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Abstract

Huge amounts of data are being collected as a result of the increased use of mobile

telecommunications. Insight into information and knowledge derived from these

databases can give operators a competitive edge in terms of customer care and re-

tention, marketing and fraud detection.

One of the strategies for fraud detection checks for signs of questionable changes

in user behavior. Although the intentions of the mobile phone users cannot be ob-

served, their intentions are reflected in the call data which define usage patterns.

Over a period of time, an individual phone generates a large pattern of use. While

call data are recorded for subscribers for billing purposes, we are making no prior

assumptions about the data indicative of fraudulent call patterns, i.e. the calls made

for billing purpose are unlabeled. Further analysis is thus, required to be able to

isolate fraudulent usage. An unsupervised learning algorithm can analyse and clus-

ter call patterns for each subscriber in order to facilitate the fraud detection process.

This research investigates the unsupervised learning potentials of two neural net-

works for the profiling of calls made by users over a period of time in a mobile

telecommunication network. Our study provides a comparative analysis and ap-

plication of Self-Organizing Maps (SOM) and Long Short-Term Memory (LSTM)

recurrent neural networks algorithms to user call data records in order to conduct a

descriptive data mining on users call patterns.

Our investigation shows the learning ability of both techniques to discriminate user
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call patterns; the LSTM recurrent neural network algorithm providing a better dis-

crimination than the SOM algorithm in terms of long time series modelling. LSTM

discriminates different types of temporal sequences and groups them according to

a variety of features. The ordered features can later be interpreted and labeled ac-

cording to specific requirements of the mobile service provider. Thus, suspicious call

behaviours are isolated within the mobile telecommunication network and can be

used to to identify fraudulent call patterns. We give results using masked call data

from a real mobile telecommunication network.
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Chapter 1

Introduction

This chapter gives a general overview of the thesis. It starts with a background re-

view of the thesis. It describes the motivation for the research and the premises on

which the research work is based. The chapter further describes the problem state-

ment and the research hypotheses that were tested in our experiments. Technical

objectives are highlighted and the methodology of the dissertation are discussed. Fi-

nally, we summarize the results of this thesis and close with an outline of subsequent

chapters.

1.1 Background

Telecommunication fraud occurs whenever a perpetrator uses deception to receive

telephony services free of charge or at a reduced rate [11]. It is a worldwide problem

with substantial annual revenue losses for many companies. Globally, telecommuni-

cations fraud is estimated at about 55 billion US dollars [2]. In the United States

of America, telecommunication fraud is generally considered to deprive network op-

erators of approximately 2 percent of their revenue. However, as noted by [9], it

is difficult to provide precise estimates since some fraud may never be detected,

and the operators are reluctant to reveal figures on fraud losses. The situation can

significantly be worse for mobile operators in Africa for, as a result of fraud, they

become liable for large hard currency payments to foreign network operators. Thus,

telecommunication fraud is a significant problem which needs to be addressed, de-

tected and prevented in the strongest possible manner. Popular examples of fraud
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Chapter 1 Introduction 2

in the telecommunication industry include subscription fraud, identity theft, voice

over the internet protocol (VoIP) fraud, cellular cloning, billing and payment fraud

on telecom accounts, prepay and postpaid frauds and PBX fraud.

1.2 Motivation

Huge amounts of data are being collected and warehoused as a result of increased

use of mobile communication services. Insight information and knowledge derived

from these databases can give operators a competitive edge in terms of customer

care and retention, marketing and fraud detection. Thus, telecommunication fraud

has become a high priority item on the agenda of most telecommunication operators.

Fraud is a significant source of lost revenue to the telecommunications industry; fur-

thermore, it lowers customers’ confidence in the security of transactions available via

the service operator. Since operators are facing increasing competition and losses

have been on the rise [75], fraud has gone from being a problem – which carriers

were willing to tolerate – to being one that dominates the front pages of both the

trade and general press [84].

Efficient fraud detection and analysis systems can save telecommunication operators

a lot of money and also help restore subscribers’ confidence in the security of their

transactions. Automated fraud detection systems enable operators to respond to

fraud by detection, service denial and prosecutions against fraudulent users. The

huge volume of call activity in a network means that fraud detection and analysis is

a challenging problem.

In general, the more advanced a service, the more it is vulnerable to fraud. In the

future, operators will need to adapt rapidly to keep pace with new challenges posed

by fraudulent users. In addition, the number of actors involved in the provision of

a service is likely to increase, making the possibilities for fraud to expand beyond

the simple case of subscribers trying to defraud an operator. While conventional
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approaches to fraud detection and analysis such as rule-based systems based on

thresholds for particular parameters may be sufficient to cope with some current

types of fraud, they are less able to cope with the myriad of new possibilities. In

addition, fraudsters can change their tactics fairly easily to avoid detection; for in-

stance, systems based on thresholds can be fooled by keeping the call duration below

that of the detection threshold.

Therefore, there is need for the consideration of dynamic and adaptive fraud detec-

tion and analysis approaches; artificial intelligence techniques offer the promise to

effectively address some of these challenges.

1.3 Premises

A Call Detail Record (CDR) is created for every completed call in a mobile telecom-

munication network. These data records are referred to as Toll Tickets (TT). Toll

Tickets contain a wealth of information about the call made by a subscriber. Besides

their billing role, Toll Tickets constitute an enormous database within which other

useful knowledge about callers can be extracted. One example is the detection of

anomalous usage of the mobile telecommunication network. Although various other

CDR-like services exist on which anomalous usage can be detected, this study is

based on Global System for Mobile communications CDR.

Specifically, this study is based on call detail record for prepaid service subscribers

from a real mobile telecommunication network. The data set contains 500 masked

subscribers, each with calling data for a period of 6 months. We based our inves-

tigation on Mobile Originating Calls (MOC) extracted from the data set. These

are calls that were initiated by the subscribers within the 6 months period. Fraud

related to prepaid service fall under subscription fraud which is the topic of this

thesis.
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1.4 Problem Statement

Over a period of time, an individual handset’s Subscriber Identity Module (SIM)

card generates a large pattern of use. The pattern of use may include international

calls and time-varying call patterns among others. Anomalous use can be detected

within the overall pattern such as subscribers abuse of free call services such as

emergency services.

Anomalous use can be identified as belonging to one of two types [36]:

1. The pattern is intrinsically fraudulent; it will almost never occur in normal

use. This type is relatively easy to detect.

2. The pattern is anomalous only relative to the historical pattern established for

that phone.

In order to detect fraud of the second type, it is necessary to have knowledge of

the history of SIM usage. Hence, a descriptive analysis of the call profiling for each

subscriber can be used for knowledge extraction. Interpretation by way of clustering

or grouping of similar patterns can help in isolating suspicious call behaviour within

the mobile telecommunication network. This can also help fraud analysts in their

further investigation and call pattern analysis of subscribers. While call data are

recorded for subscribers for billing purposes, it is interesting to know that no prior

assumptions are made about the data indicative of fraudulent call patterns. In

other words, the calls made for billing purposes are unlabeled. Further analysis is

thus required to be able to identify possible fraudulent usage. Because of the huge

call volumes, it is virtually impossible to analyse without sophisticated techniques

and tools. So there is need for techniques and tools to intelligently assist humans

in analysing large volumes of calls. One such technique is unsupervised learning.

Consequently, this thesis investigates the following open problem.



Chapter 1 Introduction 5

The unsupervised learning potentials of two neural networks for the pro-

filing of calls made by users over a period of time in a mobile telecommu-

nication network. Specifically, our study provides a comparative analyses

and application of Self–Organizing Maps (SOM - a feedforward neural

network) and Long Short-Term Memory (LSTM) recurrent neural net-

works algorithms to user call data records in order to conduct a descrip-

tive data mining on users call patterns.

1.5 Research Hypotheses

The large volume of calls by an individual handset’s SIM over a period of time can

be regarded as a dynamic time-varying process and this can be captured and repre-

sented as a time series.

Unsupervised detection of input regularities is an important application of feedfor-

ward neural networks (FNNs) [53]. Typical real-world inputs, however, are not static

but temporal sequences with embedded statistical regularities and redundancies [53].

FNNs, therefore, necessarily ignore a large potential for compactly encoding data

[4, 6]. While much work has been done on unsupervised learning in feedforward neu-

ral networks architectures, its potential with theoretically more powerful recurrent

networks and time-varying inputs has rarely been explored [53].

Consequently, the hypothesis of this research is that LSTM Recurrent Neural Net-

works can be used to discriminate user call patterns in an unsupervised learning

approach. The unsupervised LSTM RNN can provide a better discrimination than

the SOM (a FFN architecture) in terms of long time series modelling of the user call

data. LSTM discriminates different types of temporal sequences and group them

according to a variety of features. The ordered features can later be interpreted

and labeled according to specific requirements of the mobile service provider. Thus,

suspicious call behaviours can be isolated within the mobile telecommunication net-

work, in order to detect fraudulent call patterns.
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1.6 Technical Objectives

The primary aim of this thesis is to investigate the unsupervised learning potentials

of two novel neural networks for the profiling of calls made by users over a period

of time in a mobile telecommunication network. Specifically, this study provides

a comparative analyses and application of Self Organizing Maps (SOM) and Long

Short-Term Memory (LSTM) recurrent neural networks algorithms to user call data

records in order to conduct a descriptive data mining on users call patterns.

In addition, from this investigation we aim to highlight the salient call features from

the call detail records in order to identify anomalous usage of the mobile phone

network services. Finally, we hope to establish that LSTM algorithm provides a

better discrimination than the SOM algorithm in terms of the unsupervised long

time series modelling. LSTM discriminate different types of temporal sequences and

group them according to a variety of features.

1.7 Methodology

Our method of research proceeds with the normalization of our call data records

which contained a 6-month call data set of 500 masked subscribers from a real mobile

telecommunication network. We extracted from the data set, Mobile Originating

Calls (MOC). These are calls that were initiated by the subscribers. Within the

6 months period, a total of 227,318 calls originated from the 500 subscribers. The

SOM and LSTM RNN models are then applied to unsupervised discrimination of

the normalized call data set. Results are reported which estimates the performances

of the two learning models.

1.8 Accomplishments

We applied SOM and LSTM RNNs to the problem of fraud detection in mobile

telecommunication networks in an unsupervised learning approach. To our knowl-

edge, these models have not been applied to unlabeled call data record before. We
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give readers insight into various time series modelling approach and supply sufficient

motivation for using LSTM RNNs as a preferred solution to our problem statement.

Our results show the feasibility of applying LSTM RNNs to unsupervised discrimi-

nation of unlabeled call data records in a mobile telecommunication network for the

purpose of call pattern analysis.

1.9 Thesis Outline

The rest of this thesis is organized as follows: In Chapter 2 we introduce the problem

of fraud detection and proceed to a review of previous work. In Chapter 3, we present

an overview of the various artificial neural network time series modelling techniques

as well as some application domains; we conclude with problems pertaining to mod-

elling long time series. Chapter 4, focuses on the theory of long short-term memory

recurrent neural networks and discuss a few of its application. We then present our

application of long short-term memory recurrent neural networks to fraud detection

in mobile telecommunication networks in Chapter 5, as well as our Self Organizing

Maps model application. In Chapter 6, we discussed the results of our experiments

and conclude with possible direction for future research.



