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Abstract  

The need for simplified polymer electrolyte membrane fuel cell (PEMFCs) systems, 

which do not require extensive fuel processing has led to increased study in the field of  

high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) applications. 

Although these HT-PEMFCs can operate with less complex systems, they are not 

without their own challenges; challenges which are introduced due to their higher 

operation temperature. This study aims to address two of the main challenges associated 

with HT-PEMFCs; the need for alternative catalyst layer (CL) ionomers and the 

prevention of excess phosphoric acid (PA) leaching into the CL.  The first part of the 

study involves the evaluation of suitable proton conducting materials for use in the CL 

of high temperature membrane electrode assemblies (HT-MEAs), with the final part of 

the study focusing on development of a novel MEA architecture comprising an acid-

controlling region. The feasibility of the materials in HT-MEAs was evaluated by 

comparison to standard MEA configurations. 

  

Firstly, the influence of CsHSO4 inorganic solid acid was evaluated as a possible proton 

conductor in the CL of ABPBI (poly(2,5-benzimidazole))-based HT-PEMFCs. The gas 

diffusion electrodes (GDEs) were prepared by impregnating CsHSO4-binder 

(polytetrafluoroethylene (PTFE) or polyvinylidene difluoride (PVDF)) blends in the 

CLs. The binder loadings were fixed and the CsHSO4 loading was varied. The 

microstructure of the electrodes was evaluated by mercury intrusion porosimetry (MIP) 

and the surface morphologies were observed by Scanning Electron Microscopy (SEM). 

Single cell tests and electrochemical characterisation were further performed to 

determine the influence of CsHSO4 loading as well as the influence the CsHSO4-binder 

configurations had on each electrode. The GDEs containing CsHSO4 in the CLs showed 
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good proton transfer dynamics and low resistance for fuel cell operation. An optimum 

loading of 10% CsHSO4 in conjunction with either of the binders was observed, with 

CsHSO4-PVDF GDE achieving a maximum performance of 498.2 mW cm-2 at a cell 

voltage of +352 mV. A higher CsHSO4 loading increased the charge transfer resistance 

and lowered the cell performance of these GDEs. A polymer binder is clearly required 

for stabilisation of CsHSO4 GDEs. The failure of CsHSO4 to meet the desired 

performance requirements led to the study of other suitable proton conducting materials.  

 

Zirconium hydrogen phosphate (ZHP) was next evaluated as an ionomer candidate in 

the CL due to its good thermal stability and proton conductivity it displays at high 

temperatures. The ZHP, together with PTFE polymer binder was incorporated into the 

CLs of ABPBI (poly(2,5-benzimidazole))-based HT-PEMFCs to improve its 

performance and durability. The influence of ZHP content (normalised with respect to 

dry PTFE) on the CL properties was structurally characterised by SEM and MIP. 

Electrochemical analyses of the resultant membrane electrode assemblies (MEAs) 

revealed that a 30 wt.% ZHP/PTFE content in the CL is optimum for improving fuel 

cell performance, the resultant MEA delivered a peak power of 592 mW cm-2 at a cell 

voltage of 380 mV. EIS analysis indicated that 30% ZHP in the CL can increase the 

proton conductivity compared to the pristine PTFE-GDE. A short term stability test 

(~500 h) on the 30 wt.% ZHP/PTFE-GDE showed a remarkable high durability with a 

degradation rate as low as ∼19 µV h-1 at 0.2 A cm-2, while 195 µV h-1 was obtained for 

the pristine GDE. The addition of ZHP to the CL was beneficial in terms of both 

performance and stability which is important for HT-PEMFCs. 

 

The last part of the study involved the development of an acid-controlling region on the 

surface of the CLs. Ceramic carbides were chosen because of their good stability and 
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mechanical properties at the temperatures under consideration. Firstly, SiC layers of 

varying loadings were deposited onto the CL and evaluated, an optimum loading of 0.2 

mg cm-2 was found to produce the best results compared to that of 0.5 mg cm-2
 and 1.0 

mg cm-2 SiC. Variation of the acid doping level in the SiC layer revealed an optimum 

amount of 2 mg cm-2 PA in the SiC layer produced the maximum peak power of 475 

mW cm-2 at a cell voltage of 340 mV. The standard pristine MEA however showed a 

performance ~9% higher than the SiC MEA. Modification of the SiC layer with varying 

NbC contents revealed no improvement in performance. EIS analyses of the MEAs 

showed that the PTFE MEA had the lowest charge transfer resistance of 265, 75 mΩ 

cm-2, followed closely by the 0.2 mg cm-2 SiC MEA with 280.80 mΩ cm-2. Short-term 

stability analyses revealed that the 0.2 mg cm2 SiC GDE (doped with 2 mg cm-2 PA) 

MEA showed a ~70% improvement in durability compared to the standard pristine 

MEA. Despite the SiC MEA exhibiting a slightly lower performance a ~70% 

improvement in durability clearly compensates for any performance losses. 
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Chapter 1: Introduction 

1.1 Background 

Fuel cells are considered to be one of the most promising technologies for clean and 

efficient power generation in the present century, with polymer electrolyte membrane 

fuel cells (PEMFCs) being amongst the most actively studied fuel cells in recent years. 

The vast majority of research has been devoted into the research and development (R 

& D) of PEMFCs for transportation. In order to achieve the transport industries 

requirements, PEMFCs have to overcome some intrinsic challenges such as durability 

and cost of system components.  

The main component of a PEMFC is the membrane electrode assembly (MEA), which 

is comprised of the polymer electrolyte membrane, gas diffusion layers (GDLs) and 

the catalyst layers. In order for the electrode reactions to occur, the catalyst needs to be 

at the boundaries of three phases, i.e. electron conductive phase (carbon), ion 

conductive phase (polymer electrolyte), and gas or liquid phase of reactants and 

products (pores) [1]. The point where the reactants, catalyst, and electrolyte come into 

contact is referred to as the 'triple-phase boundary' (TPB). This TPB area depends 

greatly on the method of MEA fabrication as well as structural parameters such as 

catalyst and ionomer loading [2]. The catalysts used to facilitate the electrode reactions 

which occur in the MEA are normally expensive platinum group metal catalysts. 

Research has focused on reducing costs by finding alternative catalysts as well as 

improving the efficiency of the catalyst utilisation.  

Low temperature polymer electrolyte membrane fuel cells (LT-PEMFCs), utilising a 

solid polymer membrane as the electrolyte have been widely studied. The electrolyte 

membrane requires water to conduct protons and this limits the temperature range to 
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below 100 oC, which lowers the system efficiency. LT-PEMFCs are used as small-

scale power sources in vehicles, portable and in residential use. Recent trends however 

are looking at the commercialization of 1kW-class domestic cogeneration systems 

using both electricity and electrically generated waste heat. Because higher 

temperatures result in a higher cell voltage, a stumbling block to the 

commercialisation of combined heat and power (CHP) systems is the inherent need to 

humidify LT-PEMFCs, as a result the R & D focus has shifted to high temperature 

polymer electrolyte membrane fuel cells (HT-PEMFCs) which do not require 

humidification and have improved operational efficiency [3]. Fig. 1 illustrates a micro-

CHP system in a household. 

 

 

Fig. 1 Schematic of a Micro-CHP system in a household [4] 

 

HT-PEMFCs have the advantage of having a high carbon monoxide (CO) tolerance 

(between 1 and 2%), which give them the ability to operate using reformate gas, 

whereas LT-PEMFCs require a CO content of 50ppm or lower. LT-PEMFCs can as a 

2 

 

 

 

 

 

 

 



 

result not utilise reformate fuel unless additional reactors are added to reduce CO 

content. A further advantage of HT-PEMFCs is the quality of heat which is made 

possible due to higher operating temperature. These enable the use of smaller and 

simpler fuel processing and ancillary systems, which aids in improving the overall 

efficiency of the fuel cell system [5]. 

1.2 Rationale of the study 

Operation at elevated temperatures (120-200 oC) comes with its own set of challenges 

for HT-PEMFCs. HT-PEMFCs must have sufficient heat resistance under zero 

humidification conditions and should be based on polymer electrolyte membranes that 

can chemically couple with acids capable of proton conduction. Novel materials that 

provide high performance and high durability under such conditions are a prerequisite 

for HT-PEMFC. Acid-doped polybenzimidazole (PBI) membranes that are 

temperature resistant for operation above 100 oC have been developed and it has been 

reported that Pt nanocatalysts supported on multiwall carbon nanotubes (CNTs) 

showed a higher durability and stability (attributed to improved corrosion resistance 

and lower surface oxide formation) than that supported on carbon black [6]. Different 

techniques of gas diffusion electrode (GDE) fabrication have been developed based on 

perfluorosulfonic acid (PFSA) membranes for LT-PEMFCs, however, little effort has 

been made to fabricate gas diffusion electrodes for PBI-based membranes for HT-

PEMFCs [7]. PBI is a basic polymer with good mechanical and chemical stability in 

the 120-200 oC temperature range, however, in order to be proton conducting the 

membrane has to be doped with an acid, typically phosphoric acid (PA). PA is a weak 

acid that supports conductivity in anhydrous conditions via the formation of a 

hydrogen-bonded network. PA is also utilised as an ionomer in the catalyst layers of 
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HT-PEMFCs based on PBI-membranes. This introduces a new set of problems as 

phosphate anions are strongly adsorbed onto the surface of Pt catalyst particles leading 

to catalyst deactivation and low performance [8, 9]. HT-PEMFCs are expected to have 

a performance three times greater than that of LT-PEMFCs due to improved reaction 

kinetics at higher temperature, but this has yet to been seen, with catalyst deactivation 

being one of the reasons for this lower performance. There is therefore an urgent need 

to find a more suitable ionomer material for the catalyst layer in PBI-based HT-

PEMFCs. 

Other challenges facing HT-PEMFCs include; the high corrosion rate of the 

amorphous carbon catalyst support, the dissolution and sintering of catalyst particles at 

high temperature and the accelerated degradation of the MEA due to the open circuit 

voltage in the zero-load state [10]. The proposed study aims to address the above 

issues by developing gas diffusion electrodes, by systematically introducing 

components, particularly various proton conductors, and optimizing the thickness, 

porosity and electrical conductivity, suitable for HT-PEMFC operation. 

At the present time, there are only two modes for fabricating MEAs, in which the 

electrocatalyst can either be applied onto the GDL; called the catalyst-coated substrate 

(CCS) method, or directly onto an electrolyte membrane; called catalyst-coated 

membrane (CCM) method [11, 12]. Tang et al. [13] performed a comparative 

investigation on PEM fuel cells with MEAs made in the conventional manner (CCS 

MEAs) and CCM MEAs. Their findings showed that cells with a CCM MEA exhibit 

significantly higher performance than those prepared with conventional CCS MEAs. 

Although CCM MEAs exhibit improved performance over CCS MEAs, it is quite 

challenging to make the CCM for HT-PEMFCs. In the CCS method the substrate, 
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typically carbon cloth/paper made up of a porous network of carbon fibres, is coated 

with a catalyst layer, followed with the attachment of the electrolyte membrane 

between two GDEs by hot-pressing to form the completed MEA structure [7]. The 

structural modification of the MEA will affect the mass transport of the reactant gas 

and water produced during the reaction. Ion and electron transfer is also affected by 

structure of the catalyst layer, and this in turn affects the overall cell performance 

[14]. ABPBI poly(2,5-benzimidazole) membranes can be produced at low cost, 

provide improved water and phosphoric acid uptakes as well as good mechanical 

strength, as compared to PBI [15]; these properties make it a good choice for use as 

the electrolyte membrane. 

The development and optimisation of catalyst layers and electrolyte membrane 

receive the majority of attention in HT-PEMFC research, while the properties of the 

entire GDE are often overlooked when developing the MEA for any novel proton 

conducting material. GDEs serve a critical role in the MEA of HT-PEMFCs; they 

should be able to provide strength, transport electrons, and retain their mass transfer 

functions at elevated temperature [16]. They are responsible for the permeation of 

reactant gases from the flow fields to the catalyst layer, via through-plane and in-

plane gas access and product permeation from the catalyst layer to the flow fields. In 

addition they have to exhibit good electronic conductivity and thermal stability. These 

properties depend on the pore size distribution, thickness, hydrophobic content and 

carbonization or graphitization conditions of the diffusion electrodes [17].  

In fuel cell electrodes, mass transport of reactants and products to and from the 

reaction zones should not be rate limiting relative to the desired chemical reaction 

rates. Concentration gradients occur if the mass transport limiting, and this leads to 
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losses in cell voltage and efficiency. The gas diffusion backings are typically porous 

carbon cloth or carbon paper to ensure that mass transport is not rate limiting [18]. 

PEMFCs operating at temperatures ≤ 80oC under atmospheric pressure usually 

involve two-phase mass transport as water is present in both the liquid and vapour 

states as reactant gases have to be humidified in order to maintain adequate membrane 

hydration. However, HT-PEMFCs operating at temperatures greater than 100oC and 

atmospheric pressure, only have a single water phase (water vapour), so transport of 

water in the MEA will be easier to balance but leaching of phosphoric acid from the 

membrane poses a new set of problems [6]. The cathode flooding problem in HT-

PEMFCs is not as severe as in LT-PEMFC, and transport of the reactant gases to the 

electrode layers is expected to be enhanced. There is also a reduction in the quantity 

of liquid water, and this increases the exposed surface area of the electrocatalysts and 

improves the ability of the reactants to diffuse into the reaction layer [19]. The 

development of a materially compatible GDE for HT-PEMFCs which are durable 

under high operating temperatures is essential for completion of HT-PEMFC 

technology. 

Optimisation of the GDE component of the MEA inevitably leads to optimisation of 

the entire MEA structure. MEA optimisation leads to improved performance of the 

fuel cell, and MEAs which are more durable as the structural components are specific 

and selective to HT-PEMFCs. An integral part of the optimisation process is to find a 

way to prevent the formation of excessive phosphoric acid in the catalyst layer, this 

would include finding a catalyst layer ionomer other than PA, and preventing the PA 

from the ABPBI membrane from leaching into the catalyst layer by adding an acid-

controlling layer to the GDE structure. GDEs have to be developed for HT-PEMFCs 

which are capable of providing long-term durability and stability.  For this reason 
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materials are chosen that are capable of withstanding high temperatures for a 

sustainable period of time. 

 

1.3 Research Objectives 

The main objective of this work will be to develop a unique GDE structure that is 

capable of providing improved performance and durability for HT-PEMFC MEAs. 

Within the context of the main objective, the specific objectives of the study were: 

i. Demonstrate new materials capable of acting as a suitable catalyst layer 

ionomer and effectively improving proton transfer at the interface between the 

electrolyte membrane and electrode, ultimately increasing Pt utilisation and 

optimising the catalyst layer for HT-PEMFCs by: 

• Introducing various materials capable of proton conduction at high 

temperature into the catalyst layer of GDEs for MEAs. 

• Characterising the performance and stability of these MEAs. 

ii. Develop, demonstrate and characterise a novel MEA architecture which 

involves the introduction of an acid-controlling region for HT-PEMFC MEAs 

by: 

• Identifying suitable materials for the acid-controlling region. 

• Optimising the acid-controlling region. 

• Characterising the performance and stability of these MEAs 
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Chapter 2: Literature Review 

The literature review gives a brief background pertaining to fuel cells, which includes 

but is not limited to; history, types, developments and identification of problems areas 

associated with various aspects of their application. The identification of the problem 

areas will form the basis for which the GDE structure will be modified for the purpose 

of enhanced performance and stability. 

 

2.1 Fuel cell overview 

2.1.1 Background 

Fuel cells are electrochemical devices that are capable of directly converting chemical 

energy to electrical energy, with a concomitant production of water and heat as long 

as there is a constant supply of reactant gases. A schematic diagram of a typical PEM 

fuel cell is shown in Fig.2.1. Fuel cells are capable of providing high efficiencies and 

low emissions as well quiet operation [20]. The energy conversion takes place 

between two electrodes, an anode and a cathode, and in this respect a fuel cell is very 

similar to a battery. The major differences between fuel cell and batteries are related 

to energy storage and conversion, with a battery being a closed system with the anode 

and cathode being the charge transfer medium and the electrodes themselves taking an 

active part in the redox reaction as reactants. Fuel cells are, however, are open 

systems where the anode and cathode serve as charge transfer media, with the 

reactants taking part in the redox reaction delivered from outside the cell [21]. 

Typically, a fuel cell is composed of two electrodes, an anode and a cathode which is 

separated by an electrolyte. The fuel (usually hydrogen) is oxidised at the anode into  

protons and electrons, and oxygen (usually supplied from air) is reduced at the 
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cathode  into oxygen molecules. A selectively permeable electrolyte membrane 

allows only positive ions to pass through from the anode to the cathode, while acting 

as an insulator for electrons. 

 

Fig. 2.1 Schematic diagram showing the basic principles of fuel cell operation [22]. 

 

In order for the system to become stable the electrons have to recombine with oxygen 

molecules and the positively charged ions, so they travel through an external circuit 

where they can power a given load before they reach the cathode where this reaction 

takes place [23]. The individual electrode chemical reactions involved and the overall 

chemical reaction taking place in a fuel cell are given as: 

 

Anode reaction: 

H2 → 2H+ + 2e-                                              (2.1) 

Cathode reaction:  

9 

 

 

 

 

 

 

 



 

½O2 + 2 H+ + 2e- → H2O                                             (2.2) 

Overall reaction:   

H2 + ½O2 → H2O ΔG = - 237 kJmol-1                                          (2.3) 

 

Although fuel cell technology has gained a new surge in interest over the past three 

decades, fuel cell technology is not a recent invention; in fact the first fuel cell was 

invented in 1842 by Sir William Grove. This fuel cell which produced electricity by 

combining hydrogen and oxygen consisted of two electrodes submerged in sulphuric 

acid solution [24, 25]. Over the next 100 years fuel cell technology suffered with the 

emergence of internal combustion engines (ICE), with no real advances being made, 

until the technology once again experienced a surge of interest in the late 1950s. 

Scientists William Thomas Grubb and Leonard Niedrach at General Electric (GE) at 

this time worked on developing fuel cells for generating electricity for the spacecraft, 

leading to the eventual development of the first Proton Exchange Membrane Fuel Cell 

(PEMFC) [26]. The National Aeronautics and Space Administration (NASA) at this 

time realised the incredible advantages this technology posed and used a 12 kW 

Alkaline fuel cell in the Apollo and Gemini space programs [23], suffice it to say the 

technology really took off at this time with further development occurring in 

stationary and portable power applications. 

 

The increasing global demand for energy, rising cost of fossil fuels, energy security 

and the increased environmental degradation the earth faces due to ever-increasing 

industrialisation as the worlds' population grows has led to heightened interest in high 

energy density power sources such as fuel cells [27-30]. Certain types of fuel cells 

such as PEMFCs, have already been successfully commercialised in specific fields 
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such a portable electronics and as back-up power supplies. Fuel cells can operate with 

very high electrical efficiencies of up to 70% or efficiencies of up to 90% if waste 

heat is captured and reused [21]. ICEs on the other hand are only capable of achieving 

efficiencies of 15-20%, the remainder of the energy contained in the fuel is lost on 

friction, incomplete burning of the fuel, and other inherent inefficiencies characteristic 

of  ICEs. Fuel cells are capable of achieving higher efficiencies than ICEs, because 

unlike ICEs, fuel cells are not limited by the Carnot efficiency, but they do have a 

theoretical limit to their efficiency.  

