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PREFACE

The main objective of this work is to give a detailed dis-
cussion of a paper by Stone [5]. Numerous examples are
provided in order to clarify concepts and results as far as

possible.

In Chapter 1 we supply all the basic tools which will be

needed later on.

Chapter 2 deals with a characterization of the maximal ideals
of Mn(R). Moreover, once we know the maximal ideals of the
base ring R, we can exactly‘tell the form of the maximal ideals
of Mn(R). We also provide alternative wvisualizations of D(A:u)

in the M_(R)-module R™, in R™/A™ and finally in the module M_(R).

In Chapter 3 the focus_is mainly on idealizers and contractions.
We use the concept of the idealizer to find a connection between
Mn(A) and D(A:u). We also show that a contraction of any
maximal ideal in Mn(R) is maximal in R, provided that R is left

quasi-duo.

The emphasis in Chapter 4 is on necessary and sufficient con-
ditions for the equality of maximal ideals D(M:u) and D(M:v).
It is most interesting to note importance of the role of the

idealizer in this regard.

In Chapter 5 we give discussion of how the property of conjugacy

of ideals is propagated in matrix rings.
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CHAPTER 1

PRELIMINARIES

In this chapter we supply all the necessary definitions as
well as the required results needed in this work. All the

notation and terminology will also be explained carefully.

§1 DEFINITIONS AND NOTATION

R will always denote a ring with identity and Mn(R) will
denote the ring of nxn matrices over R. As usual the ring

of integers, the ring of integers modulo n and the field of
rational numbers will be denoted by Z; Zn and Q respectively.
R[x] will denote the ring of polynomials in the indeterminate
x. The constant term of any polynomial f€R[x] will be de-

noted by const(f).

Ideal (or module) will always mean left ideal (or module).
In order to simplify notation we shall adopt the convention

M,N , M/N, etc. in stead of RM/N, etc., for left R-

R RN’
modules. It will however always be evident from the context,

to which ring R we are referring.

Max (R) will denote the collection of all maximal left ideals

of R. M and N will be generic symbols for maximal left ideals.

The elements of R” will be thought of as nx1 columns which
are normally written as the transposed of rows; i.e.

u= (u, ..., un)'. For a matrix X we shall let X, denote the



i-th row; whenever needed, X will be denoted by its entries
X547 i.e. X = [xij]' eij denotes the matrix having 1 in the
(i,j)=-position and O elsewhere. ey denotes the nxl column

with 1 in the i-th position and O elsewhere.

Normally mappings will be written on the left except in the
cases of Proposition 1.12 and 1.15. R will be considered as

a subring of Mn(R) via the natural embedding r + diag(r,...,r).

If a and b are integers, then their greatest common divisor is
denoted by (a,b). a|b will mean a divides b or b is multiple of

a.

Let C and D be arbitrary categories. Then a covariant functor
F : C > D is a category equivalence in case there is a covariant
functor G : D » C and natural isomorphisms GF o~ lC and FG lD.
A functor G with this property (also a category equivalence) is
called an inverse equivalence of F. Two categories are equiva-
lent in case there exists a category équivalence from one to the

other. In this case we write C =~ D.

1.1 Definition
Two rings R and S are Morita equivalent in case their categories

RM and M are equivalent. The equivalence is referred to as

S

a Morita equivalence.

1.2 Definition
M) is called a maximal submodule of M if for every submodule M,

of M such that My €« M, c M it follows that M; = M, or M, = M,



For M € Max(R), End(R/M) will denote the ring of all R-endomor-

phisms of R/M.

1.3 Definition
For a left ideal A of R, I(A) = {r€R: Ar < A} is called the

idealizer of A in R.
1.4 Definition
A ring which is isomorphic to an nxn matrix ring over a division

ring is referred to as a simple artinian ring.

1.5 Definition

The center C of a ring'R is defined-as the set C = {x€R : xa

for every a€R}.

1.6 Definition
A set of elements of a ring which is closed under multiplication

of its elements is called a multiplicative subset of R.

If A and B are sets, then the relative complement of B in A is

denoted by A -B. The number of elements of A is denoted by

card(A). If R is a commutative ring and M€ Max{(R) we shall let
dy stand for card(R/M). For u, veR"-M" we write usv (modM) if
and only if ui-vi§EM for each 1 = 1,...,n.

1.7 Definition
A ring R is called semi-local if it has a finite number of

maximal ideals.

ax



GLn(R) will denote the set of nxn invertible matrices with

entries from R.

The phrases for each, for all and for every will all
have the same interpretation. The symbol o will be used to

indicate the end of a proof. or well-known result.

§2 RESULTS NEEDED

The following results are well-known and their proofs can be

found in many standard text-books; e.g. [1] and [2].

1.8 Proposition

If M€ Max(R), then (R/M)n is. a-simple Mn(R)-moduZe.

1.9 Proposition
A left R-module T is simple <f and only if T=R/M for some

maximal left ideal M of 'R.

1.10 Proposition

If M ©s a maximal submodule of R and if x € R-M, then M+Rx=R.

1.11 Proposition

If M€ Max(R), then End(R/M) is8 a division ring.

1.12 Proposition
If £, g€ End(R/M), then f+g € End(R/M) and fg € End(R/M) where

addition and multiplication is defined by

(r+M) (£+g) (r+M)f + (r+M)g and

(r+M) fg ((r+M) f)g.



1.13 Proposition

Let R be a commutative ring, S a non-empty multiplicative sub-
get of R with O ¢ S and let T be the set of non-zero divisors of
R. If S s a subset of T, then we can construct fractions r/s
with denominators in S as follows. We define a relation on

the product set RXS by setting (r,s) ~ (r',s') <f and only <f

rs' = sr'. Then

1.13.1 ~ defines an equivalence relation on RXS;

1.13.2 Zf we write xr/s for the equivalence class containing (r,s)
and if we define addition and multiplication by the rules

r/s + r'/s' = (rs' + sr')/ss' and (r/s).(r'/s') = rr'/ss', then
the set S™'R of equivalence classes forms a ring, called the

ring of fractions with denominatore in S, under these operations;

1.13.3 R can be considered as a subring of S~'R. o

1.14 Proposition
For all m,n31, Mm(Mn(R)) o an(R). o
The next result is due to Fitting [3] and was also proved by

Goldie [4].

1.15 Proposition

If M€ Max(R), then I(M)/M = End(R/M).

Proof
Our aim is to define a ring isomorphism from I (M)/M onto
End (R/M) by associating an element of I(M)/M with an R-

endomorphism of R/M. This is achieved as follows. For



x+M € I(M)/M let f be defined by the rule f : x+M - Iyt where
gy P M > rx+M for any r+M € R/M. We claim that ngZEnd(R/M)
and that £ is the required ring isomorphism.

ngZEnd(R/M). Iy is well-defined, for if r+M = r'+M, then
r-r'€M. But x € I(M) and so (r-r')x€M; i.e. rx-r'x € M.

Hence rx+M=r'x+M and so (r+M)g_= (r'+M)g_. g, 1s an R-endo-
Ix X X

morphism, for if r+M, r'+M€ R/M and a € R, then ((r+M) +(xr'+M)) g =

((r+r')+M)gX = (r+xr'")x+M = (rx+r'x)+M =(rx+M) + (r'x+M)

T — -

(r+M)gx + (r +M)gx and (a(r+M))gx = (ar+M)gx = (ar)x+M
a(rx)+M = a(rx+M) = a((r+M)gX). Thus g € End (R/M), as required.
f is a ring isomorphism. f is well-defined, for suppose that
x+M = y+M where x,y€ I(M). Then x = y+m for some m€ M, Let
r€ R. Then (r+M)gx = ExX+M-=—ry+rm+M =-Try+M = (r+M)gy and
hence gy, = gy. Thus (x+M)f = e gy = (y+M)f. f is a ring
homomorphism. Let x+M, y+M€ I(M)/M and let Iy and gy be the

corresponding R-endomorphisms. Then by Proposition 1.12

gx+gy and gxgy are R-endomorphisms. Now let r+ME€ R/M. Then

(r+M)(9x+gy) = (r+M)g  + (r+M)gy = (rx+M) + (ry+M) = (rx+ry)+M =
r(x+y)+M = (r+M)gx+y and (r+M)ngy = ((r+M)gx)gy = (rx+M)gy =
(rx)y+M = r(xy)+M = (r+M)gxy. Therefore gx+gy = gx+y and gxgy =
gxy' But then it follows that ((x+M) + (y+M))f = ((x+y)+M)f =
Iey = Ix * Iy = (XHE + (y+M)f and ((x+M) (y+M) )£ = (xy+M) £ =
Iy = gxgy = (x+M)f(y+M)f. Thus we have established that f is
indeed an R-homomorphism. f is one-to-one, for if (x+M)f =

(y+M) £, then Iy = Iy Therefore x+M = (l+M)g = (l+M)gy =
y+M. Finally we see that f is onto, for given any g € End(R/M)
such that g : 1+M » x+M for some x€ I(M). Then g is the re-

quired image of x+M under f. Hence f is a ring isomorphism.

Thus I(M)/M =~ End(R/M). o



The remaining three results will be useful in the construction

of examples.

1.16 Proposition

Let R = Z[x], n a positive integer and p a prime number. Then
1.16.1 A = {f€R : const(f) €nZ} <s an ideal of R;

1.16.2 M = {f€R : const(f) € p2} 28 a maximal ideal of R.

Proof

1.16.1 A is non-empty, since the.zero polynomial lies in A.
Let £, g€ A and let const(f) = an and const(g) = bn. Then
const (f-g) = const(f) - const(g) = an-bn = (a-b)n€nZ and
hence f-g€ A. Let f€R, g€ A with const(f) = ¢ and const(g) =
an. Then const(fg) = const(f).const(g) = cané€ nZ. There-

fore fg€ A and hence A is an ideal of R.

1.16.2 Let N be an ideal of R such that M g N. Then there

n ,
exists a polynomial g€ N such that g ¢ M. Put g = b + aixl
i=1
n .
and let £ = a + ) aixl € M. Then (a,b) = 1 and so there exist
i=1
n
integers r and s such that rb+sa=1. Now rg+sf = rb + Z raixi +
i=1
n i n i n i
sa + ) sa,x = rbtsa + ) (r+s)a,x” =1 + ) (r+s)a,x”. But
. i . i . i
i=1 i=1 i=1

we also have that x €M for all i > O, because p € M and

-p + xi €M imply that p-p+xl EM; i.e. x* € M. Thus

n :
) (r+s)aix;L € N. However, since f£,g €N, it follows that
i=1

rg+sf € N and hence 1 € N. Therefore N=R and so M is a maximal

ideal of R. a



In the proof of the next result we use similar arguments than
those in the previous one.- . However, the main reason for
its inclusion is that it is a non-commutative ring and as
such it provides us with a large collection of maximal left

ideals which will turn out to be rather useful later on.

1.17 Proposition

Let R = M, (Z2)[x], n a positive integer and p a prime number.

Then
nZ 27
1.17.1 A = {fEI!: const (f) € [nZ Z]} i8 an i1deal of R;
A oy
1.17.2 M = {fE.R : const(f)—€ Loz Z] 8 a maximal ideal
of R;

2 Z'I
1.17.3 I({M) = {gEZR ¢ const(g) € [pz ZJ}'
Proof
1.17.1 A is non-empty since the zero polynomial lies in it.
na c] na' c']

Let f,g€A. Put const(f) = [nb d| and COHSt(g)::[nb' a'

. ) - ) n(a-a') c-c¢'
Then const(f-g) = const(f) - const(g) = [n(b—b') d—d'] €

nz Z5. ' h
[nZ Z} Thus f-g€A. Let f€R, g€ A and suppose that

a c] : na' c']- ,
const (f) = [b a] and const(g) = [nb' a | Then const(fg) =
. n(aa'+cb') ac'+cd'q- rnz Z
const (f) .const(g) = [n(ba'+db') bc5+dd'] € |nz Z]' Hence

fg € A. Therefore A is an ideal of R.



1.17.2 Let N be an ideal of R such that M g N. Then there

. n .
exists a polynomial g € N-M, say g = [i g] + ) aixl. So

i=1

at least one of a or b is not a multiple of p; suppose it is a.

Then there exist integers r and s such that ra + sp = 1. Now
N - O C ] . [ - 3
since h = 0 da-r] € M, it follows that g' = g - h € N; i.e.

n . n .
O] + 1 a x' € N-M. Since f = [p o] ) aixlEEM,
i= i

o |

oo
H

o pl i=1

hence their sum, which equals [ 2} x* € M. Thus k € N.

However, since both £, g' ¢ N, it follows that [_; 2}9' + [g 2]fEIL

1 8]

0 1] € N and so N=R. Thus M is a maximal ideal R.

Hence.[

The other case is proven similarly.
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1.17.3 Let g€ R and let f be any polynomial of M. Suppose

a c L pa' c'q. b
that const(g) = [b d] and const(f) = [pb' d']' Then
. , , pa' c'qra c

fgeM if and only if const(fg) = [pb' a'[|b d] =

paa'+c'b pa'c+c'd]

pPZ 21 .
1, " C ] AV
|pb’a+d’b pb'c+d'd| € [ ]. Hence paa'+c'b, pb'a+d ?Eﬁpz

pZ 2

for all a', c¢', b', 4d' € Z, Thus b € p2 and so I(M) = {gGZR :

’ Z2 2z
const(g)s[pz z}}'

1.18 Proposition

Let p be a prime number and tet A =-{f{a,b) €2® : p|a+b},

* ¥ . ~ '
B ={ . w € M, (2) : pIa(x+y)+b(z+w), where (a,b)e;A} and

- X v . " — : —
Cc ={ € M, (2) : p](x+Y)—(z+w)}. Then
[ 2 W

1.18.1 B=C;

1.18.2 B and C are subrings of M, (Z).

Proof

o

. . X
1.18.1 Let [
z W]

In particular, if we choose a=1 and b=-1, then a+b=0, which is

X Yy

] € C and hence B c C.
z W v

certianly divisible by p; i.e. [

. . X .
For the converse we let [ y] € C be an arbitrary element.
z w

€ B. Then pla(x+y)+b(z+w) for all (a,b) €A.
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Let (a,b) €A, Then there exists an integer k such that
a=kp-b. Hence a(x+y)+b(z+w) = kp(x+y)-b(x+y)+b(z+w)=kp (x+y) -
b((x+y)-(z+w)). But by hypothesis p| (x+y)-(z+w) and hence

plkp (x+y)-b((x+y)=(z+w)); i.e. pla(x+y)+b(z+w). Thus
X Y] ' : .
[z wj € B and so C < B. Hence B=C.

1.18.2 Since we have just proved that B=C, it suffices to
show the subring condition for one of B or C only, say for C.

o O]

o X Y
0 OJ € C. Let X = [z w] and

C is non-empty, because [

x! yl] ) ‘ . x-x" y_yl
Y = [ be elements of=Cs Then X-Y = [

z'  w'| z-z' w-w']|’

Now (x-x')+(y-y')-((z=z%)+(w-w'))=x+y—(xT+y')-(z2+W)+2'+w'=
((x+y)-(z+w))-((x'+y')-(2'+w')) and since X,Y € C, it follows
that p divides the above difference; i.e. X-Y € C. Next we

, . ' X y rx' v xx'+yz? xy'+yw'
see that Xy = [ } ] = [

1 ' ] ' v v]® Now
Lz w ZX" +W2 zy' +ww

z w
we have that (xx'+yz')+(xy'+yw')-(zx'+wz'+zy'+ww')=(x-z)x'+
(x=z)y'+y(z'+w')-w(z'+w')=(x-2) (xX'+y"' )+ (y-w) (z'+w') . However,
since X,Y é C, it follows that x+y=kp+z+w and x'+y'=k'p+z'+w'.
Hence (x-z) (x'+y')+(y-w) (z'+w')=(kp-y+w) (k'p+2'+w' )+ (y-w) (z'+w"')
=kpk'p+k'p(w-y), which is certainly divisible by p; i.e. XY € C.

Therefore C is a subring, as required.



CHAPTER 2

THE MAXIMAL LEFT 1IDEALS OF Mn(R)

In this chapter we give a characterization of the maximal
ideals of Mn(R). In fact, the main result (Proposition 2.7)
tells us exactly how to find all the maximal ideals of Mn(R)
once the maximal ideals of R are known. We also provide
alternative visualizations of D(A:u) in the Mn(R)-module Rn,

in R%/A"™ ana finally in the module Mn(R).

§3 A CHARACTERIZATION OF THE MAXIMAL LEFT IDEALS OF Mn(R)

Let A bea left ideal of R, let u-= (ul,...,un)' € R® and con-
sider the Mn(R)-linear maps

f
M _(R) - B (1B ||l=Ab) Hi~ [KP/27,

defined for X € Mn(R), v = (v1,...,vn)' o by f(X)=Xu and
g(v)=(vi+ta,..., Vn+A)'; i.e. g is the natural surjection modA.
Let X € ker(gof). Then (gof) (X) = (A,...,A)"'. Thus g(Xu)=
(Xiu+a, ..., Xnu+A)' = (A,...,A)' and hence Xiu+A=A for each
i=l,...,n; i.e. Xiu € A for each i=l,...,n. But then we also

n
have that Xu = (X1,..., Xireoos Xn)u = (X1u,..., Xiu,...,Xnu)'(EA .

Thus ker (gof) {XfEMn(R) : XquEA, i=1l,...,n}

{XeM (R) : Xu € A},

We adopt the notation D(A:u) = ker(gof).