Chapter 2

Fraud Detection

2.1 Introduction

This chapter introduces the problem of fraud detection, starting from definitions. A

historical development of fraud is also discussed with a review of previous work.

2.2 Definition of Fraud

In many of the existing literature, the intention of the subscriber plays a central role

in the definition of fraud. [51] defines fraud as any transmission of voice or data

across a telecommunications network where the intent of the sender is to avoid or

reduce legitimate call charges. Likewise, [25] defines fraud as obtaining unbillable

services and undeserved fees. According to [51], the serious fraudster sees himself as

an entrepreneur, admittedly utilizing illegal methods, but motivated and directed by

essentially the same issues of cost, marketing, pricing, network design and operations

as any legitimate network operator. [44] considers fraud as attractive from the

fraudsters’ point of view, since detection risk is low, no special equipment is needed,

and the product in question is easily converted to cash. It is important to state that

although the term fraud has a particular meaning in legislation, this established term

is used broadly to mean misuse, dishonest intention or improper conduct without

implying any legal consequences.
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2.3 Development of Fraud

Historically, earlier types of fraud used technological means to acquire free access

[48]. Cloning of mobile phones by creating copies of mobile terminals with identi-

fication numbers from legitimate subscribers was used as a means of gaining free

access [25]. In the era of analog mobile terminals, identification numbers could be

easily captured by eavesdropping with suitable receiver equipment in public places,

where mobile phones were evidently used. One specific type of fraud, tumbling,

was quite prevalent in the United States [25]. It exploited deficiencies in the val-

idation of subscriber identity when a mobile phone subscription was used outside

of the subscriber’s home area. The fraudster kept tumbling (switching between)

captured identification numbers to gain access. [25] state that the tumbling and

cloning fraud have been serious threats to operators’ revenues. First fraud detection

systems examined whether two instances of one subscription were used at the same

time (overlapping calls detection mechanism) or at locations far apart in temporal

proximity (velocity trap). Both the overlapping calls and the velocity trap try to

detect the existence of two mobile phones with identical identification codes, clearly

evidencing cloning. As a countermeasure to these fraud types, technological im-

provements were introduced.

However, new forms of fraud came into existence. A few years later, [84] reports the

so-called subscription fraud to be the trendiest and the fastest-growing type of fraud.

In similar spirit, [44] characterizes subscription fraud as being probably the most

significant and prevalent worldwide telecommunications fraud type. In subscription

fraud, a fraudster obtains a subscription (possibly with false identification) and starts

a fraudulent activity with no intention to pay the bill. It is indeed non-technical in

nature and by call selling, the entrepreneur-minded fraudster can generate significant

revenues for a minimal investment in a very short period of time [51]. From the above

explanation it is evident that the detection mechanisms of the first generation fraud

soon became inadequate. More advanced detection mechanisms must, therefore, be

based on the behavioural modeling of calling activity – this is the central subject of
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this thesis.

2.4 Previous Work

In this section we review published work with relevance to fraud detection in telecom-

munications networks.

Telecommunications companies have been studying fraud and fraud detection for

many years and have probably spent more time and money on this than the re-

search community [58]. However, most of their efforts do not reach beyond the

limits of the companies and have not been available to the public research commu-

nity. Still, a number of published papers on the subject are available.

[65] describes toll fraud, how it occurs and offers ways to secure systems from hack-

ers. [65] also raises questions about who should be responsible for prevention of

toll-fraud - subscribers, long-distance carrier, operators or manufacturer of telecom-

munication equipment.

[82] discusses various aspects of digital transmission of wireless communication. It

describes the vulnerability of wireless communication to a type of wireless fraud

known as tumbling. [82] noted that this fraud could easily allow fraudsters to steal

telephone services and digital technology. The work also refers to clone fraud and

attempts to foil cloners.

[82] describes a solution that creates a profile of normal use for subscribers and then

track calling patterns, in terms of frequency, destination, length, origination, parties

called, time of day and distance. The authors also describe a solution that can de-

tect the unique signal characteristic of each individual cellular phone and compare

it with a database of prints, each of which is assigned to a unique electronic serial

number. The system denies call access once the calling telephone does not have

the electronic fingerprint it is supposed to. [82] noted that none of these solutions
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however is foolproof and that their adoption is slow.

[1] reports on the increasing incidence of phone fraud with corporation and telecom-

munication firms as victims. It describes the alliance formed to curb phone fraud,

preventive measures undertaken by customers and telephone companies to combat

fraud and cloning of cellular phone.

[90] comments on the crime of theft and sale of cellular-phone access codes and con-

sequent billing to phone companies and consumers in the United States. It highlights

the costs involved in telecommunication fraud and losses incurred. [90] evaluated the

extent of the crime and ways in which cellular-phone access codes can be misused.

Efforts toward preventive technology were also discussed.

[64] presents an analysis of a report on fraud in the wireless telecommunication in-

dustry, estimated losses from fraud; increase in the incidence of subscription fraud

and emerging solutions for subscription fraud.

Fraud in telecommunications networks can be characterized by fraud scenarios,

which essentially describe how the fraudster gained the illegitimate access to the

network [48]. Detection methodologies designed for one specific scenario are likely

to miss plenty of the others. For example, velocity trap and overlapping calls detec-

tion methodologies are solely aimed at detecting cloned instances of mobile phones

and do not catch any of the subscription fraud cases. As stated earlier in Sec-

tion 2.2, the nature of fraud has changed from cloning fraud to subscription fraud,

which makes specialized detection methodologies inadequate. Instead, the focus is

on the detection methodologies based on the calling activity which in turn can be

roughly divided into two categories [48]. In absolute analysis, detection is based on

the calling activity models of fraudulent behavior and normal behavior. Differential

analysis approaches the problem of fraud detection by detecting sudden changes in

behavior. Again, it is important to state that the latter approach defines the focus

of this thesis. Using differential analysis, methods typically alarm deviations from
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the established patterns of usage. When current behavior differs from the estab-

lished model of behavior, an alarm is raised. In both cases, the analysis methods are

usually implemented by using probabilistic models, neural networks or rule-based

systems. Henceforth, we shall focus our review on some prominent work which are

considered relevant to the work presented in this thesis.

[25] report on the use of a knowledge-based approach to analyze call records delivered

from cellular switches in real time. They state that the application of uniform thresh-

olds to all of a carrier’s subscribers essentially forces comparison against a mythical

average subscriber. Instead, they choose to model each subscriber individually and

allow the subscribers’ profile to be adaptive in time. In addition, they use knowledge

about the general fraudulent behavior, for example, suspicious destination numbers.

The analysis component in their system determines if the alarms, taken together,

give enough evidence for the case to be reviewed by a human analyst. In their con-

clusion, the system is credited with the ability to detect fraud quickly – allowing the

analysts to focus on the most likely and dangerous fraud cases. In [9], the authors

report their first experiments detecting fraud in a database of simulated calls. They

use a supervised feedforward neural network to detect anomalous use. Six different

user types are simulated stochastically according to the users’ calling patterns. Two

types of features are derived from this data, one set describing the recent use and

the other set describing the longer-term behavior. Both are accumulated statistics

of call data over time windows of different lengths. This data is used as input to

the neural network. The performance of their classifier is estimated to be 92.5 % on

the test data, which has limited value in the light of simulated data and the need

to give class-specific estimates on accuracy. This work has also been reported in [35].

[16, 17] focus on unsupervised learning techniques in analyzing user profiles over se-

quences of call records. They apply their adaptive prototyping methods in creating

models of recent and long-term behavior and calculate a distance measure between

the two profiles. They discuss on-line estimation techniques as a solution to avoid

storing call detail records for calculating statistics over a time period. Their user
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profiles are based on the user-specific prototypes, which model the probability distri-

bution of the call starting times and call durations. A large change in user behavior

profiles expressed by the Hellinger distance between profiles is reported as an alarm.

In [70, 71], work on fraud detection based on supervised feedforward neural network

techniques is reported. The authors criticize thresholding techniques that are based

on excessive usage detection since these might be the very best customers if they are

legitimate users. In order to use supervised learning techniques, they manually label

the estimated user profiles of longer term and recent use, similar to those in [17],

into fraudulent and non-fraudulent and train their neural networks on these user

profiles. In [70], they report having classified test data with detection probabilities

in the range of 80 - 90 % and false alarm probabilities in the range of 2 - 5 %.

Collaborative efforts of the two previous groups to develop a fraud detection system

have been reported in [69, 18]. Interesting in this context is the performance of the

combination of the methods. In [49], performance of the combination of the tools

is considered. They form an aggregated decision based on individual decisions of

the rule-based tool, unsupervised and supervised user profiling tools with the help

of logistic regression. They report improved results, particularly in the region of

low false positives. In all, their combined tool detects 60 % of the fraudsters with

a false alarm rate of 0.5 %. [68] reports on the final stage of their fraud detection

system for GSM networks – BRUTUS with rule-based, supervised and unsupervised

learning approaches integrated for fraud detection. The performance of the hybrid

detection tool was optimized in terms of the number of subscribers raising alarms.

Specifically, the report on the performance curves showed trade-off between percent-

age of correctly identified fraudsters versus the percentage of new subscribers raising

alarms.

[33, 34] present rule-based methods for fraud detection. The authors use adaptive

rule sets to uncover indicators of fraudulent behavior from a database of cellular

calls. These indicators are used to create profiles, which then serve as features to a

system that combines evidence from the multiple profilers to generate alarms. They

use rule selection to select a set of rules that span larger sets of fraudulent cases.



Chapter 2 Fraud Detection 14

Furthermore, these rules are used to formulate monitors, which are in turn pruned

by a feature selection methodology. The output of these monitors is weighted to-

gether by a learning, linear threshold unit. They assess the results with a cost model

in which misclassification cost is proportional to time.

Some work in fraud detection is based on detecting changes in geographical spread of

call destinations under fraudulent activity. This view is promoted in [104, 85, 22, 24].

In [104], call data were clustered for further visualization. [22] in turn use neural

networks in classification and some authors use human pattern recognition capabil-

ities in recognizing fraud [24, 85].

Fraud and uncollectible debt detection with Bayesian networks has been presented in

[31, 30, 32]. They perform variable and dependency selection on a Bayesian network.

They also state that a Bayesian network that fits the database most accurately may

be poor for a specific task such as classification. However, their problem formulation

is to predict uncollectible debt, which includes cases where the intention was not

fraudulent and which does not call for user profiles.

[63] reports on the generation of high quality test data for evaluation of fraud de-

tection system. [63] stated that data generation process is designed to collect and

analyse authentic data in order to find important statistical properties, which could

be used to simulate users with a finite state machine, and to simulate the target

system using event-driven simulation. [63] noted that by starting out from authen-

tic data, high quality synthetic data can be artificially created, while preserving

important statistical properties of the initial data. They conclude that the gener-

ation process is especially suitable for adaptive detection schemes where an exact

understanding of the available fraud types is missing.

[15] reports on a review of statistics and machine learning tool as effective technolo-

gies for fraud detection in telecommunication.
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Some papers, e.g. [19, 20, 21, 44], also describe the current fraud situation that

telecommunication companies face, and well-known frauds. However, these papers

do not discuss any details of the detection process or any organized fraud model.

Because fraud happens over time, methods that deal with time series are relevant

to this work.

