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Abstract

Tuberculosis (TB) is currently one of the most severe public health issues in

Ethiopia and many other countries. Despite demanding efforts having been made

by governmental and nongovernmental organizations to eliminate tuberculosis, it

is still a severe health problem in Ethiopia. It is one of the significant causes of

mortality and morbidity.

Scientific studies of the dynamics of tuberculosis play an essential role in elim-

inating it, and mathematical models contribute significantly to this effort. Math-

ematical models have been used for decades to study tuberculosis’s transmission

dynamics and develop strategies to prevent TB spread in various countries. How-

ever, there are insufficient intensive studies of TB dynamics using mathematical

models in Ethiopia. This thesis aims to develop a modified TB dynamics model

and propose an optimal TB prevention and control strategy for Ethiopia. The study

examined five different scenarios.

In the first scenario, a mathematical model for the transmission dynamics of TB

by including BCG vaccination for newborns is developed. The global stability of the

disease-free equilibrium point is determined using the Lyapunov theory. Sensitivity

coefficients of the reproductive number are calculated to examine control measures’

effectiveness. The results quantify the positive influence of vaccination and the

treatment for high-risk latent and active TB patients on tuberculosis control.

The second instance incorporates a saturated incidence rate on the previous

model. Positive solutions to the model are shown to exist and be unique. The

stability of the equilibria is established. It is found that the most effective methods

to control the spread of tuberculosis in Ethiopia are through minimizing the contact

between TB-infected and susceptible individuals and increasing access to treatment

for latently infected individuals.

Furthermore, three time-dependent controls (distancing, case holding, and case-

finding) are introduced into a TB model to find an optimal control strategy that

minimizes the number of exposed and infected populations in Ethiopia with mini-

mal cost. The conditions for achieving the optimal controls are derived and solved
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numerically using Pontryagin’s principle. Besides, a cost-effectiveness analysis is

carried out using an incremental cost-effectiveness ratio (ICER). For optimal and

cost-effective TB control, it is recommended that the Ethiopian government focuses

more on preventative measures such as isolating infected individuals, diagnosing

patients with the disease early on, and implementing treatment and education pro-

grammes.

The fourth scenario identified the effective strategies for combating MDR-TB

in Ethiopia. Among single control strategies, it is found that successful treatment

of drug-susceptible tuberculosis (DS-TB) is the most effective control factor for

controling MDR-TB transmission in Ethiopia. Furthermore, within the six dual-

control strategies, the combination of distancing and successful treatment of DS-TB

is less costly and more effective than other strategies. Finally, out of the triple

control strategies, the combination of distancing, successful treatment for DS-TB,

and treatment for MDR-TB is the most efficient strategy for curbing the MDR-TB

disease in Ethiopia.

Finally, a mathematical model is developed to describe the population dynamics

of tuberculosis in a prison system. The model includes the inflow of exposed and

TB infective inmates. Further, the model parameters are calibrated based on the

epidemiological data of Ethiopia.
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Chapter 1

General Introduction

1.1 Tuberculosis

Tuberculosis (TB) is a highly contagious airborne disease caused by Mycobac-

terium. When an infected person coughs, sneezes, spits, or talks, the bacteria that

cause tuberculosis are released into the air and inhaled by others exposed to it [1], in

addition to the lungs, TB can affect the kidneys, spine, brain, bones, and joints [2].

The most common symptoms of TB are a persistent cough that lasts up to three

weeks, fever, fatigue, night sweats, and weight loss [3].

The early phase of a tuberculosis infection is called the latent phase. An in-

dividual at this phase does not show symptoms and is non-contagious to others.

According to Cohen et al., [4], one-fourth of the world’s population already has

latent TB infection. Tuberculin skin tests or blood tests are used to diagnose latent

TB. Most latent TB patients will stay long without progressing to the next stage.

But persons infected with HIV and other diseases, persons within the first two years

after infection, and children are at high risk for progressing from latent TB to the

second stage of infection [5].

The second stage of infection is called active TB infection. Individuals show

some or all TB symptoms at this stage, which can infect susceptible people. Chest

X-ray screening can identify active tuberculosis. Its treatment requires long-term

antibiotics for at least six months and is highly effective if the patient takes their

treatment properly [6].

1

http://etd.uwc.ac.za/



Tuberculosis can be classified into two types based on its response to drugs:

drug-susceptible TB (DS-TB) and multi-drug-resistant TB (MDR-TB). DS-TB is a

type of tuberculosis that can be treated with the usual medicines. MR-TB, on the

other hand, is resistant to at least two medications, isoniazid (INH) and rifampin

(RIF) [7]. The improper treatment of DS-TB patients and poor management of the

supply and quality of drugs can lead to the bacterium acquiring multi-drug-resistant

tuberculosis [8, 9].

Multi-drug-resistant tuberculosis is more difficult to treat than drug-resistant

tuberculosis. It requires the use of second-line drugs for up to two years. These

drugs are more costly and cause more side effects. Additionally, because it takes

longer to recover from MDR-TB, this may result in more people being infected [10].

The best way to stop the spread of MDR-TB is to take all DS-TB drugs as directed

by physician [7].

1.2 Background of Study

Tuberculosis is the leading cause of death from infectious diseases worldwide.

Each year, 10 million people are infected with tuberculosis. Even if TB is pre-

ventable and treatable, it kills 1.5 million people annually [11]. The spread of the

disease is high in Africa, and in 2019, the region had an estimated 2.5 million tu-

berculosis cases, accounting for 25% of the global burden. Moreover, more than

500,000 Africans die from this disease annually [12].

Ethiopia has a high burden of tuberculosis, with an estimated incidence of 140

per 100,000 and a mortality rate of 21 per 100,000 in 2019. This disease is one of

the country’s top 10 causes of death [13,14].

By 2030, the World Health Organisation (WHO) hopes to have eliminated TB

globally [14]. Hence, improved research is needed to develop effective control strate-

gies. Understanding the dynamics of TB transmission is essential for predicting the

future characteristics of the disease and planning reliable control intervention pro-

grams [15]. Mathematical models are one of the tools used to study the dynamics

of infectious diseases [16], and they have been used to study the dynamics of TB

transmission in different countries (e.g., [17–21]). However, there is no such inten-

2
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sive study of TB dynamics in Ethiopia using mathematical models. Therefore, this

thesis aims to develop modified TB dynamics models and propose an optimal TB

prevention strategy for Ethiopia.

1.3 Literature on the modeling of tuberculosis

Mathematical models for tuberculosis transmission dynamics have become in-

creasingly important in recent years. Waaler developed the first TB model in

1923 [22]. This model was based on a simple mass-action law and provided a

basic understanding of the dynamics of TB transmission. Since then, many other

mathematical models have been developed for more complex factors, such as the

effects of vaccination, treatment, drug resistance, etc. The following are some of

the models that were developed based on these factors:

Age structure

Purwati et al. [23] developed a discrete age-structured model of tuberculosis

transmission. They investigated the existence and stability of the model equilibria

based on the basic reproduction number. They also conducted a sensitivity anal-

ysis of the model parameters. Finally, they applied an optimal control strategy

and found that combining TB prevention and treatment is the most cost-effective

strategy.

Lee et al. [24] developed a mathematical model to evaluate the effects of TB

management interventions on TB transmission dynamics in Korea. Their model

included two age groups (< 65 years and ≥ 65 years). The model parameters

were estimated using TB epidemic data from 2001 to 2018. Their results indicated

that age-specific interventions are required to reduce the overall incidence of TB.

In addition, they recommended that intensive treatment efforts be focused on older

people. However, the early detection and treatment rates for latent TB were the

most important factor in reducing TB incidence in both age groups.

Zhao et al. [25] developed a susceptible-exposed-infectious-recovered (SEIR) epi-

demic model by age group that includes three categories: children, middle-aged, and

older people, to investigate the role of age in tuberculosis transmission in mainland

China from 2005 to 2016. The study findings indicate that different age groups have

3
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distinct effects on TB transmission. The authors recommended two effective mea-

sures to achieve the goals of the WHO End TB Strategy: increasing the recovery

rate and reducing the infectious rate of the elderly population.

Vaccination

Yang et al. [26] used a mathematical model to analyse the impact of treatment

and vaccination on the dynamics of TB transmission. Their study incorporated a

control term, evaluated the cost of control strategies, and performed an optimal

control analysis using Pontryagin’s maximum principle. Their study concludes that

the vaccination strategy must be implemented at the highest level.

Nkamba et al. [27] evaluated the impact of vaccination on the spread of TB

using a deterministic epidemic SVELI model. Using the Lyapunov Lasalle method,

they analyzed the stability of the epidemic system around the equilibria (disease-

free and endemic). Using TB data from Cameroon, they concluded that vaccination

coverage is insufficient to control TB, and effective contact rate significantly impacts

the spread of TB.

Aldila et al. [28] constructed a deterministic model for the dynamics of TB trans-

mission with the intervention of vaccination. Ten-dimensional ordinary differential

equations were used to develop the model using the SEIR method. They concluded

that the vaccination strategy effectively suppresses the spread of tuberculosis.

HIV-TB co-infection

To study the effect of TB on the spread of HIV infection, Naresh et al. [29] con-

structed a nonlinear mathematical model. They found that as the number of TB

infections decreases due to recovery, the number of HIV infections also decreases,

and the endemic equilibrium approaches the TB-free equilibrium. Their model also

revealed that the number of AIDS patients decreases if TB is not associated with

HIV infection.

Awoke and Kassa [30] developed a mathematical model to study the transmis-

sion of TB-HIV/AIDS co-infection. Their results showed that the optimal combi-

nation of prevention and treatment controls would suppress the prevalence of both

HIV and TB to below 3% within ten years. Furthermore, they found that the

treatment control is more effective than the preventive controls.
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To investigate the effects of early and late HIV therapy throughout the TB treat-

ment course on new HIV infections, HIV-related deaths, and IRIS cases, Mallela et

al. [31] created a mathematical model. Their findings imply that disease eradication

cannot be achieved only through co-infection treatment programmes. Each disease

must be treated separately for successful eradication.

Drug-resistant strains

Liu et al. [32] developed a mathematical model that includes multi-drug-resistant

(MDR) and undetected TB cases. They used the model to simulate and predict the

TB epidemic in Guangdong. Their results showed that the undetected rate plays a

vital role in the TB trend. They also concluded that TB could not be eradicated if

current TB control strategies are continued.

To understand the dynamics of drug-susceptible and multi-drug resistant TB

transmission, Kuddus et al. [33] constructed a two-strain TB mathematical model

and fitted it to the Bangladesh TB data. Within optimal control, they examined

the cost-effectiveness of combinations of the four fundamental control methods of

distancing, case finding, case holding, and case finding. According to their study

findings, the most cost-effective way to reduce the burden of TB is to employ a

quadruple control method that incorporates latent case finding, active case finding,

distancing, and case holding.

Trauer et al. [34] presented a model of two strains of drug-resistance and drug-

sensitive TB for highly endemic countries of the Asia Pacific. They found that the

detection and treatment rate are the most critical determinants of disease rates

with each strain, while vaccination rates are less important. Moreover, the finding

of their study showed that improved treatment of drug-susceptible TB did not result

in decreased rates of MDR-TB through prevention of de novo resistance but instead

resulted in a modest increase in MDR-TB through strain replacement.

Effect of migrants

Jia et al. [35] presented two models to examine how immigration may affect tu-

berculosis transmission dynamics. They applied the model to reported tuberculosis

data from Canada. They indicated that the disease does not disappear and be-

comes endemic in the host area. They also suggested that immigrants considerably
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influence tuberculosis’s overall transmission dynamics behavior.

Guo and Wu [36] developed a simple compartmental TB model with constant

immigration. They tried to investigate the impact of new immigrants with latent

TB on the overall TB incidence. Their result showed that new immigrants in the

early latent stage have a much more significant impact on the TB incidence of the

foreign-born population in an immigrant country than those in the late latent stage.

TB in Semiclosed Communities

The semi-closed communities are enclaves where residents may maintain daily

contact for several weeks, months, or even years. These communities can include

refugee camps, schools, and prisons. Such settings exacerbate the spread of tuber-

culosis. Following are some of the studies that have considered these factors.

Vyambwera and Witbooi [37] proposed a two-group epidemic model to study

the dynamics of tuberculosis in a prison system. They showed that the disease-free

equilibrium is globally stable using a Lyapunov function. Additionally, they applied

the model to reported South African data on tuberculosis and found that the model

predictions agreed with the data.

Buonomo and Lacitignola [38] studied a four-compartment tuberculosis model

that includes exogenous reinfection. They derived sufficient conditions on the pa-

rameters of the system that guarantee the occurrence of backward bifurcation. They

also discussed the global stability of the endemic equilibrium using a generalization

of the Poincaré–Bendixson criterion. They applied the model to the internally

displaced people’s Camps in North Uganda.

1.4 Literature on tuberculosis modeling in Ethiopia

Mathematical models are powerful tools for understanding the factors that con-

tribute to the spread of TB and can be used to design and evaluate interventions

to control the disease. However, such studies are rare in Ethiopia.

One of the mathematical models of TB epidemiology in Ethiopia was developed

by Debebe et al. [39]. This model was used to quantify the role of geospatial

hotspots in the spread of tuberculosis in rural Ethiopia. They found that the role

of hotspots in the geospatial spread of tuberculosis in rural Ethiopia is limited,
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suggesting that tuberculosis transmission is mainly local. However, the authors did

not demonstrate the biological feasibility of the model solutions (i.e., the uniqueness

and positivity of the solutions). The long-term behavior of the model (which can

be achieved through global equilibrium stability) was not also discussed.

Another mathematical model of TB epidemiology in Ethiopia was developed by

Kereyu and Demie [18]. This model was used to study the effect of distancing, case

finding, and treatment strategies in controlling tuberculosis in the Haramaya district

of Ethiopia. The authors found that combining all control measures (distancing,

case finding and treatment) is the most effective strategy to eradicate tuberculosis in

the community at an optimal level with minimal intervention costs. Their research

was limited to a single Ethiopian district. However, in our thesis, we study the

transmission dynamics of TB in the country by using data from Ethiopia as a

whole. We also pointed out effective strategies to control the disease.

Sileshi [40] developed a mathematical model to study drug-resistant tubercu-

losis transmission dynamics in Ethiopia. The researcher found that treatment at

early and latent stages stops drug-susceptible tuberculosis. Although the researcher

claimed to have studied MDR-TB transmission in Ethiopia, he did not use Ethiopian

data to estimate the variables and parameters. However, in our thesis, we estimated

the variables and parameters in the model using Ethiopian health data.

The previous studies on the mathematical modeling of TB epidemiology in

Ethiopia have the following gaps.

� The models have not been validated using real-world data.

� The models have not been used to study the impact of new TB control inter-

ventions.

� The models have not been used to study the cost-effectiveness of different TB

control strategies.

Our thesis addresses these gaps by focusing on:

� Validating the models using real-world data.
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� Using the models to study the impact of vaccination, distancing, case finding

and treatment control interventions.

� Using the models to study the cost-effectiveness of different TB control strate-

gies.

1.5 Objectives of the Study

The main objective of this thesis is to develop modified TB dynamics models

and propose optimal TB prevention and control strategies for Ethiopia.

The specific objectives of this thesis are to:

� develop a mathematical model and analyze the effect of vaccination and treat-

ment in controlling the spread of TB disease in Ethiopia.

� propose a modified mathematical model and study the dynamics of DS-TB

with a saturated incidence rate.

� propose efficient TB control strategies in Ethiopia.

� determine the most cost-effective strategy in combating multi-drug-resistant

tuberculosis in Ethiopia.

� formulate and analyze a modified mathematical model for the dynamics of

TB in the prison system.
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Chapter 2

Introduction to Epidemic

Modeling

2.1 Mathematical Modeling in Epidemiology

Epidemiology is the study of the incidence and spread of diseases. An epidemic

is a widespread disease outbreak over a relatively short period. On the other hand,

a disease is considered endemic when it persists within a specific population. The

spread of infectious diseases is influenced not only by disease-related factors like the

contagious agent, mode of transmission, latent period, infectious period, suscepti-

bility, and resistance but also by various social, cultural, demographic, economic,

and geographic factors.

Mathematical modeling uses mathematics to represent complex phenomena,

such as physical objects, processes, and systems. It involves the application of

mathematical principles and techniques to real-world problems to create mathe-

matical equations that describe the system’s behavior. Mathematical models can

be used to predict the behavior of systems, analyze the effects of interventions, and

optimize system performance. Some examples of mathematical modeling include

financial modeling, epidemiological modeling, and climate modeling [41].

Epidemiological models are used to understand how infectious diseases spread

within a population and to estimate how many people will get infected over time.

The following steps are generally involved in modeling and developing epidemiolog-
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ical systems [42]:

1. Based on the biological knowledge about the disease’s pathogenesis and epi-

demiology, assumptions can be made about the disease transmission process.

These assumptions involve considering factors such as the mode of transmis-

sion, infection stage, and various environmental factors.

2. Draw the transfer diagram and derive the mathematical equations based on

these assumptions.

3. Perform mathematical analysis on the model to understand all possible qual-

itatively distinct model outcomes. This involves applying mathematical the-

ories on stability and bifurcations.

4. Interpreting the mathematical findings within the modeling context allows us

to gain insights into the disease transmission process based on the assump-

tions made in Step (1). These interpretations contribute to our understanding

of how the disease spreads and provide valuable information about the impli-

cations of the assumptions made during the modeling process.

5. Gather disease data from public health agencies and research publications and

verify the model’s accuracy using the collected data.

6. Improve the model by adjusting the initial assumptions made in Step (1) to

obtain a more precise comprehension of the disease progression.

Epidemic models can be classified as deterministic or stochastic systems. De-

terministic models attempt to explain common occurrences within a population,

making them suitable for large populations. The population is divided into com-

partments or classes in deterministic models, representing different epidemic stages.

These models describe average population dynamics and are typically formulated

as systems of differential equations (in continuous time) or difference equations (in

discrete time).

Stochastic models, encompass environmental variations and treat disease infec-

tion as a random process. These perturbed models are particularly useful when

analyzing small population groups with many infectious contacts [43].
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2.2 Compartmental Models in Epidemiology

This section describes the procedure for constructing a mathematical model to

depict the transmission process of an infectious disease using a compartmental ap-

proach. Our first step involves dividing the host population into mutually exclusive

compartments based on the natural history of the disease. For example, for a simple

infectious disease, possible compartments may be:

� Susceptible : consists of individuals who are currently healthy but can po-

tentially acquire the infection. The size of this class is represented by the

variable S.

� Infected: individuals who have acquired the infection and are manifesting

its symptoms. The numerical representation for the size of this category is

denoted by the variable I.

� Removed : individuals who have successfully recovered from the disease and

are now immune, unable to contract it again. Typically, this category is

represented by the variable R.

The fundamental purpose of epidemiological modeling is to illustrate how the

number of individuals changes within each of the three classes at a specific time, t.

To describe this dynamic process mathematically, we consider a short time interval,

[t, t+ δt], and extract the transitions between the classes using Figure 2.1.

During this time interval, we assume that the overall change in each class is de-

termined by the number of individuals entering the class minus the number leaving

the same class. By applying the same logic to each class, we obtain the following

equations:
∆S (t) = new susceptibles−new infections−removal from S

∆I (t) = new infections−transfer into R−removal from I

∆R (t) = transfer from I−removal from R

(2.1)

We divide the two sides of these three equations by δt and let δt → 0, then

the left-hand side will be the derivatives S ′(t), I ′(t) and R′(t) since we obtain the
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following differential equations:


S′ (t) = influx of new susceptibles−incidence rate−removal rate from S

I ′ (t) = incidence rate−transfer rate into R−removalrate from I

R′ (t) = transfer rate from I−removal rate from R

(2.2)

Figure 2.1: Transfer diagram for a simple compartment epidemic model

To develop a deterministic model in the form of an ordinary differential equation

(ODE) system, we establish a set of assumptions based on the unique characteristics

of the epidemic. Subsequently, we express the transfer rates on the right side of the

equations as functions dependent on the variables S(t), I(t), and R(t). The follow-

ing section introduces a simple model that captures the dynamics of susceptible,

infectious, and removed individuals to provide an illustrative example.

2.2.1 An example: The SIR model without demography

In order to illustrate the dependence of the rates in Equation (2.2) on S(t), I(t),

and R(t), we make the following assumptions regarding the transmission mechanism

of an epidemic.

� Only horizontal transmission, including airborne infections, food poisoning,

and sexually transmitted diseases, is considered.

� Mixing in the population to be homogeneous, meaning that contact between

two individuals in a population happens randomly with an equal probability

of infection.

� Upon infection, infected individuals become infectious immediately without

any latency period.
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� Immunity is permanent in this scenario, and reinfection is not possible.

� No new susceptible individuals are entering the population, and no individuals

are being removed from any compartments.

� The total host population remains constant.

A susceptible person becomes infected through contact with an infectious indi-

vidual. The rate of individuals who become infected per unit of time is called the

incidence rate, and the rate of change of the susceptible compartment is given by

S ′ (t) = −incidence rate.

To calculate the incidence rate, we consider two important factors:

� The probability that contact with a susceptible individual causes infection is

denoted by p.

� The per capita contact rate is denoted as c.

We define the function F (t) = βI (t) as the force of infection, where β = pc

represents the transmission rate. F (t)S then gives the number of people who be-

come infected per unit of time. This quantity is called the ”mass action incidence,”

representing the simplest form of the various incidence expressions. Using this inci-

dence rate approach, we can derive the following differential equation for susceptible

individuals:

S ′(t) = −βS(t)I(t).

The infected individuals class is denoted as I(t). Additionally, individuals in

the infected class recover at a constant rate γ. As a result, the differential equation

for infected individuals takes the form:

I ′(t) = βS(t)I(t)− γI(t).

Individuals who recovered from the infected class and moved to the removed
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class resulted in the differential equation:

R′(t) = γI(t).

Finally, the entire model is shown in Figure 2.2 along with the associated system

of differential equations: 
S ′(t) = −βS (t) I (t)

I ′ (t) = βS (t) I (t)− γI (t)

R′ (t) = γI (t)

(2.3)

with the initial values S (0) = S0 > 0, I (0) = I0 ≥ 0, and R (0) = R0 ≥ 0.

Figure 2.2: Transfer diagram for an SIR epidemic model without demography.

By examining the first equation in the model (2.3), we observe that S ′(t) ≤ 0.

As a result, S(t) decreases, and its value remains less than or equal to S0.Moving on

to the second equation in the model (2.3), it can be deduced that I ′(t) = (βS(t)−

γ)I(t). Then, we can establish the following two cases:

1. If S0 <
γ
β
, we have S (t) < S0 <

γ
β
, then I ′ (t) < 0 for all t ≥ 0. Consequently,

I (t) strictly decreases, and then no pandemic can happen in this state.

2. If S0 > γ
β
, we have S (t) > γ

β
for t ∈ [0, t∗) where t∗ > 0. Consequently, I (t)

strictly increases for t ∈ [0, t∗) and the pandemic occurs.