2.1 Proposition

D(A:u) is a proper left ideal of Mn(R) for any u € R?-aA",
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Proof

Consider any X,Y € D(A:u). Then (X-Y)u = Xu-Yu € A" and so
we have that X-Y € D(A:u). Since A is a left ideal of R, it
follows that X*u* € A" for any X* € Mn(R) and u* € A", So
suppose that X € Mn(R) and Y € D(A:u). Then Yu € A" and hence
by the above observation we have that (XY)u = X(Yu) € al,
Therefore it follows that XY € D(A:u) and hence D(A:u) is a
left ideal of M_(R). Suppose next that u ¢ A".  Then there
exists u; € R such that uy ¢ A. Let X be the matrix having
the entry 1 in the (1,1i) position and zero's elsewhere. Then

0 ...1...

o)
: E (Wy,..., Uy
O LI 0 -

_ n
xu—- A un)l = (O,...,ui,...,O)'q{A.

QO oo

Therefore X ¢ D(A:u) and so we indeed have that D(A:u) is a

proper ideal of Mn(R). : o

2.2 Proposition

If M€ Max(R) and if u € R"-M", then the following hold.
2.2.1 gof, as defined above, is onto;

2.2.2 M_(R)/D(M;u) = (R/M)";

2.2.3 D(M:u) Zs a maximal left ideal of Mn(R).

Proof

2.2.1 Let (ui+A,..., u +A)' € (R/2)%.  Put u=(ui,...,u )’ and
let X=In’ the nxn identity matrix of Mn(R). Then (gof) (X)=
g(Xu) = g((u1,...,un)')= (u1+A, ..., un+A)' and hence it follows

that gof is onto.
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2.2.2 Since (R/M)? =~ Rn/Mn, we aim to prove that Mn(R)/D(M:u) o
Rn/Mn. Define a map f : Mn(R)/D(M:u) - ‘Rn/Mn by the rule

£f : X+D(M:u) - xu+M™, f is well-defined, for if x+D(M:u) =
Y+D(M:u), then X-Y € D(M:u) and hence we have that (X-Y)u € Mn;

i.e. Xu-yu € M". Therefore Xu+M® = yu+M" and so f(X+D(M:u)) =

f( Y+D(M:u)). f is an Mn(R)—linear map. Let X+D(M:u),

Y+D(Mu) € M (R)/D(M:u). Then £((X+D(M:u)) + (Y+D(M:u)))= £ ((X+Y¥) +
D(M:u)) = (X+Y)u+M® = (Xu+Yu) + M% = (Xu+M") + (Yu+M®) = £(X+D(M:u)) +

f(y+D(M:u)). Let Y € Mn(ﬁ) and X+D(M:u) € Mn(R)/D(M:u). Then

f(Y(X+D(M:u))) = £(YX+D(M:u)) = (¥YX)u+M" = ¥ (Xu)+M® = v (Xu+M?) =
Y (X+D (M:u)). f is one-~to-one. Suppose that X+D(M:u) € ker f.
Then Xu € M" and so we have that=X.€ D (M:u). Therefore it follows

that X+D(M:u) = D(M:u), the zero submodule of Mn(R)/D(M:u) and so
f is one-to-one. f is onto. Since Rn/Mn is a simple Mn(R)-

module, it follows by Proposition 1.9 that M" is a maximal sub-

module of R". By hypothesis u € R"-M" and hence by Proposi-

tion 1.10 we have that Mn(R)u + ML = R, So let v+M™ € Rn/Mn be
given. Then there exists a matrix XV € Mn(R) such that Xvu+w=v,
for some w € M-, Hence f(XV+D(M:u)) = xvu+Mn = v-w+M? = v+MD,

Thus f is onto. Hence we conclude that Mn(R)/D(M:u) ~ RU/MD,

2.2.3 By 2.2.2 above M_(R)/D(M:u) = R%/M®.  However R"/M" =~ (R/M)"

and hence Mn(R)/D(M:u) ~ (R/M)D. Since (R/M)n is a simple Mn(R)-
module, it follows that Mn(R)/D(M:u) is also simple and so by

Proposition 1.9 D(M:u) is a maximal left ideal of Mn(R). a
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2.3 Example

X1 1 LI I xli * e @ Xln
Let X = . . : € D(O:ei). Then we have that
-xnl ® e @ an ® o @ xnn‘
- . ] = X = = =
Xe, (xli,...,xni) (0,...,0)' and hence X4 ‘e X i 0.
R ...0 ... R
Thus D(O:ei) = . : . , where the zero's appear in
R ... 0 ... R

the i-th column. Next we assert D(O:ei) is a maximal left
ideal of Mn(R) if and only if R is a division ring. Suppose
that R is a division ring. Then O-and R are the only left
ideals of R and hence D(O;ei) is indeed a maximal left ideal of
Mn(R). For the converse we suppose that D(O:ei) is a maximal
left ifeal of Mn(R). Let x € |R suchl that x#0. Then, since

1 € R, we have that Rx is a left ideal of R such that Rx#O.

AR ... sOcigR R ,.. Rx ... RI.
Hence D(O:ei) = | : : g |- : *|. But since
R...0...R R ... Rx ... R
D(O:ei) is maximal we conclude that Rx=R. Hence there exists
X' € R, x'#0, such that x'x=1l. Similarly as above,it can be

proved that Rx'=R. So there exists x" € R, x"#0, such that
x"x'=1. However x"=x"1 = x"(x'x) = (x"x'")x = 1x = x and so
X' is the multiplicative inverse of x. Therefore R is a

division ring.

2.4 Example

Let K be any field, M=0O and u=(1,-1)"'. Consider any
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S S ' ' o a c¢ ,
X = b 4] € D(O:u). Then it follows that [b d](l'_l)f =

a-c , _ A . o
[b—d] = (0,0)"'. Thus a=c and b=d. Therefore D(0:u)

’ a C] . .
= {[b d| € M (K) : a-c=0 and b—d=0}

rr@a at ‘
= -I N ( . }
{[b bj € M; (K) : a,b € Kt.

Indeed, D(O:u) is a maximal left ideal of M, (K). For suppose
that D(O:u) § N, for some left ideal N of M, (K). Then there

a C

exists an element [b d] € N - D(O:u). Therefore a-c#0 or
a C'I

b p|EN

b-d#0. Suppose that a—c#o and b=d=0. In this case [

and it is also clear that a#0 or ¢#0, say a#0. Since

fO O],[O O] én; [c c]

0 al are elements of D(O:u), they also

- ; R a c] : ra C] 0 O]“f
lie in N. Therefore [O OJ = [b bJ - [b bJ € N. Hence

AR A B G DU B

a o 0] la a]
c ¢ : . _ o
[O O] € N. However, since (a-c)”! and a~! exist, it follows
(a-c)”! o ra-c O] 1 1
that [_ (a_c)—l a-l]l_ J € N; l1.e. [O lJEN. Thus

N = M, (K) and hence D(O:u) is a maximal ideal of M, (X). The

other cases are proven similarly.

2.5 Example

- - = Y/ M
et R = Z2;5, M = 52,5 and u = (0,1)"'. Then D (M:u) =[Ziz M]’
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which is certainly a maximal left ideal of M, (R).

2.6 Example
In R=Z let M=pZ
Consider any X

a-b 2
[c-d] € (pz)2.

Hence D(pZ:u)

Moreover, D(pZ:u) is a maximal left ideal of M, (Z).

’

where p is a prime number, and let u=(1,-1)'.

b
d

2

Thus a-b, c-d € pZ;

b]
d]

{[a

] € D(pZ:u). Then Xu = [

€ M, (Z) :

b

a | -
ol a-ne

o]

i.e. a=Db(modp) and c =d(modp).
a = b(modp) and c= d(modp)}.

For let

A be a left ideal of M, (Z) such that D(pZ:u) < A and suppose

b

a
that [c a

i.e. pf/a-b or pfc-d, say p/ c-d.

]EA - D(pZsu)-= Then a #b{modp) or c # d(modp);

Then there are integers

r and s such that r(c-d)+sp = 1. Now [é ?] =

[r (c-d) +sp o) _ [rite-a) 0 , |sp © ] -

| O r(c-d) +sp | 0 r(c=4d) o sp

B O][c—d O ] «[s ol[p O] Our next aim is to show
o r]|o c-d o s|lo pl°

that the above sum is an element of A.

follows. [g
[s ollp 0
Lo s]|O P

other hand we see that [

[c-a

lo 2-d] -

o]
pl

This can be seen as

€ D(pZ:u) and so we have that

] € A, since D(pZ:u) is contained in A. On the

|

0]

c—

d

O_d] can be expressed as follows,
-4 -d] _ [o o] , o o]
"0 O c c [-c =4}
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-4 -4 [0 0] ; N [a b]
0 O] ' e CJEZDij.u) and since le al € A we

-

Now [

o 1llla b} o o]fa b] L
also have that [0 O][c a| € A and [O —l][c d] € A; 1i.e.

c d e 0] c-d 0]

[O O] € A and [-c —d] € A, Hence [O c-d] € A and so
[r Olfc-a 0 1, A Therefore we have that |~ O € a

o rjlo c-d] =~ 7 o 1.
and so A=M, (Z). This means that D(pZ:u) is indeed a maximal
ideal of M, (2). The other case is proved in a similar manner.

2.7 Proposition

The collection of D(M:u), for M & Max(R) and u € Rn-Mn, gives

all the maximal left ideals of Mn(R).

Proof

From 2.2.3 we have seen that for M € Max(R) and u € Rn-Mn,
D(M:u) is a maximal left ideal of M_(R). We shall therefore
only show that every maximal ideal of Mn(R) has this form.

So let M' be such an ideal of Mn(R). Then by Proposition 1.9
Mn(R)/M' is a simple Mn(R)—module. By the Morita-equivalence
between R and Mn(R),it follows that Mn(R)/M' o En, where E is
a simple left R-module. Thus, again by Proposition 1.9, it
follows that E ~ R/M for some M € Max(R). We therefore have
an isomorphism f£f from Mn(R)/M' to Rn/Mn built up as follows:

M (R)/M' > E® - (r/M)® > RP/M".

Suppose f(1+M') = u+M™, Then we assert that M' = D(M:u).
Indeed, if X € D(M:u), then Xu € M" and therefore f(X+M') =
xu+M? = M7, But since f is an isomorphism,it follows that

X+M' = M'; i.e. X € M'. Thus D(M:u) < M'. Since D(M:u) is
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maximal as well, equality follows.

It may happen that D(A:u) is maximal even though A is not

maximal in R. The following example illustrates this point.

2.8 Example

Let R=Z, A=4Z and u=(2,0) ¢ A%, Then A is not maximal in Z.

.y - Jla b . [a b] ,,2}
However D(A:u) = {{c d“EZM;(Z) e dJ(2,0) € A
[a bl
= { c a £ M, (Z2) : 2a€ 4Z and 2c C 4Z}

= { 2  bley (2)-sa€22 and cezz}

(27 7
| 22 7

] , which is indeed a maximal ideal

of M, (2).

§4 ALTERNATIVE VISUALIZATIONS; OF D (A:u)

In order to construct alternative visualizations of D{(A:u) in

any Mn(R),we make use of the following two results.

2.9 Proposition

Let F be a submodule of the left R-module E and for x € E let

(F:x) = {r € R : rx € F}. Then
2.9.1 (F:x) is a left ideal of R;

2.9.2 (F:x) <s proper if and only if x € F.
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Proof

2.9.1 Let r,r' € (F:x). Then (r-r')x=rx-r'x € F and so
r-r' € (F:x). Let r € R and a € (F:x). Then (ra)x=r (ax)=rb
for some b € F. But F is an R-module and so rb € F. Thus

ra € (F:x) and hence (F:x) is a left ideal of R.

2.9.2 Suppose that (F:x) is a proper ideal of R. Then
1 ¢ (F:x) and so 1x=x ¢ F. Conversely, if x € F then 1x ¢ F

and hence 1 ¢ (F:x). Thus (F:x) is proper.

2,10 Proposition
If F 28 a maximal submodule of the R-module E and <f x € E-F,
then

2.10.1 (F:x) € Max(R);

2.10.2 R/(F:x) =~ E/F.

Proof

2.10.1 By the previous result (F:x) is a left ideal of R.
Suppose that I is an ideal of R such that (F:x) S I, where
x € E-F. Then there exists r € I such that rx ¢ F. Since

F is a maximal submodule of E it follows by Proposition 1.1l0

that

F +Rx =E  iiee. (i)
But then there exists a € F such that a+rx=x. Thus
(1-r)x = x-rx = a € F. Therefore 1l-r € (F:x) g I. So

l-r=r' € I and hence l=r+r' € I. Thus I=R, which proves the

maximality of (F:x).
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2.10.2 Define a map £ : R/ (F:x) + E/F by the rule

f : r+(F:x) > rx+F. f is well-defined, for if r+(F:x) =
r'+(F:x), then r-r' € (F:x). Hence (r-r')x = rx-r'x € F.
Therefore rx+F = r'x+F; i.e. f(r+(F:x)) = f(r'+(F:x)). f is

an R-linear map. Given any r+(F:x), r+(F:x) € R/(F:x). Then
f((r+(F:x))-+ (r'+(F:x))) = £((r+r')+(F:x)) = (r+r')x+F =
(rx+r'x)+F = (rx+F)+(r'x+F) = £(r+(F:x))+f(r'+(F:x)). Also
if r € R and r'+(F:x) € R/(F:x), then f(r(r'+(F:x))) =
f(rr:+(F:x)) = (rr')x+F = r(r'x+F) = rf(r'+(F:x)). f is one-
to-one. Let a = r+(F:x) € ker £f. Then f(a) = F. Thus

rx+F = F and so rx € F. But then it follows that r £ (F:x)
and hence a = (F:x), the zero of R/(F:x). Thus ker f = 0 and
so £ is one-to-one. f lis onto, for suppose that y+F € E/F.
Then by (i) above y=b+rx for some b € F, r € R. Thus
f(r+(F:x)) = rx+F = y-b+F = y*+F. Therefore the map f defined

above is an R-isomorphism; [i.e.J R/ (F:x) = E/F.

2.11 Corollary

If M € Max(R) and <f u € R-M, then in M; (R)=R we have

D(M:u) = (M:u).

Proof

Let X € (M:u). Then X € R = M; (R) such that Xu € M = M,
Thus X € D(M:u) and so (M:u) < D(M:u). Since both (M:u)

and D(M:u) are maximal ideals, equality follows.
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2.12 Example

In Proposition 1.17 choose n=4 and p=2. Thus

- -
A= {f € R const (f) € 42 Z } and

| 47 z
{f € R

since M is a maximal ideal of R and since A c M, it follows

const (f) € 22 Z } where R = M, (Z)[x]. Now

M |22 7]

that F = M/A is a maximal R-submodule of E = R/A. Let

1l

1]' We assert that

f* = £+A, where const(f) = [?
(F:£*) = {r € R : const(r) € {; ;g]}. Let therefore

a b

= d]’ Then

r € (F:£*) and assume that const{r) = [

r(£f+A) € F and hence rf+A F = M/A; i.e.l rf € M. But then

1 27 z].
1] € [ZZ Z]' i.e.

m

it follows that const(rf)

1
—
Q-
eTR e g
[M——
—
O

[b a+b] c [22 =z

a c+d | 22 Z]‘ Therefore b,d € 2Z and hence

z 22

const (r) € [Z 27 |

and ‘the assertion! follows. The proof that

(F:£f*) is a maximal ideal of R proceeds along the same lines

as the one in Proposition 1.17 and is therefore omitted.

2.13 Example

Let E=%Z/6Z and let F=3%2/6Z be Z-modules. Let x=5+6Z ¢ F. Then
F is a maximal submodule of E. Moreover, (F:x)=3Z, for if

r € (F:x), then r(5+62) € 3Z2/6%2. Therefore 5r+67Z € 3Z/632.
Hence 5r € 3Z and so r € 32Z. Thus (F:x) < 3Z. But by 2.10.1
(F:x) is a maximal ideal of Z and so (F:x) = 3Z. Indeed,

Z2/(F:x) = 2/3%2 ~ (2/62)/(3Z2/6Z) = E/F.
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2.14 Example
In Example 2.6 we have seen that M = D(pZ:(1,-1)"') =

{[a g]enh(z) : a=b(modp) and CEd(modp)}is a maximal left

c
ideal of R = M, (Z). Now let u = [é 8] € R-M. Consider
any X = {2 g](E(M:u). Then Xu £ M. Thus [2 g][é 8] =
[a O]

c Ms g [pz 2]
lc o] € M; i.e. pla and p]lec. Hence X € lpz  z] and so

(M:u) = [gg g] = D(M:u) in M, (R).

In view of the preceding discussion we are now able to give
three alternative visualizations: of D(A:u) in any Mn(R), for

any left ideal A of R and u € R .

2.15 Proposition

D(A:u) = (A™:u) computed, in the Mn(R)—moduZe R,
Proof
For X € D(A:u) it follows that Xu & A". So regarding F as

being A" and E as being the Mn(R)-module Rn, we indeed have
that X € (a%:u). Hence D(A:u) < (A":u). Conversely, if
X € (An:u), then Xu € A", Thus X € D(A:u) and so

n

(An:u) < D(A:u). Hence D(A:u) = (A" :u).

2,16 Proposition

D(A:u) = (O : u+A”) computed in the M_(R)-module R/,
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Proof

Let X € D(Azu). Then Xu £ A", So X(u+A™) = xu+a® = A" =
An/An, the zero submodule of Rn/An. Hence X € (O : u+An).