[74] addresses a Support Vector Machine (SVM) based on user profiling method

for fraud detection. An SVM ensemble was employed for fraud behaviour learning

and alarm fraud decision-making. They report that user profiling can eventually be

induced to binary classification and multi-classification problems of support vector

machine. From their simulation results, it was established that the ensemble of SVM

is a kind of cross-validation optimization of SVM, and it has been proved to have

a better fraud pattern detection performance than other machine learning models,

such as multi layer perceptron (MLP) and self-organizing maps (SOM), in terms of

adaptability and pattern reorganization accuracy.

[48] presented user profiling and classification techniques for fraud detection in mo-

bile communication networks. The author reported on the identification of relevant

user groups based on call data: with each user assigned to a relevant group. He

used neural networks and probabilistic models in learning user usage patterns from

call data. The author attempts to promote the dynamic modelling of behavioural

patterns for fraud detection.

Except for [16, 17], many of the literature available on fraud detection in telecom-

munications networks focus on supervised learning techniques. Likewise the kind

of available data exemplified fraudulent and normal behaviour; in other words, the

call data used is labeled. In addition, very few work exist on dynamic modelling of

behaviour, although many authors state fraud to be a dynamic phenomenon. For

example, [34] doubt the usefulness of hidden Markov models in fraud detection as,

in this domain, one is concerned with two states of nature and one single transition

between them. However [48] used extensively dynamic models in temporal modelling
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of behaviour but in relation to labeled call data.

Available literature on fraud detection in telecommunications networks, therefore,

to our knowledge, and as earlier noted, does not provide the basis where unsuper-

vised learning in a dynamic model fashion is applied to unlabelled call data. This

distinctively differentiates our work from already existing ones and clearly defines

also the central focus of this thesis.

2.5 Summary

Fraud detection is defined with a historical development of fraud discussed. Various

existing papers on fraud detection in telecommunications network were reviewed.

In addition, it was stated that fraud detection is usually approached by absolute or

by differential analysis. It was mentioned that this thesis focuses on the differential

analysis approach. Furthermore, we highlighted the central theme of our work which

focuses on unsupervised learning in a dynamic model fashion applied to unlabelled

call data. An approach which to our knowledge has not been addressed before. The

dynamic, time series modelling capabilities of artificial neural networks is presented

in the next chapter.



Chapter 3

Time Series Modelling with

Artificial Neural Networks

3.1 Introduction

Human beings are capable of gathering vast amounts of sensory data from their en-

vironment which in turn enables them to formulate logical decisions [87]. This data

can be represented as a time series which the brain organizes and performs complex

operations on that allow us to predict and classify sequences in nature. Artificial

neural networks (ANNs) are simple mathematical models devised in an attempt to

emulate some of these human functions. Recurrent neural networks (RNNs) are

ideally suited for modelling dynamical systems with hidden states. The outputs of

such processes are typically recorded in the form of time series.

Time series modelling is concerned with the analysis of temporal relationships in

a sequence of values [92]. The goals of time series modelling include analysis and

simulation in order to understand the underlying dynamics of the series, recognition,

pattern classification, dynamic process control and prediction of future values in the

series. We refer the reader to [88] for a review of introductory concepts of time series.

Various machine learning methods have been applied to time series prediction and

classification tasks. For example, electroencephalogram classification [89] and dy-

namic gesture recognition [14]. Time can be continuous or discrete.

17
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We give a brief introduction to neural networks, followed by various neural network

architectures that have been applied to time series modelling tasks. We conclude

with an explanation of the long-term dependency problem that is inherent in tradi-

tional RNNs.

3.2 Neural Networks Overview

There are two major classes of ANNs, namely feedforward neural networks (FNNs)

and recurrent neural networks (RNNs). In feedforward networks, activation is

”piped” through the network from input units to output units. They are also re-

ferred to as static networks [57]. FNNs contain no explicit feedback connections [77].

Conventional FNNs are able to approximate any finite function as long as there are

enough hidden nodes to accomplish this [42]. RNNs however, are dynamical net-

works with cyclic path of synaptic connections which serves as the memory elements

for handling time-dependent problems.

ANNs have the capability to learn from their environment, and to improve their

performance through learning. Learning is achieved by the ANN through an itera-

tive process of adjustments applied to its synaptic weight and bias level.

There are diverse varieties of learning algorithms for the design of ANNs. They

differ from each other in the way in which the adjustment to a synaptic weight of a

neuron is formulated. Learning algorithms can be described as a prescribed set of

well-defined rules for the solution of a learning problem [42]. Basic learning algo-

rithms include error-correction learning, memory-based learning, Hebbian learning,

competitive learning, and Boltzmann learning.

Two fundamental learning paradigms exist. Learning paradigms for ANNs are de-

scribed in terms of the way and manner by which the interconnected neurons relates

to its environment. There exist supervised or associative learning and unsupervised

or self-organizing learning paradigms. The former requires an input pattern along



Chapter 3 Time Series Modelling with Artificial Neural Networks 19

with matching output patterns which is given by an external teacher whereas the

latter requires input patterns from which it develops its own representation of the

input stimuli.

3.3 Feedforward Neural Networks

A feedforward network has a layered structure (see Figure 3.1). Each layer consists

of processing units (or neurons). The layers are arranged linearly with weighted

connections between each layer. All connections point in the same direction - a

previous layer feeds into the current layer and that layer feeds into the next layer.

Information flows from the first, or input, layer to the last, or output, layer. The in-

put layer is distinguished by its lack of incoming connections. Similarly, the output

layer is deprived of outgoing connections. The remaining layers possess both types

of connectivity and are referred to as hidden layers. Hidden layers contain hidden

units which are able to extract higher-order statistics [42]. This is particularly valu-

able when the size of the input layer is large. Common activation functions in the

network may be those whose output is a nonlinear differential function, e.g. sigmoid

function, of its input and hence, suitable for gradient descent learning. The error

backpropagation learning algorithm and the generalized delta rule - both algorithms

are examples of error-correction learning algorithms - are common gradient descent

approaches that are used to train these static networks. The backpropagation algo-

rithm is defined according to [66] as follows:

Training examples are presented to a neural network in the form (−→x ,
−→
t ) where −→x

is a vector of network input data, and
−→
t is the vector of desired network output

signals.

• We construct a feedforward neural network with nin inputs, nhidden units, and

nout output units.

• We initialise the networks synaptic weights to a small random value

• We repeat the following steps until the termination condition is met:
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Figure 3.1: A Multi-layer Feedforward Neural Network with l layers of units:
The input layer Ni is distinguished by its lack of incoming connections. Similarly, the ouput
layer No is deprived of outgoing connections. The remaining layers possess both types of
connectivity and are referred to as hidden layers.

– For each (−→x ,
−→
t ) in the training set, propagate the input forward through

the network

– backpropagate the error through the network:

∗ For each network output unit k, calculate its error term δk

δk ←− ok(1− ok)(tk − ok)

∗ For each hidden unit h, calculate its error term δh

δh ←− oh(1− oh)
∑

kεoutputs

wkhδk

∗ We then update each network weight wji

wji ←− wji + ∆wji

where

∆wji = ηδjxji

It is important to note that two basic methods exist for backpropagation learning

[42]. These are sequential or on-line or stochastic mode (presented above) and batch
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mode backpropagation. The former learning approach updates weights after each

training example is presented to the network, while the latter approach requires that

the entire training set be presented to the network followed by the weight updates.

Conventional FFNNs only have a very limited ability to deal with time-varying input

since they are static learning devices. They can, however, be adapted to deal with

temporal relationships as we shall see in the next section.

3.4 Time Delay Neural Networks

Time delay neural network (TDNN) is a popular neural network that uses time de-

lays to perform temporal processing. It was first described in [60] with a a more

elaborate study reported by [94]. TDNN is a multilayer feedforward network whose

hidden neurons and output neurons are replicated across time (see Figure 3.2).

TDNN was specifically developed for speech recognition. The purpose of the ar-

chitecture is to have a network that contains context which is able to represent

sequences. In TDNNs, context or short-term memory is represented as input his-

tory. The number of steps that a TDNN is able to process depend entirely on the

time window that stores the input sequence. [57] noted that the buffer size limits

the length of longest sequence which can successfully be differentiated by these net-

works. When dealing with time series problems, we must have a good idea of what

the size of the longest sequence in the dataset will be. The reason for this is simply

that, in TDNNs, a fixed input window size has to be selected based on the longest

sequence length. If this prior information is not known a priori, the sequence of

course cannot be stored in the time window, thus making processing of the sequence

impossible. The number of input to hidden layer weight increases with increasing

window size. The increased number of parameters increases the time complexity of

the learning algorithm.

The input layer of a TDNN consists of a sliding window whose weight vector is

shared amongst other inputs. The output of the activation units is computed by
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Figure 3.2: A Time Delay Neural Network (TDNN) Representation: TDNN is a
multilayer feedforward network whose hidden and output neurons are replicated across time

taking a weighted sum of the nodes residing in the input window over a time period

and then applying a squashing function to it. TDNNs are trained with the conven-

tional error backpropagation learning algorithm.

[94] used a TDNN with two hidden layers for the recognition of three isolated words:

”‘bee”’, ”‘dee”’, and ”‘gee”’. In performance evaluation with the use of test data

from three speakers, the TDNN achieved an average recognition score of 98.5 percent.

TDNN also classifies spatio-temporal patterns and provides robustness to noise and

graceful degradation [62]. However, a limitation of the TDNN as originally posed

in [94] is its inability to learn or adapt the values of the time delays. Time delays
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are fixed initially and remain the same throughout training. As a result, the sys-

tem may have poor performance due to the inflexibility of time delays and due to a

mismatch between the choice of time delay values and the temporal location of the

salient information in the input patterns. In addition, the system performance may

vary depending on the range of the time delay values.

To overcome this limitation, [61] proposed a model referred to as Adaptive Time

Delay Neural Network (ATDNN). This network adapts its time delay values as well

as its weight during training, to better accommodate changing temporal patterns,

and to provide more flexibility for optimization tasks. The ATDNN allows arbitrary

placement of time delays along interconnections and adapts those time delays inde-

pendently of one another. Furthermore, time-windows are not used as in [12], [94]

but instead classification relies on a set of individual time delay values associated

with each interconnection.

3.5 Finite Impulse Response and Infinite Impulse Re-

sponse Neural Networks

Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) neural networks

are temporal neural networks developed by [7] specifically for the task of nonlinear

time series prediction. They are based on the traditional FFNN architecture with

each regular static synaptic weight replaced by a FIR/IIR linear filter. (See Figures

3.3 and 3.4 for FIR and IIR filters, respectively). FIR networks contain time delays

and they do not have recurrent connections. However, the IIR networks have con-

nections that are locally recurrent.

It should be noted that temporal neural network may use FIR filters, IIR filters,

or both. This type of network is still globally feedforward in nature, in that it

has a global feedforward structure, with possibly local recurrent features (for IIR

synapses). Thus, in the FIR filter case, it has local feedforward global feedforward
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Figure 3.3: A FIR Digital Filter: The filter contains weighted tapped delay lines and
do not have recurrent connections. The unit delay operator z−1 represents the input at a
given time step

architecture, while in the IIR synapse case, it has a local recurrrent global feedfor-

ward architecture. Figure 3.5 shows a neuron structure with both FIR and IIR filters.

The FIR filter allows an input excitation of finite duration, which results in the out-

put activation of the filter also being of finite duration. It was noted in [100] that

FIR networks are functionally equivalent to TDNNs. However, neural networks

containing IIR filter, also referred to as recurrent temporal neural networks [29], al-

low an input presented at any time to continue to influence the output indefinitely.

