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Abstract

Since the onset of the COVID-19 pandemic, researchers speculated that this virus would

create numerous challenges in the daily lives of individuals, especially medical and gov-

ernmental authorities as they are put under pressure to effectively manage the problem.

Previous information gathered by researchers shows that the strain in trying to control

this ongoing COVID-19 outbreak is largely due to asymptomatic infectives. This outbreak

underlines just how crucial it is to find therapeutics to target this virus so that the spread

of the infection and the number of fatalities can be slowed down to reduce the pressure.

Further research is being done to determine possible treatments that can be beneficial

in controlling the spread of the disease. In this dissertation we construct, analyse and

demonstrate the utility of mathematical models of the disease dynamics of COVID-19,

and in particular we consider the effect of migrants into and out of the local population,

asymptomatic carriers, vaccination, and also effect of the environmental reservoir of the

pathogen, the COVID-19 virus (SARS-CoV-2). Such models are useful to public health

authorities for the purpose of making future projections and to test the feasibility of cer-

tain combinations of interventions for controlling the disease. For this dissertation, we

provide an insight into mathematical epidemiology by developing a model that considers

the effect of migrants into and out of the local population, asymptomatic carriers, vac-

cination, and also effect of the environmental reservoir of the pathogen, the COVID-19

virus (SARS-CoV-2). Similar work on coronavirus diseases such as Severe Acute Respi-

ratory Syndrome (SARS), and Middle Eastern Respiratory Syndrome (MERS) assists us

with describing and analysing compartmental models in epidemiology for disease trans-
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mission of COVID-19. Calculations of the basic reproduction number, R0, will be shown

as this parameter measures the ability of the disease to spread, and become endemic (if

R0 > 1), or ultimately vanish from the population (if R0 < 1). Through our investigation

R0 yielded 0.5348. Equilibrium points of the model system are studied, and you will

come to see that we ended up with a cubic equation in I∗. For this we state and prove

two theorems to show that our system has a unique endemic equilibrium point X∗ for

cases when the influx rate of asymptomatically infected migrants is positive (B1 > 0),

and for when the influx rate is zero (B1 = 0). We then also analyse the global stability

of the disease-free equilibrium with Lyapunov techniques, and prove that the disease-free

equilibrium of the COVID-19 model is globally asymptotically stable. Our study includes

deterministic modelling. Sensitivity analysis of the basic reproduction number R0 is also

done where we use our model to show how it fits real data during the first wave in South

Africa between 20 July 2020 to 2 November 2020. We want to see how the importance

of the threshold quantity R0 is validated through our investigation. Finally, we formu-

late a deterministic optimal control problem and prove its existence, and solve it using

Pontryagin’s Maximum Principle. The numerical simulations of Euler’s method and the

Forward-Backward fourth-order Runge–Kutta method are then done in Octave. Through

this we see that the control in the form of vaccination is more efficient in reducing the

spread of the virus compared to the control of non-pharmaceutical intervention. Our dis-

sertation is then fully rounded off with thoughtful and useful ideas for future research. All

of this is done to test mathematically the feasibility, and efficiency of certain public health

interventions such as different levels of lockdown, social distancing, extensive screening

and testing, and vaccination.

Key words: COVID-19, Asymptomatic carrier, Environmental reservoir, Basic repro-

ductive number, Disease-free equilibrium, Endemic equilibrium, Hamiltonian, Lockdown,

Vaccination.
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Chapter 1

Introduction

For this chapter, we make use of the following references: Vecchio et al. [2], Shahid

et al. [3], Kukla et al. [5], Guan et al. [21], Brauer [33], Böttiger and Norrby [34],

Maku-Vyambwera and Witbooi [35], Witbooi and Maku-Vyambwera [36], McNeill [37],

Ellner and Gallant and Theiler [38], Glomski and Ohanian [39], Dietz [40], Hamer [41],

Ross [42], McKendrick [43], Bailey [44], Centers for Disease Control and Prevention [46],

Volkow [47], Bernoulli [49], En’ko [50], and Kermack and McKendrick [51].

1.1 History of diseases: COVID-19

Diseases such as measles, influenza, tuberculosis (TB), and smallpox to name a few,

are considered communicable diseases. The World Health Organization (WHO) defines

communicable diseases as infectious diseases caused by microorganisms such as bacteria,

viruses, parasites, and fungi that can spread from one source (person, or animal) to

another. Every year millions of people in the western world suffer from issues caused by

respiratory infections, diarrhoea, measles, easily treatable diseases, and those considered

as not threatening. Other diseases such as typhus, malaria, schistosomiasis, and cholera

are endemic (a situation in which a disease is always present) in different world regions.

For the most part, sources that are infected by infectious microorganisms, their bodies

1

http://etd.uwc.za/



build immunity against reinfection, while sources infected by diseases transmitted by

bacteria, their bodies do not allow immunity against reinfection. For sexually transmitted

diseases such as HIV/AIDS with homosexual, or heterosexual transmission, each sex acts

as a vector whereby the disease is then transmitted between the two sexes. Information

regarding the basics of the HIV/AIDS disease that can help one to avoid getting the virus,

if one is HIV-negative, and avoid transferring it to someone, if one is indeed HIV-positive

can be found in [33, 35, 36].

The process of disease transmission has majorly shaped and has been a topic of interest

in the field of epidemiology throughout history. The word epidemiology stems from late

nineteenth-century Greece, and is roughly translated as ‘the knowledge of what is over

the people’. Its conventional definition is the branch of medicine, which deals with the

incidence, distribution, and possible control of diseases, and other factors relating to

health. Subclinical and clinical infections are caused by numerous viruses. A disease is

subclinical, if it has no identifiable clinical findings; no sign of showing symptoms. This

type of disease is unmistakable from its clinical counterpart where signs and symptoms can

be recognized. Both of these diseases are very significant in the spread of infections. The

term epidemic is defined as - the occurrence of a particular disease in a frequency exceeding

that which should be expected under normal conditions. The term pandemic is denoted

as - outbreak of infections of exceptional proportions, including a spread over continents.

In simple terms, an epidemic is the sudden outbreak of a disease, and a pandemic is an

epidemic that spreads through the human population across a large region, the continent,

or worldwide [34, 37].

We want to focus on how the inflow and outflow of migrants, mainly the asymptomatic car-

riers of the virus, affected the South African population during the first wave of COVID-

19. In our investigation we will also include the effect of the environmental reservoir

of the pathogen. Studying these will give us a better understanding of COVID-19 pan-

demic’s evolution. In addition, our investigation will include examination of previous

epidemics such as the 2002 SARS outbreak and the 2012 MERS outbreak. Both of these

2
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occurrences elicited significant concern and piqued public curiosity. This will give us

a guideline on how to approach our own investigation. We hope to provide an insight

into mathematical epidemiology with the help of mathematical models for the spread

of diseases mentioned above, and with tools to analyze them. Research-based investi-

gations are generally depicted for acquiring knowledge, and for examining assumptions.

Investigations in epidemiology with certain parameters are often hard to deal with, or

unattainable to depict, and even when it is attainable to set out an investigation, there

are important ethical inquiries involved in retaining treatment from a class of parameters.

Now and then it is possible to acquire information through reports of an epidemic, or

endemic disease levels, but this leaves room for inaccuracy. Additionally, information is

capable of having a sufficient amount of irregularities, such that important inquiries of

interpretations are raised [33, 38]. As a result, it is extremely difficult to approximate

parameters and to fit models. Which leads to questioning, ‘What role does mathematical

modeling have in epidemiology? Is it truly useful?’. The book of Brauer [33] states that

mathematical modeling in the world of epidemiology broadens one’s understanding of the

fundamental structures and the processes that determine the spread of diseases. He also

suggests different strategies to control diseases. During the process of an investigation to

acquire information, some models oftentimes behave in problematic ways. This is due to

the information being unrepeatable, the total amount of points that contain information

being restricted and then being subjected to errors in measurements. An example of

this is that most mathematical models in epidemiology generally display a “threshold”

behavior. This means that, if the basic reproduction number R0 is strictly less than one

a disease will die out, and if R0 is greater than one there will be an epidemic. This

principle is generally used in estimating the usefulness of vaccination policies, it may also

be useful during prevention policies, and the possibility that a disease may be terminated;

this principle of R0 is one, which explains the control of the spread of diseases, see for

instance in [33, 35, 36].

Thanks to historical public health physicians, numerous advancements were made in the

3
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mathematical modelling of communicable diseases. In 1760, a member of a famous family

of mathematicians called Daniel Bernoulli [49] was the first known physician to implement

a defense against smallpox utilizing inoculation (a set of methods of artificially inducing

immunity against various infectious diseases). He created the first compartmental model

of infectious disease, and constructed and solved a differential equation (DE) detailing the

dynamics of infections which is still very significant in present times. P.D. En’ko [50] was

the first to largely contribute to the world of modern mathematical epidemiology between

the years 1873 and 1894, and until the beginning of the 20th-century development of

mathematical epidemiology was obstructed by the lack of knowledge about the spread of

infectious diseases. The foundations of the entire approach to epidemiology were based on

compartmental models laid by public health physicians such as Ross, Hamer, McKendrick,

and Kermack between 1900 and 1935 [33, 35, 36, 39, 40]. In 1906, Hamer [41] constructed

and examined a discrete-time model, because he wanted to understand the outbreak of

the measles epidemic. He proposed that the spread of infection depends on the product

of susceptible and infective individuals. In 1911, Ross [42] developed models of differen-

tial equations (DEs) for malaria as a host-vector disease, because he was interested in

the spread and control of malaria. For his contribution; demonstrating the dynamics of

the transmission of malaria between mosquitoes and humans, he was awarded the second

Nobel Prize in Medicine. In 1926, McKendrick [43] developed the first stochastic theory,

and by 1930 Kermack and McKendrick [51] had already established the threshold theorem

which shows that the density of susceptible individuals must exceed a certain critical value

for an epidemic outbreak to occur. The Kermack-McKendrick model is a compartmental

susceptible-infectious-recovered (SIR) model with the population regarded as divided into

three classes: individuals susceptible to disease, individuals infected by the disease, and

individuals recovered from the disease. The models can be formulated as a system of

ordinary differential equations (ODEs). The SIR systems have over time been expanded

to include classes accommodating vaccination, latently infected carriers, quarantine, and

other situations. An SIS model is used to describe a disease with no immunity against

reinfection. SEIR and SEIS are models with an exposed period between being infected,

4
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and becoming infective, and SIRS is a model, that describes short-term immunity on

recovery from an infection. The models mentioned above have been cited frequently in

the literature, and are formulated as differential equations (DEs) [33, 35, 36, 44]. As

we stated previously, COVID-19 is a virus that mainly attacks the respiratory system

of an individual, and depending on the person’s age and health status is proven to be

fatal. Researchers have found that this virus causes more fatalities and is especially bad

for geriatrics with comorbidities (the presence of one, or more additional conditions co-

occurring with a primary condition), where the most common comorbidities are diabetes,

chronic kidney disease, respiratory disease, hypertension, cardiac disease, renal disease,

malignancy, and pregnancy. Apart from geriatrics, individuals that have previously suf-

fered from opioid use disorder are also more likely to be infected by the virus as they

have increased physical, and psychological comorbidity, thus meaning, that they are of-

tentimes alienated from society. This results in making it harder for them to get assisted

with health care [2, 47]. Geriatrics are more severely affected by the virus due to these

comorbidities. Furthermore, numerous adults having diabetes, CKD, and hypertension

are assigned angiotensin-converting enzyme (ACE) inhibitors, and angiotensin II receptor

blockers as treatment. These medicaments cause the upregulation in ACE-2 receptors

(receptors utilized by the virus to penetrate host cells), but these medicaments need fur-

ther research especially in the roles that they play during this COVID-19 pandemic, as

it has been speculated to increase the risk of infection. Data collected from the Centers

for Disease Control and Prevention (CDC) [46] revealed that in the United States alone,

geriatrics make up 17 percent of society, whereby 31 percent were infected by COVID-19,

45 percent of individuals were hospitalized, 53 percent were admitted into intensive care

units, and 80 percent of fatalities were caused by infection. This indicates that older

individuals are more likely to get infected by the virus as compared to the general public.

COVID-19 has primarily been associated with Respiratory Distress Syndrome (breathing

disorder that affects newborns), but gastrointestinal symptoms (heartburn, constipation,

and bloating), and acute liver failure have also been reported. The process of liver injury

is poorly perceived as a consequence of gut barrier, and microbiome alterations, viral

5
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hepatitis, Systemic Inflammatory Response Syndrome, or SIRS (which is an inflamma-

tory state affecting the whole body), intensive care treatment, or drug toxicity. Liver

failure amongst individuals infected by COVID-19 is still not clearly understood, however

research shows that it results in individuals infected by SARS and MERS [3, 5, 21, 46].

1.2 Objectives

1. Investigating the evolution of the COVID-19 pandemic, especially focusing on how

much the inflow and outflow of migrants contributed to the effects on the South

African population during the first wave from 20 July 2020 until 2 November 2020.

2. Developing a deterministic model that considers the effect of migrants into and out

of the local South African population, asymptomatic carriers, and also effect of the

environmental reservoir of the pathogen, the COVID-19 virus.

3. Formulating and solving an optimal control problem through efficiency analysis

by introducing two control measures; non-pharmaceutical methods and vaccination

control, into the COVID-19 model to see which control strategy works best to control

and minimize the rate of infection of the coronavirus in the infectious class I and

asymptomatic class A.

4. Improving skill in computer algorithms coding, and simulation in mathematical

modelling. All code is done in Octave.

5. Interpretation of the obtained results via use of the developed model will hopefully

give us a better understanding of the evolution of the COVID-19 pandemic during

its first wave in South Africa and the effects it had on the population during this

period.

6
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1.3 Structuring of the project

In Chapter 1, we give some background on the history of some diseases, and discuss briefly

on COVID-19. Chapter 2 looks more into SARS-CoV-2. It gives information on where

and how it possibly originated, those who are more likely to get infected with the virus,

research that was done on getting a vaccine in the works, and rules set out by governmental

authorities that the public had to follow to avert the re-emergence of the virus. Chapter

3 gives a brief introduction to disease transmission in epidemiology by means of defining

consequential concepts and properties. Chapter 4 introduces compartmental modelling of

the COVID-19 population dynamics. Other concepts such as invariant region, positivity of

solutions, disease-free equilibrium point, basic reproduction number, the existence of the

endemic equilibrium point, and stability analysis are also discussed. Sensitivity analysis

of the basic reproduction number R0, and numerical simulations are shown in Chapter

5. Here we look at the time period from 20 July 2020 until 2 November 2020 and we

investigate how the South African population was affected by COVID-19 during the first

wave. We provide results and discussion. In Chapter 6 we formulate and solve the

optimal control problem by introducing two control measures into the COVID-19 model,

also showing its impact via coding and simulations. In Chapter 7 we give some concluding

remarks, including insightful and constructive ideas for future research.

7

http://etd.uwc.za/



Chapter 2

Literature review

In this chapter the following references are used: Fanelli and Piazza [1], Perez and Talebi

[4], Kukla et al. [5], Al-Tawfiq and Rodriguez-Morales [6], Park and Thwaites and Open-

shaw [7], Gautam and Kaphle and Shrestha and Phuyal [9], Ford et al. [10], Shah and

Modi and Sagar [11], Yao et al. [12], Strzelecki and Rizun [13], Padron-Regalado [14],

Mcaleer [15], Vellingiri et al. [16], Ahmed and Quadeer and Mckay [17], Khan and Karataş

and Rahman [18], Yaqinuddin and Kashir [19], Phelan and Katz and Gostin [20], Guan

et al. [21], Huang et al. [23], Chen et al. [24], World Health Organisation [25] and [26],

Shen et al. [27], James and Pitchford and Plank [28], Gopinath et al. [29], Kim et al. [30],

Cowling et al. [31], and Hodcroft [32], Brauer [33], Maku-Vyambwera and Witbooi [35],

Witbooi and Maku-Vyambwera [36], Worldometer [48], Broadbent and Combrink and

Smart [70], Witbooi [77], World Health Organization [81], Moonasar et al. [90], Mukum-

bang and Ambe and Adebiyi [91], Mwalili, Kimathi, Ojiambo, Gathungu and Mbogo [95],

World Health Organisation [98], South African Government [99], South African News

[100], Blumberg and Jassat and Mendelson and Cohen [101], South African Government

[102], Statistics South Africa [103], and Migration Data Portal South Africa [104].

COVID-19 is considered to be chronologically the third most highly pathogenic coro-

navirus to emerge in the past 20 years after SARS and MERS. Its current outbreak

8
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underlines just how crucial it is to find therapeutics to effectively lower the spread of

cases as well as fatalities. Although research is currently being done to determine pos-

sible treatments to help control transmission, the WHO, CDC, and the US Food and

Drug Administration (FDA) stated that no treatments have presently been found to ef-

fectively aid in the prevention of becoming infected. Human, and non-human beings

such as geriatrics and persons that suffered from opioid use disorder (OUD) because of

their comorbidities, and certain animals are more likely to get infected. From day one of

this pandemic, researchers speculated that this virus would create numerous challenges

in the daily lives of individuals, especially medical and governmental authorities as they

are placed under pressure to try and effectively keep things under control. This current

outbreak of COVID-19 underlines just how crucial it is to find therapeutics to target this

virus so that the spread of cases, and the number of fatalities can be slowed down to

reduce the pressure. Further research is being done to determine possible treatments that

can be beneficial in controlling the spread of this disease. The development of vaccine

candidates is already underway, as the method of drug repositioning (the investigation

of existing drugs for therapeutic purposes) is being used. Several antiretroviral drugs

previously developed, or used as treatments for SARS, MERS, malaria, and HIV are

being considered for the treatment of COVID-19, and some of them are being used in

clinical trials. Although there are no safe and reliable therapeutics for this current pan-

demic, knowledge was obtained from the vaccine development efforts during the SARS

and MERS epidemics that could prove very useful [4, 10, 11, 12, 14, 16]. Evidence gath-

ered from the clinical trials suggested that there is no safe and reliable vaccine to shield

individuals against epidemics SARS and MERS. Since SARS disappeared in 2003, clinical

trials are costly from the few trials on humans, and no safe and effective vaccines have

yet resulted from this. Even though there have been reports on animal clinical trials for

vaccines in several countries, there is a huge contrast between COVID-19 and epidemics

SARS and MERS. The difference lies in that it is a pandemic instead of an epidemic,

spread of infection, possible mutations, unknown rate of reinfections, and undetermined

percentages of false positive and false negative diagnoses. At this early stage, not much
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information exists regarding immune-reaction against the virus, which is a challenge in

itself for the development of vaccines. Hence, additional clinical trials and research are

sorely needed to substantiate the role, safety and effects of all the possible medicaments.

Entire populations must abide by the rules implemented by their governments to assist

in overcoming this pandemic [15, 17, 18, 19].

There has been a significant demand for inquiries made about this pandemic ever since it

first broke out, which resulted in Google Trends blowing up. It was found that during the

first few days this disease was referred to as SARS then general coronaviruses, whereas

in other parts of the world it was referred to as coronaviruses. Epidemics such as the

2002 outbreak of SARS, and the 2012 outbreak of MERS are both incidents that caused

concern, and piqued interest amongst people [13, 25, 26]. The Severe Acute Respiratory

Syndrome coronavirus 2 otherwise known as SARS-CoV-2, or famously known as COVID-

19 is a virus that mainly attacks the respiratory system of an individual, and depending

on the person’s health status and age, is proven to be fatal. This virus first came about in

2019 during December, and is believed to have originated from the ‘wet market’ in Wuhan,

Hubei Province of China. COVID-19 is said to share a sequence identity of 88 percent,

79 percent, and 50 percent with coronaviruses bat-SLCoVZC45 and bat-SL-CoVZXC21

found in bats, and SARS and MERS, respectively. Compared to the 2002 outbreak of

SARS that had a total number of 8422 cases, and claimed the lives of at least 916 people

across 29 countries with an approximate number of deaths being 11 percent, the number

of confirmed cases for COVID-19 has grown more rapidly, raising serious global health

concerns. By 21/01/2020, viral cases were widespread across mainland China, and were

soon spreading beyond its borders, and on 30/01/2020 it caused the WHO to announce the

virus as a public health emergency of international concern after the uprising of infections

in Wuhan. The organization then dubbed this virus as COVID-19, and on 11/03/2020 the

virus was declared a pandemic [5, 7, 20, 21, 25]. Back in 2012, 27 countries reported cases

of MERS, and in Saudi Arabia, there was an outbreak of MERS, that resulted in 2494

confirmed cases, and 858 deaths, where 38 deaths were reported in South Korea. Since
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24/02/2020 the number of confirmed laboratory cases, and the number of deaths were

recorded as 79331, and 2618, respectively; China having most of the confirmed cases at

77262 and 2595 deaths. Like COVID-19 and SARS, MERS was affiliated with thrombotic

complications (complications in deep vein formation of blood clots), and hematologic

manifestations (manifestations in systemic lupus erythematosus, or SLE with symptoms

of leukopenia, lymphocytopenia, and anemia). Nevertheless, the lack of information on

MERS is inaccessible compared to COVID-19, and SARS [7, 8, 22, 25, 26]. Several other

coronaviruses exist that can be pathogenic (a term that first popped-up in the 1880s and

means a germ that causes disease) to individuals with mild clinical traits, where the most

common of traits are feeling feverish, having the coughs, and the feeling of breathlessness.

