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Abstract

Mathematical epidemiology of Malaria disease transmission and its optimal

control analyses

K. O. Okosun
PhD Thesis, Department of Mathematics and Appliecd Mathcmatics, University of the

Western Cape.

In this thesis, we present and analyse an SETR (susceptible-exposed-
infectious-recovered) model for malaria disease transmission. The
model consist treatment and control strategies such as the use of
bednets and spray of insecticides with the costs associated with
each control measure. Firstly, we analyze the model without treat-
ment and investigate its stability and bifurcation behaviour. Then,
we incorporate treatment and investigated the effects of different
control strategies on the spread of malaria. Further, we use opti-
mal control methods to determine the necessary conditions for the
optimality of the disease eradication or control. We determined
the most cost-effective strategies in fighting malaria disease by car-
rying out a cost-effectiveness study. We found that mass action
model exhibited transcritical bifurcation. The disease-free equilib-
rium (DFE) is globally stable whenever, basic reproductive number
is less than unity, while the models with standard incidence form
exhibited backward bifurcation. In examining the cost-effectiveness
analysis we found that the most cost effective strategy is the combi-

nation of insecticides spray and treatment of infective individuals.

Furthermore, we modified the SEIR model to incorporate treat-
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ment and vaccination with waning immunity and an appropriate
cost function. We analyze the model and investigated its stability
and bifurcation property. Also, we use optimal control theory to
determine the necessary optimal conditions for the disease eradica-
tion, and when eradication of the disease is unachievable we derived
the necessary conditions for its control. Further, we carried out a
cost-effectiveness analysis of the control strategies. In our findings,
the mass action model exhibits a backward bifurcation phenomenon,
while the standard incidence model exhibited a phenomenon of mul-
tiple endemic equilibria. We also found that the most cost-effective
strategy to eliminate malaria is the combination of treatment of in-
fective individuals and wvaccination. From the analysis, we found
that eradication will be possible and optimal when the community

marginal cost is less than the community marginal benefits.
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Chapter 1

General Introduction

The last thirty years witnessed a resurgence of deadly infectious diseases which were once
thought to have been eradicated, due to the appearance of antibiotic-resistant strains
and climate changes, which helped in propagating the diseases to new geographical areas,
where they were initially not present. Malaria, tuberculosis, dengue, yellow fever and
HIV/AIDS are just a few diseases which continue to persist despite all efforts committed
to getting these diseases eradicated. In particular, malaria is endemic in 109 countries
and territories in tropical and sub-tropical zones, spanning all continents of the world
except Antarctica and Australia, with intensities of transmission that vary from very low
to extremely high. The World Health Organization (WHQO) (2007) estimated about 40%
of the world’s population to be at risk with malaria disease. This accounts for over a
million deaths each year in areas with high malaria transmission probability. Children
under the age of 5 years and pregnant woman are the most susceptible to the disease.

Sub-Saharan Africa, Asia and parts of Latin America are mostly affected.

1.1 Malaria biological background

The word malaria is derived from the Italian phrase, (Mal aria) meaning bad air as it was
initially thought that the disease came from fetid marshes; but later in the 1880, Laveran
discovered that the real cause of malaria was Plasmodium, a parasite which can only be
transmitted to humans when they are bitten by a Plasmodium carrier female Anopheles
mosquito.

In humans, the parasites grow and multiply firstly in the liver cells and then move

into the red blood cells. In the blood, successive broods of parasites grow inside the red



blood cells and destroy them, producing new parasites " merozoites” to continue the cycle
by invading other red cells. Most bites inject a minimum of 20 sporozoites, and very
few can inject more than 100 sporozoites. About half of the successful (infectious) bites
will result in blood-stage infections. The first asexual multiplication (exoerythrocytic
schizogony) occurs within liver cells. This results in the birth of more merozoites per
sporozoite between 10 thousand to 40 thousand. These merozoites then flow into the
bloodstrecam 5-9 days after inoculation and invade red blood cells. Here they continue
to multiply asexually (erythrocytic schizogony) by producing new merozoites. This can
cither lead to the repeat cycle within red blood cells every 48 or 72 hours or develop into
the sexual transmission stages called gametocytes. Mature gametocytes of will then first
appear in the bloodstream about 10 days later. These gametocytes may remain infectious
for about three weeks or more. The incubation period within the mosquito may last 8-22
days. Sporozoites can remain viable for 30-40 days within the salivary glands for as long
as the mosquito lives.

In 1886, Golgi Camillo [18] discovered that there were more than one species of Plas-
modium that infected humans. In fact there are over 120 species of the parasite genus

Plasmodium [23], though only four of them cause malaria: These are

1. P. falciparium - It is commmon in tropical areas and is majorly respounsible for the
most life-threatening form of malaria and caused majority of the deaths worldwide.
Its incubation period is 5 - 12 days. It is also resistant to most of the drugs used in

the prevention and treatment of malaria.

2. P. ovale - It is not as common as P. falciparium and is mostly in Africa. It has an
incubation period of 8- 17 days in an infected person and ¢an hide in the liver of

partially treated people to recmerge later on.

3. P. malariae - Is also not common, and less frequent than the other forms of malaria

parasite. Its incubation period is 2 - 4 weeks in an infected person.

4. P. vivax - It is more common in temperate arcas, such as India, Central and South
America. The incubation period in the human body is approximately 8 - 13 days for
the symptoms of the discase to become apparent. This can lead to life-threatening
rupturce of spleen. The parasite hides in the liver and returns later to the blood

stream.



As deadly as it is, if diagnosed early, malaria is a curable disease with very high
chances of survival when the correct medication is administered. In addition to preventive
measures currently put in place to combat malaria, there are available drugs for the treat-
ment of malaria, such as artemisinin (Qinghao plant), chloroquine, Fansider (sulfadozine-
pyrimethamine), quinine, quindine gluconate and primaquine phosphate. The preventive

measures can be divided into two parts:

1. Personal protection against infection:- It is important to state that the best way to
prevent malaria is to avoid mosquito bites. Firstly, on personal protection against
infection, the common approaches are the use of insect repellant (DEET (N,N-

diethylmethyltoicamide)), chemoprophylazis drugs, and insecticides treated bednets.

2. Mosquito control:- The aim of controlling moesquitoes is to eliminate/reduce mosquitoes
population below the number required for the disease to transmit. The existing

methods for mosquito control include:

e Biological methods such as introducing genetically modified mosquitoes into

the population and introduction of mosquito larvae eating fish,

e Elimination of mosquito breeding sites by using insecticides to treat stand-
ing waters to kill larvae before they develop into adult mosquito, indoor and

outdoor residual spray.

In an effort to eradicate the disease. WHO led a campaign based on findings of G.
Macdonald [62] to eradicate malaria globally between 1955 - 1978. Macdonald predicted
that the mortality rate of the mosquito had to be increased from 5% to 45% in order
to eradicate malaria in Africa; This finding was the basis for the widespread use of
DichloroDiphenylTrichloroethane (DDT) in endemic malaria areas at that time. Although
the campaign did not achieve its objective of eradicating malaria, it did result in enormous
and sustained reductions in the burden of malaria in dozens of countries around the world.
However, malaria eradication failed in Africa and parts of India, Asia and Latin America

[82]. The main causes of this are
e The spread of drug-resistance to first-line drug and insecticide resistant mosquitoes.
e Limitations and improper implimentation of the resources allocated to malaria con-

trol. Many of the intervention programs established to support malaria control lack

sufficient funds and as a result they are rendered ineffective operationally.



e The spread of drug-resistance to first-line drug and insecticide resistant mosquitoes.

e Limitations and improper implimentation of the resources allocated to malaria con-
trol. Many of the intervention programs established to support malaria control lack

sufficient funds and as a result they are rendered ineffective operationally.

Based on these reasons, WHO rcoriented and redirected its policy from disease eradication
and elimination to discase control. In 1978, however, WHO while reassessing and ana-
lyzing the failures during the consolidation phase, recognized that the basic requirements

for achieving and sustaining malaria control arc
e integration of malaria control into a rcasonably well-established health system,
e an uninterrupted, continued cffort, and
e rescarch into new and improved tools.

As a result, new initiatives took place to control the spread of the disease. These include
the malaria vaccine initiative (1999), wmultilateral initiative on malaria (1997), medicines
for malaria venture (1999) and the global fund to fight AIDS; TB and malaria (2002) and

they support the implementation of prevention and treatment programs [83].

1.2  Research questions, aims and objectives

The initiatives mentioned in the previous section mainly focussed on human treatment
and (possible) vaccination, which may be costly and time consuning. The question then

18,

1. should the control aim at discasc in humans by treating infected individuals or

preventing new infections by vaccinating susceptibles and using mosquitoes bednets?

2. should it rather focus on the control/climination of mosquitoes by using treated

bednets, insecticides and destruction of mosquitoes breeding sites?
3. and what is the most cost-cffective measure?

The main goal of this study is to investigate the impact of treatment and preventive
measures such as vaccination, use of treated bednets and insecticides on the burden of

malaria. We construct the sensitivity analysis index of the model parameters, in order

(@]



e develop two SEIR models, one with treatment and prevention (treated bednets and
insecticides) and in the second model we consider treatment with vaccination, where

we assume that the vaccine effect wanes with time.

e use optimal control to examine the costs and effectiveness of the control measures

and determine the most cost effective control measure(s).

The thesis is organized as follows: In Chapter 1, we describe the biological background
of malaria, as well as research questions, aims and objectives. Chapter 2 is devoted to a
literature review on mathematical modelling of malaria and applications of optimal con-
trol methods in epidemiological models. Chapter 3 presents the preliminary background
of epidemiological modelling as well as a baekground on ordinary differential equations
and optimal control theory. In Chapter 4, we develop and analyze an SEIR model with
treatment. The existence and stability of equilibria without disease (disease free equi-
librium) and endemic equilibria is also presented. ITn Chapter 5, we incorporate into the
SEIR model treatment and preventive measures such as treated bednets and insecticides.
We apply optimal contrel methods to determine the most cost effective strategy from the
combination of at least two of treated bednets, treatment and insecticides. In Chapter
6, we develop and analyze an SEIRV model with treatment and vaccination with waning
immunity. We analyze the existence and stability of equilibrium points. Incorporating
control functions we show the optimal control analysis of the SEIRV malaria model and
find optimal conditions for eradication of the disease rather than control. Furthermore,
when eradication is impossible, we find the necessary conditions for optimal control of
malaria disease transmission. In Chapter 7, we give a concluding summary of the whole

study.



Chapter 2

Literature Review

Mathematical modelling of the spread of infectious diseases continues to be an area of
active research and has become an important tool in understanding the dynamics of dis-
eases and in decision making processes regarding intervention programs for controlling
these diseases in many countries. Greenhalgh et al. (32, 33|, studied an infectious dis-
ease model with population-dependent death rate using computer simulation. Nikolaos
et al. [71] proposed a detailed analysis of a dynamical model to describe pathogene-
sis of HIV infection. Christopher and Jorge [16] derived a simple two-dimensional SIS
(susceptible-infected-susceptible) model with vaccination and multiple endemic states.
Brauer and van den Driessche [9] proposed and analyzed simple models for disease trans-
mission that include immigration of infective individuals and variable population size.
van den Driessche and Watmough [88], developed a precise definition for the basic repro-
duction number of a general compartmental disease transmission model based on system
of ordinary differential equations. Roberts and Heesterbeek [78], proposed the popularly
known next generation matrix for estimating the effort required to control an infectious
disease. Ghosh et al. [27, 28], studied the environmental effect on an SIS model for bac-
teria and the spread of carrier-dependent infectious diseases, like cholera and diarrhea.
Guihua and Zhen [29], studied the global dynamics of an SEIR (susceptible-exposed-
infected-recovered) epidemic model in which latent and immune states were infective.
Okosun and Yusuf [72] derived and analyzed a mathematical model to study bird flu
disease transmission. More studies on modelling of infectious diseases can be found in

(2, 7, 10, 11, 14, 17, 20, 21, 26, 30, 38, 37, 40, 44, 51, 52, 53, 81, 89, 100].

