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Abstract

Nuclear level densities and gamma-ray strength

functions in Ta isotopes and nucleo-synthesis of
180Ta

Kgashane Leroy Malatji

Most stable and extremely low abundance neutron deficient nuclei with Z ≥ 34 are referred
to as p-nuclei. Nearly all p-nuclei with A < 110 are most likely produced in the rp-process
while almost all A > 110 are thought to be produced by the photodisintegration of s- and r-
process seed nuclei. However, for some nuclear systems, these processes are not sufficient to
explain their observed solar abundance. Results from calculations in 180Ta generally provoke
debates since several processes are able, sometimes exclusively, to reproduce the observed 180Ta
abundance in the cosmos, making it a unique case study. Some of the main sources of errors
in the predicted reaction rates of 180Ta arise due to the absence of nuclear data or due to
large uncertainties in the nuclear properties such as the nuclear level densities (NLD) and
gamma-ray strength functions (γSF) of 180,181Ta. The NLD and γSF are primary ingredients
for astrophysical reaction rate calculations based on the Hauser-Feshbach approach. These
parameters need to be well understood to improve our understanding of 180Ta production in
astrophysical environments. In this thesis, new experimental data for the low-energy part of
the γSF and NLD in 180,181Ta were extracted, using the so-called Oslo method. An experiment
was performed and the NaI(Tl) gamma-ray array and silicon particle telescopes at the Oslo
cyclotron laboratory were utilized to measure particle-γ coincidence events from which the
NLDs and γSFs are extracted below the neutron separation energy threshold Sn. A beam of
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Abstract iii

3He was used to populate excited states in 180,181Ta through the inelastic scattering (3He,3He’γ)
and the transfer reaction (3He,αγ). Based on results from this measurements, the Maxwellian-
averaged (n, γ) cross sections for the 179Ta(n, γ) and 180Ta(n, γ) reactions, at the s-process
thermal energy of kT = 30 keV (i.e. a temperature of T = 3.5× 108 K) and p-process thermal
energy of 215 keV (T = 2.5 × 109 K), respectively, were computed with the TALYS reaction
code. These results can be used to place the nuclear physics aspects of the large network
abundance calculations on a solid footing and have potential to improve our understanding of
the astrophysical processes and sites involved in the production of nature’s rarest isotope 180Ta.
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Chapter 1

Introduction

Nuclear physics is fundamental to understanding the astrophysical phenomenon such as nu-
cleosynthesis of light elements, the creation of elements heavier than iron, and neutron stars.
In particular nucleosynthesis of elements heavier than iron is one of the 11 most urgent topics
in physics to be addressed, as reported in The National Academic Press [1]. Knowledge of
elemental abundances is mainly obtained from observations within our solar system and, to a
lesser extent, galaxy. Iron and nickel are the final products of stellar burning and are considered
the seed nuclei for the production of heavier nuclei. Initially O/Ne-rich layers of core-collapse
supernovae events were thought to provide the astrophysical environments necessary to syn-
thesize heavy nuclei. However, new calculations suggest that suitable environments are found
elsewhere, for example in the ejecta of neutron star mergers [2] and when the outer layer of a
proto-neutron star is blown off in neutrino driven winds [3] following a supernova event. The
main astrophysical processes that are invoked in the nucleosynthesis of heavier elements are (i)
the rapid neutron-capture (r-process), (ii) rapid proton capture (rp-process) which occurs in
high temperatures and proton-rich environments, (iii) slow neutron capture (s-process) which
is responsible for almost half of the observed abundance of nuclei heavier than iron, (iv) neu-
trino capture (v-process) and (v) photodisintegration (p-process). The paths of rp-, p- and
r-processes are shown in figure 1.1.

For a full understanding of the evolution of abundances a wealth of nuclear data is necessary.
The production rates do not only depend on beta-decay half-lives and nuclear masses but also
sensitively on the γ-ray strength function, γSF, and nuclear level density, NLD, due to their
central role in nuclear reactions. Often, when these statistical nuclear properties are known with
low errors, the uncertainties in (n, γ) cross sections can potentially be reduced by more than an
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Chapter 1. Introduction 2

Figure 1.1. Illustration of the rp-, p- and r-process paths, across the nuclear chart [5].

order of magnitude [4]. As excitation energy increases in a nuclear system towards the particle
separation energies, the NLD increases exponentially, creating the quasi-continuum. Nuclear
properties in this excitation energy region are best characterized using statistical quantities,
such as the γSF which is the ability of atomic nuclei to emit and absorb photons with energy Eγ.
For example, NLDs and γSFs are important input parameters to Hauser-Feshbach calculations
of cross sections which are widely used in both nuclear astrophysics [6] and reactor physics
applications [7]. These cross sections in turn are input into large reaction network calculations
to model the nucleosynthesis in astrophysical environments, and can be crucial to constrain the
processes responsible for nucleosynthesis and the conditions of the astrophysical environments.

1.1 Physics motivation and objectives

The astrophysical origins of about 290 nuclides have been studied [8] but the nucleosynthesis of
several nuclei, including 180Ta, has remained a puzzle over the years. A unique feature of 180Ta
is that it is the rarest isotope in the solar system, which exists in a 9− isomeric state at Ex =
77 keV (t1/2,iso > 1015 yr), with an isotopic abundance of about 0.012%. Over the years many
processes, such as slow and rapid neutron capture reactions (s-process, r-process) in stars and

 

 

 

 



Chapter 1. Introduction 3

supernova explosions, photon- and neutrino-induced reactions in supernovae, have been pro-
posed to be the production mechanism of 180Ta. However, no consensus exists and it has been
theoretically shown that 180Ta could be exclusively explained with the (γ, n) p-process reaction
[9] (see figure 1.2 for predicted p-process overabundances). The s-process alone can exclusively

Figure 1.2. The p-abundance overproduction factor, 〈F 〉/F0, as function of mass number A,
figure adapted from Ref. [9].

explain the production of 180Ta, as well, mostly via branching in 179Hf through the reactions
179Hf(β−)179Ta(n,γ)180Ta and/or 179Hf(n,γ)180mHf(β−)180Ta [10]. Furthermore, more exotic re-
actions such as neutrino (υ) processes, which include 180Hf(υe, e)180Ta and 181Ta(υ, υ′n)180Ta,
have been proposed to partly explain its synthesis [11, 12]. Since the astrophysical sites for
the nucleosynthesis of 180Ta remain unknown, a combination of the above processes may also
be likely [11], see figure 1.3 for illustration. However, the significance of individual processes
cannot be clearly determined, as a result of the uncertainties on the reaction rates for 180Ta
due to unavailability of experimental data, such as the NLD and γSF [14].

To our knowledge, these nuclear properties have never been measured below the neutron sepa-
ration energy, Sn, for 180Ta and below 6 MeV excitation energy for 181Ta. The NLDs and γSFs
are of utmost importance for the Hauser-Feshbach formalism [15] from which astrophysical re-
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Figure 1.3. Illustration of s-, ν- and p-processes paths for synthesis of 180Ta [13].

action rates can be calculated. Clearly many different astrophysical processes can theoretically
be used to explain nucleosynthesis of 180Ta. Therefore nuclear properties (NLDs and γSFs)
and their uncertainties must be accurately determined to place the nuclear physics aspects of
the large network abundance calculations on a solid footing and to unambiguously probe the
significance of various processes in the synthesis of 180Ta.

The main objectives of this thesis are (i) to determine the NLDs and γSFs below the neu-
tron separation energy threshold in 180,181Ta isotopes using the 181Ta(3He,3He’γ)181Ta and
181Ta(3He,αγ)180Ta reactions with 34 MeV beam energy at the Oslo Cyclotron Laboratory,
and (ii) to calculate the 179Ta(n, γ) and 180Ta(n, γ) cross sections from the experimental γSF
and NLD calculated within the Constant Temperature (CT) model, that shows excellent agree-
ment with experimental results, as input data in the TALYS reaction code. In addition, the
calculated 179Ta(n, γ) and 180Ta(n, γ) cross sections will be used to determine the corresponding
astrophysical Maxwellian-averaged (n, γ) cross sections at the s-process and p-process temper-
atures, which in turn can be utilized in astrophysical network calculations to investigate the
galactic production mechanism of 180Ta.

 

 

 

 



Chapter 2

Theory and experimental techniques

2.1 Nuclear level density and γ-ray strength function

The study of the average statistical nuclear properties such as the nuclear level density (NLD)
and γ-ray strength function (γSF) provide the understanding of the underlying nuclear structure
and consequently improve our knowledge of the astrophysical processes and reaction sites. The
theory behind the NLD and γSF will be presented in the following sections, together with
the models developed to interpret the behaviour of these two nuclear properties. In addition,
calculations of the astrophysical reaction cross sections will be explained.

2.1.1 Nuclear level density

The atomic nucleus has discrete energy levels, usually at low excitation energies Ex, whose loca-
tions and properties (angular momentum, spin and parity) are governed by the rules of quantum
mechanics. However, as the excitation energy increases, the number of levels increases exponen-
tially. The spacings and widths of these levels increase tremendously and eventually overlap in
energy, creating a quasi-continuum1, as illustrated in figure 2.1. In the quasi-continuum region
the nuclear levels are described using average statistical quantities such as the NLD and the
γSF with the aid of statistical nuclear models. These models define the NLD as an exponential
function of Ex, taking into account the average spin J and parity π distribution. However,

1The quasi-continuum region is located in between the discrete region where levels are easily resolved with
present spectroscopic techniques, and the continuum region, where the levels overlap in energy and are currently
impossible to resolve with present experimental methods.
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there are various models that are widely used in the literature to define the level density of the
atomic nuclei. Only models applicable to the thesis will be discussed below.

Figure 2.1. The density of the states as a function of excitation energy [16].

2.1.1.1 Back-shifted Fermi gas model

The back-shifted fermi gas (BSFG) model, proposed by Gilbert and Cameron in 1965, for the
NLD is based on the Fermi-gas approximation2, see Ref. [17] for detailed discussion. The NLD
of the BSFG model, which is integrated over all possible Jπ, is expressed as:

ρ(U) =

√
π

12

e(2
√
aU)

a
1
4U

5
4

1√
2πσ

(2.1)

where U=Ex − E1 and σ are back-shifted excitation energy and spin cut-off parameter. The
parameters a and E1 are the level density parameter and the Fermi-gas energy shift parameter.
The spin cuofft-off parameter σ is given by

σ2 = 0.0888A
2
3

√
a(Sn − E1) (2.2)

2The Fermi-gas model assumes that a nucleus is made up of non-interacting Fermi-particles moving freely
in single particle states which are equally spaced.
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where a and E1 are treated as free parameters that are adjusted to fit experimental data and
can be obtained from Ref. [18], and A denotes the nuclear mass. Furthermore, the level density
parameter a can be calculated from total shell correction as follows for spherical nuclides:

a

A
= 0.00917S + 0.142 (2.3)

and for deformed nuclides

a

A
= 0.00917S + 0.120 (2.4)

where S is the total shell corrections and can be obtained from Ref. [17]. The total shell
correction S accounts for the shell effects from odd-even mass systems for the semi-empirical
atomic mass formula. Most recent spin cut-off parameters σ2 proposed by von Egidy and
Bucurescu [18], as a function of Ex are given as

σ2 = 0.391A0.675(Ex − 0.5Pa′)0.312 (2.5)

where Pa′ is the deuteron pairing energy.

