lines. 

4.7.1 Let ui EA. Then e 1i = [
o . . . 1 ... ol 
; 6 . . . 6 (ul' ••• , 

= (ui, •.. , O, ••• , O) ' E An . Therefore e 1i E D(A:u) = D(A:v) and 

n hence e 1iv EA. But, as above, e 1 .v = (v. , ..• , o, ... ,O)' and 
l. l. 

so it follows that vi EA. 

C 
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4.7.2 Let ui E I(A)-A. Then ui ¢ A, and so by 4.7.1 above 

vi¢ A. Let a E A. Then ae1 iu = a(ui, ... ,O)' = (aui, •.. ,O)'EAn, 

since a EA and ui E I(A). Thus ae1 i E D(A:u) = D(A:v). 

Hence ae1iv E An and so (avi, .•. ,O)' E An .. · 'Thus avi EA; 

i.e. v. E I(A)-A~ 
l. 

4.7.3 Let ui E R-I(A). Then ui ¢ I (A) . By the definition 

of the idealizer it is clear that u. ¢ A and so, again by 4.7.1 
l. 

above, vi¢ A. If, however, vi E I(A)-A, then by 4.7.2 above 

it follows that u. E I(A)-A, which would obviously contradict 
J. 

the hypothesis. Thus vi~ I(A)-A. Since we have also seen 

that vi¢ A, it follows that vi E R-I(A), as required. 

4.8 Example 

C 

Take n=2 and p=3 in Proposition 1.17. Then M = { f E M2 ( Z) [x] : 

const(f) E [ 3Z 3Z ~]} is a maximal ideal of R = M2 (Z) [x] and 

I (M) = {g E M2 (Z) [x]: const (g) E rz 
L3Z 

zll 
zJJ· Let C , U 1 , U2 , 

v1 and v 2 be polynomials in R such that iconst(c) = [~ ~] , 

const(ui) = [~ 

const(v1) = [~ 

and v= (v1, v 2 ) ' • 

g] , const(u2 ) = [-~ 

~] and const(v 2 ) 
= fl 

Lo 

ro 
Lo -ol] 

Put u= (u1 ,u 2 )' 

and 

-11 
oJ· We assert that D(M:u) = D(M:v). 
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X -- [f1 Let us therefore consider any 
fl 

f 2 l f~ E D(M:u) and 

suppose that const(f1) ::], const(f,l 

From Xu E M2 

= 
we have that 

:] and similarly it follows that 

o] E [ 3Z 
0 3Z 

Hence a. -2b. = O (mod3) and 
l. l. 

However, by adding the respective 

congruences 3bi = O (mod3) and 3di = O (mod3) , the above congruences 

This 

imply that XE D(M:v), i.e. D(M:u) C D(M:v). But since 

D(M:u) and D(M:v) are both maximal, eqaulity follows and the 

assertion is proved. 

In the above example we note that u1,u2 ,v1,v2 E I(M), 

C E I (M) -M and V = UC (modM) • 

result. 

4.9 Proposition 

Indeed we now have the following 

If each ui and vi is in I(M), then D(M:u) = D(M:v) if and only 

if V = UC (modM) for some C E I (M) -M. 
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Proof 

n If u and v are in M, then each ui and each vi is in Mand 

hence in I (M) • The necessary and sufficiency conditions are 

all satisfied, since D(M:u) = Mn(R) = D(M:v) and for c we 

can choose the value 1. So we may assume that u ¢ Mn. In 

order to prove the required result, we firstly assume that 

D (M:u) = D (M:v). We distinguish between two types of 

u1 E I(M), namely ui E I(M)-M and then ui EM. For 

ui E I(M)-M there exists wi E I(M)-M such that uiwi+M = l+M = 

wiui+M, since I(M)/M is a division ring. So there exist 

elements m., m! EM such that u
1
.w

1
. = l+m. and w.u. = l+m!. 

J. J. J. J. J. J. 

Let k be a fixed integer such that uk E I(M)-M. Then by 4. 7 .2 

vk EI (M)-M. Thus c = wkvk EI (M)-M. Now vk-ukc = vk- uk (wkvk) = 

vk-(ukwk)vk = vk-(l+mk)vk = vk-vk-mkvk = -mkvk EM. Now let 

j be another index such that uj E I (M)-M and let X = wkelk-wjelj. 

[

o ••• wk 

Thus Xu= b 
0 

-w. 
J 

0 

Hence XE D(M:u) = D(M:v). Therefore 

Xv E Mn and so wkvk-wJ.vJ. F. M; i.e. c-w.v. EM, or c = w.v.+m'!, 
J J J J J 

for some m'! E M. 
J 

Now we have that v.-u.c = v.-u. (w.v.+m'!) = 
J J J J J J J 

v.-u.w.v.-u.m~ = v.-(l+m.)v.-u.m~ = -m.v.-u.m~ EM, since 
J JJJ JJ J J J JJ JJ JJ 

v. E I (M) and m'! E M. Finally, if u. E M, then by 4. 7 .1 
J J J 

vj EM. So in any case vj-ujc EM. We have therefore 

succeeded in proving that v.-u.c EM for each index j; i.e. 
J J 

v = uc (modM), where c E I (M) -M is constructed as above. 
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The converse was proved in Proposition 4.4, without the 

idealizer assumption on u and v. 

4.10 Example 

In Proposition 1.16 choose n=2 and p=2. Then 

M = {f ER: const(f) E 2Z} is a maximal ideal R = Z[x] and 

I(M) = Z[x]. Let u = (l-x2 , -l+x) ', v = (3-2x, l+x3 )' and 

c = S+x. 

So V = UC (modM) , 

c E I(M)-M and each u 1 , vi E I(M). f -l 2 ED(M:u). 
f4 

[
f1-f 2 -f1x

2
+f2X] E M2. 

f3-f4-f3X 2 +f4X 

and const(f3 ) = const(f4) (mod2). So D(M:u) = {[:: 

Thus 

const(f1) econst(f2 ) (mod2) and const(f 3 ) econst(f4) (mod2)}. 

On the other hand, if 
f 2] 
f 

4 
E D (M:v) , then 

Thus 

C 

am. 3constJf3 ) + const(f 4 ) E 2Z; i.e. 3const(fi) = -const(fd (mod2) 

and 3const(f 3 ) = -const(f 4 ) (mod2). Now if we add the congruence 

equations -2const (f 1 ) = 2const (f 2 ) (mod2) and 

-2const (f 3 ) = 2const (f 4 ) (mod2) to the appropriate ones above, we 

obtain con st ( f 1 ) = con st ( f 2 ) (mod2) and con st ( f 3 ) = con st ( f 4) (mod2) • 
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Hence D(M:v) ={[!: const(fi) =const(f 2 ) (mod2) 

and const(f 3 ) = const(f 4 ) (mod2)} = D(M:u). 

4.11 Remarks 

4.11.1 M can be considered as a subset of Mn(R) via the 

natural embedding of R in Mn(R). So M generates the left 

ideal Mn(M). By 3.12.1 we can restate Proposition 4.9 as 

follows. If D(M:u) and D(M:v) contain M, then they are equal 

if and only if v = uc (modM) for some c E I (M) -M. 

4.11.2 It may seem that the idealizer assumptions in Propo­

sition 4.9 push everything inside I(M), in which case we may 

as well assume initially that Mis a two-sided ideal. How-

ever, the ideal D(M:u) is still being calculated in Mn(R). In 

fact, in Example 4.8 all the ui are in I(M), but D(M:u) 

possesses an element having none of its entries in I(M), namely 

the element 

21 
4 J and 

-5.] 8 • 

It is sometimes not so easy to compute the idealizer of a left 

ideal. We are now able to describe the idealizer of D(M:u) 

in M (R) whenever u behaves nicely enough with respect to M. n 
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4.12 Corollary 

If eaah ui E I(M), then the idealizer of D(M:u) is given by 

I (D (M:u)) = {X E Mn (R): Xu= uk (modM) for some k E I (M)}. 

