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Abstract

Epoch of Reionization (EoR) refers to the time in the history of the universe when the appearance

of the first luminous sources reionized the intergalactic medium (IGM). The EoR carries a

wealth of information regarding structure formation and evolution. Ongoing and planned

21cm experiments such as the Hydrogen Epoch of Reionization Array (HERA) and the Square

Kilometre Array (SKA) are expected to generate huge amounts of high dimensional datasets,

and hence a new generation of efficient simulations and tools are required in order to maximize

their scientific return. While Convolutional neural networks (CNNs) achieve the state-of-

the-art performance to extract information from large scale fields, generating large training

datasets and fully exploring the cosmological and astrophysical parameter space require fast

simulations. Semi-numerical simulations are the leading candidates to evolve reionization due

to their simplicity and efficiency but they are too slow to enable field level inference. In this

thesis, we assess the viability of several generative models and techniques to accelerate a semi-

numerical model of reionization, SimFast21. In particular, we focus on generating the ionization

fields (highly non-linear fields) directly from the initial density fields (highly smoothed fields)

without using the ionizing sources locations, and hence emulating the radiative transfer process

on cosmological scales. We show that a probabilistic (denoising) U-Net outperforms other

deterministic approaches using either a standard autoencoder or a basic U-Net, and achieve

high accuracy with a factor of 1,000 faster than the target simulation. This work represents a

step forward towards efficiently generating large scale ionization maps, and hence maximizing

the scientific return of future reionization surveys.
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1

1 Introduction

Studying the history and evolution of the Universe on large scale has been the core focus of

Cosmology. The Big Bang Theory is the currently accepted model that explains the origin

and evolution of the Universe (e.g. Spergel et al., 2003; Komatsu et al., 2011b; Popolo and

Le Delliou, 2016). The flat Lambda Cold Dark Matter (ΛCDM), which is the parameterization

of the Big Bang model, proposes a combination of dark matter (∼ 25%), dark energy (∼70%),

and a small fraction of baryonic matter (e.g. Spergel et al., 2003; Năstase, 2019; Turner, 2021).

Several observations support the model including the expansion of the Universe (Hubble, 1929;

Pierre and Pain, 2012; Gron, 2018); the abundance of light elements (H, He, Li; e.g. Fields,

Molaro, and Sarkar, 2014; Coc, Uzan, and Vangioni, 2014); the Cosmic Microwave Background

(CMB, Penzias and Wilson, 1965; Komatsu et al., 2011a; Ade et al., 2015), and the formation of

galaxies and large-scale structures (Blumenthal et al., 1984; Coil, 2013; De Zotti et al., 2019).

Figure 1.1: History of the Universe: The image shows the Universe’s timeline,
from the Big Bang until the present-day Universe. Credit: European Southern
Observatory (2016).

Current data indicates that the Universe formed about formed 13.8 billion years ago. The Big

Bang model suggests that it originated from an infinitely dense and hot ball that inflated and

expanded; thus, the Universe’s evolution started immediately after the Big Bang. After this

explosion, the Universe was extremely hot. As it continued to expand, it cooled down, allowing

http://etd.uwc.ac.za/



Chapter 1. Introduction 2

for recombination. The recombination era happened when the protons and electrons combined

to form neutral atoms. Recombination led to the Dark Ages, a period where there were no

sources of light. The first sources of light formed during the cosmic dawn and they ionized

the intergalactic medium (IGM). The reionization process of the IGM is called the Epoch of

Reionization (EoR), the time in the history of the Universe that is explored in this thesis. As

the Universe continued to evolve, galaxies, galaxies clusters, and other astrophysical objects

observed in the Universe today formed. Figure 1.1 shows the evolution of the Universe, from

the Big Bang to the present Universe.

The history of the Universe has two major phase transitions of hydrogen; emission of the

CMB and reionization. Based on previous studies, we currently have a good understanding

of the CMB. However, reionization remains poorly constrained. CMB, which is the radiation

that remained after matter decoupled in the early Universe, gives insight into the idea that the

large-scale structure that we observe in the present Universe was a result of small-amplitude

density fluctuations (Bennett et al., 1996; Bernardis et al., 2000; Barkana and Loeb, 2001).

As the Universe expands, dense regions gravitationally collapsed to form galaxies and clusters.

Throughout cosmic time, The Universe originated from a simple state of matter that can be

simply described with linear physics and evolved to a more complex and highly non-linear state.

Therefore, studying the earliest stages of the Universe, including the EoR, provides a deeper

insight on the present-day Universe.

In Astro2010 (National Research Council, 2010) and Astro2020 (Savin et al., 2019; National

Academies of Sciences, Engineering, and Medicine (2021)), the National Science Foundation

(NSF) decadal committee recommended that studying the early galaxies, stars, and blackholes

be a priority. The recommendation made studying EoR one of the leading topics in Astrophysics

and Cosmology. There are several key fundamental questions regarding the nature of EoR we

want to answer. These include but are not limited to: When did reionization begin and end

(EoR timing)? Which sources contributed most to reionization (nature of sources)? What are

the size and distribution of the ionized bubbles (EoR morphology)?

http://etd.uwc.ac.za/



Chapter 1. Introduction 3

1.1 Reionizing the Intergalactic medium
When the first luminous objects appeared/formed, they emitted ultraviolet radiation. This

process lead to the IGM being ionized. IGM refers to matter such as dust and hot hydrogen

gas that exists between galaxies. Reionizing the IGM happens in three distinctive steps/stages

(Gnedin, 2000; Ferrara and Pandolfi, 2014). The initial stage, referred to as the “pre-overlap"

phase, happens when the individual ionizing sources turn on and ionize their surroundings. The

IGM becomes a 2-phased medium, where one region that is highly ionized is separated from

the neutral region by ionization fronts. The second stage, which is termed the “overlap", phase

happens rapidly. This is when the neighboring HII regions begin to overlap. It is during this

stage that the low-density IGM becomes highly ionized. Some of the neutral gas remains in

highly dense structures. The final stage is the “post-overlap" stage. The highly dense regions

from the neutral overlapping stage are gradually ionized as galaxy formation continues.

1.2 Constraints on reionization
Constraining the EoR is a challenge in Astrophysics and Cosmology. There are several obser-

vational constraints on reionization. For example, CMB surveys are targeting the early Universe

and they are used as an indirect probe to reionization while high redshift quasars are used to

probe the late Universe and can help to constrain the end of reionization. In this section, we

discuss several observational constraints on reionization such as the Gunn-Peterson (GP) optical

depth (Gunn and Peterson, 1965; Giallongo et al., 1994; Becker et al., 2001), HI fraction (e.g.

McGreer, Mesinger, and D’Odorico, 2015; Mason et al., 2019), temperature, and polarisation

anisotropies from the CMB (e.g. Bennett et al., 2012; Planck Collaboration et al., 2018), kinetic

Sunyaev-Zel’dovich effect (kSZ, Zeldovich and Sunyaev, 1969; Sunyaev and Zeldovich, 1980),

and the 21cm signal (e.g. Greig et al., 2021; Tiwari et al., 2021).

Most of the spectroscopic observations of high redshift quasars suggest that reionization was

complete at a redshift of about 6 (e.g. Fan et al., 2006), with some studies questioning the

validity of this conclusion (e.g. Mesinger, 2010). The Ly𝛼 absorption in the spectra of high-

redshift quasars caused by the neutral hydrogen gives rise to the Gunn-Peterson trough, and this

provides a marker to the end of reionization (e.g. Bégin, Liu, and Gorce, 2021). In Fan et al.

(2006), a sample of about 19 quasars from the Sloan Digital Sky Survey (SDSS) that were at a
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redshift range of 5.74 < 𝑧 < 6.42 was used to trace the IGM properties in order to constrain the

EoR. They used the evolution of the Gunn-Peterson (GP) optical depth as one of their methods

to study the properties of the IGM. Figure 1.2 shows the evolution of the optical depth (y-axis)

as a function of redshift (x-axis) using combined measurements from the Lyman alpha (Ly𝛼),

beta (𝛽), and gamma (𝛾) results. They found that the evolution of the ionized state of the IGM

accelerated at z>5.7, and the GP optical depth changes from 𝜏
𝑒 𝑓 𝑓

𝐺𝑃
∼ (1 + 𝑧)4.3 to (1 + 𝑧)>∼11.

Figure 1.2: Evolution of the optical depth as a function of redshift. Credit: Fan
et al. (2006).

Results from McGreer, Mesinger, and Fan (2011), who studied model-independent constraints

on the HI fraction at redshifts of 𝑧 ∼ 5 − 6 are shown in Figure 1.3. The first work studies

13 spectra of high redshift quasars from the Keck Echellette Spectrograph and Imager (ESI)

to place direct upper limits on the HI fraction at the mentioned redshifts. They have used the

statistics of covering a fraction of dark pixels in the Ly𝛼 and Ly𝛽 forest of these high redshifts

quasars. They placed the stringiest constraints on the neutral hydrogen fraction of 𝑥𝐻𝐼 ≤ 0.5 at

z=7.1. With the subsequent work (McGreer, Mesinger, and D’Odorico, 2015), a sample of 22

quasars was used to study IGM properties, and they found that the IGM becomes highly ionized
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as the first stars and galaxies formed and that reionization was almost complete at z∼ 6. The

significant amount of neutral hydrogen found at z=5.5 suggests reionization may have been a

more extended process.

Figure 1.3: Evolution of HI as a function of redshift. Credit: McGreer,
Mesinger, and D’Odorico (2015).

The Cosmic Microwave Background gives us information on the history of reionization through

three processes, kSZ effect, polarisation anisotropies, and temperature anisotropies. These best

constraints from CMB surveys come from the Wilkinson Microwave Anisotropy Probe (WMAP)

and Planck Satellite. Both surveys provide the timing and nature of reionization using CMB

data. These surveys use temperature and polarisation anisotropies to infer the optical depth.

This is the optical depth of free electrons to the CMB, and the presence of free electrons increases

scattering with CMB photons, affecting intensity and polarization anisotropies. WMAP had

several data releases over the years (eg. (WMAP1, Bennett et al., 2003); WMAP third-year data

release (WMAP3, Hinshaw et al., 2006; Spergel et al., 2007), WMAP fifth-year data release

(WMAP5, Komatsu et al., 2008), WMAP seven-year data release (WMAP7, Komatsu et al.,

2010), and WMAP nine-year data release (WMAP9, Bennett et al., 2012). With more follow-up

and refinement, the optical depth has changed from the initial measurements of 𝜏 = 0.17± 0.04

to the more recent value of 𝜏 = 0.089 ± 0.014. This high value indicated that reionization

happened earlier in the history of the Universe and most of the hydrogen in the Universe was

ionized by 550 million years after Big Bang. This work concluded that the first galaxies might
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have not been sources responsible for ionization and that quasars might have played a larger

role in ionizing the IGM.

Figure 1.4: Optical depth comparison among different studies using WMAP
and Planck data.

The Planck collaboration reported a lower value of the optical depth than WMAP. The mea-

surements from Planck Collaboration are consistent with the WMAP measurements. The

optical depth measurements from the Plank collaboration were published in several papers

(Planck Collaboration et al., 2013; Planck Collaboration et al., 2015; Planck Collaboration et

al. (2018)). With more follow-up and improvement in their analysis, the optical depth changed

from 𝜏 = 0.089 ± 0.03 to 𝜏 = 0.054 ± 0.007. The low value of 𝜏 indicated that reionization

happened later. They also concluded that reionization was a quick process that lasted a few

million years and it was driven by the earliest galaxies. Figure 1.4 shows the optical depth

comparison from different data releases over the years for WMAP and Planck Collaboration.

The decrease in the error bars for individual measurements shows that in both studies, there was

an improvement in the data, their analysis method, and the instrumentation.

Another probe that can be used to constrain reionization is kSZ from CMB observations. This
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probe is sensitive to reionization as it arises from interactions of CMB photons with energetic

free electrons produced during EoR (Mesinger, McQuinn, and Spergel, 2011; Park et al., 2013;

Battaglia et al., 2013; Choudhury, Mukherjee, and Paul, 2020).

Figure 1.5: Constraining reionization using the 2-point function, four-point
function, and the Planck primary CMB constraints on 𝜏, yields tighter
constraints on 𝜏 and Δ𝑧. Credit: Alvarez et al. (2020).

EoR represents a strong contaminant to the CMB-derived cosmological constraints. This is

due to the degeneracy between the Thompson scattering optical depth, 𝜏, and the amplitude

of scalar perturbations, 𝐴𝑠. To mitigate this degeneracy, Alvarez et al. (2020) have used the

kSZ effect. The kSZ power spectrum (PS) has a strong dependency on physical reionization

parameters, the optical depth (𝜏), and the duration of reionization (Δ𝑧). Using the kSZ two-point

function, reconstructed four-point function, and the Planck primary CMB constraints on 𝜏, the

degeneracy between 𝜏 and Δ𝑧 can be broken.

In Figure 1.5, the two-point function, shown in pink, weakly constrains the optical depth

(𝜏) but tightly constrains the duration of reionization (Δ𝑧). However, the reconstructed four-

point function, shown in blue, weakly constrains the duration of reionization (Δ𝑧) but tightly

constrains the optical depth (𝜏). Both 𝜏 and Δ𝑧 are tightly constrained when all the probes are
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combined; the black oval shows this. The tight constraints on both 𝜏 and Δ𝑧 are 𝜎(𝜏) = 0.003

and 𝜎(Δ𝑧) = 0.25, respectively.