Consequently, training in such network is achieved through feedback of the desired

response to the network input after one unit delay in place of the actual output.

Training is continued until the network response meets the required tolerance under

feedforward conditions with actual output fed back.

A FIR filter produces an output, y(k), which corresponds to the weighted sum of

the current and past delayed values of the inputs, x(k).

y(k) =
T∑

n=0

w(n)x(k − n) (3.1)
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Figure 3.4: An IIR Digital Filter: The filter contains weighted tapped delay lines and
do have connections that are locally recurrent. The unit delay operator z−1 represents the
input at a given time step

Figure 3.5: A Neuron Structure with both FIR and IIR Filters

This is then passed through a sigmoid function which results in the activation of the

neuron.

y(k) = f(y(k))

The IIR filter has the form:

y(k) =
∑
n=0

Ta(n)x(k − n) +
∑
m=0

Mb(m)y(k −m) (3.2)

Figures 3.3 and 3.4 illustrate FIR and IIR filters which contain weighted tapped

delay lines. The unit delay operator z−1 represents the input at a given time step.

The learning algorithm for these networks is known as temporal backpropagation.
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(We refer the reader to [7] and [100] for its derivation).

[7] tested the performance of both FIR and IIR network on a time series generated

by the following function:

y(t) = sin{π[
β1(q−1)

1− α1(q−1)− α2(q−2)
x(t)]} (3.3)

where x(t) is a zero mean white noise source, low-pass filtered with a cut-off fre-

quency of 7 rad/sec, with α1 = 0.8227, α2 = −0.9025, and β1 = 0.99. [7] notes

that these parameters highlight the dynamics of the system and its nonlinearity.

This problem stems from nonlinear control systems which occurs in a wide range

of applications used in engineering and science. Some examples include nonlinear

circuits, mechanical systems, robotics, chemical processes, flight control, jet engine

control, evolutionary systems and biological systems. The time series generated by

Equation 3.3 approximates a particular real-world control system.

The FIR and IIR networks were trained by [7] on 5X106 data points generated from

Equation 3.3. The test set consisted of unseen generated data of 1000 points. [7]

reported testing mean square errors of 0.0664 and 1.2X10−5 for the FIR and IIR

networks respectively.

[7] concludes that the IIR network achieves a lower error rate thus making it a more

efficient model than a FIR network for this given task. The reason given is that

networks which have local feedback connections, i.e. IIR networks, perform better

than those with only local feedforward connections, i.e. FIR networks.
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3.6 Bi-Directional Neural Networks

A bi-directional neural network model consists of two mutually connected sub net-

works performing direct and inverse signal transformations bi-directionally [99]. The

model not only deals with the conventional future prediction task, but it also deals

with the past prediction, an additional task from the viewpoint of the conventional

approach (see Figure 3.6). To apply this model to time series prediction tasks, one

sub network is trained with a conventional future prediction task and the other

is trained with an additional task for past prediction. Since the coupling effects

between the future and past prediction subsystems promote the model’s signal pro-

cessing ability, bi-directionalization of the computing architecture makes it possible

to improve its performance [97]. In their work, [97] gave empirical evidence for this

claim. Its prediction score is found to be better than with traditional uni-directional

method [99].

Figure 3.6: Outline of the signal flow in the bi-directional computing architecture
for time series prediction

A bi-directional computation is able to improve future value prediction by adding

values that are predicted from the past [95]. The reason for this is that past values

are related to those that occur in the future [101]. The bi-directional neural network

thus makes use of past and future values.
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Figure 3.7 shows the structure of the bi-directional neural network model. In this

figure, as described by [96], the circles represent single neuron layers without internal

connections, and the arrows represent weights between adjacent neuron layers. The

upper half of the signal processing subsystem is for future prediction, and the lower

half of the signal processing subsystem is for past prediction. Each of them consists

of a four-layered network. The output signals for each layer in the future prediction

system are denoted as y
[0]
i , y

[1]
i , y

[2]
i , y

[3]
i (i = 1, 2, .., nl). The state transition rules

are defined as follows. Note that nl (l = 1, 2, 3, 4) is the number of neurons in the

l-th layer.

Figure 3.7: A Bi-directional Neural Network Model: The model consists of two
mutually connected sub networks performing direct and inverse signal transformations bi-
directionally
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[yout]i = y
[3]
i = f3(

∑
j

w
[3]
ij y

[2]
j ), (3.8)

where yin and yout represent the input signal and output signal in the future predic-

tion module, and τ represents the time constant of a dynamic neuron with first-order

decay property. This dynamic neuron plays the role of preserving past information

in the form of an ”internal state”. The contents of the dynamic neurons are fed

back to both the future and past prediction modules to train the desired signal

transformation. In other words, as can be seen in Equation (3.4), both the internal

states s[F ] for the future prediction network and s[P ] for the past prediction network

are used for training of the future prediction module. Note that the first layer is a

simple buffer; the second layer and the third layer are the nonlinear neuron layers

of the normal sigmoid type; the fourth layer is the linear neuron layer to exclude

limits on output values.

f1(x) = f2(x) =
1

1 + exp(−x)
, (3.9)

f3(x) = x. (3.10)

In the past prediction module, similar state transition rules are defined for output

signal in each neuron layer as z
[0]
i , z

[1]
i , z

[2]
i , z

[3]
i (i = 1, 2, .., nl)

During training, the future prediction network weights are updated based on real-

time recurrent learning algorithm. The function for minimizing the error is defined

as:

ef =
∑

t

∑
i

[yout(t)]i − d
[F ]
i (t)

2
. (3.11)

where d[F ] is simply the desired teacher signal and t is the time for applying the

teacher signal. The error and the weight updates for the past prediction network

are computed in the same way.
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The bi-directional network – as well as uni-directional network – have been applied

to sunspots1 data in [95], [98] which is one of the most popular data sets often used

for time series prediction tasks. The data set consisted of 280 years (A.D. 1700-1979)

of normalised annual data.

3.7 Recurrent Neural Networks

Recurrent neural networks come in three different architectures [87] (see Figure 3.8).

In Elman networks, feedback connections exist between hidden neurons; these hid-

den neurons are used to learn a representation of a dynamical system’s hidden states

being modelled. In Jordan networks, feedback connections in the output layer are

fed back into the hidden layer. In fully recurrent neural networks, connections exist

between all the network’s neurons. These feedback connections enable these net-

works to create a memory of past events that occurred numerous time steps ago.

Figure 3.8: Elman RNN, Jordan RNN and a Fully RNN

Gradient descent learning is the most commonly used learning algorithm for RNNs.

For an excellent introduction to gradient learning in RNNs (see [103]). The aim of

gradient descent learning is to find the best possible set of weights in the weight

space that produce the minimum margin of error. Learning in recurrent networks
1Sunspots are dark spots found on the surface of the sun, which are really areas of intense

magnetic energy which tend to cool down the area residing within it, thus resulting in a darker
appearance compared with the surrounding solar atmosphere.
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is accomplished by finding the minimum of an error function E over all sequences

which measures the difference between desired target outputs tk and actual output

ak,

E(t) =
1

2
∑

(tk(t)− ak(t))2
(3.12)

The error at a time t is calculated for a particular pattern; thus, E(t) represents the

sum of all the errors over all the patterns residing in the dataset. The weight are

then updated according to the following rule:

∆w = −ηE(t) (3.13)

where η represents the learning rate constant which determines the step size in the

gradient descent search. With a small learning rate, a network will take a consid-

erable period of time to converge to the desired solution if one exists. Too large a

learning rate may result in divergence; if the learning rate parameter is increased,

the settling time of the network also increases which is the result of overshooting the

solution. After the error signals have been calculated, they are added together and

contribute to one big change for each weight. This is known as batch learning [42].

An alternative approach is on-line learning which allows the weights to be updated

after each patern is presented to the network.

Potential applications of RNNs are time series prediction (e.g., of financial series),

time series production (e.g., motor control in non-Markovian environments) and

time series classification or labelling (e.g., rhythm detection in music and speech).

Common gradient descent based learning algorithms for recurrent networks in-

clude Backpropagation Through Time (BPTT) and Real-Time Recurrent Learning

(RTRL).
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3.7.1 Back-Propagation Through Time

This learning algorithm, first proposed by [78], is based on the conventional error

backpropagation algorithm. The back-propagation through time (BPTT) learning

algorithm computes the error gradient on a RNN that is unfolded in time. This is

accomplished by creating a copy of the network for each time step. The weights are

then shared amongst these copies.

The total error of the unfolded network is defined by:

E =
tn∑
t1

∑
j

1
2(et

i)2
(3.14)

where et
i = error of node i at time t = dt

i − at
i

et
i will = 0 if dt

i is not specified.

The learning procedure computes weight updates as follows:

1. The forward pass for the given data is performed, and the error for each time

step t is computed.

2. The error is back-propagated in order to calculate the local gradients for time

step t.

δt
j = − δE

δIt
i

= g′(It
i )e

t
i for t1 = tn (3.15)

otherwise

δt
i = g′(It

i )(e
t
i +

∑
j

wijδ
t+1
j ) (3.16)

where g(It
i ) represents the squashing function.
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3. The weight change is then computed:

∆wij = −αδE

δwj
i

= αδ

tn−1∑
t1

δt+1
i ξt

j (3.17)

where ξt
j represents the input to node j at time step t.

3.7.2 Real-Time Recurrent Learning

Real-time recurrent learning (RTRL) [42],[43],[102] is another gradient descent learn-

ing approach for training RNNs. This learning algorithm calculates the derivatives

of states and outputs with respect to all weights in the network. This means that

the network is not unfolded in time; instead, adjustments are made to the synaptic

weights of the network in real time, that is, while the network continues to perform

its signal processing function [102]

We define input units as: I = xk(t), where 0 ≤ k ≤ m, hidden or output units as:

U = yk(t), where 0 ≤ k ≤ n and arbitrary units are indexed by: zk(t) = xk(t) if

k ∈ I or yk(t) if k ∈ U .

Let W represents the weight matrix which contains n rows and n + m columns and

wij will represent a weight from unit i to unit j.

The network activation for a given unit is:

netk(t) =
∑

I∈U∈J

wkIzi(t) (3.18)

where t denotes a given time step.

The network activation is then passed through a squashing function:

yk(t + 1) = fk(netk(t))
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A teacher signal may not be assigned for each input signal, i.e. a target is pro-

vided only for the last input in the sequence. An error defined over the output

units needs to be time dependent. The reason for this is that if no target exists at a

particular time step, an error produced at the output layer will be undefined or zero.

The output unit error is therefore defined as:

ek(t) = dk(t)− yk(t) for k ∈ T (t) or 0 elsewhere

where T (t) is simply the set of indices in U where there exists a teacher signal dk(t).

The cost or error function for a given time step is defined as:

E(t) =
1

2
∑

k∈U ek(t)2
(3.19)

This error function needs to be minimized over all past steps of the network.

Etotal(t0, t1) =
t∑

t0+1

1E(t) (3.20)

The total error is now the sum of the current error and the error of the previous

time steps. It then follows that Etotal is the sum of the gradient for the preceding

time steps and the current time step.

∇wEtotal(t0, t + 1) = ∇wEtotal(t0, t) +∇wE(t + 1) (3.21)

where ∇w is simply the gradient of w. For every sequence that is presented to the

network we can compute the weight change ∆w.

