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Abstract 

Mathematical epidemiology of Malaria disease transmission and its optimal 

control analyses 

K. 0. Okosun 

PhD Thesis, Depart u1e11t of Mathemat ics and Applied Mathematics, University of the 

Western Cape. 

In this thesis, we present and analyse an SEIR (susceptible-exposed­

infectious-recovered) model for malaria disease transmission. The 

model consist treatment and control strategies such as the use of 

bednets and spray of insecticides with the costs associated with 

each control measure. Firstly, we analyze the model without treat­

ment and investigate its stability and bifurcation behaviour. Then, 

we incorporate treatment and investigated the effects of different 

control strategies on the spread of malaria. Further, we use opti­

mal control methods to determine the necessary conditions for the 

optimality of the disease eradication or control. We determined 

the most cost-effective strategies iu fighting malaria disease by car­

rying out a cost-effectiveness study. W e found that mass action 

model exhibited transcritical bifurcation. The disease-free equilib­

rium (DFE) is g lobally stable whenever, basic reproductive number 

is less than unity, while the models with standard incidence form 

exhibited backward bifurcation. In examining the cost-effectiveness 

analysis we found that the most cost effective strategy is the combi­

nation of insecticides spray and treatment of infect ive individuals . 

Furthermore, we modified the SEIR model to incorporate treat-
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ment and vaccination with waning immunity and an appropriate 

cost function. We analyze the model and investigated its stability 

and bifurcation property. Also , we use optimal control theory to 

determine the necessary optimal conditions for the disease eradica­

tion, and when eradication of the disease is unachievable we derived 

the necessary conditions for its control. Further, we carried out a 

cost-effectiveness analysis of the control strategies. In our findings, 

the mass action model exhibits a backward bifurcation phenomenon, 

while the standard incidence model exhibited a phenomenon of mul­

tiple endemic equilibria. We also found that the most cost-effective 

strategy to eliminate malaria is the combination of treatment of in­

fective individuals and vaccination. From the analysis, we found 

that eradication will be possible and optimal when the community 

marginal cost is less than the community marginal b enefits. 

2010. 
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Chapter 1 

General Introduction 

The last thirty years witnessed a resurgence of deadly infect ious diseases which were once 

thought to have been erad icated, due to the appearance of ant ibiotic-resistant strains 

and climate changes, which helped in propagating the diseases to new geographical areas, 

where they were ini tially not present. Malaria, tuberculosis, dengue, yellow fever and 

HIV/ AIDS are just a few diseases which continue to persist despite all efforts committed 

to gett ing these diseases eradicated. In particular , malaria is endemic in 109 countries 

and terri tories in tropical and sub-tropical zones , spanning all continents of the world 

except Antarctica and Australia, with intensities of transmission that vary from very low 

to extremely high. The World Health Organization (WHO) (2007) estimated about 40% 

of the world's populat ion to be at risk with malaria disease. This accounts for over a 

million deaths each year in areas with high malaria transmission probability. Children 

under the age of 5 years and pregnant woman are the most susceptible to the disease. 

Sub-Saharan Africa, Asia and parts of Latin America are mostly affected . 

1.1 Malaria biological background 

The word malaria is derived from the Italian phrase, (Mal aria) meaning bad air as it was 

initially thought that the disease came from fetid marshes; but later in the 1880, Laveran 

discovered that the real cause of malar ia was Plasmodium, a parasite which can only be 

transmitted to humans when they are bitten by a Plasmodium carrier female Anopheles 

mosquito. 

In humans, the parasites grow and multiply firstly in the liver cells and then move 

into the red blood cells. In the blood , successive broods of parasites grow inside the red 
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blood cells and destroy them, producing new paras ites " mcrozoitcs" to continue the cycle 

by invading other red cells . Most bites inj ect a minimum of 20 sporozoites , and very 

few can inj ect more than 100 sporozoitcs. About half of the successful (infect ious) bites 

will res ul t in blood-stcige infect ions. The first. a.sexual mu lt iplication ( exoerythrocytic 

schizogony) occurs within li ver ce lls. This results i11 the birth of more mcrozoites per 

sporozoitc between 10 thousand to 40 thousa nd. These mcrozoites t hen flow into the 

bloodstream 5-9 days after inocu lation and invade red blood cells. Herc they continue 

to rnultiply asexually (crythrocytic schizogony) by producing new merozoitcs. This can 

either lead to the repeat cycle within red blood cells every 48 or 72 hours or develop into 

the sexual tra nsmission stages ca ll ed ga mctocytcs . I\I aturc ga.metocytes of will t hen first 

appear in the bloodst ream about 10 days later. T hese gamctocytcs may remain infectious 

for about three weeks or more. The incubation period within the mosquito may last 8-22 

days. Sporozoitcs can remain viable fo r 30-40 days within the salivary glands for as long 

as the mosqui to Ii vcs. 

In 1886, Golgi Camillo [18] discovered that there were more than one species of Plas­

modium that infected ltu mans. Iu fact t lterc arc over 120 species of the parasite genus 

Plasrnod·imn [23]. t hough only fo ur of t.ltcm ca use malaria : These arc 

1. P. falcipariurn - It is common in tropical areas and is majorly responsible for the 

most life-threatening form of malaria and caused majority of the deaths worldwide. 

Its incubation period is 5 - 12 days . It is also resistant to most of the drugs used in 

the prevcntiou and t reatment. of malaria . 

2. P . ovale - It is not as conrn1 011 as P. falcipariurn and is mostly in Africa. It has an 

incubation period of 8 - 17 days in an infected person aud can hide in the liver of 

partia lly t reated people to reemerge later on. 

3. P . malariae - Is also not common, and less frequent than the other forms of malaria 

parasite. Its incubation period is 2 - 4 weeks in an infected person. 

4. P. vivax - It is more common in temperate areas, such as India, Central and South 

America. The incubation period in the human body is approximately 8 - 13 days for 

t he symptoms of the disease to become apparent. This can lead to li fe-threatening 

rupture of spleen . The parasite hides in the liver and returns later to the blood 

stream. 

3 

http://etd.uwc.ac.za/



As deadly as it is, if diagnosed early, malaria is a curable disease with very high 

chances of survival when the correct medication is administered. In addit ion to prevent ive 

measures current ly pu t in place to combat malaria, t here are available drugs fo r the t reat­

ment of malari a, such as artemisinin (Qinghao plant), chloroquine, Fansider (sulfadoxine­

pyrimethamine), quinine, quindine gluconate and primaquine phosphate. The preventive 

measures can be divided into two par ts : 

1. Personal protection against infect ion:- It is important to state that t he best way to 

prevent malaria is to avoid mosquito bites . Firstly, on personal protection against 

in fect ion, the common approaches are the use of insect repellant (DEET (N,N­

diethylmethyltoicamide)), chemoprophylaxis drugs, and insecticides t reated bednets. 

2. Mosqui to control:- The aim of controlling mosqui toes is to eliminate/reduce mosquitoes 

populat ion below the number required for the disease to t ransmit. The existing 

methods for mosqui to control include: 

• Biological methods such as introducing genetically modified mosquitoes into 

the population and introduction of mosquito larvae eating fish , 

• Elimination of mosquito breeding sites by using insecticides to t reat stand­

ing waters to kill larvae before they develop into adul t mosqui to, indoor and 

outdoor residual spray. 

In an effort to eradicate the disease. WHO led a campaign based on findings of G. 

Macdonald [62] to eradicate malaria globally between 1955 - 1978. Macdonald predicted 

that the mortali ty rate of t he mosqui to had to be increased from 5% to 45% in order 

to eradicate malari a in Africa. T ltis finding was the bcts is fo r t he widespread use of 

DichloroDiphenylTrichloroethane (DDT) in endemic malaria areas at that t ime. Although 

the campaign did not achieve its objective of eradicating malaria, it did result in enormous 

and sustained reductions in the burden of malaria in dozens of count ries around the world . 

However , malaria eradication failed in Africa and parts of India, Asia and Latin America 

[82] . The main causes of this are 

• The spread of drug-resistance to first-line drug and insecticide resistant mosquitoes. 

• Limita tions and improper implimentation of the resources allocated to malaria con­

trol. Many of the intervention programs established to support malaria cont rol lack 

sufficient fund s and as a resul t they are rendered ineffective operationally. 
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• The sprea<l of <lrug-resistal!l:e to lirst-li11e <lrug a11<l insect icide resist ant mosquitoes . 

• Limitations and improper implirnentation of the resources allocated to malaria. con­

trol. Mauy of the interventio11 programs est ablished to support malaria. control la.ck 

suHicieut funds an<l as a res ult t hey are reu<lere<l i11effective operationally. 

Based 011 these reaso11s, WHO reoriented am! redirec ted its policy from disease eradication 

and eliminat ion to disease control. hi 1978, however , WHO while reassessing and ana­

lyzing the failures during the consolida tion phase, recognized that t he basic requirements 

for achieving and susta ining malaria. control a.re 

• integration of malaria cont rol into a. reasona bly well-established healt h system , 

• au uniutcnuptc<l , co11tiuucd effor t , and 

• research into uew and improved tools. 

As a resul t , new ini t iatives took place to control the spread of t he disease. These include 

t he malaria vaccine ini t ia tive (1999) , multila teral ini t iative 0 11 malari a. (1997), medicines 

for malaria vent ure (1999) and t he global fun d to fi ght AIDS, TB a.11d malari a. (2002) and 

t hey supp ort t he implernentat iou of preveutiou and t reatment programs [83] . 

1.2 R esearch questions, aims and objectives 

The initia tives mentioned in t he previous section ma.inly fo cussed on human t reatment 

and (possible) vaccination, which may be costly au<l t ime consuming. The question t hen 

is, 

1. should t he cont rol a im at disease i11 humaus by t reatiug infected individuals or 

prevent ing new in fect ions by vaccinating susceptibles and using mosqui toes bednets? 

2. should it rather focus on the contro l/ elimination of mosqui toes by using t reated 

bednets, insecticides and destructio11 of mosqui toes breeding sites? 

3. an<l what is t he most cost-d f'ccti \I(' mcasm <'? 

The ma.in goal of t his study is to invest igate t he impact of treatment and prevent ive 

measures such as vaccination, use of t reated bednets and insecticides on t he burden of 

malaria . We construct the sensitivity analysis index of the model para.meters, in order 
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• develop two SEIR models, one with t reatment and prevention (t reated bednets and 

insecticides) and in the second model we consider treatment with vaccination, where 

we assume that the vaccine effect wanes with time. 

• use optimal control to examine the costs and effectiveness of the control measures 

and determine the most cost effective control measure( s) . 

The thesis is organized as follows: In Chapter 1, we describe the biological background 

of malaria, as well as research questions , aims and objectives. Chapter 2 is devoted to a 

literature review on mathematical modelling of malaria and applications of optimal con­

trol methods in epidemiological models. Chapter 3 presents the preliminary background 

of epidemiological modelling as well as a background on ordinary differenti al equations 

and optimal control theory. In Chapter 4, we develop and analyze an SEIR model with 

treatment. The existence and stability of equilibria without disease (disease free equi­

librium) and endemic equilibria is also presented. In Chapter 5, we incorporate into the 

SEIR model treatment and preventive measures such as treated bednets and insecticides. 