2.1.1.2 Constant temperature model

For 2∆0 < Ex < 10 MeV, where ∆0 is the pair gap parameter [19], the NLD can accurately
be obtained from the widely used constant-temperature (CT) model [17]. The model is based
on the constant-temperature approximation of the level density of all Jπ in the Ex < 10 MeV
region, and is given by

ρ(Ex) =
1

T
e

(
Ex−E0

T

)
(2.6)

where E0 and T are the energy-shift and constant nuclear temperature parameters, respectively.
These free parameters, E0 and T , can be calculated from the total shell corrections according
to Ref. [18]:

E0 = −1.004 + 0.5Pa′ (2.7)
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and

T =
1

A
2
3 (0.0597 + 0.00198S ′)

(2.8)

where

S ′ = S + 0.5Pa′. (2.9)

The deuteron pairing energy Pa′ and shell correction, S, are obtained from Ref [18].

Figure 2.2. Comparison of the BSFG model (dashed line) and the CT model (solid line) as
level density interpolation methods in 118Sn [20].

Comparison of the BSFG model (dashed line) and the CT model (solid line) as interpolation
methods for the NLD of 118Sn, are shown in figure 2.2 . The arrows indicate the region where
the level density is normalized. The small difference in the region of interpolation is negligible
for the normalization procedure.
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2.1.2 The γ-ray strength function

The γSF, fXL(Eγ), is a measure of the average electromagnetic property of excited nuclei. The
fXL(Eγ) is described as the average transition strength for a γ ray decay with γ-ray energy Eγ,
electromagnetic character X and multipolarity L, decaying from an initial state Ei to a final
state Ef [21]. The fXL(Eγ) can be discriminated as the "downward" γSF,

←−
f J
ifXL(Eγ), and

"upward" γSF,
−→
f J
ifXL(Eγ), see figure 2.3, where [22]:

(i) The "downward" γSF,
←−
f J
ifXL(Eγ), is related to the average radiative width of γ-ray decay.

(ii) The "upward" γSF ,
−→
f J
ifXL(Eγ), is related to photoabsorption cross-section.

Figure 2.3. Average transition strength (a) for photoabsorption to higher excited states Ei, and
(b) for γ-ray decay from a group of states of the same Jπ to a range of lower states Ef .

Only the "downward" γSF,
←−
f J
ifXL(Eγ), which is of interest in this thesis, will be discussed.

Hence, the notation fXL(Eγ) will be used instead of
←−
f J
ifXL(Eγ), to denote the γ-ray decay

strength function. According to Ref. [21], the γSF for a transition between an excited state
Ei, with spin and parity Jπ, and a lower energy state Ef , is given by

fXL(Eγ) =
ρ(Ef )〈Γ̄γXL〉
E

(2`+1)
γ

(2.10)
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where 〈Γ̄γXL〉 is the average radiative width, which is usually determined from the s- or p-wave
resonances obtained from neutron capture experiments and ρ(Ef ) is the level density of the
final states Ef .

However, there are different theoretical models that are widely used to interpret the γSF for
different modes of excitations and multipole types. A summary of these theoretical models,
referred to as resonance models will be given below, together with their respective resonances
that are observed as part of the total γSF and are relevant to this work.

2.1.2.1 Resonances of the γ-ray strength function

The simple single-particle model of Blatt andWeisskopf [23], which results in energy-independent
γSFs, does not account for collective modes of nuclear excitation. It has been found that the
total γSF, for all nuclei studied [22, 24], in the excitation energy region ≈ 8 - 20 MeV displays
a resonance like structure, called the giant electric dipole resonance (GEDR), see figure 2.4.
The GEDR arises from the isovector, ∆T = 1, collective excitation mode of the nucleus and
is due to oscillations of protons against neutrons in the nucleus, as shown in figure 2.5. It is
located at high excitation energy in the range of ≈ 14 - 22 MeV with typical width of ≈ 2 - 7
MeV, depending on the mass of the nucleus [26].

Other giant dipole resonances have been observed as well, such as the magnetic spin-flip res-
onance, which is also known as the giant magnetic dipole resonance (GMDR) which results
from spin flip collective excitations [27]. It is built on the isoscalar mode of excitation, where
nucleons with spin ↑ oscillate against those with spin ↓. In addition, GMDR can originate from
the isovector excitation mode, in which protons with spin ↑ oscillate against neutrons with spin
↓ and vice versa. Furthermore, there has been experimental evidence for other types of nuclear
excitation modes, such as the E1 pygmy resonance and the scissors resonance. The E1 pygmy
resonance is energetically located below the GEDR [28] and has been observed only in nuclei
with excess number of neutrons. It is believed to be caused by collective vibrations of excess
neutrons against an isospin (T = 0) symmetric proton-neutron core (see figure 2.6 left panel).
Moreover, experimental evidence for this low energy dipole resonance is reviewed in Ref. [29].
Additionally, another low resonance, namely the scissors resonance which is located at fairly
low energies ≈ 3 MeV is believed to be present only in deformed nuclei [30]. This type of
resonance is due to M1 collective excitations, where neutron and proton clouds oscillate against
each other, clipping like a pair of scissors. See figure 2.6 right panel, for illustration.

An additional feature has been observed on the γSF of light- to medium-mass nuclei such as
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Figure 2.4. GEDR observed in the region ≈ 8 - 20 MeV typical for all nuclei studied, figure
adapted from Ref. [25].

Figure 2.5. The GEDR collective mode of nuclear excitation.

(44,45Sc [31], 50,51V [32], 44,45,46Ti [33, 34, 35], 56,57Fe [36, 37], 93−98Mo [38], and 105,106Cd [39]
isotopes), using the Oslo Method and independently confirmed using a different measurement
and method in 95Mo [40]. The existence of this feature has been recently shown in the heavy
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Figure 2.6. Pygmy dipole collective mode of nuclear excitation (left), and the M1 scissors mode
(right).

mass nucleus 138La [4]. This feature has been observed at a typical energy range of Eγ ≤ 3
MeV (See example in figure 2.7), and is termed the low-energy enhancement also known as the
up-bend. However, the physical origin of this enhancement remains unknown and is currently
a topic of great interest in both theoretical and experimental nuclear physics. This low-energy
enhancement has been predicted to be of M1 strength [41, 42], in contrast to Ref. [43] which
predicts that the up-bend results from E1 transitions. In spite of the differences between
approaches, they all suggest that the enhancement is of dipole type. Recently, it has been
experimentally verified that it is indeed primarily dipole in nature [37].

2.1.2.2 Models for γ-ray strength function

With the assumption that the Brink hypothesis3 [44] holds, the GEDR can be described using
the Standard Lorentzian function (SLO) given as [45]

fSLOE1 =
1

3π2~2c2

σ0EγΓ
2
0

(E2
γ − E2

0)2 + E2
γΓ

2
0

[MeV−3], (2.11)

where σ0 (in mb), Γ2
0 (in MeV) and E2

0 (in MeV) are the peak cross-section, GEDR width and
centroid energy of the resonance, respectively. The constant 1/(3π2~2c2) = 8.67410−8mb−1MeV−2.
Although SLO accurately describes the GEDR close to the resonance centroid for medium-

3The Brink Hypothesis states that the collective modes of nuclear excitation built on excited states have the
same properties as those built on the ground state.
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Figure 2.7. The γSFs of 55,56Fe from 56Fe(3He, αγ) and 56Fe(p, pγ) experiments, compared with
59Co(γ, n) GEDR data [37].

and heavy-mass nuclei, it often underestimates the γSF at and below Sn. The Generalized
Lorentzian function (GLO), proposed by J. Kopecky and R. E. Chrien [46], which has energy-
and temperature-dependent width included in the description of the GEDR, is given by

fGLOE1 =
1

3π2~2c2
σ0Γ0

[
EγΓ(Eγ, Tf )

(E2
γ − E2

0)2 + E2
γΓ

2
0

+ 0.7
Γ(Eγ = 0, Tf )

E3
0

]
[MeV−3], (2.12)

where the energy- and temperature-dependent width of the GEDR is given by [45]:

Γ(Eγ, Tf ) =
Γ0(E2

γ + 4π2T 2
f )

E2
0

, (2.13)

and the nuclear temperature Tf of the final states on which the GEDR is built, is defined by

Tf =

√(
Sn − Eγ

a

)
. (2.14)
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The parameters Sn and a are the neutron separation energy and the BSFG level density param-
eter, respectively. The GLO model reproduces the low-energy region well and gives a non-zero
strength for Eγ → 0. Furthermore, the GLO model gives a reasonable agreement with observed
f(Eγ), at least for spherical nuclei but underestimates the observed f(Eγ) for highly deformed
nuclei in the mass range A ∼ 150 - 175 by up to a factor of 4 [47]. For that reason, an En-
hanced Generalized Lorentzian (EGLO) function has been proposed to account for the GEDR
of deformed nuclei in the mass region A ∼ 150 - 175. The temperature dependent width of the
EGLO has been generalized, as defined below [47]:

Γ(Eγ, Tf ) = k0 + (1− k0)

(
Eγ − ε0
E0 − ε0

)
Γ0

E2
0

(E2
γ + 4π2T 2

f ), (2.15)

where the enhancement factor k0 depends on the mass of the target nucleus. Both constants
k0 > 1 and ε0 can be adjusted to reproduce the average resonance capture data [22]. To describe
the magnetic spin-flip giant resonance, the SLO fSLOM1 (see equation (2.11)) with a temperature
and energy independent width, is recommended to be used in Ref. [22] for such M1 strengths.
The M1 resonance parameters are deduced from systematics, where E0 = 41A−

1
3 , Γ0 = 4 MeV,

and the peak cross section σ0 is adjusted using the relationship below

fE1

fM1

= 0.0588A0.878. (2.16)

2.1.3 Impact of the low-energy enhancement on astrophysical reac-

tion rates

The low-energy enhancement in the γSF has been shown to have significant impact on the
astrophysical reaction rates, more specifically for the production of neutron-rich nuclides. This
has been indicated by Maxwellian-averaged neutron capture, (n, γ), rates 〈σv〉, calculated at
the r-process temperature T = 109 K, for the entire isotopic chains of Mo, Fe and Cd up to
the neutron drip line [48]. As the number of neutrons increases towards the neutron dripline,
the impact of the low-energy enhancement on the r-process reaction rates can amount up to 2
orders of magnitude (see figures 2.8 and 2.9).
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Figure 2.8. Maxwellian-averaged reaction rates when the low-energy enhancement is excluded
[48].

Figure 2.9. Maxwellian-averaged reaction rates with the low-energy enhancement included [48].
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2.1.4 Impact of the E1 pygmy resonance on nucleosynthesis

The impact of the E1 pygmy resonance (PR) on r-process nucleosynthesis has been evaluated
[49], using the non-equilibrium canonical model [50] in which a full reaction network is solved for
a given set of parameters. The set of parameters include the neutron density in an astrophysical
site, Nn, its temperature, T , and the period of the neutron irradiation, τirr. The calculated
r-abundance with and without the E1 pygmy resonance at T = 109 K, Nn = 1020 cm−3 and
τirr = 2.4 s, are shown in figure 2.10. The r-abundance calculations are performed using 3
different estimates of the neutron capture rates, this include (i) the standard Hauser-Feshbach
(HF) predictions in which the γSF is described by the GEDR, (ii) when the PR strength is
added to the GEDR, and (iii) the final compound nucleus (CN) contribution corresponding to
the GEDR+PR predictions damped for resonance-deficient nuclei and to which the radiative
direct capture (DC) of neutrons contribution is added [49]. Most nuclei in the mass region A ≈
90 - 110 are produced when only the giant electric dipole resonance (open squares) is taken into
account, as shown in figure 2.10. When the E1 pygmy resonance is included in the calculations,
the predicted r-abundance reduces by up to 2 orders of magnitude in the same mass region, and
is increased by up to the same order of magnitude in the A ≈ 130 mass region (open triangles
down). Clearly the E1 pygmy resonance has a significant impact on r-process nucleosynthesis.