Figure 1.6: The 21cm hyperfine line transition of HI. Credit: Siegel (2022)

Strong constraints are expected to come from the 21cm experiments. The 21cm line from neutral

hydrogen (HI) can probe the distribution of neutral hydrogen in the Universe and is, therefore,

a great way to probe the EoR (Furlanetto, Oh, and Briggs, 2006). This line corresponds to

the spin-flip transition of the neutral hydrogen hyperfine line split at the ground level, due to

the magnetic dipole. When the spins of the electron and proton are flipped (facing opposite

directions), the hydrogen atom is in a slightly lower energy state than when they are aligned.

The low energy corresponds to a wavelength of 21cm and the transition is highly forbidden.

Figure 1.6 shows the hyperfine line transition of HI.

The observable of this 21cm line is its brightness temperature and this is given by the equation

below adapted from Furlanetto, 2006.

𝛿𝑇𝑏 =∼ 27𝑥𝐻𝐼 (1 + 𝛿𝑚)
(
𝑇𝑠 − 𝑇𝛾
𝑇𝑠

) (
1 + 𝑧
10

0.15
Ω𝑚ℎ

2

)2 (
Ω𝑏ℎ

2

0.023

)
[mK], (1.1)
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Chapter 1. Introduction 9

where 𝛿 is the matter density contrast, 𝑥𝐻𝐼 is the HI fraction, Ω𝑚 and Ω𝑏 are the matter and

baryon densities in the units of critical densities, ℎ is the Hubble constant and 𝑇𝑠 is the spin

temperature. The 21cm PS can be related to the brightness temperature and it is given by the

following equation from Villaescusa-Navarro et al. (2018).

𝑃21(𝑘, `) = 𝑇2
𝑏

[
(𝑏𝐻𝐼 + 𝑓 `2)2 + 𝑃𝑚 (𝑘) + 𝑃𝑆𝑁

]
. (1.2)

Figure 1.7: Reionization history as a function of redshift. Credit: Bégin, Liu,
and Gorce (2021).

In Equation 1.2, 𝑇𝑏 is the mean brightness temperature, 𝑏𝐻𝐼 is the HI bias, f is the linear growth

rate, ` = 𝑘𝑧/𝑘 where 𝑘𝑧 is the projection of k along the line of sight, 𝑃𝑚 is the linear matter PS,

and 𝑃𝑆𝑁 is the HI shot noise.

History of reionization can be constrained using either the 21cm cosmological signal or the kSZ

effect. Combining the 21cm global signal and the kSZ effect gives more precise measurements

to constrain the history of reionization than when these probes are used individually (Bégin,

Liu, and Gorce, 2021). The two probes complement each other since the 21cm signal is

more sensitive to rapidly evolving ionization histories, and the kSZ is sensitive to extended

reionization histories. Figure 1.7 shows the ionization history as a function of redshift when
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these probes are used together. The true model was compiled using a Bayesian approach,

assuming the model is given by an asymmetric model fit by Tanh parametrization.

Given the importance of the 21cm to probe reionization, in the following section we will review

some of the 21cm experiments.

1.3 Experiments targeting the 21cm signal
There are several experiments targeting the 21cm cosmological signal. Here we discuss some of

the leading facilities and their contribution to EoR studies. These experiments include the Giant

Metrewave Radio Telescope (GMRT, Swarup et al., 1996; Paciga et al., 2013); the Murchison

Widefield Array (MWA; Tingay et al., 2013; Bowman et al., 2013); LOw-Frequency Array

(LOFAR; Haarlem et al., 2013); Hydrogen Epoch of Reionization Array (HERA, DeBoer et al.,

2017), and the Square Kilometre Array (SKA; Mellema et al., 2013; Koopmans et al., 2015)

Figure 1.8: Several GMRT parabolic dishes. Credit: National Center for Radio
Astrophysics-Tata Institute of Fundamental Research (NCRA-TIFR) (1999).

GMRT is a radio telescope with 30 parabolic dishes that are 45 metres in diameter. This

telescope is situated in Khodad village, near Pune in India. Only 12 of the 30 dishes serve as

the central array while the remaining 18 are placed along three 14km long arms. Figure 1.8

shows several of the GMRT dishes. It observes six frequency bands, namely 38, 153, 233, 327,

611, and 1420 MHz. The primary goal of this telescope is to search for the redshifted 21cm

line from HI primordial clouds. Recently, they have developed a way to improve the sensitivity
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and resolution of this telescope. The new proposed project, the Expanded Giant Metrewave

Radio Telescope (EGMRT; Patra et al., 2019), plans to add 30 new antennas that are at a short

distance of about 2.5km from the array centre to the existing 30 dishes of the GMRT, with 26

more at long distances (∼ 5 − 25𝑘𝑚 from the array centre). The 2𝜎 upper limits from GMRT

were published in Paciga et al. (2013), at (248 𝑚K)2 for 𝑘 = 0.50ℎMpc−1 and 𝑧 ≈ 8.6.

Figure 1.9: The Murchison Widefield Array. Credit: Murchison Widefield
Array (MWA) (2009)

MWA is a radio interferometer at Western Australia’s Murchison Radio-astronomy Observatory

(MRO), which began operations in 2013. The location of MWA is ideal for the science

it performs; the area has low levels of human-made radio frequency interference (RFI). A

scientific goal of this radio telescope is to search for the redshifted 21cm emission from the

EoR. It has an arc minute angular resolution which is sufficient to probe the typical ionized

bubbles during EoR (Bowman et al., 2013). It is a precursor instrument to the SKA in the

low frequency and observes in the 80-300 MHz range. Figure 1.9 shows a layout for the array,

which has spider-like antennas. Using the 21-hour Phase I MWA data, Barry et al. (2019)

improved on the upper limits placed on the PS reported in Beardsley et al. (2016). The authors

reported a noise-dominated upper limit of Δ2 ≤ 3.9 × 103 mK2 at z=7 and 𝑘 ≈ 0.2 ℎ Mpc−1

while in Li et al. (2019) placed 2𝜎 upper limits on the PS of Δ2 ≤ 2.39× 103 mK2 at z=6.5 and

𝑘 ≈ 0.59 ℎ Mpc−1 using 40-hour data from Phase II of MWA.

LOFAR is a radio interferometer with 24 core stations that are distributed over an area of about

2km in diameter. There are 14 remote interferometer stations that are distributed all over the

Netherlands, providing a baseline length of ∼ 100𝑘𝑚. Figure 1.10 shows the layout of the core
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area of this array. The first upper limits on the PS from LOFAR were published in Patil et al.

(2017) using 13-hour data. The authors reported a 2𝜎 upper limit of Δ2
21 < (79.6)2 mK2 at

𝑧 = 10.1 and 𝑘 = 0.053 ℎ cMpc−1. The deepest upper limits for LOFAR were reported by

Mertens et al. (2020) using 141 hours of data collected over 12 nights of observations from

LOFAR cycles 0,1 and 2. The improved upper limits were Δ2
21 < (72.8)2 mK2 at a redshift

𝑧 ≈ 9.1 and 𝑘 = 0.075 ℎ cMPc−1.

Figure 1.10: The layout for the core area of the LOw-Frequency Array. Credit:
Haarlem et al. (2013).

HERA is a facility that is dedicated to measuring the 21cm line emission from the IGM. It is

a 350-element interferometer that consists of 14m parabolic dishes, situated in Carnarvon, a

small town in the Northern Cape of South Africa. This radio interferometer telescope observes

at a 50-250 MHz frequency range. The scientific goal for HERA is to characterize the evolution

of the 21cm PS, which will help constrain the timeline and morphology of the EoR. HERA is

a precursor instrument to SKA and the measurements from HERA can be used in conjunction

with semi-analytical models to constrain the ionization history. Figure 1.11 shows 19 HERA

14m dishes. The first results from HERA phase I (Abdurashidova et al., 2022) placed upper

limits of Δ2
21 ≤ (30.76)2 mK2 at 𝑘 = 0.192 ℎ Mpc−1 and z=7.9 on the PS with 95% confidence

using 18 nights of observational data. Recent and most sensitive upper limits on the 21cm PS
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from HERA were published in (The HERA Collaboration et al., 2022). These upper limits

were of Δ2(𝑘 = 0.34ℎMpc−1) ≤ 457mK2 at z=7.9 and Δ2(𝑘 = 0.36ℎMpc−1) ≤ 3, 496mK2 at

z=10.4 at 95% confidence .

Figure 1.11: HERA antennas in Carnarvon. Credit: South African Radio
Astronomy observatory (SARAO) (2016).

SKA is one of the largest radio astronomy facilities with its main dishes and antennas situated

in South Africa and Australia, respectively. The primary scientific goal of SKA is to unveil the

cosmic dawn and the EoR. It has a collecting area of one square kilometre. This radio telescope

operates between 50MHz - 14GHz and has improved sensitivity that is ∼ 100 times than other

telescopes. The lowest frequency of this telescope is built at the MRO in Australia; it is known

as the SKA-low. It has 131 072 log-periodic antennas that are grouped into 512 stations of

256 antennas each. A total of 296 of these stations are configured into the core area, while the

remaining 216 are along the spiral arms to give this telescope a maximum baseline of 65 km.

The SKA-mid antennas are situated in the Karoo desert, Carnarvon, South Africa. It has 133

Gregorian antennas with a 15m diameter. It observes at a frequency range of 0.35-13.8GHz.
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This will incorporate the 64 antennas of MeerKAT, which are 13.5 m in diameter. Figure 1.12

shows the artist’s impression of this SKA interferometer, with the parabolic dishes in South

Africa shown on the left side of the figure and the antennas from Australia shown on the right.

Figure 1.12: The overview of the Square Kilometre Observatory(SKAO).
Credit: SkAO (2022).

1.4 Machine learning applications on 21cm
Several 21cm studies with machine learning have been explored, with a variety of studies

focusing on emulators, parameter estimators, and source identification algorithms. Here, we

review some of the previous works done on 21cm with machine learning with both PS and

21cm maps from reionization simulations.

Machine Learning models can be classified as either discriminative or generative models (e.g.

Ng and Jordan, 2001). Discriminative models target the posterior distribution and focus on

predicting the labels of the data while the generative models model the likelihood of data which

captures more information. Discriminative models find the probability directly by assuming

some functional form 𝑃(𝑌 |𝑋), then estimate parameters of 𝑃(𝑌 |𝑋) using the training data.

This model learns a boundary between classes in a dataset and is not designed to generate new

data. The model is more robust to outliers since the outliers have a moderate impact on the

decision boundary. A generative model learns the data distribution. It estimates both the prior

𝑃(𝑌 ) and likelihood probability 𝑃(𝑋 |𝑌 ) using the training data. Generative models use Bayes’

Theorem to calculate the posterior probability 𝑃(𝑌 |𝑋). As the name suggests, the models are
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able to generate new data points but they are not robust to outliers. Figure 1.13 shows how the

discriminative and generative models model data points.

Figure 1.13: The difference between a discriminative model and a generative
model in terms of how they model data points.

1.4.1 Discriminative models

Using the 21cm PS for parameter recovery

Several studies have focused on using the 21cm PS to get the astrophysical and cosmological

parameters by applying machine learning. For example, Shimabukuro and Semelin (2018) used

an artificial neural network (ANN) to recover astrophysical parameters from the 21cm PS. The

parameters that were recovered from the PS were the ionizing efficiency (Z), the minimum viral

temperature of halos producing ionizing photons (𝑇𝑣𝑖𝑟), and the mean free path (mfp) of ionizing

photons (𝑅𝑚 𝑓 𝑝). The PS range explored in this work was 0.06Mpc−1 ≤ k ≤ 1.4Mpc−1. The

authors have found a significant reduction in the error when different redshifts and noise are

included during training, achieving RMSE values of 0.172, 0.168, and 0.019 for 𝑅𝑚 𝑓 𝑝, Z and

𝑙𝑜𝑔(𝑇𝑣𝑖𝑟), respectively.

Using large scale fields

Although the PS is a great statistical tool to summarize the EoR signal, it has certain limitations.

One of the limitations is that when performing parameter recovery using PS, there is some loss

of information due to the fact that the 21cm tomographic signal is highly non-Gaussian. Using

the 21cm maps to perform parameter inference is a more accurate alternative to the PS. There
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have been several studies performed using the 21cm maps for parameter recovery. Gillet et al.,

2019 have used a convolutional neural network (CNN) to extract four parameters from the 21cm

maps that describe the first galaxies. The parameters recovered were Z , 𝑇𝑣𝑖𝑟 , 𝐿𝑥/𝑆𝐹𝑅 and 𝐸0,

where 𝐿𝑥/𝑆𝐹𝑅 represents typical soft-band X-ray luminosity to star formation rate and 𝐸0 the

minimum X-ray energy capable of escaping the galaxy into the IGM. They used the coefficient

of determination (𝑅2) to quantify the performance of the model. The authors found the 𝑅2

values of 𝑇𝑣𝑖𝑟 , 𝐿𝑥/𝑆𝐹𝑅, Z , and 𝐸0 to be 0.997, 0.987, 0.955, and 0.728, respectively.