COVID-19 is considered to be one of the most extreme pathogenic viruses, the third to be

exact, to have surfaced in the past 20 years. Similar to COVID-19, coronas like SARS and

MERS have originated from bats where they are then transmitted to individuals through

respiratory droplets [7, 23, 24]. Besides individuals, animals such as primates, carnivores,

and the herbivorous dromedary camel, or otherwise known as the Somali camel are most

affected by the coronaviruses; SARS, COVID-19, and MERS, respectively [9]. Infected

individuals are then known as ‘super-spreaders’. According to the WHO, a person coined

a ‘super spreader’ is someone, or something (event) that is capable of transmitting an

infection to a large group compared to one person, or thing. In the case of SARS, a

super-spreading person/event occurs during the transmission phase where eight, or more

individuals get into contact. A general definition is a person who gets a disease from

exposure to a primary case (person with the disease, or person who first brings a disease

into a group of people); this person is called a secondary case [27, 28]. Another definition

of ‘super-spreader’ person/event is one in which the infected individual infects far more

people than that of an average individual. This is estimated by the parameter R0 which is

the basic reproduction number. Recall, that R0 is a parameter which controls the spread

of diseases; if R0 is strictly less than one, this results in a population with no infections,

and if R0 is strictly greater than one, this results in the possibility of the disease becoming

endemic [6, 33, 35, 36]. A super-spreading event was recognized in Singapore during the
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SARS outbreak where an infected individual, a flight attendant, infected more than 100

people. Separately in South Korea at a religious sect, the Shincheonji Church of Jesus, or

simply Shincheonji, 37 persons were brought to light for contracting the virus. Another

case was discovered during the MERS outbreak where one person infected 82 individuals

during his course of illness. This index case (the first documented patient in a disease

epidemic within a population that is noticed by the health authorities, and makes them

aware that an outbreak might be emerging) in the Republic of Korea resulted in 27

secondary cases, where one of these cases infected 24 more tertiary cases, and a third

patient was the cause of 73 tertiary cases. In the current COVID-19 pandemic, the third

British man got infected with the disease while attending a conference in Singapore. After

the conference, the man traveled to France where he stayed with a family at an Alpine ski

resort. From the family that the man stayed with 5 people tested positive for having the

virus [6, 29, 30, 31, 32]. Between 22/01/2020 and 15/03/2020 this virus outbreak caused

a massive uproar amongst the Italian population, as Italy was more negatively affected

than that of China and France; both countries having very high numbers of infections

and deaths. Because of the rapid growth in numbers of positively tested cases, the Italian

government ordered a national lockdown on 08/03/2020. An analysis was made about the

virus outbreak in China, Italy and France, and it was discovered that simple mean-field

models can be used to attain quantitative information regarding the spread, the height,

and time of the peak of confirmed infected individuals due to the virus. Seeing that the

number of confirmed cases of individuals who eventually get infected can be considered

to be anywhere between 10 percent and 20 percent, the number of fatalities due to the

virus in Italy is between 4 percent and 8 percent. These numbers for the most part seem

to be lower in China with percentages being between 1 percent and 3 percent. Even so, to

see a significant decrease in infection rates, epidemic peaks, and several fatalities, drastic

measures need to be implemented and the entire populations need to abide by the rules

of their governments [1].

Looking back to when the virus first broke out in South Africa and the effect its first phase
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had on the population, the government aimed to place the country under lockdown, with

the aim to control and decrease the spread of infections. The South African Ministry of

Health in South Africa established its incident management team (on 30 January 2020)

and modelled it on the WHO’s Framework for a Public Health Emergency Operations

Centre (PHEOC) [98]. South Africa recorded its first case of imported COVID-19 on 5

March 2020 (in the KwaZulu-Natal province), and on the same day former Minister of

Health of South Africa (served from May 2019 until he resigned on 5 August 2021), Dr

Zwelini Mkhize, made an announcement in Parliament (and following this, to the Nation)

about the first case of COVID-19 in South Africa. On 15 March 2020 the national

Cabinet established a National COVID-19 Command and Control Council (NCCC) for

the purpose of government-wide decisions and for intergovernment coordination. The

South African President Cyril Ramaphosa, also on 15 March 2020, regarding the COVID-

19 disease declared it as a National State of Disaster. Right after the first case was

reported, numerous infection cases followed from all over the country, and between the

months of March to August, our country had the highest number of cases on the African

continent [99]. A nation-wide (Level 5) lockdown (levels ranging from Level 1 to 5, the

most relaxed to most forceful) was then announced by the President on 23 March 2020

to aid the spread of disease in South Africa [100]. This was done to make it possible for

our health systems to prepare for the increasing inflow of COVID-19 cases [101]. As was

mentioned, Level 5 was declared on 23 March 2020, however its process of implementation

took place on 27 March 2020 (and onwards). During this complete lockdown the public

was prohibited from leaving their homes. Instructions were given to only leave homes

when absolutely necessary for essential purposes (following a permission list of essential

activities). This caused a major shutting down of most economic activity in our country.

The categories were separated by levels and transitioned (see below) from 5 to 4, 3, 2,

and 1 (occurred on 27 March 2020, 01 May 2020, 01 June 2020, 17 August 2020, and 30

September 2020), respectively [90, 91]. Initially the Level 5 restrictions were placed on

bars (limited to 50 percent capacity along with a four-hour nightly; midnight to four in

the morning, curfew) and restaurants, tourism and travel, but from the implementation
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(on 27 March 2020) the process went like this (for all in the country) [90, 102]:

• Drastic measures were put in place to curb (and avert) the spread (and deaths) of

COVID-19 disease for Level 5.

• During Level 4 some economic activities resumed, however drastic preventative mea-

sures were set up in order to restrain transmission of the COVID-19 disease between

members of the South African community.

• For Level 3 restrictions were placed on activities at social engagements and at the

workplaces to aid in minimizing high transmission risks.

• During lockdown Level 2, social distancing measures and restrictions were put in

place between those that are infectious and/or asymptomatic (affecting others with

the COVID-19 virus) and those not infected (persons considered healthy) with the

virus, and on leisure activities to prevent the resurgence of the disease.

• For Level 1, during this time South Africans were allowed to carry on with, not all,

but most of their normal activities, on condition that they take protective measures

and followed health regulations such as regular use of sanitizers, washing of hands,

and the wearing of masks.

The rapid growth in infections was believed to have been caused by the community not

taking isolation and quarantine guidelines (that were provided to them) seriously, and

also not following rules of non-pharmaceutical interventions. In addition, a decision was

made that only when the number of infections showed a significant decrease, the levels

would be dropped too. So as the lockdown levels decreased (from 5 to 4) infections then

increased again, and it was observed that during this time that migrant workers return-

ing to work were a factor in the spread of COVID-19 disease and increase in infections

(symptomatic/asymptomatic) [90]. Level 1 of the lockdown is known to be called the

“new normal” and no doubt in continuing to exist in the very near future. The South

African population in 2020 was estimated to be 59.62 million where females made up 51.1

percent of the total population, 9.1 percent or 5.4 million were of the older generation
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(older than 60 years), and the younger generation (younger than 15 years) made up 28.6

percent or 17.1 million of the population. Back in 2020, 3.9 million migrants (70 percent

from other African countries) called South Africa home [104] and nearly all gathered in

the South African provinces of Gauteng (estimated immigrants to be 1.5 million in 2020)

and the Western Cape (estimate of 470000). Three years before that, it was estimated

that around 2 million foreign-born migrants between the age of fifteen and sixty-five were

living in South Africa. This resulted in a huge increase of 1.9 million in the population

between 2017 and 2020 [70, 103]. When word of the first COVID-19 case was first heard

about in the country, the government immediately placed South Africa under level 5 of

lockdown. As the number of infections increased, so did poverty, crime and hunger, it was

felt more so during the strict lockdown in 2020, since not everyone was able to get access

to food and daily essentials. This virus made the daily lives of individuals extremely

challenging, especially those in the medical and governmental positions as they were put

under a lot of pressure to effectively manage the problem. They did just that by making

the decision to only allow for decreased lockdown levels when the number of infections

lowered significantly. Doing this gave the health system ample time to make preparations

in dealing with the pandemic, and the government was able to provide food parcels and

other forms of assistance to those in need. The main thing to take from it all is that in

places where regulations are set to control the spread of an infection, if those infected

with a disease come into such places it can be the cause of increased infections in those

populations. If preparations are not immediately set in place to deal with such situations,

the result due to this can be quite damaging to all [70, 77, 90, 91, 95]. For our model

we consider two interrelated population groups; migrants considered to be visiting the

main, or local South African population for a short period, not permanently joining the

local population, and the COVID-19 virus (SARS-CoV-2). We present a deterministic

model, and we focus on the timeline of 105 days [48] from 20 July 2020 until 2 November

2020 [81] when the population experienced its first wave of COVID-19, and there was no

vaccine available to the public yet. We want to investigate the evolution of the pandemic,

especially how much the inflow and outflow of migrants contributed to the effects on the
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population during this period.
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Chapter 3

Mathematical preliminaries

Central to this Chapter are the following references: Fanelli and Piazza [1], Brauer [33],

Maku-Vyambwera and Witbooi [35], Hamer [41], Ross [42], Kermack and McKendrick

[51], Ward [52], Etikan and Abubakar and Alkassim [53], Fajardo-Gutiérrez [54], Vetter

and Jesser [55], Cesari [56], Wang and Song [57], Noordzij et al. [58], Chasnov [59], Allen

[60], Britton [61], Wang and De Leenheer and Sontag [62], Muldowney [63], Chasnov

[64], Sutton [65], Allen [66], Smith [67], Maku-Vyambwera [68], Hethcote [69], van den

Driessche and Watmough [72], Emanuel [74], Lenhart and Workman [75], Lenhart and

Yong [76], Witbooi [77], Tilahun and Demie and Eyob [78], and Khalil and Choi [96].

Our aim in this dissertation is to attain insight into the evolution of the COVID-19

pandemic during its first wave in South Africa through examining cases concerning past

epidemics and endemics. We first give a brief introduction of disease transmission in

epidemiology by means of defining consequential concepts and properties, which are useful

in modelling.
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3.1 Fundamental measures in epidemiology

Measures have an important role in epidemiology and can be sectioned into three classes:

frequency, association, and potential impact. Describing the frequent occurence of a

disease, or some other incident in a community leads us to the measures of frequency.

Incidence and prevalence fall within this class of measures. They both give information

regarding the dynamics of a disease in a population. Prevalence is how many people in

a population have that disease, or the extent to which the disease has spread. While the

incidence of a disease gives detail regarding the risk of contracting the disease, so the new

cases of a disease [58].

Below is an example of how to calculate prevalence and incidence.

Example 3.1.1. [58]

Let ’I’ denote the number of infectious individuals at the beginning of a specific year, ’N ’

denote the total number of individuals within a population, and ’Inew’ denote the number

of new infections occuring throughout the year. Then prevalence and incidence seen below

Prevalence =
I

N
(3.1.1)

Incidence =
Inew

(N − I)
(3.1.2)

are the rate at the start of the year and the yearly incidence rate, respectively [58].

In measures of association, incidence classes get compared with one another. Odds ratio,

proportional mortality ratio, rate ratio, and relative risk (or risk rate) are all examples

of measures of association. To compute the measure of association, one takes the risk

difference (exposed individuals in population minus the unexposed individuals in popula-

tion) divides it by the incidence of an exposed group of individuals, and convert the result

to percentage by multiplying by a hundred. Observational epidemiological data analysis

(case-control study, cohort study, and cross-sectional study) makes use of the measures
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of association and the measures of frequency. Measures of association are called so since

they measure the relation between exposure and outcome. Prevalence is calculated in a

cross-sectional study, incidence is calculated in cohort studies, and odds ratio is computed

in case-control study. Lastly, we look at measures of potential impact. This class is a

mixture of the measures of association and the measures of frequency. Note that the

research study you conduct determines which measure you will be using [53, 52, 54, 55].

3.2 General first-order differential equation

The general first-order differential equation for the function z = z(y) is written as

dz

dy
= g(y, z), (3.2.1)

where g(y, z) represents any function having dependent variable ’z’ and independent

variable ’y’. If given the differential equation (3.2.1) with initial condition z(y0) = z0,

how would one go about finding the numerical solution? The numerical solution was

determined by Chasnov [59] using the Euler method, and he also shows techniques to find

solutions when the differential equation (3.2.1) is in special forms; linear first-order and

separable.

3.3 Invariant set

Definition 3.3.1. [96]

1. A set P is an invariant set with respect to a system of ordinary differential equations

(ODEs) ż = g(z), if

z(0) ∈ P =⇒ z(t) ∈ P ,∀t ∈ R.
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2. A set P is a positively invariant set with respect to a system of ordinary differential

equations (ODEs) ż = g(z), if

z(0) ∈ P =⇒ z(t) ∈ P ,∀t ≥ 0.

Since it is of great importance that solutions of a system are positive and bounded, we

give the following Proposition 3.3.2 and Theorem 1 below, that will assist us in this regard

with our own model, and proofs to both can also be found in [77]. With that being said,

[77] makes use of the following system of ODEs, and introduce the feasible solution sets

D0 and D1, respectively,

The system of ODE for the model:

S′(t) = K0 − µS(t) − S(t)f(I(t)),

E′(t) = K1 + S(t)f(I(t)) − (α1 + µ)E(t),

I ′(t) = K2 + α1E(t) − (α2 + δ + µ)I(t),

R′(t) = K3 − K4 + α2I(t) − µR(t).

(3.3.1)

with initial conditions: S(0) = x1 > 0, E(0) = x2 ≥ B1, I(0) = x3 > B2, R(0) =

x4 > 0. Sets D0 and D1 are of the form

D0 = {x ∈ R4 | x1 > 0, x2 > B1, x3 > B2, x4 > 0} ,

D1 =
{
x ∈ R4 | x1 > 0, x2 > B1, x3 > B2, x4 > 0, x1 + x2 + x3 + x4 ≤ K

µ

}
.

Proposition 3.3.2. [77]

Let N(t) = S(t) + E(t) + I(t) + R(t). Consider a number t1 ∈ (0,∞). Suppose

that X(t) is a solution for the system (3.3.1) with X(t) ∈ D0, ∀ t ∈ [0, t1) and

N(0) < K
µ
. Then N(t) ≤ K

µ
for all t ∈ [0, t1).

Proof.
d
(
N(t) − K

µ

)
dt

= −µ
(
N(t) − K

µ

)
− δI ≤ −µ

(
N(t) − K

µ

)
. Therefore

N(0) < K
µ

implies that N(t) < K
µ
, ∀ t ≤ t1.
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Theorem 1. [77]

Suppose that for t ≥ 0, X(t) is a solution of (3.3.1) with X(0) ∈ D1. Then X(t) ∈

D1, ∀ t > 0.

Proof. The proof is done by contradiction. In the paper of Witbooi [77], he defines a

function L : [0,∞) → R with the formula

L(t) = ln

(
K

µS(t)

)
+ ln

(
K

µJ1(t)

)
+ ln

(
K

µJ2(t)

)
+ ln

(
K

µR(t)

)
.

This function has four terms which are non-negative and the limx→0 (lnx) = +∞. This

then means that

lim
t→z1−

L(t) = ∞. (3.3.2)

The point of contradiction to equation (3.3.2) is that

L′(t) =
−S′(t)

S(t)
−

J1
′
(t)

J1(t)
−

J2
′
(t)

J2(t)
−

R′(t)

R(t)
≤ M,

where M = q
(
µ + βK

µ

)
+ α1 + µ + (α2 + δ + µ) + µ. Consequently

lim
t→z1−

L(t) =

t∫
0

L′(v)dv ≤ Mz1.

This contradicts the statement in equation (3.3.2).

Note: We also make use of the method used in [78] to find our positive invariant set.

3.4 Equilibrium solution

In the book of Allen [60] the author states that an equilibrium solution or a steady-state

solution oftentimes is referred to their shortened terms equilibrium or steady-state. This

applies to the two-dimensional first-order system,

xt+1 = f(xt, yt),
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yt+1 = g(xt, yt),

an equilibrium solution is a solution (x̄, ȳ) such that x̄ = f(x̄, ȳ) and ȳ = g(x̄, ȳ).

An equilibrium solution for a higher-order difference equation f(xt+k · · · , xt+1, xt) = 0

is a solution x̄ satisfying f(x̄, · · · , x̄, x̄) = 0, and such a solution can be expressed in

terms of the initial value x0.

Take note of the following two definitions, xt = f(f(· · · f(x0) · · · )) = f t(x0), where

the superscript t represents the number of time steps or iterations beginning from the

initial value x0.

Definition 3.4.1. [60]

1. For the first-order difference equation xt+1 = f(xt), an equilibrium solution, or

steady-state solution is a constant solution x̄ to the difference equation, that is, a

solution x̄ satisfying x̄ = f(x̄).

2. For the first-order system Xt+1 = F (Xt), an equilibrium solution, or a steady-state

solution is a constant solution X̄ satisfying X̄= F (X̄).

3. Solutions x̄ or X̄ are also called fixed points of the function f or F , respectively.

Definition 3.4.2. [60]

1. An equilibrium solution x̄ of xt+1 = f(xt) is locally stable, if ∀ ϵ > 0, ∃ δ > 0,

such that, if |x0 − x̄| < δ, then |xt − x̄| = |f t(x0) − x̄| < ϵ,∀ t ≥ 0.

2. If x̄ is not stable it is said to be unstable.

3. The equilibrium solution x̄ is locally attracting, if ∃ γ > 0, such that, ∀ |x0 − x̄| <

γ, limt→∞ xt = lim
t→∞

f t(x0) = x̄.

4. The equilibrium solution x̄ is locally asymptotically stable, if it is locally stable and

locally attracting.
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3.5 The Routh-Hurwitz criterion

Theorem 2 (The Routh-Hurwitz criterion). [60]

Given the polynomial,

P (β) = βm + b1β
m−1 + b2β

m−2 + . . . + bm−1β + bm, (3.5.1)

where the coefficients bi are real constants, i = 1, ..., n, define the m Hurwitz matrices

using the coefficients bi of the characteristic polynomial:

A1 =
(
b1

)
,

A2 =

b1 1

b3 b2,

 ,

and

Am =


b1 1 · · · 0

b3 b2 · · · 0
...

...
. . .

...

0 0 · · · bm

 ,

where bj = 0, if j > m. All of the roots of the polynomial in (3.5.1) are negative, or

have negative real part if and only if the determinants of all Hurwitz matrices are positive,

that means, det(Hj) > 0, for j = 1, 2, ...,m. For further information regarding this

Theorem 2 and its proof, readers can refer to Allen [60].

3.6 Linearization

Information in this section below can be seen in [61] and [72]. Let (C∗, D∗) be a steady

state of the equations,

Ċ = g(C,D) Ḋ = h(C,D) (3.6.1)
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so that g(C∗, D∗) = h(C∗, D∗) = 0. Let c = (C − C∗) and d = (D − D∗). We

obtain the approximated (linearized) equations below by assuming that we may neglect

higher order terms, if ’c’ and ’d’ are sufficiently small.