2.1.5 Astrophysical reaction rates and nucleosynthesis

The astrophysical reaction (such as (n, γ)) rates for medium or heavy nuclei, of particular
relevance to astrophysics, are calculated using the HF statistical emission model which is im-
plemented in the TALYS reaction code [15, 51]. TALYS is a user-friendly reaction code which is
used to simulate nuclear reactions that include photons, neutrons, protons, deuterons, tritons,
3He, and α-particles as both projectiles and ejectiles. It is optimized for incident projectiles,
with an energy range of 1 keV 6 Eproj 6 200 MeV, on target nuclei with mass range of
12 6 Atar 6 339. The HF model is based on the assumption (Bohr hypothesis) that the cap-
ture process in the stellar interior occurs by means of production of a compound nuclear system
that has reached thermodynamic equilibrium state with different Jπ. The formation of the CN
can take place only if the CN level density, at the Ex corresponding to the projectile incident
energy, is sufficiently high. Therefore the corresponding reaction capture cross-section, σEx , are
estimated in TALYS from the compound nucleus formula as follows
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Figure 2.10. The r-abundance distributions with (open triangles down) and without (open
squares) the contribution of a E1 pygmy resonance. The top curve (black circles) is the solar
abundance distribution, figure adapted from Ref. [49].

σEx = Dcompπλ2
∑
J,Π

2J + 1

(2s+ 1)(2Iµ + 1)
×
∑
j,l,j′,l′

δ(α)δ(α′)

×
〈T Jαlj(Ea)〉〈T Jα′l′j′(Ea′)〉∑
α′′,l′′,j′′ δπ(α′′)〈T Jα′′l′′j′′(Ea′′)〉

W J
αljα′l′j′

(2.17)

where j, l, s, π, Ea represent the total angular and orbital momentum, spin, parity and energy of
the projectile, respectively. The same symbols but with a prime correspond to the ejectile. All
the parameters with double prime correspond to the decay of residual nucleus to lower energy
states. In Eq. (2.17), λ is the relative motion wavelength, T the transmission coefficient, W
the width fluctuation correction factor and Dcomp the depletion factor as calculated according
to Ref. [51]. The function δ(α) is unity, if (−1)lπΠµ=Π, and 0 otherwise. The quantities J
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and Π represent the spin and parity of the compound system, while Iµ and Πµ correspond to
the spin and parity of the target nucleus.

Figure 2.11. An illustration of the (γ, n) (left) and (n, γ) (right) reactions [53].

In Eq. (2.17), the reaction capture cross-section, σEx , is defined as a function of the γ-ray
transmission coefficients. The transmission coefficient is calculated from the following param-
eters which are key ingredients for the HF approach: the ground- and excited-state properties
(masses, deformation, matter densities, excited state Ex and Jπ), NLD, γSF, optical model
potentials and fission properties. Furthermore, the thermodynamic equilibrium holds locally
to a good approximation inside stellar interiors. As a result, the respective energies of target
nuclei and projectiles, as well as their relative energies, obey a Maxwell-Boltzmann distribu-
tion of energies corresponding to a temperature, T , at that location. Hence, the astrophysical
reaction rates are obtained by integrating the cross section, σEx , over the Maxwell-Boltzmann
distribution at a given T , according to Ref. [51]. Using the principle of detailed balance, the
(n, γ) cross-sections will be equal to the (γ, n) cross-sections [54], see figure 2.11 for illustration.
The rates of all possible reactions such as (n, γ), (p, γ), (α, γ) and their respective photodisin-
tegration processes, can be obtained from the TALYS reaction code using the HF approach as
discussed above.
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2.2 The Oslo method

The Oslo method is an analytical procedure, which allows for the simultaneous extraction of
the NLD and the γ-ray transmission coefficient, up to the neutron (proton) separation energy,
from particle-γ coincidence measurements through several iterative methods. The main steps
of the Oslo method include: 1) unfolding the continuum γ-ray spectrum based on the known
detector response functions, 2) extraction of primary γ rays from the unfolded γ-ray spectra
using the iterative procedure called the first generation method, 3) extracting simultaneously
the NLD and the γ-ray transmission coefficient from the primary γ-ray matrix, 4) and finally the
normalization of the NLD and the γ-ray transmission coefficient using the s- or p-wave neutron
resonance data. An outline of these main steps is given below and a detailed discussion of the
method is given in Refs. [55, 56].

2.2.1 Unfolding continuum γ-ray spectra

The continuum γ-ray spectra display a broad energy distribution without outstanding indi-
vidual full energy γ-ray peaks. The response functions of the γ-ray detector depend on the
various processes photons interact with matter. These processes include the photo-electric ef-
fect, Compton scattering and pair production, and each process contributes to the measured
γ-ray spectrum with different energy dependences. From the response functions of the NaI(Tl)
detector (referred to as CACTUS array, see section 3.2) for all incident γ-ray energies, a full
energy γ-ray spectrum can be constructed through the folding iterative procedure called the
Compton subtraction method, explained in Ref. [57]. This is obtained by interpolating between
the measured response functions of well known γ-ray lines, recorded from radioactive sources
of γ rays and from in-beam measurements, to determine the response functions, R(E,Eγ), of
all possible γ-ray energies Eγ. R(E,Eγ) denotes the response of the CACTUS array, where
E is the actual amount of energy deposited in the detector by an incident photon of energy
Eγ. Altogether, ten (10) R(E,Eγ) response functions have been measured for monoenergetic
γ rays in the range of 122 - 15110 keV, see Ref. [57]. To obtain a new response function for an
intermediate full energy γ-ray peaks, the interpolation between these peak structures can easily
be performed by adding a Gaussian distribution at the interpolated peak position with proper
intensity and energy resolution. With the R(E,Eγ) eventually determined for all known γ-ray
energies, the full energy, the single- and double escape peaks, and the annihilation peaks have
been removed from this spectra, due to reasons mentioned in Ref. [57]. However, the interpo-
lation of the Compton background, which is now the remaining part of the observed R(E,Eγ)
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(response spectrum), is performed between channels having the same γ-ray scattering angle θ,
(see illustration in figure 2.12).

Figure 2.12. Illustration of the interpolation of the Compton part from measured response
functions c1 and c2 [57].

The matrix element, Rij, of the response matrix R is described as the response in energy
channel i when the detector is hit by γ rays with an energy, Eγ, corresponding to a decay to
energy channel j. The response function is normalized so that

∑
iRi,j=1, for each incident γ-ray

channel j. The unfolded γ-ray spectrum, u, forms the basis of the folding iterative procedure
which is expressed as [57]

f = Ru, (2.18)

where f and R represent the folded γ-ray spectrum and response matrix of the CACTUS array,
respectively. The folding iterative procedure is then performed as follows:

1. As the first trial function for the unfolded γ-ray spectrum u0, the observed (raw) γ-ray
spectrum r is used, setting
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u0 = r. (2.19)

2. The first folded spectrum is now calculated as

f0 = Ru0. (2.20)

3. The next trial function is obtained by adding the difference spectrum r − f0 to the original
trial function u0, as

u1 = u0 + (r − f0). (2.21)

4. The new trial function u1 is folded again to obtain the next folded spectrum f1, which is
used again to obtain the next trial function u2, as

u2 = u1 + (r − f1). (2.22)

5. Steps 2-4 are repeated until fn ≈ r where n is the iteration index (typically n ≈ 10 - 30).

Once the unfolded γ-ray spectrum un is obtained from the folding iteration method, the Comp-
ton subtraction method [57] can be used to produce a much less fluctuating unfolded γ-ray
spectrum u.

2.2.2 The Compton subtraction method

The final unfolded γ-ray spectrum un = u from the folding iteration method reveals strong
oscillations and fine structures, which artificially yield a better resolution of u as compared
to the experimental resolution. The Compton subtraction method [57] is then applied to the
unfolded γ-ray spectrum u, now denoted u0, to produce a much less fluctuating unfolded γ-
ray spectrum. This method starts out by defining a new spectrum, representing the observed
spectrum, u0, minus the Compton contributions, given by

v(i) = uf (i) + w(i) (2.23)

 

 

 

 



Chapter 2. Theory and experimental techniques 22

where uf (i) = pf (i)u0(i) is the full-energy contribution and w(i) = us + ud + ua is the
contribution from structures as a result of single escape us, double escape ud, and annihilation
processes ua. Contributions from the second term w(i) are calculated as

us(i− i511) = ps(i)u(i), (2.24)

ud(i− i1022) = pd(i)u(i) (2.25)

and
ua(i511) =

∑
i

pa(i)u(i) (2.26)

where i511 and i1022 represent channels having γ-ray energies 511 and 1022 keV, respectively.
The probabilities pf (i), ps(i), pd(i), and pa(i), for an event in channel i categorized to be a
photo peak, single escape, double escape or annihilation process are taken from Table 1 in Ref.
[57]. The ua spectrum, initially with all its counts in channel i511, has to be smoothed out with
the measured experimental resolution (FWHM) of 1.0 FWHM to obtain the energy resolution
of the observed spectrum. The uf , us and ud spectra have their energy resolutions determined
by the resolution of the observed spectrum (1.0 FWHM) and the response matrix (0.5 FWHM)
yielding

√
1.02 − 0.52 FWHM = 0.87 FWHM. Furthermore, these spectra are smoothed with an

additional 0.5 FWHM in order to obtain a spectrum with the observed experimental resolution
of 1.0 FWHM:

√
0.872 + 0.52 FWHM ≈ 1.0 FWHM. Thus, a Compton background spectrum,

c(i), can then be extracted by subtracting contributions of uf , us, ud and ua from the observed
spectrum r(i), as follows

c(i) = r(i)− v(i) (2.27)

where
v(i) = uf + us + ud + ua. (2.28)

The smoothed part of the Compton background spectrum, csmoothed(i), in addition to struc-
tures, w(i), are now subtracted from the observed spectrum, r(i), to obtain the unfolded γ-ray
spectrum, uunf (i), as follows

uunf (i) = r(i)− csmoothed(i)− w(i). (2.29)

 

 

 

 



Chapter 2. Theory and experimental techniques 23

Figure 2.13. The raw γ-ray spectra (r), Compton background spectra (c), and unfolded γ-ray
spectra (u) of 152Eu and 162Dy [57].

As the final step, the true γ-ray energy distribution Utrue(i) is calculated by correcting u(i) for
the full energy probability pf (i) and the γ-ray efficiency εtot(i),

Utrue(i) =
uunf (i)

pf (i)εtot(i)
(2.30)

where the γ-ray total detection efficiency εtot is taken from Table 1 in Ref. [57]. From the true γ-
ray energy distribution spectrum Utrue(i), a matrix of excitation energy, Ex, vs unfolded primary
γ-rays can be constructed. An example of the differences in raw γ-ray spectra, r, Compton
background spectra, c, and the corresponding unfolded γ-ray spectra, uunf = r − csmoothed − w
discussed above can be clearly seen in figure 2.13.