 

2.1.2 Principle of Operation 

The energy driving the transfer of electrons in an electrochemical cell is called the 

Gibbs free energy (G), and since fuel cells are electrochemical cells the energy 

driving the electrochemical reaction is the same. The maximum amount of electrical 

energy (Wel) generated by the fuel cell corresponds to the change in Gibbs free 

energy, ΔG of the overall chemical reaction given in Eq. 2.3 by: 

 

                                             𝑊𝑊𝑒𝑒𝑒𝑒 = −∆𝐺𝐺 = −𝑛𝑛𝑛𝑛𝑛𝑛                 (2.4) 

                                                                                                                           

In the absence of any voltage losses which occurs when no current is flowing, and n 

electrons are transferred, the change in Gibbs free energy produced by the 

electrochemical reaction is related to the theoretical potential of the fuel cell E, by the 

following reaction: 
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𝑛𝑛 =
−∆𝐺𝐺
𝑛𝑛𝑛𝑛

           

                                                                                                                           (2.5) 

                                                                                                                                 

Where F is Faraday's constant (96.485 Coulombs/electron-mol), and since n, F and 

ΔG are all known, the theoretical potential of the H2/O2 fuel cell under ideal 

conditions can be calculated according to the following: 

 

𝑛𝑛 = −
∆𝐺𝐺
𝑛𝑛𝑛𝑛 

=
237.340 𝑘𝑘𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚−1

2 ∗ 96.485 𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚−1
= 1.23 𝑉𝑉 

                                                                                                                          (2.6) 

 

The theoretical potential value of 1.23 V is obtained at standard conditions, i.e., at a 

temperature of 25 oC and at atmospheric pressure and when the water product is in the 

liquid phase. The value of Gibbs free energy is however, not constant and varies with 

temperature, pressure and purity of reactants. At a higher temperature of say for 

instance, 200 oC the water product is in the gaseous phase and the value for ΔG is 

reduced to -220.40 kJ mol-1, the theoretical potential of the H2/O2 fuel cell decreases 

to 1.14 V [31, 32]. The fuel cell output voltage of ~1.2 V is very small, so for most 

practical fuel cell applications, the unit cells have to be arranged into a cell stack to 

achieve the voltage and power output level required for the application [33].  Eq. 2.6 

above gives the no-loss open circuit voltage (OCV) of a fuel cell, when no current is 

drawn from the system. Electrical energy from the fuel cell is however, only obtained 

when a current is drawn, but simultaneous drops in the cell voltage occur due to 

various irreversible loss mechanisms. Even the OCV suffers from inherent losses, 

which can be attributed to gas leaks across the membrane due to poor sealing or 
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cracks in the membrane or to partial electronic conductivity, hence the actual OCV of 

a fuel cell is usually less than 1.23 V [20, 23, 31]. These voltage losses are commonly 

referred to as overpotential η, overvoltage or polarisation, which is defined as the 

deviation of the actual cell potential from the theoretical potential [34]. Besides the 

voltage losses occurring at OCV attributed to crossover of reactants and electronic 

conductivity of the membrane, there are three main contributions to voltage loss that 

increases with current; activation overpotential, ohmic overpotential and mass 

transport (concentration) overpotential. 

 

 

Fig. 2.2 Characteristics of a typical polarisation curve [35]. 

 

Fig. 2.2 shows a typical fuel cell polarisation curve illustrating the performance losses 

in the cell [35]. A polarisation curve is one of the main diagnostic methods for 

characterising a fuel cell and its performance. The performance characteristics are 

influenced by various factors such as catalyst loading, catalyst layer structure, 

electrolyte properties, flow field design, operating conditions and uniformity of local 

conditions over the entire active area of the electrode [32]. The shape of the curve is 
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the result of the four major irreversible voltage losses. The first overpotential arises 

due to reactant crossover and internal stray currents. At low current densities there is 

an initial rapid fall in voltage caused by activation losses, which is associated with 

sluggish electrode kinetics. The overpotential at medium current density results in a 

fairly linear region and is attributed to ohmic losses, which occur due to the resistance 

of the electrolyte to the flow of ions and the resistance of the electrode material and 

various cell components to the flow of electrons, as well as contact resistances. This 

voltage drop is directly proportional to current density and results in the linear shape 

of the curve. The final overpotential associated with the high current density region is 

caused by mass transport losses, due to the change in concentration of reactants at the 

surface of the electrodes resulting from the continuous consumption of the reactants in 

the electrochemical reaction. This mass transport loss is the result of a failure to 

transport sufficient reactant to the electrode surface, and as a consequence a 

concentration gradient is established [22, 33, 35]. The performance of a fuel cell is 

improved by thermodynamics and electrical efficiency of the system. Where the 

thermodynamic efficiency depends on fuel processing, water management and 

temperature control of the system, the electrical efficiency depends on the various 

overpotentials over the fuel cells like activation, ohmic and mass transport losses [23]. 

 

2.2 Classification of Fuel Cells 

Fuel cells are typically classified according to the choice of electrolyte and the type of 

fuel it employs. Because ion conduction is a thermally activated process, the choice of 

electrolyte, which may be either liquid or solid determines the operating temperature 

range of the fuel cell as well as the type of ions which may be carried across the 
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electrolyte [20]. The operating temperature and lifetime of a fuel cell dictates not only 

the physicochemical properties, but also the thermomechanical properties of the 

materials used in the cell components (i.e. electrodes, electrolyte, interconnect, 

current collectors, etc.) [33]. There are at present six major different types of fuel 

cells: (i) PEMFC, (ii) alkaline fuel cell (AFC), (iii) solid oxide fuel cell (SOFC), (iv) 

molten carbonate fuel cell (MCFC), (v) phosphoric acid fuel cell (PAFC) and (vi) 

direct methanol fuel cell (DMFC). Fuel cells are further classified based on their 

operation temperature. PEMFCs, DMFCs, AFCs and PAFCs typically operate at low 

temperature (50-250 oC), whereas SOFCs and MCFCs operate at higher temperatures 

(650-1000 oC) [23]. Table 1 depicts the different fuel cell types and their 

characteristic features. 

 

Table 1: Fuel cell types and features 

 

Fuel Cell Type Fuel Electrolyte 
Mobile 

ion 

Electrical 

Efficiency  

Operating 

Temperature 

PEMFC H2
 

Solid polymer 

membrane 

(Nafion) 

(H2O)nH+ ~58% <100 oC 

AFC H2 Aqueous H2 OH- ~60% 150-200 oC 

PAFC H2 H3PO4 H+ >40% 150-200 oC 

MCFC 
Hydrocarbons, 

CO 
(Na,K)2CO3 CO3

2- 45-47% 600-700 oC 

SOFC 
Hydrocarbons, 

CO 
(Zr,Y)O2-δ O2- 35-43% 700-1000 oC 

DMFC CH3OH 

Solid polymer 

membrane 

(Nafion) 

H+ 35-40% <100 oC 
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2.2.1 Alkaline Fuel Cell 

The alkaline fuel cell, developed by Sir Francis Bacon in the 1930s is one of the most 

developed fuel cell technologies. It utilises a circulating liquid alkaline electrolyte, 

potassium hydroxide (KOH) which also acts as an effective heat transfer and water 

management medium [36].  The hydrogen and oxygen kinetics are more facile in 

alkaline than acid electrolytes, hence resulting in higher cell voltages. These higher 

cell voltages are not only due to better kinetics but are also attributed to the fact that 

the ORR via the intermediate peroxide, HO2
- in alkaline electrolytes is more facile. 

Non-noble metal catalysts, such as Raney nickel, can hence be used for the fuel cell 

electrode. The AFC requires pure H2 and O2 reactants due to its electrolytes' 

susceptibility to CO2, which contaminates the electrolyte by clogging its pores [21]. 

The CO2 reacts with the KOH electrolyte to form potassium carbonate (K2CO3), 

effectively reducing the OH- ion concentration, causing a decrease in the ionic 

conductivity of the electrolyte and increasing the viscosity of the electrolyte. 

Ultimately having a negative impact on electrode kinetics and diffusion properties 

[37].  Potential problems due to CO2 contamination can be overcome by using a 

scrubber to remove CO2 or by changing the electrolyte at regular service intervals 

[36]. 

 

2.2.2 Molten Carbonate Fuel Cell 

Molten carbonate fuel cells allow for internal reforming due to their high operating 

temperature (600-700 oC), and can as a result use both H2 and CO2 as fuels. They are 

capable of achieving high total efficiencies of ~80% due to the use of the waste heat 

in CHP systems [38]. The ORR kinetics are greatly improved by these higher 
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temperatures thereby eliminating the need for high loadings of the precious metal 

catalysts [39]. The electrolyte is usually a mixture of binary alkali carbonates, such a 

Li/Na carbonate or Li/K carbonate which is retained in a ceramic matrix of LiAlO2. At 

these high temperatures the alkali carbonates form a highly conductive molten salt, 

with the carbonate ions (CO3
2-) providing the ion conduction [33]. Morita et al.[40] 

showed that Li/Na exhibits a higher conductivity than Li/K, Li/Na/K and Na/K 

carbonates at the same temperature. The high operating temperatures provide good 

reaction rates enabling the use of inexpensive nickel-based catalysts. Anodes of 

MCFCs are typically a mixture of Ni/Al or Ni/Cr, which are used as Ni isn't stable 

enough and creeps into the molten carbonate electrolyte melt, thereby reducing the 

active surface area. The cathodes are typically composed of NiO, which are active 

enough for the ORR at high temperature, although NiO dissolution is also a problem. 

Addition of small quantities of  magnesium to the cathode and electrolyte improves 

the stability, however alternative doped lithium oxide materials such as LiCoO2 used 

in conjunction with NiO have vastly improved the stability [39]. Tanimoto et al.[41] 

showed that the addition of appropriate quantities of CaCO3 or BaCO3 to a Li-Na 

carbonate electrolyte significantly reduced the NiO solubility in the electrolyte 

ultimately resulting in a 15-20% improvement in lifetime compared to the undoped 

material. MCFCs unlike other fuel cells rely on the balance of capillary pressure 

within the pores of the electrodes to establish the interfacial electrolyte/electrode 

boundaries [42]. 

2.2.3 Solid Oxide Fuel Cell 

Solid oxide fuel cells (SOFCs) operate at temperatures of 700-1000 oC and commonly 

use the solid non-porous metal oxide yttria-stabilised zirconia (YSZ) as the electrolyte 
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which conducts ions via the oxide (O2-) ion [33, 43, 44]. SOFCs are more stable than 

MCFCs as they employ a solid metal oxide as their electrolyte and hence no leakage 

due to a liquid electrolyte can occur. Electrolyte management issues that arise with 

PAFCs and MCFCs do not occur and there is no need for precious metal 

electrocatalysts due to the high operating temperature. SOFCs, like MCFCs can utilise 

both H2 and CO2 as fuels [31]. Typical materials for the porous electrodes are 

lanthanum strontium manganites ((LaSr)MnO3) for the cathodes and Ni-based cermets 

for the anode, with common interconnect materials composed of lanthanum calcium 

chromites [45].  The zirconia in the Ni-based cermet anodes inhibits the sintering of 

the metal particles and provides a thermal expansion coefficient comparable to that of 

the electrolyte. Although lanthanum strontium manganites are typically used for the 

cathode, other materials such as p-type conducting perovskite structures which exhibit 

mixed ionic and electronic conductivity are also attractive cathode materials [31, 45].  

 

 
Fig. 2.3 SOFC tubular design developed by Siemens-Westinghouse [46]. 
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Different SOFC designs have been developed over the years, with the tubular design  

shown in Fig. 2.3 probably being the best known. The tubular design was developed 

by Westinghouse (now known as Siemens-Westinghouse) and has a self-sealing 

structure which improves thermal stability and eliminates the need for good thermal-

resistant sealants. The tubular design has two system types, one where gas flows 

parallel to the tube axis and one where the gas flows perpendicular to the tube axis. 

Another common design is the planar configuration in which the single cell is 

configured as flat plates connected in series. The planar design is more efficient and 

cheaper than the tubular design path of the current is shorter and it is easier to stack 

than the tubular design, although sealing between the cells has proven to be difficult 

in the planar configuration [33, 39]. The main challenges facing SOFCs are associated 

with their high operation temperature. These high temperatures exclude the use of 

metals which are typically cheaper to produce than the ceramics, for any of the non-

electrochemical components of the fuel cell and also increase the probability of cracks 

developing upon thermal cycling. Additionally, the components should exhibit 

thermo-mechanical compatibility; i.e. the thermal expansion coefficients must match, 

and the materials should have sufficient strength in order to withstand mechanical 

stresses due to differences in thermal expansion [20]. 

2.2.4 Phosphoric Acid Fuel Cell 

The phosphoric acid fuel cell operates at temperatures of 175-180 oC and is based on 

100% concentrated phosphoric acid electrolyte immobilised in a porous matrix. 

PAFCs are among the most advanced systems regarding commercial development, 

with their use mainly focussed on stationary power applications [39]. Operating 

temperature of a PAFC is a compromise between electrolyte conductivity which 
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increases with increasing temperature, and lifetime of the fuel cell which decreases 

with increasing temperature [47]. While the chemical reaction involved in PAFCs is 

the same as in PEMFCs if pure H2 is used as the fuel, PAFCs unlike AFCs and 

PEMFCs are much less sensitive to impurities such as CO and S in the fuel [23]. 

Phosphoric acid is chosen as the electrolyte due to its excellent thermal, chemical and 

electrochemical stability in addition to being the only inorganic acid with a low 

enough volatility at temperatures above 150 oC to be suitable for use as an electrolyte 

in fuel cells [47]. The use of concentrated phosphoric acid minimises the water vapour 

pressure allowing for easier water management in the cell [33].The phosphoric acid 

electrolyte is retained in a 0.1-0.2 mm thick SiC matrix, whose ohmic resistance is 

controlled by the thickness of the matrix, hence a 0.1-0.2 mm thick SiC matrix has a 

fairly low ohmic resistance, but the mechanical properties of such a matrix is fairly 

limited [48]. Various methods have been employed to improve the SiC matrix 

characteristics in order to improve the cells performance, Song et al. [49] for instance 

found that by using a matrix with a mixture of fine and coarse SiC particles a thin 

matrix layer could be fabricated which decreased the cells ohmic resistance and 

increased the cells performance. Neergat et al. [50] produced a high performance 

PAFC by using Pt/Co as a cathode catalyst and employing an electrolyte matrix 

composed of a combination of SiC/ZrSiO4. PAFCs use GDEs which typically employ 

platinum or platinum alloys as anode and cathode electrocatalysts due to the slow 

ORR kinetics. The GDEs are comprised of a carbon backing substrate, coated with a 

microporous layer (MPL) and a lastly catalyst layer (CL) of Pt/C bonded with PTFE. 

The carbon has various functions; (i) it serves as a medium to disperse the Pt catalyst 

to ensure that a good utilisation of the Pt catalyst is achieved, (ii) to provide 

micropores in the GDE for maximum gas diffusion to the catalyst and electrode-
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electrolyte interface and (iii) to effectively increase the electrical conductivity of the 

catalyst [31]. The use of carbon imposes certain limitations on the fuel cell; at 

potentials higher than +0.8 V carbon corrosion and Pt dissolution becomes an issue 

[47, 51]. 

2.2.5 Direct Methanol Fuel Cell 

Direct methanol fuel cell uses methanol as the fuel and air as the oxidant, however, 

pure methanol cannot be used, but a mixture of methanol with water is required. The 

methanol fuel is fed directly to the anode without the intermediate step of reforming 

the methanol into H2. In order for the energy density of the fuel to be maintained, the 

original fuel feed must be pure methanol, and the water should be stored in the fuel 

cell system, with the methanol added to this water [39, 48]. Methanol is a liquid under 

DMFC operating conditions, hence it has a high energy density and can be produced 

from natural gas and renewable biomass resources. Although DMFCs commonly 

operate on liquid methanol/water mixtures, gaseous methanol/water mixtures can also 

be used [31, 39]. DMFCs have applications in the small portable power markets due 

to their low operating temperature, quick refueling and the capability of achieving 

longer lifetimes than batteries. They are capable of replacing batteries as methanol 

theoretically has superior specific energy densities in comparison to rechargeable 

batteries such as lithium-polymer and lithium-ion polymer systems [52]. Typically 

perfluorinated sulphonic acid ion exchange membranes developed by DuPont 

marketed as Nafion® are used as the electrolyte membrane in DMFCs. The acid 

polymer electrolyte relies on absorbed water to ionize acid groups and enable proton 

transport [53]. Although the majority of the methanol is oxidised to protons, electrons 

and CO2 at the anode, some of the methanol is directly transported to the cathode 

through the membrane. This permeation of methanol from the anode to the cathode 
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via the membrane is termed methanol crossover, and it creates a mixed potential due 

to the methanol oxidation interfering with oxidation reduction reaction resulting in a 

decrease in the cathode potential. Not only does methanol crossover lead to mixed 

potentials, but it also lowers the efficiency since it wastes the fuel [39, 54].  

 

Electrodes are porous gas diffusion media with noble metals such as Pt/C used as 

electrocatalysts. The methanol oxidation reaction (MOR) is sluggish compared to the 

hydrogen oxidation reaction (HOR), and it was found that alloying certain metals ( 

Re, Ru, Os, Rh, Mo, Pb, Bi, and Sn) to Pt can enhance that activity of the binary 

electrocatalyst [39]. Zang et al.[55] prepared a Pt catalyst supported on core-shell 

structured SiC@C with a nanoscale SiC core covered by a graphitic carbon shell. The 

Pt/SiC@C electrocatalyst showed much higher activities for the methanol electro-

oxidation and ORR than Pt/SiC, and more importantly showed greater stability in 

comparison to traditional Pt/C. They attributed the increased performance to the high 

dispersion of Pt on the SiC@C support and the high stability of the support in acid 

medium. 

2.2.6 Polymer Electrolyte Membrane Fuel Cell 

Polymer electrolyte membrane fuel cells (PEMFCs) are similar to DMFCs in that they 

both utilise a solid polymer, typically Nafion® as the electrolyte membrane. They are 

typically used in transport and stationary applications, and like DMFCs operate at 

fairly low temperatures of around 70-100 oC. The low operating temperature 

necessitates the need for sophisticated catalysts and electrodes to address the slow 

reaction kinetics [31]. At these low temperatures the fuel has to be relatively high 

purity H2 gas, due to the sensitivity of the Pt electrocatalyst to CO and H2S in the 

feedstock, hence the fuel needs to undergo extensive fuel processing as the anode is 
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easily poisoned by even trace level of impurities [21, 33]. The proton conductivity of 

the Nafion® membrane introduces the inherent need for sufficient membrane 

hydration, the product water should not evaporate faster than it is produced in order to 

maintain sufficient membrane hydration [33]. A more in-depth discussion on 

PEMFCs follows, as PEMFCs are the fuel cell type on which this study is focussed. 

 

2.3 Low Temperature PEMFCs 

2.3.1 Electrode Reactions 

Unlike the ORR, the hydrogen oxidation reaction (HOR) procedes quite readily on Pt-

based electrocatalystss. HOR involves the adsorption of H2 onto the surface of the 

catalyst (see Eq. 2.7), followed by dissociation of the hydrogen gas molecule, and the 

proceeding electrochemical reaction which produces to hydrogen ions as seen in Eq. 

2.8. 

 

2 Pt(s) + H2 → Pt-Hads + Pt-Hads                                                                                (2.7) 

 

Pt-Hads → H+ + e-
 + Pt(s)                                                                                          (2.8) 

 

Where Pt(s) is an available surface site and Pt-Hads is an adsorbed H-atom on the 

active Pt active site [39]. The overall reaction for the HOR can be seen in Eq. 2.1.  

Despite the use of Pt-based electrocatalysts the ORR has the slowest electrochemical 

kinetics and hence is the determining factor in the overall reaction rate [56]. Due to 

the high thermodynamic potential of the ORR (1.23 V vs NHE at standard 

conditions), no electrode materials can remain pure, hence at 1.23 V the electrode 
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materials undergo oxidation which changes the surface properties of the electrodes. 

So at high potentials on Pt electodes the following reaction occurs: 

 

Pt + 1/2O2 →PtO                                                                                                    (2.9) 

 

The Pt surface in the presence of O2 is thus a mixture of Pt and PtO, hence a steady-

state OCV of 1.23 V is almost never observed due to the formation of PtO. Thus in 

the fuel cell environment, a mixed value for the thermodynamic potential of O2/H2O 

and Pt/PtO can occur because two reactions occur: Pt oxidation and O2 reduction 

[57]. 

 

In aqueous electrolytes the ORR can proceed via two mechanisms; an indirect 2-

electron reduction pathway from O2 to hydrogen peroxide (H2O2) (Eq. 2.10 and Eq. 

2.11), and a direct 4-electron reduction pathway from O2 to H2O (Eq. 2.12). The 4-

electron pathway is preferred as the reaction has a greater Faradaic efficiency and it 

does not involve the peroxide species in solution.  

 

2-electron reduction pathway: 

 

O2 + 2H+ + 2e- → H2O2                                                                                         (2.10) 

 

H2O2 + 2H+ + 2e-→ 2H2O                                                                                     (2.11) 

 

4-electron reduction pathway: 

 

O2 + 4H+ + 4e- → H2O                                                                                          (2.12) 
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Although the 4-electron pathway if preferred it involves a number of steps in which 

molecular oxygen has to be dissociated at the Pt surface and recombined with the 

hydrogen protons and electrons to form water  [39]. Other factors such as geometry, 

crystal structure, d-band vacancy of the metal catalyst etc. can influence the kinetics 

of a reaction at a particular electrode. Kucernak et al. [58] study of the HOR and ORR 

under real fuel cell conditions noted that Pt-black shows higher specific catalytic 

activity towards the ORR than Pt-carbon at high potentials, this performance benefit 

was however reduced at lower potentials (see Fig. 2.4). This size effect does not 

however influence the HOR, as exchange current density values of 0.022 A cm-2 and 

0.026 A cm-2
 was observed for Pt-black and Pt-carbon respectively. 

 

 
Fig. 2.4 Oxygen reduction at composite electrodes composed of Pt-Black (–) or Pt/ 

Carbon (- - -) dispersed on an Au grid in contact with Nafion 117 membrane at a 

temperature of 50 oC, 5 mV s-1 scan rate [58]. 
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2.3.2 PEMFC Performance 

The performance of a PEMFC in a kinetically controlled system can be represented 

by the Tafel equation:  

 

E = Erev + b log i0 – b log i                                                                                    (2.13) 

 

b = -2.3 RT/αnF                                                                                                      (2.14) 

 

Where E, Erev, b, i, i0, n and α are the electrode potential, reversible potential, Tafel 

slope, current density, exchange current density, the number of electrons transferred 

in the rate determining step and the transfer coefficient, respectively [59]. Since all 

the parameters in the Tafel slope are known, the parameters determining the Tafel 

slope are actually α and n. The higher the values for the Tafel slope, the faster the 

overpotential increases with current density.  Hence, for an electrochemical reaction 

to achieve a high current at low overpotential, the reaction should have a low Tafel 

slope or a large αn. Two Tafel slopes are usually obtained for the ORR; 60 mV dec-1 

and 120 mV dec-1, respectively, depending on the materials used in the electrode and 

on the potential range. 

