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ABSTRACT

Given a finite set X of distinct symbols the symmetric group S* and the alternating

Sroup A* are obtained without further constructions. More interesting groups are

contrived, however, by imposing a certain structure on the 6et X and observing the

subgroups formed by those elements of S* that preserve this structure.

In this thesis we concern ourselves with one such imposition viz. that defining the notion of

a finite projective plane. We look at the different subgroups of S* arising in this manner,

with particular emphasis on the projective linear groups and their action on the projective

plane.

We condude this work with a detailed study of the structure of the projective linear groups

of orders 168 and 5616, respectively. Of particular interest to us are the distinct

conjugacy classes of these groups, and the marner in which they relate to one another,

within each particular group.
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PRDFACE

In Chapter I we present results relevant to the topic of this thesis. Section 1.1 deals with

the concept of group representations and group characters. We also see how the structure

constants of a finite group are evident of the interaction of the group,s distinct conjugacy

classes. The latter becomes a useful tool in our study of the two projective linear groupg

investigated in Chapter 3.

In 1.2 we present results pertaining to projective geometries and their associated groups.

Emphasis is placed on those projective geometries of (projective) dimension two. We show

that the latter comply with the abstract definition of a finite pro.lective plane and look at

the action of the projective linear groups on the projective plane.

Section 1.3 is devoted to the relationships between projective geometries and other areas in

Mathematics.

In Chapter 2 we proceed to construct a number of finite projective planes and show the

ocistence of a bijection between projective planes of the same order.

Chapter 3 concludes this work with a detailed study of the structure of the projective linear

groups PGt(3,2) and PGL(3,3).
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NOTATION

G, a finite group

Z(G), the centre of G

lGl, the order of G

X., group characters
I

K., conjugacy classes

C(K), centralizer of K

F_, I finite field with q elements, g I prime powerq

p, Lt F-representation of G

l, il element of F
*F:= f-{0}

tr , the integers modulo m

v: v(n,q), an n-dimensional vector space over the field F with q elements

Gt(V) = GL(n,q), the general linear troup of non--ringular transformations of

V - V(n,q)

St(V) : Sf,(n,q), the special linear group of V = V(n,q)

PGt(v) : PGL(n,q), the projective general linear group over v = v(n,q)

PsL(v) : PSL(n,q), the projective special linear group over v : v(n,q)

PG(n-l,q), projective geometry of (projective) dimension n-l
,", equivslent to

[x], the equivalence class of x

xt, the orthogonal complement of x

<x>, the subspace generated by x

c.-, structure constants
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A.-, square matrix d*h .rr, as ij-th entry

S, a finite set

card (S), the cardinality of S

f,, a family of subsets of S

( a permutation
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CEAPTER 1

PN^ELIMINARIES

Two distinct areas relevant to the topic of this thesis are dealt with in this chapter, the

first being that of Sroup representations, whilst the second consists of topics from finite

geometries and their associated groups. Results to be referred to in subsequent chapters

are stated, often without proof. At the same time we will present results relevant to our

theme in order to enhance understanding and to identify its relations with other areas in

Mathematics.

1.1 GROIIP REPR^ESENTATIONS

Let G beafinitegroupand {K,,...,K.,} thesetofitsdistinctconjugacyclasses(wesay

n is the class number of G). If F is any field and V is atr mdmensional vector space

over F , then a group homomorphism p:G - GL(V), where GL(V) is the set of all

nonsingular F-linear transformations of V , is called an F-represeutation of G. In this

case m is called the degree of the representation p. If p is injective it is called taithful.

Given a basis B of v , we have that p(g), for alt g € G, has an associated matrix

[f(S)lg, so that the map X, : G. F defined by g + trace ([f(S)lg), is well defined. We

call X, the character of the representation p. Now, if B, is any other basis for V ,

then there exists a nonsingular mxrn matrix p such that p-t[p(c)lur = [p(g)]u, , and

since trace (XAX-) = trace (A) for any square matrix A and nonsingular matrix X , we

have that xr(s) = trace ([r(s)Jg') = trace ([r(s)lg). Hence we have;



1.1.1 lrrnma The character X, of the representation p is independent of the choice of

basis B of V and clearly, if g = hah-I, for g,h,a € G, then Xr(a) _ Xr(C) i.e. X, is

constant valued on the conjugancy dasses K. of G. tr

Now, letFGdenotethesetofallformalsums E^f_*, f*eF and,withafinitenrrmberof
x€G x

exceptions, f_ = 0. with addition and multiplication defined byx

(n-) * (Ef'x): : 
?(f, + f,)x and

(|frx)(Ef'x), : 
!(r,?, t t )*, respectively,

we call FG the group ring of G over F. since F is a field, FG has a natural

F-module structure given by f(,f.x) = |(ff*)x, where f e F. This makes FG into an

F-vector space. Furthermore, the centre of FG, z(FG), has the natural basis

{1,xr, ..., xn}, where x.: = * ? *.x ([11], [20], [26]). Its dimension therefore equals the
I
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dasg arrmfer of G.

Now, if p:G + Gt(V) is an F-representation of G with degree n, theu V can be turned

into a right FG-module by means of the rule

E
x€G

a( fx)::
x *!af,(a[r(x)]), 

where a € v.
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Conversely, if V is a right FG-module with F-dimension n, there exists a corresponding

F-representation p:G t Gt(V) of degree n given by a[p(S)J = &g, where a € V. Thus,

what we have is none other than a bijection between the F-representations of G with

degree n, and the right FG-modules with Fdmension n.

We call two F-representations p, and ,r, of a group G equivalent if they arise from

isomorphic right FG-modules V and Vl, respectively. From the aforementioned

bijection it follows that equivalent representations have the same degree and character.

An F-representation p of G is catled reducible if the right FG-module V from which it
arises has a proper tronzero submodule. An F-representation is called irreducible if its

associated right FG-modr:le V has no proper nonzero submodules (if V itself is

nontrivial).

1.1.2 Propmition ([26]): Every character is a sum of irreducible characters (where the srrm

X+Yof characters X and y isdefinedby (X+VXg):X(e)+y(e), geG). o

The following result, due to Frobenius and also etated without proof, provides a

fundamental relation between the irreducibre characters of a group G.

1.1.3 Proposition ([26]): Let G be a finite group and F a field. Let x and y be

distinct irreducible characters of F-representations of G. Then;

(i) E
xeG

x(x)Y(x-t) = o



4

(ii) If F is algebraically closed and its characteristic does not divide the order of G, then

E_x(x)x(*-t1 = ;C;
xeG

(iii) If F has characteristic 0, then

( lc l)-' E^x(x)x(*-) i, atways a positive integer
xCG

1.1.3 (i) and (ii) are called the orthogonality relations.

In view of the fact that the number of irreducible characters equals the class number

(see[tt]), it is convenient to display the character values of a group G in a table which we

call the character table of G. In particular, if G is a finite group with {Kl, ..., K,,}, the

set of its distinct conjugacy classes, F an algebraically closed field whose characteristic

does not divide the order of G, and Xr, ..., Xn are the irreducible F<haracters of G,

then we write;

K
n

K

x

x

1(,) 1(')

n

I

n n
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uure x.(j) denotes the value of the character X
1

on the conjucacy class K
I

J

The orthogonality properties of the characters may now be translated into row and column

orthogonality of the character table in the followint mantrer:

By 1.1.3 we can wr,t,. 
*?" 

x.(x)x.(x-t1 - m6,r, where . = lGl *U d,, is the

Kronecker deltafunction. Writing /. = lK.l and

.*
1

: (K.)-1, this becomes
I

E z,xJJ1,('*)

K

=mdij (1)
r=l

which expresses the orthogonality of rows of the character table, whilst

I x ('*)x (') 
= 7

m
6 (2)

i=l

expresses the orthogonality of columns of the character table.

when F : c, the field of complex numbers, equations I and 2 become

ll rsr

n

_1./,*,(')&,., = mdij
r=l

and

n

EXi
i=l

xi(J
m

=7 6,,
r

(,)

respectively, where X. : G - C is given by X.(e) = Xlg I and is called the complex

I
conjugate of X

m

n
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If K.,K.and K, aredistinctconjugacyclaseesof afinitegroup G, thenthenrrmberofrJL
solutions (x,y) of xv = z,where x € K., y € K: and z € K, is called the structure

constant cr.7 of G. Thus, if K.K-: = {xy : x € K., y € K-}, then each element of K,
occurs cil/times in K.K.. Thus the structure constants connect the conjugacy classes of

G with respect to product formation. The following formula for computing the structure

constants of a group was established by Burnside ([g]).