We apply optimal control methods to determine the most cost effective strategy from the 

combination of at least two of treated bednets, treatment and insecticides . In Chapter 

6, we develop and analyze an SEIRV model with treatment and vaccination with waning 

immunity. We analyze the existence and stabili ty of equilibrium points. Incorporating 

control functions we show the optimal control analysis of the SEIRV malaria model and 

find optimal condi t ions for eradication of the disease rather than control. Furthermore, 

when eradication is impossible, we find the necessary conditions for optimal control of 

malaria disease transmission. In Chapter 7, we give a concluding summary of the whole 

study. 
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Chapter 2 

Literature Review 

Mathematical modelling of the spread of infect ious diseases continues to be an area of 

active research and has become an important tool in understanding the dynamics of dis­

eases and in decision making processes regarding intervention programs for controlling 

these diseases in many countries . Greenhalgh et al. [32 , 33], studied an infectious dis­

ease model with population-dependent death rate using computer simulation. ikolaos 

et al. [71] proposed a detailed analysis of a dynamical model to describe pathogene­

sis of HIV infect ion. Christopher and Jorge [16] derived a simple two-dimensional SIS 

(susceptible-infected-susceptible) model with vaccination and mul tiple endemic states. 

Brauer and van den Driessche [9] proposed and analyzed simple models for disease t rans­

mission that include immigration of infect ive individuals and variable population size. 

van den Driessche and Watmough [88], developed a precise definition for the basic repro­

duction number of a general compartmental disease transmission model based on system 

of ordinary differenti al equat ions. Roberts and Heesterbeek [78], proposed the popularly 

known next generation matrix for estimating the effort required to control an infectious 

disease. Ghosh et al. [27, 28], studied the environmental effect on an SIS model for bac­

teria and the spread of carrier-dependent infectious diseases, like cholera and diarrhea. 

Guihua and Zhen [29], studied the global dynamics of an SEIR (susceptible-exposed­

infected-recovered) epidemic model in which latent and immune states were infective. 

Okosun and Yusuf [72] derived and analyzed a mathematical model to tudy bird flu 

disease transmission . More studies on modelling of infectious diseases can be fo und in 

[2, 7, 10, 11 , 14, 17, 20, 21, 26, 30 , 38, 37, 40, 44, 51, 52, 53 , 81, 89, 100] . 

Concerning the malaria disease, Ronald Ross [80] in 1897 discovered that mosquitoes 
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transmit malaria and he used a mathematical model to described the dynamics of the dis­

ease transmission. His study focused more on the mosquito control. He showed that for 

the disease to be eliminated the mosquito population should be brought below a certain 

threshold. This work has been extended by Macdonald [61 , 62] to account for superin­

fec tion. These two works were fur ther extended by Koella and Anita [55] by including a 

latent class for mosquitoes. They evaluated the different strategies to reduce the spread 

of resistance and also studied the sensit ivity propert ies of the parameters. Anderson and 

May [2] derived a malaria model with the assumption that acquired immunity in malaria is 

independent of exposure duration. Different control measures and role of transmission rate 

on the disease prevalence were further examined. Hyun in [41, 42] using mass act ion inci­

dence , studied a malaria transmission model for different levels of acquired immunity and 

temperature dependent parameters , relating it also to global warming and local socioe­

conomic condit ions. In [49], Kawaguchi et al. examined the combined use of insecticide 

spray and zooprophylaxis as malaria control strategy. Dietz et al. [2 2] proposed a model 

that accounts for acquired immunity in a mass action model. Chiyaka et al. [14], formu­

lated a deterministic model with two latent periods in the hosts and vector populations to 

assess the impact of personal protect ion , t reatment and possible vaccinat ion strategies on 

the transmission dynamics of malaria and in [15] they considered t reatment and spread of 

drug resistance in an endemic population. Jia [43] formulated and examined a compart­

mental model for malaria transmission that includes incubation periods for both infected 

human hosts and mosquitoes. Mukandavire et al. [66], proposed and examined a deter­

ministic model for the co-infection of HIV and malaria in a community. More studies on 

malaria modelling can be found in [4, 14, 15, 17 , 67, 68, 41, 49 , 43 , 55 , 69, 70 , 85, 86, 87, 95] 

However , all these works did not put into consideration the optimality, costs and 

cost-effectiveness of the preventive and treatment interventions, which are mainly limited 

by availability of resources. In view of this, application of optimal control t heory to 

epidemiology can be an important tool to test t he efficacy of various policies and control 

measures vis a vis the cost of implement ing them. Pontryagin et al. [75] developed the 

theoretical foundation of optimal control for ordinary differential equations. Since then it 

has been successfullly used in decision making in various applications. 

In particular, there have been studies of epidemiological models where optimal control 

methods were applied. Okosun et al. [73] formulated and analyzed an optimal control 

problem with an SIS epidemic model to investigate the impact of infected immigrant 
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ill au ti.vaill infiuellza tnu1srnission <lylla mics. ln [75], Okosun a nd Agusto used optimal 

control to study the optimal seasonal biocolltrol for Eichltornia crassipcs. Castilho [12], 

specifically applied optima l control metho<ls iu a situplifie<l SIR model, to study the best 

strategy for education al campaigns during t he outbreak of a u epidemic. Zam an ct. al [100] 

studied a general SIR epidemic model a nd a pplied stability a nalysis t heory to find the 

equilibrium solu t ions a nd then used optima l control to dctcrmillc t he optima l vaccillation 

strategics to reduce the susceptible a nd in fect ive inc.livic.lua ls. Surcsh [84, 85] formulated 

and alla lyzcd a 11 optimal control problclll with a simple epidemic model to examine effect 

of a quarantine program. He a lso considered a n optima l contro l problem to study the 

effec t of t he level of medical program effo rt in minimizing the ·ocia l and med ical costs 

[85]. Gupta. aud Riuk ill [3 1] considered the applicat ion of optima.I control to find t he 

most economical use of act ive and passive immunizat ion in controlliug infectious disease. 

Ka.rra.kchou ct a l. [48] used optima.I control to examine t he ro le of chemotherapy in 

controlling the virus rcproc.luctiott ill an HIV patient . Ac.la.ms ct a l. [1] c.lcrivcc.l HIV 

therapeutic strategics by fo rmulat. iug and ana lyzittg an optima l control problem using two 

types of dyna mic treatments. Xicfei ct a l. [97] applied optimal cont rol methods to study 

the outbreak of SARS using Pontrya.gin 's Maximum Principle auc.l a genetic algorithm. 

Wickwire [94] applied opt ima l contro l to mathematical models of pests and infect ious 

diseases control. l\ Ia rco a ml Takaslti [64] 11scd o pti111 al control to study dengue disease 

tra nsmission . Wiemer [95] studied Scl1ist.osomi asis using optima.I control m ethods. l\lore 

studies on the applications of optimal coutro l to infectious diseases, m a.inly HIV/ AIDS 

and Tubcrculo is can be found in [l , 3, 6, 19, 24 , 46 , 45, 47, 77, 54 , 59, 93 , 98, 99], these 

studies focuses rnorc on cost. minimizat ion a na lysis of the examined control strategics . 

Very few studies have been carried out on a pply ing opt ima l cont rol theory to study 

the dynamics of ma la ri a. Onl.v recently, Kbcncslt ct a l. [50], prcscntcc.l a n autonomous 

ordina ry differential equa t ion model with vector-control a nd treat ment model and a. time 

dependent counter pa rt of the model involving a u optimal contro l of vector-borne dis­

eases with treatment alld prevention as control measures . Rafikov et a l. [78], formulated 

a cont inuous rnodcl for ma lari a vector control with the a im of studying how genetically 

modified mosqu itoes should be introduced in t he environment using optima l control prob­

lem strategics. 

In t his thesis, we dcri vc alld a na lyze a. rn a.t hcma ti ca l tnodcls for mala ri a disease trans­

mission . First ly, we illcorpora.tc into t he model control(s) param eters, mainly, use of 
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treated licdncts, treatment Rm! sprny of insecticides aga inst mosquitoes with a ppropriate 

cost fun ctions in order to study. cxaminr tl1c possible im pacts of the cornbiuat ion of at 

least two of these optimal strategics fo r co11 trolli11g the disease and also to determine the 

most cost effective optimal strategies . Secondly, we incorporate into the malaria model 

control(s) parameters , mainly, vaccination and treatment with appriopriate cost function 

in order to study and determine the possililc impacts of each or the combination of these 

optimal strategics for controlling the disease . 

This current model differs from the one proposed in [50] and [78] by the inclusion of a 

vaccination class, control term for the vector popu lation and the cost effect iveness analysis 

carried out using optimal control techniques . Its stability properties arc theoretically 

analyze and conditions on the para.meters fo r t he existence of equilibrium solut ions arc 

determined. Also detailed quali tat ive optimal control analysis of the resul t ing model 

arc carried out and the necessa ry co11 ditio11s for optimal control of the disease using 

Pontryagiu 's l\ laximum Principle arc oli taiucd. in order to dctcnninc optimal and cost 

effect ive strategies for contro lling the spread of the disease. 

Our main goal in Chapter five of this thesis is to develop mathematical models with 

control strategics to investigate the role of use of treated bcdnets, treatment and spray 

of insecticides in malaria transmission, and also carry out the cost minimization and cost 

effect ive analysis of the strategies. While in Chapter six, we aim to develop mathematical 

models with co11trol strategics to investigate the possible role of vaccination and t reatment 

and also carry out cost effect iveness analysis of the strategics, in order to determine 

optimal control strategics for controlling the spread of malaria transmission in human­

vcctor interactions. 

Some results related to this thesis have been presented in both international and local 

conferences/workshops . Specifica ll y, two rnticles are a lready in press (Optimal control 

strategics am! economic evaluation of malaria disease model [72] and Optimal seasonal 

biocontrol for Eichhornia crassipcs: a major harbour for moqui to vector of malaria [75]), 

one article under second review in a reputable journal (Application of optima.I control to 

the epidemiology of malaria), one other article (Optimal control analysis of a malaria dis­

ease transmission model that includes t reatment and vaccination with waning immunity) 

is cu rrently under review for publicatio11 in other reputable journal. 

Next chapter , we presc11t the prelimi11ary background of epidemiological modelling as 

well as a hackgro11nrl on orrlin ary rliff<>rential ecp1at ions anrl optimal control theory. 
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Chapter 3 

Preliminary Background 

3.1 Existence and uniqueness of solutions 

To prove that there is a unique solution to a first order ordinary differential equa­

tions (ODEs) initi al value problem , consider the fir t order ordina ry different ial equat ion 

(ODE), initia l value problem of the form , 

dx 
- = F(:r:) 
rlt 

.1:(0) =.To (3 .1.1 ) 

where F( x) is bounded in a neighborhood of the initial condition. We record some known 

results for a pplication in the thesis. 

Theorem 3.1.1. 

If F is Lipschitz then there exists c > 0 such that the initial value problem (3. 1.1) has a 

unique solution x ( t) for t E (lo - c, t0 + c). 

Theorem 3.1.2. 

If the functions F and ~~, are continuous on a region R of the ty-plane and if ( t0 , y0 ) is a 

point of R , then the !VP (3 .1.1) has a solution y(t) on an interval l containing t0 in its 

interior. 

Theorem 3.1.3. 

Suppose that x* is an equilibrium solution of (3. 1.1 ) if F (x*) = 0 

• x* is locally asymptotically stable (LAS) if all the eigenvalues of DF( x*) have neg­

ative real parts. 

• If at least one eigenvalue has a positive real part then x* is unstable. 

The eigenvalues are the roots of the characteristic equa tions of the J acobian matrix. 
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3.1.1 Rout h-Hurwitz criteria 

Consider the characteristic equat ion 

(3.1.2) 

determining the n eigenvalues D of a real n x n square matrix A, where D is t he identity 

matrix. Then the eigenvalues n all have negative real parts if 

Jfi > 0. ll2 > 0, f / 3 > 0, .. .. lln > 0 

where 

a1 

a3 

Hn = 

a2n-l 

1 

a2 

a2n-2 

0 

0 

The steady state is stable (that is, Re(D) < 0) for all A if and only if det HJ 2: 0 for all 

j = 1, 2, 3, ... , n. 