This shows the threshold definition, which is the value to be exceeded for an epi-

demic. In the same context, we consider the following expression β×S0× 1
γ
, which

can be explained as:

Within the field of epidemiology, this crucial concept is referred to as the basic

reproduction number, denoted as R0. The reproduction number will be discussed

in detail in chapter 3.
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Comparing with the threshold phenomena mentioned above, we have the fol-

lowing conclusions:

� if R0 > 1, then the disease dies out.

� if R0 < 1, then the disease persists in the population.

The model (2.3) is based on the assumption that there are no changes in human

demographics and that the population remains closed, excluding any births, deaths,

or migration to and from the host population. This assumption appears so restricted

and unrealistic. Demographics are one of the most significant factors that must be

included in mathematical modeling. The following section will examine an improved

model version, considering the population’s demographic aspects.

2.2.2 An Example: The SIR model with demography

Epidemiological systems that do not consider the births and deaths that occur

in the population are called epidemiological systems without demography. This

system is essential for modeling diseases on a short time scale, especially for study-

ing the transmission of childhood illnesses. However, there are several long-standing

epidemics, like tuberculosis, AIDS, and hepatitis C, where the population undergoes

significant changes over extended periods. In such cases, considering the popula-

tion’s demography becomes indispensable and cannot be disregarded.

Figure 2.3: Transfer diagram for an SIR epidemic model with demography.

To include the demographics in the SIR epidemic model, we assume that all

individuals are born as susceptible. Individuals in each class die at a per capita
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mortality rate of µ. The following system of ordinary differential equations gives

the epidemic model with demography:
S ′(t) = Λ− βS (t) I (t)− µS(t)

I ′ (t) = βS (t) I (t)− γI (t)− µI(t)

R′ (t) = γI (t)− µR(t)

(2.4)

The change of the total population is N ′(t) = Λ−µN (t), where N (t) = S (t)+

I (t) +R (t) . The population size is not constant, but it is asymptotically constant

since N(t) → Λ
µ
as t → ∞.

Since limt→∞ N(t) = Λ/µ, implies that the total number of species stabilizes at

Λ/µ. Hence, without loss of generality one can consider Λ = µN so that system

(2.4) can be written as follows:

S ′(t) = µN − βS(t)I(t)− µS(t)

I ′(t) = βS(t)I(t)− (µ+ γ)I(t)

R(t) = γI(t)− µR(t)

(2.5)

with R0 =
βN

(µ+γ)
= Λβ

µ(γ+µ)
.

Let

x(τ) =
S(t)

N
, y(τ) =

I(t)

N
, z(τ) =

R(t)

N
, τ = (µ+ γ)t

It follows that

dx

dτ
=

dx

dS

dS

dt

dt

dτ
,

=
1

N
[µN − βS(t)I(t)− µS(t)]

1

µ+ γ
,

=
1

N
[µN − β(xN)(yN)− µ(xN)]

1

µ+ γ
,

=
µ

(µ+ γ)N
(µN − µxN)− βN2xy

(µ+ γ)N
,

=
µ

µ+ γ
(1− x)− βN

(µ+ γ)
xy,

= ρ(1− x)−R0xy.

(2.6)
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dy

dτ
=

dy

dI

dI

dt

dt

dτ
,

=
1

N
[βS(t)I(t)− (µ+ γ)I(t)]

1

µ+ γ
,

=
1

N
[β(xN)(yN)− (µ+ γ)(yN)]

1

µ+ γ
,

=

(
βN

(µ+ γ)
x− 1

)
y,

= (R0x− 1) y.

(2.7)

dz

dτ
=

dz

dR

dR

dt

dt

dτ
,

=
1

N
[γI − µR]

1

µ+ γ
,

=
1

N
[γ(yN)− µ(zN)]

1

µ+ γ
,

=
γ

µ+ γ
y − µ

µ+ γ
z,

= ay − bz.

(2.8)

Thus

x′(τ) = ρ(1− x)−R0xy,

y′(τ) = (R0x− 1) y,

z′(τ) = ay − bz.

(2.9)

Since the firs two equations of system (2.5) are independent of the variable z,

it follows that z(τ) = 1 − x(τ) − y(τ). Therefore it suffices to study the following

reduced system:

x′(τ) = ρ(1− x)−R0xy,

y′(τ) = (R0x− 1) y.
(2.10)

The symbol R0 represents the reproduction number. It is important to note that

by employing this approach, we have effectively reduced the number of parameters

involved from five to two. The dimensional form of the SIR model with demography

is equivalent to its original counterpart, as both systems exhibit identical long-term

behavior in terms of their solutions.

The long-term behavior of the model mainly depends on the equilibrium point.

17

http://etd.uwc.ac.za/



The equilibrium point is the solution of the Equation (2.10) such that x′ = 0 and

y′ = 0. Solving this simple system (2.10) found two possible equilibrium points:

� The disease-free equilibrium point E0 = (1, 0) is a state where no disease

occurs. The disease-free equilibrium is also boundary equilibrium since it

lies on the boundary of the feasible region x ≥ 0, y ≥ 0.

� Endemic equilibrium point E1 = (x∗, y∗), where x∗ = 1
R0
, and y∗ = ρ

(
1− 1

R0

)
.

In this case, the epidemic cannot be stopped but remains in a population. The

endemic equilibrium exists only in the case R0 > 1. This equilibrium is also

called an interior equilibrium.
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Chapter 3

Mathematical Preliminaries

3.1 Well-posedness for ordinary differential equa-

tions

Definition 3.1.1. An initial-value problem is a first-order ordinary differential

equation whose solution satisfies an initial constraint:

dx

dt
= f (t, x(t)) , x (t0) = x0, (3.1)

where t0 and x0 are real numbers. An initial value problem is said to be well-posed

when

� a solution exists,

� the solution is unique,

� the solution continously depends on its initial values.

The following theorem shows that the differential Equation (3.1) defines a well-

defined initial value problem if f(t, x) satisfies the Lipschitz condition.

Definition 3.1.2 (Lipschitz condition [44]). Let D denote the rectangular region

in the tx-plane defined by

D : a ≤ t ≤ b, c ≤ x ≤ d, (3.2)
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where

−∞ < a < b < +∞,

and

−∞ < c < d < +∞.

We say that the function f(t, x) is Lipschitz continuous in x over D if there exists

a constant k, 0 < k < ∞, such that

|f (t, x1)− f (t, x2)| ≤ k |x1 − x2| , (3.3)

whenever (t, x1) and (t, x2) belong to D. The constant k is called a Lipschitz con-

stant.

Theorem 3.1.1. (Picard-Lipschitz Theorem [44].)

Given the initial value problem, if f (t, x) is continuous in t and Lipschitz in x

in a neighbourhood of the initial point t ∈ (t0 − h, t0 + h) , x ∈ (x0 − l, x0 + l), then

the ordinary differential equation has a unique solution on some (smaller) interval,

t ∈ (t0 − r, t0 + r), which depends continuously on x0.

3.2 Basic and Effective reproduction Number

A basic reproduction number, R0, is crucial for assessing the transmissibility of

infectious diseases. Theoretically, R0 is defined as the average number of secondary

cases generated by an individual primary case within a fully susceptible population

during its entire infectious period [45, 46]. If R0 is greater than 1, the outbreak

continues as the infected person is expected to infect at least one other person on

average. However, if R0 is less than 1, the outbreak ends because the infected person

is less likely to spread the infection.

The basic reproduction number is affected by several factors:

1. The rate of contacts in the host population

2. The probability of infection being transmitted during contact

3. The duration of infectiousness.
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A population is rarely totally susceptible to infection in the real world. Some

contacts will be immune, for example, if they have previously been infected and

gained lifelong immunity or if they have previously been immunised. Consequently,

not all contacts will become infected, so the average number of secondary cases per

infectious case will be less than the basic reproductive number. This is measured

by the effective reproductive rate (R). The effective reproductive number is the

average number of secondary cases per infectious case in a population made up of

both susceptible and non-susceptible hosts. In contrast to the basic reproductive

number, the effective reproductive number reflects the actual immunity level in the

population. Thus, R can vary over time as immunity changes in the population. R

will increase if susceptibles are introduced into the population and decrease if the

proportion of susceptibles decreases through vaccination or subsequent immunity.

If the value of R is less than 1, the disease will not persist in its transmission, as

each infected individual will, on average, pass the infection to one or fewer people

over time. Conversely, when R exceeds one, transmission escalates, leading to the

spread of the epidemic until R drops below one, typically as the proportion of

immune individuals rises [47].

In simple models, if there is only one infected compartment, the value of R0

is the product of the infection rate and the duration of infection. In cases where

there are one or more classes of infectives involved, the next-generation matrix

method, as introduced by van den Driessche et al. [48] and Diekmann et al. [49],

provides a comprehensive approach for determining the basic reproduction number

(R0). Consider the following scenario: n compartments representing disease and m

compartments representing non-disease factors. Let x ∈ Rn denote the sizes of the

disease compartments, and y ∈ Rm represent the sizes of the non-disease compart-

ments. Additionally, we use Fi to denote the appearance rate of new infections in

compartment i. On the other hand, Vi represents the transfer rate of individuals

into or out-of-compartment i by all other means. Then, the compartmental model

can be written in the form:
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 dxi
dt

= Fi (x, y)− Vi (x, y) , i = 1, 2, 3 . . . , n,

dyi
dt

= gj (x, y) , j = 1, 2, 3, . . . ,m.
(3.4)

The calculation of the basic reproduction number is based on the linearization

of the ordinary differential equations model about a disease-free equilibrium. At

the same time, the following assumptions ensure the existence and well-posedness

of a model.

1. Assume Fi (0, y) = 0 and Vi (0, y) = 0 for all y ≥ 0 and i = 1, 2, 3, ..., n. All

new infections are secondary, arising from infected hosts.

2. Fi (0, y) ≥ 0 for all non-negative x and y and i = 1, 2, 3..., n. The function

F represents the occurrence of new infections and should always have a non-

negative value.

3. Vi (0, y) ≤ 0 whenever xi = 0, i = 1, 2, 3, ..., n. Each component, Vi, repre-

sents a net outflow from compartment i and must be negative (inflow only)

whenever the compartment is non-empty.

4. Assume
∑n

i=1 Vi (x, y) ≥ 0 for all non-negative x and y. The sum represents

the total outflow from all infected compartments. Terms in the model that

contribute to an increase in
∑n

i=1 xi are assumed to signify secondary infec-

tions and, as a result, should be included in the function F .

5. Assume the disease-free system dy
dt

= g(0, y) has a unique equilibrium that

is asymptotically stable. That is all solutions with initial conditions of the

form (0, y) approach a point (0, y0) as t → ∞. This point is referred to as the

disease-free equilibrium.

Assuming that Fi and Vi meet the above conditions, we can form the next

generation matrix (operator) FV −1 from matrices of partial derivatives of Fi and

Vi particularly

F =

[
∂Fi(x0)

∂xj

]
and V =

[
∂Vi(x0)

∂xj

]
, (3.5)
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where i, j = 1, 2, 3...,m and where x0 is the disease-free equilibrium. The R0 is

given by the spectral radius (dominant eigenvalue) of the matrix FV −1.

3.3 Stability analysis

Finding a general solution to the model may be challenging. However, numerical

simulations are capable of providing approximate solutions with fixed parameters.

In such scenarios, stability analysis emerges as a valuable tool for understanding

the long-term behavior of the solution.

Local and global stability are the two common types of stability analysis. Local

stability examines the behavior of the model’s solution close to an equilibrium point,

whereas global stability characterizes solution behavior across the entire domain.

To define stability analysis more precisely, we provide a few definitions and related

theorems below, which will be used in the subsequent chapters.

Definition 3.3.1 (Equilibrium and stability [50]).

A point x∗ is an equilibrium solution of Equation (3.1) if f(t, x∗) = 0. We say

an equilibrium point is

1. locally stable, if for every R > 0 there exists r > 0, such that

∥x(0)− x∗∥ < r =⇒ ∥x (t)− x∗∥ < R, t ≥ 0.

2. locally asymptotically stable, if locally stable and

lim
x→∞

x (t) = x∗.

3. globally asymptotically stable, asymptotically stable for all x(0) ∈ Rn.

3.3.1 Linearization and local stability criterion

This section presents a criterion for confirming the locally asymptotically stability

of an equilibrium point, x∗, to a n-dimensional first-order system of differential
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equations.

ẋ = f (x) . (3.6)

Before stating the stability criterion for system (3.6), it is essential to linearize

the system about the equilibrium point. It is assumed that f (x) has continuous

second-order partial derivatives in a neighbourhood of x∗. Then, applying a Taylor

series expansion about the equilibrium yields

f (x) = f (x∗) +Df (x∗) (x− x∗) +R (x) = Df (x∗) (x− x∗) +R (x) , (3.7)

where Df(x∗) is the matrix of first-order partial derivatives of f(x) evaluated at x∗.

If f = (f1, f2, . . . , fn) and x = (x1, x2, . . . , xn), then the matrix is given by

Df (x) =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

 .

The remainder is R(x) where x is some value dependent on x and x∗ and includes

the second and higher-order terms of the original function. The linearized system

is

ẋ = Df (x∗) (x− x∗) ,

but we can make the change of variables y = x− x∗ and consider instead

ẏ = Ay, (3.8)

where A = Df (x∗).

The stability of the linear system (3.8) can be determined by the eigenvalues of

the matrix A which are the roots to the polynomial p (λ) = det (A− λI) = 0 where

I is the identity matrix. An eigenvector v corresponding to an eigenvalue λ is a

nonzero vector for which Av = λv. The eigenvalues can be real or complex-valued.

If λ = α + ℓβ is an eigenvalue, written as a complex number, the real part of λ is
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the real number α.

Stability of the Linear System

1. The system (3.8) is stable at x∗ if all the eigenvalues of A have negative real

part.

2. The system (3.8) is unstable at x∗ if at least one eigenvalue of A has positive

real part.

3. Suppose that the eigenvalues of A all have real parts that are zero or negative.

List those eigenvalues with zero real part as λj = ℓβj for 1 ≤ j ≤ ℓ. Let the

multiplicity of λj be mj ; that is, p (λ) = (λ− λj )
mjq(λ) where q(λj) ̸= 0.

Every solution is stable if A has mj linearly independent eigenvectors for each

λj. Otherwise, every solution is unstable.

Theorem 3.3.1. (Linearization Theorem [51]). Assume a nonlinear system

(3.6) has a simple fixed point at x∗. Then, in a neighbourhood of the origin, the phase

portraits of the system and its linearization are qualitatively equivalent, provided the

linearized system is not at the centre.

3.3.2 Routh–Hurwitz stability criterion

The Routh Hurwitz stability criterion [52] is essential for determining the sta-

bility of a system using a characteristic polynomial, with the help of some criteria

that use only the coefficients of this polynomial. This criterion is a necessary and

sufficient condition for all roots of the characteristic polynomial. Consider the char-

acteristic polynomial

λn + a1λ
n−1 + · · ·+ an−1λ+ an = 0, (3.9)

determining the n eigenvalues λ of a real n× n square matrix A. Then

the eigenvalues λ all have negative real parts if

H1 > 0, H2 > 0, H3 > 0, . . . Hn > 0,
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where Hi are the following determinants:

H1 = |a1| ,

H2 =

∣∣∣∣∣∣ a1 1

a3 a2

∣∣∣∣∣∣ ,

H3 =

∣∣∣∣∣∣∣∣∣
a1 1 0

a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣∣∣∣ ,

Hn =

∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 · · · 0

a3 a2 · · · 0
...

...
. . .

...

a2n−1 a2n−2 · · · an

∣∣∣∣∣∣∣∣∣∣∣∣
.

3.3.3 Global Stability via Lyapunov Functions

For higher-dimensional systems, several techniques can establish the global sta-

bility of the equilibrium points. The most commonly used is the Lyapunov func-

tion [53]. The global stability of equilibrium points may be proved using the scalar

function known as the Lyapunov function.

Lyapunov–Kasovskii–LaSalle Stability Theorems

Let x∗ be an equilibrium point of the system ẋ = f(x), where f : Rn → Rn.

Definition 3.3.2. A scalar function V (x ) such that V : Rn → R is called radially

unbounded if

V (x) → ∞ if ||x|| → ∞.

One significant property of Lyapunov functions is that they are positive definite in

the entire space.
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Definition 3.3.3. Let V be a continuous scalar function, that is,

V : Rn → R.

The function V is called positive definite on the entire space if

� V (x∗) = 0,

� V (x) > 0 for x ̸= x∗,

where x∗ is an equilibrium of the autonomous system ẋ = f(x). We define the

derivative of V (x) along the solutions of the system of differential equations as

V̇ (x) =
d

dt
V (x (t)) =

∂V

∂x

dx

dt
.

Now, we can state Lyapunov’s theorem for global stability of the equilibrium

x∗. For proof of Lyapunov’s theorem (see [54]).

Theorem 3.3.2. (Lyapunov’s Stability Theorem), If the function V (x) is

globally positive definite and radially unbounded, and its time derivative is globally

negative, then the equilibrium x∗ is globally stable.

Definition 3.3.4. If there exists a function V (x) satisfying the theorem 3.3.2, then

this function is called a Lyapunov function.

There are no set rules for finding Lyapunov functions, and they are often tricky

and computationally expensive to find. However, once a Lyapunov function is

identified, it is possible to determine the equilibrium point’s global stability.

According to the Lyapunov theorem, the Lyapunov function’s derivative with

respect to t must be negative definite. But often, we can only show non-positivity.

In this case, the extension of the Lyapunov theorem was given by LaSalle [55] and

Krasovskii [56].

Theorem 3.3.3. (Krasovkii–LaSalle Theorem) Consider the autonomous system

ẋ = f(x), where x∗ is an equilibrium, that is, f(x∗) = 0. Suppose there exists a
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continuously differentiable function V : Rn → R and that this function is positive-

definite on the entire space and radially unbounded and that it satisfies V̇ (x)≤0 for

all t and all x ∈ Rn.

Define the invariant set

L =
{
x ∈ Rn

∣∣∣V̇ (x) = 0
}
.

If L contains only the equilibrium x∗, then the equilibrium x∗ is globally stable.

3.4 Sensitivity analysis

A sensitivity analysis (SA) measures the uncertainties in a complex model. It aims

to identify the critical inputs of a model (parameters and initial conditions) and

quantify how the uncertainty of the inputs affects the model results. SA helps in

allocating resources for follow-up experiments and field studies, isolating the pri-

mary sources of parametric uncertainty, identifying parameters that can be omitted

to create a simple model, clarifying the plausible range of system results for pre-

dictive purposes when data are not available, and assessing the robustness of the

qualitative conclusions drawn from a modeling study [57–60]. SA techniques have

been broadly applied in systems biology [61, 62], environmental modeling [63, 64],

and infectious disease modeling [65–67].

Many sensitivity analytical techniques are available: scatterplots, the Morris

method, Latin hypercube sampling or partial rank correlation coefficient (PRCC),

Sobol’s method, and the sensitivity heat map method.

3.4.1 Scatter plots

Scatter plots are used to visually inspect the relationship between a model out-

put variable and parameters. A model output variable sensitive to the selected

parameter will produce a clear relationship pattern in the scatter plot. Typically, a

Monte Carlo algorithm is used to sample the parameter space, and multiple scatter

plots are used to illustrate the relationship between each parameter and each output

variable of interest [57].
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3.4.2 The Morris method

The Morris method, sometimes called the elementary effects method, is based

on the ratio of the change in an output variable to the change in an input param-

eter [68]. Given the general relationship between a model’s output Y and input

parameters X, Y = f(X), the elementary effect of xi can be expressed as

EEi(X) =
yj (x1, x2, . . . ,xi+∆,xi+1, . . . ,xk)−yj(X)

∆

where X∈[0, 1]k is a scaled vector of k input parameters, yj is the state variable

of interest, ∆ is a value in the set
{

1
p−1

, . . . , 1− 1
p−1

}
and p is the number of levels

into which each dimension of the parameter space is divided. The distribution

of EEi(X), denoted Fi, is obtained by repeated random sampling of X from its

k-dimensional, p-level parameter space.

An output variable’s sensitivity measures include its mean of |Fi| (denoted µ∗ ),

and its standard deviation Fi (denoted σ ). A large µ indicates that the parameter

strongly influences the output. By contrast, if σ is large, the correlation between

the parameter and result is either nonlinear or interacts with other parameters

[69, 70]. It is important to note that elementary effects may cancel each other out

when the distribution of Fi contains both positive and negative values. However,

the parameter can still be influential when elementary effects are canceled out.

Therefore, it is recommended that the absolute elementary effect be used to remedy

the problem. The elementary effect of xi, as estimated by the Morris method, is

closer to ∆yi
∆xi

|
χ
than ∆yi

∆xi
|
χ
[68]. The Morris index is more accurate depending on

the smoothness of y over the parameter domain.

Models are run by the Morris method using r(k + 1), where r is the number

of trajectory points (a sampling path where each successive point varies only one

randomly selected parameter while keeping all others constant at their last values)

through the input parameter space, where EE (xi) is calculated at k+1 points along

each trajectory [68]. Even though the Morris method is easy to understand (does not

rely on assumptions about the model e.g., monotonicity), and is computationally
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inexpensive, it cannot quantify the contribution of a parameter to the output’s

variability [65].

3.4.3 Latin hypercube sampling-partial rank correlation co-

efficient (PRCC)

A PRCC is a sampling-based SA method that measures the monotonicity between

model parameters and output after eliminating the linear effects of all parameters

except the parameter of interest [62]. It measures nonlinear but monotonic rela-

tionships between two variables. For two variables, x and y, a standard correlation

coefficient, ρ, is calculated as follows:

ρ=

∑
i (xi−x̂) (yi−ŷ)√∑

i (xi−x̂)2
∑

i (yi−ŷ)2
,

where {(xi, yi) |xi∈x, yi∈y} is the set of paired, sampled data, x̂ is the sample mean

of x, and ŷ is the sample mean of y. When all other parameter values are held

constant, the PRCC calculates the sensitivity of an output state variable to an

input parameter as the linear correlation, ρ, between the residuals,
(
Xj−X̂j

)
and

(Y−Ŷ ) where Xj is the rank-transformed, j is the input parameter and Y is the

rank-transformed output state variable [68, 71]. X̂j and Ŷ are determined for k

samples by the linear regression models

X̂j=co+
k∑

p= 1

p̸=j

cpXp

and

Ŷ=bo+
k∑

p= 1

p̸=j

bpXp

30

http://etd.uwc.ac.za/



The LHS method uses a stratified Monte Carlo sampling method in which the

parameter range is divided into N equal intervals, and samples are randomly drawn

from each interval [62,72]. The method explores the entire range of each parameter,

and each parameter interval is sampled only once [62,67]. LHS is more efficient with

fewer simulations than a conventional Monte Carlo sampling strategy because of its

dense stratification across the input parameter space and the fast convergence of

the sample mean to the real population mean as the number of samples grows [73].