1.1.4 Propoaition : Let n be the number of conjugacy classes of the finite group G, and let

K., ..., K- be its distinct conjugacy classes. Let x. be a representative of the elementsln
in K., 1(i jn. Then

I
n

*,*, = ,!r" rrFt'where

lK. | . lK.l
:lJ

x(*.)x(*-)X(*z) 
,

E

x'ril lcl 1( r )

where lK.l, lK.l are the orders of the conjugacy classes K. and K., respectively,r J - i j,
X(*.), x(xr) are the values of the character X on the conjugacy classes K. and K.,

respectivelv, X(') is the value of the character X on the identitX, and I G I is the order

of G.

From [3] we obtain a generalization of this product to that of any finite number of

conjugacy classes viz.



-7 -

l...lK x(* ) ..x(* 1X(x7)

lcl y(r)(m-1 )

Burnside's formula therefore allows us to compute the structure constants of a group G

when the irreducible characters of G are known. Conversely, the character table of a

group G may be determined if its structure constatrts are known (tll]).

The usefulness of representation theory, and in particular that of group characters, in the

study of finite Sroups is well known. A number of results on abstract groups have been

proved through the use ofgroup characters, the best known being that of Buruside which

states that a finite group whose order has at most trvo distinct prime divisors, must be

solvable. Basic references [11], [20], [21] and [26] may be consulted.

1.2 FIMTE GEOMETRIES AND THEIR ASSOCIATED GROUPS

Throughout this section, let V = V(n,q) denote an ndmensional vector space over the

field F with q = pr elements, where p is a prime. In section 1.1 we defined the general

linear Sroup Gt(V) to be the set of all linear automorphisms of V over F. The set of

all linear automorphisms of V of determinant 1 is catled the special linear group St(V).

It is easy to see that the inverse [-t of. a linear automorphism I of V is also a linear

automorphism, and since (det /) (det [-r) = det (Ll-t)= det (1) = 1 the linear

automorphisms have nonzero determinant. If d is the determinant map, then it is clear
*

that 6 maps Gt(V) into F. - F-{0}. Furthermore,

d(v.w) = det(v.w) - det(v).det(w) for all v,lv € Gt(v), so that d is in fact a

K
K IK

E
x

I
m

i
I

I I
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homomorphism of Gt(v) onto the multiplicative group F*. since st(v), by

definition, is the kernel of this map, we have, by the first isomorphism theorem for groups,

that;

1.2.1 Icmma: St(V) is a normal subgroup of Gt(V) and

lct(v):St(v)l = lF*l -q-1.

For each pair of ordered bases {v,, ..., v,,}, {w,, ..., *r} of v there exists a unique linear

automorphism / of V suchthat (v.)=wi, lSiSn andconversely,foreachlinear

automorphism /, {l(v r),...,t(vn)} 
is an ordered basis. Thus the order of Gt(V) is equal

to the number of ordered bases of v. since lv I : q" and the first member of an

ordered basis may be any nonzero element of V it can be chosen in qn-l ways. The

second member, linearly independent on the first, may be chosen in q"{ ways, the third

in q"n' ways, and so on. continuing in this fashion we find that:

1.2.2 L€mma : The orders of Gt(V) and SL(V) 
"r. 

given by :

(i) lcl(v)l - qo(o-r)12 fi(qi-r)
i=l

(ii) lst(v)l : qo(o-L)12 ft (qi-r), from Lemm a 1.2.t
i=2

From Biggs, et al ([7]) we have the following result concerning the centres of GL(V) and

sr(v).
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1.2.3 Lemma : The centre of Gt(V) consiste of the q-l scalar transformations g + ,\g,

(.1 e tr'*), whilst the centre of St(v) consists of those scalar transformations for which

.ln : 1.

If v : v(r,q) is a vector space over a field F, then the equation x = ly, where

x,Y, € V* = V- {0}, .tr € F*, defines an equivalence relatioo oo V*. We shall denote by

[x] the equivalence class of x e v*. The set of equivalence classes

PG(v) : {[*] : x e v*] is called a projective geometry (vector space) of projective

dimension n-1. when necessary, to avoid ambiguity we shall write pG(n-l,q) for

PG(v).

*
Let giv -PG(v) bethenaturalmap x.[x]. Asubset s of pG(v) of theform

*
p(w ), for some (m+t)-dimensional subspace w of v, is called a projective

m--oubspace or a projective geometry of (projective) dimension m. If m = 0, I or 2, S is
called a projective point, a projective line, or a projective plane, respectively.

o

1.2.4 Example : Let V(n,2) be any n-dimensional vector space over the field F = Z

then lvt = zo. since F* has only one element, 1, pG(n-1,2) has 2n-1 points.

1.2.5 Lemma: If V has dimension n ) 2, then;

(i) for x,y € V*, t*l + tyl if and only if {*,y} is linearly independent.

(ii) every two distinct points in pG(n-l, q) lie on a unique line

2'
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Proof: (i) lf [x] f [y], then x # ly, for any I € F*, and {x,y} is linearly independent.

conversely, if {x,y} is linearly independent, then x * }y, for all I € F*, and hence

kl t [vl.

(ii) tet t*l # tyl be points in PG(n-l,q) with x,y € V* representing each. A projective

line L containing both [x] and [v] is of the form rp(w*;, *h.ru w* is a

2{imensional subspace of v containing x and y. By (i) above {*,y} is linearly

independent, so that (x,y) = \[. This proves both the existence and uniqueness of L.

1.2.6 Proposition : The points and lines of pG(2,q) satisfy the following

(i) every pair of distinct points lie on a unique common [ine,

(ii) every pair of distinct lines intersect at a unique commotr point,

(iii) PG(2,q) contains a set of four points with the property that no three of them lie on a

common line

Proof: (i) was proved in 1.2.S (ii)

(ii) If L, and L, are distinct lines in PG(2,q), then there exist 2{imensional vector

spaceg V., i: 1,2, such that L. = {[*]l x e V1]. Since dim(V,0 Vr): 1,

{[*Jl * € Vr n Vr] represents a unique point on L, and Lr.

tr
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(iii) We show that the points of the subspaces generated by the vectors {(1,0,0), (0,1,0),

(0,0,1), (1,1,1)) exhibit the required property. Suppose that the first three vectors in our

set generate subspaces which, as points, lie on a common line. This implies that there is a

2{imensional subspace containing the three vectors. Eowever, our three vectors are

linearly independent, which leads to a contradiction. Since any subset of three vectorg

from our set is linearly independent the same will result when considering all such subsets.

1.2.7 Exanple : Consider PG(2,2) o1o(ample L.2.4. A ldmensional subspace (line) in

PG(2,2) is the image of a 2dmensionar subspace w of v(3,2). [w] in pG(2,2)

contains 3 points, since W contains 4 points, one being the origin. Choosing coord.inates

(*,,*r,*r) for a point x in v and denoting by [*,,xr,*rl the point [x] in pG(2,2) we

obtain;

The subspace W with equation x,*xr**, = 0 gives rise to a line [W] in

PG(2,2) containing the points [r,0,U, [t,t,o] and [0,1,1]. The subspace with equation

*,t*, : 0 gives rise to a line in pG(2,2) containing [1,1,0], [0,0,1] and [1,1,1].

continuing in this fashion we obtain sevetr lines, the other five being {[1,0,0,], [1,1,1J,

[0,1,u], {[0,1,0], [1,1,u, [1,0,u], {[1,0,0,], [1,0,u, [0,0,1]], {[0,1,0J, [0,1,1,], [0,0,1]] and

{[1,0,0], [1,1,0], [o,t,o]]. With the points [1,0,0], [0,1,0], [0,0,1], [1,1,1] satistying the

third property of 1.2.6 we see that PG(2,2) extribits all three of the properties given. tr

1.2.8 Propooition ([27]): (i) For every n ) 0 and every prime power q, the number of

points in PG(n-l,q) is (qo-1)/(q-r). In particular, every projective line has exactly

q*l points.
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(ii) The number of projective lines in PG(2,q) equals the number of points in pG(2,q)

viz. q2+q+1. We say q is the order of pG(2,q). tr

As an example, consider PG(z,z) of.l.2.r. we see that pG(2,2) contains 2z+2tL: T

points, T lines, and each line contains 3 points.

Given I € Gt(v), we define a permutation i of pc(v) by the rute g1x1 = [g(x)], for
*

x € V . This definition is independent of the chosen representative of [x] since, if

[x] =[x'], then x-]x', forsome le F*, and g(x)=g()x,):)g(x,), sothat

[S(*)] - [g(x')]. However, g. i it not taithfr:I, since some nonidentity automorphisms

may well induce the identity on PG(V). In fact, we have:

1.2.9 r,emma ([?]): For g € Gt(v), the induced permutatioo g ir the identity on

PG(V) if and only if g is a scalar transformation. tr

Since we are not concerned with the action of the scalar transformations on pG(V), we

eliminate them by 'collapsing' the general and special linear groups onto their respective

centres. To this effect we obtain;

1.2.10 The projective general linear group PGI(V) and the projective special linear

group PSI(V) are respectively defined as follows;

PGt(v): - (v)
z(cr(v)),

Gt

PSt(v): - sr(v)
z(sr(v)),I
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and their ordera arel

I PGt(v) | = nn(n-r)12 t(qi-r),
i=2

I PSt(v) ; = [gcd(o-l,o)]-,1 Pct(v) l,

where 8cd ( , ) denotes the highest common factor and V has dimension n)2 ([Z]).