. n n n,.n
Conversely, if X € (O : u+A’), then X(u+dA”) € O = A" /A",
Therefore Xu+A" € An/An and so Xu € An; i.e. X € D(A:u). Thus

D(A:u) = (0 : u+Al).

2.17 Proposition

Let U be the nxn matrix having u down the first column and

gero's elsewhere. Then D(A:u) = (Mn(A):U) in the module Mn(R).

Proof

Suppose that X € D(A:u). Then X,u € A for each i = 1,...,n.

h |
) w1 Oll. .1} O-
Therefore XU = (Xl,...,Xn)' — .
o w3z O 787 .0
n -4
[ A A
= (X1,--.,Xn)' u E 5
L O... O-
X1u 0O...0
= . . . 3 Mn(A). Hence X € (Mn(A):U)
xnu 0...0

and so D(A:u).é (Mn(A):U). For the converse we let
X € (Mn(A):U). Then it follows that XU ¢ Mn(A); i.e.

Xiu 0 ... 0
Xuo0o...0
n

€ Mn(A). Thus Xiu € A for each i=l,...,n; i.e.

X € D(A:u). Therefore (Mn(A):U) c D(A:u) and so combining

the above inclusions, equality follows.



2.18 Corollary

For n=1, Max(R) = {(M:u) :

Proof
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M€

Let M € Max(R) and let u € R-M.

D(M:u) =

tion 2.7 all the maximal ideals of M; (R)=R are

Thus Max(R) is as predicted.

Consider the following example.

2.19 Example

Then by Corollary 2.11

(M:u) computed in the Mi: (R)-module R.

Max(R), u € R-M}.

of this form.

But by Proposi-

Put

Then

So by Proposi-

51+87,, 21+83, € N}

Let R = M, (Z5), N = 3%y and u = (1,0,8)' € 23 - N°.
: B 8. Btk
M' = D(N : (i,6,§)-) and-let—Y¥Y = |§1 Vs §3 € M',
ARINL
X, X, X, X1+ 8%,
Yu = |y, v, va| (1,0,8)" = |y, + By, | € N°.
Z, Z, Z, Z, + 8z,
X1 X, X,
tlon 2.7 ' = {|3) ¥a ¥> | € M (23] 5 FasBs,
21 Z, 2,
1 1 o
is a maximal ideal of M, (Zs). Let X = [0 2 O
0O 3 0
1 1 0
Then Xu = O 2 O (i,5,§)' = (1,6,6)' R3-N3,
0O 3 ©
X, X2 X, X, X, x,][1
Y=y, ¥ ¥s| € (M':X). Then YX = |y, ¥, ¥5[[O
Z1 Z, Z, z, z. 2,]|0

E'M3 (Zg)-M' -

Consider any

ST |

wi

o1 oI Ol
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X1 §1+§§2+§§3 6
and §; §1+§§2+§§3 ol € M, Therefore we have
21 §1+§Ez+§§, 0
X1, §1, z, €N cea.. (1)

But then it follows that Y (Xu)

I}
N1 XK

=
)
N
o]
w
=]
@)
Ol
]

(X1, Y1, z1) € N® and hence Y € D(N:Xu). Thus (M':X) < D(N:Xu).

N Z9 Zg
But from (i) above we indeed have that (M':X) = |N Z, Z, |,
N Zg Zs

which is a maximal ideal of M; (Z4). Also, since Xu € R*-N?,

it follows that D(N:Xu) is also a maximal ideal of M, (Z,).

N Zg 'Zg
Thus (M':X) = |N Zq Z9 = D(N:Xu).
N Zg¢ Zyg

The preceding example isra motivation for the following general

result.

2.20 Proposition

Let R = Mn(S) for some ring S. If N is a maximal <ideal of S,

u € sP-N", M' = D(N:u) and X € R-M', then

2.20.1 M' 78 a maximal ideal of R;
2.20.2 (M':X) is a maximal ideal of R;

2.20.3 (M':X) = D(N:Xu).
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Proof

2.20.1 Since N is a maximal ideal of S and u € Sn-Nn it follows
by Proposition 2.7 that D(N:u) is a maximal ideal of Mn(S); i.e.

M' is a maximal ideal of R.

2.20.2 Since M' is a maximal R-submodule of the R-module R
such that X € R-M', we invoke Proposition 2.10 to obtain the

required result.

2.20.3 Let Y € (M':X). Then YX € M' = D(N:u). Therefore
Y(Xu) = (¥YX)u € N?and so it follows that Y € D(N:Xu); i.e.
(M':X) € D(N:Xu). But since (M':X) is a maximal ideal of R

it follows that (M':X) =-D{(N:Xu).



CHAPTER 3

IDEALIZERS AND CONTRACTIONS

The focus in this chapter is mainly on idealizers and con-
tractions. We use the concept of the idealizer to find a
connection between_Mn(A) and D(A:u). We in fact show that

a contraction of any maximal ideal in Mn(R) is maximal in R,
provided that R is left quasi-duo. On the other hand, if R
is an integral domain with K its field of fractions, then no
maximal left ideal of Mn(K) contracts to a maximal left ideal

of Mn(R).

§5 IDEALIZERS

3.1 Example
Since B = 6Z;1, is an ideal of Z,, it follows that

A = [B[X] 22 [x]

] is' a ‘left ideal of M;{Z,,[x]). Hence
Blx] Z12[x]

[le[X] Z12[X]].
1(a) = 6212 [x] Z12[x]

3.2 Proposition
The following hold for a left ideal A of R.
3.2.1 I(A) Zs a subring of R.

3.2.2 I(A) is the largest subring of R in which A sits as a

a two-sided ideal.
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Proof

3.2.1 Since A < I(A), it follows that I(A) is non-empty. Let
X,y € I(A) and let a € A. Then a(x-y) = ax—-ay € A and so it
follows that A(x-y) < A. Hence x-y € I(A). We also have
that a(xy) = (ax)y € A, because ax € A and y € I(A). Thus

I(A) is a subring of R.

3.2.2 Since ar € A for every a € A and r € I(A), it follows
that A is a right ideal of I(a). However, by hypothesis A

is a left ideal of R and hence also of I(A). So A is a two-
sides ideal of I(a). Next we let B be any subring of R such
that A is a two-sided ideal of B. Let-b € B be given. Then
Ab « A and so it follows that b € I(A); i.e. B < I(A) and the

result follows.

3.3 Corollary

I(A)=R 2f and only if A 18 a two-sided ideal of R.

3.4 Proposition
Let M € Max(R). Then the following hold.
3.4.1 I(M)/M is a division ring;

3.4.2 M is also a maximal ideal of I(M).

3.4.1 By Proposition 1.15 I(M)/M =~ End(R/M and by Proposition
1.11 End(R/M) is a division ring. Therefore I(M)/M is a divi-

sion ring.
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3.4.2 Suppose that N is a left ideal of I (M) such that M S N.
Then there exists an element x € N such that x ¢ M. Therefore
Xx+M is a non-zero element of I(M)/M, which is a division ring,
by the first part. So there exists a non-zero element y+M of
I(M)/M such that (y+M) (x+M) = 1+M. So yx+m=1, for some m € M,
However, since x,m € N and since N is a left ideal of I(M), it
follows that yx+m € N; i.e. 1 € N. Thus N=I(M) and hence M is

a maximal ideal of I(M).

3.5 Proposition

If M € Max(R), then the following hold.

3.5.1 Mn(M) 18 a left ideal of Mn(R);

3.5.2 I(Mn(M)) Mn(I(M)).

Proof

3.5.1 Mn(M) is non-zero, since the zero matrix lies in it.
Since M is closed under addition of its elements as well as
under multiplication of the elements of R from the left, it

follows that Mn(M) is indeed a left ideal of Mn(R).

3.5.2 Let X € M_(I(M)) and suppose that X = [xij]. Then

for all i,j = 1,...,n it follows that xij € I(M) and hence

Mxij c M. Consider any nxn matrix [mij] € Mn(M). Then
Myq eee My Ko oo Xy Cyq +-+ S4p
p— L] . L] . - . - ’
tmyglxggd =) I : : :
Mh1 o Bon |l *n1 ) *nn a1 *°° “nn

where each cij is a sum of products of elements of M and I (M)
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(in that order). Therefore each 5 € M and hence

[mij][xij] € M_(M).  But this means that X € I(M_ (M)) and so
Mn(I(M)) c I(Mn(M)). For the converse we suppose that

X = [xij] € I(Mn(M)). Let m € M be arbitrary. Define for
each pair of indices i and j an nxn matrix Mij = [m] having
the entry m in the (i,j)-position and zero's elsewhere. So it
follows that Mi' € Mn(M) for each i,j=1 ,...,n. But since

J

X € I(Mn(M)) we indeed have that Min € Mn(M) for all
i,j=1 ,..., n. However, Mijx is an nxn matrix having the

entry mx in (i,j)-position and zero's elsewhere. Therefore

i3

mxij € M for each i,j=1 ,..., n. So each entry xij € I(M)

and hence it follows that X € Mn(I(M); e © « I(Mn(M)) c Mn(I(M)).

Combining the above inclusions, equality follows.

3.6 Corollary

If M € Max(R), then the following hold.

3.6.1 I(Mn(M))/Mn(M) = Mn(I(M))/Mn(M) o~ Mn(I(M)/M)7

3.6.2 I(Mn(M))/Mn(M) 18 a simple artinian ring.

Proof

3.6.1 In view of Proposition 3.S,I(Mn(M) = Mn(I(M)) and so
I(Mn(M))/Mn(M) = Mn(I(M))/Mn(M). In order to prove the
required ring isomorphism, we define a map

f e Mn(I(M))/Mn(M) > Mn(I(M)/M) by the rule

f : [aij] + Mn(M) + [a,_.+M]. f is well-defined, for suppose

13
that [aij] + Mn(M) = [bij] + Mn(M)f Then [aij] - [bij]e:Mn(M)
and so [aij - bij] € Mn(M); i.e. aij - bij € M for each
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i,j=1 ,..., n. Thus aij+M = bij+M for each i,j=1 ,...,n; i.e.

[aij+M] = [bij+M] and so f([aij] + Mn(M)) = f([bij] + Mn(M)).

f is a ring homomorphism, for suppose that a [aij] + Mn(M) and

b = [bij] +Mn (M) . Then we have that f(a+b) f([aij] + [bij] + I\%(M))

f([aij+bij] + Mn(M)) = [aij + bij + M] = [aij+M] + [bij+M] =

f([aij] + Mn(M)) + f([bij] + Mn(M)) = f(a) + f£(b) and

n n
iéialjbjl . jZ_laljbJn
vl ] .
f (abd) f\ : : + M (M)
n n
a .b. cee .b.
jél nj jl jélanj jn
n
a .b..,+M | .b._+M
jél 15731 jzléljbnn
n n
a_.b.,+tM 2 a_.b. +
szl nj jl jzl nj jn
(all+M e ay M) oy M L by +M
= : : : : = f(a)f(b).
_én1+M .o ann+M bnl+M .o bnn+M

f is one-to-one, for if a = [aij] + Mn(M)_E ker £ , then

f(a) = [aij+M] = Mn(M). So for each i,j=1 ,..., n it follows
that aij+M = M; i.e. a5 € M. Thus [aij] € Mn(M) and hence

a = Mn(M), the zero element of Mn(I(M))/Mn(M). f is onto, for
let b € Mn(I(M)/M) be given. Then there exist n? elements

b € I(M) such that b = [bij+M]. So a = [bij] + Mn(M) is the

ij
required element in Mn(I(M))/Mn(M) such that f(a)=b. It follows

that the rings under discussion are indeed isomorphic.
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3.6.2 By 3.4.1 it follows that I(M)/M is a division ring and
by definition 1.4 it in turn follows that Mn(I(M)/M) is a
simple artinian ring. Thus I(Mn(M))/Mn(M), being isomorphic

to Mn(I(M)/M), is also a simple artinian ring.
§6 A CONNECTION BETWEEN Mn(A) AND D(A:u)

3.7 Proposition

Let A be a left ideal of R. Then a left ideal of Mn(R) contains

A Zf and only if it contains Mn(A).

Proof

Suppose that the left ideal A of R is contained in the left
alll. .|| 0

ideal I of Mn(R). Thén € I for any a € A. Now I

[o) ARCRCAY

——

is of the form Mn(B), where B is a left ideal of R such that

B contains A. So let [aij] be any element of Mn(A). Then
it follows that each ay € A c B. Hence [aij] € Mn(B) = I and
SO Mn(A) c I. For the converse we suppose that Mn(A) is con-
tained in the left ideal I of Mn(R). Let a € A. Then since
a ... 0

. .l € Mn(A) c I, it follows that A € I and the result

O ... a

follows.

3.8 Proposition

If A is a left ideal of R, then B = {r € R : rR c A} is a two-

sided ideal of R.
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Proof

O € B and so we have that B is non-empty. Let a,b € B and let
X € R. Then (a-b)x = ax-bx € A and so a-b € B. By defini-
tion B is a right ideal of R. It remains to show that it is
also a left ideal of R. So let x,y € R and let b € B. Then
(xb)y = x(by) = xa for some a € A. But since A is a left
ideal of R, it follows that xa € A; i.e. xXb € B. Thus B is

a left ideal of R and the result follows.

3.9 Definition

If A is a left ideal of R, then B = (A:R) = {r€R : rR c A}

is called the transporter ideal-of-A.

3.10 Example

_ |z 4z] = _Ja b .
Let A = [z 47 | and“let R = M, (Z). Let r = [ d] € (A:R)
and r' = [: z] € R. Then ' rr' ¢ A' and so the equations

ay+bw = 4s and cy+dw = 4t must hold for all y, w, s, t € Z.
So in particular, if we first choose y=0 and w=1 and then y=1

and w=0, we see that a, b, ¢, d € 42; i.e. r € M§(4z). Hence

({g ig] : Mz(z)) = M, (42).

We can now say precisely how Mn(A) is related to D(A:u).

3.11 Proposition
Let A be a left ideal of R, C the center of R and B the trans-
porter ideal of A. Then 11t follows that

Mn(Af\C) c Mn(Af1B) c N D(A:u) < Mn(A), where the intersection
u
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is taken over all ué€ R".

Proof

Mn(Af1C) c Mn(ArlB).

Let X = [aij] € Mn(Ar1C). Now for each i,j=1 ,..., n it

follows that aij € AnC. So aij € A and aijr = raij for each

r € R, But since A is a left ideal of R,it follows that

ra,. € A and so a;.r € A. Thus a.. € B and hence a,. € AN B;
i ij ij

1] 3
i.e. X € Mn(Al1B), proving the required inclusion.

M (ANB) €« n D(A:u).
n u

Let X = (Xl reees X

{1 e Xn)' € Mn(Ar1B) and suppose that

—-— : n
X; = [xil . xin] for id=l—jevey-Ts Let u € R, Then
Xiu = xilul + ... + X5 0% € A, | because Xin reess xinEEAr1B c B.
Thus X € D(A:u) for every u € R™and hence. it follows that
X € 8 D(A:u). Therefore Mn(AfIB) < NiD(A:u), where u range

u

over all the elements of Rn.

GD(A:u) c Mn(A).

Let X = (X1 P Xn)' € N D(A:u), where
u

J
= L n
Xj [le cee xjn] for j=1 ,..., n. Then for each u € R
it follows that Xu € A", So in particular for u = ey and

i=l ,..., n, we have that Xei € An; i.e. Xjei € A for each
i,3=1 ,..., n. So if we fix j and let i range over all the

indices i=1 ,..., n, then it follows that le resay xjn € A.

If we now let j range over all the indices from 1 to n, it

follows that xij € A. Hence X € Mn(A) and so the required

inclusion follows.



36

3.12 Proposition

For a left ideal A of R, the following hold.

3.12.1 Mn(A) < D(A:u) Zf and only <if each uiEII(A);

3.12.2 Mn(A) = ND(A:u), where the intersection is taken over
u

all ueRD, if and only <1f A is two-sided.

Proof

3.12.1 Suppose that Mn(A) < D(A:u). Let a € A be given. Let
X be the matrix of Mn(A) having the entry a in the (i,i)-posi-
tion and zero's elsewhere. Then X-€ - Df{A:u) and so Xu € An;

i.e. auy € A, Hence u; €T (RA). Since for each i we can
construct such a matrix X, it indeed follows that each uiE:I(A).
For the converse we suppose that each ug € I(a). Let x<ZMn(A)
and assume that xi = [xil TV X § Then for each i=1] ,..., n

in

it follows that Xgq reevn X € A. But 'by hypothesis we have

that u € I(A) and hence it follows that

* o ¢ u
1’ " Tn

= [ g
X;u [xil cee xin](u1 reees un) X;qU; *...+ X, u € A'for
each i=1 ,..., n. Thus Xu € A" and so X € D(A:u); i.e.

Mn(A) < D(A:u).

3.12.2 Suppose that Mn(A) c {}D(A:u), where u range over all
the elements of R". Let a € A and r £ R be given. If X is
the matrix of Mn(A) having the entry a in the (1,1l)-position
and zero's elsewhere and if u = (r,0 ,..., 0)', then in parti-
cular for this choice of u,it follows that Xu € An; i.e.