The combined LHS-PRCC procedure involves generating a Latin hypercube sample

of the parameter space, obtaining model output for each set of sampled parameters,

ranking parameters and output values, and calculating the PRCC for each input

parameter [62,67].

3.4.4 Sobol’s method

The Sobol method is a variance-based sensitivity analysis technique that can be

used to estimate the influence of individual parameters, or groups of parameters,

on the output variables of a nonlinear model. The method is based on variance

decomposition, which decomposes the total variance of the output variables into

contributions from individual parameters and groups of parameters. The Sobol

method is a powerful tool for understanding the sensitivity of nonlinear models

and can be used to identify the most important parameters for further study or

optimization [74].

Given a model of the relationship between output variables and parameters,

Y=f (X)=f (x1 , x2, . . . ,xk)

that is square integrable over its unit hypercube parameter space, the model func-

tion for a single state variable, y=f(X), can be decomposed into summands of

increasing dimensionality, known as the high-dimensional model representation:

y= f (X)=f0+
∑k

i=1 fi (xi)+
∑k

j>i fij (xi, xj)+· · ·+f1,2,...,k (x1, x2, . . . ,xk)

where f0 is the constant term.
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Sobol demonstrated that if each term in the expansion of the model function into

summands of increasing dimensionality has a zero mean, then the total variance of

an output variable can be decomposed into the HDMR ANOVA, represented as

V (y) =

∫
f(X)2 dX−f0

=
k∑
i=1

Vi+
k∑
i

k∑
j>i

Vij+
k∑
i

k∑
j>i

k∑
h>j

Vijh+· · ·+V1,2,...,k

where V (y) is the variance of the model output y, k is the number of parameters

and

Vi1,i2,...,is=

∫
f 2
i1,i2,...,is

dxi1dxi2 , . . . , dxis

for a given set of indices, i1, . . . ,is. Sobol’s sensitivity indices are the ratios of the

partial variance given an individual parameter or the interactions of a parameter

subset to the total variance.

Si=
V [E (y|xi)]

V (y)

and

STi= 1−V [E (y|X∼i)]

V (y)

whereX∼i denotes all elements ofX except xi. These indices have the property that

Si≤STi≤1 and when Si=STi= 0, it can be concluded that f(X) does not depend on

xi, while Si=STi= 1 indicates that f(X) depends solely on xi [70].

The Sobol method is independent of model structure (e.g., linearity and mono-

tonicity) and captures the effects of individual parameters and their interactions.

The method also provides quantitative information on the contribution of each pa-

rameter to model sensitivity.

A major disadvantage of the Sobol method is its high computational cost. Given

a model with k parameters and n samples from each parameter, the model must run

at least k(n + 2) times to generate sufficient output to calculate partial variances

for individual parameters. This can be a significant burden for models with a large

number of parameters or a large number of samples.

Despite its high computational cost, the Sobol method is a powerful tool for
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understanding the sensitivity of nonlinear models. It can be used to identify the

most important parameters for further study or optimization, and it can help to

improve the accuracy and reliability of model predictions.

3.4.5 Sensitivity heat map method

There are two graphical methods to examine the sensitivity of complex models:

the sensitivity heat map (SHM) and the parameter sensitivity spectrum (PSS). The

SHM illustrates how sensitive each output variable is to all (or a subset of) model

parameters, while the PSS displays the sensitivity of all (or a subset of) output

variables to each parameter [61].

Given a set of n ODEs:
dX

dt
=f(t,X,K)

where X=(x1, . . . ,xn) is the vector of state variables, t is time and K=(k1, . . . ,ks)

is a vector of parameters, there is a solution or set of solutions X=g(t,K) for

0≤t≤T . When the parameter δK is changed, the solution δg also changes so that

δg(t) =MδK+O
(
∥δK∥2

)
, where M is the linear map (as described in [75]) from

parameter space Rs to a Hilbert space H.

Applying Rand’s notation [61], we subject a time-interval normalized (that

is, by
√

(tm+1−tm) /tN)) matrix M1, to singular value decomposition. This ma-

trix is made up of the partial derivatives ∂gj/∂ki at all simulation time points

t= {t1, . . . ,tN}. The values for U,W and {σi}, as defined below, quantify the sensi-

tivity of output variables to parameters. Rand demonstrates that there is a unique

set of positive numbers σ1≥. . .≥σs, a unique set of orthonormal vectors {Vi} in Rs,

and a unique n-dimensional orthogonal time-series basis set {U1(t), . . . ,Un(t)} in H,

such that δg(t) =
∑

i σi

[∑
j Wijδkj

]
+O

(
∥δK∥2

)
, where Wij are the elements of

W=V −1, and V= [V1, . . . ,Vn] [61].

The SHM for the state variable gi(t) is therefore represented as σi (maxj |Wij|)Ui(t),

and the influence of a single parameter on the system. The PSS is stated as

∂g(t)/∂kj=
∑

i σiWijUi(t). Compared to previous SA approaches, this very compu-

tationally efficient methodology enables the modeler to see the sensitivity charac-
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teristics of the set of all output variables instead of just one output variable.

3.5 Optimal control theory applied to epidemio-

logical models

Optimal control theory is a mathematical optimization approach to formulate

control strategies. It deals with the problem of finding a control law for a given

system that satisfies a certain optimality criterion. The optimal control problem

typically describes the control system (the process to be controlled) using ordi-

nary differential equations (ODEs), control objectives, physical constraints, and a

performance index. Given the following ODEs-system dx
dt

= y(x (t) , t)

x (0) = x0,
(3.10)

where the unknown vector x : R+ → Rn is considered to be piecewise differentiable

and continuous with given initial conditions x0 ∈ Rn and y : Rn → Rn.

Let us generalize the system in Equation (3.10) by adding a new time-dependent

function u(t) to the right-hand side, such that u: R+ → D, where u is from a set,

D ⊂ Rm.  dx
dt

= y(x (t) , u (t) , t)

x (0) = x0

(3.11)

The variable u(t) is called ”control,” and the new system described by the Equation

(3.11) is called ”control system.” The vectors x, u, and function y can be generalized

as:

x (t) =



x1 (t)

x2 (t)

.

.

.

xn (t)


,
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u (t) =



u1 (t)

u2 (t)

.

.

.

um (t)


,

and

y (x (t) , u (t) , t) =



y1 (x1 (t) , x2 (t) . . . xn (t) , u1 (t) , u2 (t) . . . um (t))

y2 (x1 (t) , x2 (t) . . . xn (t) , u1 (t) , u2 (t) . . . um (t))

.

.

.

yn (x1 (t) , x2 (t) . . . xn (t) , u1 (t) , u2 (t) . . . um (t))


.

After developing the controlled system, the control objective is defined using a

suitable performance index. Regarding epidemic control models, the aim is to

obtain a cost of control inputs that will minimize the prevalence and the cost of

controlling the disease. More explicitly, the objective function is given by:

J [u] =

∫ T

0

L (x (t) , u (t)) dt, (3.12)

where x(t) solves (3.12) for specified control u(t). The Lagrangian function L is con-

tinuous and differentiable, representing the running payoff, such that L : Rn×D →

R. Both the final time T and the function L are given. Thus the optimal con-

trol problem is to determine the control u∗ that minimizes the objective functional

(3.13) subject to the system state (3.12) over the closed interval [0, T ], that is,

J [u∗] = minJ
u∈Π

[u]. (3.13)
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Here Π is the set of admissible controls defined by

Π=
{
u (t) ∈ L1 (0, tf ) |u (t) ∈ D

}
.

If it exists, the control u∗(t) is called the optimal control. The next step is to

check the existence of the optimal control pair (u∗, x∗). This can be achieved by

using Theorem 4.1 from [76]:

Theorem 3.5.1. Suppose that,

i y is of class C1 and there exist a constant ε exists such that

|y(t, 0, 0)| ≤ ε,

|yx(t, x, u)| ≤ ε(1 + |u|), and

|yu(t, x, u)| ≤ ε;

ii The admissible set of solutions to system (3.12) along with initial conditions

and associated control in Π is nonempty;

iii y(t, x, u) = a(t, x) + b(t, x)u;

iv The optimal control set U is closed, compact, and convex;

v The objective functional integrand L (x (t) , u (t)) is convex in U .

Then there exists an optimal control u∗ and the corresponding optimal solution

x∗ to the problem (3.12). Now that the existence of the optimal control has been

proved, the optimal control solution is provided by Pontryagin’s maximum principle

[77]. Let’s introduce a time-varying Lagrange multiplier vector λ(t) and define a

new function H (called Hamiltonian function) for all time t ∈ [0, tf ] as

H (x (t) , u (t) , λ (t) , t) = L (x (t) , u (t)) +
n∑
j=1

λj (t) yj (x (t) , u (t) , t). (3.14)
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Theorem 3.5.2. (Pontryagin’s Maximum Principle). For the optimality of control

u∗(t) and associated optimal trajectory, x∗(t), there must exist a nonzero co-state

vector λ∗(t) that is a solution to the co-state system

dλ

dt
= −∂H (x (t) , u (t) , λ (t) , t)

∂t
. (3.15)

Such that

H (x (t) , u (t) , λ (t) , t) = min
u∈Π

H (x∗ (t) , u (t) , λ∗ (t)).

Consequently, the necessary conditions for optimizing the Hamiltonian are [78]:

1. Optimality condition
dH

dt
= 0.

2. The co-state system

dλj (t)

dt
= −∂H (x (t) , u (t) , λ (t) , t)

∂xi
.

3. Transversality condition

λj(tf ) = 0.

For minimization, we must also have ∂2H
∂u2

≥ 0 at u∗.
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Chapter 4

Modeling the effects of vaccination

and treatment on tuberculosis

transmission dynamics

In this chapter, we develop and analyze the deterministic mathematical tubercu-

losis transmission dynamics model. The model in this chapter modifies the models

in [17, 19] by including newborn TB vaccination. The model includes vaccination

for newborns and treatment for high-risk latent and active TB patients.

4.1 Introduction

Mathematical models and computer simulations are inexpensive, easy to man-

age, relatively fast, and productive experimental tools. They have been widely used

to examine, explain, and predict infectious disease transmission dynamics. Different

mathematical models for tuberculosis transmission dynamics have been formulated,

analyzed, and utilized, starting from the first mathematical model for TB by Waaler

et al. [22]. Those models have been applied to different populations, such as a city

or country, a school, a prison, or a refugee camp, for instance, [79,80]. Other mathe-

matical models are developed that consider progression rate, treatment, vaccination,

immigration, and other factors see [35,81,82].

For many years, mathematical models have been used to study the transmission

dynamics of TB in different countries by using real data. For example, Zhao et
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al. [25] investigated age’s role in TB transmission in Mainland China and found

that the BCG vaccine is valid only for younger people. They also showed that the

DOTS program is more critical for the senior-aged group.

Choi et al. [17] introduced three control mechanisms: distancing, case finding,

and case holding into the SEIL model in South Korea. They showed that distancing

control is the most effective prevention mechanism of all.

On the other hand, Moualeu et al. [21] developed a model for the transmission

dynamics of TB and applied it to the data for Cameroon. They identified that the

combined effort of education and chemoprophylaxis might lead to a reduction of

80% in the number of infected people in 10 years.

Finally, Kim et al. [19] developed a mathematical model for TB and fitted it to

the Philippine data. Their result showed that applying a combination of distancing

and case-finding control strategies has significant potential for curtailing the spread

of TB in the Philippines.

As we have seen above, various researchers have studied the transmission dy-

namics of TB in different countries using mathematical models. However, such

studies are rare in Ethiopia. Therefore, in this chapter, we have examined the effect

of the BCG vaccine and TB treatment in preventing the spread of TB disease in

Ethiopia.

4.2 Model Formulation

The homogeneously mixing total population at time t, of size N(t), is divided

into five subclasses: Susceptible S(t), Vaccinated V (t), high-risk latently infected

E(t), Infectious (or active TB) I(t), and low-risk latent L(t).

We make the following assumptions in the formulation of the model:

� We assume that the recruitment rate into the population is Λ and some portion

of it, (εΛ), will receive a vaccination at birth where (0 ≤ ε ≤ 1).

� The natural death rate (any death which is not due to TB) is assumed to be

the same for each class and denoted by µ.

� The mortality due to the TB disease will happen only in the I -class with a
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rate δ.

� The efficiency of the BCG vaccine is not complete [83]. Hence, it is assumed

that vaccinated individuals develop temporary immunity that lasts for a du-

ration 1− θ, after which they become susceptible to infection.

� Susceptible individuals can be infected with TB through the transmission

coefficient β.

� The treatment rate for the E− class is denoted by α.

� It is assumed that the untreated portion of the E-class will develop active TB

at the rate k.

� If treatment is administered for the I -class with a rate r, then some of them

will complete their treatment correctly at a rate (1 − p)r for (0 ≤ p ≤ 1 ).

The recovered individuals are moved to the L-class because treatment cannot

completely remove the TB bacteria from the body of the patients. Hence,

recovered and low-risk latently infected individuals are classified into a single

class of low-risk latent individuals.

� It is assumed that there is no permanent immunity to tuberculosis; hence,

recovered (low-risk latent) individuals may lose their immunity and become

high-risk latently infected with the relapse rate σ.

� We further assume that all parameters to be used in this model are non-

negative.

Given these assumptions, the following flow diagram 4.1 describes the interaction

between classes.
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Figure 4.1: Flow diagram of the TB transmission model

Based on our definitions, assumptions, and interrelations between the variables,

the system of ODE that describes the dynamics of TB is formulated as follows,

dS
dt

= (1− ε)Λ+ θV − βSI − µS

dV
dt

= εΛ− (θ + µ)V

dE
dt

= βSI + prI + σL− (k + α + µ)E

dI
dt

= kE − (µ+ r + δ) I

dL
dt

= (1− p) rI + αE − (µ+ σ)L

N (t) = S (t) + V (t) + E(t) + I(t) + L(t).

(4.1)

4.3 Model Analysis

4.3.1 Positivity of the solutions

Theorem 4.3.1. Let the initial data S0, V0, E0, I0 and L0 be non-negative. Then

the solution set Ω = {S (t) , V (t) , E (t) , I (t) , L (t)} is non-negative for all t > 0.

Proof: Take the second equation of the model (4.1)

dV (t)

dt
= εΛ− (θ + µ)V (t).
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For simplicity let us write

θ + µ = φ,

and

εΛ = λ.

Then,
dV (t)

dt
+ φV (t) = λ. (4.2)

Multiplying both sides of Equation (4.2) by exp (φt) gives

dV (t)

dt
exp (φt) + φV (t) exp (φt) = λexp (φt) . (4.3)

By the product rule of the derivative we have

dV (t)

dt
exp (φt) + φV (t)exp (φt) =

d

dt
[V (t)exp (φt) ] . (4.4)

Hence from Equation (4.3), we have

d

dt
[V (t)exp (φt) ] = λexp (φt) . (4.5)

Integrating both sides of Equation (4.5) gives

V (t) = V (0) exp (−φt) +
λ

φ
(1− exp (−φt) ) ≥ 0. (4.6)

Remark : Note that, in particular, from Equation (4.6), it follows that

lim
t→∞

V (t) =
εΛ

θ + µ
. (4.7)

Similarly taking the first equation of the model (4.1) gives

dS(t)

dt
= (1− ε)Λ+ θV (t)− (βI (t)− µ)S (t) .
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By letting

(1− ε)Λ = ϕ,

and

(βI (t)− µ) = H(t),

we have
dS(t)

dt
+H (t)S(t) = ϕ+ θV (t). (4.8)

Multiply both sides of Equation (4.8) by exp
{∫ t

0
H (τ) dτ

}
gives

dS (t)

dt
exp

{∫ t

0

H (τ) dτ

}
+H (t)S (t) exp

{∫ t

0

H (τ) dτ

}

= ϕexp

{∫ t

0

H (τ) dτ

}
+ θV (t) exp

{∫ t

0

H (τ) dτ

}
,

By the product rule of the derivative, we have

dS(t)

dt
exp

{∫ t

0
H (τ) dτ

}
+H (t)S (t) exp

{∫ t

0
H (τ) dτ

}
=

d

dt

[
S (t) exp

{∫ t

0
H (τ) dτ

} ]
.

Hence,

d

dt

[
S (t) exp

{∫ t

0

H (τ) dτ

} ]
= ϕexp

{∫ t

0

H (τ) dτ

}
+ θV (t)exp

{∫ t

0

H (τ) dτ

}
. (4.9)

Integrating both sides of Equation (4.9) gives

S (t) exp

{∫ t

0
H (τ) dτ

}
−S0 = ϕ

∫ t

0
exp

{∫ τ

0
H (u) du

}
+

∫ t

0
θV (u)exp

{∫ τ

0
H (u) du

}
.

Then,

S (t) = S0exp

{
−
∫ t

0
H (τ) dτ

}
+

[
ϕ

∫ t

0
exp

{∫ τ

0
H (u) du

} ][
exp

{
−
∫ t

0
H (τ) dτ

} ]
+

[∫ t

0
θV (u) exp

{∫ τ

0
H (u) du

} ][∫ t

0
θV (u) exp

{∫ τ

0
H (u) du

} ]
≥ 0.

Similarly, we can show that E (t) , I (t) , and L (t) are non-negative.
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4.3.2 Invariant regions

Theorem 4.3.2. With the non-negative initial conditions, the feasible region of the model

is defined by

Ω =

{
(S(t), V (t), E(t), I(t), L(t)) ∈ R+

5

∣∣∣∣ S (t) + V (t) + E (t) + I (t) + L(t) ≤ Λ

µ

}
.

Proof: The change of total population size is

dN (t)

dt
=
dS (t)

dt
+
dV (t)

dt
+
dE (t)

dt
+
dI (t)

dt
+
dL (t)

dt

= Λ− µN (t)− δI (t)

(4.10)

The inequality (4.10) implies

eµt
dN (t)

dt
+ µeµtN (t) ≤ Λeµt,

d

dt

(
N (t) eµt

)
≤ Λeµt, (4.11)

where eµt is the integration factor.

Integrating both sides gives of Equation (4.11)

N (t) eµt ≤ Λ

µ
eµt + C,

where C is a constant. It follows that when t = 0, we have N0 − Λ
µ ≤ C. Substituting

and simplifying leads to:

N (t) ≤ Λ

µ
+

(
N0 −

Λ

µ

)
e−µt.

Thus for every t > 0, as t→ ∞, N (t) ≤ Λ
µ .

Hence an invariant region for this model is

Ω =

{
(S(t), V (t), E(t), I(t), L(t)) ∈ R+

5

∣∣∣∣ S (t) + V (t) + E (t) + I (t) + L(t) ≤ Λ

µ

}
■ (4.12)

4.3.3 Disease-free equilibrium point and the basic repro-

duction number

In the absence of the disease (E = I = L = 0), the model (4.1) has a disease-free
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equilibrium point(DFE), obtained by setting the right-hand sides of the equations in the

model to zero, given by:

P ∗
0 = (S∗

0 , V
∗
0 , 0, 0, 0) ,

where

S∗
0 =

Λ

µ

θ + µ (1− ε)

(θ + µ)
,

and

V ∗
0 =

εΛ

θ + µ
.

We obtained basic reproduction number R0 by using the next-generation matrix

method given in [84]. This amounts to calculating the two matrices M and F , where

M is the transfer rate of individuals into and out of the infected classes and F is the rate

of new infections in the compartment. Hence, by the equations we obtain,

F =


βSI

0

0

 ,

M =


−σL− prI + (k + α+ µ)E

−kE + (r + µ+ δ) I

−(1− p)rI − αE + (µ+ σ)L

 .

Then the linearization of the system (4.1) at disease free equilibrium is given by

F =


0 βΛ

(
1
µ − ε

θ+µ

)
0

0 0 0

0 0 0

 ,

and

M =


k + α+ µ −pr −σ

−k r + δ + µ 0

−α − (1− p) r µ+ σ

 .
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Then R0 is the dominant eigenvalue of the matrix FM−1.

Thus we have

R0 =
kβΛ [θ + µ (1− ε)] (µ+ σ)

µ (θ + µ) [µ (r + δ + µ) (α+ µ+ σ) + k {rµ (1− p) + (δ + µ) (µ+ σ)}]
.

The following number, Rg , serves as an indicator for global stability of the disease-free

equilibrium point:

Rg =
kβΛ [θ + µ (1− ε) + η]

µ (θ + µ) [µ1µ2 − kpr]
, (4.13)

with

µ1 = α+ µ+ k,

µ2 = r + δ + µ,

and

η =
µσ

kβΛ
[αµ1 + (1− p) rk] .

Note that since p ≤ 1 and µ > 0, we are guaranteed that µ1µ2 − kpr > 0.

Theorem 4.3.3. For the model (4.1), the disease-free equilibrium point P ∗
0 is globally

asymptotically stable if Rg < 1.

Proof: We follow a methodology similarly as in the stability analysis of [85,86].

For Rg < 1 we have

kβΛ [θ + µ (1− ε) + η]

µ (θ + µ)
− [µ1µ2 − kpr]<0. (4.14)

This can be written as

kβΛ [θ + µ (1− ε)]

µ (θ + µ)
+

kβΛη

µ (θ + µ)
− [µ1µ2 − kpr]<0. (4.15)

By the Archimedean property of R, there exists γ0 > 0, for which

kβΛ [θ + µ (1− ε)]

µ (θ + µ)
+γ0kβ +

kβΛη

µ (θ + µ)
− [µ1µ2 − kpr]<0. (4.16)

Also, we can find a number γ1, with 0 < γ1 < µ, and such that

kβΛ [θ + µ (1− ε)]

µ (θ + µ)
+γ0kβ +

kβΛη

µ (θ + µ)

σ+γ1
γ1

− [µ1µ2 − kpr]<0. (4.17)
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We require an upper bound for S(t). From Remark (4.7) it follows that there exists t0

such that ∣∣∣∣V (t)− εΛ

θ + µ

∣∣∣∣ < γ0,

whenever t > t0 . Without loss of generality, we can assume that

∣∣∣∣V (t)− εΛ

θ + µ

∣∣∣∣ < γ0,

whenever t > 0.

The latter inequality implies that

εΛ

θ + µ
− γ0 < V (t) ,

and consequently, that

−V (t)<− εΛ

θ + µ
+ γ0.

Also, we have

N(t) ≤ Λ

µ
.

Thus for every t > 0,

S (t) ≤ N (t)− V (t)

<
Λ

µ
− εΛ

θ + µ
+ γ0

=
Λ

µ

θ + µ (1− ε)

(θ + µ)
+ γ0.

(4.18)

Now taking γ2 =
γ1
2 , we introduce two constants C0 and C1 as follows:

C0 =
µ2
k

− α (σ + γ1)

k(µ+ σ)
,

C1 =
σ + γ2
µ+ σ

.

In particular then, C0 > 0.