Proof 

Let XE Mn (R) such that Xu= uk (modM) for some k E I (M) • Consider 

any Y E D (M: u) • Then (YX) u = Y (Xu) = Y (uk) (modM) = (Yu) k (modM) 

and so (YX)u - (Yu)k E Mn. 

it follows that (Yu)k E Mn. 

n However, since Yu E M and k E I (M) , 

But then we have that (YX)u E Mn. 

Thus YX E D(M:u) and so XE I(D(M:u)). Conversely we suppose 

that XE I(D(M:u)), but X ¢ D(M:u) itself. Then by 2.20.3 

it follows that D(M:Xu) = (D(M:u) :X) and by Proposition 3.15 

(D (M:u) :X) = D (M:u). Hence D(M:Xu) = D(M:u). Now by Propo-

sition 4. 9, with v = Xu, we have that Xu= uk (modM) for some 

k E I(M)-M. On the other hand, if XE D(M:u), then Xu E Mn 

and hence Xu= u.O (modM). 

4.13. Remark 

In the case of a matrix ring over a comrnuative ring 

Corollary 4.12 says that the idealizer of D(M:u) consists of 

all matrices X which act on u like scalar multiplication modM: 

i.e. those X's which have u as an eigenvector modM. 

4.14 Example 

Let K be any commutative field. Consider any element 

C 
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(alj'"""' 

a .. 
JJ 

a . 
nJ 

a .. -k, ... , 
JJ 
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a. 
J n 

E I(D(O:e.)). 
J 

Then by Corollary 4.12 

(a1J., ••• , a .. , .•• , a.)' - (O, ••. ,k, ••• ,O)' = 
J J nJ 

anj")' =, (O, ••• ,O, ... ,O) '. · 

K 0 K 

K • • • K • • • K 

K 0 K 

Thus a .. =k and 
JJ 

; i.e. 

I(D(O:ej)) consists of all matrices whose j-th column is zero 

off the diagonal. For the special case n=2 and j=l we recover 

the well-known result I(D(O:e1 )) = r([g K] \ = [K 
K } 0 

4.15 Example 

Let R=Z, M=2Z, n=2 and u=(l,O)'. Then D(M:u) = [~: :] and 

I(M) = Z. Suppose that X = [; ~1 E I(D(M:u))-D(M:u). 

Then [: ~] (1,0)' = (1,0) 'k(mod2Z); i.e. (x,z)' = (k,O)' (mod2Z). 

Hence x-k E 2Z and z-0.k E 2Z. So by choosing k=l E I(M)-M, 

we see that X = [ 2a+l 
2b ~]- On the other hand, for XE D(M:u) 

we choose k=O and so in this case x=x-1.0 E 2Z and z E 2Z, in any 

case.· __ Thus I(D(2Z: (1,0)')) = {XE M2 (Z) X(l,O)' = (1,0) 'k(mod2Z) 

where k=l or o} = [~z zl , which is indeed the case. zJ 
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4.16 Corollary 

If Mis two-sided, then D(M:u) = D(M:v) if and only if 

V = UC (modM) for some C E R-M. 

Proof 

Since Mis two-sided, I(M)=R and the result follows by Propo­

sition 4.9. 

4.17 Corollary 

If all u. and v. are central in R (or even just central modM), 
1 1 ' 

then D(M:u) = D(M:v) if and only if v = uc(modM) for some 

c E I(M)-M. 

Proof 

If xis central in R, then xr=rx for every r ER. 

particular we have that mx=xm for every m EM. 

So in 

Thus x E I (M) . 

So the central elements u. and v. are therefore in I(M) and 
1 1 

hence by Proposition 4.9, the result follows. On the other 

hand, if ui and vi are central modM, we have that uix-xui EM 

for each x ER; So in particular form EM, mu.=u.m+m' EM. 
1 1 

Thus ui E I (M) • Similarly it follows that vi E I(M). There-

fore, again by Proposition 4.9, the result follows. 

4.18 Corollary 

D(M:u) = D(M:e.) if and only if u. E I(M)-M and uk EM for 
1 1 

k#i. 

□ 

□ 
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Proof 

Suppose that D(M:u) = D(M:e.). 
]. 

[
R . . . M • • • Rl . . . . . . . . . . 
R M R 

Now we have that 

By choosing XE D(M:u) suitably, 

we are now able to prove that uk EM for k#i, e.g. if Xis the 

matrix having the entry 1 in the (1,k)-position (with k#i) and 

zero's elsewhere,then uk EM. On the other hand, form EM 

let X be the matrix having the entry min the (1,i)-position 

and zero's elsewhere. So it follows that Xu = (O, ••• ,mui, .... ,O)' E z.f; 

i.e. mui EM for every m EM. Thus ui E I (M) • Moreover we 

have that ui ¢ M, otherwise it follows that u E Mn and hence 

D(M:u) = Mn(R), an obvious contradiction. Thus uk EM for k#i 

and ui E I(M)-M. For the converse we suppose that uk EM for 

k#i and let ui E I(M)-M. Put v = e. = (O, ..• ,l, ••. ,O)'. 
]. 

If 

we now choose c=ui and then interchange the roles of u and v in 

Proposition 4.9, it follows that u-vc = (u1 , .•• , ui-1.ui, ••• ,un)' = 

(u1 , ••• ,o, ... ,un)' E Mn; U=vc(modM). Since each ui, vi E I(M), 

it follows by Proposition 4.9 that D(M:v) = D(M:u); i.e. 

D(M:ei) = D(M:u), as required. □ 

4.19 Example 

Let n=2 and p=3 in Proposition 1.17. Then 

M = tf ER: const (f) E r3z 
~]} is a maximal ideal of 

L3Z 

R M2 ( Z) [x] and I(M) Jg C R: r z zl} Let = = l '" const (g) E L 3Z zJ • 

u = (u1,u2) 1 where u1 and U2 are polynomials in R such that 
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ol [
0
3 

0 J and const (u2 ) = 1] . 
0 • Then 

U1 E I(M)-M, U2 EM, i=2 and k=1#2. 

[
3Z 
3Z 

z]l 
z J· Consider 

rf1 f2 l 
any X = 

Lf 3 f ,.j ED (M:u) and suppose that 

const (f 1) = [a1 a2] [b1 b2] , const(f2 ) = 
a3 a'+ b3 b4 ' 

const(f3 ) = [Ci C2 l and const(f4) = rd1 d2] Since Xu E M2 , it 
C3 C4 j L d3 d4 • 

follows that [ai 
al 

a2 ][1 a4 o 

Z
z] 

Zl 
zJ· 

O] + [bi b2 ][3 ;] = 0 b3 b4 0 

and similarly we have that 

Thus XE D(M:e1) and so 

But since we are dealing with maximal ideals, 

equality follows. 

4.20 Corollary 

If K is a commutative field, then D(O:u) = D(O:v) in Mn(K) if 

and only if u=cv for some c#O in K. 

Proof 

Since u and v are non-zero, it follows that u,v E R=I(O). Now 

by Proposition 4. 9 D (O:u) = D (O:v) if and only if u = vc (modO) 

for some c E R-0; i.e. u.-cv.=O for some c#O; i.e. u=cv for some 
l. l. 

□ 
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4.21 Example 

Let K=Zs, v=(2,0) 1 and c=3. Then u=(l,O)' and so u=cv. Thus 

D(O:u) = (g ~:] = D(O:v). 

4.22 Remark 

When n=l, Proposition 4.9 says that for u,v E I(M), (M:u) = (M:v) 

if and only if u = vc (modM) for some c E I (M)-M. However, we 

shall see in Corollary 4.26 that the restriction on u and vis 

not necessary for the equivalence. 

In the next three results we adopt the following notation. 

Let S be a ring, R = Mn(S), N a maximal left ideal of Sand 

w = (wl'" •• ,wn)' E sn-Nn. Let M' = D(N:w) in Rand let 

X = [xij] and Y be in R. In I 5 (N) and IR (M') it is understood 

that the subscript indicates the ring in which the idealizer 

is being computed. 

