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Abstract 

 

The emergence of multiple drug resistant microorganisms poses a major threat to human life. 

These microorganisms have made the currently used antibiotics ineffective and therefore 

continue to thrive. Therefore, there is a need for development of new, broad-secptrum antibiotics 

which is effective against almost every infectious microorganism. These antibiotics should 

ensure high effectiveness against the infectious pathogens while it is less detrimental to human 

health. Thus the search is channelled in nanoscience and nanotechnology in order to develop 

antibiotics that can kill infectious microorganisms effectively and hindering the development of 

drug resistance by these microorganisms. 

 

Nanoscience is the study of properties of a material when reduced to it smallest size (below 100 

nm). It is a newly developing field of science which includes chemistry, physics and biology and 

has made it easy to synthesise nanomaterials for applications in many sectors of life including in 

medicine. The synthesis of nanoparticles can be achieved by physical and chemical methods. 

However, these methods are energy and capital intensive. Additionally, chemical method of 

synthesis uses chemicals that may be toxic which restrict the use of resultant nanoparticles in 

medicine. Therefore, there is a need for the use of eco-friendly methods of nanoparticle 

synthesis. 

 

The synthesis of silver and gold nanoparticles in this study was carried out by a green synthesis 

method, at room temperature, using an aqueous extract from the endemic brown alga Sargassum 

incisifolium. For comparison, commercially available brown algal fucoidans were also used to 

synthesise these nanoparticle, in addition to conventional methods of synthesis. The formation of 

nanoparticles was followed by the use of UV-Vis spectrophotometry. The characterization of the 

nanoparticles was done by TEM, XRD, DLZ and FT-IR.  

 

The rate of nanoparticle formation varied with specific reducing agent used. The faster reaction 

rate was recorded with S. incisifolium aqueous extracts pretreated with organic solvents while 

extracts obtained without this pretreatment produced slightly slower reaction rates. However, the 

commercially available fucoidans were less effective and required elevated temperatures for 
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nanoparticle formation.  Sodium borohydride reduction of silver nitrate was faster than the 

biological methods while the reduction of auric chloride by the S. incisifolium extracts and 

sodium citrate proceeded at similar rates.  

 

The nanoparticles synthesised with the help of the untreated aqueous extract were bigger than 

those synthesised from pre-treated extracts with both giving irregular shaped of nanoparticles. 

Also the nanoparticles formed from commercially available fucoidans were not of the same size, 

with bigger sizes recorded with Macrocystis fucoidan and smaller sizes with Fucus fucoidan. 

The shapes of nanoparticles from these fucoidans were spherical. From the conventional method, 

the nanoparticle sizes were smaller compared to the green synthesised nanoparticles and were 

predominantly spherical. 

 

The silver nanoparticles synthesised from the Sargassum aqueous extracts showed excellent 

antimicrobial activity against five pathogenic microorganisms including A. baumannii, K. 

pneumoniae, E. faecalis, S. aureus, and C. albicans.  The gold nanoparticles were much less 

effective.   

 

To adequately assess the antimicrobial activities of the nanoparticles, it is or paramount 

importance to also asses their cytotoxicity activity. Three cell lines were used in this study 

namely, MCF-7, HT-29 and MCF-12a. The silver nanoparticles were found to be toxic to HT-29 

and MCF-7 cell lines, exhibiting sligtly less toxicity against MCF-12a cells.  The gold 

nanoparticles showed lower toxicity but a similar trend was observed.   
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CHAPTER 1 

1. GENERAL INTRODUCTION 

1.1. What is nanotechnology? 

Nanoscience is the study of small materials ranging in size from 1-100 nm (Sepeur, 2008; Song 

& Kim, 2009; Vaidyanathan et al., 2009). The manipulation and application of these 

nanomaterials is called nanotechnology (Buzea et al., 2007; Vaidyanathan et al., 2009). 

Nanoscience is a newly developing, multidisciplinary field of science, involving physics, 

chemistry and biology (Joshi et al., 2008). Nanoscience and nanotechnology have made it easy 

for the scientist to synthesise nanomaterials of controllable sizes, while the exceptional 

characteristics of nanomaterials, as compared to the bulk materials, have led to intensive research 

in the field of nanoscience. These novel characteristics include remarkable mechanical, 

electrical, conductance, magnetic and optical properties (Sironmani & Daniel, 2011). These 

properties enable nanomaterials to have wide applications in many sectors including catalysis, 

drug delivery, diagnostics, transport, energy, cosmetics and the development of new drugs 

(Ramteke et al., 2012; Rickerby & Morrison, 2007). Most materials change their characteristics 

at the nanoscale, e.g., gold changes colour to red or purple, while silver changes colour to yellow 

or yellow-brown. These characteristics result, in part, from the increase in surface area of the 

material as the size decreases, as well as the quantum confinement effects that dominate at the 

nano-level (Le et al., 2010). The flexibility of the properties associated with nanoparticles of a 

particular size and shape has drawn a great deal of interest for use in medical field, and in 

telecommunication, and transportation (Asharani et al., 2009; Bhumkar et al., 2007; Ramesh et 

al., 2014; Rickerby & Morrison, 2007; Yang et al., 2009). 

 

1.2. The potential of nanotechnology in the development of new antibiotics/drugs 

The emergence of multiple drug resistant microorganisms poses a global threat to public health 

(Rai et al., 2009). Inappropriate use of antibiotics enables microorganisms to develop mutations 

that are resistant to antibiotics. As a result, those diseases which have been cured easily in the 

past have now become a major health threat due to the development of resistance. In addition, 

treatment of diseases caused by drug resistant pathogens are costly and result in long periods of 

hospitalization, as well as increased morbidity and mortality (Bhatt et al., 2015; Huh & Kwon, 
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2011; Sousa et al., 2011). For this reason, a cost-effective, broad spectrum treatment (i.e., the 

antibiotics that can act against a wide range of microbial infections) is sought. Thus, extensive 

research in nanotechnology for the development of an effective treatment against drug resistant 

bacteria is an important area of research (Morones et al., 2005).  

 

Silver has long been known to effectively kill almost all microorganisms (Kim et al., 2007). For 

this reason, silver nanoparticles (AgNPs) have captured the attention of a number of scientists 

and this has led to intensive research on AgNPs (as opposed to bulk silver) because of their wide 

range of applications in many sectors of life and industry including chemical, biological and 

physical sectors (Sun & Xia, 2002; Kim et al., 2006). AgNPs have distinctive properties such as 

good conductivity, chemical stability, catalytic, anti-fungal, anti-bacterial and anti-inflammatory 

activity (Sironmani & Daniel, 2011). 

 

Silver nanoparticles are one of the most widely used nanoparticles in commercial products as 

they are well-known for their anti-microbial activity and have therefore been used in cosmetics, 

wound dressings as well as in hospital equipment to avoid infections (Chen & Schluesener, 

2008).  

 

With the increase in interest in the application of nanoparticles, there is a need to develop  green 

and environmentally friendly synthetic methods for nanoparticles. In recent years, the use of 

plant extracts and natural products in the synthesis of nanoparticles has received increasing 

attention (Kannan et al., 2013; Mollick et al., 2015; Salem et al., 2014; Song & Kim, 2009; 

Zargar et al, 2011).  In this study we will focus our attention on the use of aqueous extracts of the 

seaweed Sargassum incissifolium, an endemic South African species (Stegenga et al., 1997), in 

the green synthesis of silver and gold nanoparticles (AgNPs and AuNPs respectively). To the 

best of the author‟s knowledge, S. incisifolium has never been reported for use in the synthesis of 

AgNPs and AuNPs, thus this study reports on the synthesis of AgNPs and AuNPs using aqueous 

extracts from S. incisifolium sp. This study will also give an insight into which of these two 

metallic nanoparticles (AgNP and AuNP) is a better antimicrobial agent. However, the focus is 

primarily on AgNPs. 
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1.3. Aims, objectives and hypothesis of the study 

The aim of this study is to synthesise AgNPs using an aqueous extract of the brown marine alga 

Sargassum incisifolium and assess their antimicrobial activty.  

The objectives are as follows: 

1. To synthesise silver and gold nanoparticles using a range of reducing agents including an 

aqueous extract of S. incisifolium. 

2. To test the “green” and conventionally synthesized silver and gold nanoparticles against a 

panel of infectious microorganisms. 

3. To assess the selectivity and cytotoxicity of the AgNPs and AuNPs against MCF-7, HT-

29 and MCF12a cell lines. 

 

Hypotheses: 

• Fucoidan (a polysaccharide), found in aqueous extracts of brown algae, including S. 

incissifolium may be involved in the bioreduction of silver nitrate to form nanoparticles. 

• Silver nanoparticles synthesised from the seaweed aqueous extract is capable of 

selectively killing microorganisms effectively.  

 

1.4. Research questions 

 Does the aqueous seaweed extract effectively reduce silver ions to Ag
0
? 

 Which molecules in the seaweed extract likely  stabilise the silver nanoparticles? 

 Will the “green” synthesized silver nanoparticles selectively kill microorganisms 

effectively? 
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1.5. Thesis outline 

Chapter 1 provides a brief introduction to nanotechnology and ends with the research aims and 

objectives. 

Chapter 2 gives an overview of nanoscience and nanotechnology, different types of 

nanomaterials available, the characteristics of nanoparticles, synthetic methods employed for 

nanoparticles, characterisation techniques and the reason for choosing silver nanoparticles for 

this study. 

Chapter 3 includes the synthetic methods, together with the results obtained from the 

characterisation of the nanoparticles.  

Chapter 4 presents the biological assessment (cytotoxicity and antimicrobial tests) carried out in 

this study.  

Chapter 5 presents the conclusions and future perspectives.  
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CHAPTER 2 

2. LITERATURE REVIEW 

 

2.1. Nanoscience and nanotechnology 

Nanoscience is the study of materials at their smallest size (1-100 nm) (Handford et al., 2015). 

Materials at nanoscale are usually measured in nanometres. Manipulation of these materials 

(termed nanoparticles) for a variety of applications is called nanotechnology (Adams and 

Barbante, 2013; Supraja et al., 2013). 

 

Materials at the nanoscale level develop characteristics that are different from the characteristics 

observed in their bulk form, i.e. they gain exceptional, novel characteristics at the nanoscale (Liu 

et al., 2014; Ahn-Tuan et al., 2010). The remarkable properties associated with nanoscale 

materials have led to a great deal of research in the field of nanotechnology. The unique 

properties have enabled nanoparticles to have a wide range of applications in a variety of fields 

such as healthcare, transport, energy, water remediation and including information and 

communication technologies (Rickerby & Morrison, 2007; Das et al., 2012). The extraordinary 

properties observed with nanoparticles include optical, magnetic and electrical properties and 

they depend on the size and shape of the nanoparticles together with their interaction with 

stabilizers and surrounding media, and the synthetic method employed (Ahn-Tuan et al., 2010). 

Additionally, the traditional laws of physics can no longer explain the behaviour of nanoparticles 

at this scale, and the focus is therefore based on the laws of quantum physics. The reason for the 

shift in focus from the traditional laws of physics to the quantum laws of physics is that the 

processes that occur at the nanoscale are based on the quantum confinement effects (Daniel & 

Astruc, 2004). Furthermore, the fact that most biological processes take place at the nanoscale, 

has further enlightened scientists, enabling them to develop processes that can improve their 

work in medicine, imaging, computing, printing, chemical catalysis and materials synthesis. 

Nanotechnology enables scientists to mimic natural processes by using the material‟s unique 

physical, chemical, mechanical and optical properties (Pedersen, 2006). Moreover, nanoparticles 

may develop unique properties such as a vastly increased surface area, which causes changes in 

cohesive forces, new chemical forms (e.g, carbon can bond in different ways to form different 
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new materials such as graphite, diamond, fullerenes and carbon nanotubes), chemical reactivity 

and quantum size effects.  

 

2.2. Quantum effects 

The properties of a material in its actual (bulk) size and smaller sized particles of the same bulk 

material that can be viewed under a regular optical microscope differ slightly, but an excessive 

difference is seen when the same material is reduced to a size in the nanometre range. At this 

size, optical microscopes can no longer be used to view the material and electron microscopes  

have to be employed since electrons have a much shorter wavelength, e.g., scanning electron 

microscopes and transmission electron microscopes. The quantum effects begin to appear at the 

nanoscale level, where they control the behaviour and properties of the nanoparticles (Aitken et 

al., 2006), such as melting point, fluorescence, electrical conductivity, magnetic permeability 

and the chemical reactivity which changes as the size of the material changes. Thus, the 

properties of the material become size-dependent at the nanometre range (scale 1-100 nm). The 

colour of bulk gold, for example, is yellow. When gold is reduced in size to nanometre scale, its 

colour changes from yellow to red or purple (Bhattacharya & Mukherjee, 2008). This occurs due 

to the confinement of electron at the nanometre scale which makes it difficult for electrons to 

move freely and thus gold nanoparticles react differently upon interaction with light as opposed 

to the bulk form. Unique to metallic nanoparticles like sliver nanoparticles (AgNPs) and gold 

nanoparticles (AuNPs), is the physical phenomenon known as surface plasmon resonace (SPR). 

Upon irradiation with electromagnetic radiation, there is a coherent oscillation of conduction 

band electrons thereby inducing SPR. The SPR band appears at around 400 nm for spherical 

AgNPs (Figure 2.1) and at around 520 nm for AuNPs (Figure 2.2) (Gherbawy et al., 2013; 

Huang & El-Sayed, 2010; Jones et al., 2011). Due to their size and optical properties, gold 

nanoparticles can selectively accumulate in tumours. Once present in the tumour, gold 

nanoparticles are capable of providing precise imaging and targeted laser destruction without 

harming healthy cells.  

 

 

 

 



7 
 

 

Figure 2.1 UV-Vis absorption spectrum illustrating the SPR band in AgNPs (Guo et al., 2015) 

 

Figure 2.2 UV-Vis absorption spectrum illustrating the SPR band in AuNPs (Kumar et al., 

2008)  
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2.3. Nanoparticles and their applications 

Nanoparticles have been synthesized from several noble metals including gold, silver, platinum 

and palladium. Although the noble metal nanoparticles (NPs) are used mostly in medical and 

pharmaceutical products, NPs are present in shampoos, soaps, detergents, shoes, cosmetic 

products, and toothpaste (Ramesh et al., 2014). Gold nanoparticles have found application in 

medicine, diagnostics for various diseases and drug delivery (Bhumkar et al., 2007). Silver 

nanoparticles have obtained applications in technology, biological labelling and several other 

biomedical applications (Asharani et al., 2009). Platinum nanoparticles are well-known for their 

application in catalysis (Narayan & El-Sayed, 2004) and biomedical applications when combined 

with other nanoparticles to form biosensors (Yang et al., 2006). Also applied in catalysis are the 

nanoparticles synthesized from palladium, where they have play a role in electrocatalysis, 

sensing and plasmonic wave guiding (Kora and Rastogi, 2015). Other types of nanoparticles 

include, but are not limited to, carbon nanotubes, fullerenes, quantum dots/nanocrystals, 

dendrimers, nanopowders, nanocomposites, nanoalloys, nanowires and metal oxides.  

 

 2.4. Green nanotechnology 

The research focus in nanotechnology has recently been channelled into developing “greener” 

methods for the synthesis of nanoparticles as it is more beneficial in terms of cost- and energy-

effectiveness and environmental friendliness (Sun et al., 2014). The chemical method of 

nanoparticle synthesis involves chemicals that can be dangerous when disposed of in the 

environment (Mollick et al, 2015) and the chemical synthesis of nanoparticles is additionally 

capital intensive (Akhtar et al., 2013). Furthermore, with the traditional methods employed for 

the chemical synthesis of nanoparticles, for example, the synthesis of silver nanoparticles with 

sodium borohydride or sodium citrate, still require stabilizing agents like sodium dodecyl 

sulphate, polyvinyl pyrrolidone, and trisodium citrate as capping agents in order to prevent 

nanoparticle aggregation (Ghorbani et al., 2011). For these reasons, microorganisms and plant 

extracts have recently been used for the synthesis of nanoparticles (Binupriya et al., 2010b). 

The green synthesis of nanoparticles involves synthesizing nanoparticles intracellularly and 

extracellularly (Vithiya & Sen, 2011). Intracellular synthesis involves the synthesis of 

nanoparticles using microorganisms, where these microorganisms absorb the metals and use their 
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cellular machinery to convert them into nanoparticles. Several microorganisms have been 

reported to have the capability of synthesising nanoparticles intracellularly. These include 

bacteria (Klaus et al., 1999; Sharma et al., 2007), fungi and plants (Prabhu & Poulose, 2012). 