The electron transfer coefficient is a crucial factor in determining the Tafel slope. For 

ORR, the transfer coefficient is dependent on temperature. On a Pt electrode, the 

transfer coefficient of ORR is directly proportional to the temperature, in the range of 

20–250 °C. Relative humidity (RH) has also been found to affect the transfer 

coefficient.  

Exchange current density is an important kinetic parameter which represents the 

electrochemical reaction rate at equilibrium. For the electrochemical reaction: 

 

O + ne- ↔ R                                                                                                            (2.15) 
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both the forward and reverse reactions can occur. At equilibrium, the net current 

density of the reaction is zero. The current density of the forward reaction equals 

that of the reverse reaction. This current density, called the exchange current density 

determines how rapidly the electrochemical reaction can occur. The exchange current 

density of an electrochemical reaction depends not only on the reaction but also on the 

electrode surface on which the electrochemical reaction occurs. 

For example, on a Pt electrode, the exchange current density of hydrogen oxidation 

is several orders larger than that of ORR. The O2 reduction reaction shows a higher 

exchange current density on a Pt electrode than on an Au electrode. Electrode 

materials or catalysts therefore have a strong effect on the ORR kinetics, with  

different materials giving different exchange current densities [60]. 

 

2.3.3 Components 

A typical PEMFC stack is made up of a solid polymer electrolyte membrane, 

electrically conductive GDE and bipolar plates [33].  

 

Electrolyte membrane: 

As discussed previously Nafion® is the most widely used membrane in PEMFCs, it is 

highly conductive due to its structural properties. The chemical structure of Nafion® is 

depicted in Fig. 2.5. PEMFCs based on Nafion® have typically been operated in a 

temperature range between 50 and 90 oC [33]. The upper limit of the temperature 

range is due to the difficulty in maintaining membrane water hydration at 

temperatures at or above 100 oC. Another important factor which influences the upper 

limit of the operational temperature is the glass transition temperature (Tg) of 
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Nafion®, which is approximately 110 oC for the protonated polymer. Operation at 

temperatures above the Tg can lead to polymer change rearrangement, which can 

ultimately cause structural changes in the membrane and lower the membrane, 

stability and lifetime [15].  

 

 
Fig. 2.5 Structure of Nafion® [61]. 

 

The extensive research performed on Nafion® over the past few decades has shown 

that the polymers' performance and intrinsic properties are dependent on not only its 

chemical identity (ion exchange capacity, anionic functional group and counter 

cation), but also on the polymer film method of synthesis (casting or melt-extrusion). 

Other factors such as the thermal history of the polymer (drying, exposure to high 

temperature and membrane pre-treatment) and chemical history of the membrane 

(exposure to various cations and solvents) also play a role in the polymers' 

performance and properties [62]. For instance, Hensley et al.[62] showed that after a 

short heat treatment of commercial Nafion® membranes at 165 oC, the proton 

conductivity, water permeability, equilibrium water sorption, and self-diffusion 

coefficient of water and protons increased in all films, with the greatest improvements 

exhibited by the thin films (<50 µm). Older hydrolysed N111-F is referred to as “HP” 

(hydrolysed precursor) and newer hydrolysed N111-F is called “HP NEW”. The 
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influence of annealing on proton conductivity and water sorption can be seen in Fig. 

2.6 and Fig. 2.7. 

 

 
Fig. 2.6 Effect of annealing on proton conductivity [62]. 

 

 

 
Fig. 2.7 Effect of annealing on water sorption [62]. 
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Efforts to operate PEMFCs at higher temperatures for improved reaction kinetics and 

improved tolerance to impurities such as CO has led to the extensive research into the 

development of membranes that are capable of operating at higher temperatures and 

reduced humidity [61]. Since most solid polymer membranes rely on absorbed water 

to ionise the acid groups and permit proton transport, a dry membranes' conductivity 

is several orders of magnitude lower than that of a fully hydrated as the membrane 

proton conductivity is directly proportional with the water activity in the membrane. 

An increase in the fuel cell temperature raises the vapour pressure required to keep a 

given amount of water in the membrane, thus increasing the probability that 

membrane dehydration will occur and significantly reduce proton conductivity [53].  

Various membrane modifications, such as incorporating inorganic materials (TiO2, 

ZrP, ZrO2, and Al2O3) into the membrane have been made to improve mechanical and 

electrical  properties so that operation at elevated temperatures above 100 oC is 

possible without sacrificing the cells performance [53, 56, 63-65].  

 

Gas diffusion electrodes: 

The electrodes in PEMFCs are typically porous GDEs that have to ensure the supply 

of reactant gases to the active sites where the precious metal electrocatalyst is in 

contact with the ionic and electronic conductor [39]. The GDE is composed of the 

GDL and the electrode catalyst layer. A MPL is typically coated onto a porous 

conductive gas diffusion media (GDM), and together these two layers form the GDL. 

The GDM is typically carbon-based and commonly incorporates a hydrophobic 

material such as polytetrafluorethylene (PTFE), to prevent water from flooding the 

pores in the GDM and allow the reactant gases access to the catalyst sites. The GDM 

serves to (i) act as a gas diffuser, (ii) provide mechanical support, (iii) provide an 
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electrical pathway for the electrons and (iv) remove product water from the electrodes 

[33]. These properties are dependent on pore size distribution, thickness, hydrophobic 

content, and carbonisation or graphitisation conditions of the diffusion substrate [17].  

Electrode catalyst layers are in close contact with the membrane and the GDL, and it 

is on the catalyst surface where the electrochemical reaction takes place. Although a 

large number of catalysts have been investigated, Pt-based catalysts are the superior 

catalysts for the ORR. In the manufacturing process the CL may be either directly 

deposited on the GDL or it can be deposited onto the membrane [33]. The GDE 

properties have a significant impact on the performance and durability of PEMFCs. 

For instance, Cindrella et al. [66] modified the GDL by depositing nanoscale 

inorganic metal oxides onto the surface of the GDL and observed that at low RH 

conditions (50% RH) certain modified GDLs exhibited improved performance to the 

pristine GDLs (see Fig. 2.8). Researchers' have also extensively studied the use of 

alternative catalyst supports, such as TiO2, WC, S-ZrO2,[67] 

 

 
Fig. 2.8 Fuel Cell performance comparison of MEAs with pristine and nanoscale oxide coated 

GDL using H2/O2 at ambient pressure [66]. 
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Bipolar plates: 

As was previously discussed, the voltage that a fuel cell produces is quite small, so in 

order to meet the power requirements of the application, many cells have to be 

connected in series in order to increase the output voltage. This collection of cells in 

series is referred to as a 'stack'. An easy way to do this is to connect the edge of each 

anode to the cathode of the next cell, all along the line, although this method seems 

easy it would introduce more problems, as the electrons would have to travel across 

the face of the electrode to the current collection point at the edge. Although the 

electrodes are good conductors, even a tiny drop in voltage would be important as the 

voltage each cell generates is so small. This method is therefore not normally used, 

instead cells are interconnected by means of a bipolar plate. The bipolar plate makes 

connections across the entire surface of one cathode and the anode of the next cell 

[48]. In addition to carrying the electrical current away from each cell, they also 

distribute the reactant gases homogeneously to each individual cell and separate each 

individual cell to facilitate water management within the cell.  

 

Non-porous graphite plates were first used due to their high electrical conductivity 

and their chemical stability in the fuel cell environment. Although graphite plates 

meet the aforementioned requirements, they are brittle and lack mechanical strength, 

with the added disadvantage of requiring the machining of the flow field channels, 

which adds to the total manufacturing cost. Composite graphite powders and polymer 

mixtures are alternatives to pure graphite plates [68]. Nikam et al. [69] demonstrated 

that corrugated metal sheets as bipolar plates could provide improved performance as 

seen in Fig. 2.9 over conventional machined bipolar plates. 
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Fig. 2.9 Comparison of conventional machined channel flow fields and corrugated sheet flow  
fields: ◦, Corrugated sheet design with un-humidified fuel; •, Corrugated sheet design with 

humidified fuel;   , Conventional parallel flow field design with un-humidified fuel.;   , 
Conventional parallel flow field design with humidified fuel [69]. 

 

2.4 High Temperature PEMFCs 

High temperature operation levels are more favourable for various applications, and 

considering the preceding discussion on LT-PEMFCs it becomes clear that a large 

majority of the issues we have with low temperature operation of PEMFCs could be 

solved by increasing the operation temperature. Increasing the operating temperature 

is however, not without its challenges. For instance, higher operating temperatures 

results in faster degradation processes, so one cannot simply use the same components 

one would use for low temperature operation; this introduces a whole new set of 

structural parameters that have to be considered. 
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2.4.1 Advantages associated with high temperature operation 

PEMFCs function best when they use a high purity H2 as the fuel source, but pure H2 

it is unlikely to be the fuel source due to economic considerations in production and 

storage. Instead hydrogen from reformed fuel, such as natural gas, gasoline or alcohol 

is more likely to be used in PEMFCs [70]. Reformate gas streams obtained from the 

after partial oxidation will contain ~3.0 vol. % of CO. This is normally reduced to less 

than 1 vol. % of CO by a water gas shift reaction. The CO tolerance of a HT-PEMFC 

using a high temperature membrane at its operation temperature is sufficiently high; 

hence, the PROX (preferential oxidation) reactor which preferentially oxidises CO 

over noble metal catalysts can be excluded. This is however, not the case with a LT-

PEMFC using a low temperature membrane, leading to much higher capital costs 

[71].  

 

In LT-PEMFCs the anode platinum catalyst is especially susceptible to small amounts 

of CO in the fuel; even these small amounts poison the catalyst and lead to lower cell 

performances. Li et al.[72] demonstrated the CO poisoning effect in Pt/C based 

electrocatalyst is temperature dependent, with a HT-PEMFC operating at a 

temperature of 200 oC able to tolerate 3% CO in the fuel whereas a LT-PEMFC 

operating at a temperature of 85 oC are only able to tolerate 1% CO in the fuel. This 

improved tolerance of HT-PEMFCs to CO was confirmed by Das et al. [73] who used 

Pt-alloys as the electrocatalyst. Their findings seen in Fig. 2.10 showed that 2% CO 

and 5% CO can be tolerated equally at low current density (<0.3 A cm-2) at 180 oC 

without any cell performance loss.  
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Operating fuel cells at temperatures >100 oC allows for easier removal of waste heat 

due to the larger temperature difference between the fuel cell and the surrounding 

environment. This results in a much simpler cooling system, thus increasing the mass-

specific and volume-specific power density of the fuel cell system [59]. Cho et al. 

[74] found that subjecting LT-PEMFCs to thermal cycling of the environment 

chamber from 80 oC to -10 oC caused a degradation in performance due to the phase 

transformations and volume changes of water in the fuel cell. These volume changes 

of water can deform the catalyst layer, and lead to a reduction in the specific surface 

area resulting in decreased Pt utilisation. Since HT-PEMFCs are expected to contain 

minimal quantities of liquid water, hence subjecting them to sub-zero temperatures 

will have less of an impact, thus improving their stability and durability under these 

conditions [59]. 

 

 

Fig. 2.10 Cell voltage loss, VL, obtained experimentally with a PBI-based PEMFC with 

pure hydrogen and hydrogen containing different CO vol% at different temperatures [73]. 
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HT-PEMFCs are preferred to LT-PEMFCs in micro-CHP systems, due to (i) the 

higher quality of waste heat generated and (ii) their improved CO tolerance, which 

would allow them to run on reformate fuel, as reformate fuel typically contain 3% CO 

in their fuel. Since the temperature of the exhaust stream for HT-PEMFCs (>100 oC) 

is higher than that of LT-PEMFC (<80 oC), the excess high quality waste heat 

generated in HT-PEMFCs is easier to transfer to the thermal circuit of the household 

and is available for hot water and space heating [4, 75].  

 

The ORR in LT-PEMFCs is the major cause for the large overpotential at the cathode, 

and is thus responsible for the slow electrochemical kinetics; hence the ORR is the 

rate determining step for the overall reaction rate. By increasing the temperature the 

ORR kinetics is significantly increased, thus improving the performance of the MEA 

as a whole [56].  

 

2.4.2 Disadvantages associated with high temperature operation 

The main disadvantage associated with high temperature operation of PEMFCs is that 

the durability of the cell materials will become more severe as the operation 

temperature increases [6]. HT-PEMFCs based on PBI membranes are not dependent 

on humidification for membrane strength and conductivity. These membranes are 

however, dependent on PA doping for their ionic conductivity and membrane 

strength. The chemical structures for ABPBI and PBI membranes are depicted in Fig. 

2.11.  
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Fig. 2.11 Chemical structures of (a) Poly(2,5-benzimidazole) or ABPBI and (b) Poly(2,2´-m-

(phenylene)-5,5´-bibenzimidazole) or PBI [76]. 

 

Raising the temperature improves the cell voltage but makes it difficult to maintain 

long-term durability [77]. Oono et al.[3] investigated the relation of PBI-based HT-

PEMFCs operation temperature and cell durability in terms of deterioration 

mechanisms. They noted a reduction in cell voltage of ~20 mV during the long-term 

testing; this was considered to be caused both by agglomeration of the electrode 

catalyst particles in the early stages of operation, in addition to crossover effects 

caused by the loss of phosphoric acid in the terminal stage regardless of cell 

temperature. The relation between cell voltage, time and acid loss at different 

temperatures is shown in Fig. 2.12. The study performed by Oono et al. demonstrates 

that not only does high operation temperatures affect the durability and stability of 

cell components; but also that the degradation of components can occur 

simultaneously. The degradation of GDEs, which affects not only HT-PEMFCs, but 

LT-PEMFCs as well is an area of concern in fuel cell technology. The issue of 

chemical and morphological instability of the catalyst layer is however, cause for 

greater concern at elevated temperatures. 
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Fig. 2.12 Relationship between the acid weight change by evaporation and the cell 

voltage drop at different cell temperatures [3]. 

 

Corrosion of the carbon support may occur if the cathode is held at high oxidation 

potentials for too long, resulting in the generation of oxygen atoms at the catalyst. At 

elevated temperature, these may react with the carbon substrate and/or water to 

generate gaseous products such as CO and CO2. Over time the formation of these 

gaseous products leads to the destruction of the carbon support, leading to a reduction 

in carbon content within the catalyst layer. This reduction of carbon content reduces 

the surface available for the Pt catalyst, consequently forcing the  Pt particles to 

aggregate effectively reducing the electrochemical active surface area of Pt [59, 78]. 

These factors clearly demonstrate the need for further R & D for HT-PEMFCs. 
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Chapter 3: Experimental Method 

Chapter 3 serves as an introduction to the research design in terms of experimental 

approaches with regards to preparation and characterisation of all GDEs and MEAs 

of interest in this work. A detailed description which entails all sample preparation, 

characterisation, and data treatment will be discussed. The chapter will serve as an 

introduction for all materials used in this study, followed by a review of all 

characterisation methods, and a detailed description of all experimental parameters 

used in this study. 

 

3.1 Materials 

 40 wt% Pt/C, HiSpec 4000 (Johnson Matthey, UK) was used as received as the 

catalyst material for both the anode and cathode catalyst layers prepared in all 

experiments. A 60 wt.%  PTFE emulsion (Electrochem Inc, USA), 5 wt.% PVDF in 

DMAc solvent (Sigma Aldrich, USA) and a 5 wt.% PBI/DMAc (lab-made) were used 

as polymeric binders. All water used was obtained from a water purification system, 

Zeneer Power III (Human Corporation, SA). The UP water obtained had a 

conductivity of 18.3 MΩ. Isopropanol (Johnson Matthey, UK) or DMAc was used as 

the dispersing medium for all catalyst ink formulations.  Commercially available 

GDLs, H2315 CX 196 and H2315 C4 (Freudenberg, Germany), was used as received. 

Fumapem® AM (Fumatech, Germany) ABPBI membrane with a thickness of ~35 µm 

was used as the electrolyte membrane. Membrane doping was achieved by immersing 

the membranes in 85% Phosphoric Acid at 95 oC for 24 h to obtain an acid doping 

level of about 3.8 molecules of H3PO4 per polymer repeating unit (PRU). Any 

superficial acid was gently removed by tissue prior to the MEA assembly. Cs2SO4 

99.99% metals basis (Johnson Matthey, UK) and 98% H2SO4 (Kimix, SA) was used 
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to synthesise a 40 wt.% CsHSO4/aq. solution. Zirconium hydrogen phosphate, 

Zr(HPO4)2 (Sigma Aldrich, USA) was used as an additive in the CL. Silicon Carbide, 

SiC β-phase 99.8% metals basis (Johnson Matthey, UK) and Niobium Carbide, NbC 

99% metals basis (Johnson Matthey, UK) were used to prepare the acid-controlling 

region on the  surface of the CL. 

3.2 Deposition Method 

All GDEs analysed in this study were prepared via the manual spray technique. An 

airbrush (Prona RH-CP, Taiwan) using nitrogen carrier gas was used to manually 

spray all prepared GDEs. The Freudenberg GDLs were weighed before and after 

catalyst ink deposition to determine the catalyst loading.  The dispersed catalyst ink 

was deposited in successive layers until the desired amount of catalyst had been 

deposited, with each layer being dried with a warm air dryer (Russell Hobbs, UK) 

before the next layer was added. The platinum loading of all anodes and cathodes 

prepared for this study was ~1.0 mg cm-2 Pt unless otherwise stated. 

 

3.3 Fabrication of CsHSO4 GDEs 

3.3.1 Synthesis of CsHSO4 

CsHSO4 was synthesised by dissolving 35.3 g of Cs2SO4 in 200ml ultrapure water. 

21.7 g of H2SO4 was diluted in 50 ml ultrapure water. The diluted H2SO4
 solution was 

slowly added drop-wise by a burette to the Cs2SO4 solution, while heating the Cs2SO4 

solution to 60 oC and stirring at 250 rpm. The resultant crystals formed were dried 

overnight at 100 oC. Fourier transform infrared (FT-IR) spectroscopy was used to 

confirm the formation of CsHSO4. 
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3.3.2 Preparation of CsHSO4 GDEs 

Catalyst ink formulations were obtained via ultrasonically (38 kHz) mixing Pt/C, UP 

water, IPA or DMAC solvent, CsHSO4 proton conductor and/-or PTFE or PVDF 

binder in an ultrasonic bath (Grant Instruments, UK) for 2 hours before use. A ratio of 

3:1 was utilised with respect to the Pt/C:UP water configuration in the catalyst ink 

mixture. The binder and CsHSO4 contents were normalized in relation to the Pt/C 

electrocatalyst, with 15 wt.% PVDF and 40 wt.% PTFE binder concentrations used in 

the catalyst ink formulations, with the CsHSO4 content varied. The catalyst ink was 

deposited onto the commercial GDL by the deposition method previously described. 

The binder content in the CL of these GDEs vary, with some values obtained from 

literature [5]or optimised by the authors. The GDEs were cured in a vacuum oven 

(Binder GmBH, Germany), with the GDEs containing only the polymer binders in the 

CL cured at 200 oC , and the GDEs containing the CsHSO4 proton conductor as well 

as the binder-CsHSO4 combinations cured at 120 oC. 

 

3.4 Fabrication of ZHP GDEs 

Catalyst ink formulations composed of Pt/C , UP water, ZHP and/-or PTFE binder 

were obtained via ultrasonic (38 kHz)  dispersion in  IPA for 2 hours [79]. A ratio of 

3:1 was utilised with respect to the Pt/C:UP water configuration in the catalyst ink 

mixture . The PTFE binder was normalised in relation to the Pt/C electrocatalyst, with 

40 wt.% PTFE concentration used in all formulated inks, whereas the ZHP was 

normalised in relation to dry PTFE with varying concentrations used in the ink 

formulations.  The catalyst ink was deposited onto the commercial GDL by the 

deposition method previously described. The PTFE binder loading in the CL was 

fixed at 40 wt.%, while the ZHP loading in the CL was varied from 20-50% in 
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relation to dry PTFE.  Finally, all prepared GDEs were cured at 200 oC in a vacuum 

oven. 