∆wij(t) = −µ∂E(t)
∂wij

(3.22)

So each weight within the network is adjusted by:

t1∑
t=t0+1

∆wij(t) (3.23)
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3.8 The Vanishing Gradient Problem

According to [10], a task will exhibit long-term dependencies if the computation of

a teacher signal at a given time step depends on the input signal presented at a

much earlier instance. This means that current activation states within the network

influence states in the distant future.

RNNs are appropriate tools for modelling short sequences. However, training is

unlikely to converge when sequences have long-term dependencies [10]. [10] further

notes that the vanishing gradient problem is really the main reason why gradient

descent learning is not powerful enough to discover the temporal relationship that

exists between current and past inputs.

[46] analysed the problem which these networks suffer from and explains it as follows:

Using the conventional BPTT algorithm devised by [102], the premise is based on

the fact that we initially have a fully connected RNN whose hidden and output unit

indices range from 1 to n. We note that the local error flow for arbitrary unit u at

a given instant will be back-propagated for q time steps to unit v. This then results

in scaling2 the error by the following component:

∂ϑv(t− q)
∂ϑu(t)

= f ′v(netv(t− 1))wuvforq = 1 (3.24)

and

∂ϑu(t) = f ′v(netv(t− q))
n∑

t=1

∂ϑl(l − q + 1)
∂ϑu(t)wlv

forq > 1. (3.25)

Thus, with lq = v and lo = u, we have:

∂ϑv(t− q)
∂ϑu(t)

=
n∑

t1=1

. . .

n∑
tq−1=1

q∏
m=1

f ′lm(netlm(t−m))wlmlm−1 (3.26)

where
∏q

m=1 f ′lm(netlm(t−m))wlmlm−1 results in the total error flowing back in time.

2Adjusting the weights by a small amount at a time so as to reduce the error of the network.
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Thus, if the absolute value
∣∣f ′lm(netlm(t−m))wlmlm−1

∣∣ > 1.0, then the error in-

creases without bound and conflicting signals arriving at unit u will result in net-

work instability and oscillating weight magnitude.

Additionally, if the absolute value

∣∣f ′lm(netlm(t−m))wlmlm−1

∣∣ < 1.0 (3.27)

the error tends to vanish.

Since flm represents a sigmoid function, the upper bound of f ′lm is 0.25. If ylm−1 is

kept constant and 6= 0, then
∣∣f ′lm(netlmwlmlm−1

∣∣ will have upper bound values where

wlmlm−1 =
1

ylm−1 coth(1/2netlm)
(3.28)

tends to zero for
∣∣wlmlm−1

∣∣→∞ and is smaller than 1.0 for
∣∣wlmlm−1

∣∣ < 4.0 . With

a conventional sigmoid transfer function, the error flow will therefore diminish when

the weights have absolute values below 4.0. This occurs mostly in the initial stages

of the training phase.

[46] further notes that this local error flow results in the global error flow diminishing

as well. It can be seen from the above analysis that the gradient descent learning

technique is inadequate to deal with this problem. We will now review some solutions

that various researchers have devised, most of which is described in [46] and [45].

3.8.1 Time Constants

[72] proposed the idea of time constants. A time constant affects the changes in

a networks unit activations. [86] proposed an alternative approach in which the

activation of a feedback unit is updated by additions of a past activation value with

the current network input.
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3.8.2 Ring’s Approach

[76] determined that when conflicting error signals enter a unit in a network, partic-

ular error signals promote in increasing the activity of the unit by adding a higher

order unit which will influence the appropriate connections. The dilemma that is

confronted by this approach was that bridging gaps of n time steps may involve the

addition of n units.

3.8.3 Searching Without Gradients

Network weights are randomly initialised until the resulting network is able to clas-

sify all the training patterns correctly. It has been shown by [47] that simple weight

guessing solves several popular tasks faster than RNN learning algorithms.

Other proposed methods include probabilistic target propagation and adaptive se-

quence chunkers, which can be found in [45].

We will now direct our focus on a gradient based-method which [46] devised.

3.8.4 Long-Short Term Memory

[45] developed this model after theoretically analysing the long-term dependency

problem. This model is a gradient descent based method which truncates the net-

works gradient. This model is described in detail in Chapter 4.

3.9 Summary

Neural networks have been successfully applied to time series modelling, i.e. time

series analysis and prediction. In this chapter, we have defined what time series

modelling is. We then introduced the theory of neural networks and discussed how

various architectures have been applied to numerous problem domains. We then

extended the idea to networks that contain feedback connections as well as learning

algorithms adapted to deal with it. Furthermore, we highlighted a shortcoming of
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recurrent neural networks which was evident when dealing with extremely long time

series. Finally, we concluded by defining the long-term dependency problem as well

as a few solutions discussed in literature. This then motivates and explains why we

will be using the modelling approach discussed in Chapter 4.



Chapter 4

Long Short-Term Memory

Recurrent Neural Networks

4.1 Introduction

In the previous chapter, we introduced the theory of neural networks and discussed

how various architectures have been applied to numerous problem domains. The

problem of RNNs in dealing with extremely long time series was mentioned and few

solutions were discussed. In this chapter, we look at one of the prominent solutions

– Long Short-Term Memory (LSTM) recurrent neural network.

Long Short-Term Memory (LSTM) recurrent neural network, first introduced by

[46], is a gradient-based architecture specifically developed for modelling time series

with long-term dependencies. This work aims to show the potentials of LSTM RNN

in long time series modelling and its capabilities to discriminate different types of

temporal sequences and group them according to a variety of features, it is therefore

considered necessary to make reference to LSTM.

Previous successes in the real world applications of recurrent networks were limited

due to practical problems of long time lag between relevant events. Difficulty arises

in training recurrent neural networks from examples because their parameters often

settle in sub-optional solutions which only take into account short-term dependencies

and not long-term dependencies [37]. [46] proposed a novel RNN architecture and

39
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learning algorithm to overcome the problem of long-term dependencies. The LSTM

RNN architecture allows error to be back-propagated through time, and further

than any other method that exists, with the exception of the echo state approach to

training RNNs [50]. LSTM enforces constant error flow over extremely long tempo-

rally extended patterns.

We introduce traditional LSTM RNNs [46]. We then describe LSTM RNNs with

forget gates and LSTM with peephole connections [38]; both are improvements on

the traditional LSTM RNNs. Learning in LSTM RNNs is explained before we

conclude with a highlight of some application domain of the architecture.

4.2 Traditional LSTM RNNs

A traditional LSTM RNN consists of an input layer, a recurrent hidden layer and an

output layer (Figure 4.1). It is similar in structure to a conventional fully RNN in

Figure 3.8, except that the hidden layer is replaced by a memory block layer. Each

memory block contains one or more memory cells and a pair of adaptive, multi-

plicative gating units which gate input and output to all cells in the block. Memory

blocks allow cells to share the same gates (provided the task permit this), thus re-

ducing the number of adaptive parameters. The memory cell in Figure 4.2 has at its

core a recurrently self-connected linear unit called Constant Error Carousel (CEC).

The CEC has a weighted connection of 1.0 fed back to itself. The activation of the

CEC is called the cell state. When the gating units of a cell produce an activation

close to zero, no erroneous input enters that cell and consequently, does not con-

tribute to the state of the cell. Thus, CEC produces an activation which reflects the

state of the cell at a given instant. The CEC solves the vanishing error problem:

in the absence of new input or error signals to the cell, the CEC’s local error back

flow remains constant, neither growing nor decaying. It thus maintain its activation

state over time.
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In [46], empirical evidence shows that LSTM can learn temporal patterns with long-

term dependencies which traditional RNNs find difficult to learn.

Figure 4.1: A LSTM RNN: The network is similar in structure to a fully RNN except
that the hidden layer is replaced by a memory block

Figure 4.2: A Memory Block with One Cell
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4.2.1 Forward Propagation

The cell state, sc, is updated based on its current state and three sources of input:

netc is input to the cell itself while netin and netout are inputs to the input and

output gates respectively [38]. In [46], only discrete-time steps are considered. A

memory block is denoted by j and v denotes a memory cell within block j.

Activation of the Input Gate

The input to the cell is passed through a sigmoid function and is then multiplied

by the activation of the input gate. Its main function is to regulate the flow of the

input layer activation to the cell.

netinj (t) =
∑
m

winjmym(t− 1); yinj (t) = finj (netinj (t)). (4.1)

Activation of the Output Gate

The output of the cell also passes through a sigmoid function and is then multiplied

by the activation of the output gate. The output gate thus, regulates the flow of the

output layer activation from the cell.

netoutj (t) =
∑
m

woutjmym(t− 1); youtj (t) = foutj (netoutj (t)). (4.2)

The gating units make use of a logistic sigmoid function with range [0,1].

f(x) =
1

1 + e−x
. (4.3)

The input to the cell itself is computed as follows:

netcv
j
(t) =

∑
m

wcv
j mym(t− 1), (4.4)

This activation is squashed by g, a centered logistic sigmoid function with range

[-2,2].

g(x) =
4

1 + e−x
− 2. (4.5)
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The state of the memory cell sc at a given instant, t, is computed as follows:

scv
j
(0) = 0; scv

j
(t) = scv

j
(t− 1) + yinj (t)g(netcv

j
(t)) (4.6)

for t � 0.

The output from the cell is computed as follows:

ycv
j (t) = youtj (t)h(scv

j
(t)), (4.7)

where h is a sigmoid function with range [-1,1]:

h(x) =
2

1 + e−x
− 1. (4.8)

Finally, the output of the network is computed as follows:

netk(t) =
∑
m

wkmym(t− 1), yk(t) = fk(netk(t)), (4.9)

where fk represents the sigmoid function expressed in Equation 4.3.

This concludes the traditional LSTM’s forward propagation.

4.3 LSTM RNNs With Forget Gates

[46] demonstrates that LSTM can solve numerous tasks not solvable by previous

learning algorithms for RNNs. However, LSTM RNNs fail to determine how to cor-

rectly handle long time series such as those that emanate from dynamical systems

[39]. If any training pattern has no clear beginning and end, the internal state values

of a given memory cell could grow indefinitely, and eventually cause the network to

break down. The begin and end markers of a cell allow the cells state to be reset.

[39] proposed a solution to this problem by modifying the traditional LSTM RNN

to forget the unit activations which represents the short term memory within the

network. Forget gates are introduced to circumvent this problem.
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The solution enables LSTM memory blocks to learn to reset itself once their con-

tents are out of date and hence useless. By resets, we do not only mean immediate

resets to zero but also gradual resets corresponding to slowly fading cell states. More

specifically, the traditional LSTM’s CEC self recurrent connection of 1.0 is replaced

by a multiplicative forget gate activation yϕ See Figure 4.3.

Figure 4.3: A Memory Block with Forget Gates

The forget gate activation, yϕ, is calculated like the activations of the other gates –

(see Equations 4.1 and 4.2):

netϕj (t) =
∑
m

wϕjmym(t− 1); yϕj (t) = fϕj (netϕj (t)). (4.10)

where fϕj is a sigmoid function as in Equation 4.3.

The cell state now changes slightly, which now includes the forget gate activation:

scv
j
(0) = 0; scv

j
(t) = yϕj (t)scv

j
(t− 1) + yinj (t)g(netcv

j
(t)), (4.11)

for t � 0.