Now we define a function:

Q (t) = E (t) + C0I (t) + C1L (t) . (4.19)
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We prove now that Q̇(t) is negative-definite. Note that we can write

Q̇ (t) = C2E + C3I + C4L

where

C2 = C0k − µ2 + C1α,

C3 = βS + pr − C0µ1 + (1− p) rC1,

and

C4 = σ − C1 (µ+ σ) .

Then

C4 = −γ2 < 0.

C2 = −α (σ + γ1)

(µ+ σ)
+
α (σ + γ2)

(µ+ σ)

=
α (γ2 − γ1)

(µ+ σ)

Since γ2 < γ1, it follows that C2 < 0.

We can write kC3 as:

kC3 = k (βS + pr)− µ1µ2 + C5,

where

C5 =
µ1α (σ + γ1) + rk (1− p) (σ + γ2)

µ+ σ

≤ σ + γ1
µ+ σ

[µ1α+ rk (1− p)]

=
(σ + γ1) kβΛ

σµ(µ+ σ)
η.

Noting also the upper bound for S(t), we obtain the following inequality
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kC3 ≤ k

{
Λβ

µ (θ + µ)
[θ + µ (1− ε)] + γ0β + pr

}
− µ1µ2 +

kΛβ

µ (θ + µ)

σ + γ1
σ

η.

Therefore by the inequality (4.17), it follows that kC3 < 0. This proves that Q̇ (t)

is negative-definite. Hence, Q(t) is a Lyapunov function on Ω. Therefore, by LaSalle’s

invariance principle [87], every solution of model (4.1), with any initial conditions in Ω,

approaches P ∗
0 as t→ ∞, whenever R0 < 1. ■

The results in Theorem 4.3.3 imply that for any initial size of the subpopulation of

the model, TB can be eliminated from the population when R0 < 1.

4.3.4 Existence of the endemic equilibrium point

In this section, we show the existence of an endemic equilibrium point of the model

(4.1). The endemic equilibrium point is the steady state where the disease remains alive

in the population when at least one of the infected classes of the model is non-zero.

Theorem 4.3.4. If R0 > 1, then the model (4.1) has a unique positive endemic equilib-

rium P ∗ = (S∗, V ∗, E, I∗, L∗). With:

S∗ =
Λ [θ + µ (1− ε)]

R0 (θ + µ)
,

V ∗ =
εΛ

θ + µ
,

E∗ =
(r + δ + µ)µ

kβ
(R0 − 1) ,

I∗ =
µ

β
(R0 − 1) ,

and

L∗ =
µ (kr (1− p) + α (r + δ + µ)) (R0−1)

kβ (µ+ σ)
.

4.4 Numerical analysis of the model

4.4.1 Estimation of the model parameters

In this subsection, we estimate the values of the model’s parameters of the system (4.1)
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based on the existing literature and the epidemiological data of Ethiopia between 2003

and 2017. The values of the parameters are summarised in Table 4.1, and the detailed

estimation process of the parameter values is as follows.

1. According to the World Bank report, [88], the average life expectancy of Ethiopia

in the years between 2003 and 2017 is 60.93 years. The natural death rate can be

calculated as the inverse of life expectancy [20,79]. Hence, we estimate µ = 0.016.

2. The upper limit of the total population in the absence of the disease is Λ
µ . Hence,

Λ can be taken as a product of µ and the average population size over 2003-2017.

Using this formula and the WHO report [89], the average yearly recruitment rate

to the population of Ethiopia is 1.4× 106.

3. The WHO report [89] also indicates that the average tuberculosis-related mortality

rate is about δ = 0.17.

4. The WHO reported that from 2003 to 2017, Ethiopia’s average BCG vaccination

coverage was 71.5 % [90]. So ε = 0.715.

5. According to WHO [91], the tuberculosis treatment success rate in Ethiopia is

83.2%. So we estimate 1− p = 0.832.

6. On average, the BCG vaccine significantly reduces the risk of TB by 50% [83]. So

θ = 0.5.

7. The transmission coefficient, progression rate from E-class to I-class, the treatment

coverage rate of I-class, the relapse rate from L-class to E-class, and treatment

rate of E-class are obtained by fitting the yearly TB incidence data obtained from

WHO [89] to the model by using fmincon MATLAB routine. Figure 4.2 shows

the graph of TB incidence data obtained (■) and the estimated solid curve. The

estimated values are β = 1.646 × 10−7, κ = 0.023, r = 0.546, σ = 0.0013 and

α = 0.153.

8. We calculate the initial number of vaccinated children as the product of the average

number of newborns and the vaccination coverage, which is V0 = 1 × 106. We

calculate the initial number of vaccinated children as the product of the average

number of newborns and the vaccination coverage, which is V0 = 1× 106.
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9. The initial fraction for the infectious class I0 = 3.73 × 105 is taken from the TB-

prevalence in 2003 reported by the WHO [89].

10. We estimate the initial value of the E -class and the L-class from the data-fitting

process. Thus, the amount of E0 and L0 is 16.37% and 30% out of the total

population, respectively. This gives E0 = 1.19× 107and L0 = 2.18× 107.

11. Finally, the initial number of the susceptible class is found from S0 = N0 − (V0 +

E0 + I0 + L0) = 3.75× 107.

12. Therefore, using these estimated parameter values, we calculated the average value

of the basic reproduction number R0 for the year 2003-2017 TB cases in Ethiopia

to be R0 = 2.13.

Table 4.1: The parameter values of the model (4.1)

Parameters Description Value Source
N0 Initial total population 7.25× 107 [89]
S0 The initial number of susceptible individuals 3.75× 107 Estimated
V0 The initial number of vaccinated individuals 1× 106 Estimated
E0 The initial number of high-risk latent indi-

viduals
1.19× 107 Fitted

I0 The initial number of infectious individuals 3.73× 105 [89]
L0 The initial number of low-risk latent indi-

viduals
2.18× 107 Fitted

Λ Recruitment rate 1.4× 106 Estimated
β The transmission coefficient 1.646× 10−7 Fitted
ε Vaccination coverage rate 0.715 [90]
θ Lose of protection for vaccination 0.5 [83]
µ The natural death rate 0.016 Estimated
k Progression rate from E to I 0.023 Fitted
r The treatment rate of I 0.546 Fitted
1− p Successful treatment rate of I 0.832 [91]
α Treatment rate of E 0.153 Fitted
δ TB-induced death rate 0.17 [89]

4.4.2 Sensitivity analysis of the basic reproduction number

A sensitivity analysis using the normalized forward sensitivity index determines the

relative importance of various parameters involved in disease transmission. In this section,
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we use the normalized forward sensitivity index to compute the sensitivity index for the

model parameter R0.

Definition 4.4.1. The normalized forward sensitivity index of R0 which is differentiable

with respect to a given parameter π, is defined by

ΓR0
τ =

∂R0

∂π
× π

R0
.

Using this formula, we calculate the sensitivity indices of R0 with respect to β, α, r, ε,

and p. The values of ΓR0
β and ΓR0

p are positive. This tells us the total number of infected

people can be decreased by reducing the contact rate of active TB-infected individuals

and the treatment failure rate. On the other hand, ΓR0
α , ΓR0

r , and ΓR0
ε are negative. This

means that TB infection can be controlled by increasing active and latent TB-infected

individuals’ treatment and vaccination coverage rates. The values of the sensitivity indices

for R0 are summarized in Table 4.2.

Table 4.2: Sensitivity indices of R0.

Parameters Description Sensitivity index
of R0

Corresponding %
changes

β The transmission coeffi-
cient

+1 −1%

α Treatment rate of E −0.801543 +1.25%
r The treatment rate of I −0.742021 +1.35%
ε Vaccination coverage

rate
−0.0226732 +44.1%

p Treatment failure rate +0.0219702 −45.5%

The most sensitive parameter for R0 is the transmission coefficient β. The next

essential parameters are the treatment rates of latent and active TB patients. Table 4.2

shows that to have 1% decrease in the value of R0, it is necessary to decrease the amount

of β and p to 1%, and 45.5% respectively. While to have 1% decrease in the value of R0 it

is necessary to increase the amount of ε, r and α to 44.1%, 1.35%, and 1.25% respectively.
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Figure 4.2: The fitted data to the reported cases using model (4.1) for Ethiopia
from 2003 to 2017.

4.4.3 Simulations

This subsection simulates the model results using ODE 45 solvers code in MATLAB

programming language. The effect of epidemiological parameters on the number of ac-

tive TB patients is simulated, and their impact is determined. The results of numerical

simulations are displayed graphically.
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Figure 4.3: The stability of the DFE for the model (4.1) when Rg = 0.65.

As shown in Figure 4.3, for Rg < 1, for different initial conditions, the solution curve

of the model converges to the disease-free equilibrium point P ∗
0 , this indicates that P

∗
0 is

globally asymptotically stable for Rg < 1 and this agrees with Theorem 4.3.3.
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Figure 4.4: The plot shows the effect of transmission coefficient on the total number
of infected class.
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Figure 4.5: The effect of vaccination coverage on the number of infected class.
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Figure 4.6: The effect of treatment failure rate on the number of infected class.
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Figure 4.7: The effect of treatment coverage on the number of infected class.
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Figure 4.8: The effect of treatment coverage of high-risk latent class on the number
of infected class.

Figures 4.5− 4.8 show the effect of different epidemiological parameters on the number

of the infected population. It is found that decreasing the transmission coefficient (the

contact between susceptible class and active TB patients) and minimizing the treatment

failure rate is essential to reduce the number of infected TB patients. Also, increasing the

treatment and vaccination coverage is vital to decrease the infected TB patient population.

4.5 Conclusion

In this chapter, a mathematical model of the transmission dynamics of TB is developed

and analyzed. The reproduction number is calculated, and the equilibrium points are

described. We showed that the disease-free equilibrium point P ∗
0 is globally asymptotically

stable when Rg < 1 so that the disease dies out. Finally, we showed that increasing

treatment and vaccination coverage gives rise to fewer infected TB patients.

The parameters’ values of the model are obtained from the existing literature and

by fitting the yearly reported TB incidence cases in Ethiopia. We estimate the basic

reproduction number for TB transmission in Ethiopia as R0 = 2.13. The implication is

that TB is still endemic in the country, and more emphasis should be given to preventing

TB transmission. Using sensitivity analysis, we found that the most influential parameter

is the transmission coefficient, followed by the treatment rate of latent TB and active
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TB infective individuals. Therefore, we propose that the effective strategy to eliminate

TB infection in Ethiopia is reducing the transmission coefficient. This may be achieved

through increasing the isolation of infectious people. The second important strategy is

expanding the treatment coverage for latent and active TB contagious individuals.

The findings of this chapter suggest that the incidence rate (the rate of new infections)

is a crucial factor in the transmission of TB. It is also well-known that the functional form

of the incidence rate plays a critical role in modeling epidemic dynamics. As a result,

various researchers have considered different incidence function forms, such as the bilinear,

standard, and saturation incidence rates. Therefore, in the next chapter, we develop and

analyze a model with a saturated incidence rate.
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Chapter 5

Mathematical analysis of TB

model with vaccination and

saturated incidence rate

In this chapter, we introduce the saturated incidence on the compartmental model of

Chapter 4. We show that if the basic reproduction number is less than unity, the disease-

free equilibrium is globally asymptotically stable. Moreover, we prove that if R0 > 1,

the endemic equilibrium is locally asymptotically stable. Simulations with parameters

calibrated to Ethiopia illustrate our theoretical results.

5.1 Introduction

The incidence rate (rate of new infections) plays a vital role in modeling infectious

diseases. Some factors, such as population density and lifestyle, may affect the incidence

rate directly or indirectly, and incidence function can determine the rise and fall of epi-

demics [92, 93]. In many epidemic models, the bilinear (βSI) and the standard (βSIN )

incidence rates are frequently used. The bilinear incidence rate is based on the law of

mass action.

The saturated incidence rate g (I)S was introduced into epidemic models by Capasso

and Serio in 1973 [94], where g (I) tends to a saturation level when I gets large. The

rate βI measures the infection force of the disease, and g (I) = 1
1 + aI measures the

inhibition effect from the behavioral change of the susceptible individuals when their

number increases or from the crowding effect of the infective individuals. The saturation
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incidence rate is more reasonable than the bilinear incidence rate when we must include

the infective individuals’ behavioral change and crowding effect to curb the contact rate

[95–97].

This chapter develops and analyzes a basic tuberculosis mathematical model with a

saturated incidence rate and BCG vaccine.

5.2 Model formulation

Figure 5.1: A schematic diagram of the TB model (5.1)

Based on the disease status of individuals, we divide the total population N(t) into

four subclasses, namely, Susceptible S(t), high-risk latently infected E(t), infectious (or

active TB) I(t), and low-risk latent L(t). For the model framework, we consider the

following assumptions:

1. The rate at which new individuals enter the susceptible class due to birth is denoted

by Λ.

2. Following [98–100], the disease transmission rate is considered as βI
1+bI , where b is

the saturation constant and β is the maximum contact rate between susceptible

and infected individual.

3. The BCG vaccine will be given to the susceptible population of a rate (εS), where

(0 ≤ ε ≤ 1). The BCG vaccine efficacy in preventing adults from TB is incomplete,

with an average efficacy of 50% [83]. This shows that vaccinated individuals may

still be vulnerable to bacteria. Hence, it is reasonable to classify the vaccinated and
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non-vaccinated individuals into a single class with a different chance of infection.

It is assumed that the chance of being infected by the bacteria for the vaccinated

and non-vaccinated population is θβεSI
1+bI and βS(1−ε)I

1+bI respectively. Where θ, with

(0 ≤ θ ≤ 1), is a vaccinated person’s immunity loss.

4. k is the rate at which individuals in the high-risk latent class E become infective.

5. It is assumed that treatment will be administered for both high-risk latent and

active TB-infected classes. The E-class and I-class treatment rates are denoted by

α and r, respectively.

6. If treatment is administered for the I -class with a rate r, then some of them will

complete their treatment and recover completely at a rate (0 ≤ p ≤ 1), and move

to the L-class. Others, (1− p) rI, will not be cured and will remain vulnerable to

the bacteria and move to the E - class.

7. Patients who have completed anti-TB treatment will recover, but these individ-

uals may remain latent because the TB bacteria stay dormant in the host body.

Accordingly, we classify these individuals as low-risk latent.

8. After being cured, it is assumed that some recovered (low-risk latent) individuals

can be re-infected with the bacteria and become high-risk-latently infected with the

rate σ.

9. We assume that the natural death rate (any death not due to TB) is the same for

all classes and is denoted by µ.

10. Death due to the TB disease will happen only to I-class, and we denote this mor-

tality rate as δ.

11. We further assume that all parameters used in this model are non-negative.

Based on the above assumptions, we describe the dynamics of TB by the following system
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of ordinary differential equations (ODEs) with four compartments.



dS
dt = Λ− (1−ε+θε)βSI

1+bI − µS

dE
dt = (1−ε+θε)βSI

1+bI + (1− p)rI + σL− (k + α+ µ)E

dI
dt = kE − (µ+ r + δ) I

dL
dt = prI + αE − (µ+ σ)L

N (t) = S (t) + E (t) + I (t) + L (t) .

(5.1)

with the initial conditions S0, E0, I0, L0 ≥ 0.

The complete transfer flow of the model parameters is shown in Figure 5.1. The time

unit “t” has been considered in “years”.

5.3 Basic properties of the model

5.3.1 Positivity of the solutions

Since the model system (5.1) involves the human population, it is necessary to prove

that all its associated variables and parameters are nonnegative, so we have the following

theorem.

Theorem 5.3.1. Let the initial data S0, E0, I0 and L0 be non-negative. Then the solution

set Ω = {S (t) , E (t) , I (t) , L (t)} is non-negative for all t ≥ 0.

Proof: If we let
(1− ε+ θε)βI(t)

1 + bI(t)
− µ = H(t),

then it follows from the first equation of the model (5.1) that

dS(t)

dt
+H (t)S(t) = Λ. (5.2)

Multiplying both sides of Equation (5.2) by

exp

{∫ t

0
H (τ) dτ

}
,

gives

dS (t)

dt
exp

{∫ t

0
H (τ) dτ

}
+H (t)S (t) exp

{∫ t

0
H (τ) dτ

}
= Λexp

{∫ t

0
H (τ) dτ

}
.
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By the product rule of the derivative, we have

dS(t)

dt
exp

{∫ t

0
H (τ) dτ

}
+H (t)S (t) exp

{∫ t

0
H (τ) dτ

}
=

d

dt

[
S (t) exp

{∫ t

0
H (τ) dτ

} ]
.

Hence
d

dt

[
S (t) exp

{∫ t

0
H (τ) dτ

} ]
= Λexp

{∫ t

0
H (τ) dτ

}
. (5.3)

Integrating both sides of Equation (5.3) gives

S (t) exp

{∫ t

0
H (τ) dτ

}
− S0 = Λ

∫ t

0
exp

{∫ τ

0
H (u) du

}
.

Then,

S (t) = S0exp

{
−
∫ t

0
H (τ) dτ

}
+

[
Λ

∫ t

0
exp

{∫ τ

0
H (u) du

} ][
exp

{
−
∫ t

0
H (τ) dτ

} ]
≥ 0.

Similarly, it can be shown that E (t) , I (t) , and L (t) are non-negative for all time t ≥ 0.

This completes the proof.

5.3.2 Invariant region

The TB model (5.1) will be studied in a biologically feasible region as given below.

Ω =

{
(S(t), E(t), I(t), L(t)) ∈ R+

4

∣∣∣∣ 0 ≤ S (t) + E (t) + I (t) + L(t) ≤ Λ

µ

}
.

Lemma 5.3.2. The region Ω ⊂ R+
4, is positively invariant for the model (5.1) with

non-negativeinitial conditions in R+
4.

Proof : For this model, the total population is given by:

N (t) = S (t) + E (t) + I (t) + L (t) .

Then
dN (t)

dt
=
dS (t)

dt
+
dE (t)

dt
+
dI (t)

dt
+
dL (t)

dt
.

Substituting the values from the model (5.1) we get

dN (t)

dt
= Λ− µN (t)− δI (t) ≤ Λ− µN (t) .
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Thus, integrating both sides and taking as t→ ∞ we get 0 ≤ N (t) ≤ Λ
µ .

Therefore the feasible solution set for the model given by

Ω =

{
(S(t), E(t), I(t), L(t)) ∈ R+

4

∣∣∣∣ 0 ≤ S (t) + E (t) + I (t) + L(t) ≤ Λ

µ

}
.

5.3.3 Disease-free equilibrium point and the basic repro-

duction number

The long-term behavior of a model is quite essential. When left for a long time with

no external interference, we want to know whether there will eventually be a stable state

to which the system converges. The system converges to a disease-free equilibrium if the

disease consistently vanishes. It is also possible that the disease persists, and the class

sizes tend to converge to a single stable point, an endemic equilibrium point.

We obtained the basic reproduction number , R0, using the next-generation matrix

method given in [84].

Let X = (E, I, L)T , then it follows from the system (5.1) that

dX

dt
= F −M,

where

F =


(1−ε+θε)βSI

1+bI

0

0

 ,

and

M =


−(1− p)rI − σL+ (k + α+ µ)E

−kE + (µ+ r + δ) I

−prI − αE + (µ+ σ)L

 .

Evaluating the derivatives of F and M at DFE leads to the following matrices F and:

F =


0 βΛ(1−ε+θε)

µ 0

0 0 0

0 0 0
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and

M =


k + α+ µ (−1 + p) r −σ

−k r + δ + µ 0

−α −pr µ+ σ

 .

Then R0 is the dominant eigenvalue of the matrix FM−1.

Thus we have

R0 =
kβΛ (1− ε+ θε) (µ+ σ)

µ (µ (r + δ + µ) (α+ µ+ σ) + k (prµ+ (δ + µ) (µ+ σ)))
. (5.4)

5.3.4 Global stability of the DFE

Global asymptotic stability of an equilibrium point means that, given any initial state,

the system converges to that equilibrium point.

Theorem 5.3.3. For the model (5.1), the disease-free equilibrium point P ∗
0 is globally

asymptotically stable if R0 ≤ 1.

Proof : To establish the global stability of the disease-free equilibrium, we construct the

following function:

T = (µ+ σ)E +
k(µ+ σ) + µ(α+ µ+ σ)

k
I + σL. (5.5)

Note that T is nonnegative and T (P ∗
0 ) = 0. Differentiating with respect to t and using

Equation (5.1) gives

Ṫ = (µ+ σ) Ė +
k(µ+ σ) + µ(α+ µ+ σ)

k
İ + σL̇,

= (µ+ σ)

{
(1− ε+ θε)βSI

1 + bI
+ (1− p)rI + σL− (k + α+ µ)E

}
+
k (µ+ σ) + µ (α+ µ+ σ)

k
{kE − (µ+ r + δ) I}+ σ {prI + αE − (µ+ σ)L} .

Since
βSI

1 + bI
≤ βSI,
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we have

Ṫ ≤ (µ+ σ) {(1− ε+ θε)βSI + (1− p)rI + σL− (k + α+ µ)E}

+
k (µ+ σ) + µ (α+ µ+ σ)

k
{kE − (µ+ r + δ) I}+ σ {prI + αE − (µ+ σ)L} .

Using S(t) ≤ Λ
µ and after simplification, we have

Ṫ ≤
{
βΛ (µ+ σ) (1− ε+ θε)

µ
+ (µ+ σ) (1− p) r − k(µ+ σ) + µ(α+ µ+ σ)

k
(µ+ r + δ) + σpr

}
I.

Finally, with some rearrangement, we showed:

Ṫ ≤ µ (r + δ + µ) (α+ µ+ σ) + k (prµ+ (δ + µ) (µ+ σ))

k
{R0 − 1} I.

Since all model parameters are nonnegative, it follows that Ṫ ≤ 0 for R0 ≤ 1 and Ṫ = 0

only if I = 0. Hence, T is a Lyapunov function on Ω and the largest compact invariant

subset of {(S(t), E(t), I(t), L(t)) ∈ Ω: Ṫ = 0} is the singleton P ∗
0 . LaSalle’s invariant

principle [87] implies that P ∗
0 is globally asymptotically stable in Ω.

5.3.5 The Endemic Equilibrium point (EEP)

Lemma 5.3.4. If R0 > 1, then the model (5.1) has a unique positive endemic equilibrium

point.

Proof : The EEP of the model (5.1) at P ∗ = (S∗, E, I∗, L∗) is obtained by setting the

right-hand side ofthe system (5.1) equal to zero, we get:

S∗ =
µ(r + δ + µ)(α+ µ+ σ) + kprµ+ k (δ + bΛ+ µ) (µ+ σ)

kβ (1− ε+ θε) (µ+ σ) + kbµ(µ+ σ)
,

E∗ =
µ (r + δ + µ)

k (β (1− ε+ θε) + bµ)
(R0 − 1) ,

I∗ =
µ

β (1− ε+ θε) + bµ
(R0 − 1) ,

and

L∗ =
µ (krp+ α (r + δ + µ))

k (β (1− ε+ θε) + bµ) (µ+ σ)
(R0 − 1) .