4.23 Proposition 

If eaah wi E I 8 (N) and eaah xij E I
8

(N) and (M':X) = (M' :Y), 

then X = YC (modM') for some C E IR (M') -M' . 

Proof 

By 2. 20. 3 (M' : X) = D (N: Xw) and so by hypothesis D (N:Xw) = D(N:Yw). 

The hypotheses also gaurantee that the entries of Xw are in 

I
5

(N). Thus by Proposition 4.7 the entries of Yw are in I 8 (N). 

Hence we can invoke Proposition 4.9 to find k E I 5 (N)-N such that 

Xw = Ywk (modN) •..•• 4. 23. 1 

http://etd.uwc.ac.za



66 

Now since r5 (N}/N is a division ring, it follows that for each 

wi ¢ N there exist y E r
8

(N) and ni EN such that yiwi = l+ni. 

For each i=l, ••• ,n we define ci as follows. 

= { 0 Ci 
w.ky. 

J. J. 

if w. E N, 
J. 

Let C be the diagonal matrix C = diag(c1 , ... ,cn). 

Cw-wk = [Il ... Ll (w1, ••• ,wn)' - (wl' ••• ,wn) 'k 

Then 

= (c1w1 , ••• ,cnwn)' - (w1k1 , .•. ,wnk)' 

= (c1w1-w1k, ••• ,cnwn-wnk)' • • • • • 4. 23. 2 

Now each entry in 4.23.2 is in N, for if w. E N,then c.=O and 
J. . J. 

hence c.w.-w.k = -w.k E N since k E r
8

(N). On the other hand, 
J. J. J. J. 

if wi ~ N, then ciwi = wikyiwi = w1k(l+ni) = Wik + wikn1 . Thus 

ciwi - wik = wikn1 EN, since N is a left ideal. 

means that 

But then it 

Cw - wk E Nn • • • • • 4. 23. 3 

i • e • Cw = wk (modN) • Hence YCw - Ywk = Y(Cw-wk) E Nn. But by 

4.23.1 above Xw-Ywk € Nn and so by combining these results it 

follows that Xw-YCw = (Xw-Ywk) - (YCw-Ywk) E Nn; i.e. 

Xw = YCw (modN) • Now (X-YC)w E Nn; i.e. X-YC E D(N:w) = M'. 

Thus X = YC (modM'). 

proceed as follows. 

It remains to show that CE IR(M')-M'. We 

Let Z EM' = D(N:w). Then zcw-Zwk = 

z (Cw-wk) E Nn, because Cw= wk (modN) ; i.e. ZCw = Zwk (modN) • But 

Zwk E Nn, because Zw E Nn and k E r
8

(N). Thus 

ZGw-Zwk+Zwk E Nn; i.e. ZCw E Nn and so ZC E D(N:w) = M'. Thus 

C E IR (MI). Finally we have by hypothesis that some wi f. N 
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and so for them we have that wik ¢ N, since k E I
8

(N). Thus 

But then it means that C ¢ M'. For if CE M', then 

Cw E Nn and so together with 4.23.3 it follows that 

wk= Cw-(Cw-wk) E Nn, which is an obvious contradiction. 

4.24 Example 

X = 
[0

1 
Let S=Z, R=M2 (S), N=3Z, w= (1,1) ', 

Then M' = D ( 3 z: ( 1, 1) ' ) = { [ ~ ~] E R : a+b = O (mod3) and 

c+d = O (mod3) } • Let [~ ~] E (M':X). Then[~ 

:~]EM'; i.e. a-b=O(mod3) and c-d=O(mod3). Thus 

(M' :X) = {[ca 
~] E R : a= b (mod3) and c = d (mod3) }• Let 

~] E (M 1 : Y) • Then [~ 
31 _ [4a-b 
oJ - 4c-d 

7a-b=O(mod3) and 7c-d=O(mod3). But -6a=O(mod3) and 

3a]EM'; 
3c 

□ 

-6c = O (mod3) and hence by adding the respective congruences we get 

a = b (mod3) and c = d (mod3) • Thus [ ~ ~] E (M':X) and hence 

(MI : X) = (M':Y). So all the hypotheses of Proposition 4.23 hold. 

We next assert that IR (M') = {[~ ~] E R : x+y=z+w(mod3)}. 

Let [; !] E IR (MI) and let [~ ~] E MI. Then 

[~ ~][; y] = [ax+bz ay+bwl E ·M'. Thus a(x+y)+b(z+w) = 
w cx+dz cy+dwJ 

(ax+bz) + (ay+bw) = O (mod3) and similarly c (x+y) +d ( z+w) = O (mod3) • 
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Since the above congruences hold for all [~ bl EM' it dJ ' 
follows that they indeed hold for all a ,b, c ,d E Z subject to 

the conditions a+b = O (mod3) and c+d = O (mod3); i.e. 3 I a+b and 

3lc+d. Let A = { ( a , b) E z 2 
: 3 I a+ b }. Then 

IR (M') = {[ ! ! ] E R : 3 I a (x+y) +b (z+w) and 3 I c (x+y) +d (z+w) , where 

(a,b), (c,d) EA} = {[: ~]ER: 3ja(x+y)+b(z+w),where 

~]ER: 3lc(x+y)+d(z+w), where (c,d) EA}= 

~] E R : x+y = z +w (mod3)} , 

where* follows from Proposition 1.18 with p=3. 

assertion is proved. 

Thus our 

Now let C = [~ -3] -4 . Then CE IR(M'), since 1-3-(8-4) = -6 

is divisible by 3. But C ¢ M', because 3 does not divide (1-3). 

Thus C E IR (MI) -M. Finally we see that X-YC = [~ -~] -

[ ·4 gJ[~ -3] [~ -~] _ [28 -2i] = [-2r 24] EM' = -1 -4 -1 -4 ' 

because -27+24 = -3 and 1-4 = -3, which are both divisible by 

4.25 Corollary 

If N is a two-sided ideat of S, then (M' :X) = (M':Y) if and 

onty if X=YC(modM') for some CE I(M')-M'. 

3. 
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Proof 

Let N be a two-sided ideal of Sand suppose that (M' :X) = (M':Y). 

Then I 5 (N) =Sand so all the hypotheses of Proposition 4.23 are 

satisfied. Thus X = YC (modM' ) for som C E IR (M' ) -M' . For the 

converse we suppose that X = YC (modM' ) for some C E IR (M') -M' , 

where M' = D(N:w) with w E sn-Nn. Then X = YC (mod (D (N :w))) and 

so (X-YC)w E Nn; i.e. Xw = YCw+u for some u E Nn. Let 

z E ( M ' : Y) = ( D ( N : Yw) • Our aim is to show that Z E (M':X). 

Now we have that ZXw = Z(YCw+u) = Z(YC)w+zu. Since z ER and 

since N is an ideal of s, it follows that Zu E Nn. It remains 

to show that Z(YC)w E Nn. Now since Z E (M':Y) by assumption, 

we have that ZYw E Nn and so ZY E D (N:w) = M.'. However C E IR (M') 

&nd hence we have that (ZY)C € M' = D(N:w); i.e. (ZY)Cw E Nn; 

i.e. Z(YC)w E Nn, which is what we intended to prove. Hence 

ZXw E Nn and so Z E D(N:Xw) = (M':X). Thus (M':Y) C (M':X). 

But since these ideals are both maximal, equality follows. □ 

As was remarked in 4.22 we shall now see that for the case n=l 

in Proposition 4.9 we may dispense with the idealizer restric­

tions on u and v, namely that u and v be in I(M), in order for 

the equivalence to hold. 

4.26 Corollary 

If Risa matrix ring over a commutative (or ZocaZ or Zeft 

quasi-duo) ring, then in R, (M:u) = (M:v) if and onZy if 

V = UC (modM) for some C € I (M) -M. 
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Proof 

If R = Mn(S), where Sis a commutative (or local or left 

quasi-duo) ring, then every left ideal in Sis two-sided. 