 

3.5. Fabrication of SiC and/-or NbC GDEs 

3.5.1 Preparation of Standard GDE 

Catalyst ink mixtures were obtained via ultrasonic (38 kHz) mixing of Pt/C, PTFE 

binder, UP water and IPA dispersion medium for 2 hours. A ratio of 3:1 was utilised 

with respect to the Pt/C:UP water configuration in the catalyst ink mixture. The PTFE 

binder content of 40 wt.% PTFE was normalised in relation to the Pt/C 

electrocatalyst. The catalyst ink was deposited onto the commercial GDL by the 

deposition method previously described. Lastly, all GDEs were cured at 200 oC in a 

vacuum oven. 

3.5.1 Preparation of SiC and/-or NbC Layer 

SiC and/-or NbC formulations were prepared by ultrasonic (38 kHz) mixing of SiC 

and/-or NbC powder, PTFE/ PBI binder, UP water and IPA for 1.5 hours. A ratio of 

3:1 was utilised with regards to the SiC/NbC:UP water configuration in the ink 

mixtures. The PTFE binder content was normalised in relation to the SiC or NbC 

powder, with 40 wt.% PTFE used in all formulations. A PBI content of 10 wt.% PBI 

was used in relation to the SiC powder. The SiC and/-or NbC ink mixture was then 

deposited onto the standard GDE using the same deposition method as described for 

the catalyst ink mixtures. The GDEs containing solely SiC layers had variations of 0.2 

mg cm-2, 0.5 mg cm-2 and 1 mg cm-2 in the SiC content, whereas the GDEs containing 

solely a NbC layer had a fixed content of 0.2 mg cm-2 NbC. The GDEs containing a 

mixture of SiC/NbC layer had a 0.2 mg cm-2 fixed content of SiC, with the NbC 
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content normalised with regards to the SiC. The NbC content in these mixed GDEs 

were varied from 10-70% NbC in relation to the 0.2 mg cm-2 SiC.  All GDEs prepared 

in this manner were then dried at 80 oC for 2 hours in a vacuum oven, followed by 

sintering at 350 oC under Nitrogen in a muffle furnace (Kiln Contracts, SA). The 

GDEs were then impregnated with predefined amounts of PA, by pipetting a mixture 

of PA and ethanol (1:6 ratio by volume) onto the surface of the GDEs followed by 

drying in a vacuum oven for a minimum of 72 hours to remove the ethanol and obtain 

an even PA distribution in the SiC and /-or NbC layer. 

 

3.6 Physical Characterisation Techniques 

3.6.1 Scanning Electron Microscopy and Energy Dispersive X-ray 

Spectroscopy 

A high-resolution Scanning Electron Microscope (SEM) (Nova NanoSEM 230, FEI) 

was used to observe the surface morphology and porous microstructure of the GDEs. 

The SEM micrographs are obtained by the interaction of an accelerated highly mono-

energetic electron beam originating from the cathode filament, with the atoms of a 

sample surface. The beam is focused into a fine probe which is rastered over the 

surface of the sample, with the scattered electrons captured by the detector, modulated 

and amplified to produce an exact reconstruction of the sample surface and particle 

profile [80-82]. Energy dispersive X-ray Spectroscopy (EDS) was used to obtain 

elemental profiles of the ZHP-GDE. EDS is a trace analytical technique used to obtain 

surface chemical composition of materials. The technique includes both qualitative 

and quantitative analysis, as well as mapping the elemental distribution on the surface 

of the sample material. Advantages of using EDS in the quantitative analysis are that 

extremely small quantities of the elemental components can be detected, the technique 
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is precise and accurate and is primarily non-destructive when the electrostatic 

charging is not too severe. Measurements are performed based on the interactions 

between high-energy electrons and the sample surface. EDS measurements were 

conducted in conjunction with SEM, with the electron beam from the microscope 

used as the electron source for EDS [83]. 

3.6.2. Fourier Transform Infrared Spectroscopy 

Fourier transform infrared (FT-IR) spectroscopy is a technique used to identify 

compounds. It is based on the principle that chemical bonds have specific frequencies 

at which they vibrate which correspond to natural energy levels. The technique results 

in changes in the vibrational energy of the molecule as a result of the absorption of 

electromagnetic radiation in the infrared region of the spectrum. Molecules resonate 

in the form of bending, stretching etc., any absorbed energy would be utilised to 

change the energy levels associated with the resonance. A double beam 

spectrophotometer that comprises an IR sources produces a beam of light that is split 

into two beams that measures the samples' energy at different wavelengths. One beam 

passes through the sample while the other beam passes through the solvent. The beam 

is passed through a monochromator before being reflected back to the detector [84]. 

3.6.3 Mercury Intrusion Porosimetry 

The pore-size distributions of the GDEs were determined by performing mercury 

intrusion porosimetry on the GDEs. Mercury intrusion porosimetry (MIP) obtains the 

pore-size distributions by injecting mercury into the samples at fixed pressures while 

recording the injected volume of mercury under quasi-steady conditions. The pressure 

and volume are related using various expressions for capillary pressure and radii as a 

means for determining the distribution of effective pore sizes. At high pressures the 
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mercury enters the small pores and at low pressures larger pores are sampled [85]. An 

Auto Pore IV 9500 (Micromeritics, USA) porosimeter shown in Fig. 3(b), applying 

pressures between 0.0145 to 4136.85 bar, was used for porosity measurements.  

3.7 Electrochemical Characterisation of the MEAs 

3.7.1 MEA and Cell Assembly  

The MEAs were obtained by sandwiching the acid-doped ABPBI membrane between 

the anode and cathode GDEs together inside a single cell fixture (Pragma Industries, 

France) without any prior hot-pressing procedure. PTFE tape was used to seal the 

MEA and act as a gasket. The single cell fixture shown in Fig. 3(c), consists of two 

graphite plates with serpentine flow fields with an active area of 5 cm2. A 

thermocouple and electrical heaters are embedded in the plates enable temperature 

control of the cell by a Cell Compression Unit (CCU, Pragma Industries, France).  

The cell fixture was placed in the CCU, which controlled the cell temperature at 160 

oC and maintained the piston pressure of 2 N mm-2 during operation.   
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Fig. 3: Images of (a) in-house HT-PEMFC test bench (b) Autopore IV Mercury intrusion 

porosimeter (c) high temperature single cell (d) Impedance test station: Autolab PGSTAT302 

testing station. 

 

3.7.2 Single cell performance evaluation   

An in-house HT-PEMFC test-stand shown in Fig. 3(a) was used to perform 

electrochemical evaluations on the MEAs.  The test-stand consists of an electronic 

load, Arbin BT2000 (Arbin Instruments, USA) connected to a computer and a cell 

fixture in the CCU. Dry gases were used as the fuel and oxidant, with pure hydrogen 

fed to the anode and air was fed to the cathode with flow rates of 0.5 slpm and 1.0 

slpm respectively. The MEAs were activated prior to testing, by applying a constant 

voltage of +0.55 V until a stable performance was achieved.  The polarisation curves 

a b 

 

c d 
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were recorded by measuring the cell voltage as a function of current between Open 

Circuit Voltage (OCV) and +0.2 V. Stability analyses were performed at 1.0 A. 

 

3.7.3 Electrochemical Impedance Spectroscopy 

Electrochemical Impedance Spectroscopy (EIS) is an analytical technique used to 

measure the frequency dependence of the impedance of a fuel cell by applying a small 

perturbation signal (AC potential or current) of known amplitude and frequency to the 

fuel cell and measuring the current (or potential) response. EIS is a useful tool to 

distinguish individual contributions of each component, such as the elecrolyte and gas 

diffusion electrode to the fuel cell performance, and is capable of identifying 

individual contributions to the total impedance of a fuel cell from different electrode 

processes [86]. A Potentiostat/Galvanostat Autolab PGSTAT 302N (Metrohm, 

Netherlands) equipped with a Frequency Response Analyser (FRA) and a 20 A 

current booster (Autolab BSTR 20A, Metrohm) shown in Fig. 3(d), was used to 

perform Electrochemical Impedance Spectroscopy (EIS) measurements. The 

measurements were carried out at a cell voltage of +0.6 V, in the 0.1 Hz - 20 kHz 

frequency range with an amplitude of +0.01 V.  Autolab Nova software was used to 

generate and simulate the impedance data. 
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Chapter 4: Evaluation of CsHSO4 as a proton conductor in 

the catalyst layer of HT-PEMFCs 

4.1 Introduction 

Higher operational temperatures are expected to result in higher fuel cell 

performances [87]. HT-PEMFC operation requires novel/modified materials capable 

of withstanding these higher temperatures. For instance, acid doped 

polybenzimidazole (PBI) membranes that are temperature resistant for operation 

above 100 oC were investigated by Savinell et al. [88] for their possible use in 

PEMFCs, these membranes were shown to exhibit good proton conductivity, good 

mechanical and thermal stability as well as having a low reactant gas permeability. 

Weng et al. [89] showed that PBI has a distinct advantage over Nafion®/H3PO4 

composite electrolytes in that PBI was shown to have an electro-osmotic drag 

coefficient of nearly zero for temperatures up to 200 oC, whereas the Nafion® 

composite electrolyte was shown to have an electro-osmotic drag coefficient in the 

range of 0.2-0.6. This essentially means that when protons are transported through 

PBI electrolyte they do not ‘drag’ water molecules with them, thus ensuring 

membrane hydration and preventing anode dehydration even at high operating 

temperatures. The PA used to dope these PBI membranes are often utilised as 

ionomers in the catalyst layer (CL) of PBI-based HT-PEMFCs [5, 90, 91]. More 

recently, PA doped poly(2,5-benzimidazole) (ABPBI) has been shown to have 

improved proton conductivity over PA doped PBI, as well as being cheaper to 

produce since it can be produced from a single commercially available monomer (3,4-

diaminobenzoic acid (DABA)) by condensation in polyphosphoric acid (PPA) [92-

94]. Theoretically HT-PEMFCs are expected to have improved performance over LT-
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PEMFCs due to faster reaction kinetics achieved at higher operating temperature, 

however, this has yet to be achieved mainly due to catalyst deactivation by strong 

phosphate anion adsorption from the phosphoric acid ionomer onto the platinum (Pt) 

electrocatalyst, as well as other factors such as; the low solubility and diffusivity of 

oxygen in phosphoric acid [95], catalyst agglomeration and electrochemical carbon 

corrosion also contribute to the cell performance loss [78, 96].  

 

The above mentioned factors show that there is still a clear need to improve MEA of 

HT-PEMFCs. On the membrane aspect, researchers’ efforts have focused on 

improving the conductivity of the membrane, membrane strength [97-104], and 

membrane acid retention [100, 105, 106].  While research focus on the GDE has 

mainly looked at;  improving the electrocatalyst [107], and reducing the sources of 

performance degradation for the GDE by optimising both the CL [7, 8, 77, 108-113] 

and GDL [7, 114] . The structure and composition of the CL plays a critical role in the 

MEA performance, and in the case of PBI-based MEAs the CL is composed of the 

electrocatalyst (typically Pt/C) which catalyses the electrochemical reactions, H3PO4 

which acts as a proton conductor and facilitates proton transport, as well as a polymer 

binder to maintain the structural integrity of the CL. The polymer binder influences 

the structural properties of the electrode; it also maintains the structural integrity 

which affects mechanical stability and the porosity which in turn influences reactant 

permeability, and catalyst distribution influencing Pt utilisation. All of these factors 

contribute to the performance of the GDE. 

 

Currently different types of polymer binders such as polytetrafluoroethylene (PTFE), 

polyvinylidene fluoride (PVDF), polyurethane, PBI, and various other polymers that 
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are capable of incorporating H3PO4 into their structure have been utilised in the CL of 

PBI-based HT-PEMFCs [110, 111, 115]. The aforementioned polymer binders have 

been studied and their influence on Pt utilisation has been evaluated [110, 115]; there 

is however, a need for an alternative to H3PO4 electrolyte in the catalyst layer to 

improve the low oxygen solubility and the sluggish ORR kinetics and catalyst 

deactivation occurring due to the H3PO4 electrolyte [95].  

 

The present study aims to evaluate CsHSO4 as a proton conductor in the CL for HT-

PEMFCs and report for the first time that an inorganic solid acid such as CsHSO4 can 

operate at 150-200 oC and undergoes a transformation at approximately 140 oC into a 

‘superionic’ phase and exhibits high conductivity of 10-2 S.cm-1. From the list of 

inorganic solid acids that exhibit good proton conductivity at elevated temperature, 

CsHSO4 was chosen as the best candidate for use in HT-PEMFCs due to its high 

conductivity in the temperature range of interest to us (160 oC). Solid acids such as 

CsH2PO4 and RbH2PO4 exhibit high proton conductivity but in a temperature range 

that is not suitable for ABPBI-based HT-PEMFCs. NH4H2PO4 solid acid exhibits 

good conductivity in the temperature range of interest but the phosphate anions would 

adsorb strongly onto the surface of the Pt electrocatalyst leading to catalyst 

deactivation [95]. Haile et  al. [116] initially demonstrated its use as an electrolyte 

membrane in PEMFCs. Lavrova et al. [117] and Piao et al. [118] showed that 

CsHSO4 composite electrolyte membranes can be produced with improved stability 

and conductivity. The effect of CsHSO4, combinations of PTFE-CsHSO4 and PVDF-

CsHSO4 on the performance of GDEs was evaluated in ABPBI-based HT-PEMFCs 

electrochemically by polarisation studies and EIS, and structurally by SEM and MIP. 
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4.2 Results and discussion  

4.2.1 Structural analysis 

 

 
Fig. 4.1 FT-IR spectra of the Cs2SO4 starting material, and the CsHSO4 synthesised product. 

 

The FT-IR spectra of Cs2SO4 and the prepared CsHSO4 are shown in Fig. 4.1, with 

the starting material Cs2SO4 included only as a frame of reference. The synthesised 

spectrum of CsHSO4 shows bands at 848, 1012 and 1169 cm-1 indicating the presence 

of HSO4, confirming the formation of the desired CsHSO4 product. The CsHSO4 

spectrum also suggests the presence water, due to the absorption band at 560 cm-1, 

most likely in the form of crystal water. Fig. 4.2(a)-(g) shows the HR-SEM 

micrographs of the GDEs fabricated with PTFE or PVDF binder and CsHSO4. The 

images are taken at 5,000x magnification  in Electron Backscatter Diffraction (EBSD) 

mode so that Pt distribution on the electrode surface can be observed, since high 

molecular weight elements such as Pt, appear much brighter than lower molecular 

weight elements e.g. carbon. The inserts are the 50,000x magnification HR-SEM 
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images takes in normal detector mode. The effect of using different binders and 

proton conductors in the CL can be observed from the structural morphology of the 

electrodes.  

 

At 5,000x magnification morphology of the PVDF GDE (Fig. 4.2(a)) appears to be 

significantly different to that of the PTFE GDE (Fig. 4.2(g)). The PVDF GDE 

exhibits a smoother, more uniform distribution whereas the PTFE GDE, appears to 

have a rougher and more heterogeneous distribution. At 50,000x magnification the 

PVDF GDE particles appear to be more tightly packed with the consequence that the 

GDE appears to have less pores when compared to the PTFE GDE, in which the 

particles are more loosely associated and the GDE appears more porous in nature. The 

heterogeneous morphology observed in the PTFE GDE may be due to the colloidal 

nature that PTFE maintains in the catalyst ink which leads to the agglomeration of the 

catalyst nanoparticles (Fig. 4.2(g)). However, in the PVDF electrode (Fig. 4.2(a)) this 

effect is not observed as PVDF remains soluble in the catalyst ink and agglomeration 

of the catalyst particles is, hence, less likely to occur. 

 

At 5,000x magnification the surface morphologies of PVDF-CsHSO4 GDEs (Fig. 4.2 

(b, c)) is almost indistinguishable from the PVDF GDE, but at 50,000x magnification 

it is possible to discern the effect of the addition of CsHSO4 to the PVDF GDE. The 

PVDF-CsHSO4 GDEs have particles that are more loosely packed than the PVDF 

GDE, with these PVDF-CsHSO4 GDEs showing a more porous morphology than the 
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Fig. 4.2 SEM micrographs showing the surface morphology and porous structure of GDEs 

prepared with various polymer binders and CsHSO4 proton conductor. (a) PVDF - 200 oC; (b) 

PVDF and 20% CsHSO4 - 120 oC; (c) PVDF and 10% CsHSO4 - 120 oC; (d) PTFE and 20% 

CsHSO4 - 120 oC; (e) PTFE and 10% CsHSO4 - 120 oC; (f) 10% CsHSO4 - 120 oC; (g) PTFE - 200 

oC. 

 

PVDF GDE.  In Fig. 4.2(d, e) the effect of the addition of CsHSO4 to the PTFE GDE 

can be observed on the surface of the electrode, in that the Pt catalyst particles appear 

to form larger clusters than the GDEs prepared with the PVDF and PTFE binder (Fig. 

4.2(a, g)), which may result from the impaired 'binding' effect of the polymer binders 

due to the existence of the inorganic particles. At 50,000x magnification (Fig. 4.2(d)-
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(g)) the morphologies of the GDEs are nearly indistinguishable from each other with 

the exception of the PTFE-20% CsHSO4 GDE (Fig. 4.2(d)), in which we observe 

slightly larger pores.  

 

The CsHSO4 electrode (Fig. 4.2(f)) also shows a good Pt distribution but with less 

uniform surface than that of the PVDF electrode (Fig. 4.2(a)) which can be attributed 

to the 'binding' effect the PVDF polymer has on the CL, a property which CsHSO4 

lacks. For this reason the CsHSO4 was used together with PVDF and PTFE binders, 

and the effect this addition had on the surface morphology of the GDEs can be 

observed in Fig. 4.2(b)-(e), showing a smoother and more uniform layer than CsHSO4 

GDEs alone (Fig. 4.2(f)).  

 

Fig. 4.3 shows the mercury intrusion porosimetry results obtained for the PTFE GDE, 

PVDF GDE as well as the binder-CsHSO4 GDEs. The cumulative intrusion graph 

shows distinct differences between the PTFE, PVDF and binder-CsHSO4 GDEs. The 

PVDF GDE has the fewest pores and is clearly the least porous of all the GDEs, these 

results confirm the porous microstructure observed in the SEM images (Fig. 4.2(a)). 
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Fig. 4.3 Cumulative intrusion of the GDEs with various polymer binders and CsHSO4 in the CL.  

 

 

Addition of CsHSO4 to the PVDF GDE effectively increased the number of pores and 

the pore size across all regions. The PVDF-CsHSO4 GDEs exhibit similar porous 

structures except in the 20-70 µm macropore range, where the PVDF-10% CsHSO4 

GDE contains a larger number of pores in this region. The opposite effect is observed 

in the PTFE GDE, where the addition of CsHSO4 has the effect of decreasing the pore 

volume of the GDE across almost the entire pore range except in the 300 – 600 µm 

range, with the PTFE-CsHSO4 GDEs have a larger pore volume in this region which 

can be seen in the insert. Pore diameters > 100 µm are more likely due to cracks on 

the GDE surface. These results are understandable considering that although CsHSO4 

is hygroscopic, the PTFE binder is hydrophobic and they may in essence cancel each 

other out. However, PTFE is insoluble in the catalyst ink, so large catalyst 

agglomerates are more likely to form, which would justify the larger macropore 

volume of the electrodes with CL containing PTFE and/or CsHSO4 ingredients.  
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In the case of gas transport to the catalyst sites, the main contribution to gas transport 

will primarily be due to Knudsen diffusion in the micropores and a molecular 

diffusion mechanism in the macropores [119]. Better mass transport would be 

expected for the electrodes with larger volume of the macropores. 

  

4.2.2 Electrochemical Analysis  

 
Fig. 4.4 Polarisation and power density curves for the MEAs with different polymer binders and 

CsHSO4 proton conductor. 