Another work that demonstrates the power of using CNNs for parameter extraction is the

work done in Hassan, Andrianomena, and Doughty (2020). In their work, they estimated

both the astrophysical and cosmological parameters from 21cm maps at different redshifts.

The astrophysical parameters recovered were the photon escape fraction ( 𝑓𝑒𝑠𝑐), the ionizing

emissivity power dependence on halo mass (𝐶𝑖𝑜𝑛), and the ionizing emissivity redshift evolution

index (𝐷𝑖𝑜𝑛), and the cosmological parameters recovered were the matter density parameter

(Ω𝑚), the dimensionless Hubble constant (h) and the matter fluctuation amplitude (𝜎8). To

quantify the results the authors used 𝑅2. They achieve high accuracy, 𝑅2 > 0.92, and at lower

redshifts and low neutral hydrogen fraction values the value increases to 𝑅2 > 0.99.

Additionally, Mangena, Hassan, and Santos (2020), used CNNs to extract the neutral hydrogen

fraction directly from 21cm maps. Their network was able to extract the neutral hydrogen

fraction with an accuracy of 99 percent, determined by 𝑅2, and this accuracy decreased by 1

percent in the presence of instrumental effects following the SKA design.

Figure 1.14: On the left, the figure shows the bubble size and distribution when
AGN is the ionizing source and the figure on the right shows the size and bubble
distribution when a galaxy is an ionizing source Hassan et al. (2018).
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Finding the sources that are responsible for EoR and the properties that enable them to reionize

the IGM are amongst the fundamental questions in astrophysics and cosmology. Distinguishing

the 21cm maps from different sources was explored in Hassan et al. (2018) by using a CNN

model on data generated using SimFast21, a simulation that we will describe in Chapter 3.

Figure 1.14 shows the ionization maps from the AGN and star-forming galaxy when the average

ionization fraction is at almost 50%. The field ionized by AGN has fewer small-scale bubbles

compared to the one ionized by galaxies.

1.4.2 Generative models

Generating fields from other fields has been explored in Chardin et al. (2019) using an au-

toencoder, Cosmological Reionization And Deep LEarning (CRADLE), a CNN based model.

The data for the training and testing of the model was simulated from EMMA (a cosmologi-

cal simulation code aimed at investigating the reionization epoch), a code that uses graphics

processing units (GPUs) to accelerate hydrodynamic and radiative transfer calculations. This

code evolves the radiative transfer using a moment-based method. The autoencoder takes in the

stellar particles number counts (sources) and density fields as the inputs into the encoder, and

it predicts the reionization times based on these two inputs. These two are merged to form the

latent space, from which 𝑡𝑟𝑒𝑖𝑜𝑛 is predicted. The reionization maps are constructed by marking

cells with the cosmological time at which it crosses the reionization fraction of 𝑥𝐻𝐼𝐼 ≥ 0.5.

Using the testing set on the model, they found out that at large scales, the model makes good

predictions, while at small scales, the network does a poor job of predicting the exact shape

for the edges of the 𝑡𝑟𝑒𝑖𝑜𝑛 bubbles. It has been also discovered that the small 𝑡𝑟𝑒𝑖𝑜𝑛 values are

too high compared to the original data. It was concluded that this may be because some small

𝑡𝑟𝑒𝑖𝑜𝑛 bubbles are missed, or some bubbles not there in the original data were created during

the reconstruction process. Figure 1.15 compares the 𝑡𝑟𝑒𝑖𝑜𝑛 of the original data and the one

reconstructed from the model. To quantify the results of the model, they used 𝑅2 and it was

found to be > 0.8 in each case. This leaves room for improvement, but the model does a good

job of emulating the simulation. This emulator can be used to rapidly obtain the evolving HII

regions associated with hydro-only simulations.
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Figure 1.15: The results from the Chardin et al. (2019) paper showing the
timescales from the simulation at the top row and the predictions from the
autoencoder in the bottom row.

1.5 Aims and Objectives
The main focus of this work is to use machine learning techniques to accelerate a semi-numerical

simulation, namely SimFast21. These simulations employ an approximated radiative transfer

scheme, which represents the most expensive step as compared to generating the density,

velocity, and source fields. We here focus on generating the ionization field (the radiative

transfer output) directly from the initial density field without using sources’ location nor their

velocities. We consider several Machine Learning probabilistic and deterministic methods to

achieve this task. Several outcomes are expected including :

• Efficient generation of large-scale high-dimensional and highly non-linear fields with a

low computational cost.

• Emulating the behavior of radiative transfer on cosmological scales, and full exploration

of the high-dimensional prior of the astrophysical and cosmological parameters.

• Enabling efficient high-dimensional posterior distribution studies from future 21cm sur-

veys.
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1.6 Overview
The work covered in this thesis is presented in five chapters. The current chapter has focused

on introducing our study, with a literature review. Chapter 2 discusses machine learning

models and how to build successful CNNs while Chapter 3 focuses on the semi-numerical code

(SimFast21) that we used to generate the density and ionization fields to form the dataset used

to train our models. This Chapter also presents the methods and approach used to build and

train the Machine Learning models. Chapter 4 presents the results from the best-performing

models alongside discussion and the final chapter, Chapter 5 provides a conclusion of our main

findings and plans for future works.
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2 Basics of machine learning

This chapter presents the basics of machine learning with different machine learning methods

and their applications. It introduces deep learning which is vital in this work. The chapter

explains how to build, tune and train neural networks. It also discusses briefly the generative

models we intend to use to accelerate reionization simulations. We here briefly review the

basics of machine learning and we refer the interested reader to ( Deng, 2014; Malik, 2019;

Pant, 2019; Sah, 2020; Alzubaidi, Zhang, and Humaidi, 2021; Tai, 2021; DeLua, 2021; Bewtra,

2022) for a comprehensive review. This chapter is organized as follows: Section 2.1 presents the

basics of machine learning and Section 2.2 provides an overview of machine learning methods

and gives a brief introduction to deep learning. Section 2.2 also details the fundamentals of

machine learning/deep learning models such as activation functions, loss functions, optimizers,

and regularization techniques.

2.1 Introduction to Machine Learning
Machine learning (ML) has advanced the field of astronomy in the past decade. We have seen

a dramatic increase in the use of ML techniques to analyze data taken by telescopes. Ongoing

and planned surveys will produce large amounts of data which requires the development of new

techniques. Traditional methods are too slow and they can not support huge volumes of data,

as such the new methods to be developed have to be fast and computationally effective.

Artificial Intelligence (AI), is a technique that allows machines to think, learn, understand, and

behave like humans. ML is a subset of AI that is concerned with building algorithms that are

able to learn over time from historical data; this model can then make a prediction when given

new data. We use this approach to solve problems that are too complex for human minds to

solve. Deep Learning (DL), is a subset of machine learning that uses neural networks with

three or more layers, to learn patterns in a data set and make predictions. Figure 2.1 shows the

relationship between AI, ML, and DL.
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Figure 2.1: The relationship between Artificial Intelligence, Machine Learning,
and Deep Learning. Credit: Atul (2022)

2.2 Machine learning methods
ML algorithms can either be supervised, unsupervised, or semi-supervised. Figure 2.2 be-

low shows some applications of machine learning methods. Supervised machine learning

algorithms are suitable for classification or regression, unsupervised algorithms for clustering,

association, and dimensionality reduction, while semi-supervised algorithms are suitable for

anomaly detection.

Figure 2.2: A tree diagram that shows the different methods used in machine
learning and what each method is used for.

http://etd.uwc.ac.za/



Chapter 2. Basics of machine learning 22

Supervised learning is a learning method that can only be applied if all data are labeled to

perform classification or regression (e.g. Kotsiantis, 2007; Cunningham, Cord, and Delany,

2008). Examples of classification include identifying whether an input image is a dog or a cat,

and classifying whether or not an email is spam. The standard classification algorithms include

linear classifiers, Support Vector Machines (SVMs, Cortes and Vapnik, 1995; Zhang and Zhao,

2014; Jones and Singal, 2017), decision trees (Quinlan, 1986; Ball et al., 2006; Franco-Árcega,

Flores-Flores, and Gabbasov, 2013), and random forests (Breiman, 2001; Gao, Zhang, and

Zhao, 2009). This method can also be used for regression by predicting house or car prices.

Standard regression algorithms are linear, logistic, and polynomial.

Unsupervised learning is a learning method that can be applied when there is unlabelled data

to perform clustering, association, and finding a lower dimensional representation of the data

(Becker and Plumbley, 1996; Cios et al., 2007). This method can find similarities and differences

in the dataset. As seen in Figure 2.2, this method can be used for association, dimension

reduction, and clustering. Association uses rules to find the relation between variables in a

dataset. A dimension reduction algorithm is used when the number of features in a dataset is

too high. These features are reduced to a reasonable size without compromising the original

information. Principle Component Analysis (PCA, Singh, Gulati, and Gupta, 1998; He and

Zhao, 2019; Nemec, 2022) is the most typical reduction method widely used in machine

learning. In clustering, data is grouped based on similarities (Jain, Murty, and Flynn, 1999). A

popular clustering algorithm is the K-means (Arthur and Vassilvitskii, 2007; Na, Xumin, and

Yong, 2010; Jin and Han, 2011) which assigns similar points into groups. Other methods of

unsupervised learning include neural nets and probabilistic clustering methods.

Semi-supervised learning is a learning method that can be applied when a dataset has labeled

and unlabelled datasets. A smaller labeled dataset is used to guide classification and feature

extraction from a larger unlabelled dataset (Zhu and Lafferty, 2005; Chapelle, Chi, and Zien,

2006). This method is used to determine, for instance, anomalies in a dataset. In this case, the

algorithm alternates between supervised learning for a subset of labeled data and unsupervised

learning for the other subset of unlabeled data.

All ML algorithms follow the same workflow. This workflow has five major stages that describe

the algorithm, namely data collection, data pre-processing, model selection, training and testing
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the model, and evaluating the model. The key to building a good ML algorithm starts with

balancing and pre-processing datasets. A common practice is that the dataset is split into

different subsets for training and testing. The next step is to choose the right model. Choosing

an ML method depends on several factors, including the presence of labels, data structure, and

the nature of the problem. The trained model is then tested on the testing (unseen) dataset

to verify its predictive power to generalize on out-of-distribution samples. Depending on the

nature of the problem, an accuracy/performance metric will be selected to evaluate the trained

model. Generally, complex datasets require complex models. DL models have been very

successful in generalizing over complex datasets. The data used in this thesis is very complex

(highly non-linear, and high dimensional) and it requires DL models. In the next section, we

discuss DL and its components.

2.2.1 Deep Learning

Deep learning is a subset of ML that uses multilayer neural networks that can mimic a human

brain and solve complex problems. They have three layers (input layer, (multiple) hidden

layers, and output layer) that make use of neural networks to solve complex problems. There

are different architectures in DL including but not limited to Multi-Layer Perceptron (MLP,

Almeida, 1997; Popescu et al., 2009), Radial Basis Networks (Orr, 1996), Recurrent Neural

Networks (RNNs, Rumelhart, Hinton, and Williams, 1985), Convolutional Neural Networks

(CNNs, LeCun et al., 1989), and Generative Adversarial Networks (GANs, Goodfellow et al.,

2014). Neural networks are the functional unit of DL and essentially imitate how a human brain

works to solve problems. They transform an input into a meaningful output. These models have

various layers of information-processing stages in hierarchical architecture that are exploited

for pattern classification and representational learning. DL models have been used in several

fields, and their functionalities are growing with time.

Neurons make up a neural network architecture. Figure 2.3 shows the structure of a neuron,

where x represents the input data with different structure (e.g. signal or image) and features

that the model will learn from, w represents learnable weights to process the input. These

neurons construct the relationship between the input data and the output. Bias, b, is added as

an additional learnable variable to add more degrees of freedom to assist training and reduce
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over-fitting. The linear combination (
∑

), binds the weights and the inputs together to find their

sum, while the activation function, (𝜓), introduces non-linearity. This can be described as a

linear combination as follows:

𝑌𝑘 = 𝜓

(∑︁
(𝑤 ∗ 𝑥𝑖) + \

)
. (2.1)

Figure 2.3: The structure of an artificial neuron showing the different
parameters that define the equation of a neuron.

Figure 2.4: The difference between shallow and deep neural networks. The
middle layer, commonly called the hidden layer, is where learning takes place.

Traditional machine learning techniques have been using simple architectures that contain a

single layer of non-linear feature transformation. These shallow models, for instance, include

the Hidden Markov Models (HMMs, Handel, 2008), Conditional Random Fields (CRFs, Sutton

and McCallum, 2011), and Support Vector Machines (SVM, Busuttil, Abela, and Pace, 2004).

These models have one common aspect: a simple architecture consisting of only one layer

responsible for transforming the input data into a problem-specific feature space. HMMs,

CRFs, and SVM have been efficient in solving simple and well-defined problems and they are
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not efficient for real-world applications on big data. Deep models were introduced to address

the shortfalls of shallow models. Figure 2.4 shows a comparison between a shallow and a

deep neural network where the main difference is the number of hidden layers present in each

network. A shallow neural network has one hidden layer while a deep neural network has

multiple hidden layers (two or more).

2.2.2 Activation Functions

There are many activation functions used in neural networks. These functions introduce non-

linearity into a neural network so that the network can identify and learn complex patterns

in a dataset. DL architectures use activation functions so that they can be able to perform

computations that are distinctive between the hidden and output layers of these architectures.