Concerning the malaria disease, Ronald Ross [80] in 1897 discovered that mosquitoes
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transmit malaria and he used a mathematical model to described the dynamics of the dis-
ease transmission. His study focused more on the mosquito control. He showed that for
the disease to be eliminated the mosquito population should be brought below a certain
threshold. This work has been extended by Macdonald [61, 62] to account for superin-
fection. These two works were further extended by Koella and Anita [55] by including a
latent class for mosquitoes. They evaluated the different strategies to reduce the spread
of resistance and also studied the sensitivity properties of the parameters. Anderson and
May [2] derived a malaria model with the assumption that acquired immunity in malaria is
independent of exposure duration. Different control measures and role of transmission rate
on the disease prevalence were further examined. Hyun in [41, 42] using mass action inci-
dence, studied a malaria transmission modelfor different levels of acquired immunity and
temperature dependent, parameters, relating it also to global warming and local socioe-
conomic conditions. In [49], Kawaguchi et al. examined the combined use of insecticide
spray and zooprophylaxis as malaria control strategy. Dietz et al. [22] proposed a model
that accounts for acquired immunity in a mass action model. Chiyaka et al. [14], formu-
lated a deterministic model with two latent periods in the hosts and vector populations to
assess the impact of personal protection, treatment and possible vaccination strategies on
the transmission dynamics of malaria and in [15] they considered treatment and spread of
drug resistance in an endemic population. Jia [43] formulated and examined a compart-
mental model for malaria transmission that includes incubation periods for both infected
human hosts and mosquitoes. Mukandavire et al. [66], proposed and examined a deter-
ministic model for the co-infection of HIV and malaria in a community. More studies on
malaria modelling can be found in [4, 14, 15, 17, 67, 68, 41, 49, 43, 55, 69, 70, 85, 86, 87, 95]

However, all these works did not put into consideration the optimality, costs and
cost-effectiveness of the preventive and treatment interventions, which are mainly limited
by availability of resources. In view of this, application of optimal control theory to
epidemiology can be an important tool to test the efficacy of various policies and control
measures vis a vis the cost of implementing them. Pontryagin et al. [75] developed the
theoretical foundation of optimal control for ordinary differential equations. Since then it
has been successfullly used in decision making in various applications.

In particular, there have been studies of epidemiological models where optimal control
methods were applied. Okosun et al. [73] formulated and analyzed an optimal control

problem with an SIS epidemic model to investigate the impact of infected immigrant
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in an avain influenza transmission dynamics. In [75], Okosun and Agusto used optimal
control to study the optimal scasonal biocontrol for Eichhornia crassipes. Castilho [12],
specifically applied optimal control methods in a simplified SIR model, to study the best
strategy for educational campaigns during the outbreak of an epidemic. Zaman et.al [100]
studied a general SIR epidemic model and applied stability analysis theory to find the
equilibrium solutions and then used optimal control to determine the optimal vaccination
strategics to reduce the susceptible and infective individuals. Suresh [84, 85] formulated
and analyzed an optimal control problem with a simple epidemic model to examine effect
of a quarantine program. He also considered an optimal control problem to study the
effect of the level of medical program effort in minimizing the social and medical costs
[85]. Gupta and Rink in [31] considered the application of optimal control to find the
most economical use of active and passiveimmunization in controlling infectious disease.
Karrakchou et al.™ [48) uscd optimal control to examine the role of chemotherapy in
controlling the virus reproduction in an HIV patient. Adams et al. [1] derived HIV
therapeutic strategics by formulating and analyzing an optimal control problem using two
types of dynamic trcatments. Xiefei et al. [97] applied optimal control methods to study
the outbreak of SARS using Pontryagin’s Maximum Principle and a genetic algorithm.
Wickwire [94] applied optimal control to mathematical modecls of pests and infectious
discases control. Marco and Takashi [64] used optimal control to study dengue discase
transmission. Wicmer [95] studicd Scliistosomiasis using optimal control methods. More
studies on the applications of optimal control to infectious discases, mainly HIV/AIDS
and Tuberculosis can be found in [1, 3, 6, 19,24, 46, 45, 47, 77, 54, 59, 93, 98, 99], these
studies focuses more on cost minimization analysis of the examined control strategies.

Very few studies have been carried out on applying optimal control theory to study
the dynamics of malaria. Only recently, Kbenesh et al. [50], presented an autonomous
ordinary differential equation model with vector-control and treatment model and a time
dependent counter part of the model involving an optimal control of vector-borne dis-
cases with treatment and prevention as control measures. Rafikov et al. [78], formulated
a continuous model for malaria vector control with the aim of studying how genetically
modified mosquitoes should be introduced in the environment using optimal control prob-
lem strategics.

In this thesis, we derive and analyze a mathematical models for malaria discase trans-

mission. Firstly, we incorporate into the model control(s) parameters, mainly, use of



treated bednets, treatment and spray of insccticides against mosquitoes with appropriate
cost functions in order to study. examine the possible impacts of the combination of at
least two of these optimal strategics for controlling the discase and also to determine the
most cost effective optimal strategies. Secondly, we incorporate into the malaria model
control(s) parameters, mainly, vaccination and treatment with appriopriate cost function
in order to study and determine the possible impacts of cach or the combination of these
optimal strategics for controlling the discase.

This current model differs from the one proposed in [50] and [78] by the inclusion of a
vaccination class, control term for the vector population and the cost effectiveness analysis
carried out using optimal control techniques. Its stability properties are theorctically
analyze and conditions on the parameters for the existence of equilibrium solutions are
determined. Also detailed qualitative optimal econtrol analysis of the resulting model
arc carried out and the mnccessary conditions for optimal contrel of the disease using
Pontryagin’s Maximum Principle arc obtaincd, in order to determine optimal and cost
effective strategies for controlling the spread of the diseasc.

Our main goal in Chapter five of this thesis is to develop mathematical models with
control strategics to investigate the role of use of treated bednets, treatment and spray
of insecticides in malaria transmission, and also carry out the cost minimization and cost
effective analysis of the strategies. While in Chapter six, we ain to develop mathematical
models with coutrol strategics to investigate thic possible role of vaccination and treatment
and also carry out cost effectiveness analysis of the strategics, in order to determine
optimal control strategics for controlling the spread of malaria transmission in human-
vector interactions.

Some resultsirelated to ghis thesis have been presented in both international and local
conferences/workshops. Specifically, two articles are alrcady in press (Optimal control
strategics and economic cvaluation of malaria discase model [72] and Optimal scasonal
biocontrol for Eichhornia crassipes: a major harbour for moquito vector of malaria [75]),
one article under second review in a reputable journal (Application of optimal control to
the epidemiology of malaria), one other article (Optimal control analysis of a malaria dis-
case transmission model that includes treatment and vaccination with waning immunity)
is currently under review for publication in other reputable journal.

Next chapter, we present the preliminary background of epidemiological modelling as

well as a background on ordinary differential equations and optimal control theory.
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Chapter 3

Preliminary Background

3.1 Existence and uniqueness of solutions

To prove that there is a unique solution to a first order ordinary differential equa-
tions (ODEs) initial value problem, consider the first order ordinary differential equation

(ODE), initial value problem of the form,

dt

where F'(z) is bounded in a neighborhood of the initial condition. We record some known
results for application in the thesis.

Theorem 3.1.1.

If F is Lipschitz then there exists ¢ > 0 such that the initial value problem (8.1.1) has a
unique solution x(t) fort € (ty — ¢, to+ ¢).

Theorem 3.1.2.

If the functions F' and f))—L are continuous on a region R of the ty-plane and if (to,yo) is a
point of R, then the IVP (3.1.1) has a solution y(t) on an interval | containing to in its
mnterior.

Theorem 3.1.3.

Suppose that x* is an equilibrium solution of (3.1.1) if F(z*) =0

e z” is locally asymptotically stable (LAS) if all the eigenvalues of DF (x*) have neg-

atwe real parts.

o If at least one eigenvalue has a positive real part then x* is unstable.

The eigenvalues are the roots of the characteristic equations of the Jacobian matrix.

11



3.1.1 Routh-Hurwitz criteria
Consider the characteristic equation

P 4 P LR ) ey, =10 (3.1.2)

determining the n eigenvalues € of a real n x n square matrix A, where ) is the identity

matrix. Then the eigenvalues € all have negative real parts if
I, >0, Hy >0, HH3>0,.... 1, >0

where

a 1 s ()
as as e,

g
on R 000 2 B A IC

The steady state is stable (that is, Re(2) < 0) for all A if and only if detH; > 0 for all
j=1,2,3,...,n

3.1.2 Hartman-Grobman Theorem

Theorem 3.1.4. Let [ : R" — R" be a smooth map with a hyperbolic fized point p. Let
A denote the linearization of [ at point p. Then there exists a neighborhood U of p and a
homeomorphism

hED) BIR"

such that
fo=htoAoh

that is, in the neighborhood U of p, f is topologically conjugate to its linearization.

3.2 Compartmental Modelling

The approach for modelling the transmission of infectious disease in human populations
is usually to subdivide the population under consideration into subpopulation or small
number of epidemiological classes called compartments and the resulting model is called

a compartmental model. The classes usually considered are primarily the following
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e Susceptible class (S): A collection of individuals in a population are classified as

susceptibles if they are not infected and however at risk of being infected.

e Exposed class (E):  These arc individuals who have been infected with the disease
pathogen, but arc not able to infect others. They may still be in the incubating

stage, and do not possess immunity. This class is also known as latent class.

e Infected class (/): This is a collection of individuals who are infected and are
infectious.
e Recovered/removed class (R): These arc individuals who recover and acquire

temporary or permanent immunity and may not contract or transmit the disease,
cither because they are no longer infeetious and arc immuned or because they have

been vaccinated.

Compartmental modcls have provided valuable insights inte the epidemiology of many
infectious diseases including malaria. Discascs that confer immunity have a different com-
partmental structure from diseases without immunity. For diseases which confer immu-
nity, the SIR terminology is used, describing the passage of individuals from susceptible
class “S™ to the infective “/” and then to the removed /recavered class “R”. The term SIS
describes a discase with no immunity, indicating the movement of individuals from sus-
ceptible class to infective and then back to susceptible class. Other possibilities include
the SEIR and the SEIS models with an exposed period, a stage of being infected and
becoming infective after a period of time, and SIRS models with temporary immunity on
recovery from infection [8].

Some other elasscs way be added to increase accuracy of the medel. Specifically a
class V of vaccinated individuals. The sizes of cach class at the time ¢ are represented by
S(t), E(t), I(t). R(t) respectively, N(t) denotes the total population size, that is, S(t) +
E(t)+ I(t) + R(t)

The transmission of discases may be through horizontal incidence, from infected to
susceptibles and the vertical transmission, for example from mothers to newborns. The
probability per unit time at which susceptible members of the population are infected is
called force of infection and generally scen as a function of total number of infective
individuals. The term incidence represents the number of individuals that become in-

fected in any given period of time. It is often referred to as incidence rate, which is the
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incidence per unit time. Prevalence is defined as the proportion of the population that

is infected.

3.2.1 The basic reproductive number and next generation method

The basic reproductive number which measures the ability of the disease to reproduce, is
denoted by Ry. This is defined as the expected number of secondary cases reproduced by
one infected individual in his/her entire infectious period. When Ry < 1, each infected
individual can produce an average of less than one new infected individual during his
entire period of infectiousness. In this case the disease will not persist in the population
and may be eradicated. But in a situation where Ry, > 1, it implies that each infected
individual can produce an average of more than one new infected individuals during his
entire period of infectiousness, thisis a strong indication that the disease can persist and
invade the population.