  

 

The polarisation and power density curves for a single cell HT-PEMFC with PTFE, 

PVDF and CsHSO4 in the CL is depicted in Fig. 4.4. The results indicate that the 

MEAs with polymer binders show far greater performance than the MEA with the 

CsHSO4 proton conductor in the CL. At peak power, the MEA fabricated with the 

PVDF binder exhibits up to 69% higher power compared to the CsHSO4 MEA. This 

substantial difference can be attributed to the difference in the GDEs morphology, 
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with the CsHSO4 lacking a ‘binding’ capability in the CL, with a consequential lack 

of structural stability in the CsHSO4 GDE. The PTFE and PVDF MEAs exhibit nearly 

identical performance, with the PTFE MEA achieving  maximum power density of 

572.52 mW cm-2 at 367 mV and the PVDF MEA reaching a maximum power density 

of 579.58 mW cm-2 at 374 mV. At a cell voltage of +0.6 V the PTFE MEA reaches a 

higher current density of ~440 mA cm-2, which is almost 15% higher than the PVDF 

MEA which has a current density of ~382 mA cm-2 at the same cell voltage. Even 

though the PTFE and PVDF GDEs exhibit distinctly different porosity data, a larger 

number of macropores as exhibited by the PTFE GDEs should result in better mass 

transport than the PVDF GDE which has fewer macropores, but these two MEAs 

exhibit nearly identical performance. The EBSD HR-SEM images of the PVDF GDE 

shown in Fig. 4.2(a) reveals a better Pt catalyst distribution to the PTFE GDE (Fig. 

4.2(b)), which could result in improved Pt utilisation and result in a performance 

comparable to a GDE with better porosity. The CsHSO4 MEA has the lowest current 

density of 240 mA cm-2 at the same cell voltage, and is ~45% and 37% lower than the 

PTFE and PVDF MEAs respectively.  

 

The insert in Fig. 4.4 is the enlarged polarisation curve of the low current density 

region (< 100 mA cm-2).  Closer examination of this region indicates that the initial 

voltage drop is smallest for the PTFE GDE and highest for the CsHSO4 GDE 

(PTFE<PVDF<CsHSO4). Since this region of the curve is determined by activation 

overpotential, which is largely controlled by the sluggish kinetics of the ORR, it can 

be assumed that the PTFE GDE has the faster reaction kinetics.  The curves of the 

PTFE and PVDF MEAs are nearly identical in the linear region, indicating that these 

MEAs should exhibit similar ohmic resistances, whereas the CsHSO4 MEA shows a 
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polarisation curve with a much steeper slope in the linear region, indicating that the 

ohmic resistance for this GDE is greater than that of the PVDF and PTFE GDEs. We 

postulate that the CsHSO4 electrode lacks the structural integrity provided by the 

polymer network of the binders, leading to an increase in contact resistance. The high 

current density (> 1000 mA cm-2) region of the polarization curves displays no sharp 

drop from the ohmic region of the curves which would indicate that these MEAs are 

not significantly influenced by mass transport limitations. While relatively high flow 

rates were used to negate any mass transport limitations, based on the results obtained 

we do not expect mass transport limitations to affect the performance if stoichiometric 

flow rates are used. 

 

 
Fig. 4.5 Polarisation curves of the MEAs with different polymer binders and/-or proton 

conductor in the CL of the GDEs. 

 

A combination of the different binders and CsHSO4 proton conductor in the CL was 

tested to evaluate whether the binder-proton conductor configuration improved the 

performance of the MEAs. Fig. 4.5 depicts the polarisation curves for the MEAs with 
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different binders and CsHSO4 proton conductor in the CL. At a working cell voltage 

of +0.6V the maximum current density is achieved by the PTFE MEA, with the 

PVDF-20% CsHSO4 MEA exhibiting the lowest current density of 150 mA cm-2 at 

the same cell voltage. From the polarization curves we observe a decrease in current 

density at +0.6 V that follows the following trend: PTFE > PVDF > PVDF-10% 

CsHSO4 > PTFE-10% CsHSO4 > CsHSO4 > PTFE-20% CsHSO4 > PVDF-20% 

CsHSO4. An enlarged image of the low current density region in Fig. 4.5 is shown in 

the insert. The results show that the addition of the binders to the 10% CsHSO4 GDE 

results in a smaller voltage drop when compared to the CsHSO4 GDE, indicating that 

the addition of the binders improved the electrode kinetics of the CsHSO4 GDE. 

 

 

 
Fig. 4.6 Power Density curves of the MEAs with different polymer binders and/-or proton 

conductor in the CL of the GDEs. 
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The binder-20 % CsHSO4 MEAs exhibited the lowest performance of all the MEAs, 

indicating that high CsHSO4 loadings in the CL is not beneficial for MEA 

performance. Clearly the lower amount (10%) CsHSO4 combination with either 

polymer binder produces the better performance.  The power density curves for the 

MEAs with different binders and CsHSO4 proton conductor in the CL is illustrated in 

Fig. 4.6. It can be seen that the PVDF-10% CsHSO4 MEA  achieved the highest peak 

power density of the binder-CsHSO4 MEAs reaching a maximum power density of 

492.8 mW cm-2 at a cell voltage of +352 mV, which is nearly twice the value of 250 

mW cm-2 at 350 mV achieved by Wannek et al. with Pt loadings of ~1 mg cm-2
 Pt and 

40% PTFE in the catalyst layer [5]. Although the results between Wannek et al. and 

this work are compared, a true comparison cannot be made since they used 

stoichiometric flow rates and the cells tested in this work utilised much higher flow 

rates so that mass transport limitations would not influence the performance of the 

GDEs. However, Wannek et al. used MEAs with an active area nearly three times 

larger than our active area.  

 

Although the PTFE MEA exhibits nearly identical performance to the PVDF MEA 

when only the binders are used in the CL, the PVDF binder used in conjunction with 

10% CsHSO4 exhibits a peak power that is ~20% higher than when PTFE binder is 

used in conjunction with 10% CsHSO4, the PVDF binder clearly poses the best choice 

for use with the CsHSO4 in the CL. In order to obtain more information about the 

electrochemical characteristics of the GDEs prepared with the PTFE, PVDF binders 

and the CsHSO4 inorganic solid acid, AC impedance was performed in-situ under the 

same operating conditions at a cell voltage of +0.6V. Fig. 4.7 shows the measured 

impedance spectra of the MEAs with the various binders and proton conductor in the 
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CL of the GDEs. The total ohmic resistance, RΩ, of the cell can be obtained from the 

high frequency intercept of the real axis and the RCT can be estimated from the 

diameter of the low frequency and high frequency intercept.  

 

 
Fig. 4.7 In situ impedance spectra of the MEAs with different polymer binders and CsHSO4 at a 

cell voltage of 0.6V. 

 

Table 2 shows the results from measured impedance spectra as well as the Tafel 

slopes for the various MEAs. From the impedance spectra in Fig. 4.7 it can be seen 

that there is no significant difference in RΩ, with the exception of the PTFE and PVDF 

MEAs, since the RΩ represents the total ohmic resistance of the cell which is made up 

of the contact resistance between the cell components and the ohmic resistance of the 

membrane, catalyst layer, gas diffusion layer, and bipolar plates [86]. The only 

differences in the MEAs is the composition of the catalyst layers, one may therefore 

conclude that the catalyst layer of the PTFE GDE has a much lower ohmic resistance, 

which if we refer to Fig. 4.2(g) can be attributed to the lower interfacial contact 
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resistance provided by the PTFE GDE which has a more irregular surface with 

catalyst agglomerates which can lead to improved interfacial contact resistance due to 

the flexibility of the membrane and the cell assembly pressure exerted on the MEA 

[111]. This morphology is not observed in the PVDF GDE (Fig. 4.2(a)) and could be 

the reason for the higher ohmic resistance seen here.  

 

Table 2 - Impedance and Tafel slope characteristics of the MEAs 

GDE % binder and/-or 

proton conductor 

Tafel 

slope 

(mV dec-

1) 

RΩ (mΩ cm-

2) 

RCT (mΩ cm-

2) 

PTFE  40% 91 208 208 

PTFE-CsHSO4 40% PTFE-10% 
CsHSO4 

92 152 316 

 40% PTFE-20% 
CsHSO4 

92 145 546 

PVDF 15% 105 280 208 

PVDF-CsHSO4 15% PVDF-10% 

CsHSO4 

92 131 255 

 15% PVDF-20% 

CsHSO4 

87 146 926 

CsHSO4 10% 98 168 374 

 

 

Nevertheless, it is clear that the MEAs containing CsHSO4 as proton conductor in the 

CLs have lower RΩ values than those for the MEAs with the polymer binder (i.e., 

PVDF GDE and PTFE GDE), this lower RΩ in the CsHSO4 MEAs can be attributed to 

the increased proton transfer in the CLs resulting from the use of proton conductor. It 

has been reported that the proton transport resistance in the CL causes a 45o (degree)-
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straight line at the high-frequency region of the first arc [120], which can also be 

observed in the current study (Fig. 4.7), proving that the addition of CsHSO4 proton 

conductor in the CL lowers the proton transport resistance. Another possible reason 

for the higher RΩ values for the PTFE and PVDF MEAs could be due to the 

membrane conductivity; although it is assumed that the membrane should have the 

same PA doping if the same membrane doping procedure is followed, subtle 

differences in the same membrane can result in different membrane conductivity. The 

lowest RCT of 208 mΩ cm-2 was achieved by the MEAs with the PVDF GDE as well 

as the PTFE GDE which indicates that these GDEs have the more efficient 

electrochemical active layer. These RCT values confirm the results seen in the 

polarisation and power density curves (Fig. 4.5 and Fig 4.6). The lowest RCT of the 

MEAs with the binder-proton conductor configuration was achieved by the PVDF-

10% CsHSO4 MEA which has a RCT value of 255 mΩ cm-2.  

 

 

The PVDF-10% CsHSO4 MEA exhibits a much lower charge transfer resistance than 

the 10% CsHSO4 only MEA, suggesting that the addition of the polymer binder to the 

CL of the CsHsO4 GDE improves the kinetics of the ORR in the catalyst layer of the 

GDE, this finding corresponds to the increased performance observed in Fig. 4.5 and 

Fig. 4.6. The Tafel plots depicted in Fig. 4.8 and the Tafel slopes summarised in 

Table 2 were estimated from fitting the experimental data to: 

 

EiR-Free = a + b log(i)                                   (4.1) 
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where EiR-Free is the iR free voltage of the low current density region of the 

polarization curve, a is a constant which depends on the electrodes and cell operating 

conditions, b is the Tafel slope and i is the current density. The Tafel slopes for the  

 
Fig. 4.8 Tafel plots for the ORR of the GDEs with different catalyst layer compositions. 

 

MEAs with the combination of the polymer binders and proton conductor were all in 

the range of 87-105 mV dec-1 which is well below the value of 120 mV dec-1 obtained 

for PAFCs, and since the Tafel slope provides information on the kinetics of the ORR, 

it can be stated that in the case of the PVDF GDE the addition of CsHSO4 proton 

conductor improves the ORR kinetics in these electrodes as the PVDF GDE without 

any CsHSO4 previously exhibited the highest Tafel slope value of 105 mV dec-1 

indicating that this GDE has the slowest reaction kinetics. The addition of CsHSO4 to 

the PVDF MEAs improved the Tafel slope values and lowered ohmic resistance of 

these MEAs, whereas in the case of the PTFE MEAs the addition of CsHSO4 did not 

improve the Tafel slope values but also lowered the ohmic resistance of these MEAs. 

The binder-CsHSO4 MEAs exhibit higher charge transfer resistance values to the 
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binder GDEs as well as exhibiting lower performance. The advantages of the 

improved Tafel slope values in the PVDF-CsHSO4 MEAs as well as the lower ohmic 

resistance values for both binder-CsHSO4 MEAs are clearly negated by the higher 

charge transfer resistance of these MEAs. The lower performance exhibited by the 

binder-CsHSO4 MEAs indicates that although the polymer binders improved the 

stability of the CsHSO4 proton conductor in the CL, the resistance of CsHSO4 to fuel 

cell environment still needs further improvement. 

 

4.3 Conclusions 

Composite GDEs were constructed using CsHSO4 as the proton conductor and 

PVDF/PTFE as the polymer binder in the CL. The electrochemical analysis indicated 

that MEAs prepared with CsHSO4 in the CL can efficiently lower the proton transfer 

resistance. However, the MEAs prepared solely using CsHSO4 in the CL exhibited 

lower performance (341.76 mW cm-2 at 356 mV) than the MEAs prepared from 

GDEs using the polymer binders, possibly due to the hygroscopic nature of CsHSO4 

which absorbed moisture from the atmosphere during the air-spraying procedure and 

caused incomplete formation of the pore structure in the CL. The performance and 

RCT of the CsHSO4 GDEs was improved by addition of a polymer binder to the CL. 

The CsHSO4 MEA provided the best performance when used in conjunction with a 

15% PVDF binder, enabling the 15% PVDF-10% CsHSO4 MEA to achieve a 

maximum power density of 492.8 mW cm-2 at 352 mV, further improvement in the 

single cell performance can be expected by further optimization of the binder and 

CsHSO4 contents in the CL. Since CsHSO4 inorganic solid acid is conductive in the 

140oC – 200oC range, an operating temperature higher than 160 oC may prove to be 

65 

 

 

 

 

 

 

 



 

beneficial in improving the performance of the MEAs based on these binder-CsHSO4 

GDEs, but this temperature is higher than 160 oC operating temperature which we've 

found to optimum for the ABPBI membrane. 

66 

 

 

 

 

 

 

 



 

Chapter 5: Evaluation of ZHP for improved proton 

conductivity in the catalyst layer 

5.1 Introduction 

Zirconium hydrogen phosphate, Zr(HPO4)2 (ZHP) is an insoluble solid that has been 

intensively studied as a proton conducting solid electrolyte.  ZHP exhibits a layered 

structure (which allows for intercalation of ‘’guest’’ molecules) as well as cation 

exchange properties [121].  In addition to these cation exchange properties, it also 

displays good proton conductivity as a result of high proton mobility on the surface of 

ZHP [122], and high hygroscopicity at elevated temperatures which make it extremely 

attractive for use as polymer electrolyte [123, 124].  At 80 oC, amorphous ZHP in 

water exhibits a proton conductivity of ~0.01 S cm-1, which has led to several studies 

in which ZHP is incorporated into non-conducting polymers such as PTFE [125, 126] 

as well as conducting polymers such as Nafion® [64].  These electrolytes are modified 

with ZHP to improve the moisture content and thermal stability of these membranes 

[63, 64, 127].  Since the incorporation of ZHP into electrolyte membranes has proven 

to be beneficial for moisture content and improved performance at temperatures 

above 100 oC, its presence in the CL should be beneficial for similar reasons.  Xie et 

al. investigated the influence of ZHP in the CL of GDEs for MEAs based on Nafion® 

membrane and found that below 100 oC, the performance remained similar to GDEs 

containing Nafion® only, however, above 100 oC the ZHP/Nafion GDEs showed 

improved performance over the conventional Nafion GDEs [128]. For the same 

reasons, introducing ZHP into HT-PEMFC systems should also prove beneficial as 

there is a need for stable proton conductivity at elevated temperatures. 
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In this study, ZHP was incorporated into the CLs of ABPBI-based HT-PEMFC along 

with a non-conducting polymer (PTFE), without additional H3PO4 doping, to evaluate 

the effects of ZHP on (i) the fuel cell performance and (ii) the stability of the resulted 

GDEs.  In summary, this work expands on the work carried out by Xie et al. [128], by 

incorporating ZHP into the CLs of ABPBI-based HT-PEMFC.  Similar techniques 

and methodologies are applied in this work, which at the same time, is considered to 

be a new step in the optimisation challenge of the HT-PEMFC systems. 

 

5.2 Results and Discussion 

5.2.1 Influence of ZHP on the catalyst layer structure 

 

Table 3: Specifications of the GDEs. 

GDE Catalyst type 

(% Pt/C) 

Pt loading wt.% ZHP in CL 

(re. dry PTFE) 

wt.% PTFE (re. 

Pt/C) 

GDE-1 40 1 mg cm-2 0 40 

GDE-2 40 1 mg cm-2 20 40 

GDE-3 40 1 mg cm-2 30 40 

GDE-4 40 1 mg cm-2 40 40 

GDE-5 40 1 mg cm-2 50 40 

     

  

The specifications of all the GDEs prepared in this study are shown in Table 3. The 

SEM micrographs of the GDEs prepared with 40% PTFE and 40% PTFE-30% ZHP 

combinations are depicted in Fig. 5.1(a, b). In order to perform a systematic 

comparison between the GDEs, the images were taken in secondary electron detector 
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mode (EBSD) at 1,000x magnification.  The hand spraying method for deposition of 

the catalyst ink results in an uneven deposition of the catalyst, and as a result large 

lumps can be observed on the surface of both GDEs.  The Zr particles are observed as 

white clusters in Fig. 5.1(b). Looking at the 50,000x magnification inserts in Fig. 5.1, 

one may observe that both GDEs exhibit a porous microstructure necessary for 

transport of reactant gases to the catalyst sites, with no distinguishable differences 

observed in the GDEs.  Elemental analysis data shown in Table 4 revealed a nearly 

uniform distribution of zirconium in the CL of GDE-3, with a 1:3 ratio for Zr:Pt 

which meets the design requirements. 

 

 
Fig. 5.1 Surface morphologies with inserts of CL pore structure of (a) PTFE-GDE (GDE-1) and 

(b) 30% ZHP/PTFE-GDE (GDE-3). 

 

 

Table 4: Elemental Analysis (all results in wt.%) 

Spectrum In stats. C F Zr Pt Total 

Spectrum 1 Yes 50.75 22.85 6.6 19.8 100 

Spectrum 2 Yes 52.58 23.45 5.83 18.15 100 

(a) (b) 
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The effect of various ZHP loadings on the GDE surface morphology and CL 

microstructure is illustrated in Fig. 5.2.  Increasing the ZHP loading effectively causes 

a corresponding increase in the uneven nature of the surface of the GDEs, with more 

lumps and agglomerates observed for the higher ZHP loadings (Fig. 5.2(b,c)).  Little 

difference in the porous microstructure of the GDEs is observed in the high 

magnification inserts of Fig. 5.2.  

 

 
Fig. 5.2 Surface morphologies with inserts of CL pore structure of (a) 20% ZHP/PTFE-GDE 

(GDE-2), (b) 40% ZHP/PTFE-GDE (GDE-4) and 50% ZHP/PTFE-GDE (GDE-5). 

 

A more detailed analysis of the microstructure of the GDEs can be obtained from the 

porosimetry data. Fig. 5.3 shows a comparison of intrusion data for the 30% 

ZHP/PTFE-GDE (GDE-3) and PTFE-GDE (GDE-1).  It can be seen that the addition 

of ZHP to the CL causes a slight decrease in the number of pores in the < 0.03 µm 

region, indicating a slight reduction in the number of micropores upon addition of 

ZHP, indicating that the ZHP could be filling the smaller diameter pores during the 

formation of the CL, which corresponds to the findings of Xie et al [128]. However, 

introducing ZHP in the CL results in an increased pore volume for the macropores 

(60-100 µm region), which may have originated from the increase in the number of 

catalyst agglomerates in the CL due to the increased ZHP content. 

(a) (b) (c)
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Fig. 5.3 Mercury intrusion porosimetery curves showing the incremental intrusion of the PTFE-

GDE (GDE-1) and the 30% ZHP/PTFE-GDE (GDE-3). 

 

Fig. 5.4 shows the intrusion data for the GDEs with varying ZHP loadings, GDEs (2-

5). The porosimetry data shows that the ZHP/PTFE-GDEs have similar intrusion 

volumes across all pore sizes with the exception of the macropore region (30-100 µm), 

where the 30% ZHP/PTFE GDE (GDE-3) shows a higher pore volume than the other 

ZHP/PTFE GDEs.  A higher pore volume in this region is beneficial for the molecular 

diffusion mechanism of gas to the catalyst sites [119]. GDEs with higher pore volumes 

in this region are expected to have better mass transport properties in high current 

density regions.   
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Fig. 5.4 Mercury intrusion porosimetry curves showing the incremental intrusion for the GDEs 

with varying ZHP concentrations in the CL; GDE-2 (20% ZHP/PTFE), GDE-3 (30% 
ZHP/PTFE), GDE-4 (40% ZHP/PTFE) and GDE-5 (50% ZHP/PTFE). 

 

5.2.2 Single cell performance 

Fig. 5.5 shows the performance curves for two MEAs with differing CL compositions 

in the GDEs.  The performance of the MEA based on the PTFE-GDE (GDE-1) shows 

a lower performance than that achieved by the ZHP/PTFE-GDE (GDE-3), indicating 

that the addition of ZHP to the CL enhances the performance of the MEA, particularly 

in the medium and high current density regions of the polarisation curve.  The 

maximum power density of the two MEAs is achieved by GDE-3, with 592 mW cm-2 

at a cell voltage of +380 mV, which is an improvement of approximately 14% over 

GDE-1 which only achieved a maximum power density of 518 mW cm-2 at a cell 

voltage of +331 mV.  The polarisation curves also show that at a working cell voltage 

of +600 mV GDE-3 reaches a current density of 399 mA cm-2, which is 

approximately 25% higher than that achieved by GDE-1 (320 mA cm-2) at the same 

cell voltage. Detailed analysis of the polarisation curves shows that the GDEs have a 
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similar voltage drop in the low current density region (< 100 mA cm-2) of the curve, 

indicating the electrodes have similar reaction kinetics.  Since the voltage drop in this 

region is predominantly determined by sluggish ORR kinetics, it can be stated that 

introducing Zr(HPO4)2 in the CLs  does not affect ORR kinetics.  