Chapter 4 Long Short-Term Memory Recurrent Neural Networks 45

4.4 LSTM RNNs With Peephole Connections

In LSTM RNN with forget gates, each gate receives connections from the input

units and the output of all cells. But there exists no explicit connection from the

CEC which its controls. This results in essential information being lost since the

forget gate can only directly observe the output of a cell. This may harm network

performance by not being able to inspect the CEC. Weighted peephole connections

from the CEC to all the gates residing within the same memory block are, therefore,

introduced [38],[40]. These peephole connections (Figure 4.4) shield the CEC from

unwanted information during the forward and backward passes. Peephole connec-

tions are able to utilize the cells contents when decisions need to be made.

Figure 4.4: A Memory Block with Peephole Connections

The input and forget gate activation with peephole connections are as follows:

netinj (t) =
∑
m

winjmym(t−1)+
sj∑

v=1

winjc
v
jscv

j
(t−1), yinj (t) = finj (netinj (t)) (4.12)

netϕj (t) =
∑
m

wϕjmym(t− 1) +
sj∑

v=1

wϕjc
v
jscv

j
(t− 1), yϕj (t) = fϕj (netϕj (t)) (4.13)
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The output gate activation with peephole connection is computed as:

netoutj (t) =
∑
m

woutjmym(t− 1) +
sj∑

v=1

woutjc
v
jscv

j
(t− 1), (4.14)

youtj (t) = foutj (netoutj (t)). (4.15)

The cell output is computed as:

ycv
j (t) = youtj (t)scv

j
(t). (4.16)

4.5 Learning In LSTM RNNs

Learning in LSTM RNNs is based on a combination of truncated BPTT and a mod-

ified version of RTRL which was derived in [46]. This learning algorithm includes

forget gates and peephole connections which has been extended in [38] to deal with

continuous time-series and precise timing problems.

Essentially, errors arriving at the net inputs of memory blocks and their gates do not

get propagated back further in time, although they do serve to change the incoming

weights. In essence, once an error signal arrives at a memory cell output, it gets

scaled by the output gate and the output nonlinearity h; then it enters the memory

cell’s linear CEC, where it can flow back indefinitely without ever being changed.

This is why LSTM can bridge arbitrary time lags between input events and target

signals.

During the training phase, the multiplicative gates learn to open and close, thus

allowing the next set of input enter the cell. The sum of square errors is defined as

follows:

E(t) =
1
2

∑
k

ek(t)2; ek(t) := tk(t)− yk(t) (4.17)
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where tk represents the desired teacher signal and yk represents the actual output

of the network.

The learning procedure is as follows:

Step 1

The errors are backpropagated by engaging the following procedure:

Compute the derivative of the output units:

δk(t) = f
′
k(netk(t))ek(t) (4.18)

For all memory block j, compute the derivatives of the output gates:

δoutj = f
′
outj (netoutj (t))(

sj∑
v=1

h(scv
j
(t))

∑
k

wv
kcj

δk(t)) (4.19)

For the vth cells in the jth block compute the cell state error:

esv
cj

(t) = youtj (t)h
′
(scj

v(t))(
∑

k

wkv
cj

δk(t)) (4.20)

Step 2

Update the weights within the network:

Output unit weight updates:

∆wkm(t) = αδk(t)ym (4.21)

For all memory blocks j

Output gate weight updates:

∆wout,m = αδouty
m;∆wout,cv

j
= δoutscv

j
; (4.22)
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Input gate weight updates:

∆win,m = α

sj∑
v=1

escv
j
dsjv

in,m (4.23)

For all peephole connections, v
′

∆win,m = α

sj∑
v=1

escv
j
dsjv

in,cv′
j

(4.24)

Forget gate weight updates:

∆w
in,cv′

j
= α

sj∑
v=1

escv
j
dsjv

ϕ,m (4.25)

For all peephole connections, v
′

∆wϕ,cv
j

= α

sj∑
v=1

escv
j
dsjv

ϕ,cv′
j

(4.26)

Update the cells for the vth cells in the jth block:

∆wcv
j ,m = αescv

j
dsjv

cm (4.27)

LSTM learning algorithm is local in both space and time. It has a computational

complexity per time step and weights of O(1), that means O(n2) where n represents

the number of hidden units. This is in essence determined by the network topology.

It is important to note that learning in LSTM RNNs as described above is super-

vised learning. Recent efforts have been made to exploit the computational ability

of LSTM RNNs for unsupervised learning [53]. We are particularly interested in un-

supervised learning of LSTM RNNs, where a good task-independent representation

for a given set of data must be found.

As noted above, LSTM RNNs are typically trained, in a supervised learning fashion,

based on truncated BPTT and a modified version of RTRL so as to minimize an

objective function (also called error or loss function) that measures the network’s

performance. In supervised learning problems, there exist an explicit target for each
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output node and input pattern. In unsupervised learning, however, there is no target

available to tell the network what to do. In the absence of a teacher, what should

the network’s objective be? The progress of these unsupervised networks must be

evaluated in a task-independent manner, using general principles of efficient coding

[80]. This is the domain of information theory, and we can therefore derive objective

functions for unsupervised learning from information-theoretic arguments.

[53] report on certain information theoretic objective functions for unsupervised

learning that can be plugged into the LSTM RNN for unsupervised learning task.

We now describe information theoretic models in the following section.

4.6 Information Theoretic Models

The concept of information theory first developed by [83] is a deep mathematical

theory that is concerned with the very essence of communication process [42]. The

theory provides a framework for the study of fundamental issues – such as the ef-

ficiency of information representation, and the limitation involved in the reliable

transmission of information over a communication channel. Models derived from

the theory are referred to as information theoretic models. [80] reports on the neu-

ral network implementation of an information-theoretical model in an unsupervised

learning fashion using parametric modelling, probabilistic networks and nonpara-

metric estimation. For a review of information-theoretic models see [42]. [26] also

discusses some information theory models suitable for data mining.

Two information theoretic models for unsupervised learning are binary information

gain optimization (BINGO) and nonparametric entropy optimization (NEO). We

now describe these models in the following sections.
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4.6.1 Binary Information Gain Optimization (BINGO)

BINGO, developed by [81], is a parametric unsupervised learning algorithm which

clusters unlabelled data with linear adaptive discriminants stressing the gaps be-

tween clusters [81, 80]. The method maximizes the information gained from observ-

ing output of a single-layer network of logistic nodes, interpreting their activity as

stochastic binary variables. The resulting weight update formula (see [81, 80] for a

complete derivation) for node i is given by

∆wi α f
′
(yi)x(yi − ŷi), (4.28)

where f
′
(yi) is the derivative of the logistic squashing function f , x the presynaptic

input, and ŷi the difference between actual and estimated network output. A linear

second-order estimator is used for multiple outputs:

ŷ = y + (Qy − 2I)(y − ȳ), (4.29)

where ȳ denotes the average of y over the data, and Qy its autocorrelation. The

binary information gain is maximal (namely, 1 bit/node) when a network’s outputs

are uncorrelated, and approach ’1’ (resp. ’0’) for half the data points. Thus BINGO

seeks to identify independent dichomoties in the data.

4.6.2 Nonparametric Entropy Optimisation (NEO)

NEO, developed by [93], – in contrast to parametric unsupervised learning techniques

– is a differential learning rule that optimizes signal entropy by way of kernel density

estimation; thus, no additional assumptions about a density’s smoothness or function

form are necessary [80], [93]. The nonparametric Parzen window density estimate

p̂(y)is given by:

p̂(y) =
1
| T |

∑
yjεT

Kσ(y − yj), (4.30)

where T is a sample of points yj and Kσ is a kernel function, in our case an isotropic

Gaussian with variance σ2. The kernel width σ that best regularizies the density
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estimate can be found by maximizing the log-likelihood:

L̂ =
∑
yiεS

log
∑
yjεT

Kσ(yi − yj)− | S | log | T |, (4.31)

whose derivative with respect to the kernel width is given by:

∂

∂σ
L̂ =

∑
yiεS

∑
yjεT

∂
∂σ Kσ(yi − yj)∑

yjεT Kσ(yi − yj)
. (4.32)

The maximum likelihood kernel makes a second S derived from p(y) most likely

under the estimated density p̂(y) computed from the sample T . 1 A nonparametric

estimate of the empirical entropy (given optimal kernel shape) of a neural network’s

output y can then be calculated as:

Ĥ(y) = − 1
| S |

∑
yiεS

log
∑
yjεT

Kσ(yi − yj) + log | T |, (4.33)

and minimized by adjusting the neural network’s weights w:

∂

∂w
Ĥ(y) = − 1

| S |
∑
yiεS

∑
yjεT

∂
∂w Kσ(yi − yj)∑

yjεT Kσ(yi − yj)
. (4.34)

Low Ĥ(y) is achieved by clustering the data. See [80, 93] for further details.

In this thesis, we train LSTM recurrent neural networks to maximize NEO (Section

5.4.2).

4.7 Applications of LSTM RNNs

4.7.1 Blues Improvisation

[28] showed that LSTM RNNs are able to learn a form of blues music and are able

to compose novel melodies with the same style. [28] notes that the compositions of

music have a distinct global temporal structure in the form of nested periodicities.

Music therefore has some notes that are more distinctive than others. A LSTM
1To make efficient use of available training data, we let yj in the inner sums of Equations 4.32

and 4.34 range over T = S | {yi} for each yiεS in the outer sum [80]
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RNN is able to successfully learn to predict notes at time t + 1 by making use of

input data at times ≤ t.

4.7.2 Automatic Speech Recognition

Since traditional RNNs suffer from the vanishing gradient problem (see Section 3.8),

they are unable to learn correlations between inputs and errors which span long time

intervals, [27]. This then leads to general failure to find long-term dependencies

spanning several phones 2 [27]. [27] notes that traditional RNNs are not able to

discover transition probabilities among sequences of words at a very slow timescale.

The authors note that even at faster timescales, time warping and co-articulation

effects tend to stretch phones which in turn blur their boundaries. LSTM seeks to

address these problems that traditional RNNs face. A LSTM RNN maps every frame

of an acoustic speech signal onto a set of fixed phone targets. The training involves

using a collection of hand-labelled data. Two LSTM RNNs are used: the first

network estimates the frame-level phone probability; the second network computes

a mapping of the phone predictions into words; i.e. when the network is trained, it

predicts sequences of words from sequences of phones which has been obtained from

the first network. Results indicate that LSTM RNNs perform well at the frame-level

phone prediction.

4.7.3 Named Entity Recognition

Involves identifying atomic elements of information in text, such as names, locations

and monetary values, etc. [41] trained a LSTM RNN on English and German atomic

elements. A self-organising map for sequences is used to generate representations

for the lexical items presented to the network [41]. The network is trained to output

a vector which represents a particular tag, i.e. for the tag O a vector representation

of 0100000 is produced. Promising results were yielded. The reader can consult [41]

for the results.
2A small unit of speech sound that assists to distinguish one word from another.
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4.8 Summary

Long Short-Term Memory RNNs are extensions of RNNs. They are able to overcome

the long-term dependency problem which traditional RNNs suffer from. This chapter

provided a short tutorial on how LSTM RNNs work and briefly highlighted some

tasks that LSTM has been applied to. This will be useful in understanding the next

chapter which applies LSTM RNNs to the profiling of calls made by users over a

period of time in a mobile telecommunication network.