The next generation method introduced by van den driesche and Watmough [21],
is a general method for deriving Ry in cases where one or more classes of infective are
involved. Suppose we have n disease compartments and m non-disease compartments,
and let x € R and y € R™ be the sub-populations in each of these compartments. Also
denoting the rate of secondary infection increase of the i'" disease compartment by F;

v 4

and V; the rate disease of progression. death and recovery decrease the +'* ecompartment,

the compartmental model can then be written in the form:

d.[,'i
dt

= Wik, ) — Vil i ]y %= Lgunms Ty

(l'yj
dt

The calculation of the basic reproduction number is based on the linearization of the

= g;(z39), L9= 1%, m,

ordinary differential equations (ODE) model about a disease-free equilibrium, while the
following assumptions ensure the existence of the equilibrium and well possessedness of

the model [21]:

1. Assume F;(0,y) = 0 and V;(0,y) =0 forally > 0 and i = 1, ..., n. All new infections
are secondary infections arising from infected hosts; there is no immigration of

individuals into the disease compartments.

2. Assume F;(0,y) > 0 for all non-negative z and y and ¢ = 1,...n. The function F

represents new infections and can not be negative.
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3. Vi(0,y) < 0 whenever z; = 0, i = 1,..n. Each component, V; represents a net
outflow from compartment ¢ and must be negative (inflow only) whenever the com-

partment is empty.

4. Assume ) " | Vi(x,y) > 0 for all non-negative x and y. This sum represents the total
outflow from all infected compartments. Terms in the model leading to increases in

Z;'zl x; are assumed to represent secondary infections and therefore belong in F.

W — 4(0,y) has a unique equilibrium that is asymp-

5. Assume the disease-free system

totically stable. That is, all solutions with initial conditions of the form (0,y) ap-

proach a point (0,v,) as t — oo. This point is referred to as disease-free equilibrium.

Now assuming that F; and V; meet the above conditions, we can form the next generation
matrix (operator) FV -1 from matrices of partial derivatives of F; and V,. particularly

OF;(zo)

U.L'j

V(o)

Jroe— TM]

o Y ]

where i, j = 1,....m and where zg is the disease-free equilibrium. The entries of FV~!
give the rate at which infected individuals in x; produce new infections in x;, times the
average length of time an individual spends in a single visit to compartment j. Iy is given

by the spectral radius (dominant eigenvalue) of the matrix FV 1.

3.2.2 Mass Action (Density Dependent)

The probability of transmission in a given time period is a function of the number of
infectious individuals in a given area. In this case the contact rate depends on the size
of the total host population. This type of incidence has been used in modelling several
infectious diseases and malaria in particular, see [22, 41, 42, 43, 49, 50, 55]. This form of
infection is mostly suitable when a small population size is considered. The typical SIR

model for a mass action (density dependent) transmission is given by

dS

— = —351I

dt r 9

o BET e, (3.2.3)
dt

dR

L

T
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3.2.3 Standard Incidence (Frequency Dependent)

The probability of transmission in a given time period is a function of the prevalence
of infection in the population. The contact rate is assumed to be constant, that is, it
depends on the proportion of susceptibles and infecteds within the population, not the
total population size that affects the level of interactions. Malaria and other infectious
diseases has been studied using this form of infection approach, see [14, 15, 26, 30, 66,

67, 68, 86]. The typical SIR model for a standard (frequency dependent) transmission is

given by
d_S _ —pBSI
dt N
55 1
e — vl 3.24
R —— (324
dR
==
a1

The basic compactmental models to deseribe the transmission of communicable dis-
eases are contained in a sequence of three papers of Kermack and McKendrick (51, 52, 53],

the simpliest models they proposed are of the form

ds
— = LBSI

- BSI,

di

T L A (3.2.5)
dR

with the following assumptions:
BN : average infective individual making appropriate contact sufficient to transmit infec-
tion per unit time

s

~: probability of contact between infective with a susceptible individual

~v: fraction of infectives recovered per time.

—
—

1 this model, once [ is known, R can then be determined, so we consider the S and
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I equations only.
dl  (8S —)I

dS ~  —BSI
(3:2.6)
= =Ll
N BS
By integrating both sides, we get
I = —S+;;log5+c'.
L
(8.2.7)
So
Y ’B l’ll,:;,‘-
V(S,1)=1+S—=logS— = =
( ; ) + 6 OO A/ ]{ o S
It follows then that
o 9 ¥
L g =85 L=t log Simumy " idog,— .
0+ 4o 3198220 3 i 3 0g E (32.8)

Kermack and McKendriek (1932) proposed another SIR model that includes births in the

susceptible class and deaths from all classes with tha rate proportional to cach class

15
((T/ = 2BSI + (K~ S),

1

((W i e T a1 (3.2.9)
IR

(—d-f— =yl 1

where the total population size, N is defined as the total sum of the population in the
classes. N(t) =8(t)+ 4(t) + R(t) with the assumptions that thereis no discase induced

death. Hethcote in 1976 [38], proposed a more general model

45 _ Kk _ BSI — uS

W_/l/\_“lA o,

1

{7[ = 8SI — (v+ p+ ), (3.2.10)
a

dR

— =71 — puR,

dt

where « is the discase induced death fraction; v rate of recovery with acquired immunity,

natural death rate p and birth rate p/t is assumed constant. By ignoring the R class of
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the system (3.2.10), the system reduced to

d
ch = —0BSI + p(K - 9),
3.2.11)
dl (
— = BS1 — I —ul.
g &} L —

The first step is to study the steady state, the equilibrium points is obtained by setting

the right hand side of the system (3.2.11) to zero.
—BSI + (K —S) =0,

(3.2.12)
BS L=y — il =.0.

The disease-free equilibrium (DFE) which deseribes the state where no infection is present

in the population is obtained when /* = 0, hence S* = K. The endemic equilibrium where

R(BE —(vtuta))

infection persists at a fixed level is obtained when I'* # 0, hence S* = : S
B(y+p+ca)

Yrita - The eigenvalues of the Jacobian evaluated at these points will determine their
linear stability. Therefore, linearizing the system (3.2.12) to study the local stability of

the fixed point, the Jacobian matrix is obtained

-

—u— B1 -GS
31 894 £ 1§ &)

e

At the DFE, the Jacobian matrix is given by

— i —0BK
0 BK—(w+u+a)

From the trace of this matrix, disease-free equilibrium of the system will be stable if

BK < (v + p+ ). The Jacobian matrix evaluated at the endemic equilibrium is

—uBK
S (ko)
W(BK —(v+u+a)) 0 '
B(v+p+a)

It is clear from this matrix that the trace is negative and the determinant will be positive

if 6K — (v+u+a)>0

If Ry < 1, the disease-free equilibrium is stable and the endemic equilibrium does not
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exist

If Ry > 1, the discasc-free equilibrivm is unstable and the endemic equilibrium does

exist and asymtotically stable

BK

The basic reproduction number Ry is then given by i

3.3 Optimal control method

Optimal control theory has been a powerful mathematical technique derived from the
calculus of variation and is very useful in deeision making regarding complex biological
situations. The behavior of a dynamical system is deseribed by the state variable(s). The
assumption is that there is a way to control the state variable(s) @, by acting upon it with
a suitable control. 'Thus the dynamics of the system (state ) depends on the control
w. The ultimate goal is to adjust control w to minimize or maximize a given objective
functional, J(u(t),z(t),t), that attains the desired goal and the required cost to achieving
it. The optimal solution is then obtained when the most desired goal is achieved with
least cost. The functional depends on the control and the state variables. There are a
number of different methods for ealeulating the optimal control for specific model. Pon-
tryagin’s Maximum Principle for example allows the calculation of the optimal control for
an ordinary differential equations nwodel system with given constraints. In [58, 65], other
powerful optimal control techniques have been derived for partial differential equations

and difference equations.

Reasons for optimal control

Optimal control can be use for the following reasons:
1. Controllability:- using controls to steer a system from one position to another,
2. Observability:- deducing system information from control input and observe output,

3. Stabilization:- implementing controls to force stability.
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3.3.1 The general optimal control problem

We consider optimal control problems of the form

'l'f

Jimlt), wlt) 1) = 11‘1';111 {qﬁ(tf, wltr) + /

Here, ¢t € R stands for the independent variable, called time, for "= [0, 00), where

g(t,z:(t),u(t))dt}.

z(t) = [z1(t), 22(t), ..., 7o (t)] € R™

is a n-vector of state variables (z;(t)). These describes the state of the system at any

point in time, and
w(t) = [u1(t), ug(Umertomll)]” € R™

is a m-vector of control.variables at any point in time. These are the choice variables in
the optimization problem.

The dynamics of the state variables are governed by the described set of first order
ordinary differential equations (for 1 < i < n):

dl‘i

HT fi(t (b)), u(t)); 2o = 2(0),0; < & £ . (3.3.13)

The functions:

fir P X Rbx-R-—=-R
ge T X R" X R™ — R

and

o TepcRE = R

are continuously differentiable with respect to each component of x and u (where rele-
vant), and piecewise continuous with respect to ¢. In the case where f; does not depend
explicitely on t, the system is said to be autonomous. The functions u(t) belong to a

certain class of “admissible” functions.

Definition: Admissible Control. A piecewise continuous control u(.), defined on

some time interval ¢y < ¢t < ¢y, with range in the control region U,
’ll(t) € U, YVt € [t(), tf],

is said to be an admissible control.
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3.3.2 Pontryagin’s Maximum Principle

This principle says that we can solve the optimization problem J(u(t),z(t),t) using
Hamiltonian function H over one period. That is, the principle converts the maximiza-
tion/minimization of the objective functional, J, coupled with the state variable into

maximizing/minimizing pointwise the Hamiltonian with respect to the control.

Theorem 3.3.1. From [58], in order that u*(t) and x*(t) be optimal for problem (3.5.13),
it s necessary that there exist a piecewise differential adjoint variable \(t), where for all

0<t<T we have N(t) # 0 such that for every 0 <t < T
H(t, (), u(t), A(t)) < H(t.27(t),u"(t), A(t)) (3.3.14)

for all controls u at each time t, where the Hamiltonian H is

H = gty &)yt b AL (b)) (3.3.15)
and
A OH(tam(t), u(t), A(t))
q: s or ] (3.3.16)
AMtp) =0

Necessary conditions

If w*(t) and x*(t) are optimal, then the following conditions hold:

ORI ORTNORN0)

dt ox

N

A(ty) =0, (3.3.17)

OH (t, 2 (1), u*(£), A(1))

u

= (.

Sufficient conditions

If all the functions f; and g are jointly convex with respect to x and u and if \;(t) > 0 for
all 7 and all ¢ then jointly with the stated necessary conditions, we have a set of sufficient
conditions for optimality.

Here A(t) is the shadow price or co-state variable. This denotes the increase of the
objective function due to marginal increase of the state variable. At any time the deci-

sion maker can use the control variable to generate direct contributions to the objective
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then w*(t) and x*(t) are optimal.

Here A(t) is the shadow price or co-state variable. This denotes the increase of the
objective function due to marginal increase of the state variable. At any time the deci-
sion maker can use the control variable to generate direct contributions to the objective
function (represented by the term f(¢,z(t),u(t)) in the Hamiltonian (3.3.15)), or it can
use the control variable to change the value of the state variable in order to generate
contributions to the objective function in the future. These indirect contributions are
measured by the term A(¢)g(¢, z(t),u(t)) in the Hamiltonian.

In the next chapter, we develop and analyze an SEIR model with treatment.
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Chapter 4

Malaria model with treatment

In this chapter, we present and analyze an SEIR model for malaria disease transmission.
The model incorporates treatment.  We first start by the moedel without treatment and

analyze its stability and bifurcation behavior.