Clearly, from the above, we can conclude that a unique positive EEP exists whenever

R0 > 1.
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Theorem 5.3.5. (Local stability at EEP): If R0 > 1 and σ = 0 then the system (5.1) is

locally asymptotically stable about the endemic equilibrium point P ∗.

Proof : For σ = 0 the variable L will only appear in the fourth equation of the model

(5.1), hence the system can be reduced to the three-dimensional system:


dS
dt = Λ− (1−ε+θε)βSI

1+bI − µS

dE
dt = (1−ε+θε)βSI

1+bI + (1− p)rI − (k + α+ µ)E

dI
dt = kE − (µ+ r + δ) I

(5.6)

By applying the Routh-Hurwitz criterion of stability [52] and by denoting ψ= (1−ε+θε)β

for the system (5.6) we have the following Jacobian matrix at P ∗:

J∗ =


−µ− βψI∗

1+bI∗ 0 − βψS∗

(1+bI∗)2

βψI∗

1+bI∗ −k − α− µ r − pr + βψS∗

(1+bI∗)2

0 k −r − δ − µ

 .

The associated characteristic equation of J∗ is given by:

λ3 + a1λ
2 + a2λ+ a3 = 0.

where

a1 = k + r + α+ δ + 3µ+
βψI∗

1 + bI∗
,

a2 =
kβ2Λ (k + r + α+ δ + 2µ)ψ2 + b

[
µ((α+ µ) (r + δ + µ) + k (pr + δ + µ))

2
[R0−1]

]
β ((α+ µ) (r + δ + µ) + k (pr + δ + bΛ+ µ))ψ

+
kβ2Λ (k + r + α+ δ + 2µ)ψ2 + b

[
kβΛψ (k + r + α+ δ)µ+ 2µ2ψ

]
β ((α+ µ) (r + δ + µ) + k (pr + δ + bΛ+ µ))ψ

,

a3 =
µ (bµ+ βψ)

{
((α+ µ) (r + δ + µ) + k (pr + δ + µ))

2
}
[R0−1]

β((α+ µ)(r + δ + µ) + k(pr + δ + bΛ+ µ))ψ
,

a1a2 − a3 =
[R0−1]µ((α+ µ) (r + δ + µ) + k (pr + δ + µ))

2
((α+ µ) (r + δ + µ)) (bµ+ βψ)

β((α+ µ) (r + δ + µ) + k (pr + δ + bΛ+ µ))
2
ψ

+
[R0−1]µ((α+ µ) (r + δ + µ) + k (pr + δ + µ))

2
(k (pr + δ + bΛ+ µ)) (bµ+ βψ)

β((α+ µ) (r + δ + µ) + k (pr + δ + bΛ+ µ))
2
ψ

+
A
(
kβ2Λ (k + r + α+ δ + 2µ)ψ2

)
+ bA

(
[R0−1]µ((α+ µ) (r + δ + µ) + k (pr + δ + µ))

2
)

β((α+ µ) (r + δ + µ) + k (pr + δ + bΛ+ µ))
2
ψ

+
bA

(
kβ (k + r + α+ δ)Λψ + 2µ2ψ

)
β((α+ µ) (r + δ + µ) + k (pr + δ + bΛ+ µ))

2
ψ
.
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where

A = k2 (pr + δ + bΛ+ µ) + (α+ µ) (r + δ + µ) (r + α+ δ + 2µ) + k (r (α+ δ + bΛ+ 2µ) + βΛψ)

+ k
(
2αδ + δ2 + bαΛ+ bδΛ+ 2αµ+ 4δµ+ 3bΛµ+ 3µ2 + pr (r + α+ δ + 2µ)

)
.

Clearly a1, a2, a3 and a1a2−a3 are positive whenever R0>1, Thus, the Routh-Hurwitz

criterion is satisfied. Therefore, the endemic equilibrium point P ∗ of the system (5.6) is

locally asymptotically stable for R0>1.

This completes the proof.

5.4 Sensitivity analysis of R0

This section examines the effects of various model parameters on the basic reproduc-

tion number R0. For this purpose, we used the normalized forward sensitivity index, also

known as elasticity [71]. Let R0 be a differentiable function with respect to π, then the

normalized forward sensitivity index of R0 with respect to the parameter π is given by:

ΓR0
π =

∂R0

∂π
× π

R0
. (5.7)

This normalized sensitivity index measures the relative change of R0 with respect to π.

To study the sensitivity of R0, we choose the parameters β, α , r, ε, and p. The

sensitivity index, however, was not calculated for the other parameters since they are not

useful for disease control. For example, when the natural death rate increases, the number

of both (the infected and the susceptible) decreases. Furthermore, we are powerless to

control the natural death.

Using the above formula (5.7) and taking the parameters’ value in Table 5.1, we

calculate the sensitivity indices of the basic reproduction number with respect to these

parameters.

Table 5.1: Sensitivity indices of R0 with respect to model parameters.

Parameters Description Sensitivity index of R0

β The transmission coefficient +1
α Treatment rate of E −0.801497
r The treatment rate of I −0.74021
ε Vaccination coverage rate −0.55642
p Successful treatment rate of I −0.0747728
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The positive (negative) values indicate a positive (negative) correlation with R0,

whereas the magnitude determines the importance of parameter [101]. From Table 5.1,

we can see that β has a positive sensitivity index value, implying that a positive change

in this parameter will increase the total infected population (E + I). In contrast, α r, ε,

and p have negative sensitivity index values; thus, raising these parameters will decrease

the number of the total infected population. The effect of the transmission rate (β) has

the largest influence on R0 while the effect of successful treatment rate for the I class( p)

has the smallest impact to R0. Further, this implies that increasing the value of β by

10% will increase the basic reproduction number by 10%. On the other hand, the param-

eters α , r, ε, and p have negative influence hence, increasing these parameters by 10%

will decrease the basic reproduction number by 8.015%, 7.402%, 5.564%, and 0.748%

respectively.

5.5 Numerical simulation and discussion

In Chapter 4, we estimated the value of the parameters of the TB model based on

Ethiopian data, and in the current Chapter, we used those parameters’ values. Addition-

ally, we assume the value of b to be 0.0004
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Figure 5.2: The stability of the DFE for the model (5.1) when β = 1.65× 10−8 and
R0 = 0.164.
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Figure 5.3: The stability of the EEP for the model (5.1) when β = 3.02×10−7 and
R0 = 3.0014.
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Figure 5.4: Graphs show the behavior of each state variables as the reproduction
number gets larger.
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Figure 5.2 presents the dynamics of the model for different initial conditions. It shows

that only the susceptible population (S∗ = 8.7 × 107) persists, but the high-risk latent

(E), infective (I), and the low-risk latent (L ) decline to zero. It shows that system (5.1) is

globally asymptotically stable at the DFE whenever R0 ≤ 1, which supports our analytical

results stated in Theorem 5.3.3. Similarly, in Figure 5.3, for R0 > 1, the solution curves

of the model are plotted by varying the initial values of the compartments, and it tends

to the endemic equilibrium point. This confirms that P ∗ is locally asymptotically stable,

supporting the conclusion of Theorem 5.3.5.

Figure 5.4 is a graphical representation of the components of the endemic equilibrium

point, P ∗. It shows the changes in the susceptible individuals, high-risk latent, infectious,

and low-risk latent classes as the reproduction number, R0, varies. In Figure 5.4(a), the

susceptible individuals are being depleted rapidly as R0 becomes large. Figure 5.4(b),

(c), and (d) show that the number of high-risk latent, infectious, and low-risk latent

individuals have linear relationships with the reproduction number, R0.

Generally, Figure 5.2−5.4 shows the role of reproduction number in determining the

dynamics of TB. It is shown that if R0 < 1, the system appears disease-free. That is,

TB will ultimately be eradicated from the population. On the other hand, when the

reproduction number is higher than unity, the system will persist in the endemic state.

That is, TB will spread in the population.
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Figure 5.5: Simulation of high-risk exposed and active TB infected population with
different values of β.
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Figure 5.6: Simulation of high-risk exposed and active TB infected population with
different values of α.
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Figure 5.7: Simulation of high-risk exposed and active TB infected population with
different values of r.
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Figure 5.8: Simulation of high-risk exposed and active TB infected population with
different values of ε
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Figure 5.9: Simulation of high-risk exposed and active TB infected population with
different values of p

Figure 5.5 explains the effect of the transmission coefficient β on the number of high-

risk exposed and active TB populations. It shows that an increase in the TB transmission

rate increases the number of high-risk exposed and active TB populations. Figure 5.6

shows the simulation of active TB and high-risk exposed populations for different values of

α. Thus, it can be seen that increasing the treatment rate for high-risk latent TB patients

helps to reduce the total number of both high-risk exposed and active TB individuals.

From Figure 5.7, it is clear that by increasing the treatment rate for active TB patients,

the total number of high-risk exposed and active TB individuals decreases.

Similarly, Figure 5.8 shows the simulation of active TB and high-risk exposed popu-

lations for different values of ε. As we can see from the figure, increasing the coverage of

the BCG vaccine for newborns can reduce the total number of the infected population.

Finally, Figure 5.9 shows the effect of successful treatment rate p. Again, the number of

infected individuals decreases when p increases.

5.6 Conclusion

This chapter investigates the tuberculosis disease model with vaccination and a sat-

urated incidence rate. Our model divides the population into four compartments: sus-

ceptible, high-risk latent, infective, and low-risk latent population. Two equilibria, the

74

http://etd.uwc.ac.za/



disease-free and endemic equilibrium, are derived for the proposed model. In addition,

we have found the basic reproduction number, which helps us to determine the model’s

behavior. We obtain that the disease-free equilibrium point of the model (5.1) is glob-

ally asymptotically stable when R0 < 1. On the other hand, if R0 > 1, the endemic

equilibrium point is locally asymptotically stable.

From the numerical simulations, the number of high-risk exposed class and active TB

infected population has a linear relationship with the reproduction number. All become

large as R0 becomes large. On the other hand, the basic reproduction number depends on

the transmission rate β, treatment rate of high-risk latent α, treatment rate of active TB

r, vaccination coverage rate ε, and successful treatment rate of active TB p. Therefore,

it is vital to identify the best strategies to control and eradicate the disease.

Using sensitivity analysis in this study, we found that the first effective way to prevent

the spread of tuberculosis in Ethiopia is to minimize contact between TB-infected and

susceptible individuals. The second important strategy is to increase access to treatment

for latently infected individuals. Therefore, early detection and isolation of infectious

people, conducting health campaigns and educating the community, screening high-risk

exposed individuals, and treating latent TB are essential strategies to control the spread

of TB in Ethiopia. At the same time, the BCG vaccine plays a vital role in preventing

the disease.

75

http://etd.uwc.ac.za/



Chapter 6

Tuberculosis in Ethiopia: Optimal

Intervention Strategies and

Cost-Effectiveness Analysis

In this chapter, we use the mathematical model of tuberculosis disease dynamics

developed in Chapter 5 to design optimal strategies to minimize the number of high-risk

latent and active TB infectious individuals in Ethiopia.

6.1 Introduction

Infectious diseases can exhibit complex nonlinear dynamics, and it is possible to ex-

amine, explain, and predict their transmission dynamics using mathematical models (see

for example [37, 79, 102–105]). An optimal control problem entails the identification of

a feasible scheme, policy, program, strategy, or campaign to achieve the optimal possi-

ble outcome of a system [106]. Numerous scholars (for example, [17–19, 107–109]) have

applied the optimal control theory to determine the best mitigation strategies for TB

disease.

Sunhwa Choi and Eunok Jung [17] developed a mathematical model for the trans-

mission dynamics of TB in South Korea by considering three different control strategies

(distancing, case finding, and case holding efforts). Their result showed that isolation

of infectious people, early TB patient detection, and educational programs are the most

effective interventions to prevent TB transmission in South Korea.

In the paper [19], a mathematical TB model with control was developed and analyzed
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based on the Philippines’ data. Their study showed that enhancing active case finding

instead of the case holding control together with distancing has significant potential for

curtailing the spread of TB in the Philippines.

Gao and Huang [107] analyzed a TB model incorporating vaccination, case finding,

and case holding controls. Their result revealed that combining the three controls is the

most effective and less expensive among different strategies.

The mathematical model developed by Silva et al. [108] for the transmission dynamics

of TB in Angola by considering two control strategies (case finding and case holding

controls). Their result showed that the combined strategy that involves both controls is

preferable.

Kereyu and Seleshi Demie [18] developed and analyzed a TB model for Haramaya

district, Ethiopia. They considered three control strategies (distancing, case finding, and

treatment efforts). Their result suggested that combining all interventions makes for the

best strategy to eradicate TB disease from the district at an optimal level with minimum

cost.

All the above studies showed that the strategies we use to control the spread of TB

may vary depending on the situation in the country. Therefore, each government must

adopt a better, more cost-effective approach based on its realities.

In Ethiopia, tuberculosis is still a major health problem and one of the leading causes

of death [13]. Therefore, effective prevention measures are needed to stop the spread of

tuberculosis in Ethiopia. This chapter searches for optimal strategies to minimize the

number of TB-infectious individuals using actual data from Ethiopia.

6.2 TB Model with Controls

The total population size N(t) is partitioned into four subclasses: susceptible (S),

high-risk latent (E), infectious (I), and low-risk latent (L). We aggregated the two

groups, the recovered and the low-risk latent, in a class called low-risk individuals (L).



dS
dt = Λ− βψSI

1+bI − µS

dE
dt = βψSI

1+bI + (1− p) rI + σL− (k + α+ µ)E

dI
dt = kE − (µ+ r + δ) I

dL
dt = prI + αE − (µ+ σ)L

N = S + E + I + L,

(6.1)

77

http://etd.uwc.ac.za/



with ψ= (1−ε+θε).

The recruitment rate to the susceptible population is assumed to be constant Λ. We

assume that all classes have the same natural death rate µ, with disease-induced mor-

talities occurring only in the I class at a rate δ. The susceptible individual acquires the

TB bacteria through contact with infected individuals with a nonlinear transmission rate

βI
1+bI . It is assumed that the BCG vaccine will be administered to susceptible individ-

uals (at a rate εS). People who have been vaccinated can become infected because the

vaccine is imperfect and does not completely protect against the disease. The vaccinated

individuals are infected at a rate θεβSI where 0 ≤ θ ≤ 1 is the loss of vaccine protection.

Newly infected individuals (with a latent level) will develop active TB (at a rate of k).

We assume that patients at the latent stage will move to the L-class with a αE rate when

treated. Here r is the treatment coverage rate, p represents the successful treatment rate

for active TB-infected individuals, and σ represents the relapse rate.

We modified the model (6.1) by including three control strategies, ui = ui (t) , for

i ∈ {1, 2, 3}. The controls represent the intensities of different public health interventions.

The function u1 (t) is a distancing control associated with the effort to reduce susceptible

individuals that become infected, and such effort includes an isolation policy, wearing a

face mask, or a public educational program. A case finding control (u2(t)) represents

the effort of decreasing the number of latently infected individuals that may develop

active TB. Such activities include screening and treating latent individuals at high risk of

developing active TB. The third strategy is a case holding control, denoted by u3 (t). It

refers to efforts to prevent the failure of treatment in infectious individuals (e.g., patient

supervision, including activities used to ensure the regularity of drug intake until the last

treatment stage is attained).

This leads to the following system of ODEs:



dS
dt = Λ− (1−u1)βψSI

1+bI − µS

dE
dt = (1−u1)βψSI

1+bI + (1− (1 + u3) p) rI + σL− (k + (1 + u2)α+ µ)E

dI
dt = kE − (µ+ r + δ) I

dL
dt = (1 + u3) prI + (1 + u2)αE − (µ+ σ)L

N = S + E + I + L,

(6.2)

with initial conditions S0, E0, I0, L0≥0.
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Let U={ (u1, u2, u3 ) | u1, u2 and u3 are Lebesgue integrable functions on the interval

[0,∞), with 0≤ui≤1, i= 1, 2, 3}.

We searched for an optimal control (u∗1, u
∗
2, u

∗
3) ∈ U that minimizes the objective

functional J (u1, u2, u3)

where

J (u1, u2, u3) =

∫ tf

t0

[
E (t) + I +

1

2
B1u

2
1 +

1

2
B2u

2
2 +

1

2
B3u

2
3

]
dt. (6.3)

In Equation (6.3), the values of t0 and tf are taken as 0 and 20, respectively, to

determine Ethiopia’s 20-year (2019–2038) effective TB control strategies. The constants

Bi, i = 1, 2, 3, are positive weight constants, which balance the cost factors associated with

the controls u1, u2 and u3, respectively. The functions
1
2B1u

2
1,

1
2B2u

2
2 and 1

2B3u
2
3 are the

costs of the controls u1, u2 and u3, respectively. The cost terms are considered nonlinear

quadratic functions (as in [109–111]).

Existence of an Optimal Control

Theorem 6.2.1. There exists an optimal control (u∗1, u
∗
2, u

∗
3) that minimizes the objec-

tive functional J(u1, u2, u3) subject to the control system (6.2).

Proof. Let us denote the right-hand side of the system (6.2) by y(t, −→x , −→u ). Then

following the same procedure as in [107], we prove the existence of an optimal control

(u∗1, u
∗
2, u

∗
3). We must first show that the following conditions are met to achieve this.

i y is of class C1 and there exists a constant c such that

|y (t, 0, 0)| ≤ c, |y−→x (t, −→x , −→u )| ≤ c(1 + |−→u |), | y−→u (t, −→x , −→u ) | ≤ c.

ii The set of all solutions to the system (6.2) with corresponding control in U is

nonempty.

iii There exist functions a1 and a2 such that y (t, −→x , −→u ) = a1 (t,
−→x ) + a2(t,

−→x )−→u ,

iv The control set U = [0, 1]× [0, 1]× [0, 1] is closed, convex and compact,

v The integrand of the objective function is convex in U .

79

http://etd.uwc.ac.za/



To verify the first conditions, let us write

y (t, −→x , −→u ) =


Λ− (1−u1)βψSI

1+bI − µS

(1−u1)βψSI
1+bI + (1− (1 + u3) p) rI + σL− (k + (1 + u2)α+ µ)E

kE − (µ+ r + δ) I

(1 + u3) prI + (1 + u2)αE − (µ+ σ)L

 .

Then we can easily show that y (t, −→x , −→u ) is of class C1 and |y(t, 0, 0)| = Λ.

Moreover, we will have the following

|y−→x (t, −→x , −→u )| =

∣∣∣∣∣∣∣∣∣∣∣∣∣



−µ− (1−u1)βψI
1+bI 0 − (1−u1)βψS

(1+bI)2
0

(1−u1)βψI
1+bI −k − α− µ− αu2

((1−p)r−pru3)(1+bI)2+(1−u1)βψS
(1+bI)2

σ

0 k − (r + δ + µ) 0

0 α (1 + u2) pr (1 + u3) − (µ+ σ)



∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and

|y−→u (t, −→x , −→u )| =

∣∣∣∣∣∣∣∣∣∣∣∣



βψSI
1+bI 0 0

−βψSI
1+bI −αE −prI

0 0 0

0 αE prI



∣∣∣∣∣∣∣∣∣∣∣∣
.

Since S, E, I, and L are bounded, there exists a constant c such that

|y (t, 0, 0)| ≤ c, |y−→x (t, −→x , −→u )| ≤ c (1 + |−→u |) , | y−→u (t, −→x , −→u )| ≤ c.

This shows that condition (i) is satisfied.

According to condition (i), there is a unique solution for the constant controls, which

will ensure that condition (ii) is met.

Besides,

y
(
t, −→x , −→u

)
=


Λ− Sµ− βψSI

1+bI

− (k + α+ µ)E + σL+ I
(
r − pr + βψS

1+bI

)
kE − I (r + δ + µ)

αE + prI − L (µ+ σ)

+


βψSI
1+bI

0 0

−βψSI
1+bI

−αE −prI

0 0 0

0 αE prI

×


u1

u2

u3

 .

This verifies condition (iii). The subset U of R3 is closed and bounded, and hence

compact. Thus, condition (iv) is fulfilled. We proceed with verifying condition (v), the

convexity of the integrand of the objective functional. We must prove that for any two
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values −→u and −→v of the control vector, and a constant q ∈ [0, 1] , the following inequality

holds:

(1− q) g (t, −→x , −→u ) + qg (t, −→x , −→v ) ≥ g (t, −→x , (1− q)−→u + q−→v ) ,

where

g (t, −→x , −→u ) = E + I +
1

2
B1u

2
1 +

1

2
B2u

2
2 +

1

2
B3u

2
3.

Further,

(1− q) g
(
t, −→x , −→u

)
+ qg

(
t, −→x , −→v

)
= E + I +

1

2
(1− q)

[
B1u

2
1 +B2u

2
2 +B3u

2
3

]
+

1

2
q
[
B1v

2
1 +B2v

2
2 +B3v

2
3

]
,

And

g (t, −→x , (1− q)−→u + q−→v ) = E + I +
1

2
B1[(1− q)u1 + qv1]

2 +
1

2
B2[(1− q)u2 + qv2]

2

+
1

2
B3[(1− q)u3 + qv3]

2,

Then,

(1− q) g (t, −→x , −→u ) + qg (t, −→x , −→v )− g (t, −→x , (1− q)−→u + q−→v )

= (1− q)

[
B1

2
u21 +

B2

2
u22 +

B3

2
u23

]
+ q

[
B1

2
v21 +

B2

2
v22 +

B3

2
v23

]
−
[
B1

2
[(1− q)u1 + qv1]

2 +
B2

2
[(1− q)u2 + qv2]

2 +
B3

2
[(1− q)u3 + qv3]

2

]
,

=
B1

2

{
(1− q)u21 + qv21 − [(1− q)u1 + qv1]

2
}

+
B2

2

{
(1− q)u22 + qv22 − [(1− q)u2 + qv2]

2
}

+
B3

2

{
(1− q)u23 + qv23 − [(1− q)u3 + qv3]

2
}
,

=
B1

2

{
q (1− q)u21 − 2q (1− q)u1v1 + q (1− q) v21

}
+
B2

2

{
q (1− q)u22 − 2q (1− q)u2v2 + q (1− q) v22

}
+
B3

2

{
q (1− q)u23 − 2q (1− q)u3v3 + q (1− q) v23

}
,

=
B1

2

{
q (1− q) (u1 − v1)

2
}
+
B2

2

{
q (1− q) (u2 − v2)

2
}
+
B3

2

{
q (1− q) (u3 − v3)

2
}

≥ 0.