However, the use of microorganisms to synthesise nanoparticles has a number of limiting factors 

such as the need for multi-step processes such as the isolation of microbes and the maintenance 

of these microbes is expensive (Shankar et al., 2004). To eliminate these steps, the more “green”,  

less time-consuming and more cost-effective method is sought.Green methods also involve the 

use of plant extracts that are used to synthesize these nanoparticles extracellularly (Akhtar et al., 

2013). The rate of nanoparticle synthesis using plant extracts has been found to be faster 

compared to intracellular nanoparticle synthesis (Iravani & Zolfaghari, 2013). Silver 

nanoparticles have been synthesized using terrestrial plant extracts obtained from lemongrass, 

neem, tamarind, geranium, and Aloe vera to name a few (Akhtar et al., 2013). It is believed that 

the bioreduction of nanoparticles using plant extracts is due to the presence of phytochemicals 

such as polyphenols, flavones, organic acids and quinones (Prathna et al., 2010; Kumar et al., 

2012). Shankar et al. (2003) proposed that proteins from the geranium plant play a role in the 

formation of nanoparticles. Flavonoids and terpenoids from neem leaves, reducing sugars such as 

aldoses, aldehydes/ketones from lemongrass and polyols are also thought to play role in the 

formation of nanoparticles (Akhtar et al., 2013). Nanoparticles synthesised using these plants are 

found to be mostly polydisperse and they are composed of different shapes, as can be seen in 

Figure 2.3. Similarly, marine algae have also been used to synthesise nanoparticles, especially 

gold and silver nanoparticles, details of which will follow in Section 2.9.  
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Figure 2.3 TEM images depicting the different sizes and shapes of nanoparticles synthesised 

from different biological systems: a) AgNPs synthesised from Saccharomyces boulardii (Kaler 

et al., 2013), b) AgNPs synthesised from Abelmschus esculentus (Mollick et al., 2015), c) 

AuNPs synthesised from a mushroom extract (Philip, 2009), and d) AgNPs synthesised from 

Marine macroalga, Padina tetrastromatica (Princy & Gopinath, 2013). 

 

2.5. Multidrug resistance 

The emergence of multiple drug resistant microorganisms poses a global threat to public health 

(Rai et al., 2009). Resistant microorganisms, which can be bacteria, fungi, viruses and parasites, 

are unresponsive to drugs used against them such as antibiotics, antifungals, antivirals and 

antimalarials. Those antimicrobial drugs which were effective against the infections become 

ineffective, while the microorganisms thrive (WHO, 2015). As a result, these increasing drug 

resistant infections have led to an increased mortality rate, morbidity and cost due to prolonged 

hospitalization and treatment (Lara et al., 2010). 

The first discovery of drugs to treat antibacterial infections dates back to 1928 when penicillin 

was used (Derderian, 2007). An approximate scale of the amount of antibiotics produced 

a b 

c d 

 

 

 

 



11 
 

annually is 100 000 tons globally (Nikaido, 2009). Nevertheless, other bacteria have developed 

into antibiotic resistant strains (Temime et al, 2003). The current pressing issue is the emergence 

of gram negative infectious microorganisms that are resistant to almost every kind of antibiotic 

available (Levin et al., 1999; Nikaido, 2009). 

  

Staphylococcus aureus is one of the bacteria that have developed antibiotic (methicillin) resistant 

(MRSA) strains. MRSA together with Pseudomonas aeruginosa and Acinetobacter baumanii are 

the major pathogens responsible for infections acquired in hospitals because  they are resistant 

also to disinfectants (Levin et al., 1999).  

 

2.6. Silver nanoparticles 

Silver is well known for its bactericidal activity against almost all microorganisms, and 

consequently silver-based medical products have been used to prevent and treat bacterial 

infections (Sironmani & Daniel, 2011; Pavaghadhi et al., 2014).  

 

There are quite a number of studies that have used plant extracts for the synthesis of AgNPs. For 

example, Shankar et al. (2003) synthesized silver nanoparticles using plant extracts from 

geranium leaves. The size of silver nanoparticles ranged from 16-40 nm and the rate of 

nanoparticle formation was quite rapid with a reaction time of 60 min, where 90% of silver ions 

were reduced after 9 hours. This proves that the use of plant extracts to synthesize nanoparticles 

is less time consuming (Akhtar et al., 2013) as compared to intracellular methods which take 24 

to 120 hours to complete the reaction (Shankar et al., 2003). Moreover, Chadran et al. (2006) 

conducted a study where silver nanoparticles were synthesized using an Aloe vera extract, while 

Arokiyaraj et al., (2013) reported on the synthesis of AgNPs using aqueous floral leaf extracts 

from Nelumbo nucifera. Other green synthesis studies conducted on AgNPs using plant extracts, 

include those by Leela & Vivekanandan (2008) who compared the potential capabilities of 

different extracts from Helianthus annus (sunflower), Basella alba (spinach), Oryza sativa (rice), 

Saccharum officinarum (sugarcane), Sorghum bicolar (sorghum), and Zea mays (maize), where 

H. annus exhibited exceptional Ag
+
 to Ag(0) reducing capabilities. Furthermore, Gnanojobitha et 

al. (2013) used extracts from the fruit of Vitis vinifera to synthesise AgNPs and evaluated them 

for antimicrobial efficacy. Another group reported on the synthesis of AgNPs using tea leaf 
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extract (Begum et al., 2009). Although quite a number of studies have reported on the synthesis 

of AgNPs with plant extracts, the number of studies which synthesized AgNPs for further 

application is far less compared to those which focused only on nanoparticle formation. 

Experimental details such as concentrations used and conditions employed are sketchy. 

Furthermore, there has been extensive AgNP synthesis using terrestrial plants, but more work 

still needs to be done in terms of exploring the reducing capabilities of marine plants such as 

seaweeds (Kannan et al. 2013). 

 

Although they are the most commonly used nanoparticles, it is worth mentioning that silver 

nanoparticles can pose a major problem to the environment through their route of release into the 

environment during production, usage and disposal. This then leads to their accumulation, 

transformation and degradation in the atmosphere, water and soil spheres and in organisms 

(Benn et al., 2008; Wiesner et al., 2006). The toxicity associated with silver nanoparticles raises 

concern since their use in commercial products entails contact with the human body (Banerjee & 

Narendhirakannan, 2011). Silver nanoparticles may be released to the environment via their 

routes of synthesis as well as through washing machines, or through the disposal of material 

containing silver nanoparticles (Benn et al., 2008; Wiesner et al., 2006). Silver can be hazardous 

if disposed in water, especially to microorganisms (Borm & Berube, 2008; Liu et al., 2010). 

There is, therefore, still a need to study AgNP toxicity as health and safety information regarding 

this topic is scant especially since silver nanoparticles are also toxic to the human body (Rai et 

al., 2009).  

 

2.7. Gold nanoparticles 

Gold nanoparticles are known for their application in catalysis, nonlinear optics, nanoelectronics, 

gene expression, and disease diagnosis (Wu et al., 2015). Most medical applications for AuNPs 

fall under drug delivery, tissue/tumour imaging, photothermal therapy and 

immunochromatographic identification of pathogens in clinical specimens (Rajathi et al., 2012). 

AuNPs assume their role in medicine due to their advantageous properties such as being 

biocompatible and their ability to deliver therapeutic substances to target areas.  
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Studies have also been conducted on gold nanoparticle synthesis using plant extracts. These 

include but are not limited to studies by Tripathy et al. (2012) who used the leaf extract of Fiscus 

benghalensis, Yu and colleagues, (2016) who employed Citrus maxima extracts to synthesise 

AuNP, and Sathishkumar et al, (2016) who synthesised AuNPs from Couroupita guianensis 

(Aubl.). Moreover, Elia et al. (2014) synthesised AuNPs from the leaf extracts of different plants 

namely: Salvia afficinalis (common sage), Lippia citriodosa (lemon verbena), Perlagonium 

graveolens (rose geranium), and Punica granatum (pomegranate).  

 

As is the case with AgNPs, not much has been reported on the synthesis of AuNP using marine 

algae. These studies include the synthesis of AuNPs from a brown seaweed, Stoechospermum 

marginatum (Kützing) where the NPs were tested for antibacterial activity against a panel of 

infectious microorganisms. Senapati et al. (2012), synthesised AuNPs intracellularly using the 

alga Tetraselmis kochinensis. Furthermore, AuNPs have also been synthesised from marine alga, 

Sargassum wightii (Singaravelu et al., 2007). Detailed summery of the use of marine algae, 

seaweeds in particular, for the synthesis of gold nanoparticles is shown in Table 2.1.  
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Table 2.1 Summery of studies that have used marine seaweeds for synthesis of gold 

nanoparticles  

Organism Species Name of Species NP type Size (nm) Biological 

activity 

Author and year 

Marine algae Green seaweed Tetraselmis kochinensis AuNP 18 - Senepati et al, 

2012 

Marine algae Brown seaweed Sargassum wightii AuNP 5-15 - Singaravelu et 

al, 2007 

Marine algae Brown seaweed Stoechospermum 

marginatum (Kützing) 

AuNP 18.7-93.7 Antibacterial Rajathi et al, 

2012 

Marine algae Green seaweed Prasiola crispa AuNP 5-25 - Sharma et al, 

2014 

Marine algae Brown seaweed Sargassum swatzii AuNP 20-60 Cytotoxicity  Dhas et al, 2014 

Marine algae Red seaweed Galaxaura elongata AuNP 3.85-

77.13 

Antibacterial Abdel-Raouf et 

al, 2013 

Marine algae Brown seaweed Sargassum 

myriocystum 

AuNP 10-23 - Dhas et al, 2012 

 

Even though there are studies that have reported on the bactericidal activity of AuNPs (Cui et al., 

2012; Senapati et al., 2012), there is still more to be done in order to explore antibacterial 

activities of green synthesised gold nanoparticles. Also, since they are made from noble metals, 

AuNPs are good candidates to be compared to AgNPs (alsois much known for its bactericidal 

activity). 

 

2.8. Factors influencing synthesis of metal nanoparticles using plant extracts 

The size of metallic nanoparticles has been found to decrease with an increase in pH 

(Armendariz et al., 2004). Temperature also influences the formation of the nanoparticles by 

increasing the rate of formation with an increase in temperature (Muralidharan et al., 2011; 

Gericke & Pinches, 2006). Incubation or contact time also plays a role in the formation of 

nanoparticles. The contact time is the time it takes for nanoparticles to form completely (Akhtar 
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et al., 2013). In their work, Carrillo-Lopez et al. (2014) showed that sharpness of the UV 

absorption peaks in the spectra increased as the contact time was increased when using a 

Chenopodium leaf extract to synthesise AuNPs. Isaac et al. (2013) also had the same observation 

when they synthesized AgNPs and AuNPs using Averrhoa bilimbi fruit extract.  

 

2.9. Seaweed extracts in the bioreduction of metal salts to forms nanoparticles 

There are a few studies that described the synthesis of AgNPs using seaweed extracts. Seaweeds 

are known for their high metal uptake capacity, low cost and macroscopic structures (Kannan et 

al., 2013), and seaweeds have long been used as medicine in some parts of the world because 

they contain anti-oxidants that act against degenerative diseases. In addition, seaweeds have also 

been found to have anti-bacterial and anti-fungal activities (Gamal, 2010). There is  little 

information to support the biosynthesis of metallic nanoparticles using marine algae. In one 

study, AgNPs were synthesised using green seaweed, Codium capitatum P.C. Silva 

(Chlorophyceae) (Kannan et al. 2013). Red seaweeds, Gelidiella acerosa for example, have also 

been used to synthesise AgNPs for use as antifungal agents (Vivek et al., 2011). Marine brown 

algae are known to possess polysaccharides that are not found in terrestrial plants. These 

polysaccharides were coined “fucoidans” for the first time they were isolated from brown 

seaweeds (Senthilkumar & Kim, 2014) and it is still currently called fucoidan according to 

IUPAC rules. Other names for this polysaccharide include fucan, fucosan, or sulfated fucan (Li 

et al., 2008). For convenience, this polysaccharide will be referred to as fucoidan in this study. It 

is believed that fucoidan plays a role in the synthesis of nanoparticles due to their sulfonated side 

chains (Tengdelius et al., 2015). For this reason, fucoidans were used as a control in the 

synthesis of the nanoparticles in this research. Figure 2.4 shows the Pankter average structure 

(Figure 2.4a) of fucoidans and the typical structures associated with fucoidans isolated from 

Fucus vesiculosus (Figure 2.4b). Fucoidans comprise mainly fucose and sulphate moieties. 

Fucoidans obtained from other different species have also been found to have a complex 

chemical composition. In addition to the fucose and sulphate moieties, these fucoidans may be 

composed of other monosaccharides (mannose, galactose, glucose, and xylose), uronic acids, 

acetyl groups and proteins (Li et al., 2008). Fucoidan is made up of a backbone that consists of 

fucose residues linked in α (1-3) fashion. Sulphate groups are substituted on the C-4 position and 
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some fucose moieties are attached to C-4 as well, thus forming branched points with a single 

fucose for every 2-3 fucose residues in the polymer chain (Figure 2.4).  

 

 

 

  

Figure 2.4 Structural illustration of the fucoidans obtained from brown marine algae. a) Pankter 

average fucoidan structure (Pankter, 1993); b) Typical structure of F. veliculosus (Ale et al., 

2011). 

 

In addition to the fucoidans found in brown algae, a number of complex phlorotannins (Figure 

2.5) have also been isolated from marine brown algae.  These compounds have displayed potent 

antioxidant activities (Barbosa et al., 2014) and may therefore be very useful in the reduction of 

metals salts to nanoparticles.   

 

a) 

b) 
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Figure 2.5 Selected phlorotannins reported from brown algae (Barbosa et al., 2014). 

 

This study reports the synthesis of AgNPs using marine brown alga, S. incisifolium. To the best 

of the author‟s knowledge, S. incisifolium has never been reported for use in the synthesis of 

AgNPs. However, several small molecules have previously been isolated and reported from this 

species (Afolayan et al., 2008).  These molecules include sargahydroquinoic acid, sargaquinoic 

acid and fucoxanthin (Figure 2.6).  Although these non-polar molecules have been shown to 

display potent antioxidant activity, it is unlikely that they will be extracted under aqueous 

conditions.  
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Figure 2.6 Secondary metabolites reported from the organic extract of S. incisifolium (Afolayan 

et al., 2008): a) Sargahydroquinoic acid, b) Sargaquinoic acid, and c) Fucoxanthin. 

 

2.10. Antioxidant activity 

Most diseases are caused by inadequate balance between antioxidant defence and oxidant 

production in cells, a condition termed oxidative stress (Tobwala et al., 2014). Oxidative stress 

together with free radical production result with reduced amount of antioxidants in the cells. 

Antioxidants play important role by protecting the body cells from damage induced by reactive 

oxygen species (ROS) including superoxide radical (O2
.-
), hydroxyl radical (OH

-
), peroxyl 

radical (ROO
-
) and nitric oxide radical (NO

-
). Although synthetic antioxidants have shown 

protective effect against ROS, their use has been nullified by the safety and cytotoxicity issues 

(Ananthi et al., 2010; Fleita et al. 2015). Most studies have evaluated the antioxidant activity 

exhibited by plants and marine algae in order to counteract the effects of diseases caused by 

oxidative stress (Huang and Wang, 2004; Lim et al., 2002; Shon et al., 2003; Takamatsu et al., 

2003; Tobwala et al., 2014). Polysaccharides from different seaweeds such as Ulva lactuca 

(green), Sargassum crassifolium (brown), and Digenea simplex (red) were evaluated for 

antioxidant activity, with the highest activity recorded in polysaccharide from brown seaweed 

(Al-Amoudi et al., 2009). Ananthi et al, (2010) also assessed antioxidant activity of 

polysaccharide from brown seaweed, Turbinaria ornata, which exhibited highest antioxidant and 

anti-inflammatory activity.  

a) 

b) 

c) 
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From the best of author‟s knowledge, antioxidant activity of brown seaweed, Sargassum 

incisifolium, has never been investigated previously. Thus we report for the very first time the 

antioxidant activity exhibited by S. incisifolium in this study. 

 

2.11. Techniques for the characterisation of nanoparticles 

The electron microscopy technigues involve the use of transmission electron microscope (TEM) 

and scanning electron microscope (SEM) which use focused electron beam to study the surface 

morphology and size of the samples in question. Electron microscopes are usually used to study 

material in the submicron range and are able to produce images of higher resolution due to the 

shorter wavelengths of the electrons used as compared to the visible light photon wavelength 

(Lin et al., 2014). Therefore, traditional optical microscopes are used to study materials at the 

micron level while nanomaterials can be studied using electron microscopes. There are numerous 

microscopes used to characterise nanoparticles including, scanning electron microscopes (SEM), 

transmission electron microscopes (TEM), and atomic force microscopes (AFM) to name a few.  

 

2.11.1. Transmission electron microscope (TEM) 

Transmission electron microscope (TEM) uses a beam of electrons to image samples, and the 

source of the electron beam in TEM is an electron gun. The electron beam in TEM is transmitted 

through an ultrathin sample of material (Wang, 2001). TEM is the most commonly used electron 

microscope and it is able to determine size, morphology and topography, composition and 

crystallography of the sample (Wang, 2001). The image obtained from TEM is magnified and 

then focused onto a fluorescent screen.. Figure 2.7 shows image obtained from TEM.  
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Figure 2.7  TEM image of silver nanoparticles (Kaler et al, 2013). 