Let M be a maximal ideal of R. Then by Proposition 2.7 

M = D(N:w), where N is an ideal of sand w E sn-Nn. If we 

now let M'=M, X=u and Y=v in Corollary 4.25, then it follows 

that (M: u) = (M:v) if and only if u = vc (modM) for some 

c E I(M)-M in M1(R) = R. □ 

§9 A COUNTING PRINCIPLE 

In this section we make an attempt to count the number of 

maximal left ideals of Mn(R), where Risa commutative ring. 

We first consider the special case where n=2 and Risa commu­

tative field. 

4.27 Proposition 

If K is a aommutative field, then 

4.27.1 Max(M2 (K)) = {D(O:u): u=(0,1)' or u=(l,c)', c EK}; 

4.27 .2 card(Max(M2 (K))) = card(K)+l. 

Proof 

4.27.1 By Proposition 2.7 the maximal ideals of M2 (K) are of 

the form D(O: (O,c) '), D(O: (c,O) ') and D(O: (c,d) ') where c,d#O. 

But D(O: (O,c) ') = D(O: (0,1) '), for if X = (; ~] E D(O: (O,c) '), 
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then [: ~] ( 0, c) ' = ( 0, 0) ' ; i.e. (ye, WC) ' = ( 0, 0) ' ; i • e. 

ye= we= O. Now since c#O, it follows that y=w=O; i.e. 

~] € D(0:(0,1)'). Thus D(O: (O,c) ') c D(O: (O,l) ') and 

since we are dealing with maximal ideals, equality follows. 

As above, it also follows that D(O: (c,O) ') = D(O: (1,0) '). On 

the other hand, D(O: (c,d) ') = D(O: (1,c- 1 d) '), for if 

~] E D(O: (c,d) '), then [: Thus 

xc+yd=O and zc+wd=O. Since K is a commutative field and c#O, 

it follows that x+yc- 1 d=O and z+wc- 1 d=O; i.e. [: 

(O,O)' or [: ~] E D (0: (1,c- 1 d) '). Hence 

D(O: (c,d) ') c D(O: (1,c- 1 d)' and since we are dealing with maximal 

ideals, equality follows. Hence the maximal ideals of M2 (K) 

are D(O: (0,1)'), D(O: (1,0) ') and D(O: (1,c) '), where c EK and 

c#O. Thus Max (M2 (K)) = {D (O:u) : u= (1,0) I or u= (1,c), C E K}. 

4.27.2 The map f: Max(M2 (K))-+ KU {a} defined by f(D(O:l)')=a 

and f(D(0:(1,c)'))=c, is a bijection. f is well-defined, for 

if D(O: (1,c) ') = D(O: (1,d)'), then by Corollary 4.20 

(1,c)' = k(l,d) ', for some k#O in K; i.e. (1,c)' = (k,kd) '. 

Thus k=l and so c=kd=d. Hence f (D (0: (1,c) ')) = c = d = 

f(D(O: (1,d) ')). Also D(O: (0,1) ') is mapped onto the unique 

element a and so we have that f is well-defined. f is one-to­

one, since D(O: (0,1)') is mapped onto a and if f(D(O: (1,c) ')) = 

f(D(O: (1,d) ')), then c=d. Thus D(O: (1,c) ') = D(O: (1,d) '). 

f is onto, since a is the image of D(O: (0,1) ') under f and given 
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any c EK, it follows that M = D(O: (1,c) ') is maximal left 
. C 

ideal of M2 (K) • Soc is the image of Mc under f. Thus f 

is a bijection and so card(Max(M2 (K))) = card(K)+l. 

4.28 Remark 

By the preceding result we see that the maximal ideals of 

M2 (K) are indexed by (O,l)' and (1,c)' for c EK. Similarly 

for n=3, etc. the maximal left ideals of M3 (K), etc. are in­

dexed by (O,O,l)', (O,l,a)' and (l,b,c)' for a,b,c EK. If 

we let q = card(K), then for n=2,3, etc. it follows that the 

maximal left ideals of M2 (K), M3 (K), etc. are respectively 

n-1 
So in general M (K) has l qi maximal_ 

n i=O 

2 i 
l q, etc. 

i=O 

left ideals. 

4.29 Example 

Let K=Z 3 • Then the maximal left ideals of M2 (Z3) are 

D(0:(0,1)') = [ZJ gJ D(O:(l,O)') = [g ZJ] 
Z3 

, Z I 3 . 

D(0:(1,1)') = {[~ 
Yl - - - z+w=o} and E M2 ( Z3) . x+y=O and wJ . 

D(0:(1,2)') = {[~ i] - -- - and z+2w=o}. Thus E M2 ( Z3 ) . x+2y=~ . 

card(M2 (Z 3 )) = 4 = 3+1 = card(Z 3 )+l. 

Recalling that for a commuatative ring R, qM denotes card(R/M) 

for ME Max(R), we now have the following result. 

□ 
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4.30 Proposition 

Let R be a commutative ring. 
n-1 i 

Then M (R) has IM .I qM 
n i=O 

maximal left ideals, where the outside sum is taken over 

M E Max (R). 

Proof 

If Mand N are distirto.t · maximal ideals of R, then since they 

are two-sided, we see by Corollary 3.22 that the maximal ideals 

of Mn(R) lying over Mare all distinct from those lying over N. 

For M fixed, the map f: Mn(R) Mn(R/M) defined by 

sets up a one-to-one 

correspondence between those maximal left ideals of Mn(R) lying 

over Mand the maximal left ideals of Mn(R/M). This can be 

seen as follows. Let f: D(M:u) + D(M/M: (l+Mn). Then f 

is well-defined, for if D(M:u) = D(M:v), then since R is commu­

tative, M is two-sided and so by Corollary 4 .16 v = uc (modM) for 

some c E R-M. 

that vi= u.c+m. 
l. 

Thus for each i=l, ••• ,n there exists m EM such 

From this we assert that D(M/M: u+Mn) = 

D (M/M : v+Mn) , for if X = E D(M/M: u+Mn), then 
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aln+Ml 
: Hu1+M) (c+M) , ••. , (un +M) (c+M) ) ' = 

a +M nn 

(c+M) € (c+M) (M/M, • •• , M/M) ', 

since X € D(M/M: u+Mn). However, since (c+M) (m+M) = cm+M = M, 

it follows that (c+M) (M/M, ••• ,M/M) ' = (M/M, ••• ,M/M) ' = (M/M) n 

and hence XE D(M/M: v+Mn). 

and since we are dealing with maximal ideals, equality follows 

and the assertion is proved. Thus f(D(M:u)) = f(D(M:v)). 

f is one-to-one, for if f(D(M:u)) = f(D(M:v)), then D(M/M 

By Corollary 4.20 u+Mn = (c+M) (v+Mn) for some 

c ¢ M; i.e. (u1+M, ••• ,un+M): = (c+M)(v 1+M, ••• ,vn+M)' = 

((c+M)(v1+M), ••• ,(c+M)(vn+M))' = (cv1+M, ••. ,cvn+M)'. Thus 

for each 

i=l, ••• ,n; i.e. U 0 =CV(modM), where CE R-M. 

Corollary 4.16 D(M:u) = D(M:v), as required. 

Hence by 

Finally we see 
• 

that f is onto, for given any maximal ideal D(M/M: u+Mn) of 

Mn(R/M), then u+Mn # Mn. Thus u ¢ Mn and so D(M:u) is the 

required maximal ideal of Mn(R) which is mapped onto 

fl(M/M: u+Mn). In view of the above bijection and since 
n-1 i 

Mn (R/M) has l qM maximal left ideals by Remark 4 .. 28",. it ·.follows 
i=O 

that there is the same amount of maximal left ideals of M (R) . n 

lying over M. 

left ideals. 

n-1 . 
Thus Mn(R) has exactly IM .r q~ maximal 

i=O 
C 
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4.31 Corollary 

4.31.1 The sum above is infinite unless R is semi-loaal and 

eaah Pesidual field is finite. 