4.1 Malaria model without treatment

4.1.1 Model description

The total human population, Ny, is sub-divided into sub-populations of susceptible indi-
viduals, Sp, those exposed to malaria parasite, F},, individuals with malaria symptoms,
I1,. So that

“'I\/h = ‘gh + Elz = [/l~

The total vector (mosquito) population denoted by N, is sub-divided into susceptible
mosquitoes, .S,, mosquitoes exposed to the malaria parasite, F, and infectious mosquitoes,
L,. "Thus,

N, =8,+ FE, + I,.

To formulate a meaningful model as close as possible to the real life phenomenon we

made the following assumptions:

1. We consider two population groups, the human with variable population size and

the mosquito population.

2. Only adult female mosquitoes were considered in the model, since only these need

human blood for egg production.

23



3. All new-born are susceptible in both populations. The infection of a susceptible hu-
man occurs when the individual is bitten by an infectious mosquito, the infected in-
dividual (exposed) after a period of time becomes infectious. Susceptible mosquitoes
become infected when an infectious human is bitten by a susceptible mosquito, the

infected mosquito (exposed) become infectious after a period of time.

4. Exposed humans and mosquitoes can not transmit the disease.

Susceptible individuals are recruited at a rate A, and acquire malaria through contact
with infectious mosquitoes at a rate Fe¢, where s the transmission probability per bite,
€ is the per capita biting rate of mesquitoes and ¢ is the contact rate of vector per human
per unit time. Infected individuals move to the exposed class at a rate /3,,, where 3,
is the force of infection. Exposed individuals move to the infectious class at a rate a;.
When the disease is fatal, infected individuals die at a rate «». The natural death rate is
-

Susceptible mosquitoes are gencrated at a per capita rate A, and acquire malaria through
contacts with infected humans at a rate Ae@, where A is the probability for a vector to get
infected by an infectious human. Mosquitoes are assumed to suffer death due to natural
causes at a rate u,. Newly-infected mosquitoes move into the exposed class and progress
to the class of infectious mosquitoes at a rate .

The resulting system of equation is shown below:

([‘qh.

= A g = OemOp = P
dl = h — Hho}
dE \
d—,h = BmSh — (1 + pn) En,
dl
d—z‘h = a1 By — (¥ + pa) I,

ds. (4.1.1)
- = Ay — AySy — 1Sy,

dt
dF,

- = /\vSl' —\& v) Ly,
1 (ag + py) By,
dl,
= ol = gty

\
Here we consider two forms of infection for mosquitoes and humans:
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WESTERN CAPE

Figure 4.1: Flow diagram for Malaria disease transmission
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i. The mass action force of infection

B = Bedlys

(4.1.2)
Ay = Aedlp.
ii. The standard force of infection
4 — Bepl,
R B By o Ty
ol (4.1.3)
v Sy+ By + Iy

These two forms of infection have been considered in different models of infectious
diseases, see for instance [22, 41, 42, 43, 49, 50, 55| for the mass action and [14, 15, 26,
30, 66, 67, 68, 86] for the standard incidence.

The SEI malaria model (4.1.1) will be analyzed in a biologically-feasible region as
follows. This region should be feasible for hoth human and mosquite populations. More

precisely, we have

Theorem 4.1.1. If Sy(0), £,(0), I4(0), Sy(0), E,(0) and 1,(0) are non-negative, then so
are Sy(t), Ex(t), In(t), Sy (t), E,(t) and 1,(t) for all t > 0. Moreover

Ay
limsup Ny (1) < M lim supt¥, (1) < =—.

t—oo fh t—o0 [

A'U A r v
Furthermore, if in addition N,(0) < & (;\’,,.(O) = —) then Ny(t) < - (Nl,(t) £ —)
Hh Mo Uh
In particular, the region

T W St

with,

Ay
DI, = {('gll«Ell-]/,) € Ri H .g/, -+ E}, + [/’ S /l_’}
h

and

A,
Dy = {(Sy, Eo, [,) ER® : S, + E, + I, < b

s positively invariant.

Proof: Let t; = sup{t > 0 : Sy, By, I, S,, E, and I, are positive on [0,]}. Since
Sk(0) > 0, Ex(0) > 0,1,(0) > 0,5.(0) > 0,E,(0) > 0 and [,(0) > O then ¢t; > 0. If
t1 < 400 then by using the variation of constants formula to the first equation of the

system (4.1.1) we have

Sh(tl) = L{(l‘l,O)Sh(O) + /ll1 AI/{(tl T)dT.

0
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where U(t, T) = e [: Bm+un)(s)ds

Clearly Si(t;) > 0 and it can be shown in the same manner that this is the case for
the other variables. This contradicts the fact that (; is the supremum because at least
one of the variables should be equal to zero at t;. Therefore t; = oo which implies that
Sn,En, In, Sy, E, and [, are positive for all t > 0.

For the second part of the proof, we obtain by adding the first three equations and the

last three equations of the model (4.1.1)

dN,
—r (0= A= Ni(t) = Y1),
AN (4.1.4)
B = Ay el
i (1) = Av — g Nald)
Since 0 < I,,(t) < Ni(t)
dNp,
Ap = (un + V) Na(t) < d_f(t) < Ap — unNi(2). (4.1.5)

By using a standard comparison theorem [56], we obtain

Nh(o)e—(ﬂh+w)t ST L(l — e—(uh+w)t) - Nh(t) — N’L(O)e—ﬂ-ht g ﬂ(l = (;_Hht)

p+ Y e
= Lyl A’*’ — iyt
Ny(t) = Ny(0)er +%—(1 —le™"%).
Hoy
A, J) A A,
Therefore, if Nj,(0) < —~ (resp. N,(0) < —) then Ny(t) < - (resp. N,(t) < —).
Hh Ho Hh Hy
Moreover
Ay Ay,
i < liminf N, (t) < limsup N, (t) < —.
M+ '¢' t—oo t—oo Hh
A
lim;_, o Ny(t) = —.
o

This establishes the invariance of D as required.l

From this theorem we conclude that it is sufficient to consider the dynamics of (4.1.1)
in D. In this region, the model can be considered as being epidemiologically and mathe-

matically well-posed [40].
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4.1.2 Steady states and stability analysis

The steady states of the model are obtained by equating the right hand side of (4.1.1) to

zero. We obtain

( A
B
pn + B,
F* _ [j:;',Ah
“h e
(o + 1) (pn + B3,)
I — a1 Anfy,
" (w4 ar)(B7, + ) (e + 1)
A (4.1.6)
" et Ay
AEN,
Er = . .
(,uv Gl 02)(/“"1) -+ /\v)
[* i (}'2/\«:/\1}
(I, + o) (py + A%)

Mass action
By using (4.1.2) and (4.1.6) we obtain

8 (AZ,+ B) =0, (4.1.7)

m

where
A= p (g + po)(ephon Ay + (P + p)(or + pp) )

B = pppl(ag + py) (a1 + pr)(pn + ¢)(1 — RY).

Clearly, A > 0 and B > 0 whenever Ry < 1.
Notice that the solution 3} = 0 of (4.1.7) corresponds to the disease free equilibrium

A A,
5o = —, 0,0, — 0,0, ).
Hhn Mo

The other root of (4.1.7), when it exists, corresponds to an endemic equilibrium point.
The basic reproduction number of (4.1.1), Ry, is calculated by using the next generation
matrix [88]. It is given by
Ry = FV™!,

where

0 0 0 fBeoS;

0 0 0 0

0 XepS; 0 0

0 0 0 0
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and

o1 + K 0 0 0

V- - v+ up 0 0
0 0 a+fy 0

O 0 =05 Mo

We obtain

al(y?/\AhAv(EQ))QB
ROm = D) .
'uhiuv(lu‘h T 01)(Mh I (/))(#U I a?)

The square root in (4.1.2) agrees with the findings of [60] as the biological requirement in
the human-vector host system for the parasite to pass through two types of individuals to

complete its life cycle. Further, using Theorem 2 in [88], the following result is established.

Proposition 1. 1. If Ryne-<'1, system (4-1:1) has a. unique.equilibrium point, the

DFE and it is locally asymptotically stable.

2. If Rom > 1, the DFE becomes unstable and system (4.1.1) has an additional steady

state.

Standard incidence

The resulting standard incidence SEI malaria model obtained by using (4.1.1) and (4.1.3)
has the same DFE given as in the mass action SEI model. The basic reproduction number

is given by

App2(pn + o) (pn + ) (o + ag)

The stability of the disease free steady state is the same as for the model with the mass

21N ¢ 03 AN, fy(€9)%3 (4.1.8)

action but the existence results of endemic steady states are different.
For the standard incidence form of infection we obtain the following result:

Proof: Using (4.1.6) and (4.1.3) we have /3, or
AB2 + BB, + C =0, (4.1.9)
where,
A= piAjp(az + 1) (¥ + ar + pp)(Apan + (¥ + aa + pr) ),

B = ppAp(aq + pn) (0 + pn) Anped (pn + o) (s + 0) (i + ) (Ry — R3),

C = i p2 A7 (ag + py) (0 + pun) (¥ + pa)2(1 — R2).
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/L}L(E/\¢Ofl + 2/LL('L/) + 0 /l'h))
o (pen + ) (g, + )

Proposition 2. Where Ry = . We have the following

bifurcation behaviors:

1. If Ry > 1, then the basic malaria model (4.1.1) with standard incidence exhibits

transcritical bifurcation.

2. If Ry < 1, then the basic malaria model (4.1.1) with standard incidence exhibits
backward bifurcation. That is, there exists R, in (0,1) such that

i. When 1 < Ry (4.1.1) has one endemic equilibrium point.
ii. When R. < Ry <1 (4.1.1) has two endemic equilibrium points.

ili. When Ry < R, (4.1.1) has no_endemic equilibrium points.
1. If R4 > 1 we have the following

i. When Ry > 1, €"< 0. In this case (4.1.9) has a unique positive solution.

ii. When Ry < 1, C" > 0 and B > 0 (because Ry < 1 < Ry). This together with

A > 0 imply that (4.1.9) has no positive solution.
2. If R4 <1 we obtain

i. For Ry > 1, we have (' < 0, which implies that (4.1.9) has a unique positive
solution.

ii. For Ry < /R4, we have B > 0 and (" > 0. This implies that (4.1.9) has no
positive solution.

iii. If Jﬁ# < Ry, we consider the discriminant of (4.1.9) A (Ry) := B*—4AC. One
can see that A (\/Ry) := —4AC < 0 and A (1) := B? > 0. Therefore, there
exists R. € (y/Rg.1) such that A(R.) = 0 and A < 0 for Ry € (\/Ry. R,)

and A > 0 for Ry € (R, 1). In this case we have

a. If /Ry < Ry < R, then (4.1.9) has no positive solution.

b. If R, < Ry < 1 then (4.1.9) has two real solutions which are positive since

C>0and B<0. 1

Proposition 2 establishes the existence of two endemic equilibria for Ry in (R.,1). To
investigate the stability of these equilibria we use the following centre manifold theorem

by Castillo-Chavez and Song [10].
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Theorem 4.1.2. (Castillo-Chavez and Song [10]) Consider the following general system

of ordinary differential equations with a parameter ¢

dg:- = f(z,9), (4.1.10)

where f: R™ x R — R" is C? with f(0,¢) = 0 for all ¢ and satisfying the following:

1. The Jacobian matriz has D, f(0,0) zero simple eigenvalue and the other eigenvalues

have negative real parts;

2. D, f(0,0) has a non negative right eigenvector w and a left eigenvector v correspond-

ing to the zero eigenvalue.