ċ = gC(C
∗, D∗)c + gD(C∗, D∗)d, (3.6.2)

and

ḋ = hC(C
∗, D∗)c + hD(C∗, D∗)d, (3.6.3)

or, defining the Jacobian matrix J(C,D) in the usual way,

ė = J∗e, (3.6.4)

where ’e’ is the column vector, (c, d)T and a star (or, asterisk) denotes evaluation at the

steady state. The behaviour of the system near the steady state (C∗, D∗) depends on

the eigenvalues of the matrix J∗ = J(C∗, D∗).

It can be shown that the assumption above is valid and that the nonlinear system behaves

like the linear system near the steady state given that neither of the eigenvalues of J∗

has zero real part.

By defining β = trJ∗, γ = detJ∗ and δ = discJ∗, the eigenvalue equation is

λ2 − βλ + γ = 0, (3.6.5)

which assists in determining the character of the steady state by their signs.

Theorem 3 (Steady states and Eigenvalues). [61]

a) If γ < 0, the (trivial) steady state of the second-order system in (3.6.4) is a saddle

point. Both eigenvalues are real, one positive and one negative.

b) If γ > 0, δ > 0, and β < 0, it is a stable node. Both eigenvalues are real and

negative.
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c) If γ > 0, δ > 0, and β > 0, it is an unstable node. Both eigenvalues are real and

positive.

d) If γ > 0, δ < 0, and β < 0, it is a stable focus. The eigenvalues are complex

conjugates with negative real part.

e) If γ > 0, δ < 0, and β > 0, it is an unstable focus. The eigenvalues are complex

conjugates with positive real part.

f) If γ > 0, δ < 0, and β = 0, it is a centre. The eigenvalues are complex conjugates

and purely imaginary.

In the book of Britton [61], the proof follows from the formula for solutions of the quadratic

equation in (3.6.5). See [61] for more information regarding this theorem.

Theorem 4 (Linearization Theorem). [61]

Suppose that the non-linear system

ż = Z(z), (3.6.6)

has a simple fixed point at z = 0. Then in a neighbourhood of the origin, the phase

portraits of the system and its linearization are qualitatively equivalent, provided that the

linearized system is not at center.

Lemma 3.6.1. [72]

Suppose that z0 is a disease-free equilibrium of a system,

żi = fi(z) = Fi(z) − Vi(z); i = 1, . . . , n, (3.6.7)

where,

Vi = Vi
− − Vi

+, (3.6.8)

and the functions fi(z) satisfies the condition that, if z ≥ 0, then

Fi, Vi
+, Vi

− ≥ 0; i = 1, . . . , n. (3.6.9)

With the condition that, if F (z0) is set to zero, then all eigenvalues of Df(z0) have

negative real parts and the derivatives DF (z0) and DV (z0) are divided into
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DF (z0) =

F 0

0 0

 DV (z0) =

V 0

J3 J4

 (3.6.10)

where F and V are the m × m matrices defined by

F =

(
∂Fi

∂Zj

)
(z0) V =

(
∂Vi

∂Zj

)
(z0) (3.6.11)

with 1 ≤ i, j ≤ m.

Additionally, F is a non-negative matrix V is a non-singular M -matrix and the eigen-

values coming from J4 have positive real parts.

For more on this lemma and its proof see [72].

3.7 The direct method of Lyapunov

It is common knowledge in stability theory that the direct method of Lyapunov is a

key method used for differential equations (DEs). A Lyapunov function is a function

with particular properties that is constructed to prove stability, or asymptotic stability

of an equilibrium in a given region. The method can be applied to autonomous systems

consisting of n differential equations. This method is demonstrated for the following

two-dimensional autonomous system

dy

dt
= f(y, z)

dz

dt
= g(y, z) (3.7.1)

and the aim is to find a Lyapunov function having properties in relation to the system

in (3.7.1). With the following definitions and theorem, we are under the assumption that

the equilibrium of interest is at the origin. If not, a change of variable

u = y − ȳ v = z − z̄ (3.7.2)
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translates the equilibrium to the origin [60].

Definition 3.7.1. [60]

Let B be an open subset of R2 containing the origin. A real-valued C1(B) function V

V : B → R, [(y, z) ∈ B, V (y, z) ∈ R],

is said to be positive definite on the set B, if the following two conditions hold:

1. V (0, 0) = 0.

2. V (y, z) > 0, ∀ (y, z) ∈ B with (y, z) ̸= (0, 0).

The function V is said to be negative definite, if −V is positive definite.

Below, we have an example that makes use of the above definition.

Example 3.7.2. [60]

Given the function

V (y, z) = y2 + z2, (3.7.3)

check to see if V (y, z) is positive definite on set B.

Solution: By use of the definition above see if the given function satisfies the first and

second conditions.

1. V (0, 0) = (0)2 + (0)2 = 0.

So, the first condition is satisfied.

2. Since V (y, z) > 0, choose (y, z) ∈ B, (y, z) ̸= (0, 0).

Let (1, 1) ∈ B. Then

V (1, 1) = (1)2 + (1)2 = 2 > 0.

Notice that V (y, z) > 0. So, the second condition is satisfied as well.
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Therefore the function V (y, z) is positive definite.

The reader can see [60] to try and check whether other functions V (y, z) are positive

definite on set B.

Definition 3.7.3. [60] A positive definite function V in an open neighborhood of the

origin is said to be a Lyapunov function for the autonomous differential system (3.7.1), if
dV (y, z)

dt
≤ 0, ∀ (y, z) ∈ B − {(0, 0)}. If

dV (y, z)

dt
< 0, ∀ (y, z) ∈ B − {(0, 0)}

the function V is called a strict Lyapunov function.

Theorem 5 (Lyapunov’s Stability Theorem). [60]

Let (0, 0) be an equilibrium of the autonomous system (3.7.1), and let V be a positive

definite C1 function in a neighborhood B of the origin.

a) If
dV (y, z)

dt
≤ 0, for (y, z) ∈ B − {(0, 0)}, then (0, 0) is stable.

b) If
dV (y, z)

dt
< 0, for (y, z) ∈ B−{(0, 0)}, then (0, 0) is asymptotically stable.

c) If
dV (y, z)

dt
> 0, for (y, z) ∈ B − {(0, 0)}, then (0, 0) is unstable.

In the first condition the function V is a Lyapunov function and in the second condition

the function V is a strict Lyapunov function.

Proof. The first and second conditions are proved.

First condition: Let ϵ > 0 be sufficiently small so that the neighborhood of the origin

consisting of the points ∥(y, z)∥ ≤ ϵ is contained in B (∥·∥ denotes the Euclidean norm).

Let p be the minimum value of V on the boundary of the neighbourhood ∥(y, z)∥ = ϵ.

Since V is positive definite, and the set ∥(y, z)∥ = ϵ is closed and bounded, it follows

that p > 0. Now, choose a δ > 0 with 0 < δ ≤ ϵ such that, V (y, z) < p for

∥(y, z)∥ ≤ δ. Such a δ always exists because V is continuous with V (0, 0) = 0. If

∥(y0, z0)∥ ≤ δ, then the solution with initial conditions (y0, z0) satisfies ∥(y, z)∥ ≤ ϵ

for t ≥ 0. Since
dV

dt
≤ 0 implies that V (y(t), z(t)) ≤ V (y0, z0) < p for t ≥ 0. The

origin is stable.
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Second condition: The function V (y(t), z(t)) decreases along solutions that lie in B.

Thus as t → ∞, V (y(t), z(t)) approaches a limit. Suppose V → l > 0. Then it follows

from the uniform continuity of
dV (y(t), z(t))

dt
(solutions are bounded and functions f

and g are C1) that
dV (x(t), y(t))

dt
→ 0 in an annular region excluding the origin. This

is impossible since
−dV

dt
is positive definite

dV

dt
= 0 only at the origin and (y(t), z(t))

does not tend to the origin when V → l. It follows that V (y(t), z(t)) approaches 0,

which implies (y(t), z(t)) approaches (0, 0). The origin is asymptotically stable.

Stability first needs to be verified by using Lyapunov’s direct method since it will assist

us in finding an appropriate Lyapunov function V . Below, is an example of this approach

found in [60].

Example 3.7.4. Consider the logistic differential equation (DE)

dz

dt
= rz

(
1 −

z

W

)
,

where r, W > 0. Notice that there are two equilibria z̄ = 0,W . From previous inves-

tigation, we know that W is globally asymptotically stable for positive initial conditions.

Let B = (0,∞) = R+ the positive z-axis. A strict Lyapunov function is given by

V (z) = (z − W )2 .

Since

dV (z)

dt
= 2 (z − W )

dz

dt
= 2 (z − W )rz

(
1 −

z

W

)
= −2rz

(z − W )2

W
,

the function V is a C1(B) function that is positive except at z = W and V (W ) = 0.

Also,
−dV

dt
is positive in B except at z = W and

dV (W )

dt
= 0. Thus, according to

the second condition of Lyapunov’s Stability Theorem the equilibrium z = W is asymp-

totically stable ∀(y, z) ∈ B − {(0, 0)}.
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3.8 The second additive compound matrix

Definition 3.8.1. [62] Let D be a matrix of order k. The second additive compound

matrix D[2] is a matrix of order

(
k

2

)
, which is defined as follows:

D
[2]
(i)(j) =



Di1i1 + Di2i2, if (i) = (j);

(−1)r+sDirjs, if exactly one entry, ir, of (i) does not occur in (j),

and, js, does not occur in (i), for some r, s ∈ {1, 2};

0, if (i) differs from (j) in both entries.

Here (i) = (i1, i2) is the ith member of the lexicographic order of integer pairs for which

1 ≤ i1 < i2 ≤ k.

For more information regarding the definition of the second additive compound matrix,

the reader may see [57, 62, 63].

We now show an example based on the second additive compound matrix.

Example 3.8.2. [57] If we are given a 3×3 matrix D where D = (dij), then its second

additive compound matrix D[2] would then be

D[2] =


d11 + d22 d23 −d13

d32 d11 + d33 d12

−d31 d21 d22 + d33

 .

3.9 Compartmental modeling: spread of diseases

As previously mentioned, it should be noted that historical public health physicians such

as Hamer [41], Ross [42], and Kermack and McKendrick [51], not mathematicians, made

numerous advancements in epidemiology based on compartmental models and mathemat-

ical modelling of communicable diseases between the years of 1900 and 1935 [33]. The
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spread of diseases in populations are best described by the use of compartmental models.

A population being studied usually gets divided into classes, or compartments; S, E, I,

and R. In all epidemiological models we must work under the assumption that the pop-

ulation being studied is well mixed as this gives each host a chance to become infected.

Assumptions must also be made about the number of ways that new infections can arise,

and hosts can move from compartment to compartment over time t, that is, the size of

the population in each class is written as a function of time and below we state these

classes [35, 56].

• Let S(t) denote the hosts who are susceptible, in other words, those who are not

yet infected with the disease at time t.

• Let E(t) denote the hosts exposed (latent) to the disease at time t.

• Let I(t) denote the hosts that are able to spread the disease through contact with

susceptible hosts at time t.

• Let R(t) denote the hosts removed due to reinfection being possible, or for spreading

the disease again, or those that have recovered successfully at time t.

There are many types of models and each of them uses a different approach when it

comes to their construction in epidemiology. Essentially this implies that there will be

cases where some classes have to be added or removed. One should also note that the

number of compartments a model has depends on the supposition being made about the

model [68].

3.9.1 Model terminology

To begin with, we briefly look at the three simplest mathematical models in epidemiology

for the spread of an epidemic and endemic of a communicable disease. After that, we

introduce our own Corona Model Equations. The three simplest models lay the ground-

work for complicated models and it makes it easier for organizations such as the WHO,

CDC, and the US FDA to estimate future spreads of diseases by means of developing
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strategies allowing governments to implement drastic measures so that entire populations

abide by their rules in order to see a decrease in epidemic peaks, infection rates, and

several fatalities [1, 64].

The first simple model seen below, is the SI model. In this model you need to work

under the assumption that the model itself is closed. Meaning that there is no inflow

of new individuals via birth and by maturation, or by immigration into the population.

In this model the hosts get divided into two classes: Susceptible and Infected. Disease

transmission within this model takes place when a healthy susceptible host becomes in-

fected through coming into contact with an infectious host. This leads to a decrease in

the susceptible class and an increase in the infected class. Infected hosts will never have

a chance at recovering, that is, they will forever be in the infected class. Death does not

play a role when it comes to this model as the length of the disease outbreak is brief in

comparison with the lifespan of average individuals. A disease such as HSV-1 or HSV-2

otherwise known as herpes caused by the virus Herpesviridae fit in this model since it

spreads quickly and individuals infected by this disease never recover [64, 65, 66, 67, 69].

We diagram this SI model as follows,

S I
βSI

Figure 3.1: The compartmental diagram for the SI model

Note: It is always good to draw diagrams as they will help us with constructing more

complex systems of differential equations.

The compartmental model below depicts the transmission between the classes S and I

shown in (3.9.1).

32

http://etd.uwc.za/



dS

dt
= −βSI,

dI

dt
= βSI,

N = S + I.

(3.9.1)

where N is the total population.

The first differential equation in (3.9.1) gives a description of how individuals move from

the susceptible group to the infected group. In the second differential equation in (3.9.1),

we see this increase in the infected group as susceptible hosts become sick. This shift is

caused due to the number β which represents the rate at which the disease is transmitted

when an infected host comes into contact with a susceptible host, the number βS repre-

sents contacts due to infection, and βSI represents the total number of contacts resulting

in infection, increasing the infected class. Looking at the third equation in (3.9.1), we

assume that the population being studied has constant size N , this means that birth rate

and death rate are the same, so that N = S + I [64, 68].

An interesting fact is that this model has a logistic solution. Using the second differential

equation and by eliminating S we have,

dI

dt
= β(N − I)I (3.9.2)

Rewriting this equation results in,

dI

dt
= βNI(1 −

I

N
) (3.9.3)

which is a logistic equation having growth rate βN and carrying capacity N . Note that

the entire host population will become infected as time goes on [64].

The second model seen below is the SIS model, and it is an extension of the SI model.

Here, a host population being studied still gets divided into two classes: Susceptible and

Infected. The only difference is that disease transmission within this model takes place

when healthy susceptible hosts become infected through contact with infectious hosts, and
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when these individuals recover from infection they move back to the susceptible class. In

simple terms, the susceptible class first decreases while infected class increases. Then, the

infected class decreases while the susceptible class increases. Hosts within this class have

a chance at recovering, that is, they will not remain in the infected class forever. Diseases

such as gonorrhea, meningitis and streptococcal sore throat fit in this model. [64, 66, 69].

We represent this SIS model through the following diagram,

S I S
βSI γI

Figure 3.2: The compartmental diagram for the SIS model

The compartmental model below depicts the transmission between the classes S and I

shown in (3.9.4).

dS

dt
= −βSI + γI,

dI

dt
= βSI − γI,

N = S + I.

(3.9.4)

where N is the total population.

Transmission in equation (3.9.4) proceeds in this manner, in the first differential equation

of (3.9.4), individuals move from the susceptible group to the infected group, decreasing

class S, causing an increase in population of class I. In the second differential equation of

(3.9.4), we see the increased class I decrease in population as infected hosts can recover,

moving back to class S where they become susceptible again, increasing this class. In

the SI model there is only the number β. This number causes a shift representing the

rate at which the disease is transmitted when an infected host comes into contact with a

susceptible host. The number βS represents contacts due to infection and βSI represents

the total number of contacts resulting in infection, increasing the infected class. In the
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SIS model there is still the number β but added to this model is the number γ which

represents the recovery rate of individuals from infection, and
1

γ
represents the average

length of time when no deaths occur due to infection. The third equation in (3.9.4) we

are still under the assumption that the population being studied has constant size N ,

and means that birth rate and death rate are the same, so that N = S + I [64, 68].

Just as in the SI model, the SIS model has a logistic solution. Using the second

differential equation in (3.9.4) we eliminate S,

dI

dt
= β(N − I)I − γI (3.9.5)

Rewriting this equation results in,

dI

dt
= βNI(1 −

I

N
) − γI (3.9.6)

which we can see is a logistic equation. The only difference now is that the growth

rate is βN where N is found using the basic reproduction number R0 of this model

and the carrying capacity is N . Negative growth rate results in the disappearance of the

disease, which is when the basic reproduction number R0 is strictly less than zero. Having

positive growth rate is when the basic reproduction number R0 is strictly greater than

zero, resulting in the disease becoming endemic. When the disease becomes endemic, the

number of infected persons approaches the carrying capacity as time goes on [64].

Note: The reader can check [64] to see how R0 of the SIS model is derived by method

of integration.

We now move on to the final simple SIR model below. This model is famously known as

the Kermack-McKendrick model. Here, a host population being studied gets divided into

three classes: Susceptible, Infected, and Removed, at time t. Disease transmission within

this model takes place when individuals become susceptible to disease. These individuals

then get infected by the disease and afterwards they recover from the disease. Due to

this transmission, we notice that the susceptible class first decreases while infected class

increases. The infected class then decreases while the removed class increases. Therefore,
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the individuals who are removed are not susceptible and also not infected anymore. Rea-

sons for this can be because they are now immune to the disease due to recovery, they got

vaccinated, isolated, or they simply just died from the disease. For transmission between

classes I and R, infectives do not leave the I class with constant rate γ as in the SIS

model, here they follow a direct path into the R class. Diseases that confer immunity and

have been present in a population for more than 10 or 20 years fit within this model and

are labeled as endemic. Due to the length of time this SIR model should contain births

to increase the susceptible class and deaths in each of the other classes [64, 66, 69].

We diagram this SIR model as follows,

S I R
βSI γI

Figure 3.3: The compartmental diagram for the SIR model

The compartmental model below depicts the transmission between the classes S, I, and

R shown in (3.9.7),

dS

dt
= −βSI,

dI

dt
= βSI − γI,

dR

dt
= γI,

N = S + I + R.

(3.9.7)

where N is the total population.

The first differential equation in (3.9.7) shows how individuals move from the susceptible

group to the infected group, decreasing class S. The second differential equation in

(3.9.7) shows an increase in population of class I while also showing a decrease as these

individuals are on their way to recovery, they directly move into R, increasing this class.
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As in the SIS model, the basic SIR model’s rates remain the same; the number β

represents the rate at which the disease is transmitted when an infected host comes into

contact with a susceptible host, the number βS represents contacts due to infection, and

βSI represents the total number of contacts resulting in infection, increasing the infected

class. The number γ represents the rate at which individuals recover from infection and
1

γ
represents the average length of time when no deaths occur due to infection. We still

assume that the population studied has a constant size N , so the birth rate and death

rate are the same, so that N = S + I + R. Diseases caused by a virus fit within this

model. There are also more complicated compartmental structures of this model such as

SEIR, SEIS, and SIRS, where the first two models have an exposed period between

being infected and becoming infective, and the third model describes short-term immunity

on recovery from an infection [33, 64, 68].

3.9.2 The method of the next generation matrix operator

This method is used to find the basic reproduction number R0 when a compartment

model is given that has more than one infected class. Let us assume for example that

we are given a model with n infected classes and m uninfected classes, and let x be

the vector in Rn and y be the vector in Rm, both being subclasses in each of these

compartments. Gi will then be the vector of all new infection rates and Vi will be the

vector of all other rates except the new infection rates. This information then gives us

the following compartmental model:

dxi

dt
= Gi(x, y) − Vi(x, y); i = 1, ..., n,

dyj

dt
= Qj(x, y); j = 1, ...,m.

The basic reproduction number has calculations based on linearization of the ODE model

about a disease-free equilibrium point. The following assumption ensures the existence of

the equilibrium and well-posedness of the model:

• Assume Gi(0, y) = 0 and Vi(0, y) = 0, ∀ y ≥ 0 and i = 1, ..., n. All new infec-
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tions are secondary infections arising from infected host and there is no immigration

of individuals into the disease compartments.

• Assume Gi(0, y) ≥ 0, ∀ x, y > 0 and i = 1, ..., n. The function G represents

new infections and cannot be negative.

• Assume Vi(0, y) ≤ 0 whenever xi = 0, i = 1, ..., n. Each component Vi repre-

sents a net outflow from compartment i and must be negative (inflow only) whenever

the compartment is empty.