3.1.2 H artman-Grohman Theorem 

Theorem 3. 1.4 . Let f : Rn ~ Rn be a smuoth map with a hyperbolic fixed point p. Let 

A denote the linearization off at point p. Then there exists a neighborhood U of p and a 

homeomorphism 

h: u ~ Rn 

such that 

fu = 1i-1 o J\ o h 

that is, in the neighborhood U of p, J is topologically conjugate to its linearization. 

3.2 Compartmental Modelling 

The approach for modelling the transmission of infectious disease in human populations 

is usually to subdivide the population under consideration into subpopulation or small 

number of epidemiological classes called compartments and the resulting model is called 

a compartmental model. The classes usually consid red are primarily the following 
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• Susceptible class ( S): A collection of in<livi<luals in a population are classified as 

susccptiblcs if they arc not infectc<l and however at risk of being infected. 

• Exposed class ( E): These arc imlividuals who have been infected with the disease 

pathogen, but a.re not able to infect others. They may still be in the incubating 

stage, a11d do not possess irnmunity. This class is also known as latent class. 

• Infected class (I ): 

infectious. 

This is a collection of individua ls who arc infected and a rc 

• Recovered/ removed class (R): These arc individuals who recover and acquire 

temporary or permanent immunity and may not contract or transmit the disease, 

either because they arc no longer infectious and arc immuncd or because they have 

been vaccinated. 

Compartmental models have provided valuable insights into the epidemiology of many 

infectious diseases i11clucling malaria. Diseases that confer immunity have a different com­

partmental st ructure from diseases without immuni ty. For diseases which confer immu­

nity, the SIR terminology is used, describing the passage of individuals from susceptible 

class "S" to the iufectivc " [" and then to the rcrnovccl / rccovcrcd class "R" . The term SIS 

describes a. disease with 110 immunity, indicating the movcrncut of individuals from sus­

ceptible class to infective and t hen back to suscepti ble class. Other possibilities include 

the SEIR and the SEIS models with au exposed period , a. stage of being infected and 

becoming infective after a. period of time, and SIRS models with temporary immunity on 

recovery from infection [8]. 

Some other classes may be added to increase accuracy of the model. Specifically a 

class V of vaccinated individuals. The sizes of each class at the time t arc represented by 

S(t) , E(l) , f (t). R(t) respectively, N(t) denotes the total population size, that is , S(t) + 
E(t) + I (t) + R(t) 

The transmission of di. cases may be through horizonta.1 incidence, from infected to 

susccptiblcs and the ver t ica l transmission , for exa mple from mothers to newborns. The 

probability per uni t time at which susceptible members of the population arc infected is 

ca.lied force of infection and generally seen as a function of total number of infective 

individuals. The term incidence represents the number of individuals that become in­

fected in any given period of time . It is often referred to as incidence rate , which is the 
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incidence per uni t time. P revale nce is defined as the proport ion of the population that 

is infec ted . 

3.2.1 The basic reproductive number and next generation method 

The basic reproductive number which measures the ability of the disease to reproduce, is 

denoted by R0 . This is defined as t he exp ected number of secondary cases reproduced by 

one infected individual in his/ her entire infect ious period. When R0 < 1, each infected 

individual can produce an average of less than one new infected individual during his 

entire period of infectiousness . In this case the disease will no t persist in the population 

and may b e eradicated . But in a situation where Ro > 1, it implies that each infected 

individual can produce an average of more than one new infected individuals during his 

entire period of infectiousness , this is a strong indication that t he disease can persist and 

invade the population. 

The next generation method introduced by van den driesche and Watmough [21], 

is a general method for deriving Ro in cases where one or more classes of infective are 

involved. Suppose we have n disease compartments and m non-disease compartments, 

and let x E R n and y E Rm be the sub-populations in each of these compartments. Also 

denoting the rate of secondary infection increase of the i 1
h disease compartment by F i 

and V i t he rate disease of progression, death and recovery decrease the it.I' compartment , 

the compartmental model can then be written in t he form : 

dxi ( ( . di= F i x , y) - V i x , y) , i = 1, ... , n, 

dyj di= gj(X , y), j = 1, .. . , m , 

The calculat ion of the basic reproduction number is based on the linearization of the 

ordinary different ial equat ions (ODE) model about a disease-free equilibrium, while the 

following assumptions ensure the existence of the equilibrium and well possessedness of 

the model [2 1]: 

1. Assume F.i(O, y) = 0 and V i(O, y) = 0 for ally 2 0 and i = 1, ... , n. All new infect ions 

are secondary infections a rising from infected hosts; there is no immigration of 

individuals into the disease compart ments . 

2. Assume F i(O , y) 2 0 fo r a ll non-negative x and y and i 

represents new infections and can not be negative. 
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3. V i(O, y) :::; 0 whenever xi = 0, i = 1, ... n . Each component , V i represents a net 

outflow from compartment i and must be negative (inflow only) whenever the com­

partment is empty. 

4. Assume L.::: ;~ 1 \!i(x, y) 2: 0 for all non-negat ive x and y. This sum represents the total 

outflow from all infected compartments. Terms in the model leading to increases in 

L.::: ;~ 1 1; i are assumed to represent secondary infections and therefore belong in F . 

5. Assume the disease-free system ~;, = g(O , y) has a unique equilibrium that is asymp­

totically stable. That is, all solutions with initial conditions of the form (0, y) ap­

proach a point (0, y0 ) as f; ----) oo. This point is referred to as disease-free equilibrium. 

ow assuming that F i and V .i meet the above condit ions, we can form the next generation 

matrix (operator) Fv- 1 from matrices of partial derivat ive of F i and V i . particularly 

F = [8Fi(xo)] and 
OXj 

where i, j = 1, .... m and where x 0 is the disease-free equilibrium. The entries of Fv- 1 

give the rate at which infected individuals in Xj produce new infections in xi, times the 

average length of time an individual spends in a single visit to compartment j. R0 is given 

by the spectral radius (dominant eigenvalue) of the matrix Fv - 1 . 

3.2.2 Mass Action (Density D ep endent) 

The probability of transmission in a given time period is a function of the number of 

infectious individuals in a given area. In this case the contact rate depends on the size 

of the total host population . This type of incidence has been used in modelling several 

infectious diseases and malaria in particula r, see [22, 41 , 42 , 43, 49 , 50 , 55]. This form of 

infection is mostly suitable when a small population size is considered. The typical SIR 

model for a mass action (density dependent) transmission is given by 

dS = -(JS! 
dt l 

di 
-= (J S! -1! , 
dt 

dR 
dt = , 1. 
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3.2 .3 Standard Incidence (Frequency D ep endent) 

The probability of transmission in a given time period is a function of the prevalence 

of infection in the populat ion. The contact rate is assumed to be constant , that is , it 

depends on the proportion of susceptibles and infecteds within the population , not the 

total population size that affects the level of interactions. Malaria and other infectious 

diseases has been studied using this form of infection approach , see [14, 15, 26, 30, 66 , 

67, 68, 86]. The typical SIR model for a standard (frequency dependent ) transmission is 

given by 

dS -(JS! 
di. N ' 

df _ (JS ! _ I 
dt - N 'Y ' 

dR = I 
ell "( . 

(3.2.4) 

The basic compactmental models to describe the transmission of communicable dis­

eases are contained in a sequence of three papers of Kermack and McKendrick [5 1, 52, 53], 

the simpliest models they proposed are of the form 

with the following assumptions: 

dS = -(JS! 
dt ' 

rt r 
- =(JS! - "' I 
dt I ' 

(3. 2.5 ) 

(JN : average infective individual making appropriate contact sufficient to transmit infec­

tion per unit t ime 

-ft: probability of contact between infective with a susceptible individual 

T fract ion of infectives recovered per time. 

In this model, once I is known , R can then be determined, so we consider the S and 
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I equations only. 
di ((JS - 1 )! 
dS -6S I ' 

I ' 
= -1 + - . 

(JS 

By integrating both sides, we get 

I I = -S + /j log S + c. 

1 (3 lnf.:;, 
V ( S , 1) = I + S - f3 log S ) = [{ _ S. 

It follows then that 

"r I I / 
!,,,,, , = So + /0 - 73 log So - 73 + 73 log 73 · 

(3.2 .6) 

(3 .2.7) 

(3.2 .8 ) 

Kermack and McKendrick (1932) proposed another SIR model that includes births in the 

susceptible class and deaths from all classes with tha rate proportional to each class 

rlS ) - = - ,t -JS l + 11.(!< - S , 
rl I 

rll ' 
- = {-JS / - 1 1 - 11.I , 
rli 

dR 
- = / f - 11.R, 
dt 

(3.2 .9) 

where the total populat ion size, N is defin ed as the total sum of the population in the 

classes. N(t) = S(t) + I (t) + R(t ) with the assumptions t hat there is no disease induced 

death. Hethcote in 1976 [38], proposed a more general model 

rJS , , 
- = 1t.f< - /-JS I - /tS , 
rl I 

di 
- = ,USi -(r+ /L+ n) I , 
dt 

dR 
dt = 1! - µR , 

(3.2. 10) 

where a is t he disease induced death fraction ; / rate of recovery with acquired immunity, 

natural death rate ~l and birth rate µ !( is assumed constant. By ignoring the R class of 
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the system (3.2.10) , the system reduced to 

d5 
- = -{35 1 + µ(I< - 5), 
dt 

df = {JS! - "f l - µI. 
dl 

(3.2.11) 

The first step is to study the steady state, the equilibrium points is obtained by setting 

the right hand side of the system (3 .2.11) to zero. 

- {3 5 1 + ~l(K - 5) = 0, 

(3.2.12) 
{3 5 1 - "f l - µI= 0. 

The disease-free equilibrium (DFE) which describes the state where no infection is present 

in the population is obtained when I * = 0, hence 5* = K. The endemic equilibrium where 

infection persists at a fixed level is obtained when I* # 0, hence 5* = µ(/3~~~i~;~-~~a-)), I* = 
7+~+0 . The eigenvalues of the Jacobian evalua ted at these points will determine their 

linear stability. Therefore, linearizing the system (3.2.12) to study the local stability of 

the fixed point , the Jacobian matrix is obtained 

[ 

- µ - {3 1 -{3S l 
} = {3 1 {3 5 -('Y+ µ +a)' 

At the DFE, the J acobian matrix is given by 

[
-µ -{3K l 
O {3 K- ("!+ µ +a) 

From the trace of this ma trix , disease-free equilibrium of the system will be stable if 

{3 1< < ("! + µ+a). The J acobian matrix evaluated at the endemic equilibrium is 

It is clear from this matrix that the trace is negative and the determinant will be positive 

if f3 K - ("! + 11, + rv) > O 

If Ro < 1, the disease-free equilibrium is stable and the endemic equilibrium does not 
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exist 

If R0 > 1, the disease-free equilibrium is unstable and the endemic equilibrium docs 

exist and asyrntotically sta blc 

fJ f( The basic reproduction number Ro is then given by (!+µ+a) 

3.3 Optimal control m e thod 

Optimal control theory has been a powerful mathematical technique derived from the 

calculus of variation and is very useful i11 decision making regarding complex biological 

situations. The behavior of a dynamical system is described by the state variablc(s). The 

assumption is that there is a way to control the state variablc(s) x , by acting upon it with 

a suitable control. Thus the dym mics of t he system (state x) depends on the control 

11.. The ultimate goal is to adj ust coutrol 1l to miuimizc or maximize a given objective 

functional, J(u(t) , x(t,), t), that attains the desired goal and the required cost to achieving 

it. The optimal solution is then obtained when the most desired goal is achieved with 

least cost. The functional depends on the control and the state variables. There arc a 

number of different methods for calculating the optimal control for specific model. Pon­

t ryagin 's Maximum Principle for example allows the calculation of the optimal control for 

an ordinary differential equations model system with given constraints . Iu [58 , 65], other 

powerful optimal control techniques have been derived for partial differential equations 

and difference equat ions. 

