
Novel genomic biomarkers for pediatric and adult Acute Myeloid 

Leukemia 

Nasr O M Eshibona 

 This dissertation submitted in fulfilment of the requirements for the 

degree of Doctor Philosophiae in Bioinformatics at the South African 

National Bioinformatics Institute, 

University of the Western Cape 

Supervisor: Dr Hocine Bendou 

Co-supervisor: Prof Junaid Gamieldien 

February 2023 

http://etd.uwc.ac.za/



i 

 

DECLARATION OF AUTHORSHIP  

I declare that “Novel genomic biomarkers for pediatric and adult Acute Myeloid 

Leukemia” is my own work, that it has not been submitted for any degree or 

examination in any other university, and all the sources I have used or quoted have 

been indicated and acknowledged by complete references. 

 

 

Signed:       Date: Feb of 2023 

 

 

 

 

 

 

 

 

 

http://etd.uwc.ac.za/



ii 

 

ACKNOWLEDGMENTS 

First and foremost, I praise Allah, the Almighty, for providing me with this opportunity 

and granting me the capability to complete my PhD successfully. I could never have 

accomplished this without Allah granting me the courage and strength to persevere 

through all the obstacles and challenges I faced during the process. Through Allah, I 

believed in myself and pursued my dreams. 

I would like to thank the valuable guidance from my supervisor, Dr Hocine Bendou, 

and co-supervisor Prof Junaid Gamieldien for their supervision, knowledge, assistance, 

encouragement, expertise, understanding, input in the research, and their time 

proofreading my thesis. 

I thank my family for their motivation, support, and encouragement. 

I would also like to thank Miss Michelle Chantel Livesey, Dr Sophia Catherine 

Rossouw, and Dr Abdulazeez Giwa for their assistance, advice, and valuable comment 

throughout the project. I would acknowledge the South African national Bioinformatics 

institute for providing a learning environment and collaborative team to overcome the 

challenge along the journey. 

My gratitude goes to the South African Medical Research Council (SAMRC) and its 

Division of Research Capacity Development for supporting this research through the 

South African National Treasury's Mid-Career Scientist Programme. This work was 

http://etd.uwc.ac.za/



iii 

 

also supported by the South African Research Chairs Initiative of the Department of 

Science and Innovation, the South African National Research Foundation. 

  

http://etd.uwc.ac.za/



iv 

 

DEDICATION 

This thesis is dedicated to almighty Allah and my family. 

 

 

 

 

 

 

 

 

 

 

 

 

http://etd.uwc.ac.za/



v 

 

ABSTRACT 

Acute myeloid leukemia (AML) is a heterogeneous type of blood cancer that affects 

individuals of all ages. AML patients are categorized into favorable, intermediate, and 

adverse risks based on patients' genomic features and chromosomal abnormalities. 

Despite this risk stratification, the progression and outcome of the disease remain 

highly variable in pediatric and adult patients, which emphasizes the importance of 

finding more accurate genomic biomarkers studying the gene expression profiling of 

pediatric and adult AML patients to facilitate and improve the risk stratification of the 

patients. Consequently, two research aims were proposed to study the prognostic 

heterogeneity for pediatric and adult AML. In pediatric AML, the research project was 

set to identify a genetic signature related to patients with FLT3-ITD mutation and poor 

survival. While for adult AML, this study focused on establishing a genetic signature 

predictive of prognosis with the ability to accurately reclassify the risk of AML 

intermediate group. 

RNA- Sequencing (RNA-Seq) count datasets for pediatric and adult AML were 

retrieved from the UCSC Xena browser and Gene Expression Omnibus, respectively, 

with their corresponding clinical information and survival data. The proposed aims 

were achieved by performing differential gene expression on both datasets, followed 

by additional bioinformatics analyses, including machine learning, Cox regression, 

Kaplan-Meier, receiver operating characteristics, Gene Ontology and KEGG 

enrichment, and statistical analyses.  
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High expression of FHL1, SPNS3, and MPZL2 was associated with poor survival in 

patients with FLT3-ITD mutation and can serve as a prognostic indicator of 

unfavourable outcomes in AML pediatric patients. While in adult patients, alteration 

in expression of CD109, CPNE3, DDIT4, and INPP4B was linked to poor outcomes 

and had a stratification power for accurate risk classification of the intermediate-risk 

group.  

In conclusion, identifying genetic signatures with prognostic value assist in disease 

management and therapeutic decisions. The genetic signatures identified can 

potentially improve treatment strategies for most pediatric and adult AML patients who 

fall into the FLT3-ITD and intermediate-risk stratification categories. 
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Chapter 1: Introduction to thesis and research statement 

1.1 Introduction 

Cancer is a collection of diseases characterized by abnormal and uncontrolled cell growth 

caused primarily by a genetic mutation. More than 200 forms of cancer have been described, 

and each type can be characterized by different molecular profiles, requiring unique therapeutic 

strategies (Tomczak, Czerwińska and Wiznerowicz, 2015). Thus, cancer involves dynamic 

changes in the genome. A better understanding of which genes are most commonly mutated 

across all cancers and at what frequency could help prioritize genes and pathways in a manner 

that increases public health benefits (Martínez-Jiménez et al., 2020). Cancer continues to be 

one of the most challenging diseases to be treated and is one of the leading causes of death 

around the globe. In 2020, an estimated 19.3 million new cancer cases and almost 10 million 

cancer deaths were recorded (Sung et al., 2021). Cancers account for 13% of all deaths yearly, 

with cancer-related mortality expected to rise to 13.1 million by 2030 (Rashid et al., 2019). 

Cancer becomes a fatal disease due to late detection caused by the lack of diagnostic 

biomarkers, inappropriate therapy for each form of cancer, and the potential for drug resistance. 

These factors are the result of the accumulation of several genetic and epigenetic changes 

within the cell, resulting in molecular/chromosomal abnormalities and genetic instability 

(Yoshioka et al., 2021). Individual aetiological factors are difficult to quantify. However, it can 

be determined that multiple risk factors contribute to cancer formation. Environmental, 

exogenous, and endogenous factors, as well as individual factors, including genetic 

predisposition, contribute to cancer development. Epidemiological research on malignant 

tumours has focused on environmental and genetic aspects of cancer incidence and mortality 

(Lewandowska et al., 2019). 
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Acute myeloid leukemia (AML) is a type of cancer characterized by the uncontrolled 

proliferation of hematopoietic stem cells in the bone marrow (Nepstad et al., 2020). The highly 

heterogeneous disease affects individuals of all ages; the prevalence generally increases with 

age. Therefore, elderly patients account for most newly diagnosed cases (De Kouchkovsky and 

Abdul-Hay, 2016). The overall survival (OS) rate in children is 60–70% and decreases 

gradually with age to <5% in those over 65 (Kiem Hao et al., 2020). Children and adults die 

within five years of diagnosis due to relapse (up to 35% and 99%, respectively) and disease 

progression (Aung et al., 2021). 

Recent statistics showed that the American Cancer Society estimated 20,050 new cases and 

11,540 deaths in the US alone (Siegel, Miller and Jemal, 2020). The genetic and clinical 

profiles of pediatric and adult AML also illustrate highly distinct diseases (Bolouri et al., 2018; 

Liu, Spiegelman and Wang, 2022). Thus, the mutational landscape shows fewer infrequent 

mutations and a disproportionate prevalence of somatic structural variants in pediatrics when 

compared to adults (Bolouri et al., 2018). Multiple chromosomal abnormalities are linked to 

AML, and these anomalies have comparable clinical symptoms but distinct morphologic, 

immunophenotypic, and cytogenetic subgroups (Maleki Behzad et al., 2021). The 

heterogeneity of AML emphasizes the significance of studying pediatric and adult AML 

separately, as it can provide a unique entity and novel disease landscape specific to each age 

group. This, in turn, can improve survival rates and optimise treatment options. 

Cytogenetics has been linked to clinical outcomes in AML, including complete remission rates, 

relapse risk, and OS. They served as the foundation for AML risk categorization and led to the 

development of a cytogenetic risk stratification system known as the original Medical Research 

Council classification (MRC-C) system. The MRC-C was updated in 2010 (revised MRC-C). 

Patients were consequently stratified into three groups, namely; favourable, intermediate and 
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adverse, based on the cytogenetic and gene mutation profiles (Grimwade et al., 1998, 2010; 

Grimwade and Hills, 2009). Consequently, it offered a much-needed standardized, objective 

and evidence-based guide for clinicians to make critical consolidation therapy decisions 

regarding the appropriateness, timing, and nature of stem cell transplants in a patient’s first 

complete remission (Komanduri and Levine, 2016). The MRC-C system was further 

incorporated in the European LeukemiaNet (ELN) and World Health Organization (WHO) 

classification systems, which rely mainly on the cytogenetics in the risk classification (Harris 

et al., 1999; Vardiman et al., 2009; Döhner et al., 2010; Arber et al., 2016; Döhner et al., 2017). 

All risk stratification systems are regularly updated to incorporate new findings obtained from 

technological advancements, increased clinical data, and biological insightfulness of the 

disease. An improved individual prognosis and guide management of AML were enabled by 

identifying recurrent genetic mutations, such as FLT3 internal tandem duplication (FLT3-ITD), 

NPM1, and CEBPA mutations (De Kouchkovsky and Abdul-Hay, 2016). However, the recent 

risk classification has undergone significant amendments. The FLT3-ITD allelic ratio has been 

excluded, and FLT3-ITD without NPM1 mutation is no longer classified as an adverse risk due 

to the incorporation of an FLT3 inhibitor. Additionally, in-frame mutations affecting the basic 

leucine zipper region (bZIP) of CEBPA, irrespective of monoallelic or biallelic, are no longer 

classified as intermediate-risk but as a favourable-risk group (Döhner et al., 2022). 

Hyperdiploid karyotypes with complex abnormalities should not simply be considered an 

adverse risk. However, additional assessments for specific chromosomal variations are needed 

to determine the risk group; for example, hyperdiploid karyotype with multiple trisomies (or 

polysomies) are no longer considered complex karyotypes, therefore, should not be regarded 

as adverse risks (Chilton et al., 2014). Notably, the AML risk stratification systems continue 

to change or update, such as in the case of FLT3 mutations, which emphasizes the need for a 
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more comprehensive description and understanding of the genetic basis of the risk groups to 

improve AML patients’ prognosis and provide more effective treatment strategies.  

RNA-Sequencing (RNA-Seq) has made substantial contributions to several research fields, 

particularly cancer research, with the emergence of the era of precision medicine. These 

contributions include studies on differential gene expression analysis, cancer heterogeneity and 

evolution, cancer drug resistance, the cancer microenvironment and immunotherapy, 

neoantigens, and other topics (Hong et al., 2020). Recent advancements in high-throughput 

sequencing enable a more comprehensive understanding of the molecular level of the genome 

and transcriptome. The technology further has the potential to detect early and high molecular 

risk mutations. Thus, it can be utilized to find novel cancer biomarkers and prospective 

therapeutic targets, as well as to monitor diseases and guide early treatment decisions regarding 

targeted therapy (Hong et al., 2020). Therefore, using RNA-Seq in this study focused on AML 

could lead to a better understanding of the disease, including the risk classification, prognosis, 

and potential use as a therapeutic target.  

1.2 Problem statement 

AML is a distinct disease in pediatric and adult patients regarding survival and risk 

classification. Additionally, driver genes for high-risk pediatric and adult AML are still not 

fully understood (Liu, Spiegelman and Wang, 2022). Therefore, independent research on both 

groups must be investigated to identify gene signatures that could improve the risk 

classification and decipher the heterogeneity within each group.  

Clinical recommendations for AML classification and risk stratification remain heavily reliant 

on cytogenetic findings at diagnosis, which are present in < 50% of patients (Tazi et al., 2022). 

It should be noted that cytogenetics does not entirely account for the disease heterogeneity, 
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despite being widely employed in the risk classification. Therefore, the current risk 

classification does not reflect the heterogeneity of disease survival and clinical outcome. 

Additionally, the recent advancement in testing abilities and mutation profiling that have 

become more readily available has led to rapidly changing genetic risk groups (Conneely and 

Stevens, 2021). Thus, it illustrates the importance of genetic signatures to obtain an accurate 

risk classification to facilitate the clinical management of AML.  

Meanwhile, the more specific intermediate-risk group requires reclassification. Most adult 

AML patients are being stratified to the intermediate-risk group (an umbrella category) because 

they do not meet the criteria identifying specific entities of established prognostic relevance 

(Awada et al., 2022). Therefore, due to the heterogeneity of the disease and the clinical 

outcome, there is still a need for more accurate prognostic biomarkers for AML. 

1.3 Aim and objectives 

This study aims to identify novel diagnostic and prognostic biomarkers for AML. To achieve 

this aim, the objectives of the study were to: 

Pediatric AML 

i. Retrieve and extract pediatric RNA-Seq data from the GDC TARGET database with 

corresponding clinical data. 

ii. Identify differentially expressed genes (DEGs) between low- and high-risk patient 

groups and perform Principal Component Analysis (PCA). 

iii. Use the features selection methods to select the genes with the highest performance in 

the sample segregation and apply machine learning (ML) techniques for sample 

classification using gene expression profiles derived from feature selection. 

iv. Apply Cox regression and Kaplan Meier to identify prognostic genes. 
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Adult AML 

i. Retrieve and extract adult RNA-Seq data from the Gene Expression Omnibus (GEO) 

with corresponding clinical data, and segregate samples based on survival. 

ii. Apply Differential Gene Expression analysis between short- and long-survival groups 

using the limma R package. 

iii. Perform a survival analysis on DEGs using Cox regression to identify genes implicated 

in prognosis. 

iv. Validate the prognostic value of DEGs using Kaplan-Meier (K-M) and receiver 

operating characteristic (ROC). 

v. Apply a one-way Analysis of Variance (ANOVA) to assess differences in the expression 

means of prognostic genes between the risk subcategories and OS.  

vi. Perform Gene ontology (GO) and KEGG pathways analyses to illustrate the implication 

of the DEGs in AML.  
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1.4 Thesis overview 

Chapter 2. Literature review. 

A literature review of AML genomics, therapeutics, current knowledge of biomarker 

discovery, bioinformatics resources and tools.  

Chapter 3. Upregulation of FHL1, SPNS3, and MPZL2 predicts poor prognosis in 

pediatric acute myeloid leukemia patients with FLT3-ITD mutation. 

Describes the use of transcriptomic data to find prognostic biomarkers in AML patients with 

FLT3-ITD and NPM1/CEBPA mutations, as the FLT3-ITD mutation is a factor that is 

responsible for poor prognosis in pediatric AML. The use of gene expression for risk prediction 

is also detailed in this chapter.  

Chapter 4. Investigation of distinct gene expression profile patterns that can improve the 

classification of intermediate-risk prognosis in AML patients. 

Applies different bioinformatics tools to identify predictive biomarkers associated with short 

survival risk groups in adult AML and can reclassify the intermediate-risk patients based on 

the biomarkers’ expression levels. 

Chapter 5. Conclusion and future recommendations. 
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Chapter 2: Literature Review 

2.1 Leukemia 

Cancers of the blood and bone marrow, collectively known as leukemias, pose a significantly 

high mortality risk. Leukemia is an aberrant hyper-proliferation of immature blood cells or 

blast cells. Depending on the affected cells, leukemia can be either myeloid or lymphoid in 

lineage and classified as acute or chronic. Chronic leukemias, which often have more mature 

cells, are uncommon in children. Contrarily, acute leukemias tend to be less mature, often affect 

individuals of all ages and have the potential to be lethal very quickly if not promptly treated 

(Juliusson and Hough, 2016; An, Fan and Xu, 2017; Bispo, Pinheiro and Kobetz, 2020). The 

most frequent childhood cancer is leukemia (28%), followed by brain and other nervous system 

tumours (26%), roughly one-third of which are benign or borderline malignant (Siegel et al., 

2022). According to the Surveillance, Epidemiology, and End Results (SEER) database, in 

2020, leukemia accounted for around 3.4% of all newly diagnosed cancer cases and 3.8% of 

all cancer deaths (Lin et al., 2021). There are four subtypes of leukemia; acute myeloid 

leukemia (AML), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), 

and chronic myeloid leukemia (CML) (Miranda-Filho et al., 2018; Du et al., 2022). 