E

A group G of permutations is said to be transitive if, given a pair of letters a, b (which

need not be distinct), there is at least one permutation 0 e G which transforms a into b.

G is said to be k-transitive if it contains at least one permutation ( which changes any

ordered set of k distinct objects Lr,t2,..., &k into any other such set br,br, ..., b, (the

.two sets may have elements in common).

From [7] we have;

l.z.tL Propooition : Both PGI(V) and PSI(V) act 2-transitively on the points of

PG(n-l,q). That they are not 3 -transitive on pG(2,q) is clear from 1.2.6. tr

l.z.Lz Propooition : PSt(v) is simple, provided that n ) 2 and (o,q) # (2,2) or (2,3)

A permutation 0 on the points of PG(V) that takes lines to lines in PG(V) is called a

colineation. Thus, the set of colineations of PG(V) is a subgroup of the symmetric group

on PG(V).

n
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If [x] and [y] are distinct points on a line in PG(v), then dim<x,y> - 2. Thus for

each g € Gt(V), dim (g<x,y>) = dim<g(x),e(y)> = 2 and hence [e(*)] and g[y] are

distinct points on a line in PG(v). Thereforc i i, a colineation, where e[*] = [g(x)], for

all xeV.

If v is a vector space over a field F, then a permutation / of v, such that

4*+y) - (x)+(y),

()x1 - o(r[*), where x,y € v, ) e F, and o is a fixed automorphism for each l, is

called a semilinear automorphism of V. It is obvious that if o is the identity

automorphism, then / is linear.

For orample, let v be a vector space over the field F with q - 22. If o is the

automorphism a:.1 . ,\2 and I is a permutation of V with (x+r1 - (x)+(y), and

(,\x) = a(l)(*) - )2(x), where x,y € v, ) € F, then / is a semilinear automorphism of

v.

Each semilinear automorphism / of V induces a permutation I of PG(V) in the same

way iul for linear automorphisms so that I is also a colineation of PG(v).

The group of all colineations of PG(v) is denoted by tt(v). Gt(v) and sl(v) ,r.
subgroups of rl(v) whilst PGt(v) and PSL(v) are quotient groups of rl(v) ([z]).

If lFl = p', then lAut(F)l : r, and [IL(V): Gt(V)] - r.

We earlier defined a projective geometry PG(V) of (projective) dimension two, to be a

projective plane. However, since there exist other structures, not quite the same as a

PG(V), that exhibit the properties of PG(2,q) (ree [16]), we need to give a more general

definition;
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1.2.13 A finite projective plane or geometry is a finite set S, together with a family d of

subsets of S, satisfying:

PPr: Each pair of distinct elements of S belongs to only one set p in f,

PPr: The intersection of each pair of distinct sets in f, is a single element of S

PPo: At least four elements of S have the property that no three of them occur in ai,

single set g of f,.

The analogy with 1.2.6 is clear when we consider the points of PG(2,q) to be the elements

of S with the lines of PG(2,q) being the elements of f.

L.2.14 trlxample Numbering the points of PG(2,2) constructed in example 1.2.7 from I
to 7 we obtain:

s - {1,2,3,4,5,6,7} and

t - 11,2,4), {2,3,5}, {3,4,6}, {4,5,7}, {5,6,U, {6,7,2}, {7,1,3}

Thus far all known projective planes have order a prime power, the most well known

unsolved problem in the study of projective planes being the question on the existence of a

projective plane of order other than a prime power. The only result showing the general

non<xistence of any finite projective plane of given order is the Bruck-Ryser theorem

which states that if q 
= 1 or 2 (mod 4), then there cannot be a projective plane of order q

rrnlsss q catr be expressed as a sum of two integral squares. For a proof, see [16],

pp E7 - 89.
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1.3 RDLATIONSHIPS WITE OTEER AN.E^A.S

A projective plane PG(2,q) may also be described in terms of a (0,l)-matrix A in the

following manner;

Let Pt, ...,P, and L,, ..., L, denote the points and lines of PG(2,q), respectively.

Then the matrix A of zeros and ones will have as its iith entry the number 1 if and only

if P. ison L.. Wecall A theincidencematrixof PG(2,q).ij
1.3.1 Example: From Example 1.2.14, with the given order, we have that:

A=

From [19] we also have:

1.3.2 Proposition : For m ) 3 an m:m (O,l)-matrix A defines a projective plane if and

only if ATA = AAT = kI+J where J is the kxk matrix, all of whose entries are 1.

A balanced incomplete block design (BIBD) ([15]) of type (b,2,r,k,.\) consists of a family

B,, i=1 to b, of subsetsof aset V with y elementssuchthat(i) lB.l =k<y for
1 '' I'

1000101
1100010
0110001
101r000
010r100
0010110
0001011

ili, (ii)

xf y inV.

l{ilxe B.}l =r forall x€V, (iii) l{ilxeB.andye B,}l =.\ forall
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BIBD'o are used in statistics in the design of experiments in which it is not convenient to

test every value of a factor o against every value of a factor p, for varylnt values of a

third factor 7. The block B. is normally considered to be the i-th set of ocperiments

and V is considered to be the set of varieties to be tested. We show that a projective

plane of order q is a BIBD of type (q2+q+t, q2+q+1, q*1, q*1, 1):

Let PG(2,q) be the set of q2+q+1 points of the projective plane of order e, ild let Bi,

for 1 S i S q2+q*1, be the lines of the plane. By 1.2.6 and 1.2.8 each line contains q*l
points and each point occurs on q*l lines. Therefore

(i) lB.l : q+l < qz+q tl for il i,
I

(ii) l{ilx e B.}l : q*l for all x e PG(2,q),
1

(iii) l{il* e B. andy € B.}l = 1 for all x# y e PG(2,q).

A further interesting application of finite geometries lies in its interaction with Abelian

Broups. Every projective geometry PG(n-f ,q), where q = p'(p a prime), can be

represented by an Abelian group G of order pn' and of type (1, ..., 1). This implies that

every abstract theorem pertaining to the geometry PG(n-l, q) may be translated into a

corresponding result relating to the Abelian group G. Conversely, some of the results

concerning the group G may well be translated into results pertaining to PG(n-l,q). A

detailed urrpori of this relation may be found in [S], pages 328 - 344.
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CHAPTDR 2

SOME FIMTE PROJECTTVE PTANES

2.1 INTRODUCTION

In this section we explain the methodology that will be followed for the construction of

some finite projective planes in the subsequent sections.

Let V be a 3dmensional euclidean space over the finite field F. The construction of

finite projective planes is based on the following fact regarding the 2-dimensional

subspaces of V.

. If U and W are 2{imensional subspaces of V,

then U:W or dim(U0W)=1.

For each x € V-{0}, let [x]^ : = {to] I u € x^}, where xt is the orthogonal complement

of x in V. [x]' is a line in PG(V). Now, for distinct [*], [y] e pC(V), we have that

x'=y'' + [x] =[y] -acontradiction. Sowemusthave dim(xrny')=1; hence [x]r

intersects [y]' io the point {lrl I , € xr n yr}.

Thus, if we consider the set PG(V) together with the lines l - {[*]' I x e V-{0}},

then

(.)

(b)

Foreachdistinct pair [x], tV] € PG(V), [*], [y] e [r]', where <z> i = (x,y)r.

From the above we have that either [*]' : [y]' or [x]r intersects [y]r in a

unique point.

The elements [1,0,0], [0,1,0], [0,0,1] and [1,1,1] cannot lie in any one element of

t.

(.)
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Thus, the pair (PG(V), f,) is a projective plane.

In the sequel we will use this method to construct finite projective planes associated with

sets PG(2,3), PG(2,4), PG(2,5) and PG(2,8). The chapter is concluded by providing an

algorithm to construct an isomorphism between planes which are obtained by renumbering

the elements of PG(V).

2.2 A PROJECTTyE PTANE FOR PG(2,3)

Let V(3,3) be a vector space over the field F = U3 with addition and multiplication

defined by

2

2

0

T

T0

0

I
2

+

0

I
2

I
2

0

0

I
2

and

012
0

z

I

0

0

0

0

1

z

rCIpectively.
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*
Choosing representatives for the equivalence classes of V we obtaiu;

[1,0,0], [0,1,0], [1,1,0], [1,2,0,], [0,0,1], [1,0,1], [1,0,2], [0,1,u, [0,1,2], [1,1,1], [1,1,2],

[1,2,U, and [t,z,z].