 

2.11.2 UV-Vis spectroscopy 

UV-Vis absorbance spectroscopy is used to determine the size, concentration, aggregation and 

bioconjugation of nanoparticles should the nanoparticle have characteristic absorption peaks 

such as the SPR band of AgNPs (Figure 2.1) and AuNPs (Figure 2.2) at ~420 nm and ~532 nm, 

respectively (Lin et al., 2014, Guo et al., 2015). 

 

The spectrophotometer then records the spectrum of absorbance against wavelength (Joshi et al., 

2008). Beer‟s law is used to help explain the absorbance of a sample at a given wavelength and 

can be represented in the following equation (2.1): 

     (
  

  
)           (2.1) 

where: A isabsorbance, Ir is the intensity of light entering the sample, Is is the intensity of light 

leaving the sample, C is concentration of sample in mol/L, l is path length of light through the 

cell in centimeters, and ε is molar absorptivity or molar extinction coefficient of the sample 

 

2.11.3 Fourier transform infra-red (FTIR) spectroscopy  

FTIR is a very important spectroscopic technique that can be used to determine the presence and 

identity of organic or inorganic materials and can be useful in determining the chemical 

constituents of a mixture and analysing solids, liquids and gases. Figure 2.8 shows FT-IR spectra 

of silver nanoparticles synthesised from coffee. As can be seen in Figure 2.8, stretching 
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frequencies corresponding to the various functional groups of molecules found in coffee extract 

have been recorded. Molecules have time-variant dipole moment whose oscillating frequency 

corresponds to that of incident IR light to absorb IR radiation. After the absorption of IR 

radiation, the energy is transferred to the molecule which then causes the stretching of a covalent 

bond, bending or twisting which can be described by a stationary state of molecular vibrational 

Hamiltonian. An IR spectrum is therefore then produced which can function like a molecular 

fingerprint. Those molecules which lack a dipole moment, for example, O2 and N2, do not absorb 

IR radiation (Lin et al., 2014). 

 

 

Figure 2.8 FT-IR spectra of AgNPs synthesised using a coffee extract (Dhand et al., 2016). 

 

2.11.4 X-Ray Diffractometry 

X-ray diffraction (XRD) was initially used to examine the crystalline form of powder samples 

and therefore it is originally called x-ray powder diffractometry. Data obtained from XRD 

reveals information about crystallinity, crystalline size, shape and lattice distortion (Joshi et al., 

2008; Lin et al., 2014). Figure 2.9 shows XRD spectrum of silver nanoparticles and the hkl 

values assigned to different peaks. Peaks arise corresponding to certain angles (θ) giving 

information on the crystal lattice and can also be used to determine the crystallite size. The 

particle size is determined using the Debye-Scherrer equation (equation 2.2) according to the 

following formula (Park et al., 2016): 
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       (2.2) 

where: d is the size, k is the Scherrer constant (0.9), λ is the X-ray wavelength, β is the width of 

XRD peak at half height determined from the graph, and θ is the Bragg diffraction angle 

 

 

 

Figure 2.9 XRD spectrum of silver nanoparticles (Mollick et al, 2015). 

 

2.11.5 Dynamic light scattering 

The size of nanoparticles can also be determined through the use of the dynamic light scattering 

technique, which has become popular for determining the size of nanoparticles. Figure 2.10 

shows the size distribution of silver nanoparticles determined from DLS. A monochromatic light 

is shone into the particle solution that are undergoing Brownian motion. The monochromatic 

laser beam is then scattered by the nanoparticles, undergoing constructive or destructive 

interference.  The intensity of light is detected by a photomultiplier (de Kanter et al., 2016).  
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Figure 2.10 Size distribution of nanoparticles as determined by DLS (Mollick et al, 2015). 

2.3 Discussion 

Nanoscience is an emerging field of science which involves disciplines such as biology, 

chemistry and physics. Nanoscience is the study of materials at the nanoscale, while the 

manipulation of these materials at the nanoscale is called nanotechnology and  provides an 

alternative path for the development of drugs, in many cases offering solutions to issues such as 

solubility and drug delivery. Also, through nanotechnology, new antimicrobial agents can be 

developed. Different nanoparticles have been synthesised for different purposes in all sectors of 

life including diagnostics, drug delivery, computing, transport, communication and energy. Of 

interest to this study is the development of an antimicrobial agent with low toxicity to normal 

body cells, whilst exhibiting the highest toxicity to microorganisms. Microorganisms have 

developed drug resistant strains over the years and this makes currently available drugs 

ineffective. For this reason, there definitely is a need for development of alternative 

antimicrobial agents, paving the way for the use of nanoscience.  

 

Among the nanoparticles reported in the literature, AgNPs have been found to possess 

antimicrobial activity against almost all microorganisms. The traditional method employed for 

the synthesis of AgNPs (termed the chemical method in this thesis) is associated with a high 

cost, and highly toxic chemicals are utilised. For these reasons, the employment of a “green” 

synthetic method for the synthesis of nanoparticles by making use of plant extracts is 

advantageous. Though some work has been done on the synthesis of nanoparticles using plant 
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extracts, not much has been done using seaweeds. To the best of the author‟s knowledge, there 

has never been any work done on the synthesis of Ag- and AuNPs using an aqueous extract from 

S. incisifolium. The fucoidans isolated from seaweed are thought to play a role in the reduction of 

silver ions (Ag
+
) to form (Ag

0
). For this reason, pure fucoidans from different seaweeds were 

used in this research project to evaluate the significance of the fucoidans in the formation of 

nanoparticles. Ag and Au NPs synthesised in this project were tested against different 

microorganisms including two gram-negative bacteria, two gram positive bacteria and one yeast 

microorganism as well as against cancer cell lines.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



25 
 

 

CHAPTER 3 

3. SYNTHESIS AND CHARACTERISATION OF NANOPARTICLES 

3.1. Introduction 

This chapter focuses on the synthesis and characterisation of nanoparticles. Several activities 

were covered in this chapter, including: 1) aqueous extraction; 2) synthesis of nanoparticles with 

different reducing agents; and 3) characterization of the nanoparticles using different techniques 

including UV-Vis absorbance spectrophotometry, transmission electron microscopy (TEM) and 

EDX, Zetasizer, X-Ray powder Diffraction and FTIR-spectrometry. The reducing agents 

employed for the NP synthesis included: a) aqueous extracts from the seaweed (S. incisifolium), 

b) a variety of pure fucoidans from different brown alga, and lastly c) NaBH4 was used to 

synthesise silver nanoparticle and sodium citrate was used to synthesise gold nanoparticles. 

 

The nanoparticle synthesis using seaweed extracts was performed using a modified method 

according to Vivek et al. (2011). The properties of the nanoparticles synthesised using this 

method are thus presented and discussed in the sections to follow. The role of major 

biomolecules (such as fucoidans) in the reduction of ions and the capping of nanoparticles was 

evaluated by using pure fucoidans from different seaweeds. The confirmation of these 

biomolecules on the surface of nanoparticles was carried out by analysis of FTIR-spectra.  

 

3.2. Materials and methods 

3.2.1 Chemicals and reagents 

The materials used in this study include Sodium borohydride, sodium citrate, gold (III) chloride 

tryhidrate, silver nitrate, fucoidan from Fucus vesiculosus (Fv), Undaria pinnatifida (Up), and 

Macrocystis pyrifera (Mp) were purchased from Sigma Aldrich and used without further 

purification. Folin-Ciocalteu reagent, Na2CO3, gallic acid, phosphate buffer (pH 6.6), potassium 

ferricyanide, trichloroacetic acid (TCA), ferric chloride (FeCl3.6H2O), ascorbic acid, and 1,1-

Diphenyl-2-Picryl-Hydrazyl (DPPH) were purchased from sigma Aldrich. All solvents were 

redistilled before use.  Milli-Q water (15.0 MΩcm
-1

) was used for all reactions, including 
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extraction procedures, dissolving salts and for the synthesis of nanoparticles as well as washing 

of glassware. 

 

3.2.2. Seaweed extraction 

S. incisifolium
1
 was collected from the coast of the Western Cape Province, South Africa and 

stored frozen (-20 C) until use. 

Two different aqueous extracts were prepared from the alga.  Firstly, the alga (27.5 g) was 

extracted directly in boiling water (1 L) for 1 h. A portion aqueous extract (AR) was freeze-dried 

and stored in a desiccator while the other portion was stored as liquid at -20 C.  Secondly, the 

alga (27.5 g) was sequentially extracted with methanol(1 L) and dichoromethane-methanol (2:1). 

The volumes of methanol was 900 ml whilst that of DCM was 1800 ml. Afterwards, the alga was 

dried, crushed and extracted with boiling water for 1 h. A portion of aqueous extract (AC) was 

freeze-dried and stored in the desiccator while the other portion was stored as liquid at -20 C.  

 

3.2.3. Synthesis of silver nanoparticles 

a) AgNP synthesis from S. incisifolium aqueous extract (AC and AR) 

i) The preliminary method was adapted from Vivek et al. (2011). Briefly, 10 ml of aqueous 

extract (before freeze drying) was added to 90 ml of AgNO3 (0.001 M) and the solution was 

gently stirred for 18 hours.   

ii). In the second method, the freeze-dried extract (2 mg) was dissolved in 10 ml of distilled 

water. The solution was allowed to mix for 10 minutes after which 500 µl of AgNO3 (0.1 M) 

solution was added and the reaction was allowed to proceed for 18 hours. This method was 

applied for both the AR and AC extracts.  

 

 

  

 

                                            
1
 Synonymous with S. heterophyllum 
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b) AgNP synthesis from commercially available fucoidans Fv-AgNP, Mp-AgNP and Up-AgNP 

The fucoidans from F. vesiculosus (Fv), U. pinnatifida (Up),and M. pyrifera (Mp) were used to 

synthesise the following nanoparticles. Briefly, 10 mg of pure fucoidans (Fv, Mp or Up) was 

dissolved in 10 ml of distilled water. To this solution, 500 µl of 0.1 M AgNO3 was added. The 

solution was then allowed to stir at 100 ºC for 15 minutes for F. vesiculosus, 30 minutes for M. 

pyrifera, and 60 minutes for U. pynatifeda. 

 

c)  AgNPs synthesised from NaBH4 (SB-AgNP) 

The method used for the chemical syntheses of AgNP using NaBH4, was carried out using a 

method developed by Solomon et al. (2007). Briefly, 10 ml of 1 mM AgNO3 solution and 30 ml 

of a 2 mM of NaBH4 solution were first chilled at 0 ºC for 1 hour before mixing. The AgNO3 

solution was added NaBH4 solution drop wise with vigorous stirring until all silver nitrate was 

added. The reaction was stopped immediately after the last addition of silver nitrate, 

(approximately 3 minutes total reaction time). 

 

3.2.3.1. The rate of nanoparticle formation 

The rate of nanoparticle formation was determined by making use of the SPR band of the Ag or 

Au NPs in UV-Vis spectrophotometry (GBC Cintra 202 UV-Vis spectrophotometer). An aliquot 

(4 ml) of each sample was taken for UV-Vis analysis every 30 minutes for 150 minutes. The 

reaction was then allowed to proceed until 18 hours after which UV-Vis absorbance spectrum 

was collected, using the software, Cintral version 

 

3.2.4 Synthesis of gold nanoparticles 

The same biological protocol was followed for the synthesis of AuNPs as for AgNPs to give D-

AC-AgNP, D-AR-AuNP, L-AC-AuNP, L-AR-AuNP, Fv-AuNP, Mp-AuNP and Up-AuNP. 

 

a) Synthesis of AuNPs using sodium citrate  

The chemical synthesis of AuNPs was accomplished by following the method used by Ojea-

Jimenez et al. (2010). Sodium citrate (2.2 mM, 150 ml) was heated to 90 ºC before adding a 
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solution of HAuCl4.3H2O (25 mM, 1 ml). After the addition of gold, the solution was allowed to 

stir for 10 minutes after which the solution was placed in ice to speed up the cooling process. 

 

3.2.5 Characterization of aqueous extracts and commercially available fucoidans 

a) UV spectra  

UV spectra of the crude extracts and fucoidans were collected using a GBC Cintra UV-Vis 

spectrophotometer. Briefly, 2 mg of freeze-dried aqueous extract was dissolved in 10 ml of 

distilled water. Then, 4 ml of this solution was taken for UV-Vis analysis. For the fucoidans, 10 

mg was dissolved in 10 ml distilled water and then 4 ml of each solution was taken for UV-Vis 

analysis. 

 

b) IR spectra 

The portion of freeze-dried aqueous extract (AC and AR) was taken for IR analysis in powder 

form. Similarly, the fucoidans were taken for IR analysis in powder form. 

c) NMR spectroscopy 

NMR spectra (
1
H and HSQC) were acquired on a Bruker 400 MHz Avance IIIHD Nanobay 

spectrometer equipped with a 5 mm BBO probe at 333 K using standard 1D and 2D NMR pulse 

sequences.  All spectra were referenced to residual undeuterated solvent peaks. 

 

3.2.6 Characterization of nanoparticles 

a) UV-Vis spectroscopy 

UV-Vis absorbance spectroscopy was carried out to monitor the formation of nanoparticles (with 

a GBC Cintra 202 UV-Vis spectrophotometer). For nanoparticles (both silver and gold 

nanoparticles) synthesised using the aqueous extract from S. incisifolium, the UV-Vis absorption 

spectra were measured after 18 hours, which was the expected complete end-point of the 

reaction. The UV-Vis absorbance spectra were measured immediately after complete reaction for 

the nanoparticles synthesised from pure fucoidans, NaBH4 and sodium citrate. The samples were 
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measured in a quartz cuvette with a path length of 1cm. The visible range for the measurements 

was set to be from 600 nm to 300 nm for AgNPs and 800 nm to 300 nm for AuNPs.  

 

 b) FTIR spectroscopy 

The NPs synthesized were centrifuged at 10 000 rpm for 20 minutes. The supernatant was then 

discarded, the pellet was collected and re-suspended in distilled water where it was centrifuged 

again at 10 000 rpm. The process was repeated two more times to enable purification. The 

nanoparticles were then freeze-dried and and their spectra recorded on a ParkinElmer Spectrum 

400, FT-IR/FT-NIR spectrophotometer, using the software, Spectrum. The measurements were 

done using attenuated total reflectance (ATR) accessory. 

 

c) XRD 

The structure and crystallinity of lyophilized powder samples of nanoparticles (AgNPs and 

AuNPs) were analysed using XRD. The XRD patterns were acquired from a Bruker AXS 

(Germany) D8 Advance diffractometer (voltage 40 KV; current 40 mA). The XRD spectra were 

recorded in the range 10-90º using an X-ray source of Cu Kα (λ=0.154 nm) monochromatic 

radiation. The NPs used for XRD analyses were prepared as in section 3.2.6 b. The freeze-dried 

NPs were submitted for XRD to determine their crystalline size and structure. The size of the 

NPs was calculated using the Debye-Scherrer equation (equation 2.2) (Park et al., 2016) by 

making use of the FWHM of the most intense peak (the 111 index peak) at ~2θ = 38º for both the 

Au and Ag NPs samples. The program used to calculate the FWHM was the Program CMPR 

SVN version 513 (Brian Toby, Advanced Photon Source, Argonne National Lab 

(Brian.Toby@ANL.gov).   

 

d) Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray (EDX) analysis  

Samples were prepared by drop-coating one drop of the specimen solution onto a holey carbon 

coated copper/nickel grid. The specimen solution was then dried under a xenon lamp for about 

10 minutes, where after the sample coated grids were analysed under the microscope. 

Transmission electron micrographs were collected using an FEI Tecnai G2 20 field-emission gun 

(FEG) TEM, operated in bright field mode at an accelerating voltage of 200 kV. Energy 
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dispersive x-ray spectra (EDX) were collected using an EDAX liquid nitrogen cooled lithium-

doped silicon detector. The size of the nanoparticles was determined with ImageJ software. 

 

e) Dynamic light scattering (DLS) spectroscopy and Zeta potential measurements 

The hydrodynamic size of nanoparticles was also determined by making use of a Zetasizer 

(Malvern zetasizer, nano series instrument). After the synthesis of nanoparticles, an aliquot (3 ml 

of nanoparticle solution in water) from each solution was taken for determination of the 

hydrodynamic size by the Zetasizer. Three measurements were determined in triplicate and 

averaged to obtain the mean size of the nanoparticles. Similarly, the zeta potential of the 

nanoparticles was determined, where an aliquot (1 ml of nanoparticle solution in water) from the 

nanoparticle solution was taken and measured. The zeta potential was determined in triplicate, 

averaged and then recorded. 