Let [y, be the k' component.of f and

5
= i n— U1 W4 O’O
a Zlc,z.]:l VWi Oxi(')a“,-( )
" 0 [i
= Zk:,‘i:l vk’ll.’im(o, O)

The local dynamics of system (4.1.10) around 0, are totally determined by a and b. More

precisely, we have following cases
1. Ifa >0, and b >0, then

i. When ¢ < 0 with |¢| < .1,.0 is locally asymptotically stable and there exists a

positive unstable equilibrium

iil. When 0 < ¢ < 1,0 is unstable and there exists a negative and. locally asymptot-

ically stable equilibrium.
2. Ifa <0, and b <0, then

i. When ¢ < 0 with |¢| < 1, 0 is unstable;

ii. When 0 < ¢ < 1, 0 is locally asymptotically stable and there exists a positive

unstable equilibrium.
3. If a >0, and b <0, then

i. When ¢ <0 with |¢| < 1, 0 is unstable, and there ewists a locally asymptotically

stable negative equilibrium.
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ii. When 0 < ¢ < 1, 0 is stable, and a positive unstable equilibrium appears.

4. If a < 0, and b > 0, then as ¢ changes from negative to positive, 0, changes its
stability from stable to unstable. Correspondingly a negative unstable equilibrium
becomes positive and locally asymptotically stable.

Particularly, if a > 0 and b > 0, then a backward bifurcation occurs at ¢ = 0.

Using the Center Manifold theorem [10, 30], we carry out bifurcation analysis. First,

we consider the transmission rate 4 as a bifurcation paramecter so that Ry = 1 if and only

if
e gl + )+ )02 + 1)
a1\ (€@)? Ny pin '
Then we make the following change of variables Sy = a1, By = 29, = 13,5, =
x4, B, = x5, 1, = 16, and Np"= Zgt"To + Tyl addition, using vector notation

dx

x = (@1, 22, 3, K aaa ;1:6)71, the malaria modecl can then be written in the form o8 = F(x),

with F = (f1, fo, f3: fa. fs. f6)T . as shown below:

{x
% = A= Buwr — pny
dx
+ = Bm® — (0 = in) T2,
dt
d:
(1—1:‘ = ap — (VH )73,
Ay
drs

2 — Ay — [ Y,
i Tq — (2 + py)Z
dxg
S o

with
137” ot M_ 9 & /\GQS.'I/'_';

B 1 S —
Ty + B9 +Fg Ly -+ By ~IFig

This method involves evaluation of the Jacobian of the system (4.1.11) at the discase free

equilibrium (DFE) &, denoted by J(&y). This becomes

[ =y 0 0o 0 0 —=J 1
0 —J 0 0 O 0 Ji
J(E) = 0 ap —J3 0 0 0 0
0 0 —-Jy 0 —p, O 0
0 0 Jp 0 0 =J; 0
i 0 0 0 0 0 ay  —fhy |
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where
= ﬂ*ed)a J3 = w + Hhs

J ——CA‘N\—:& J2=al+,u'h7

J5 =ag+,uv.

J(&y) has a simple zero cigenvalue, with other cigenvalues having negative real parts.
Hence, the Center Manifold theorem (4.1.2) can be applied. For this we need to calculate
a and b.

We first start by calculating the right and the left cigenvector of J(&) denoted respectively

_ T _ :
by w = [wy, we, w3, wy, ws, we)”, and v = [vy, va, v3, V4, U5, U]. We obtain

and 2 .
U T}Ll bR rd r) sjjln'

fo(Qz + i)
After rigorous C}I)x:ltl;éns.f t can b!-‘ shakgth} ( 4 ‘.-\ l) l‘a

vs N Ap(wy — 2w1 ) (2w + wp + w3) + voweB*edpnAn(ws + w3)
A

= —

b = vowgep > 0.

Using Mathematica we obtained that if Ry < 1 then a > 0 implying that the SEI
malaria model exhibits a backward bifurcation and that one of the endemic steady states
is unstable. One can show nwnerically that depending on the initial values the system

will stabilise on the other steady state or the discase free steady state.
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Figure 4.2: Flow diagram for Malaria disease transmission
4.2 Malaria model with treatment

The SEIR model is obtained by including a elass for recovered individuals into the model.

We obtain the following SEIR model:

| d;;h = An+7(L = p)In = BinSh — S + £B,
% = BSh — (a1 + pn) En,
% = a1 By — (r + ¢ + pa) I,
% =rply — (1w + &) R, S
d;;v = Ay = XSy — oS0,
ddif = 0S5, — (a2 + ) B,
ddlg' =B, — 1.
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Here we consider two forms of infection for mosquitoes and humans:

i. The mass action force of infection

Bm = Beol,,

(4.2.13)
Ao = Aegly,.
ii. The standard force of infection
/3 . /’vggd)lv
SORE N,=S,+E,+ I+ Ry’
(4.2.14)
)\ed)[h

Ny=S,+ E,+ I+ Ry

In a similar way as for the SEI model we show that the SEIR.amalaria.model (4.2.12)
is biologically-feasible in
D =D, x D, CR} xR,

with,

A
Dy, = {(Si1 En, In. By,) € R4S, + By 1+ Ry, < }T}i ~,
h

and

) A,
D, = {(SU’E’U’IL‘) o Ri . Su - E,U - [L. - —}

v

4.2.1 Analysis of the mass action incidence SEIR model

Stability of the disease-free equilibrium

The DFE of the malaria model (4.2.12) exists and is given by

A A
& = (—”’0,0.0.—”.0.0).
Hh Mo

The basic reproduction number of the model (4.2.12), Ry, is calculated by using the next

generation matrix [88]. It is given by

0 0 0 BepS:
0O 0 0 0
P ,
0 XepS: 0 0
0O 0 0 0
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and

(a1 + pp) 0 0 0

V- —a r—+ v+ pn 0 0 ’
0 0 a+p, 0
0 O — Qg oo

Rp= Fy-l= | 0t ¥ 4.2.15
Rr=FV _'/uh+'¢)+rR°’ (4.2.15)

where Ry the is basic reproduction number of the disease without treatment which is

given by

) 2
Ry = a1 Mnhy(ed) b . (4.2.16)
n 2 (pn + o) (pn + ) (1o + a2)

The DFE, is locally-asymptotically stable if Ry < 1 and-unstable if P 1.
Concerning existence and stability of the endemic equilibrium points we have the following

result:

Proposition 3. 1. If Ry < 1, system (4.2.12) has a unique equilibrium point, the DFE

and it us locally asymptotically stable.

2. If Ry > 1, the DFE becomes umstable and system (4.2.12) has an additional steady

state.

Proof: The steady states of (4.2.12) are obtained by equating its right hand side to

zero. We obtain

/

e _ Anlpn + 8)BL(SHI) + pa((pn + K)(pn + ¥ + 1) (1 + 1)) + G
" (i + B) (e + 1) B, (ST F (o + 1) (n + b+ 1) (n + 1))
B B (An(pn + )85 (SHL) + pun((pen + &) (n + 0 + r)(un + 1)) + G*)
(ke + 0a)(pn + B3) (ki + 8) B (SHL) + pn (e + &) (e + % +7) (. + 1))’
It = o1 Ap By (e + K)
Br(SHY) + pn((pn + 6) (e + 0 + 1) (1 + 1))
] R = rpay A (jun + K)
Y (et R)B(SHY) + pa((n + K)(n + 9 4 7)(n + 1))’
- A,
S = Po + A
2 Ay
B = o) v )
- as Ay A,
U (e + o) (e + A7)

(4.2.17)
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where

G =7r((1=p)(pn+K)+Kp), SH1 = (pp+ 1 +7)(pn + a1)(n + &) + rag (pnp — (K+ pn))s
(4.2.18)

Using(4.2.13) and (4.2.17) we obtain 3%, = 0 or

BtA,+B=0

n

where

Ay = P A7 (08 ) (U G0t i) (€A F (Wt O o) [15) ot 00
B = pupp? (oo 4 ) (5 + pn)(oq + pn)(pn + 0+ r)(1 — ﬁ?r)

wy = ron 2 (Qa + ).

Clearly, A, > 0 and B > 0 whenever Ry < 1, implying that i = f < 0. Therefore the

mass action SEIR malaria model has no endemic equilibrium whenever Ry < 1 and one

unique endemic equilibrium when Ry > 1.1

Global stability of the DFE of the mass action SEIR malaria model

We investigate the global stability of the disease-free equilibrium (DFE), using the fol-

lowing theorem.

Theorem 4.2.1.

v v Py ?

1. The disease-free equilibrium & = (S}, E;, I}, Ry, St EY, 1Y) = (ﬁ—,”',0,0,0, Ay 0,0,),

globally asymptotically stable when RT < 1 and unstable when RT = L.

2. When ﬁT > 1, system (4.2.12) has a unique endemic equilibrium.
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Proof. Consider the Lyapunuv function

Lo €OAS,(r + ¥ + i + o) Jeu+ A )i+ By + I,
(o + pn)(r + v + pun) Ry (r + ¥+ ) Re

A)Q+E@+h

dLp _ ( ePAS, (r + ¥ + pup + o) )E‘, 0 ( €PAS,
( (r+ 9 + ) Ry

dt ay + ) (r + ¢ + ) Ry

= ) [( OBSKI, — (v + /lh)Eh],

B ( €PAS, (1 + Y + pp + )
(o1 + pn)(r + ¥ + i) Rr

AS, ‘
r < Ed) _ ) lialEh S (T‘ + Y+ /Lh)]h:| + (((D]hS'“ = (O“Z =+ ,LLW)EN) == ((YQE,\: - ,uv[h)
(r+ v+ ) Ry
ol ¥ — y /’ ASV‘
-[- CONT + Y + i et ]Eh T cpAxSy emalsr] T,
(LAt )Ry 7+ ¢ + ) TOP a
5)2\BS, S
—(\2Ev+< (€0)°ABS, S, A _/’v>,'
(o + pn)(r + ¢ + pn) R
AS, 1 ol
= — *€¢A Eh T qu/\‘q(' ’:1 1 T:| [/L N | QQEI‘ T [/1’\ “H /1"“}'
RT R']' RI
(4.2.19)
Since Sp, < Spy-we-have,
-dAS, DNSy, £ ~ ;
- SR Rt (RT — 1)/,, = e byl = DI,
Ry -
(4.2.20)
<0 for IA{T <1
Therefore the DFE of the mass action model is globally stable for IT?T <1 O

4.2.2  Analysis of the standard incidence SEIR model

For the standard incidence form we have the same discase free equilibrium. The basic
reproduction number of the model (4.2.12), Ry, is calculated by using the next generation

matrix [89]. It is given by
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[+
s /;—wﬁrﬂo, (4.2.21)
h

where Ry the is basic reproduction number of the disease without treatment given by

2
Ry = c109MBopin(€4)°0 . (4.2.22)
Appi2 (g + o) (pon + ) (o + v2)

In a similar way to the SEI model (4.1.1) with standard incidence, we obtain an equation

for the endemic steady states given by

Be(AB2 + B, +C,) = 0. (4.2.23)
where
Ay = (K + un)? A+ p*r20dAd i i (on + 1),
+prog AR prs (k4 ) (o, Y (ed ey +2(r b o ) 1),
B, = AnpM(an + o) + pn)(7 + 9+ pp)(Rep — R7),
P = papA(an + )8 + )@+ )20 v+ ) (1= Be?),
with

A= /‘LIZ-LA%,U'I'(OIQ e “L'U)(’lrb —— ,”h)(f/\(bal e ("/) = ILII)IL‘H)’
M = pp(k + pp)? (rim + (O ) (@1 £ ) + prag(s + ),
(’L{ i /Lh)z

1 .
Rey = 57 2proq Appi (K + pn) + (coray +2(r + 9 + g + /"h)/”v)—lu—— ;

We obtain the same bifurcation results as in proposition (2).

Local stability analysis of the standard incidence force of infection

The stability of the disease free steady state is the same as for the model with the mass

action but the existence results of endemic steady states are different.