Chapter 5

Call Pattern Analysis in Mobile

Telecommunication Networks

5.1 Introduction

In this chapter, we present a brief overview of data mining. We then present our ex-

periments based on the unsupervised learning modeling approaches that we applied

for profiling of calls made by users over a period of time in a mobile telecommuni-

cations network. We discuss and conclude with findings from our experiments.

5.2 Data Mining

Knowledge discovery in databases (KDD) deals with data integration techniques

and the discovery, interpretation, and visualization of patterns in large collections

of data. An integral part of the KDD process is data mining. It entails the search

for valuable information in large volumes of data through the exploration and anal-

ysis, by automatic or semi-automatic means, of the large quantities of data in or-

der to discover meaningful patterns and rules [23]. Data mining originated from

database technology, statistics, machine learning (AI), visualization and traditional

techniques. Data mining tasks are generally of two forms:

1. Predictive Tasks – use some variables to predict unknown or future values of

other variables.

54
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2. Descriptive Tasks – find human-interpretable patterns that describe the data.

This thesis focuses on the descriptive data mining tasks. [67] discusses the foundation

as well as the practical side of intelligent agents and their theory and applications

for data mining and information retrieval in large databases.

Neural networks are of particular interest as data mining techniques for time series,

because they offer a means of efficiently modeling large and complex problems in

which there may be hundreds of predictor variables that have many interactions.

5.3 Self-Organizing Maps

The self-organizing map (SOM), developed by Kohonen [56], is a neural network

model for the analysis and visualization of high dimensional data. It projects the

nonlinear statistical relationships between high-dimensional data into simple topo-

logical relationships on a regular, typically two-dimensional grid of nodes. The

SOM thereby compacts information while preserving the most important topologi-

cal and/or metric relationships of the primary data elements on the two-dimensional

plane. SOMs have been successfully applied in the development of adaptive devices

for various telecommunication applications [55]. See [52, 73] for a bibliography on

published papers.

The basic SOM model is a set of prototype vectors, with a defined neighbourhood

relation. This neighbourhood relation defines a structured lattice, which may be

linear, rectangular or hexagonal arrangement of map units. The SOM is formed

through an unsupervised, competitive learning process. This process is initiated

when a winner unit is searched, which minimizes the Euclidean distance measure

between data samples x and the map units mi. This unit is described as the best-

matching node, signified by the subscript c:



Chapter 5 Call Pattern Analysis in Mobile Telecommunication Networks 56

‖ x − mc ‖ = min
i
{‖ x − mi ‖}, or

c = argmin
i
{‖ x − mi ‖}.

(5.1)

Then, the map units are updated in the topological neighborhood of the winner unit,

which is defined in terms of the lattice structure. The update step can be performed

by applying

mi(t + 1) = mi(t) + hci(t)[x(t)−mi(t)] (5.2)

where t is an integer, the discrete-time coordinate, hci(t) is the so-called neighbour-

hood kernel; it is the function defined over the lattice points. The average width

and form of hci defines the ”stiffness” of the ”elastic surface” to be fitted to the

data points. In addition, the last term in the square brackets is proportional to the

gradient of the squared Euclidean distance d(x,mi) =‖ x−mi ‖2. The learning rate

α(t) ∈ [0, 1] must be a decreasing function of time and the neighborhood function

hc(t, i) is a non-increasing function around the winner unit defined in the topological

lattice of map units. A good candidate is a Gaussian around the winner unit defined

in terms of the coordinates r in the lattice of neurons

hc(t, i) = exp(−‖ ri − rc ‖2

2σ(t)2
). (5.3)

Some other neighborhood functions are discussed in [56]. During training, the learn-

ing rate and the width of the neighborhood function are decreased, typically in a

linear fashion. The map then tends to converge to a stationary distribution, which

approximates the probability density of the data.

After the input samples have been presented, and the codebook vectors have con-

verged, the map is calibrated. Calibration of the map is done to locate images of

different input data items on it. In practical applications, it may be self-evident

to note how a particular input data set ought to be interpreted and labeled. By
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providing a number of typical, manually analysed data sets, searching for the best

matches on the map, and labeling the map units correspondingly, the map becomes

calibrated. Since the mapping is assumed to be continuous along a hypothetical

”elastic” surface, the closest reference vectors approximate the unknown input data.

A number of ways of improving the performance of the SOM algorithm and a num-

ber of variants of the SOM are presented in [56].

Self-organizing maps may be visualized by using a unified distance matrix represen-

tation [91], where the clustering of the SOM is visualized by calculating distances be-

tween the map units locally and representing these with gray levels. Another choice

for visualization is Sammon’s mapping [79] which projects the high-dimensional map

units on a plane by minimizing the global distortion of inter point distances when

applying the mapping. However, in this work, we used a Kohonen Extension Map

developed by [54].

5.4 Experiments

We report on our experiments using self-organizing maps and LSTM recurrent neu-

ral networks to demonstrate the unsupervised learning potentials of the two neural

network architectures for call profiling over a period of time in a mobile telecom-

munication network. Experiment 1 is a report on our published work [4, 6], which

investigates the capabilities of SOM while Experiment 2 reports on unsupervised

training of the LSTM architecture.

5.4.1 Experiment 1: Self Organizing Map Model

We applied self-organizing maps to unsupervised classification of call data for pre-

paid service subscribers from a real mobile telecommunication network. The data set

contains the call data of 500 masked subscribers over a period of 6 months. The data

set was first normalized. Subsequently, we extracted from the data set Mobile Orig-

inating Calls (MOC). These are calls that were initiated by the subscribers. Within

the 6 months period, a total of 227,318 calls originated from the 500 subscribers.
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The final training records after normalization contained the following fields

1. Subscriber number (MSISDN)

2. Other party called

3. Cell ID in use by the subscriber

4. Area code for the location of the subscriber

5. Date and time the call was made

6. Duration of the call

The subscriber number was not used in training but to identify the SOM of each

subscriber.

Feature Extraction

We generated a feature vector for each subscriber. However, there were symbolic

data present in our training data. These include the other party called, cell ID in

use by the subscriber and the area code for the location of the subscriber. In or-

der to convert these to numeric values, we constructed a frequency table for each

of the symbolic data per subscriber. Each symbol in the frequency table for each

subscriber was then ranked based on the individual frequencies. This ranking was

then used as the corresponding numeric value for the symbol.

The field for date and time was also transformed. This was converted to peak (7am

to 8pm) and off-peak (8pm to 7am) periods. Peak period were represented by 1,

and off peak represented by 2. Thus we have a five dimensional feature vector. The

number of training examples available for each subscriber varies. The subscriber

with the maximum number of training examples had 7007 and the subscriber with

the minimum number of examples had 3.
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Construction of the Maps

The maps for each subscriber were generated using the standard SOM algorithm

[54]. A sample of the input features are shown in Table 5.1. After training, a

number of outputs are generated. The corresponding weights in a trained SOM are

shown in Table 5.2. A graphical view of the map is depicted in Figure 5.1.

C1 C2 C3 C4 C5 C6 C7 C8 C9

1 3 6 6 5 4 2 4 5

4 3 6 6 5 2 5 4 1

2 3 3 3 3 1 3 2 3

1 1 1 1 1 1 1 1 1

11 22 110 259 18 119 39 199 70

Table 5.1: A set of 9 feature vectors for a user transactions in 6 months: The
calls made are labeled C1-C9 for traceability.

X1 X2 X3 X4 X5

Y1 4.896766 4.755345 4.193862 5.005420 5.490612

1.103238 1.305285 3.128322 5.005420 5.490612

2.793532 2.541002 2.048763 2.502710 2.745306

1.000000 1.000000 1.000000 1.000000 1.000000

75.058495 84.413177 162.387711 229.162582 243.718369

Y2 3.915803 4.298299 4.281914 4.501860 5.010276

2.442353 1.917373 2.908486 4.439574 5.010276

2.980540 2.836195 2.158985 2.219787 2.505138

1.000000 1.000000 1.000000 1.000000 1.000000

59.373951 68.149834 152.800949 211.564301 229.308273

Y3 3.122192 3.497991 3.919303 3.922408 4.042710

3.584075 3.116735 3.086745 3.322197 2.941889

3.000000 2.901704 2.122239 1.683334 1.470946

1.000000 1.000000 1.000000 1.000000 1.000000

40.156727 49.095196 131.155838 162.034576 153.066940

Y4 2.653057 3.057090 3.330011 4.479967 4.837338

4.011194 4.153870 4.072011 3.789629 3.674676

2.765450 2.791516 2.671162 1.954079 1.837338

1.000000 1.000000 1.000000 1.000000 1.000000

22.448343 23.540915 43.343700 106.291168 115.231987

Y5 2.601324 3.252775 3.506822 4.996550 5.340620

3.995059 4.223461 4.364476 4.770777 4.681239

2.540669 2.699617 3.000000 2.440937 2.340619

1.000000 1.000000 1.000000 1.000000 1.000000

15.986089 17.336380 25.421503 104.627922 112.967209

Table 5.2: Trained Weight Vectors for Input features in Table 5.1
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Results

A traditional Kohonen map groups similar input vectors together. Distance implies

difference, but nearness does not imply resemblance. However, from the map shown

in Figure 5.1, this is made visible on the map by calculating the square difference

between neighbouring units of the trained map. Consequently, this value is used to

colour the edge separating the units. Hence dark lines indicate strong difference and

light lines indicate strong resemblance.

Figure 5.1: An extended Kohonen Map showing difference and resemblance
between map units

Interpretation of Results

We need to distinguish clusters on the map which indicate normal and abnormal

call pattern behaviour, respectively. Generally, clusters that tend to the corners

of the map, especially with large distances (dark lines) seem to indicate abnormal

behaviour; for instance, C4 and C8 in Figure 5.1. On inspection of the original data,

it was discovered that these calls actually showed behaviour that was unusual, e.g.

unusually long call duration. However, the only way we can validate our assumption

is through a feedback procedure in collaboration with the fraud analysts to further

investigate the knowledge extracted. The feedback will be used to label the clusters

appropriately.
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Discussion

Though we were able to represent the call profile of a mobile phone subscriber using

the SOM, it must be pointed out that information on the temporal nature of the

call transactions was lost in the process.

Further, the fact that different map sizes were generated for the different subscribers

present a challenge when it comes to comparing the call profiles of different sub-

scribers.

Different maps (with same sizes) are generated for the same subscriber with different

runs of the algorithm. This is due to the stochastic nature of the SOM. This means

that the accuracy of the map depends on the number of iterations of the SOM.

Nonetheless, the algorithm preserves the topological property of the map. Observa-

tions that are close to each other in the input space (at least locally) remain close

to each other in the SOM (see Figure 5.2).

Figure 5.2: Extended Kohonen Maps for 3 runs on the same input vector of size
9 showing the preservation of the topological property of the maps

Also, an important question that arises about the map is its reliability. From our

result, the SOM algorithm can be used for getting insight into the call data and

for the initial search of potential dependencies. In general, the findings need to

be cross-validated with other principled statistical methods, in order to assess the

confidence of the conclusions and to reject those that are not statistically significant.

The works of [59, 54, 13] offer suggestions in this regard.
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5.4.2 Experiment 2: Unsupervised Training of LSTM Recurrent

Neural Networks

We applied LSTM recurrent neural networks trained with NEO objective function

(Section 4.6.2) to unsupervised discrimination of the same call data used as in ex-

periment 1. The subscriber number was also not used in training but to identify the

network outputs for each subscriber.