4.31.2 

has 1 
pfm 

In paPtiauZaP, if mis a positive integeP, then M (Z ) 
n-1 . n m 
l p

1 
= L(pn-1)/(p-1) maximal left ideals, whePe p 

i=O pfm 

is a pPime numbeP. 

Proof 

4.31.1 If the sum is infinite we are done. 

local, let M1 , ... ,Mk be its maximal ideals. 

If R is semi­

Then R/M. is a 
1 

field for each i=l, ••• ,k. By assumption card(R/Mi) = qM. is 
1 

finite. 
k 

s = l 

Hence 
n-1 

by Proposition 4.30 above Mn(R) has 

l 
i=l j=O 

qj maximal left ideals, which is obviously a 
Mi 

finite number. 

4.31.2 Zm has one maximal ideal for each 

So the total number of maximal ideals are 

prime p dividing m. 
n-1 

I 1 Pi= 
pfm i=O 

r
. n-1 (l+p+p2 + ••• + p ) = 

pm 
L (pn-1)/(p-l). 

pfm 

4.32 Examples 

4.32.1 Let R = z s and let n= 2 • Then the maximal ideals of 

Rare M = 2Z6 and N = 3Z6. 

Thus qM = 2 and qN = 3, which are the prime divisors of 6. 

1 i 1 i 
Also I qM = 1+2 = 3 and 1 qN = 1+3 = 4 and so according 

i=O i=O 

□ 
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1 
to Proposition 4.30 M2 (ZG) should have I I 3+4=7 

MEMax(Z 6) i=O 

maximal left ideals. Moreover, if we calculate the maximal 

ideals by using 

we get }: 

the formula in 4.31.2 with n=2, m=6 and 
1 
I Pi= (2 2 -1)/(2-1>. + <3 2 -1)/(3-1) = 

i=O 

p=2 and 3, 

3+4=7, 
p=2,3l6 

which agrees with the number obtained above. Indeed the maximal 

left ideals of M2 (Z5) are 

D(2Z6 . (1,1)') = {[~ ~] E M2 ( Z 6) a+b, c+d E 2z6}; . 

D(2Z6 (1,Q) I) = [~z6 Z 6] • D(2Z6 (0,1)') = [z6 ~z6 ]· 2Z5 Z5 , Z5 2Z6 ' 

D(3Z6 (1,1)') = {fa 
le 

61 
a J E M2 ( Z 6) : a+b, c+a E 3Z5}; 

D(3Z6 (1,Q) I) = f3Z5 Z5 ]· D(3Z6 (0,1)') = fz6 ~Z6] and 
l3Z6 Zs ' LZs 3Z5 

D(3Z6 (2,1)') = {fa Le ~] E M2 (Z 6) : a+2b, c+2d E 3z6}• 

4.32.2 We observe that we can also apply the formula in 4.31.2 
1 

3i = to Example 4.29 to get the 
3f3 

I 1+3 = 4 maximal left 
i=O 

ideals of M2(Z 3 ). 
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CHAPTER 5 • 

CONJUGATE IDEALS 

Our main objective in this chapter is to investigate how the 

property of conjugacy is propagated to matrix rings; i.e. if 

Mis conjugate to Nin R, does it imply that D(M:u) is conju-

gate to D(N:v) in Mn(R)? We also study the seemingly easier 

question, namely for a given maximal ideal M of R,are all the 

D(M:u) conjugate to one another in Mn(R)? 

We recall the following well-known result. 

5.1 Proposition 

If p is a unit of R, then the map i . R + R defined by p . 

ip . r + prp- 1 is an automorphism which is called an inner . 
automorphism. 

In view of the above result we now also have the following 

easily proved result. 

5.2 Proposition 

If pis a unit of ~ and if Bis a left ideal of R, then 

ip (B) = pBp- 1 = {pbp- 1 
: b EB} is a left ideal of R. 

5.3 Definition 

We say that two left ideals A and Bare conjugate if 

A = i (B) = pBp-· 1 for some unit p of R and we then write A ~ B. p 

a 

C 
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S.4 Proposition 

The relation~ defined above is an equivalence relation on the 

collection of left ideals of R. 

Proof 

~ is reflexive since A= lAl- 1 for any left ideal A of R. ~ is 

symmetric, for if A~ B, then A= pBp-1 for some unit p of R. 

But then we have that B = p- 1 Ap = p- 1 A(p- 1 )-
1

; i.e. B ~ A, 

because p- 1 is also a unit of R. ~ is transitive, for if A~ B 

and B ~ C, then there are units p and q such that A= pBp- 1 and 

B = qCq- 1
• Thus A= p(qCq- 1 )p- 1 = pqCq- 1 p- 1 = pqC(pq)- 1

; i.e. 

A~ c, since the product. of two units is again a unit. This 

proves that~ defines indeed an equivalence relation on the 

collection of left ideals of R. 

5.5 Remarks 

5.5.1 Since we are dealing with left ideals, we can also say 

that A~ B if and only if A= Bp for some unit p of R. When-

ever it is convenient, we shall use this definition in stead. 

5.5.2 If A and Bare two-sided ideals of R, then A~ B if and 

only if A= B; i.e. when dealing with two-sided ideals, con-

jugacy means equality. 

unit of R. 

5.6 Proposition 

This holds since Bp = B, where pis a 

Let A and B be left ideals of R such that A~ B, say A= Bp for 

some unit p of R. Then A= B if and only if p,p- 1 E I(A). 

□ 
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Proof 

Since A is a two-sided ideal of I(A) and in view of Remark 5.5n2 

above, if suffices to show that Bis a two-sided ideal of I(A). 

Moreover, since Bis a left ideal by hypothesis, we need only 

to show that it is also a right ideal of I(A). Now since 

A= Bp for some unit p of R, we also have that B = Ap- 1
• So 

let b EB and x E I(A). Then there exists a EA such that 

a EA. Thus Bis a right ideal of I(A) and the result follows. □ 

5.7 Example 

Consider the left ideal A= [
2Z 
2Z g] of R = M2 ( Z) • Then 

I(A) = [~ ~]. 

5.7.1 Let p = [21 Then pis a unit of R. Indeed 

-1 = r 1 ~]- Let B = Ap. Then B ~ A. Moreover, B = A, p 
L-2 

for if x E B, then x [2a o]r1 ~] = [2a gJ EA = o L2 2b 2b 

and SOB c A. On the other hand, if x E A, then 

X = [
2a 
2b 

0 1 E Ap = B,· 1· e Ac B 1 J • • • 

Thus A= B. 

5.7.2 Let p = [01 Then pis a unit of Rand 

-2] 1 • Let B = Ap. Then again we have that B ~ A. 

Consider any x EB. Then x = [;~ 
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i.e. B = [
2Z 
2Z 

4Z] 4Z 1- A. 

We observe therefore that in Example 5.7.1 both p and p- 1 are 

in I(A) and so the equality of A and B follows. However, in 

Example 5.7.2 neither p nor p- 1 lies in I(A) and hence A-:/-B. 

5.8 Proposition 

If A and Bare conjugate left ideals of R suoh that one of 

them is maximal, then so is the other. 

Proof 

Let A~ B, say A= Bp for some unit p of Rand suppose that A 

is maximal. Let N be any left ideal of R such that Bi N. 

Then there exists an element x in N such that x ¢ B. Thus 

xp ¢ A.. But xp E Np. So A~ Np. But since A is maximal, 

it follows that Np= R. So there exists n EN such that 

np = 1 and hence p- 1 = n EN. 

Therefore Bis maximal as well. 

5.9 Example 

Let R = M2 (Z) , M = D(3Z:(1,1)') 

3jc+d} and p = [~ -2] 1 • Then 

sition 2.7 M is a maximal ideal 

Then X = [~ 

Thus 1 = pp- 1 EN and so N = R. 

= {[~ ~] E R . 3ja+b and . 

p is a unit of R and by Propo-

of R. Let X E Mp. 