• Assume
∑∑∑n

i=1 Vi(x, y) ≥ 0, ∀ x, y > 0. This sum represents the total outflow

from all infected compartments. Terms in the model leading to increase in
∑∑∑n

i=1 xi

are assumed to represent secondary infections and therefore belong in G.

• Assume the disease-free system
dy

dt
= Q(0, y) has a unique equilibrium that is

asymptotically stable. That is, all solutions with initial conditions of the form

(0, y) approach a point (0, y0) as t → ∞. This point is referred to as the disease

free equilibrium.

Let us assume that Gi and Vi satisfies the conditions above, then the next generation

matrix GV −1 can be formed from matrices G and V having partial derivatives as entries.

The reader can check [72] to see more information on the next generation matrix.

3.10 Pontryagin’s maximum principle

This principle transforms the minimization, or the maximization of the objective func-

tional J joined with the state variable z(u) into pointwise minimizing, or maximizing of

the Hamiltonian with respect to the control v(u). The Hamiltonian H(u, z(u), v(u), α(u))

is a function of four variables, where time u is the underlying variable. Variables z, v

and α are functions of u and α is called the adjoint variable [93, 75].
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Theorem 6. [75] If v(u) and z(u) are optimal for problem (3.11.1), then there exists a

piecewise differential adjoint variable α(u), such that

H(u, z∗(u), v(u), α(u)) ≤ H(u, z∗(u), v∗(u), α(u))

for all controls v(u) at each time u where the Hamiltonian H is

H = g(u, z(u), v(u)) + α(u)h(u, z(u), v(u))

and
α(u)

du
= −

∂H(u, z∗(u), v∗(u), α(u))

∂z
; α(ug) = 0.

Necessary conditions: If v(u) and z(u) are optimal, then the following conditions

hold:
α(u)

du
= −

∂H(u, z∗(u), v∗(u), α(u))

∂z
; α(ug) = 0.

and
∂H(u, z∗(u), v∗(u), α(u))

∂v
= 0.

Sufficient conditions: If v(u), z(u) and α(ug) satisfy the following conditions:

α(u)

du
= −

∂H(u, z∗(u), v∗(u), α(u))

∂z
; α(ug) = 0,

and
∂H(u, z∗(u), v∗(u), α(u))

∂v
= 0,

then v(u) and z(u) are optimal.

3.11 Optimal control method

An optimal control is an optimization method for deriving control policies, and is an

extension of the calculus of variations. It is important that a certain optimality criterion

is achieved and this is done by finding a control law for a given system. Lev Pontryagin

and his collaborators in the Soviet Union are credited for their work on optimal control

theory as they were the ones to lay its foundation in the early years of the 1960s. This
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method is very suitable in decision making regarding composite biological situations and

has been a powerful mathematical technique derived from the calculus of variation. The

behaviour of a dynamical system is described by the state variables (s). A control problem

includes a cost functional that is a function of state and control variables. The assumption

is that there is a way to control the state variable z, by acting upon it with a suitable

control. Thus, the dynamics of the system (state z) depends on the control v. Given an

objective functional K(v(u), z(u), u), the goal is to regulate control v so as to maximize,

or minimize K. When the most desired goal is achieved with least cost this results in

the optimal solution. The functional depends on the state variables and the control. The

optimal control for specific model can be calculated in numerous ways. An example would

be Pontryagin’s Maximum Principle which allows the calculation of the optimal control

for an ordinary differential equation model system with given constraints [56, 74, 75, 76].

Given a basic control problem of the form of an ODE, we use v(u) and z(u) for the

control and state variables respectively. The result of the given differential equation will

change as the control function changes. Note that the state variable z(u) satisfies a

differential equation and depends on the control variable v(u):

z′(u) = h(u, z(u), v(u)). (3.11.1)

This method consists of finding the state variable z(u) and a piecewise continuous control

v(u), so that the objective functional K can be maximized,

max
v

∫ u1

u0

g(u, z(u), v(u))du

subject to z′(u) = h(u, z(u), v(u)) and z(u0) = z0 and z(u1) is unrestricted. The

following characteristics are important when dealing with an optimal control problem:

• Controllability: Used to steer a system from one position to another.

• Observability: Used to assist with deducing as system’s information from control

input and observe output.

• Stabilization: Used in implementing controls to force stability.
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For more information regarding optimal control method, the reader may see [56, 75, 76].

3.12 Sensitivity analysis

Through sensitivity analysis one sees the significance of each parameter in a model and

the effect, or the relationship they have on the basic reproduction number R0. With this

analysis you want to calculate the sensitivity indices of the basic reproduction number R0.

By doing so you can determine if an infectious disease will spread in the population. Since

errors usually occur in the pre-assumed values and data collection, this analysis is then

used in determining the robustness of model predictions to parameter values. Another

thing that this analysis is good for, is that when a parameter changes, it also allows for the

measurement of relevant changes in a state variable. The method of normalized forward

sensitivity index of a variable is commonly used when doing this analysis. This method is

the ratio of relative change in the variable to the relative change in the parameter. When

the given variable is a differentiable function of the parameter, the sensitivity may also

be defined using partial derivatives [83].

Definition 3.12.1. [83] The normalized-forward sensitivity index is calculated using the

normalized sensitivity index of the variable R0, which is differentiable on the parameter

m:

CR0
m =

∂R0

∂m
×

m

R0

,

where R0 is the variable to be analyzed and m is the parameter.
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Chapter 4

A model of COVID-19 population

dynamics

In this chapter we often refer to the following references: Vecchio et al. [2], Park and

Thwaites and Openshaw [7], Gautam et al. [9], Huang et al. [23], Chen et al. [24], Shen

et al. [27], James and Pitchford and Plank [28], Maku-Vyambwera and Witbooi [35],

Volkow [47], Cesari [56], Osei [71], van den Driessche and Watmough [72], Witbooi [77],

Tilahun and Demie and Eyob [78], Maku-Vyambwera and Witbooi [79], and Nyabadza et

al. [80].

In this chapter we look at the invariant region, positivity of solutions, disease-free equi-

librium point, basic reproduction number, existence of endemic equilibrium points, and

stability analysis around our model (4.1.2).

4.1 Mathematical model

We now explain the process of compartmental modeling by introducing our corona model

system of ODEs. We also bring in other concepts of compartmental modeling. As we

mentioned, spread of diseases in populations are best described by use of compartmen-
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tal models. When studying a population, one usually has to divide it into classes, or

compartments; S, E, I, and R. It is also important when dealing with epidemiological

models to work under the assumption that the population being studied is well mixed as

this gives each host a chance to become infected. Assumptions must also be made about

the number of ways that new infections can arise and how hosts move from compartment

to compartment over time t, that is, the size of the population in each class is written as

a function of time [35, 56].

For our model let us consider two interrelated population groups. On the one side we

have the host population of migrants considered to be visiting the main, or local South

African population for a short period, not permanently joining the local population. On

the other side we have the pathogens, or the COVID-19 virus (SARS-CoV-2). The host

population being studied gets divided into five groups; susceptible S(t), symptomatic

infectious I(t); those showing clinical symptoms of the COVID-19 disease, asymptomatic

infectious A(t); those showing no visible clinical symptoms of the COVID-19 disease but

still being infected, removed R(t), and the density of the virus in the environmental reser-

voir denoted as P (t). The sum of each compartment is represented as a function of time

t and results in the total population number N(t) that is to be considered as constant,

which is also a function of time t, mathematically denoted as the equation below,

N(t) = S(t) + I(t) + A(t) + R(t) + P (t). (4.1.1)

As we stated previously COVID-19 is a virus that mainly attacks the respiratory system

of an individual, and depending on the person’s age and health status is proven to be

fatal. Researchers have found that this virus causes more fatalities, and is especially bad

for geriatrics with comorbidities (the presence of one, or more additional conditions co-

occurring with a primary condition) where the most common comorbidities are diabetes,

chronic kidney disease, respiratory disease, hypertension, cardiac disease, renal disease,

malignancy, and pregnancy. Apart from geriatrics, individuals that have previously suf-

fered from opioid use disorder are also more likely to be infected by the virus as they have

increased physical, and psychological comorbidity, thus meaning that they are oftentimes
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alienated from society. This results in making it harder for them to get assisted with

health care can be seen in [2, 47]. Besides humans, animals such as primates, carnivores,

and the herbivorous dromedary camel, or otherwise known as the Somali camel, are also

affected by the coronaviruses; SARS, COVID-19, and MERS, respectively [9]. According

to the WHO, a person coined a ‘super spreader’ is someone, or something (event) that is

capable of transmitting an infection to a large group compared to one person, or thing. In

the case of SARS, a super-spreading person/event occurs during the transmission phase

where eight, or more individuals get into contact. A general definition is a person who

gets a disease from exposure to a primary case (person with the disease, or person who

first brings a disease into a group of people); this person is called a secondary case [27, 28].

Several other coronaviruses exist that can be pathogenic (a term that first popped-up in

the 1880s and means a germ that causes disease) to individuals with mild clinical traits

where the most common of traits are feeling feverish, having the coughs, and the feeling of

breathlessness. This virus is considered to be one of the most extreme pathogenic viruses,

the third to be exact, to have surfaced in the past 20 years. Similar to COVID-19, coro-

nas like SARS and MERS have originated from bats where they are then transmitted to

individuals through respiratory droplets [7, 23, 24].

Let us now consider our SIARP model for disease transmission of COVID-19, which is

given by the system of ODEs in (4.1.2). Within this model transmission of the disease

takes place when susceptible individuals S, migrants visiting the local population of South

Africa for a short period of time t become infected with the disease due to contact with

infectious persons. These individuals then move out of being susceptible and move on to

either becoming symptomatically infected I, or they become asymptomatically infected

A by the disease. This process then causes a decrease in the susceptible compartment

and an increase in classes I, and A. The symptomatic, and asymptomatic infectious

individuals then increase the density of the pathogens in the environmental reservoir P

by sneezing, or coughing. The pathogens P then survive in the environment for a few days

and exposed susceptible hosts come into contact with the infected environment causing
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them to become infectious with the disease. From here the exposed infectious hosts can

become asymptomatic A to the disease thus decreasing the class I and increasing class

A, they can also infect others. After a short stay the surviving migrants will depart from

the population as recovered individuals, increasing class R and decreasing class A.

Below in Figure 4.1 is an illustration of the SIARP model. It shows two interrelated

population groups; the host population (migrants) and the pathogens (COVID-19 virus)

in the environmental reservoir, and the transmission of migrants from each compartment.

The compartmental model can be seen in equation (4.1.2). Descriptions of the parameters

used for the model are shown in Table 5.1 of Chapter 5.

S I A

R

P

(1 − g)F

gF

ωAA

vS

ωII

θP

γII + γAA

B2

µR

B0

µS

µI

δII

B1

µA

δAA

Figure 4.1: The flow diagram for the SIARP model

The compartmental model (4.1.2) below depicts the transmission between the classes S,
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I, A, R, and P shown in Figure 4.1 above.

dS

dt
= B0 − F − µ0S,

dI

dt
= (1 − g)F − µ1I,

dA

dt
= B1 + gF − µ2A,

dR

dt
= vS + ωII + ωAA − µR − B2,

dP

dt
= γII + γAA − θP,

N = S + I + A + R + P,

(4.1.2)

where F =
αSP

1 + CP
+ βS(I + A), µ0 = (µ + v), µ1 = (µ + δI + ωI), µ2 =

(µ + δA + ωA), and N is the total population. The deterministic model describes the

transmission dynamics of COVID-19 disease in the South African population by N(t)

and is divided into five different compartments: those susceptible to the disease S(t), the

symptomatically infected persons I(t), those that are asymptomatically infected with the

disease A(t), those removed from the population R(t), and the density of the virus in the

environmental reservoir denoted as P (t). The first equation in (4.1.2) shows a constant

inflow of susceptibles at rate B0. It is the recruitment parameter into the susceptible

class S. α is the transmission rate from S to I (due to contact with environmental

reservoir P ). C is the proportion of interaction with infectious environment P . β is

the transmission rate from S to I (due to contact with I and/or A). The susceptible

class decreases by rates of new infections, or those leaving the susceptible compartment

βSI and βSA (also called incidences of the disease). The number of infected individ-

uals moving from the asymptomatic compartment per unit time is at time t. The rate

of vaccination is shown as v and is taken as 0, since no vaccine was available at that

time. In the second equation we see parameters g, δI , and ωI . They are the proportion

of symptomatic infectious persons, the death rate due to COVID-19, and rate at which

persons in compartment S recover from the disease, respectively. Lastly, in the third,
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fourth and fifth equations in (4.1.2), parameters Bi for i = 1, 2 describes respectively,

the influx rate of asymptomatically infected migrants into South Africa, and the departing

rate of surviving migrants as they recover from COVID-19. There is also the death rate

due to COVID-19 for the asymptomatic infectious persons δA, the recovery rate from the

COVID-19 disease for this asymptomatic group ωA, the rate γI at which the virus spreads

in the environmental reservoir P by I, and γA being the rate at which virus spreads in

environmental reservoir P by A. The rate of susceptible, symptomatic infected (showing

clinical symptoms), asymptomatic infected (showing no clinical symptoms), removed in-

dividuals, and the pathogens from each of the five compartments through natural death

(and disease induced death) are represented by µS, µI, µA, µR, and θP , respectively.

The individuals move from the susceptible group to the infected group, decreasing class S,

since the number of susceptible individuals decreases during the outbreak as hosts become

infected. In the second and third equations in (4.1.2), there is an increase in population

of symptomatic infectious class I, and there is a decrease as some of these individuals

can become asymptomatic infectious, moving into class A at a rate of B1, increasing this

class. Equation four of (4.1.2) shows that there are symptomatic and asymptomatic indi-

viduals that move to class R at rates ωII and ωAA due to recovery from the coronavirus,

and susceptibles recover due to being vaccinated at a rate of vS. This causes class R to

increase, but it then decreases since migrants depart from local population as they recover

from virus at rate B2. Lastly, in equation five of (4.1.2) we see an increase in the envi-

ronmental reservoir P due to susceptibles being exposed to infection from symptomatic

and asymptomatic infectious individuals. In all of the compartments natural death for

host population takes place at rate µ, and for pathogen mortality at rate θ.

4.2 Boundedness and positivity of solutions

It is important that solutions of our system (4.1.2) are positive and bounded. We show

this through making use of methods used by [77, 78] to find our positive invariant set and

then we proceed with making use of proposition and theorem seen in [77].
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Let us write the total population N(t) as,

N(t) = S(t) + I(t) + A(t) + R(t) (4.2.1)

excluding the pathogens P (t) from the compartments of the human population. We also

introduce two sets H0 and H1,

H0 = R++
5,

H1 =
{
x ∈ R++

5 | x1 + x2 + x3 + x4 + x5 ≤ B
µ

}
.

We are now going to study the positivity and boundedness of solutions of our system.

From equation (4.2.1) take the derivative of N(t) on both sides w.r.t. t which leaves us

with,

dN

dt
=

dS

dt
+

dI

dt
+

dA

dt
+

dR

dt
. (4.2.2)

Substituting in the equations of (4.1.2) we have,

dN

dt
= (B0 + B1 − B2) − (S + I + A + R)µ − δII − δAA. (4.2.3)

In the case of having zero infections i.e. I,A = 0, or zero deaths due to COVID-19, the

above equation becomes the inequality,

dN

dt
≤ (B − Nµ) , (4.2.4)

where (B0 + B1 − B2) = B and N = (S + I + A + R). Integration yields that,

N ≤
B

µ
. (4.2.5)

So, 0 ≤ N ≤ B
µ

which means that H1 is a positive invariant set for system (4.1.2).

We now state and give proofs using the following proposition and theorems from [77] and

[79].
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Proposition 4.2.1. [77] Consider a number t1 ∈ (0,∞). Suppose that X(t) =

(S(t), I(t), A(t), R(t), P (t)) is a solution for the system (4.1.2) with X(t) ∈ H0

for all t ∈ [0, t1) and N(0) < B
µ
. Then N(t) ≤ B

µ
, ∀ t ∈ [0, t1).

Proof.

d
(
N(t) − B

µ

)
dt

= −µ
(
N(t) − B

µ

)
− δI ≤ −µ

(
N(t) − B

µ

)
. Therefore N(0) < B

µ

implies that N(t) < B
µ
, ∀ t ≤ t1.

Theorem 7. [77] Suppose that for t ≥ 0, X(t) = (S(t), I(t), A(t), R(t), P (t)) is a

solution of (4.1.2) with X(0) ∈ H1. Then X(t) ∈ H1, ∀ t > 0.

Proof.

Suppose that we have non-empty set Φ := {t > 0 : X(t) /∈ H0}. Then Φ has an in-

fimum ϕ1, and ϕ1 is the smallest time-value for which X(t) exits the set H0. Also,

ϕ1 > 0 since X(t) is continuous. Now let us define a function M : [0,∞) → R as

follows,

M(t) = ln

(
B

µS(t)

)
+ln

(
B

µI(t)

)
+ln

(
B

µA(t)

)
+ln

(
B

µR(t)

)
+(P (t) − ln(P (t))) .

Note that each of the terms are non-negative for any 0 ≤ t < ϕ1. Our next step is to

take the derivative of function M(t) on both sides w.r.t. t resulting in,

Ṁ =

[−S′(t)

S(t)

]
+

[−I ′(t)

I(t)

]
+

[−A′(t)

A(t)

]
+

[−R′(t)

R(t)

]
+

[(
1 −

1

P (t)

)
P ′(t)

]
.

(4.2.6)
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By appropriately substituting our system of equations (4.1.2) yields,

Ṁ =
−B0

S
+

F

S
+ µ0 −

1

I
+

gF

I
+ µ1 −

B1

A
−

gF

A
+ µ2 −

vS

R
−

ωII

R
−

ωAA

R

+µ +
B2

R
+ γII + γAA − θP −

γII

P
−

γAA

P
+ θ.

(4.2.7)

By eliminating the negative terms we obtain the inequality,

Ṁ ≤ T1, (4.2.8)

where

T1 =
F

S
+

gF

I
+

B2

R
+ γII + γAA + µ0 + µ1 + µ2 + µ + θ. (4.2.9)

Integrating (4.2.8) from 0 to ϕ1 gives,

Ṁ(t) = M(0) +

∫ ϕ1

0

Ṁ(s)ds ≤ M(0) + M1t ≤ M(0) + M1ϕ1. (4.2.10)

Taking note that limx→∞ (lnx) = ∞ and limx→0+ (x − ln(x)) = ∞, we can come

to the conclusion that

lim
t→ϕ1

−
M(t) = ∞. (4.2.11)

However, we notice in (4.2.10) how M is bounded above. This is the contradiction.

4.3 Equilibria and the basic reproduction number of

our SIARP Model

Compartmental models in epidemiology have two equilibria; the disease-free equilibrium

point and the endemic equilibrium point [71]. For our SIARP model (4.1.2) the basic

reproduction number is denoted by R0 and is obtained through first finding the disease-

free equilibrium point.
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Finding the partial derivatives inside matrices G and V and evaluating them at the

disease-free equilibrium point gives us G and V as,

G =


(1 − g)βS0 (1 − g)βS0 (1 − g)αS0

gβS0 gβS0 gαS0

0 0 0

 ,

and

V =


(µ + δI + ωI) 0 0

0 (µ + δA + ωA) 0

−γI −γA θ

 .

Our next step is to find the next generation matrix denoted by GV −1 for our model. But

before we do so, let us briefly give information regarding this operator.

4.3.1 The next generation matrix operator

In order for us to calculate the matrix GV −1, we first need to find the inverse matrix

V −1.

V −1 =


1

(µ+δI+ωI)
0 0

0 1
(µ+δA+ωA)

0

γI

θ(µ+δI+ωI)
γA

θ(µ+δA+ωA)
1
θ

 .

From above, we can now find GV −1 Then GV −1 is as below,

GV −1 =


(

(1−g)βS0

(µ+δI+ωI)
+ γI(1−g)αS0

θ(µ+δI+ωI)

) (
(1−g)βS0

(µ+δA+ωA)
+ γA(1−g)αS0

θ(µ+δA+ωA)

) (
(1−g)αS0

θ

)
(

gβS0

(µ+δI+ωI)
+ gαS0γI

θ(µ+δI+ωI)

) (
gβS0

(µ+δA+ωA)
+ gαS0γA

θ(µ+δA+ωA)

) (
gαS0

θ

)
0 0 0

 .