Reasons for opt imal control 

Optimal control can be use for the following reasons: 

1. Controllabi lity:- using controls to steer a system from one position to another , 

2. Observabili ty:- deducing system information from control input and observe output, 

3. Stabilization:- implcmc11ti11g controls to force stability. 
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3.3 .1 The general optimal control problem 

We consider optimal control problems of the form 

J( x( t) , u(t), t) = i~~n { ¢(t1, x(t1) + 1·ti g(t, x(t), u(t))dt}. 

Here, t E IR stands for the independent variable, called time , for T = [O, oo) , where 

is an-vector of state variables (xi(t)). These describes the state of the system at any 

point in time, and 

is a m-vector of control variables at any point in time. These are the choice variables in 

the optimization problem. 

The dynamics of the state variables are governed by the described set of first order 

ordinary differential equations (for 1 ~ 'i ~ n): 

dx 
dt' = f i(t , x(t), u(t)); x0 = x(O), O;::; ·i::; n. (3 .3.13) 

The functions: 

and 

arc continuously diffcrcuti alilc with rcsµcct to each cornµon ent of x and u (where rele­

vant), and piecewise continuous with respect to t. In the case where Ji does not depend 

explicitely on t, the system is said to be autonomous. The functions u(t) belong to a 

certain class of "admissible" functions. 

D efin it ion: Admissib le Control. A piecewise continuous control u(.) , defined on 

some time interval t0 ~ t ~ t 1 , with range in the control region U , 

u(t) E U, 

is said to be an admissible control. 
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3.3 .2 P o nt ryagin's M axim um Princ iple 

This principle says tha t we can solve the optimization problem J(u(t), x( t) , t) using 

Hamiltonian function H over one period. That is, the principle converts the maximiza­

tion / minimization of the objective functional, J , coupled with the state variable into 

maximizing/ minimizing pointwisc t he Hamiltonian wit h respect to the contro l. 

T heorem 3 .3.1. From (58}, in order that u*(t) and .r*(t) be optimal fo r problem (3 .3.13), 

it is necessary that there e.ris t a piecewise difj'ei,ential adjo'irit variable A ( t) , where for all 

0 ~ t ~ T we have /\ (t) =I- 0 such that for every 0 ~ t ~ T 

H (t . x*(l), u(I), >-(t)):::; H (t. :r*(t), u*( t ), /\ (t)) (3.3 .14) 

for all controls u at each time t, whe'1·e the Harniltorl'ian H is 

H = g(t, .r( t) , u( t )) + >- (t)f(t, x(t), u(t)) (3.3.15) 

and 
>- (t) DH (t , :i;*(t) , u*(t) , >- (t)) 

ox (3.3 .16) 

Necessary condit ions 

If u*(t) and x*( t) arc opt imal, then the following condi t ions hold: 

>-(t) 8 !-l (t , x*(t), 11,*(t), ,,\(t)) 

dt ox 

>- (t1) = 0, (3. 3.17) 

_aH_(t,_, :r_:*(_t)_, ·_u*_(t_),_>-_(t_)) = 
0 au . 

Sufficient condit ions 

If all the functions f 1 and g arc jointly convex with respect to x· and u and if A;(t) 2: 0 for 

all i and all t then jointly wit h the stated necessary conditions, we have a set of sufficient 

conditions fo r optimality. 

Herc /\ ( t) is t he shadow pri ce or co-state variable. This denotes the increase of the 

objective fu11 ction due to marginal increase of the state variable. At any time the deci­

sion maker can use the control variable to generate direct contributions to the objective 
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then u*( t) and x*( t ) are opt imal. 

Here /\ (t ) is the shadow price or co-state variable. This denotes the increase of the 

obj ect ive function due to marginal increase of the state variable. At any time the deci­

sion maker can use the control variable to generate direc t contributions t o the objective 

function (represented by the term J (t , x( t ), u(t)) in the Hamiltonian (3 .3. 15)), or it can 

use the cont rol variable to change the value of the state variable in order to generate 

cont ributions to the objective function in the future. These indirect cont ributions are 

measured by the term >-. (t)g(t, x( t ), u( t)) in the Hamiltonian. 

In the next chapter , we develop and analyze an SEIR model with treatment . 
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Chapter 4 

Malaria model with treatment 

In this chapter , we present and analyze an SEIR model for malaria disease transmission. 

The model incorporates t reatment . vVe first start by the model without treatment and 

analyze its stabili ty and bifurcation behavior. 

4.1 Malaria model without treatment 

4 .1.1 M odel description 

The total human populat ion , Nh , is sub-divided into sub-populations of susceptible indi­

viduals , Sh, t hose exposed to malaria parasite , Eh, individuals with malaria symptoms, 

l 1i. So that 

N h = Sh + E1i + h . 

The total vector (mosqui to) population denoted by N,,, is sub-divided into susceptible 

mosqui toes , Sv, mosqui toes exposed to the malaria parasite, Ev and infectious mosquitoes, 

f v. Thus, 

Nv = Sv + Ev+ fv. 

To formulate a meaningful model as close as possible to the real life phenomenon we 

made the following assumptions: 

1. We consider two population groups, t he human wit h variable population size and 

the mosquito population. 

2. Only adul t female mosqui toes were considered in the model, since only these need 

human blood for egg production. 
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3. All new-born are susceptible in both populat ions. The infect ion of a susceptible hu­

man occurs when the individual is bitten by an infectio us mosquito , t he infected in­

dividual (exposed) after a period of t ime becomes infect ious. Susceptible mosquitoes 

become infected when an infectious human is bitten by a susceptible mosquito, the 

infected mosquito (exposed) become infectious after a period of t ime. 

4. Exposed humans and mosquitoes can not transmit the disease. 

Susceptible individuals are recrui ted at a rate i\h and acquire malaria through contact 

with infect ious mosquitoes at a rate (JE¢, where (3 is the transmission probability per bite, 

E is the per capita biting rate of mosquitoes and ¢ is the contact rate of vector per human 

per uni t t ime. Infected individuals move to the exposed class at a rate fim, where /Jm 

is the force of infection. Exposed individuals move to the infect ious class at a rate a 1. 

When the disease is fatal, infected individuals die at a rate 1/J . The natural death rate is 

Susceptible mosquitoes arc generated at a per capita rate Av and acquire malaria through 

contacts with infected humans at a rate AE</J, where >. is the probabili ty for a vector to get 

infected by an infect ious human. Mosquitoes are assumed to suffer death due to natural 

causes at a rate µv. Newly-infected mosquitoes move into the exposed class and progress 

to the class of infectious mosquitoes at a rate n 2 . 

The resulting system of equation is shown below: 

dS1i. , dL = A1i - /JmS1i - µhS1i , 

dE1i , 
dl = /Jm Sh - (a1 + µh )Eh, 

dl1i 
-l- = a1E1i - (7/J + Jl1i)h, 
ct 

rl.81: 
-d = Av - Ai;8v - /l vSv, 

t 
rf.Bv 
dJ: = AvSi: - (a2 + µv)Ev, 

cl f v 
dt = a2Ev - µi: lv. 

Here we consider two forms of infect ion for mosquitoes and humans: 
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Figure 4.1: Flow diagram for Malaria disease transmission 
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i. The mass act ion force of infection 

(4. 1.2) 

ii. The standard force of infection 

(4 .1.3) 

These two forms of infection have been considered iu different models of infectious 

diseases, see for instance [22, 41, 42, 43, 49, 50, 55] for the mass action and [14, 15 , 26, 

30 , 66, 67, 68, 86] for the standard incidence. 

The SEI malaria model ( 4.1.1 ) will be analyzed in a biologically-feasible region as 

follows. This region should be feas ible for both human and mo quito populations. More 

precisely, we have 

Theorem 4 .1.1. If Sh(O), Eh(O), h (O), Sv(O) , Ev(O) and Iv(O) are non-negative, then so 

are S1i(t) , Eh(t), h (t) , S,, (t) , E,,(t) and I,, (t) fo r all t > 0. Moreover 

Av 
lirn sup Nv(t) ::;: -. 

t -+oo l'·v 

Furthermore, if in addition Nh( O) ::; Ah ( Nv(O)::; Av) then Nh(t)::; Ah ( Nv(t)::; Av ). 
µ h µv µ h µv 

In particular, the region 

with, 

and 

is positively invariant. 

Proof: Let t1 = sup{t > 0 : S1i , E1i , l1i, Sv, Ev and lv are positive on [O, t]}. Since 

S1i(O) > 0, E1i(O) > 0, h(O) > 0, S~. (O) > 0, Ev(O) > 0 and fv(O) > 0 then t1 > 0. If 

t1 < + oo then by using the variation of constants formula to the first equation of the 

system ( 4.1. l) we have 
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where U(t, T) = e- I:( fim+!'h)(s)ds 

Clearly S1i(ti) > 0 and it can be shown in the same manner that t his is the case for 

the other variables. This contradicts t he fact t hat l1 is t he supremum because at least 

one of the variables should be equal to zero at t1 . Therefore t1 = oo which implies that 

Sh,Eh , h , Sv, Ev and Iv are positi ve for all t > 0. 

For the second part of t he proof, we obtain by adding the first three equations and the 

last three equat ions of the model ( 4.1.1) 

(4. 1.4) 

Since 0 < h (t) :::::; N1i(t) 

(4.1.5) 

By using a standard comparison theorem [56] , we obtain 

A A 
N1i(O)e -(µ"+ w)t + " (1 - e-(µ,,+,µ)t) :::::; N1t(t) :::::; N1t(O)e-µ ht + ~(l - e-µht) 

~lh + 1/J µh 

Nv(t) = Nv(O)e-µvl + Av (1 - e-•Lvl) . 
µv 

Moreover 

A A 
--'-' - :::::; lim inf N1i( t ) :::::; lim sup Nh(t) :::::; ~ 
µh + 1/J t~oo t~oo µh 

lim1~oo Nv( l ) = Av . 
/l·v 

This establishes the invariance of D as required. • 

From this theorem we conclude that it is sufficient to consider the dynamics of ( 4.1.1) 

in D . In this region, the model can be considered as being epidemiologically and mathe-

matically well-posed [40]. 
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4.1.2 Steady states and stability analysis 

The steady states of the model are obtained by equating the right hand side of ( 4. 1. l ) to 

zero . We obtain 

Mass action 

By using (4.1.2) and (4 .1.6) we obtain 

where 

f3;.,, (A(3;.,, + B) = 0 , 

A= µ,.(a2 + µ,,)(u/>/\ a1/\. 1i. + ('l/J + µ1i.)(a1 + µ1i.) µ,,) . 

B = µ1iµ;(a2 + µv)(a1 + ~l1i. ) (µ 1i + ·tj;)( l - H6). 

Clearly, A > 0 and B 2: 0 whenever Ro :S 1. 

( 4. 1.6) 

(4.1.7) 

Notice that the solution fJ:n = 0 of ( 4.1. 7) corresponds to the disease free equilibrium 

/\. 1i Av 
Ea = (- , O, 0, - , 0, 0, ) . 

µ, , µ ,, 

The other root of (4. 1.7) , when it exists, corresponds to an endemic equilibrium point. 

The basic reproduction number of (4.1.1 ) , H0 , is calculated by using the next generation 

matrix [88]. It is given by 

Ro = Fv - 1
, 

where 

0 0 0 f3u/>Si,, 

0 0 0 0 
F = 

0 >- t.¢S~ 0 0 

0 0 0 0 

28 

http://etd.uwc.ac.za/



and 

0'.1 + µ h 0 0 0 

-0:1 'l/J + µh 0 0 
V= 

0 0 a+ µv 0 

0 0 - a2 µv 

We obtain 

Rom = 
0'.1 Cl.2 A.i\.1ii\.v (up) 2 f3 

µhµ~ (µh + 0'.1) (µh + l/J) (µv + 0'.2) . 