-2a+b] where [ac 
-2c+d ' ~] E M; 

i.e. 3ja+b and 3lc+d. Thus b = 3k-a and d = 3k'-c for some 

I;] 

k,k' E Z. However, -2a+b = -2a+3k-a = -3a+3k E 3Z and similarly 
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-2c+d E 3Z. So any element of Mp is of the form 

[ ac 3a'] [z 
3c' E Z 

3Z] JZ = D(3Z: (0,1) ') = N, say. Thus Mp C N. 

However, by Proposition 5.8 Mp is a maximal ideal of Rand 

since N is obviously also a maximal ideal of R, it follows 

that N = Mp. 

5.10 Proposition 

If M and N are aonjugate maximal ideals of R, then R/M and R/N are 

isomorphia (simple) left R-modules. 

Proof 

Since Mand N are maximal, R/M and R/N are indeed simple left 

R-modules. Suppose next that M = Np for some unit p of R. 

Define a map f: R/M + R/N by the rule f: r+Np + rp- 1 +N. 

Then f is well-defined, for if r+Np = r'+Np, then there exists 

n E N··:such that r = r'+np. Thus rp- 1 = r•p- 1 +n and so 

rp- 1 +N = r•p- 1 +N. f is an R-homomorphism. Let r,r' ER. 

Thenf.((r+Np)+(r'+Np)) = f(r+r'+Np) = (r+r')p- 1 +N = rp- 1 +r•p- 1 +N = 

Also f(r(r'+Np)) = 

f(rr'+Np) = (rr')p- 1 +N = r(r•p- 1 )+N = r(r•p- 1 +N) = rf(r'+Np). 

f is one-to-one, for if f(r+Np) = f(r'+Np), then rp- 1 +N = 

r•p- 1 +N. So there exists n EN such that rp- 1 = r'p~ 1 +n. 

Thus by postmultiplying by p we get than r = r'+np and hence 

r+Np = r'+Np. f is onto, for if r+N E R/N, then the element 

rp+Np is mapped by f onto it. Thus f is the required R-

isomorphism. a 

http://etd.uwc.ac.za



82 

5.11 Example 

For any field K, D(O:ei) 
[
~ ... ? 

= • • . . 
K ••• 0 

!] is a maximal ideal 

of Mn (K). Let P be the invertible nxn elementary matrix 

interchanging the i-th and the j-th columns; i.e. 

the j-th column respectively. We assert that D(O:ei) = 

By Proposition 5.8 D(O:ej)P is also a maximal 

ideal and hence it suffices to prove one inclusion only. So 

let Y E D(O:ej)P. Then Y =XP - for some X E D(O:ej). Now 

XP = X [e1 ••• ej ••• ei ••. en] = [Xe1 .•• Xej ..•• Xei •••• Xen] = 
[ 1 j i n · 
X .•. x ... X •.. X ], where the s~perscripts denote the columns 

of x. But since XE D(O:e.), it means that the j-th column 
J 

Xj of X consists of zero entries only; i.e. Y = XP = 

[ 1 i n 1 X ••• 0 ••• X ••• X E D (0: e. ) . 
1 

assertion follows. 

5.12 Definition 

If Mis a maximal ideal of R such that all D(M:u) are conjugate 

to one another in M (R), then Mis called a c.p. ideal. n 

5.13 Proposition 

If Mand N are conjugate maximal left ideals of R with 

N = pMp- 1 for a unit p of Rand if u E Rn-Nn, then 

D(N:u) = D(M:up). 
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Proof 

up¢ Mn, for if not, then uip EM for each i=l, .•• ,n. Thus 

-1 . 
p(uip)p EN; i.e. pui E N. But since pis a unit and N is 

a left ideal of R, it follows that u. = p- 1pu. EN for each 
1 1 

i=l, •.• ,n; i.e. u E Nn, which is a contradiction. By Propo-

sition 2.1 D(M:up) and D(N:u) are proper ideals of Mn(R) and 

by Proposition 2.7 they are maximal. Therefore it suffices 

to prove that D(N:u) c D(M:up). So let XE D(N:u). Then 

for each i=l, ••• ,n it follows that Xiu EN. 

for some m EM. Hence Xiup = pm EM for each i=l, •.• ,n 

Therefore XE D(M:up) and required inclusion follows. 

D(N:u) = D(M:up). 

5.14 Example 

Let R = Z9 and let M = 3Z 9 . Then the units of Rare 

Thus 

C 

1,2,4,5,7 and 8. If u = (1,2,8)' and p = 2, then up= (2,4,7) '. 

Also, since R is commutative N =Np= M. Let X E D(N :' (1,2,8) '), 

say X = Then Xu E N3 = M3 and so the 

- --- --following conditions hold; ai + 2a2 + 8a 3 E M, b1 +2b 2 +8b 3 € M, 

Thus M3; i.e. XE D(M:(2,4,7)'). 

Therefore D(N:(1,2,8)') = D(M:(2,4,7)') = D(M:(1,2,8)'2). 
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5.15 Proposition 

If PE GLn(R), then PD(M:u)P- 1 = D(M:Pu). 

Proof 

As before, it suffices to prove one inclusion only. Let 

X E PD (M:u)P- 1• Then X = pyp- 1 for some YE D(M:u). Now 

XP = PY and so X(Pu) = (XP)u = (PY)u = P(Yn) E Mn, since 

Therefore XE D(M:P.u) and hence PD(M:u)P- 1 cD(M:Pu). 

Therefore PD(M:u)P- 1 = D(M:Pu), as required. C 

5.16 Example 

Let R = M2 ( Z) , M [2Z ~] and let = 2Z 

p = [[~ ~] [ g 
gJJ E GL 2 (R) • Then P- 1 = P. 

(g gJ f-1 -~] L o 

Let u = ([; o] r -1 
o , L o gJ) I E R2-M2 • Then 

[; ol [ g olw 1 gJJ 
[; 

gJ l OJ o L o 
Pu = = 

(g ol f-1 o l [-1 ol [; ol 
oJ L o -lJ 0 oJ oJ 

Consider any X E D(M:Pu). Then XPu E M2 , i.e. 

[[:: 
a2] [b1 b2]wl gJ] [[:: gJ + [b1 

gi l ai. b3 bi.J 0 = b3 = 
[Cl C2] [d1 d2] [ 1 gJ [Cl gJ + [d1 gJ C3 Ci+ d3 di. O C3 d3 

[[a,+b1 

g l] a3+b3 E M2 . This reduces to a. +b. = O (mod2) and 
[C1+d1 gJ 

J. J. 

C3+C3 
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ci +di = 0 (mod2) , for i=l,3. Thus 

D(M:Pu) = {[[:: 
a2] [b1 

b, ll a .. b3 bi+ J E M2(R) . a. +b. = 0 (m:,d2-), ·c1+d;•e·o (nod.2) . 
C2] [di d2] 

].]. . ']. 

[Cl 
Cs Ca+ da di+ 

.fDr 1=1, 3 }· On the other hand, if XE D(M:u), then 

[[:: 
a2 J [b1 b, l)r 1 01 l [[a1-b1 gJ] E Xu = a .. b3 bi+ -l 0 i] •. a3-b3 = M2; 

[C1 C2] , [ d1 d2] r-1 [c1-C1 gJ C3 Ca+ C3 Ca+ · L O C3-d3 

i.e. ai = bi (mod2) , ci = di (mod2) for i=l,3. Hence 

{[[:: 
a2] [b1 ~: l l E M, (R) D(M:u) = a .. b3 a . = b . (m::x:! ~), Ci= d. (nod 2 ) 

[d1 d2] 
]. ]. .. ]. 

[Cl C2] 
C3 Ca+ d3 d .. 

for i=l, 3} Let us finally consider any YE PD(M:u)P- 1 • Then 

y = pxp-1 for some XE D(M:u). Thus 

[[; 
01 ro olwa, a2 1 [b1 ~:lj[[; 

ol ro 

gJ l y = lJ Lo OJ la3 a1+ J b3 1J Lo 

[g gJ [~1 -~] [~~ C2 1 [d1 d2] [O gJ r-1 -~l Ci+ J d3 di+ O Lo 

~] 
ol 
oJ 

OT [[ a1 a,] 0 J "" a3 .·; alt 

0] ·. r~C1 -C2] 
-1 ·. -c3 -Ci+ 

subject to a. = b. (mod2) and c. = d. (mod2) for i=l,3; i.e. 
]. ]. ]. ]. 