(ar ,..., O0)' € al, Hence ar € A, proving that A is a right

ideal of R. But since A is a left ideal of R by hypothesis,
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it follows that A is a two-sided ideal of R. Suppose converse-
ly that A is a two-sided ideal of R. Since, by Proposition
3.11, we have already shown that {}D(A:u) c Mn(A), it suffices
to show that Mn(A) c {1D(A:u) only. So let X € Mn(A) and let

u € R". As before, let the rows Xi of X be denoted by

X, = [xil ... X, 1. Now, using the hypothesis that A is also

1 in

u_ €A

+ ... t X,
inn

a right ideal of R, we indeed have that)%p = X4y
for each i=1 ,..., n; i.e. X € D(A:u). But the element u € rR"
was chosen arbitrarily and so X € D(A:u) for each u € Rn; i.e.

X G%}D(A:u). Thus Mn(A) c:gD(A:u), as required. o

In view of the preceding result it may well happen that Mn(A)
fails to equal {}D(A:u) if we dispense with the condition that
A be a two-sided ideal of R. The following counter-example

illustrates this point.

3.13 Counter-example

Consider the left ideal A = (‘; 8] of M; (2). Iet X €ND(Aw).
[al a,] [bl b, ] [ul uz]1
as Ay b3 bq_l U3 Uy

Put X = ‘ and u = . Then it
[cl c, | [dl d, | [ui u;]
Cs; cy | d, d, || u! ul | |

follows that [al az][ul u, | + [b2 ba]fu u; | € [Z O]

a, as]lus us] |bs  by]lu! ul Z O
, -
and Ci cz] ui uz | [dl dz][ui u [Z 0]
[Cs CuJ[Ug th * d; duJ u; u;_ € LZ 0 '

for all U, s ui € 2, where i=1,2,3,4. Hence the following

eqguations must hold for all u,, us, u;, ui € Z.



ajuz +

asuz +

CcCiuz +

Ci3uz +

So in particular for

other entries of X are zero.

azuy

ayly

Ca2Uy

CuylUy

N D(A:u).
u

§7

+

+

+

+

b1u£
b3u5

1
dluz

djyu;

+ bjyu

'
i

]
4

Thus ND(A:u)
u

CONTRACTIONS

and uy

o.

uy =

u,,

0 # M; (A).

:O,

it follows that
Similarly one can prove that all the

Hence X is the zero matrix of

In this section we are concerned-about the question of whether

maximal ideals of Mn(R) lie over and thus contract to maximal

ideals of R.

We in fact provide a necessary and sufficient

condition (see Proposition 3.25) for such a contraction to hold.

Some of the following results, each of which is preceded by an

appropiate example, would be helpful in this regard.

3.14 Example

Let R = M, (Zg[x]) and let B

Since B[x] is a maximal

. B [B[x] Zg{x]]
ideal of Zg[x] it follows that M = BIx] 75 [x] maximal
—_ ' Zglx] Zglx]] Let
left ideal of R. Moreover, I (M) B[x] 7[x] ]
2 A "
u = f ? € I(M)-M. Consider any £ £ € (M:u).
O O f3 fl*_
.2 3 2 a
Then we have that |f: 2 X °l € M and so f1x 9] € M.
’ f3 fq 0 O f3X2 O
T
Thus f,x?, f,x® € B[x]. Suppose next that f, = a;x".  Then

i=0
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. T i+2
it follows that fix* = ] a,x “. Thus each a; €B; i.e.

f1 € Blx]. The proof that f£f; € B[x] follows in a similar

manner. Thus [gl Ei]SEM and hence (M:u) < M. Since we are
3

dealing with maximal ideals, equality follows; i.e. (M:u) = M

for u € I(M)-M.

3.15 Proposition

For M € Max(R), (M:u) = M 2f and only if u € I(M)-M.

Proof

Suppose that (M:u) = M and assume that-u ¢ I(M)-M. Then we
are left with two possibilities, namely u € M or u € R-I(M).
If u € M, then since M is a left ideal of R, Ru c M; i.e.

R € (M:u) = M and so R=M, an obvious contradiction. On the

other hand, u € R-I(M) would also lead,te .a contradiction,

since (M:u) M implies that Mu /< M; i.e.'u € I(M), by its
definition. Hence u € I(M)-M. For the converse we suppose
that u € I(M)-M. Then Mu €« M and so it follows that M < (M:u).
But since M is a maximal ideal of R and u € R-M, it follows

that (M:u) = M.

3.16 Example

Let R = Zglx], A = 4Z4[x], B = 2%Zg[x], n=2 and u = (3x,0)' € R?.
Then A < B. Now D(A:u) = [fZB[X] Zolxl] na
47 ¢[x] Zgl[x]
D(B:u) = [EZ"[X] ZB[X]} . Thus D(A:u) < D(B:u).
) ZZB[X] ZB[X]
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3.17 Proposition

If Ac B are ideals of R and <f ufERn, then D(A:u) < D(B:u).

Proof

Let X € D(A:u). Then Xu € A" < B", since A ¢ B.  Hence
X € D(B:u) and so D(A:u) < D(B:u). o

3.18 Example
Let R = Z12, Ay = 2%12, A, = 3%:, and u = (5,0)'. Then the

(2212 %12

following hold. A; N A, = 6Z12, D(A1:u) = 2%15 Z12|’

(3212 Z12 |

321, Z12
_gzlz Z12

3Z,, Zio

D(A,:u) = [ } and D(Aj;:u)N D(Az:u) =

D(A; NA,:u).

3.19 Proposition

IfA=1 Ai 18 the intersection of a collection of ideals of R,
i

then D(A:u) = N D(Ai:u).
i
Proof
Let A = IWAi be an intersection of left ideals of R, where i € I,
i

for some index set I. Suppose that X € D(A:u). Then for each

j e {1,...,n} , it follows that Xju € A A,. Thus xjue Ay

=N
i 1
€

for each i € I; i.e. Xu ¢ A? for each 1 I. Hence XEZD(Ai:u)

for each 1 € I; i.e. X €f1D(Ai:u). Therefore D(A:u) cf\D(Ai:u).
i i

Conversely, let X E(\D(Ai:u). Then X € D(Ai:u) for each i € I.
i
Hence Xju € A, for each j € {1,...,n} and for each i € I. Thus
X;u €NA; = A for each j € {1,...,n}.. Hence X € D(A:u) and
i

J
so N D(Ai:u) < D(A:u). By the ' above inclusions the equality follows. o
i
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3.20 Example

47 0]

Let R = M, (2), A = [42 o

D I -

Then the following equations must hold.

r, r', s, s' € Z. Hence a; = bi{mod4), a; = b,; (mod4), ci =d; (mod4),
Cs Ed; (mod4) and a, = ay = C; =.Cy.=.0.  Therefore

[al o] fprbs]

a, 0] b B4

D(A:u) = { €M (R) : aiEbi(mod4) and

& 8] s o]

ciEdi(mod4), for i =l,3}.

Next we consider any X € D(A:u) N R. Then X is of the form

[4a o] [0 o]

4b O e o
X= , where a,b € Z. Thus
[o o] [4a 0]
o] 0 | 4b O]
[[4a o] [o o}
4b o] |o o]
D(A:u) NR = { € M;(R) : a,b € z}.
[o o} [4a o]
0] o] 4 0]

. a b] . a blf1 o] .
Furthermore, if [ € (A:ui1), then [c d][o 1] € A and
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(A:uy) = [23 8}. On the other hand, if [
[a Db][-1 0] . ,. . -a O 4z
lc ajl o of €A 1 o o € |az

4z
4z

Z
Z

and so (A:u,)

|

(A . _[4z o
L =(A:u1) N (A:u,) [42 0].

£ M, (R der the embedding |42 O] [4a
o . (R) unde e ing | 4b ol > e

[}

we observe that D(A:u) NR (A:u1) N (A:u,).

a
C

0
0]

b

d] € (A:u,), then

]. Thus a,c € 42

]. But then we have that

Now regarding L as a subring

13 9]
o] [ 9]

3.21 Proposition
, n n
For A an ideal of R and u € R, D(A:u) MR = N (A:ui).
i=1
Proof
Let X € D(A:u) NR. Then X 'is of ‘the 'form
[r ... 0 ... O]
X = 6 A 6 , for some r € R such that
|0 ... O ... r]
r ... O ... O]
O veo ¥ «-- 0 (W1, 000y, U, ,ee., u)' € A", Hence
L] - ] l n
(O «++ 0 - ]
(ruy ,..., TU; yeees run)' € An; i.e. ru; € A for each
i=1 ,..., n. Thus r € (A:ui) for each i=1 ,..., n; i.e.
n

r € 'ﬂ (A:ui).
i=1

However, regarded as an element of Mn(R), r
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r ... O n
has the form : : = X. Hence X € N (A:ui) and so
O ¢ T i=1
n
D(A:u)N R c N (A:ui). For the converse inclusion we let
i=1
n
re€ n (A:ui). Then réE(A:ui) for each i=1 ,..., n. How-
i=1
r L N o
ever, regarded as an element of Mn(R), r has the form | . .
O ¢« T
r ... O n
Hence ru = . s l(u ,...,un)' = (rul,...,run)' € A, Thus
O ... r
r € R such that ru € An; i.e. r € D(A:u) NR. Thus
n n
n (A:ui) c D(A:u) NR. Therefore D(A:u) N R = N (A:ui).
i=1 i=1

3.22 Corollary

If M ¢ Max(R) Zs a two-sided Zdeal of R, then D(M:u) contracts

to M.

Proof

Since M is a two-sided ideal of R, it follows that I (M) = R.
Now u = (u1,...,un)' € Rh--Mn by hypothesis. So there is at
least one uy ¢ M. Therefore u; € R-M; i.e. u; € I(M)-M.
Thus by Proposition 3.15 it follows that (M:ui) = M for such
ones. On the other hand for j # i, we have that (M:uj) = R,

since these ui's are in M. So we see by Proposition 3.21 that

n
D(M:u)NR = N (M:u,) = M, since the intersection contains ‘at .

least one M as a member. Therefore D{(M:u) contracts to M.
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3.23 Definition

3.23.1 A ring R is called left duo if every left ideal of R

is two-sided.

3.23.2 A ring R is called left quasi-duo if every maximal left

ideal of R is two-sided.

3.23.3 A ring R is called a local ring if it has a unique

maximal left ideal.

3.24 Examples
3.24.1 Every left duo ring is left quasi-duo.

a b

o a] : la,b € Z} is a left duo ring. We first

3.24.2 R = {[

show that R is a ring. Let [a b] ’ [x y] € R, Then we
(o) a 0] X

b] . [x y] I [a+x b+y] € R and

a
have that [O a o X 0 a+x

[a Dbl[x y] _ [ax ay+bx] . :
lO aj 0 x| = [O ax J € R. The other ring properties
follows from the fact that R is a subset of M, (Z). In order

to prove that R is indeed left duo, we observe that the ideals

of R are all of the type

A = {[g g] € R: a€ I, b€ J where I and ideals of Z such

that I < J}. We assert that each such A is a left ideal of R.

. _ 0 0 a b X Y| ¢
A is non-empty, because [0 0] € A. Let [O a] ’ [O x] € A.

Then there exist ideals I and J of Z such that I c J with a,xe€l



[a bl -[x y]_ [a-x b-y]
and b,y € J. Thus o a o x| °= 0 a-x | € A, because
a-x € I and b-y € J. Let {g Z} € R and let {g i} € A.

Then [a b][x y] = [ax ay+bx] € A, because ax € I and

0] ajlto b4 o} ax
ay+bx € J (since x € I < J). Thus A is a left ideal of R, as
asserted. Moreover, A is also a right ideal of R. For

g] € R and [x z] € A. Then we have that

suppose that [ 0

a
o

x yl[a b]_ [xa =xbt+ya] . . _
[O x][o a] lo xa € A, since the ideals I and J of

Z are two-sided. So each left dideal of R is also a right ideal

and hence R is indeed a left duo ring.

3.24.3 The ring R of 2xX2 lower triangular matrices over a

division ring D is a left guasi-duo ring which is not left duo.

Let R = [g 8] , for 'some’ division ring D. Then the left

, _ o o _ o o] _ Jo o]
ideals of R are 2Aa; = [0 ol A, = [D o’ A, = [D 0]’
A, = [8 8];and As = R. A, is the only maximal left ideal of
R. Moreover since A,R = {g 8}[3 g} c [g 8] = A,, it

follows that A, is also a right ideal of R. Thus. R is left quasi-

. _ 10 O||D 0 0 0 .
duo. However, since AR = [O D][D D] c [D D] # A,, it

follows that the left ideal A, is not a right ideal; i.e. R is

not a left duo ring.
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3.24.4 Any field is a local ring.

3.24.5 Zs is a local ring, because 3Z¢ is its only maximal

ideal.

3.24.6 Example 3.24.3 above is also an example of a local ring.

3.25 Proposition

For n 3 2, every maximal left ideal of Mn(R) contracts to a maximal

left ideal of R if and only if R is left quasi-duo.

Proof

Suppose that R is not left quasi-duo. Then there exists a

maximal left ideal M of R such that M is not two-sided. Let
r € R-I(M). Then u = (1,r,...,0)" € rR"-M" and so by Proposi-
tion 3.21 D(M:u)NR = (M:1) N (M:xr) = MN (M:r). By Proposi-
tion 3.15 (M:r) # M and ,so MO (M:r) g M; for if MN (M:r) = M,

then M S (M:r) # R, which is obviously a contradiction since M

is a maximal ideal of R. Hence the contraction D(M:u) NR is
not maximal. For the converse we suppose that R is left quasi-
duo. Let M' be any maximal left deal of Mn(R). Then by

Proposition 2.7 M' is of the form D(M:u) for some M € Max(R)
and u € R-M". But by hypothesis M is a two-sided ideal of R.
We can therefore apply Corollary 3.22 to see that D(M:u) con-

tracts to M; i.e. M' contracts to the maximal ideal M of R.

3.26 Proposition

The contraction of a maximal ideal of Mn(R) is always an inter-

section of maximal ideals of R.
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Proof
Let M' be a maximal ideal of Mn(R). Then by Proposition 2.7
M' = D(M:u) for some M € Max(R) and u € RE-M". But by Propo-

sition 3.21 we have the following contraction of M', namely
M'NR = D(M:u) AR = (M:u)) N...N (M:u ). Since u € R™-M",
it follows that some u, ¢ M. For such ui's we have by
Corollary 2.18 that (M:ui) is a maximal ideal of R. On the
other hand, if uj € M for j # i, then (M:uj) = R. So in any
case we have M'NR is an intersection of maximal ideals of R,

since (M:ui)r1R = (M:ui), which is maximal. o

3.27 Example

Since O is a maximal ideal of Q, the rational field of Z, we

have that each D(O:ei) is a maximal ideal of Mn(Q). Now we
Qi 4020 e ) Z ... 0 ... Z
have D(O:ei)rIMn(Z) = | : : r\Mn(Z)= : . .
R RTOHRMNQ Z ... 0 ... 2

which is not a maximal ideal of Mn(Z).

In the above example we have noticed that the maximal left
ideals D(O:ei) of Mn(Q), where Q is the rational field of 2Z,
do not contract to maximal ideals of Mn(Z). It is therefore
natural to investigate whether this behaviour is typical.

We in fact look at a more general situation: Let R, S and
S"!R, be as in Proposition 1.13. For A' an ideal of S™'R,

we let A = A'NR denote its contraction to R. We are now

able to prove the following result.
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3.28 Proposition

Let P' be a prime ideal of S™'R and let u = (U1/S1, Us/Sz ¢4,
un/sn)' € (S"'R)®. If some entry of u is not in P', then

3.28.1 D(P':u) Zs a proper left ideal of Mn(S'lR);

3.28.2 for s = 81S;, ... S D(P:su) s a proper left ideal of

nl
Mn(R);

3.28.3 the contraction of P' to Mn(R) s D(P:su).

Proof

3.28.1 The proof is similar to _the one in Proposition 2.1.

3.28.2 We remark that s is a unit of S !'R; indeed

s*! = 1/s18; ... sy, = (Ms1)|(1/sz )] .. (1/s)). Thus s ¢ p', for
if. s € P',then 1 = s"'s € P' and so P' = S™'R which is a contra-
diction;: because. some us/sj € B by thypothesis. It there-
fore follows that s(ui/si) € P} for if |not the case, it would
then mean that s'l(s(ui/si)) € P'; i.e. ui/si € P', which is a
contradiction. Now s(ui/si) = (s1/1) ... (si/l)(ui/si)... (sn/l)
= (s1/1) ... (siui/si) cee (sn/l) = (s /1) ... (ui/l) ces (sn/l), since
siui/si = ui/l. By Proposition 1.13 R can be considered as a
subring of S™'R and so (si/1) ... (u;/1) ... (s /1) is indeed
the element s; ... u; ... Sy € R. So s(ui/si) € R, but not in

P'. Thus s(u,;/s;) ¢ P'NR = P, Hence su € R® - P and so

by Proposition 2.1 D(P:su) is a proper left ideal of Mn(R).

3.28.3 Let X € D(P:su). Then for each i=l,...,n
Xi(su) € P =P'NR. But since R is commutative, it follows that

each s(X;u) € P'. Since P' is a prime ideal and s ¢ P', it
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follows that each X;u € P'. Hence X € D(P':u). But since we
are concerned about those X's in Mn(R) only, it follows that
D(P:su) < D(P':u)f\Mn(R). The converse inclusion follows even
without the primality assumption. For let X € D(P':u)r1Mn(R).
Then X;u € P' for each i=1,...,n. However, since s € Rc S 'R,
it follows that s(Xiu) € p'., But R is commutative and so

Xi(su) € pP'. On the other hand we have that

su = (si/1) ... (sn/l) (U1/S1,¢.., un/sn)' = ((s1u1/Sy ... sn/l),...,
(s,./1 ... snun/sn))' = ((u,/1 ... sn/l) reves (8171 ... un/l))'
= (U1 ... Sy reeer S1 ... un)' ¢ rR". However, since each entry

in Xi lies inside R, it is therefore evident that Xi(su) € R,
Hence Xi(su) € PPANR =P for eachi=l.,..., n; i.e. X€D(P:su)
and so D(P':u)(1Mn(R) < D(P:su). Therefore D(P':u)r\Mn(R) =

D(P:su), as required.