The square root in ( 4.1.2) agrees with the findings of [60] as the biological requirement in 

the human-vector host system for the parasite to pass through two types of individuals to 

complete its li fe cycle. Further , using Theorem 2 in [88], the fo llowing result is established . 

Proposition 1. 1. If Rom < 1, system (4 .1 .1) has a unique equilibrium point, the 

DFE and it is locally asymptotically stable. 

2. If Rom> 1, the DFE becom es unstable and system (4 .1.1} has an additional steady 

state. 

Standard incidence 

The resulting standard incidence SEI malaria model obtained by using (4. 1.1 ) and (4. 1.3) 

has the same DFE given as in the mass action SEI model. The basic reproduction number 

is given by 

Ro= 
A1iµ~(µ1i + a1)(µ1i + ·t/J )(µv + 0~2). 

( 4.1.8) 

The stability of the disease free steady state is the same as for the model with t he mass 

action but the existence results of endemic steady states are different . 

For the standard incidence form of infection we obtain the fo llowing result : 

Proof: Using ( 4.1.6) and ( 4.1.3) we have fJ;n or 

A(J;;_ + B(J;, + C = 0, (4. 1.9) 

where, 
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µh( EA</Ja.1 + 2µ i.(1/J + 0'.1 + µh)) 
Proposition 2. Wh ere R# ·- W e have the following 

µ,, (µh + 0'.1) (µ,, + 1/J) 
bifurcation behaviors : 

1. If R# > 1, then the basic malaria model ( f 1.1) wdh standard incidence exhibits 

transcritical bifurcation. 

2. If R# < 1, then the basic malaria model ( 4 .1.1) with standard incidence exhibits 

backward bifurcation . That is, there exists Re in (0, 1) such that 

i. Wh en 1 < R0 ( 4 .1.1) has one endemic equilibrium point. 

ii. Wh en Re< Ro < 1 (4. 1.1 ) has two endemic equilibrium points. 

iii. Wh en H0 < He (4 .1.1) has no endemic equilibrium points. 

1. If R# > 1 we have the following 

i. When H.0 > 1, C < 0. In t his case (4. 1.9) has a unique positive solut ion. 

11. When R0 < 1, C > 0 and B > 0 (because R0 < 1 < R#) · This together with 

/l > 0 imply that (4. 1.9) has no positive solution. 

2. If R# < 1 we obtain 

i. For Ho > 1, we have C < 0, which implies that (4.1.9) has a unique positive 

solution. 

IL For Ro < /7[#, we have B > 0 and C > 0. This implies that (4 .1.9) has no 

positive solution. 

m. If .JR#< Ro , we consider the discriminant of (4.1.9) 6. (Ro):= 8 2 -4AC. One 

can see that 6. (.JR#) := -4AC < 0 and 6. (1) := 8 2 > 0. Therefore , there 

exists Re E ( /7[#, 1) such that D. (Re) = 0 and 6. < 0 for Ro E (~·Re) 

and 6. > 0 for R0 E (Re, 1). In this case we have 

a. If .JR# < R0 < Re then ( 4. 1.9) has no positive solution. 

b. If Re < Ro < 1 then (4. 1.9) has two real solutions which are positive since 

C > 0 and 8 < 0. • 

Proposition 2 establishes the existence of two endemic equilibria for R0 in (Re, 1). To 

investigate the stability of these equilibria we use the following cent re manifold theorem 

by Castillo-Chavez and Song [10]. 
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Theorem 4 .1.2. (Casti llo-Chavez and Song (10]) Consider the following general system 

of ordinary differential equations with a parameter ¢ 

d:i; 
dt = f(x , ¢), (4.1.10) 

where f : IR" x IR -t IR11. is C2 with f (0, ¢) = 0 for all¢ and satisfying the following: 

1. Th e Jaco bian matrix has D,,f(O, 0) zero simple eigenvallle and the other eigenvallles 

have negative real parts; 

2. D1J(O , O) has a non negative right eigenvector w and a left eigenvector v correspond­

ing to the zero eigenvallle. 

Let fk be th e 1,;t h component off and 

'\"'" a2 
f k ( ) 

a = L.., k,i.j = l VkW;W7 ax ax . 0, 0 
'l '.7 

Th e local dynamics of system (4 .1.10) around 0, are totally determined by a and b. More 

precisely, we have following cases 

1. !fa > 0, and b > 0, then 

I. When ¢ < 0 with 1¢1 « 1, 0 is locally asymptotically stable and there exists a 

posi tive unstable equilibrium 

11. Wh en 0 < ¢ « 1, 0 is unstable and there exists a negative and locally asymptot­

ically stable equilibrium. 

2. If a< 0, and /J < 0, then 

i. When¢ < 0 with 1¢1 « 1, 0 is unstable; 

11. Wh en 0 < ¢ « 1, 0 is locally asymptotically stable and there exists a positive 

unstable equilibrium. 

3. If a > 0, and b < 0, then 

i. Wh en</> < 0 with l</>I « 1, 0 is unstable, and there exists a locally asymptotically 

stable negative equilibrium. 
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ll. When 0 < ¢ « 1, 0 is stable, and a positive 'Unstable eq'Uilibri'Urn appears . 

4 If a < 0, and {; > 0, then as ¢ changes from negative to positive, 0, changes 'its 

stability from stable to ·unstable. Correspondingly a negative ·unstable eq·uilibrimn 

becomes positive and locally asymptotically stable. 

Part·icularly, if a > 0 and b > 0, then a backward bifurcation occurs at ¢ = 0. 

Using the Ceuter l\ l anifold tlieorem [10. 30], we ca rry out bifurcatiou analysis. First , 

we consider the transmissio11 rate (} as a bifurcation parameter so that H.0 = 1 if and only 

if 

(J = (J* = AhJl.~(0'1 + Ji·h)('l/; + /lh)((Y2 + Jl·v) 
U1 et2A.( rep )2 Av/l·h . 

Then we make the following change of variables sh = Tj' Eh = T2 ' h = .1:3, Sv = 

x 4 , Ev = x 5 , Iv = x 6 , and N1i. = x 1 + x2 + x 3 . In addition , using vector notation 

x = (x 1 , x2 , x3 , .:r4 . x5 , .t:6 ) T, the malaria model can then be written in the form ~; = F(x) , 

with F = (J1 ,h ,h,Ii,f:;.f0)T, as shown below: 

dx 1 dt = A1i. - 8mX 1 - µ1i. X 1 , 

dx2 ) -
1
- = f3mX 1 - (ct1 + µh X2, 

d 

dx3 
- {- = 0'1X2 - (1/J + µ1i) :r:3 . 
Gt 

rl:i:4 
- = Av - Av'.1:4 - / l.v'.1:4, 
di 

(4.1.11) 

dx5 dt = AvX4 - (cx2 + µv)X5, 

with 
{3*ErjJX5 AE</JT3 

f3m = ' A,, = -----
X1 + X2 + X3 T1 + X2 + '.£3 

This method involves evalua tio11 of the Jacobian of t he system ( 4.1.11) at the disease free 

equilibrium (DFE) [ 0 , de11oted by J(E0 ). This becomes 

-µh. 0 0 0 0 -J1 

0 -J2 0 0 0 0 J1 

J(Eo) = 
0 O'j -)3 0 0 0 0 

0 0 -)4 0 -µv 0 0 

0 0 )4 0 0 -)5 0 

0 0 0 0 0 0'2 -~Lv 
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where 

J _ A<c/>Avl'·h j _ O'. + µ 
4 - J\hµ ,, , 2 - I I<> 

.l (Eo) has a simple zero eigenvalu e, witli other eigenvalues having negative real parts . 

Hence, the CcHtcr Manifold theorem ( 4. 1.2) can be applied. For this we need to calcula te 

a and b. 

We firs t start by calculat i11g t he right CJ 11cl t he left eigellvector of 1 (£0 ) denoted respectively 

and 

µ'/) 
w~ = -" ) 

0'.2 

V t = V.i = 0, V 2 = 1, 

After rigorous computations , it can be shown that 

Using IVIathcmatica we obtaillcd t hat if R# < 1 then a > 0 implying that t he SEI 

malaria model exhi bits a backwa rd bifurcation and t hat one of t he endemic steady states 

is un ta ble. 011c ca n show numerica lly that depending on t he i11itia l values t he system 

will stabilise on the other steady state or t he disease free steady state. 
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Figure 4.2 : Flow diagram for Malaria disease transmission 

4.2 Malaria model with treatment 

The SEIR model is obtained by including a class for recovered individuals into the model. 

We obtain the fo llowing SEIR model: 

dS" dt = A1i + r(l - p)h - !3m S1i - µ1iS1i + K,R1i , 

dE1i 
dt = !3m S1i - (a1 + µ1i)E1i , 

dh 
dt = a1E1i - (r + 'ljJ + µ1i)h , 

dR1i dt = rph - (µh + r;,) R1i , (4.2. 12) 

dSv dt =A.,, - AvS ,, - µ,,Sv, 

dEv 
dt = >.."S" - (a2 + µ,, )E,., 

di./} 
dt = et2Ev - µ ,, !" . 
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Here we consider two forms of infect ion for mosquitoes a nd humans: 

i. The m ass act ion force of infect ion 

(4.2. 13) 

11. The standa rd force of infection 

(4.2 .14) 

In a simila r way as for the SEI model we show that t he SEIR malaria model ( 4.2.12) 

is biologically-feasible in 

with , 

and 

4.2.1 Analysis of the mass action incidence SEIR model 

Stability of the disease-free equilibrium 

The DFE of the m alaria model (4 .2.12) exists and is given by 

( 
J\h Av ) Ea= ~ , 0 , 0 , 0 , ~.0 , 0 . 
µh ~lv 

The basic reproduction number of the model (4.2 .12), Rr, is calculated by using the next 

generation matrix [88] . I t is given by 

0 0 0 (Jc<f>S1: 

0 0 0 0 
F= 

0 AE</>S~ 0 0 

0 0 0 0 
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and 

(a1 + µ,,) 0 0 0 

-Ct1 '/' + 't/J + µh 0 0 
V= 

0 0 a+µ v 0 

0 0 -Q2 µv 

~ - 1 ~lh + 'ljJ 
Ro , (4.2.15) Rr = FV = 

µh + 't/J + r 

where R0 the is basic reproduction number of the disease without t reatment which is 

given by 

Ro= (4.2. 16) 

~ ~ 

The DFE, is locally asymptotically stable if Hr < 1 and unstable if Hr > 1. 

Concerning existence and stability of the endemic equilibrium points we have the following 

result: 

Proposit ion 3 . 1. If Ro < 1, system (4 .2. 12) has a unique equilibrium point, th e DFE 

and it is locally asymptotically stable. 

2. If Ro > 1, the DFE becomes unstable and system (4.2. 12) has an additional steady 

state. 