 

3.2.7. Determination of antioxidant activity 

a) Determination of total polyphenolic content 

To determine total phenolic content of S. incisifolium, method described by Tobwala et al. 

(2014) was performed which involves the use of Folin-Ciocalteu (FC) reagent. Of the two S. 

incisifolium aqueous extracts (AC and AR), 125 µl of each was mixed with 625 µl of FC reagent, 

which was diluted 10-fold. Then, 500 µl of 75 mg/ml of Na2CO3 was added after 5 minutes of 

incubation at room temperature. The solutions were vortexed followed by incubation at room 

temperature for 90 minutes in dark.  After incubation, the absorbance was measured at 760 nm 

(BMG Labtech) and gallic acid was used as standard. The results were recorded as µg of gallic 

acid equivalents (GAE)/mg of dried seaweed. 

 

b) Determination of total reducing power 

Method described by Tobwala et al. (2014) was carried out in the lab for determination of total 

reducing power of the two S. incisifolium extracts (AC and AR). Briefly, 2.5 ml of 0.2 M 

phosphate buffer (pH 6.6) and 2.5 ml of 1% potassium ferricyanide were added to 1 ml of each 

extract, followed by incubation at 50 ºC in water bath for 20 minutes. Thereafter, 2.5 ml of 10% 

Trichloroacetic acid (TCA) was added to each solution. The solutions were then centrifuged at 
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6000 rpm for 10 minutes. From the supernatant obtained, 2.5 ml was added to solution 

comprising 2.5 ml of distilled water and 0.5 ml of 0.1 % ferric chloride (FeCl3.6H2O). The 

absorbance was read after 5 minutes at 700 nm (BMG Labtech). The ascorbic acid was used as 

the standard and the results were recorded as µg of ascorbic acid equivalents (AAE)/mg of dried 

seaweed. 

 

c) Determination of radical scavenging power 

The method described by Tobwala et al. (2014) was used to assess the radical scavenging power 

of aqueous extracts (both AC and AR) of S. incisifolium. Shortly, 2.9 ml of DPPH (1 x 10
-4 

M) 

was mixed with 0.1 ml of each extract. The solutions were incubated at room temperature in dark 

for 30 minutes. The absorbance was read at 520 nm (BMG Labtech). Radical scavenging power 

was calculated with the use of equation 1. 

RSP = [1-(A1/A2)] x 100 %                                                                                 (3.1) 

 

Where RSP is radical scavenging power, A1 is the absorbance of sample with seaweed extract 

and A2 is the absorbance of sample without seaweed extract. 

 

 

 3.3. RESULTS AND DISCUSSION 

3.3.1. Spectroscopic characterisation of the Sargassum incisifolium aqueous extract and 

fucoidans used in the synthesis of the NPs   

As described in section 3.2.2, the aqueous extracts were performed in two different ways.  The 

two extracts differed in colour; where a dark brown colour was obtained for the L-AC extract, a 

normal brown colour was obtained in the L-AR extract (Figure 3.1 D and E). A possible 

explanation for the dark colour of L-AC extract could be that the prior organic extraction 

removed all water insoluble organic biomolecules leaving the water soluble polysaccharides and 

polyphenols in this marine algal extracts.  
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Figure 3.1. Photographs showing the colours of aqueous extracts of S. incisifolium as well as 

commercially available fucoidans A) Up, B) Mp, C) Fv, D) L-AC, E) L-AR, F) AR, G) AC. 

 

Before the synthesis of the nanoparticles, the aqueous extract (AE) and fucoidans dissolved in 

distilled water were subjected to UV-Vis analysis (Figure 3.2). From Figure 3.2 it can be seen 

that the pure fucoidan samples Fv and Up are featureless which is expected as these are 

polysaccaharides and they are optically transparent. The fucoidan isolated from Macrocystic 

pyrifera (Mp), on the other hand, displays a broad peak between 250 and 350 nm, as does the 

aqueous extract (AE). However, the peaks at this region for the aqueous extract are more 

pronounced and this may be due to the presence of polyphenols which could also explain the 

dark brown colour of the extract. Nevertheless, it is clear that the extracts or fucoidans will not 

mask the observation of Ag or Au NPs as the SPR bands associated with these NPs are expected 

to occur between  400  and ~530 nm  (Gherbawy et al., 2013; Huang & El-Sayed, 2010; Jones et 

al., 2011).  

 

A B C D F G E 
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Figure 3.2 UV-Vis absorption spectra for S. incisifoium aqueous extracts (AE) and commercially 

available fucoidans Up, Mp, and Fv. 

 

Further comparison of these reducing agents was done by NMR and the edited HSQC spectra are 

shown in Figures 3.3-3.6.  The HSQC NMR spectra provide information about direct 
1
H-

13
C 

correlations. The purpose of this analysis was not to assign the structures of the fucoidans and 

aqueous extract but rather to provide a basis to allow one to identify different structural features 

of the different extracts.  In addition, one can distinguish between methyl, methylene and 

methine signals.  Figure 3.3 shows an overlay of the HSQC NMR spectra of S. incisifolium 

aqueous extract (black) and that of the fucoidan from F. vesiculosus (red).  The large number of 

overlapping proton signals makes the analysis of the 
1
H NMR spectrum (x-axis) very difficult.  

However, the carbon signals (y-dimension) provide a significant amount of information.  Firstly, 

a methyl signal at ~  18 is clearly apparent as are the sugar oxymethine carbons between  60 

and 80.  Finally, the anomeric carbons of sugars are visible around  100.  Most importantly, an 

overlay of the two spectra (red and black dots) clearly shows significant differences in carbon 

and proton signals suggesting that different major monosaccharides are present in these extracts.  

Interestingly, only low intensity signals are present at C/H 102/6.2 (characteristic of 

phlorotannins) suggesting that phlorotannins are present as minor constituents in the S. 

incisifolium crude extract.  
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Similar trends were observed when comparing the HSQC spectra of the S. incisifolium aqueous 

extracts and the other fucoidans (Figures 3.4 and 3.5).  Figure 3.6 shows an overlay of all three 

commercially available fucoidan HSQC spectra and the significant overlap of the signals suggest 

very similar monosaccharide composition of these fucoidans.   

 

 Figure 3.3. HSQC NMR spectra showing the comparison between AE and Fv. 

 

 

Figure 3.4 HSQC NMR spectra showing comparison between AE and Mp. 
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Figure 3.5 HSQC NMR spectra showing comparison between AE and Up. 

 

Figure 3.6 HSQC NMR spectra showing comparison between fucoidans Fv, Mp, and Up. 

 

FT-IR spectroscopy was also used for comparison of the AE and fucoidan samples (Figure 3.7). 

The C-O-C group of monosaccharides was detected at around 800 cm
-1

 (Schulz & Baranska, 

2007) in all the spectra except in AC extract. Other similarities are observed between Mp and Up 

at the peak around 1026 cm
-1 

which indicates the presence of C-N functional group of aliphatic 
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amines (Kannan et al, 2013). Also AR and AC had similar peaks at 1599 cm
-1 

which may 

represent amide II bond (Princy & Gopinath, 2013). AR further had a peak at 1038 cm
-1 

which 

may show the presence of carboxylic acid in the extract (Princy & Gopinath, 2013). Mp and Fv 

had a peak at around 1200 cm
-1

 which may signal the stretching of sulfated polysaccharides 

(Kannan et al, 2013). C=N is detected in Mp at 1628 cm
-1 

and at 1636 cm
-1 

in Fv (Kannan et al, 

2013). All the reducing agents had the OH group which is usually detected at around 3200-3400 

cm
-1

 (Princy & Gopinath, 2013). 

 

 

Figure 3.7 FT-IR spectra of A) S. incisifolium crude extract  and fucoidans. 

 

Determination of the antioxidant activity, polyphenolic content and total reducing power of 

the aqueous extracts of S. incisifolium and fucoidans  

The polyphenolic content, total reducing power and antioxidant activity of the two aqueous 

extracts of S. incisifolium and pure fucoidans (Fv, Mp, Up) were evaluated according to 

Topiwala et al. (2014) and the results are presented in Table 3.1. The total phenolic contents of 

the samples were recorded as gallic acid (a standard) equivalents (GAE) in µg/mg of dried 
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seaweed. The study was carried out in order to give insight into a) the polyphenolic content of 

the reagents used and their reducing power (and therefore their ability to form nanoparticles) and 

b) their antioxidant activity. Prior extraction of the seaweed with organic solvents rendered the 

AC extract (which is a darker brown in colour) a higher phenolic content and reducing power 

compared to the AR extract. The pure fucoidans, as polysaccharides isolated from brown 

seaweeds, possessed significantly lower phenolic contents than the aqueous extracts with Fv, at 1 

µg/mg GAE, having the lowest content (Table 3.1). The total phenolic content of the AC extract 

was significantly higher and the following order was observed: AC>AR>Mp>Up>Fv (with p < 

0.05).  

 

Table 3.1 Total polyphenolic content and reducing power of the S. incisifolium aqueous 

extracts, and the fucoidans from F. vesiculosus (Fv), M. pyrifera (Mp) and U. 

pinnatifida (Up). 

 

Extract 

Total polyphenolic content 

(GAE, in µg/mg of dried 

seaweed / fucoidin)* 

Total reducing power (AAE, in 

µg/mg of dried seaweed / 

fucoidin)* 

AC 235 ± 0.013 95 ± 0.008 

AR 150 ± 0.019 75 ± 0.003 

Fv 1 ± 0.0007 10 ± 0.001 

Mp 10 ± 0.007 15 ± 0.001 

Up 10 ± 0.048 15 ± 0.003 

*p<0.05 

 

The total reducing power of these samples was also assessed and a similar trend observed. In this 

assay, the total reducing power of the samples depends on the capability of the antioxidants in 

the samples to reduce Fe
3+

 (and give an indication of the ability of the samples to reduce the Ag 

and Au salts to form nanoparticles). The results obtained (Table 3.1) are presented as ascorbic 

acid equivalents (AAE) in µg/mg of dried seaweed and pure fucoidans. The AC extract boasted a 

higher total reducing power content (at 95 µg/mg AAE of dried seaweed) than that of the AR 

sample and pure fucoidans (Table 3.1). The pure fucoidans exhibited much lower values, with 

the lowest values recorded for the Fv fucoidan (at 10 µg/mg AAE). The total reducing power 
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was greatest for the S. incisifolium aqueous extracts followed by the pure fucoidans in the 

following order: AC>AR>Mp>Up>Fv. 

   

The trends observed above were echoed in the radical scavenging assays conducted. The DPPH 

scavenging method is dependent on the reduction of the DPPH to a more stable form (DPPH-H) 

by the antioxidants (Shon et al., 2003).  The AC extract once again exhibited a higher radical 

scavenging power (60% DPPH scavenging) compared to the AR extract (28% DPPH 

scavenging, Figure 3.8). However, this time the % radical scavenging ability was found to be 

lowest for the Mp fucoidan. The following order was observed with the radical scavenging 

ability: AC>AR>Up>Fv>Mp.  

 

 
 

 

*p< 0.05 

Figure 3.8 The DPPH radical scavenging power of the S. incisifolium aqueous extracts (AC and 

AR), and fucoidans from F. vesiculosus (Fv), M. pyrifera (Mp) and U. pinnatifida (Up). 

 

3.3.1. Synthesis of nanoparticles 

3.3.1.1. Synthesis of AgNPs using S. incisifolium aqueous extracts and sodium borohydride 

The synthesis of AgNPs using sodium borohydride as reducing agent was used as a control 

reaction at room temperature. The formation of nanoparticles was very quick with colour change 
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appearing with immediate contact of silver nitrate and sodium borohydride. The colour changed 

gradually from colourless to dark yelleow within three minutes which is an estimated time of the 

complete reaction. The solution was subjected to UV-Vis analysis immediately after reaction 

(Figure 3.9). 

   

The synthesis of AgNPs was initially investigated using the liquid extract of S. incisifolium (L-

AC).  A standard literature protocol was followed in which 10 mL of aqueous seaweed extract 

was added to 90 mL of a 1 mM solution of silver nitrate solution (Vivek et al. (2011). 

Unfortunately, the dark colour of this extract made visual inspection of the progress of the 

reaction very difficult.  However, confirmation of the presence of AgNPs in the solution was 

easily obtained by the presence of a UV-Vis absorption band at 405 nm. This is due to the SPR 

band attributed to AgNPs (Song & Kim, 2009).  The spectrum of the solution was measured after 

18 hours and is shown in Figures 3.10.  The reaction progresses rapidly at room temperature and 

is complete in 18 h. 

  

 

Figure 3.9 UV-Vis absorbance spectrum of SB-AgNP and the colour of the solution in water. 
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Figure 3.10 UV-Vis absorbance spectrum of L-AC-AgNP from time 0 to 90 minutes in water. 

 

Although the reaction with the L-AC extract proceeded smoothly we were concerned about the 

potential variability in the amount of organic component extracted from the seaweed and thus 

added to the reaction mixture.  We therefore freeze-dried the S. incisifolium aqueous extracts and 

after several trials developed an optimised method in which 2 mg of crude extract is taken up in 

10 mL of water to which 500 µl of 0.1 M sodium nitrate was added.  These reactions also 

proceeded at room temperature and at a rate comparable that of the liquid extracts (Figures 3.11 

A & B). The formation of nanoparticles was found to occur within 30 minutes.  The speed of the 

reaction appeared to slow down after 120 minutes in both reactions but was allowed to proceed 

for a further 18 hours to ensure completion. The plateau was observed whereby the absorbance 

seemed to level off (Figure 3.12). 
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Figure 3.11 UV-Vis absorption spectra of a) the AC-AgNPs and b) the AR-AgNPs from time 0 

to 18 hours. Inset: Photograph of the colour of the solution after 18 hours (in water). 
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Figure 3.12 Change in absorbance with time during AC-AgNP and AR-AgNP formation as 

observed at the  max at 413 nm and 433 nm, respectively (in water). 

 

The aqueous extract of S. incisifolium effectively reduces silver nitrate solutions to AgNPs at 

room temperature and pressure conditions and eliminates any other additional steps as seen in 

intracellular green synthesis of nanoparticles (Shankar et al., 2004). Additionally, the only 

solvent used is water which is non-toxic and safe to use too. No ancillary chemicals are used in 

the synthesis of these NPs.  

 

3.3.1.2. Synthesis of AgNPs using commercially available fucoidans 

Fucoidans are fucose rich polysaccharides which are usually isolated from brown seaweeds. 

They are sulfonated and it is these sulfur groups that make fucoidans good capping agents for 

nanoparticles synthesis. As outlined in section 3.2.3 (b), the synthesis of AgNPs was also carried 

out using pure fucoidans from F. vesiculosus, M. pyrifera and U. pynatifida to determine if these 

compounds are indeed responsible for the formation of the NPs. The optimized reaction 

conditions required 10 mg of fucoidan in 10 ml of water to which 500 µl of silver nitrate solution 

(0.1 M) is added.  Firstly, the synthesis of silver nanoparticles using fucoidans as reducing and 

capping agents was carried out at room temperature (25 ºC) for 18 hours, as shown in the UV-

Vis spectra in Figures 3.13 to 3.15. As can be observed in the spectra, nanoparticle formation 

was not detected under room temperature conditions, suggesting that the pure fucoidans are not 
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responsible for the reduction of the silver ions at room temperature to form the AgNPs. 

Increasing the reaction temperature to 100 C resulted in the formation of some AgNPs by these 

fucoidans.  To determine if the fucoidans could play a role in the reduction of silver ions to form 

nanoparticles, the same reaction was carried out at 100 ºC.  The time taken for the AgNP to form 

was found to vary from 15 minutes to 1 hour. F. vesiculosus showed a greater potential for 

AgNP formation, followed by M. pyrifera; with U. pynatifida being the slowest as observed by 

the change in colour of the solutions and the UV-Vis spectra (Figures 3.13 to 3.15).  The reaction 

using the Up fucoidan was allowed to proceed for 1 hour. However, there was little or no change 

in colour suggesting that the pure fucoidan from U. pynatifida is not a good reducing agent. 

Higher temperatures could prove to yield AgNPs, however this was beyond the scope of this 

project due to time constraints. As mentioned in the previous section, the change in colour occurs 

due to the appearance of the SPR band with AgNP formation. The formation of the nanoparticles 

was faster in the reaction solution containing F. vesiculosus. The colour changed to dark yellow 

within 5 minutes and the reaction was allowed to take place for 15 minutes. The formation of 

nanoparticles in solution containing M. pyrifera was slower, with the colour change appearing 

after 10 minutes confirming the formation of AgNPs.  

 

 

Figure 3.13 UV-Vis absorption spectrum of Fv-AgNP after 18 hours of stirring at room 

temperature in water. 
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Figure 3.14 UV-Vis absorption spectrum of Mp-AgNP after 18 hours of stirring at room 

temperature in water. 

 

The concentration of the NPs for the Fv- reaction solution was higher than that of the Mp 

reaction solution with little or no nanoparticle formation with the Up fucoidan solution (Figures 

3.13 to 3.15). For this reason, U. pynatifida was not pursued further. 