ALL is the most prevalent kind of childhood cancer, and treatments offer a significant 

possibility of curing the disease. Adults can also develop ALL, and although the likelihood of 

a cure is considerably reduced, ALL is recognised by chromosomal abnormalities and genetic 

changes that influence the growth and proliferation of lymphoid progenitor cells (Bhojwani, 

Howard and Pui, 2009; Fujita et al., 2021). CLL is among the most common forms of leukemia. 

It often affects the elderly and has a highly varied clinical course. CML is a clonal 

hematopoietic stem cell neoplasia defined by increased myeloid lineage cells at all 

differentiation stages. Specific genetic changes that interfere with the regulation of 
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proliferation and apoptosis in clonal B-cells promote leukemic transformation (Hallek and Al-

Sawaf, 2021). Approximately 15% of newly diagnosed cases of adult leukemia are 

myeloproliferative neoplasms, with a frequency of 1-2 cases per 100,000 persons (Alves et al., 

2021). 

AML follows ALL as the most common form of leukemia diagnosed in patients younger than 

55, and it continues to be the second in patients over the age of 65 after CLL. It is also the 

second cause of death in patients under 20 years and the top cause of death in those over 25 

years old (Figure 2.1). AML was responsible for the majority of leukemia-related deaths among 

the four subtypes. Despite several years of research into the pathophysiology and molecular 

heterogeneity of AML, the standard treatment has remained unchanged (Lin and Levy, 2012; 

Du et al., 2022). Investigating the gene expression profile of AML and identifying prognostic 

biomarkers will provide insights into the development and progression of AML, as these 

biomarkers are useful for physicians to monitor the disease's prognosis and could potentially 

be used for target therapy. 
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Figure 2.1: Number of cases of four leukemia subtypes AML, CML, ALL and CLL represented in lines orange, green, red, and dark blue, 

respectively, (A) incidence and (B) death, in different age groups. The circle starts at the top of each graph and increases by 5 years in a clockwise 

direction. The age ranges between under 5 and above 95 years old, modified from (Du et al., 2022). 
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2.2 Acute myeloid leukemia  

AML, also referred to as acute granulocytic leukemia, acute nonlymphocytic leukemia, acute 

myelogenous leukemia, and acute myeloblastic leukemia, is the most common form of acute 

leukemia, and its incidence increases with age. Therefore, AML is the most prevalent leukemia 

in adults and second most common in pediatrics (Wouters and Delwel, 2016; Bispo, Pinheiro 

and Kobetz, 2020; Carter et al., 2020). The disease is caused by a multipotent malignant stem 

cell that has undergone a transformation and acquired a subsequent genetic mutation (Infante, 

Piris and Hernández-Rivas, 2018).  

Currently, the pathogenesis of AML is unknown. However, several studies indicate that virus 

infection may be the primary cause (Guo, Wang and Sun, 2022). In addition, some cytotoxic 

drugs, such as alkylating agents and topoisomerase inhibitors, ionising radiation, benzene, and 

other risk factors, might cause chromosomal damage and vulnerability. They, in turn, can cause 

the position of oncogenes to shift and then become activated and immunological function to 

decrease, which is conducive to the development of leukemia (Ye et al., 2019; Young et al., 

2019; Guo, Wang and Sun, 2022). A thorough understanding of the molecular alterations 

associated with chromosomal and genetic abnormalities in AML is anticipated to facilitate the 

design of therapies and the discovery of biomarkers (Kumar, 2011). 

AML cases are diagnosed by routine blood investigations or symptomatic presentation, such 

as infection and bleeding. Diagnosis involves a morphological examination of bone marrow 

aspirate, immunophenotyping, and detection of genetic abnormalities. A morphological test of 

the bone marrow cells is performed to obtain the myeloid blast cell count, for which a blast cell 

counts of 20% or more is diagnostic of AML (Vardiman et al., 2009; Vakiti and Mewawalla, 

2022). 
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Initially, AML diagnoses were solely based on morphological evaluation. Now, AML 

diagnoses incorporate other approaches, such as cytomorphology, cytochemistry, 

immunophenotyping, cytogenetics, and molecular genetics. Combining these approaches 

contributes to each case's characterisation, improving AML diagnosis and treatment (Haferlach 

and Schmidts, 2020). 

Cytotoxic chemotherapy and numerous additional medications, such as all-trans retinoic acid, 

are being used to treat AML. However, different cytogenetic abnormalities, somatic mutations, 

and alterations in the epigenome cause AML to have substantial genetic variability, making 

subtype categorisation and therapy challenging (Walter et al., 2013; Lohse et al., 2018). 

2.3 Prognosis of acute myeloid leukemia 

AML prognosis depends on clinical variables such as patient age, performance level, 

comorbidities, and leukemia-specific genetic characteristics such as cytogenetics and 

molecular abnormalities. Using a few molecular and clinical criteria, AML patients are classed 

as having a favorable, intermediate, or poor prognosis. The prognostic assignment defines 

treatment alternatives to optimise therapeutic efficacy and decrease recurrence. AML exhibits 

extensive heterogeneity and genomic complexity, depending on the presence or absence of 

cooperating mutations within functional categories such as epigenetic regulators, cell 

signalling and proliferation pathways, and master hematopoietic transcription factors (Fröhling 

et al., 2006; Grimwade et al., 2010; Dinardo and Cortes, 2016). 

Cytogenetic analysis to detect prominent structural chromosomal abnormalities provided the 

first "genetic" prognostication schema in AML and remains the backbone of current AML 

genomic classification, partitioning patients based on their pre-treatment karyotype into those 
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with favourable, intermediate, or adverse cytogenetics and correlating with 5-year OS of ~60%, 

30% to 40%, and 5% to 10%, respectively (Dinardo and Cortes, 2016). 

The individual prognostic information derived from the presence or absence of a specific 

mutation can be modified by the presence of cooperating co-mutations (i.e. NPM1 with FLT3-

internal tandem duplications (ITDs) or DNMT3A mutations), signifying that the optimal 

personalised prognostication requires knowledge of the complete AML genomic landscape 

(Dinardo and Cortes, 2016). Mutations in specific genes were closely associated with defined, 

prognostically distinct cytogenetic subgroups. Driver mutations typically change the 

prognostic consequences of specific mutations. Co-mutation patterns in NPM1-mutated AML 

predicted a favourable or adverse prognosis (Papaemmanuil et al., 2016). Furthermore, 

multivariate analyses revealed that the impact of some mutations depends on patient age 

(Metzeler et al., 2016). 

Older patients have more comorbidities and poor prognostic factors. Thus, healthcare 

practitioners treat them less aggressively because they expect them to benefit less from 

intensive treatments (Oran and Weisdorf, 2012). The standard-dose or low-intensity induction 

regimen for elderly AML patients is controversial because of their poor prognosis (Oran and 

Weisdorf, 2012). All prognostic factors and risk assessments should be considered to ensure 

each patient receives suitable individualised treatment (Oran and Weisdorf, 2012). 

The most widely accepted classification and prognostic schemes for AML include cytogenetic 

lesions together with NPM1, FLT3-ITD, and CEBPA mutations. In the near future, TP53, 

SRSF2, ASXL1, DNMT3A, and IDH2 should be incorporated into prognostic guidelines 

because they are common and strongly influence clinical outcomes. For AML classification, 

evaluation of splicing-factor genes RUNX1, ASXL1, and MLLPTD at diagnosis would identify 

patients in the chromatin spliceosome mutation group, which is common in older patients and 
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associated with poor response to induction chemotherapy (Vardiman et al., 2009; Döhner et 

al., 2010; Papaemmanuil et al., 2016). 

2.4 Age and acute myeloid leukemia 

AML affects all ages, including children and adults. It is one of the leading causes of death in 

children with cancer, and recurrence is the leading cause of death for children with AML. 

During induction and consolidation therapy, children and adults die from relapse (up to 35% 

and 99%, respectively) and treatment-related death (Steliarova-Foucher et al., 2017; 

Chaudhury et al., 2018). Steliarova-Foucher et al. (2017) examined the patterns of pediatric 

cancer incidence around the globe and discovered that leukemia accounted for 36.1% of cases 

in children under four and affected 15.4% of patients between the ages of 15 and 19. Although 

the fundamental processes of malignant transformation across all ages and the tumour spectrum 

are similar, childhood tumours differ considerably from adult tumours (Murphy et al., 2013). 

The hematopoietic (40%), central nervous system (25%), and solid tumours (35%) make up 

the different groups of childhood cancers (Murphy et al., 2013). 

Genetic differences between adult and pediatric cancers are revealed by genomic sequencing 

of tumours. It has been established that childhood cancers have a low mutation rate compared 

to adult tumours (Ma et al., 2018; Savary et al., 2020). This may be due to environmental 

carcinogens, which only make a minimal contribution, and the embryonal origin of pediatric 

cancers (Alejandro Sweet-Cordero and Biegel, 2019). The type of genomic alteration also 

observed in pediatric tumours differs from adult tumours. Such alterations include copy number 

variations, gene fusions, and chromoplexy, which are prognostic of many pediatric cancers 

(Alejandro Sweet-Cordero and Biegel, 2019).  
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The burden and risk of potential complications of cancer treatment are more profound in 

children because of long-term complications than in adults, who would primarily experience 

short-term complications (Kattner et al., 2019). However, pediatric and adult cancers would 

benefit from more accurate diagnosis and prognosis and the development of novel, less toxic 

therapies. 

Soheil Meshinchi, MD, PhD, of Fred Hutchinson Cancer Research Centre, emphasised that 

AML in younger patients and AML in older patients are entirely distinct diseases. The senior 

investigator further reported, it is similar to comparing breast cancer to colon cancer. Despite 

the large degree of similarity between the diagnostic and therapeutic recommendations for 

AML in children and adults, there are significant variances in the diagnostic criteria and disease 

management that call for age-specific strategies (Creutzig et al., 2012).  

While there are numerous clinical and molecular parallels between pediatric and adult AML 

with a continuum across the age range, many AML features relate to disease onset. These 

include chromosomal abnormalities, gene mutations, and differentiation lineage. After 

treatment, AML cells that relapse are chemoresistant. Genetic profiling can uncover age-

specific prognostic indicators and targetable molecular vulnerabilities in AML cells from adults 

and children pre- and post-chemotherapy (Aung et al., 2021). 

Comprehensive genomic profiling, which employs DNA and RNA sequencing, has improved 

knowledge of oncogenic mutations in AML and variations that can serve as prospective 

therapeutic intervention targets. Increased understanding of the variability of AML suggests 

that pediatric and adult AML exhibit considerable biologic variations (Tarlock et al., 2018). 
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2.4.1 Pediatric acute myeloid leukemia 

Pediatric AML is the second most common leukemia in children. Although survival rates for 

childhood ALL have exceeded 90%, treatment for pediatric AML has lagged. This is likely 

due to the heterogeneity of pediatric AML causes and the absence of innovative treatment 

methods until recently. Intensified conventional chemotherapy and improved supportive care 

have increased survival to nearly 60%. New prognostic indicators and targeted treatments may 

improve survival outcomes (Egan et al., 2021). AML in children is diverse and requires 

comprehensive therapy. Over the past few decades, low-risk AML outcomes have improved, 

while high-risk AML remains poor. Improved molecular diagnosis, risk stratification, and 

supportive therapy are necessary to improve the outcomes of pediatric AML patients at high-

risk (Egan et al., 2021). 

Significant numbers of AML cases have somatic mutations in genes already known to affect 

hematopoiesis, and the presence of these mutations is linked to specific clinical outcomes. 

Numerous mutations have been implicated in AML pathogenesis, with the number rising with 

discovery phase initiatives. At present, mutations in three genes (FLT3, NPM1, and CEBPA) 

have been shown to have clinical implications in childhood AML and have been incorporated 

in clinical trials as prognostic markers, therapeutic targets, or both (Tarlock and Meshinchi, 

2015). Also, a study that was conducted on a gene expression profile pediatric dataset found 

that the upregulation of FHL1, SPNS3, and MPZL2 were associated with poor outcome in a 

patient with FLT3-ITD mutation (Eshibona et al., 2022). 

2.4.2 Adult acute myeloid leukemia 

The incidence of AML, a blood and bone marrow malignancy, rapidly increases in people aged 

60 and older. As a result, the disease is the most prevalent and severe type of acute leukemia 

http://etd.uwc.ac.za/



17 

 

in adults and often worsens rapidly if left untreated. It has been reported that males are affected 

at a greater rate than females across all age groups (Heuser et al., 2020). The adult leukemia 

statistics in the United States (US) report an age-adjusted incidence of 3.6 per 100,000 per year 

and a median age of 69 years at diagnosis. People with AML who are older than 75 still have 

relatively poor survival rates. In several population-based studies, patients over 60 years old 

had a 3-year survival rate of just 9-10% and a 5-year survival rate of only 3-8%, in comparison 

to the 5-year survival rates of up to 50% for younger patients (Oran and Weisdorf, 2012). 

In AML, cytogenetic and molecular genetic aberrations frequently coexist in leukemic cells; 

they are not mutually exclusive. The average age of diagnosis for AML is 70, making it a 

disease of the elderly. The prevalence of adverse cytogenetic abnormalities increases with age, 

and the prognosis with standard treatment worsens with increasing age within each cytogenetic 

group. A high proportion of adult AML confers adverse outcomes (Kumar, 2011; Burd et al., 

2020) due to the presence of numerous cytogenetic and molecular abnormalities in patients 

tumour karyotypes. For example, loss of chromosome segments 5q, 17p, 7q, and others 

contribute to tumour cell survival, genomic instability, and thus poor outcome (Mrózek, 2022).  

A study that aimed to investigate the relationship between BAALC gene expression and 

comprehensive molecular and clinicopathologic features in AML found that BAALC 

overexpression was associated with CD34 positivity on leukemic blasts, the absence of NPM1 

mutation, the presence of RUNX1 gene mutation, and poor patient outcomes, particularly in 

NPM1-wild type/FLT3-ITD negative adult CN-AML patients (Verma et al., 2022). 

Recommendations for AML patient’s treatment vary depending on whether they are 60 years 

of age or younger (Kumar, 2011). Recent approvals of glasdegib and venetoclax, two 

medicines designed exclusively for the treatment of elderly people, have generated enthusiasm 

in the medical community. The debate remains, however, as to whether healthy older people 
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should get combination therapy with newer drugs, given that rigorous chemotherapy is the only 

treatment that has proven potential to produce long-term disease-free survival (Luger, 2019). 

2.5 Cytogenetics of leukemia 

According to many studies, the majority of patients with AML have acquired chromosomal 

abnormalities (Hackl, Astanina and Wieser, 2017; Pourrajab et al., 2020). In AML, numerous 

recurrent karyotypic abnormalities have been identified and continue to be identified, including 

changes in chromosomal number, rearrangements, large insertions, and large deletions. A large 

number of chromosomal aberrations were identified in AML, including t(8;21)(q22;q22), 

inv(3)(q21q26), monosomy 5/del(5q), t(6;9)(p22;q34), monosomy 7/del(7q), trisomy 8, 

t(15;17)(q24;q21), and complex karyotypes (Lazarevic and Johansson, 2020). 