Keeping in mind that µ1 = (µ+ δI +ωI) and µ2 = (µ+ δA +ωA), we therefore have

the above matrix as

GV −1 =


(

(1−g)βS0

µ1
+ γI(1−g)αS0

θµ1

) (
(1−g)βS0

µ2
+ γA(1−g)αS0

θµ2

) (
(1−g)αS0

θ

)
(

gβS0

µ1
+ gαS0γI

θµ1

) (
gβS0

µ2
+ gαS0γA

θµ2

) (
gαS0

θ

)
0 0 0

 .
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We now find the spectral radius of GV −1 by finding the characteristic equation and

its eigenvalues. The maximum positive eigenvalue will then be our basic reproduction

number, R0.

Finding the det(GV −1 − λI) = 0, gives us

0 = −λ3 +

[(
(1−g)βS0

µ1
+ γI(1−g)αS0

θµ1

)
+

(
gβS0

µ2
+ gαS0γA

θµ2

)]
λ2,

0 = λ2

[
− λ +

[(
(1−g)βS0

µ1
+ γI(1−g)αS0

θµ1

)
+

(
gβS0

µ2
+ gαS0γA

θµ2

)]]
.

So, the roots are λ1
2 = 0 and λ2, where

λ2 =

(
(1−g)βS0

µ1
+ γI(1−g)αS0

θµ1

)
+

(
gβS0

µ2
+ gαS0γA

θµ2

)
. (4.3.1)

By simplifying the above expression (4.3.1) and by the substitution of S0, the basic

reproduction number is therefore

R0 =
B0

[(
1 − g

)
µ2

(
βθ + αγI

)
+ gµ1

(
βθ + αγA

)]
θµ0µ1µ2

.

4.4 Existence of the endemic equilibrium

This section tells us more about the existence of the endemic equilibrium and how we

ended up with a polynomial G(I∗) seen in the equation (4.4.11) when the rate of influx

of migrants who are asymptomatically infected, B1 not equal to zero and when B1 is

zero, G(I∗) becomes a cubic equation in I∗. We now set the left hand side already to

zero for computing the coordinates of the endemic equilibrium E∗.
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0 = B0 − F − µ0S,

0 = (1 − g)F − µ1I,

0 = B1 + gF − µ2A,

0 = vS + ωII + ωAA − µR − B2,

0 = γII + γAA − θP,

N = S + I + A + R + P,

(4.4.1)

where F =
αSP

1 + CP
+ βS

(
I + A

)
.

From the first equation of (4.4.1) we have,

F = B0 − µ0S
∗,

and from the second equation of (4.4.1) we have,

F =
µ1I

∗(
1 − g

) .
The latter two equations enable us to express S∗ as,

S∗ =

[
B0 −

µ1I
∗(

1 − g
)]

µ0

. (4.4.2)

The third and fifth equations yield A∗ as,

A∗ =

[
B1 + g0µ1I

∗]
µ2

, (4.4.3)

with g0 =
g(

1 − g
) , and

P ∗ =

[
γII

∗ + γAA
∗]

θ
. (4.4.4)

Starting with the two expressions for F , we obtain the identity:

µ1I
∗(

1 − g
) = S∗

[
αP ∗

1 + CP ∗
+ β

(
I∗ + A∗)], (4.4.5)
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which can be written as,

µ2
2θµ1I

∗(1 + CP ∗)(
1 − g

) = µ2
2θS∗[αP ∗ + β(I∗ + A∗)(1 + CP ∗)

]
. (4.4.6)

The left hand side is therefore

LHS = Q1I
∗2 + Q2I

∗, (4.4.7)

where

Q1 =
µ2

2µ1γIC(
1 − g

) +
µ2µ1

2γAg0C(
1 − g

) ,

Q2 =
µ2

2θµ1(
1 − g

) +
µ2µ1γAB1C(

1 − g
) .

By letting
µ1(

1 − g
) = ϕ, it becomes

Q1 = µ2
2ϕγIC + µ2µ1ϕγAg0C,

Q2 = µ2
2θϕ + µ2ϕγAB1C.

(4.4.8)

For the right hand side, it becomes

RHS = S∗[Q3I
∗2 + Q4I

∗ + Q5

]
. (4.4.9)

where

Q3 = µ2
2βγIC + µ2µ1βγAg0C + µ2µ1γIβg0C + βg0

2µ1
2γAC,

Q4 = µ2
2αγI + µ2αγAg0µ1 + µ2

2θβ + µ2θβg0µ1 + µ2γAβB1C

+µ2γIβB1C + 2βB1γAg0µ1C,

Q5 = µ2αγAB1 + µ2θβB1 + βB1
2γAC.
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So, substituting S∗ in the equation of (4.4.9) and multiplying out and simplifying the

answer yields

RHS = S∗[Q3I
∗2 + Q4I

∗ + Q5

]
,

=

[
B0 −

µ1I
∗(

1 − g
)]

µ0

[
Q3I

∗2 + Q4I
∗ + Q5

]
,

=
1

µ0

[
B0Q3I

∗2 + B0Q4I
∗ + B0Q5 −

µ1Q3I
∗3(

1 − g
) −

µ1Q4I
∗2(

1 − g
) −

µ1Q5I
∗(

1 − g
)].

By letting
µ1(

1 − g
) = ϕ, the right hand side of the equation is therefore

RHS = −
Q3ϕI

∗3

µ0

+

(
B0Q3 − Q4ϕ

)
I∗2

µ0

+

(
B0Q4 − Q5ϕ

)
I∗

µ0

+
B0Q5

µ0

. (4.4.10)

Subtracting the left hand side and right hand side equations gives the polynomial G(I∗).

The final answer of the polynomial G(I∗) therefore then has the form we see in the last

equation of (4.4.11) below. Take note that G(I∗) is a cubic equation in I∗.

G(I∗) = LHS − RHS,

G(I∗) =
Q3ϕI

∗3

µ0

+

[
µ2

2ϕγIC + µ2µ1ϕγAg0C −
(
B0Q3 − Q4ϕ

)
µ0

]
I∗2

+

[
µ2

2θϕ + µ2ϕγAB1C −
(
B0Q4 − Q5ϕ

)
µ0

]
I∗ −

B0Q5

µ0

.

(4.4.11)

Looking at our own model, we state the following two theorems. They show that our sys-

tem has a unique endemic equilibrium point X∗ for cases when the influx rate of asymp-

tomatically infected migrants is positive (B1 > 0) seen in (4.4.12), and for R0 > 0 when

the influx rate is zero (B1 = 0) seen in (4.4.14).

Theorem 8. If B1 > 0, then the system (4.1.2) has a unique endemic equilibrium point
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X∗, with coordinates

S∗ =
(1 − g)B0 − (µ + δI + ωI)I

∗

(1 − g)
,

A∗ =
(1 − g)B1 − g(µ + δI + ωI)I

∗

(1 − g)(µ + δA + ωA)
,

R∗ =

[
(1 − g)(µ + δA + ωA)ωI + ωAg(µ + δI + ωI) − (µ + δA + ωA)v(µ + δI + ωI)

]
I∗

µ(1 − g)(µ + δA + ωA)

+
(µ + δA + ωA)v(1 − g)B0 + ωA(1 − g)B0 − (1 − g)(µ + δA + ωA)B2

µ(1 − g)(µ + δA + ωA)
,

P ∗ =
γA(1 − g)B1 +

[
(1 − g)(µ + δA + ωA)γI − g(µ + δI + ωI)γA

]
I∗

θ(1 − g)(µ + δA + ωA)
,

(4.4.12)

where I∗ is the unique positive root of the polynomial G(I∗) of the equation (4.4.11).

Proof.

We recall that G(I∗) = a3I
∗3 + a2I

∗2 + a1I
∗ + a0 with

a3 =
Q3ϕ

µ0

,

a2 =

[
µ2

2ϕγIC + µ2µ1ϕγAg0C −
(
B0Q3 − Q4ϕ

)
µ0

]
,

a1 =

[
µ2

2θϕ + µ2ϕγAB1C −
(
B0Q4 − Q5ϕ

)
µ0

]
, and

a0 =
B0Q5

µ0

.

We note that a3 > 0 and a0 < 0. Thus, by Descartes’s rule of signs, in order to prove

that G(I∗) has a unique positive root, it suffices to prove that either a2 > 0 or a1 < 0.

Now let us suppose that to the contrary we have

a2 ≤ 0 and a1 ≥ 0.

Since Q3 > 0 and Q4 > 0, we must have

µ0(Q3a1 − Q4a2) ≥ 0.
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We calculate that

µ0(Q3a1 − Q4a2)

= µ0Q3

[
µ2

2θϕ + µ2ϕγAB1C −
(B0Q4 − Q5ϕ)

µ0

]

−µ0Q4

[
µ2

2ϕγIC + µ1µ2ϕγAg0C −
(B0Q3 − Q4ϕ)

µ0

]

= µ0Q3

[
µ2

2θϕ + µ2ϕγAB1C
]
+ ϕQ3Q5

−µ0Q4

[
µ2

2ϕγIC + µ1µ2ϕγAg0C
]
− ϕQ2

4

= Q3

[
µ0µ

2
2θϕ + µ0µ2ϕγAB1C + ϕQ5

]
−Q4

[
µ0µ

2
2ϕγIC + µ0µ1µ2ϕγAg0C + ϕQ4

]

=
[
µ2

2βγIC + µ2µ1βγAg0C + µ2µ1γIβg0C + βg2
0µ

2
1γAC

]
×
[
µ0µ

2
2θϕ + µ0µ2ϕγAB1C + ϕ(µ2αγAB1 + µ2θβB1 + βB2

1γAC)
]

−
[
µ2

2αγI + µ2αγAg0µ1 + µ2
2θβ + µ2θβg0µ1

+βB1C(µ2γA + µ2γI + 2γAg0µ1)
]

×
[
µ0µ

2
2ϕγIC + µ0µ1µ2ϕγAg0C + ϕQ4

]

=
[
µ2

2βγIC + µ2µ1βγAg0C + µ2µ1γIβg0C + βg2
0µ

2
1γAC

]
×
[
µ0µ

2
2θϕ + µ0µ2ϕγAB1C + ϕ(µ2αγAB1 + µ2θβB1 + βB2

1γAC)
]

−
[
µ2

2αγI + µ2αγAg0µ1 + µ2
2θβ + µ2θβg0µ1

+βB1C(µ2γA + µ2γI + 2γAg0µ1)
]

×
[
µ0µ

2
2ϕγIC + µ0µ1µ2ϕγAg0C

]
−ϕ

[
µ2

2αγI + µ2αγAg0µ1 + µ2
2θβ + µ2θβg0µ1

+βB1C(µ2γA + µ2γI + 2γAg0µ1)
]2
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When we expand the latter expression, we obtain a number of terms, twenty of which are

positive. A routine exercise, which we omit, reveals that all of these positive terms cancel

away, and we can conclude that

Q3a1 − Q4a2 < 0

which is a contradiction. Therefore, the assumption that we can have a1 ≥ 0 and a2 ≤ 0

is false. Therefore, by Descartes’ rule of signs, the polynomial G has exactly one positive

root, which is the value I∗ of a unique endemic equilibrium point.

For the case when B1 = 0, we have the following:

Q1 = µ2
2ϕγIC + µ2µ1ϕγAg0C,

Q2 = µ2
2θϕ,

Q3 = µ2
2βγIC + µ2µ1βγAg0C + µ2µ1γIβg0C + βg0

2µ1
2γAC,

Q4 = µ2
2αγI + µ2αγAg0µ1 + µ2

2θβ + µ2θβg0µ1,

Q5 = 0.

After making some substitutions, multiplying out, subtracting terms, and then simplify-

ing, we notice that when B1 = 0, the polynomial G(I∗) can be replaced by a quadratic

equation in I∗. It has the form shown below in (4.4.13).

G0(I
∗) = LHS − RHS,

G0(I
∗) =

Q3ϕI
∗2

µ0

+

[
µ2

2ϕγIC + µ2µ1ϕγAg0C −
(
B0Q3 − Q4ϕ

)
µ0

]
I∗

+

[
µ2

2θϕ −
B0Q4

µ0

]
.

(4.4.13)

Theorem 9. If B1 = 0 and R0 > 1, then the system (4.1.2) has a unique endemic
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equilibrium point X∗, with coordinates

S∗ =
(1 − g)B0 − (µ + δI + ωI)I

∗

(1 − g)
,

A∗ = −
g(µ + δI + ωI)I

∗

(1 − g)(µ + δA + ωA)
,

R∗ =

[
(1 − g)(µ + δA + ωA)ωI + ωAg(µ + δI + ωI) − (µ + δA + ωA)v(µ + δI + ωI)

]
I∗

µ(1 − g)(µ + δA + ωA)

+
(µ + δA + ωA)v(1 − g)B0 + ωA(1 − g)B0 − (1 − g)(µ + δA + ωA)B2

µ(1 − g)(µ + δA + ωA)
,

P ∗ =

[
(1 − g)(µ + δA + ωA)γI − g(µ + δI + ωI)γA

]
I∗

θ(1 − g)(µ + δA + ωA)
,

(4.4.14)

where I∗ is the unique positive root of the polynomial G0(I
∗) of the equation (4.4.13).

Proof.

Recall that G0(I
∗) = a3I

∗2 + a2I
∗ + a1 with

a3 =
Q3ϕ

µ0

,

a2 = µ2
2ϕγIC + µ2µ1ϕγAg0C −

(
B0Q3 − Q4ϕ

)
µ0

,

a1 = µ2
2θϕ −

B0Q4

µ0

.

Note that a3 > 0. We need to prove that G0(I
∗) has a unique positive root. By

Descartes’ rule of signs, all we need to do is show that a1 < 0. We calculate, noting that

ϕ =
µ1

(1 − g)
, and after some simplification, we obtain:

a1 =
µ2

2µ1θ

(1 − g)

[
1 − R0

]
< 0,

since R0 > 1.
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4.5 Global stability of the disease-free equilibrium

For investigating global stability of the disease-free equilibrium, we must assume that

there is no inflow of infecteds. Also, we introduce invariant Rglo of the model (4.1.2),

Rglo = max

{
(θβ + αγI)S

0

µ1θ
,
(θβ + αγA)S

0

µ2θ

}
. (4.5.1)

The work of van den Driessche and Watmough [72] ensures the local stability of the

disease-free equilibrium that we calculated previously. Methods of the theorem [72] can

be found in [80].

Theorem 10. [80] The disease-free equilibrium of system (2.1) is locally asymptotically

stable whenever R0 < 1 and unstable otherwise.

The number R0 can be expressed as,

R0 = b

{
RI1 +

σRI2

σ + µ
+

ρσ (1 − q)RA

(σ + µ) (δ + µ)

}
,

where RI1 = βc
µ+σ

, RI2 = η1βc
ρ+µ

and RA = η2βc
δ+µ

, and they represent the contribution

of the asymptomatic, symptomatic and AIDS individuals to the overall model reproduc-

tion number R0 respectively. The proportion of asymptomatic individuals who become

symptomatic and individuals who develop to full-blown AIDS are given by σ
σ+µ

and(
ρ

µ+ρ

) (
σ

µ+σ

)
respectively.

We continue now with stating the theorem of global stability of the disease-free equilibrium

of our model and then prove it.

Theorem 11. The disease-free equilibrium of the COVID-19 model (4.1.2) is globally

asymptotically stable if Rglo < 1.

Proof. This will be investigated using the Lyapunov method [94]. Since by assumption

Rglo < 1, the following inequalities then hold

(θβ + αγI)S
0 − µ1θ < 0,

(θβ + αγA)S
0 − µ2θ < 0.

(4.5.2)
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Then there exists z0 > 0 such that,

[θβ + (α + z0) γI]S
0 − µ1θ < 0,

[θβ + (α + z0) γA]S
0 − µ2θ < 0.

(4.5.3)

We introduce the number z as below,

z =
(α + z0)S

0

θ
. (4.5.4)

Now we define the function V = V (S(t), I(t), A(t), P (t)) as follows,

V = S − S0 + S0ln

(
S0

S

)
+ I + A + zP. (4.5.5)

Then V is positive-definite w.r.t. the disease-free equilibrium. We calculate the derivative

of V (t):

V̇ = S
′
(
1 −

S0

S

)
+ I

′
+ A

′
+ zP

′

= [B0 − F − µ0S]

(
1 −

S0

S

)
+ [(1 − g)F − µ1I]

+ [gF − µ2A] + z [γII + γAA − θP ]

=
[
µ0S

0 − µ0S − F
] (

1 −
S0

S

)
+ [(1 − g)F − µ1I]

+ [gF − µ2A] + z [γII + γAA − θP ] .

(4.5.6)

After multiplying out the brackets and canceling out a few terms, we are left with the

following

V̇ ≤ −
µ0 (S

0 − S)
2

S
+ [zγI − µ1] I + [zγA − µ2]A − zθP +

FS0

S
. (4.5.7)

Using the fact that F =
αSP

1 + CP
+ βS(I + A) and substituting F into the equation
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of V̇ in (4.5.7) yields

V̇ = −
µ0 (S

0 − S)
2

S
+ zγII − µ1I + zγAA − µ2A − zθP

+

[
αSP

1 + CP
+ βS(I + A)

]
S0

S
,

= −
µ0 (S

0 − S)
2

S
+ zγII − µ1I + zγAA − µ2A − zθP

+
αS0P

1 + CP
+ βS0I + βS0A,

= −
µ0 (S

0 − S)
2

S
+

[
zγI − µ1 + βS0

]
I +

[
zγA − µ2 + βS0

]
A

+

[
αS0P

1 + CP
− zθP

]
.

(4.5.8)

Note that,
αS0P

1 + CP
≤ αS0P.

Therefore,

V̇ ≤ −
µ0 (S

0 − S)
2

S
+ Q1I + Q2A + Q3P, (4.5.9)

where Q1 = [zγI − µ1 + βS0], Q2 = [zγA − µ2 + βS0] and Q3 = [αS0 − zθ].

From (4.5.3) and substitution of (4.5.4) into Q1, Q2 and Q3 results in:

Q1 = βS0 − µ1 +
(α + z0) γIS

0

θ
< 0,

Q2 = βS0 − µ2 +
(α + z0) γAS

0

θ
< 0,

Q3 = −z0S
0 < 0.

Therefore V̇ ≤ 0.

Furthermore, since Rglo < 1, from the last expression in (4.5.8), it can be seen that

V̇ (X) = 0 ⇐⇒ X =
(
S0, 0, 0, 0

)
.
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Therefore, V̇ (t) is negative-definite at the disease-free equilibrium. So, V (t) is a Lya-

punov function proving that the disease-free equilibrium is globally asymptotically sta-

ble.
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Chapter 5

South African population during its

first wave of COVID-19

The following references are made use of in this chapter: Worldometer [48], Witbooi et al.

[73], Witbooi [77], World Health Organization [81], Son [82], Rangkuti et al. [83], Jassat

et al. [84], National Institute for Communicable Diseases [85], Stiegler and Bouchard

[86], Greyling and Rossouw and Adhikari [87], Businesstech [88], October et al. [89], and

Moonasar and Pillay and Leonard et al. [90].

This chapter focuses on sensitivity analysis of the basic reproduction number R0 and

numerical simulations of system (4.1.2). We looked into the South African population

during its first wave of COVID-19 and obtained results such as values of R0 and graphs

showing the observed daily new cases and active cases averaged over 7-days based on the

timeline from World Health Organization [81] for 20 July 2020 until 2 November 2020.

Euler’s method was used to find approximate solutions to the model (4.1.2) via coding in

Octave. The Octave code used for this section appears in the appendix section of thesis.
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5.1 Sensitivity analysis of R0

In this section sensitivity analysis of the basic reproduction number R0 is performed.

The results obtained in this section will tell us the significance of each parameter in our

model and the effect each has on R0; which of them increases, or decreases R0. This will

then give us a better understanding of the transmission dynamics and the spread of the

COVID-19 disease, and in turn will allow for measures to be made in controlling the spread

of disease amongst the South African population. There are different methods one can use

to perform sensitivity analysis. One of these methods, the fixed point estimation is used

in Son [82]. We, however, will be making use of the normalized-forward sensitivity index

method 3.12.1 defined previously in the section of the same name under the mathematical

preliminaries chapter of this thesis. The reader can also check [83] for further information

on the normalized-forward sensitivity index method.