Consequently, condition (v) is satisfied, and this completes the proof. ■

To find the best cost-effective strategies for reducing the number of high-risk latent (E)
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and infectious (I), we use optimal control theory. In this section, we derive the conditions

for optimal control using Pontryagin’s Maximum Principle [77, 112]. We formulate the

Hamiltonian

H (S,E, I, L, u1, u2, u3, λ)

= E + I +
1

2
B1u

2
1 +

1

2
B2u

2
2 +

1

2
B3u

2
3

+ λ1

[
Λ− (1− u1)βψSI

1 + bI
− µS

]
+ λ2

[
(1− u1)βψSI

1 + bI
+ (1− (1 + u3) p) rI + σL− (k + (1 + u2)α+ µ)E

]
+ λ3 [kE − (µ+ r + δ) I]

+ λ4 [(1 + u3) prI + (1 + u2)αE − (µ+ σ)L] .

(6.4)

Here, λ= (λ1, λ2, λ3, λ4) ∈ R4 are the adjoint functions.

Theorem 6.2.2. For the optimal control (u∗1, u
∗
2, u

∗
3) and the corresponding solutions to

the variables S, E, I, L, that minimizes the Equation (6.3), there exist adjoint variables

λ1, λ2, λ3, and λ4 satisfying

dλ1
dt = (1−u1)βψI

1+bI λ1 + µλ1 − (1−u1)βψI
1+bI λ2

dλ2
dt = [k + µ+ (1 + u2)α]λ2 − kλ3 − (1 + u2)αλ4 − 1

dλ3
dt = (µ+ r + δ)λ3 +

[
(u1−1)βψbSI

(1+bI)2
+ (1−u1)βψS

1+bI

]
λ1

+
[
(1−u1)βψbSI

(1+bI)2
+ (u1−1)βψS

1+bI − (1− (1 + u3) p) r
]
λ2 − (1 + u3) prλ4 − 1

dλ4
dt = (µ+ σ)λ4 − σλ2

(6.5)

with transversality conditions

λ1 (tf ) = λ2 (tf ) = λ3 (tf ) = λ4 (tf ) = 0. (6.6)

Furthermore,

u∗1 = min

{
max

{
0,

(λ2 − λ1)βψSI

(1 + bI)B1

}
, 1

}
,

u∗2 = min

{
max

{
0,

(λ2 − λ4)αE

B2

}
, 1

}
,

u∗3 = min

{
max

{
0,

(λ2 − λ4) prI

B3

}
, 1

}
.

(6.7)
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Proof. By applying Pontryagin’s Maximum Principle, we obtain the adjoint system

(6.5) as follows:

dλ1
dt

= −∂H
∂S

,
dλ2
dt

= −∂H
∂E

,
dλ3
dt

= −∂H
∂I

,
dλ4
dt

= −∂H
∂L

, (6.8)

with

λi (tf ) = 0, i = 1, 2, 3, 4. (6.9)

Evaluating the optimal control and corresponding state variables, we obtain the adjoint

system (6.5) and the transversality conditions (6.6).

Finally, by applying the optimality condition

∂H

∂u1
=
∂H

∂u2
=
∂H

∂u3
= 0,

And using the bounds for the controls u1, u2 and u3, we can derive the optimal control

(u∗1, u
∗
2, u

∗
3) as in Equation (6.7). ■

6.3 Numerical Results and Discussion

Using Matlab2019b, the optimal control system is solved by applying the forward-

backward sweeping technique. According to [102], in the total population of Ethiopia,

the classes E0 and L0 comprise 16.37% and 30% of the population, respectively. Based

on these percentages, we can deduce values for E0 and L0.

The values of parameters and the initial values of the variables used in our simulations

are presented in Table 6.1. The algorithm used for the solution is based on the approach

proposed in [112,113].

Studies show that applying combined strategies rather than single strategies is more

effective in curbing the spread of TB [18,19]. Therefore, we test the following four possible

combinations of control strategies and search for an optimal intervention.

Strategy A: distancing and case holding controls (u1 and u3), with u2 (t) = 0.

Strategy B: case finding and case holding controls (u2 and u3), with u1 (t) = 0.

Strategy C: distancing and case finding controls (u1 and u2), with u3 (t) = 0.

Strategy D: Using all the control efforts (u1, u2 and u3).

We assume a value for the weight parameters B1 = B2 = 105. Since the case holding

control u3 targets active TB patients undergoing treatment, the numbers in these groups
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are smaller than the others. Hence it is reasonable to take B3 as being far smaller than

B1 and B2, and we assigned a value B3 = 103.

The dynamics of the total infected population (E + I) are shown in Figure 6.1. It

can be observed that the number of infected individuals can be significantly decreased

when the three control inputs (u1, u2, and u3) are used simultaneously. Like Strategy D,

Strategies B and C significantly reduce the number of high-risk latent individuals. In

contrast, Strategy A has the least impact on reducing the number of patients. This shows

that using case-finding control in combination with other strategies to prevent the disease

is beneficial.

0 2 4 6 8 10 12 14 16 18 20

t(years)

0

2

4

6

8

10

12

14

16

18

E
(t

)+
I(

t)

106

u
1
=u

2
=u

3
=0

u
1

 0 ,u
3

 0,u
2
=0

u
2

 0 ,u
3

0,u
1
=0

u
1

 0 ,u
2

0,u
3
=0

u
1

 0,u
2

 0,u
3

 0

Figure 6.1: The dynamics of the total infected population under different control
strategies.

6.3.1 Strategy A: Use of distancing and case holding con-

trols

In this strategy, the distancing and the case holding controls are used to optimize the

objective function J while we set case finding control (u2) to zero. Figure 6.2 shows that

the total number of infected people (E + I) significantly differs compared to control and
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without control. Specifically, when this strategy is implemented, 4.32×105 total infected

people are averted. The total cost for the combined effects of these two controls is given

in Figure 6.2 b. The simulation results in Figure 6.2 c suggest that this strategy would

require distancing and case-holding controls to be at maximum for almost the entire

intervention period.
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Figure 6.2: The impact of distancing and case holding control on the infected
population. (b) Cost function. (c) Optimal controls profile.
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6.3.2 Strategy B: Control with case finding and case hold-

ing

Figure 6.3 a shows the significant difference in the numbers of the total infected pop-

ulation with control and without control. More precisely, the total number of infected

people with and without controls at the end of the simulation period is 3.16 × 105 and

1.011 × 106, respectively. To achieve this, the control profile u2 and u3 should be im-

plemented at a maximum (Figure 6.3 c). The cost function for this strategy is shown in

Figure 6.3 b. The total cost when the strategy is implemented throughout the simulated

time horizon is 6.5012× 107.
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Figure 6.3: (a) The impact of case finding and case holding control on the infected
population. (b) Cost function. (c) Optimal controls profile.
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6.3.3 Strategy C: Use of distancing and case finding con-

trol

As shown in Figure 6.4 a, there is a significant difference in the number of infected

individuals with and without control. By applying this strategy, 8.22×105 infected people

are averted. The cost function for this strategy is shown in Figure 6.4 b. The simulation

result in Figure 6.4 c shows that this strategy would require that the case finding u2 should

be at maximum for almost the entire period of intervention while distancing controls u1

should start at 0.4679 and gradually increase to the maximum.

Table 6.1: Values of variables and parameters

Symbols Description Units Value Reference
N0 Total population Humans 1.12×108 [114]
S0 Susceptible Humans 5.85×107 Estimated
E0 High-risk latent Humans 1.83×107 [102]
I0 Infected Humans 1.57×105 [114]
L0 Low-risk latent Humans 3.36×107 [102]
Λ Recruitment rate Humans/year 1.4×106 [102]
β Effective contact rate 1/year 1.646×10−7 [102]
ε Vaccination rate of

new-borns
dimensionless 0.715 [90]

θ Loss of protection for
vaccination

dimensionless 0.5 [105]

µ Natural mortality
rate

1/year 0.016 [102]

k Transfer rate from E
to I

1/year 0.023 [102]

r Treatment rate of I 1/year 0.546 [102]
p Recovery rate of I dimensionless 0.832 [91]
α Treatment rate of E 1/year 0.153 [102]
δ Death rate due to TB 1/year 0.17 [14]
σ Relapse rate 1/year 0.0013 [102]
b Saturation constant 1/Humans 0.0004 [105]
u1 Distancing control dimensionless [0, 1] Assumed
u2 Case finding control dimensionless [0, 1] Assumed
u3 Case holding control dimensionless [0, 1] Assumed
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Figure 6.4: (a) The impact of distancing and case finding control on the infected
population. (b) Cost function. (c) Optimal controls profile.
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6.3.4 Strategy D: Using All the Controls

In this strategy, we have implemented a combination of all three controls. This method

helps us to save more people from disease than any other strategy. As we can see from Fig-

ure 6.5 a, it averts about 8.38×105 infected people. Figure 6.5 b,c displays this strategy’s

cost and control functions.

Table 6.2: Cost-effectiveness of the control strategies.

Strategy Total Infection Averted Total Cost ($)
A (u1 and u3) 4.32×105 1.0479×108

B (u1 and u2) 6.95×105 6.5012×107

C (u2 and u3) 8.22×105 6.782×107

D (u1, u2, and u3) 8.38×105 6.5122×107
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Figure 6.5: (a) The impact of the combination of all controls on the infected pop-
ulation. (b) Cost function. (c) Optimal controls profile.
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6.4 Cost-Effectiveness Analysis

Controlling and eliminating the spread of infectious diseases in a community requires

time and money. Therefore, it is essential to identify and implement cost-effective strate-

gies to prevent the spread of the disease. In addition, community awareness and lifestyle

are critical factors determining the spread of disease. As a result, effective methods of

controlling the spread of disease may vary from country to country. This Chapter identi-

fies cost-effective ways to prevent the spread of tuberculosis in Ethiopia. The incremental

cost-effectiveness ratio (ICER) is applied to do this. The ICER is defined as the cost

per health outcome, which is given by [115]:

ICER =
The difference in costs between strategies

Total number of infections averted
.

Table 6.2 calculates the total number of infections averted by each strategy and the

total cost of implementing the strategy. We calculated the number of infections averted

by subtracting the number of infections with control from those without control. On the

other hand, the total cost of each strategy was obtained using the cost function B1
2 u

2
1 (t),

B2
2 u

2
2 (t), and

B3
2 u

2
3 (t).

To implement the ICER method, we first needed to rank the control strategies based

on averted infection, as shown in Table 6.2. Based on this rank, we first compared the

ICER of Strategy A and Strategy B.

ICER (A) =
1.0479× 108

4.32× 105
= 242.57.

ICER (B) =
6.5012× 107−1.0479× 108

6.95× 105 − 4.32× 105
= −151.25.

This shows that Strategy B is less costly than Strategy A. Strategy A was then ignored,

and the analysis continued by comparing strategy B with C as:

ICER (B) =
6.5012× 107

6.95× 105
= 93.54.

ICER (C) =
6.782× 107 − 6.5012× 107

8.22× 105 − 6.95× 105
= 22.11.

This indicates that Strategy C is cheaper and more effective than Strategy B and

hence, Strategy B was ignored, and the analysis continued by comparing Strategy C and
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Strategy D as follows:

ICER (C) =
6.782× 107

8.22× 105
= 82.5.

ICER(D) =
6.5122× 107−6.782× 107

8.38× 105 − 8.22× 105
= −168.62.

Finally, the comparison result revealed that StrategyD is less costly and more effective

than Strategy C. In conclusion, of the four strategies mentioned, Strategy D (combining

the three controls simultaneously) is the most effective way to combat the spread of TB

in Ethiopia.

6.5 Conclusions

The Ethiopian government is working with partners and the community to stop TB

by 2035. Therefore, it is vital to identify and implement effective strategies to eradi-

cate the disease. This chapter has developed a mathematical model by including three

control strategies (distancing, case finding, and case holding). After that, using Pontrya-

gin’s maximum principle, the conditions for optimal control of the system were analyzed.

The optimal solution to the system was then illustrated by numerical simulations using

available data from Ethiopia. From the numerical simulation result (Figure 6.1), one can

deduce that considering the combination of distancing and case-holding controls (Strategy

A) does not lead to the best results in decreasing the number of TB-infected individuals.

On the other hand, we can understand from this analysis that combining all three controls

(Strategy D) is an effective way to eradicate tuberculosis from the community.

Finally, we investigated the cost-effectiveness of the control strategies using the ICER

technique. Based on the results of these analyses, we concluded that applying the combi-

nation of the three controls (distancing, case finding, and case holding) is less costly and

more effective than other strategies. This suggested that isolation of infectious people,

early TB patient detection, treating high-risk latently infected individuals, educational

campaigns, and preventing treatment failure of active TB patients are essential strategies

in Ethiopia to control the spread of the disease.

In the previous chapters, we developed mathematical models for the transmission

dynamics of drug-susceptible tuberculosis and suggested the best strategies for controlling

disease transmission in Ethiopia. In the next chapter, we develop a mathematical model

for the dynamics of multi-drug-resistant tuberculosis and identify Ethiopia’s most effective
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strategy for combating it.

95

http://etd.uwc.ac.za/



Chapter 7

Cost-effectiveness analysis of the

optimal control strategies for

multi-drug-resistant tuberculosis

transmission in Ethiopia

This chapter aims to identify the most effective strategy for combating multi-drug-

resistant tuberculosis (MDR-TB) in Ethiopia. We first present a compartmental model

of MDR-TB transmission dynamics in Ethiopia. The model is shown to have positive

solutions, and the stability of the equilibrium points is analyzed. Then, we extend the

model by incorporating time-dependent control variables. These control variables are

vaccination, distancing, and treatment for DS-TB and MDR-TB. Finally, the optimality

system is numerically simulated by considering different combinations of the strategies

and their cost effectiveness is analyzed.

7.1 Introduction

Despite the recent progress of global control efforts, tuberculosis remains a significant

public health threat worldwide, especially in developing countries, including Ethiopia.

Furthermore, the emergence of MDR-TB has further complicated the situation. The

treatment of MDR-TB has always been more complicated than the treatment of drug-

susceptible tuberculosis (DS-TB). It requires the use of second-line drugs or reserved
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drugs for up to two years. The best way to stop the spread of drug-resistant TB is to

take all DS-TB drugs as directed by your physician [7].

Mathematical models are essential in understanding the epidemic’s trajectory and de-

signing effective control measures under a set of assumptions [116,117]. In this chapter, a

mathematical model is formulated for the transmission dynamics of MDR-TB in Ethiopia

with optimal control and cost-effectiveness analysis.

7.2 Model formulation and analysis

7.2.1 MDR-TB model

This section presents the formulation of the mathematical model for MDR-TB trans-

mission dynamics. This model is comprised of a set of ordinary differential equations.

By Considering a homogeneous mixing within the population, the total population N(t)

is subdivided into five epidemiological groups: Susceptible individuals S(t), Vaccinated

individuals V (t), individuals exposed to drug-susceptible TB E(t), infectious individuals

with drug-susceptible TB I(t) and infectious individuals with MDR-TB J(t).

Within the model, the parameter Λ represents the rate at which individuals are re-

cruited into the susceptible class. On the other hand, the parameter µ represents the

natural death rate for each class within the system. The vaccination rate for healthy

individuals is denoted as ϕ. We assume the vaccine is imperfect. Therefore, some portion

of those who have received vaccinations are expected to be exposed to bacteria at a rate

of η.

Susceptible individuals will be exposed to drug-susceptible TB if they come into ef-

fective contact, at a rate β, with individuals from the I-class. Moreover, it is assumed

that the susceptible individuals became MDR-TB infected with a rate θ. Some individ-

uals in class E may progress to class I at rate k. If treatment is administered for the I

-class with a rate r, then some will complete their treatment correctly at a rate ωr for

(0 ≤ ω ≤ 1 ). However, some individuals in the I class may fail to take their treatment

correctly and may develop MDR-TB at a rate (1− ω)r. The recovery rate of individuals

from infected MDR-TB after treatment is α. It is assumed that the recovered individuals

from both classes will move to the S-class. Individuals who have recently been infected

with TB bacteria are at a higher risk of developing active TB disease. In this model, we

assume that individuals with drug-resistant TB in the latent stage will progress to the

97

http://etd.uwc.ac.za/



active stage relatively quickly. Furthermore, infectious individuals in I and J classes will

die due to the disease at a rate δ. Figure 7.1 shows the model flow diagram.

Figure 7.1: Flow diagram of the model.

The following system of differential equations gives the dynamics of DS-TB and MDR-TB.



dS
dt = (1− ϕ)Λ+ ηV + ωrI + αJ − βSI − θSJ − µS

dV
dt = ϕΛ− (η + µ)V

dE
dt = βSI − (k + µ)E

dI
dt = kE − (r + δ + µ)I

dJ
dt = θSJ + (1− ω) rI − (α+ µ+ δ) J

(7.1)

7.2.2 Model Analysis

Positivity of the solution set

The variables S(t), V (t), E(t), I(t), and J(t) denote the number of people and are

assumed to take positive values. From biological and mathematical considerations, it is

necessary to prove that starting from positive initial conditions implies that the solution

always remains positive.
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Theorem 7.2.1. If S (0) > 0, V (0) > 0, E (0) > 0, I (0) > 0, J (0) > 0, the solution

S (t) , V (t) , E (t) , I (t) , J (t)

of system (7.1) is positive for all t > 0.

Proof: From the first equation of the model (7.1) we have

dS(t)

dt
= (1− ϕ)Λ+ ηV (t) + ωrI (t) + αJ (t)− βS (t) I (t)− θS (t) J (t)− µS (t) .

By letting

(1− ϕ)Λ = ψ,

ηV (t) + ωrI (t) + αJ (t) = R (t) ,

and

− [βI (t) + θJ (t) + µ] = H(t).

We have
dS(t)

dt
+H (t)S(t) = ψ +R (t) . (7.2)

Then Equation (7.2) can be described as

dS(t)

dt
exp

{∫ t

0
H (τ) dτ

}
+H (t)S (t) exp

{∫ t

0
H (τ) dτ

}
=

d

dt

[
S (t) exp

{∫ t

0
H (τ) dτ

} ]
.

So,

d

dt

[
S (t) exp

{∫ t

0

H (τ) dτ

} ]
= ψexp

{∫ t

0

H (τ) dτ

}
+R (t) exp

{∫ t

0

H (τ) dτ

}
. (7.3)

Integrating both sides of Equqtion (7.3) gives

S (t) = S0exp

{
−
∫ t

0
H (τ) dτ

}
+

[
ψ

∫ t

0
exp

{∫ τ

0
H (u) du

} ][
exp

{
−
∫ t

0
H (τ) dτ

} ]

+

[(∫ t

0
R (τ) exp

{∫ τ

0
H (u) du

} )
dτ

] [
exp

{
−
∫ t

0
H (τ) dτ

} ]
≥ 0.

Similarly, using the second Equation of the model (7.1), we obtain that

dV

dt
= ϕΛ− (η + µ)V. (7.4)
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Equation (7.4) can be rewritten as

dV (t)

dt
exp (η + µ) + (η + µ)V (t) exp (η + µ) = ϕΛexp (η + µ) . (7.5)

Integrating both sides of Equqtion (7.5) gives

V (t) = V (0) exp(− (η + µ) t) +
ϕΛ

η + µ
[1− exp(− (η + µ) t)] ≥ 0. (7.6)

Note that from the Equation (7.6), we can show that

lim
t→∞

V (t) =
ϕΛ

η + µ
. (7.7)

Similarly, we can show that E (t) , I (t) and J (t) are non-negative. So, the solutions

χ = S (t) , V (t) , E (t) , I (t) , J (t)

of system (7.1) are positive for all t > 0. ■

Invariant region

The invariant region of the model describes the region in which the solution of the model

(7.1) is biologically meaningful.

Theorem 7.2.2. The invariant region Ω defined by

Ω =

{
(S (t) , V (t) , E (t) , I (t) , J (t)) ∈ R+

5

∣∣∣∣ N (t) ≤ Λ

µ

}
with non-negative initial conditions is positively invariant for the system (7.1).

Proof : Adding the equations of the system (7.1), we have

dN (t)

dt
= Λ− µN (t)− δ (I (t) + J (t))

≤ Λ− µN (t)

It follows that

0 ≤ N (t) =
Λ

µ
−N (0) exp (−µt) ,

where N(0) represents the initial values of the total population.
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Therefore, limt→∞ sup N (t) ≤ Λ
µ . It implies that the region

Ω =

{
(S(t), V (t), E(t), I(t), J(t)) ∈ R+

5

∣∣∣∣ N (t) ≤ Λ

µ

}

is a positively invariant region for the system (7.1).■

The basic reproduction number

The model (7.1) has a disease-free equilibrium point (DFE), obtained by setting the right-

hand sides of the equations in the system (7.1) as well as the disease classes (E, I, J) to

zero, given by

P 0 = (S0, V 0, 0, 0, 0)

where

S0 = Λ
η + µ(1− ϕ)

µ(η + µ)
,

and

V 0 =
Λϕ

η + µ
.

Using the next-generation approach [48], the right-hand side of the system (7.1) is written

as F−M, where

F =


βSI

0

θSJ

 ,

M =


(k + µ)E

−kE + (r + δ + µ)I

− (1− ω) rI + (α+ µ+ δ) J

 .

The corresponding Jacobian matrices evaluated at the disease-free equilibrium are

given by
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F =


0 βΛ

(
1
µ − ϕ

η+µ

)
0

0 0 0

0 0 θΛ
(

1
µ − ϕ

η+µ

)
 ,

and

G =


1

k+µ 0 0

k
(k+µ)(r+δ+µ)

1
r+δ+µ 0

− kr(−1+ω)
(k+µ)(r+δ+µ)(α+δ+µ) − r(−1+ω)

(r+δ+µ)(α+δ+µ)
1

α+δ+µ

 .

Therefore,

FG−1 =


kβΛ

(
1
µ
− ϕ
η+µ

)
(k+µ)(r+δ+µ)

βΛ
(

1
µ
− ϕ
η+µ

)
r+δ+µ 0

0 0 0

−
krθΛ

(
1
µ
− ϕ
η+µ

)
(−1+ω)

(k+µ)(r+δ+µ)(α+δ+µ) −
rθΛ

(
1
µ
− ϕ
η+µ

)
(−1+ω)

(r+δ+µ)(α+δ+µ)

θΛ
(

1
µ
− ϕ
η+µ

)
α+δ+µ

 .

The basic reproduction number is the magnitude of the dominant eigenvalue of FG−1.

For multi-group disease models or models dealing with more than one strain, the basic

reproduction number is expected to emerge as the maximum of a few numbers; see, for

instance, [37] and [118]. Since our model has two types of disease, DS-TB and MDR-TB,

we have two reproduction numbers. The reproduction number for DS-TB is given by

R1 = kβΛ
η + µ (1− ϕ)

µ (η + µ) (k + µ) (r + δ + µ)
=

kβS0

(µ+ α+ δ) (k + µ)
,

and the reproduction number for MDR-TB is

R2 = θΛ
η + µ (1− ϕ)

µ (η + µ) (α+ δ + µ)
=

θS0

α+ δ + µ
.

Generally the reproduction number for the model (7.1) is R0 =Max{R1, R2}.