Proof: The steady states of ( 4.2.12) a re obtained by equating its right hand side to 

zero. We obtain 

S* _ Ah(µ" + 11,) (3;,.,(SHl ) + µh((µh + 11,)(µ,, + 'ljJ + r)(µ,, + ai))) + G* 
h - (µh + {3.;,,)( µh + K) {},*, ,(S ill ) + µh (( µh + K)(µh + 'l/J + r)(µh + a1)))' 

E* _ f3;,.,( A,,(µ1i + 11,)(3;,.,(SH l) + µ,, (( ~l" + 11,)(µ1i + '1jJ + r)(µ1i + ai))) + G*) 
h - (µ ,, + ai)(µ,, + (3,*,.,)( µ,, + 11,)fJ::n(SHl ) + µ1i((µ,, + 11,)(µ,, + 'ljJ + r)(µ,, + ai)))' 

I * _ a1 A1i f3;,i (µ" + 11,) 
h -

f3::n(SH1 ) + µh((µ1i + 11,)(µ 1i + 't/J + r)(µ1i + a1))) 

R* _ r pa1 A1i f3;,, (11.1i + 11,) 
" - (µ1i + 11,) fJ::n(SHl ) + µ1i((µ1i + 11,)(µh + 't/J + r)(µh + a1)))' 

S* = Av 
v µv + >-~ ' 

E* = >-~ Av 
v (µv + a2)(µ~. + A~) 

I * = a2>-~Av 
v µv(µv + a2)(µv + >-~)' 

(4 .2 .17) 
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where 

G* = r(( l - p)(µh + K:) + Kp), SH l = (µh + 'lf; + r)(µh + et1)(µh + K:) + ret1 (µ 1ip- (K:+ µh)) , 

( 4. 2.18) 

Using(4 .2.13) and (4.2. 17) we obtain {3~1• = 0 or 

where 

Ap = µ~A~µ".(0.2 + µv)('l/J + Ct1 + µh )(c>. </Jo.1 + ('!j; + 0.1 + µh)µv) + pwq 

B = µ1iµ~ ( o.2 + J-lv)(K + µ,,)( 0.1 + µ,,)( µh + 'l/J + r )(l - R}) 

Clearly, AP > 0 and B 2'. 0 whenever Rr ~ 1, implying t hat {3~1 = -/ ~ 0. Therefore the 
µ 

mass action SEIR malaria model has no endemic equilibrium whenever Rr ~ 1 and one 

unique endemic equi librium when Rr > i.• 

Global st a bility of t h e DFE of the mass a ction SEIR m a laria m o d e l 

We invest igate t he global stability of the disease-free equilibrium (DFE), using the fo l­

lowing theorem . 

Theorem 4.2.1. 

1. Th e disease-free equilibrium [ 0 =(Si, , Ei,, I i,, Rh, s:, E:, !~ ) = ( ~;:, 0, 0, 0, ~;;, 0, 0, ) , 

globally asymptotically stable when Rr ~ 1 and unstable when Rr > 1. 

2. Wh en Rr > 1, system ( 4. 2.12) has a unique endemic equilibrium. 
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P·roof. Consider t he Lya punuv fun ction 

L _ ( uf> >..Sv(r + 1f; + µh + 0:1) ) E ( uf> >.. Sv ) l E l 
F - ~ h + ~ h + v + V> 

(0:1+ µ1i )(r+ 1/J + µ1,) R-r (r + 1/J + µ,,) RT 

(4. 2.19 ) 

Since 81i ~ S'f., we have, 

( 4.2.20) 

~ 0 for Rr ~ 1 

Therefore the DFE of the mass action model is globally st able for Rr ~ 1 D 

4.2.2 Analysis of the standard incidence SEIR model 

For t he standard incidence fo rm we have t he sam e disease free equilibrium. The basic 

reproduction number of t he model (4 .2.12), RT, is calculated by using the next generation 

rna trix [89]. It is given by 
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µ1i + 1/; R 
"'' o, µh + 'f' + r 

Rr = Fv- 1 = (4 .2.21) 

where R o the is basic reproduction number of the disease without treatment given by 

Ro= (4 .2.22 ) 

In a similar way to the SEI model ( 4.1. l) with standard incidence, we obtain an equation 

for the endemic steady states given by 

where 

with 

A= µ~A~µv(0'.2 + µ,,)(1/; + 0'.1 + µ1t )(EA</J0:1 + (1/; + 0'.1 + µ1i.)µ11), 

M = µ 1i(K, + µ1i )2(rµ 1i + (1/; + µ1i )(o:1 + µh)) + pro: 1(1'\, + µ1i), 

We obtain the same bifurcation results as in proposition (2) . 

Local st ability analysis of the standard incidence force of infection 

(4 .2.23) 

The stability of the disease free steady state is the same as for the model with the mass 

act ion but the existence results of endemic steady states are different . 

Theorem 4.2.2. For basic SEIR malaria model with standard incidence, the DFE, is 
~ ~ 

locally asymptotically stable if Rr < 1 and unstable if Rr > 1 

Proof. We evaluate the Jacobian matrix of the SEIR model at the disease- free equilib-

rium , using S1i. = N1, - (E1, + ft, + R1i. ), we obtain 
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-(ct1 + µh) 0 0 0 0 fjup 

0'.1 -(r + 'ljJ + µh) 0 0 0 0 

0 rp -(r;; + µh) 0 0 0 
l s= 

0 - <</>>-A v /~ 1, 0 -1-l11 0 0 
i\h f.l 'u 

0 <</>>-Avµ1, 0 0 -(a2 + µv) 0 
/\hf.Lv 

0 0 0 0 0'.2 -µv 

It is clear that the third and fourth columns have diagonal enteries, so, these diagonal 

enteries -(11: + µ,,) , - µ,, are two eigenvalues. Hence , removing these columns and the 

rows corresponding to them, the Jacobian matrix (Js) is then reduced to the following: 

-(a1 + µn.) 0 0 (Ju/> 

18 = 
(.l'.1 -(r + 'J; + l'·h) 

0 <</>>-Avµh 
/\ hµ 1J 

0 0 

-(a2 + µv) 0 

0 0 

We therefore calculate the eigenvalues of the reduced matrix. Solving the eigenvalues of 

l s, requires that 

det(l s - S1 ) = 0, 

which leads to the follow ing characterist ic polynomial, 

which results to 

Here, 

a1 = (Es + Cs + Ds + µv), 

a2 = (BsCs + BsDs + µv( Bs + Cs+ Ds)), 
(4.2 .24) 

a3 = (BsCsDs + µv( BsCs + BsDs + CsDs)), 

where Bs = 0'.1 + µh , Cs = r +VJ+ µh. Ds = 0'.2 + µv, Es = <</>>- A;µ", Fs = (3up . 
µ TJ h 

By applying the Routh-Hurwitz stability conditions , we establish the following for the 

polynomial that ai > 0, a2 > 0, a3 > 0, a4 > 0 and 
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a1 1 0 
a1 1 

H1 = a1 > 0, !!2 = > 0, [[3 = a3 a2 a 1 > 0, 
a3 a2 

0 a4 a3 

a 1 1 0 0 

a3 a2 a 1 1 
H4= > 0. 

0 0 0 0 
The steady state is stable (that is, Re < 0) for all ,\ if and only if det Hi 2 0 for all 

j = 1,2,3,4. Furthermore, it is clear t hat a4 > 0, whenever, Rm< 1, we only need here 

to prove t hat H2 > 0, H3 > 0 , H4 > 0. 

H2 = a 1a 2 - a3 , H3 = a3 (a 1a2 - a3 ) - a1a4 and H4 = au. H3 . Using Mathematica 5.0, we 

found t hat 

H2 = c;( Bs +Cs+ µv) + Cs( B; + Bs( Ds + et2) + Ds(2et2 + µv) + µv(3Bs + 2µv + et2)) 

+ B;(Ds + µv) + B8 (Ds(2a2 + µv) + µv(0'2 + 2µv)) + Dsa2(0:2 + 2µv), 

H3 = C~(Bs + Ds)( Bs + µv)( Ds + µv) 

+ c;( B; Ds( Bs + Ds) + et2(Es Fsa1 + (Bs + ~lv)( Ds( Bs + 2Ds) + (Bs + Ds) µv)) 

+ µv( Bs(Bs + Ds)( Bs + 3Ds) + µv(3 B; + 3J3sDs + D; + 2(JJs + Ds) µv)) + Cs( J3~ D; 

+ Bsµv( BsDs(2Bs + 3Ds) + (Bs + Ds)( Bs + 2Ds) µv + 2Bsµ~) 

+ a~(2EsFset1 + D;( Bs + µv)) + et2(2 B; D; + 2BsDs(Bs + 3Ds) µv 

+ (B; + 2D;)µ~ + 2E.J'.,a1(B, + 2µv)) + Esf,0'1et2(Bs + Cl2 + 2µv) 2 

+ BsDsµv( Ds( Bs + Ct2)
2 + (J35 (J35 + Ds) + (Bs + 2Ds)a2) µv + 2Bsµ~), 

( 4.2 .25) 

Consequent ly from the above, it is clear that H2 > 0, H3 > 0, H4 > 0. Therefore, t he 

eigenvalues of t he J acobian matrix, ] 8 , are all having negative real par t whenever R m < 1. 

But if R T > 1, clearly we can see t hat a 4 < 0, moreover , having a 1 > 0, a2 > 0, a3 > 0, 

shows that not all t he roots of t he polynomial will have a negative real part. This means 

t hat whenever, R r > 1, t he disease-free equilibrium point is uns t able, t hat is, it is not 

globally stable. D 
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Bifurcation analysis o f t he standard form SEIR m o del 

Using Center Manifold theory [30 , 10], we carry out bifurcation analysis. First , we consider 

the transmission rate f3 as a bifurcation parameter so that R:r = 1 if and only if 

/3 = (3* ·= /\hµ~(a1 + µh)('l/J + µh + r)( ct2 + µv) 
. 0'10'2A(uP) 2Avµh . 

Then we make the fo llowing change of variables on the model, sh = X 1 , Eh = X2, h = 

X3 , Rh = X4, Sv = X5, Ev = X5, Iv = x 7 , and Nh = X1 + X2 + X3 + X4 . Using vector 

notation x = (x 1 ,x2 , x 3 ,x4 ,x5 ,x6 ,x7 )1' , the malaria model can t hen be written in the 
dx 

form dt = F(x) , with F = (J1 ,f2,h , f 4 , f 5 , f5,f?)T , as shown below: 

(4.2.26) 

~-A \ x. µx· dt - v - Av 5 - v 5' 

with 

The Jacobian matrix of (4 .2.26) is given by 

-µh 0 0 K, 0 0 -11 

0 -]5 0 0 0 0 11 

0 0:1 -12 0 0 0 0 

J(Eo) = 0 0 r - .'6 0 0 0 

0 0 -]4 0 -µv 0 0 

0 0 ]4 0 0 -ls 0 

0 0 0 0 0 0:2 -µ v 

42 

http://etd.uwc.ac.za/



where 

11 = /J*up, 12 = '!/; + µ" + r, 

AE</>Avµh 
14 = A , 15 = 0:1 + ~th , 

hµv 

J (£0 ) has a simple zero eigenvalue, wi th other eigenvalues having negative real part . 

Hence, the Center Manifold Theorem (4 .1. 2) can be applied. For this we need to calculate 

a and b. 

We first start by calculating a right and a left eigenvector of 1 ( £0 ) denoted respectively 

K.W4 - W2 ( 0'. 1 + µ,, ) /J* E</J 
W1 = ' W2 = ' 

µh 0'. 1 + µh 

a 1w2 rw3 
W3 = ' W4 = ' 

r + '!/; + µh K. + µ1i 

AE</> Avµh(K. + µh)w4 µv 
W5 = -

2 
, W5 = - , W7 = 1, 

rA,,µv 0'.2 

and 

V3 0'.1 µv(a1 + µh ) 
V2 = ' V3 = 

0'.1 + µh {J*E</J0'.1 

0'.2 
V5 = , V7 = V7. 

0'.2 + µv 

After rigorous computations, it can be shown that 

(4.2. 27) 

Clearly b > 0. Using fathematica we obtained that if R s# < 1 then a > 0 implying 

that the SEI malaria model exhibits a backward bifurcation and that the endemic one of 

steady states is unstable. 

The backward bifurcation phenomenon is illustrated in (Figure 4.2.). 