 

 

 

 



Chapter 2. Theory and experimental techniques 24

2.2.3 The first generation γ rays

The first-generation (primary) γ rays are emitted from highly excited states and represent the
first decay step of all possible decay routes. Generally, γ rays from highly excited states involve
an avalanche of transitions. Therefore, an iterative procedure referred to as the first-generation
method is used to extract the primary γ-rays, from the γ rays that emerge from the later steps in
the decay cascades at each excitation-energy bin of the continuum γ-ray spectra. This method
is based on the assumption that states populated by γ-ray decays from higher-lying states
(as a consequence of the first γ-ray transitions) have the same decay properties as the states
populated directly in the particle nuclear reaction at that specific excitation energy. Details of
the method are found in Ref. [58], and only its main features are discussed below.

Figure 2.14. A demonstration of principles of the first-generation method [59].

A matrix of excitation energy, Ex, vs unfolded γ-rays is divided into excitation energy bins
i (typically width of 120 - 240 keV), depending on the experimental energy resolution and
statistics, in order to extract the Ex, vs unfolded primary γ-ray matrix. A demonstration of
the principle of the first-generation method is shown in figure 2.14. The first-generation γ-ray
spectrum, hi, of each excitation energy bin i is approximated by [59]

hi = fi − gi (2.31)
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where fi is a γ-ray spectrum of excitation energy bin i, and gi is a weighted sum of all spectra
of the excitation bins j < i such that

gi =
∑
j<i

nijwijfj. (2.32)

The unknown coefficients wij represent the probability of the decay from bin i to bin j with∑
j wij = 1. The weighting coefficients wij contains the distribution of branching ratios as a

function of γ-ray energy and correspond directly to the unfolded first-generation γ-ray spectrum,
hi, for bin i. This close relationship allows simultaneous determination of wij and hi using the
fast converging iterative procedure as described in Ref. [58]. The coefficients nij are correction
factors for the different cross sections of populating levels in bin i and lower-lying levels in bin
j, and are determined in such a way that the total area of each spectrum fi, multiplied by nij,
gives the same number of cascades. This is achieved by using the multiplicity normalization
method [58], where the normalization coefficients nij applied to bin i when subtracting bin j is
given by

nij =
A(fi)/〈Mi〉
A(fj)/〈Mj〉

=
〈Mj〉A(fi)

〈Mi〉A(fj)
. (2.33)

The parameters 〈Mi〉 and A(fi) are the average γ-ray multiplicity in bin i and the area (or
total number of counts) of spectrum fi, respectively. The average γ-ray multiplicity can be
expressed as:

〈Mi〉 =
Ei
x

〈Eγ,i〉
(2.34)

where Ei
x is the excitation energy of bin i, and 〈Eγ,i〉 the average γ-ray energy carried by a γ ray

decaying from energy bin i. In cases where 〈Mi〉 is well determined, an area consistency check
can be applied to Eq. (2.31) (more details in Ref. [56]). The additional benefit to this first-
generation method is that the obtained first-generation γ-ray spectrum can be compared to the
exact solution (simulated spectra). An example of the first-generation γ-ray matrix, extracted
using the first-generation method, is shown in figure 2.15 alongside with the respective unfolded
matrix obtained using the unfolding procedure as discussed in the previous section.
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Figure 2.15. The Ex vs. Eγ matrix (left) and first-generation γ-ray matrix (right) for 50V [56].

2.2.4 Extraction of nuclear level density and γ-ray strength function

in the quasi-continuum

The NLD and γSF can be extracted from the distribution of primary γ-rays, given by P (Ex, Eγ)

which is proportional to the transition probability of emitting a γ ray of energy Eγ. The
transition probability, λif , between the initial state i and the final state f depends on the
matrix element |Mif |2 and the density of the final states, ρ(Ef ), according to Fermi’s Golden
Rule: λif = 2π

~ |Mif |2ρ(Ef ) [60]. Furthermore, the transition probability for a decay into any
specific combination of final states is independent of how the compound nucleus [19, 61] was
formed4. The subsequent decay of the compound states will mainly be restrained by statistical
rules. Hence, the decay probability, P (Ex, Eγ), of a γ ray with energy Eγ to be emitted from
a specific initial excited state, with energy Ex, is proportional to the level density ρ(Ef ) of the
final state, with energy Ef = Ex − Eγ, and the γ-ray transmission coefficient T (Eγ) [55, 56]:

P (Ex, Eγ) ∝ ρ(Ef )T (Eγ) (2.35)
4The assumption holds for compound reactions, where a nuclear reaction exists as a two-stage process

comprising the formation of a relatively long-lived intermediate state (10−18 s − 10−16 s) of the particle-target
composite system and its subsequent decay.
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where T (Eγ) is independent of the excitation energy and only depends on the γ-ray energy.
This is true, assuming that the Brink Hypothesis [44] holds for all types of collective decay
modes, which states that the collective modes of nuclear excitation built on excited states have
the same properties as those built on the ground states. The relationship in Eq. (2.35) is only
appropriate at high level densities. Henceforth, ρ(Ef ) and T (Eγ) can be extracted using an
iterative procedure [55], where the theoretical first-generation γ-ray matrices Pth(Ex, Eγ) are
continuously fitted to the experimental first-generation γ-ray matrices P (Ex, Eγ) by performing
a global χ2 minimization

χ2 =
1

Nfree

Emaxx∑
Ex=Eminx

Emaxx∑
Eγ=Eminγ

(
Pth(Ex, Eγ)− P (Ex, Eγ)

∆P (Ex, Eγ)

)2

(2.36)

where Nfree and ∆P (Ex, Eγ) are the number of degrees of freedom and the uncertainty in the
experimental first-generation γ-ray matrix P (Ex, Eγ), respectively. P (Ex, Eγ) is normalized
[55] such that

∑Ex
Eγ=Eminγ

P (Ex, Eγ) = 1. The theoretical first-generation γ-ray matrix is given
by

Pth(Ex, Eγ) =
ρ(Ef )T (Eγ)∑Ex

Eγ=Eminγ
ρ(Ef )T (Eγ)

. (2.37)

An example of a normalized P (Ex, Eγ) is displayed in figure 2.16, together with the correspond-
ing Pth(Ex, Eγ), showing the limits with which the P (Ex, Eγ) was extracted.

Once the ρ(Ef ) and T (Eγ) have been simultaneously extracted, there exist infinitely many
solutions of the experimental first-generation γ-ray matrix P (Ex, Eγ) of the form:

ρ̃(Ef ) = Aρ(Ef )e
αEx (2.38)

and
T̃ (Eγ) = BT (Eγ)e

αEγ (2.39)

where α, A and B are transformation parameters, which correspond to physical solutions, and
are determined from external data. The slope correction parameter α and the absolute value
A of the level density ρ(Ef ) in Eq. (2.38) are determined by adjusting the function ρ(Ef ) to fit
the known discrete levels at low excitation energies, and it is further interpolated to fit ρ(Sn) in
the high excitation energy region. The normalization procedure for the level density of 164Dy
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Figure 2.16. The P (Ex, Eγ) (left) and corresponding Pth(Ex, Eγ) (right) of 50V, the limits
(Emin

x , Emax
x , and Emin

γ ) set in the P (Ex, Eγ) for extraction are also shown (dashed lines) [56].

is shown in figure 2.17.

The ρ(Sn) is calculated according to Ref. [56], as shown below

ρ(Sn) =
2σ2

D0(JT + 1)e[−(JT+1)2/2σ2] + e(−J
2
T /2σ

2)JT
(2.40)

where σ2, D0, JT are the spin cut-off parameter, average neutron resonance spacing as deter-
mined from (n, γ) reactions and target spin in (n, γ) or (p, γ) reactions (for the A-1 nucleus),
respectively. The average neutron resonance spacing D0 and spin of the target nucleus JT , are
usually taken from Refs. [22, 63], respectively. The spin cut-off parameter σ2 is calculated
from the back-shifted fermi gas formula (see section 2.1.1.1 for BSFG).

At this point, the slope of the T (Eγ) has already been determined through normalization
of ρ(Ef ), as discussed previously. The absolute normalization of T (Eγ) is achieved through
determination of the constant B, which is calculated from the average total radiative width
〈Γγ〉 of neutron s-wave capture resonances at Sn, according to [56]
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Figure 2.17. Normalization procedure of the level density (black squares) of 164Dy [62]. The
sets of vertical arrows at low and high Ex, indicate regions where ρ(Ex) was normalized.

〈Γγ(Sn, JT ±
1

2
, πT )〉 =

D0

4π

∫ Sn

0

dEγT̃ (Eγ)ρ(Sn − Eγ)

×
1∑

J=−1

g(Sn − Eγ, JT ±
1

2
+ J)

(2.41)

where JT and πT are the spin and parity of the target nucleus, and ρ(Sn − Eγ) represents the
experimental level density. The spin distribution of the level density is defined as [56]:

g(Ex, J) =
2J + 1

2σ2
e(−(JT+1)2/2σ2) (2.42)

and g(Ex, J) is normalized to unity. Assuming that the statistical decay is dominated by electric
and magnetic dipole transitions, then Eq. (2.39) can be expressed as follows

 

 

 

 



Chapter 2. Theory and experimental techniques 30

BT (Eγ) = B
∑
XL

TXL(Eγ) ≈ B[TE1(Eγ) + TM1(Eγ)] (2.43)

where X and L are the electromagnetic character and multipolarity of the radiation, respectively.
Furthermore, the γ-ray transmission coefficient is related to γSF by

TXL(Eγ) = 2πE(2`+1)
γ fXL(Eγ) (2.44)

where ` = 1, and so the experimental γSF, f(Eγ), is given by

f(Eγ) = fE1(Eγ) + fM1(Eγ) =
BT (Eγ)

2πE3
γ

. (2.45)

The typical nuclear level densities, γ-ray transmission coefficients and γSFs that have been
obtained from previous experiments using the Oslo method, are shown in figure 2.18 and 2.19.

Figure 2.18. The NLD and transmission coefficient of 138La [64]. The normalization of the level
density was performed using the constant temperature model [17] (left panel). The vertical
arrows show the two regions where the χ2 minimization has been performed, between the
experimental data and the extrapolation. The right panel shows the T (Eγ).
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Figure 2.19. The γSF of 138La [64].

 

 

 

 



Chapter 3

Experimental details

An experiment was performed using the inelastic scattering (3He,3He’γ) and the transfer reac-
tion (3He,αγ) at the Oslo cyclotron laboratory, with 34 MeV 3He beam energy and an average
intensity of ≈ 2 enA1. The charged ejectiles in coincidence with γ rays were recorded using the
silicon ring particle telescope array (SiRi) [65] and the γ rays were recorded using the multi-
detector NaI(Tl) array (CACTUS) [59]. A self-supporting 181Ta natural target of 0.8 mg/cm2

thickness was positioned at the center of the CACTUS array. The Oslo cyclotron, SiRi and
CACTUS arrays are briefly described in this chapter. Another reaction of particular interest,
28Si(d,p), with 12.5 MeV deuteron beam on a 3.5 mg/cm2 natural 28Si target was performed
for calibration purposes. The details of this reaction are also explained in this chapter.