Since we want to see how each of the sixteen parameters in Table 5.1 influences R0, we

need to follow the process of finding the normalized-forward sensitivity index, which is

quite simple. One needs to find the partial derivative of R0 over the partial derivative of

the parameter you are working with. That final answer, in its simplest form, you then

multiply by the parameter of interest divided by the worked out calculation of R0. The

definition 3.12.1 from [83] sums it up quite well, and we recall it below. Note that for

CR0
m to be high,

∂R0

∂m
must be higher. For R0 to be sensitive to a parameter, the index

must be higher.

The normalized-forward sensitivity index is calculated using the normalized sensitivity

index of the variable R0, which is differentiable on the parameter m:

CR0
m =

∂R0

∂m
×

m

R0

,

where R0 is the variable to be analyzed and m is the parameter.

The sensitivity index of each parameter is derived from R0 using the definition stated

above. Table 5.1 shows the parameters we are going to be making use of in deriving the

sensitivity of R0, excluding parameters P0, n, and n1.
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Table 5.1: Parameters with values and their descriptions

Parameter Description Values (day−1) Source

B0 Constant inflow rate of susceptibles P0µ ≈ 2500 [48]

B1 Influx rate of asymptomatically infected migrants 200 Nominal

B2 Departing rate of surviving migrants as they recover from COVID-19 ωAB1µ ≈ 0.00253

µ Mortality rate (65 × 365)−1 ≈ 4.2150 × 10−5 [77]

P0 South African population in 2020 59308690 [48]

α Transmission rate from S to I, due to contact with environmental reservoir P 0.3β ≈ 4.0466 × 10−10

C Proportion of interaction with infectious environment P 0.02 Estimated

g Proportion of symptomatic infectious persons 0.1 Estimated

β Transmission rate from S to I, due to contact with I and/or A (0.08)(P0)
−1 ≈ 1.3489 × 10−9 Estimated

v Rate of vaccination 0

n, n1 Timeline from 20 July 2020 until 2 November 2020 n = 14 and n1 = 7(n + 1) [81]

γI Rate at which virus spreads in environmental reservoir P by I 0.05 Estimated

γA Rate at which virus spreads in environmental reservoir P by A 0.005 Estimated

δI Death rate due to COVID-19 0.0002 [73]

δA Death rate due to COVID-19 0.0001 [73]

ωI Rate at which persons in S recover 0.15 [73]

ωA Rate at which persons in A recover 2ωI = 0.3 [73]

θ Death rate of pathogens in the environmental reservoir P 1/4 Estimated

Recall the basic reproduction number R0 having the form

R0 =
B0

[(
1 − g

)
µ2

(
βθ + αγI

)
+ gµ1

(
βθ + αγA

)]
θµ0µ1µ2

,

where µ0 = (µ+v), µ1 = (µ+δI +ωI), and µ2 = (µ+δA+ωA). Working from the

definition of the normalized-forward sensitivity index of R0, our calculations of sensitivity

indices yields
∂R0

∂B0

×
B0

R0

= +1,
∂R0

∂B1

×
B1

R0

= 0,
∂R0

∂B2

×
B2

R0

= 0, and
∂R0

∂C
×

C

R0

= 0.

66

http://etd.uwc.za/



We also have equations of sensitivity indices as below

∂R0

∂α
×

α

R0

=

α

[
(1 − g)

[
µ + γI(δI + δA) + gγA(µ + δI)

]]
(1 − g)µ2(βθ + αγI) + gµ1(βθ + αγA)

,

∂R0

∂g
×

g

R0

=
g
[
βθ(µ1 − µ2) − (γIµ1 − γAµ2)

]
(1 − g)µ2(βθ + αγI) + gµ1(βθ + αγA)

,

∂R0

∂β
×

β

R0

=
βθ

[
(1 − g)µ2 + gµ1

]
(1 − g)µ2(βθ + αγI) + gµ1(βθ + αγA)

,

∂R0

∂v
×

v

R0

= −
v

[
µ2(1 − g)(βθ + αγI)

[
µµ1 + µ2(δI + ωI)

]]
µ0

[
(1 − g)µ2

2µ1(βθ + αγI) + gµ1
2µ2(βθ + αγA)

]

−
v

[
µ1g(βθ + αγA)

[
µµ1 + µ2(δI + ωI)

]]
µ0

[
(1 − g)µ2

2µ1(βθ + αγI) + gµ1
2µ2(βθ + αγA)

] ,
∂R0

∂γI

×
γI

R0

=
αµ2γI(1 − g)

(1 − g)µ2(βθ + αγI) + gµ1(βθ + αγA)
,

∂R0

∂γA

×
γA

R0

=
gαµ1γA

(1 − g)µ2(βθ + αγI) + gµ1(βθ + αγA)
,

∂R0

∂δI
×

δI

R0

= −
δI

[
µ1µg(βθ + αγA) + µ2(1 − g)(βθ + αγI)(2µ + δA + ωA)

]
(1 − g)µ2

2µ1(βθ + αγI) + gµ1
2µ2(βθ + αγA)

,

∂R0

∂δA
×

δA

R0

= −
δA

[
µ1g(βθ + αγA)(δI + ωI) − µ2µ(1 − g)(βθ + αγI)

]
(1 − g)µ2

2µ1(βθ + αγI) + gµ1
2µ2(βθ + αγA)

,

∂R0

∂ωI

×
ωI

R0

= −
ωI

[
µ1µg(βθ + αγA) + µ2(1 − g)(βθ + αγI)(2µ + δA + ωA)

]
(1 − g)µ2

2µ1(βθ + αγI) + gµ1
2µ2(βθ + αγA)

,

∂R0

∂ωA

×
ωA

R0

=
ωA

[
µ2µ(1 − g)(βθ + αγI) − µ1g(βθ + αγA)(δI + ωI)

]
(1 − g)µ2

2µ1(βθ + αγI) + gµ1
2µ2(βθ + αγA)

,

∂R0

∂θ
×

θ

R0

=
µ2(1 − g)

[
βθµ1µ2 − (βθ + αγI)

[
µµ1 + µ2(δI + ωI)

]]
(1 − g)µ2

2µ1(βθ + αγI) + gµ1
2µ2(βθ + αγA)

+
µ1g

[
βθµ1µ2 − (βθ + αγA)

[
µµ1 + µ2(δI + ωI)

]]
(1 − g)µ2

2µ1(βθ + αγI) + gµ1
2µ2(βθ + αγA)

.
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Lastly, we have that the sensitivity index equation
∂R0

∂µ
×

µ

R0

is equal to

µ

[
µ2(1 − g)(βθ + αγI)

[
µ0µ1 −

[
µ(3µ + 2v) + (δI + ωI)

][
2(2µ + v) + (δA + ωA)

]]]
µ0

[
(1 − g)µ2

2µ1(βθ + αγI) + gµ1
2µ2(βθ + αγA)

]

+

µ

[
µ1g(βθ + αγA)

[
µ0µ2 −

[
µ(3µ + 2v) + (δI + ωI)

][
2(2µ + v) + (δA + ωA)

]]]
µ0

[
(1 − g)µ2

2µ1(βθ + αγI) + gµ1
2µ2(βθ + αγA)

] .

The sensitivity indices of R0 from equations above we see in Table 5.2.

Table 5.2: Sensitivity indices of R0

Parameter Description Sensitivity index

B0 Constant inflow rate of susceptibles +1

β Transmission rate from S to I, due to contact with I and/or A +0.9459

α Transmission rate from S to I, due to contact with environmental reservoir P +0.053910

γI Rate at which virus spreads in environmental reservoir P by I +0.053766

γA Rate at which virus spreads in environmental reservoir P by A +0.00029904

C Proportion of interaction with infectious environment P 0

v Rate of vaccination 0

δI Death rate due to COVID-19 -0.00000062875

δA Death rate due to COVID-19 -0.000016612

ωI Rate at which persons in S recover -0.00036817

ωA Rate at which persons in A recover -0.049835

θ Death rate of pathogens in the environmental reservoir P -0.053925

µ Mortality rate -1.0000

g Proportion of symptomatic infectious persons -5913600

In Table 5.2 we see parameters having positive and negative sensitivity indices. The

parameters with a positive sensitivity index are B0, α, C, v, β, γI , and γA. Those
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with a negative sensitivity index are µ, g, δI , δA, ωI , ωA, and θ. The positive sign

gives an indication that there is a direct relationship between the parameter and R0. It

also indicates that increases in the basic reproductive number is significant. Negative

sensitivity indexes gives an indication that, that parameter which increases the basic

reproductive number has negative significance, or is not that significant on R0. The

most sensitive parameter is B0 the constant inflow of susceptible persons. Others are

the transmission rate β from S-class to I-class via contact with symptomatic and/or

asymptomatic persons, the transmission rate α from S-class to I-class via contact with

environment of the pathogens P , and γI the rate at which the virus spreads in P by I.

Then we also have γA, C, and v. The least sensitive parameter is g the proportion of

symptomatic infectious persons. Looking at the sensitivity index of R0 with respect to

B0 the rate of constant inflow of susceptibles, we see it is +1. The 1 means that a unit

increase in B0 results in a unit increase in R0, and this increase in R0 is very significant.

In other words, increasing (or decreasing) B0 by 10 percent results in R0 then increasing

(or decreasing) by 10 percent. Similarly, if we look at the mortality rate µ, decreasing

(or increasing) this parameter by 10 percent causes R0 to increase (or decrease) by 10

percent. We can also check the index for recovery rate of those in the asymptomatic

class −0.049835. Its interpretation is that if ωA gets increased by 10 percent, the basic

reproduction number will decrease by 0.49835 percent, or 0.5 percent.

5.2 Numerical simulations

In this section we examine and showcase the transmission dynamics of the COVID-19

disease based on our compartmental model (4.1.2) through numerical simulations. We

focus on the timeline from 20 July 2020 until 2 November 2020 [81], that is, during the 105

days when the South African population [48] was experiencing its first wave of COVID-

19, taking note that during this time, there was no vaccine available to the public yet.

The simulations are performed by taking parameters from Table 5.1 and using data from

Worldometer South Africa [48].
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5.2.1 The country under lockdown and behaviour of

South Africans

On Thursday 5 March 2020, the National Institute for Communicable Diseases of South

Africa reported the first ever case of positive polymerase chain reaction test result for

SARS-CoV-2 infection, a 38-year-old male that returned to the country from a trip to

Italy with his wife. After that incident an increase of infections was reported to grow

steadily in the country until the number of infections reached a weekly result of 10 488

on 13 July 2020, this being the peak of the first wave, and having confirmed weekly cases

reported as 86 695 infections. Thereafter, the second wave was then reported to peak on

4 January 2021 with a weekly increase of infections being 31 309 and weekly confirmed

cases of infection being 125 287, see in [81, 84, 85].

With infections increasing so rapidly, the government aimed to place the country under

lockdown, the aim being to control and decrease the spread of the virus. Furthermore, a

decision was made that only when the number of infections showed a significant decrease,

the levels would too, giving the health system ample time to make preparations to deal

with the pandemic. Levels of lockdown ranged from level 1 to level 5, the most relaxed

to most forceful. Level 5 was declared on 23 March 2020 and its process of implementa-

tion took place on 27 March 2020 onwards. During this period lockdown was at its most

stringent stage in order to restrain the spread of infection and to avert death rates from

increasing. By end of March, the weekly confirmed cases decreased from 947 to 398 [81].

The government eased lockdown restrictions to level 4 on 01 May 2020 however, excessive

preventative initiatives were still forced on the public so as to restrict transmission be-

tween communities; South Africans were permitted to only leave their homes when they

had to get essential goods and needed to seek medical attention. Shops, restaurants and

non-essential businesses were to remain closed until a suitable time was given for them

to open again, while only essential establishments were permitted to remain open. Level
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3 was then implemented on 01 June 2020, limiting the interaction at social gatherings

and workplaces to reduce high risk disease transmission. On the evening of Saturday

15 August 2020, the President of South Africa, President Cyril Ramaphosa, addressed

the nation where he disclosed the country’s level of advancement in its combat with the

virus, and because of SA’s good fight and positive results showing the improvement in

the spread of COVID-19, lockdown restrictions were then lowered further to level 2 on

midnight Monday 17 August 2020. Rules on restrictive measures to attend gatherings

were still in place, but slowly eased as the public still had to abide by social distancing

and health regulations to avert the re-emergence of the virus. South Africa reached level

1 of lockdown on 30 September 2020, and during this time South Africans were allowed

to carry on with, not all, but most of their normal activities, on condition that they take

protective measures and followed health regulations such as wearing masks, keeping dis-

tance from each other, and regularly washed their hands, or made use of sanitizers, when

going out in public [86, 87, 88, 89, 90].

5.2.2 Graphical representation of new and active cases

The following graphs show the behaviour of the deterministic model (4.1.2) and how

it fits with the data [81]. We estimate solutions to the model equations (4.1.2) using

Euler’s method via coding in Octave. The initial conditions used are the following:

S(0) = 59012147, I(0) = 171000, A(0) = 17000, R(0) = 0, and P (0) = 2000.

Throughout this process we are under the assumption that no one has recovered from the

virus yet. Figure 5.1 to Figure 5.4 below illustrates the behaviour of the infectious South

African population and how the numbers change through the process of the first wave

as time increases from 0 to 105 days. Figure 5.1 and Figure 5.3 show the new cases and

active cases of our model. Figure 5.2 and Figure 5.4 show the new and active cases when

the model is modified to fit the data [81] more accurately. In Figure 5.1 and Figure 5.2

we notice that the model under-valuates the observed data. Our suspicion is (in line with
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[73]) that a significant drop in the daily new cases has the effect that susceptibles become

less wary, with behavioural change that is detrimental to the fight against COVID-19.

We account for this effect by introducing the following factor, at the appropriate time

(t=16 days), and we run the simulations over 105 days. The parameter β is replaced by

β[1+((t−16)/105)0.5]. The normal red curves represent the daily new cases according

to our model when β is taken at the fixed value 0.08
P0

. We see that the number of cases are

steadily decreasing from t=0 up until 105 days. But for the modified model, when the

curve fits the observed data very well over the first few weeks, observed daily new cases

stay around 2000 until 105 days. This tells us that when lockdown levels were lowered,

the public did not take health regulations and protective measures seriously, in the end

causing the re-emergence of the virus, or the second wave. For active cases in the normal

model, we see that the number of cases rapidly drop until it stays at zero by 105 days,

and by the modified model, the active cases drop as well, but around 105 days the cases

stay at approximately just below 10000 or so. The graphs we obtained look similar to

those in the paper of Witbooi et al. [73], however their graphs are a result of a different

model.
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Figure 5.1: Daily new cases averaged over seven days during first

wave, 105 days, in 2020 parameters as in Table 5.1, R0 = 0.5348.

Figure 5.2: Daily new cases averaged over seven days during the first

wave, 105 days in 2020, for the modified model.
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Figure 5.3: Model output of active cases averaged over seven days

during the first wave, 105 days in 2020, with parameters as in Table

5.1.

Figure 5.4: Model output of active cases averaged over seven days

during the first wave, 105 days in 2020, for the modified model.
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Chapter 6

Optimal control

This chapter makes use of the following references: Lenhart and Workman [75], Shen et

al. [92], and Pontryagin, Boltyanskii et al. [93].

In this chapter, we formulate and solve the optimal control problem by introducing the

control measures into the COVID-19 model in (4.1.2). We want to do this by incorpo-

rating non-pharmaceutical methods and vaccination control in our system. Through the

process of efficiency analysis, we basically want to see which control strategy works best

to control and minimize the rate of infection of the coronavirus in the infectious class I

and asymptomatic class A in a population where the number of resources available are

finite. We use Pontryagin’s Maximum Principle [75, 92, 93] to define the optimal levels

of the two controls.

6.1 The optimal control problem

Optimal control theory is applied to our COVID-19 model in (4.1.2) by presenting two

controls u1 and u2. The first control variable u1 is defined to be the non-pharmaceutical

intervention which includes the following:

• Social distancing between those that are infectious and/or asymptomatic (affecting
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others with the COVID-19 virus) and those not infected (persons considered healthy)

with the virus.

• Regular use of sanitizers, washing of hands, and the wearing of masks.

• A person having to avoid places where large gatherings take place, and restrictions

imposed on traveling to places where the number of cases are very high.

The second control variable u2 is defined as the vaccination control. This variable gives us

an indication of all possible vaccinated individuals in a population and how it affects the

spread of the virus, hopefully causing a decrease in the number of infections. A significant

decrease of infectious individuals will give us an indication that being vaccinated can be a

right call to make when it comes to decreasing the rate of infection and the risk of spread.

Our intent while revising the optimal control problem is to minimize the objective func-

tional in (6.1.1) below over a compact interval [0, T ]:

J (u1(t), u2(t)) =

∫ T

0

(
ω1u1

2(t) + ω2u2
2(t) + ω3I(t) + ω4A(t)

)
dt. (6.1.1)

The constants ωi for i = 1, 2, 3, 4 are called balancing or weight constants and T is the

final time. Note that ω1, ω2, ω3, and ω4 are positive constants. We consider a quadratic

cost on the controls u1 and u2 and apply it because the controls’ cost of intervention is

nonlinear. This means that no linear relationship exists amongst the cost of intervention,

its effects, and the persons infected with the virus. The controls taken in squared form

ensures convexity of the optimal control problem. The controls u1 and u2 are Lebesgue

integrable and bounded. For more information see the book of Lenhart and Workman

[75].
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For the purpose of optimal control our model is modified as follows

dS

dt
= B0 −

αSP

1 + CP
− βS(1 − u1(t))(I + A) − (µ + vu2(t))S,

dI

dt
=

αSP

1 + CP
+ βS(1 − u1(t))(I + A) − g

[
αSP

1 + CP
+ βS(I + A)

]
− µ1I,

dA

dt
= B1 + g

[
αSP

1 + CP
+ βS(I + A)

]
− µ2A,

dR

dt
= vu2(t)S + ωII + ωAA − µR − B2,

dP

dt
= γII + γAA − θP,

N = S + I + A + R + P,

(6.1.2)

where µ1 = (µ+ δI + ωI), µ2 = (µ+ δA + ωA), and N is the total population. The

initial conditions are non-negative,

S(0) ≥ 0, I(0) ≥ 0, A(0) ≥ 0, R(0) ≥ 0, P (0) ≥ 0, (6.1.3)

and the terminal conditions

S(T ), I(T ), A(T ), R(T ), P (T ) (6.1.4)

are free, while the control variables are assumed to be bounded,

u1, u2 ∈
[
0, 1

]
. (6.1.5)

Our main goal is to have an optimal control u1 being associated with non-pharmaceutical

intervention and another optimal control u2 representing vaccine control, such that

J (u1
∗, u2

∗) = min
Λ

{J (u1, u2)} ,

where the control sets are defined as

Λ =

{
(u1, u2) : [0, T ] → [0, 1] , (u1(t), u2(t)) is Lebesgue measurable

}
. (6.1.6)
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6.1.1 Constructing the Hamiltonian H for pointwise minimiza-

tion

The Hamiltonian H is a function of the inside integral of the objective functional in (6.1.1)

together with the adjoint variables λ̇i for i = 1, ..., 5 associated with state variables S,

I, A, R and P , and the optimal controls ui for i = 1, 2.

Knowing this fact, the Hamiltonian H is then written as

H= H (S(t), I(t), A(t), R(t), P (t), λ(t), u1(t), u2(t))

= ω1u1
2(t) + ω2u2

2(t) + ω3I(t) + ω4A(t)

+λ1

[
B0 −

αSP

1 + CP
− βS(1 − u1(t))(I + A) − (µ + vu2(t))S

]
+λ2

[
αSP

1 + CP
+ βS(1 − u1(t))(I + A) − g

αSP

1 + CP
+ βS(I + A) − µ1I

]
+λ3

[
B1 + g

αSP

1 + CP
+ βS(I + A) − µ2A

]
+λ4

[
vu2(t)S + ωII + ωAA − µR − B2

]
+λ5

[
γII + γAA − θP

]
.