 

 
Fig. 5.5 Performance curves for the MEAs prepared with 40% PTFE in the CL (GDE-1) and 

40% PTFE and 30% ZHP in the CL (GDE-3). 

 

Analysis of the linear region of the polarisation curve shows that MEAs exhibit 

similar decreasing slopes, while GDE-1 exhibits slightly lower performance than 

GDE-3 in this region.  This observation indicates that the MEAs have similar ohmic 

resistances, as this region of the polarisation curve is influenced by ohmic resistance.  

The high current density region (> 1,000 mA cm-2) of the curve which is influenced 

by mass transport limitations, shows that both GDEs are not significantly influenced 

by mass transport limitations as no sharp drop from the linear region of the curve is 

observed for either MEA.  GDE-3 exhibits a better performance than GDE-1 in the 
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high current density region, it can thus be stated that GDE-3 has better mass transport 

properties, which corresponds to the larger number of macropores exhibited in Fig. 

5.3. This apparent lack of mass transport limitations for the GDEs may be attributed 

to: (i) the increase in temperature leading to not only in an increase in the reaction rate 

but also an increase in the gas diffusion rate through the electrolyte membrane as well 

as the GDE and, (ii) a single phase of gaseous water leading to an increased surface 

area of the catalyst and improving the ability of reactant gases to diffuse into the 

reactant layer, as gaseous water does not block the active sites as liquid water does in 

LT-PEMFCs, as the phenomenon of catalyst flooding does not occur in HT-PEMFCs 

[6, 59, 129]. 

 
 

 
Fig. 5.6 In-situ impedance curves of the MEAs for GDE-1 and GDE-3, at a cell voltage of +0.6 V 

 

Fig. 5.6 shows the in-situ impedance curves of the single cells with the two different 

GDEs obtained at +0.6 V.  The high frequency intercept with the x-axis shows that the 

MEAs have similar ohmic resistances, whereas the charge transfer resistances show a 
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significant difference for these two MEAs.  Since the charge transfer resistance can be 

calculated from the diameter of the arc, it is clear that the MEA of GDE-3 has the 

lowest charge transfer resistance, implying that this GDE has the more efficient 

electrochemical active layer, which can be attributed the increased proton 

conductivity of the CL due to the incorporation of ZHP. 

5.2.3 Influence of ZHP content on MEA performance 

Fig. 5.5 clearly shows that the addition of ZHP to the catalyst layer of the GDE 

increased the MEAs performance, however, an investigation into the effect of 

different ZHP concentrations shows that an optimum value for ZHP in the catalyst 

layers exists.  In this study 20-50 wt.% ZHP in relation to dry PTFE was evaluated in 

the CL.  Fig. 5.7 shows the performance curves of the MEAs with different ZHP 

contents in the CL.  

 

 
Fig. 5.7 Performance curves for the MEAs with different ZHP content in the CLs. 
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For comparison purposes, plots of current density at +600 mV versus ZHP content in 

CL and power density versus ZHP content in CL are shown in Fig. 5.8 and Fig. 5.9 

respectively. In Fig. 5.8 it can be observed that the cell performance is slightly 

improved by increasing ZHP content from 20 wt% to 30 wt% in the CLs, however 

further increase of ZHP content to 40 wt% and 50 wt% leads to a dramatic drop at the 

same cell voltage, which could be attributed to the increased ohmic resistance due to 

higher ZHP content in these CLs.  

 

 

Fig. 5.8 Current density at 600 mV versus the ZHP content in CL. 
 

The increased ohmic resistance values for the MEAs containing the higher ZHP 

content can be explained by the decrease in micropores observed upon the addition of 

ZHP to the CL, while small amounts of ZHP improves the electrochemical active 

layer and fills only a smaller number of micropores, higher amounts of ZHP in the CL 

results in too much ZHP filling the smaller diameter pores which leads to a less 

efficient electrochemical active layer and an increase the ohmic resistance of the CL.  
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The same trend is observed in Fig. 5.9 where the maximum power density is achieved 

by GDE-3, with 592 mW cm-2 achieved at +380 mV.  It is clear from these graphs 

that high ZHP contents (40 wt.% and 50 wt.%) in the CL are not favourable to higher 

fuel cell performance.  

 

Although MEAs with GDE-2 and GDE-3 reach similar current densities at +600 mV 

(Fig. 5.8), the peak power densities reached by these MEAs show a distinct difference 

(Fig. 5.9). In the medium current density region these MEAs exhibit similar 

performance, but GDE-3 clearly outperforms GDE-2 in the high current density 

region. Normally, the fuel cell performance in the high current density region is 

related to mass transport limitations, therefore it is clear from Fig. 5.5(a)-(c) that 

GDE-3 has the superior CL composition in terms of mass transport properties and 

MEA performance due to the optimized ZHP content.   

 

Table 5. Impedance and Tafel slope characteristics of the various GDEs. 

GDE -# GDE-1 GDE-2 GDE-3 GDE-4 GDE-5 

RΩ (Ω cm2) 0.087 0.104 0.096 0.114 0.105 

Rct (Ω cm2) 0.344 0.210 0.207 0.224 0.241 

Tafel slope (mV dec-1) 87 98 84 87 96 
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Fig. 5.9 Maximum Power density versus ZHP content in CL. 

 

The in-situ impedance curves of the four MEAs at a cell voltage of +0.6 V are shown 

in Fig. 5.10.  The high-frequency intercept on the real axis represents the total ohmic 

resistance of the single cell, while the diameter of the arc is a measure of the charge 

transfer resistance of the ORR.  Through simulation with Autolab software, the cell 

resistances (RΩ) and charge transfer resistances (Rct) of the single cell with the 

different GDEs can be calculated, and summarised in Table 5 along with the 

calculated Tafel slopes for the Tafel plots shown in Fig. 5.11.  It can be seen that 

GDE-3 possesses the lowest ohmic resistance and charge transfer resistance, 

indicating a more efficient electrochemical active layer due to the optimum ZHP 

content in the CL.  High resistances are observed with GDEs containing high ZHP 

contents (40 wt.% and 50 wt.%), these results are certainly consistent with their 

performances showed in fuel cell operation (Fig. 5.7).  The values for the Tafel slopes 

range between 84-98 mV dec-1, with the GDE-3 exhibiting the lowest Tafel slope 
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value of 84 mV dec-1 indicating that the addition of ZHP to the slightly improves the 

ORR kinetics. 

 

 
Fig. 5.10 In-situ impedance curves for MEAs with differing ZHP contents in CL, at a cell voltage 

of +0.6 V. 
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Fig. 5.11 Tafel plots for the ORR of the GDEs with different catalyst layer compositions. 

 

 

5.2.4 Stability  

 

 
Fig. 5.12 Stability of GDE-1 and GDE-2 MEAs performance, operating for 500 h at 0.2 A cm-2 
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Since stability and durability characteristics are one of the main challenges associated 

with HT-PEMFCs [59], a short term stability analysis study was performed for 500 h 

at j = 0.2 A cm-2, as shown in Fig. 5.12.  The experiment was started after performing 

two polarisation tests which took place on two successive days, the cell voltage at 0.2 

A cm-2 was at its maximum directly after the second polarisation test was performed.  

As can be seen in Fig. 5.12, the MEA of GDE-3 maintains a stable performance for 

the duration of the study, with the exception of the occurrence of minor fluctuations 

due to a disruption in H2 gas supply to the cell, the cell voltage shows no major 

decrease at 0.2 A cm-2.  When the stability of GDE-1 is compared with that of GDE-3, 

it can be observed that GDE-1 has a much steeper slope than that of GDE-3.  Linear 

regression of the cell voltage data obtained for the MEAs reveals that the degradation 

rate of GDE-3 is as low as ∼19 µV h-1, while GDE-1 shows a much higher 

degradation rate of ∼195 µV h-1. The high degradation rate exhibited by the MEA of 

GDE-1 is most likely due to the catalyst ink deposition method used to prepare the 

GDEs. Since the only difference between these two MEAs are the different 

compositions of the CLs, it can be stated that the addition of the 30 wt.% Zr(HPO4)2 

(re. dry PTFE) to the CL can greatly increase the stability of the cell performance.  

The degradation rate of ∼19 µV h-1 obtained by GDE-3 is well within the range for 

those reported by other researchers' (4.9 - 25 µV h-1) [130-134].  The good stability 

displayed by GDE-3 can be explained by; the good thermal stability provided by ZHP 

combined with the improved proton conductivity at higher temperatures.  Therefore, 

incorporating the hygroscopic ZHP particles in the CL, which aids the proton 

conductivity and stability of the GDE at higher operating temperature, is believed to 

be the main reason for the GDE-3 showing high performance and good durability. 
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Fig. 5.13 SEM images of the cross-sections of the MEAs after the durability test: (a) GDE-1 MEA 

and (b) GDE-3 MEA. 
 

 

Fig. 5.13 shows the SEM images of the MEA cross-sections that were taken after the 

completion of the stability test. The MEAs were set in resin and polished in order to 

obtain accurate cross-sections. Analyses of the post-test images shows that the MEA 

of GDE-1 (Fig. 5.13(a)) has a significantly thinner average membrane thickness when 

compared to the MEA of GDE-3 (Fig. 5.13(b)), exhibiting a thickness of 40 µm and 

55.6 µm respectively. Whereas a freshly doped, untested membrane has a thickness of 

approximately 80 µm, which through cell compression of the MEA can be noticeably 

reduced. If we consider that the MEAs differ only in CL composition, yet they still 

exhibit different membrane thickness. This would suggest that the MEA of GDE-3 

retains a higher PA doping in the membrane than the MEA of GDE-1 after the 

stability test, hence the ZHP in the CL of GDE-3 exerts a positive influence on PA 

hydration due to its hygroscopic properties. Fig. 5.13(a) also clearly shows a greater 

degree of CL separation from the membrane in comparison to Fig. 5.13(b), indicating 
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that the unique CL of GDE-3 has a positive influence on the acid retaining ability of 

the membrane which improves the MEAs stability. 

 

5.3 Conclusions  

 
Incorporating ZHP into the CL of GDEs yielded high performances of ABPBI-based 

MEAs.  A 30 wt.% ZHP (re. dry PTFE) content in the CL yielded the best performing 

MEA, which achieved  peak power of 592 mW cm-2 at a cell voltage of 380 mV cm-2.  

An increase in ZHP content in the CL led to lower performances, indicating that 

lower ZHP contents in the CL are more beneficial for achieving high power densities.  

A reduction in charge transfer resistance was observed for the ZHP GDE when 

compared to the GDE containing PTFE-only, indicating that the addition of ZHP can 

increase the proton conduction of the CL.  The MEA showed good stability in a short 

term operation: the cell voltage remained at ~+0.65 V without obvious drop after the 

500 h operation at 0.2 A cm-2.  It may be stated that an optimum content of ZHP in the 

CL benefits the performance and stability of ABPBI-based HT-PEMFC. 
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Chapter 6: Development of ceramic carbide acid-

controlling region 

6.1 Introduction 

HT-PEMFCs are in many respects very similar to PAFCs, with differences in 

operating temperatures and in electrolyte configuration. PAFCs typically operate at 

temperatures of  ~200 oC, whereas HT-PEMFCs generally operate well below 200 oC. 

Although both these fuel cells rely on phosphoric acid as the proton conducting 

electrolyte; PAFCs use 100% phosphoric acid immobilised in a matrix, whereas HT-

PEMFCs typically use a PBI/ABPBI-based membrane that is doped with phosphoric 

acid [48].  

 

Phosphoric acid has many attractive features for use as an electrolyte at high 

temperature operation; stability (200 oC), low vapour pressure, ability to use air as the 

oxidant and tolerance to CO (200 oC). These features are mostly applicable to 

operation at 200 oC, so when lower temperatures are used certain drawbacks such as 

slower ORR rate due to the stronger adsorption of the phosphate anions onto the Pt 

surface and its low acidity at lower temperatures come into play. In PAFCs operating 

at 200 oC, the phosphoric acid is polymerised to pyrophosphoric acid, and these 

pyrophosphoric acid anions adsorb onto the Pt catalyst to a lesser degree than 

phosphoric anions resulting in higher ORR rates [135]. This strong adsorption of 

phosphoric anions onto Pt proves to be particularly problematic as HT-PEMFCs 

require high concentrations of phosphoric acid for sufficient membrane proton 

conductivity, yet at the same time the phosphoric acid makes gas transport difficult 

within the electrodes and hinders the electrode reactions due the strong phosphate 

anion adsorption [136]. The phosphoric acid dopant in the membranes is not 'fixed', so 
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HT-PEMFCs face yet another issue of phosphoric acid leaching from the membrane. 

Excess phosphoric acid could flood the electrodes and block the gas transport 

channels leading to a decrease in performance as well as reducing the membrane 

conductivity [133, 137, 138]. Long-term durability would hence need to reduce the 

phosphoric acid leaching and prevent the phosphoric acid electrolyte from flooding 

the electrodes. There is therefore a need for a novel MEA architecture which could act 

as a barrier to prevent excessive phosphoric acid from flooding the electrode as well 

as preventing the loss of phosphoric acid from the MEA. This study serves to develop 

such a novel architecture by incorporation of an acid-controlling region into the MEA 

structure. The acid-controlling region is illustrated in the MEA schematic in Fig. 

6.1(a) and on the surface of the GDE (Fig. 6.1(b)). 

 

 

 

Fig. 6.1(a) Schematic diagram showing an expanded view of a MEA with acid-controlling regions 

and (b) GDE with SiC layer. 

 

 

 

85 

 

 

 

 

 



 

6.2. Results and discussion 

6.2.1. Structural Evaluation of GDEs 

 

 

 
Fig. 6.2 HR-SEM surface images of (a, c) Freudenberg CX 196 GDL and (b, d) Freudenberg C4 

GDL at 1,000x magnifcation and 50,000x magnification. 

 

As two different commercial GDLs were used in this study, a structural evaluation of 

the GDLs is necessary to explain any difference in performance achieved by these 

GDEs. The different microstructures for the two GDLs are shown in Fig. 6.2. The 

surface micrographs taken at 1,000x magnification reveals that the GDLs are 

remarkably similar, with the exception that the Freudenberg CX 196 GDL (Fig. 

6.2(a)) shows a crack of approximately 200 μm in length visible on the MPL, whereas 

the Freudenberg C4 GDL (Fig. 6.2(c)) has no cracks evident on the MPL. High 

magnification micrographs taken at 50,000x magnification indicates that Freudenberg 
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C4 GDL depicted in Fig. 6.2(d) appears to have a denser microstructure than the 

Freudenberg CX 196 GDL depicted in Fig. 6.2(c), which appears to have a more 

porous microstructure. 

 

 
Fig. 6.3 Incremental intrusion pore-size distribution measurements of the GDLs. 

 

Fig. 6.3 illustrates the pore-size distribution obtained for the two GDLs. It is evident 

that the GDLs have distinctly different pore-size distributions, with the Freudenberg 

CX 196 GDL exhibiting a slightly larger intrusion volume in the micropore rgion 

(0.05-0.06 μm). The mesopore (0.3-5 μm) and macropore (30-100 μm) regions show 

significantly larger intrusion volumes, indicating a larger number of meso- and 

macropores. It can also be seen that the Freudenberg CX 196 GDL has a larger 

intrusion volume in the >100 μm region, which can be attributed to the cracks on the 

GDLs surface [139].The more porous microstructure of the Freudenberg CX 196 

GDL seen in Fig. 6.2(c) is confirmed by the results obtained in Fig. 6.3. The addition 

of the same catalyst layer to the GDLs and its effects on the pore-size distribution is 
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shown in Fig. 6.4. A clear increase in the number of micropores in the 0.01-0.03 μm 

region can be observed for both GDEs, this effect is to be expected as the GDLs are 

largely influence the meso- and macropore region, whereas the catalyst layer largely 

influences the micropore region of GDEs. It is once again evident that the GDE based 

on the Freudenberg CX 196 GDL exhibits the better pore-size distribution across all 

pore regions. 

 

 
Fig. 6.4 Incremental intrusion pore-size distribution measurements of the Freudenberg GDEs. 

 

 
Fig. 6.5 Cross-sections of Freudenberg C4 GDEs with (a) 0.2 mg cm-2 SiC, (b) 0.5 mg cm-2 SiC 

and (c) 1 mg cm-2 SiC loading. 
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Freudenberg C4 GDEs were sprayed with varying SiC loadings to determine the 

influence the various SiC loadings had on electrochemical and physical characteristics 

of the GDEs. Cross-sections of these GDEs are shown in Fig. 6.5, with the GDE 

orientation in the cross-section as follows; GDE situated at the top and resin at the 

bottom of the image. As can be seen from the images, an expected increase in the 

thickness of the SiC layer is observes as the SiC loading is increased, with the 0.2 mg 

cm-2 SiC GDE (Fig. 6.5(a)) showing the thinnest layer of ~2.25 μm and the 1mg cm-2 

SiC GDE (Fig. 6.5(c)) showing the thickest layer of ~8 μm. Although the 1 mg cm-2 

SiC GDE has a loading five times greater than the 0.2 mg cm-2 GDE, the SiC layer in 

the 1 mg cm-2 SiC GDE does not have five times the thickness, this is an expected 

characteristic as the manual spray technique does not produce completely uniform 

layers. As a result certain areas of the SiC layer may be thicker or thinner than others. 

 

 
Fig. 6.6 Incremental intrusion pore-size distribution measurements of the Freudenberg C4 GDE 

and the Freudenberg C4 GDEs with varying SiC layer loadings. 
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The differences in pore-size distribution obtained for the various SiC layer loadings is 

depicted in Fig. 6.6. The observed similarity between the incremental intrusion curves 

in the micro- and mesopore regions indicates that the GDEs have similar porous 

microstructures in these regions, whereas the macropore region (50-100 μm) of the 

intrusion curves show more distinct differences. In this region the SiC GDEs exhibit a 

larger number of macropores than the pristine GDE, with the number of macropores 

generated on the surface of the SiC GDEs increasing as the SiC layer loading 

increases. 

 

SEM micrographs of the surface of Freudenberg CX 196 GDEs with SiC-PTFE, NbC-

PTFE, SiC-PBI and combination of SiC-NbC GDEs are shown in Fig. 6.7. Longer 

cracks are clearly visible on the surface of the 1,000x magnification image of the SiC-

PTFE GDE (Fig. 6.7(a)), compared to the NbC-PTFE GDE (Fig. 6.7(d)) which shows 

smaller cracks on the surface. Both GDEs shows a lumpy irregular surface, with the 

NbC-PTFE GDE (Fig. 6.7(d)) appearing to have a more irregular surface than the 

SiC-PTFE GDE (Fig. 6.7(a)). It is also clear from Fig. 6.7(b, c) that the SiC particles 

have an altogether different shape and size to the NbC particles shown in Fig. 6.7(e, 

f). The SiC particles appear to be larger in size, ranging from 0.8-2.25 μm with 

sharper edges, whereas the NbC particles appear to be much smaller in size, ranging 

from 0.4-2 μm in size with rounder edges. The SiC particle size exhibited here is 

smaller than the ~5 μm SiC particle size other researchers found in their studies [50, 

140], this is likely due to the crushing of the SiC particles before preparing the SiC ink 

formulation so that the larger SiC particles would not block the nozzle of the airbrush 

spray gun. The NbC particles, however, were much finer and there was hence no need 
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to crush the particles and so the NbC particle size exhibited here is similar to that 

attained by Caires et al [140]. The larger SiC particles in Fig. 6.7(c) appear to be more 

loosely packed with more void spaces between crystalline particles, exhibing a less 

compact network to that of the smaller NbC particles in Fig. 6.7(f). 

 
Fig. 6.7 Surface micrographs of Freudenberg CX 196 GDEs with: (a-c) 0.2 mg cm-2 SiC-PTFE 

layer, (d-f) 0.2 mg cm-2 NbC-PTFE layer, (g-i) 0.2 mg cm-2 SiC-PBI layer and (j-l) SiC-30% NbC 

layer. 
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A different binder to PTFE was used in the SiC layer to determine what, if any effect 

the PBI binder would have on the structural morphology of the SiC layer. The SEM 

micrographs of the SiC-PBI GDE are shown in Fig. 6.7(g)-(i).  When PBI is used as 

the binder in the SiC layer instead of PTFE, no cracks are observed of the surface of 

the SiC layer. This is most likely due to the DMAc solvent used for the SiC-PBI ink 

formulation which in the drying steps requires a longer amount of time to dry as the 

DMAc solvent is not as volatile as the IPA solvent. Slower DMAc solvent 

evaporation would lead to less cracks being formed as the SiC layer would require a 

longer drying time. The IPA solvent used in the SiC-PTFE ink formulation is, 

however, more volatile and therefore the SiC layer on this GDE dries faster and has 

more cracks. 