Activation functions are very efficient when used with their default hyperparameters. In addition

to adding non-linearity, the activation function used in a neural network depends on the network

output. For example, if the output or target range is from zero to one, sigmoid or softmax will

be the best activation functions to use at the last layer. The activation function then decides

whether a specific neuron should be activated following simple mathematical operations. The

common activation functions used in deep learning that will be discussed here are Sigmoid,

Softmax, Tanh, Rectified Linear Unit (ReLU), and the Leaky ReLU (for an extensive review

see Neal, 1992; Karlik and Vehbi, 2011; Nwankpa et al., 2018; Jain, 2019; Szandała, 2020;

Dubey, Singh, and Chaudhuri, 2021). These activation functions can be applied to any problem.

The most common activation function in the intermediate layers is ReLU/LeakyReLU. For the

output layers, it depends mainly on the task. For instance, in regression tasks, usually, no

activation is required. In classification tasks, the desired output should be in the range between

0 and 1 to quantify the probability of the object being classified correctly, as a result, softmax

or sigmoid might be more appropriate to use. Tanh is usually used in generative models where

the dynamic range is large, especially in denoising probabilistic approaches.

• Sigmoid

Sigmoid activation function transforms values between 0 and 1 and is used in feed-

forward neural networks and most DL architectures’ output layers. It has an S shape.

This activation function would be suitable to use when performing binary classification.
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Although sigmoid is continuously differentiable, the activation function has two major

drawbacks; it has a vanishing gradients problem and it is not zero-centered.

Figure 2.5 shows that the gradient turns to zero with large positive and negative values

and the function approaches zero and one at very large negative and positive values of x,

respectively. Since this function is a complex trigonometric function, it is computationally

expensive. The sigmoid function is described using the following equation:

sigmiod(𝑥) = 1
1 + 𝑒−𝑥 . (2.2)

Figure 2.5: Sigmoid activation function and its derivative.

• Softmax

Softmax is a generalized form of the sigmoid function. This function is usually used

in the final layer of classification models because it predicts probability scores during

classification tasks. The sum of the probabilities for the softmax activation function is

one. It works for multi-class classification problems. Softmax takes multiple inputs and

assigns a probability to individual outputs. For instance, an output of 0.7 indicates an

accuracy of 70%. The function is suitable for logistic regression or neural networks. The
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equation that defines the softmax is:

softmax(𝑧𝑖) =
𝑒𝑧𝑖∑𝐾
𝑗=1 𝑒

𝑧 𝑗
, (2.3)

where 𝑧𝑖 is the input vector, 𝑒𝑧𝑖 is the standard exponential function for the input vector,

K is the number of classes in the multi-class classifier and 𝑧𝑧 𝑗 is the standard exponential

function for output vector. Figure 2.6 shows the softmax activation function and its

derivative.

Figure 2.6: Softmax activation function and its derivative.

• Tanh

Tanh, a hyperbolic tangent function is an activation that produces values between -1 and

1. The function performs better in multi-layer neural networks. It has the same s shape

as the sigmoid function except it is zero-centered. Although it is zero-centered, the tanh

function suffers from vanishing gradient problems. The function is defined by Equation

2.4, where x is the input and tanh (x) is the output.

From Figure 2.7, it can be seen that the function is zero-centered and, at the same time,

has a zero gradient for large positive and negative values. Tanh has been used in tasks

such as natural language processing (Dauphim et al., 2017), speech recognition (Maas,
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Hannun, and Ng, 2013), and generative models.

Tanh(𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 . (2.4)

Figure 2.7: Tanh activation function and its derivative.

• ReLU

The most common activation used in neural networks is ReLU since it is not computa-

tionally expensive and does not suffer from vanishing gradient problem. What makes

the function computationally efficient is that it does not activate all the neurons at once.

ReLU is not zero-centered and it suffers from the "dying" ReLU problem. This means,

as seen from Figure 2.8, this function outputs a value of zero for all negative inputs. The

“dying" ReLU refers to when some nodes die to halt learning. The following equation

defines the ReLU activation function:

ReLU(𝑥) = 𝑚𝑎𝑥(0, 𝑥) , (2.5)

where x is the input and ReLU (x) is the output. The ReLU keeps only the important

(positive) and removes the less important (negative) features.
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Figure 2.8: ReLU activation function and its derivative.

• Leaky ReLU

Figure 2.9: LeakyReLU activation function and its derivative.

The problem of "dying" ReLU can be solved by using Leaky ReLU. LeakyReLU is the

modified version of the ReLU function where a negative slope is introduced to the ReLU

function, as seen from the plot in Figure 2.9. The gradient will not be zero, it can be
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seen from the ReLU function (2.8) that values that are less than zero have a zero gradient

during training but for the LeakyReLU the values of the gradient are non-zero (2.9). The

difference between the ReLU and Leaky ReLU can be seen in Equations (2.5) and (2.6),

respectively. The hyperparameter 𝛼 is usually set to be closer to zero. The default value

of this hyperparameter is 0.01. If 𝛼 is set to 1, Leaky ReLU becomes a linear activation

function.

LeakyReLU(𝑥) = 𝑚𝑎𝑥(𝛼𝑥, 𝑥). (2.6)

2.2.3 Loss functions

Loss functions are used to quantify error or the distance between the model predictions and the

target. At the beginning of training, the loss value is high since the predictions are significantly

different from the target. As training progresses, the loss decreases. The loss evolution of a

neural network is expected to converge to minima (whether local or global minima). An optimal

loss value is zero indicating a perfect match between the prediction and the target. Different

loss functions are used for different tasks, e.g. classification or regression, and the loss function

used depends on the error type (For review on loss function see Wang et al., 2022; Ciampiconi

et al., 2023).

Regression loss functions

Common regression loss functions include the Mean Squared Error (MSE), Mean Absolute

Error (MAE), and log-cosh error. In all the following equations defining different loss functions,

y refers to the true value, �̂� is the predicted value,
∑

is the summation over all the samples and

N is the number of the samples in the dataset.

• The MSE is a famous loss function for prediction problems. This loss function is sensitive

to outliers. The function has one global minimum since it is a convex function. MSE

is differentiable and it can be used with gradient-based optimization algorithms such

as stochastic gradient descent (SGD). When the model is too complex or the dataset is

too small, the model using MSE as a loss function might overfit. It is described by the

equation below:

MSE =
1
𝑁

𝑁∑︁
𝑖=1
(𝑦𝑖 − 𝑦𝑖)2. (2.7)
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• The Mean Absolute Error (MAE) is the average of the absolute differences between the

actual and the predicted value. Unlike the MSE, it is insensitive to outliers because it

measures the average magnitudes of the errors without considering their direction. MAE

is not differentiable but it can still be used with gradient-based optimization algorithms

such as SGD. The function that describes this loss is given as:

MAE =

𝑁∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |
𝑁

. (2.8)

• Log-cosh error, which is the logarithmic of a hyperbolic cosine function that is much

smoother than the MSE. It is less sensitive to outliers and it is suitable for training neural

networks using optimization algorithms such as SGD. Log-cosh is smooth, differentiable,

and has a continuous gradient. Similar to the MSE, it has a single global minimum. This

loss function measures the difference between the predicted and the true values in terms

of the hyperbolic cosine of their differences. This is described by the following Equation:

Log − Cosh =

𝑁∑︁
𝑖=1

𝑙𝑜𝑔(𝑐𝑜𝑠ℎ(𝑦𝑖 − 𝑦𝑖)). (2.9)

Classification loss functions

Widely used classification loss functions include Cross-Entropy/Log, Hinge loss, and Kullback-

Leibler Divergence.

• Cross-Entropy loss function measures the variance between the predicted and the true

probability distribution. It can be used in conjunction with the softmax activation function

for multi-class classification problems. This loss function is differentiable, convex with

a single global minimum and it can be optimized using SGD. Cross-entropy is able to

handle imbalanced datasets. When the classification problem has two labels, the Binary

Cross Entropy loss function is used:

𝐿 = − 1
𝑚

𝑚∑︁
𝑖−1
(𝑦𝑖 .(𝑙𝑜𝑔(𝑦𝑖)) + (1 − 𝑦𝑖).𝑙𝑜𝑔(1 − 𝑦𝑖)) , (2.10)
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and for multi-class classification:

𝐿 = −1
𝑛

𝑛∑︁
𝑖

𝑚∑︁
𝑗

𝑦𝑖 𝑗 𝑙𝑜𝑔( �̂�𝑖 𝑗 ) (2.11)

This function is derived from a regular likelihood function and the addition of logarithms,

which is why it is referred to as a log loss function sometimes

• The Hinge loss was primarily developed for SVMs. This loss function penalizes predic-

tions that are wrong or have low confidence. Hinge loss is used for binary classification

problems. It is a convex function with a single global minimum and it can be used with

optimization algorithms such as SGD. A convex function is a function where the value

of the slope increases along with the increase in the value of x. While this function is not

differentiable, it is more robust to outliers and noise. This loss function is given by the

equation below:

𝐿 = 𝑚𝑎𝑥(0, (1 − 𝑦) �̂�). (2.12)

• Kullback-Leibler (KL) Divergence loss functions measure the difference between two

probabilistic distributions; the true and predicted probabilistic distributions. This loss

function is usually used in generative models and density estimators. KL divergence can

be used in both regression and classification problems. The equation below describes the

KL divergence loss function:

𝐷𝐾𝐿 =
∑︁
𝑖

𝑃(𝑖)𝑙𝑜𝑔 𝑃(𝑖)
𝑄(𝑖) , (2.13)

where P is the true probabilistic distribution and Q is the predicted probabilistic distribu-

tion.

2.2.4 Optimizers

Optimizers are used to minimize loss functions to achieve learning. The optimizers generally

compute all partial derivatives of the loss with a repeat to the network parameters to find the

direction at which the loss is minimal. These partial derivatives are added to the parameters

during the updates, and the speed by which the parameters are directed toward the loss minimum
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is controlled by the learning rate, a free hyper-parameter that is usually very small to prevent

exploding gradients. The learning rate, as the name suggests, is used to control the rate at which

the network learns. The training speed is related to the learning rate. Low learning rate values

would result in slow training which might require using larger training epochs, whereas large

learning rates might lead to instability of the model and large oscillation around the minimum.

An epoch refers to the number of times the whole training dataset goes through the network

during training. A good learning rate is found by running several trials to observe the best

loss evolution over iteration to achieve convergence. This subsection discusses widely used

optimizers such as gradient descent, Root Mean Square Propagation (RMSProp), and Adaptive

Moment Estimation (Adam).

Gradient Descent

Gradient descent is one of the most common optimization algorithms used to find the optimal

parameters for a ML/DL model. In gradient descent, the parameters are adjusted iteratively

to minimize a given function to its local or global minimum. This type of algorithm update

parameters in the direction of the steepest descent of the loss function. There are three different

types of gradient descent methods, namely SGD, batch gradient descent, and mini-batch gradient

descent (e.g. Robbins and Monro, 1951; Ruder, 2016). Batch is the number of training examples

used at each iteration during forward or backpropagation.

• SGD updates the parameters of the model simultaneously. The main advantage of this

optimization algorithm is that it updates the parameters frequently, and requires less

memory to compute. It can be applied to datasets that are large since parameters are

updated simultaneously. The drawback of this algorithm is that it can result in a noisy

gradient which might result in the error increasing instead of the opposite, it has a high

variance and it is sensitive to learning rates.

• Batch gradient descent is an optimization algorithm where gradients are computed for

the entire dataset. The convergence of batch gradient descent is very stable and more

accurate although it takes time to converge. This optimization calculates the gradients

of the whole dataset to perform a single update, and hence it might be slow for large
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datasets. It is sensitive to outliers, requires more computation and memory, and can fall

into local minima.

• Mini-batch gradient descent combines the concepts used in SGD and batch gradient de-

scent. The training dataset is split into small datasets called mini-batches and parameters

are updated based on these mini-batches. The splitting into mini-batches is usually a small

number in order of 10. The algorithm leads to a more stable convergence, calculating the

gradients is more efficient and it requires less memory.

Root Mean Square Propagation (RMSProp)

RMSProp (Tieleman and Hinton, 2012; Dauphin et al., 2015) is a gradient-based optimization

technique where the learning rate for each parameter is updated based on the magnitude of

recent gradients. It is a stochastic technique for mini-batch learning. Major advantages of

this optimization algorithm include the use of adaptive learning rates, robustness against noisy

gradients, and low memory requirement. Disadvantages include sensitivity to hyperparameters

used and the slow to converge.

Adaptive Moment Estimation (Adam)

Adam (Kingma and Ba, 2014) is an optimization algorithm that is the combination of SGD and

RMSProp. This optimizer starts with a set of initial parameters and they are iteratively adapted

using a loss function. The advantages of this algorithm include fast convergence, robustness

to noise, the use of adaptive learning rates, and low memory requirement. When the model is

large it requires large memory to compute. Adam is sensitive to hyperparameters.

2.2.5 Regularization Techniques

A model with a large number of parameters and a small dataset may overfit. Regularization

techniques are used to combat overfitting and underfitting in DL models. Here, we discuss two

popular regularization techniques used in many DL architectures, namely, Batch Normalization

and Dropout.