Cytogenetic research cleared the path for molecular analysis that revealed the genes involved 

in the leukemogenesis process. Moreover, chromosome abnormalities, whether or not they 

have been molecularly defined, have been demonstrated to be diagnostic and prognostic 

malignancy indicators (Mrózek et al., 1997). Current therapeutic protocols require the 

detection of prognostic mutations such as FLT3-ITD, NPM1, and CEBPA, particularly in cases 

with normal karyotypes (Quessada et al., 2021). Routine cytogenetic testing is recommended 

for all cases of AML, and molecular and cytogenetic studies must be integrated for risk 

stratification at diagnosis to improve therapeutic strategies (Gupta, Mahapatra and Saxena, 

2019). 

The World Health Organization (WHO) and the European Leukemia Net developed molecular 

classification and risk stratification schemes for AML based on the fact that most cytogenetic 

abnormalities do not overlap and have different links to clinical presentation, treatment 

response, relapse rates, and overall survival (Moarii and Papaemmanuil, 2017).  
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2.6 Classification of acute myeloid leukemia 

Diseases classification is crucial and widely used, significantly contributing to disease 

management. At the time of diagnosis, it is essential to know the type or subtype of the 

condition, which helps physicians to use and follow the appropriate treatment approach. In the 

subsequent sections, we discuss the widely used classification systems for AML and their 

relevance to AML prognosis. 

2.6.1 French-American-British classification  

The French-American-British (FAB) classification divides AML patients into sub-groups 

based primarily on cytochemical and conventional morphological methods, with the 

correlation between the subgroups and laboratory findings, prognosis, and response to 

treatment. The classification divides AML into six sub-groups (M1-M6) defined based on the 

differentiation along one or more cell lines and the maturation degree of cells. Thus, M1, M2, 

and M3 show largely granulocytic differentiation and vary in the extent and form of 

granulocytic maturation; M4 demonstrates both granulocytic and monocytic differentiation; 

M5 mostly monocytic differentiation, and M6 predominantly erythroblastic differentiation 

(Bennett et al., 1976). Later, immunological markers were employed to establish two additional 

AML subtypes, M0 and M7, both Sudan B Black negative but not lymphoblastic (Table 2.1) 

(Bennett et al., 1985, 1991; Catovsky et al., 1991; Segeren and Vantveer, 1996). 

FAB classification is not outdated for use in the diagnosis of AML; however, different 

processes are necessary for refining the diagnosis and determining the patient prognosis using 

this classification. Additionally, certain AML FAB subtypes are associated with specific 

chromosomal abnormalities that have prognostic significance (Table 2.1). No specific 

chromosomal pattern is found in AML-M0 (Segeren and Vantveer, 1996). 
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The assignment of AML subtypes in every single case mandates an integrated approach where 

the following need to be considered: clinical history, history of therapy, cytogenetic studies 

(karyotyping and fluorescence in situ hybridisation), molecular results, next-generation 

sequencing (NGS) and gene panels, and examination of extramedullary tissue. Molecular 

genetic analysis and cytogenetic studies, including fluorescence in situ hybridisation testing, 

are essential in the AML diagnostic workup (Walter et al., 2013). 

Table 2.1: Correlation between FAB classification and chromosomal with prognostic value. 

Adapted from (Segeren and Vantveer, 1996). 

FAB classification Chromosomal translocation  Prognostic relevance  

M2 t(8:21) (q22:q22) Fair to good 

M3  t(15;17) (q22;q21) Fair to good  

M4eo inv(16) (p13;q22) t(16;16) (p13;q22) (p13;q22)  Good  

M5 t(9;1 l) (p21;q23) Poor 

M4-M5 t(1 lq23) Poor 

M2, M4 t(6;9) (p23;q34) Poor 

M5 t(8;16) (p11;p13) Undetermined  

M4 inv(3) (q2l;q26) /t(3;33) t(1;3) (p36;q21) Undetermined 

M7 t(1;22) (p13;q13) Undetermined 

 

2.6.2 World Health Organisation classification 

The World Health Organization (WHO) classification system (Table 2.2) aims to establish 

clinicopathologic entities using a combination of clinical characteristics, morphology, 

immunophenotype, cytogenetics, and molecular genetics. This technique was initially utilised 

to define disease entities (Harris et al., 1999). A new WHO classification of hematologic 

malignancies has been under development since 1995 by the European Association of 

Pathologists (EAHP) and the Society for Hematopathology. Neoplasms classified under this 

heading include mast cell, lymphoid, myeloid, and histiocytic neoplasms (Harris et al., 1999). 
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Within the category of AML, four main groups are recognised: (i) AML with recurrent 

cytogenetic translocations, (ii) AML with myelodysplasia-related features, (iii) therapy-related 

AML and MDS, and (iv) AML not otherwise categorised (Harris et al., 1999). The WHO 

classification was based mostly on adult patient data and included most, but not all, pediatric 

age-specific cytogenetic change subgroups, and there is no evidence for the applicability in 

children. In the literature, there are no studies conducted using the 2016 WHO classification, 

while very few studies used the 2008 WHO classification (Nunes et al., 2019). 

One of the biggest challenges in revising the WHO classification of AML was how to include 

important and recently discovered genetic aberrations while adhering to the WHO principle of 

defining homogeneous, biologically relevant, and mutually exclusive entities based not only 

on prognostic value but also on morphologic, clinical, phenotypic, and other unique biological 

properties (Vardiman et al., 2009). This was especially problematic for the most common and 

prognostically significant mutations currently identified in cytogenetically normal AML, 

namely mutant FLT3, NPM1, and CEBPA (Vardiman et al., 2009). 

Table 2.2: The WHO classification and cytogenetic abnormalities. Adapted from (Arber et al., 

2016). 

Type of AML Inversion and/or 

translocation 

Gene Mutation 

AML with recurrent genetic abnormalities 

AML with t(8;21) (q22;q22.1) RUNX1-RUNX1T1 

AML with inv(16)(p13.1q22)or 

t(16;16)(p13.1;q22) 

CBFB-MYH11 

APL (acute promyelocytic leukemia) with t(15:17) PML-RARA 

AML with t(9;11) (p21.3;q23.3) MLLT3-KMT2A 

AML with t(6;9) (p23;q34.1) DEK-NUP214 

AML with inv(3) (q21.3q26.2) or 

t(3;3) (q21.3;q26.2) 

GATA2, MECOM 

AML (megakaryoblastic) with t(1;22) (p13.3;q13.3) RBM15-MKL1 

AML with  NPM1 
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AML with  Biallelic mutations of CEBPA 

AML with myelodysplasia-related changes 

Therapy-related myeloid neoplasms 

AML, not otherwise specified (NOS) 

AML with minimal differentiation 

AML without maturation 

AML with maturation 

Acute myelomonocytic leukemia 

Acute monoblastic/monocytic leukemia 

Pure erythroid leukemia 

Acute megakaryoblastic leukemia 

Acute basophilic leukemia 

Acute panmyelosis with myelofibrosis 

Myeloid sarcoma 

Myeloid proliferations related to Down syndrome 

Blastic plasmacytoid dendritic cell neoplasm 

Acute leukemias of ambiguous lineage 

Acute undifferentiated leukemia 

Mixed phenotype acute leukemia (MPAL) 

with 

t(9;22) (q34.1;q11.2) BCR-ABL1 

MPAL with t(v;11q23.3) KMT2A rearranged 

 

2.6.3 European LeukemiaNet classification 

European LeukemiaNet (ELN) establishes a risk classification based on cytogenetic and 

molecular aberrations (Döhner et al., 2010). The definitions of four AML risk groups 

(favorable, intermediate-I, intermediate-II, and adverse) were shown to significantly predict 

outcomes, mainly in patients treated with consolidation chemotherapy regimens (Grimm et al., 

2020). In 2017, an updated ELN risk classification was released that incorporated the most 

recent insights into the molecular architecture of AML and its prognostic significance in 

ELN2017. Comparing the ELN2010 classification to the ELN2017 classification, only three 

risk groups were defined: favorable, intermediate, and adverse (Döhner et al., 2017) 
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ELN2010 separated Intermediate-I and Intermediate-II patients from one another not by 

prognostic factors but by genetic characteristics (Table 2.3). Although the individual patient 

outcome of both intermediate groups was not taken into consideration in the classification of 

all patients, later studies showed an association between AML genetic variation with prognosis 

(Röllig et al., 2011; Mrózek et al., 2012). Patient outcome was dependent on age, with younger 

patients between 18 and 60 years old showing a statistically significant difference in OS 

between the two groups, with Intermediate-II patients having longer OS than Intermediate-I 

patients. However, in older patients (over 60 years old), there was no difference in prognosis 

between the two groups (Döhner et al., 2017). The following ELN2017 merged the two groups 

I and II into a single Intermediate group based on the lack of prognostic difference among 

patients over 60 who constitute the majority of AML cases (Döhner et al., 2017). Despite the 

fact that younger patients showed a prognostic difference between Intermediate-I and II, the 

latest ELN classification overlooked this difference and placed both patients in the same risk 

category, which may negatively impact the therapeutic decisions, response to therapy, and 

therefore patient outcomes. 

Additionally, a comparative study was performed between ELN2017 and ELN2022 and found 

that risk classification of the latter version identified a larger group of adverse-risk patients at 

the cost of slightly reduced prognostic accuracy compared to ELN2017. Prognostic accuracy 

may have decreased due to the inclusion of patients from the intermediate risk group whose 

OS at 5 years was higher than those initially in the adverse group (Rausch et al., 2022). For the 

same reason, this also applies to the intermediate group with the inclusion of patients from 

adverse and favorable groups as of the latest changes in the ELN classification system. Thus, 

this points to a problem in the classification system even after the new changes that were 

supposed to improve prognostic accuracy, not decrease it. 

http://etd.uwc.ac.za/



24 

 

Most of AML patients are categorised into an intermediate-risk group with variable prognostic 

outcomes. Thus, a selection of an appropriate consolidation therapy regimen remains 

challenging; this demonstrates the need for improved AML patient stratification (Docking et 

al., 2021). In terms of clinical impact, adult classification systems, such as those defined by 

ELN, cannot be completely transferred to the classification of childhood AML because the 

cytogenetic (and genomic) landscapes of pediatric and adult AML and the cytogenetic risk 

associations are different according to age (Quessada et al., 2021).  
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Table 2.3: The significant amendments for ELN classification of AML. Three genetic groups were used in AML risk classification, and the 

corresponding genetic abnormalities were reported and/or updated. Adapted from (Döhner et al., 2010, 2017, 2022). 

ELN 

classification 

version 

Genetic group 

Favorable Intermediate Adverse 

 Intermediate-I Intermediate-II  

ELN2010 t(8;21) (q22;q22); RUNX1-

RUNX1T1 

inv(16) (p13.1q22) or 

t(16;16)(p13.1;q22); CBFB-

MYH11 

Mutated NPM1 without FLT3-ITD 

(normal karyotype) 

Mutated CEBPA (normal 

karyotype) 

Mutated NPM1 and 

FLT3-ITD (normal 

karyotype) 

Wild-type NPM1 and 

FLT3-ITD (normal 

karyotype) 

Wild-type NPM1 

without FLT3-ITD 

(normal karyotype) 

t(9;11) (p22;q23); 

MLLT3-MLL 

Cytogenetic 

abnormalities not 

classified as favorable or 

adverse 

inv(3) (q21q26.2) or t(3;3)(q21;q26.2); 

RPN1-EVI1 

t(6;9) (p23;q34); DEK-NUP214 

t(v;11) (v;q23); MLL rearranged 

-5 or del(5q); -7; abnl(17p); complex 

karyotype 

ELN2017 t(8;21) (q22;q22.1); RUNX1-

RUNX1T1 

inv(16) (p13.1q22) or 

t(16;16)(p13.1;q22); CBFB-

MYH11 

Mutated NPM1 without FLT3-

ITD or with FLT3-ITD low allelic 

ratio  

Biallelic mutated CEBPA 

Mutated NPM1 and FLT3-ITD high allelic ratio 

Wild type NPM1 without FLT3-ITD or with FLT3-

ITD low allelic ratio (without adverse risk genetic 

lesions) 

t(9;11) (p21.3;q23.3); MLLT3-KMT2A 

Cytogenetic abnormalities not classified as favorable 

or adverse 

t(6;9) (p23;q34.1); DEK-NUP214 

t(v;11q23.3); KMT2A rearranged 

t(9;22) (q34.1;q11.2); BCR-ABL1 

inv(3) (q21.3q26.2) or t(3;3)(q21.3;q26.2); 

GATA2,MECOM(EVI1) 

-5 or del(5q); -7; -17/abn(17p) 

Complex karyotype, monosomal karyotype 
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Wild type NPM1 and FLT3-ITD high allelic 

Mutated RUNX1 

Mutated ASXL1 

Mutated TP53 

ELN2022 t(8;21) (q22;q22.1) / 

RUNX1::RUNX1T1 

inv(16) (p13.1q22) or t(16;16) 

(p13.1;q22)/CBFB::MYH11 

Mutated NPM1, without FLT3-

ITD 

bZIP in-frame mutated CEBPAk 

Mutated NPM1, with FLT3-ITD 

Wild-type NPM1 with FLT3-ITD (without 

adverse-risk genetic lesions) 

 

t(9;11) (p21.3;q23.3)/MLLT3::KMT2A 

Cytogenetic and/or molecular abnormalities not 

classified as favorable or adverse 

t(6;9) (p23.3;q34.1)/DEK::NUP214 

t(v;11q23.3)/KMT2A-rearranged 

t(9;22) (q34.1;q11.2)/BCR::ABL1 

t(8;16) (p11.2;p13.3)/KAT6A::CREBBP 

inv(3) (q21.3q26.2) or t(3;3)(q21.3;q26.2)/ 

GATA2, MECOM(EVI1) 

t(3q26.2;v)/MECOM(EVI1)-rearranged 

25 or del(5q); 27; 217/abn(17p) 

Complex karyotype, monosomal 

karyotype 

Mutated ASXL1, BCOR, EZH2, RUNX1, 
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SF3B1, SRSF2, STAG2, U2AF1, and/or 

ZRSR2 

Mutated TP53a 
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2.7 Treatment of acute myeloid leukaemia 

Chemotherapy accounted for the first-line treatment of AML, depending on many 

factors, mainly on the genetic background of inhibitor-based therapy. Genetic 

defects are considered the most critical factors in determining the response to 

chemotherapy and its outcome. For instance, the better outcome for Gemtuzumab 

ozogamicin was noticed in the favorable and intermediate risk group of AML. 

Significant progress has been made in treating younger adults (Thol and Schlenk, 

2014; Short, Rytting and Cortes, 2018). The prospects for elderly patients have 

remained dismal, with median survival times of only a few months. This difference 

is related to comorbidities associated with ageing and disease biology. Current 

efforts in clinical research focus on the assessment of targeted therapies. Such new 

approaches will probably increase the cure rate (Short, Rytting and Cortes, 2018). 

Most adults with acute leukemia have AML, which has a poor outcome, especially 

in older patients. Its cytogenetic and molecular abnormalities make it diverse. These 

abnormalities classify patients into prognosis categories and are therapeutic targets 

(Huerga-Domínguez et al., 2022) 

In recent years, the US Food and Drug Administration (FDA) and the European 

Medicines Agency (EMA) have approved a number of new medications for AML 

as a result of breakthroughs in basic and translational research and the development 

of new target therapies. Primary refractory, relapsed, high-risk patients who are 

ineligible for allogeneic stem cell transplantation (alloSCT) still lack access to 

effective treatment options. Consequently, numerous experimental medications are 

now being studied (Huerga-Domínguez et al., 2022) 
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For a long time, the only treatment option for "fit" AML patients who had recently 

been diagnosed was intensive chemotherapy based on cytarabine and anthracycline 

("7+3"). Allogeneic stem cell transplantation also made a big difference in how long 

eligible patients with intermediate or high-risk AML survived (Huerga-Domínguez 

et al., 2022). Midostaurin is a first-generation, orally administered, multitargeted 

kinase inhibitor. Combined with regular chemotherapy, it is currently the treatment 

of choice for patients newly diagnosed with FLT3-mutated AML who are "fit." 

(Thol, 2021). 