 

Upon comparing the images of Fig. 6.7(b, c) with that of Fig. 6.7(h, i) it can be seen 

that the surface of the SiC-PBI GDE appears similar to the SiC-PTFE GDE in all 

other aspects. Fig. 6.7(j)-(l) shows the SEM images of a combination SiC/NbC GDE. 

It is hard to distinguish the NbC particles on the surface due to the low concentration 

of NbC in the SiC/NbC layer, but since NbC particles have round edges, we can 

assume that the particles with rounder edges are in fact NbC particles. The composite 

ceramic carbide layer shown in Fig. 6.7(l) there are less void spaces visible in the 

crystalline structure, due to the smaller NbC particles filling the voids, resulting in 

reduced pore sizes for the composite SiC/NbC GDEs. 
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Fig. 6.8 Incremental intrusion pore-size distribution measurements comparing the unmodified 

Freudenberg CX 196 GDE and the SiC-GDE.  

 

An illustration of the incremental intrusion pore-size distribution data for the 

unmodified Freudenberg CX 196 GDE and the 0.2 mg cm-2 SiC GDE is depicted in 

Fig. 6.8. The intrusion curves for the SiC-GDE and unmodified GDE in Fig. 6.8 show 

similar intrusion volumes across the different pore regions. In order to clarify the 

porosimetry data obtained, the cumulative intrusion pore-size distribution 

measurements were examined in Fig. 6.9, here it can clearly be seen that although the 

GDEs show similar distributions across the different pore regions, the SiC-GDE 

shows reduced pores in the micro- and mesopore regions, with similar pore-size 

distribution occurring from the 20 μm range. Although the quantity of smaller pores 

are slighlty reduced, the quantity of macropores are almost the same, indicating that 

the addition of the SiC layer to the GDE is not too detrimental to the microstructure of 

the GDE. The porosimetry data indicated that the SiC-GDE had a total pore area of 

29.42 m2 g-1 compared to the total pore area of 32.03 m2 g-1 of the Freudenberg CX 
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196 GDE, which confirms the slightly reduced porosity observed for the SiC-GDE in 

the intrusion curves. 

 

 
Fig. 6.9 Cumulative intrusion pore-size distribution measurements comparing the unmodified 

Freudenberg CX 196 GDE and the SiC-GDE.  

 

The influence of different binders in the SiC layer on microstructure can be seen in 

Fig. 6.10. Here we clearly see that the GDEs have show some differences in porosity 

between 0.3-2 μm (mesopores) and between 50-70 μm (macropores), with the SiC-

PTFE GDE showing more pores in mesopore region and less pores in the macropore 

region. The GDEs had a total pore area of 29.42 m2 g-1 and 28.49 m2 g-1 for the SiC-

PTFE and the SiC-PBI GDEs respectively, indicating a slightly improved porous 

microstructure for the SiC-PTFE GDE when compared to the SiC-PBI GDE. In order 

to determine what effect a different ceramic carbide had on the microstructure of the 

GDE, the SiC layer was replaced with a NbC layer of the same loading. The 

incremental intrusion porosimetry data comparing the different ceramic carbide GDEs 

94 

 

 

 

 

 



 

and the unmodified Freudenberg CX 196 GDE are shown in Fig. 6.11. Although the 

addition of a SiC layer to the GDE had some minor influences on the porosimetry 

data, this was not the case for the NbC layer, here we see that the NbC-GDE has 

reduced pore sizes across all the pore regions. These results indicate that NbC greatly 

reduces the porous microstructure of the GDE, with a reduced total pore area of only 

26.30 m2 g-1. 

 

 
Fig. 6.10 Incremental intrusion pore-size distribution measurements for the SiC layers with 

different binders. 
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Fig. 6.11 Incremental intrusion pore-size distribution measurements comparing the unmodified 

Freudenberg CX 196 GDE, SiC-GDE and NbC-GDE. 

 

Micrographs of SEM cross-section of the NbC GDE, SiC-PBI GDE and the various 

SiC/NbC GDEs are shown in Fig. 6.12. As is seen in Fig. 6.12(a) the NbC layer 

formed a very thin layer on the surface of the GDE, with the 0.2 mg cm-2
 NbC layer 

having a thickness of only 1.05 μm, which is approximately half the thickness 

observed for the 0.2 mg cm-2 SiC layer. This observation is expected as the NbC 

particles are much smaller and denser than the SiC particles. The SiC-PBI layer shown 

in Fig. 6.12(b) demonstrates a similar thickness to that obtained for the SiC-PTFE 

layer, which is expected as the only difference in these layer are the binders used in 

the SiC layer. Although the SiC-PBI layer is slightly thicker at 2.38 μm, than the 2.25 

μm thickness of the SiC-PTFE layer, this could be due to the longer drying time 

needed for the DMAc solvent in the SiC-PBI ink formulation which could plausibly 

result in a more accurate thickness, as the loading is determined by weighing the 

sample. Composite SiC/NbC layers with fixed SiC loading of 0.2 mg cm-2 SiC and 
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varying concentrations of NbC are shown in Fig. 6.12(c)-(g), the thickness of the 

SiC/NbC layers vary ranging from 2.05-2.28 μm. It is apparent that the addition of 

such small amounts of NbC to the SiC layer does not exert a significant influence on 

the thickness of these composite layers.  

 

  
Fig. 6.12 SEM cross-sectional images of (a) 0.2 mg cm-2 NbC GDE, (b) SiC-PBI GDE, (c) SiC/10 

wt.% NbC GDE, (d) SiC/30 wt.% NbC GDE, (e) SiC/50 wt.% NbC GDE, (f) SiC/70 wt.% NbC 

GDE, (g) SiC/90 wt.% NbC GDE. 

 

Pore-size distribution measurements for the Freudenberg CX 196 GDEs with SiC, 

NbC and SiC/NbC layers are shown in Fig. 6.13. It is evident from the intrusion 

volume measurements that the SiC-GDE has the larger number of pores in the micro- 
97 

 

 

 

 

 



 

and mesopore region, whereas the NbC-GDE has the lowest quantity of pores in these 

regions. It is interesting to note that the all the combination SiC/NbC GDEs have 

higher intrusion volumes than the NbC-GDEs, hence the addition of SiC to the NbC-

GDE effectively improved the porous microstructure in certain regions. Of the 

combination SiC/NbC GDEs, the SiC/30 wt.% NbC GDE has increased pore numbers 

in the micro- and mesopore region, with reduced pore numbers in the macropore 

region, the reduced number of macropores is beneficial as the ceramic carbide layer is 

better able to retain the PA electrolyte if the number of larger pores are reduced. 

 
 

 
Fig. 6.13 Incremental intrusion pore-size distribution measurements comparing SiC-GDE, NbC-

GDE and SiC/NbC-GDEs. 
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6.2.2 Electrochemical evaluation of MEAs 

6.2.2.1 Effect of GDL on performance 

Fig. 6.14 depicts the performance curves for MEAs based on Freudenberg C4 GDLs 

comparing a standard GDE to one which contains a SiC layer. A decrease in 

performance is observed upon addition of a SiC layer to the standard GDE, with the 

MEA of the standard GDE showing a peak power 9.6% higher compared to the SiC 

MEA. Since the GDL and catalyst layers were the same, the performance difference 

can be attributed from the addition of the SiC layer. The addition of an extra layer on 

top of the CL influences the ohmic resistance of the MEA, resulting in an increase in 

the ohmic resistance as the modified GDE now has two phosphoric acid regions 

through which protons have to be transported through, effectively increasing the 

amount of electrolyte. Analyses of the polarisation curves in Fig. 6.14 show that the 

GDEs have similar electrode kinetics and similar values for the decreasing slopes in 

the linear region, with a small deviation occurring in the high current density region 

(>1000 mA cm-2) where the SiC MEA shows a sharper drop in cell voltage than the 

standard GDE MEA. 

 

Table 6 - Impedance and Tafel slope characteristics of the various Freudenberg C4 SiC 

MEAs 

SiC loading 
(mg cm-2) 

Acid-
doping 
(mg cm-2) 

RΩ (mΩ cm-2) RCT (mΩ cm-2)  Tafel slope 
(mV dec-1) 

0 Free-acid 101.78 271.25 94 
0.2  2.0 163.49 470.17 90 

0.2  4.0 147.97 326.76 95 

0.2 6.0 167.54 1762.64 136 

0.5 4.0 156.67 387.03 101 

1.0 4.0 158.52 882.64 106 

99 

 

 

 

 

 



 

 
 

 
Fig. 6.14 Performance curves comparing MEAs of standard Freudenberg C4 GDE and 

Freudenberg C4 GDE modified with 0.2 mg cm-2 SiC layer doped with 4 mg cm-2 PA (anode and 

cathode).  

 

The in-situ impedance curves illustrating the effect of the SiC layer on cell resistances 

is depicted in Fig. 6.15. The MEAs show significant differences in their RΩ, with the 

MEA of the SiC GDE exhibiting a higher RΩ than that of the standard GDE, this 

difference can be attributed to the SiC layer adding a greater contribution to the 

electrolyte resistance of the cell. Addition of the SiC layer also increased the RCT, 

which is to be expected as the MEA now has an extra layer through which the protons 

have to diffuse through. The data represented in Table 6 shows the electrochemical 

resistances and Tafel slopes values obtained for the MEAs. Although the MEAs show 

distinct differences in their ohmic and charge transfer resistances, the Tafel slopes 

values obtained from the Tafel plot shown in Fig. 6.16 are remarkably similar, with 

the standard MEA having a Tafel slope value of 94 mV dec-1 compared to 95 mV dec-
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1 for the SiC MEA. These Tafel slope values indicate that although the two GDEs 

have different structures, they share the same electro-oxidation mechanism. 

 
Fig. 6.15 In-situ impedance curves illustrating the effect of SiC layer on cell resistances, at a cell 

voltage of +0.6 V. 

 

 
Fig. 6.16 Tafel plots for the ORR of the GDEs with differing structures. 
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6.2.2.2 Influence of SiC loading on performance of Freudenberg C4 

GDEs 

Fig. 6.17 shows the polarisation and power density curves for the Freudenberg C4 

MEAs with various SiC layer contents. At low current densities the polarisation 

curves show similar cell voltages, indicating that the electrode kinetics is not 

influenced by the loading of the SiC layer. The medium current density regions of the 

polarisation curves, however, do not share similar characteristics, with pronounced 

variations of the slopes of the curves with the SiC loading, indicating that the ohmic 

kinetics of these GDEs are significantly influenced by SiC loading. The high current 

density regions of the polarisation curves show no sharp drops indicating that the 

GDEs possess no significant mass transport limitations. It is evident from the 

performance curves that the MEA performance increases as SiC layer loading 

decreases, with the MEA of the 0.2 mg cm- 2
 SiC GDE showing the highest 

performance when compared to the 0.5 mg cm-2 and 1 mg cm-2 SiC GDE MEAs.  The 

0.2 mg cm-2 SiC MEA achieved a peak power of 445 mW cm-2 at a cell voltage of 

+330 mV, which is an increase of approximately 18.3% over the 0.5 mg cm-2
 SiC 

MEA and an increase of 131% over the 1 mg cm-2 SiC MEA. 
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Fig. 6.17 Performance curves comparing Freudenberg C4 GDEs with various SiC layer contents 

and 4 mg cm-2 PA loading (anode and cathode). 

 

The in-situ impedance curves for the GDEs with various SiC loadings are shown in 

Fig. 6.18. The MEAs all have similar high frequency x-axis intercepts indicating that 

the MEAs have similar RΩ values, with significant variations occurring with the RCT, 

as can be seen from the diameter of the arc. These curves show that the charge 

transfer resistance increases as the SiC loading increases, indicating that the resistance 

to proton conductivity increases as the thickness of the SiC layer increases. The Tafel 

plots for these GDEs are depicted in Fig. 6.19, with the values of 95-106 mV dec-1 

obtained for Tafel slopes. Whereas the higher loading SiC GDEs(0.5 and 1 mg cm-2) 

exhibit similar high values for their Tafel slopes, the 0.2 mg cm-2 SiC loading GDEs 

shows the lowest value for the Tafel slope (95 mV dec-1), indicating that this GDE has 

the fastest reaction kinetics. 
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Fig. 6.18 In-situ impedance curves comparing Freudenberg C4 GDEs with various SiC layer 

loadings, doped with 4 mg cm-2 PA, at a cell voltage of +0.6V. 

 

Based on the results obtained in Fig. 6.17 and Fig. 6.18, the 0.2 mg cm-2 SiC loading 

GDE was chosen for optimisation of the H3PO4 loading in the SiC layer. The 

performance curves for the 0.2 mg cm-2 SiC MEAs with various acid doping levels 

are shown in Fig. 6.20.  
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Fig. 6.19 Tafel plots for the ORR of the GDEs with different SiC layer loadings. 

 

 
Fig. 6.20 Performance curves comparing MEAs of Freudenberg C4 GDEs with 0.2 mg cm-2 SiC 

layer content and various PA doping levels (anode and cathode).  

 

As seen in Fig. 6.20, the GDEs doped with 2 and 4 mg cm-2 PA result in higher 

performance than that achieved by the GDE doped with 6 mg cm-2 PA, with the 4 mg 
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cm-2 PA doped GDE achieving the maximum power density of 444 mW cm-2 at a cell 

voltage of +345 mV, and the 2 mg cm-2 PA doped GDE showing only a minor 

difference with a peak power of 422 mW cm-2 achieved at a cell voltage of +339 mV.  

The 6 mg cm-2 PA doped GDE, however, showed extremely poor performance when 

compared to the 2 and 4 mg cm-2 PA doped GDEs, achieving a peak power of only 

121 mW cm-2 at a cell voltage of +303 mW. Since the GDEs all have identical SiC 

layers, the poor performance exhibited by the 6 mg cm-2 PA doped GDE is likely due 

to excessive phosphoric acid forced into the electrodes pores, thereby blocking the 

pores in the GDE resulting in a decrease in the TPB area at the electrode causing a 

severe decrease in cell performance. Fig. 6.21 shows the in-situ impedance spectra 

obtained at + 0.6V for the 0.2 mg cm-2 SiC loading Freudenberg4 GDEs with various 

PA doping levels. The curves all show similar ohmic resistances, with the 2 mg cm-2 

and 4 mg cm-2 PA doped GDEs showing similar charge transfer resistances, the 6 mg 

cm-2 PA doped GDE, however, shows a large difference in charge transfer resistance 

compared to the 2 and 4 mg cm-2 PA doped GDEs. These results correspond to the 

cell performances observed in Fig. 6.20. The values for the Tafel slopes of the 

different PA loading MEAs are indicated in Table 6, with the Tafel plots depicted in 

Fig. 6.22. The values obtained for the Tafel slopes of these MEAs indicate that the 

SiC GDEs doped with 2 and 4 mg cm-2 PA (90 and 95 mV dec-1 respectively) have 

similar reaction kinetics, whereas the SiC GDE doped with 6 mg cm-2
 PA has the 

slowest reaction kinetics with a Tafel slope of 136 mV dec-1. This high Tafel slope 

value obtained for the SiC GDE doped with 6 mg cm-2 can be attributed to the high 

acid loading which blocks the GDEs pores effectively decreasing the TPB area. 
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Fig. 6.21 In-situ impedance curves illustrating the effect of PA doping content on Freudenberg 

C4 GDEs with 0.2 mg cm-2 SiC layer, at a cell voltage of +0.6V. 

 

 

Fig. 6.22 Tafel plots for the ORR of the Freudenberg C4 0.2 mg cm-2 GDEs with varying acid 

doping levels. 
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6.2.2.3 Single cell performance of Freudenberg CX 196 based MEAs 

The performance curves of the standard Freudenberg CX 196 GDE vs 0.2 mg cm-2 

SiC Freudenberg CX 196 GDE doped with 2 mg cm-2 PA is shown in Fig. 6.23. 

Looking at the performance curves in Fig. 6.23, the MEA of the unmodified GDE 

achieves a higher performance than the MEA of the 0.2 mg cm-2 SiC GDE, with the 

unmodified GDE reaching peak power at 518 mW cm-2 at a cell voltage of +370 mV, 

whereas the MEA of the SiC GDE only reaches a peak power of 475 mW cm-2 at a 

cell voltage of +340 mV. The MEA of the SiC GDE suffers a performance loss of 

~9% when compared to the MEA of the unmodified GDE. The GDEs show similar 

electrode kinetics in the low current density region, with only slight differences 

occurring in the medium and high current density region of the polarisation curve. 

 

 

 
Fig. 6.23 Performance curves comparing MEAs of Freudenberg CX 196 GDE with Freudenberg 

CX 196 GDE with 0.2 mg cm-2 SiC layer doped with 2 mg cm-2 PA (anode and cathode).  
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Table 7 - Impedance and Tafel slope characteristics of the standard MEA vs the SiC 

MEA 

GDE RΩ (mΩ 
cm-2) 

RCT (mΩ cm-

2)  
Tafel slope 
(mV dec-1) 

Freudenberg CX 196 87.25 265.75 87 
0.2 mg cm-2 SiC 146.35 280.90 101 

 

 

Fig. 6.24 shows the in-situ impedance curves for the standard MEA and the 0.2 mg 

cm-2 SiC MEA, at a cell voltage of +0.6V. The results from the impedance spectra as 

well as the Tafel slopes for the MEAs in Fig. 6.23 are shown in Table 7.   

 

 
Fig. 6.24 In-situ impedance curves comparing MEA of a standard Freudenberg CX 196 GDE 

versus MEA of Freudenberg  CX 196 GDE with 0.2 mg cm-2 SiC and  40% PTFE layer, doped 

with 2 mg cm-2 PA  (anode and cathode), at a cell voltage of +0.6 V. 
 

These MEAs show significantly different ohmic resistances, with the standard MEA 

showing a RΩ of only 87.25 mΩ cm2 when compared to the 0.2 mg cm-2 SiC MEA 
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which showed a RΩ of 146.35 mΩ cm-2. The ohmic resistance represents the  total 

ohmic resistance of the cell, which is composed of the contact resistance between the 

cell components, ohmic resistance of the membrane, catalyst layer, gas diffusion layer 

and bipolar plates [86]. Since the only difference between these MEAs is the SiC 

layer, we can conclude that the addition of the SiC layer contributes to the contact 

resistance of the cell which in turn causes an increase in the total ohmic resistance. In 

addition to the different ohmic resistances observed, a difference in the charge 

transfer resistance can also be seen. In this case the standard MEA shows the lower 

RCT of only 265.75 mΩ cm2 when compared to the slightly higher RCT of 280.90 mΩ 

cm-2 for the SiC MEA. This higher charge transfer resistance for the SiC MEA results 

in the lower performance observed in Fig. 6.23. The Tafel slope values shown in 

Table 7 were obtained by linear fitting of the experimental data depicted in Fig. 6.25, 

the values of 90mV dec-1 obtained for the standard MEA and 97mV dec-1 for the SiC 

MEA gives us an indication of the ORR kinetics, since the kinetic overpotential of the 

cathode provides the larger contribution to the overpotential, due to the low solubility 

of oxygen in PA, the data shows that the standard MEA has a significantly lower 

Tafel slope when compared to the SiC MEA indicating that the standard MEA has 

better ORR kinetics than the SiC MEA.  
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Fig. 6.25 Tafel plots for the ORR of the Freudenberg CX 196 GDEs with different GDE 

structures. 

 

The influence of varying acid doping levels on the performance of the Freudenberg 

CX 196 GDE with 0.2 mg cm2 SiC layer is depicted in Fig. 6.26. The performance 

curves indicate that the performance of the MEAs increases inversely with acid 

doping concentration, with the MEA doped with 2 mg cm-2 PA achieving peak power 

density of 475 mW cm-2 at a cell voltage of +340 mV. This MEA shows the lowest 

voltage drop across all current density regions, indicating that this GDE has the better 

electrode kinetics and lower ohmic and mass transport losses. These curves also 

illustrate that too much acid in the SiC layer is clearly detrimental to high cell 

performance, with the lowest peak power of 261 mW cm-2 achieved by the MEA 

doped with 4 mg cm-2 PA at a cell voltage of +344 mV. The 2 mg cm-2 PA doped 

MEA shows a ~82% improvement in performance when compared to the 4 mg cm-2 

PA doped MEA. Acid doping of the 0.2 mg cm-2 SiC GDE clearly has an optimum 

value of 2 mg cm-2
 PA in the SiC layer. 
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Fig. 6.26 Performance curves for MEAs comparing Freudenberg CX 196 GDEs with 0.2 mg cm-2 

SiC layer content and various PA doping levels (anode and cathode).  