• Dropout is often used in complex DL networks to prevent complex co-adaptations on

the training data. Dropout is a Regularization technique where hidden/visible units in
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a neural network are dropped randomly (Hinton et al., 2012; Srivastava et al., 2014).

The random drop is determined by the probability equation 𝑞 = 1 − 𝑝, where p is the

probability of retaining the units. For example, if 𝑞 is 0.2, 20% of the units will be

dropped from the network. They are temporarily disabled, along with their inputs and

outputs from the connection. An ideal dropout rate in hidden layers is 0.5 while for the

input layer is 0.8. Figure 2.10 shows the difference between neural networks without and

with dropout.

Figure 2.10: The difference between a neural network without dropout (top
figure) and a neural network after dropout is applied (bottom figure). The red
units are randomly disabled.

• During training, the distribution of each layer’s inputs changes due to the change in

parameters in the previous layers, this phenomenon is called internal covariance shift.

Internal covariance shift slows down training and Batch Normalization (BN, Ioffe and

Szegedy, 2015) has been introduced to solve this problem. If BN is not used and a higher

learning rate is, this could lead to vanishing or exploding gradients in a model and the
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network can fall into a local minima. BN allows the use of higher learning rates, model

trains faster, and achieves higher accuracy. The BN transform algorithm, which is applied

to activation 𝑥 over a mini-batch, 𝐵, is given by the following equations:

`𝐵 ←
1
𝑚

𝑚∑︁
𝑖=1

𝑥𝑖, (2.14)

𝜎2
𝐵 ←

1
𝑚

𝑚∑︁
𝑖=1
(𝑥𝑖 − `𝐵)2, (2.15)

𝑥 ← 1
𝑚

𝑚∑︁
𝑖=1

𝑥𝑖 − `𝐵√︃
𝜎2
𝐵
+ 𝜖

, (2.16)

𝑦𝑖 ← 𝛾𝑥𝑖 + 𝛽 ≡ 𝐵𝑁𝛾,𝛽 (𝑥𝑖), (2.17)

where `𝐵 (Equation 2.14) is the mean of the mini-batch, 𝜎2
𝐵

(Equation 2.15) is the

variance calculated from the mean of the mini-batch, the x values are normalized using

Equation 2.16 to get the outputs defined by Equation 2.17. 𝜖 , a constant, is added to the

mini-batch variance for numerical stability. Normalization is applied to each activation

independently and a pair of parameters 𝛾 (𝑘) , 𝛽(𝑘) are used to scale and shift the normalized

value to give the output, Equation 2.18 shows this relation:

𝑦 (𝑘) = 𝛾 (𝑘)𝑥 (𝑘) + 𝛽(𝑘) . (2.18)

2.2.6 Overfitting and Underfitting

The loss evolution is set by training. There are three possible outcomes for the loss evolution;

underfitting, overfitting, and a good fit.

Overfitting happens when a network learns the training dataset and it is able to model this

dataset perfectly so that it learns the noise (Sarle, 1995; Gaurang et al., 2011; Allamy, 2014;

Pothuganti, 2018) or the random error and not the underlying relationship between the data

points in the dataset. The network is not able to generalize over a new dataset (testing dataset).

An underfitting model performs poorly on both the training and the testing dataset while one

that is overfitting may do well on the training set and performs badly on the training set.
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There are several reasons that will lead the model to overfit or underfit. One reason might

be due to a small dataset. There are a couple of ways to prevent a model from overfitting or

underfitting (Haider, 2014; Pothuganti, 2018), these include early stopping, network reduction,

data expansion, and regularization. Early stopping ensures that the model is stopped/ halted

when no improvement is observed over some number of iterations that are found by experiments.

Figure 2.11: Bias-variance trade-off. The plot shows the areas where a model is
prone to underfitting or overfitting. Credit: Papachristoudis (2019)

Understanding prediction errors is very important in any ML algorithm. These prediction

errors, also known as reducible errors are bias and variance and they can be reduced to improve

model accuracy. Bias refers to the difference between the average prediction of a model and the

correct/true value that the model is trying to predict and the variance is the variability of the

model prediction for a given data point that indicates the spread of the data (Geurts, 2002, Chan,

2020). There is a trade-off that exists between bias and variance, the bias-variance trade-off.

Bias-variance trade-off shows the relationship between a ML model’s ability to fit the training

data and its ability to generalize on unseen data. A model that is too simple and has fewer

parameters is prone to underfitting and this happens when there is high bias and low variance.
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When a model has a large number of parameters it will have high variance and low bias and

this leads to overfitting. Ideally, when training a ML model the target is to have low bias and

low variance.

The bias and variance of a model are influenced by parameters such as complexity, noise,

learning algorithm, and learning sample size. Figure 2.11 shows the relationship between bias

and variance, where a model is likely to overfit or underfit, and the progression of the loss

evolution. The x-axis represents the complexity of the model, from simple (left) to complex

(right) while the y-axis represents the error, from low (bottom) to high (top). Bias is a decreasing

function of complexity while variance is an increasing function. As the complexity of the model

increases, the bias decreases and this leads the model to generalize better on the training data.

The variance increases as model complexity increases, leading to poor generalization of the

testing data. The total error of the model is given by the sum of bias squared, variance, and

irreducible error. The aim of this bias-variance trade-off is to find a spot where the total error is

minimized by finding the right level of model complexity that minimizes both bias and variance.

This spot is marked by parallel purple dotted lines in the figure.

2.2.7 Building a Neural Network

A neural network can be built using either dense layers or convolutional layers. There are several

components to consider for building neural networks, which can be summarized as follows:

• Input layer- takes in the input features or raw data.

• Hidden layers to transform the input layer into an intermediate representation.

• Activation function to introduce non-linearity in the network.

• Size and type of weights and biases.

• Output layer that gives the final output of the neural network.

• Loss function to quantify the error

• Optimization algorithm to optimize parameters (weights and biases)

• Regularization techniques to prevent overfitting (Dropout or BN)
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Most of these components have been discussed in detail in previous subsections and in this

subsection we will focus on how to build a neural network using dense layers and convolu-

tional layers, with more focus on the latter as most of the models explored in this thesis use

convolutional layers.

A dense layer, which is sometimes referred to as a fully connected layer, is a layer where a

neuron in a layer receives input from all other neurons in the previous layer. It is commonly

used in Artificial Neural Networks (ANNs) or in the final layer of a neural network. A dense

layer has several hyperparameters such as units, activation function, bias initializer, and kernel

regulariser. The units define the size of the output from the dense layer, the activation function is

used to transform the input values of the neuron by introducing non-linearity, the bias initializer

initializes the bias vector if a bias vector is applied, and the kernel regulariser regularises the

kernel weight matrix.

Figure 2.12: A mechanism for building a CNN.

A convolutional layer performs convolution to the input data and it was designed to work with

high dimensional data. It takes five arguments: the filter, filter size, padding, stride, and an

activation function. Usually, an activation function is applied after the Regularization such as

BN or dropout. The filter, also known as the feature detector, is important for high dimensional

data when the local features are important. The filter size produces the size of this filter matrix.

Padding is used to add layers to preserve the input size/dimensions and the stride parameter

determines the number of pixels the filter to scan over the image. The stride parameter affects

the spatial dimensions of the output feature map. When the parameter is set to one (no stride),

the filter will move one pixel in the horizontal and vertical directions and when the stride is set
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to be greater than one, the filter will skip pixels during the convolution process. The activation

decides which neurons are activated.

A convolutional neural network is constructed using multiple convolutional layers, pooling

layers, and a dense (fully connected) layer. Figure 2.12 shows a simple architecture for a CNN

with all the important layers indicated. CNN transforms an image for feature extraction. The

image is convoluted with a kernel of a specific size. The pooling layer is used for dimensionality

reduction to keep more prominent features. There are 2 types of pooling mechanisms that can

be used, max pooling and average pooling. Max pooling takes the maximum value in a matrix

while the average pooling takes the average value. Max pooling is used in most cases. Figure

2.13 shows the difference between the two pooling mechanisms.

Figure 2.13: The difference between the pooling mechanisms; max pooling and
average pooling.

The previous section has laid a foundation for neural networks by discussing how they are built,

regularised, and optimized. Since generative models are the core of this thesis, in the next

section we discuss some of the explored variations of generative models.

2.2.8 Generative models

The generative models discussed here are autoencoders and U-Nets and they are defined as such

because they implicitly learn the distribution of the data. Here, we provide a review of these

different models and show specific examples of their applications in Chapter 3.
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Autoencoders

Autoencoder (Rumelhart, Hinton, and Williams, 1986; Baldi, 2012; Bank et al., 2020) is a

type of deep learning model used for dimension reduction and learning efficient encoding of

a given dataset and can be conditioned on labels. They can be used to reconstruct the input.

Autoencoders are trained to learn the encoding of the data. Figure 2.14 shows the structure of a

basic autoencoder. The three major parts of the autoencoder are the encoder, latent space, and

the decoder. The purpose of the encoder layer is to act as a feature extractor, it will extract the

most useful information in an image and store it as a vector called the latent space. The latent

space, sometimes referred to as the bottleneck layer, is the code, this is the compressed vector

space of the learning representation. The decoder is the last layer, it attempts to reconstruct the

input image from the latent space.

Figure 2.14: An example of an autoencoder showing the input, encoder,
compressed/latent representation, decoder, and output Bank et al. (2020).

In summary, the autoencoder is a compression technique to find a lower representation of

the dataset, from which the representation can be used to recover the original information or

data. An optimal latent representation allows for a successful reconstruction of the data with

maximum accuracy.

There are different variations of autoencoders. The main ones include denoising, sparse,

contractive, under-complete, dense, convolutional, and Variational Autoencoder (VAE). These

networks are mainly used for building generative models. The main goal of all versions of the

autoencoders is to perform reconstruction with the least amount of information loss. Here we

discuss the standard autoencoder and VAE.

• A standard autoencoder can be constructed using either dense or convolutional layers. A

dense autoencoder uses dense layers in the encoder and decoder and this type of network
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is sometimes referred to as a fully connected network. It requires a one-dimensional

dataset as an input. A convolutional autoencoder is a model where information is passed

through a series of convolutional layers for feature extraction. These are suitable for

high-dimensional datasets.

• The difference between a standard autoencoder and a VAE is that the latent space for the

VAE is constructed from a normal distribution. Data points are sampled randomly from

a probability distribution in VAEs. The loss function used for VAE is the combination

of the reconstruction loss and the divergence loss. The divergence loss is the Kullback-

Leibler (KL) divergence which measures how the probability distributions differ from

each other and the reconstruction loss can be any of the regression losses. There is a

parameter Lambda (_) that is used to control the regularization term in the loss function.

The regularization, in turn, makes sure that the encoded latent space distribution matches

the desired probability (Gaussian) distribution. The equation below summarizes the loss

of a VAE.

𝐿 (𝑥, 𝑥, 𝑧`, 𝑧𝜎) = 𝐿reconstruction(𝑥, 𝑥) + 𝐿divergence(𝑧`, 𝑧𝜎). (2.19)

U-Net

A U-Net is a U-shaped neural network that consists of a downsampling path and an upsampling

path which are symmetric. It was first used to process biomedical images (Ronneberger, Fischer,

and Brox, 2015). This convolutional network is capable of performing image segmentation and

assigning class labels pixel by pixel. One advantage of a U-Net is that it does not require a very

large dataset to train, it uses data augmentation. A U-Net is a generic architecture and it can

be used as a generative or a deterministic model. The deterministic nature of a U-Net will be

explored in detail in Chapter 3.

Figure 2.15 shows the architecture for the first U-Net where the downsampling path is shown

on the left (1st half of the network) and the upsampling path (second half of the network) on

the right. The Downsampling path resembles a typical CNN and it has a double convolution

followed by ReLU and maxpooling. The number of features at each downsampling step is

doubled. The upsampling path consists of upsampling of feature maps, with double up-

convolution that reduces the number of feature channels in half. There are skip connections
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(concatenation) of the cropped feature maps from the downsampling path corresponding to

layers in the upsampling path.

Figure 2.15: A U-Net structure adapted from Ronneberger, Fischer, and Brox,
2015 showing the different layers and connections from the contracting and
expansive paths.

To this end, we have described the basic ingredients and flow of DL modeling, with a particular

focus on generative models. Next, we describe how these techniques are used to accelerate

reionization simulations.
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3 Accelerating Reionization Simulations

with Machine Learning

The work presented in this thesis focuses on accelerating reionization simulations using machine

learning. In particular, we focus on accelerating SimFast21, a semi-numerical simulation of

reionization, which we describe in more detail in this Chapter. We describe how the training

data is generated and preprocessed. We also discuss the training and testing strategies of three

different generative models used to generate density fields from ionization fields. This chapter

is organized as follows; Section 3.1 discusses our reionization simulations using SimFast21, and

Section 3.2 explains our strategy to accelerate SimFast21. The training dataset is described in

Section 3.3, and Section 3.4 details the training and testing strategies of our generative models.