Theorem 4.2.2. For basic SEIR malaria model with standard incidence, the DFE, is
locally asymptotically stable if 7€T < 1 and unstable if 7€T > 1

Proof. We evaluate the Jacobian matrix of the SEIR model at the disease-free equilib-

rium, using S;, = N, — (E), + I, + R},), we obtain
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oty i) 0 S =
a —(r + ¢ + pn) 0 4 ! '
P o —(tm) 000}
: 0 — . ’ ’
0 % 0 0 —(ag+p,) O
0 0 0 0 (o) —Hy

It is clear that the third and fourth columns have diagonal enteries, so, these diagonal
enteries —(k + uy), — i, are two eigenvalues. Hence, removing these columns and the

rows corresponding to them, the Jacobian matrix (Jg) is then reduced to the following:

— (00 + 1) 0 . s
Jy = 0 —(r U+ i) < .
s . 2 — (02 4 4a). 0
0 0 vy —Hy

We therefore calculate the eigenvalues of the reduced matrix. Solving the eigenvalues of

Js, requires that

det(J; — ) =0,

which leads to the following characteristic polynomial,
(BS =4 Q)(Cg + Q)(D.; e} Q)([LU i Q) — alazEst —= 04

which results to

% g kP + 255 + a8 +0; = 0.

Here,
a; = (Bs + Cs + Dy + p),
az = (BsCs+ BsDs + py(Bs + Cs + Dy)),
a3 = (BsCsD;s + py(BsCs + BsDs + C; D)),
ay = B,CyDypt, — 0y EyFy = ByCyDypin(1 — R2),

(4.2.24)

where B, =ay + pup, Cs=r+v+pun, Ds=09+ p,, Es= E—i:\AA—h’“ F, = Beg.
By applying the Routh-Hurwitz stability conditions, we establish the following for the

polynomial that a; > 0, ay >0, a3 > 0,as > 0 and
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a 1 0

a; 1
Hy=ty >0, Hy=| >0, Ha=| as gy @ | >0,

asz Q9
0 as as
ay 1 0 0
as as a; 1
Byes)| @ % > 0.
0 a4 az as
0O 0 0 O

The steady state is stable (that is, Re < 0) for all A if and only if detH; > 0 for all
j =1,2,3,4. Furthermore, it is clear that ay > 0, whenever, R, < 1, we only need here

to prove that Hy > 0, H3 >0, Hy > 0.

Hy = ajay — a3, Hy = az(aras — ag)— ayaqg-and Hy=.a,Hs. Using Mathematica 5.0, we

found that

H2 = C?(Bs 55 Cs s Mv) i C,(Bz =" Bs(Ds e Cl2> Sl Ds(2a2 SE ;ul) o= /J'l)(SBH I 2:“"17 T a2))
e BE(DS + Nz) i BS(DS(QOQ + uv) aa ,uv(aQ + 2“0)) - Dsa2(a2 e 2/"1})7

Hs = C3(B, + Dy)(Bs + o) (D + )
+ CHB2Dy(B, + D) + ay(EsF.ay + (B + 1) (Ds( B, + 2D,) + (B + Dy)pw))
+ pto(Bs(Bs + BBl ettty - C,( B3 D?
+ B[ B, D, (28, 4+ 8D,) +{B, < DY B. + 805+ 28.07)
+ a3(2EsFsa; + D2 (Bya )+ ap(2B*D? +2B, Dy( B + 3Ds)
+ (B% 4+ 2D?) 2 + 2E,Fy01 (B, + 21t0)) + EoFsoqag( By + ag + 2p,)
+ By Dy (Ds( By ¥ c2)? 4 (By( B, 4+ D) 4By 52D, e iy + 2B;512),

H4 = a4H3.

(4.2.25)
Consequently from the above, it is clear that Hy > 0, H3 > 0, Hy > 0. Therefore, the
eigenvalues of the Jacobian matrix, J,, are all having negative real part whenever ﬁm < 1.
But if 7/?\/[‘ > 1, clearly we can see that ay < 0, moreover, having a; > 0, ay; > 0, a3 > 0,
shows that not all the roots of the polynomial will have a negative real part. This means
that whenever, 7€T > 1, the disease-free equilibrium point is unstable, that is, it is not

globally stable. O
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Bifurcation analysis of the standard form SEIR model

Using Center Manifold theory [30, 10], we carry out bifurcation analysis. First, we consider
the transmission rate (3 as a bifurcation parameter so that Ry = 1 if and only if

_ Anpg(on + pn) (¥ + i+ ) (02 + o)

p=p0": ,
: a1 (€0)2 Ay tin

Then we make the following change of variables on the model, S, = z1, B, = 29, I =

3, Ry = 24,5, = x5, K, = x¢,[, = x7, and N, = 1 + 22 + 3 + x4. Using vector
notation x = (1,2, 23, T4, Ts5, T, T7)!, the malaria model can then be written in the

d }
form d—j = F(x), with F = (f1, fa, f3, fa, f5.Lesfr) . as shown below:

dzx ; - ooy
( = Ap + KBy — Bm®y — Ha1

dxg

7 ‘B’HLT] o (O(] e uh)mQ:

%3‘ =Ty — (1 + ¥ + pp)zs,

Gh=r3 — (R 1n) Ty, (4.2.26)
o = Av an /\v"ES — M5,

. o e 4 e £ e

a4 — Q2T6 — HyT7,

with
ﬁm ) /3*6¢$7 )\v A /\6¢.’L‘3

x1+ o+ w3 + 1y’ T+ g Py 4By

The Jacobian matrix of (4.2.26) is given by

i —up 0 0 K 0 0 - |
0 —-Js 0 0 0 0 J1
0 ap —Jy 0 0 0 0
J&)=]1 0 0o r —-J 0 0 0 |,
0 o -J 0 —pu, O 0
0 0 J4 0 0 —=-Jg O
i 0 0 0 0 0 Qy iy |
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where

Ji=B%€d, Jp =1+ +,

AepA,
J4: M. Jszal_*_ll’h?
Ahﬂv

Jo = K+ pin, Jg = g+ ply.

J(&y) has a simple zero eigenvalue, with other eigenvalues having negative real part.
Hence, the Center Manifold Theorem (4.1.2) can be applied. For this we need to calculate
a and b.

We first start by calculating a right and a left eigenvector of J(&;) denoted respectively

by w = [wy, wa, w3, wg, ws, we, wr]T, and v = [v1, vg, V3, vy, V5, Vg, V7]. We obtain

Kawy — wa(er £ puny) G et
Y- 5 Wa = == "y
fn Oy ~+ by
W TWws
W3 e e U= )
s e T 55
AePA K+ pp)w
ws 111 A 2lih) St gkt
rAu? 9

and

v =P8 F vs =@

- po (O + fan)

T ) 3
Qy 4 fi Brepan
Qa2
Ua = == =l
g + [y

After rigorous computations, it can be shown that

 Hh Aypin
0 2U6w3/\w/\— Ws — Wy g

X (4.2.27)

b = vowred > 0.

Clearly b > 0. Using Mathematica we obtained that if R, < 1 then a > 0 implying
that the SEI malaria model exhibits a backward bifurcation and that the endemic one of
steady states is unstable.

The backward bifurcation phenomenon is illustrated in (Figure 4.2.).

In this chapter, we calculated the basic reproduction number, ]/%T. We also investigated
the existence and stability of equilibria. The mass action force of infection model is found
to exhibits transcritical bifurcation, the DFE will be globally stable whenever ﬁ'p <1,

while the standard incidence form of infection exhibits backward bifurcation. This has
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Figure 4.3: Diagram depicting the bifurcation diagram using the following set of parameter
values A, = 0.00099,% A, =0.0089 4 — (0.07833 A = (.00572333,__co0 = 0.58, o; =
100, ap =0.981, pp =0:00049139; 11;="0:009;r="0.00656,"9="10:0013945392, K =
0.7902. it follows that Rg = 0:526826 and a = 0.172524 with b = 0.114899 so that
(4.2.27) is satisfied.

epidemiological implication, it means that for effective eradication and control of malaria,
bringing 1A{’1 is no longer sufficient. but rather, that ﬁT‘ Moreover, to achieve this may be
too costly, because it means that for constant controls, one needs to keep implementing
all controls for infinite time.

In determining how best to reduce human mortality and morbidity due to malaria,
it is necessary to know the relative importance of the different factors responsible for its
transmission. Hence, in the next section we compute sensitivity indices of the reproduc-
tion numbers which measures initial disease transmission. This enables us to single out
parameters that have a high impact on the reproductive number, ET and which should

be targeted by intervention strategies.
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4.3 Sensitivity analysis of model parameters

We carried out the sensitivity analysis to determine the model robustness to parameter
values. That is to help us know the parameters that have a high impact on the disease
transmission, that is, reproductive number (ﬁ) In carrying out the sensitivity analysis,
we use the normalised forward sensitivity index of a variable to a parameter approach
described in [68], this is defined as the ratio of the relative change in the variable to the
relative change in the parameter. The sensitivity index may also be defined using partial

derivatives when the variable is a differentiable function of the parameter.

Definition. The normalised forward semsitivity index of a variable, h, that depends

differentiably on a parameter, [, is defined as:

Sensitivity indices of R

We therefore derive the sensitivity of R to each of the twelve (12) different parameters
described in Table (6.1). The sensitivity index of R with respect to each of the following
parameters, 3, A\, A;, A,, ¢ and € for example, is 0.5 and are independent of any parameter

values. This is shown below,

s @8
TR BE samm s AR G
1€ a[i R
JR A
TZ\2 = TaN =
A R
> dR A;
R L
TAh = 8_/\h X —E—,
I~ (4.3.28)
T2 = 5,
TON, YR
& OR 1)
The=—— 5 =
¢ a@\ = R’
T? = QE X ;
e R

The implication of this, is that by increasing (or decreasing) any of these parameter
values by 10%, increases (or decreases the reproductive number R by 5%. Other detail

evaluation of the sensitivity indices of R resulting from the other different parameters,



having obvious expressions, are shown below.

R ay Jhy
@ * R 20z + )
OR (€3] Hn
@ * R 2+ )
OR _ Ho _ —205+3p (4.3.29)
Oy * R 2ozt )
OR r —r
o TR m)
OR (0 B —1)
W C R 2Artvtm)
Sensitivity indices of R
Parameter Parameter description Sensitivity index
1 iy Natural death rate in mosquitoes -1.00455
2 Ih Natural death rate in humans -0.564092
3 6} probability of human getting infected +0.5
4 probability of a mosquito getting infected +0.5
5 N, mosquitoes birth rate +0.5
6 Ay, human birth rate +0.5
7 ¢ mosquito contact rate with human +0.5
8 € mosquito biting rate +0.5
9 Y disease induced death -0.45614
10 r recovery rate -0.45614
i} Qs progression rate from exposed to infected mosquito  +0.00454545
12 oy progression rate from exposed to infected human +0.00000245696

However, the expression for sensitivity indices for human natural death gy, is complex.
Hence we evaluate the sensitivity indices at the baseline parameter values given in Table
(6.1). The parameters are arranged from the most sensitive to the least. The most
sensitive parameter is the natural death rate in mosquitoes, i, followed by probability of
human getting infected, 5. Other important parameters include, mosquito contact rate
with human, ¢, mosquito biting rate, ¢ and probability of a mosquito getting infected, A.
The least sensitive parameter is the progression rate from exposed to infected human, a;.

The sensitivity index of R with respect to the transmission probability (/3) is +0.5,
implying that decreasing (or increasing) the [ by 10%, decreases (or increases) R by 5%.

Since Tﬁ = —1.0045, increasing (or decreasing) p, by 10%), decreases (or increases) the
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R by 10.05%, similarly increasing (or decreasing) the contact rate, ¢, by 10%, increases
(or decreases) the R by 5%. In the same way, increasing (or decreasing) the mosquitoes
biting rates ¢, increases (or decreases) [:’,, by 5%.