2.8. Cancer biomarkers 

Biomarkers are essential in disease diagnosis, prognosis, and predictive and 

treatment outcomes. While biomarkers help differentiate physiological and 

pathological mechanisms, they are equally important in assessing disease response 

to a medications therapeutic outcome, disease progression, and exploring disease 

mechanisms (Dhama et al., 2019). A diagnostic biomarker is a biological marker 

used in medical diagnosis to either confirm the presence of a disease or condition 

or to positively identify a patient as having a certain subtype of that disease. As we 

enter the precision medicine age, this type of biomarker will evolve considerably. 

Such biomarkers may be used to identify people with a disease and redefine the 

disease's classification. For example, cancer detection is moving toward a 

molecular and imaging-based classification rather than a largely organ-based 

classification scheme (Califf, 2018).  

Prognostic biomarkers can distinguish many stages of a disease and determine the 

course of therapy that should be applied to a particular patient after primary 
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treatment. The aim of using prognostic biomarkers, which provide information on 

the overall cancer outcome in patients, is to facilitate cancer progression 

assessment, usually with no need to put invasive methods into use (Nalejska, 

Mączyńska and Lewandowska, 2014). Predictive biomarkers help to optimise 

therapy decisions, as they provide information on the likelihood of response to a 

given chemotherapeutic. Among the prognostic factors that identify patients with 

different outcome risks (e.g., recurrence of the disease), the following factors can 

be distinguished: somatic and germline mutations, changes in DNA methylation 

that lead to the enhancement or suppression of gene expression, the occurrence of 

elevated levels of microRNA capable of binding specific messenger RNA (mRNA) 

molecules, which affects gene expression, as well as the presence of circulating 

tumour cells in the blood, which leads to a poor prognosis for the patient (Nalejska, 

Mączyńska and Lewandowska, 2014). Clinical prediction models influence many 

medical choices across many clinical disciplines, and they are often used in 

oncology, for example, to evaluate the risk of getting cancer, inform cancer 

diagnosis, forecast cancer outcomes and prognosis, and guide treatment decisions 

(Dhiman et al., 2022). 

Molecular diagnostics of chronic myeloid leukemia, colon, breast, and lung cancer, 

and, more recently, melanoma use biomarkers for personalised oncology. They are 

successfully employed in assessing the potential benefits of targeted therapy or the 

toxicities of the chemotherapeutic agents used in the treatment (Nalejska, 

Mączyńska and Lewandowska, 2014). In medicine, mRNA transcripts are being 

developed as molecular biomarkers to diagnose and treat many diseases. These 
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biomarkers offer the early and more accurate prediction and diagnosis of disease 

and progression and the ability to identify individuals at risk (Sunde, 2010). 

2.9 Biological data 

Biological data is often characterised by huge size. There are four important data 

generated and collected at biological sites, DNA, RNA, Protein Sequences, and 

Micro Array images. The first three datatypes are text data, and the last is a digital 

image. This large, vast, and complex amount of biological data needs to be stored, 

accessed, and manipulated efficiently and powerfully (Chowdhary et al., 2016). 

Large amounts of cancer data have been collected and are available to the medical 

research community. So it was necessary to build databases such as sequence 

databases, microarray databases, genome databases, protein structure databases, 

and many more (Kourou et al., 2015). Additionally, the complexity of the data and 

the amount of available data required the development of the bioinformatics field, 

which includes powerful tools to analyse and draw scientific insights. 

2.10 Databases  

Database plays an essential role in current bioinformatics research as they provide 

highly curated data stored in a way that makes it more accessible, reusable, and 

stable for the long term, such as The Cancer Genome Atlas (TCGA), protein gene 

atlas, National Centre for Biotechnology Information (NCBI), gene expression 

omnibus (GEO). There are various databases that researchers can use for research 

purposes and to understand the biological mechanism of any disease of interest 
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under systematic investigation. In the following subsections, we describe databases 

that have been used in this study. 

2.10.1 The Cancer Genome Atlas  

One of the most ambitious and effective cancer genomics studies is TCGA. TCGA 

has produced, analysed, and made public methylation, genomic sequence, gene 

expression, and copy number variation data on over 11,000 people with over 30 

cancer types (Wang, Jensen and Zenklusen, 2016). The TCGA researchers have so 

far collected a broad range of genomic data on individual cancer types, yielding a 

better understanding of each tumour's biology and pathology, resulting in the 

development of specific treatment strategies (Tomczak, Czerwińska and 

Wiznerowicz, 2015). With the ongoing decrease in cost for NGS and other high 

throughput molecular characterisation methods, many datasets are generated and 

provided for public access on web portals for use in the field of cancer research 

(Deng et al., 2016).  

2.10.2 Gene Expression Omnibus  

Demand for a public archive for high-throughput gene expression data prompted 

the Gene Expression Omnibus (GEO) initiative. GEO’s flexible and open 

architecture allows the submission, storage, and retrieval of disparate datasets from 

high-throughput gene expression and genomic hybridisation research (Edgar, 

Domrachev and Lash, 2002). The resource allows for the preservation of raw data, 

processed data, and indexed metadata (Barrett et al., 2013). The collection of the 

GEO database is over 94,000 datasets and more than 2 million samples. This is a 
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great resource that, with suitable methodology and tools, can be used to combine 

gene expression data for biomarker discovery applications (Toro-Domínguez et al., 

2019). Additionally, new investigations are being prompted by the high-throughput 

data made available by GEO. Moreover, data has been reanalysed and used in 

thousands of publications to form and test hypotheses (Clough and Barrett, 2016). 

2.10.3 Kyoto Encyclopedia of Genes and Genomes pathway maps 

As part of the Japanese Human Genome Program, the KEGG (Kyoto Encyclopedia 

of Genes and Genomes) database project was founded in 1995. Anticipating the 

need for a reference knowledge base for biological interpretation of genome 

sequence data and biological pathways, the primary objective of the KEGG 

pathway was to find connections between collective sets of genes in the genome, 

and high-level cell and organism functions widely used (Kanehisa et al., 2016). The 

networks of KEGG Orthology nodes that make up the KEGG pathway maps, 

BRITE hierarchies, and KEGG modules represent the high-level functions of the 

cell and the organism. The KEGG GENES database currently contains annotations 

for over 4000 complete genomes with KEGG Orthology, which can be used as a 

reference data set for assigning KEGG Orthology and subsequently reconstructing 

KEGG pathways and other molecular networks (Kanehisa et al., 2016). The KEGG 

database contains information on the progression of various types of cancer as 

signalling pathway combinations. Signalling pathways are the molecular 

interactions and reactions that transport signals from the outside to the cell's 

nucleus, where transcriptional regulation occurs. Signalling pathways such as 

MAPK, Wnt, and TGF-beta signalling have been extensively studied in the context 
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of cell proliferation. Cancer is the only human disease for which pathway 

information of disease progression is available, i.e. from normal tissue to the 

advanced tumor phase in KEGG. KEGG cancer pathways differ in including 

members of multiple signalling pathways within a single pathway. This is because 

they contain information on various stages of cancer, and each stage involves 

different signalling pathways (Dalkic et al., 2009). 

2.11 Bioinformatics 

The subject of bioinformatics, or systems biology, which is the integration of 

computer and biological scientific disciplines, has become a crucial instrument for 

the organisation and analysis of a large quantity of biological data. The primary 

objective of bioinformatics is to uncover vital biological information hidden within 

a mass of raw data to detect significant trends or patterns, ultimately leading to the 

identification of new biomarkers for diagnostic and therapeutic reasons (Bayat, 

2002; Jiang et al., 2022). Modern bioinformatics emerged recently to assist with 

NGS data analysis. De novo sequence assembly, biological sequence databases, and 

substitution models laid the groundwork for bioinformatics in the early 1960s. 

Later, DNA analysis emerged owing to simultaneous breakthroughs in (i) molecular 

biology procedures, which made DNA manipulation and sequencing simpler, and 

(ii) computer science, which produced smaller, more powerful computers and 

bioinformatics-specific software. Sequencing technology advances and cost 

reductions caused exponential data growth in the 1990s and 2000s (Gauthier et al., 

2019).  
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Bioinformatics is thus applied in cancer research to understand metabolisms, 

signalling, communication, and proliferation in cancer incidence. Emerging from 

the intersection of clinical informatics, bioinformatics, medical informatics, 

computing, mathematics, and omics research, the field of clinical bioinformatics 

can aid in the disease identification, effective treatment, and prognostication of 

cancer patients (Wu, Rice and Wang, 2012). 

2.12 Bioinformatics analysis tools  

Bioinformatics provide numerous packages, tools, and algorithms based on 

mathematical models created in R, Python and other programming languages to 

analyse and draw scientific conclusions from massive amounts of biological data. 

2.12.1 Differential Gene Expression 

Correctly identifying differentially expressed genes (DEGs) between specific 

conditions is critical to understanding phenotypic variation (Figure 2.2). High-

throughput transcriptome sequencing, such as (RNA-Seq) has become the primary 

option for these studies. Thus, the number of methods and software for differential 

expression analysis from RNA-Seq data has also increased rapidly (Costa-Silva, 

Domingues and Lopes, 2017). Different packages were developed in the R 

language, such as limma, edgeR, and DESeq2 (Robinson, McCarthy and Smyth, 

2009; Love, Huber and Anders, 2014; Ritchie et al., 2015). 
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Figure 2.2: Illustrate significant and insignificant differences in expression levels 

between two conditions, A in blue and B in red. The bottom image shows one cluster with 

samples from both conditions. There is no significant difference in gene expression 

between conditions A and B. The top image shows two clusters mainly composed of 

samples from one condition. Conditions A and B have different expression patterns 

(https://hbctraining.github.io/DGE_workshop/lessons/04_DGE_DESeq2_analysis.html ). 

 

Modern high-throughput sequencing technologies are increasingly replacing 

traditional methods to quantify RNA expression levels (RNA-Seq). Due to 

advances in rapid sequencing technology and declining prices, whole profiling of 

gene expression levels is now possible, with repercussions throughout the life 

sciences. This information is already being embraced for clinical usage (Rapaport 

et al., 2013). 

In a biological system, there is a need for advancements in identifying genes related 

to a trait to understand complex conditions better. This can be achieved by 

enhancing our knowledge about gene expression through statistical models to 

perform statistical analysis of gene expression profiles to quantify gene expression 
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and the sequencing reads aligned to a known reference genome sequence (e.g. 

Tophat and Star aligners). The proportion of reads matching a given transcript is 

used as quantification of its expression level (e.g. Salmon tool), followed by 

statistical testing of differences in quantification values between samples (e.g. 

DESeq2 and edgeR) (Dobin et al., 2013; Kim et al., 2013; Anjum et al., 2016; Patro 

et al., 2017). 

DGE analysis is widely applied for biomarker discovery for different types of 

cancer. In breast cancer, DGE was utilised to identify gene signatures associated 

with a worse prognosis (Pan et al., 2017). High expression of four genes was linked 

to the early stage of papillary thyroid carcinoma (Han et al., 2018). Furthermore, 

microarrays and NGS have generated molecular signatures for prostate cancer that 

differentiate between malignant and non-malignant states and are considered 

promising prostate cancer biomarkers (Myers et al., 2015). 

Several studies have used meta-analysis approaches to discover DEGs between 

cancer patients and controls using microarray data. These techniques may be used 

to establish gene expression signatures in a single cancer type or to search for 

common expression patterns across several cancer types (Kais et al., 2022). In 

2004, Rhodes and colleagues evaluated 40 published cancer microarray datasets, 

including 38 million gene expression values from over 3,700 cancer samples. This 

led to the identified meta-signature of neoplastic transformation by integrating 

microarray data and analysis from a variety of cancer types. The aforementioned 

defined a transcriptional program that is almost always activated in cancer, 

irrespective of the origin of the cell (Rhodes et al., 2004; Kais et al., 2022). 
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2.12.2 Machine learning  

The machine learning (ML) approach has become popular among medical 

researchers. These techniques can discover and identify patterns and relationships 

between them from complex datasets. At the same time, they can effectively predict 

future outcomes of a cancer type (Kourou et al., 2015). ML is often described as 

providing more flexible modelling, the capacity to analyse a vast amount of data, 

non-linear and high-dimensional data, and the ability to simulate complicated 

clinical events (Dhiman et al., 2022). ML is used in various disciplines, including 

disease diagnosis in health care. Many academics and practitioners demonstrate the 

promise of machine learning-based disease diagnosis, which is cost-efficient and 

time saving. The advancement of biomedical and translational research and the use 

of sophisticated statistical analysis and ML approaches are driving factors in the 

advancement of prognostic cancer prediction (W. Zhu et al., 2020; Ahsan, Luna 

and Siddique, 2022).  

2.12.3 Survival analysis 

Survival analysis is a set of statistical processes for analysing data in which the 

outcome variable of interest is the time until an event happens. A part of the survival 

periods of interest is often unknown due to censoring, which is the no observation 

of the event of interest after a follow-up period. It is considered that patients who 

are censored have the same chances of surviving as those who continue to be 

monitored; hence, censoring is presumed to be non-informative (Clark et al., 2003). 
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The survivor and hazard functions are often used to describe and model survival 

data. The survivor function depicts the chance that an individual lives from the 

moment of origin to some point after time t. It directly characterises the survival 

experience of a study cohort and is often estimated using the Kaplan-Meier curves. 

The log-rank test may be used to compare the survival curves of different groups, 

such as treatment arms. Given survival up to that point, the hazard function provides 

the immediate probability of experiencing an event (Clark et al., 2003). In 

numerous cancer studies, the time to an event of interest is the primary outcome 

being evaluated. Survival time is the generic term for the period, which can refer to 

the time 'survived' from complete remission to relapse or progression as well as the 

time from diagnosis to death (Clark et al., 2003). Many studies use survival analysis 

to find a prognostic biomarker for different cancers; in breast cancer, high 

expression of six genes was associated with poor prognosis in younger patients 

(Ingebriktsen et al., 2022). Survival analysis combined with differential gene 

expression profiling has been performed and found that overexpression of STAT6 

and SOX2 genes impacts the survival rate in prostate cancer (Mohammad et al., 

2022). 

2.13 Summary 

Intensive studies have been conducted on AML to understand the biological nature 

of the disease, and improved knowledge has been gained over time. The significant 

improvement was relating the cytogenetic, molecular abnormalities, morphology, 

and immunophenotype to the prognosis of AML, which led to the establishment of 

the AML risk classification. The existing classification systems are used for the 
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clinical management of AML patients. However, all the established classifications 

fall short of providing a particular group of patients with an appropriate prognostic 

value due to the heterogeneity of AML. This has a negative impact on the accurate 

assessment of overall survival and therapeutic options for AML patients. 

Furthermore, these classification systems underwent multiple justifications and 

updates, as mentioned in section 2.6. 

Notably, the prognosis of AML varies depending on the patient’s age and genetic 

abnormalities, which further affects the therapeutic options. Moreover, the response 

to conventional treatment differs depending on the risk group. The advancement of 

genomic studies has enabled numerous researchers and organisations to overcome 

the challenge of risk classification and prognostic prediction. Similarly, this study 

exploits gene expression profiles to establish genetic signatures that could be used 

for prognosis and accurate risk classification in AML patients. 
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Chapter 3: Upregulation of FHL1, SPNS3, and MPZL2 predicts poor 

prognosis in pediatric acute myeloid leukemia patients with FLT3-ITD 

mutation 

This is an original manuscript of an article published by Taylor & Francis in Leukemia & 

Lymphoma on March 2022, available at: https://doi.org/10.1080/10428194.2022.2045594. 