Numbering the equivalence classes from 1 to 13 and determining the orthogonal

complement of each, we havel

i [*]. [*].^l1

1

2

3

4

5

6

7

8

9

10

11

t2

13

Il,o,o]

[o,r,o]

It,r,o]

[1,2,01

[0,0,1]

[1,0,1]

Ir,o,z]

[0,1,u

[0,1,2]

Ir, t, r]

[1,1,2]

[1,2,u

lL,2,2l

{2,5,9,9}

{1,5,6,7}

{4,b,12,19}

{3,5,10,11}

{1,2,3,4}

{2,2,11,13}

t2,6,10,12)

{1,9,11,12}

{1,8,10,la}

{4,7,9,10}

{4,6,9,1u

{3,7,9,12}

{3,6,9,13}

With the third a:riom of 1.2.13 satisfied by the set {1,2,5,10}, it is easily verified that we

have a projective plane of order 3.
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2.3 A PBOJECTTVE PTANE FOR PG(2,4)

Let F be the field F : {0, 1, x, y}, where y : x+1, with addition and multiplication

defined by

0+

0

I

x

v

1xy

0lxy

v

0

1

0

v

x

1

x

v

x

1

0

and

0 1xy

000
1

x

v

0

0

0

0

0

1

x

v

x

v

1

v

I

x

respectively.

*
In this case V has 63 elements and, since F has 3 nonzero scalars, we have 21

equivalence classes. Again choosing representatives for the distinct classes, numbering

them from 1 to 21, and determining their orthogonal complements we obtain:



I [*]
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[*]
I

I

I

2

3

4

5

6

7

8

I
10

11

t2

13

L4

t5

16

L7

18

19

20

2t

Il,o,o]

[0,1,0]

[0,0,u

[1,1,0]

Ir,o,t]

[0,1,u

[1,1,1]

[x,1,0]

It,x,o]

[x,0,1]

It,o,x]

[x,1,1]

[x,1,x,]

It,t,x+t]

[x,x+1,1]

[x,l,x*1]

[1,x,1]

[1,1,x]

[x*1,1,1]

[0,1,x]

[0,1,x*1]

{2,9,6,20,2L}

{1,3,b,10,11}

{1,2,4,9,9}

{3,4,7,14,1E}

{2,b,2,13,12}

{1,6,7,12,19}

{4,5,6,15,16}

{3,9,15,17,19}

{3,8,12,13,16}

{2,11,16,18,19}

{2,10,12,14,15}

{6,9,11,13,14}

{b,9,12,18,21}

{4,11,12,17,20}

{7,8,11,15,2u

{7,9,10,16,20}

{5,8,14,19,20}

{4,10,13,19,21}

{6,9,10,17,18}

{1,14,16,12,21}

{1,13,15,18,20}

With {1,2,3,7} satisfying PP, of l.z.Lg we again have a projective plane, this time of

order 4.

I
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2.4 A PROJECTT\IE PrANE FOR Pc(2,5)

Let F be the field F = zr with addition and multiplication defined by

+ 01234

4

0

r
2

3

g

4

0

r
2

T

3

T

0

r

r
2

r
4

0

0

r
z

5

4

0

r
z

3

4

and

01234

0

4

5

1

r

0

3

r
4

T

0

2

4

r
3

0

r
2

5

4

0

0

0

0

0

0

r
u

5

4

respectively

Numbering the 31 equivalence classes of V
*

and determining their orthogonal



complements, we obtain:
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t.1
I

I

2

3

4

5

6

7

8

I
10

11

t2

13

L4

15

16

t7

t8

19

20

2L

22

[1,0,0]

[0,1,0]

[0,0,u

[1,0,1]

[1,1,0]

[1,1,1]

[2,1,0]

[2,0,1]

[3,1,0]

[3,1,u

[o,z,r]

[1,2,1]

[1,3,1]

[1,1,2]

1t,t,3]

[3,0,1]

[4,0,1]

[1,4,0]

[0,4,1]

[r,4,1]

[1,1,4]

[0,1,u

{2,9,11,19,22,241

{1,3,4,9,16,17}

{1,2,5,7,9,19}

{2,Lr,21,25,2r,29}

{3,18,20,26 ,2T,lL]r

{ 1o,13,ls,lz,1g,lg}

{a,2,1a,23,25,2g}

{2,8,1b,28,26,90}

{a,g,1o,l2,2g,go}

{6,9,16,19,2s,2a}

{1,11,12,1b,2b,81}

{g,ll,14,1z,zo,2g],

{6,7,17,24,30,J1}

{12,16,19,21,23,24I

{6,8,11,19,29,29}

{2,10,14,16,29,31}

{2,4,6,L2,13,20}

{3,5,6,14,15,21}

{1,6,10,22,29,27}

{i,12,1r,22,26,29}

{4,14,t9,22,25,271

{L,Lg,zo,2l,29,3o}

I
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[*],'I

23

24

25

26

27

28

29

30

31

[2,1,1]

[0,3,1]

[2,1,3]

[2,3,1]

[4,1,1]

U,2,41

[3,4,u

[1,2,3]

12,3,41

{7,8,12,14,19,27}

{1,13,14,24,26,29}

{4,7,10,11,21,261

{b,8,10,20,24,25}

{4,5,19,23,2a,at}

{4,9,L5,24,27,291

{7,15,16,20 ,22,29}

{8,9,18,21,22,9L}

{b,l1,13,16,22,30}

Here the set {1,2,3,6} satisfies PP, of 1.2.13 and we have a projective plane of order b.

2.5 A PROJECTIyE PTANE FOR PG(2,?)

Let F be the field F = Zz with addition and multiplication defined by

+ 012,3456'

0

I
2

?t
r,

4

b

6'

0

T

2

5

4

4

D

6'

0

r
2

5

5

4

5

6'

0

I
-2

2

5

4

5

6

0

I

I
2

5

4

b

6'

0

0

1

2

5

4

b

6

0

T

2

3

4

5

6

56'

I
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and

0T25456

00000
456

Following the same procedure as in the preceding sections, we obtain:

i [*], [*].'r - -i

3

6'

2

b

I
4

2

4

6

T

5

b

0

I
2

5

4

b

6

0

0

0

0

0

0

0

0

I
2

3

4

b

6

1

5

2

6'

3

E
b

4

5

1,

T

5

I
6

4

2

respectively

1

2

3

4

5

6

7

8

9

[1,0,0]

[0,1,0]

[1,1,0]

[0,1,1]

[o,o,l]

[1,0,1]

It,t,t]

It,z,t]

Ir,z,o]

{2,4,i,49,s0,s 1,b2,bB}

{1,5,6,44,45,46,47,491

{5, 18, 19,23,36,40,42,55}

{ 1,14,20,34,37,40,53,57}

{1,2,3,9,10,12,12,19}

{2,18,21,26,29,94,41,491

{16,19,24,28, g3,3E,4E,Ea }

llg,l7,2z,zr,g2,4o,4g,5zl

{b, 16, 1z,2s,3z,Bg,4g,b6}
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[*]
J.

II

10

l1

t2

r3

t4

15

16

t7

18

19

20

2t

22

23

24

25

26

27

28

29

30

31

32

33

34

[2,1,0]

[3,1,U

[3,1,0]

[4,1,1]

Io,s,a]

[1,2,3]

[5,1,u

[5,1,0]

[6,1,u

[6,1,0]

[2,3,4]

[2,3,5]

[2,3,6]

[3,4,5]

[3,5,6]

[4,5,6]

[5,3,2]

[6,3,2]

[6,5,3]

[4,2,3]

It,t,z]

Ir,t,a]

[1,1,4]

[1,1,5]

1t,t,6]