3.29 Proposition

Let R be an integral domain, S the set of non-zero elements of
R and K its field of fractions. Then no maximal left ideal of

Mﬂ(K) contracts to a maximal left ideal of Mn(R).

Proof

Since O is the only maximal ideal of K, we see by Proposition 2.7
that all the maximal left ideals of Mn(K) have the form D(O:u),
where u € k"-0". On the other hand, since O is also a prime
ideal of K, we can invoke Proposition 3.28 to obtain
D(O:u)ran(R) = D(O:su). However, since R is an integral
domain, O is not a maximal ideal of R. So again by Proposi-

tion 2.7 D(0O:su) cannot be a maximal ideal of Mn(R). Hence no
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maximal left ideal of Mn(K) contracts to a maximal left ideal

of Mn(R).

3.30 Remark

The integral domain R, regarded as a subring of K trivially has
the property described in Proposition 3.29, since the maximal
ideal O of K contracts to the non-maximal ideal O of R. How-
ever, in the matrix ring case the non-zero maximal ideals of

Mn(K) all contract to non-zero, non-maximal ideals of Mn(R).



CHAPTER 4

EQUALITY OF D(M:u) AND D(M:v)

We wish to know under which circumstances it so happens that
D(M:u) equals D(M:v) for u, v € RD-MT, We provide necessary
and sufficient conditions for such equalities. It is interes-
ting to note the importance of the role of the idealizer in
this regard. In the second part of the chapter we attempt to
count the number of maximal ideals of Mn(R) in the case where

R is a commutative ring.
§8 NECESSARY AND SUFFICIENT CONDITIONS FOR D (M:u) TO EQUAL D(M:v)

4.1 Example

Consider the maximal ideal M = 3Z¢ of Z¢.  Let n=2 and let

u= (2,5), v=1(2,2,) €22 - M. _Then u=v(modM). Let

|

follows that 2a + 5b € M and 2c + 5d € M. However, 2a + 5b =’

Ql pi
Q)

E] € D(M:u). Then [ ?](5,5)5 € M? and hence it
d d

Ql

2a + 5b + 3b = 2a + 2b and similarly we have that 2c + 54 =

3 + 38; i.e. 23+ 25, 26 + 28 em. 7mhus |3 3] € poww)

and so in view of the maximality of the ideals, it follows that
D(M:u) = D(M:v).

4,2 Proposition

If u=v(modM), then D(M:u) = D(M:v).
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Proof

Suppose that u = v (modM). Then for each i=1,...,n there exists

m, EM such that Uy = v, ot m, - Let X € D(M:v). Then Xiv €EM

for each i=1,...,n. Thus X;u = Xjup + ...+ Xou o= Xi(V1+m1) +
- o ,

ces *+ Xi(vn+mn) X;Vi +o..4 xivn +m X;vm', where

m' = Ximl ...+ ximn.-SanIw € M and X € D(M:v) we have that

Xiv+m' € M; i.e. Xiu € M. Hence X € D(M:u) and so D(M:v) cD(M:u).

Since we are dealing with maximal ideals, equality follows. o

4,3 Example

Take p=2 in Proposition 1.16. Then we have the maximal ideal
M= {f € 2[x]: const(f) € 2%} of Z{x]. Now since Z[x] is
commutative, I (M) = Z[x], Let n=3, u = (0O, 1-x?, 2x%)°',

v = (2,3-%x,x?)' and ¢ = 5+x° € I(M)-M. Then v-uc = (2,3-x,x?)' -

(0,5-5x%+x°-x7, 10x3+2x®)y" = (2,-2-x+5x%-x°+x’, x?-=102-2x%)' € M3,
f]_ f2 f3

Let X € D(M:u), say X = L A L Then we have that
£, £fs £

Xu € M?; i.e. the elements fz-fzxi+2f,x3, fs—-fsx?2+2f¢x® and
fg-fex?+2fyx? are all in M. But this will hold only if const(f,),

zZ[x] M Z[x]
const (fs), const(fs) € 2%. Hence D (M:u) = Z[x] M Z[x]
Z[x] M Z[x]

fi f, £, .
On the other hand, £y £fs fe| € D(M:v) if and only if
i) fs fq

2f143fF, £, x+£,x%, 2f,+3fs-Fsx+fegx?, 2f,+3f-Fgx+£fo%X* € M, 'i.e.
3const (f3), 3const(fs), 3const(fs) € 2Z. But since (2,3) =1,

we have that const(f,), const(fs), const(fg) € 2Z. Thus
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Z[x] M z[x]
2[x] M Z[x]|=D(M:u).
z[x] M Z[x]

D(M:v)

4.4 Proposition

If u,v € RP-M" and v = uc (modM) for some c&£I(M), then D(M:u) = D(M:v).

Proof

Since we are dealing with maximal ideals it suffices to prove
one inclusion only. Let X € D(M:u). Then each Xiu € M. By
hypothesis there exists m € M? such that v=uc+m. Therefore

xiv = Xi(uc) + Xim = (Xiu)c + Xim € M, since Xiu, Xim € M and

c £ I(M). Thus X € D (M:v). Hence D(M:u) < D(M:v) and so
D(M:u) = D(M:v), by the observation at the beginning of the

proof.

4.5 Proposition

v = uc (modM) for some c € I(M)-M if and only if u=vc(modM) for

some ¢ € I(M)-M,

Proof

Suppose that v = uc(modM) for some c € I(M)-M. Then for each
i=1,...,n,vi=uic+m for some m € M. We also have that the
coset c+M is invertible in the division ring I(M)/M; i.e. there
exist elements c' € I(M)-M and m' € M such that cc'=1l+m'. So
for each i=1l,...,n we have that u; = uil = ui(cc'—m') = uicc' -

.m' = .~m)c' - u.m' = v.,¢c' - mc' - u.m' = v,c' + m", where
uy (vl )c u;m v,.c c i i ’

m" = -mc' -um' € M. Thus u=vc'(modM), where c' € I(M) - M.
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By interchanging the roles of u and v, it is clear that the

converse statement follows similarly.

4.6 Remark

We observe that if A is a left ideal of R and D(A:u) = D(A:v),

then the n-tuples u and v must behave alike (with respect to A)

at each coordinate.

4.7 Proposition

Let D(A:u) = D(A:v) and let i € {1,...,n}. Then

4.7.1 u; €A 1f and only if v, € A;

4.7.2 u; € I(A)-A 2f and only |tf N; € I(A)-A

4.7.3 uy € R-I(A) 2f and only if vy € R-I(A).

Proof

In view of Remark 4.6 above it suffices to prove each statement

for the coordinates u; only, since the proofs concerning the

vi's would proceed along the same lines.

0... l.l.o
_ . . . [}
4.7.1 Let uy € A. Then ey = : : . (ul,.", ui,n.,qn)
0O...0...0
= hﬁ!.n, 0,..., 0)' E at. Therefore €44 € D(A:u) = D(A:v) and
hence eV e a". But, as above, eV = (Vi""’ 0,...,0)' and

so it follows that vi € A,
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4.7.2 Let u; € I(A)-A. Then u; ¢ A, and so by 4.7.1 above

n
vy ¢ A. Let a€ A. Then ae,;u = a(u;,...,0)' = (ay,...,0)' €A,
since a € A and uy € I(Aa). Thus aeq; € D(A:u) = D(A:v).

Hence ae iV € A" and so (avi,...,o)' € An.: ‘Thus av, €A;

1
i.e. \ € I(aA)-A.

4.7.3 Let u; € R-I(A). Then u; ¢ I(A). By the definition

of the idealizer it is clear that uy ¢ A and so, again by 4.7.1

above, v, ¢ A. If, however, v, € I(A)-A, then by 4.7.2 above

it follows that uy

Thus v, ¢ I(A)-A.

€ I(A)-A, which would obviously contradict

the hypothesis. Since we have also seen

that v, ¢ A, it follows that v, € R=I(a), as required. o

4.8 Example

Then M =

Take n=2 and p=3 in Proposition 1.17.

{f € M, (2)[x]:

const (£) € [gg g]} is,a maximal.ideal ©f R = M, (2)[x] and
Z
I(M) = {g € M, (2)[x]: const(g) € [3Z g}}. Let ¢, ui, u;,
. . , _ 11 0

vi and v, be polynomials in R such that wconst(c) = 0 of ¢
1 0 -2 0

const (u,) = [0 0] , const(u,) = [ 0 O}’
1 1 1 -1

const(v;) = [O O] and const (v,) [O O] . Put u=(u,u,;)’
, _ Jo -1

and v=(vy,va2)"'. Then const(vi-uic) = Lo o and

const (v,-u;c) = lo o

We assert that D(M:u) =

D(M:v).
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fl fz
Let us therefore consider any X = [f f“} € D(M:u) and
3
. {al a2 bl b2
suppose that const(f.) = a, a, |’ const (f,) = b, bu |7

const (f,) = and const (f4) = . From Xu € M?

C; Cy d3 dq
ai a;|[1 o] , [ba b,][-z o} -
we have that a, a. l|o 0 b, b o o
a1-2b} © € 32 Z and similarly it follows that
a3-2b3 O_ _3Z Z_

€ 2 . Hence ai—2bi = 0 (mod3) and
c,-2d, o 32

{cl-2d1_ 0] 3%

ci—ZdisEO(mod3), for i=1,3. However, by adding the respective
congruences 3bisEO(mod3) and 3dissO(mod3), the above congruences
reduce to a;+b,; =0(mod3) and cj+dj =0 (mod3) fori=1,3. This
imply that X € D(M:v), i.e., D(M:u) = D(M:v). But since

D(M:u) and D(M:v) are both maximal, egaulity follows and the

assertion is proved.

In the above example we note that u:,u,,vi,v, € I(M),
c € I(M)-M and v = uc (modM). Indeed we now have the following

result.

4,9 Proposition

If each uy and 1 8 in I(M), then D(M:u) = D(M:v) Zf and only

1f v = uc(modM) for some c € I(M)-M.
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Proof

If u and v are in Mn, then each uy and each vy is in M and
hence in I (M). The necessary and sufficiency conditions are
all satisfied, since D{(M:u) = Mn(R) = D(M:v) and for c we

can choose the value 1. So we may assume that u € M-, In
order to prove the required result, we firstly assume that
D(M:u) = D(M:v). We distinguish between two types of

uy € I(M), namely uy € I(M)-M and then uy € M. For

u, € I(M)-M there exists Wy € I(M)-M such that uiwi+M = 1+M =

1

wiui+M, since I(M)/M is a division ring. So there exist

1 - - 1
elements m,, m; € M such that u,w, = l+m; and wsu, l+mi.
Let k be a fixed integer such that uy € I(M)-M. Then by 4.7.2

v, € I(M)-M, Thus ¢ = wkvkE I (M)-M,. Now v,

k KTURE = VT g (wyvy)
vk—(ukwk)vk = Vk-(1+mk)vk = vk—vk-mkvk = rm vy € M. Now let

j be another index such that uj € I(M)-M and let X = wkelk-wjelj'

| O... wk...-wg AV Q
Thus Xu= : : : : (ul,.--,l]k,o-o’uj'-oo’o)' =
0...0 ... 0 ...0
wkuk—wju
. € M. Hence X € D(M:u) = D(M:v). Therefore
(0]
n n
- . 'l - . . - = +
Xv € M and so WiV wjvj € M; i.e. cC vaJ € M, or ¢ vaJ mJ
for some m" € M. Now we have that vj—ujc = vJ-u (WJVJ m") =
-u.w.v.-u.m" = v.-(l+m.)v.-u.m" = -m.v.-u.m® € M, since
A e e e Bl 37 (1#my)vymugmg 373749503 ’

£ € I(M) and mg € M. Finally, if uy € M, then by 4.7.1
vj € M. So in any case vj-ujc € M. We have therefore
succeeded in proving that vj-ujc € M for each index j; i.e.

v = uc (modM), where ¢ € I(M)-M is constructed as above.



58

The converse was proved in Proposition 4.4, without the

idealizer assumption on u and v. o

4,10 Example

In Proposition 1.16 choose n=2 and p=2. Then
M= {f € R : const(f) € 22} is a maximal ideal R = Z[x] and

I(M) = z[x]. Let u = (1-x*, -1+x)', v = (3-2x, l+x*®)' and

c = 5+x. Now vi-uic = 3-2x-(5+%-5x%2-x3) = =-2-3x+5x?+x> € M
and v,-u,c = 1+x3-(~5+4%x+x?) = 6-4x-x?+x> € M. So v = uc (modM),
’ o . . fi f;
c € I(M)-M and each Uy, vy € I(M). Let € D(M:u).

) fy

£, P
fs £y

fl-fz’f1X2+f2X

Then
f3—fq‘f3X2+qu

](l-x’, -1l+x)' = [ } € M2, Thus

const (£1-f,), const(f,=£4) € 2%2; i.e. const(f1) = const(f,) (mod2)

. £, £
and const(f;) = const (fy) (mod2). So D(M:u)=={[f fi] € M, (R) :

const (fi1) = const (f,) (mod2) and const(f;) = const(£f4) (modZ)}.

fl f2
On the other hand, if [f f“}‘ED(M:V), then
3
- . 3

const (3£f:+£,), const(3f;+f,) € 22; i.e. 3const(fi:) + const(f.) € 22
and 3const(f;) + const(f,) € 2Z; i.e. 3const(f;) = -const(f;) (mod2)
and 3const(f;) = -const (f,) (mod2). Now if we add the congruence
equations -2const(f,) = 2const(£f,) (mod2) and

~2const (f;) = 2const (£4) (mod2) to the appropriate ones above, we

obtain const (f;) = const(£f,) (mod2) and const(f;) = const(£fs) (mod2).
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f]_ fz
Hence D (M:v) ={ £, £, € M, (R)

const (f1) = const (£,) (mod2)

D (M:u).

and const(f;) = const(f,) (modZ)}

4.11 Remarks

4.11.1 M can be considered as a subset of Mn(R) via the
natural embedding of R in Mn(R). So M generates the left
ideal Mn(M). By 3.12.1 we can restate Proposition 4.9 as
follows. If D(M:u) and D(M:v) contain M, then they are equal

if and only if v = uc(modM) for some c € I(M)-M.

4.11.2 It may seem that the idealizer assumptions in Propo-
sition 4.9 push everything inside I(M), in which case we may
as well assume initially that M is a two-sided ideal. How-
ever, the ideal D(M:u) is still being calculated in Mn(R). In
fact, in Example 4.8 all the u; are in T(M), but D(M:u)

possesses an element having none of its entries in I (M), namely

(£, £, -1 3
the element Lf £, with const(fi) = 1 ol
3
const (£,) = g g] , const(f,) = [g i] and
const (f4) = lg -g].

It is sometimes not so easy to compute the idealizer of a left
ideal. We are now able to describe the idealizer of D(M:u)

in Mn(R) whenever u behaves nicely enough with respect to M.
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4,12 Corollary

If each uy € I(M), then the idealizer of D(M:u) is given by

I(D(M:u))= {X € Mn(R): Xu = uk (modM) for some k € I(M)}.

Proof

Let XEMn(R) such that Xu = uk(modM) for some k € I(M). Consider
any Y € D(M:u). Then (YX)u = Y(Xu) =Y (uk) (modM) = (Yu)k (modM)
and so (YX)u - (Yu)k € Mo, However, since Yu € M? and keI1I(M),
it follows that (Yu)k € M". But then we have that (¥X)u € M".
Thus ¥YX € D(M:u) and so X € I(D(M:u)). Conversely we suppose
that X € I(D(M:u)), but X ¢ D(M:su)-itself. Then by 2.20.3

it follows that D(M:Xu) = (D(M:u) :X) 'and by Proposition 3.15
(D(M:u) :X) = D(M:u). Hence| D(M:Xu) = D|(M:u). Now by Propo-
sition 4.9, with v = Xu, we have that Xu s uk(modM) for some

k € I(M)-M. On the other hand, if X € D(M:u), then Xu € M"

and hence Xu = u.0 (modM)..

4.13 Remark

In the case of a matrix ring over a commuative ring
Corollary 4.12 says that the idealizer of D(M:u) consists of
all matrices X which act on u like scalar multiplication modM;

i.e. those X's which have u as an eigenvector modM.

4.14 Example

Let K be any commutative field. Consider any element



.11 ces ?lj cen ?ln

X = %Jl cee %jj .o %jn € I(D(O:ej)). Then by Corollary 4.12
o o A oo A

Xejs ejk(modo); i.e. (alj,..., ajj""’ anj)' - 0,0,k ,0)' =

(alj""' ajj-k,..., anj)' =\(O,...;Q,.;.,O)'.’ Thus ajj=k and

—
.
.
.
.
.
.
'

aij=0 for i#j and so I(D(O:ej)) =

BRoeset ose IR
o...;...o
N"';'“N
-
®

'_
| —

I(D(O:ej)) consists of all matrices whose j-th column is zero

off the diagonal. For the special case n=2 and j=1 we recover

[K K]

0 K|*

£He well-known result I(D(O:el)) = I([g ?}) =

4,15 Example

27 Z

Let R=2Z, M=2Z2, n=2 and u=(1;0)"'. Then DM:u) = [ZZ 7

I(M) = 2. Suppose that X = [§ z} € I(D(M:u))-D(M:u).