Abstract 

Chromosomal translocations and gene mutations are characteristics of the genomic 

profile of acute myeloid leukemia (AML). We aim to identify a gene signature 

associated with poor prognosis in AML patients with FLT3-ITD compared to AML 

patients with NPM1/CEBPA mutations. RNA-sequencing (RNA-Seq) count data 

were downloaded from the UCSC Xena browser. Samples were grouped by their 

mutation status into high and low-risk groups. Differential gene expression (DGE), 

machine learning (ML) and survival analyses were performed. A total of 471 

differentially expressed genes (DEGs) were identified, of which 16 DEGs were 

used as features for the prediction of mutation status. An accuracy of 92% was 

obtained from the ML model. FHL1, SPNS3, and MPZL2 were found to be 

associated with overall survival in FLT3-ITD samples. FLT3-ITD mutation confers 

an indicative gene expression profile different from NPM1/CEBPA mutation, and 

the expression of FHL1, SPSN3, and MPZL2 can serve as prognostic indicators of 

unfavorable disease. 
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3.1 Introduction 

Acute myeloid leukemia (AML) makes up about 20% of acute leukemia in pediatric 

patients (de Rooij, Zwaan and van den Heuvel-Eibrink, 2015). Common clinical 

symptoms of AML include leukocytosis, anemia, and thrombocytopenia. It is a very 

heterogeneous disease accounting for more than half of the deaths from leukemia 

(Szalontay and Shad, 2014; Chaudhury et al., 2018). Deciphering disease 

heterogeneity at the molecular level is crucial for accurate diagnosis, treatment and 

prognosis, and identifying possible gene therapeutic targets requires deciphering 

the genetic patterns underlying the etiology of the disease. AML clonal expansion 

results from abnormal genetic and epigenetic changes in hematopoietic stem and 

progenitor cells that cause changes or impairment of important physiological 

processes, such as self-renewal, proliferation, and differentiation (Saultz and 

Garzon, 2016; Siveen, Uddin and Mohammad, 2017). Consequently, AML results 

in the insufficient generation of normal mature blood cells. In addition, AML is 

associated with multiple chromosomal translocations and mutations that are 

responsible for the disease pathology and influence disease prognosis. Three gene 

mutations are proven to be prognostically significant in AML, namely, NPM1, 

CEBPA, and FLT3-ITD (Torrebadell et al., 2018). Mutations in FLT3 are associated 

with a higher rate of relapse and unfavorability (Meshinchi et al., 2006), while 

mutations in NPM1 and CEBPA are associated with favorable survival prognoses 

(Fröhling et al., 2004; Hollink et al., 2009). 

Of great interest to many research studies are the genome-wide detection of 

differentially expressed genes (DEGs) from two or more conditions of interest (Law 
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et al., 2016). Currently, one of the main techniques of choice used for gene 

expression profiling (GEP) is RNA-sequencing (RNA-Seq). GEP can be used to 

find many systematic differences between cancer and normal conditions, thereby 

defining new clinically relevant disease subtypes (Gerstung et al., 2015). The 

European LeukemiaNet (ELN-2017) provides guidelines to stratify AML patients 

into good, intermediate, and adverse risk groups based on cytogenetics and 

mutation status of some genes, including ASXL1, CEBPA, FLT3, NPM1, RUNX1, 

and TP53 (Döhner et al., 2017). 

Based on the results of a preliminary data analysis of high- and low-risk AML 

samples from the GDC TARGET AML dataset, the PCA analysis showed that 

samples with NPM1, CEBPA, and FLT3-ITD mutations were clustered together 

(Figure 3.1), although they have different survival rates. In addition, samples with 

t(8;21) and inv(16) variations were well separated into two other independent 

clusters (Figure 3.1). In line with these results, a 36-gene expression signature 

enabled the accurate classification of AML samples with t(8;21) and inv(16) 

mutations (Handschuh and Lonetti, 2019). However, segregation between AML 

samples with NPM1 and CEBPA using GEP is less accurate, revealing that the 

expression pattern between the two types of samples is likely similar (Verhaak et 

al., 2009). Therefore, the fact that FLT3-ITD samples are grouped with NPM1 and 

CEBPA samples of favorable prognosis raises the question of why the survival of 

AML patients with FLT3-ITD is low? Thus, it is crucial to look for DEGs between 

AML FLT3-ITD on the one hand and AML NPM1/CEBPA on the other hand, which 

are potentially the cause of poor survival in FLT3-ITD samples. 

http://etd.uwc.ac.za/



44 

 

This study aims to identify a gene expression signature that can differentiate the 

AML FLT3-ITD mutation from the AML NPM1 and AML CEBPA mutations, 

which are implicated in poor survival. In addition, we examined the predictive value 

of this signature in risk classification. These novel gene expression signatures may 

assist clinicians and pathologists in patient diagnosis and assessment, thereby 

ensuring more accurate and individualized treatment options. 

 

Figure 3.1: Clustering of the high- and low-risk AML samples based on their 

cytogenetics and genetic aberrations using principal component analysis (PCA). 
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3.2 Materials and Methods 

The workflow describing the steps and methods undertaken in this study is 

illustrated in (Figure 3.2). It includes six essential steps: dataset retrieval, 

differential gene expression (DGE), PCA and clustering, machine learning (ML), 

Cox regression, and Kaplan–Meier’s (K-M) analyses. 
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Figure 3.2: Workflow depicting the steps and methods used for the identification 

of genetic signature associated with poor prognosis in AML samples with FLT3-

ITD mutation. AML: acute myeloid leukemia; CEBPA: CCAAT enhancer binding 

protein alpha; DGE: differential gene expression; FLT3-ITD: FMS-like tyrosine 

kinase 3-internal tandem duplications; MLP: multi-layer perceptron; NPM1: 

nucleophosmin-1; PCA: principal component analysis; TARGET: therapeutically 

applicable research to generate effective treatment. 

3.2.1 Datasets 

The therapeutically applicable research to generate effective treatment (TARGET) 

project employed a multi-omic strategy to molecularly characterize hard-to-treat 

pediatric cancers, including AML. TARGET data are accessible through the 

TARGET data matrix and the UCSC Xena Browser, a web-based visual integration 

and exploration tool for multi-omic data. The UCSC Xena Browser is a high-

performance visualization, exploration, and analysis tool for multi-omic data of 

large public repositories and private datasets (Goldman et al., 2018). 

The TARGET AML dataset in Xena consists of a total of 187 samples with their 

accompanying clinical data (Table 3.1). Xena Python, a Python package 

implementing APIs to query and download data from Xena, was used to obtain gene 

expression in log2 transformed RNA-Seq counts format of the TARGET AML 

dataset (dataset ID: TARGET-AML.htseq_counts.tsv) from the GDC hub. The 

criteria used to query the dataset were the risk group (low and high) into which the 

samples were classified. The data samples were then filtered based on their 

cytogenetic abnormalities and genetic mutations. AML data samples with FLT3-

ITD, NPM1, and CEBPA mutations were used for downstream analysis. Samples 
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with multiple gene mutations were not considered, as multiple mutations may 

impact AML prognosis (Stölzel et al., 2016). There is no precise risk classification 

of patients with FLT3-ITD and NPM1 double mutation. The National 

Comprehensive Cancer Network considers them to have a favorable or intermediate 

risk. However, an unfavorable prognosis was manifested in this category of patients 

in recent studies (Huang et al., 2019). Similarly, CEBPA-mutated patients with WT1 

mutations were reported to have an unfavorable risk (Wang et al., 2022). Due to 

these uncertainties and changes in the risk classification of AML patients with 

multiple mutations, two samples, one with FLT3-ITD and NPM1 double mutation 

and the other with both CEBPA and WT1 mutations, were not considered. 

Table 3.1: Relevant clinical and mutational variables of 187 pediatric samples from 

the TARGET database and their distribution by prognosis. 

Variable 
Good,N 

=72 

Intermediate, N = 

93 

Poor, N = 

12 

Unknown

, N = 10 

Gender  

Female 37 (51%) 51 (55%) 5 (42%) 3 (30%) 

Male 35 (49%) 42 (45%) 7 (58%) 7 (70%) 

Vital status  

Alive 50 (69%) 37 (40%) 2 (17%) 2 (20%) 

Dead 22 (31%) 56 (60%) 10 (83%) 8 (80%) 

FLT3 Mutation 2 (2.8%) 4 (4.3%) 11 (92%) 0 (0%) 

CEBPA Mutation  

Neg 63 (88%) 91 (98%) 12 (100%) 10 (100%) 

Unknown 0 (0%) 2 (2.2%) 0 (0%) 0 (0%) 
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Pos 9 (13%) 0 (0%) 0 (0%) 0 (0%) 

NPM1 Mutation  

Neg 66 (92%) 87 (94%) 9 (75%) 10 (100%) 

Unknown 0 (0%) 6 (6.5%) 2 (17%) 0 (0%) 

Pos 6 (8.3%) 0 (0%) 1 (8.3%) 0 (0%) 

Overall Survival 
2,080 (828, 

2,626) 
917 (462, 2,205) 

398 (351, 

772) 

637 (444, 

700) 

 

3.2.2 Differential Gene Expression analysis 

The gene expression values from the AML samples with FLT3-ITD, NPM1, and 

CEBPA were converted to raw counts using the mathematical expression R=2L - 1, 

where R is the raw count, and L is the log2 normalized value. Filtering to remove 

low expressed genes was done using edgeR’s filterByExpr function (Robinson, 

McCarthy and Smyth, 2009). Statistically, eliminating low expressed genes enables 

the mean-variance association in the data to be measured more accurately and 

reduces the number of computational checks conducted in downstream 

differentially expressed tests (Law et al., 2016). The DGE analysis between FLT3-

ITD and NPM1/CEBPA samples was performed using the DESeq2 package in R 

(Love, Huber and Anders, 2014). DESeq2 uses shrinkage estimators for dispersion 

and fold change for comparative DGE estimation (Love, Huber and Anders, 2014). 

Genes that met the criteria of an adjusted p value <.01 were considered significant 

and therefore differentially expressed. 
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3.2.3 Machine learning 

To determine if the DEGs identified could serve as risk classification biomarkers 

in AML, a multi-layer perceptron (MLP) classifier was constructed using the 

pediatric DEGs and tested on adult AML samples, as explained below. MLP is a 

feed-forward artificial neural network (ANN) algorithm. It is implemented in 

Python under the Scikit-learn library (Pedregosa et al., 2011) and imported using 

the MLPClassifer class. Prior to the classification task, a linear support vector 

machine and repeated stratified 10-fold cross-validation were used for recursive 

feature elimination (RFE). The RFE was applied to the DEGs to obtain the essential 

features for optimum model performance. The selected genes were then used as 

features for classification. Also, principal component analysis (PCA) and clustering 

analysis were applied to the expression values of these selected genes to assess their 

ability to discriminate the samples of the two AML groups. The PCA plot and 

clustering heatmap were generated using the ggplot2 and pheatmap R packages, 

respectively. 

The features of the training set were extracted from the log2-transformed 

normalized counts of the pediatric AML samples. The test set was constructed from 

the adult AML dataset (dataset ID: TCGA-LAML.htseq_counts.tsv) obtained from 

the GDC hub in the UCSC Xena Browser. Construction of the test set followed the 

same process used to construct the training set, i.e. consider AML samples with 

FLT3-ITD mutation and AML samples with NPM1/CEBPA mutation. The features 

(genes) not present in the test dataset were removed from the training set and were 

not used in the ML classification. In addition, the gene expression values of the 
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training and test sets were scaled using Scikit-learn’s StandardScaler function. The 

MLP model was then applied to predict the classification of the samples in the test 

set. The evaluation metric for the model performance was the accuracy of 

classification. 

3.2.4 Cox’s Regression Analysis and Kaplan–Meier’s estimates 

To determine among the genes from ML those that best correlated with patient's 

survival, we used a Cox regression model based on the Lasso algorithm of the 

glmnet R package (Friedman, Hastie and Tibshirani, 2010; Simon et al., 2011; 

Tibshirani et al., 2012). The model assigns each gene a regression coefficient value. 

Genes with a zero coefficient were eliminated, having no effect on survival. 

Prognostic genes with positive coefficients suggest that their upregulation signifies 

low survival in FLT3-ITD patients. For each gene with positive coefficient, a score 

value is calculated for each patient as a product of the expression value of the gene 

and its corresponding coefficient obtained from the Cox regression model. A 

median value was inferred from the patient scores. Each score was then compared 

to the median, and patients were assigned a status value of 1 or 0 depending on 

whether the score was above or below the median. According to patient status 

information, K-M estimates were then calculated for overall survival (OS). K-M 

curves were generated using the ggsurvplot function from the survminer R package. 
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3.3 Results 

3.3.1 Differential gene expression analysis 

Querying UCSC Xena Browser for TARGET AML samples using risk group as 

search criteria returned 12 high-risk samples and 72 low-risk samples. The 

distribution and clustering of samples by cytogenetic and mutational aberrations are 

shown in (Table 3.2 and Figure 3.1), respectively. Samples with FLT3-ITD, NPM1, 

and CEBPA mutations were selected for downstream analysis, comprising of 10 

samples of FLT3-ITD mutation and 13 NPM1/CEBPA samples. All were clustered 

together in the exploratory analysis (Figure 3.1). Filtering of the gene expression 

data eliminated 38,980 low expressed genes and retained 21,503 genes for 

downstream analysis. The DGE analysis using DESeq2 identified 471 DEGs 

between the AML FLT3-ITD and AML NPM1/CEBPA groups. Of these, 208 genes 

were upregulated, while 263 genes were downregulated. 

Table 3.2: Type of mutation, number of samples and risk category of TARGET 

high- and low-risk samples. 

Type of mutation Number of samples Risk classification 

CEBPA 9 Favorable 

NPM1 6 Favorable 

Del(5q) 1 Unfavorable 

FLT3-ITD 11 Unfavorable 

inv(16) 32 Favorable 

t(8; 21) 25 Favorable 
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3.3.2 Machine learning 

The RFE selected 22 genes out of 471 DEGs as the most critical features for 

classifying samples according to their mutational status (Table 3.3). These 22 DEGs 

accurately discriminated and clustered the TARGET samples into their respective 

mutation groups (Figure 3.4). However, some of these selected genes were not 

found in the adult test dataset and were not included in the pediatric training set 

used to create the MLP model. Sixteen DEGs (features) were thus used for the ML 

classification, including FHL1, VWF, MPZL2, SPNS3, LINC00515, TCEA3, DCN, 

MACC1, ADD2, CCDC152, KCNA6, ADAMTS3, KCTD15, KCNMB4, HESX1, and 

IL3RA. The training set was constructed based on the gene expression values of the 

TARGET samples from the FLT3-ITD group with 10 samples and the 

NPM1/CEBPA group with 13 samples. The test set was 25 samples, including five 

FLT3-ITD samples and 20 NPM1/CEBPA samples. Evaluation of the MLP 

classifier on the test set yielded 92% accuracy of samples correctly assigned to their 

corresponding mutational status. All FLT3-ITD samples were correctly predicted, 

while 18 of the 20 NPM1 and CEBPA samples were correctly predicted. 
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Figure 3.3: Clustering of the AML samples with FLT3-ITD and NPM1/CEBPA 

mutations using the 22 DEGs selected by RFE using (A) principal component 

analysis (PCA) and (B) hierarchical clustering using pheatmap R package. 
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Table 3.3: List of the 22 DEGs selected by RFE genes with * was used in the ML 

model. 