3.1 Simulations
Reionization simulations provide deep insights into the complex interplay between the ionizing

sources (e.g. stars, galaxies) and sinks (e.g. absorption by neutral hydrogen) over cosmological

scales. Ideally, large-scale reionization simulations should resolve the evolution of sources from

sub-kpc to hundreds of Mpc volumes to track the evolution of ionizing radiation from the Inter-

stellar medium (ISM), through the Circumgalactic Medium (CGM), and up to the Intergalactic

Medium (IGM). There are different ways to simulate reionization, including radiative transfer

hydrodynamic simulations (e.g. Rosdahl et al., 2018, Kannan et al., 2021, Bird et al., 2022) and

semi-numerical simulations (e.g. Mesinger, Furlanetto, and Cen, 2010, Santos et al., 2010).

Radiative transfer hydrodynamic simulations are the most accurate and detailed reionization

simulations. These types of simulations include radiative transfer algorithms to model the evo-

lution and radiation field. The algorithms take into account several processes involved such as

scattering, emission, and absorption but they are computationally expensive. Semi-numerical

simulations combine numerical and some approximation techniques for efficient simulation
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of reionization. They involve an approximated radiative transfer scheme and use analytical

techniques to evolve the density field. These simulations are capable of producing similar ion-

ization morphology to full radiative transfer simulations (Majumdar et al., 2014; Molaro et al.,

2019). 21cmFast (Mesinger, Furlanetto, and Cen, 2010) and SimFast21 (Santos et al., 2010)

are semi-numerical codes that are capable of modeling cosmological 21cm signal during the

EoR. These codes are comparable and in this work, we focus on SimFast21 which is described

next.

3.1.1 SimFast21

SimFast21 is a semi-numerical code used to evolve reionization and generate the 21cm signal

on large scales. This model has been first introduced in Santos et al. (2010). We here briefly

describe the main framework of SimFast21. An initial density field will be generated in the linear

regime using a Gaussian distribution, which then will be evolved to the nonlinear regime. This

is done based on the second-order linear perturbation theory that is specified by the Zel’dovich

approximation (Zel’dovich, 1970) following an analytic model of structure formation (White,

2014). The second step is the identification of dark matter halos, using the well-known excursion

set formalism (Bond et al., 1991). An excursion set formalism (Furlanetto, Zaldarriaga, and

Hernquist, 2004) will be applied to generate the ionization field out of the density and source

fields. The source model used to generate the dataset accounts for ionizing emissivity from

star-forming galaxies, where ionizing photons per second (𝑅𝑖𝑜𝑛) is modeled from a combination

of large-volume hydrodynamic galaxy formation simulations (Davé et al., 2013) and high-

resolution full radiative transfer hydrodynamic simulations (6/256-RT; Finlator et al., 2015) as

follows:
𝑅𝑖𝑜𝑛

𝑀ℎ

= 𝐴𝑖𝑜𝑛 (1 + 𝑧)𝐷𝑖𝑜𝑛 (𝑀ℎ/𝐵𝑖𝑜𝑛)𝐶𝑖𝑜𝑛 exp
(
−(Bion/Mh)3

)
, (3.1)

where 𝐴𝑖𝑜𝑛, 𝐶𝑖𝑜𝑛, and 𝐷𝑖𝑜𝑛, 𝑀ℎ, and 𝑧 represent the ionizing emissivity amplitude, halo mass

power-law index, redshift evolution index, halo mass, and redshift respectively. Using the 6/256-

RT simulation, the amount of recombining neutral atoms per second (𝑅𝑟𝑒𝑐) is parameterized as

follows:
𝑅𝑟𝑒𝑐

𝑉
= 𝐴𝑟𝑒𝑐 (1 + 𝑧)𝐷𝑟𝑒𝑐

[
(Δ/𝐵𝑟𝑒𝑐)𝐶𝑟𝑒𝑐

1 + (Δ/𝐵𝑟𝑒𝑐)𝐶𝑟𝑒𝑐

]4

, (3.2)
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where Δ is the overdensity, and 𝑉 is the spherical volume. The values for 𝐴𝑟𝑒𝑐 = 9.85 ×

10−24𝑐𝑚−3𝑐−1, 𝐵𝑟𝑒𝑐 = 1.76, 𝐶𝑟𝑒𝑐 = 0.82 and 𝐷𝑟𝑒𝑐 = 5.07. For more information on the two

simulations mentioned and the parameterization of 𝑅𝑖𝑜𝑛 and 𝑅𝑟𝑒𝑐, we refer the interested reader

to Hassan et al., 2015, and Hassan et al., 2016.

For a region to be ionized, it must meet the criteria that the product of 𝑅𝑖𝑜𝑛 and the photon

escape fraction ( 𝑓𝑒𝑠𝑐) be greater than or equal to 𝑅𝑟𝑒𝑐, where 𝑓𝑒𝑠𝑐 is the number of ionizing

photons that escape a galaxy into the IGM. This ionization condition reads:

𝑓𝑒𝑠𝑐𝑅𝑖𝑜𝑛 ≥ 𝑅𝑟𝑒𝑐 . (3.3)

Figure 3.1: A comparison between a binary (left) and continuous ionization
map (right) from SimFast21.

The vanilla SimFast21 generates ionization maps with binary values. Once the ionization

condition is satisfied, fully ionized cells are assigned the value 𝑥HII = 1, and otherwise 𝑥HII = 0

for fully neutral cells. However, recombination is expected in fully ionized regions which would

result in the presence of residual neutral fraction HI. Hassan et al. (2015) introduced a recipe to

account for this residual neutral fraction to allow for low ionized fractions in post-reionization

following a homogeneous ionizing background, which then results in a continuous map. Figure

3.1 shows a comparison between a binary (left) and continuous (right) ionization map.

3.2 Accelerating SimFast21 with Machine learning
In Chapter 1, we have discussed several upcoming 21cm experiments such as SKA that are

expected to go beyond the PS and produce a full 3D mapping of the 21cm signal. SKA will also

produce huge amounts of data, hence we must develop new codes and simulations to efficiently

analyze these upcoming data.
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Figure 3.2: The basic workflow of all reionization simulations (e.g. SimFast21)
is as follows: generating the initial density field (left), identifying sources
(middle left), and applying radiative transfer (middle right) to obtain the ionized
bubbles (right).

Semi-numerical simulations are the leading candidates to evolve reionization on large scale

but generating high dimensional datasets from these simulations is computationally expensive,

particularly for training CNNs to perform parameter recovery. There are some ML techniques

that are capable of accelerating the generation of these data such as generative models including

autoencoders and U-Nets. The most expensive step in these simulations is the radiative transfer

module which generates the large-scale ionized bubble distributions. For instance, as discussed

in the introduction, Chardin et al. (2019) have used an autoencoder as a generative model to

simulate reionization using both gas density and star particle number density. In this thesis,

we aim to accelerate SimFast21, the semi-numerical model described above, by skipping

the source identification (halos/galaxies...etc) and radiative transfer step. We aim to directly

generate the ionization maps from the initial density field without using the sources location nor

following the detailed radiative transfer process. Figure 3.2 above shows a basic workflow of

all reionization simulations (e.g. SimFast21) starting with the density field generation, through

source identification, and then generating ionized field via radiative transfer. The arrow on top

indicates the approach to be taken in this thesis to accelerate SimFast21.

3.3 Training Datasets
The training datasets are generated using SimFast21, a semi-numerical code described in Section

3.1 above. All data are generated using a box size of 250 Mpc with a number of voxels of

1283. We adopt the ΛCDM model with the following cosmological parameters, the Hubble

parameter h=0.7, matter density Ω𝑚=0.3, baryon density Ω𝑏=0.045, density parameter for dark
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energy ΩΛ=0.7 and matter fluctuation amplitude 𝜎8=0.8, consistent with Planck Collaboration

et al. (2018).

Figure 3.3: Random examples of the density fields in the top row, halo fields in
the middle, and ionization fields in the bottom row. The halo and ionization
fields shown are generated from the density fields shown. The first column
shows the generated ionization field with a fraction that is ∼ 0.3, the second
column ∼ 0.5, and the third column ∼ 0.8.

To create a diverse and balanced dataset that contains a variety of density fields and their

corresponding ionization fields we varied several free parameters of the ionization rate 𝑅ion

such as the photon escape fraction ( 𝑓esc), ionizing emissivity amplitude (𝐴ion) and the halo

mass power index (𝐶ion) which controls the size of the ionized bubbles over the following

uniform prior range 𝑓esc = 0 − 1, log10 𝐴ion = 38 − 42, and 𝐶ion = −2 − 2.

Figure 3.3 shows random samples of images from the training dataset. The different density
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fields are shown at the top row, with the source (halos/galaxies) fields shown in the middle

row, and the ionization field at the bottom row. The ionization fields range from low ionization

fraction (left map, 𝑥HII ∼ 0.3) to high ionization fraction (right map, 𝑥HII ∼ 0.8).

The generated dataset consists of 15,600 images of density fields and their corresponding

ionization fields. The dataset was split into two sets with a ratio of 9:1 for training and testing

respectively. We then perform all the analysis using ionization maps corresponding to the

mid-point of reionization, with 0.4 < 𝑥HI < 0.6. We choose to test the different methods using

realizations of the mid-point of reionization to maximize the non-linearity due to the diverse

bubble sizes at this limit. In highly ionized or highly neutral Universe, the maps contain less

information and less diversity of the ionized bubble distributions. While choosing this limit

is somewhat arbitrary, the analysis presented here is a proof-of-concept to test the viability

of using generative models to emulate the radiation transport on cosmological scales. This

subsample was augmented (both the training and testing set were increased by creating copies

of the existing data) by flipping and rotating the data at different angles in both the y and x

directions (y and x-axis). The augmented data were concatenated with the existing data to form

new training and testing datasets. The datasets were normalized to values in the range between

0-1.

3.4 Generative Models
In the previous chapter, we have discussed in detail the components that make up a neural

network, their importance, and functionalities. These include activation functions to add

non-linearity to the network, loss functions to quantify the error between the predicted and

true values, optimizers to minimize the loss error, and regularisation techniques to prevent

overfitting.

A successful ML model requires careful and extensive training and hyperparameter tuning. We

seek the optimal architecture and the best hyperparameters to design a powerful and accurate

model that will be successful in solving our problem. We have explored different techniques to

generate ionization fields directly from density fields. The two main generative architectures

used are autoencoders and U-Nets. These models are suitable for our problem and they are

able to support the nature of our data. Among the architectures that we explored were a dense
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autoencoder, a convolutional autoencoder, a VAE, a basic U-Net, and a denoising U-Net. Here,

we show the architectures and tables to summarise the models used to generate ionization fields

directly from density fields. The architectures for the dense and VAE are omitted due to their

low performance as compared to other models presented here.

All our codes are written using TensorFlow (Abadi et al., 2015). TensorFlow is an open-

source Python library used in academia and commercially. TensorFlow was developed by

Google in 2015 and modified in 2019 and now works in conjunction with Keras (Ketkar,

2017), an Application Programming Interface (API). In this project, we used TensorFlow 2.0

(2019 version). We train our models using a single NVIDIA Tesla V100-32GB SXM2 GPU

on Bridges-2. Bridges is a high-performance supercomputing facility from the Pittsburgh

Supercomputing Cluster (PSC).

3.4.1 Convolutional Autoencoder

CNNs have been known to be very efficient in designing ML models that work on images with

complex features. In our attempt to generate the ionization fields directly from the density

fields, we have used the convolutional autoencoder whose architecture is summarised in Figure

3.4 and Table 3.1. Figure 3.4 shows a convolutional autoencoder architecture with the input as

the density field, encoder, latent space, decoder, and output as the ionization field.

The input to the autoencoder is a 2D array of the density field with a 128 x 128 dimension.

The encoder has two 3x3 convolutional layers, with filters 64 and 32 applied to the first

and second layers, respectively. A stride of two and the "same" padding is applied to these

convolutional layers. The padding used allows more space for the kernel to cover the image.

Using "same" padding ensures that the filter is applied to all elements of the input by extending

the area of an image. The stride parameter depends on the number of parameters such as the

network architecture, the trade-off between spatial resolution and computation efficiency, and

the problem the network is solving. Setting the parameter to two works best for our networks.

The regularization technique we used here is Batch Normalization, and this layer is followed by

a LeakyReLU activation function layer, with an alpha value of 0.2. The latent space contains a

dense layer with 16 units. Batch Normalization and LeakyReLU are also applied to this layer.
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The decoder and encoder are symmetric. The decoder layer consists of two 3x3 convolutional

operations (Conv2DTranspose layers) for upsampling. As with the convolutional operations

in the encoder, the filters are 32 and 64, and the stride is set to 2. The Conv2DTranspose

layers are followed by Batch Normalization and LeakyReLU layers. The output layer has no

regularization technique applied to it and sigmoid is used as the activation function. The output

is a 2D array of the ionization field with dimensions 128 x 128.

Layer Size

Input

Input Layer 128 x 128 x 1

Encoder

Conv2D layer1 64 filters

BatchNormalization

LeakyReLU

Conv2D layer2 32 filters

BatchNormalization

Leaky ReLU

Latent Space

Dense layer 16 units

BatchNormalization

Leaky ReLU

Decoder

Conv2DTranspose layer 2 32 filters

BatchNormalization

Leaky ReLU

Conv2DTranspose layer 3 64 filters

BatchNormalization

Leaky ReLU

Output Layer

Conv2DTranspose layer 128 x 128 x 1

Sigmoid

Table 3.1: The summary for the architecture of our convolutional autoencoder.
It consists of two layers in both the encoder and decoder and has a latent space
with a size of 16 units.
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Our model uses Adam optimizer with a learning rate of 10−4 and the MSE loss function.