 

 

Figure 3.15 UV-Vis absorption spectrum of Up-AgNP after 18 hours of stirring at room 

temperature in water. 
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3.3.1.3 Summary of AgNP synthesis 

Given the results obtained, it can be concluded that certain fucoidans have the capability of 

reducing silver ions to form AgNPs at higher temperatures. Since our original aim of this study 

was to synthesise AgNP using green methodologies, it could be argued that using fucoidans did 

not follow the „green‟ method of nanoparticle synthesis since high temperatures were needed. An 

additional objective was to evaluate the major metabolites involved in the reduction of silver ions 

to form nanoparticles. Though fucoidans may be involved in the formation of nanoparticles at 

room temperature, additional metabolites are obviously at play with regards to the aqueous 

extracts of the brown alga.  Based on our results it appears that fucoidans do not accomplish this 

purpose alone and require the assistance of other compounds. It is likely that the increased 

temperatures may break down the fucoidans into reducing sugars capable producing AgNPs.  

Fucoidans might still be involved in the capping of nanoparticles, even though other metabolites 

are obviously responsible for reduction of ions to form nanoparticles at room temperature. The 

synthesis of AgNPs using crude extracts obtained from S. incisifolium exhibited exceptional 

reducing qualities of silver ions at room temperature and pressure conditions. 

 

3.3.2. Synthesis of gold nanoparticles 

3.3.2.1 Synthesis of AuNPs from S. incisifolium aqueous extracts and sodium citrate 

Gold nanoparticles (AuNPs) were also synthesised initially as a control in this study since the 

SPR band of AuNPs (at ~530 nm) is much easier to visualise than the AgNP SPR band.  Like the 

AgNPs synthesised previously, gold nanoparticles were synthesised using the AC and AR 

extracts as described in section 3.2.4. The formation of AuNPs was easily observed by the 

change of colour from yellow to dark purple (Figure3.16 A & B). The plateau was observed 

whereby the absorbance seemed to level off (Figure 3.17). 
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Figure 3.16 UV-Vis absorption spectra of a) AC-AuNPs and b) AR-AuNPs formed after 5 hours 

at room temperature (in water). Inset: Photograph of the colour of the solution after 5 hours. 
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Figure 3.17 Change in absorbance with time during the syntheses of both the AC-AuNPs and 

AR-AuNPs at the  max 545 and 544 nm respectively (spectra taken in water).  

 

The synthesis of sodium citrate  capped AuNPs (SC-AuNPs) were only successfully synthesised 

at high temperatures (90 ºC) and the formation of nanoparticles was only apparent after 5 

minutes (Figure 3.18). The formation of L-AC-AuNPs was fast, with the appearance of the 

characteristic purple colour attributed to AuNPs appearing within 5 minutes (UV-Vis spectra in 

Supplementary information, Figure S3.9b). The difference between this method and that 

employed for the SC-capped AuNPs is that these L-AC-AuNPs were synthesised at room 

temperature. Moreover, it appears that the concentration of the nanoparticles formed in AC- 

extract is higher than that observed for the SC-AuNPs (based on the absorbance at 525 nm in the 

UV-Vis spectra).  
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Figure 3.18 UV-Vis absorption spectrum of SC-AuNP after 10 minutes in water.  

Inset: Photo of the colour of the solution after 10 minutes. 

 

An interesting difference in reaction rates was observed for the AC and AR extracts (Figure 

3.16). The formation of nanoparticles appeared only after 20 minutes of reaction for the AC 

extract (Figure 3.16), while the AuNPs were only formed after 50 minutes for the AR extract 

(Figure 3.16). The measurements were taken every 5 minutes. The rate of NP formation was 

observed to slow down after 35 minutes in the AC extract and after 90 minutes in AR extract 

implying that the reaction was approaching completion.  

 

In conclusion, as was expected, the AC extract was found to be highly efficient at reducing the 

gold metal salt as found previously for the silver salt. The synthesis of the nanoparticles using 

this route is faster than using aqueous extract from seaweed that was not previously extracted 

with organic solvents as performed by Vivek and colleagues (2011). 

 

3.3.2.2. Synthesis of AuNPs from commercially available fucoidans 

The pure fucoidans which were used in the synthesis of AgNPs were also used to synthesise gold 

nanoparticles at room temperature. However, no AuNPs were observed to form at room 

temperature (as indicated by the lack of colour change from yellow to purple). The reactions 

were thus allowed to proceed for an hour at 100 ºC in order to observe any changes that can take 
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place at elevated temperatures. As can be seen in Figures 3.19 to 3.21, all three fucoidans used in 

this study were not capable of reducing the gold ions to gold nanoparticles. This, however, shows 

that our initial hypothesis for this study was wrong. As we believed that the fucoidans may play a 

major role in the reduction of the gold ions to form nanoparticles. This is not true for gold 

nanoparticles; even at high temperatures (100 ºC). However, even though the fucoidans could not 

reduce the gold ions to form nanoparticles per se, it appears that the aqueous extract which 

contains the fucoidans, in concert with other metabolites in the seaweed extract, were indeed 

capable of producing AuNPs efficiently at room temperature and pressure conditions. Further 

attempts could be exercised where even higher temperatures could be used for the synthesis of 

gold nanoparticles with pure fucoidans, but this would be out of the scope of this study which 

focused on the green synthesis of nanoparticles at ambient temperature.  

 

 

Figure 3.19 UV-Vis absorption spectrum of Fv-gold after 1 hour in water.  

Inset: Photo of the colour of the solution after 1 hour. 
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Figure 3.20 UV-Vis absorption spectrum of Mp-gold after 1 hour in water.  

Inset: Photo of the colour of the solution after 1 hour. 

 

 

Figure 3.21 UV-Vis absorption spectrum of UP-gold after 1 hour in water.  

Inset: Photo of the colour of the solution after 1 hour. 

 

Although we have shown that none of the fucoidans used could reduce the gold ions to AuNPs, it 

is, however, contrary to the results obtained by Soisuwan et al. (2010) who were able to 

synthesise gold nanoparticles with pure fucoidans at room temperature and at 80 ºC. The 
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Cladosiphon okamuranus and kjellamaniella crassifolia. While it might be true that fucoidans 

from F. vesiculosus, M. pyrifera and U. pinatifida do not reduce metal ions to nanoparticles at 

room temperature, not all pure fucoidans are incapable of reducing metal ions into nanoparticles 

at room temperature (Soisuwan et al., 2010).  

 

3.3.3 Characterization of synthesised nanoparticles by TEM 

3.3.3.1. Silver nanoparticles 

The results obtained from TEM (with size distribution presented on graphs alongside each TEM 

micrograph) and EDX analyses are given in Figures 3.22-27 (and Supplementary information, 

Figures S3.1-7).  As can be observed, spherically shaped nanoparticles dominate for the AgNPs 

in particular. Since different reducing agents were used for the synthesis of AgNPs, the 

nanoparticles are as expected different both in size and shape. AgNPs were also synthesised 

using a traditional reducing agent, sodium borohydride. TEM images revealed the morphology 

and shape of these nanoparticles to be spherical with an average size of 13.90 ± 9.56 nm (Figure 

3.23 & Table 3.2).  

 

For better comparison, silver nanoparticles synthesised from L-AC and L-AR extracts were 

included in this section. Silver nanoparticles synthesised from L-AC extracts are oval in shape 

and highly aggregated (Figure 3.24), whereas those synthesised from L-AR extract are spherical 

(Figure 3.25). Moreover, the mean size of L-AC-AgNPs, for example, as determined from the 

TEM data is 13.96 ± 5.27 nm (Table 3.2). Again, the AgNPs synthesised from AC and AR 

extracts are different in terms of both the shape and size (Figure 3.26). With AR-AgNPs, the 

nanoparticles appear to be larger in size. The AgNPs synthesised from the AC extracts are not 

closely spaced which may be due to some form of electrostatic repulsion brought about by the 

seaweed metabolites (Tengdelius et al., 2015). The AgNPs formed from the AC extracts are 

predominantly spherical and polydisperse, while the AgNPs formed from the AR extracts are 

polydisperse and unusually shaped, clearly displaying some grooves in the NPs which were 

likely formed during growth of the NP. Interestingly, sizes of AgNPs from these extracts (AC 

and AR) were almost the same (Table 3.2). Furthermore, smaller nanoparticles were imaged for 

the AR extract (3.36 – 50.99nm), while slightly bigger nanoparticles were found for the AC 

extracts (6.67 – 53.08). Though from the same brown, marine seaweed, S. incisifolium, the AR 
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and AC extracts clearly have different properties which offer different degrees of stability and 

effect on size to the nanoparticles synthesised.  

 

Only two of the pure fucoidans could reduce silver ions to produce AgNPs – then again only at 

high temperatures. The two fucoidans resulted in differently sized nanoparticles. TEM images 

were recorded for the AgNPs synthesised from the pure fucoidans obtained from different brown 

seaweeds (Figures 3.26-3.27). The nanoparticles obtained from the reaction were spherical in 

shape. However, as shown on Figures 3.26-27 and Table 3.2, the Fv-AgNPs are smaller than 

Mp-AgNPs (8.69 ± 3.85 and 20.03 ± 10.97 nm, respectively). The nanoparticles obtained from 

these fucoidans were not observed to be aggregated. The fucoidan is thought to bind to several 

nanoparticles if its structure is highly branched, especially if there are sulfonated functional 

groups on these side chains which are likely to result in bigger, agglomerated nanoparticles 

(Soisuwan et al., 2010). Sulfur is known to be the site for nanoparticle formation. Therefore, the 

position and the amount of sulfur group can possibly influence the size and agglomeration state 

of the nanoparticles. The size of nanoparticles is expected to be large if the fucoidan is highly 

branched with sulfonated groups in its branches (Soisuwan et al., 2010).   

 

Table 3.2 Mean AgNP sizes as determined by TEM, XRD and DLS 

Nanoparticle type TEM Size (nm) XRD Size 

(nm) 

DLS Size (nm)** 

Mean size Range dH PdI 

SB-AgNP 13.90 ± 9.56 2.04 – 29.72 25.71 83.65 0.320 

AC-AgNP 22.44 ± 11.85 6.67 – 53.08 7.29 82.56 0.264 

AR-AgNP 22.94 ± 8.41 3.36 – 50.99 9.54 76.29 0.568 

Mp-AgNP 20.03 ± 10.97 1.65 – 46.31 15.28 316.3 0.515 

Fv-AgNP 8.69 ± 3.85 2.35 – 20.44 -* 126.6 0.326 

L-AC-AgNP 13.97 ± 5.72 1.60 – 25.78 7.53 33.41 0.397 

L-AR-AgNP 12.52 ± 5.89 3.51 – 19.18 7.41 209.0 0.554 

*Sample quantities obtained were too small for XRD analyses 

** This is discussed in Section 3.3.5. 
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Figure 3.22 Representative EDX graph of SB-AgNP. The peaks due to Ag is detected at 3 keV. 

 

 

Figure 3.23 TEM image and NP size distribution obtained for SB-AgNP. 
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Figure 3.24 TEM image and NP size distribution obtained for L-AC-AgNP. 

 

Figure 3.25 TEM image and NP size distribution obtained for L-AR-AgNP. 
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Figure 3.26 TEM images and NP size distributions obtained for a) AC-AgNPs, b) AR-AgNPs 

and c) Fv-AgNPs. 

 

0
1
2
3
4
5
6
7

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

M
o

re

Fr
e

q
u

e
n

cy
 

Size distribution (nm) 

0

5

10

15

20

25

0 10 20 30 40 50 60

Fr
e

q
u

e
n

cy
 

Size distribution (nm) 

0

5

10

15

20

25

30

0 5 10 15 20 25 More

Fr
e

q
u

e
n

cy
 

Size distribution (nm) 

A) 

B) 

C) 

 

 

 

 



56 
 

 

Figure 3.27 TEM image and NP size distribution obtained for Mp-AgNP. 

 

Table 3.3 Zeta potential of silver nanoparticles determined by the Zetasizer 

Nanoparticle type Zeta potential (mV)* 

SB-AgNP -26.4 ± 17.8 

L-AC-AgNP -27.8 ± 8.91 

L-AR-AgNP -35.9 ± 9.67 

AC-AgNP -35.0 ± 4.95 

AR-AgNP -40.0 ± 7.62 

Mp-AgNP -32.9 ± 3.95 

Fv-AgNP -44.1 ± 11.0 

*Data are vaule of triplicate determinations ± standard deviation 

 

3.3.3.2. Gold nanoparticles 

Gold nanoparticles were also characterised by TEM and EDX (Figures 3.28-32 and 

Supplementary Information Figures S3.8-12). The shape of the sodium citrate synthesised AuNP 

was found to be spherical as revealed by the TEM image (Figure 3.29) with the size of the SC-

AuNPs ranging from 3.00-21.38 nm, and a mean size of 12.38 ± 0.94 nm (Table 3.4). The 

AuNPs synthesised from the L-AC extract were found to be polydisperse (Figure 3.30). 

Furthermore, as observed in Figure 3.30, there is a transparent layer of material around the 

nanoparticles which might be attributable to the plant extract which is functioning as a capping 

agent. Contrary to the NPs produced by the L-AC, the L-AR-AuNP sample was found to be 
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polydisperse, but with some NPs possessing a hexagonal shape with some spherical 

nanoparticles too (Figure 3.31). The size of L-AR-AuNPs was thus found to be bigger than that 

of L-AC-AuNPs as given in Table 3.4. The same trend is observed for the AuNPs synthesised 

from the AC and AR extracts (Figure 3.32 A & B), with the latter sample showing even larger 

nanoparticles as opposed to its counterpart. Another intriguing observation is the presence of 

triangular and hexagonal shaped AuNPs which were produced with the D-AR extract. Thus it is 

possible to produce differently shaped nanoparticles by using the freeze-dried aqueous extract of 

S. incisifolium.  

 

TEM results revealed the morphology and size of nanoparticles formed. Though the layer of 

biomolecules from the seaweed is not observable in TEM images, it is interesting to note that the 

NPs in most of the TEM pictures are not aggregated. The reason for this may be due to the fact 

that the extract (which is known to contain polysaccharides and polyphenols) is capping the 

nanoparticles and provides the electrostatic repulsion between the nanoparticles needed to keep 

them apart from each other (Tengdelius et al., 2015). In contrast, other TEM images obtained for 

the AgNPs showed that the nanoparticles are aggregated. To the best of the author‟s knowledge, 

no pure fucoidan has been isolated from S. incisifolium and therefore its structure is unknown. 

However, as per literature, brown seaweeds possess fucose rich polysaccharides which are 

different in structure and chemical composition (Li et al., 2008; Sellimi et al., 2014; Soisuwan et 

al., 2010). It is unknown if fucoidan from S. incisifoliun is a highly branched or a simple 

branched polysaccharide. However, since it is believed that fucoidans play a role in the capping 

of nanoparticles, which imparts stability to the NP (Asmathunisha & Kathiresan, 2013), and 

based on TEM results obtained, it could be surmised that the fucoidan from S. incisifolium might 

be branched with sulfursulphonate groups on its side chains.  Also it has to be noted that 

different metabolites are involved in the bioreduction of the metal ions to form nanoparticles 

before capping could take place. The size of nanoparticles from both the AC and AR extracts 

(and similarly the AC and AR extracts) are different, with the AR extract resulting in bigger 

nanoparticles compared to the AC extract. The different sizes and shapes of nanoparticles 

synthesised biologically are not uncommon (Shanker et al., 2003). Also, in other samples, the 

shapes of nanoparticles were irregular due to the different phases of nanoparticle formation 

(Rajathi et al., 2012). The rate for the formation of nanoparticles revealed that the reaction was 
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quicker in AC solution than it was in AR solution. Therefore, as bioreduction took place in AC 

reaction, the capping agent was immediately available to cap the nanoparticles and stabilize 

them. The slow reaction rate in AR may have resulted in many nanoparticles aggregating before 

capping could take place, subsequently producing large nanoparticles.  

 

 

Figure 3.28 Representative EDX graph of the D-AR-AuNP synthesised.  

 

Figure 3.29 TEM image and NP size distribution obtained for SC-AuNP. 
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Figure 3.30 TEM image and NP size distribution obtained for L-AC-AuNP. 

 

 

Figure 3.31 TEM image and NP size distribution obtained for L-AR-AuNP. 
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Figure 3.32 TEM images and NP size distributions obtained for a) AC-AuNPs and b) AR-

AuNPs. 

 

3.3.4. Characterization of synthesised nanoparticles by EDX 

Elemental analysis of the nanoparticles was determined with energy dispersive x-ray 

spectroscopy (EDX) which is part of the TEM instrument. Elemental Ag and Au were detected 

in all samples as expected and are shown in Figures S3.1-3.12 of Supplementary information. 

Figures 3.22 & 3.28 serve as representative EDX graphs obtained for AgNP and AuNP 

respectively. There are, however, traces of other elements which may or may not be impurities. 