Ensembl_Id Symbol log2FoldChange padj 

ENSG00000250696.4 LOC1053772

67 

–7.31571544058504 5.57786607011193E-16 

ENSG00000022267.15 FHL1* 3.3904649981173 1.74302159426198E-11 

ENSG00000110799.12 VWF* 5.57344738786003 7.63061866000091E-11 

ENSG00000182557.6 SPNS3* 2.34741592806669 1.73370534268721E-08 

ENSG00000149573.7 MPZL2* 4.11373735379172 2.24605771346956E-07 

ENSG00000182183.13 SHISAL2A –2.80284553156498 3.31597387364724E-07 

ENSG00000011465.15 DCN* –4.93071112156197 3.74939407438753E-07 

ENSG00000183742.11 MACC1* 3.11711209042932 4.62361610488009E-06 

ENSG00000156140.7 ADAMTS3* –6.20242014449732 5.12366228681635E-06 

ENSG00000075340.21 ADD2* –3.56747714605576 6.92781902701875E-06 

ENSG00000135643.4 KCNMB4* –2.96743485475082 1.20611585085678E-05 

ENSG00000153885.13 KCTD15* –2.73614037690847 2.01801229683281E-05 

ENSG00000247774.5 PCED1B-

AS1 

–1.90010539713958 0.000355270349374 

ENSG00000224420.3 ADM5 –1.99554499874056 0.000408776507021 

ENSG00000204219.8 TCEA3* –1.99082117539315 0.000651667363783 

ENSG00000163666.7 HESX1* 1.59282492017001 0.001841360690536 

ENSG00000185291.9 IL3RA* 1.36386204250051 0.002217439812688 

ENSG00000178075.18 GRAMD1C 1.93515803839245 0.003109807383799 

ENSG00000130035.5 KCNA6* –2.40840491942698 0.003146881886037 

ENSG00000260583.1 LINC00515* 2.48087500485109 0.003149939931692 

ENSG00000198865.8 CCDC152* 2.70119814011179 0.003498603901287 

ENSG00000138678.9 GPAT3 2.22603438762192 0.004203371885436 

 

3.3.3 Cox’s Regression analysis and Kaplan–Meier’s estimates 

The Cox regression model associated five of the 22 DEGs obtained from RFE with 

patient survival in the two AML groups. The model created using the LASSO 

algorithm assigned non-zero, positive or negative coefficients to the five genes 
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(Table 3.4). The genes with a positive coefficient (FHL1, SPNS3, and MPZL2) had 

high expression in the FLT3-ITD group with the over fivefold increase, while those 

with a negative coefficient (KCNMB4 and ADD2) had high expression in the 

NPM1/CEBPA group with over sevenfold increase. Kaplan–Meier’s estimates for 

OS based on patient statuses of each gene with a positive coefficient were derived 

and presented in (Figure 3.4). Expression of the three genes in the FLT3-ITD group 

correlated with low survival (p<.0001). Patients with a score above the median were 

predominantly FLT3-ITD, and those below mainly were NPM1/CEBPA. 
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Figure 3.4: Kaplan–Meier’s plots of overall survival of patients with FLT3-ITD and NPM1/CEBPA mutations for survival scores above the 

median (continuous line), corresponding to high expression, and below the median (dotted line), corresponding to low expression, for the 

genes with positive Cox coefficients (A) FHL1, (B) SPNS3, and (C) MPZL2. 
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Table 3.4: The list of the DEGs related to overall survival and their corresponding 

coefficient values from the Cox regression model. 

Gene name Coefficient 

FHL1 0.077996384008932 

SPNS3 0.050799306065861 

MPZL2 0.08555275154584 

ADD2 –0.000713971400328 

KCNMB4 –0.03112122883124 

 

3.4 Discussion 

Proper risk stratification of AML patients at diagnosis is essential for making 

optimal therapeutic decisions. The results of the DGE analysis demonstrated that 

the gene expression profile of FLT3-ITD AML is different from that of the other 

mutation groups mentioned above. FLT3-ITD mutation is associated with 

unfavorable AML disease outcomes (Meshinchi et al., 2006). Similar prognostic 

driver genes have been cataloged in several cancers. For example, in 

neuroblastoma, another pediatric cancer, MYCN amplification is a predictor of poor 

prognosis (Seeger et al., 1985). Some of the DEGs identified here have been 

associated with AML and several other cancers (Stein et al., 2009; Lee et al., 2020; 

Zhou and Chen, 2021). The downstream analysis identified DEGs associated with 

survival (Table 3.4) and possible responsibility for the poor survival in AML FLT3-

ITD as opposed to AML NPM1/CEBPA, which clustered together in the exploratory 

analysis (Figure 3.1). 
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3.4.1 DEGs in the expression signature 

Some of the genes in the identified signature have been reported to have tumor-

suppressive roles and downregulated in several cancers. TCEA3, a gene with 

apoptosis-promoting functions (Liao et al., 2016), was downregulated in the FLT3-

ITD group in our study. It has been reported downregulated as well in 

rhabdomyosarcoma (Kazim et al., 2020), gastric cancer (Li et al., 2015), and 

ovarian cancer (Cha et al., 2013). DCN, another downregulated gene in the FLT3-

ITD group, is well known for its oncosuppressive function (Baghy et al., 2020). 

DCN expression is decreased in different cancer types (Bozoky et al., 2014; Shi et 

al., 2015; Neill, Schaefer and Iozzo, 2016). In contrast, some upregulated genes 

have tumor-promoting roles. VWF, upregulated in the FLT3-ITD group, is a 

glycoprotein involved in hemostasis whose expression has been associated with 

lymph node metastasis in prostate cancer patients (Kong et al., 2020). It was also 

demonstrated to be related to metastatic activities in glioma and osteosarcoma cells 

(Mojiri et al., 2017). 

MACC1 regulates the HGF-MET pathway, which is involved in cellular activities 

like growth, motility, angiogenesis, invasiveness, epithelial–mesenchymal 

transition, and metastasis (Birchmeier et al., 2003; Mazzone and Comoglio, 2006). 

As expected, its high expression has therefore been reported in some cancers, such 

as retinoblastoma (Nair et al., 2020), gastric cancer (Tong et al., 2019), and colon 

cancer (Stein et al., 2009). MACC1 is an independent prognostic indicator for 

metastasis in colon cancer (Stein et al., 2009). LINC00515 has also been reported 

upregulated in glioma (Wu and Lin, 2019) and multiple myeloma (Lu et al., 2018). 

http://etd.uwc.ac.za/



58 

 

IL3RA expression was also correlated with FLT3-ITD-mutated AML, although it is 

also expressed in some NPM1-mutated AML cases (Rollins-Raval et al., 2013). 

High expression of IL3RA also seemed to be associated with worse clinical 

outcomes in AML (Jiang et al., 2020). Arai et al, (2019) reported IL3RA expression 

associated with chemotherapy response failure and poor survival in de novo AML 

patients. It, therefore, suggests that FLT3-ITD mutation causes the downregulation 

of protective tumor-suppressing genes while upregulating genes with oncogenic 

function. 

3.4.2 Machine learning 

The high classification accuracy of 92% obtained indicates that the 16-gene 

expression signature can be used as prognostic markers of FLT3-ITD mutation and 

unfavorable disease outcome in AML and could be potential therapeutic targets. 

This high accuracy was achieved despite using an adult AML dataset as the testing 

set. Differences in molecular mechanisms between pediatric and adult AML have 

been reported (Jeha et al., 2002; Bolouri et al., 2018; Chaudhury et al., 2018). Our 

classification results suggest that pediatric and adult AML have likely similar 

disease mechanisms for the mutations investigated in our study. Different gene 

expression signatures for prognosis in AML have been proposed before. Using 

expression microarray, Bullinger et al. (Bullinger et al., 2008) found a 20-gene 

expression signature predictive of FLT3-ITD mutation status using prediction 

analysis of microarray method (Tibshirani et al., 2002) and Kaplan–Meier’s 

analysis. They obtained a prediction accuracy of 81% for identifying cases with 

FLT3-ITD mutation. Our study used an RNA-Seq dataset for analysis, performed 
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DGE analysis, and applied machine-learning methods to find and validate a 16-

gene expression signature predictive of FLT3-ITD mutation with 92% higher 

accuracy achieved. RNA-Seq has become the primary technology used for GEP 

(Law et al., 2016). Our expression signature of a lesser number of genes should be 

implementable and potentially cost-effective. 

Similarly, Zhu et al. (2020) found six immune-related gene signatures to predict 

AML prognosis using Cox and LASSO regression analysis. However, their 

classifier is based on immune-related genes, and the genes identified may not 

provide a larger picture of the mechanisms at play in the disease pathogenesis (R. 

Zhu et al., 2020). As a limitation, the sample size of our test dataset was small. 

Therefore, validation in much larger sample cohorts may still be essential. 

However, we expect that further studies of the genes identified in our study will 

shed light on the underlying pathogenesis of AML with FLT3-ITD mutation. 

3.4.3 Cox’s Regression Analysis and Kaplan–Meier’s estimates 

By reducing the list of genes obtained from the ML analysis, the Cox regression 

model selected five genes related to patient OS including three genes with positive 

Cox coefficients. The K-M curves (Figure 3.4) show the ability of these three genes 

to distinguish between shorter and longer OS, i.e. FLT3-ITD and NPM1/CEBPA 

groups, respectively (p<.0001). The results of the survival analysis (Figure 3.4) 

validated the poor prognosis in the FLT3-ITD group. Since a patient score above 

the median is associated with low OS, higher expression of FHL1, SPNS3, and 

MPZL2 with positive Cox coefficients is a prognostic indicator of poor outcome in 

AML with FLT3-ITD mutation. The roles of the genes with negative Cox 
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coefficients, ADD2 and KCNMB4, in the survival of AML patients with 

NPM1/CEBPA require further investigation. 

FHL1 belongs to a family of genes that play a role in focal adhesion and 

differentiation. High expression of FHL1 has been described as a powerful 

prognostic indicator of worse survival and poor outcome, independent of existing 

genetic factors for the prognosis of AML. Its overexpression was further found to 

be related to chemotherapy-resistance and relapse in AML, and FHL1 knockdown 

enhanced the sensitivity of AML cells response to treatment (Fu et al., 2020). 

SPNS3 is a transmembrane transporter whose overexpression has been associated 

with poor prognosis in AML patients receiving chemotherapy or allogeneic 

hematopoietic stem cell transplantation (Huang et al., 2020). Huang et al. (2020) 

suggested that over-expression of SPNS3 may regulate and control proliferation and 

differentiation of AML by autophagy. MPZL2 expressed in the lymphoid organ, 

thymus, and other epithelial structures maintains stemness in glioblastoma (Ohtsu 

et al., 2016). Its increased expression has been reported in AML and hepatocellular 

carcinoma, which is associated with poor prognosis and recurrence (Ni et al., 2020; 

Yu et al., 2020). 

Notably, the high expression of these genes in FLT3-ITD patients promotes poor 

outcomes, and the implication of FHL1 and SPNS3 in chemotherapy resistance 

could be the reason for treatment failure, which may therefore explain the low 

survival in this category of patients. Functional studies such as knockdown 

experiments to decipher the precise roles of these genes in FLT3-ITD AML would 

be illuminative. 
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3.5 Conclusions 

In this study, we differentiated AML FLT3-ITD and AML NPM1/CEBPA using 

GEP. We also identified and validated a 16-gene expression signature for risk 

classification in AML, which has diagnostic and prognostic value. The upregulation 

of FHL1, SPNS3, and MPZL2 was found to be associated with poor survival in 

AML FLT3-ITD. These genes could therefore be potential therapeutic targets in 

pediatric and adult AML. 
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Chapter 4: Investigation of distinct gene expression profile patterns that can 

improve the classification of intermediate-risk prognosis in AML patients. 

This is an original manuscript of an article published in Frontiers in Genetics on February 

2023, available at: https://doi.org/10.3389/fgene.2023.1131159.  

Abstract 

Background: Acute myeloid leukemia (AML) is a heterogeneous type of blood 

cancer that generally affects the elderly. AML patients are categorized with 

favorable-, intermediate-, and adverse-risks based on an individual’s genomic 

features and chromosomal abnormalities. Despite the risk stratification, the 

progression and outcome of the disease remain highly variable. To facilitate and 

improve the risk stratification of AML patients, the study focused on gene 

expression profiling of AML patients within various risk categories. Therefore, the 

study aims to establish gene signatures that can predict the prognosis of AML 

patients and find correlations in gene expression profile patterns that are associated 

with risk groups.  

Methods: Microarray data were obtained from Gene Expression Omnibus 

(GSE6891). The patients were stratified into four subgroups based on risk and 

overall survival. Limma was applied to screen for differentially expressed genes 

(DEGs) between short-survival (SS) and long-survival (LS). DEGs strongly related 

to general survival were discovered using Cox regression and LASSO analysis. To 

assess the model's accuracy, Kaplan-Meier (K-M) and receiver operating 

characteristics (ROC) were used. A one-way ANOVA was performed to assess for 
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differences in the mean gene expression profiles of the identified prognostic genes 

between the risk subcategories and survival. GO and KEGG enrichment analyses 

were performed on DEGs.  

Results: A total of 87 DEGs were identified between the SS and LS groups. The 

Cox regression model selected nine genes CD109, CPNE3, DDIT4, INPP4B, LSP1, 

CPNE8, PLXNC1, SLC40A1, and SPINK2 that are associated with AML survival. 

K-M illustrated that the high expression of the nine-prognostic genes is associated 

with poor prognosis in AML. ROC further provided high diagnostic efficacy of the 

prognostic genes. ANOVA also validated the difference in gene expression profiles 

of the nine genes between the survival groups and highlighted four prognostic genes 

to provide novel insight into risk subcategories poor and intermediate-poor, as well 

as good and intermediate-good that displayed similar expression patterns. 

Conclusion: Prognostic genes can provide more accurate risk stratification in 

AML. CD109, CPNE3, DDIT4, and INPP4B provided novel targets for better 

intermediate-risk stratification. This could enhance treatment strategies for this 

group, which constitutes the majority of adult AML patients. 
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4.1 Introduction 

Acute myeloid leukemia (AML) is hematologic cancer characterized by clonal 

proliferation and the accumulation of immature myeloid progenitors (Arber et al., 

2016). AML is the most prevalent leukemia subtype in adults. The disease is highly 

heterogeneous, with a variable prognosis and a high mortality rate (Gregory et al., 

2009; Vakiti and Mewawalla, 2022). Recent intensive research in genomics, novel 

treatments, and prognostic markers have substantially improved our understanding 

of many of the biological aspects of this complex disease (Green and Konig, 2020). 

However, the global outcome of AML patients remains poor (Wheatley et al., 

2009). 

The revised European LeukemiaNet (ELN) risk classification system categorizes 

newly diagnosed AML patients into favorable-, intermediate-, and adverse-risk 

groups based on cytogenetic and molecular profiles, which serves as a guideline to 

establish treatment strategies (Döhner et al., 2022). However, it has been noted that 

this classification system does not completely reflect the heterogeneity within each 

subgroup. In particular, the intermediate-risk group exhibits significantly diverse 

biology and prognosis (Hu et al., 2021). 

A poorly defined intermediate-risk group results in the majority of AML patients 

being stratified to an intermediate-risk category (an umbrella category) because 

they do not meet the criteria that identify specific entities of established prognostic 

relevance (Awada et al., 2022). Intermediate-risk AML patients feature 

heterogeneous clinical outcomes, and it further remains a challenge to assign a 

suitable consolidation of therapy (Döhner, Weisdorf and Bloomfield, 2015; Hu et 

al., 2021). This emphasizes the need for a more comprehensive description and 
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understanding of the genetic basis of the intermediate-risk group to improve AML 

patients’ prognosis and provide more effective treatment strategies. 

The original aim of the ELN genetic categories was to standardize reporting of 

genetic abnormalities, particularly for correlations with clinical characteristics and 

outcomes. However, significant modifications to the risk classification for AML 

from 2017 (Döhner et al., 2017) to 2022 revision (Döhner et al., 2022), which 

excluded the FLT3-ITD mutation, shows that the diagnosis and management of the 

intermediate-risk group, in particular, remain inexact. Generally, the AML 

classification and prognostic criteria are based on cytogenetic and molecular 

features at the time of diagnosis, and thus studies tend to exclude prognostic 

stratification and base the distinction between the intermediate-I and intermediate-

II categories solely on genetic characteristics (Döhner et al., 2010). Meanwhile, a 

subsequent study demonstrated longer OS in the intermediate-I group than in the 

intermediate-II group. However, the two groups were prognostically 

indistinguishable in older patients, who constitute most AML cases (Mrózek et al., 

2012). 