The autoencoder has a total of about 1,129,553 parameters to learn, where 1,129,169 of these

parameters are trainable, and about 384 are non-trainable. Trainable/learnable parameters refer

to the values that are optimized during training to make the model perform better. These include

weight and biases. Non-trainable/non-learnable parameters are what we call hyperparameters

and they are set before training could take place. These are adjusted by the user as needed

( trial and error). Non-learnable parameters include the number of layers, learning rate, and

activation function, just to name a few. The model is trained for 200 epochs, and training takes

approximately seconds per epoch. Using a batch size of 16, the model trains for approximately

20 minutes.

Figure 3.4: Network for the convolutional autoencoder.

3.4.2 U-Nets

Two other generative models we are using to generate ionization fields directly from density

fields are a basic and denoising U-Net. These models have the same architecture with the same

number of layers in both the downsampling and the upsampling path. The difference between

these two models is in the input. The basic U-Net uses only the density field as an input while

the denoising U-Net considers a two-channel input, namely a density field and either a white

noise or corrupted version of the ionization field during training. White noise is a type of

Gaussian noise that is determined by the mean and standard deviation, it follows a Gaussian

distribution. The corrupted versions of the data were simulated by adding white noise to the

ionization fields. The type of noise used during training is sampled randomly with a 50/50

probability.
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Figure 3.5: A visual summary of the U-Net architecture showing the two
different strategies for training using either a single input for the basic version or
two inputs for the denoising model.

Figure 3.5 shows the two versions of the U-Net and the main architecture is summarised in

Table 3.2. The downsampling (Encoder) path consists of four main layers with 3x3 double

convolutions, where each convolution is followed by Batch Normalization and ReLU activation

function. Max pooling is applied at the output of each double convolution. The first double

convolutional layer has a filter of 16. Two filters are applied in the next layer to double the

number of features. If the filters in the two first layers are 16, they are then doubled to be 32 in

the next layer, and so on. The filters used for the four layers are of sizes 16, 32, 64, and 128.

The bridge connects the downsampling and upsampling paths to control the flow of information

between these two. It consists of a 3x3 two-convolutional layer with a filter of 256, followed

by Batch Normalization and ReLU activation function. The upsampling path of the U-Net

consists of four main layers with each layer having a convolutional operation Conv2DTranspose

with a 3x3 double convolutional layer to reduce the number of features in half. The filters

used are 128, 64, 32, and 16. The downsampling and upsampling paths are symmetric, with

a concatenation layer that passes the information from the downsampling to the upsampling
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in the form of cropped feature maps. Batch Normalization and ReLU are applied after each

convolutional layer. The output of both U-Net architectures is the ionization field.

Layer Size

Input Layer

Input 128 x 128 x 1

Downsampling

Conv2D layer1 16 filters

BatchNormalization

ReLU

Conv2D layer2 16 filters

BatchNormalization

ReLU

MaxPooling2D

Conv2D layer3 32 filters

BatchNormalization

ReLU

Conv2D layer4 32 filters

BatchNormalization

ReLU

MaxPooling2D

Conv2D layer5 64 filters

BatchNormalization

ReLU

Conv2D layer6 64 filters

BatchNormalization

ReLU

MaxPooling2D

Conv2D layer7 128 filters

BatchNormalization

ReLU

Conv2D layer8 128 filters

ReLU

BatchNormalization

MaxPooling2D

Bridge

Conv2D layer9 256 units

BatchNormalization

ReLU

Conv2D layer10 256 filters

ReLU

BatchNormalization

Upsamling

Conv2DTranspose layer 1 128 filters

Concatenate

Conv2D layer11 128 filters

BatchNormalization

ReLU

Conv2D layer12 128 filters

ReLU

BatchNormalization

Conv2DTranspose layer 2 64 filters

Concatenate

Conv2D layer13 64 filters

ReLU

BatchNormalization

Conv2D layer14 64 filters

BatchNormalization

ReLU

Conv2DTranspose layer 3 32 filters

Concatenate

Conv2D layer15 32 filters

BatchNormalization

ReLU

Conv2D layer16 32 filters

BatchNormalization

ReLU

Conv2DTranspose layer 4 16 filters

Concatenate

Conv2D layer17 16 filters

BatchNormalization

ReLU

Conv2D layer18 16 filters

BatchNormalization

ReLU

Output Layer

Conv2DTranspose layer 128 x 128 x 1

Sigmoid

Table 3.2: The summary for the architecture of a U-Net downsampling path on
the left and the upsampling path of a U-Net.

The total number of learnable parameters of the basic U-Net is 1,946,705, while for the denoising

U-Net model is 1,946,849, and only 2,944 are not learnable in both cases. Both models are
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trained for 200 epochs to observe a plateau in the loss evolution. We use Adam to optimize

the models and the MSE as a loss function. The learning rate for both U-Nets is set to 10−3

and the basic U-Net is trained using the batch size of 16 while the denoising U-Net’s batch size

during training is 64. The denoising model was trained iteratively (using a for loop). Since the

noise sampling process is random, during the iterative process the network has a 50/50 chance

of choosing either the white noise or the noisy version of the ionization.

3.4.3 Testing protocol for the denoising U-Net model

This subsection presents the testing strategies for our three best-performing models, with more

focus on the denoising U-Net model since it performs better than the autoencoder and the basic

U-Net. The testing protocol for the denoising U-Net is an iterative process.

• Autoencoder and basic U-Net take a single input, namely the density field, to generate

the ionization field. In this case, the method is deterministic and there exists a unique

solution for each input. Hence, a single forward pass of the input through the networks is

sufficient for testing.

• Denoising U-Net takes two inputs, namely the density field and either a white noise or

a noisy version of the ionization field during training, to generate the ionization field.

In this case, the method is stochastic and there exist infinite solutions for each input,

depending on the initial random seed. During testing, we first feedforward a white noise

next to the density field. We then feedforward the output into the network to generate

the second output. We continue to feedforward the output recursively till convergence in

the loss evolution is achieved and the predicted power spectrum achieved is similar to the

target.

In Figure 3.6, we show the recurrent testing approach used for the denoising U-Net model. The

recursive testing is implemented using the following equation: 𝑦𝑛 = 𝛼𝑦𝑛−1− (1−𝛼)F (𝑥, 𝑦𝑛−1),

where F is the trained denoising U-Net model, 𝑥 is the density field and 𝑦𝑛−1 is the previous

prediction, and the regularisation parameter 𝛼 is set to 0.4 to prevent ionized bubble overgrowth.

The number of iterations is controlled by 𝛼 and we stop the iterations when the PS for a specific

iteration is similar to that of the target. We will discuss this in more detail in Chapter 4.
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Figure 3.6: Iterative testing for the denoising model where it takes five
iterations to generate ionization maps that are virtually similar to the testing set

To this end, we have presented in detail the training and testing strategies for our generative

models to emulate the radiative transfer and accelerate SimFast21. Next, we present our key

results.
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4 Results and Discussion

This chapter presents the results from our three best-performing models, which are the convo-

lutional autoencoder, basic U-Net, and denoising U-Net. We present the results in two sections,

where Section 4.1 focuses on the results using continuous ionization maps and Section 4.2

binary ionization maps. The performance of the three models is examined using the loss evo-

lution, visualization of the target and predicted maps, the power spectra, and the bubble size

statistics.

4.1 Performance on Continuous Maps
Since the denoising U-Net is a probabilistic model and requires different testing protocol we

will present this model first.

4.1.1 Denoising U-Net

• Loss Evolution

As mentioned earlier, the loss function is an error metric used to evaluate the performance

of training and testing. As with all the other models and as already mentioned in the

previous chapter, we have used MSE as our loss function. During training the model

sees the noisy/corrupted version of the ionization field and the loss for training converges

around 100 epochs. Figure 4.1, shows that the loss function is almost zero, indicating that

there is a minimal loss of information during the training of this model. The fluctuations

in the validation loss are due to validating the model in a single iteration and using the

white noise beside the density fields. There is no overfitting in the loss evolution as the

validation loss is not increasing. The training loss is shown in a green solid line while

the validation loss is shown in a dashed green line.
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Figure 4.1: Loss evolution showing the training and validation loss of the
denoising U-Net. Both losses decrease over training and testing epochs and
convergence is achieved roughly after 100 epochs and the model shows no signs
of overfitting.

• Comparing models at the map level

Ionization maps contain small and large scale bubbles. Small-scale bubbles are ionization

bubbles that are a few hundred comoving kiloparsecs (Kpc) across in size while the large-

scale bubbles are typically several comoving megaparsecs (Mpc) across. Small-scale

bubbles are the ionized regions around individual galaxies and large-scale bubbles refer

to the overall structure and evolution of the ionized regions. Individual small-scale

bubbles overlap and merge to form large-scale bubbles.

The loss evolution gives us insight as to how well the model is performing but here we

plot the images to see how well the bubbles are recovered in each case. Figure 4.2 below

shows the evolution of the ionized bubbles as a function of iteration. During the testing

process of the denoising U-Net, we first feed-forward the density field and white noise to

obtain the ionization field. For the first iteration, the noise is replaced with the ionization

field predicted in the first step. It takes about five iterations for the generated maps from

the denoising U-Net to be similar to the target maps, by visual inspection.
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Figure 4.2 shows the comparison between the original ionization maps and the iterations

from the denoising U-Net model during testing. These are randomly selected samples

from the testing set. As we have already mentioned that we start with the white noise,

the first column in Figure 4.2 shows the white noise, while the 2nd, 3rd, 4th, and 5th

column represents the denoising U-Net outputs for different iterations, and the last column

represents the true ionization maps. Here we only plot the maps generated from the 1st,

3rd, 5th, and 6th iterations to show the denoising process over iterations. In summary,

the iterative testing implemented for the denoising U-Net is able to produce ionization

bubbles that are visually similar to the ones produced by the simulation (original/true

ionization maps).

Figure 4.2: Visualization of randomly selected samples of the reconstructed
ionization fields over iterations. By visual inspection, five iterations are
sufficient to generate a similar ionization map to the target.

• Comparing models on the level of Power Spectrum

We now turn our attention to evaluating the denoising U-Net over all the testing dataset

using the PS as a summary statistic since it is the observable target for many of the current

and upcoming 21cm surveys. Figure 4.3 shows the average power spectra as a function of

wavenumber (k) for each iteration of the denoising U-Net model. The target PS is shown
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in red, with the white noise in black, the first iteration in cyan, the third in orange, the

fifth in purple, and the sixth in lime color. The PS approaches the target as the number

of iterations increases. Here, we show that after 5 iterations the PS matches the target PS

on large scale. On the sixth iteration, the PS surpasses the target. This model however

is unable to recover the small-scale power where non-linearity is maximum. This non-

linearity relationship at small scale is a contributing factor to the poor performance of the

model since the model is not able to capture it. There are other factors that can result in

a model not being able to capture the small-scale structures. These include the amount

of data available, the resolution of the simulation or observation, and the accuracy of

the simulation. SimFast21 uses some approximation of the radiative transfer scheme and

this might also be one of the reasons why the model is not able to generalize well on

small scales. The resolution of the simulation might also be a contributing factor since

to capture the small-scale structure the resolution of the simulation must be high. From

here on, in this subsection, the plots for the denoising U-Net model will be based on the

5th iteration.

Figure 4.3: Evolution of the power spectrum from white noise to the
reconstructed ionization field over iteration. Five iterations are sufficient to
produce a similar large-scale power to the target.
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4.1.2 Performance on all the models

• Loss evolution

We now compare the MSE loss evolution between all models in Figure 4.4. We show

the basic U-Net, Autoencoder, and Denoising U-Net in blue, green, and magenta colors,

respectively. Solid and dashed lines represent the loss during the training and validation

phases, respectively. The loss in the basic U-Net is lower compared to the loss for the

autoencoder. Since the denoising U-Net is the best-performing model its loss is expected

to be lower than that of the basic U-Net. As can be seen from the plot, denoising U-Net

has the lowest loss, indicating better performance. In all the plots, the training loss

decreased after each and every epoch and converged at about the 100th epoch, indicating

that the models are able to generalize the training data. All losses converge and there is

no sign of overfitting or underfitting in all the models. Because of the noisy ionization

fields that were added during the training process of the denoising U-Net model, its loss

is lower compared to the other two models.

Figure 4.4: Comparison between the autoencoder (magenta), basic U-Net
(blue), and denoising U-Net (green) in terms of the loss evolution over training
epochs. This figure shows that the denoising U-Net has the lowest MSE loss,
indicating the best performance

.

http://etd.uwc.ac.za/



Chapter 4. Results and Discussion 62

• Comparing models at the map level

Figure 4.5 shows the random visualization from the testing set. The first column is the

density field, the second column is the original ionization field, the third column is the

reconstruction from the autoencoder, the fourth column is the reconstruction from the

basic U-Net and the last column shows the reconstruction from the denoising U-Net.

Both the autoencoder and the U-Net reconstruct similar ionization bubbles. These two

models are unable to detect most of the large-scale bubble edges. Unlike the autoencoder

and basic U-Net, the denoising U-Net model is able to detect them. Adding noisy

ionization fields to the network during training and performing recurrent testing on the

trained model allowed for a more refined way to recover the ionization bubbles. The

edges of the bubbles can be detected and clearly identified in the generated ionization

maps from the denoising U-Net.