Then [§ z](l,o)' = (1,0) 'k (mod2z); i.e. (x,2z)'= (k,0)"' (mod2Z).

Hence x-k € 2Z and z-0.k € 2%Z. So by choosing k=1 € I(M)-M,

2a+l

Yy .
2b w]' On the other hand, for X € D(M:u)

we see that X = [

we choose k=0 and so in this case x=x-1.0 € 2Z and z € 2Z, in any

case... Thus I(D(2Z:(1,0)')) ={X€ M, (2) : X(1,0)' = (1,0) 'k (mod2Z)

V/ z |

27 72| which is indeed the case.

where k=1 or O} = [
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4,16 Corollary

If M is two-sided, then D(M:u) = D(M:v) Zf and only <If

v = uc (modM) for some c € R-M.

Proof

Since M is two-sided, I(M)=R and the result follows by Propo-

sition 4.9.

4,17 Corollary

If all uy and v, are central in R (or even jusﬁ central modM),
then D(M:u) = D(M:v) <f and only.-if v =uc(modM) for some

c € I(M)-M.

Proof
If x is central in R, then xr=rx for every r € R. So in
particular we have that mx=xm ., for every m € M. Thus x € I(M).

So the central elements u; and v, are therefore in I(M) and
hence by Proposition 4.9, the result follows. On the other
hand, if uy and v; are central modM, we have that u,; X=Xuy €EM
for each x € R. So in particular for m € M, mui=uim+m' € M,
Thus u, € I(M). Similarly it follows that v, € I(M). There-

1

fore, again by Proposition 4.9, the result follows.

4.18 Corollary

D(M:u) = D(M:ei) if and only if u; € I(M)-M and u €M for
k#i.
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Proof

Suppose that D(M:u) = D(M:ei). Now we have that

D(M:ei) =

o) eeeltd

M R
. I By choosing X € D(M:u) suitably,
M R '

we are now able to prove that . € M for k#i, e.g. if X is the

matrix héving the entry 1 in the (1,k)-position (with k#i) and

zero's elsewhere, then u, € M. On the other hand, for m € M

k
let X be the matrix having the entry m in the (1,i)-position
and zero's elsewhere. So it follows that Xu = (O,...,mui,,‘...,O)' EMn;
i.e. mu, € M for every m € M. Thus uy € I(M). Moreover we

have that uy ¢ M, otherwise it follows that u € M? and hence

D(M:u) = Mn(R), an obviotis contradiction. Thus u, € M for k#i
and uy € I(M)-M. For the converse we suppose that U € M for
k#1i and let uy € I(M)-M. Put v slle, = (0,...,1,...,0)". If

we now choose c=u; and then interchange the roles of u and v in
Proposition 4.9, it follows that u-vc = (ul,..., ui—l.ui,...,un)'=
(ul,...,O,...,un)' € M%; u=vc(modM). Since each ug, vy € I(M),
it follows by Proposition 4.9 that D(M:v) = D(M:u); i.e.

D(M:ei) = D(M:u), as required. o

4.19 Example

Let n=2 and p=3 in Proposition 1.17. Then

M = {f € R: const(f) € [gg g]} is a maximal ideal of

Z Z
R = M, (2)[x] and T (M) = {g € R: const(g) € [BZ Z}}' Let
u = (ui,uz)' where u; and u, are polynomials in R such that
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3 1
o o

1 0]

0 OJ ]. Then

const(u;) = [ and const (u,) =[

u; € I(M)-M, u, € M, i=2 and k=1#2. Now D(M:ey) = [M R] =

M R

. f
{[ 2] € M, (R):const(f;), const(f,) € [32 Z]}. Consider

f3 £y 3Z Z
[£. £, ]
any X = | £ fMJEID(M:u) and suppose that
3
= aj a, _ bl bz
const (£1) [a, auJ' const(f,) = [b3 bu]'
const (f,) = [21 gi}and const (f4) = {g; gi]. Since Xu € M?, it
3

ai da 1l o) ba b2 3 1 =
follows that [a3 au][o O] * [b3 bu][o 0] B

[al+3b1 bl] € [32 Z] and -similarly we have that

a; +3b, b, 32 7
c1+3d:  d1] . [32 Al
[c,+3d3 d, | € [32 7| Hence ai1+3bi, a,;+3b,, ci1+3d:,

c3;+3d; € 32 and so it follows that a, a;, ¢ci, ¢; € 32; i.e.

32 Z

3y Z]' Thus.X € D(M:e;:) and so

cOﬁsﬁ(fl): const(fa) € [

D(M:u) € D(M:e;). But since we are dealing with maximal ideals,

equality follows.

4.20 Corollary

If K 28 a commutative field, then D(O:u) = D(O:v) in Mn(K) if

and only <if u=cv for some c#0 in K.

Proof

Since u and v are non-zero, it follows that u,v € R=I(0). Now
by Proposition 4.9 D(O:u) = D(0:v) if and only if u = vc(modO)
for some ¢ € R-0; i.e. ui—cvi=0 for some c#0; i.e. u=cv for some

c#0. o
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4.21 Example
Let K=Zs, v=(2,0)' and c=3. Then u=(1,0)' and so u=cv. Thus

(0] Zs

D(O:u) = [O 7.

] = D(0O:v).

4.22 Remark

When n=1, Proposition 4.9 says that for u,v € I(M), (M:u) = (M:v)
if and only if u=vc(modM) for some c € I(M)-M. However, we
shall see in Corollary 4.26 that the restriction on u and v is

not necessary for the equivalence.

In the next three results we adopt the following notation.

Let S be a ring, R = Mn(S), N a maximal left ideal of S and

w= (wy,...,w )" €s"-N. Let M' = D(N:w) in R and let

X = [xij] and Y be in R, In Ig{N) and I5(M') it is understood
that the subscript indicates the ring in/which the idealizer

is being computed.

4.23 Proposition

If each w; € IS(N) and each X534

then X =YC(modM') for some C € IR(M')-M'.

€ IS(N) and (M':X) = (M':Y),

Proof

By 2.20.3 (M':X) = D(N:Xw) and so by hypothesis D(N:Xw) = D(N:Yw).
The hypotheses also gaurantee that the entries of Xw are in
IS(N). Thus by Proposition 4.7 the entries of Yw are in IS(N).

Hence we can invoke Proposition 4.9 to find k € IS(N)—N such that

Xw = Ywk (modN) ceess 4.23.1
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Now since IS(N)/N is a division ring, it follows that for each
Wy ¢ N there exist y € IS(N) and n, €N such that YW = l+ni.

For each i=1l,...,n we define c; as follows.

0 if w, € N,
1
e, - |
w ky, if Wy ¢ N.
Let C be the diagonal matrix C = diag(cl,...,cn). Then
-Cl..lo
Cw-wk = E E (w1,...,wn)' - (wl,...,wn)'k
0O ... ¢C
n
= LI
(clwl,...,cnwn) (wlkl,...,wnk)'
= (clwl-wlk,...,cnwn-wnk)' ceees 4.23.2

Now each entry in 4.23.2 is in N, for if W € N,then ci=0 and
hence ciwi—wik = —wik € N sincel k€ IS(N). On the other hand,
if w; ¢ N, then c,w, = wikyw, = wi;k(l+n;) = w,k + w;kn,. Thus
CyWy -~ wik = wikni € N, since N is a left ideal. But then it
means that

Cw - wk € N vev.. 4.23.3

i.e. Cw = wk (modN). Hence YCw - Ywk = Y(Cw-wk) € N". But by
4.23.1 above Xw-Ywk € N" and so by combining these results it
follows that Xw-YCw = (Xw-Ywk) - (YCw-Ywk) € N"; i.e.

Xw = YCw (modN) .  Now (X-YC)w € N"; i.e. X-YC € D(N:w) = M'.

Thus X = YC (modM"') . It remains to show that C € IR(M')-M' We

proceed as follows. Let Z € M' = D(N:w). Then ZCw-Zwk
Z (Cw-wk) € Nn, because Cw = wk (modN); i.e. ZCw= Zwk{(modN). But
Zwk € N, because Zw € N and k € Ig(N). Thus

ZCw-Zwk+Zwk € N?; i.e. 2Cw € N and so 2C € D(N:w) = M'. Thus

C € IR(M'). Finally we have by hypothesis that some Wy ¢ N
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and so for them we have that wik ¢ N, since k € IS(N) . Thus
wk ¢ N, But then it means that C ¢ M'. For if C € M', then
cw € N" and so together with 4.23.3 it follows that

wk = Cw-(Cw-wk) € Nn, which is an obvious contradiction. a

4,24 Example

Let S=Z, R=M, (S), N=3Z, w=(1,1)', X = [1 _0] and Y = [_f 3].

Then M' = D(3Z:(1,1)"') = {[2 b] € R : a+b=0(mod3) and

d
- a b . a bll1l ol _
c+d-0(mod3)}. Let [c d] € (M':X). Then [c d][o _1]‘
{2 :g] € M'; i.e. a-b=0{mod3)-and ¢c-d=0(mod3). Thus

(M':X) = {[2 ’g] € R illa #lb@badll ana csd(modB)}. Let

a b Cemr. a bl 4 3] _ [4a-b 3a ..
[c d] €{Mt:Y).  Then [c d][—l o] = [4c—d 3c] € M

7a-b = 0(mod3) and 7c¢-d =0(mod3). But -6a =0{(mod3) and
-6c = 0(mod3) and hence by adding the respective congruences we get

a b

1.
c d] € (M':X) and hence

a = b(mod3) and c=d(mod3). Thus [
(M':X) = (M':Y). So all the hypotheses of Proposition 4.23 hold.

We next assert that IR(M') = {[x y] € R : x+yssz+w(mod3)}.

Z w
Let [x Y] € I,(M') and let [a b] € M. Then
2 w R c d .
a bi||{x Y| - [ax+bz ay+bw ] o )
[C d][z : w] [cx+dz cy+dwj €M, Thus a(x+y)+b(z+w)

(ax+bz) + (ay+bw) = 0(mod3) and similarly c(x+y)+d(z+w) = 0(mod3).
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a b]

Since the above congruences hold for all [c a| € M', it

follows that they indeed hold for all a,b,c,d £ Z subject to
the conditions a+b=0(mod3) and c+d =0(mod3); i.e. 3|a+b and

3|lc+td. Let A = {(a,b) € 2? : 3|a+b}. Then

ny = X y
IR}M ) = {[z w] € R

(a,b), (c,d) EA}

3]a(x+y) +b(z+w) and 3|c(x+y)+d(z+w), where

{[: 5] € R : 3|a(x+y)+b(z+w), where

(a,b) € A} n {[z z} € R : 3|c(x+y)+d(z+w), where (c,d) € A} =

{[: z] € R : 3|(X+Y)~(z+w)} n {(x Y] € 3|(x+y)—(z+w)} *

| Z w

= {[)Z{ 3:] € R : 3[(X+y)-(Z+W)} = {:}Z{ z’} ER : x+y= z+w(mod3)}'

where * follows from Proposition 1.18 with p=3. Thus our

assertion is proved.

1 -3

8 _4]. Then C € IR(M'), since 1-3-(8-4) = -6

Now let C = [

is divisible by 3. But C ¢ M', because 3 does not divide (1-3).

Thus C € Ip(M')-M. Finally we see that X-YC = [é _?] -

4 31[1 -3] _ [1 o] _ [28 -24] _ [-27 24] € M

-1 oJ|8 -4 o -1 -1 3 1 -4 !
because ~-27+24 = -3 and 1-4 = -3, which are both divisible by 3.

4.25 Corollary

If N 28 a two-sided ideal of S, then (M':X) = (M':Y) Zf and

only if X=Y¥YC(modM') for some C € I(M')-M'.
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Proof

Let N be a two-sided ideal of S and suppose that (M':X) = (M':Y).
Then IS(N) = S and so all the hypotheses of Proposition 4.23 are
satisfied. Thus X = YC(modM') for som C € IR(M')—M'. For the

converse we suppose that X = YC(modM') for some C € IR(M')-M',

n n

where M' = D(N:w) with w € S -N". Then X = YC(mod(D(N:w))) and
so (X-YC)w € Nn; i.e. Xw = YCw+u for some u € N". Let

Z € (M':Y) = (D(N:YwW). Our aim is to show that Z € (M':X).
Now we have that ZXw = Z(YCw+u) = Z(YC)w+Zu. Since Z € R and
since N is an ideal of S, it follows that Zu € N-, It remains
to show that Z(YC)w € N". Now since Z € (M':Y) by assumption,

we have that ZYw € N" and so-2Y € D{N:w) = M'., However C € IR(M')
and hence we have that (z¥)C'€ M' = D(N:w); i.e. (z2Y)Cw € N°;
i.e. Z(YC)w € N", which is what we intended to prove. Hence
ZXw € N? and so Z € D(N:Xw) = (M':X). Thus (M':Y) c (M':X).

But since these ideals are both maximal, equality follows. o

As was remarked in 4.22 we shall now see that for the case n=1
in Proposition 4.9 we may dispense with the idealizer restric-
tions on u and v, namely that u and v be in I(M), in order for

the equivalence to hold.

4.26 Corollary

If R is a matrix ring over a commutative (or local or left
quasi-duo) ring, then in R, (M:u) = (M:v) Zf and only if

v = uc (modM) for some c € I(M)-M.



70

Proof

If R = Mn(S), where S is a commutative (or local or left
quasi-duo) ring, then every left ideal in S is two-sided.
Let M be a maximal ideal of R. Then by Proposition 2.7

M = D{(N:w), where N is an ideal of S and w € sP-n". If we
now let M'=M, X=u and Y=v in Corollary 4.25, then it follows
that (M:u) = (M:v) if and only if u=vc(modM) for some

c € I(M)-M in M1 (R) = R. o

§9 A COUNTING PRINCIPLE

In this section we make an attempt. to count the number of
maximal left ideals of Mn(R), where R isa commutative ring.
We first consider the special case where n=2 and R is a commu-

tative field.

4.27 Proposition

If K 2s a commutative field, then

4.27.1 Max(M, (K)) = {D(O:u) : u=(0,1)"' or u=(1,c)', c € K};
4.27.2 card(Max(M, (K))) = card(K)+1.
Proof

4,.27.1 By Proposition 2.7 the maximal ideals of M, (K) are of

the form D(0:(0,c)'), D(0O:(c,0)"') and D(0O:(c,d)') where c,d#O0.

But D(0:(0,c)') = D(0:(0,1)'), for if X = [’z‘ 3;] € D(0:(0,c)'),
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then [z z](o,c)' = (0,0)'; i.e. (yc,wc)' = (0,0)!'; i.e.

yc = we = O, Now since c#0, it follows that y=w=0; i.e.

[: 3] € D(0:(0,1)'). Thus D(0:(0,c)') = D(0:(0,1)') and

since we are dealing with maximal ideals, equality follows.
As above, it also follows that D(0:(c,0)') = D(0:(1,0)"'). Oon

the other hand, D(0O:(c,d)') = D(O:(1,c *d)'), for if

X
[z z] € D(0:(c,d)'), then [z 5](c,d)' = (0,0)'. Thus
xc+yd=0 and zc+wd=0. Since K is a commutative field and c#0,

it follows that x+yc~'d=0 and z+wc—1d=0; i.e. [g z](llc-ld)'=
[} X Y . =1 T

(0,0)' or [z w] LS D I [ # OB e BT B L . Hence

D(0:(c,d)') =« D(0:(1,c*d)' and since we are dealing with maximal

ideals, equality follows. Hence the maximal ideals of M, (K)

are D(0:(0,1)'), D(O:(1,0)"') and D(O:(1,c)'), where ¢ € K and

c#0. Thus Max (M, (K)) = {D(O:u) : u=(1,0)' or u=(1,c), ¢ € K}.

4.27.2 The map £ : Max(M, (K)) » KU {a} defined by £(D(0:1)"')=ac
and £(D(0:(1,c)'))=c, is a bijection. f is well-defined, for
if D(O:(1,c)') = D(0O:(1,d)'), then by Corollary 4.20

(1,c)' = k(1,4)', for some k#0 in K; i.e. (1,c)' = (k,kd)’'.
Thus k=1 and so c=kd=d. Hence £(D(0:(1,c)')) = c=4d =
£(b(0:(1,4)')). Also D(0:(0,1l)') is mapped onto the unique
element o and so we have that f is well-defined. f is one-to-
one, since D(0:(0,1)') is mapped onto o and if £(D(0:(1l,c)')) =
£f(D(0:(1,d)"')), then c=d. Thus D(0:(1,c)') = D(0:(1,d)"').

f is onto, since o is the image of D(0:(0,1l)') under f and given
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any ¢ € K, it follows that Mc = D(0:(1,c)') is maximal left
ideal of M, (K). So ¢ is the image of M, under f. Thus £

is a bijection and so card{(Max(M, (K))) = card(K)+1l.

4,28 Remark

By the preceding result we see that the maximal ideals of

M, (K) are indexed by (0,1)' and (1,c)' for c € K. Similarly
for n=3, etc. the maximal left ideals of M, (K), etc. are in-
dexed by (0,0,1)', (0,1,a)' and (1,b,c)' for a,b,c € K. If
we let g = card(K), then for n=2,3, etc. it follows that the

maximal left ideals of M, (K), M; (K), etc. are respectively

1 2 i n-1
Z ql, Z q , etc. So_in general Mn(K) has Z ql maximal _
i=0 i=0 i=0

left ideals.