These elements include copper, nickel, chlorine and oxygen. Copper and nickel are the result of 

using the holey carbon coated copper/nickel grids which are used to support the samples. 

Oxygen and chlorine may be due to the starting materials AgNO3 and HAuCl4.3H2O, 

respectively or due to sea salt (NaCl and KCl) which may still be present in the seaweed extract. 

Also, oxygen is easily adsorbed onto sample surfaces, resulting in some detection. So it is 
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possible that some of the elements from these precursors were still present in the solutions when 

taken for EDX analyses.  

 

3.3.5. Characterization of synthesised nanoparticles by DLS and the Zetasizer 

The size of nanoparticles was also determined by Dynamic Light Scattering (DLS) using the 

Zetasizer and the data is shown in Table 3.1 & 3.3. Compared to the sizes of nanoparticles 

determined by TEM, the sizes determined by DLS for the nanoparticles determined are much 

larger because DLS determines the hydrodynamic (dH) radius of the nanoparticles (Kato et al., 

2009). Also, the polydispersity index (PdI) of nanoparticles was determined through the use of 

the Zetasizer. A PdI index of less than 0.1 represents monodisperse NPs, while a PdI index of 

between 0.1 but less than 0.2 indicates a narrow size distribution, and a PdI index between 0.2 

but less than 0.5 indicates a broad size distribution for the sample. From the results obtained, the 

nanoparticles all had a broad size distribution with a PdI index ranging from 0.264 to 0.568, 

except for SC-AuNP which had narrow size distribution, i.e. a PdI index of 0.158. This can also 

be confirmed with the nanoparticle size distribution determined from TEM results, Figures 3.23-

27 & Figures 3.29-32.  

Table 3.4 Mean AuNP sizes as determined by TEM, XRD and DLS 

Nanoparticle 

type 

TEM Size (nm) XRD Size (nm) DLS Size (nm)** 

Mean size** Range dH PdI 

SC-AuNP 12.38 ± 0.94 3.00 – 21.38 10.96 37.46 0.158 

AC-AuNP 5.35 ± 3.13 2.17 – 16.38 22.39 89.62 0.551 

AR-AuNP 66.13 ± 58.30 7.91 – 268.67 40.12 92.85 0.512 

L-AC-AuNP 15.83 ± 8.81 2.96 – 47. 76 5.64 22.14 0.348 

L-AR-AuNP 17.87 ± 6.53 6.98 – 24.19 22.52 37.59 0.464 

**This is discussed in Section 3.3.5 

The zeta potential of nanoparticles was also determined by the Zetasizer, Tables 3.3 & 3.5 for 

AgNPs and AuNPs respectively. From the data listed in Table 3.3 & 3.5, it is clear that all the 

nanoparticles have a negative potential charge on the surface. The nanoparticles synthesised 

from D-AC and D-AR extracts exhibited the largest negative charge (with the latter having the 

largest negative charge at -40.0 mV) when compared to the other nanoparticles synthesised using 
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the aqueous extracts. Upon comparison to the fucoidans, the Fv-AgNP sample exhibited the 

largest charge at -44.1 mV. However, it should be noted that sodium citrate capped AuNPs 

exhibited the largest negative charge of all, implying that these NPs were the most stable 

(Koteswari et. al., 2011). The AgNP synthesised with NaBH4 did not show a high zeta potential 

(Table 3.3). However, all the nanoparticles synthesised had a zeta potential within the cut-off 

range. The stability of nanoparticles is correlated to zeta potential values which are greater than 

+30 mV or lower than -30 mV (Koteswari et. al., 2011). The zeta potential of the nanoparticles 

synthesised was in the range of -27.8 to -44.1 mV for the AgNPs synthesised with seaweed 

extract and pure fucoidans; excluding SB-AgNPs. For the AuNPs synthesised with seaweed 

extracts, the zeta potential was within the range -16.0 to -39.3 mV. From this, it is evident that 

most of the nanoparticles were stable. 

 

Table 3.5 Zeta potential data of the gold nanoparticles determined with the Zetasizer 

Nanoparticle type Zeta potential (mV)* 

SC-AuNP -56.3 ± 13.9 

L-AC-AuNP -16.0 ± 6.29 

L-AR-AuNP -26.8 ± 11.0 

AC-AuNP -39.3 ± 13.5 

AR-AuNP -39.3 ± 14.8 

*Data value of triplicate determination ± standard deviation 

 

3.3.6. Characterization of synthesised nanoparticles by FT-IR spectroscopy 

FTIR spectroscopy was used to identify the characteristic peaks associated with the metabolites 

present in aqueous extract of S. incisifolium as well as the pure fucoidans involved in capping of 

nanoparticles. The IR spectra of nanoparticles synthesised are compared with the IR spectra of 

the reducing agents/metabolites.  

 

From figure 3.33, it can be observed that the C-O-C group was detected in all the samples at 

around 800 cm
-1 

(Schulz & Baranska, 2007) although with some slight shifts. Furthermore, 

similarities were observed between AR-AgNP and Mp-AgNP at 1028 cm
-1

 and 1025 cm
-1

 which 
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may both show the C-N group of aliphatic amines (Kannan et al., 2013). C-OH of 

polysaccharide was also detected at 1041 cm
-1

 in AC-AgNP (Philip, 2009). The peaks at 1296 

cm
-1

 and 1292 cm
-1

 in AC-AgNP and AR-AgNP respectively represent the C-N group in 

peptides (Schulz & Baranska, 2007). The IR spectra of all the samples had the peak at around 

3200-3300 cm
-1

 which may indicate OH group (Princy & Gopinath, 2013). 

 

 

Figure 3.33 FT-IR spectrum obtained for AgNP synthesised from different reducing agents. 

 

The FT-IR spectra shown in Figure 3.34 serves as a representative spectrum for the IR spectra 

obtained for AuNPs. The C-O-C group which is characteristic of monosaccharides was detected 

at 800 cm
-1

 in AC-AuNP (Schulz & Baranska, 2007). AC-AuNP also had a peak at 1040 cm
-1

 

which is indicative of C-OH group in polysaccharides (Philip, 2009). Amide II bond was 

detected at 1595 cm
-1

 (Princy & Gopinath, 2013). The peak at 999 cm
-1

 in AR-AuNP signals the 

presence of C-O-C group (Philip, 2009). The carbonyls of ketones, aldehydes and esters were 

detected at 1620 cm
-1

 in AR-AuNP. Both AC-AuNP and AR-AuNP had peak at around 3200-

3300 cm
-1

 which may represent the presence of OH group (Princy & Gopinath, 2013). 

4000 3700 3400 3100 2800 2500 2200 1900 1600 1300 1000 700

FTIR Spectra of AgNP 

Mp-AgNP

Fv-AgNP

AR-AgNP

AC-AgNP

801.44 1041.85 1296.08 3206.34 

807.95 
1028.11 

1292.41 
3266.86 

814.11 
1016.35 

1309.24 

3369.49 

816.91 

1025.84 1319.87 

3283.20 

 

 

 

 



64 
 

 

Figure 3.34 FT-IR spectra of AuNP synthesised from different reducing agents. 

 

3.3.7. Characterization of synthesised nanoparticles by XRD 

The nanoparticles synthesised using different reducing reagents were also characterized by 

powder XRD. The X-ray diffractograms for the AgNPs are shown in Figure 3.35. From this 

figure it is clear that Ag is not the only component present – there are additional peaks. Some 

additional peaks may be attributed to sea salt which is present in the seaweed. The XRD peaks at 

2θ degrees can be attributed to the (111), (200), (220), and (311) crystalline planes of the face-

centered-cubic (fcc) crystalline structure of metallic silver, respectively (JCPDS file no. 00-004-

0783). The individual reflections are labelled in the X-ray diffractograms of each sample. 
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Figure 3.35 X-ray diffractograms obtained for the AgNPs synthesised using a) sodium 

borohydride, b) AC extracts, c) AR extracts, d) Mp fucoidan and e) Fv fucoidans. 

 

Similarly, the AuNPs synthesised using different reducing agents were also characterised by 

powder XRD as shown in Figures 3.36. The X-ray diffractograms obtained for the AuNPs were 

all clean and the reflections clearly observed. The peaks at 2θ degrees can be attributed to the 

(111), (200), (220), and (311) crystalline planes of the face-centered-cubic (fcc) crystalline 

structure of metallic gold, respectively (JCPDS file no. 00-004-0784). From the X-ray 

diffractograms shown it is obvious that the intensity of the (111) diffraction peak is greater than 

the others and as such these were the peaks that were used to calculate the NP sizes using the 

Debye-Scherrer equation (2.2). The (111) facets dominate the X-ray diffractograms of 

nanoparticles synthesised (Liu et. al., 2005). Therefore, calculations of crystalline size of 

nanoparticles was done using the (111) facet to determine whether the dater from XRD compares 

fairly with that of TEM. From the results presented in Tables 3.1 and 3.3, the XRD does not fit in 

TEM range. This could be due to the fact that the XRD measures the crystalline structure of the 

nanoparticle, not the whole nanparticle resulting in smaller sizes compared to those obtained 

from TEM. It is important to note that the Debye-Scherrer equation (2.2) should only be applied 

to spherical nanoparticles that are smaller than 100 nm, thus the size determined by XRD for the 

AR-AuNP sample is useful. 
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Figure 3.36 X-ray diffractograms obtained for the AuNPs synthesised using a) sodium citrate, b) 

AC extracts and c) AR extracts. 

 

3.4. CONCLUSION 

A green method of synthesis for Au and Ag nanoparticles was achieved in this study using 

different reducing agents. For example, nanoparticles that were synthesised using the AC 

extracts were found to produce higher concentrations of nanoparticles compared to the AR 

extract under the same conditions. Moreover, the rate of nanoparticle formation was faster with 

the AC extract compared to the AR extract. FT-IR spectroscopy confirmed the presence of the 

extract metabolites on the surface of the NPs. Clear differences were observed for the AgNPs 

synthesised compared to the extract alone. However, the AuNP samples did not show such 

distinct differences. The formation of the nanoparticles using NaBH4 and sodium citrate for the 

Ag and AuNPs respectively was fast compared to biological method of synthesis, especially for 

the AgNPs. The reaction was complete after the addition of AgNO3 to NaBH4 whereas the 

reaction seemed to take longer than 18 hours when seaweed extract was used. However, in case 

of AuNP syntheses, the biological synthetic method can permanently replace the chemical 

synthesis since it is as fast and does not require high temperatures, thus the biological method is 
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more energy efficient. Moreover, the concentration of nanoparticles formed in the latter method 

is greater than that of chemically synthesised AuNPs. 

 

Although fucoidans are thought to play role in capping of nanoparticles, based on the results 

obtained in this study, it could be said that fucoidans are not likely able to reduce the metal ions 

to form nanoparticles at room temperature.  

 

From antioxidant activity results, it is conclusive that S. incisifolium has high antioxidant 

activity, even though we only compared two differently extracted aqueous extracts. The lower 

total phenolic content, reducing power and radical scavenging power of pure fucoidans assessed 

in this study may explain why the pure fucoidans were not able to reduce Ag
+
 and Au

+ 
to form 

nanoparticles at room temperature. This further confirms that fucoidans per se, do not contribute 

in the formation of nanoparticles as evidenced by the results obtained from total reducing power. 

The size of the nanoparticles was determined using different techniques and the results differ. 

However, this could be explained by the technique itself and the drawbacks associated with it. 

For example, the sizes determined by DLS were found to be bigger than the sizes determined by 

TEM as these are hydrodynamic diameters. The DLS size determination will take into account 

the capping agent of the NP, whereas in TEM carbon based materials are transparent to the 

electron beam. The sizes determined by XRD were found to be smaller than the sizes of the 

nanoparticles determined by TEM. This may be due to the fact that the size determination given 

by XRD will be an average of the whole sample, while TEM is focussed on a small area of a 

sample.  Factors such as hydration of nanoparticles, dry state of nanoparticles and crystallinity 

may have had effect on different sizes of nanoparticles determined from the technigues 

employed. 

 

Lastly, it seems that different methods of extractions have an impact of the characteristics of 

nanoparticles synthesised. These include the size, shape and crystallinity. The sizes of 

nanoparticles were found to be big when AR is used as a reducing agent ad small when AC is 

used as a reducing agent. Furthermore, the speed of reaction differs between different reducing 

agents with AC being the fastest among other reducing agents at room temperature.  
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CHAPTER 4 

4. ANTIMICROBIAL ACTIVITY AND CYTOTOXICITY OF SYNTHESISED 

SILVER AND GOLD NANOPARTICLES 

 

4.1. INTRODUCTION 

In this chapter we evaluated the antimicrobial and cytotoxic activities of the synthesised 

nanoparticles.  Antimicrobial studies were done by the author in the laboratory of Dr Marilize le 

Roes-Hill at the Cape Peninsula University of Technology (CPUT).  For the antimicrobial 

studies five drug resistant strains were selected.  These included two gram positive strains, 

Enterococcus faecalis and Staphylococcus aureus, two gram negative strains, Acinetobacter 

baumannii and Klebsiella pneumoniae subsp. pneumoniae, and a yeast, Candida albicans.  

 

All five microorganism strains included in this study are biomedically important and exhibit 

resistance to a number of current antibiotics.   Enterococcus faecalis and Staphylococcus aureus 

are two important bacteria responsible for a number of nosocomial infections.  E. faecalis is a 

gram-positive bacterium responsible for urinary tract infections, intra-abdominal, pelvic and soft 

tissue infections. This bacterium is found in intestines of many animals and insects, beach sand, 

fresh and marine water sediments, soil and aquatic and terrestrial plants (Higuita & Huycke, 

2014). Methicillin resistant S. aureus commonly colonizes the nasal passage and axillae. S. 

aureus induces illness and tissue damage in the host by the use of its virulence factors such as 

capsule, immunoglobulin binding protein A, which protect the bacteria from destruction by 

phagocytosis in the host (Baron, 1996). Acinetobacter baumannii is an opportunistic pathogen 

especially in immune-compromised individuals. This microorganism is responsible for 80% of 

all infections caused by species that belong to Acinetobacter (CDC, 2016). However A. 

baumannii rarely causes diseases outside health care settings even though it is resistant to many 

antibiotics that are commonly prescribed for patients.  Klebsiella pneumoniae subsp. 

Pneumoniae, also gram-negative bacteria, causes infections such as pneumonia, blood infections, 
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wound or surgical site infections and meningitis. This bacterium is commonly found in human 

intestines where it does not cause any damage. K. pneumoniae has developed antimicrobial drug 

resistant strains (CDC, 2016). Candida albicans is yeast causes  a fungal infection called 

candidiasis.  It is commonly found in skin and mucous membranes. However, they only cause 

infection when they overgrow (CDC, 2016). 

 

Silver nanoparticles have excellent antibacterial activity (Abbaszadegan et al., 2014; Zargar et 

al., 2011). Bacteria are usually unable to develop resistance to AgNPs because they can interact 

with a variety of targets in the microorganism. AgNPs interact specifically with proteins through 

thiol groups, cell membranes and cell walls (Zargar et al., 2011). Similarly, Park et al.. (2016) 

recently synthesised AuNP and AgNP with resveratrol for antimicrobial activity. The resultant 

AuNPs were reportedly active against a panel of microorganisms (gram-negative and gram-

positive bacteria). In their study, Hayden and colleagues showed that AuNP are capable of 

interacting with cell membranes of gram-positive and gram-negative bacteria, subsequently 

leading to the lysis of the bacterial cell (Hayden et al., 2012).   

 

Given the critical need for new antibiotics we screened our green synthesised silver and gold 

nanoparticles for activity against five microorganisms.  In order to adequately assess the 

potential of the synthesised nanoparticles as antimicrobials it is essential to also assess their 

cytotoxicity against human cells.  Thus, we also evaluated the cytotoxicity of our synthesised 

nanoparticles against a human colon adenocarcinoma cell line (HT-29) (Cacicedo et al., 2016), a 

human breast cancer cell line (MCF-7) (Nune et al., 2009) and a non-tumorigenic breast 

epithelial cell line (MCF-12A) (Vorster et al., 2012). 

 

4.2 MATERIALS AND METHODS 

4.2.1. Antimicrobial Assay 

The antimicrobial activity of the synthesised nanoparticles was evaluated by the agar well-

diffusion method (Dhand et al., 2016). 
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4.2.1.1. Nanoparticle sample preparation 

The nanoparticle reaction mixture was centrifuged at 10 000 rpm and the pellet collected and 

washed with milliQ water.  The pellet was then re-suspended in 3 ml of distilled water. The final 

concentrations of samples prepared are presented in Table 4.1. 