(6.1.7)

The partial derivatives of H are taken with respect to each state variable to a system of

the adjoint equations. This similar process but with respect to the controls u1 and u2

gives the optimal control equations.

Theorem 12. Let S∗, I∗, A∗, R∗, P ∗, and u1
∗ and u2

∗ be optimal solutions for the

optimal control problem (6.1.1), (6.1.3), (6.1.4), and (6.1.5). Then the costate variables

satisfy the following differential equations:
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λ̇1
∗
(t) =

[
αP ∗(t)

1 + CP ∗(t)
+ β(1 − u1

∗(t))(I∗(t) + A∗(t))

]
(λ1 − λ2)

∗(t) + µ1λ1
∗(t)

+g

[
αP ∗(t)

1 + CP ∗(t)
+ β(I∗(t) + A∗(t))

]
(λ2 − λ3)

∗(t) + vu2
∗(t)(λ1 − λ4)

∗(t),

λ̇2
∗
(t) = −ω3 + βS∗(t)(1 − u1

∗(t))(λ1 − λ2)
∗(t) + gβS∗(t)(λ2 − λ3)

∗(t)

+µ1λ2
∗(t) − ωIλ4

∗(t) − γIλ5
∗(t),

λ̇3
∗
(t) = −ω4 + βS∗(t)(1 − u1

∗(t))(λ1 − λ2)
∗(t) + gβS∗(t)(λ2 − λ3)

∗(t)

+µ2λ3
∗(t) − ωAλ4

∗(t) − γAλ5
∗(t),

λ̇4
∗
(t) = µλ4

∗(t),

λ̇5
∗
(t) =

αS∗(t)(λ1 − λ2)
∗(t)

(1 + CP ∗(t))2
+

gαS∗(t)(λ2 − λ3)
∗(t)

(1 + CP ∗(t))2
− θλ5

∗(t)

(6.1.8)

with transversality conditions

λi(T ) = 0, i = 1, ..., 5.

Furthermore, the controls take the form of

u1
∗ = min

{
max

{
0,

βS∗(t)(I∗(t) + A∗(t))(λ2 − λ1)
∗(t)

2ω1

}
, 1

}
u2

∗ = min

{
max

{
0,

vS∗(t)(λ1 − λ4)
∗(t)

2ω2

}
, 1

}
.

(6.1.9)

Proof. For this proof we make use of Pontryagin’s Maximum Principle in [93] and more

of this can be seen in [75]. The partial derivatives of the Hamiltonian H with respect

to the state variables S∗, I∗, A∗, R∗, P ∗ are computed. This results in the costate

variables λi(T ), i = 1, ..., 5. Since S∗(T ), I∗(T ), A∗(T ), R∗(T ), and P ∗(T ) are free,

the following terminal conditions hold:

λ̇i
∗
(T ) = 0, i = 1, ..., 5.
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We start by examining

λ̇4
∗
(T ) = −

∂H

∂R
= µλ4

∗(t).

By integration on both sides, we get

λ4
∗ = Neµt,

for some constant t. The terminal condition λ̇4
∗
(T ) = 0 forces N to disappear. There-

fore λ4
∗ is equal to zero. We now calculate the following:

λ̇1
∗
(t) = −

∂H

∂S
, λ̇2

∗
(t) = −

∂H

∂I
, λ̇3

∗
(t) = −

∂H

∂A
, λ̇5

∗
(t) = −

∂H

∂P
,

and obtain the equations stated in equation (6.1.8). The function u∗ must optimize H .

Choosing u1 and u2 we have,

∂H

∂u1

= 2ω1u1 + βS∗(I∗ + A∗)
[
λ1 − λ2

]
and

∂H

∂u2

= 2ω2u2 + vS∗[λ4 − λ1

]
.

The values of u1 and u2 must be optimal. Applying optimality conditions where we let
∂H

∂u1

= 0 and
∂H

∂u2

= 0,

2ω1u1 + βS∗(I∗ + A∗)
[
λ1 − λ2

]
= 0,

which gives

u1 =
βS∗(t)(I∗(t) + A∗(t))(λ2 − λ1)

∗(t)

2ω1

.

Similarly, we have

2ω2u2 + vS∗[λ4 − λ1

]
= 0,

resulting in

u2 =
vS∗(t)(λ1 − λ4)

∗(t)

2ω2

.

Now if for some values u1 and u2 in
[
0, 1

]
, then they are optimal. If for every u1 and

u2 in
[
0, 1

]
, the controls are then as in equation (6.1.9) that have costate equations

mentioned in Theorem 12.
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6.2 Numerical results and discussion

In this section, we graphically present the results obtained from the previous section 6.1

where we solved our optimality system; optimal control problem (6.1.2) along with its

adjoint equations (6.1.8) and its characterization equation of optimal controls (6.1.9).

We make use of the Forward-Backward fourth-order Runge-Kutta method. The forward

sweep solves the system of the optimal control problem. The backward sweep and the

transversality conditions assist in solving the system of adjoint equations. It does this by

making use of the current iteration of state equations. The controls u1 and u2 keeps on

getting updated by use of a convex combination of the previous controls’ iteration and

receives new values from the characterization equation (6.1.9). The iteration comes to

a stop when the values of unknowns from previous iteration are too close to that of the

present. More information on this can be seen in Silva and Torres [97] and their references.

The Forward-Backward fourth-order Runge-Kutta method was done in Octave and the

code can be found at the back by appendix. For our optimal control problem, we focus on

the time unit of T being 105 days. Looking at our objective functional (6.1.1) the weight

constants ωi for i = 1, 2, 3, 4 are 0.08, 0.000967, 0.0528, and 0.0421, respectively. As for

our state variables, they have initial values being S(1) = (0.995)P0, I(1) = 171000,

A(1) = 17000, R(1) = 0, and P (1) = 2000. Here P0 = 59308690 is the South

African population in 2020 as seen on Worldometer [48]. Since we are looking at the first

wave of COVID-19 and working from the timeline 20 July 2020 to 2 November 2020 as

seen on World Health Organization [81], we assumed that the initial value of recovery

from the virus to be zero; no recovered individuals. Also, during the first wave there

was no vaccine available in South Africa. From the figures below, we see the changes

occurring in the populations of each class over the period from T = 0 to T = 105 days.

During T of 0 to 105, Figure 6.1 and Figure 6.2 shows an increase in the susceptible

and symptomatic infectious population. We also see that for the first 16 days in Figure

6.3 the asymptomatic infectious population increases rapidly, and from day 17 until 105

it remains constant. This is due to persons of the S-class coming into contact with
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those of the I-class and A-class. This increase can also be seen in Figure 6.5 between

days 0 and 21 days, after that it also remains at constant until the end of T . It being

caused by the symptomatic persons assumed to be more infectious than those that fall

under the asymptomatic class. Because of this COVID-19 gets spread via contact as

persons commute, foodstuffs being touched, a lot of people gathering in the households,

workplaces, and schools. This then leads to a rise in the environmental reservoir of

the pathogen as more positive cases get confirmed. Moving on to our figures of control

strategies, we notice that both are successful in decreasing the number of infections and

by the end of time T the disease seems to be eliminated. From Figure 6.6 we see that

the control strategy of non-pharmaceutical intervention only starts working from day

80 onwards and steadily decreases until day 105. Comparing that to Figure 6.7, the

vaccination control works from around day 35 as it lowers the spread of the virus amongst

the population, keeping it constant up until day 81. From there we see a very small surge

in infections around day 82, and a rapid drop in the graph as the infections die down.

In Figure 6.8 we see the combination of both control strategies. One can see how they

noticeably have an influence on the spread of COVID-19 disease during the timeframe T

of 0 to 105 days. The graphs show that non-pharmaceutical intervention and vaccination

are important in controlling the spread of the virus. We note however that getting the

vaccine is more effective.
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Figure 6.1: Susceptible population under optimal control strategies
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Figure 6.2: Symptomatic infectious population under optimal control

strategies.
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Figure 6.3: Asymptomatic infectious population under optimal control

strategies.

Figure 6.4: Recovered population under optimal control strategies.
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Figure 6.5: Pathogen population under optimal control strategies.

Figure 6.6: Non-pharmaceutical intervention.
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Figure 6.7: Vaccination control.

Figure 6.8: Combination of non-pharmaceutical intervention u1
∗ and

vaccination control u2
∗.
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Chapter 7

Conclusion

In this thesis, we focused on how the inflow and outflow of migrants, mainly the asymp-

tomatic carriers of the virus, affected the South African population during the first wave of

COVID-19. We constructed a mathematical model for the coronavirus wanting to see the

workings of it and how we could control its spread through the South African population

via control strategies; non-pharmaceutical intervention and vaccination control. We also

included the effect of the environmental reservoir of the pathogen in our investigation.

In Chapter 4 we looked into the compartmental modelling of the COVID-19 population

dynamics. Concepts such as invariant region, positivity of solutions showed us that our

model has a positive invariant set. The disease-free equilibrium point that we calculated

helped us in finding the basic reproduction number of our model. For the existence of

the endemic equilibrium point, we had to modify our model a bit in order to get a poly-

nomial with less complex coefficients. We ended up with a cubic equation in I∗ where

we stated and proved two theorems to show that our system has a unique endemic equi-

librium point X∗ for cases when the influx rate of asymptomatically infected migrants is

positive (B1 > 0), and for when the influx rate is zero (B1 = 0). We also proved via

the Lyapunov method that the disease-free equilibrium of the COVID-19 model is glob-

ally asymptotically stable. In Chapter 5 we looked into sensitivity analysis of the basic

reproduction number R0 for our COVID-19 model, and used the model to show how it
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fits real data reported from Worldometer [48] and the World Health Organization [81]

during the first wave in South Africa between 20 July 2020 to 2 November 2020. These

results gave us an indication of which parameters are most significant in affecting R0.

We found that those with a positive sensitivity index such as B0, α, C, v, β, γI , and

γA are directly proportional to the basic reproduction number. Those with a negative

sensitivity index such as µ, g, δI , δA, ωI , ωA, and θ are indirectly proportional. The

importance of the threshold quantity R0 was validated through our investigation. We

know that if R0 < 1 the disease vanishes from the population, and if R0 > 1 the disease

is able to become endemic. From the numerical simulations we observed the daily new

cases and active cases averaged over seven days during the first wave, and our R0 yielded

0.5348. Lastly, in Chapter 6 we formulated and solved the optimal control problem by

introducing the control measures into the COVID-19 model. We did this by incorporating

non-pharmaceutical methods and vaccination control in our system. Through the process

of efficiency analysis we saw which control strategy works best to control and minimize

the rate of infection of the coronavirus in the infectious class I and asymptomatic class

A in a population where the number of resources available are finite. We also defined

the optimal levels of the two controls using Pontryagin’s Maximum Principle. The results

from the calculations we presented graphically, and from that found that the control in

the form of vaccination is more efficient in reducing the spread of the virus compared

to the control of non-pharmaceutical intervention. Our future research can embark in to

stochastic models in order to accommodate such effects of environmental pertubations

into the model.
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Listing 1: code for sensitivity indices of R0

1 n=14;

2 n1=(n+1) *7; %Timeline from 20 July 2020 until 2 November 2020

as seen

3 %on World Health Organization https :// covid19.who

.int/region/afro/country/za (Accessed on 31

August 2022)

4 P0 =59308690; %South African population in 2020 as seen

5 %on Worldometer https :// www.worldometers.info/

world -population/south -africa -population/ (

Accessed 01/09/2022)

6 beta =0.08/ P0; betaB =1.25* beta;%beta =(0.9) *(0.78)/P0; %

Transmission rate from S to I due to contact via I/A

7 alpha =0.3* beta; b=0; %0.000007; % 0.1*0.15/ P0; %alpha =(0.05)*

beta/P0; %Transmission rate from S to I due to contact

with P

8 mu =1/(65*365); %Mortality *rate

9 deltaI =0.0002; %Death rate due to Covid -19

10 deltaA =0.0001; %Death rate due to Covid -19

11 omegaI =0.15; omegaA =2* omegaI; %Recovery rate from I pool ***

12 g=0.1; %Proportion of symptomatic infectious persons

13 B1=200; B1B=0; %Rate of influx of asymptomatic migrants , 0.3

and above

14 gammaI =0.05; %Infection rate from P to I

15 gammaA =0.005; %Infection rate from P to A

16 theta =1/4;

17 C=0.02; %Proportion of interaction with P

18 v=0; %vaccination rate

19 dt=1; %Time step (days)
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20 S=zeros(1,n1+1); %Susceptible values

21 I=zeros(1,n1+1); %Symptomatic infected values

22 A=zeros(1,n1+1); %Asymptomatic Infected values

23 R=zeros(1,n1+1); %Recovered values

24 P=zeros(1,n1+1); %Density values of pathogens in environment

25 NewC=zeros(1,n1+1);

26 tt=zeros(1,n);

27 t=zeros(1,n1+1);

28 S(1) =0.995* P0;

29 I(1) =171000;

30 A(1) =17000;

31 R(1)=0;

32 P(1) =2000;

33

34 %%Calculations

35 %Recovery rate from A pool

36 B0=P0*mu; %Constant inflow of susceptibles

37 B2=( omegaA*B1)*mu; B2B=( omegaA*B1B)*mu; %Departing rate from

R pool

38 mu0=(mu+v);

39 mu1=(mu+deltaI+omegaI);

40 mu2=(mu+deltaA+omegaA);

41 obsC =[69090/7 , 49898/7 , 30465/7 ,23392/7 , 15506/7 , 14333/7 ,

11330/7 , 11442/7 , 9842/7 , 10218/7 , 11180/7 ,11235/7 ,

12115/7 , 11206/7 ,10454/7];

42 tt(1)=4; t(1)=0;

43 for i=1:n1

44 t(i+1)=t(i)+1;

45 end
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46 for i=1:n

47 tt(i+1)=tt(i)+7;

48 end

49

50

51 for j=1:n1

52 New=(alpha*S(j)*P(j))/(1+C*P(j))+beta*S(j)*(I(j)+A(j))

/(1+b*I(j));

53 NewC(j)=New +B1 ;

54 dS=(B0-New -mu0*S(j))*dt; %Change in S

55 S(j+1)=S(j)+dS; %Current S values

56

57 dI=((1-g)*New -mu1*I(j))*dt; %Change in I

58 I(1+j)=I(j)+dI; %Current I values

59

60 dA=(B1+g*New -mu2*A(j))*dt; %B1*(1-1/j)

61 A(j+1)=A(j)+dA; %Current A values

62

63 dR=(v*S(j)+omegaI*I(j)+omegaA*A(j)-mu*R(j)-B2)*dt; %

Change in R

64 R(1+j)=R(j)+dR; %Current R values

65 P(1+j)=P(j)+( gammaI*I(j)+gammaA*A(j)-theta*P(j))*dt;

66 end

67 I0=I;

68 I0(n1+1)=I(n1);

69 NewC(n1+1)=NewC(n1);

70 BRN=B0*((1-g)*mu2*(beta*theta+alpha*gammaI)+g*mu1*(beta*

theta+alpha*gammaA))/(mu0*theta*mu1*mu2);

71
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72 %BRN ,

73 %figure

74 %plot(t,NewC , 'r'), hold on

75 %plot(tt,obsC ,'*'), hold off

76 %legend('Model ','Observed 7d ave.')

77 %grid on

78 %grid minor

79 %xlabel('Time in days ')

80 %ylabel('Number of new cases ')

81 %plot(t,I0,'k'), hold on

82 %plot(tt,obsC ,'*'), hold off

83 %legend('Model ')

84 %grid on

85 %grid minor

86 %xlabel('Time in days ')

87 %ylabel('Number of Active Cases ')

88

89 %%%% normalized -forward sensitivity indices of R0%%%%

90 falpha=alpha *((1-g)*(mu+gammaI *( deltaA+omegaA)+g*gammaA *(mu+

deltaI)))/((1-g)*mu2*(beta*theta+alpha*gammaI)+g*mu1*(beta

*theta+alpha*gammaA));

91

92 fg=g*(beta*theta*(mu1 -mu2) -(gammaI*mu1 -gammaA*mu2))/((1-g)*

mu2*(beta*theta+alpha*gammaI)+g*mu1*(beta*theta+alpha*

gammaA));

93

94 fbeta=beta*theta *((1-g)*mu2+g*mu1)/((1-g)*mu2*(beta*theta+

alpha*gammaI)+g*mu1*(beta*theta+alpha*gammaA));

95
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96 fgammaI=alpha*mu2*gammaI *(1-g)/((1-g)*mu2*(beta*theta+alpha*

gammaI)+g*mu1*(beta*theta+alpha*gammaA));

97

98 fgammaA=g*alpha*mu1*gammaA /((1-g)*mu2*(beta*theta+alpha*

gammaI)+g*mu1*(beta*theta+alpha*gammaA));

99

100 fdeltaI= -deltaI *(mu1*mu*(beta*theta+alpha*gammaA)+mu2*(beta*

theta+alpha*gammaI)*(2*mu+deltaA*omegaA))/((1-g)*mu2 ^2*mu1

*(beta*theta+alpha*gammaI)+g*mu1 ^2*mu2*(beta*theta+alpha*

gammaA));

101

102 fdeltaA= -deltaA *(mu1*g*(beta*theta+alpha*gammaA)*( deltaI+

omegaI)-mu2*mu*(1-g)*(beta*theta+alpha*gammaI))/((1-g)*mu2

^2* mu1*(beta*theta+alpha*gammaI)+g*mu1^2*mu2*(beta*theta+

alpha*gammaA));

103

104 fomegaI= -omegaI *(mu1*mu*g*(beta*theta+alpha*gammaA)+mu2*(1-g

)*(beta*theta+alpha*gammaI)*(2*mu+deltaA*omegaA))/((1-g)*

mu2 ^2*mu1*(beta*theta+alpha*gammaI)+g*mu1^2* mu2*(beta*

theta+alpha*gammaA));

105

106 fomegaA= omegaA *(mu2*mu*(1-g)*(beta*theta+alpha*gammaI)-mu1*g

*(beta*theta+alpha*gammaA)*( deltaI+omegaI))/((1-g)*mu2^2*

mu1*(beta*theta+alpha*gammaI)+g*mu1 ^2*mu2*(beta*theta+

alpha*gammaA));

107

108 ftheta= (mu2*(1-g)*(beta*theta*mu1*mu2 -(beta*theta+alpha*

gammaI)*(mu*mu1+mu2*( deltaI+omegaI)))+mu1*g*(beta*theta*

mu1*mu2 -(beta*theta+alpha*gammaA)*(mu*mu1+mu2*( deltaI+
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omegaI))))/((1-g)*mu2^2* mu1*(beta*theta+alpha*gammaI)+g*

mu1 ^2*mu2*(beta*theta+alpha*gammaA));

109

110 fv=-v*(mu2*(1-g)*(beta*theta+alpha*gammaI)*(mu*mu1+mu2*(

deltaI+omegaI)))-v*(mu1*g*(beta*theta+alpha*gammaA)*(mu*

mu1+mu2*( deltaI+omegaI)))/(mu0*((1-g)*mu2^2* mu1*(beta*

theta+alpha*gammaI)+g*mu1^2* mu2*(beta*theta+alpha*gammaA))

);

111

112 fmu=mu*(mu2*(1-g)*(beta*theta+alpha*gammaI)*(mu0*mu1 -(mu*(3*

mu+2*v)+( deltaI+omegaI)*(2*(2* mu+v)+( deltaA+omegaA))))+mu1

*g*(beta*theta+alpha*gammaA)*(mu0*mu2 -(mu*(3*mu+2*v)+(

deltaI+omegaI)*(2*(2* mu+v)+( deltaA+omegaA)))))/(mu0*((1-g)

*mu2^2*mu1*(beta*theta+alpha*gammaI)+g*mu1 ^2*mu2*(beta*

theta+alpha*gammaA)));

113

114 %print -depsc sensitivityofbrn

115 %print -depsc numberofactivecases1111

Listing 2: code for COVID-19 model 1

1 clc; close all; clear all;

2

3 graphics_toolkit('gnuplot ')

4

5 n=14;

6 n1=(n+1) *7; %Timeline from 20 July 2020 until 2 November 2020

as seen

7 %on World Health Organization https :// covid19.who

.int/region/afro/country/za (Accessed on 31
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August 2022)