Reducing the number of contacts between humans and mosquitoes, through a reduc-
tion in either or both, the frequency of mosquito contact and the mosquitoes biting rate,
would have the largest effect on disease transmission. Shortening the lifespan of the
mosquitoes reduces the basic reproductive number because more infected mosquitoes die
before they become infectious.

Therefore, any changes in N, have two opposite effects on one hand, decreasing N,,
decreases the number of mosquitoes which tend to increase R . On the other hand,
increasing ., also decreases the mosquite lifespan which tend to reduce R. For all the
parameters, the sign of the sensitivity indices of R agrees with intuitive expectation, that
is, whether R increases or decreases when the parameter increases. In the next section we
proceed to study the optimal control and analysis of the model, putting into consideration
the important model parameters.

We incorporate into the model time dependent control measures for preventive in-
terventions such as use of treated bednets, treatment of infective individuals and spray
of insecticides. Then we apply optimal control method using Pontryagin’s Maximum
Principle to determine the necessary conditions for the optimal control of the malaria

disease.
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Chapter 5

Optimal control analysis of SEIR
model with treatment and

preventions

5.1 Model description

In order to investigate the optimal control strategy for the control of disease, we incor-
porate into the model time dependent control parameters for the use of treated bednets,
treatment of infective individuals and insecticide spray. The modified model description
is given below.

Susceptible individuals acquire malaria infection following contact with infectious mosquitoes
at a rate (1 —vy)fcp, and vy (0. < v, < 1) is the contrel on the use of mosquitoes treated
bednet. Individuals with malaria symptoms are effectively treated at a rate v, where
0 <7 <1,0 < vy <1, vy is the control on treatment to ensure compliance and 7
are proportion of individuals effectively treated. Human spontaneous recovery rate is
given by b, where 0 < b < 7. Susceptible mosquitoes (5,) acquire malaria infection
(following effective contacts with humans infected with malaria) at a rate (1 — vy)\eg.
Each mosquitoes group is reduced at the rate v3(1 — p), where (1 — p) is the fraction of
mosquitoes population reduced and 0 < v3 < 1, is the control function representing spray
of insecticide aimed at reducing the mosquitoes sub-populations. We assumed also that
the disease transmission is further subject to the cost of preventions and treatments, where

C'r is total cost of malaria control, ¢;, per unit cost of bednets and ¢, is per unit cost of
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malaria treatment, ¢3, per unit area cost of insecticides and o is discount rate (3% to 5%).
Thus, putting the above formulations and assumptions together gives the following human-

vector model, given by system of ordinary differential equations below as

1S},

= = A+ KBy — (1= 01)Bed L, S — Sh,

dE

d—th = (1 - vl)/8€¢[1r5h - (al + ,uh)Ehs

{1

((T,«h = oy By — (b+ Tv) [y — (Y + pn) I,

1R

== (b+ Toa) [y — (s an) R (5.1.1)
dSH ,

T~ A=l =03 ) ACD LStz (L ISy by
dE,

T = (1 = ’Ul)/\E(f)Ith = 1‘3(1 = p)Ev — (012 u Nv)E‘va
1

((“' = QQEL. = ’U3(1 - [))11. B ,ul,IU.

We define the cost associated with preventive measures by the following function

Ca= .];)tf[(:l’('lb'h +resvad peecsus(Sy + By + )] e kdl (5.1.2)

where ¢; is the final time. In the case of constant controls the stability and bifurcation
analysis is the same as for the model with treatment (4.2.12) as the preventive interven-
tions introduced in the model result only in modifications of the parameters of the model

and not the model itself.

5.2  Economic analysis

Specifically, carrying out a comparative analysis, knowing costs and outcomes of alter-
native control strategies is important to decision makers who are often faced with the
challenge of resources allocation. The resources are scarce and so must be judiciously
allocated. Hence, in the next section, we consider the economic evaluation involved in
these strategies, the use of treated bednets, treatment of infective individuals and spray

of insecticides. To consider the economic analysis of the control strategies, we use the
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objective function W. The goal is to compare the costs of these interventions and their

effectiveness in the control of malaria.

t
W = max / f[—(:l'l)l(l)‘gh(t) — o (D) TIR(L) — capus(£)(Sy(t) + Ey(t) + L,(1))]e " dt
0

v1.V2,U3
(5.2.3)
The Hamiltonian associated with (5.1.1) is given by
H, = —cui(t)S(t) — coua(t)71,(t) — copvs(t)(S,(t) + En(t) + L,(t))
+/\Sh {Ah s /{Rh e (1 - vl)ﬁﬁ(plvsh - ,“*hSh}
+Ag, {(1 — v1)Bedl,Sp — (eq + pn) En}
+ A1, {1 Ep — (b + Tuo) =" ) 1}
(5.2.4)

+Ag, {(b+ Tv2) Iy — (K + pp) Ry}
+As, {Ay — (T =v))Aed ], S, = v3(1 = p)S, — 11,5, }
+Ag, {(1 — v1)Aedl, S, —v3(l — p)B, — (s + o) By }

+)\Iw {O(;)E,, 0 U3(1 B p)j’u F ;U:']u}

where Ag,, Ag,, A1, Ag, s Asy. Ag,, A1, represent the shadow prices associated with their

respective classes. By the Pontryagin’s Maximum Principle we have

d/\S;, T 6Hc. ({/\Eh | & OHC d/\[h . 6HC
di'N BsS,¥ Rl XE) MtX 4,

({/\Rh ¥ ({/\5" 1K ()I—]c ({/\E“ s BH( (/)\1'v . aHC

dt 7 dt as,  dt oE,” dt 0l

Therefore, in all cases, optimal policy occurs where the marginal benefit for a further

reduction in disease prevalence is equal to the marginal cost to achieving it.

5.2.1 Economic evaluation of treated bednets

Differentiating the H. with respect to the use of bednet v;(t), we obtain

O,
v,

= —pSh(t) + S T (D)(Ns, — Ag,) + ASo()n(t)(As, — Ag,) =0.  (5.2.5)
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The associated shadow prices with the use of treated bednets are given by the following

cquations

dXs,
dt

d\g,
T

dXs,
Cdt

dAg,
di

= [((1 — ’1‘1)(}36(*)1,‘) -+ Ly + 0')]/\5)’ —(1 - 7)1)(,[366)1',,)/\5,' + 1

= (un + 1) Ag, — a1y,

= [((1 = vi)Aep ), + v3(1 = p) + po + 0)]As, + (1 — v1)Aed Iy AR, + c303

= [(v3(1 = p) + 2 + p1, + 0)|AE, — @2, + c303

(5.2.6)
The optimal policy is achicved when the marginal cost of treated bednets is equal to the

marginal benefit.

v1(t) = 0 i f SRt S080 T, (Asr =g, ) TS, [ Osps M5, )
1 (t) €l Ll llimnltlaOoululdse = A L L AS [ (Ac —AF )

“1(/) - 1 If ('IS/,(I‘) < "}Sh]"(/\.\',, — )\[;h) <t /\S,-[{,()\ﬁ;,‘ e /\E.‘)

This optimal policy indicates that increase in the use of treated bednets has two effects.
Firstly, it reduces the number of exposed humans and exposed mosquitoes, and secondly,
it increases the numbers of susceptible (uninfected) humans and susceptible (uninfected)
mosquitoes.

The expression

BSpls( s, = gt Mo lp(Ag,—p,)

is the total marginal benefits of the use of treated bednets and ¢S, (t) is the marginal
cost. The interpretation is that malaria prevention through the use of bednets will be
optimal only when the expected marginal benefit 35,1, (As, — Ag, ) + AS, I (s, — Ag,) is
larger than the marginal cost of using treated bednets, ¢;.5,(t). Then the best strategy is
for all susceptibles to use treated bednets. However, if the marginal benefit is less than

the marginal cost, then no susceptible humans will use treated bednets.

5.2.2 Economic evaluation of treatment

Differentiating H, with respect to optimal treatment of infective individuals, we get

0H,

(9'U2

= —CIT]}:(t) - [11({’)7—(/\/;, - )‘lfh) = 07



where co71),(t) is the marginal cost for being treated and 1, (¢)7(Ay, — A, ) is the marginal
benefits for being treated.

The associated shadow prices with being treated are given by the following equations

dA
- dtlh = ((0+ b4 1v2) + (s + V) A1, — (b+ Tv2) AR,
H(1 = 1)AedS,As, — (1 - v)AcoS, A, (5.27)
([/\
_# - _H/\Sh i (/1)1 il /\')/\R_h,

The optimal policy is to ensure that the marginal benefits for being treated is equal to

the marginal costs for being treated.
va(t) =0 if catly(t) > (Ar, — As)-
Va(b) € (0.1) i LLaamTi(b)= (Npp— X1

Lz(t) = I,f CzT.[h(t) b (’\Rh = /\lh)'

The higher the marginal benefit for being treated. (Ag, — Ay, ). than the marginal cost for
being treated, c,71,,(#), the more treatment is appreciated, then all infected humans will
seek full treatment. However, if the marginal benefit (Mg, = Ay, ) is less than the marginal

cost for being treated, ¢x7/,(£), then no infected human sceks treatment.

5.2.3 Economic evaluation of insecticide spray

Differentiating H, with respect to the spray of insecticides vs, we have,

OH.

m = _(73])(Sv(f) st El'(f) il [1'(f)) T (1 € [’)(Sz'(")/\s,‘ “Ir Eu(f)/\g‘” + IIV(I‘)/\[._) = {) (528)

where csp(S,(1) + E,(1) + £,(t)) is the marginal eost for spray of insccticides against
mosquitoes and (1 — p)(S,(1)As, + Fu(1)Ag, + 1,(1)Ar,) is the marginal benefits.
The associated shadow prices with spray of insccticides arce given by the following

cquations

dXsg,
Cdt

d)\g,
T

dAlv
St

= ((1 = v)Aepl), + v3(1 — p) + . + o) As, + (1 — v1)Xed I\, + c3pus,

= (v3(1 = p) + ag + py + 0)Ag, — a2A;, + c3pus,

= (1 = 1,‘1)/560'51,/\9,' — (1 = vl)ﬁfa)S,,/\Hh + (1‘3(1 = p) =+ Ly O')/\[l, + c3pus.

(5.2.9)



The optimal policy is,

va(t) = 0 1f esp(Su(t) + Eu(t) + 1,(1) > (p = D)(Su(D)As, + Eu(t)Ae, + L(D)A1,),
vs(t) € (0,1) if esp(S,(t) + Eu(t) + 1,(1)) = (p = 1)(Su(O)As, + Eu(D) A, + L(D)Ar,),

v3(t) = Lif esp(Su(t) + Eu (1) + 1,(1) < (p = 1)(Su(D)As, + Eu(D)Ag, + 1u(H)Ar).
If marginal benefits for optimal spray of insccticides against mosquitoces
(p = D)(Su(t)As, + Eu(t)Ap, + L(t)Ar,).
is less than the marginal cost of spray of insecticides,
c3p( Sy (1) elir(hts L. (1)),

the spray of inseeticides is optimal. If the marginal cost of spray ef insecticides is less
than the marginal benefits, then it is optimal to spray insecticides against mosquitoes for
malaria control.

Next we investigate the impact of the shadow prices and marginal benefits numerically,
by evaluating the shadow price at the start of malaria epidemic as a function of the
numbers of recovered or protected at the thme of outbreak. This is shown in Figures 5.1,
5.2 and 5.3 respectively. Shadow price is the change in the objective value of the optimal
solution of an optimization problem obtained by relaxing the constraint by one (1) unit.
In other words, this tells us by how much the objective function would increase, since we
could protect or treat few more additional persons.