3.1 The Oslo cyclotron laboratory

The Oslo Cyclotron Laboratory (OCL) houses an MC-35 scanditronix cyclotron which delivers
pulsed light-ion beams. A 34 MeV pulsed beam with typical RF frequency of ≈ 14.47 MHz for
3He ions was used. Figure 3.1 shows an outline of the experimental setup at the OCL. After
extraction of the beam from the cyclotron, the slit, S1, and quadrupole magnet, Q1, allow for
collimation and further focusing of the beam, respectively. The beam is then deflected by 90◦

using the analyzing magnet into the experimental hall. The 34 MeV 3He beam has a typical
energy resolution of ≈ 50-80 keV, when the 2 mm slits are used in front of the analyzing magnet.
The so-called doubly focusing analyzing magnet focuses the beam in both the horizontal and
vertical direction. The beam is further collimated and focused using the adjustable slits (S2,

1The Q-values of nuclear reactions 181Ta(3He,3He’γ) and 181Ta(3He,αγ) are 0 keV and 13 MeV.
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Figure 3.1. Experimental setup at the OCL, figure adapted from [66].

S3 and S4) and quadrupole magnets (Q2 and Q3), respectively. The beam spot on target has
a typical diameter of ≈ 1-2 mm, after passing slit S4. The beam reaches the target chamber,
where the target is located at the center of the multi-detector array CACTUS. Inside the target
chamber, the silicon ring (SiRi) particle detector system was mounted for detecting charged
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particles from the reaction in coincidence with the γ rays.

3.2 CACTUS

The multi-detector array CACTUS is used to detect γ radiation. The name CACTUS arises
from the similarity of the detector setup with a cactus plant. γ rays from the reaction are
recorded with 26 NaI(Tl) collimated detectors which have crystal dimensions of 5"×5" each
[67]. The crystals are mounted on a spherical frame, enclosing the target chamber containing
the particle telescopes (see figure 3.2). The crystals are positioned 22 cm away from the target.
In addition, on the front surface of each NaI(Tl) crystal, a 10 cm thick lead collimator with 7
cm diameter was mounted. CACTUS covers a solid angle of 16% of 4π sr from Ω = NA/4πR2,
where N = 26 is the number of detectors in the array, A = πr2 is the collimated front area of
each crystal with a radius of 3.5 cm, and R = 22 cm is the distance between the detector and
the target. The total efficiency was measured to be ≈ 14.1% for a 1332 keV γ-ray transition,
with a relative energy resolution of ≈ 7% FWHM. In front of the each NaI(Tl) detector, a 2
mm thick copper absorber is fixed to suppress X-rays. Each NaI(Tl) crystal is surrounded by
a 3 mm thick lead shield to reduce crosstalk between neighboring detectors as shown in figure
3.3.(a). The plastic ring is used to hold the NaI(Tl) detector in place.

Figure 3.2. The multi-detector NaI(Tl) array, CACTUS [59].
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3.3 SIRI array

The emitted charged particles from the nuclear reactions were detected using eight collimated
∆E − E Si particle telescopes, mounted inside the target chamber, surrounded by the multi
detector-array CACTUS (see figure 3.3.(b)). The ejectiles include p, d, t, 3He, and 4He, which
are identified in the ∆E−E telescopes. The front (∆E) and back (E) detectors have thicknesses
of ≈ 130 µm and 1550 µm, respectively [65]. Each ∆E detector is segmented into 8 strips, giving
a total of 64 ∆E−E channels. The telescopes are positioned a few mm apart as shown in figure
3.4. An aluminium foil with a thickness of 10.5 µm is placed in front of the ∆E−E telescopes,
to shield them from δ-electrons that are emitted from target atoms when bombarded by the
beam particles. The ∆E − E Si particle telescopes are placed 5 cm away from the target and
were installed at backward angles, covering an angular range of θ ≈ 126◦ to 140◦, with respect
to the beam axis (see figure 3.4). The average energy resolution2 of the SiRi array is ≈ 350
keV.

Figure 3.3. The multi-detector array CACTUS (a) and ∆E −E Si particle telescopes (b) used
in the experiment [66].

3.4 Electronics and data acquisition

The electronics setup at the OCL is placed in two different locations. The first location, in the
experimental hall, include a multichannel power supply system connected to photo-multiplier
tubes of the NaI(Tl) detectors of the CACTUS array, and it also consists of several pre-amplifiers

2The energy resolution of the particle telescope is determined by measuring the full width half maximum
(FWHM) of the 3He beam elastically scattering off the 181Ta target.

 

 

 

 



Chapter 3. Experimental details 36

Figure 3.4. The ∆E − E Si particle telescopes are located at backward angles with respect to
the beam axis and 5 cm away from the target, figure adapted from Ref. [65].

collecting energy signals from the ∆E−E Si particle telescopes. The pre-amplifiers are utilized
to enhance the signal strength from the front and back detectors, and are placed close to the
target chamber to reduce effects of electronics noise and interference. The ∆E −E signals are
transported to the data acquisition electronics setup in an adjacent room, as differential pair
of signals to the high-quality multichannel spectroscopic amplifiers and timing-filter amplifiers
(TFA) with integrated leading edge discriminators. Signals from the particle detectors are used
as start signals and the respective signals from CACTUS array are used as stop signals in the
time-to-digital converters (TDC). A valid trigger is constructed when a ∆E − E Si event is
in coincidence with a NaI(Tl) event within a 200 ns time window. The TDC measures the
time difference between the ∆E − E and NaI(Tl) signals overlapping within the desired time
window. A schematic diagram of the electronics setup is shown in figure 3.5. This diagram is
a representation of the electronic setup for each of the 64 individual ∆E and E Si channels
and 26 NaI(Tl) detectors. Each signal from a detector, which is connected to a preamplifier is
then transported to the spectroscopic amplifier (slow signals) and TFA (fast signals) for further
processing. The leading edge discriminator (LED) is used to filter out signals of interest from
the TFA by use of an adjustable threshold. The signals are then send to the coincidence unit
as logic pulses. Once a NaI(Tl) event and ∆E − E Si event overlap in the coincidence unit, a
"gate" signal triggers the analog-to-digital converter (ADC) and TDC to send out energy and
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timing information to the data acquisition system.

Figure 3.5. A schematic diagram of the electronics setup, located in the data room at the OCL.
Each individual NaI(Tl), ∆E and E signal is processed by a separate spectroscopic amplifier,
TFA, LED, and ADC. Additionally, each NaI(Tl) time signal is asigned its own TDC channel.

 

 

 

 



Chapter 4

Data analysis and results

4.1 Calibration of the SIRI array

The ∆E−E Si particle detectors were calibrated using the SiRi kinematic calculator [68] with
a linear calibration, where the measured particle energies E are related to the detector energy
offset a0 and the slope a1 multiplied by the channel number ch of the spectrum,

E = a0 + a1 × ch (4.1)

where energy E is the measured particle energies expected to be deposited by the charged
ejectiles in the SiRi array at different scattering angles. These particle energies are obtained
using the SiRi kinematic calculator which is based on the Bethe-Bloch formula [69]. The Bethe-
Bloch formula describes the energy loss of a particle traveling a distance x into a material as
shown below:

−
〈
dE

dx

〉
= Kz2Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Tmax
I2

− β2 − δ(βγ)

2

]
(4.2)

where z, Z and A are the atomic number of incident particle, atomic number of material
and atomic mass of material, respectively. The parameters I, Tmax and δ(βγ) are the mean
excitation energy of the material, maximum kinetic energy transferred in a single collision
and density effect correction to ionization energy loss1. The particle energy loss is relatively

1The constantK=4πNAr
2
emec

2=0.307 MeV g−1cm2 for A=1 g mol−1 and Tmax=2mec
2β2γ2/(1+2γme/M+

(me/M)2) where the velocity β = v/c and the Lorentz factor γ = (1 − β2)−2. The parameters NA, c, re and
me are the Avogadro’s number, speed of light, classical electron radius and electron mass, respectively.
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independent of the target material and the incident particle mass. Therefore a given incident
particle with atomic number z will primarily lose a different amount of its energy in the ∆E and
E detectors as a function of its total kinetic energy. The kinematic calculator also accounts for
the energy loss corrections of the charged particles traveling through the aluminium foil placed
in front of the particle telescopes.

Figure 4.1. Calculated ∆E−E energy deposition of the innermost ring obtained using the SiRi
kinematic calculator [68].

Figure 4.1 shows calculated particle energies deposited in the ∆E − E Si detectors for the
181Ta(3He,X) reaction, at 34 MeV beam energy, where X represents protons, deuterons, tritons,
3He or 4He. The corresponding experimental ∆E − E data with data from all rings combined
before calibration is shown in figure 4.2, with "banana-shaped" curves for each particle type.
This figure shows particle energies deposited in all the ∆E − E rings, covering an angular
range of θ ≈ 126◦ to 140◦ with respect to the beam axis. When all particle telescopes are
properly calibrated, the data of all the rings can be added together, and this allow for a clear
identification of the energy distribution for all different charged particles. Such a plot of the
calibrated ∆E − E detectors added together after calibration is shown in figure 4.3.

The particle-identification technique makes it possible to gate on a specific particle type utilizing
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Figure 4.2. ∆E−E signals for the 181Ta(3He,X) reaction, showing the reaction channels before
calibration.

Figure 4.3. ∆E − E plots for the 181Ta(3He,X) reaction after calibration. Various reaction
channels are well identified.

its unique energy range curve in the Si particle telescopes. Upon reactions of the target nucleus
181Ta with the 3He beam, various reaction channels are opened (see figure 4.3). Gating on the
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particles of interest, which in the present case are 3He and 4He from the 181Ta(3He,3He’γ)181Ta
and 181Ta(3He,αγ)180Ta reactions, allows for a significant reduction of unwanted channels and
some background events. A plot of such a gate for 181Ta(3He,3He’γ)181Ta is shown in figure
4.4. A gate was set on the α particles for 181Ta(3He,αγ)180Ta reaction as well (see figure 6.1 in
appendix A).

Figure 4.4. ∆E−E plots for the 181Ta(3He,X) experiment gated on 3He particles. Sn indicates
the location of neutron separation energy.

The ∆E−E particle telescopes were calibrated using the 28Si(d,p) reaction, following the same
procedure used for calibrating the particle telescopes in the 181Ta(3He,X) experiment. The
corresponding 28Si(d,X) ∆E − E plot after calibration is shown in figure 4.5, which clearly
demonstrates the particle energy distribution of different charged ejectiles detected in the SiRi
array.

4.2 The excitation energy spectra

The measured 3He and α particle energies were transformed to excitation energy Ex of the
residual nucleus 181Ta and 180Ta, from the reaction Q-values and kinematics, as shown below

Ex = KEbeam −KEejectile −KErecoil − Eloss +Qvalue, (4.3)
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Figure 4.5. The calibrated ∆E − E plot for the 28Si(d,X) data.

where KEbeam, KEejectile and KErecoil are the total kinetic energy of the beam, ejectile and
recoil nucleus, respectively. The parameter Eloss represents the energy lost by the particle
through the detector (and/or the aluminium foil) and Qvalue is the Q-value of the nuclear
reaction. Such a plot, where particle energies have been transformed to excitation energies of
the residual nucleus 181Ta, is shown in figure 4.6.

4.3 Calibration of the CACTUS array

By gating on the proton banana shaped curve, unwanted reactions together with some back-
ground events were eliminated and mostly events from the 28Si(d,p)29Si reaction were isolated.
Following the same procedure in section 4.2, the measured proton energies were transformed
into excitation energy of 29Si to construct an excitation energy spectrum of 29Si (see figure 4.7).

The proton excitation spectra of 29Si were used to gate on the Ex = 4934 keV state (see figure
4.7), and the corresponding γ-ray spectra were extracted for all 26 NaI(Tl) detectors. Two
well distinguished γ-ray peaks corresponding to the 1273 keV and 4934 keV γ-ray transitions in
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Figure 4.6. The 3He excitation energy spectrum, without γ-ray coincidence requirement, for
181Ta. Sn indicates the location of neutron separation energy.