The purpose of this study is to facilitate improved intermediate-risk stratification of 

AML and also focus on prognostication. The gene expression profiles of AML 

patients were investigated to identify gene signatures that differentiate between 

short- and long-term survival for patients categorized as good- or poor-risk as well 

as the intermediate-risk group. Therefore, the benefit of this study was twofold (i) 

the study enabled the segregation of intermediate-risk patients into good and poor-

prognosis based on distinct gene expression profiles, (ii) significant prognostic gene 

signature was identified to differentiate AML patients with good and poor-
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prognosis. The identified gene signatures associated with survival in AML patients 

have the potential to serve as prognostic biomarkers that can aid in the prognosis 

and monitoring of AML. All contribute to a better understanding of the genetic basis 

of the disease. 

 

4.2 Materials and Methods 

4.2.1 Microarray data 

The microarray expression profiles of 537 samples and accompanied clinical data 

were extracted from the Gene Expression Omnibus (GEO) database under the 

accession number GSE6891 (Verhaak et al., 2009) by the getGEO function in the 

GEOquery R package (version 2.64.2) (Davis and Meltzer, 2007). The patients’ 

survival data were provisioned by the authors (Verhaak et al., 2009), and samples 

without clinical data and survival information were excluded from subsequent 

analyses and 447 samples remained (Table 4.1). A complete illustration of the 

workflow employed in this study is shown in (Figure 4.1). 

Table 4.1: Relevant clinical and mutational variables of 447 adult AML samples 

from the GSE6891 dataset and their distribution by prognosis. 

Variable Good, N = 97 Intermediate, N = 259 
Poor, N = 

91 

Gender  

Female 49 (51%) 130 (50%) 45 (49%) 

Male 48 (49%) 129 (50%) 46 (51%) 

Vital status  
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Alive 57 (59%) 92 (36%) 17 (19%) 

Dead 40 (41%) 167 (64%) 74 (81%) 

FLT3 ITD Mutation    

Neg 85 (88%) 160 (62%) 81 (89%) 

Pos 12 (12%) 99 (38%) 10 (11%) 

CEBPA Mutation  

Double Mutation 0 (0%) 23 (8.9%) 1 (1.1%) 

Single Mutant 0 (0%) 9 (3.5%) 1 (1.1%) 

Wild Type 97 (100%) 227 (88%) 89 (98%) 

NPM1 Mutation  

Neg 97 (100%) 131 (51%) 86 (95%) 

Pos 0 (0%) 128 (49%) 5 (5.5%) 

Overall Survival 
2,972 (419, 

4,143) 
652 (260, 2,606) 

358 (145, 

751) 
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Figure 4.1: Study workflow. Steps used to identify genetic signature in AML 

patients with intermediate-risk. The steps comprise data extraction, sample 

grouping, differential gene expression, survival and functional enrichment 

analyses. DEGs refer to differentially expressed genes. 
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4.2.2 Samples selection based on risk profile 

The patient samples were divided based on OS into short survival (SS) and long 

survival (LS) (Table 4.2). The SS includes patients with a survival of less than 365 

days, while LS contains patients with a survival of greater than 3,650 days. The two 

groups were composed by further evaluating the cytogenetic risk classes of the 

samples in the clinical file, which were categorized into poor-, intermediate-, and 

good-risk samples. The SS was further stratified into two risk subcategories: poor 

(PP) and intermediate-poor (IP) risk, while LS was divided into two risk 

subcategories: good (GG) and intermediate-good (IG) risk. This additional filtering 

based on OS and cytogenic risk yielded 224 samples for downstream analysis. 

Table 4.2: The number of samples stratified by survival time and risk subcategory. 

Good-Good (GG), Intermediate-Good (IG), Intermediate-Poor (IP), and Poor-Poor 

(PP) risk of AML sample. Long Survival (LS) and short survival (SS) terms. 

 

4.2.3 Data preprocessing 

Raw expression data from the 224 selected samples were subjected to background 

correction, quantile normalization, and log2 transformation through the RMA 

algorithm from the affy R package (version 1.74.0). A filtering operation was 

applied to reduce the probes that exhibited low variation and a consistently low 

Survival time Risk subcategory Sample 

LS GG 38 

IG 42 

SS PP 47 

IP 97 

Total 224 
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signal across samples. The median expression of the dataset was calculated and 

returned a median value of 7.2. Thus, a probe was kept if the probe expression is 

above the median in more than 10 samples. The probe identification numbers were 

then transformed into official gene symbols and duplicate probes were deleted. 

4.2.4 Differential gene expression analysis 

The normalized gene expression of 224 samples and 31,140 genes were analyzed 

to identify differentially expressed genes (DEGs) between the two survival groups 

(SS and LS). The limma R package (Ritchie et al., 2015) performs differential gene 

expression (DGE) analysis and experimental design through linear modeling. The 

limma package was applied to screen for DEGs that differentiate SS from LS. The 

DEGs were identified with the parameters of the filter set to | log2 fold change | > 1 

and adjusted p-value < 0.01. 

4.2.5 Identification of gene signatures correlated with prognosis 

The identified DEGs were subjected to a Cox regression model based on the Lasso 

algorithm of the glmnet R package (version 4.1-3), to determine which genes were 

best correlated with patient survival (Friedman, Hastie and Tibshirani, 2010; Simon 

et al., 2011; Tibshirani et al., 2012). The model reduces the number of candidate 

genes and selected the most significant genes for a patient’s survival, assigning a 

regression coefficient value to each gene. Genes with a zero coefficient did not 

affect survival and were discarded. The product of the coefficient value and the 

corresponding gene’s expression value resulted in a prognostic risk score for each 

patient in the complete dataset (GSE6891) that provided a survival time. The patient 
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scores were used to calculate a median risk score. A status value of 1 or 0 was 

assigned to each patient based on whether the patient’s score was greater than or 

less than the median risk score. 

Using Kaplan-Meier (K-M) survival analysis, the prognostic difference between the 

short- and long-term survival groups was calculated. The K-M curves were created 

using the ggsurvplot function from the survminer R package (version 3.4-0). 

Additionally, the predicting power (sensitivity and specificity) of the prognostic 

gene signatures was calculated using the receiver operating characteristic (ROC) 

curve analysis (Florkowski, 2008). The ROC curves with the observing AUC values 

were created in Python by applying the metrics.roc_curve function from sklearn 

using logistic regression algorithms. The results of the Cox regression model were 

subjected to a validation step using an independent dataset (GSE37642). This test 

dataset comprises 11 favorable, 78 intermediate, and 35 adverse cytogenetic risk 

samples. The survival data were inquired and provided by the authors (Herold et 

al., 2018). K-M curves and Hazard Ratio (HR) of the prognostic genes were 

generated for the test dataset. 

4.2.6 One-way ANOVA 

The statistical analysis was performed using the stats R package (version 4.2.1). 

The statistics were conducted to evaluate for differences in the mean expression 

profiles of the prognostic genes identified by Cox regression analysis between the 

survival groups (SS and LS) and risk subcategories. One-way analysis of variance 

(ANOVA) was applied, followed by Tukey’s post-hoc test for pairwise 

comparisons (Tukey, 1949). The null hypothesis (H0) of equal mean between the 
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risk subcategories and survival groups was accepted if the p-value > 0.05; H0: there 

is no significant difference among the group means. 

4.2.7 Functional enrichment analyses 

A list of DEGs was subjected to functional annotations of Gene ontology (GO) 

(Ashburner et al., 2000) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway enrichment analyses, the EnrichGO and EnrichKEGG functions were 

used, respectively, in the clusterProfiler R package (version 4.4.4) (Yu et al., 2012). 

P-value < 0.05 was determined as a cut-off criterion for significant enrichment. 

4.3 Results 

4.3.1 Data extraction and DGE analysis 

The selected dataset was composed of 144 SS and 80 LS based on the criteria of 

survival time split set out in section 3.2 (Table 4.2) as input for DGE analysis. In 

the DGE, a total of 31,140 genes were screened for DEGs to differentiate between 

SS and LS. A total of 87 DEGs were identified, where 69 genes were up-regulated 

and 18 genes were down-regulated (Supplementary Table 4.1). 

4.3.2 Identification of prognostic genes 

By performing univariate Cox regression analysis between the 87 candidate DEGs 

and patient survival data of (GSE6891), nine prognostic genes were detected and 

associated with AML patient survival. The prognostic genes were identified using 

the LASSO algorithm, which assigns non-zero, positive, or negative coefficients. 

All nine genes had a positive coefficient (Table 4.3). 
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Table 4.3: Nine prognostic genes with positive coefficient value. 

Gene name Coefficient value 

CD109 0.0875676482 

CPNE3 0.0755063783 

CPNE8 0.0585824601 

INPP4B 0.0554178086 

SPINK2 0.0544528326 

PLXNC1 0.0483530691 

LSP1 0.0344057691 

DDIT4 0.0216117829 

SLC40A1 0.0009147425 

 

Kaplan–Meier’s estimates for OS based on patient statuses of each gene with a 

positive coefficient were derived and presented in (Figure 4.2). All prognostic genes 

show that a high gene expression level has a poor survival outcome compared to 

patients with a low gene expression level (Figure 4.2). The estimates, HR and P-

value, of the Cox regression model for the prognostic genes were all significant, 

which confirms the involvement of the alteration in the expression of these genes 

in the survival of AML patients (Table 4.4). Additionally, same significant results 

for K-M and HR were obtained for the validation dataset (GSE37642) (Figure 4.3 

and Table 4.5). 
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Figure 4.2: Kaplan-Meier (K-M) survival curves. Analysis revealed the survival 

prediction associated with high and low gene expression profiles of the prognostic 

genes in AML patients. 

Table 4.4: The estimated hazard ratio of each prognostic gene included in the Cox 

regression for the GSE6891 dataset. 

Prognostic Genes HR P value 

CD109 0.5322 <0.0001 

CPNE3 0.6183 <0.0001 

CPNE8 0.7158 0.0051 

DDIT4 0.616 <0.0001 

INPP4B 0.6572 <0.0001 

LSP1 0.5227 <0.0001 

PLXNC1 0.7184 0.0062 

SLC40A1 0.7875 0.0462 

SPINK2 0.6578 0.0005 
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Figure 4.3: Kaplan-Meier (K-M) survival curves. Analysis on the prognostic genes in the 

validation dataset (GSE37642).
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Table 4.5: The estimated hazard ratio of each prognostic gene included in the Cox 

regression for the independent test dataset (GSE37642). 

Gene Name HR P value 

CPNE3 0.12 < 0.0001 

DDIT4 0.13 < 0.0001 

LSP1 0.10 < 0.0001 

SPINK2 0.15 < 0.0001 

PLXNC1 0.14 < 0.0001 

SLC40A1 0.17 < 0.0001 

CD109 0.13 < 0.0001 

CPNE8 0.13 < 0.0001 

INPP4B 0.04 < 0.0001 

 

4.3.3 Efficiency evaluation of prognostic gene signatures 

The prognostic difference between the high and low gene expression profiles of 

identified prognostic genes in AML patients was also evaluated using ROC curves. 

ROC analysis evaluated the accuracy of the aforementioned nine-genes model for 

survival prediction in AML patients. The ROC curve showed the best performance 

for the area under the curve (AUC) for CD109 of 0.84. This followed by AUC > 

0.81 for CPNE3, CPNE8, PLXNC1, and SPINK2 (Figure 4.4). Genes LSP1, DDIT4, 

and INPP4B were 0.74 ≤ AUC ≤ 0.79, with the lowest AUC of SLC40A1, was 0.69 

(Figure 4.4). 
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Figure 4.4: Receiver operating characteristic (ROC) curves. Evaluating the 

accuracy of high and low gene expression profiles of the nine-genes model in AML 

patients. *AUC = area under curve
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4.3.4 Gene expression patterns between risk categories 

One-way ANOVA was used to evaluate for differences in the mean gene expression 

profile of each prognostic gene identified between the survival groups and risk 

subcategories. This include the difference between the short- (PP and IP) and long-

term survival (GG and IG) (Figure 4.5). ANOVA result confirmed that short- and 

long-term survival for all prognostic genes are statistically different in gene 

expression profiles (p-value ≤ 1.3 × 10−8 ) (Figure 4.5). 
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Figure 4.5: Boxplots based on the survival times of the prognostic genes in 

AML patients. A boxplot was constructed with the gene expression profile of each 

prognostic gene in all the samples that were categorized as short- and long-term 

survival.
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The samples that were categorized into PP, IP, IG, and GG-risk groups, 

respectively, were investigated for each of the nine-genes models that were 

identified with prognostic significance. Each risk group was composed of a set of 

samples in which the gene expression profile of a specific prognostic gene was 

extracted to construct a boxplot (Figure 4.6). The differences in the mean gene 

expression profiles of each prognostic gene identified between PP and IP-risk 

groups, as well as the GG and IG-risk groups. Also, the difference between the two 

intermediate-risk groups was evaluated with the IP and IG-risk groups (Figure 4.6). 

All prognostic genes showed a statistically significant difference between the two 

intermediate-risk groups, i.e. IG and IP-risk (p-value ≤ 5.5 × 10−5). Also, the 

ANOVA results between the risk subcategories showed that the mean gene 

expression profiles of genes CD109, CPNE3, DDIT4, and INPP4B showed no 

statistically significant difference between the PP and IP-risk groups (p-value ≥ 

0.16). The same was found for the IG and GG-risk groups (p-value ≥ 0.54) (Figure 

4.6). 
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Figure 4.6: Boxplots based on risk subcategories of the nine prognostic genes 

in AML patients. A boxplot was constructed with the gene expression profile of 

each prognostic gene in all the samples that were categorized into the Good-Good 

(GG), Intermediate-Good (IG), Intermediate-Poor (IP), and Poor-Poor (PP) risk 

categories. 

 

4.3.5 Enrichment analysis 

The GO enrichment analysis showed that AML DEGs were significantly enriched 

in functional items, such as DNA-binding transcription activator activity, RNA and 

polymerase II-specific and DNA-binding transcription activator activity, and so on 
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of the biological process (BP). In terms of molecular function (MF), AML DEGs 

were significantly enriched in functional items such as negative regulation of 

cytokine production, myeloid cell differentiation, and pattern specification process, 

among other terms (Figure 4.7). In terms of the cellular component (CC), AML 

DEGs were significantly enriched in functional items such as secretory granule 

lumen, cytoplasmic vesicle lumen, and vesicle lumen (Figure 4.7). The KEGG 

analysis indicated significant differences in the transcriptional mis-regulation in the 

cancer pathway, PI3K-Akt signalling pathway, and Rap1 signalling pathway 

(Figure 4.7). 

 

Figure 4.7: AML DEGs were enriched in Gene Ontology and KEGG pathways. 

(A) Molecular function, (B) Biological process, (C) Cellular component, (D) Kyoto 

Encyclopedia of Genes and Genomes. The horizontal axis represents the number of 
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enriched genes, and the vertical axis represents the gene ontology project and 

KEGG pathways, respectively. 

4.4 Discussion 

The risk stratification of AML patients into favorable-, intermediate- and adverse-

risk groups is crucial to determine an effective therapy strategy and medical care. 

However, AML patients continue to feature heterogeneous clinical outcomes, and 

it remains a challenge to assign a suitable consolidation of therapy. Therefore, it is 

vital to investigate new leukemogenesis-related characteristics. This study aimed to 

investigate gene expression profiles in AML patients with long and short survival 

to decipher the heterogeneity in outcomes of intermediate-risk patients and propose 

a genetic signature that accurately predicts survival of intermediate-risk patients. 

The study screened DEGs through the gene expression profiles between short- and 

long-term survival of AML samples. GO terms and KEGG pathways enrichment 

analyses was carried out on a total of 87 DEGs to explore the function of the DEGs. 