Feature Extraction

A feature vector was generated for each subscriber as in experiment 1. The field for

date and time was transformed into discrete time steps to represent the temporal

order of the sequence. Thus we have a five dimensional feature vector. The feature

vectors for each subscriber were saved in a text file where it can be read by the

LSTM RNN model. Each vector was labeled for traceability. An example of a sub-

scriber input feature vector with 9 call transactions in 6 months is shown in Table 5.3.

C1 C2 C3 C4 C5 C6 C7 C8 C9

1 3 6 6 5 4 2 4 5

4 3 6 6 5 2 5 4 1

2 3 3 3 3 1 3 2 3

1 2 3 4 5 6 7 8 9

11 22 110 259 18 119 39 199 70

Table 5.3: A set of 9 feature vectors for a user call transactions in 6 months with
discrete time steps to reflect the temporal order of the sequence: The calls made
are labeled C1-C9 for traceability.

Network Architecture and Training

The LSTM RNN trained with NEO algorithm (Section 4.6.2) consisted of one single-

cell memory block (this appeared sufficient to learn the task). The single linear out-

put unit produced just one real value for each sequence. After training the network

clusters the output at the end of each sequence, according to the different features

between the sequences.
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In our experiment, we used LSTM network model with forget gates (Section 4.3).

The network was trained until further training did not noticeably improve the result.

An average of 10 runs was made for the training with the result of each run falling

within the 90% confidence interval.

Results

After training, the network’s outputs form clusters of related call patterns. The

clusters becomes denser based on the number of calls for each subscriber. Tables

5.4, 5.5, 5.6 and 5.7 show examples of the outputs produced by the network for

4 subscribers with 9, 13, 22 and 30 call transactions respectively in the 6 months

period. See Figure 5.3 for Table 5.4, Figure 5.4 for Table 5.5, Figure 5.5 for Table

5.6 and Figure 5.6 for Table 5.7.

C1 0.99589163

C2 0.982752837

C3 0.995229964

C4 0.930946741

C5 0.985136358

C6 0.970881254

C7 0.980531615

C8 0.957798918

C9 0.992584693

Table 5.4: Trained network output for a subscriber with 9 call transactions

C1 0.990109443

C2 0.975707756

C3 0.990109443

C4 0.991368568

C5 0.88085985

C6 0.991364486

C7 0.880814611

C8 0.981987861

C9 0.966746684

C10 0.886485079

C11 0.989465226

C12 0.989029876

C13 0.990109443

Table 5.5: Trained network output for a subscriber with 13 call transactions
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C1 0.999972757

C2 0.999841905

C3 0.999879332

C4 0.999983157

C5 0.994692222

C6 0.999983299

C7 0.999970841

C8 0.998391782

C9 0.999924911

C10 0.999950676

C11 0.999904136

C12 0.998965471

C13 0.999960762

C14 0.999948665

C15 0.997908185

C16 0.985477198

C17 0.981955605

C18 0.906226842

C19 0.999720082

C20 0.999835145

C21 0.999983299

C22 0.999147025

Table 5.6: Trained network output for a subscriber with 22 call transactions

Figure 5.3: Trained network output for a subscriber with 9 call transactions
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C1 0.999878127

C2 0.999945895

C3 0.999675456

C4 0.99982513

C5 0.999689383

C6 0.9997588

C7 0.994916759

C8 0.997774856

C9 0.999952796

C10 0.999915842

C11 0.999860702

C12 0.999945895

C13 0.981674747

C14 0.967777243

C15 0.999945895

C16 0.998871244

C17 0.999886581

C18 0.999922937

C19 0.880155866

C20 0.999876606

C21 0.996018245

C22 0.99946733

C23 0.999477189

C24 0.999817685

C25 0.999698839

C26 0.999895133

C27 0.999901345

C28 0.999681177

C29 0.994916759

C30 0.999895133

Table 5.7: Trained network output for a subscriber with 30 call transactions

Figure 5.4: Trained network output for a subscriber with 13 call transactions
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Figure 5.5: Trained network output for a subscriber with 22 call transactions

Figure 5.6: Trained network output for a subscriber with 30 call transactions

Interpretation of Results

We noticed that certain call patterns are prominent, especially those that tend more

towards the horizontal axis. For instance C4 in Figure 5.3, C5, C7 and C10 in Figure

5.4, C18 in Figure 5.5 and C19 in Figure 5.6. On inspection of the original data,

it was discovered that these calls actually showed behaviour that were unusual, e.g.

unusually long/short call duration, repeated calls made to a particular destination,

and calls made from a particular location.

Tables 5.8, 5.9, 5.10 and 5.11 show examples of the clusters discovered by the LSTM
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network in Figures 5.3, 5.4, 5.5 and 5.6 with the salient features 1 that were identified

for these clusters on inspection of the original data.

Cluster Call Label Salient Features Comment

1 C4 4 This call had the longest call duration

2 C8 3 and 4

3 C6 3 and 4

4 C2, C5, C7 3

5 C1, C3, C9 2 and 3

Table 5.8: Clusters Identified by the LSTM network for Figure 5.3

Cluster Call Label Salient Features Comment

1 C5, C7, C10 3 These calls were made from the same location

2 C9 1, 2, 3 and 4

3 C2, C8 2 and 3

4 C1, C3, C4, C6, C11, C12, C13 2 and 3

Table 5.9: Clusters Identified by the LSTM network for Figure 5.4

Cluster Call Label Salient Features Comment

1 C18 1, 2, 3 and 4 This call differs from others on all its call features

2 C16, C17 3 and 4

3 C5 1 and 4

4 C1, C2, C3, C4, C6, C7, C8, C9, C10,

C11, C12, C13, C14, C19, C20, C21, C22 3 and 4

Table 5.10: Clusters Identified by the LSTM network for Figure 5.5

11 is for Other party called, 2 is for Cell ID in use by the subscriber, 3 is for Area code for the
location of the subscriber, 4 is for duration of call
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Cluster Call Label Salient Features Comment

1 C19 4 This call has an usually short call duration

2 C14 1, 2 and 3

3 C13 1, 2, 3 and 4

4 C1, C2, C3, C4, C5, C6, C7, C8, C9, C10,

C11, C12, C15, C16, C17, C18, C19, C20, C21,

C22, C23, C24, C25, C26, C27, C28, C29, C30 1, 2 and 3 C21 has the longest call duration

Table 5.11: Clusters Identified by the LSTM network for Figure 5.6

In order to cross validate our assumption, a feedback procedure in collaboration

with the fraud analysts is necessary to further investage the knowledge extracted.

The feedback will be used to label the clusters appropriately.

Discussion

It was observed from training that the results were more difficult to obtain as the

number of call patterns increased for the subscribers. This suggests that the correct

discriminants were harder to find for increased number of call patterns.

In unsupervised models, learning becomes possible because there is redundancy 2

in the input data stream [8]. Since most naturally occurring phenomena are not

random, any redundancy that occurs in the distribution of the data set implies that

this set does not fill the data space uniformly. Thus, redundancy in the data suggests

the existence of structure in the data. Consequently, by using LSTM RNN model

to represent the call profile of the mobile subscribers in an unsupervised learning

fashion, we attempted to preserve the temporal nature of the sequence of call trans-

actions, hence conserving the redundancy within the data set more accurately than

the SOM model.

We also observed that, as the number of training sequences increased per subscriber,

a better discrimination was noticeable.
2Redundancy is the property of the input stimuli that distinguishes them from random noise
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In addition, because the number of training examples available for each subscriber

varies, that presents a challenge when it comes to comparing the call profiles of

different subscribers.

5.5 Assessment of Models

While SOM shows information on neighbouring units of the trained map, it provides

less information on salient features between call patterns as LSTM does.

SOM help to get insight into the call data and for initial search for potential depen-

dencies but LSTM, while preserving the temporal order of the sequence, brings out

the salient features in related call patterns.

LSTM provides a better clustering of the call patterns more than SOM and its out-

put is available in a better human-interpretable fashion.

In accordance with descriptive data mining tasks, LSTM finds human-interpretable

patterns that describe the data more effectively than SOM.

The longest training patterns for a subscriber trained by the LSTM RNN model was

7007. [10] state that traditional RNNs are notoriously difficult to train, especially

when the interval between relevant events in the input sequence exceed about 10

time steps. [46] also show that LSTM has been shown to bridge minimal time lags

in excess of 1000 discrete time steps. Consequently, our finding suggest LSTM RNN

model as an instant appeal to the problem of call profiling of user transactions with

long time series, over SOM and other traditional RNNs.
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5.6 Summary

We have presented the results of our experiments, which have enabled us to deduce

a number of conclusions based on applying SOM and LSTM RNNs – in an unsuper-

vised learning fashion – to the task of modelling subscriber call transactions time

series data in a mobile telecommunication network.



Chapter 6

Conclusions and Directions for

Future Research

6.1 Conclusion

In [8], it was noted that unsupervised neural networks can mainly be used in ex-

ploratory data analysis. They act on unlabelled data in order to extract an efficient

internal representation of the structure implicit in the data distribution.

In accordance, the main focus of this thesis has been to investigate the unsupervised

learning potentials of two neural networks - Self-Organizing Maps (SOM) and Long

Short-Term Memory (LSTM) recurrent neural networks for the profiling of calls

made by users over a period of time in a real mobile telecommunication network in

order to conduct a descriptive data mining on the users call patterns.

Our investigation shows the learning ability of both neural networks to discriminate

user call patterns with the LSTM recurrent neural network algorithm providing a

better discrimination of call patterns than the SOM algorithm in terms of long time

series modelling.

To our knowledge, LSTM RNN has not been used as a basis where unsupervised

learning in a dynamic model fashion is applied to unlabelled call data.
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In chapter 5, we have presented the results of our experiments. These results have

enabled us to draw a number of conclusions of relevance to unsupervising learning

capabilities of SOM and LSTM RNN as part of the fraud detection process in mobile

telecommunication networks. We have shown that LSTM RNN is able to model a

subscriber’s call transactions over a period of time with a relatively high degree of

accuracy. Also, this study provided us with a first time look at the application of

LSTM RNNs, in an unsupervised learning fashion for call pattern analysis in mobile

telecommunication networks.

6.2 Directions for Future Research

6.2.1 LSTM RNN Trained With Other Objective Functions

It would certainly be useful and interesting to see LSTM RNN trained with other

unsupervised learning objective function applied for call pattern analysis in mobile

telecommunication network. [53] reported on the training of LSTM RNN with a

unsupervised learning objective function – BINGO (Section 4.6.1)

Other objective functions for unsupervised learning can also be used, resulting in

promising techniques specially for those tasks involving unsupervised detection of

input sequence features spanning long time periods.

6.2.2 LSTM RNN for Predictive Data Mining Tasks

The ideas presented in this study may be used for clustering call patterns in order to

label them as normal or abnormal. The labeled data set could then be used to learn

a time-series classifier, for instance a LSTM recurrent neural network model, in a

supervised fashion. Our investigation suggests that LSTM RNN would do better

than other temporal classifiers if we had labelled data. We intend to pursue these

tracks in future work [3, 5]
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Finally, combining the advantages of our approaches with a recurrent neural network

model should result in promising techniques for numerous real-world tasks involving

detection of input sequence features spanning extended time periods.
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