Stability analysis of disease free equilibrium point

Theorem 7.2.3. The DFE, P0, is locally asymptotically stable (LAS) when the basic

reproduction number R0 < 1, and unstable for R0 > 1.

Proof: We determine the local stability of P0 using the eigenvalues of the Jacobian
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matrix at P0, which is given by

G (P0) =



−µ η 0 −βΛ
(
η+µ(1−ϕ)
µ(η+µ)

)
+ rω α− θΛ

(
η+µ(1−ϕ)
µ(η+µ)

)
0 − (η + µ) 0 0 0

0 0 − (k + µ) −βΛ
(
η+µ(1−ϕ)
µ(η+µ)

)
0

0 0 k − (r + δ + µ) 0

0 0 0 r (1− ω) (α+ δ + µ) (R2 − 1)


.

If R2 < 1, then then the eigenvalues

λ1 = −µ, λ2 = − (η + µ) ,

and

λ3 = (α+ δ + µ) (R2 − 1) ,

containing negative real parts. The remaining eigenvalues of G (P0) can be determined

from the following sub matrix

Q =

 − (k + µ) −βΛ
(
η+µ(1−ϕ)
µ(η+µ)

)
k − (r + δ + µ)

 .

The characteristic polynomial of the matrix Q is given by

P (X) = X2 + a1X + a2 = 0.

Where

a1 = k + r + δ + 2µ,

a2 = (k + µ) (r + δ + µ) (1−R1) .

Applying the Routh–Hurwitz stability criterion [118], it can be shown that the eigenvalues

of the submatrixQ have negative real parts for R1 < 1. Hence, the disease-free equilibrium

point of the system (7.1) is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Hence, both DS-TB and MDR-TB will die out from the population if R0 < 1, while at

least one of the diseases will invade and persist in the population if R0 > 1.
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Existence of the endemic equilibrium point (EEP)

The endemic equilibrium point of the model (7.1) is the steady state at which disease

persists in the population when at least one of the model’s infectious compartments is

non-zero. It is obtained as follows:

P1 = (S∗, V ∗, E∗, I∗, J∗) ,

where

S∗ =
1

R1
Λ

(
η + µ (1− ϕ)

µ (η + µ)

)
,

V ∗ =
Λϕ

η + µ
,

E∗ = − (r + δ + µ) [x1 {R1 −R2}] [µk (r + δ + µ) (η + µ) (µ+ k {1−R1})]

kβ (η + µ)
[
−θµ2(r + δ + µ)2 + x2 {R1 −R2 − θ (δ + µ)}+ x3 {R1 −R2 − rβ (1− ω)}

] ,
I∗ = − [x1 {R1 −R2}] [µk (r + δ + µ) (η + µ) (µ+ k {1−R1})]

β (η + µ)
[
−θµ2(r + δ + µ)2 + x2 {R1 −R2 − θ (δ + µ)}+ x3 {R1 −R2 − rβ (1− ω)}

] ,
J∗ =

kr (η + µ)µ (r + δ + µ) [µ+ k {1−R1}] (1− ω)

− (η + µ)
[
−θµ2(r + δ + µ)2 + x2 {R1 −R2 − θ (δ + µ)}+ x3 {R1 −R2 − rβ (1− ω)}

] .
with

x1 = (r + δ + µ) (k + µ) (α+ δ + µ)

(
µ (η + µ)

Λ (η + µ (1− ϕ))

)
,

x2 = kµ (r + δ + µ)
η + µ (1− ϕ)

µ (η + µ)
,

x3 =
k2 (δ + µ) (α+ δ + µ) (r + δ + µ)µ (η + µ)

η + µ (1− ϕ)
.

It is evident from the above that model (7.1) has positive EEP if and only if one of the

following conditions hold:

1. 1 < R1 < 1+µ
k and 0 < R1−R2 <

1
x2+x3

[
θµ2(r + δ + µ)2 + x2θ (δ + µ) + x3rβ (1− ω)

]
,

2. R1 > 1+µ
k and 0 < R1−R2 >

1
x2+x3

[
θµ2(r + δ + µ)2 + x2θ (δ + µ) + x3rβ (1− ω)

]
.
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Analysis of the MDR-TB-only model

The sub-model with MDR-TB-only (obtained by setting E = 0, I = 0 in the model (7.1)

is given by 
dS
dt = (1− ϕ)Λ+ ηV + αJ − θSJ − µS

dV
dt = ϕΛ− (η + µ)V

dJ
dt = θSJ − (µ+ δ) J − αJ

(7.8)

For this model, it can be shown that the region,

Ω1=

{
(S (t) , V (t) , J (t))∈R3

+:N (t)≤Λ

µ

}
(7.9)

is a positively invariant region for the model(7.8).

Theorem 7.2.4. The model (7.8) at DFE, M0 =
(
Λη+µ(1−ϕ)

µ(η+µ) ,
Λϕ
η+µ , 0

)
, is globally asymp-

totically stable (GAS) for R2 < 1.

Proof: We follow a methodology similar to the stability analysis of [20,85,86,102,119].

We observe that

S(t) + V (t) ≤ Λ

µ
.

Let’s assume R2 < 1. Then there exists a0 > 0 such that (1 + a0)R0 < 1. Now we observe

that the one-dimensional ODE system

dV (t)

dt
= ϕΛ− (η + µ)V (t) , 0 ≤ V (t) ≤ Λ

µ

is globally asymptotically stable.

So, in particular, there exists t1 > 0 such that, given any 0 ≤ V (0) < Λ
µ , we have∣∣V (t)− V 0

∣∣ < a0S
0 for all t ≥ t1.

This implies that given any

S0 ∈
[
0, Λµ

]
, then S (t) ≤ S0 (1 + a0) for all t ≥ t1.

Thus in order to prove this theorem, it can be assumed that S (t) < S0 (1 + a0).

Let us define a function

F (J) = J (t) .
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We prove now that Ḟ (t) is negative-definite.

Ḟ (t) = θSJ − (α+ µ+ δ) J,

≤
[
θS0 (1 + a0)−(α+µ+δ)

]
J,

= (α+µ+δ) [R2 (a0 + 1)− 1] J.

This proves that Ḟ (t) < 0, whenever R2 < 1. Hence, F (t) is a Lyapunov function on Ω1.

Therefore, by LaSalle’s invariance principle [87], every solution of the model (7.8), with

any initial conditions in Ω1, approaches M0 as t → ∞, whenever R2 < 1. Thus, M0 is

GAS in the region Ω1.■

Theorem 7.2.5. If R2 > 1, then the model (7.8) has a unique positive endemic equilib-

rium M1 = (S∗, V ∗, J∗). With:

S∗ =
α+ δ + µ

θ
,

V ∗ =
Λϕ

η + µ
,

J∗ =
µ (α+ δ + µ)

θ (δ + µ)
(R2 − 1) .

Proof: It follows logically from the above that whenever R2 > 1, a unique positive

MDR-TB-only endemic equilibrium point exists. ■

7.3 Extension of the model to optimal control

This section expands model (7.1) by incorporating the following four control interven-

tions.

� Vaccination control (u1): Represents using the Bacillus of Calmette and Guerin

(BCG) vaccine.

� Distancing control (u2): It represents an effort to protect susceptible individu-

als from exposure to tuberculosis by effectively reducing contact between vulner-

able and infectious individuals. These include, for example, isolation of infected

persons, social distancing, wearing face masks, diagnostic campaigns, and public

health awareness programs.

� Treatment for DS-TB (u3): Represents the effort to reduce treatment failure in
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DS-TB infectious individuals, such as taking care of patients until they complete

the treatment.

� Treatment for MDR-TB (u4): Represents the effort of treating and curing

MDR-TB-infected individuals.

After incorporating the control variables u1, u2, u3 and u4 into the model (7.1), it takes

the following form:



dS
dt = (1− u1)Λ+ ηV + u3rI + (1 + u4)αJ − βSI − (1− u2) θSJ − µS

dV
dt = u1Λ− (η + µ)V

dE
dt = βSI − (k + µ)E

dI
dt = kE − (r + δ + µ)I

dJ
dt = (1− u2) θSJ + (1− u3) rI − ((1 + u4)α+ µ+ δ) J

(7.10)

In this optimal control problem, our main objective is to reduce the number of MDR-

TB-infected individuals in the population while reducing the overall cost of controlling

the disease.

Let us consider the following objective functional:

Y (u1, u2, u3) =

∫ tf

t0

[
J (t) +

1

2
B1u

2
1 +

1

2
B2u

2
2 +

1

2
B3u

2
3 +

1

2
B4u

2
4

]
dt. (7.11)

Subject to the terms of the model system (7.10). The constant Bi measures the relative

cost interventions associated with the control ui for i = 1, 2, 3, 4. The functions 1
2Biu

2
i are

the cost functions that correspond to the controls ui, which is nonlinear (as in [120,121]).

In Equation (7.11), the values of t0 and tf are taken as 0 and 20, respectively, to determine

Ethiopia’s 20-year (2019–2038) effective MDR-TB control strategy.

The main goal is to find the optimal controls u∗1, u
∗
2, u

∗
3 and u∗4 such that

Y (u∗1, u
∗
2, u

∗
3, u

∗
4) = min {Y (u1, u2, u3, u4) : u1, u2, u3, u4 ∈ U} , (7.12)

were U={ (u1, u2, u3, u4) | u1, u2, u3 and u4 are Lebesgue integrable functions on the

interval [0,∞), with 0≤ui≤1, i= 1, 2, 3, 4}.

Existence of an Optimal Control

We show the existence of optimal control by using an approach as in [84]. The

boundedness of the model’s solution has already been established. The boundedness
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of the solution is used to demonstrate that an optimal control exists. For detailed proof,

see [122]. By using the maximum principle of Pontryagin [77], the Hamiltonian (H ),

which combines the state Equations (7.1) and the integrand of the objective functional

(7.11), is given by

H (S, V,E, I, J, u1, u2, u3, u4, λ) = J +
1

2
B1u

2
1 +

1

2
B2u

2
2 +

1

2
B3u

2
3 +

1

2
B4u

2
4

+ λ1 [(1− u1)Λ+ ηV + u3rI + (1 + u4)αJ ]

− λ1 [βSI + (1− u2) θSJ + µS]

+ λ2 [u1Λ− (η + µ)V ]

+ λ3 [βSI − (k + µ)E]

+ λ4 [kE − (r + δ + µ)I]

+ λ5 [(1− u2) θSJ + λ5 (1− u3) rI − ((1 + u4)α+ µ+ δ) J ] .

Here, λ= (λ1, λ2, λ3, λ4, λ5)∈R5 are the adjoint functions. The following result can be

obtained by applying Pontryagin’s maximum principle to the existence of the optimal

control problem.

Theorem 7.3.1. Let u∗1, u
∗
2, u

∗
3, and u

∗
4 be the control functions for the control problem

given in the system (7.10), and S, V ,E, I, and J be the solutions of state variables. Then

there are adjoint variables λ1, λ2, λ3, and λ4 6 that satisfy the following Equations



dλ1
dt = [βI + µ+ θJ (1− u2)]λ1 − βIλ3 − θJ(1− u2)λ5

dλ2
dt = −ηλ1 + (η + µ)λ2

dλ3
dt = [k + µ+ θJ (1− u2)]λ3 − kλ4 − θJ (1− u2)λ5

dλ4
dt = (βS − ru3)λ1 − βSλ3 + (r + δ + µ)λ4 − r (1− u3)λ5

dλ5
dt = −1 + [θS (1− u2)− α(1 + u4)]λ1

+ [δ + µ− θS (1− u2) + α(1 + u4)]λ5

(7.13)

with transversality conditions

λ1 (tf ) = λ2 (tf ) = λ3 (tf ) = λ4 (tf ) = λ5 (tf ) = 0. (7.14)
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and 

u∗1 = min
{
max

{
0, Λ(λ1−λ2)B1

}
, 1
}

u∗2 = min
{
max

{
0, θS(λ5−λ1)B2

}
, 1
}

u∗3 = min
{
max

{
0, rI(λ5−λ1)B3

}
, 1
}

u∗4 = min
{
max

{
0, αJ(λ5−λ1)B4

}
, 1
}

(7.15)

Proof: The form of the adjoint system and the transversality conditions associated

with this optimal control problem are obtained by applying Pontryagin’s Maximum Prin-

ciple [77]. For this purpose, we differentiate the formulated Hamiltonian function with

respect to S, V,E, I, and J as follows;

dλ1
dt

= −∂H
∂S

,
dλ2
dt

= −∂H
∂V

,
dλ3
dt

= −∂H
∂E

,
dλ4
dt

= −∂H
∂I

,
dλ5
dt

= −∂H
∂J

, (7.16)

with

λi (tf ) = 0, i = 1, 2, 3, 4, 5. (7.17)

Finally, by applying the optimality condition

∂H

∂u1
=
∂H

∂u2
=
∂H

∂u3
=
∂H

∂u4
= 0,

and using the bounds for the controls u1, u2, u3 and u4 we can derive the optimal control

(u∗1, u
∗
2, u

∗
3, u

∗
4) as in Equation (7.15). ■

Table 7.1: Initial values of the variables

Symbols Description Units Value Reference
N0 Total population Humans 1.12×108 [122]
S0 Susceptible Humans 3.404×107 Estimated
V0 Vaccinated Humans 1.001× 106 [102]
E0 DS-TB latent Humans 1.83×107 [122]
I0 DS-TB infected Humans 1.57×105 [123]
J0 MDR-TB infected Humans 1.115×103 [124]

7.4 Numerical simulations

The forward-backwards sweeping method is used to solve the optimal control problem.

The solution’s algorithm is based on the approach suggested in [112]. The system (7.10)

is simulated forward in time to achieve convergence, while the Hamiltonian function is
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simulated backwards in time.

The unit of time used for the parameter values is one year. We calculate the initial

number of vaccinated children as the product of the average number of newborns and the

vaccination coverage, which is V0 = 1.001× 106. In 2019, the incidence rate of MDR-TB

in Ethiopia was 0.71% [124]. Hence, we take J0 = 0.0071× I0 = 1115. In the same year,

75% of MDR-TB patients in Ethiopia were treated successfully [125]. So, we take the

value of α as 0.75.

A recent estimation indicated that 3.3% of MDR-TB cases worldwide occurred among

new TB cases in 2019 [126]. We take 3.3% of β to get the value of θ. Hence θ = 5.43×10−5.

The values of the remaining parameters and the initial values of the variables used in our

simulations are presented in Tables 7.1 and 7.2.

Table 7.2: parameter values.

Symbols Description Units Value Reference
Λ Recruitment rate Humans/year 1.4×106 [122]
β Transmission rate for DS-TB 1/year 1.646×10−7 [122]
θ Transmission rate for MDR-TB 1/year 5.43×10−5 Estimated
ϕ Vaccination rate of new-borns 1/year 0.715 [102]
η Loss of protection for vaccination 1/year 0.5 [102]
µ Natural mortality rate 1/year 0.016 [105]
k Transfer rate from E to I 1/year 0.023 [122]
r Treatment rate of I 1/year 0.546 [102]
ω Recovery rate form DS-TB dimensionless 0.832 [126]
α Recovery rate form MDR-TB 1/year 0.75 [125]
δ Death rate due to TB 1/year 0.17 [125]

7.4.1 Use of single control

For this control strategy, we have four alternatives:

Strategy A: u1, only vaccination control,

Strategy B: u2, only distancing control,

Strategy C: u3, only treatment for DS-TB ,

Strategy D: u4, only treatment for MDR-TB.
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Figure 7.2: The MDR-TB infectious population trajectories under different single
control strategies.

The simulation result of MDR-TB-infected individuals with different single control

interventions is plotted in Figure 7.2. It can be observed that the number of MDR-TB-

infected individuals can be significantly decreased when Strategy C (successful treatment

for DS-TB) is applied. In contrast, Strategy A (only vaccination control) has the least im-

pact on reducing the number of patients. This shows that it is beneficial to use treatment

for DS-TB to prevent the MDR-TB.
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Figure 7.3: The control profiles of different single controls.

The control profiles in Figure 7.3 indicate that distancing and treatment for MDR-TB

controls should be implemented at the maximum level until the end of the implementation.

In contrast, the treatment for DS-TB and vaccination controls retained their highest

bound for 13 and 18 years, respectively, then declined until they reached their minimum

value.

7.4.2 Use of the dual controls

In this scenario, we consider a combination of two control functions, and we have six

alternative strategies:

Strategy E : Vaccination (u1) and distancing (u2),

Strategy F : Vaccination (u1) and treatment for DS-TB (u3),

Strategy G : Vaccination (u1) and treatment for MDR-TB (u4),

Strategy H : Distancing (u2) and treatment for DS-TB (u3),

Strategy I : Distancing (u2) and treatment for MDR-TB (u4),

Strategy J : Treatment for DS-TB (u3) and treatment for MDR-TB (u4).
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Figure 7.4: The MDR-TB infectious population trajectories under different double
control strategies.

We noticed in Figure 7.4 that Strategy J has the highest number of MDR-TB infections

averted, followed by Strategy H, F, I, G, and E. The control solution profile is shown in

Figure 7.5.

Figure 7.5: The control profiles of different double controls.
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7.4.3 Use of the triple controls

In this section, we conduct numerical simulations by considering the application of

triple control functions. For the combination of three different control practices, we have

the following four alternative strategies:

Strategy K : Vaccination, distancing, and treatment for MDR-TB,

Strategy L: Vaccination, distancing, and treatment for DS-TB,

Strategy M : Vaccination, treatment for DS-TB, and treatment for MDR-TB,

Strategy N : Distancing, treatment for DS-TB, and treatment for MDR-TB.

Figure 7.6: The MDR-TB infectious population trajectories under different triple
control strategies.

Figure 7.6 presents simulation results for MDR-TB-infected individuals with different

triple-control interventions. We can see that Strategy N ( the combination of distancing,

treatment for DS-TB, and treatment for MDR-TB) can significantly reduce the number of

people infected with MDR-TB. In contrast, Strategy K (the combination of Vaccination,

distancing, and treatment for MDR-TB) has the least effect on reducing case numbers.

The control function of this strategy is displayed in Figure 7.7.
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Figure 7.7: The control profiles of different triple controls.

7.5 Cost-Effectiveness Analysis

We used cost-effectiveness analysis to determine the most effective strategy to con-

trol MDR-TB in Ethiopia. This is performed by the incremental cost-effectiveness ratio

(ICER) mentioned in [33,123]. This ratio compares the differences between the total costs

and the total decrement of MDR-TB patients for two alternative control strategies. The

following formula obtains the ICER:

ICER (i, j) =
The difference in costs between strategies i and j

Difference in total number of infection averted in strategies i and j
.

Table 7.3: The number of MDR-TB infectious averted and the total cost of each
single control strategy.

Strategy Total infection averted Total cost ($)
B (u2 ) 3.85× 106 3.86× 106

D (u4 ) 3.85× 106 4.03× 106

A (u1 ) 5.7× 105 6.85× 105

C (u3 ) 5.8× 106 5.8× 106

7.5.1 ICER for single control strategy

Based on the total number of people averted from MDR-TB infection, Strategies
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B,D,A, and C are ranked in increasing order as shown in Table 7.3. Based on this rank,

we first compare the ICER of Strategy B and Strategy D.

ICER (B) =
3.86× 106

3.8487× 106
= 1.0025.

ICER (Strategy D with respect to Strategy B)= 4.03×106−3.86×106

3.8497×106−3.8487×106
= 174.28.

This shows that Strategy B is less costly compared to strategy D. Strategy D is then

ignored, and the analysis continues by comparing Strategy B with A:

ICER (B) =
3.86× 106

3.8487× 106
= 1.0025.

ICER(Strategy A with respect to Strategy B)= 6.85×105−3.86×106

5.723×105−3.8487×106
= 0.97.

It follows that Strategy A is cheaper compared to Strategy B and hence, strategy B is

ignored, and the analysis continues by comparing Strategy A and Strategy C as follows:

ICER (A) =
6.85× 105

5.723× 105
= 1.197.

ICER (Strategy C with respect to Strategy A)= 5.8×106−6.85×105

5.79×106−5.723×105
= 0.98.

Eventually, Strategy C is more cost-effective than Strategy A. Therefore, the control

program that considers the application of Strategy C (successful treatment of DS-TB)

will achieve a more efficient result.

Table 7.4: The number of MDR-TB infectious averted and the total cost of each
dual control strategy.

Strategy Total infection averted Total cost ($)
E (u1 and u2) 3.95× 106 4.07× 106

G (u1 and u4) 4.01× 106 4.12× 106

I (u2 and u4) 4.83× 106 5.02× 106

F (u1and u3) 5.84× 106 5.96× 106

H (u2 and u3) 6.003× 106 6.02× 106

J(u3and u4) 6.086× 106 6.27× 106

7.5.2 ICER for the dual control strategy

First, we must rank the strategies in order of increasing based on averted infections, as

shown in Table 7.4. The incremental cost-effectiveness ratio for the dual control strategies

is calculated in Table 7.5. From the table, we conclude that Strategy H (i.e., the combi-
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nation of distancing and the successful treatment of DS-TB) is the most cost-effective of

all dual control strategies.

Table 7.5: The incremental cost-effectiveness ratio of the dual control strategies

ICER Decision

ICER (E) = 4.07×106

3.95×106
= 1.03

ICER (G,E) = 4.12×106−4.07×106

4.01×106−3.95×106
= 0.84 Strategy G is less costly than Strategy

E. Strategy E is then ignored, and the
analysis continues by comparing Strategy
I with G.

ICER (G) = 4.12×106

4.01×106
= 1.03

ICER (I,G) = 5.02×106−4.12×106

4.83×106−4.01×106
= 1.097 Strategy I is cheaper and more effective

than Strategy G and hence, the analysis
continues by comparing Strategy I and
Strategy F .

ICER (I) = 5.02×106

4.83×106
= 1, 04

ICER(F, I) = 5.96×106−5.02×106

5.84×106−4.83×106
= 0.93 This comparison indicates that Strategy

F is cheaper than Strategy I, and the
analysis continues by comparing Strategy
F and Strategy H.

ICER (F ) = 5.96×106

4.83×106
= 1.02

ICER (H,F ) = 6.02×106−5.96×106

6.003×106−4.83×106
= 0.35 Strategy H is less costly and more ef-

fective than Strategy F . As a result,
Strategy F is eliminated from subsequent
ICER computations.

ICER (H) = 6.02×106

6.003×106
= 1, 002

ICER(J,H) = 6.27×106−6.02×106

6.086×106−4.83×106
= 3.07 Strategy H is less costly and more effec-

tive than Strategy J .

7.5.3 ICER for the triple control strategy

Using the simulation results, we rank the control strategies in increasing order of

effectiveness based on infection averted. This ranking procedure shows that Strategy K

averted the least number of infections, followed by Strategy M,L and N (see Table 7.6).

Based on this rank, we first compare the ICER of Strategy K and Strategy M as follows.

ICER (K) =
5.19× 106

4.89× 107
= 1.06.