{b, I 1, 12,20,21,22,98,54}

{lo, 13,21,91,36,39,46,b3}

{b,lo,l4,z4,z7,2g,gs,4ll

{8, 1 1, 1z,28,29,go,4b,ba}

{4,L2,25,29,29,31,40,44}

{ 1b,12,34,9s,96,89,44,b1 }

{7,9,27,42,43,44,53,54}

{5,8,9, 13, 1 5,26,28,5r},

{9,6,22,25,26,9s,89,sb}

{3,5,7,30,31,32,33,34}

{4,10,32,39,43,45,55,57}

{6, 10, 1 1,29,34,42,52,561

{8, 10, 18,22,33,37,44,50}

{3, 13, 29,37,39,42,47,49}

{7,12,24,26, 36, 3 7, 45, 52 }

{9,14, 18,30,88,46,b2,s6}

{6,lT,Lg,z4. 3 1,49, s4,Ez}

{8,12,16,2r, 94,46,49,bs }

{7,14,17,2L, 28,47, 50,55 }

{6, 12, 19, 14,29,83,48,b1}

{ 18, 19,2s,34,41,4s,s0,s4}

{ 1 1, 14,19,26,a2,89,44,49}

{8, 19,2o,a1,ls,4l,4T,szl

{7,19,22,29, 46,5 1,56,57}

{4,6, 15, 19, 21,27,30,371

I
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I [*] kl.ÎI

35

36

37

38

39

40

4t

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

[2,1,1] { 12, lr, 1 g,Bz,4L,4T,sl,i6l,

{8, 1 1, 1s,24,40,48,46,b0}

{4,9,22,23,24,34,39,47}

{ 7, 1 0, 1 5,20,23,25,49,491

{9, 1 l,g1,gz,41,4g,El,b5}

{4,4,9,14,36,49,s4,s6}

{ 12,30,95,89,42,49,s0,b2}

13,L6,21,21,41,44,52,5r \

{6,9, 16,20,29,32,36,50}

{ 2, 14, I 5, 1 6,22,3L,42,451

{2,13,20,24, 30, 44, 55, 56 }

{2,LL,25,27, 33,36,47,57}

{2,23,29,32, 35, 3 7, 46, 54 }

{2,6,2,9,a9,89,40,41}

{1,29,26,2r, g 1,39,so,E6 }

{1,22,28,90, 86,4 1, 49,49 }

{ 1, 1E,29,JB,Bg,s2,b4,EE}

{1,E,21,24,25,92,42,5L1

{1,4,2,11,13,16,19,3s}

{ 10, 16,26,30,40,47,51,54}

{3,18,20,22,2E,a9,4s,b1}

{9,21,2b,8a,a8,40,4b,49}

{4,17,20,26,33,41,42,461

[J,4,U

[4,5,2]

[3,1,3]

[5,1,5]

[6,1,6]

[1,4,1]

[6,1,4]

[5,1,2]

[1,0,2]

[1,0,3]

[1,0,4]

It,o,s]

It,0,6]

[0,1,2]

[0,1,3]

[0,r,4]

[0,1,5]

[0,1,6]

[6,2,3]

[6,1,5]

[4,5,1]

It,z,s]

Here the set {1,2,5,7} satisfies PP
3

of 1.2.13 and we have a projective plane of order 7
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2.6 A PROJECTIyE PTANE FOR Pc(2,8)

where y _ x2,

x, : x*1, xc : *2+*, y 4: x2+x+1, ys : *2+1, with addition and multiplication defined

by,

+ 0 x vvvvv1
2 3 4 5
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v

v

v
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v
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v
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v
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0

4

vvvI0 vv
63

v

v

v
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v
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v

0

0

0

0

0
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v
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Again we fiud the orthogonal complements of the 73 equivalence classes to obtain:

I

5

I

I



-31 -

i t*l [*]
I

II

I
,

3

4

5

6

7

8

I

[1,0,0]

[1,1,0]

[1,1,1]

[0,1,1]

[0,0,1]

[1,0,1]

[0,1,0]

[x,x2,o]

[x,x+1,0]

[x,x2+x,0]

[x,x2+x+1,0]

[x,x2+1,0]

[x,x2,x+1]

[x,x2,x2+x]

[x,x2,x2+x+])

[x,x2,x2+1]

[x,x2,1]

[x,x*1,1]

[x,x2+x,1]

[x,x2+x+1,1]

[x,xz+1,1]

[o,x,x2]

[0,x,xt1]

[o,x,x2+x]

{4,5,7,22,23,24,25,26,27 |
{ 2,9,s,89,4 0,41,42,49,441

{2,4,6,14,19,59, 63,67,69 }

{ 1,8,4,94,98,a6,a2,98,4b}

{1,2,2,8,9,10,11,12,23}

{3,6,7,46,47,49,49,50,5 1 }

{ 1,5,6,28,29,30,31,32,33}

{5,48,s1,68,69,20, 21, 22,71],

{s,12,21,98,50,64,6s,66,62}

{s,l 1,20,32,49,60,61,62,63}

{b, 10, 19,36,48,s6,82,s8,s9}

{8,9, I 8,94, 4r,iz,5l,54,is],

{1s,18,22,32,36,39,b0,61,23}

{9,14,21,26,31,s8,86,60,28}

{ l 
g,2b, go,3 8,44,49,s4,b9, zB }

{20,24,29,}b,43,48,s3, 67,T l}

{ 19,28,28,3 4,42,46,61,66, zg }

{3, 1 3, 12, I 8,24,28,58,62,7 l}

{11,LT,25,28, a6,4o,s l,Es,6z}

{ lo, 16,26,28,a2,44,s0,b3,69}

{9,14,27,28,43,45, 49,57, 65}

{L,2r,44,46, b2,b6, 62,6 r,7 z}

{L,17,26,43,47,59, 6 1,66, 7 I }

{ 1, 16, 18,2s,42,48,60,6s,20}

10

11

t2

r3

14

15

16

t7

18

19

20

2t

22

23

24
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i I*I [*]
J.

1I

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

4L

42

43

44

45

46

47

48

49

[o,x,xz+x+1]

[0,x,x2+1]

[0,x,1]

[x,0,x2]

[x,0,x*1]

[x,0,x2+x]

[x,0,x2+x+1]

[x,0,x2+1]

k,o,U

[x,x*1,x*1]

k,x2,x2]

[x,x2+x,x2+L]

[x,x2+x+1,x2+x+1]

[x,x2+1,x2+l]

[x,x,x2]

[x,x,x*1]

[x,x,x2+x]

[x,x,x2+x+l]

[x,x,x2+1]

[x,x,1]

[x,1,1]

[x,x2,x]

[x,x+1,x]

[x,x2+x,x]

[x,x2+x+1,x]

{ 1,1b, 19,24,41,49,s8,64,69}

{l,l4,zo,z3,40,bo, E4,bg, 6E}

lL,lJ,zt,2z, a g, b 1,sg, bz, 6g )

{ z, 1 z, l g, 19,20,21,39,44,4s}

{ z, 16,32,88,49,bb,bg,6 g,rz],

{ z, lb, 81,32,42,s4,57,6r,7 L}

{7, 14,30,36,41,53,62,66,70}

{7, 13,29,34,40,56,61,65,69}

{2,28,9b,39,52,s9,60,64,69}

{4,12,17,92,42,49,s9,56, 6g}

{4, 16, 33,40,47,57,62,64,7 3}

{4, 1 1, 13, 19,3 1,43,50,52,7 0}

{4, 1o,20,Bo,gg,46,Es,6s,zl}

{4,9,15,29,44,51,59,60,66}

{z,ll,z7,l3, Bz,4g, bb,66, 6g}

{2,19,26,32, 3b,b 1,s4,62, 6s }

12,25,11,45,46,s8,sg, 6 1, 64)

{2,1r,24,10, 94, bo, s z, 6 0,7 z}

{2,16,zl,zl, 29, g6,49,s 2,T lI
{2,L5,20,22. 28,38, 42,56, zo }

{4,8,2 1,29, 41,49,54,6L,7 2}

{6,lr,zz,gT,4 1,s2,s g,6s, zB }

{6, 12,28,3b,44,bb,b2,61, zo}

{6, 1 1, 16,24,89,4b,b4,b6,66}

i6, ro, 15,2 1,2s,g4,4g,62,6g)
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kII kl J.

I

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

7t

72

73

[x,x2+1,x]

[x,1,x]

[x,x+1,x2]

[x,x+1,x2+x]

[x,x+1,x2+x+1]

[x,x+1,x2+1]

[x,x2+x,x+1]

[x,x2+x,x2+x+l]

[*,*'+x,x'+1]

[x,x2+x,x2]

[x,x2+x+1,x2]

[x,x2+x+1,x*1]

[x,x2+x+1,xz+x]

[x,x2+x+1,x2+1]

[x,x2+1,x2]

[x,xz+l,x+1]

[x,x2+1,x21x]

[x,x2+1,x2+x+1]

[x,1,x2]

[x,1,x*1]

[x,1,x2+x]

[x,1,x2+x+l]

[x,1,x2+l]

[x,1,0]

{6,9, I 8,20, 26,96,42,64,7 2}

{6,8, 1 g,2z,aE,4o,sB,60,?1 }

{r2,22,99,96,48,46, 54,60,69 }

{lz,L6,2o,2T,gL,g4,4L,b r,sg}

{ 12,15,26,30,40,45,49,52,63}

{l2,L4,lg,zb,2g,3z,3g, 47,72}

{11,14,22,12,94,44,49,64, z 1 }

{Lt,zl,2T,go,ss,42,4T,5g,6 g }

{ I 1, 18,26,29,a9,41,46,s2,69}

{3,1 l, lb,2a,gB,bg,bg,6 5,72}

{10,14,24,93,99,42,s 1,52,6 U

{ 10,13,2g,3 2,41,45,47 ,60,62}

{ 10,18,22,91,3s,40,49, 66,121

{s,Lo,l7,2T, 29,b4, 69,6 4,T o}

{9,2s,33,3s,41,b0,b6,63,2U

{9,2L,24,12. gz,4o, 46,s9, zo }

{9, 12,23,81,a8,99,49,62,69}

{3,9,16, 19,22,30,6 1,62,69}

{8,26,33,94,39,49,s8,6 T,T oI

{3,8,20,2b, 92,52,5r,66}

{8,24,3 1,86,44,47,61,6b,69}

{8,18,23,30,92,43,s1,b6,64}

{9,22,29,42, 4s,bo, bb,s g, 62 }

{b,8,13,14,1s,16,12,35,46}
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With the set {1,3,5,7} satisfying PP of 1.2.13 we have a projective plane of order 8
3

2.7 ISOMORPEIC PROJECTIVE PLANES

A permutation 0 on PG(V) is an isomorphism from (PG(V),/) to (pG(V),L') if
0Qet',forallteL

It is easily seen that a renumbering of the equivalence classes will in each case result in a

different projective plane. This renumbering would necessarily define a bijection which

preserves the orthogonality relation between vectors, i.e. if 0 is the bijection, then

x.y : 0 implies (x).0(y) = 0. In concluding this chapter we provide a general

procedure, which depends solely on the manipulation of the associated incidence matrices,

to establish the required biiction between two projective planes of the same order.