29Si are visible. These γ-ray transitions were then used to linearly calibrate the γ-ray spectra
for each NaI(Tl) detector. The deuteron gate from 28Si(d,d’)28Si reaction does not yield well
distinguished γ-ray transitions. Figure 4.8 shows the calibrated γ-ray spectrum of one NaI(Tl)
detector. In addition, a resulting single escape peak at 4422 keV from pair production is also
observed in the γ-ray spectra.

4.4 Time calibration

The detection of coincident events between particles and γ rays is accomplished through the
SiRi array, which provide the TDC start signal, and the CACTUS array which provide the
TDC stop signal. The rise times of the recorded signals cross the LED threshold at different
times depending on the signal amplitude. High-energy events have higher signal amplitude
compared to low-energy events. As a result high-energy signals will cross the discriminator
threshold before the low-energy signals. This leads to the "walk" effect, which is the timing
difference that depends on the amplitude of the signal, with the implication that high- and low-
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Figure 4.7. The proton excitation energy spectrum, without γ-ray coincidence requirement, for
29Si.

energy events with identical time of occurrence will be effectively detected at different times.
The walk effect makes it difficult to obtain accurate timing information. A clear illustration is
given by the energy-time matrix gated on the 181Ta(3He,3He’γ)181Ta reaction channel in figure
4.9, where the signals exhibits a curvature which increases with decreasing γ-ray energies. A
similar energy-time matrix was obtained for 181Ta(3He,αγ)180Ta reaction (see figure 6.2 in the
appendix).

The walk effect can be counterbalanced by fitting a function of the form

t(x) = a+
b

x+ c
+ dx+ 200 (4.4)

to the energy-time matrix to obtain the coefficients a, b, c and d, where t(x) and x are channels
corresponding to the detected time signal and γ-ray energy, respectively. These coefficients are
then used to correct for the timing difference due to walk. The time peaks of all individual
channels are aligned, and the prompt peaks fixed at channel ≈ 200 which is represented by the
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Figure 4.8. The calibrated γ-ray energy spectrum of 29Si obtained with the Ex gate on the 4934
keV state for one NaI(TI) detector in the CACTUS array.

Figure 4.9. The energy-time matrix for the 181Ta(3He,3He’γ)181Ta reaction of the CACTUS
array.
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offset value of equation (4.4). The true coincidence events are detected within a narrow time
window t2 - t1 ≈ 40 ns.

Figure 4.10. The energy-time matrix from the 180Ta(3He,3He’γ)181Ta reaction after walk cor-
rection for the CACTUS array.

Figure 4.10 shows the energy-time matrix for 181Ta(3He,3He’γ)181Ta reaction, after the walk
correction. The corresponding projected time spectrum for 181Ta is shown in figure 4.11, with
gates on the prompt time peak (t1,t2) and the background random events (t3,t4). Random
events were subtracted from the prompt events, to obtain the true number of coincidences.
A similar walk corrected energy-time matrix and its corresponding time spectrum were also
obtained for the 181Ta(3He,αγ)180Ta reaction (see figure 6.3 and 6.4 in the appendix A). The
energy-time matrices for the silicon particle telescopes were obtained using the same walk
correction method as discussed above.
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Figure 4.11. The projection of figure 4.10 on the time-axis after signals were time calibrated
from CACTUS. The dashed lines (t1,t2) and (t3,t4) are gates on the prompt and random events,
respectively, with same width.
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4.5 Particle γ-ray coincidence matrices

From the particle-identification technique, which makes it possible to gate on either 3He or α
particles, together with the corresponding gates on the time spectra (see figure 4.11 for 181Ta),
the 3He-γ or α-γ coincidence events were extracted. From these coincidence events, matrices
were constructed where the excitation energy Ex of the isotope of interest is plotted against
the energy of γ ray Eγ. A plot of such a matrix for 181Ta(3He,3He’γ)181Ta is displayed in figure
4.12, with characteristic features such as the Ex=Eγ diagonal and a drop in counts at ≈ Sn.
The 45◦ diagonal border, where the particle excitation energy Ex equals the γ-ray energy Eγ,
shows that only γ rays with energy equal to or less than that of a specific state can be emitted
from that state. A drastic drop of counts in excitation energy is observed at Ex ≈ Sn (see
figure 4.13), this is the region where there is a high probability for a nucleus to emit a particle
rather than a γ ray. When a particle is emitted the nucleus A-1 is populated, assuming p or n
emission. These obvious features in the matrices further confirm good calibration of both the
SiRi and CACTUS arrays.

Figure 4.12. The Ex vs Eγ matrix of 181Ta. The horizontal line indicates the neutron separation
energy, Sn.

The two visible energy levels in figure 4.13 could not be clearly identified due to the resolution
of the SiRi array. Since there is no 181Ta(3He,3He’γ) measurements available in the National
Nuclear Data Center (NNDC) [63], the two observed states can be associated with the 482 and
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Figure 4.13. The projection of Ex vs Eγ matrix on Ex, the vertical line indicates Sn.

1230 keV states observed in (n,n’) [70] and (d,d’) [71] measurements respectively.

4.6 Primary γ-ray matrices

The primary γ-ray matrix can be extracted from the full-energy γ-ray spectra for each excitation
energy bin. To obtain full-energy γ-ray spectra, the raw γ-ray spectra were unfolded using
the unfolding iterative procedure and then corrected for the known response functions of the
CACTUS array [57], see section 2.2.1. Thus these γ-ray spectra for each excitation energy
bin are corrected for the single- and double-escape peak, the annihilation peak, the Compton
contributions, and the detector efficiency. Figure 4.14 shows the unfolded γ-ray spectra for
181Ta. The primary γ-ray matrices were constructed from the unfolded γ-ray spectra, using
the first-generation method [58], see section 2.2.3. The resulting experimental first generation
γ-ray matrix of 181Ta is shown in figure 4.15. The two regions that correspond to Eγ=400 and
1300 keV are dominated by low statistics due to over-subtraction of discrete and strong γ-ray
transitions during the generation of primary γ-ray matrix. Both nuclei under study had low
statistics2. The NLD and γSF of 181Ta and 180Ta were extracted simultaneously from these

2The events that were considered for extraction of the experimental first generation γ-ray matrix for 181Ta
and 180Ta are 2.00×10+05 and 3.89×10+03, respectively.
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matrices through the iterative procedure.

Figure 4.14. The raw (top panel) and unfolded (bottom panel) γ-ray spectra for 181Ta corre-
sponding to Ex ≤ 7.6 MeV.
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Figure 4.15. The experimental first generation γ-ray matrix for 181Ta.

4.7 Extraction of nuclear level density and γ-ray strength

function

From the first generation γ-ray spectra, the NLD and the γSF were determined using the iter-
ative procedure [55] on the first-generation matrix. The theoretical calculated first generation
γ-ray matrix Pth(Ex, Eγ) was fitted to the experimental first generation γ-ray matrix P (Ex, Eγ)

by performing a χ2 minimization. A global χ2 minimum was achieved through the iterative
procedure in the energy regions of Eγ > 1634 keV and 2569 keV ≤ Ex ≤ 7376 keV for 181Ta,
and Eγ > 1734 keV and 2969 keV ≤ Ex ≤ 6348 keV for 180Ta.

The limits (Emin
x , Emax

x , and Emin
γ ) are chosen to ensure that the spectra are dominated by

transitions from compound states Emin
x , that the statistics is not too low Emax

x , and to exclude
possible contributions of e.g. yrast transitions which might have not been correctly subtracted
in the first-generation method Emin

γ (see Refs. [55, 56]). Figure 4.16 shows the experimental
matrix P (Ex, Eγ) and fitted matrix Pth(Ex, Eγ), displaying a chosen set of limits (Emin

x , Emax
x ,

and Emin
γ ) for 181Ta. Note that both the P (Ex, Eγ) and Pth(Ex, Eγ) look very similar confirming

the quality of the procedures as applied to both nuclei.

From the Ex vs Eγ matrix (e.g. see figure 4.16 for 181Ta), the γSF f(Eγ) and the NLD ρ(Ex)
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Figure 4.16. The fitted region of the experimental first-generation matrix P (Ex, Eγ) (left) and
the corresponding theoretical first-generation matrix Pth(Ex, Eγ) (right) of 181Ta, showing good
agreement.

were extracted for both Ta isotopes and are shown in figures 4.17 and 4.18, respectively. The
experimental ρ(Ex)s (black solid squares) are normalized to known discrete states taken from
Ref [63] (black solid line) at low excitation energies at the location of the vertical arrows. At
high energies, the ρ(Ex)s were interpolated to the total level density at the neutron separation
energy ρ(Sn) (black open square) using the Constant Temperature (CT) model [17] (black
dotted line) (see section 2.1.1.2).

The total level density at Sn was estimated from the s-wave average neutron resonance spacing
Dl=0 and the spin cut-off parameter σ2 calculated from the back-shifted Fermi gas (BSFG)
model (see Table 4.1). The D0 used in the case of 181Ta was an average of the level spacings
taken from Refs. [22, 72]. The propagation of the uncertainties was also carefully considered.
The normalization of the γ-ray transmission coefficient T (Eγ) was performed, by determining
the absolute parameter B (see Eq. 2.41), using the experimental values of the average radiative
width 〈Γγ〉 at Sn taken from Refs [22, 72], and the s-wave average neutron resonance spacing.
For 181Ta experimental level density, the normalization value ρ(Sn) = 1.46± 0.28× 107 MeV−1

was used (see Table 4.1).

In the extreme case of 180Ta, neither D0 nor 〈Γγ〉 experimental values are not known in the
literature, because the target nuclei for neutron capture reactions (n, γ) is unstable. Therefore,
using the spline fit, as implemented in the TALYS reaction code [15], the value of 〈Γγ〉 was
estimated. Consequently, the value of ρ(Sn) was estimated also by normalizing both ρ(Ex)

and T (Eγ) of 180Ta on the basis of having the same slope as ρ(Ex) and T (Eγ) of 181Ta. It
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Figure 4.17. The normalized experimental NLDs for 181Ta and 180Ta, respectively. The set of
arrows indicates the locations were the normalization of ρ(Ex) was performed.
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Figure 4.18. The normalized γSF as a function of γ-ray energy, showing 181Ta and 180Ta
strengths, respectively.
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has been shown that ρ(Ex) and T (Eγ) of neighboring isotopes have the same slope in various
nuclei that have been studied with the Oslo method [39, 73, 74]. This is clearly demonstrated
in 4.19 for 180,181Ta keeping in mind that the uncertainties become very large for 180Ta at
Ex > 3 MeV, and hence the estimated value for ρ(Sn) was then used to calculated D0 for
180Ta. Furthermore, the 180Ta experimental data were re-binned due to limited statistics and
to reduce statistical uncertainties. All parameters are summarized in Table 4.1. The extracted
181Ta(3He,3He’γ)181Ta and 181Ta(3He,αγ)180Ta γSF and NLD data, are tabulated and displayed
in appendix B (see Table 6.1 and 6.2).

Figure 4.19. The extracted 180Ta and 181Ta NLDs as a function of excitation energy.