 

Table 4.1 Sample concentrations used for the antimicrobial and cytotoxicity assays 

 Sample code 

Sample concentration (Antimicrobial 

assay)* 

 

SB-AgNP 0.053 mM 

D-AC-AgNP 0.26 mM 

D-AR-AgNP 0.26 mM 

D-AC-AuNP 0.21 mM 

D-AR-AuNP 0.21 mM 

SC-AuNP 0.105 µM 

Fv-AgNP 0.26 mM 

Fv 0.0.075 mg/ml 

Mp-AgNP 0.26 mM 

Mp 0.075 mg/ml 

D-AC 0.015 mg/ml 

D-AR 0.015 mg/ml 

Amp 1 mg/ml 

Chl 1 mg/ml 

Van 1 mg/ml 

H2O 75 µL  
SB-AgNP = Silver nanoparticles synthesised using sodium borohydride, D-AC-AgNP =Silver nanoparticlessynthesised 

using freeze-dried aqueous extract with prior organic extraction, D-AR-AgNP = Silver nanoparticles synthesised from 

aqueous extract without prior organic extraction, D-AC-AuNP = Gold nanoparticles synthesised from freeze-dried aqueous 

extract with prior organic extraction, D-AR-AuNP = Gold nanoparticles synthesised from freeze aqueous extract without 

prior organic extraction, SC-AuNP =Gold nanoparticles synthesised from sodium cutrate, Fv-AgNP = Silver nanoparticles 

synthesised from pure fucoidan from Fucus vesiculosus, Fv = Pure fucoidan from Fucus vesiculosus, Mp-AgNP = Silver 

nanoparticles synthesised from pure fucoidan from Macrocystis pyrifera, Mp = pure fucoidan from Macrocystis pyrifera, D-

AC = Freeze-dried aqueous extract with prior organic extration, D-AR = Freeze-dried extract without prior organic 

extraction, Amp = Ampicillin,  Chl = Chloramphenicol, Van = Vancomycin 

*These values represent the expected theoretical concentrations of NPs, based on the amount used to synthesise NP. 
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4.2.1.2. Microorganisms and growth conditions 

Details of the microorganisms used in this study and their growth media are listed in Table 4.2.  

A. baumannii (ATCC BAA-1605), K. pneumoniae (ATCC 700603), E. faecalis (ATCC 51299), 

S. aureus (ATCC 33591) and C. albicans (ATCC 24433) were obtained from Dr Marilize le 

Roes-Hill, Cape Peninsula University of Technology (CPUT). 
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Table 4.2 Microorganisms used in this study and their growth media 

Microorganism Strain Description
2
 Media Reference 

Acinetobacter baumannii  ATCC BAA-1605 Gram negative, multiple 

drug resistant 

opportunistic pathogen, 

especially with immune-

compromised 

individuals; increased 

incidence as cause of 

nosocomial infections 
a 

Tryptic soy 

agar 

CDC, 2016 

Klebsiella pneumoniae 

subsp. pneumoniae  

ATCC 700603 Gram negative, Control 

for extended spectrum 

betalactamase 

production. Important 

causative agent of 

nosocomial infections
b
  

Nutrient agar CDC, 2016 

Enterococcus faecalis ATCC 51299 Gram positive, Cause of 

nosocomial infections 
c 

Brain heart 

infusion broth 

Huycke, 

2014 

Staphylococcus aureus 

subsp. aureus  

ATCC 33591 Gram positive, Comon 

cause of nosocomial 

infections, can cause 

range of illnesses 
d 

Nutrient agar Baron, 1996 

Candida albicans  ATCC 24433 Yeast, Reference strain 

for clinical and 

laboratory standards 

Institute (CLSI)- 

developed antifungal 

susceptibility testing 
e 

YM agar CDC,2016 

a Resistant to Ceftazidime, Gentamicin, Ticarcillin, Piperacillin, Aztreonam, Cefepime, Ciprofloxacin, Imipenem, and Meropemem. 

Sensitive to Amikacin and Tobramycin 
b Resistant to Ampicillin, Aztreonam, Cefoxitin, Cefpodoxime, Ceftazidime, Piperacillin, Ceftriaxone 

Sensitive to Amoxicillin-Clavulanate Cefepime, Ciprofloxacin, Impenem, Piperacillin-tazobactam, Inmethoprim-Sulfamethoxazole 
c Low level Vancomycin-resistant, VanB 

Resistant to Vancomycin 

Sensitive to teicoplanin  

                                            
2
 From ATCC product sheet 
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d Methicillin resistant, produces beta lactamase 
e Assay of amphotericin B. Fungizone, quality control, susceptibility testing  

 

4.2.1.3 Agar well diffusion assay 

The agar well-diffusion assay was carried out according to the method of Dhand et a. (2016). 

Each microorganism culture in liquid suspension (100 µl) was spread onto each agar plate 

depending on the media it grows in (Table 4.2). Four wells were created on each agar plate and 

75 µl (refer to Table 4.1 for concentrations of each sample) of each nanoparticle sample was 

added. Eight replicates, on two separate agar plates (4 replicates per plate), were prepared for 

each nanoparticle sample. The controls (1 mg/mL) used were vancomycin, ampicillin and 

chloramphenicol. The plates were then incubated at 37 ºC for 24 hours. The results were 

obtained by measuring the diameter of the clear zone (zone of inhibition) around the well. 

 

4.2.2. Cytotoxicity Assay 

4.2.2.1. Cell culture 

All the processes were performed under laminar flow hood. The detailed method is outlined in 

Apendix A. The cytotoxicity of the synthesised nanoparticles were evaluated by the author 

against two cancer and one non-cancer cell line in the laboratory of Professor Mervyn Meyer 

(University of the Western Cape).  The cell lines MCF-7, MCF-12a, and HT-29 were obtained 

from American Type Culture Collection (ATCC) and were grown as follows:  MCF-7 and HT-

20 cells were grown in Dulbecco‟s Modified Eagle‟s Media (DMEM) supplemented with 1% of 

penstrep (penicillin-streptomycin) and 10% foetal bovine serum (FBS). MCF-12a cells were 

grown in DMEM-F12 to which 1% penstrep and 10% foetal bovine serum were added. In 

addition to these supplements, 25 µL of hydrocortisone, 10 µL of  epidermal growth factor 

(EGF) and 80 µL of insulin were added to DMEM-F-12.  All three cell lines were grown under 

standard culture conditions (37 C, and 5% CO2). 

 

Cells were trypsinized when they were confluent (70-90%) after which they were counted on a 

Countess
TM

 cell counting chamber slide.  The number of live cells was used to calculate the 

volume of cells to be cultured in a 96 well plate. To each well, 100 µl of cells was added (1 x 10
5
 

live cells) and incubated for 24 hours at 37 ºC and 5% CO2.  
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4.2.2.2. Sample preparation 

Nanoparticles were centrifuged at 10 000 rpm and the pellet was collected and re-suspended in 3 

ml distilled water. From this solution, 500 µL was taken and diluted with 500 µL of media. 

Samples were added to the 96 well plate (100 µL) in triplicate, i.e., 100 µl in three wells for each 

concentration. 

 

4.2.2.3. MTT assay 

The cell viability test was done by using the MTT assay (Nune et al., 2009). The assay was 

performed in 96-well microtitre plates.  To each well, 100 µl of cells was added (1 x 10
5
 live 

cells) and incubated for 24 hours at 37 ºC and 5% CO2.  The media was discarded after 24 hours 

and the nanoparticles were added in triplicate. Cells and media were used as a control. The 96-

well microtitre plate was then incubated for 24 hours at 37 ºC, 5% CO2. The nanoparticles were 

removed from wells using a multi-channel micropipette after 24 hours and the cells were washed 

with PBS to ensure complete removal of nanoparticles that had not internalised.  

 MTT stock solution (5 mg/ml) 1 ml was mixed with 10 ml of media and 100 µL of the solution 

was then added to each well. The plate, covered in foil, was incubated for 4 hours at 37 ºC and 

5% CO2. After incubation, MTT was then discarded before 100 µl of DMSO (>99.5%) was 

added to each well and incubated again for 15 minutes until a purple colour appeared. The 

absorbance at 570 nm was read on a multi-plate reader (BMG Labtech). 

The percentage viability was calculated as follows: 

% viability = 
                 

             
                                   (4.1) 

 

4.2.2.4. Statistical analysis 

The cell viability study was done in triplicate. The results were presented as mean ± standard 

deviation. The p values were calculated on excel using the TTEST function. 
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4.3 RESULTS AND DISCUSSION  

This section focuses on the behaviour of the nanoparticles as they are tested against different 

microbes and cancer and non-cancer cells. The effectiveness of nanoparticles antimicrobial 

activity was determined by measuring the zone of inhibition, and percentage viability in the case 

of cancer and non-cancer cell lines used in this study. Results from both experiments 

(antimicrobial and cytotoxicity assay) are presented in the following sections. 

 

4.3.1. Antimicrobial assay 

The antimicrobial activities based on the well-diffusion test are shown in Figure 4.1. 

Interestingly, the crude aqueous extracts from S. incissifolium (AC and AR) as well as the 

fucoidans from F. vesiculosus (Fv) and M. pyrifera (Mp) showed no or negligible activity against 

the panel of microorganisms.  Similarly, the sodium borohydride synthesised nanoparticles (SB-

AgN) as well as the gold nanoparticles also showed no or negligible antimicrobial activity.  The 

most potent activity was exhibited by the nanoparticles synthesised from the aqueous extract of 

S. incissifolium (AC-AgNP and AR-AgNP).  This is particularly, interesting since the known 

antibiotics, except for chloramphenicol also showed no or negligible antimicrobial activity.   

The selection of microorganisms was done in such a manner that involved two gram negative 

bacteria namely A. baumannii and K. pneumoniae, two gram positive bacteria E. faecalis and S. 

aureus, and one yeast, C. albicans. The greatest inhibition was recorded in the yeast followed by 

gram negative bacteria and lastly, gram positive bacteria for agar well diffusion assay. These 

results are only partially congruent with literature, especially between gram positive and gram 

negative bacteria, in case of S. aureus. Liu et al. (2014) tested AgNP against E. coli and B. 

subtilis which are gram negative and gram positive bacteria, respectively. From their study, they 

found out that the greatest inhibition of growth was observed in gram positive bacteria. The 

difference in degree of AgNP toxicity towards gram positive and gram negative bacteria stem 

from their structural composition. Gram positive bacteria consist of thick peptidoglycan, techoic 

acid, functional protein and a single bilayer that is wrapped in lipid. The gram negative bacteria, 

on the other hand, consist of thin peptidoglycan embedded within two lipid bilayers, and 

lipopolysaccharide (LPS). The LPS plays a major role in protecting the gram negative bacteria. 
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As such, the gram negative is supposed to be more resistant to nanoparticles than gram positive 

bacteria (Liu et al., 2014). According to the results obtained, the reverse was true for this study, 

except for S. aureus. 

 

 

 

Figure 4.1 Antimicrobial activity (well-diffusion assay) against a panel of microorganisms (Ab = 

A. baumannii, Kp = K. pneumoniae, Ef = E. faicalis, Sa = S. aureus, Ca = C. albicans) for a) the 

synthesised nanoparticles and b) the aqueous extracts (AC and AR), fucoidans (Fv and Mp), and 

controls: Vancomycin (Van), Ampicillin (Amp), Chloramphenicol (ChI) and water (H2O). NP 

concentrations used: ~0.2 mM. [Van], [Amp] and [ChI]: 1mg/ml.  
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It is well known that seaweeds, particularly brown seaweeds produce molecules that are antiviral 

(Li et al., 2008). However, very little has been reported on the antibacterial activity of aqueous 

extracts of marine brown algae. Nevertheless, AgNP synthesised from S. incisifolium sp., the 

brown seaweed, were very toxic to microbes. Surprisingly, when the aqueous extract was tested 

against the microorganisms did not show any activity. The other component of brown seaweeds, 

fucoidan, is known for a various bioactivities, but antimicrobial is not part of them. However, 

when tested against microbes, fucoidan from F. vesiculosus showed activity against only A. 

baumannii which suggests that fucoidan may also possess bactericidal activity. Mp did not show 

any activity against selected microbes. However, AgNP synthesised from these fucoidans did 

show activity against the test strains, especially Mp-AgNP.  

 

As a control, AuNP were also tested against different microorganisms as was the case with 

AgNP. When modified or synthesised by the use of plant extract, AuNP may show bactericidal 

activity (Bindhu & Umadevi, 2014; Park et al., 2016). Park et al. (2016) found that AuNP were 

toxic against Streptococcus pneumoniae when resveratrol was conjugated on their surface. The 

results obtained in this research do not agree that modified AuNP can be toxic to microorganism, 

especially chemically synthesised AuNP. Almost all AuNP tested against microorganisms in this 

study did not show any activity against the microorganisms. However, AC-AuNP and AR-AuNP 

did show slight activity.  

 

4.3.2. Cytotoxic activity of silver and gold nanoparticles 

One of the major concerns in the development of silver nanoparticles as antimicrobial agents is 

their potential toxicity to humans and the environment.  It was therefore important to assess the 

cytotoxicity of the synthesised nanoparticles.  The cytotoxicity was determined using the MTT 

assay where viable cells reduce the MTT dye which can be measured by absorbance 

spectroscopy.  The cytotoxicity results are presented in Figure 4.1.   

 

Unfortunately, the most active antimicrobial nanoparticles, AC-AgNP and AR-AgNP also 

showed the most potent cytotoxicity against the cells studied, albeit at a much higher 

concentration. It also appeared that the nanoparticles themselves may interfere with the 

absorbance readings of the formazan dye.  Care was taken in removing excess nanoparticles 
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before addition of the MTT dye in order to minimise these effects.  However, it may be 

necessary to develop newer methods for the investigation of the cytotoxicity of nanoparticles. 

The formazan dye absorbs UV-Vis light at the range of 500-600 nm. To ensure that AuNP and 

AgNP do not interfere with the absorbance readings, OD were measured at 570 nm. 

 

  
  

 

 

  
*p<0.05 

**p>0.05 

Figure 4.2 Percentage cell viability for MCF-7, HT-29 and MCF-12a cell lines after 24 hrs with 

a) AgNPs and b) AuNPs. 
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Interestingly, the gold nanoparticles also showed appreciable cytotoxic activity (Figure 4.2). AR-

AuNP and AC-AuNP showed more activity against the cancer cell lines which was higher than 

that recorded for non-cancer cell line. The percentage viability of AuNP for MCF-12a was above 

70% which entails less toxicity associated with AuNP against MCF-12. Even though these are in 

vitro studies, this gives hopes in case where green synthesised AuNP are to be used as vehicles 

for drug delivery because there will be less toxicity against human cells. 

 

From Figure 4.2, it can be seen that AC-AgNP and Mp-AgNP showed excellent inhibition of 

growth of MCF-7 with a recorded percentage viability just below 20%. Fv-AgNP showed a 

percentage viability of 20%. Only AR-AgNP had percentage viability just above 20%. Although 

SB-AgNP showed activity against MCF-7, the toxicity of these nanoparticles was above 40% 

(Figure 4.2), which is lower than that of nanoparticles synthesised from aqueous extract of 

seaweed. It is however understandable since the concentration of sodium borohydrite synthesised 

nanoparticles (SB-AgNP) was lower than the concentrations of green synthesised AgNPs.  

 

AuNPs were also tested for cytotoxicity against MCF-7 cell lines. The different results were 

obtained when AC-AuNP and AR-AuNP are tested against MCF-7. Both these AuNPs displayed 

activity against MCF-7, especially AR-AuNP with percentage viability just below 20% (Figure 

4.2). AC-AuNP on the other hand is less toxic against MCF-7 with percentage of live cells that is 

more than 50%. Although the concentration of SC-AuNP is lower than that of any of the green 

synthesised AuNP, the percentage viability revealed that these nanoparticles are not toxic against 

MCF-7 (Figure 4.2). 

 

The reducing agents, especially S. incisifolium and commercially available fucoidans were also 

tested against MCF-7 (Supplementary information, Figure 4.11). All of these reducing agents 

resulted in a percentage viability that is higher than 50 %. Though its percentage viability was 

just above 50%, Macrocystis pyrifera could potentially be toxic towards MCF-7 if slightly higher 

concentration is used (Table 4.1). 
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Colorectal cancer cell lines were also tested with nanoparticles to determine whether they are 

susceptible to nanoparticle toxicity. AC-AgNP and AR-AgNP seem to exert the same toxic effect 

on HT-29 with percentage viability below 10% (Figure 4.2). Fucoidan nanoparticles seemed to 

be less toxic against HT-29 with percentage viability just above 40%. SB-AgNP on the other 

hand did not show any toxicity against HT-29 with percentage viability sitting at 80%.  

 

As was the case with MCF-7, AuNPs were also tested for cytotoxicity against HT-29. From 

Figure 4.2 it can be noticed that AC-AuNP and AR-AuNP showed comparable cytotoxicity.  

 

From reducing agents tested against HT-29, only Fucus vesiculosus seemed to be toxic against 

HT-29 with percentage viability below 40%. 

  

Non-cancer cell line, MCF-12a (non-cancer breast cell line) was also tested with nanoparticles. 