4.29 Example
Let K=2Z,. Then the maximal left .ideals.of M, (Z;) are

-Za

D(0:(3,1)") = |, 8] , D(0:(1,8)") = [8 g:]
p:(I, D ={[5 ¥l em(z) : %+7-5 ana 7+9-0} ana
D(0:(1,2)") ={ ’;‘ g] € M, (Z,) : x+2y=0 and E+§v’v=6}. Thus

card(M, (Z;)) = 4 = 3+1 = card(Z,)+1.

Recalling that for a commuatative ring R, Ay denotes card(R/M)

for M € Max(R), we now have the following result.
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4.30 Proposition

. n=1 .
Let R be a commutative ring. Then M_(R) has ), .} ql
n MojEy M

maximal Zeft ideals, where the outside sum is taken over

M € Max(R).

Proof

If M and N are distinct maximal ideals of R, then since they
are two-sided, we see by Corollary 3.22 that the maximal ideals
of Mn(R) 1ying over M are all distinct from those lying over N.

For M fixed, the map f : Mn(R) - Mn(R/M) defined by

37 --- an all+M o a1n+M
£f:]: . > i 5 ;—Sets up a one-to-one
anl * & o ann an1+M ® & o ann+M

correspondence between those maximal left ideals of Mn(R) lying

over M and the maximal left ideals of Mn(R/M). This can be
seen as follows. Let £ ¢« D(M:u) =+ D(M/M:(1+Mn). Then f
is well-defined, for if D(M:u) = D(M:v), then since R is commu-

tative, M is two-sided and so by Corollary 4.16 v = uc(modM) for

some ¢ € R-M. Thus for each i=1l,...,n there exists m € M such

that vy = uic+m. From this we assert that D(M/M : u+Mn)

a11+M cs e a1n+M
D(M/M : v+M®), for if X = | : € D(M/M : u+M"), then
anl+M e e ann+M
+M

a11+M R

E (V1+M,...,Vn+M)' =

anl+M e ann+M
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*M ... oa) +M
: : (hﬁfM)(C+M),---,(un+M)(C+M))' =

anl+M ce s ann+M

a11+M cee aln+M

(c+M) g 5 (Wy+M ,...,u +M)' € (c+M) (M/M,..., M/M)',
anl+M . e ann+M

since X € D(M/M : u+Mn). However, since (c+M) (m+M) = cm+M = M,

it follows that (c+M) (M/M,...,M/M)' = (M/M,...,M/M)' = (M/M)"

and hence X € D(M/M : v+MD). Thus D(M/M : u+M") < D(M/M : v+M")
and since we are dealing with maximal ideals, equality follows
and the assertion isAproved. Thus £(D(M:u)) = £(D(M:v)).

™)

f is one-to-one, for if f(D(M:u)) = f£f(D(M:v)), then D(M/M : u+M
D(M/M : v+Mn). By Corollary 4.20 u+M s (c+M)(v+Mn) for some
c ¢ M; i.e. (u1+M,...,un+M): = (c+M)(v1+M,...,vn+M)' =
((c+M)(v1+M),...,(c+M)(vn+M))' = (cv1+M,...,cvn+M)'. Thus
u1+M = cv1+M,...,un+M - cvn+M; i.e. uy=—Ccvy EM for each
i=l,...,n; i.e. uw=cv(modM), where c € R-M. Hence by
Corollary 4.16 D(M:u) = D(M:v), ‘as'required. Finally we see
that f is onto, for given any maximal ideal D(M/M : u+M?) éf
M_(R/M), then u+M" # M®.  Thus u ¢ M" and so D(M:u) is the
required maximal ideal of Mn(R) which is mapped onto

D(M/M : u+Mn). In view of the above bijection and since

ﬁi; q; maximal left ideals by Remark 4.28,.it-follows
i=

that there is the same amount of maximal left ideals of Mn(R)
lying over M. Thus Mn(R) has exactly ZM nil q; maximal

i=0
left ideals. o

Mn(R/M) has
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4.31 Corollary

4.31.1 The sum above is infinite unless R is semi-local and

each residual field is finite.
4.31.2 In particular, Zf m is a positive integer, then Mn(Zm)

n-1 .
has ) P1 = (pn—l)/(p—l) maximal left ideals, where p
pjm 1i=0 plm

18 a prime number.

Proof

4.31.1 If the sum is infinite we are done. If R is semi-
local, let Ml""’Mk be its-maximal-ideals. Then R/Mi is a

field for each i=1,...,k. By assumption card(R/Mi) = dy is
, : i
finite. Hence by Proposition 4.30 above Mn(R) has
n-1 .
M, Z qJ maximal left ideals, which is obviously a

ik, My

s =

[N e

i=1

finite number.

4,31.2 Zm has one maximal ideal for each prime p dividing m.

n-1 .
So the total number of maximal ideals are % ! pt
plm i=0

%7 (L+p+p? +...+ p 1) = % (p7-1)/ (p-1).
plm pm

4.32 Examples

4.32.1 Let R=2¢ and let n=2. Then the maximal ideals of

R are M = 2%Z¢ and N = 3%Z¢. Now Z¢/M =~ 2, and Z4/N =~ Z;.

Thus dy = 2 and ay = 3, which are the prime divisors of 6.

1 . 1
Also ) q; = 1+2 = 3 and )

i=0 i

qé = 1+3 = 4 and so according
0]
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1

to Proposition 4.30 M, (Zs) should have 2 q; = 3+4=7

MeMax (Z;) i=0

maximal left ideals. Moreover, if we calculate the maximal
ideals by using the formula in 4.31.2 with n=2, m=6 and p=2 and 3,

1
we get ) Jopl = (22-1)/(2-1) + (32-1)/(3-1) = 3+4=7,
p=2,3|6 i=0

which agrees with the number obtained above. Indeed the maximal

left ideals of M, (Z¢) are

pze + (I, = {[2 3] emo : @B, a2z}
55 . (T Evey = [2%Zs Ze]. .3 == _[ze 226].
D(2Z¢ : (1,0)"') = _-Z-ZG ZG]' D(2Z¢ : (0,1)') = [Zs EZG]I

D(32s : (1I,1)') = {(g g] € M, (Zg)—:a+tb, c+d € 326};

D(3Z¢ : (1,0)') = Ei ]? D(3zs : (0,1)') = {gi 532] and

D(32zs : (3,I)') = {Tg 9] € Mgy (Zs )2\ ra+3D, 5+2a € §z6}.

4.32.2 We observe that we can also apply the formula in 4.31.2

1 .
to Example 4.29 to get the % ) 3% = 143 = 4 maximal left
3{3 i=0

ideals of M, (Z,).



CHAPTER 5 -

CONJUGATE IDEALS

Our main objective in this chapter is to investigate how the
property of conjugacy is propagated to matrix rings; i.e. if
M is conjugate to N in R, does it imply that D(M:u) is conju-
gate to D(N:v) in Mn(R)? We also study the seemingly easier
question, namely for a given maximal ideal M of R, are all the

D(M:u) conjugate to one another in Mn(R)?
We recall the following well-known result.

5.1 Proposition

If p 28 a unit of R, then the map ip : R~ R defined by
iP,:.r + prp~! s an automorphism which is called an inner
automorphism,

In view of the above result we now also have the following

easily proved result.

5.2 Proposition

If p is a unit of R and if B is a left ideal of R, then

1

ip(B) = pBp~! = {pbp~! : b€B} 75 a left ideal of R.

5.3 Definition

We say that two left ideals A and B are conjugate if

A = ip(B) = pBp~ ! for some unit p of R and we then write A ~ B.
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5.4 Proposition

The relation ~ defined above is an equivalence relation on the

collection of left ideals of R.

Proof

~ is reflexive since A = 1A1~' for any left ideal A of R. ~ is
symmetric, for if A ~ B, then A = pBp ! for some unit p of R.

But then we have that B = p~!Ap = p~!a(p~!)~!; i.e. B ~ A,

because p~! is also a unit of R. ~ is transitive, for if A ~ B

1

and B ~ C, then there are units p and q such that A = pBp ! and

! = pgC(pg)~?t; i.e.

B = gCq~'. Thus A = pl(gCa™Yp~* = pgCcqg™'p~
A ~ C, since the product . ocf two. units is-again a unit. This
proves that ~ defines indeed an eguivalence relation on the

collection of left ideals of R.

5.5 Remarks

5.5.1 Since we are dealing with left ideals, we can also say
that A ~ B if and only if A = Bp for some unit p of R. When-

ever it is convenient, we shall use this definition in stead.

5.5.2 If A and B are two-sided ideals of R, then A ~ B if and
only if A = B; i.e. when dealing with two-sided ideals, con-
jugacy means equality. This holds since Bp = B, where p is a

unit of R.

5.6 Proposition

Let A and B be left ideals of R such that A ~ B, say A = Bp for

some unit p of R. Then A = B if and only <f p,p~' € I(A).
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Proof

Since A is a two-sided ideal of I(A) and in view of Remark 5.5.2
above, if suffices to show that B is a two-sided ideal of I(Aa).
Moreover, since B is a left ideal by hypothesis, we need only

to show that it is also a right ideal of I(a). Now since

A = Bp for some unit p of R, we also have that B = Ap~!. So
let b € B and x € I(Aa). Then there exists a € A such that
bx = ap~!x = ap~!xpp~?! € Ap ' = B, because x,p *, p € I(A) and

a € A, Thus B is a right ideal of I(A) and the result follows.no

5.7 Example

Consider the left ideal A = [gg 8] of R = M, (Z). Then
_lz 0

- 20 9]

' 1 o , .

5.7.1 Let p = 5 11k Then .p-is a ,unit of R. Indeed

-1 _ r 1 0 = . _

p = [‘2 Nk Let B = Ap. Then B ~ A. Moreover, B = A,
. _[2a o]f1 o] _ [2a o]

for if x € B, then x = [Zb O][2 l] = [Zb O] €A .

and so B <« A. On the other hand, if x € A, then

_ J2a o] _ [2a o]f1 o] Com. 4
X = [Zb O] = [Zb O][Z lJ € Ap = B; i.e. A c B.
Thus A = B.
5.7.2 Let = |} 2 . Then p is a unit of R and
P o) 1
p~t! = [é _i]. Let B = Ap. Then again we have that B ~ A.

) _ 2a Olll 2 _ 2a 4da .
Consider any x € B. Then x = [Zb 0}[ ] = [2b 4b]’



80

We observe therefore that in Ekample 5.7.1 both p and p~! are
in I(A) and so the equality of A and B follows. However, in

Example 5.7.2 neither p nor p~! lies in I(A) and hence A#B.

5.8 Proposition

If A and B are conjugate left ideals of R such that one of

them 18 maximal, then so <18 the other.

Proof

Let A ~ B, say A = Bp for -some unit-p of 'R and suppose that A
is maximal. Let N be any left ideal of R such that B ¢ N.
Then there exists an element x 'in N such that x ¢ B. Thus

xp ¢ A, But xp € Np. So A T Np-. But since A is maximal,

it follows that Np = R, So thereexists'n € N such that

np = 1 and hence p~! = n € N. Thus 1 = pp~! € N and so N = R.

Therefore B is maximal as well.

5.9 Example

Let R = M, (Z), M = D(32:(1,1)") {[a b] € R : 3|a+b and

c d

3|c+d} and p = [é —i]. Then p is a unit of R and by Propo-

sition 2.7 M is a maximal ideal of R. Let X € Mp.

_Ta blf1 -2 a -2a+b a b .
Then X = le allo 1 c -2c+d]| ? where c a € M;
i.e. 3|a+b and 3|c+d. Thus b = 3k-a and d = 3k'~c for some

k, k' € Z. However, -2a+b = -2a+3k-a = -3a+3k € 3%Z and similarly
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-2c¢c+d € 32Z. So any element of Mp is of the form

)
[2 32-] € [g gﬁ] = D(32:(0,1)') = N, say. Thus Mp < N.

However, by Proposition 5.8 Mp is a maximal ideal of R and
since N is obviously also a maximal ideal of R, it follows

that N = Mp.

5.10 Proposition

If M and N are conjugate maximal ideals of R, then R/M and R/N are

igomorphic (simple) left R-modules.

Proof

Since M and N are maximal, R/M and R/N are indeed simple left
R-modules. Suppose next that M = Np for some unit p of R.
Define a map £ : R/M ~ R/N by the rule £ ¢ r+Np > rp l+N.

Then f is well-defined, for if r+Np = r'+Np, then there exists

1

n € N<such that r = r'+np. Thus rp~' = r'p~!'+n and so

rp~l+N = r'p~l+N. f is an R-homomorphism. Let r,r' € R.

Then f({r+Np)+(r'+Np)) = £(r+r'+Np) = (r+r')p *+N = rp~l+r'p 1+N =
rp"1+ﬁ+r'p'1+N = f(r+Np)+£f(r'+Np). Also f(r(r'+Np)) =

f(rr'+Np) = (rr')p '+N = r(r'p~!)+N = r(r'p~'+N) = rf(r'+Np).

f is one-to-one, for if f(r+Np) = f(r'+Np), then rp~l'+N =

r'p~'+N. So there exists n € N such that rp~! = r'p~l+n.

Thus by postmultiplying by p we get than r = r'+np and hence
r+Np = r'+Np. f is onto, for if r+N € R/N, then the element
rp+Np is mapped by f onto it. Thus £ is the required R-

isomorphism. ' o
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5.11 Example

K..QOI..K

For any field K, D(O:ei) = |3 . .|l is a maximal ideal
K... 0... K

of Mn(K). Let P be the invertible nxn elementary matrix

interchanging the i-th and the j-th columns; i.e.

P = [el...ej...ei...en], where ey appears in i-th and ey in
the j-th column respectively. We assert that D(O:ei) =
D(O:ej)P. By Proposition 5.8 D(O:ej)P is also a maximal
ideal and hence it suffices to prove one inclusion only. So
let Y € D(O:ej)P. Then Y =XP . for some X € D(O:ej). Now
XP = X [el...ej...ei...en] = [Xel...Xej....Xei....Xen] =
[Xl...xj...xi...xn],lwhere the superscripts denote the columns
of X. But since X € D(O:ej), it means that the j-th column

Xj of X consists of zero entries only; i.e. Y = XP =
[x'...0...x*...x"] € D(0:e,). | Thus D(0:e )P < D(O:e;) and the

assertion follows.

5.12 Definition

If M is a maximal ideal of R such that all D(M:u) are conjugate

to one another in Mn(R), then M is called a c¢.p. ideal.

5.13 Proposition

If M and N are conjugate maximal left <ideals of R with
N = pMp~ ! for a unit p of R and ©Zf u € Rn-Nn, then

D(N:u) = D(M:up).
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Proof

up ¢ M®, for if not, then u,p € M for each i=1,...,n. Thus
p(u;p)p '€EN; i.e. pu, € N.  But since p is a unit and N is
a left ideal of R, it follows that u; = p"lpui € N for each
i=l,...,n; i.e. u € Nn, which is a contradiction. By Propo-
sition 2.1 D(M:up) and D(N:u) are proper ideals of Mn(R) and
by Proposition 2.7 they are maximal. Therefore it suffices
to prove that D(N:u) < D(M:up). So let X € D(N:u). Then
for each i=1,...,n it follows that X u € N. Thus X;u =.pmp_1
for some m € M. Hence Xiup = pm € M for each i=1,...,n

Therefore X € D(M:up) and required inclusion follows., Thus

D(N:u) = D(M:up). ‘ o

5.14 Example

Let R = %24 and let M = 3%Z,. Then the units of R are

1,2,4,5,7 and 8. If u. = (1,2,8)' and p.= 2, then up = (2,4,7)°'.

Also, since R is commutative N = Np = M. Let X € D(N¢ (1,2,8)"),

5.1 52 5.3
say X = b, b, b,]l. Then Xu € N® = M?® and so the
C:1 C, C;

following conditions hold; aj + 2a,+ 8a, € M, b1+2b,+8b, € M,
c1+2c,+8c, € M. But then it follows that 2(a:+2a,+8a,) =

2a,+4a,+7a, € M, and similarly 2b;+4b,+7b, € M and 2c;+4c,+7cC; € M.

ali a2 53
Thus b1 b, 53 (2,2,7)' € M*; i.e. X € D(M:(2,3,7)").
E1 Ez 63

Therefore D(N:(1,2,8)') = D(M:(2,4,7)') = D(M:(1,2,8)'2).
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5.15 Proposition

If P € GL_(R), then PD(M:u)P ! = D(M:Pu).

Proof

As before, it suffices to prove one inclusion only. Let

X € PD(M:u)P~?t. Then X = PYP~™! for some Y € D(M:u). Now

XP = PY and so X(Pu) = (XP)u = (PY)u = P(¥n) € M?, since

Yu € M". Therefore X € D(M:Pu) and hence PD(M:u)P ! cD(M:Pn).

Therefore PD(M:u)P~! = D(M:Pu), as required.

5.16 Example

Let R = M, (2), M = [ZZ ;] and let

2%
P = [é g] [ 8 8] € GL, (R). Then P~! = P,
N
Let u = ([é ,8]' {_é 8]) € -M?2 Then
(I N 1 [ | R
oo [ S o s @)

Consider any X € D(M:Pu). Then XPu € M?, i.e.