An (r,s)-interchange operation on an nxn incidence matrix A is the operation which

interchanges tows r and s of A to obtain A', followed by the interchange of columns r

and s of A' to obtain A". The sequence of operation on the rows and columns in this

definition is immaterial since:

if E(r,s) is the matrix obtained from the nxn identity matrix by interchangrng

rows r and s, then A' - E(r,s).A (effecting the row operation on A), and

A" = A'.E(r,s) (effecting the column operation on A,). Eence A,, - [E(r,s).A].E(r,s).

But, since matrix multiplication is associative, we have that A" = E(r,s).[A.E(r,s)] i.e.

the column operation may be executed before the row operation.
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2.6.1 Eyrmple

Let A=
|ilil

Executing the (2,3)-interchange operation we obtain:

A' = 
lil il, 

arter row operation on A,

and A" = [| I ;.|, after column operation on A,

[roo]

A' = 
|| : il, 

arter column operation on A,

and A" : 
[: ; il, 

arter row operation on A'.

On the other hand, reversing the order of operations we obtain:

Two incidence matrices are said to be equivalent if one can be obtained from the other by a

sequetrce of (r,s)-interchanges, for a finite sequence of r and s values.
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2.6.2 Algorithm: For any projective geometry (S,f) (as defined in 1.2.13) such that

card (S) = card (f,) there exists an incidence matrix I(S,[).

Without loss of generality, assume that S - {1,2,3,...,n}.

Define the bijection f:S.f, recrusively as follows:

consistently apply the rule that;

if s is in f(r), then r must be in f(s).

Step 1:

tet f(1) be an arbitrary element of f,

and let I(S,fXk,l) = I(S,lXl,k)

=1,if ke f(l)

= 0, otherwise (where I(Sl)(i,i) denotes the ij-th entry of I(Sl)).

Step 2:

For each k e f(1) select f(k) such that

(i) I € f(k)

(ii) (k) + f(k,) if k + k,

(iii) if I(S,rXk,s) = l, then s must be in f(k)

(ir) if I(S,l)(s,k) = 1, then k must be in f(s).

Now fill in row and column k of I(S,f) as prescribed in step 1.

Step 3:

For each s € f(k), where k e f(1), proceed as in step 2.

E
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2.6.3 Dxa,mple:

Let [,r= {(1,2,4), (2,3,5), (3,4,0), (4,s,?), (8,0,11, (0,7,2), (2,1,9)} and suppose

f(1) = (2,3,5).

Then, by Step 1, above,

I_

with the remaining entries still to be ascertained in steps 2 and 3.

Nowif k = 2,3, or b, then f(k) - (1,2,4), (8,6,1), or (Z,B,l). Choosing f(2) _ (b,6,1)

we have, by the definition of f above, that f(s) = (t,z,l). Therefore f(g) = (2,3,1).

Thus

0

1

1

0

1

0

0

110100

10100
00110

I_

I

0

0

0

I

1

0

0

I

1

0

1

0

0

10001
aa

bb

0

0

0

1

a
I

I

b
I

c
I

I

0

0

0

2 3

00

2N

23cc
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Since f(5) - (L,2,4) it follows that f(a) must contain S. Therefore f(4) : (2,8,b),

(4,5,7), or (5,6,1). But f( ) + (2,3,5) - f(1) and f(a) + (s,O,t) = f(2). Hence

f(4) = (4,5,7), so that o, = 1, b, = ", 
: 0, and c, = a, = 1. Furthermore,

f(2) : (5,6,f) + f(6) must contain 2. Therefore f(6) = (L,2,4), (Z,B,E), or (6,2,2)

However, f(5) : (1,2,4) and f(l) : (2,3,5), so that f(6) : (0,7,2). Thus

b =C =[ =1.223

Finally, since f(7) must contain 3 and 6 we have that f(7) : (3,4,0), so that

I:

0110100
1000110

010001
001101

0

1

0

0

I

1

0

0

0

1

0

1

0

0

I

1

1

0

1

0

I

0

0

tr

2.6.4 Algorithm: Let P, and P2 beprojectiveplanesonthesets Sr and S, of thesame

order q. If the associatedincidencematrices areequivdent, then P, and P, are

isomorphic.
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Let (s,,r,), (sr,rr),..., (s*,tr) be the interchanges required to establish the equivalence

between the incidence matrices I and I and P respectively. Executethe
t 2'

ofP
2

permutations (s,,r,), (sr,rr),..., (r.,rr) on the ordered set {1,2,3,...,n}, n 2 e, to obtain

{P,,Pr,...,Pn}.

For example, if the interchanges were (2,3), (b,3) and (4,2), then the permutations otr

the ordered set {1,2,3,4,b,6} will sequentially be:

{1,2,8,4,s,6} 
(2,3J 

{r,t,r,n,s,6} 
(5 ,3 ) {1,3,s,4,2,6} 

( n,r} 
{1,4,s,8,2,6}.

Define now the map 0: s, - s,, (i) = pr. In the above example , will be the

permutation (2,4,3,5). It is easily seen that d is a bijection between the points and lines

ofP andP.l2
tr

2.6.5 Example: For the numbering

1: - (1,0,0), 2, - (0,1,0),

g; = (1,1,0), 4: = (0,0,1),

5: - (1,0,1), 6, - (0,1,1),

7: = (1,1,1), i.e. for

Lr- {(1,2,3), (1,4,5), (1,6,7), (2,4,6), (3,4,7), (2,5,7), (3,5,6)}, we have the

incidence matrix
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0

I

I

0

0

0

1

I

0

1

0

1

101010
1100
1001

0111000
01010
10001

0

0

0

0

0

I

1

0

0

1

0

0

1

I

0

0

0

1

0

1

0

I

0

J=

Executing the intercha,nges (4,5), (b,6) and (3,6) on I we obtain:

00 after the (4,5) interchange,

1

1

0

0

1

1

I

1

0

1

0

1

0

0

0

0

0

I

0

0

1

0

1

0

1

I

1

0

0

0
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1

I

1

0

1

0

0

1

0

0

0

0

I

0

0

1

I

0

0

1

I

1

0

0

0

0111000
01100
10001

010
01

0101010
01100
11001
r0000

101
11

after the (5,6) interchange,

= J, after the (3,6)

interchange.

1

0

and

0

1

0

0

0

0

0

I

0

0

1

1

0

0

I

0

1

0

1

0 10

Sequentially executing the permutations (4,8)-, (b,6)- and (3,6)- on the ordered set

{ 1,2,3,4,s,6,2} we obtain:

{1,2,g,4,b,6,11 
(4,uJ 

{r,r,r,u,4,6,7} 
( 5 ,6J 

{1,2,g,8,6,4,2} 
( 3 ,6} {r,r,n,u,6,8,?}.

Hence the required bijection will be the permutation (9,4,b,6). In executing this

permutation 0 - (3,4,5,6) on t,, we obtain:
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(2,4,6) = (2,5,3)

(1,4,5) : (1,5,6)

q3,4,7): (4,5,7)

0(1,2,3): (1,2,4)

0(2,5,7) = (2,6,7)

0(1,6,7): (1,3,7)

d(3,5,6) = (4,6,3)

i.e. 0: t_t t . Similarly, for p-r= (6,5,4,J) we have 0-r : [,.t t, . Eence 0 is an2 I ' -l 
2

isomorphism between the two proftctive planes P, and P, represented by the incidence

matrices I and J, repectively.

tr
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CEAPTER 3

TWO PROJECTME GENERAT TINEAR GROIIPS

In this chapter we calculate the structural constatrts of the centrer of the group rings

PGt(3,2) and PGt(3,3). This information is part of a collection required for an

investigation into the grou5theoretic nature and implications of the structural constants.