The extracted experimental γSF is compared to both the photo-neutron cross-section reactions
181Ta(γ,n) from Utsunomiya et al. [75] and photo-absorption reactions 181Ta(γ,xn) from Bergère
et al. [76], see figure 4.20. Well understood models were applied to fit the predicted total γSF
to experimental data. The enhanced generalized Lorentzian functions (EGLO), fgedr1(Eγ) and
fgedr2(Eγ), are used to fit the two component of the giant electric dipole resonances, (GEDR) at
Eγ ≈ 15.9 MeV and Eγ ≈ 12.6 MeV, respectively. The EGLO model is temperature dependent
from the incorporated temperature dependence width 〈Γγ〉, with a constant temperature of

 

 

 

 



Chapter 4. Data analysis and results 56

Table. 4.1. Input parameters for the calculation of the normalization of ρ(Ex) and T (Eγ) in
180,181Ta. E1 and Tct are the Fermi-gas shift and constant temperature parameters, respectively.
Nucleus Sn E1 Tct σ D0 ρ(Sn) 〈Γγ(Sn)〉

(MeV) (MeV) (MeV) (eV) (106MeV−1) (meV)

180Ta 6.65 -1.086a 0.537b 4.93±0.49a 1.60±0.47c 5.34±1.70c 62.0±5.77c
181Ta 7.58 -0.370a 0.538b 4.96±0.50a 1.11±0.11d 14.58±2.76a 51.0±1.58d

aCalculated with the back-shifted Fermi gas model.
bCalculated with the constant temperature model.
cEstimated values (see text for details).
dAverage value from Refs. [22, 72].

Figure 4.20. Comparison of data obtained from photonuclear cross sections with experimental
γSF of 181Ta.

Tf = 0.37 MeV. Tf is treated as a free parameter in order to allow for the best possible fit of
the theoretical strength prediction at low energies. This is consistent with the Brink hypothesis
assumed in the Oslo method, since Tf is constant with Ex. In addition to the GEDR, a weaker
resonance was fitted using the EGLO function, fpyg, (Eγ) at Eγ ≈ 7.0 MeV. This resonance was
recently observed [77] and associated with the E1 pygmy resonance. Therefore, total model
prediction of the γSF is given by ftotal(Eγ) = fpyg(Eγ) + fgedr1(Eγ) + fgedr2(Eγ). The fitted
EGLO functions clearly reproduce the (γ,x) data together with the measured low energy data.
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The parameter used to fit the total strength function to the experimental data are given in
Table 4.2. For completion, the γSF for 180Ta is included in figure 4.21.

Table. 4.2. Lorentzian parameters used for fitting the theoretical γSF to the experimental data,
where E0, σ0 and Γ0 are the energy centroid, cross-sections and widths of the resonances.

Resonance E0 (MeV) Γ0 (MeV) σ0 (mb) Tf (MeV)
pygmy 7.0 3.2 34 0.37
GEDR1 12.6 3.0 330 0.37
GEDR2 15.9 3.2 440 0.37

Figure 4.21. Comparison of data obtained from photonuclear cross sections with experimental
γSF of 180,181Ta.
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Discussion

5.1 γ-ray strength function and nuclear level density

The 180Ta and 181Ta γ-ray strength functions show no pronounced features, such as resonances,
except for the observed enhancement in the strength function from 6 MeV termed "pygmy"
resonance (see figure 4.20). This enhancement is positioned in a range characterized by low
statistics, but from previous measurements [77] a resonance was observed in the energy range
of 5 to 8 MeV and identified as the E1 pygmy resonance. The experimental photo-absorption
cross section measurements (red solid circles) of 181Ta(γ, γ′) up to Ex = Sn (and beyond from
the (n, γ) reactions), are shown in figure 5.1, with the E1 pygmy resonance clearly observed.
Besides the E1 pygmy resonance the 181Ta γ-ray strength function is relatively featureless with
no pronounced scissors resonance, and certainly no low-energy enhancement. The inclusion
of only the E1 pygmy resonance predicts a good fitting function for the total γ-ray strength
function (see figure 4.20).

The nuclear level density for odd-odd 180Ta is higher than that of the even-odd 181Ta (see figure
5.2). This is expected, due to one extra unpaired neutron in 180Ta which increases the number
of degrees of freedom (more details in Ref. [78]). On the other hand the experimental 180Ta
and 182Ta [79] nuclear level densities are comparable and are equal within the uncertainties as
expected. In the region around 2 MeV of the nuclear level density for 181Ta, a small change in
the slope is observed which can be explained as Cooper pair breaking. The excitation energy
at which a nucleon pair is expected to be broken is calculated to be 1.78 MeV using the formula
E = 2∆0, where ∆0 = 12A−1/2 is the first-order pairing phase transition, also known as pair
gap parameter [19], and A is the mass of the nucleus. The discontinuity of the level densities
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Figure 5.1. The experimental total photoabsorption cross sections (red data points) of 181Ta
obtained by combining (γ, γ′) and (γ, n) data (see Ref. [77]).

Figure 5.2. Comparison of the extracted 180Ta and 182Ta nuclear level densities as a function
of excitation energy, data for 182Ta nuclear level density are taken from Ref. [79].
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at E = 2∆0 is not observed in 180Ta due to the experimental data being re-binned to increase
statistics in each bin, which in turn hides small changes.

5.2 Astrophysical neutron capture cross section calcula-

tions

Assuming the principle of detailed balance1 to be valid (refer to section 2.1.5), the neutron
capture cross sections and the reverse photo-neutron emission rates of astrophysical relevance,
as well as the Maxwellian-averaged cross sections (MACS), were estimated for both 180,181Ta
isotopes. The calculations were achieved using the reaction code TALYS which includes many
statistical models [15]. The measured experimental γ-ray strength functions and the nuclear
level densities, which are primary ingredients for calculations of the transmission coefficient, as
required by the HF approach, are now entered directly into TALYS. The 180,181Ta experimental
nuclear level density parameters (such as E0, E1, Tct, apar, and Pa′)2 are used to calculate the
TALYS compatible nuclear level densities, which are considered in (n, γ) reaction cross section
calculations. Figure 5.3 shows the TALYS level density and the experimental level density
with the corresponding error bars. Excellent agreement is observed between the measured level
densities and those obtained from TALYS calculations.

The uncertainties of the nuclear level densities and the γ-ray strength functions were estimated
from those shown in figure 4.17 and 4.18, the 181Ta data used in this case have been re-binned
as well. The upper error bars of both the nuclear level densities and γ-ray strength function
were obtained by replacing D0 with D0 - ∆D0 and 〈Γγ(Sn)〉 with 〈Γγ(Sn)〉+∆〈Γγ(Sn)〉, and
similarly, the lower error bars are obtained by replacing D0 with D0 + ∆D0 and 〈Γγ(Sn)〉
with 〈Γγ(Sn)〉 - ∆〈Γγ(Sn)〉. This modification is important since the error bars obtained using
the Oslo method only provide statistical and systematic uncertainties of the unfolding and
first generation methods, and do not account for the potentially significant contribution of
the uncertainties of the D0 and 〈Γγ(Sn)〉 parameters. The estimated error bands are shown
together with the measured nuclear level density and γ-ray strength function in figure 5.4 and
5.5, respectively.

1The hypothesis that when a system is in equilibrium any process occurs with the same rate as the reverse
process.

2The parameters E0, Tct, and Pa′ are the energy-shift and constant nuclear temperature parameter, and
the deuteron pairing energy for the spin cutoff parameter, respectively. E1 and apar are the Fermi-gas shift
parameter and the level density parameter, respectively.
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Figure 5.3. Comparison of the TALYS calculated and experimental nuclear level densities of
181Ta (top) and 180Ta (bottom).
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Figure 5.4. The error bands of the ρ(Ex) estimated to account for the contribution of the
uncertainties of D0 parameter to the error bars, relative to the observed ρ(Ex).
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Figure 5.5. The error bands of the f(Eγ) estimated to account for the contribution of the
uncertainties of D0 and 〈Γγ(Sn)〉 parameters to the error bars, relative to the observed f(Eγ).
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Figure 5.6 shows the final neutron capture cross sections, σ(En), as a function of neutron
energies taking into account the modified uncertainties affecting the γ-ray strength functions
and the nuclear level densities (see Table 4.2). The neutron capture cross sections of 180mTa
[80] determined from a time-of-flight experiment, at the Karlsruhe 3.7 MV Van de Graaff
accelerator, is shown for comparison. It is observed that the 180Ta(n, γ) cross sections show
excellent agreement with the previously measured 180mTa(n, γ) cross sections, within the error
bars, except for one data point which has high uncertainties.

Figure 5.6. The 180Ta (blue line) and 179Ta (green line) neutron capture cross sections as
a function of neutron energy, together with the previously measured 180mTa(n, γ′)181Ta cross
sections [80].

Therefore, it is obvious from the excellent agreement that the use of the nuclear level density
and the γ-ray strength function can reproduce the 180Ta(n, γ) cross sections accurately. As
such the 179Ta cross sections (see figure 5.6, green line), can also be confidently considered
to be a very good representation of the (n, γ) cross sections. The large errors in 179Ta(n, γ)

are due to the low statistics in the data from which the nuclear level density and the γ-ray
strength function are extracted. This is the first (n, γ) cross sections ever obtained for 179Ta
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experimentally, since 179Ta is highly radioactive (half-life of ≈ 1.83 yr) it can not be easily
used to produce a target for direct measurements. Therefore, knowledge of the γ-ray strength
function and nuclear level density is currently the only reliable measure from which these cross
sections for nuclei with short half-lives can be obtained.

The 179,180Hf(p,γ)180,181Ta and 176,177Lu(α,γ)180,181Ta capture cross sections were also calculated
and found to be several order of magnitudes lower than the 179,180Ta(n, γ) cross sections at p
and α energies of several MeV, respectively. This suggests that during nucleosynthesis, under
typical astrophysical temperatures, neither (α,γ) nor (p,γ) reactions are responsible in any
meaningful manner for the synthesis of 180Ta. This is true for the reverse reactions (destruction
of 180Ta) through (γ,p) and (γ,α) reactions.

5.3 Nucleosynthesis of 180Ta

5.3.1 The astrophysical Maxwellian-averaged (n,γ) cross sections

The astrophysical Maxwellian-averaged (n,γ) cross sections (MACS) were calculated for both
179Ta(n,γ) and 180Ta(n,γ) reactions, at the s- and p-process thermal energies, respectively. The
results are listed in Table 5.1, where 〈E〉 = kT is the s- or p-process thermal temperature,
and 〈σν〉/vT is the Maxwellian-averaged (n,γ) cross section in millibarn (10−27cm2) at the
astrophysical thermal energy kT ( where kT = 30 keV for T = 0.348×109 K and kT = 215 keV
for T = 2.495×109 K), and vT = (2kT/m)1/2, where m is the reduced mass.

Table. 5.1. The 179Ta and 180Ta Maxwellian-averaged (n, γ) cross sections at thermal energy
kT .

Isotope 〈E〉 (keV) 〈σν〉/vT (mb)

179Ta(n, γ) 30 1454 +735
−569

215 423 +278
−191

180Ta(n, γ) 30 2035 +342
−356

215 583 +132
−129
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5.3.2 p-process

If the p-process is considered as the major contribution to the synthesis of 180Ta, the experimen-
tally calculated MACS, at p-process thermal energy kT = 215 keV, corresponding to 181Ta(γ,n)
reaction rates are about 27% larger than the destructive 180Ta(γ,n) reaction rates, on the basis
of the principle of detailed balance. From this simple picture it can be deduced that p-process
predicts that the production rate of 180Ta is larger than the destructive rate in explosive envi-
ronments. These results are consistent with the previous work, that the p-process can explain
fully [9], or at least partially explain [11] the galactic production of 180Ta.