We observed in Fig 5.1 that the marginal value (shadow price) of S, is much less
damaging than the marginal value of I,,. This is economically rcasonable as susceptible
human only represents disutility as potentially infected human. This further established
that an infected human represents a welfare cost in its self and also a source of infection
for susceptibles. The shadow price on infected drops negatively before increasing again,
indicating an initial negative impact on the cost and again rises in response to the positive
impact achieved which stabilizes at time ¢t = 75.

Figure 5.2 has an cconomic interpretation, an indication that as more individuals
are protected or recovered from the discase, the consequences of the diseases becomes
negligible. Also an indication that the shadow price on S), tends to zero as the numbers

of protected and recovered susceptibles approaches zero. Then it increases (although still
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Figure 5.1: The Figure shows shadow price against time

negative) as the numbers of recovered and protected susceptibles increases to ultimately
stabilize at zero.

Figure 5.3 indicates that the marginal benefit for further reduction in disease preva-
lence falls as disease prevalence itself falls. The Figure further shows that a smaller
amount of efforts on spray of insecticides is needed to eliminate the disease, compared to
treated bednets. For example in time ¢ = 10, with the spray of insecticides, elimination
of malaria will be optimal. While with the use of treated bednets, it will be eliminated

in ¢ = 32.

9.9 Analysis of optimal control

In case the elimination of malaria is not affordable whether due to costs, social or environ-
mental reasons, we need to investigate the optimal level of efforts that would be needed to
control the disease. For this to be achieved, we give the objective functional .J, which is to
minimize the number of human infectives and the cost of applying the controls vy, vo, v3.

k¥
J = min / [malp + nv? + cvi + dvile™""dt (5.3.10)
0

v1,v2,V3
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Figure 5.2: The shadow price on S is close to zero for small numbers of recovered

susceptibles at time ¢*, the shadow price is in¢reasing, although still negative.

where mg,n, ¢, d are positive weights. With the given objective function J(u); our goal
is to minimize the number of infected humans /,(¢), while minimizing the cost of control

v1(t), va(t). vs(t). We seek an optimal control vi, v, v such that

J(v1,v3,v3) = min{J(v;, v2, v3)|v1, v2,v3 € U} (5.3.11)

where U = {(v1, vg,v3) such that vy, vy, v3 measurable with 0 < v; < 1,0 < vy < 1,0 <
vy < 1 for t € [0,%f]} is the control set. The necessary conditions that an optimal control
must satisfy come from the Pontryagin’s Maximum Principle [75]. This principle converts

(5.2.4)-(5.3.10) into a problem of minimizing pointwise a Hamiltonian H, with respect to
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Figure 5.3: The marginal benefit of use of insecticides is much smaller than the marginal
benefit of treated bednets.
(v, Vo, v3).
H = ml}, + nol Bl di - Xep 3 MRy Lo iy ) BEP Loy Sy Sy
+Ag, {(1 — v1)Bed Ly, Sy ~(aa + pr) By}
+A1, {a1En — (b+ Tv2) Ih — (¢ + pn) In}
+Ar, {(b+ Tva) L — (K +m) Ry}
(5.3.12)
+As, {Ay — (1 — v1) A}, S, — v3(1 — p)S, — 1Sy}
+2g, {(1 = v)ASLS, — v3(1 = P)E, — (a2 + 1) B}
+Ar, {o2By —vs(1 — p)dy — pinly}
+Acy {(civ1Sh + covaly + c3v3(S, + By + 1)), }
where the Ag, ., Ag,, A1, AR, As,, Ag, and \;, are the adjoint variables or co-state variables.

By applying Pontryagin’s Maximum Principle [75] and the existence result for the optimal

control from [25], we obtain

Proposition 4. For the optimal control tripple vy, vy, v; that minimizes J(u) over U,
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there exist adjoint variables \g, , Ag,, A1, AR, » As,» Ay, Ar, satisfying

dA
- dfh = ((1 - vl)(,ﬁf¢]u) + N,},)Ash == (1 — Ul)(ﬁeélv))\b‘h — Cl)\CTl‘],
d\g
—Tbh = (/*L/1+a1)/\/,:h _Gl/\l,,~
dA,
*—dtl = —m+ ((b+ 1va) + (un + V) A1, — (b+ Tv2)AR,,
+(1 — v1)AedSyAs, — (1 — V1) AedS,Ag, — ooy Vs,
d\
—TRh = —kKAg, + (1n + ’{)/\R,,-
d\s,
e (1 = w) el + v3(1 — p) + o) As, + (1 — v1) Al A, — c3Acpvs,
d\
— df“ = (v3(1 — p) + oo L)X BB Lw=aCa X\ g,
d\
» dtIU = (1 — v1)BepShAs, — (L —v1)BepShAg, + (Us(l — p) + pw) A1, — C3Ac, U3,
dAey
—a - O

(5.3.13)

and with transversality conditions

As, (tr) = A, (L) =Ap () =Ap (bp)=Ag, (ty) =Ap (tr) =Dy (L) =Ac, =0,
(5.3.14)

2n

/\ F 7)) — ¢ 4 ‘%
v3 = max {0, min (1. (r(A, /\R;,)[;) carcr Bi)e )} :
e

v] = max {0 min (1 (Beg I (Mg, — As,)Sh + Aedl(Ag, — As,) Sy = Cl/\C'TS;)ﬁat) }
L = ) ’ )

* .
v3 = max {O, min
2d

(5.3.15)

Proof: Corollary 4.1 of [25] gives the existence of an optimal control due to the
convexity of the integrand of J with respect to vy, vy and vs, a priori boundedness of the
state solutions, and the Lipschitz property of the state system with respect to the state
variables. The differential equations governing the adjoint variables are obtained by the

differentiation of the Hamiltonian function and evaluated at the optimal control.

o7

<1 (SiAs, + (1 = p)(SiAs, + EZAg, + LX) — csAer (Sy + B + I))e°

)}



d\ oH
st = ((1 —v1)Bedl. + pn) s, — (1 — v1)Bedl, A, — cide v

dt s,
d\g,  OH
- dt O EE’: = (.“h I al)AE,l = OK])\[,,.
d\ OH
“Sh S =m0k T+ i+ ) — (b+ (14 1)m,,
h
+(1 - Ul)/\E(z)Sv/\SU - (1 - 'Ul))\f(,‘bsv)\Ev = CQ)‘CTUQ;
dAg, oOH ) ]
~dt  OR, —KAs, + (n + K)Ar,,
dA oH
= df’»’ — 35 == ((1 = '1'1)/\€¢[h) == ‘U3(1 — p) —+ ,u'v)/\Sv + (l = 1’1)/\€¢1h/\E,. - C3/\CT7J37
d\p, oOH
- d;] = oF. = (US(]- - P) + @g + /.1,,,-))\15,,, — CYQ)\[V = 63/\(7TU3*
d\ oI .
- dz‘lu = a5, = (1 v)0epSi gl U)BedSpXE (v (1 — p) + fw) A1, — c3sdervs,
d\e,  OH g
dt — 9Cr
OH ; o — ; *
0= 07 = ’(}12’” + ﬂﬁfplr(/\sh = AEh)Sh == )\G(Dlh()\gv —_ /\EU)SU -+ cl/\('TSh’
1
oH
0= 0—w='1)32('~7()\,,, = A& ) e I
or . HL * * *
0= ()_vd = ’1)32(l 3 S/z)‘sh » (1 — ]))(Sv)\sw A E'u)‘Eu L Iu/\lu)

+eshe (S, + By + 1)
(5.3.16)

which in a more explicit form becomes,

_di\]% = ((1 — v Bed [y i) As, — (= 1) SOl E, + cihorv1,
_d:\ifh = (pn + 1) Mg, — Ay,
_(12:, =—m+ ((b+ 71ve) + (pn + V) As, — (b+ Tv2) AR,
+(1 = v1) XedS,As, — (1 — v1)AedpS, Az, + oA V2,
_d?:fh = —KAs), + (4 + K)AR,,
‘% = ((1 = v1)Aedlp + v3(1 = p) + py)As, + (1 — v1)AepIpAp, + c3Acpvs,
_% = (v3(1 = p) + a2 + p) g, — aghr, + cade,vs,
_512_; = (1= 01)BedSiASH — (1 — v1)BedSkAEs + (vs(1 — ) + o) Ar, + Cadopts.
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Hence, we obtain

o _ (Bedly(Ap, — As,)S; + Aepli(Ag, — As,) Sy — c1der Sp)e”

. 2n,
. (T()\jh - /\Rh)I; S C2/\CT1;)CUt

V2 = 2¢

o = GiAsy + (= p)(SPAs, + EAp, + 5An) — eader(Sy + B + I;))e”
3 — .

2d

By standard control arguments involving the bounds on the controls, we conclude

0 ifw: <0
= Wy
vfwi >1
*
1 2 2>
\
(
0 3 <
L d= A L ~ A .t A
r - —
b |
1 ifw)>1

UNIVERSITY of the

where

2c
_ S';)\Sh + GZ + Cg/\CT (S',:; + E:; + I,:)

i 2de—ot

vy = min {1, w]}, v3 = min {1, w3} ,v; = min{1,w}}.

where I'Z = Bcpl (Mg, — As,)Sy, GZ = (1 —p)(Sids, + ExXg, + I2\1)

For the standard incidence form of infection, we give the necessary conditions for the
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disease control below.
_dXs,  OH <(1 —v1)Bepl, .y (1= Ul)ﬁffb]vsh) Xs,

at ~ aS, N, " N2
1 —v)fcol, S 1 —w)Bepl, Sy
_%(1 - .]V_:AE}; - Cl)\CTvl e ( 1]1/[2 (/\Sw - AE'v)’
d/\[.; oH (1 = ’U]))BE¢)L,S},
e h = . . = /\ . /\
i aE, (e + a1 + NZ )AE, — aiAp,
1 —v1)Bedl,S), 1 — v1) el S,
—( 1)\[[2 ’ /\Sh - ( 1J7)V'}% - (/\S!' - AE!‘)’
d)\ OH
- dz‘lh = 37 = —m ~+ (b+ Tva + pp + Y)A;, — (b+7(1 4+ v2)) AR,
: h
(1 —v1)XepS, (1 — 1)@l S,
+( N},‘ - [\f,% )()\Sv- - )\ET’) - CQAC'T UQ,
d\ ol 1 — v1)Be@dyS, 1 — v1)Bepl,Sh
o dfh - d_Rh X (_( 1])\[2 b K’))\Sh T (ot ’{))‘Rh i ( IN’Q AE,
h ',
_ (1 ~u 1)1)/\6¢1h5‘n(/\sv Y /\Ev)’

Ni

d)\sw oOH - ((1 —= Ul)/\E¢Ih)
dt 3SU B Nh

n (1 —v1)Aepl),

+ v3(1 — p) + o) As,

/\E,. 1% /\(77 CF]

Nh
d\ oIl
- df = 9B (vs(l = p) + o+ p)Ag, — @A, = c3Aq 03,
d/\h- - ()H N (1 — 1‘1)/36@5/,,
& T 8L T Ny O )

+(vs(1 = p) +) Xi, T c3Ae,v3s

_dhe,  OH o
dt  8Cr «

and with transversality conditions

As, () = Ag, (tr) = Ap,(t) = AR, (t) = As, (t5) = Ag, (t5) = A1, (tf) = A, = 0.

(5.3.17)
FZ + %5 (\s, — Ag,) + cide, Sh
v} = max ¢ 0,min | 1, b ;

2ne—ot

. * 5 ¥\ ot
Uy = max {0, min (1, (T(As, )‘R,.)]; + cade e )}
-

((1 = p)(S5As, + Byde, + I5A1,) + cshep (S + By + 17))e”

(3

vy = max {0, min | 1,
2d

(5.3.18)

where FZ = %8 ()g, — Ap, )i
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