Secondly, no text on group rings explicitly provided this information, although the centre

rellects many of the intrinsic group theoretic properties of the groups themselves. This is

a major consideration in the works of Arad et al on simple troups (see [r], [2], [g], [4]).

The work therefore complements the oristing tocts for the aforementioned purpose.

If F is a field, G a finite Broup, and {x,, ..., *r} a basis for the centre of the group ring,

Z(FG), as a vectorspace over F, then t equals the class number and each x. is

completely described by the conjugacy classes of G. Furthermore, Bince the product maps

Z(FG) . Z(Fc), y -, x.y

are F-linear maps, there orists a txt matrix A such that

1x.yl = A,[rl

where [v] denotes the cotrdinate vector of v with respect to the ordered basis

{x,, ..', xr} found on page 2. The entries of the matrices A., which are called the

fx

I
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structural constants ofthe troup, are solely dependent on the properties ofthe group and

there exists a well established formula, using the characters of the group, to determine

them.

In this chapter all the necessary detail required to establish these matrix entries are

provided, and the entries are calculated for the groups PGt(3,2) and PGt(3,8) (the first

two groups within the family PGI(V) which conforms to the construction methods).

Due to the large orders of these groups computer algorithms were used to determine some

of this information.

3.1 PGt(3,2)

Let V be a 3dmensional vector space over the field F = Zz. In chapter one (see

example L.2.7) we constructed the projective plane PG(2,2) consisting of the finite set

S : {1,2,9,4,5,6,2}, with the family

L -l{t,2,4}, {2,3,5}, {3,4,6}, {4,5,7}, {5,6,U, {6,7,2}, {?,1,3}l of subsets of S. Since F

has no automorphisms other than the identity, we have [ft(V) : Gt(V)] - t. Therefore

the general linear group Ct(V) contains all the colineations of PG(2,2). Furthermore,

since the identity is the only nonzero scalar in F, we have

I z(ct(v) | = 1, so that lct(v) | = IPGL(V) I

i.e. Gt(v) - PGt(v). In this case the projective general linear troup pct(v)

therefore contains all colineations of the plane PG(2,2).

By r.2.10 IPGL(v)1 - 23(3-r)/'f, (rt-r)
. i:l

= 168
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Moreover, since gcd(g-l,n) = gcd(1,3) = 1, we have, by 1.2.10, that

I PSt(v) | = lPct(v) | i.e. PGI(V) = pst(v). Thus, by t.2.12 pcL(V) is simple.

PGt(v) is 2-transitive on PG(2,2), by 1.2.11. That it is not s-transitive is readily seen

from the lines of PG(2,2). For example, there is no colineation that can take the subset

(line) {2,3,5} to {2,3,?}. This also follows readily from the definition of the finite
projective plane. For suppose that G, the group of permissible permutations on a

projectivegeometry (s,l) is3-transitiveand tet issuchthat {a,b,c}gt If df c,

then there exists a o eG such that

(o(a),a(b),a(c)) = (a,b,d)

But then there exists an /' e f such that {a,b,d} q e and hence llntl 22, violating

PP of 1.2.13
2

In determining the conjugacy classes of PGL(V) we obtain six distinct classes. The order,

together with a representative of each class, ie presented below:

I Class Class Respresentative Class order

K identity

(2,4x5,6)

(2,7,6x4,3,5)

(2,3,4,7x5,6)

(1,2,3,4,b,6,2)

(L,r,6,b,4,1,2)

1

2t

56

42

24

24

K

K

K

K

K

1.

2.

3.

4.

5.

6.

2

3

4

6

5
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From Arad, et al ([a]) we obtain the character table of pGt(v):

I

Class

lc(r) I

xl
x2

x3

x
x

r23456
K KKKK K

2

l1

3 4

-1

6

16883477

I

a

u

-lx4

1111
101

-1 01
200

3

3

6

7

8

1

u

u

-1
0

I0-1 0

0

1
0

where c(I) is the centrali zer of.the class numbered I and u = -l+ rl 7 i
2

Before proceeding to determine the structure constants of PGL(8,2), consider the

following argument;

Let G be a finite Sroup with Kr, ..., Kn its distinct conjugacy classes. For a fixed

I e K 
O 

say, there are n2 structure constants c..O since we have n choices for i and n

choices for j. This must be done for each of the n conjugacy classes, so that we have a

total of n2.n = n3 structure constants. Of course, not all of the structure constatrts are

distinct, particularly since multiplication of conjugacy classes is commutative

i'e' ciil: clif

I
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Hence, by the above argument, PGL(3,2), consisting of 6 distinct conjugacy classes, will
have a total of 63 : 216 structure constants. We will use Burnside,s formula (l.l. ) to
calculate the constants. For example.

lK l.lK
4

4tlt2 lP L(3
x(Kn )x(K, )xTTlc

4rlt2

2) I 1( 1)
3 I

x

where I K4l , I K3l are the orders of the conjugacy classes nrrmfsr.6 4 and 3 respectively,

x(Ko), x(Kr) are the values of the character x on the classes Ko and Kr, respectively,

7qT is the complor conjugate of the value of x on Kr, and x(1) i, the value of x
on the identity i.e. on K

Eence we obtain;

42.56
-Td 8-

[r . r . r
[-

.0.0+ 2

-T-

3

+1.0.(-l) + I . 0. (-1 )
3 3

+

+0.(-1 ).0
8

=16:c i.e. each element of K occurg 16 times in K K243,4t2'

c
24.42
-TE 8-

[r . r . rl_
[1

u 0 +a 1 0 + (-1 ) .o.o
T T 6

I+ +5r4r3

+1.0.(-1 )

8

=6= c
4r 5r 3'

etc
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Finally, we present the structure constants of PGL(3,2) in matrix form, as follows ;

the matrix A..l will have as its ij-th entry, the structure constant .r;l;

A ijl

For example, the entry in the third row and fourth column of the above matrix is the

structure constant ar,n,, *Hah is of course equal to an,r,r, ata.

100000
021 0 0 0 0
0 056 0 0 0
0 0 042 0 0
0 0 0 0 024
0 0 0 024 0

010000
148800
0 81616 8 8
0 816 2 8 80088E0
008808

2
A

001000.l
0366331
I 61912 9 el
o 61212 6 6l
0 3 9 6 3 3lo3e633l

4
8
4
8
0

From A ijr we see that the conjugacy classes Kr, Kr, K, and Ko il contain their own

inverses, whilst Ku consists of the inverses of K .
6

ij

A
ij3

00010
04814
0 81616 8
I 11616 4
04840
04848

4rJ
A
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A
ij5

A
ij0

3.2 PGt(3,3)

In 2.1 we constructed a projective plane of order 3, consisting of the set

S - {1,2,3,4,s,6,7,8,9,10,11,12,13} and the family of subsets f, _ Uz,S,g,g}, {1,b,6,2},

{4,5,12,13}, {3,5,10,11}, {1,2,3,4}, {2,7,11,13}, {2,6,10,12}, {1,g,11,12}, {1,g,10,13},

{4,7,9,10}, {4,6,g,1U, {3,7,g,12}, {3,6,9,13}l over the field F : zs.

since the identity is the only field automorphism on z, = {O,T,T} we again have that

[It(V) : Gt(V)] - t i.e. the general linear group Gt(V) is the group of all colineations

of PG(2,3). By r.2.2 the order of GL(V) is

I crv(a,s); - 3r(r-r)/, fr 13r-1) - Bi(e-rXs2-1X83- r) = tt 2tz
i=l

and, since the field Z, contains two nonzero scalars, the order of the projective general

linear group, PGL(V), is;

0
0
0
0
1

0
0 7t4 I
7701

0001
0770
721L4 7
7L4 7t4

7
7
0
1

9

[o o o o o lt
I o o T 7 T ol
I 0 721L4 7 7llozr+ zol4l
I o z z o e 1l
Ir o 214 I tl
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lPGt(3,3)l = 3s(r-r)/' fr 13r-r1
i=2

- 33(32-1)(st-1)

= 5616

: lGtv(3,3) I l2

Again we find that the projective general linear group is the srme as the projective special

linear group, PSL(3,8), since lpst(8,3)l - [gcd(2,9)]-,lpGt(8,3)l

_ 1. I PGr(3,3) | .

Hence, by L.2.12 PGt(3,3) is simple. It is 2-transitive by 1.2.11. That it is not

3-transitive is evident. For example, no colineation can take the line {2,8,8,g} to

{2,s,10,11}.