5.3.3 s-process

At the s-process thermal energy kT = 30 keV, the MACS of 1454 +735
−569 mb and 2035 +342

−356 mb
agree within the uncertainties with the recommended values of 1334±422 mb and 1640±260 mb
derived in Ref. [81] for 179Ta and 180Ta, respectively. However, the calculated 180Ta MACS,
corresponding to 180Ta(n,γ) reaction rates are 29% smaller than the 179Ta(n,γ) reaction rates.
The possible s-process production of 180Ta occurs mostly via beta-decay branching from an
excited state in 179Hf according to Ref. [10]. To fully investigate the s-process production of
180Ta, relevant cross sections of neighboring nuclei need to be investigated as well. It is therefore
desirable to measure 178Hf(n,γ)179Hf(β−)179Ta and/or 179Hf(n,γ)180mHf(β−)180Ta cross sections
in future work, to fully understand the analysis of 180Ta synthesis through the s-process.

5.3.4 Future outlook

It has been pointed out that 180Hf(υe, e)180Ta, p-process and 181Ta(υ, υ′n)180Ta contribute 50,
25 and 25% to the synthesis of 180Ta, respectively [11], a scenario that may be quite likely. Many
more measurements in and around the Ta isotopic chain need to be conducted, to establish a
solid understanding of the interplay of various astrophysical processes for the production of Ta.
In particular, the γ-ray strength function and nuclear level density need to be determined for
180−182W and 177−181Hf isotopes. In fact, ideally all nuclei should be measured since the large
network calculations is an interplay of thousands of cross sections. For measured Ta results,
network calculations are beyond the scope of this thesis. The newly deduced 179Ta(n,γ) and
180Ta(n,γ) cross sections can be utilized in astrophysical network calculations to investigate and
constrain the galactic production mechanism of 180Ta.
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Summary and Conclusions

The origin of 180Ta, nature’s rarest isotope with its abundance based on a naturally occurring
isomer, has remained a puzzle over the years. No consensus exists, and several processes, such
as the s- and p-process, have been proposed to exclusively synthesize 180Ta in the Universe.
Furthermore, it has been pointed out that a combination of the above processes together with
the υ-process can also be responsible for the production of 180Ta. Clearly, many astrophysical
processes can theoretically be used to explain the synthesis of 180Ta. The uncertainties in the
reaction rates for 180,181Ta exist partly due to the unavailability of experimental nuclear level
density and γ-ray strength function data, which are critical ingredients for the Hauser-Feshbach
statistical emission model from which astrophysical reaction rates are calculated.

An experiment was successfully performed at the Oslo Cyclotron Laboratory using the (3He,3He’γ)
and (3He,αγ) reactions to obtain particle-γ data, from which the nuclear level densities and
γ-ray strength functions were extracted for the first time below Sn for 180Ta, and below 6
MeV excitation energy for 181Ta. These average statistical parameters were extracted from the
particle-γ coincidence events utilizing the analytical procedure called the Oslo Method. The
charged particles were detected using the SiRi array, while the γ rays were detected using the
CACTUS array. The 179Ta(n, γ) and 180Ta(n, γ) cross sections were obtained from the ex-
perimental γSF and NLD calculated within the constant temperature (CT) model, that show
excellent agreement with experimental results, as implemented in the TALYS reaction code.
Further, the astrophysical Maxwellian-averaged (n,γ) cross sections (MACS) have been calcu-
lated at s- and p-process temperatures, for 180,181Ta. The calculated MACS of 1454 +735

−569 mb and
2035 +342

−356 mb at the p-process temperature, imply that the p-process produces more 180Ta than
it destroys. Future measurements of the γ-ray strength function and nuclear level density are
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essential to obtain (n,γ) cross sections to probe the importance or irrelevance of the individual
processes in the synthesis of 180Ta. Henceforth, the astrophysical network calculations can be
performed to investigate the galactic production mechanism of 180Ta from various processes
and various astrophysical sites.
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Appendix A

Figure 6.1. The 4He banana gate was cut off around Sn to select only high-energy 4He particles
which are more effectively collected in the ∆E − E telescopes to provide a good TDC start
signal.
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Figure 6.2. The energy-time matrix for the 181Ta(3He, αγ)180Ta reaction of the CACTUS array.

Figure 6.3. The energy-time matrix from the 181Ta(3He, αγ)180Ta reaction after walk correction
for the CACTUS array.
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Figure 6.4. The projection of figure 6.3 on the time-axis after signals were time calibrated from
CACTUS. The dashed lines (t1, t2) and (t3, t4) are gates on the prompt and random events,
respectively, with same width
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Table. 6.1. The 181Ta and 180Ta γ-ray strength function data extracted according to the Oslo
method, using the (3He, αγ) and (3He, 3Heγ), respectively. fupper(Eγ) and flower(Eγ) represent
the upper and lower error bands of the γ-ray strength function as explained in the text.

181Ta
No Eγ(MeV) f(Eγ) ± ∆ f(Eγ) (MeV−3) fupper(Eγ) flower(Eγ)
1 1.585 1.716e-08 ± 1.049e-09 9.068e-10 8.967e-10
2 1.899 1.984e-08 ± 9.084e-10 9.926e-10 9.617e-10
3 2.210 2.345e-08 ± 1.103e-09 1.114e-09 1.058e-09
4 2.523 2.828e-08 ± 1.395e-09 1.367e-09 1.271e-09
5 2.835 3.436e-08 ± 1.739e-09 1.740e-09 1.585e-09
6 3.147 4.052e-08 ± 2.243e-09 2.526e-09 2.256e-09
7 3.460 5.228e-08 ± 3.067e-09 3.639e-09 3.183e-09
8 3.772 6.678e-08 ± 4.414e-09 4.780e-09 4.097e-09
9 4.085 8.325e-08 ± 6.667e-09 7.737e-09 6.498e-09
10 4.397 9.525e-08 ± 1.080e-08 1.217e-08 1.001e-08
11 4.709 1.241e-07 ± 1.452e-08 1.664e-08 1.341e-08
12 5.022 1.598e-07 ± 2.194e-08 2.279e-08 1.800e-08
13 5.334 1.641e-07 ± 3.463e-08 4.032e-08 3.120e-08
14 5.647 2.265e-07 ± 4.151e-08 5.423e-08 4.112e-08
15 5.959 4.189e-07 ± 9.039e-08 9.320e-08 6.924e-08
16 6.271 4.743e-07 ± 1.254e-07 1.556e-07 1.132e-07
17 6.585 4.727e-07 ± 1.980e-07 2.342e-07 1.670e-07
18 6.896 1.074e-06 ± 3.483e-07 4.335e-07 3.029e-07
19 7.209 1.276e-06 ± 5.841e-07 7.219e-07 4.943e-07

180Ta
No Eγ(MeV) f(Eγ) ± ∆ f(Eγ) (MeV−3) fupper(Eγ) flower(Eγ)
1 1.695 1.926e-08 ± 4.563e-09 4.714e-09 4.259e-09
2 2.085 1.909e-08 ± 3.993e-09 4.321e-09 3.601e-09
3 2.475 1.898e-08 ± 5.173e-09 5.864e-09 4.508e-09
4 2.865 2.658e-08 ± 6.769e-09 8.038e-09 5.700e-09
5 3.255 3.290e-08 ± 1.047e-08 1.302e-08 8.517e-09
6 3.645 3.902e-08 ± 1.229e-08 1.602e-08 9.665e-09
7 4.035 3.824e-08 ± 1.477e-08 2.016e-08 1.122e-08
8 4.425 6.753e-08 ± 2.472e-08 3.535e-08 1.815e-08
9 4.815 7.414e-08 ± 3.274e-08 4.904e-08 2.323e-08
10 5.205 7.383e-08 ± 5.210e-08 8.175e-08 3.572e-08
11 5.595 7.230e-08 ± 6.320e-08 1.039e-07 4.186e-08
12 5.985 1.049e-07 ± 1.252e-07 2.156e-07 8.016e-08
13 6.375 2.995e-07 ± 2.664e-07 4.804e-07 1.647e-07
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Table. 6.2. The 181Ta and 180Ta nuclear level density, where ρupper(Ex) and ρlower(Ex) represent
the upper and lower error bands of the nuclear level density as explained in the text.

181Ta
No Ex(MeV) ρ(Ex) ± ∆ρ(Ex) (MeV−1) ρupper(Ex) ρlower(Ex)
1 0.023 6.258e+00 ± 4.038e-01 3.779e-01 3.953e-01
2 0.336 1.228e+01 ± 5.950e-01 7.069e-01 7.244e-01
3 0.648 1.823e+01 ± 1.129e+00 1.167e+00 1.172e+00
4 0.961 3.247e+01 ± 2.310e+00 2.255e+00 2.218e+00
5 1.273 7.483e+01 ± 4.450e+00 4.454e+00 4.293e+00
6 1.585 1.770e+02 ± 8.719e+00 9.299e+00 8.781e+00
7 1.898 3.457e+02 ± 2.070e+01 2.176e+01 2.013e+01
8 2.210 5.777e+02 ± 3.581e+01 4.322e+01 3.918e+01
9 2.523 1.124e+03 ± 7.533e+01 9.263e+01 8.227e+01
10 2.835 2.178e+03 ± 1.459e+02 1.551e+02 1.350e+02
11 3.147 4.105e+03 ± 3.242e+02 3.424e+02 2.919e+02
12 3.460 7.137e+03 ± 5.214e+02 5.945e+02 4.966e+02
13 3.772 1.223e+04 ± 1.208e+03 1.399e+03 1.145e+03
14 4.085 2.195e+04 ± 2.258e+03 2.834e+03 2.273e+03
15 4.397 3.798e+04 ± 4.708e+03 4.992e+03 3.922e+03
16 4.709 7.370e+04 ± 1.066e+04 1.059e+04 8.154e+03
17 5.022 1.317e+05 ± 2.487e+04 2.713e+04 2.047e+04
18 5.334 1.807e+05 ± 5.293e+04 6.236e+04 4.609e+04
19 5.647 4.715e+05 ± 1.638e+05 2.132e+05 1.544e+05

180Ta
No Ex(MeV) ρ(Ex) ± ∆ρ(Ex) (MeV−1) ρupper(Ex) ρlower(Ex)
1 0.135 4.721e+01 ± 1.305e+01 1.243e+01 1.354e+01
2 0.525 9.352e+01 ± 2.477e+01 2.473e+01 2.484e+01
3 0.915 1.668e+02 ± 4.894e+01 5.119e+01 4.742e+01
4 1.305 4.212e+02 ± 9.891e+01 1.084e+02 9.261e+01
5 1.695 8.862e+02 ± 2.076e+02 2.382e+02 1.878e+02
6 2.085 1.446e+03 ± 5.354e+02 6.437e+02 4.680e+02
7 2.475 2.256e+03 ± 1.008e+03 1.269e+03 8.511e+02
8 2.865 7.138e+03 ± 2.344e+03 3.092e+03 1.913e+03
9 3.255 9.995e+03 ± 4.913e+03 6.790e+03 3.875e+03
10 3.645 1.732e+04 ± 1.068e+04 1.546e+04 8.138e+03
11 4.035 4.232e+04 ± 2.336e+04 3.542e+04 1.720e+04
12 4.425 4.871e+04 ± 4.688e+04 7.447e+04 3.336e+04
13 4.815 1.032e+05 ± 1.534e+05 2.552e+05 1.055e+05
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