8 P0 =59308690; %South African population in 2020 as seen

9 %on Worldometer https :// www.worldometers.info/

world -population/south -africa -population/ (

Accessed 01/09/2022)

10 beta =0.08/ P0; betaB =1.25* beta;%beta =(0.9) *(0.78)/P0; %

Transmission rate from S to I due to contact via I/A

11 alpha =0.3* beta; b=0; %0.000007; % 0.1*0.15/ P0; %alpha =(0.05)*

beta/P0; %Transmission rate from S to I due to contact

with P

12 mu =1/(65*365); %Mortality *rate

13 deltaI =0.0002; %Death rate due to Covid -19

14 deltaA =0.0001; %Death rate due to Covid -19

15 omegaI =0.15; omegaA =2* omegaI; %Recovery rate from I pool ***

16 g=0.1; %Proportion of symptomatic infectious persons

17 B1=200; B1B=0; %Rate of influx of asymptomatic migrants , 0.3

and above

18 gammaI =0.05; %Infection rate from P to I

19 gammaA =0.005; %Infection rate from P to A

20 theta =1/4;

21 C=0.02; %Proportion of interaction with P

22 v=0; %vaccination rate

23 dt=1; %Time step (days)

24 S=zeros(1,n1+1); %Susceptible values

25 I=zeros(1,n1+1); %Symptomatic infected values

26 A=zeros(1,n1+1); %Asymptomatic Infected values

27 R=zeros(1,n1+1); %Recovered values

28 P=zeros(1,n1+1); %Density values of pathogens in environment

29 NewC=zeros(1,n1+1);
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30 tt=zeros(1,n);

31 t=zeros(1,n1+1);

32 S(1) =0.995* P0;

33 I(1) =171000;

34 A(1) =17000;

35 R(1)=0;

36 P(1) =2000;

37

38 %%Calculations

39 %Recovery rate from A pool

40 B0=P0*mu; %Constant inflow of susceptibles

41 B2=( omegaA*B1)*mu; B2B=( omegaA*B1B)*mu; %Departing rate from

R pool

42 mu0=(mu+v);

43 mu1=(mu+deltaI+omegaI);

44 mu2=(mu+deltaA+omegaA);

45 obsC =[69090/7 , 49898/7 , 30465/7 ,23392/7 , 15506/7 , 14333/7 ,

11330/7 , 11442/7 , 9842/7 , 10218/7 , 11180/7 ,11235/7 ,

12115/7 , 11206/7 ,10454/7];

46 tt(1)=4; t(1)=0;

47 for i=1:n1

48 t(i+1)=t(i)+1;

49 end

50 for i=1:n

51 tt(i+1)=tt(i)+7;

52 end

53

54

55 for j=1:n1
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56 New=(alpha*S(j)*P(j))/(1+C*P(j))+beta*S(j)*(I(j)+A(j))

/(1+b*I(j));

57 NewC(j)=New +B1 ;

58 dS=(B0-New -mu0*S(j))*dt; %Change in S

59 S(j+1)=S(j)+dS; %Current S values

60

61 dI=((1-g)*New -mu1*I(j))*dt; %Change in I

62 I(1+j)=I(j)+dI; %Current I values

63

64 dA=(B1+g*New -mu2*A(j))*dt; %B1*(1-1/j)

65 A(j+1)=A(j)+dA; %Current A values

66

67 dR=(v*S(j)+omegaI*I(j)+omegaA*A(j)-mu*R(j)-B2)*dt; %

Change in R

68 R(1+j)=R(j)+dR; %Current R values

69 P(1+j)=P(j)+( gammaI*I(j)+gammaA*A(j)-theta*P(j))*dt;

70 end

71 I0=I;

72 I0(n1+1)=I(n1);

73 NewC(n1+1)=NewC(n1);

74 BRN=B0*((1-g)*mu2*(beta*theta+alpha*gammaI)+g*mu1*(beta*

theta+alpha*gammaA))/(mu0*theta*mu1*mu2);

75

76 BRN ,

77 figure

78 hold on;

79 plot(t,NewC , 'r','LineWidth ' ,1);

80 plot(tt,obsC ,'*'), hold off

81 legend('Model ','Observed 7d ave.')
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82 grid on

83 grid minor

84 xlabel('Time in days')

85 ylabel('Number of new cases ')

86

87 %figure

88 %hold on;

89 %plot (t ,I0 ,'k','LineWidth ',1);

90 %plot (tt ,obsC , '* ') , hold off

91 %legend ('Model ')

92 %grid on

93 %grid minor

94 %xlabel ('Time in days ')

95 %ylabel ('Number of Active Cases ')

96

97 print -depsc numberofnewcases1234578

98 %print -depsc numberofactivecases1111119

Listing 3: code for COVID-19 model 2

1 clc; close all; clear all;

2

3 graphics_toolkit('gnuplot ')

4

5 n=14;

6 n1=(n+1) *7; %Timeline from 20 July 2020 until 2 November 2020

as seen

7 %on World Health Organization https :// covid19.who

.int/region/afro/country/za (Accessed on 31

August 2022)
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8 P0 =59308690; %South African population in 2020 as seen

9 %on Worldometer https :// www.worldometers.info/

world -population/south -africa -population /(

Accessed 01/09/2022)

10 beta =0.08/ P0; kk=1; betaB =(1+kk)*beta;%beta =(0.9) *(0.78)/P0;

%Transmission rate from S to I due to contact via I/A

11 alpha =0.3* beta; b=0; %0.000007; % 0.1*0.15/ P0; %alpha =(0.05)*

beta/P0; %Transmission rate from S to I due to contact

with P

12 mu =1/(65*365); %Mortality *rate

13 deltaI =0.0002; %Death rate due to Covid -19

14 deltaA =0.0001; %Death rate due to Covid -19

15 omegaI =0.15; omegaA =2* omegaI; %Recovery rate from I pool ***

16 g=0.1; %Proportion of symptomatic infectious persons

17 B1=200; B1B=0; %Rate of influx of asymptomatic migrants , 0.3

and above

18 gammaI =0.05; %Infection rate from P to I

19 gammaA =0.005; %Infection rate from P to A

20 theta =1/4;

21 C=0.02; %Proportion of interaction with P

22 v=0; %vaccination rate

23 dt=1; %Time step (days)

24 S=zeros(1,n1+1); %Susceptible values

25 I=zeros(1,n1+1); %Symptomatic infected values

26 A=zeros(1,n1+1); %Asymptomatic Infected values

27 R=zeros(1,n1+1); %Recovered values

28 P=zeros(1,n1+1); %Density values of pathogens in environment

29 NewC=zeros(1,n1+1);

30 tt=zeros(1,n);
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31 t=zeros(1,n1+1);

32 S(1) =0.995* P0;

33 I(1) =171000;

34 A(1) =17000;

35 R(1)=0;

36 P(1) =2000;

37

38 %%Calculations

39 %Recovery rate from A pool

40 B0=P0*mu; %Constant inflow of susceptibles

41 B2=( omegaA*B1)*mu; B2B=( omegaA*B1B)*mu; %Departing rate from

R pool

42 mu0=(mu+v);

43 mu1=(mu+deltaI+omegaI);

44 mu2=(mu+deltaA+omegaA);

45 obsC =[69090/7 , 49898/7 , 30465/7 ,23392/7 , 15506/7 , 14333/7 ,

11330/7 , 11442/7 , 9842/7 , 10218/7 , 11180/7 ,11235/7 ,

12115/7 , 11206/7 ,10454/7];

46 tt(1)=4; t(1)=0;

47 for i=1:n1

48 t(i+1)=t(i)+1;

49 end

50 for i=1:n

51 tt(i+1)=tt(i)+7;

52 end

53

54

55 for j=1:15

56 New=(alpha*S(j)*P(j))/(1+C*P(j))+beta*S(j)*(I(j)+A(j))
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/(1+b*I(j));

57 NewC(j)=New +B1 ;

58 dS=(B0-New -mu0*S(j))*dt; %Change in S

59 S(j+1)=S(j)+dS; %Current S values

60

61 dI=((1-g)*New -mu1*I(j))*dt; %Change in I

62 I(1+j)=I(j)+dI; %Current I values

63

64 dA=(B1+g*New -mu2*A(j))*dt; %B1*(1-1/j)

65 A(j+1)=A(j)+dA; %Current A values

66

67 dR=(v*S(j)+omegaI*I(j)+omegaA*A(j)-mu*R(j)-B2)*dt; %

Change in R

68 R(1+j)=R(j)+dR; %Current R values

69 P(1+j)=P(j)+( gammaI*I(j)+gammaA*A(j)-theta*P(j))*dt;

70 end

71

72 for j=16:n1

73 New=(alpha*S(j)*P(j))/(1+C*P(j))+(1+kk*((j-16)/n1)^(0.5)

)*beta*S(j)*(I(j)+A(j))/(1+b*I(j));

74 NewC(j)=New +B1 ;

75 dS=(B0-New -mu0*S(j))*dt; %Change in S

76 S(j+1)=S(j)+dS; %Current S values

77

78 dI=((1-g)*New -mu1*I(j))*dt; %Change in I

79 I(1+j)=I(j)+dI; %Current I values

80

81 dA=(B1+g*New -mu2*A(j))*dt; %B1*(1-1/j)

82 A(j+1)=A(j)+dA; %Current A values
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83

84 dR=(v*S(j)+omegaI*I(j)+omegaA*A(j)-mu*R(j)-B2)*dt; %

Change in R

85 R(1+j)=R(j)+dR; %Current R values

86 P(1+j)=P(j)+( gammaI*I(j)+gammaA*A(j)-theta*P(j))*dt;

87 end

88

89 NewC (16) =(4* NewC (15) +2* NewC (17))/6;

90

91 I0=I;

92 I0(n1+1)=I(n1);

93 NewC(n1+1)=NewC(n1);

94 BRN=B0*((1-g)*mu2*(beta*theta+alpha*gammaI)+g*mu1*(beta*

theta+alpha*gammaA))/(mu*theta*mu1*mu2);

95 betakk =(1+kk*((n1 -16)/n1)^(0.5))*beta;

96 BRNkk=B0*((1-g)*mu2*( betakk*theta+alpha*gammaI)+g*mu1*(

betakk*theta+alpha*gammaA))/(mu0*theta*mu1*mu2);

97

98 BRN , BRNkk , betakk ,

99 figure

100 hold on;

101 plot(t,NewC ,'r','LineWidth ' ,1);

102 plot(tt,obsC ,'*'), hold off

103 legend('Modified Model ','Observed 7d ave.')

104 grid on

105 grid minor

106 xlabel('Time in days')

107 ylabel('Number of new cases ')

108
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109 %hold on;

110 %plot(t,I0,'k','LineWidth ',1);

111 %plot(tt,obsC ,'*'), hold off

112 %legend('Modified Model ')

113 %grid on

114 %grid minor

115 %xlabel('Time in days ')

116 %ylabel('Number of Active Cases ')

117

118 print -depsc numberofNewCasesModified3456789

119 %print -depsc numberofActiveCasesModified111224

Listing 4: Optimal Control for COVID-19 model

1 clc; close all; clear all;

2

3 graphics_toolkit('gnuplot ')

4

5 %Parameters of Runge -Kutta 4th order method

6 test=-1; Keer= -1000; plas =1.0001;

7 t(1)=0; M=105;

8 deltaError = 0.001;

9 t=zeros(1,M+1)

10 h=1;

11 h2=h/2; h6=h/6;

12

13 %Model parameters

14 P0 =59308690;

15 beta =(0.08)/P0; betaB =(1.25)*beta; alpha =(0.3)*beta; b=0; mu

=1/(65*365); deltaI =0.0002; deltaA =0.0001;
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16 C=0.02; omegaI =0.15; omegaA =(2)*omegaI; v=0.054; mu0=(mu+v);

mu1=(mu+deltaI+omegaI); mu2=(mu+deltaA+omegaA);

17 g=0.1; B0=P0*mu; B1 =200; B1B=0; B2=( omegaA*B1)*mu; B2B=(

omegaA*B1B)*mu; gammaI =0.05; gammaA =0.005; theta =1/4;

18

19 %Weight constants

20 w1 =0.08; w2 =0.000967; w3 =0.0528; w4 =0.0421; %w2 =0.00006

21

22 %Initial conditions of model

23 S(1) =(0.995) .*P0; I(1) =171000; A(1) =17000; R(1) =0; P(1)

=2000; %I(1) =(0.005) .*P0;

24 S=zeros(1,M+1); I=zeros(1,M+1); A=zeros(1,M+1); R=zeros(1,M

+1); P=zeros(1,M+1);

25

26 %Initial guess of control inputs

27 u1=zeros(1,M+1); u2=zeros(1,M+1);

28

29 %Initial conditions for adjoint equations

30 lambda1=zeros(1,M+1); lambda2=zeros(1,M+1); lambda3=zeros(1,M

+1); lambda4=zeros(1,M+1); lambda5=zeros(1,M+1);

31 %lambda1(M+1) =0; lambda2(M+1) =0; lambda3(M+1) =0; lambda4(M+1)

=0; lambda5(M+1)=0;

32

33 %Forward -backward sweep

34 loopcount =0; %Counts the number of loops

35 for i=1:M

36 t(i+1)=t(i)+h;

37 end

38 while(test < 0)
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39 loopcount=loopcount +1;

40

41 Keer=Keer+plas;

42

43 oldu1=u1;

44 oldu2=u2;

45

46 oldS=S;

47 oldI=I;

48 oldA=A;

49 oldR=R;

50 oldP=P;

51

52 oldlambda1=lambda1;

53 oldlambda2=lambda2;

54 oldlambda3=lambda3;

55 oldlambda4=lambda4;

56 oldlambda5=lambda5;

57

58 %Forward sweep

59 for i=1:M

60 %State equations

61 k11=B0 -(( alpha*S(i)*P(i))/(1+C*P(i)))-(beta*S(i)*(1-u1(i))

*(I(i)+A(i)))-(mu+v*u2(i))*S(i);

62 k12 =(( alpha*S(i)*P(i))/(1+C*P(i)))+(beta*S(i)*(1-u1(i))*(I(

i)+A(i))) -((g*alpha*S(i)*P(i))/(1+C*P(i)))...

63 -(g*alpha*S(i)*(I(i)+A(i)))-mu1*I(i);

64 k13=B1+((g*alpha*S(i)*P(i))/(1+C*P(i)))+(g*alpha*S(i)*(I(i)

+A(i)))-mu2*A(i);
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65 k14=v*u2(i)*S(i)+omegaI*I(i)+omegaA*A(i)-mu*R(i)-B2;

66 k15=gammaI*I(i)+gammaA*A(i)-theta*P(i);

67

68 %New approximations

69 S(i+1)=S(i)+h*k11;

70 I(i+1)=I(i)+h*k12;

71 A(i+1)=A(i)+h*k13;

72 R(i+1)=R(i)+h*k14;

73 P(i+1)=P(i)+h*k15;

74 end

75

76 %Backward sweep

77 for i=1:M %Initial value to final value

78 j=M+2-i; %Final value to initial value

79

80 %Adjoint equations

81 z11 =(( alpha*P(j)*( lambda1(j)-lambda2(j)))/(1+C*P(j)))+

beta*(1-u2(j))*(I(j)+A(j))*( lambda1(j)-lambda2(j))...

82 +((g*alpha*P(j)*( lambda2(j)-lambda3(j)))/(1+C*P(j))

)+g*beta*(I(j)+A(j))*( lambda2(j)-lambda3(j))...

83 +v*u2(j)*( lambda1(j)-lambda4(j))+mu1*lambda1(j);

84

85 z12=-w3+beta*S(j)*(1-u1(j))*( lambda1(j)-lambda2(j))+g*

beta*S(j)*( lambda2(j)-lambda3(j))...

86 +mu1*lambda2(j)-omegaI*lambda4(j)-gammaI*lambda5(j)

;

87

88 z13=-w4+beta*S(j)*(1-u1(j))*( lambda1(j)-lambda2(j))+g*

beta*S(j)*( lambda2(j)-lambda3(j))...
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89 +mu2*lambda3(j)-omegaA*lambda4(j)-gammaA*lambda5(j)

;

90

91 z14=mu*lambda4(j);

92

93 z15 =(( alpha*S(j)*( lambda1(j)-lambda2(j)))/((1+C*P(j))

.^2))+((g*alpha*S(j)*( lambda2(j)-lambda3(j)))/((1+C*

P(j)).^2))...

94 +theta*lambda5(j);

95

96 %New approximations

97 lambda1(j-1)=lambda1(j)-h*z11;

98 lambda2(j-1)=lambda2(j)-h*z12;

99 lambda3(j-1)=lambda3(j)-h*z13;

100 lambda4(j-1)=lambda4(j)-h*z14;

101 lambda5(j-1)=lambda5(j)-h*z15;

102 end

103

104 %Optimality conditions

105 u1=(beta.*S.*(I+A));

106 u1=(lambda2 -lambda1).*u1;

107 u1=u1 ./((2) .*w1);

108 u1= min(max(0, u1), 1);

109 u1=(u1+oldu1)./2;

110

111 u2=(v.*S);

112 u2=(lambda1 -lambda4).*u2;

113 u2=u2 ./((2) .*w2);

114 u2= min(max(0, u2), 1);
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115 u2=(u2+oldu2)./2;

116

117 %Absolute error for convergence

118 temp1a=deltaError*sum(abs(u1))-sum(abs(oldu1 -u1));

119 temp1b=deltaError*sum(abs(u2))-sum(abs(oldu2 -u2));

120 temp1=min(temp1a ,temp1b)

121

122 temp2a=deltaError*sum(abs(S))-sum(abs(oldS -S));

123 temp2b=deltaError*sum(abs(I))-sum(abs(oldI -I));

124 temp2c=deltaError*sum(abs(A))-sum(abs(oldA -A));

125 temp2d=deltaError*sum(abs(R))-sum(abs(oldR -R));

126 temp2e=deltaError*sum(abs(P))-sum(abs(oldP -P));

127 temp2=min(min(min(min(temp2a ,temp2b),temp2c),temp2d),temp2e);

128

129 temp3a=deltaError*sum(abs(lambda1))-sum(abs(oldlambda1 -

lambda1));

130 temp3b=deltaError*sum(abs(lambda2))-sum(abs(oldlambda2 -

lambda2));

131 temp3c=deltaError*sum(abs(lambda3))-sum(abs(oldlambda3 -

lambda3));

132 temp3d=deltaError*sum(abs(lambda4))-sum(abs(oldlambda4 -

lambda4));

133 temp3e=deltaError*sum(abs(lambda5))-sum(abs(oldlambda5 -

lambda5));

134 temp3=min(min(min(min(temp3a ,temp3b),temp3c),temp3d),temp3e);

135

136 %test = min(min([temp1 temp2 temp3 temp4 temp5 temp6 temp7

temp8 temp9 temp10 ...

137 %temp11 ]),Keer);
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138 test=max(min(temp3 ,min(temp2 ,temp1)), Keer);

139 end

140 test ,

141

142 figure

143 plot(t,S)

144 legend('S(t)')

145 grid on

146 grid minor

147 xlabel('Days')

148

149 figure

150 plot(t,I)

151 legend('I(t)')

152 grid on

153 grid minor

154 xlabel('Days')

155

156 figure

157 plot(t,A)

158 legend('A(t)',"location", "east")

159 grid on

160 grid minor

161 xlabel('Days')

162

163 figure

164 plot(t,R)

165 legend('R(t)',"location", "east")

166 grid on
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167 grid minor

168 xlabel('Days')

169

170 figure

171 plot(t,P)

172 legend('P(t)',"location", "east")

173 grid on

174 grid minor

175 xlabel('Days')

176

177 figure

178 plot(t,u1,'b -.','LineWidth ' ,1)

179 legend('u1*(t)')

180 grid on

181 grid minor

182 xlabel('Days')

183

184 figure

185 plot(t,u2,'r','LineWidth ' ,1)

186 legend('u2*(t)')

187 grid on

188 grid minor

189 xlabel('Days')

190

191 figure

192 plot(t,u1,'b -.','LineWidth ' ,1); hold on;

193 plot(t,u2,'r','LineWidth ' ,1);

194 legend('u1*(t)','u2*(t)',"location", "northeast ")

195 grid on
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196 grid minor

197 xlabel('Days')

198

199 %print -depsc asymptomaticinfectiouspopulation.eps
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