(ERESN IS [ R [ R

0]

| A3 ay b, qu ) 0] o =
[Ca Cz] d; dz] [l 0] (o1 O] + da 0
| LC3s Cy dy d, 0] 0 o 0 ds (0]

[[a1+b;

o)

LR 0 € M?, This reduces to a;+b; =0(mod2) and
[c,+d, o .

| c3+Cs 0
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ci+di =0 (mod2), for i=1,3. Thus

[al az] [bl b, | |
DM:pu) = {[L32 @] Ibs Dulle oy 5) ¢ asp =02, cpray=omod2)

[Cl C2 d: 4d:
Cs Cy d; d,

for i=l,3}- On the other hand, if X € D(M:u), then
O] ' [al_bl 0

[al az]» [bl bz] [ 1

Xu = as ay bs by l_ 0 OJ .= a;-b; 0 € M2 -
[cl cZ] |[d1 dz] [-l 0 Ci1-Ca 0
Cs Cy cs  cuf]}| o 0 c,-d, o}

i.e. aisbi(modZ), cisdi(modZ) for i=1,3. Hence

3oz o
D(M:u) = { as  as bs by €M, (R) : a, =b; mod2), ¢;=d, (mod2)

Ci Cz] d; ds
Cs Cy d; dy

for i=l,3} Let us finally consider any Y € PD(M:u)P~%, Then

Y = PXP~! for some X € D(M:u). Thus

[[1 o] Jo olTMay Fa, ! Tbwf b 11 o] [o o]
vy = |LO 1] |o o] lllas ax] Ibs bujfflo 1] |o 0
ke o] [-1 O Pl e ez ) [dyeds o ] [-1 0]
| Lo o] o -1 cs cu] ldas au}]llo o] |[o -1
~ 7
”al a-z.' -b]_ bz-- --l 01 (0] (0] 1 aj _a?"' -b; ---b2
_|las as] |bs bil|{lo 1] to  of|_‘llas . aw] [-b; -by
LC1-CZ- Ldl-dz- -O O- -1 0 E [~C1 —Cé ’di dz
| |[-C3 —Cy | [-d3 -du__k_o o} 1O -1 -C3 —Cy| .|[d; ds,

subject to a; = bi (mod2) and cy = di (mod2) for i=1,3; i.e.

ai—bi = O0{mod2) and ci—di = O(mod2) for i=1,3; i.e. ai+(—bi) = 0 (mod2)
and —(ci+(-di)) = 0(mod2) for i=1,3. So ai+(—bi) = 0(mod2) and
(—ci)+disso(mod2) for i=1,3. This means that Y € D(M:Pu), and

so it follows that D(M:Pu) = PD(M:u)P~ 1.
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5.17 Remark

We note that showing that M is c.p is equivalent to show that
for any u € R-M" we get D(M:u) ~ D(M:el), since all D(M:u)
should be conjugate to one another and obviously e e rRO-M",
Therefore since PD(M:u)P ! = D(M:Pu) by Proposition 5.15, we
therefore have to show that D(M:e;) = PD(M:u)P~! = D(M:Pu) and
so by Corollary 4.18 it would therefore be sufficient to show
the existence of P € GLn(R) such that Pju € I(M)-M and P;u EM
for i#l; i.e. for i 3 2; i.e. to find an invertible matrix
whose first row "pushes" u into the idealizer of M (but not
into M) and whose other rows "push" u into M. On the other
hand, to show conjugacy by writing D{M:u) = PD(M:el)P-1 =
D(M:Pel), it would be sufficient to show that any u is congruent
1

modM to a column of an invertible matrix, because Pel = p-,

the first column of P.

5.18 Proposition

Let u € R%-MP. If v =Puc(modM) for some P € GLn(R) and

c € I(M)-M, then D(M:u) ~ D(M:v).

Proof

By Proposition 5.15 PD(M:u)P ! = D(M:Pu) and by Proposition 4.2
D(M:Pu) = D(M:v). Therefore D(M:v) = PD(M:u)P~! and hence

D(M:u) ~ D{(M:v).

5.19 . Remark

In particular, if v is a permutation of the entries of u in
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Proposition 5.18, then v = Pu, with P a product of row-inter-
changing matrices and hence D(M:v) = D(M:Pu) = PD(M:u)P”?'; i.e.

D(M:v) ~ D(M:u).

5.20 Proposition
5.20.1 If some uy € I(M)-M, or

5.20.2 1if some uy 18 congruent modM to unit of R,

then D(M:u) ~ D(M:ei).

Proof
By Remark 5.19 we may let i=1 in either case.

5.20.1 Since M is a maximal ideal of R and since ulv¢ M, there

exist elements b € R and m €aM suéh that bu.+m=1. Then for

1

i=2,...,n we have that (uib)ul—ui = ui;.(bul)—ui = ui(l—m)—ui =

u;-umeu; = o-ugm € M. Let X be the nxn' matrix having

(O,u,b,u3b,...,unb)' as its first column and zero's elsewhere

and let I denote the nxn identity matrix. Then

[0 o... 0lfo 0...0
u,b 0 ... Ofju,b 0 ... O

X2= U3b O...O u3b 0...0 =OandP=X+IiS
bu b 0 ... 0ff O O ... 0]

invertible, since P(I-X) = (X+I) (I-X) = X-X?*+I-X =

[1 O O ... O] K 0O 0...0
u,b 1 0...0 u,b 0 0 ... 0
XeI-x = |wP O 1 ...0l _ Jub 0 O ...0f _ ..
ub 0 O ... 1 lun 0 o 0
- n n

i.e. P™! = I-X. Furthermore, Pe u, = u(modM), because Pe;u;-u =

171
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1 0O 0 ...0]
tu,b 1 O ... 0

(X+I)e1ul-u = ?ab c 1...0 (1,0,0,...,0)'ul-(ul,uz,u3,...,un)'
_unb O O ... 1]

= (l,uzb,u3b,...,unb)'ul—(u1,u2,u,,...,un)' =
(u1,uzbuy,usbui,...,u buy)’ - (u1,u2,u3,:..,un)' =

(0, (u2b)ui=uz, (uzb)ui-uiz,..., (unb)ul-un)' € Mn, since
(uib)ul—ui € M for each i=2,3,...,n. Hence PeluliEu(modM).
Thus, since ui'€ I(M)-M we have from Proposition 5.18 that

D(M:u) ~ D(M:el).

5.20.2 Let u: be a unit of R and let P be the nxn matrix
having u as its first column, the other diagonal elements unity

and zero's elsewhere. Then P € GLn(R), because

U.], o o o0 O u-]:l O D) O ul O ) O l
u, 1 ...0[|-wu;* 1...0 u;, 1l...0]lO

. . . . J ——="I.—Now Pel = 1. . o] =
»l L L] _. -l L 2 L] -« - [ ] L]
u, o ... 1 u u, QliviVl u O ... 0fi0
(u1,uz,...,un)' = u. Thus by Proposition 5.18 with c=1, it

follows that D(M:u) ~ D(M:el).

5.21 Example

Let R=2Z and let M=5%. Then I (M)=2. Let u=(¢(3,1,0)', then u1=3,

10 € 5%Z.

u, =1, u,=0. Now (-3)3+10=1 and so b = -3 and m

O € 5%Z.

Also u,bu;=-u, = 1(-3)3-1 = =10 € 52 and u,bu;-u,

0] o] 0] 1 6] 0]
Let X = -3 0] O}, then P = X+I = [|-3 1 0 and
0] 0] 0 o] 0] 1

1 o o©
p = [3 1 o}. Now let X& D(5Z : (3,1,0)') and suppose that
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a; a, a; ail a, a,

X = b1 bz b3 . Then Xu = bl b2 b3 (3’1,0) ' =
c1 c; c,3 c1 C, c,

3a;ta:

3by+b, | € (52)3. Thus D(5Z : (3,1,0)') =

3cy+c,

a; a, a, 1 '
{'bl b bs} € My (Z): 3a;+a € 52, 3bi+b: € 5Z, 3ci1+cs € SZI'
C1 C2 C3 . d

(52 2 2
Also D(5Z:e;) = |52 2z 2| and so if Y € PD(sz:el)P’l, then
52 2z 1z
1 0 o0]f5a; a; az}[1 o o
Y = -3 1 O||5b1 b2 b; |]3 1 0 =
o o 1J{5¢c1 c2 ¢3]|0O 0 1
[5a, Cla, a3 Oy &)
-15a31+5by -3a,+b, -3a,+b, {||3 1 0
| 5¢1 R o . C; 0] 0 1
[5a;+3a, a, a, |
-=15a;+5b1-9a, +3b, =3a; +b; =3a,+b; | However
_15c1+302 c2 C3 u
3(5a1+3a;)+a, = 1l5a;+10a, € 5Z, 3(-15ai1+5b1-9as+3bz)+(-3az+b;) =

-45a;+15b;-30a»2+10b,; € 5Z and 3(1l5¢c3+3cz)+c2 = 45¢:+10c,; € 52

and hence Y € D(52:(3,1,0)"'). Thus D(5%Z:(3,1,0)') = PD(SZ:el)P'l;

i.e. D(5%2:(3,1,0)') ~ D(5%:e

-

5.22 Proposition

If M and N are conjugate maximal left ideals of R and some u,

satisfies 5.20.1 or

satisfies 5.20.1 or 5.20.2 and some vj

5.20.2 (with respect to N), then D(M:u) ~ D(N:v).
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Proof

Say M=Np for some unit p of R. By Proposition 5.20 it suffices
to show that D(M:el) ~ D(N:el), which in turn is equal to
D(N:elp), by Proposition 5.13. Let P = diag(p,l1,...,1), which
is certainly invertible because P~! = diag(p~?!,1,...,1).

Moreover,P satisfies Pe = 1(1,0,.0..)"' = (p,0,...,0)" =

1

O+-+0D
Qeeeb O
HeeeOO

(L,0,...,0)'p = e,p- Thus by Proposition 5.13 D(N:el) =

D(M:eyp) = D(M:Pe,) = PD(M:el)P'l, by Proposition 5.15.  Hence

l)
D(M:el) ~ D(N:el), as required.

5.23 Example

Let M = D(32:(1,1)') and N = D(32):(0,1') be as in Example 5.9.

. E -3 _/l -1 rOO'
Then M~N; in fact N = M[o l]' LTetu= \[O 1] ' {o O])

- [ I\t
and v = ({ é ?} ’ 8 8 ) Iet X € D(M:u). Then Xu =
[al az] [bl bz] [1 -1] [al —a1+a2]
las ay bs by | O 11y 2 as ~azt+ay € M. Hence
cC1 C» di dz] -O 0] Ci —Cl+C2]
C3s  Cu d; ds.]]l|o o) c3 —Ci+Cy |

3la;+(-a;+a,) = a,. Similarly it follows that 3|a,, 3|c., and

(2 32z

3/cy.  Thus D(M:u) = |t . On the other hand,
Z 3z
Z 3z] M, (2)

'[al .azJ [b1 b2} [—

az - ay [ba buJ

1l

(o]
[e1 e di d 0 o]
LCs Cy da dq 1

X € D(N:v), then Xv
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[—a1+b2 az]
—ast+by ay € N2

. Hence az,as,c2,Cy € 3Z and so
[-C1+d2 C2
-c3+dy Cy
i3] we
D(N:v) = . Thus D{M:u) = D(N:v) in
Z 3%
[z 3z] M, (2)

M, (M, (Z)) and hence they are equivalent.

5.24 Remark

It is interesting to note that the previous example actually
tells us more than what we expected, namely, for given maximal
conjugate left ideals M-and N of R, it dis possible that in

Mn(R) we obtain equality of D{(M:u) and D{(N:v).

5.25 Proposition

Every two-sided maximal left ideal is c.p.

Proof

Let M be a two-sided maximal left ideal of R. The I(M) = R,
and so for any two maximal ideals D(M:u) and D(M:v) of Mn(R)
some'u; ¢ M and some v, § M; i.e. some u; € I(M)-M and some
vy € I(M)-M. So by Proposition 5.22 with N = M, it follows
that D(M:u) ~ D(M:v); i.e. M is c.p.

5.26 Proposition
Let M be a maximal ideal of R. Then

5.26.1 M < D(M:u) <f and only <f each u, € I(M);



92

'5.26.2 all the maximal left ideals of Mn(R) which contain M

are conjugate, even if M is not ec.p.

Proof

5.26.1 Suppose that M < D(M:u). Let m € M be given. Then

(0]
X = diag(m,...,m) = .| € D(M:u) and so Xu € Mn; i.e.
m

‘ n_ . .
(ul,...,un) €EM; i.e. mu € M for each i=1l,...,n.

Thus each uy € I(M). For the converse we suppose that each

uy € I(M). Let m € M. Then, regarded as an element of Mn(R),

and so mu (ul,...,un)' =
(mul,...,mun)' € Mn, since' each Uy € I (M) Hence m € D(M:u)

and so M < D(M:u).

5.26.2 Let D(M:u) and D(M:v) be maximal ideals of Mn(R) such
that M <« D(M:u) and M <« D(M:v). Then by 5.26.1 above each

u; vy € I(M); However, not all u; vy € M, for otherwise it
would mean that D(M:u) = D(M:v) = Mn(R), an obvious contradiction.
So by 5.20.1 it follows that D(M:u) ~ D(M:e,) ~ D(M:v). Thus

D(M:u) ~ D(M:v). o

5.27 Proposition
If M and N are two-sided non-conjugate (i.e. non-equal) mazimal
left ideals of R, then any proper ideals D(M:u) and D(M:v) are

non-conjugate iann(R).
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Proof

Suppose that the proper ideals D(M:u) and D(M:v) are conjugate
in M, (R). Then there exists P € GL, (R) such that D(M:u) =
PD(N:v)P ! = D(N:Pv), by Proposition 5.15. However, by
Corollary 3.26 D{(M:u) contract to M and D(N:Pv) contracts to N.
This is a contradiction, because M # N by hypothesis. Thus

D(M:u) and D(N:v) are non-conjugate. o

5.28 Corollary

If R 28 a loecal ring, then all the maximal left ideals of Mn(R)

are conjugate.

Proof

Since R is a local ring it has a unique maximal left ideal M,
which is two-sided. So: by Proposition - 5.25 M is c.p. and

hence all the maximal lefti idealss D (M:u) of Mn(R) are conjugate.o

5.29 Corollary

If K is a field, then all the maximal left ideals of Mn(K) are

conjugate.

Proof

Since K is a local ring, the result follows by Corollary 5.28. o

5.30 Example
Let K = Z, and let R = M, (2,). Then by Example 4.30 the

maximal left ideals of M, (Z;) are A, = [23 8],-A2 = [O Z’]
3 )



I
E L]
]
+
L<
I
Ol
o))
=]
o
N
+
)

]

A,

{[3
{i3

have the following equivalences (In each case we prove one

:ll € M; (Z;) Z+W 6} and

A,

E g

} € M, (2;) : x+2y = O and z+2w = 5}. Now we

inclusion only, since the ideals under discussion are all

maximal).

A]_NAz:
Let X € A,p, where p is the unit {% %]' Then

_[o x][o 11 _ [x 0]
X = 1o vll1 5 = 7 5] € A; and so A,p < A;.
Thus A; = Azp.
A; ~ A, :

. . [1 il

Let X € A;p where p is the unit [6 Il Then

= g ;,i i]=}:{ }:<+1_7-] i ;{ §]
X [z w][a lj [z z+wJ' But since 5 e € A; we
. : -2 - = _ [z 3]
indeed have that x+y = O and z+w = O. Thus X = E o] € Ay
and hence A; = A;p.
Ay ~ Ay:

. : 1 1]

Let X € A,p where p is the unit 5 5]' Then

_ [x vI[1 1] _ [x  x+2y] [x y
X = [E =5 §J = |3z z+3% " However E = € Ay

- == = - == = X O

and so x+2y = O and z+2w = O, Therefore X = 7 5 € A; and

SO Ayp < A;. Thus A; = A,p.
Now since ~ is an equivalence relation, it follows that all

the maximal left ideals of M, (Z;) are conjugate.
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The final result shows that the c.p. property propagates itself.

5.31 Proposition

If Mc R 28 a e.p. ideal and u € Rn—Mn, then D(M:u) Zs a ec.p.

ideal of Mn(R).

Proof
By Proposition 1.14 _. Mm(Mn(R)) o an(R). Let D(M:u) be a
maximal ideal of Mn(R). Then, as in Proposition 2.20, we

have that D(D(M:u):U) = D(M:Uu), where U € M_(R)™ - D(A:u)".
But since M is c.p. it follows that D(M:Uu) ~ D(M:Vu), say.
But D(M:Vu) = D(D(M:u):V) and hence D(D(M:u):U) ~ D(D(M:u):V);

i.e. D(M:u) is c.p.
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R[x]
const (f)

GLn (R)

™

+0N n

R

(a,b)=1
alb
alb‘“

a = b(modn)
a # b(modn)
u = v (modM)
u # v (modM)

NOTATION AND TERMINOLOGY

the ring of integers

the ring of integers modulo n

the field of rational numbers

the ring of polynomials in the indeterminate x
the constant term of a polynomial f of RIx]

the set of all nxn invertible matrices with
entries from R

is an element of

is not an element of

is a subset of

is a proper subset of

ring- or R-isomorphism

only in Proposition 1.13 it means an equivalence rela-
tion, otherwise its meaning is "is conjugate to"
a and b are, co—-prime

b=na for some n € Z

b#na for every n € 2

n|a-b

nfa-b

ui—vi“€ M for each i=1l,...,n

there exists an i such that u;-vy $ M

the relative complement of B in A, where A and B

are sets
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