Figure 4.5: Visualisation of random maps from the testing set for all the models
where the autoencoder and U-Net models construct the bubbles similar to each
other, while the denoising U-Net constructs bubbles that are similar to the
testing set.
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• Comparing models on the level of Power Spectrum

Figure 4.6: The PS from all the best performing models, the figure shows the
improvements made by the denoising U-Net on large scale.

The figure above plots the power of the ionization field at different scales. The PS

shown in Figure 4.6 is the mean power from all the testing data. The target, autoencoder,

basic U-Net, and denoising U-Net spectra are shown in red, magenta, blue, and green,

respectively. In the case of the denoising U-Net, the PS plotted was the average of the

power after recurrent testing. Both the autoencoder and the U-Net models construct the

large and intermediate scales similarly, the difference in the power spectra can be seen

on small scale where the U-Net power is closer to the target power and the autoencoder

power deviated from both the U-Net and the target spectra. The difference in the PS of

the autoencoder and the basic U-Net is due to the fact that a U-Net model is able to assign

labels pixel by pixel and the skip connection in the U-Net allows a model to retain more

refined information. The PS of the denoising U-Net model showed a good agreement

with that of the original maps on large scales, thus it performed better than the U-Net

and the autoencoder, which both underestimated the power. Even though the denoising
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model showed good agreement on a large scale, the power was underestimated on a small

scales. This poor performance on small scale is expected since non-linearity is highest.

However, this figure demonstrates that our denoising U-Net can still be suitable for studies

that focus on scales larger than ∼ 30 Mpc (k∼0.2 Mpc−1).

• Comparing models in terms of the Bubble Size Distribution

The bubble size distribution (BSD) describes how many ionized regions of a given size

exist in the data. There are several ways to describe the BSD that provide a largely

similar representation of the bubbles. There are three well-known methods that can be

used to define the BSD. The first method is Friends of Friends (FoF, Iliev et al., 2006)

and it focuses on the connectivity of the ionized bubbles. Second, the Spherical-average

method (Zahn et al., 2007) which focuses on the largest spherical volume that fits inside

the distribution of ionized regions. Third, the mean free path (mfp) method (Mesinger

and Furlanetto, 2007), which finds the distribution of the distances to the edges of an

ionized region from a large collection of random points and directions. The bubble size

distribution in this work was computed using Tools21cm (Giri, Mellema, and Jensen,

2020) using only the mfp method as a reference.

Figure 4.7: Histogram showing a number of bubbles within the training dataset
as a function of their corresponding ionization fraction.

http://etd.uwc.ac.za/



Chapter 4. Results and Discussion 65

The transition from highly ionized to highly neutral is very sharp and rapid (Iliev et al.,

2009). We have experimented with different ionization thresholds and have chosen 0.9

because most of the ionization fractions are above this limit. This can be observed in

Figure 4.7, which shows the histogram of the ionization fraction from all pixels over all

the training dataset. This figure shows that most of the ionization fractions are above

this limit. For this reason, we set pixels that have an ionization fraction greater than 0.9

to unity and otherwise to zero. Figure 4.8 shows the BSD using the mfp method. To

compute the BSD, the ionization maps are converted to binary. The BSDs for both the

autoencoder and the basic U-Net are lower than the target, indicating that the bubbles in

these models are smaller than in the original field. This further strengthened the results

shown by the loss evolution, visualization, and PS.

Figure 4.8: The BSD using the Mean free path (mfp) for all models, where the
ionization threshold (xHII) is set to 0.9. The denoising U-Net model produces a
similar BSD as the original ionization field

4.2 Performance on binary maps
As already mentioned in Chapter 3, Section 3.1.1 that SimFast21 can generate both binary and

continuous maps. Here we present the results of the models when evaluated on binary maps.
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The maps are converted to binary using the criteria described in the previous section. It is

important to note that we do not re-train the models on binary maps but we use the pre-trained

models from continuous maps for this evaluation. As with the previous chapter, we present the

results from the denoising U-Net first before comparing all the models.

4.2.1 Denoising U-Net

• Comparing models at the map level

Figure 4.9: The visualization comparison of the ionization maps as a number of
iterations when the maps are binary.

The testing protocol for the binary maps is similar to that of the continuous maps. It takes

about five iterations for the generated ionization maps to match the true ionization maps,

by visual inspection. On the 6th iteration, the ionization bubbles are bigger than those in

the true maps. Figure 4.9 shows the comparison between ionization fields generated by

the model and the simulation. White noise, 1st iteration, 3rd iteration, 5th iteration, 6th

iteration, and the true ionization maps are represented by the 1st, 2nd, 3rd, 4th, 5th, and

6th column, respectively. Like the case in the continuous maps, the ionization bubbles
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grow over iterations. By the fifth iteration, the predictions visually match the original

maps.

• Comparing models on the level of Power Spectrum

Figure 4.10: Original PS compared to the reconstructed PS as a function of
iterations, where at the 5th iteration a perfect match to the target is observed.

The power spectra are shown by Figure 4.10. This figure shows the PS as a function of

iterations for the denoising U-Net model. The power spectra for the target, white noise,

the first iteration, 3rd iteration, 5th iteration, and 6th iteration are shown in red, black,

cyan, orange, purple, and, lime, respectively. The figure shows that the PS approaches the

target PS as the number of iterations increases. On the 5th iteration, the denoising U-Net

perfectly matches the target spectrum, and the 6th iteration surpasses the target. Testing

with binary maps provides a better fit to the PS specifically on small scales. The better

agreement on the small-scale power as compared to testing with continuous maps is due

to the fact that those intermediate features (0.2 ≤ 𝑥𝐻𝐼𝐼 ≤ 0.8) are now removed which

mainly affect the small-scale bubble distributions by reducing their abundance. The

large-scale power is still perfectly recovered since the morphology of large-scale bubbles

does not change in either binary or continuous maps. However, most of upcoming 21cm
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surveys will be mainly sensitive to detect those large-scale bubbles, and hence recovering

the small-scale bubble distribution performed here is for completeness to minimize loss

of information.

4.2.2 Performance on all models

• Comparing models at the map level

Figure 4.11: Comparison among the ionization fields generated from density
fields using autoencoder (3rd column), basic U-Net (4th column), and the
Denoising U-Net (5th column). The denoising U-Net is able to generate
ionization maps that are almost identical to the target.

Figure 4.11 shows that the same trend that was observed with continuous maps still holds.

The autoencoder and the basic U-Net models construct similar ionization bubbles, while

with the denoising U-Net model, the ionization bubbles are much closer to the target.
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The density field, ionization field (target), autoencoder output, basic U-Net output, and

denoising U-Net output are shown in the 1st, 2nd, 3rd, 4th, and 5th columns, respectively.

By visual inspection, we can see that the morphology of the ionized bubble indeed remains

the same after the maps are converted to binary.

• Comparing models on the level of Power Spectrum

The PS comparison between our different models for binary maps is shown in figure 4.12

below. The original PS (target) is shown in red, the autoencoder in magenta, the basic

U-Net in blue, and the denoising U-Net in green. As we have already established, the

denoising U-Net is the superior model, converting the maps from continuous to binary

maps improves the recovery of the PS on both small and large scales.

Figure 4.12: The PS comparison for the different models for binary maps. The
denoising U-Net produces ionization maps with a power spectrum that is similar
to the target.

• Comparing models in terms of the Bubble Size Distribution

The BSD from binary maps is calculated following the same mfp method as with con-

tinuous maps. Figure 4.13 shows the number of ionized bubbles as a function of scales

http://etd.uwc.ac.za/



Chapter 4. Results and Discussion 70

in each model. The bubble sizes in both the autoencoder and the basic U-Net are much

smaller than the predictions from the denoising U-Net and the simulation (target). The

denoising U-Net model produces bubbles that are similar in size to the target over all

scales. This finding corroborates the results that are shown by the visualization of the

random ionization fields and the PS that the denoising U-Net is the best-performing

model. Please note that the BSD from binary maps and the continuous maps are similar

mainly due to the fact that computing the BSD requires converting maps to binary.

Figure 4.13: The BSD comparison between our different models for binary
maps. The denoising U-Net is able to recover the target bubble distribution over
all scales.

The aim of this thesis is to accelerate SimFast21 using machine learning. We have managed

to build different generative models to accelerate SimFast21 and we found that the denoising

U-Net model is the best-performing model to generate ionization fields directly from the density

fields with PS and BSD in good agreement with that of the target.
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5 Summary and Conclusions

SKA is one of the most anticipated future large-scale surveys of reionization that will provide

huge amounts of high-dimensional datasets. These vast amounts of datasets will require efficient

generation of new codes and simulations to analyze. Current reionization simulations are too

computationally expensive to efficiently generate huge amounts of data to train neural networks

and extract information. The most expensive part of all reionization simulations is the radiative

transfer process, which we have attempted to accelerate using state-of-the-art techniques in

generative models. We here provide a summary of the work presented in this thesis and plans

for future work.

In Chapter 1 of this thesis we have reviewed several physical processes during EoR, key

fundamental questions, and discussed how the IGM was reionized. We have reviewed the

different indirect observational constraints on reionization such as GP optical depth observed in

the Ly𝛼 absorption spectra of quasars, the HI evolution using high redshift quasars, polarization,

and temperature anisotropies from CMB surveys, and highlighted the importance of 21cm as a

direct probe to EoR. Given the importance of 21cm in this thesis, this chapter also discussed

the different ongoing and planned 21cm experiments and some exploration of 21cm cosmology

with machine learning techniques.

In Chapter 2, we have reviewed the basics of Machine Learning, and the differences between

machine learning algorithms, and applications. We have compared supervised, unsupervised,

and semi-supervised ML methods and highlighted the applications of the different methods.

We have highlighted the difference between shallow and deep neural networks and why the

latter was more relevant to our work. We have introduced all the ingredients required to build a

successful DL model, such as loss functions, activation functions, optimizers, and regularisation

techniques. We have discussed the two main generative models that we plan to use to accelerate

SimFast21.
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“Accelerating reionization simulations with machine learning", is the third chapter of this

thesis. Here, we have discussed the semi-numerical simulation SimFast21 and provided a brief

discussion on how this simulation generates the 21cm ionization map from density fields. We

have shown and explained how we plan to accelerate this simulation using ML. In Chapter

3, we have also detailed the data generation process using SimFast21 and how the data was

pre-processed for testing and training. Figure 3.3 showed random examples of density, halo,

and ionization fields generated. The generative models used to generate ionization fields from

density fields have been explained in detail with figures and tables. Finally, we have explained

our testing protocols to evaluate the performance of the denoising U-Net model.

Results and discussion formed Chapter 4 of this thesis. The results are presented in two

sections, where the first section presents the performance of the generative models for continuous

ionization maps and the second section showed the performance on binary maps. The results

are shown in terms of main four metrics; the loss evolution, visualization of the maps, PS, and

BSD. Here, we have shown that the addition of noise in the training process of the denoising

U-Net and the implementation of the iterative testing allowed for a more refined method to

detect ionization bubbles. This was the best-performing model.

In this thesis, we have presented different machine learning models to accelerate SimFast21, a

semi-numerical model that simulates the 21cm cosmological signal. We have compared three

different machine learning models to see how well they generate the ionization fields from

density fields. The autoencoder and the basic U-Net produce maps that are similar by visual

inspection. This is shown in Figure 4.5. Both these models are able to recover the small

bubbles but miss the edges of the bigger bubbles. By comparing the power spectra of these

two with the original spectrum we were able to deduce that the U-Net makes an improvement

on the small-scale power. Motivated by this, we have introduced a third model, which was

the adaptation of the basic U-Net by adding noise in the second channel of the input images

during training and implementing iterative testing. The denoising U-Net model makes a major

improvement on the maps and the power spectrum, this is our best-performing model.

The Autoencoder, basic U-Net, and the denoising U-Net required 20 minutes, 40 minutes, and

2 hours respectively to train. All the models were trained for 200 epochs to observe the change

in the loss evolution and to see if they converge. The trends in the loss evolution show that
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all the models are not overfitting or underfitting the training data. Testing these models took

a couple of a second to generate about 1000 ionization maps. This is a great improvement

on the semi-numerical simulation comparing 5 minutes to a fraction of a second. To evaluate

the performance of our three models on binary maps we have used the pre-trained models on

continuous maps, and found that the small-scale power is perfectly recovered in this case.

Future works will include training the models on binary maps to better evaluate their perfor-

mance against continuous maps. Training a deeper autoencoder architecture using the density

field plus noise will also be explore since the performance of the autoencoder is comparable to

the basic U-Net. We will also condition these machine learning models on other source model

parameters such as the photon escape fraction ( 𝑓𝑒𝑠𝑐) and other cosmological parameters such

as the matter density parameter (Ω𝑚). Another probable future work will involve training the

same models on different source populations such as AGNs, which were explored in Hassan

et al. (2018). These models can also be re-trained after adding various instrumental effects

such as thermal noise, angular resolution, and foreground cleaning for different 21cm surveys.

These models can be used to generate intensity maps for Carbon Monoxide (CO) and the fine-

structure line of the ionized carbon atom (CII), which will enable joint analysis studies such as

cross-correlation of other intensity mapping surveys with 21cm.
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