I 

r-b1 -b, l] -b3 -bi+ 

[d d2J 
. d: d4 

a.-b. =0(mod2) and c.-d. =0(mod2) for i=l,3; i.e. a.+(-b.) =0(mod2) 
]. ]. ]. ]. ]. ]. 

and -(ci+(-d1 )) =0(mod2) for i=l,3. So a 1+(-bi) =0(mod2) and 

This means that YE D(M:Pu), and 

so it follows that D(M:Pu) = PD(M:u)P- 1• 

I 
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5.17 Remark 

We note that showing that Misc.pis equivalent to show that 

for any u E Rn-Mn we get D(M:u) ~ D(M:e
1
), since all D(M:u) 

should be conjugate to one another and obviously e
1 

E Rn-Mn. 

Therefore since PD(M:u)P- 1 = D(M:Pu) by Proposition 5.15, we 

therefore have to show that D(M:e1 ) = PD(M:u)P- 1 = D(M:Pu) and 

so by Corollary 4.18 it would therefore be sufficient to show 

the existence of PE GLn(R) such that P1u E I(M)-M and Piu EM 

for i~l; i.e. for i) 2; i.e. to find an invertible matrix 

whose first row "pushes" u into the idealizer of M (but not 

into M) and whose other rows "push" u into M. On the other 

hand, to show conjugacy by writing D(M:u) = PD(M:e1 )P- 1 = 

D(M:Pe1 ), it would be sufficient to show that any u is congruent 

modM to a column of an invertible matrix, because Pe1 = P1 , 

the first column of P. 

5.18 Proposition 

If v = Puc (modM) for some P € GLn (R) and 

c E I(M)-M, then D(M:u) ~ D(M:v). 

Proof 

By Proposition 5.15 PD(M:u)P- 1 = D(M:Pu) and by Proposition 4.2 

D(M:Pu) = D(M:v). 

D(M:u) ~ D(M:v). 

5.19 ___ Remark 

Therefore D(M:v) = PD(M:u)P- 1 and hence 

In particular, if vis a permutation of the entries of u in 

0 
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Proposition 5.18, then v = Pu, with Pa product of row-inter­

changing matrices and hence D(M:v) = D(M:Pu) = PD(M:u)P- 1
; i.e. 

D(M:v) ~ D(M:u). 

5.20 Proposition 

5.20.l If some ui E I(M)-M, or 

5.20.2 if some ui is aongruent modM to unit of R, 

then D(M:u) ~ D(M:ei). 

Proof 

By Remark 5.19 we may let i=l in either case. 

5.20.l Since Mis a maximal ideal of Rand since u1 ¢ M, there 

exist elements b ER and m EllM such th~t bu
1

+m=l. 'l'hen for 

u.-u.m-u. = -u.m EM. 
J. J. J. J. 

Let X be the nxn matrix having 

(O,u2b,u3 b, ... ,unb)' as its first column and zero's elsewhere 

and let I denote the nxn identity matrix. Then 

0 0 0 0 0 0 
U2b 0 0 U2b 0 0 

x2 U3 b 0 0 U3b 0 0 O and P = X + I is = = . 
unb 0 0 0 0 0 

invertible, since P(I-X) = (X+I) (I-X) = x-x2+1-x = 

1 0 0 0 0 0 0 0 
U2b 1 0 0 u 2b 0 0 0 

X+I-X U3b 0 1 0 U3 b 0 0 0 I; = = 

u b 0 0 1 unn 0 0 0 
n 

i.e. p-l = I-X. Furthermore, Pe
1 

u 1 = u (modM) , because Pe1 u 1-u = 
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0 0 •.• 0 
1 0 O 
0 1 0 

= (l,u2b,u3 b, ••• ,unb) 'u1- (u1 ,u2 ,u3 , ••• ,un)' = 

(u1,u2bu1,u3bu1, ••• ,unbu1)' - (u1,u2,u3, ••. ,un)' = 

(0, (u2b) u1 -u2, (u3b) u1-u3, •.• , (unb) u1-un)' E Mn, since 

(u.b)u1-u, EM for each i=2,3, .•• ,n. 
J. J. 

Hence Pe1 u1 = u (modM). 

Thus, since u1·E I(M)-M we have from Proposition 5.18 that 

5.20.2 Let u1 be a unit of Rand let P be the nxn matrix 

having u as its first column, the other diagonal elements unity 

and zero's· elsewhere. Then p E GLn(R), because 

I[-• 0 

~I 
0 

rnr1 
[u, 0 ••• 0 U1 . . . U1 

U2 1 ••• O -u2 u; 1 1 . . . U2 1 
= I. Now Pe1 = . . . . . . . . . . . . . . 

_Un 1 -1 0 Un 0 o ... -unu1 ... 

(u1 ,u2, ••• ,un)' = u. Thus by Proposition 5.18 with c=l, it 

follows that D (M: u) ~ D (M: el) • 

5.21 Example 

Let R=Z and let M=SZ. Then I(M)=Z. Let u=(3,l,O)', then u1=3, 

U2 =l, U3 =0. Now (-3) 3+10=1 and so b = -3 and m = 10 E SZ. 

Also U2 bu1-u2 = 1(-3)3-1 = -10 E sz and u 3 bu1 -uJ = 0 E SZ. 

[-~ 0 gJ, H 0 ~] Let X = 0 then P = X+I = 1 and 
0 0 

= 

□ 

0 
1 
0 

Now let XE: D(SZ (3,1,0) ') and supp::>se that 
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X = Then Xu= 

E (5Z) 3
• Thus D(SZ (3,1,0)') = 

{[~: a2 a, l 1 
b2 b3 E M3 (Z) : 3a1+a2 E SZ, 3b1+b2 E SZ, 3c1+C2 E szr 

C1 C2 C3 

z [sz ~] and so Also D(SZ:e1 ) = sz z if YE PD(SZ:e1 )P- 1 , then 
sz z 

H 0 0][5a 1 a2 a,w y = 1 0 Sb1 b2 bl 3 
0 1 Sci C2 C3 0 

[Sa, . · a2 a, ][1 
-15a 1 + Sl::>1 -3a2 +b2 -3a.3+b 3 3i 
Sci - C2 C3 0 

[5a 1 +3a, a2 
-lSa1+Sb1-9a2+3b2 -3a 2 +b2 
15C1 +3C2 C2 

and hence YE D(SZ: (3,1,0)'). 

i.e. D(SZ: (3,1,0) ') ~ D(5Z:e1 ). 

5.22 Proposition 

0 ~] 1 = 
0 

0 gl = ]_I 

0 ]J 

a, l -3a3+b3 • However 
C3 

If Mand N are conjugate maximal left ideals of Rand some ui 

satisfies 5.20.l or 5.20.2 and some vj satisfies 5.20.l or 

5.20.2 (with respect to N), then D(M:u) ~ D(N:v). 
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Proof 

Say M=Np for some unit p of R. By Proposition 5.20 it suffices 

to show that D(M:e1 ) ~ D(N:e1 ), which in turn is equal to 

D(N:e1p), by Proposition 5.13. Let P = diag(p,1, ••• ,1), which 

is certainly invertible because p-i = diag(p-i,1, ••• ,l). 

Moreover,P satisfies Pe1 

0 
1 

0 

!](1,0, ... ,1• = (p,0, •.. ,01• = 

Thus by Proposition 5.13 D(N:e1 ) = 

D(M:e1p) = D(M:Pe1 ) = PD(M:e1 )P-i, by Proposition 5.15. 

D(M:e1 ) ~ D(N:e1 ), as required. 

Hence 

5.23 Example 

Let M = D(3Z: (1,1)') and N = D(3Z: (0,1') be as in Example 5.9. 