GO enrichment analysis illustrated that the DEGs of AML were significantly 

enriched in functional items such as DNA-binding transcription activator activity, 

myeloid cell differentiation, secretory granule lumen, cytoplasmic vesicle lumen, 

and vesicle lumen which was similarly found in studies that focused on predicting 

disease prognosis for AML (Chen et al., 2020, 2021; Kuang et al., 2021). 

Interestingly, the prognostic gene CD109 enriched for all three types of GO terms 

(BP, MF, and CC). Additionally, the CD109 gene was enriched in the functional 

item myeloid cell differentiation, which suggests significant involvement in the 

development of AML disease. 
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The KEGG pathway analysis revealed that AML DEGs were enriched in the 

transcriptional misregulation in cancer, Rap1 signalling pathway, and PI3K-Akt 

signalling pathway. Consistent with previous studies, the aforementioned pathways 

have been reported to have an impact on the pathogenesis and prognosis of AML 

(Martelli et al., 2006; Bertacchini et al., 2015; Yin et al., 2018; Chen et al., 2020). 

The prognostic DDIT4 gene enriched in the PI3K-Akt signalling pathway may play 

a crucial role in the activation of cancer. Therefore, the GO enrichment analysis and 

KEGG pathway enrichment results showed that the identified DEGs may be 

important pathogenic genes of AML, contributing to the occurrence and 

progression of the disease. 

This study identified a nine-genes model as potential prognostic biomarkers and 

therapeutic targets for AML (Table 4.3). Cox regression and Kaplan-Meier analyses 

validated the prognostic biomarkers and illustrated that high gene expression of all 

nine genes has a poor prognosis, whereas a low gene expression is associated with 

a good prognosis in AML. Therefore, both Kaplan-Meier and high AUC values 

confirmed that the nine-genes model has good diagnostic efficacy in predicting 

prognosis for AML. Previous studies supported the findings and reported that the 

higher expression of the genes is associated with poor prognosis in AML (Woolley, 

Dzneladze and Salmena, 2015; Fu et al., 2017; Gasparetto et al., 2019; Lebedev et 

al., 2019; Xue et al., 2019; Cheng et al., 2020; Ding et al., 2021; Zhao, Li and Wu, 

2018). A recent study (Deepak Shyl et al., 2022) revealed the potential of CD109 

as a biomarker with diagnostic capabilities in AML, and this study further aligns 

with this finding, in which CD109 was also found with the highest specificity and 

sensitivity with AUC (Figure 4.4). 
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The difference in mean gene expression profiles of the prognostic genes were 

evaluated with ANOVA to determine if there is a difference in gene expression 

profiles between short- and long-term survival samples. ANOVA confirmed a 

statistically significant difference between the short- and long-term survival in the 

nine-genes model and therefore confirms the prognostic significance of the nine 

prognostic genes identified in this study. The intermediate-risk category was further 

investigated to improve the risk category in which the majority of AML patients are 

classified. It is noteworthy that all nine prognostic biomarkers displayed a 

statistically significant difference between the gene expression profiles in the 

intermediate-good and intermediate-poor risk categories (p-value ≤ 5.5 × 10−5). 

The nine prognostic genes are therefore essential in intermediate-risk group 

classification as AML patients categorized into this risk group could be provided 

with an improved prognosis. 

A crucial finding was made between the gene expression profiles of good-risk 

compared to intermediate good-risk. It was found that the prognostic biomarkers 

CD109, CPNE3, DDIT4, and INPP4B found in this study displayed the same 

pattern of gene expression in both GG and IG-risk categories. Hence, GG and IG-

risk categories gene expression was not significantly different in the four genes (p-

value ≥ 0.54) (Figure 4.6). The same observation was made when comparing the 

gene expression profiles of poor-risk and intermediate poor-risk. The same four 

genes displayed the same pattern of gene expression in both PP and IP-risk 

categories (p-value ≥ 0.16) (Figure 4.6). Therefore, the four genes may enable a 

reclassification of the intermediate-risk category in AML patients into either good- 

or poor-risk based on the gene expression levels of the four genes. Hence, this 
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finding is important as it could predict the outcome of intermediate risk patients as 

it is directly associated with survival. This discovery provides a more 

comprehensive description and understanding of the genetic basis of the 

intermediate-risk group and therefore has the potential to improve AML patients’ 

prognosis and provide more effective treatment strategies. 

4.5 Conclusion 

In this study, we found correlations between risk categories and gene signatures that 

differentiate short- and long-term survival using gene expression profile data from 

an AML GEO dataset. The gene expression profiles of nine prognostic genes, 

including CD109, CPNE3, DDIT4, INPP4B, LSP1, CPNE8, PLXNC1, SLC40A1, 

and SPINK2, showed that high gene expression is associated with poor prognosis. 

Therefore, the nine genes have the prognostic ability and successfully predict the 

prognosis of AML patients. Also, the prognostic biomarkers were able to segregate 

intermediate-risk into poor- and good-risk categories that improve the risk 

classification by adding prognostic significance to the particular risk category. The 

prognostic biomarkers CD109, CPNE3, DDIT4, and INPP4B provided novel 

insights as the gene expression pattern were similar between poor and intermediate-

poor as well as good and intermediate-good. Therefore, these biomarkers provide 

targets that can enhance prognosis and provide a more effective treatment strategy 

for AML patients categorized into the intermediate-risk group. Hence, these 

biomarkers could serve as potential therapeutic targets in adult AML. 
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Chapter 5: Conclusion and future recommendations 

 

5.1 Conclusion  

AML is a heterogeneous disease in various aspects, including the fact that the 

disease affects patients of all ages, adult AML patients have a greater mortality rate 

than pediatric AML patients, and pediatric AML patients have a higher survival 

rate. As a result, AML prognosis is still challenging to predict. Many risk 

classifications that have been established for decades are still frequently updated 

due to an increased understanding of the disease's molecular profile and other 

mechanisms. This research project comprises GEP datasets for AML that are 

publically available from TARGET and accessed through the Xena database portal 

and gene expression omnibus (GEO) for pediatric and adult patients, respectively. 

Recent advancements in pediatric AML have improved survival rates in pediatric 

AML. However, pediatric patients with FLT3-ITD have an unfavorable outcome, 

and FLT3-ITD has been reported as the most prevalent AML mutation (Wu et al., 

2016). Therefore, this study aimed to use DGE analysis to identify gene signatures 

for pediatric AML with FLT3-ITD as a prognostic biomarker. A total of 471 DEGs 

were identified, and downstream analysis revealed 16 genes that could classify and 

segregate between FLT3-ITD and NPM1/CEBPA patient samples with an accuracy 

of 92%. Additionally, high expression of genes FHL1, SPNS3, and MPZL2 was 

associated with poor outcomes in AML FLT3-ITD patients.  
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The incidence of AML increases with age and is thus more prevalent in adults, with 

a lower survival rate in comparison to pediatric. The majority of adult AML patients 

are categorized as intermediate-risk, and reports of variable outcomes for this 

category have been made. The GEP profiles of adult AML patients were 

investigated to find DEGs between long- and short-survival and their ability to 

reclassify the intermediate-risk group. A total of 87 DEGS were found between 

short- and long-survival, and the Cox regression model revealed that only nine 

prognostic genes were linked to short survival, of which four genes, namely 

(CD109, DDIT4, CPNE3, and INPP4B) significantly distinguish between the short- 

and long-survival within the intermediate-risk group as demonstrated by ANOVA. 

This study’s key discovery was that pediatric AML patients with high gene 

expression of FHL1, SPNS3, and MPZL2 were identified as prognostic biomarkers 

and associated with poor outcomes. This was similarly found in genes CD109, 

DDIT4, CPNE3, INPP4B, CPNE8, LSP1, PLXNC1, SLC40A1, and SPINK2 for 

adult AML. The first four prognostic genes were able to reclassify the intermediate-

risk group in adult AML further. Therefore, this study demonstrated that using the 

gene expression profile of AML patients was beneficial for biomarker discovery. 

 

5.2 Clinical importance 

Genomic profiling enhances the understanding of disease progression. In this study, 

the identified prognostic biomarkers have the potential to be applied in clinical 

practices and improve the course of the disease. From the time of diagnosis, a 
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clinician can be guided and able to predict the outcome for administering a more 

effective therapy based on the gene expression level of the identified prognostic 

biomarkers and the possibility of being used as target therapy. Furthermore, the 

discovery of the four genes that enabled a reclassification of adult AML 

intermediate-risk could facilitate the choice of the best therapy option for this 

specific risk group. 

5.3 Future recommendations 

Molecular biomarkers are important for disease diagnosis, prognosis, and outcome 

prediction. The result obtained from this research is highly recommended for 

clinical applications, such as developing prognostic panels that include the three 

prognostic genes for pediatric AML patients, specifically with the FLT3-ITD 

mutation. The same principle can be applied to the nine prognostic genes in adult 

AML. This will contribute to AML patient status monitoring and management, as 

well as the development of therapeutic targets for prognostic genes whose 

expression is linked to the prognosis of AML. The genes with risk reclassification 

properties should further be considered for reclassification of adult AML patients 

categorized as intermediate-risk or incorporated with existing classification 

systems. 
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Supplementary Table 

Supplementary Table 4.1: List of significant DEGs between SS and LS. Up-regulation 

(log2 fold change > 1 and adjusted p-value < 0.01) and down-regulation (log2 fold change 

< -1 and adjusted p-value < 0.01) 

PROBEID SYMBOL adj.P.Val logFC 

203948_s_at MPO 6.66433722721692E-07 -1.72692340999298 

206940_s_at POU4F1 2.99304871047971E-07 -1.62030038280376 

211341_at POU4F1 4.09282639057784E-09 -1.50074305365523 

206622_at TRH 8.08283334949699E-13 -1.44338266419843 

203949_at MPO 1.95633487577802E-06 -1.44279703513265 

228827_at RUNX1T1 2.34940598929572E-08 -1.44068393399573 

205529_s_at RUNX1T1 1.43188160413641E-07 -1.37944834127139 

210755_at HGF 4.61931627940309E-07 -1.37844488835543 

1556395_at NA 1.40712909401244E-08 -1.27328264275696 

205528_s_at RUNX1T1 4.88149475962196E-09 -1.22807447972022 

219890_at CLEC5A 2.18394017821693E-06 -1.21314230417013 

209960_at HGF 6.37438244373354E-07 -1.19307588474501 

204885_s_at MSLN 1.4285543854801E-06 -1.09885463573598 

206871_at ELANE 0.00289341802260763 -1.09007669098783 

210997_at HGF 2.10185979492379E-07 -1.08334261066224 

202760_s_at PALM2AKAP2 3.20749222852502E-06 -1.03662595092478 

206135_at ST18 3.38929160340253E-05 -1.03656585877682 

226694_at PALM2AKAP2 1.87652495899579E-05 -1.01188591826101 

209392_at ENPP2 8.01597460509493E-06 1.01999968557689 

205608_s_at ANGPT1 3.37073197990753E-05 1.02209939714152 

212070_at ADGRG1 2.71179359337343E-09 1.02369614629028 

205237_at FCN1 0.000964305606661832 1.02891401701537 

228708_at RAB27B 1.6645107596387E-06 1.03103241488127 

201110_s_at THBS1 0.000912064539401371 1.03253023834489 

209555_s_at CD36 0.00142336729432303 1.03692773653932 

203523_at LSP1 1.058099465274E-09 1.04078578752424 

228766_at CD36 0.00179909758565153 1.04481849237915 

206471_s_at PLXNC1 3.47107235490379E-11 1.04513420467289 

227856_at FAM241A 4.43984044278956E-07 1.0486654746159 

205453_at HOXB2 3.12126323737221E-06 1.05116104965351 

228372_at TMEM273 2.40792271690105E-06 1.05375659972598 

213056_at FRMD4B 1.51837648810166E-08 1.05925003724532 

202118_s_at CPNE3 6.51205436049427E-11 1.06091498007244 

203741_s_at ADCY7 1.73936867121803E-10 1.07017594808137 

212386_at TCF4 1.95633487577802E-06 1.07400194125269 

211597_s_at HOPX 1.99957085724885E-06 1.07732077565928 
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217853_at TNS3 1.58136813802767E-07 1.08247881453307 

205898_at CX3CR1 0.000802424997408272 1.08294487642028 

205844_at VNN1 5.81081268921827E-05 1.08317054423163 

224596_at SLC44A1 2.20400412506535E-06 1.08563302518562 

208792_s_at CLU 4.1985776275758E-06 1.08637095112643 

205767_at EREG 0.00426328570026295 1.08937130708731 

217800_s_at NDFIP1 2.07429129794218E-07 1.10340104048834 

201669_s_at MARCKS 0.000549944485851676 1.11140092285802 

235046_at INPP4B 1.5632243995606E-07 1.11322417808221 

202890_at MAP7 2.08059065739214E-09 1.11534179028208 

213110_s_at COL4A5 0.000536846674299879 1.11775284448327 

208791_at CLU 7.75291783876769E-06 1.11997003006859 

225512_at ZBTB38 4.34525531513468E-10 1.12388026880831 

210145_at PLA2G4A 5.34531176012095E-10 1.12875711386747 

206494_s_at ITGA2B 3.34364882016399E-08 1.14020163802072 

202887_s_at DDIT4 6.25131153334214E-09 1.14159491900488 

202119_s_at CPNE3 1.31325682609609E-11 1.14602334980558 

1559477_s_at MEIS1 7.0390264882506E-08 1.15178101301953 

227236_at TSPAN2 9.18351435683882E-08 1.17541076621842 

226545_at CD109 1.427419373503E-08 1.2035099909681 

204082_at PBX3 4.21444253796353E-06 1.20649096251638 

215646_s_at VCAN 0.00770273391925119 1.2156232701604 

208029_s_at LAPTM4B 2.17321366540848E-06 1.22899530426182 

223204_at GASK1B 0.000169080411871333 1.25167532851227 

212192_at KCTD12 0.000632539040536299 1.26913166723962 

238778_at MPP7 1.00181902752795E-09 1.27507027869064 

205609_at ANGPT1 8.97389734416107E-06 1.28605125089355 

1554679_a_at LAPTM4B 1.37248941990576E-06 1.2952538339301 

203373_at SOCS2 3.10398572171745E-06 1.30015085913583 

205612_at MMRN1 2.14281709311068E-08 1.33372158044422 

213241_at PLXNC1 4.3539160907754E-12 1.39637739218553 

212314_at SEL1L3 2.00896864576196E-10 1.39639885594187 

1553808_a_at NKX2-3 1.39927546742931E-06 1.40024148342575 

236738_at C3orf80 1.57316988799411E-07 1.40586020285082 

222717_at CAVIN2 6.093405431701E-10 1.42325738753958 

203680_at PRKAR2B 2.32288150005616E-08 1.42460371713351 

203372_s_at SOCS2 2.82759196320902E-06 1.44935848946594 

235521_at HOXA3 8.06457710725795E-08 1.48780858453495 

217963_s_at BEX3 2.17540302441161E-10 1.54509735615073 

204069_at MEIS1 1.77246642396798E-09 1.58822863308414 

217975_at TCEAL9 1.15738767302774E-10 1.59228413982703 

206478_at FAM30A 4.74940257995711E-12 1.73105003266287 

213844_at HOXA5 2.36042250744854E-08 1.76682399643656 

228365_at CPNE8 1.41224811931834E-13 1.77427718942994 
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214039_s_at LAPTM4B 8.20184976721563E-08 1.79418792260646 

228904_at HOXB3 5.28947169890202E-07 1.82206709508076 

201427_s_at SELENOP 4.54091536457947E-06 1.82471579449115 

223044_at SLC40A1 8.08283334949699E-13 1.96820903194534 

213150_at HOXA10 8.08283334949699E-13 2.02113737641849 

214146_s_at PPBP 3.4666938660632E-08 2.03848293040479 

206310_at SPINK2 1.41224811931834E-13 2.18370800351311 
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