In this chapter , we calculated the basic reproduction number , Rr . We also investigated 

the existence and stability of equilibria. The mass action force of infection model is found 

to exhibits transcritical bifurcation, the DFE will be globally stable whenever RT < 1, 

while the standard incidence form of infection exhibits backward bifurcation . This has 
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Figure 4.3: Diagram depicting the bifurcation diagram using the following set of parameter 

values Ah = 0.00099 , Av = 0.0089, (3 = 0.07833 , ,\ = 0.00572333, up = 0.58, a.1 = 

100, CY.2 = 0.981 , µh = 0.00049139, µv = 0.009 , r = 0.00656 , 'ljJ = 0.0013945392 , K. = 

0.7902. it follows that R'.l' = 0.526826 and a = 0.172524 with b = 0.114899 so that 

(4.2.27) is satisfi ed. 

epidemiological implication, it means that for effective eradication and control of malaria, 

bringing Rr. is no longer sufficient , but rather , that Rr . Moreover , to achieve this may be 

too costly, because it means that for constant controls, one needs to keep implementing 

all controls for infinite time. 

In determining how best to reduce human mortality and morbidity clue to malaria, 

it is necessary to know the relative importance of the different factors responsible for its 

transmission. Hence, in the next section we compute sensitivity indices of the reproduc­

tion numbers which measures initial disease transmission. This enables us to single out 

parameters that have a high impact on the reproductive number , Rr and which should 

be targeted by intervention strategies . 
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4.3 Sensitivity analysis of model parameters 

We carried out the sensit ivity analysis to determine t he model robustness to parameter 

values . That is to help us know the parameters that have a high impact on the disease 

transmission , that is, reproductive number ( R). In carrying out the sensitivity analysis , 

we use t he normalised forward sensitivity index of a variable to a parameter approach 

described in [68], t his is defined as t he ratio of t he relative change in t he variable to t he 

relat ive change in t he parameter. The sensit ivity index may also be defined using part ial 

derivatives when the vari able is a differentiable funct ion of the parameter. 

Definit ion. The normalised forward sensit ivity index of a variable, h, t hat depends 

diffcrcnti ably on a parameter , l , is dcfin c<l as: 

y h ·= [)h x 
l . 8l h 

Sensitivity indices of R 

We therefore derive the sensit ivity of R to each of the twelve (12) <liffereut parameters 

described in Table ( 6.1 ). T he sensit ivity index of R with respect to each of t he following 

parameters, (3, /\, A1i, Av,¢ and E for example, is 0.5 and are independent of any parameter 

values . This is shown below, 

- an (3 
y~ := 8!}_ x -=, 

R 
- DR ,,\ y R. x ,\ .= () ,,\ -=, 

R 
- an A1i 

Y~,, := a~h x --= , 
R (4 .3. 28) - an Av 

y~v := a~'V x ~) 

R 
y n ._an ¢ 

x -=, <t> .- ap__ R 
y n ·=an E 

x -=, 
E • Ch R 

The implication of this, is that by increasing (or decreasing) any of these parameter 

values by 103, increases (or decreases t he reproductive number R by 53 . Other detail 

evaluation of the sensitivity indices of R resulting from the other different parameters, 
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having obvious expressions, are shown below. 

BR LY2 µv 

Dc11 
x --= 2(a2 + µv)' R 

BR LY1 µh 

Dn1 
x 

2(c.Y1 + µh) 
1 

R 
Bii µ ,, -2cx2 + 3µ." 

Dµv 
x --= 2(c.Y2 + µv) 

1 

R 
(4.3.29) 

Bii r -r 

Br x 
2(r + 'l/J + µ,i)' R 

BR 7/J - 7/J 
- x 
B7f; R 2(r + 7/J + µ1i.) 

Sensitivity indices of R 

Parameter P arameter description Sensitivity index 

~lv Natural death rate in mosquitoes -1.00455 

2 ~l h Natural death rate in humans -0.554092 

3 {3 probability of human getting infected + 0.5 

4 >. probab ili ty of a mosquito getting infected + 0.5 

5 A v mosquitoes birth rate + 0.5 

6 A1i human birth rate + 0.5 

7 rP mosquito contact rate with human + 0.5 

8 t mosquito biting rate +0.5 

9 1/; disease induced death -0.456 14 

10 .,. recovery rate -0.45614 

11 £12 progression rate from exposed to infected mosquito + 0.00454545 

12 O'.] progression rate from exposed to infected human +0.00000245696 

However , the expression for sensitivity indices for human natural death µhis complex. 

Hence we evaluate the sensit ivity indices at the baseline parameter values given in Table 

(6. 1) . The parameters are arranged from the most sensitive to the least. The most 

sensitive parameter is the natural death rate in mosquitoes, /l·v, fo llowed by probabili ty of 

human getting infected, (3. Other important parameters include, mosquito contact rate 

with human , ¢, mosquito biting rate, E and probability of a mosquito gett ing infected, A. 

The least sensitive parameter is t he progression rate from exposed to infected human, cx1. 

The sensit ivity index of R with respect to the transmission probability ((3) is +0 .5, 

implying that decreasing (or increasing) the (3 by 103, decreases (or increases) R by 53 . 

Since Y:v = -1.0045 , increasing (or decreasing) µ ,, by 103, decreases (or increases) the 
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R by 10.053, similarly increasing (or decreasing) the contact rate, </>, by 103, increases 

(or decreases) the R by 53. In the same way, increasing (or decreasing) the mosquitoes 

bi ting rates c, increases (or decreases) H, by 5 3 . 

Reducing the number of contacts between humans and mosquitoes, through a reduc­

tion in either or both, the frequency of mosquito contact and the mosquitoes biting rate, 

would have the largest effect on disease transmission. Shortening the lifespan of the 

mosquitoes reduces the basic reproductive number because more infected mosquitoes die 

before they become infectious. 

Therefore, any changes in Nv have two opposite effects on one hand , decreasing Nv, 

decreases the number of mosquitoes which tend to increase R . On the other hand , 

increasing µv also decreases the mosquito lifespan which tend to reduce R. For all the 

parameters , the sign of the sensitivity indices of R agrees with intuitive expectation, that 

is, whether R increases or decreases when the parameter increases. In the next section we 

proceed to study the optimal control and analysis of the model, putting into consideration 

the important model parameters . 

We incorporate into the model t ime dependent control measures for preventive in­

terventions such as use of treated bednets, treatment of infect ive individuals and spray 

of insecticides. Then we apply optimal control method using Pontryagin 's IVIaximum 

Principle to determine the necessary conditions for the optimal control of the malaria 

disease. 
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Chapter 5 

Optimal control analysis of SEIR 

model with treatment and 

preventions 

5.1 Mode l description 

In order to investigate the optimal control strategy for the control of disease, we incor­

porate into the model time dependent control parameters for the use of treated bednets, 

treatment of infective individuals and insecticide spray. The modified model description 

is given below. 

Susceptible individuals acquire malaria infection fo llowing contact with infectious mosquitoes 

at a rate ( 1 - v1 ){Jc¢, and v1 (0 :S v1 :::; 1) is the control on the use of mosquitoes treated 

bednet . Individuals with malaria symptoms are effectively treated at a rate TV2 where 

0 :S T :S 1, 0 :S v2 :S 1, v2 is the control on treatment to ensure compliance and T 

are proportion of individuals effectively treated. Human spontaneous recovery rate is 

given by b, where 0 :S h < T. Susceptible mosquitoes (S'v) acquire malaria infection 

(following effective contacts with humans infected with malaria) at a rate (1 - vi) >.. c¢. 

Each mosquitoes group is reduced at the rate v3(1 - p) , where (1 - p) is the fraction of 

mosquitoes population reduced and 0 :S v3 :S 1, is the control function representing spray 

of insecticide aimed at reducing the mosquitoes sub-populat ions. We assumed also that 

the disease transmission is further subj ect to the cost of preventions and treatments, where 

er is total cost of malaria control , c1 , per unit cost of bednets and c2 is per unit cost of 
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malaria treatment, c3 , per uni t area cost of insecticides and a- is discount rate (3% to 5%). 

Thus, put ting t he above fo rmulat ions and assumpt ions together gives the following human­

vect or morlel, given hy system of ordin my differential e(]uations below as 

(5.1.1 ) 

We defin e t he cost associRJe<l with preventive measures hy the fo llowing function 

(5. 1.2) 

where t 1 is the fin al time. In the case of const ant controls t he stability and bifurcation 

analysis is the same as for the model wi th t reatment ( 4.2.12) as t he prevent ive interven­

tions introduced in the model resul t only in modifications of the parameters of t he model 

and not the model itself. 

5. 2 Economic analysis 

Specifically, carrying out a comparative analysis, knowing costs and outcomes of alter­

native cont rol strategies is important to decision makers who are often faced wit h t he 

challenge of resources allocation. The resources are scarce and so must be judiciously 

allocated. Hence, in the next section , we consider the economic evalua tion involved in 

these strategies, t he use of t reated bednets, treatment of infect ive individuals and spray 

of insecticides. To consider the economic analysis of t he control st rategies, we use t he 
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objective fun ct ion W. The goal is to compare the costs of these interventions and their 

effectiveness in the control of malaria. 

The Hamiltonian associated with (5 .1.1 ) is given by 

(5.2 .4) 

where Ash , As1i, A1h, >..R,, , Asv, Asv, Arv represent the shadow prices associated with their 

respective classes. By the Pontryagin 's Maximum Principle we have 

d>..s1i 
dt 

8Hc d>..r,. 
8Eh ' dt 

O f-le r/,)..E,, 

asv , dt 

Therefore, in all cases, optimal policy occurs where the marginal benefit for a further 

reduction in disease prevalence is equal to the marginal cost to achieving it. 

5.2.1 Economic evaluation of treated bednets 

Differentiat ing the He with respect to the use of bednet v1(t), we obtain 

(5.2.5) 
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The associated shadow prices with the use of treated bcdncts arc given by the following 

equations 

d>.sh 
dt 

d)..Eh 
dt 

d>. sv 
dt 

d)..Ev 
di 

(5.2.6) 

The optimal policy is achi eved whcu the rnargiual cost of t reated bcducts is equal to the 

marginal benefit. 

v1(t) = 0 i f c1S,,(t) > ,6S1Jv( >- s" - >. EJ + >. Sv I,, (>.s,, - /\ £,,) 

v1(l) E (0, 1) i f c1Sh( t) = 135,,I,.(>.,c;,, - >.,.;,,) + >. S,, I,, (>.,c;,, - AF;,,) 

This optimal policy iudicatcs that increase in the use of treated bednets has two effects. 

Firstly, it reduces the number of exposed humans and exposed mosquitoes, and secondly, 

it increases the numbers of susceptible (uninfected) humans and susceptible (uninfected) 

mosquitoes . 

The cxprcssiou 

is the total marginal benefits of the use of treated bednets and c1S,,( t ) is the marginal 

cost. The interpretation is that mala ria prcvcution through the use of bcdncts wi ll be 

optimal only when the expected marginal benefi t /3 1,1,. (As" - >. E,J + /\ S.11 ! 11 ( / \ ·., - >.E,,) is 

larger than the marginal cost of using t reated bcc.lnct ·, c1 S" ( t). Then the best strategy is 

for all susccptiblcs to use treated bcc.lncts . However, if the marginal benefit is less than 

the marginal cost , thcu no susceptible humans will use treated bcdncts. 

5.2.2 Economic evaluation of treatment 

Differentiating He: with respect to optimal t reatment of infective individuals, we get 

51 

http://etd.uwc.ac.za/



where c2T h ( t ) is the rna rgina 1 cost for bcillg treated am! r,, ( t )T(A11i - ,\n,J is the marginal 

benefit:; for being treated. 