PGL(3,3) has 12 distinct conjugacy classes and a representative ofeach class, together

with the order of each class are grven below:



I
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

K

K

K

K

K

K

Class
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Class Representative

identity

(6,7x8,9X10,11X 12,13)

(2,9,9x3,10,11x4,13,12)

(1,11, 13x2,8,9x3,4,6)(7,10,12)

(2,5x8,9x3,7,4,6X10,1 1,13, l2)

(9,9x 1,7,6)(3,13, 10,4,1 1,12)

(2, g, g,EXa,Lz,lg,T,4,L1, lo,6)

(2,s,g,gxg,6,lo,1 1,4,2, 19,12)

( 1,s,2,6,g, 1o,l 1,19,3,2,9,L2,4)

( 1,s,8, I l, 1 2,ll,Lo,g rr,z,6,g,4)

(L,4,12,9,7,a, 18, I l, 10, g,6,2,b 
)

(1,4,9,6,2 rT, J, lo, 13, 12, 1 1,g,s)

Class order

1

Lt7

104

624

702

936

702

702

432

432

432

432

2

3

4

5

0

7
K

K

K

K

K

K

E

I

l0

ll

t2
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The character table of PGI(B,B) is given below:

I

Class

I c(r) I

xl
x2

x3

x{

x
6

x
6

x
7

x
E

x
I

x
x
x

l0

It

KKl2
5616 48

1234567891011t2
KKKKKKKKK K

4 5 ll t2

549868813131313
3 0 7 E9t0

I

12

13

16

16

16

16

26

26

26

27

39

1

3

4

-2

-2

-2

-2

-1

-1

-1

0

.3

I

0

1

I

I

I

I

-1

-1

-1
0

0

1

0

-1
0

0

0

0

0

n

a

-1
1

I

-l
0

u
I

1

-1

0

u
2

1

-1

0

u
3

u
2

u
I

u
4

0

I

4

I

0

1

0

0

0

0

2

0

0

1

1

0

0

0

0

0

I

I

0 1

1

0
l,

-r) 1

0

0

0

0

0

a

a

-l

0

0

0

0

2

-2

-2
3

u
4

u

uu
3 4

uu

1

3

2

u

u

u

u

I

I

1

1 I

2 3

00
000

1

0

1

0

I

0

0

1

0

0

1

0

0

0

0

1

0
12

where C(I) is the centralizer of. the class numbered I, ur= a+at+ae, ur= ar+au+ou,

,3= on+al0+c12, ,q= or+ot+ot,, a - ezill B, 1): p+pt, and, p = erdla.

PGt(3,3) has 123 = 1728 structure constants. In conclud.ing this chapter we again use

Burnside's formula (1.1.4) to calculate the constants and present them in matrix form as

before i.e. the matrix A.-, shall have as its ij-th entry the structure constant .rjl.
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A

I

0

0

0

0

0

0

0

0

0

0

0

00
rt7 0

0 104

00
00
00
00
00
00
00
00
00

000
000
000

62400
07020
00936
000
000
000
000
000
000

0

0

0

0

0

0

0

702

0

0

0

0

0

0

0

0

0

0

0

4320

432

702

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

432

ijl =

00
00

432

0

0

0

0

0

0

0

0

0

Again the structure constants given in A.., above show that the conjugacy classes

K,, Kr,Kr, Kn,Ku and Ku ilcontaintheirowninverses,whilst K, consistsofthe

inverses of Kr, K, of the inverses of K,,, and Kro of the inverses of Krr.
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1

t2

16

16

24

48

0

0

0

0

0

0

0

I

0

0

0

0

0

0

0

0

0

0

0

16

0

0

0

40

24

24

0

0

0

0

0

16

0

48

48

128

96

96

48

48

4E

48

0

24

0

48

102

96

L20

t20

48

48

48

48

100
000
13 36 27

36 48 r08

27 108 108

27 108 135

05454
05454
05454
05454
05454
05454
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00
480
40 24

128 96

96 120

192 L20

L20 102

120 48

48 48

48 4E

48 48

48 48

000
000
2400
96 48 48

120 48 48

t20 48 48

48 48 48

t02 48 48

48 48 48

48 48 4E

48 48 48

48 48 48

0

0

0

0

0

0

0

0

0

ij2 =

48

48

48

48

48

48

48

48

48

48

48

48

48

48

48

48

48

48

0

0

0
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54
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0
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54
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0

54

54
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0

0

1

0

0

0

0

0

0

0

0

0

3
A ij

0
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0

0

0

45

27

27

0

0

0

0

0

45

27

108

135
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108

108

54

54

54

54

0

27

0

54

54

108

135

108

54

54

54

54

54

000
2700
000
54 54 54

54 54 54

108 54 54

108 54 54

135 54 54

54 54 54

54 54 54

54054
54 54 0
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0

0
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I
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0

0

0

0
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0

4
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0

I
I

24
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I
I
I
9

0
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72
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0
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I
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0
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0

I
I
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0

I
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80

72

ttz
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48

48

48

48

1

t7
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72

116
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56

56

56
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0

16

20

tt2
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120

L20

72

72

72

72

0
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8
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56

56

56

56

45

54

72

54

54

27

54

27

27

A

0

4

0

8

t7
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8

8

8

8

0

0

4

16

r6
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8

8

8

8

8

8

0

I
8
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56

72

56

56

32

32

32

32

0

8

8
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56

72

56

56

32

32

32

32

0

0

0

0

I

0

0

0

0

0

0

0

00
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72 48
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56 32

56 32

0

8
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32
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0

0

0

0

0

I

0

0

0

0

0

0

0

6

5

16

t2

24

15

15

6

6

6

6

0

5

3

t2

15

2L

L2

t2

6

6

6

6

0

16

t2

72

84

92

78

78

48

48

48

48

0

L2

15

84

72

L23
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90

54

54

54

54

1

24

2t

92

t23

L7L

120

t20

66

66

66

66

000
15156
L2t26
78 7E 48

90 90 54

t20 L20 66

72 99 54

99 72 54

54 54 36

54 54 36

54 54 36

54 54 36

6

6

48

54

66

54

54

36

36

36

36

0

6

6

4E

54

66

54

54

36

36

36

36

00
6

6

ij6 :

ij7

A

A

0

0

4
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20
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8

L7

8

8

E

8

0

4

0

8
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8

8

E

8

0
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8
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0

20
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t32
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1
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16
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132
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56

0

t7
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56
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56

0

8

8
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56

72
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56
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0

8
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56
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0
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48

56
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32
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0

0

0

0

0

0

I

0

0

0

0

0

0

8

8
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56
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32

32
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A

0

0

4

16

20

20

L7

8

8

8

8

8

0

4

0

8

8

16

20
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8

8

8

8

0

20

16

104

120

160

96

132

72

72
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72

0

t7

20

96
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56
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1

8

16

72

89
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0

8

8
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72
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56
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0

8

8
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56

72
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56
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32

32

32

0

8

8

48

56

72

56

56

32

32

32

32

ijE :

00
16 20

88
64 72

72 80

104 120

96 89

72 89

48 56

48 56

48 56

48 56

0

0

0

0

0

0

0

I

0

0

0

0

0

8

8

48

56

72

56

56

32

32

32

32

A

0

0

0

13

13

13

13

13

13

13

13

13

0

0

0

13

13

t3

13

13

0

13

13

13

0

13

13

65

78

104

78

78

78

39

39

39

0

13

13

78

91

tt7

91

91

52

52

52

52

0

13

13

104

117

143

It7

LL7

78

78

78

78

0

13

13

78

91

LL7

9l

91

52

52

52

52

0

13

13

78

91

tt7

91

91

52

52

52

52

1

13

0

78

52

78

52

52

13

40

13

40

0

13

13

39

52

78

52

52

40

13

40

40

0

13

13

39

52

78

52

52

13

40

67

13

0

13

13

39

52

78

52

52

40

40

13

40
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0

0

0

0

0

0

0

0

I

0

0

0
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A

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

13

13

13

13

13

13

13

13

13

0

0

0

13

13

13

13

l3

13

0

13-

13

0

13

13

65

78

104

78

78

39

78

39

39

0

13

l3

78

9l

tt7

91

91

52

52

52

52

0

l3

13

104

tt7

143

tt7

Lt7

78

78

78

78

0

13

13

78

91

117

91

9l

52

52

52

52

0

13

13

78

91

L17

91

91

52

52

52

52

0

13

13

39

52

78

52

52

40

40

40

13

1

13

0

78

52

78

52

52

40

13

40

13

0

13

13

39

52

78

52

52

40

40

13

40

0

l3

l3

39

52

78

52

52

l3

13

40

67

ijro:
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0

0
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13

13

13

13

13

13

13
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0

0

0
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13

13
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l3
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0
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0
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78
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78
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39

39
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39

0
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13
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91

tt7
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52

52
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52

0
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78
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0
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13

78
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52

52
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0

13

13

39

52
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52

52
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13

40

0

13

13

39

52
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52

52

13

40
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0

78

52

78

52

52

13

40

13
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0

13

13

39

52

78

52

52

40

40

40

13
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0

0

0

0

0

0

0

0

0

0

I

0
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0
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0
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