ICER (M,K) =
6.37× 106 − 5.19× 106

6.09× 107 − 4.89× 107
= 0.996.
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This implies that Strategy K is more costly and less effective than StrategyM . Thus,

we exclude Strategy K from further consideration and continue to compare strategies M

and L.

ICER (M) =
6.37× 106

6.09× 107
= 1.05.

ICER (L,M) =
6.22× 106 − 6.37× 106

6.098× 107 − 6.09× 107
= −70.02.

This comparison indicates that Strategy L is cheaper than Strategy M . Therefore,

Strategy M is rejected and continues to compare Strategy L with Strategy N .

ICER (L) =
6.22× 106

6.098× 107
= 1.02.

ICER(N,L) =
6.34× 106 − 6.22× 106

6.14× 106 − 6.098× 107
= 2.48.

This indicates that Strategy L is cheaper and more effective than Strategy N .

Finally, the comparison result reveals that Strategy L is cheaper and more effective

than Strategy N . Therefore, Strategy L (combination of vaccination, distancing, and

successful treatment of DS-TB) is the best of all triple control strategies.

Table 7.6: The number of MDR-TB infectious averted and the total cost of each
triple control strategy.

Strategy Total infection averted Total cost ($)
K (u1, u2, u4) 4.89× 107 5.19× 106

M (u1, u3, u4) 6.09× 107 6.37× 106

L (u1 , u2, u3) 6.098× 107 6.22× 106

N (u2, u3, u4) 6.14× 106 6.34× 106

7.6 Conclusions

In this chapter, we presented a compartmental model to understand the transmission

dynamics of MDR-TB in Ethiopia. We first showed that the model is well-posed epidemi-

ologically and mathematically. Then, we have described the conditions for the stability

of the equilibrium points.

We applied preventive controls in the form of vaccination, distancing, and two treat-

ment controls for DS-TB and MDR-TB. Theoretically, we proved the existence of optimal

control and studied the characterization of optimal control by Pontryagin’s Maximum

Principle. In addition, the incremental cost-effectiveness ratio of single, coupled, and
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triple combinations of control strategies was investigated to determine the most effective

method to control the spread of MDR-TB in Ethiopia.

Among the four single controls, it is found that the successful treatment of DS-TB is

the most effective strategy in curtailing the spread of MDR-TB. Therefore, the Ethiopian

government should improve DS-TB therapy by reducing treatment failures in DS-TB

patients if only one control strategy is used.

Within the six dual-control strategies, a combination of distancing and successful

treatment of DS-TB is the most cost-effective strategy compared to others. Therefore,

if dual control strategies are considered, we recommend the Ethiopian government focus

on isolation policy, educational campaigns, and monitoring DS-TB patients to complete

their treatment correctly.

Considering the combination of the triple control strategy, the combination of success-

ful treatment of DS-TB with distancing and vaccination control is the most cost-effective

strategy.

In this chapter, we employ just two compartments to represent the MD-TB strain,

resulting in restricted accuracy. Therefore, we suggest further investigation that includes

the latent stage for MD-TB.
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Chapter 8

A model of the disease dynamics

of Tuberculosis in a prison system:

the case of Ethiopia

This chapter presents a model of tuberculosis dynamics in a crowded environment, which

includes the influx of infected individuals into the population. The model is applied to

the prison population of Ethiopia. First, we compare the TB epidemiology in the prison

system with the situation in the ambient (open) population in terms of the numerical

values of the basic reproduction numbers and the equilibrium points. Then, we compare

the scenarios in terms of the equilibrium prevalence numbers for different levels of influx

of infected individuals.

8.1 Introduction

Although tuberculosis is a common disease in many communities, it is more prevalent

in densely populated areas and poorly ventilated buildings [127]. In particular, it has

long been known that prisons have TB prevalence, which is relatively higher than in the

ambient community [128].

Ethiopia has six federal and 120 regional detention centres; most prisoners live in

a densely populated environment [129]. As a result, tuberculosis transmission among

prisoners is a major public health concern in Ethiopia [130,131]. Studies have shown that

the prevalence of tuberculosis among Ethiopian prisoners ranges from 349 to 1913 per

100,000 [132,133]. This high incidence of tuberculosis in prisons poses a serious threat to
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both inmates and the general public. Therefore, significant attention should be paid to

diagnosing and treating tuberculosis patients in prisons.

8.2 The model

The prison population at time t is denoted by N(t). We divided it into four epi-

demiological compartments: susceptible (S), high-risk latent (E), infectious (I ), and

treatment (low-risk latent) (L). The constant recruitment rate, Λ, is the number of new

members arriving into the prison population in unit time. We assume that fraction θ of

Λ is infected with latent TB and another fraction η of Λ is infected with active TB. Then

0 ≤ (θ + η) ≤ 1. Furthermore, we assume that (1− (θ + η)) Λ are free from the dis-

ease. Susceptible individuals get infected with active TB at a rate βSI. Individuals in the

high-risk latent class will progress into the infectious stage at a rate of kE. Successfully

treated infectious individuals from I and E are moved to the low-risk latent class at a rate

of prI and αE, respectively. Since there is no permanent immunity to tuberculosis, some

recovered (low latent risk) individuals may lose immunity and become latently infected

with a relapse rate σ. We assume that death due to TB disease will happen only in the

I-class with a rate δ. In this model, the removal rate µ is a combination of the release

rate from prison and the mortality rate of inmates.

The model flow diagram with the in-flow of infective prisoners is given in Figure 8.1.

We derive the following system of non-linear ordinary differential Equations:



dS
dt = (1− (θ + η))Λ− βSI − µS

dE
dt = θΛ+ βSI + (1− p)rI + σL− (k + α+ µ)E

dI
dt = ηΛ+ kE − (µ+ r + δ) I

dL
dt = prI + αE − (µ+ σ)L

N (t) = S (t) + E (t) + I (t) + L (t) .

(8.1)

With the initial conditions S0, E0, I0, L0 ≥ 0.
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Figure 8.1: Flow chart for the model of TB transmission dynamics.

8.3 Model analysis

8.3.1 Positivity of the solutions

The variables in the system (8.1) represent human population numbers, which must

be non-negative. Thus, we need to ensure that the model’s solution is non-negative at

any time. Methods used in [134, 135] made it possible to determine lower bounds for

certain compartments in terms of the inflow of infected. The current paper follows the

same methodology, enabling us to find lower bounds for the classes E, I, and L.

Let us introduce the numbers B1, B2 and B3 as follows.

B1 =
θΛ

(k+α+µ) , B2 =
ηΛ+kB1

(µ+r+δ) , and B3 =
αB1+prB2

(µ+σ)

We define the setG as below. G =
{
x ∈ R4

+ : x2 > B1, x3 > B2, x4 > B3, x1 + x2 + x3 + x4 ≤ Λ
µ

}
.

Theorem 8.3.1. Consider a fixed number t1 > 0. Suppose that X(t) is a local solution of

the system (8.1) for which X(s) ∈ R4
+ while 0 < s < t1. If N(0) ≤ Λ/µ, then N(t) ≤ Λ/µ

for all 0 < t ≤ t1.

Proof: Given any local solution with X(t) ∈ R4
+ for all 0 < t ≤ t0, then we find that

d
(
N (t)− k

µ

)
dt

= Λ− µN(t)− δI(t) ≤ −σL(t) ≤ −µ(N(t)− Λ

µ
.

Therefore N(0) < k
µ implies that N(t) < k

µ for all 0 < t ≤ t0.

Theorem 8.3.2. The set G is a positively invariant set.
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Proof : Consider any point y ∈ G. Then there exists a local solution X(t) in G with the

initial value X(0) = y. Suppose that t1 is the time of exit of X(t) from G (and that t1 is

finite). We prove by contradiction that t1 = ∞.

Let us write:

E1(t) = E(t)−B1, I1(t) = I(t)−B2 and L1 = L(t)−B3.

Now we introduce the following function, for 0 ≤ t ≤ t1.

F1(X(t)) = ln

(
Λ

µS(t)

)
+ ln

(
Λ

µE1(t)

)
+ ln

(
Λ

µI1(t)

)
+ ln

(
Λ

µL1(t)

)
.

Note that each of the terms in the summation is a positive-valued function. Also, we

know that for a constant q > 0,

lim
u→0+

ln(q/u) = ∞

Therefore, if any of the variables S1, E1, I1 or L1 tends to 0 as t→ t1, then F1 → ∞. In

the sequel, we shall prove to the contrary that if t1 is finite, then F1 is bounded over the

interval [0, t1) and this will be the contradiction.
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For t ∈ [0, t1), the following inequalities are derived:

−Ė1 (t)

E1 (t)
=

−1

E1 (t)
[θΛ+ βS (t) I (t) + (1− p) rI (t) + σL (t)− (µ+ α+ k)E (t)]

≤ −1

E1 (t)
[θΛ− (µ+ α+ k)E (t)] = µ+ α+ k.

− İ1 (t)
I1 (t)

=
−1

I1 (t)
[ηΛ+ kE − (µ+ δ + r) I (t)]

≤ −1

I1(t)
[ηΛ+ kB1 − (µ+ δ + r) I (t)]

=
1

I1(t)
[(µ+ δ + r) I1 (t)]

= µ+ δ + r.

− L̇1 (t)

L1 (t)
=

−1

L1(t)
[prI(t) + (αE (t)− (µ+ σ)L (t)]

≤ −1

L1(t)
[prB1 + αB2 − (µ+ σ)L (t)]

= (µ+ σ)
1

L1(t)
[L1(t)] = µ+ σ.

We calculate the derivative:

dF1(X(t))

dt
= − 1

S
[(1− θ − η)Λ− βS(t)I(t)− µS]− Ė1 (t)

E1 (t)
− İ1 (t)

I1 (t)
− L̇1 (t)

L1 (t)

≤ 1

S
[− (1− θ − η)Λ+ βS (t) I (t) + µS (t)]

+ (µ+ α+ k) + (µ+ δ + r) + (µ+ σ)

≤ 1

S
[βS(t)I(t) + µS(t)] + (µ+ α+ k) + (µ+ δ + r) + (µ+ σ)

≤ [βΛ/µ+ µ] + (µ+ α+ k) + (µ+ δ + r) + (µ+ σ)

= F0.

where

F0:=[βΛ/µ+ µ] + (µ+ α+ k) + (µ+ δ + r) + (µ+ σ),

is a constant number, and in particular it is independent of t1.
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Then, for every t ∈ [0, t1) we have,

F1(t) =

∫ t

0
Ḟ1 (s) ds ≤tF0 ≤ t1F0.

Therefore, over the bounded interval [0, t1), F1(t) is bounded. This is a contradiction,

completing the proof.

8.3.2 Stability of equilibrium points

When θ = η = 0, i.e., there is no infected inflow into the prison system, the disease-

free equilibrium, in this case, is given by P0 =
(
A
µ , 0, 0, 0

)
. R0 is obtained using the

next-generation matrix method [25]. Thus, the matrices F and M are given by

F =


βSI
1+bI

0

0

 ,

and

M =


−(1− p)rI − σL+ (k + α+ µ)E

−kE + (µ+ r + δ) I

−prI − αE + (µ+ σ)L


.

Then we obtain

R0 =
kβΛ(µ+ σ)

µ (µ (r + δ + µ) (α+ µ+ σ) + k (prµ+ (δ + µ) (µ+ σ)))
. (8.2)

Theorem 8.3.3. The disease-free equilibrium point P ∗
0 of the system (8.1) is globally

asymptotically stable in Ω if R0 ≤ 1.

Proof : Let’s define the function,T (E, I, L), as follows

T (E, I, L) = (µ+ σ)E (t) +
k (µ+ σ) + µ (α+ µ+ σ)

k
I (t) + σL (t) . (8.3)

It is clear that T is non-negative and T (P ∗
0 ) = 0. Calculating the derivative of T (t),
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we obtain:

Ṫ = (µ+ σ) Ė +
k(µ+ σ) + µ(α+ µ+ σ)

k
İ + σL̇,

= (µ+ σ)

[
(1− ε+ θε)βSI

1 + bI
+ (1− p)rI + σL− (k + α+ µ)E

]
+
k (µ+ σ) + µ (α+ µ+ σ)

k
{kE − (µ+ r + δ) I}+ σ {prI + αE − (µ+ σ)L} .

Using S(t) ≤ Λ
µ and after simplification, we have

Ṫ ≤ µ (r + δ + µ) (α+ µ+ σ) + k (prµ+ (δ + µ) (µ+ σ))

k
[R0 − 1] I.

This implies that the largest compact invariant subset of {(S(t), E(t), I(t), L(t)) ∈ Ω:

Ṫ = 0} is the singleton P ∗
0 . LaSalle’s invariant principle [87] shows that P ∗

0 is globally

asymptotically stable in Ω.

8.3.3 Existence of the endemic equilibrium point

Theorem 8.3.4. If R0 > 1, then the system (8.1) has a unique endemic equilibrium

point.

Proof. the endemic equilibrium point of the system (8.1) satisfies the following system

of algebraic Equations



0 = (1 − (θ + η))A− βSI − µS,

0 = θΛ+ βSI + (1− p)rI + σL− (k + α+ µ)E,

0 = ηΛ+ kE − (µ+ r + δ) I,

0 = prI + αE − (µ+ σ)L.

(8.4)

Solving for S∗ from the first Equation in (8.4), we obtain

S∗ =
[1− (η + θ)]Λ

βI∗ + µ
. (8.5)

Solving for L∗ from the last Equation in (8.4), we obtain

L∗ =
αE∗ + prI∗

µ+ σ
. (8.6)
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Substituting S∗ and L∗ into the second Equation in (8.4) and solving for E∗, we obtain

E∗ =
rI∗ (βI∗ + µ) [(1− p)µ+ σ] + Λ [β (1− η) I∗ + θµ] (µ+ σ)

(βI∗ + µ) (k (µ+ σ) + µ (α+ µ+ σ))
. (8.7)

Substituting E∗ into the third Equation in (8.4), we obtain

[ηΛ− I∗ (r + δ + µ)] [(βI∗ + µ) (k (µ+ σ) + µ (α+ µ+ σ))]

− [k (rI∗ (βI∗ + µ) ((−1 + p)µ− σ) + Λ (β (−1 + η) I∗ − θµ) (µ+ σ))] = 0.
(8.8)

Then, we get a quadratic Equation for I∗

AI∗2 +BI∗ + C = 0, (8.9)

where

A = −β [µ (r + δ + µ) (α+ µ+ σ) + k (prµ+ (δ + µ) (µ+ σ))] ,

B = µβηΛ (α+ µ+ σ) + µ {µ (r + δ + µ) (α+ µ+ σ) + k (prµ+ (δ + µ) (µ+ σ))} [R0 − 1] ,

C = Λµ (k (η + θ) (µ+ σ) + ηµ (α+ µ+ σ)) .

Noting that A is negative and C is positive, then AC < 0 is negative. Similarly for

R0 > 1, B is positive and AB < 0. Hence, by Descartes’ Rule of Signs, there is exactly

one positive real root to Equation (8.9).

8.4 Numerical values of variables and parameters

of the model

This section estimates the value of the model’s parameters and variables using epidemio-

logical and demographic data from Ethiopia.

i According to a report by World Prison Brief (WPB) [136], in Ethiopia, an average of

16506 new suspects are incarcerated each year. Hence, taking Λ =16506 is possible.

ii The total number of prisoners in Ethiopia in 2000 was 55209 [136]. Based on this,

we can take the initial total population of our model as N0 = 55209.

iii In the absence of the disease in the system, Λ
µ will be the total population. Hence
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it is possible to take µ = Λ
N = 0.299.

iv Generally, the prevalence of TB in Sub-Saharan African prisons is 6 to 30 times

higher than in the general population [137]. The average Zambian prisoner, for

example, is ten times more likely to develop TB than an individual in the free

population [138]. In the case of Ethiopia, it would be plausible to assume that the

transmission rate of TB in prisons is ten times greater than the general population.

Hence, by taking the transmission rate of TB in the general population in Ethiopia

from [105], we have β = 1.646× 10−6.

v Prevalence studies from Ethiopian prisons suggest that the prevalence of TB among

prisoners is 8.33 [139]. Hence, using this value, and with the initial total population

N0 =55209, we estimated I0 = 4599.

vi In the paper [102], it is estimated that out of the total population in Ethiopia,

16.37% and 30% are latently TB infected at high risk and low risk, respectively.

Hence, we estimated E0 = 9038 and L0 = 16563.

vii Then, the initial number of susceptible populations is estimated as S0 = N0−E0−

I0 − L0 = 25009.

viii The values of θ and η can be taken as the ratio of E and I to the entire population,

respectively [79]. Thus, we have θ = 0.164 and η = 0.083.

8.5 Numerical results and discussion

We conducted a numerical simulation to investigate the impact of infective inflows quanti-

tatively. This simulation uses real Ethiopian data, and the parameter values are presented

in Table 8.1.

We first evaluate the system’s dynamics without the inflow of infectives, and the

curves are shown in Figure 8.2. Then, Figure 8.3 shows the system simulation with the

inflow of infectives. Figure 8.4 shows the effect of the inflow of infectious individuals.

From this figure, we can see that as the rate of flow of infective decreases, the number of

infected individuals decreases significantly. A further simulation demonstrates that the

disease-free equilibrium point P ∗
0 is globally asymptotically stable for R0 less than one

(see Figure 8.5). That is, Theorem 8.3.3 holds in general.
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Table 8.1: Values of the model variables and parameters

Variables Description Initial value Sources
N0 Initial total population 67574 [136]
S0 Susceptible 35374 Estimated
E0 High-risk latent 9038 [102]
I0 Infected 4599 [139]
L0 Low-risk latent 16563 [102]
Parameters Description Value Sources
Λ Recruitment rate into the

prison
16506 [136]

β Transmission rate 1.646× 10−6 [105,138]
µ The removal rate 0.299 Estimated
k Rate of moving from E to I 0.023 [105]
r Treatment rate of I 0.546 [102]
p The treatment success rate of I 0.832 [124]
α Treatment rate of E 0.153 [105]
δ TB induced deaths rate 0.17 [14]
σ The relapse rate 0.0013 [102]
θ Recruitment rate into E 0.164 [79]
η Recruitment rate into I 0.083 [79]

Figure 8.2: Prison population in different classes without the inflow of infectives
and R0 = 1.128.
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Figure 8.3: Prison population in different classes with the inflow of infectives θ =
0.164 and η = 0.083 and R0 = 1.128.

Figure 8.4: Comparison of Infective classes with different values of inflow of infec-
tives.
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Figure 8.5: The stability of the DFE for the model (8.1) when R0 = 0.01.

8.6 Conclusions

In this chapter, we developed a mathematical model for the spread of TB disease in

the prison system. In addition to the inflow of healthy people into the susceptible class, we

developed the model by considering the influx of infected individuals to high-risk latent

and infected compartments. We estimated most of the model variables and parameters

using Ethiopian prison health data, and the rest are taken from the literature.

We demonstrated the stability of the disease-free equilibrium point (P ∗
0 ) using the

basic reproduction number R0. In the case of an absence of the infected individual and

without the inflow of infected individuals into the prison, we found that P ∗
0 is globally

asymptotically stable when R0 < 1 whereas, at R0 > 1 it becomes unstable. However,

we found a unique endemic equilibrium point when infected individuals inflow into the

prison population, or for R0 > 1. Moreover, it was found that if there is no inflow of

infected inmates at a particular prison site, then the disease will be eliminated from the
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prison provided that the numerical value of R0 is below unity.

The numerical analysis of the model showed that the inflow of TB-infected individu-

als into the prison significantly increases the disease’s spread. Therefore, eliminating the

disease is impossible if there is an influx of latently infected (exposed) and infectious in-

dividuals into the prison. Based on our findings, we recommend that inmates be screened

for tuberculosis before entering the prison. In addition, in prisons, the health status of

inmates should be monitored regularly, and inmates diagnosed with tuberculosis should

be treated separately.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

This thesis presents four different nonlinear deterministic models that describe the

transmission dynamics of tuberculosis. These models have been calibrated using reported

TB-infected cases in Ethiopia from 2003 to 2017. In the given period, the basic repro-

duction number is estimated to be 2.13, indicating the disease’s persistence.

Bacillus Calmette-Guerin (BCG) is the most widely administered vaccine and is usu-

ally given to newborns as part of their routine immunization schedule [140]. Hence, in

this thesis, we develop and analyze a mathematical model for tuberculosis transmission

dynamics by incorporating vaccination for newborns and treatment for TB patients. Our

results quantify the positive influence of vaccination and the treatment of TB patients on

tuberculosis control.

We derived and analyzed a deterministic model for the transmission of TB with vacci-

nation and saturated incidence rate. The model is illustrated using parameters applicable

to Ethiopia. Analysis of sensitivity indices for R0 revealed that the transmission rate

has a greater impact on TB spread in Ethiopia compared to other parameters. This

finding aligns with the conclusions drawn in reference [141–143]. Towards curbing the

spread of TB-disease, according to the model (4.1), the treatment rate for the latently

infected shows higher sensitivity than the treatment rate for the active TB infectives.

These observations are of course very useful for public health management.

The control study also revealed some very useful insights. It was observed that to

effectively manage DS-TB disease in a cost-efficient manner, the Ethiopian government
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should prioritize preventive measures such as isolating infectious individuals, early detec-

tion and treatment of TB patients, and implementing educational programs.

We have further considered an optimal control problem for the transmission dynamics

of MDR-TB in Ethiopia. We found that the most cost-effective strategy to prevent the

spread of drug-resistant TB is the successful treatment of DS-TB. This finding aligns with

the result in [144] .

Finally, we propose a deterministic mathematical model to analyze the dynamics of

TB disease in prison populations. The model includes the inflow of exposed and TB

infective inmates. It is shown that the disease-free equilibrium point exists only when

there is no inflow of infected into the prison population. We show that the model has

a unique endemic equilibrium point. The model parameters are calibrated based on the

epidemiological data of Ethiopia. Our findings show that inmates’ health status should

be monitored regularly, and those diagnosed with tuberculosis must be separated from

the rest and treated.

9.2 Future Work

Our models do not consider some of the factors and approaches listed below that might

affect the spread of tuberculosis. These factors may provide a better understanding of

the disease and its control.

Co-infection: The impact of co-infection in infectious disease dynamics is undeniable

today. This will allow us to study the dynamics of tuberculosis and HIV/AIDS co-infection

in Ethiopia.

Stochastic approach: Stochasticity in the real world can be incorporated into ODE

models by introducing stochastic perturbations. This means that ODEs can be re-

placed with stochastic differential Equations. It has been shown, for instance, how

certain stochastic perturbations can enhance the stability of differential equations (e.g.

[37, 85, 145, 146]). Therefore, it will be important to see the extent to which this phe-

nomenon features in the models of this dissertation.

Fractional order model: The formulation of the fractional order model of tuberculosis

is one of the factors that will be considered in future research. This is planned to determine

which of the fractional and integer order models better describes the dynamics of TB.
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