The associa ted shadow prices with being treated arc given by the following equations 

(5.2.7) 

The optimal policy b to eusure that the margi1ial ueuefits for being treated is equal to 

the marginal costs for being treated . 

Th0 higher the marginal lwncfit for being trmted. (>. R,, - >. 11i), than the marginal cost for 

being t reated , c2 T h ( t ), t he more trcatmc11t is appreciated , then all infected humans will 

seek full treatment. However, if t.he marginal be11efit (>.R,, - >. 11,) is less than the marginal 

cost for being treated , c2T I h (I) , t hen 110 infected hum all seeks treatment. 

5.2.3 Economic evaluat ion of insecticide spray 

Differentiating Hr: with respect to the spray of insecticides v3 , we have, 

where c3 p(8v(i) + Bv(i ) + !,, (!)) is the marginal cost for spray of insecticides against 

mosquitoes and (1 - 71 )( .'i'v(t )>.s,, + B,, (l)>.E ,, + lv(t )>. iJ is the me:u gina.l benefi ts . 

The associated shadow prices with spray of insecticides a rc given by the following 

equations 

(5 .2.9) 
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The optimal policy is, 

V3( l ) = 0 i f C3 p(Sv(t) + Ev( f ) + I u(t)) > (p - l )(Sv(t) As,, + Ev(t) >. E,, + fv(t) >. i,,), 

V3( l ) E (0, 1) i f C3p(S, ,(l ) + E,,(t:) + ! ,,(t)) = (JJ - l )(S,,( t )\ ,,. ,, + E,, (t )>.,.;,, + l, ,(t ),\, ,,), 

113(1.) = 1 'i f c3 71 (Sv(I.) + Bv(I ) + Iv(!.)) < (71 - l )(Sv(l )/\ s,, + Bv(i ),\E,, + fv(t.) >., ,,). 

If margi11al bcllcfi. ts for oµt iuml sµr ay of inscctici<lcs agaillst mosqui toes 

(p - l )(S,,( t:),\s,, + E,,( t )>.1;;,, + J,, (t )>. i,,) . 

is less than the marginal cost of spray of insecticides , 

the spray of insecticides is opt imal. If the marginal cost of spray of insecticides is less 

than the 1uargi11al Lc11cfits , then it is optimal to spray insecticides against mosqui toes for 

malaria cont rol. 

Next we i11vcst igatc t ltc impact of t he shadow prices and margina l benefits numerically, 

by evaluating the shadow price at the start of malaria epidemic as a function of the 

numbers of recovered or protected at the t ime of outbrea k. This is shown in Figures 5.1, 

5.2 and 5.3 respectively. Shadow price is the change in t he objective value of the optimal 

solut ion of an opt imization problem obtained by relaxing the constraint by one (1) uni t. 

In other words, this tells us by how much the objective function would increase, since we 

could protect or t reat few more addi tio11al persons. 

We observed in Fig 5. 1 that the marginal value (shadow price) of S1i is much less 

damaging than t he marginal value of ft, . This is economically reasonable as suscept ible 

human 011ly represc11ts disutili ty as potent ially in fected human. This fur ther established 

that an infected hurna11 rcpresc11ts a welfa re cot in its self and also a source of infect ion 

fo r susccptiblcs. The shadow price on infected drops negatively before increasing again, 

indicating an initial negative impact on the cost and again rises in response to the positive 

impact achieved which stabilizes at time t = 75. 

Figure 5.2 has an economic interpretation , an indication that as more individuals 

arc protected or recovered from the disease, the consequences of t he diseases becomes 

negligible. Also a11 indication that the shadow price 011 5 11 tends to zero as the numbers 

of protected and recovered susccpt iblcs approaches zero. Then it increases (although still 
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Figure 5 .1: The Figure shows shadow price against time 

negative) as the numbers of recovered and protected susceptibles increases to ultimately 

stabilize at zero. 

Figure 5.3 indicates that the marginal benefit for further reduction in disease preva­

lence falls as disease prevalence itself falls . The Figure further shows that a smaller 

amount of efforts on spray of insecticides is needed to eliminate the disease, compared to 

treated bednets . For example in t ime t = 10, with the spray of insecticides, elimination 

of malaria will be optimal. While with the use of treated bednets, it will be eliminated 

in t = 32. 

5. 3 Ana lysis of optima l con t rol 

In case the elimination of malaria is not affordable whether due to costs , social or environ-

mental reasons , we need to invest igate the optimal level of efforts that would be needed to 

control the disease. For this to be achieved, we give the objective funct ional J , which is to 

minimize the number of human infectives and the cost of applying the controls v1 , v2 , v3 . 

(5.3 .10) 
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Figure 5.2: The shadow price on Sh is close to zero for small numbers of recovered 

susceptibles at time t*, the shadow price is increasing, alt hough still negative. 

where l?lJ , n , c, d are positive weights . With the given objective fun ction J ('U) ; our goal 

is to minimize the number of in fected humans Ih(t) , while minimizing the cost of control 

v1 ( t) , v2 ( t) . V3 ( t). We seek an opt imal control vi, v:2, v3 such that 

(5.3.11) 

where U = { ( V1, V2, v3) such that v1, v2, v3 measurable with 0 ::; v1 ::; 1, 0 ::; v2 ::; 1, 0 ::; 

113 ::; 1 fort E [O, t1]} is the control set. The necessary condi tions that an optimal control 

must satisfy come from the Pontryagin 's Maximum Principle [75]. This principle converts 

(5.2.4)- (5.3 .10) into a problem of minimizing pointwise a Hamil tonian H , with respect to 
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Figure 5.3: The marginal benefi t of use of ins cticides is much smaller than the marginal 

benefit of treated bednets. 

+>- eh { (1 - v1)f3uPfv Sh - (a1 + µh)Eh } 

+>-1 1i {a1Eh - (b + TV2)h - ('lj; + µh)h} 

+>-n1i { (b + Tv2) h - (11: + µ1i )Rii} 
(5.3. 12) 

where the As,, , >-eh, Arh, AR,, , >-s,, , >-e,, and >-r,, are the adj oint va riables or co-state variables. 

By applying Pontryagin 's Maximum Principle [75] and the existence result for the optimal 

control from [25], we obtain 

Proposition 4 . For the optimal control tripple v;, v~, vj that minimizes J ( u) over U , 
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there exist adjoint variables >-sh , >-s,,, >.11i, >.R1i, >-s,, , As,, , >-1,, satisfying 

d>.sh 
---

dt 
d>.sh 

---
dt 

d>.1h 
dt 

dAR1i 
---

dl 

d>.s,, 
---

dt 
d>.s,, 

---
clt 

d>.1 ,, 
clt 

dAcT 
---

dt 
0 , 

and with transversality conditions 

(5 .3.13) 

/\ s11 (t1) = >- c:,,(t1) = >.1,,(t1) = AR,,(t1) = As,, (t1) = >. i:;Jt1) = >-1Jt1) =>-er= 0, 

(5.3.14) 

Proof: Corollary 4.1 of [25] gives the existence of an optimal control due to the 

convexity of the integrand of J with respect to v1 , v2 and v3 , a priori boundedness of the 

state solut ions, and the Lipschitz property of the state system with respect to the state 

variables. The differential equations governing the adjoint variables are obtained by the 

differentiat ion of the Hamiltonian function and evaluated at the optimal control. 
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__ d~-:1• = ;~ = ((1 - v1)(Ju/;l ,; + µh) >-sh - (1 - v1) f3u/> Iv>-E,, - C1Ac rV1 , 

d>-r:,, 8 H 
__ d_t_ = BE1i = (µ1i + a1 ) ,\E,, - a1 >-1,,, 

d>-1" 8H ( ( )) \ dt oh = -m + (b + TV2 + µh + 'l/J) Arh - b + T 1 + V2 /\ Rh' 

+(1 - v1) >- u1>Sv >-sv - (1 - V1)A E</> SvAEv - C2 AcrV2, 

8H 
BR1i = -K,,\5" + ( ~lh + K,),\Rh , 

d>.n,, 
- --

dt 
8H 
oSv = ((1 - V1)AE</> h ) + V3( l - p) + µv) Asv + (1 - V1)AE</> hA E,. - C3 AcrV3, 

d>- s,, 
= 

dt 
8H 
BE,; = (v3( l - P) + a2 + /J, .,)>.1.;., - a 2>-1v - C3 AcrV3, 

dA E,, 
---

dt 
arr 
Blv = (1 - V1)fJE</>S1i As" - (1 - V1)fJE</>S1i AE" + (v3(l - p) + µv) >-1v - C3 AcrV3, 

d,\fv 
= 

dt 
8H 
-= 0 
8Cr ' 

dAcT 
- -- = 

dt 

0 = ~~: = v; 2n + (JE</; l:( >- s,, - >. E,,) S'fi + AE</> I,:(>-s,, - >- EJ S; + c1 >-crS'fi, 

0 = aaH = v;2c - T(Arh - /\R,, )Jh + C2 Acr lh, 
V2 

0 = ~: = v~2d - S'fi>-s" - (1 - p)(S~>-sv + E; >-Ev + 1; >-1J 

which in a more explicit form becomes, 

d,\5h 
--

dt 
d)..Eh 

- --
dt 

d,\1h 

dt 

d,\R,. 
---

dt 
d>-s,, 
--

dt 
d>.E,, 

---
dt 

d>-1 ,, 
dt 
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Hence, we obtain 

(f3u/> I ;( >. s,, - >. sh )S;, + >.u/>f ;,( >. E,, - >.sJS; - C1AcrSh)eat 
2n 

(T( >.1,. - >.R1.) f f,, - c2>.cr l f,,)eat 
2c 

(Sf,, >. s,, + (1 - p)(S; >. s,, + E; >. r," + I;/\ i,,) - C3 Acr(S; + E; + I ;))eat 
2d 

By standard control arguments involving t he bounds on the cont rols, we conclude 

where 

0 ifw~ ~ 0 

vi= '/J)i i ./O < '/J)i < 1 

1 i fw~ 2: 1 

0 if w2 ~ 0 

v2 = w2 if 0 < w2 < 1 

1 if w2 2: 1 

0 if wj ~ 0 

vj = wj if 0 < wj < 1 

1 if w3 2: 1 

F Z + >.uf>I,:( >. £" - >.sJ S; + C1 AcrSJ: 
2ne-at 

(T( >. h - >. R1i) r1: + c2 >.cr rnea1 

w2 = - ------- - - --
2c 

w* _ Si, >. sh +CZ+ <3 Acr(s,: + D,: + !.,~) 
3 - 2de-at 

v; = min {l , w; } , v; = min {l , w;} , v; = min {l , w;} . 

For t he standard incidence form of infect ion , we give t he necessary condi t ions for t he 
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disease control below. 

d>.. E,, 
---

dt 

+(v3( l - p) + µv) Afv - C3 AcrV3, 

d>..cr OH 
- _d_l_ = DCr = O, 

and with transversali ty conditions 

>..sh(t1) = >.. E,.(t1) = >..11,(t1 ) = >..Rh (t1) = >.. s,,(t1) = AE,,( t1) = A1v(t1) =>..er= 0. 

(5 .3.17) 

v* = max 0 mm 1 ____ 1i. --------

{ 
. ( FZ +>.~Ii, (>.. s,, - >..EJ + c1 >.. cr S~ )} 

1 ' ' 2ne-O"t ' 

* {o . (1 (T(>.. ,,, - >..RJ I,: + C2 AcT I~)e"'· )} v2 = inax , in 1n , ----------
2c 

v = inax min 1 " " " . . {o . ( ((1 - p)(S,*i>..s + E,:>.. E + l.,*J >..1 ) + c3>..cr(8~ + 8~ + 1,:))eO"t )} 
3 

' ' 2d 

(5.3. 18) 
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