 

Fig. 6.27 depicts the in-situ impedance spectra obtained for the Freudenberg CX 196 

MEA with 0.2 mg cm-2
 SiC layer and various PA doping concentrations. Analysis of 

the impedance spectra shows that the RCT values for the different MEAs increases as 

the PA electrolyte concentration increases, confirming the results obtained in Fig. 

6.26 that too much PA causes electrolyte flooding into the GDE, causing a decrease in 

the TPB area, thereby resulting in an increased resistance to proton transport [141].  

Although the 3 mg cm-2 and 4 mg cm-2 PA doped MEAs show similar RΩ values, this 

characteristic is not observed for the 2 mg cm-2 PA doped MEA. Since the only 

difference in the MEAs are the variations in PA doping, an obvious conclusion would 

be that the 2 mg cm-2 PA concentration in the SiC layer causes an increase in the RΩ 

of the MEA, however, this trend does not extend to the other MEAs, hence, an 

alternative more plausible cause for the increase in the RΩ exists. Although we assume 
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that ABPBI membrane should achieve similar doping levels if the exact same 

electrolyte doping level is followed, this is not always the case as minor differences in 

homogenity can cause differences in electrolyte doping levels which in turn would 

influence the RΩ. The electrochemical resistances and Tafel slope data are shown in 

Table 8, with the Tafel plots illustrated in Fig. 6.28. Comparing the Tafel slope values 

obtained from linear fitting of the experimental data, the similar values obtained 

indicate that these electrodes are dominated by the same kinetic processes and that the 

MEA  composed of the SiC GDE doped with 2 mg cm-2 PA has better ORR kinetics 

when compared to the other MEAs with the differing PA doping concentrations. 

 

 
Fig. 6.27 In-situ impedance curves for MEAs comprised of Freudenberg CX 196 GDEs with 0.2 

mg cm-2 SiC and  40% PTFE layer, with various PA doping levels (anode and cathode), at a cell 

voltage of + 0.6 V. 
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Table 8 - Impedance and Tafel slope characteristics of the Freudenberg CX 196 MEAs 

with various PA doping levels. 

SiC  layer PA doping 
concentration 

RΩ (mΩ 
cm-2) 

RCT (mΩ 
cm-2)  

Tafel slope 
(mV dec-1) 

2 mg cm-2  142.86 280.80 97 
3 mg cm-2  105.58 306.41 99 

4 mg cm-2  114.07 586.92 101 

  

 

 
Fig. 6.28 Tafel plots for the ORR of the Freudenberg CX 196 0.2 mg cm-2 SiC GDEs with 

different H3PO4 loadings. 
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6.2.2.3 Influence of PBI in SiC layer  

 
Fig. 6.29 Performance curves for MEAs comparing Freudenberg CX 196 GDEs with 0.2 mg cm-2 

SiC layer content and various binders in the SiC layer and 2 mg cm-2 PA doping (anode and 

cathode). 

 

The performance plot depicted in Fig. 6.29 illustrates the influence of different 

polymers in the SiC layer. The polarisation curves for both the SiC-PTFE and SiC-PBI 

layer MEAs show distinct similarities in the low and medium current density regions, 

with the MEA of the SiC-PTFE GDE showing a slightly lower decreasing slope than 

the MEA of the SiC-PBI MEA, indicating that this MEA has slightly better ohmic 

resistance properties. Both MEAs exhibit no significant drop in cell voltage in the 

high current density region indicating that these MEAs are not hindered by mass 

transport limitations. The in-situ impedance spectra for these MEAs are shown in Fig. 

6.30, with the electrochemical characteristics including Tafel slope values are shown 

in Table 9. Analysis of the in-situ impedance curves shows that the MEA of the SiC-

PTFE GDE has a significantly lower RCT when compared to the MEA of the SiC-PBI 

GDE, indicating that although PBI is a conductive polymer, it does not prove 
115 

 

 

 

 

 



 

beneficial in the SiC layer. Tafel slope values obtained from the Tafel plots in Fig. 

6.31 indicate that the SiC-PTFE MEA possesses slightly better ORR kinetics than the 

SiC-PBI MEA. Replacing PTFE with PBI in the SiC layer, hence, does not have the 

intended effect of improving the performance and conductivity of the SiC layer but in 

fact negatively impacts the cell performance and the conductivity. 

 

 
Fig. 6.30 In-situ impedance curves for MEAs comprised of Freudenberg CX 196 GDEs with 0.2 

mg cm-2 SiC and various polymers, with 2 mg cm-2 PA doping (anode and cathode), at a cell 

voltage of + 0.6 V. 
 

Table 9 - Impedance and Tafel slope characteristics of the MEAs with different binders 

in SiC layer. 

Polymer RΩ (mΩ cm-2) RCT (mΩ cm-2)  Tafel slope 
(mV dec-1) 

PTFE 142.86 280.80 97 
PBI 95.65 319.79 100 
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Fig. 6.31 Tafel plots for the ORR of the Freudenberg CX 196 GDEs with different polymers in the 

SiC layer. 

6.2.2.4 Influence of NbC layer 

In the following section NbC is used to form the acid-controlling region. The 

performance curves for MEAs of the NbC GDE versus the Freudenberg CX 196 GDE 

is illustrated in Fig. 6.32. The MEAs exhibit similar electrode kinetics but differ in 

their ohmic and mass transport characteristics, with the MEA of the NbC GDE 

exhibiting a higher decreasing slope as well as exhibiting a steeper decline in the mass 

transport region, indicating that the standard GDE has better mass transport 

characteristics than the NbC GDE.  
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Fig. 6.32 Performance curves comparing MEAs of Freudenberg CX 196 GDE with Freudenberg 

CX 196 GDE with 0.2 mg cm-2 NbC layer doped with 2 mg cm-2 PA (anode and cathode).  

 

In addition to these characteristics, the MEA of the NbC GDE achieves the lower 

peak power of 431 mW cm-2 at a cell voltage of +331 mV, which is a performance 

decrease of ~20% when compared to the standard MEA. Fig. 6.33 depicts the in-situ 

impedance curves for the MEAs of the NbC GDE and the Freudenberg CX 196 GDE. 

We can see that the RΩ for the MEA of the standard Freudenberg CX 196 GDE is 

lower than the MEA of the NbC GDE. This increase in RΩ was also observed for the 

MEA of the 0.2 mg cm-2 SiC GDE doped with 2 mg cm-2 PA, with the same cause as 

stated in that case. The impedance and Tafel slope values for the MEAs are shown in 

Table 10, with the Tafel plots shown in Fig. 6.34. Addition of the NbC layer to the 

standard Freudenberg CX 196 GDE has a significant effect on the Tafel slope values 

obtained, effectively increasing the Tafel slope indicating that the NbC GDE has 

poorer ORR kinetics. 
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Fig. 6.33 In-situ impedance curves comparing MEAs of Freudenberg CX 196 GDE and 

Freudenberg CX 196 GDE with 0.2 mg cm-2 NbC and  40% PTFE layer, doped with 2 mg cm-2 

PA (anode and cathode), at a cell voltage of +0.6 V. 

 

 
Fig. 6.34 Tafel plots for the ORR of the Freudenberg CX 196 GDEs with different structures. 
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6.2.2.5 Effect of NbC addition to SiC layer 

Fig. 6.35 illustrates the effect of NbC addition to the SiC layer on the MEA 

performance. The experiments were conducted to determine whether addition of NbC 

to the SiC layer could improve the performance of the SiC MEA. Addition of NbC to 

the SiC layer, had no effect on improving the SiC MEA performance, regardless of the 

concentration of NbC added to the SiC layer. The NbC MEAs performance was 

however, improved when SiC was used as the primary metal carbide in the acid-

controlling region.  

 

 
Fig. 6.35 Performance curves comparing MEAs of Freudenberg CX 196 GDE with various SiC, 

NbC and combinations of SiC/NbC layers doped with 2 mg cm-2 PA (anode and cathode). 

 

This improved performance was, however, only observed for the SiC/30 wt.% NbC 

and the SiC/50 wt.% NbC MEAs, with the SiC/30 wt.% NbC MEA providing the best 

improvement in performance of ~4% when compared to the solely NbC MEA. 

Although the SiC/30 wt.% NbC MEA provides an improvement in cell performance 
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when compared to the solely NbC MEA, the SiC MEA, however, exhibits the lowest 

voltage drop over all current density regions.  

 

Table 10 - Impedance and Tafel slope characteristics of the Freudenberg CX 196 MEAs 

with SiC and/-or NbC layers. 

 GDE RΩ (mΩ 
cm-2) 

RCT (mΩ 
cm-2)  

Tafel slope (mV 
dec-1) 

Freudenberg CX 196 87.25 265.75 90 
0.2 mg cm-2 SiC 142.86 280.80 97 
0.2 mg cm-2 NbC 141.82 338.03 101 
SiC/10 % NbC 167.33 353.12 98 
SiC/30% NbC 130.90 313.76 100 

SiC/50% NbC  151.12 351.71 99 

SiC/70% NbC 177.67 418.48 103 

SiC/90% NbC 161.50 429.31 98 

 

 

The NbC in conjunction with SiC in this case clearly had no effect in improving the 

cell performance, unlike the results obtained by Caires et al.[140] where a SiC/50 

wt.% NbC combination improved the performance of a PAFC prepared with the 

conventional screen printed SiC matrix. It should, however, be noted that the matrix in 

this case was self-supported and the thickness of the prepared matrix also varied. 

Upon analysis of the linear region of the polarisation curve it can be seen that there is 

a pronounced variation with the slopes of the curves with the metal carbide layer 

composition, indicating that NbC exerts a significant influence on the electrolyte 

retaining capability of the acid-controlling region.  
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Fig. 6.36 In-situ impedance curves for the various ceramic carbide layers, at a cell voltage of 

+0.6V. 

 

The in-situ impedance curves for the various ceramic carbide layers are depicted in 

Fig. 6.36 and the electrochemical resistances and Tafel slope values for these MEAs 

and the standard MEA are shown in Table 10. It is evident from the high frequency 

intercepts on the x-axis that the MEAs all exhibit different ohmic resistances. Since 

the ohmic resistance is greatly influenced by the resistance of the electrolyte, and 

since the SiC/30 wt.% NbC MEA shows the lowest RΩ value of 130.90 mΩ cm-2, we 

can assume that the porous microstructure of this GDE is better able to retain the PA 

electrolyte. The pore-size intrusion data obtained for this GDE shown in Fig. 6.13 

shows a reduced number of macropores which would be beneficial for the electrolyte 

retaining capability of the ceramic carbide layer. This can be attributed to the reduced 

number of macropores which leads to a decrease in hydrostatic pressure the capillaries 

[140]. Since all of the composite SiC/NbC MEAs don't exhibit this low RΩ value, an 

optimum value of NbC in the SiC/NbC GDE exists. The higher RΩ values exhibited by 
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the other SiC/NbC MEAs correspond to the higher quantity of macropores exhibited 

by these SiC/NbC GDEs in Fig. 6.13, therefore the pore structure of the ceramic 

carbide layer significantly influences the ohmic resistance of the MEAs [49].  

 

Fig. 6.37 Tafel plots for the ORR of the Freudenberg CX 196 GDEs with varying carbide layers. 

 

Although the SiC/30 wt.% NbC MEA exhibited the lowest RΩ value, this was 

however, not the case for the RCT value, the lowest charge transfer resistance was 

exhibited by the SiC MEA, which had a RCT  value of 280.80 mΩ cm-2. Concerning 

the different RCT values obtained it is obvious that the pore structure of the ceramic 

carbide layers affects not only the ohmic resistance of the MEAs but the charge 

transfer resistance as well. If we consider that all the ceramic carbide GDEs, 

excluding the SiC-GDE and the SiC/30 wt.% NbC-GDE, had higher intrusion 

volumes in the macropore region, it becomes clear that these ceramic carbide layers 

do not have suitable pore structures capable of retaining the PA electrolyte. This 

results in electrolyte flooding the catalyst layers, causing a decrease in the triple phase 

boundary area and increasing the resistance to proton transport, hence increasing the 
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charge transfer resistance for these MEAs. Fig. 6.37 shows that the Tafel slopes 

values obtained are all close to 100 mV dec-1 for all the ceramic carbide GDEs, 

indicating that the ORR mechanism is the same in the presence of the different 

ceramic carbide layers. 

6.2.2.6 Stability 

Fig. 6.38 shows the short term stability analyses performed for 500 h at j = 0.2 A cm-2 

on the standard Freudenberg CX 196 GDE and the ceramic carbide GDE which gave 

the best performance; the 0.2 mg cm-2 SiC layer GDE doped with 2 mg cm-2 PA. The 

experiments were started after performing two polarisation analyses which took place 

on two consecutive days. The cell voltage at 0.2 A cm-2 was at a maximum after the 

second polarisation test was performed. It is evident that the SiC MEA shows a 

relatively stable voltage profile throughout the duration of the study, whereas the 

standard Freudenberg MEA exhibits a voltage profile with two distinct periods: 

during the first 300 h the voltage profile is relatively stable, while for the remaining 

200 h of the test a sharper decrease in voltage is observed.  
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Fig. 6.38 Stability of the standard MEA and the SiC MEA, operating for 500 h at 0.2 A cm-2. 

 

This sharper decrease in voltage after 300 h for the standard Freudenberg CX 196 

MEA could be attributed to electrolyte loss. The voltage decay rates obtained by 

linear regression of the cell voltage data reveals that the SiC MEA has a voltage decay 

rate of 115 μV h-1, which is approximately 41% lower than the voltage decay rate of 

195 μV h-1 obtained by the standard Freudenberg CX 196 MEA. Although the voltage 

decay rates exhibited here are higher than those reported (4.9-25 μV h-1) by other 

researchers [130-134], it is most likely due to the airbrush spray method used to 

prepare the GDEs. The addition of the SiC acid-controlling layer serves to improve 

the durability of the fuel cell by (i) acting as a barrier to control the amount of 

electrolyte that enters the catalyst layer and, (ii) minimising the loss of electrolyte.  
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Fig. 6.39 SEM images of the cross-sections of the MEAs after the durability test: (a) Freudenberg 

CX 196 MEA and (b) SiC MEA 
 

SEM was performed on the cross-sections of the MEAs after the stabilty tests, the 

post-test analyses images are shown in Fig. 6.39. The MEAs were set in resin and 

polished in order to obtain accurate cross-sections. Comparison of the two MEAs 

shows that the Freudenberg CX 196 MEA (Fig. 6.39(a)) has a membrane thickness of 

approximately 40 μm, while the untested doped membrane has a thickness of ~80 μm, 

which can be significantly reduced by cell compression of the MEA. The SiC MEA 

(Fig. 6.39(b)) on the other hand has a membrane thickness of 58 μm, which suggests 

that this membrane retains a higher PA doping level than the Freudenberg CX 196 

MEA after the test. This is most likely due to the SiC layer acting as a barrier to 

prevent excessive leaching of PA electrolyte from the membrane. It can also be noted 

that the Freudenberg CX 196 MEA, shows catalyst layers that are detached from the 

membrane, although the SiC MEA exhibits some detachment of the catalyst layers 

from the membrane, the detachment is not as severe as in the Freudenberg CX 196 

MEA. The good durability of the SiC MEA can be attributed to its unique structure 

which improves the acid-retaining capability of the MEA. 
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6.3 Conclusions 

The use of SiC, NbC and composite SiC/NbC layers significantly influenced the 

porous microstructure and performance of these GDEs. Pore structures of the ceramic 

carbide layers influenced both the ohmic and charge transfer resistances of the MEAs. 

Although the addition of 30wt. % NbC to the SiC layer improved the ohmic resistance 

of the MEA, the charge transfer resistance was in fact higher than the acid-controlling 

region composed solely of SiC. The lower ohmic resistance for the SiC/30wt. % NbC 

MEA could be indicative of the layers improved electrolyte retention capability, but  

since no increase in performance was observed we can conclude that the electrolyte 

blocked the pores in the electrode. All other MEAs with composite SiC/NbC layers 

showed lower performances' than the MEA composed solely of an SiC layer, 

indicating that the addition of NbC to the SiC layer does not improve the properties of 

the acid-controlling region. Improvement in MEA durability was attained when 

unique GDEs were prepared by employing a novel SiC acid-controlling region in 

conjunction with an electrolyte membrane. The optimum SiC layer thickness and PA 

doping was found to be 0.2 mg cm-2 and 2 mg cm-2 respectively, these parameters 

yielded an MEA which achieved a peak power of 475 mW cm-2 at a cell voltage of 

340 mV. Although the performance of the SiC MEA was slightly lower than that of 

the Freudenberg CX 196 MEA, the SiC MEA exhibited improved stability and 

displayed a voltage decay rate 48% lower than that of the Freudenberg CX 196 MEA. 

The higher durability exhibited by the SiC MEA can be attributed to the MEAs 

unique structure which not only acts a barrier to prevent excessive phosphoric acid 

from flooding the electrode, but also serves to reduce phosphoric acid leaching from 

the MEA. 
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Chapter 7: Final conclusions, Recommendations, Future 

work and Outputs 

7.1 Final conclusions 

The influence of different additives, CsHSO4 and ZHP, incorporated in the CL of 

GDEs was evaluated with regards to improving the proton conductivity in the CL and 

improving the overall performance of the HT-MEAs. Concerning CsHSO4; different 

CsHSO4 loadings were evaluated as well as different binder-CsHSO4 configurations 

in the CL. When CsHSO4 was used on its own in the CL, lower proton conductivities 

and performances' were observed, however, improvement in proton conductivity and 

performance was observed upon addition of a binder to the CL. This observation can 

only be the result of the improved structural integrity gained by the addition of a 

binder to the CsHSO4 CL. The PVDF-CsHSO4 binder configuration provided the best 

performance of the MEAs containing CsHSO4 in the CL. Comparison of the MEAs 

comprised of the PVDF-GDE and the PVDF-CsHSO4 revealed that the PVDF-

CsHSO4 MEA exhibited a performance ~15% lower than the MEA of the PVDF-

GDE. Although CsHSO4 in the CL did not prove beneficial for enhancement of HT-

MEA performance, further modification of CsHSO4 could lead to the desired 

performance enhancement. 

 

The addition of an optimum amount of ZHP to a PTFE GDE proved to improve not 

only the proton conductivity and cell performance, but the stability of the MEAs as 

well. A content of 30wt. % ZHP (re. dry PTFE) was found to be optimum in the CL 

for performance enhancement. Durability analysis revealed that the 30wt. % ZHP 

MEA showed a 90% improvement in MEA stability, which can be attributed to ZHP's 
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good thermal properties as well as its hydroscopic nature which serves to aid 

phosphoric acid hydration. 

 

The introduction of a ceramic carbide layer as an acid-controlling region in the MEA 

structure revealed that the MEA performance for these MEAs depends not only on the 

kind of ceramic carbide used, but also on the thickness and doping level of the layer. 

The best performance was achieved with a 0.2 mg cm-2 SiC layer loading and a 

phosphoric acid doping of 2 mg cm-2 H3PO4. A performance loss of ~8% is observed 

when compared to a standard MEA with no SiC layer, although this is an acceptable 

loss if we consider that the stability tests showed that the SiC MEA showed a ~70% 

improvement in durability when compared to the standard MEA. The improved 

durability can be attributed to the SiC acid-controlling region preventing excess 

phosphoric acid from flooding the electrodes as well as improving the MEAs 

phosphoric acid retention capability, since deterioration in durability arises not only 

from Pt deactivation due to phosphate anion adsorption but also from loss of 

phosphoric acid from the membrane. 
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7.2 Recommendations and Future work 

The incorporation of ZHP into the CL proved to be beneficial for MEA stability and 

performance, as such the influence of ZHP on MEA performance and stability should 

be further evaluated at temperatures above 160 oC. A further effort should be made to 

see the influence of ZHP on MEA performance if the catalyst loading is reduced. In 

addition to these studies, efforts should be made to investigate the influence of 

varying CO concentrations in the fuel feed on ZHP MEAs performance and stability 

behaviour.  The inclusion of a SiC acid-controlling region improved the durability of 

HT-MEAs, it would prove beneficial to evaluate the durability of these MEAs under 

different operational parameters, including but not restricted to; CO in the anode feed, 

higher operating temperature, stoichiometric reactant flow rates, etc. A great deal of 

knowledge was gained in the study of catalyst layer additives for improved proton 

conductivity and performance as well as modification of the MEA structure for 

durability enhancement. As such, future work will focus on lowering the catalyst 

loading and improving the performance by using automated deposition methods as 

well as incorporating additives such as ZHP into these catalyst layers. Once 

performance enhancement is attained with these GDEs, the MEAs will upscaled and 

modified with an acid-controlling region for testing in a small stack, where 

phosphoric acid loss and durability amongst other properties will be evaluated. 

 

7.3 Outputs 
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[1] Olivia Barron, Huaneng Su, Vladimir Linkov, Bruno G. Pollet, Sivakumar 
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membrane fuel cells, Journal of Applied Electrochemistry 44 (2014) 1037-1045. 
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