Then M~N; in fact N = M[; -i]· Let u = ([~ -i], [g gJ)' 

and v _ /f-1 ol fo o]\' Let XE D(M:u). Then Xu = - \Lo 1J ' ll 0 ) 

[I:: a2] [bi ~:]w~ -rn. [[:: -a1 +a 2
]] a1+ b3 -a3+a4 E M2 . Hence 

[Ci C2] [di d2 l [ 0 [Ci -ci+c2l 
C3 Ct+ d3 d1+J 0 C3 -C3+C4J 

3lai+(-ai+a2) = a2 • Similarly it follows that 3la 4 , 3lc2 and 

[[~ 3Z] 
M, ( Z) ] • 

3 I C4. Thus D(M:u) = 3Z On the other hand, 

[~ 3Z] M2 (Z) 3Z 

[[:: 
a2] fbi 

b, lw-1 
0 l l XE D(N:v), then Xv = . a4 Lb3 b1+J O lJ = 

fci C2] [di d2] ( O ol 
Lc3 Ct+ d3 d1+ 1 oJ 

C 
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Hence a 2 , a 4 , c 2 , c 4 E 3 Z and so 

[fz 3Zl 
M, (Z) l D(N:v) = LZ 3Zj Thus D(M:u) = D(N:v) in 

[~ 3Z] M2 ( Z) 
3Z 

M2 ( M2 ( Z ) ) and hence they are equivalent. 

5.24 Remark 

It is interesting to note that the previous example actually 

tells us more than what we expected, namely, for given maximal 

conjugate left ideals Mand N of R, it is possible that in 

Mn(R) we obtain equality of D(M:u) and D(N:v). 

5.25 Proposition 

Every two-sided maximal left ideal is a.p. 

Proof 

Let M be a two-sided maximal left ideal of R. The I(M) = R, 

and so for any two maximal ideals D(M:u) and D(M:v) of Mn(R) 

some l½_ ¢ M and some vi ¢ M; i.e. some ui E I (M)-M and some 

vi E I(M)-M. So by Proposition 5.22 with N = M, it follows 

that D(M:u) ~ D(M:v); i.e. Mis c.p. 

5.26 Proposition 

Let M be a maximal ideal of R. Then 

5.26.1 Mc D(M:u) if and only if eaah ui E I(M); 

a 

a 
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5.26.2 all the maximal left ideals of M (R) which contain M n 

are conjugate, even if Mis not c.p. 

Proof 

5.26.1 Suppose that Mc D(M:u). Let m EM be given. 

[

m ••• ol 
X = diag(m, •.. ,m) = b l n E D(M:u) and so Xu EM; 

Then 

i.e. 

i.e. mui EM for each i=l, •.. ,n. 

Thus each ui E I(M). 

Let m EM. 

For the converse we suppose that each 

Then, regarded as an element of Mn(R), 

[

m ••• ol 
m = i l and so mu= 

(mu1 , •.• ,mun)' E Mn, since each ui E I(M). 

and so MC D(M:u). 

Hence m E D(M:u) 

5.26.2 Let D(M:u) and D(M:v) be maximal ideals of Mn(R) such 

that MC D(M:u) and MC D(M:v). Then by 5.26.1 above each 

However, not all ui,vi EM, for otherwise it 

would mean that D(M:u) = D(M:v) = Mn(R), an obvious contradiction. 

So by 5.20.l it follows that D(M:u) ~ D(M:e.) ~ D(M:v). 
l 

D(M:u) ~ D(M:v). 

5.27 Proposition 

Thus 

If Mand N are two-sided non-conjugate (i.e. non-equal) maximal 

left ideals of R, then any proper ideals D(M:u) and D(M:v) are 

non-conjugate in_Mn(R). 

□ 
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Proof 

Suppose that the proper ideals D(M:u) and D(M:v) are conjugate 

in Mn(R). Then there exists PE GLn(R) such that D(M:u) = 

PD(N:v)P- 1 = D(N:Pv), by Proposition 5.15. However, by 

Corollary 3.26 D(M:u) contract to Mand D(N:Pv) contracts to N. 

This is a contradiction, because M # N by hypothesis. 

D(M:u) and D(N:v) are non-conjugate. 

5.28 Corollary 

Thus 

If Risa loaal Ping, then all the maximal left ideals of Mn(R) 

aPe aonjugate. 

Proof 

Since Risa local ring it has a unique maximal left ideal M, 

which is two-sided. So by Proposition 5.25 Mis c.p. and 

C 

hence all the maximal left ideals D(M:u) of Mn(R) are conjugate.a 

5.29 Corollary 

If K is a field, then all the maximal left ideals of Mn(K) ape 

aonjugate. 

Proof 

Since K is a local ring, the result follows by Corollary 5.28. c 

5. 30 E_xample 

Let K = Z3 and let R = M2 (Z 3 ). Then by Example 4.30 the 

maximal left ideals of M2 (Z3) are Ai: = [i: ~], -A2 = [~ 
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{[~ 11 E M2 (Z3) - -
o} A3 = . x+y = 0 and z+w = and wJ 

. 

A1t = {fx i] E M2 ( Z3 ) . x+2y = 0 and z+2w = o}. Now we 
Lz 

. 

have the following equivalences (In each case we prove one 

inclusion only, since the ideals under discussion are all 

maximal). 

Let XE A2 P, where p is the unit ro 
LI 

X = ro XFO !] = [~ 51 E A1 Lo y LI oJ 

Let XE A3p where pis the unit fI 
Lo 

X = [~ i] [! Il = [~ x+yl But 
IJ z+w J · 

Il. Then 
oJ 

and so A2 p c A 1 • 

Then 

since [~ i] E A3 we 

indeed have that x+y = 0 and z+w = o. Thus X = fx 
Lz 

61 
oJ 

E A1 

and hence A1 = A3p. 

A1 ~ Ai+: 

Let X E Ai+P where p is the unit [! Il 
2J· Then 

X = rx i][! Il = [~ x+21l However fx i] E A4 
Lz 2j z+~w J • Lz 

and so x+21 = 0 and z+2w = o. Therefore X = [~ §] E A1 and 

so A4p C A1. Thus A1 = Ai+P• 

Now since~ is an equivalence relation, it follows that all 

the maximal left ideals of M2 (Z 3) are conjugate. 
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The final result shows that the c.p. property propagates itself. 

5.31 Proposition 

If Mc Risa a.p. ideal and u E Rn-Mn, then D(M:u) is a a.p. 

ideal of Mn (R). 

Proof 

By Proposition 1.14 __ Mm (Mn (R)) c,,! Mmn (R). Let D(M:u) be a 

maximal ideal of Mn(R). Then, as in Proposition 2.20, we 

have that D(D(M:u):U) = D(M:Uu), where U E Mn(R)m - D(A:u)m. 

But since Mis c.p. it follows that D(M:Uu) ~ D(M:Vu), say. 

But D(M:Vu) = D(D(M:u):V) and hence D(D(M:u):U) ~ D(D(M:u):V); 

i.e. D(M:u) is c.p. D 
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z 

Q 

R[x] 

const(f) 

C 

C 

* 

~ 

(a,b)=l 

alb 

afb 

a= b(rrodn) 

a'/:. b(rrodn) 

U=V(nodM) 

u-¢ v(nodM) 

A-B 

NOTATION AND TERMINOLOGY 

the ring of integers 

the ring of integers modulo n 

the field of rational numbers 

the ring of polynomials in the indeterminate x 

the constant term of a polynomial f of R[x] 

the set of all nxn invertible matrices with 

entries from R 

is an element of 

is not an element of 

is a subset of 

is a proper subset of 

ring- or R-isomorphism 

only in Proposition 1.13 it means an equivalence rela­

tion, otherwise its meaning is "is conjugate to" 

a and bare co-prime 

b=na for some n E z 

bfna for every n E z 

nla-b 

nfa-b 

ui-vi EM for each i=l, •.. ,n 

there exists an i such that ui-vi i M 

the relative complement of Bin A, where A and B 

are sets 
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