Although some were somewhat toxic towards MCF-12a, but the toxicity of all the nanoparticles 

tested against MCF-12a does not compare to that of other cancer cell lines, MCF-7 and HT-29. 

Results in Figure 4.2 show that Mp-AgNP showed activity against MCF-12a with percentage 

viability below 40%. 4AR-AgNP and Fv-AgNP followed with percentage viability just above 40 

%. Only AC-AgNP seemed not to be toxic to MCF-12a when compared to other AgNPs.  From 

the reducing agents, only Fv had percentage viability below 40% recorded, D-AR resulted with 

percentage viability just above 40%. All other reducing agents had percentage viability of at least 

60%. 

 

Silver is one of the most versatile substances in the medical field. Silver has been used as 

bactericidal agent and also as in wound dressing due to its wound healing properties (Nam et al., 

2016). Anticancer activity of AgNPs has previously been evaluated (Guo et al., 2015). From the 

results presented in Table 4.4 it is clear that AgNPs are toxic to MCF-7 and HT-29 cancer cell 

lines. AC-AgNP and AR-AgNP were found to be more active against HT-29 than they were with 

MCF-7. Again, the AgNPs tested for cytotoxicity showed somewhat different trend, whereby 

those AgNPs synthesised from AR, were more toxic than those AgNPs synthesised from AC. 

The obvious reason for this difference stems from the method of synthesis (and the method of 

aqueous extraction). Although AC is highly concentrated as was seen in Chapter 3, the 
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nanoparticles synthesised from this extract are not very toxic. This implies that some toxic 

organic soluble molecules may be extracted under aqueous conditions and may cap the 

nanoparticles, thus imparting increased toxicity.   

 

The nanoparticles produced from commercially available fucoidans also showed different 

degrees of anticancer activity. Mp-AgNP was very active against MCF-7 but less active when 

tested against HT-29 (Figure 4.2). Also, Mp-AgNP was more toxic when compared to Fv-AgNP 

on both cell lines. Fv-AgNP also showed the same trend that was shown by Mp-AgNP between 

MCF-7 and HT-29, i.e., more activity was observed when tested against MCF-7 but less activity 

was witnessed when tested against HT-29. Both HT-29 and MCF-7 cell lines are susceptible to 

green synthesised AgNP, but the activity of nanoparticles was found to be less in MCF-7 

compared to HT-29 cell lines. 

  

There are several mechanisms through which AgNP may kill cancer cells. One such mechanism 

is through induction of oxidative stress (Guo et al., 2015; Mollick et al., 2015). Size, shape and 

zeta potential of metallic nanoparticles (AgNPs) are known to elicit death of cells through the 

elevation of reactive oxygen species (ROS). The AgNPs are taken inside the cells by endocytosis 

and end up in endosomes. Guo et al.. (2015) used HepG2 to study the internalisation of AgNPs 

and confirmed that the AgNP were inside the endosomes. Inside the cells, AgNPs are broken 

down by lysozymes and release Ag
+
 which results in oxidative stress. In addition to induction of 

oxidative stress in cancer cells, AgNPs also induce apoptosis in cancer cells. AgNPs use ROS to 

interact with mitochondria thereby inducing apoptosis pathway. Also, apoptosis may be induced 

by the upregulation of gene p53 (Guo et al., 2015). 

 

Results obtained from the non-cancer cell line, MCF-12a, suggest that AgNPs are selective when 

it comes to cytotoxicity against different cell lines.  Even though Mp-AgNP showed toxicity 

against MCF-12a, the percentage viability was higher than that recorded for MCF-7. The AgNPs 

synthesised from S. incisifolium are very toxic towards MCF-7 but less toxic towards MCF-12a.  
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4.4 CONCLUSION  

Based on the preliminary results obtained in this study it could be seen that AgNPs possess 

potent antimicrobial activities. Indeed, the green synthesised AgNPs present with enhanced 

antibacterial activity as the conventionally synthesised AgNPs did not show competitive activity 

against microorganisms tested. Also, it seems that the method of green synthesis affects the 

future bactericidal activity of AgNPs synthesised. This was proved by the AgNPs synthesised 

from different aqueous extract in this study (AC and AR), with AR synthesised AgNP being 

more effective in killing the microorganisms tested. Furthermore, it seems that different 

microorganisms respond differently from the AgNPs. This could possibly be due to the nature of 

the microbial cell membranes as they are very different between gram-positive and gram-

negative bacteria. The results show that gram negative bacteria were very susceptible to AgNP 

compared to gram-positive bacteria. Methicillin-resistant S. aureus on the other hand was the 

most susceptible among the tested four bacteria. Of all the test strains, the yeast, C. albicans was 

most susceptible to AgNPs. 

 

Although they showed activity against the microorganisms, AuNPs resulted in lower zones of 

inhibition. However, this entails that if care is ensured during their synthesis with the help of 

seaweed extract, AuNPs could be modified into antibacterial effective nanoparticles. The highest 

zone of inhibition was recorded in AC-AuNP against K. pneumoniae. The conventionally 

synthesised AuNPs could hardly show any inhibition of microbial growth. 

 

The preliminary cytotoxicity results suggest that care should be taken when developing these 

AgNPs, especially for internal use.  The highest activity was recorded against HT-29 for AgNPs 

synthesised from aqueous extract of S. incisiflolium while those synthesised from pure fucoidans 

showed greater activity against MCF-7. The toxicity of AgNPs lowered when the non-cancer cell 

line was tested. These findings suggest that there could be some selectivity of AgNPs which 

dictates how they react with cancer and non-cancer cells. 

 

AuNPs did show appreciable toxicity against cancer cell line used in this study. The green 

synthesised AuNPs showed greater inhibition of cancer cell growth when the conventionally 
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synthesised AuNPs showed little toxicity towards the cancer cell lines. Like in AgNPs, the 

toxicity of AuNPs towards non-cancer cell lines was low compared to that of cancer cell lines. 

Lastly, the objectives of this study were successfully achieved. The green synthesised AgNPs 

showed great antibacterial activity.  
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CHAPTER 5 

5. CONCLUSION AND FUTURE WORK 

 

5.1 SYNTHESIS AND CHARACTERISATION OF NANOPARTICLES 

A green method of synthesis for Au and Ag nanoparticles was developed in this study using S. 

incisifolium aqueous extracts as reducing agents.  The method of preparation of the aqueous 

extract affects the rate at which nanoparticles are formed.  NMR and FT-IR spectroscopic studies 

confirmed that complex polysaccharides are the major components of the aqueous extracts.  FT-

IR spectroscopy also confirmed the presence of these polysaccharides on the surface of the NPs. 

However, it appears that additional components, most likely phlorotannins may play an 

important role in nanoparticle formation.  

 

The formation of the nanoparticles using NaBH4 and sodium citrate for the Ag and AuNPs 

respectively was much faster when compared to biological method of synthesis, especially for 

the AgNPs. The reaction was complete after the addition of AgNO3 to NaBH4 whereas the 

reaction seemed to take longer than 18 hours when seaweed extract was used. However, in the 

case of AuNP syntheses, the biosynthetic method appears to afford significant advantages over 

chemical synthesis since it is as fast and does not require high temperatures. Moreover, the 

concentration of nanoparticles formed in the latter method is greater than that of chemically 

synthesised AuNPs. 

 

From antioxidant activity results, it is conclusive that S. incisifolium has high antioxidant 

activity, even though we only compared two differently extracted aqueous extracts. The lower 

total phenolic content, reducing power and radical scavenging power of pure fucoidans assessed 

in this study may explain why the pure fucoidans were not able to reduce Ag
+
 and Au

+ 
to form 

nanoparticles at room temperature. This further confirms that fucoidans per se, do not contribute 

in the formation of nanoparticles as evidenced by the results obtained from total reducing power. 

 

The size of the nanoparticles was determined using different techniques and the results differ. 

However, this could be explained by the technique itself and the drawbacks associated with it. 

For example, the sizes determined by DLS were found to be bigger than the sizes determined by 
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TEM as these are hydrodynamic diameters. The DLS size determination will take into account 

the capping agent of the NPs, whereas in TEM carbon based materials are transparent to the 

electron beam. The sizes determined by XRD were found to be smaller than the sizes of the 

nanoparticles determined by TEM. This may be due to the fact that the size determination given 

by XRD will be an average of the whole sample, while TEM is focussed on a small area of a 

sample.  Factors such as hydration of nanoparticles, dry state of nanoparticles and crystallinity 

may have had effect on different sizes of nanoparticles. 

 

Lastly, it seems that different methods of extractions have an impact of the characteristics of 

nanoparticles synthesised. These include the size, shape and crystallinity. The sizes of 

nanoparticles were found to be big when AR is used as a reducing agent and small when AC is 

used as a reducing agent. Furthermore, the speed of reaction differs between different reducing 

agents with AC being the fastest among other reducing agents at room temperature.  

 

5.2 ANTIMICROBIAL AND CYTOTOXICITY ASSAYS 

Based on the preliminary results obtained in this study it could be seen that AgNPs possess 

potent antimicrobial activities. Indeed, the green synthesised AgNPs present with enhanced 

antibacterial activity as the conventionally synthesised AgNP did not show a competitive activity 

against microorganisms tested. Also, it seems that the method of green synthesis affects the 

future bactericidal activity of AgNPs synthesised. This was proved by the AgNPs synthesised 

from different aqueous extracts in this study (AC and AR), with AR synthesised AgNPs being 

more effective in killing the microorganisms tested. Furthermore, it seems that different 

microorganisms respond differently to the AgNPs. This could possibly be due to the nature of the 

microbial cell membranes as they are very different between gram-positive and gram-negative 

bacteria. The results show that gram negative bacteria were very susceptible to AgNPs compared 

to gram-positive bacteria. Methicillin-resistant S. aureus on the other hand was the most 

susceptible among the tested four bacteria. Of all the test strains, the yeast, C. albicans was the 

most susceptible to AgNPs. 

 

Although they showed activity against the microorganisms, AuNPs resulted in lower zones of 

inhibition. However, this suggests that if care is ensured during their synthesis with the help of 
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seaweed extract, AuNPs could be modified into antibacterial nanoparticles. The highest zone of 

inhibition was recorded in AC-AuNP against K. pneumoniae. The conventionally synthesised 

AuNP hardly showed any inhibition of microbial growth. 

 

The preliminary cytotoxicity results suggest that care should be taken when developing these 

AgNPs, especially for internal use.  The highest activity was recorded against HT-29 for AgNPs 

synthesised from aqueous extract of S. incisifolium while those synthesised from pure fucoidans 

showed greater activity against MCF-7. The toxicity of AgNPs lowered when the non-cancer cell 

line was tested. These findings suggest that there could be some selectivity of AgNPs which 

dictates how they react with cancer and non-cancer cells. 

 

AuNPs did show appreciable toxicity against cancer cell lines used in this study. The green 

synthesised AuNPs showed greater inhibition of cancer cell growth when the conventionally 

synthesised AuNPs showed little toxicity towards the cancer cell lines. Like in AgNPs, the 

toxicity of AuNPs towards non-cancer cell lines was low compared to that of cancer cell lines. 

Lastly, the objectives of this study were successfully achieved. The green synthesised AgNPs 

showed significant antibacterial activity. 

 

5.3 FUTURE WORK 

Since commercial fucoidans were used in this study to synthesise nanoparticles, it would be 

essential to isolate fucoidans and phlorotannins from the aqueous extract of S. incisifolium and 

study their reducing capabilities to those commercially available fucoidans. 

   

Our preliminary studies showed that S. incisifolium synthesised AgNPs exhibit activity against 

several microbial strains used and also against the cancer and non-cancer cells.  More detailed 

antimicrobial and cytotoxic studies are required in order to determine MIC values against the 

microorganisms and IC50 values against cancer cells.  At this stage, it appears that the AgNP 

synthesised in this study is more appropriate for external application.  Furthermore, additional 

studies are required to develop bioassays more suitable for use with nanoparticles that show 

overlapping absorbance with those of common dyes used in viability studies.  In vivo studies will 
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also be essential as that would determine potential toxicity and whether the in vitro antimicrobial 

activity is maintained in in vivo studies.  

 

Although there has been suggested mechanism of action of metallic nanoparticles, it is not very 

clear as to what these nanoparticles interact with in the bacterial cytoplasm. Therefore more 

work still needs to be done in order to determine the targets in the microorganism that the AgNPs 

interact with. 
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7. APPENDIX A 

CYTOTOXICITY ASSAY 

a) Tissue Culturing 

All the processes were performed inside the fume hood using aseptic technique. The cell lines 

used include MCF-7, MCF-12a, and HT-29. 

 

 PREPARATION OF MEDIA 

Media that was used to grow cells in is Dulbecco‟s Modified Eagle‟s Media (DMEM) for MCF-

7 and HT-29. Briefly, to 500 ml of DMEM media, 10% fetal bovine serum (FBS) and 1% of 

penstrep (penicillin-streptomycin) were added. MCF-12a grow in DMEM-F12 which required 

additional supplements such as hydrocortisone, EFG, and insulin.  

TRANSFERRING CELLS FROM CRYO VIAL TO CELL CULTURING FLASK 

Cells were removed from the freezer (-80 ºC) in 1 ml cryo vial. The cells were allowed to thaw at 

room temperature. After thawing, the cells were transferred to 15 ml centrifuge tube. Then, 5 ml 

of media (DMEM) was added to the cells. The mixture was then centrifuged at 3000 rpm for 5 

minutes. From the centrifuged mixture, the supernatant was discarded and the pellet (which 

comprised cells) was resuspended in 5 ml of fresh media. The pipette was used to mix the cells 

and the media thoroughly. The cells were then ready to be transferred to tissue culturing flask 

(T25) as depicted on figure…. The flask containing cells was then incubated at 37 ºC, 5% CO2. 

The cells were viewed under the light microscope on a daily basis, with media being changed 

after every two days of incubation.  

TRYPSINIZATION 

Cells were trypsinized when they were confluent (70-90%). Briefly, the media was discarded 

from cell culture flask, and washed with dulbecco‟s phosphate buffer solution (DPBS) to ensure 

complete removal of media. After washing with PBS, 3 ml of 2 x trypsin was added. The mixture 

was then incubated for 5 minutes to allow for detachment for MCF-7, and MCF-12a. Incubation 

period for HT-29 was 10 minutes. To check cells for detachment, the cell culture flask was 

removed from the incubator to view under the light microscope (Nikon TMS, Leica EC3). When 

the cells are floating, then they had detached. The media was immediately added to cells in 2:1 
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ratio (media:Trypsin). Thus 6 ml of media was added to cells and the mixture was transferred to 

the 15 ml centrifuge tube. The mixture was then centrifuged at 3000 rpm for 5 minutes, 25 ºC 

(using Beckman coulter). The supernatant was discarded and the pellet was resuspended in 5 ml 

of fresh media. 

CELL COUNT 

For cell count, 10 µl of cells suspension was mixed with 10 µl of trypan blue stain. From this 

mixture, 10 µl was taken and added to the half-moon shaped chamber port on the Countess
TM

 

cell counting chamber slide. The slide was then inserted into the slide port on the instrument 

(Invitrogen
TM

, Countess 
TM

 automated cell counter). The number of live cells was used to 

calculate the volume of cells to be cultured in a 96 well plate. To each well, 100 µl of cells was 

added (1 x 10
5
 live cells). The cells were incubated for 24 hours at 37 ºC and 5% CO2.  

 

b) CYTOTOXICITY STUDIES 

AgNPs were tested for cytotoxicity test. As a control, AuNP were also tested for cytotoxicity 

test. Cytotoxicity test is accomplished by employing MTT bio-assay. The whole process is 

outlined below. 

 TREATING WITH NANOPARTICLES 

The media was discarded after 24 hours and the nanoparticles were added to the cells at varying 

concentrations in triplicate. The experiment was repeated one more time which amounted to two 

set of 96 well plates with same concentration of nanoparticles, and cells under the same 

conditions, but the experiments were performed on different days. The negative column 

consisted of cells and media only. One well did not have anything inside which serves as a blank. 

The 96 well plate was then incubated for 24 hours at 37 ºC, 5% CO2. The nanoparticles were 

removed from wells using multi-channel micropipette after 24 hours and the cells were washed 

with PBS to ensure complete removal of nanoparticles.  

 MTT ASSAY 

From MTT stock solution (5 mg/ml) 1 ml was mixed with 10 ml of media. The solution was then 

added to each well in a volume of 100 µl. The 96 well plate was covered with foil after addition 

of MTT to protect MTT from light. MTT is sensitive to light. The sample, covered in foil, was 

 

 

 

 



106 
 

incubated for 4 hours at 37 ºC and 5% CO2. After incubation, MTT was then discarded before 

100 µl of DMSO (>99.5%) was added to each well and incubated again for 15 minutes until the 

purple colour appears. The 96 well plate was taken to multi-plate reader (BMG Labtech). For 

cell viability, the absorbance was read at 570 nm. 
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