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ABSTRACT
AN INVESTIGATION INTO THE METHODOLOGIES OF VALUE-AT-RISK AND A

SIMULATION PROCESS OF A PORTFOLIO OF FINANCIAL INSTRUMENTS.

G.A H. BALLAM

MSc thesis, Department of Statistics, University of the Western Cape.

Financial companies such as investment and commercial banks as well as insurance
companies, mutual and pension funds hold assets in the form of financial instruments in
portfolios. Nowadays, financial instruments have proliferated so much that there are so
many forms of them namely: | derivatives, common, stock, corporate and government
bonds, foreign exchange and contracts. With'so many financial instruments, companies

can have very large and diversified portfolios for which they must quantify the risk.

With high profile calamities that have rocked the financial world lately, the need for
better risk management has never been so in demand as before. Value-at-Risk (VaR) is
the latest addition in the investor's toolkit as far as measurements of risk is concerned.
This new measure of risk complements well the existing risk measures that exist.

Unfortunately, VaR is not unanimous and it has attracted a lot of critics over the years.
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This research thesis is threefold: to introduce the reader to the VaR concept; to discuss
the different methods that exist to calculate VaR; and, finally, to simulate the VaR of a
portfolio of government bonds. The first part of this research is to introduce the reader to
the general idea of risk forms and its management, the role that the existing risk measures
have played so far and the coming up of the new technique, which is VaR. The pros and

cons that accompany a new technique are discussed as well as the history of VaR.

The second part is about t_he different methods that exist to compute the VaR of a
portfolio. Usually, VaR methodologies fall into three categories namely: Parametric;
Historical; and Monte Carlo. In this.res€arch, the advantages and disadvantages of these
three methods are discussed together with-a step-wise method on how to proceed to

calculate the VaR of a portfolio using any of the three methods.

The practical side of this thesis deals about the VaR simulation of a portfolio of financial
instruments. The chosen financial instruments are four South African government bonds
with different characteristics. VaR for this particular portfolio will then be simulated by
the three main methods. Eleven different simulations are run and they are compared
against a Control Simulation (Benchmark Portfolio) to see how factors influencing VaR
measure cope under different conditions. The main idea here was to check how VaR
measures can change under different portfolio characteristics and to interpret these

changes. Moreover, the VaR estimates under the three different methods will be

compared.
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Finally, the reliability of the research, when the practical side is compared to existing
theory of VaR, as well as the limitations of the topic is discussed. VaR is a very useful
risk measurement but if on one hand it does provide useful information to investors, over-
dependence can be misleading. As a result, VaR must be handled with care and maybe it

must always be complemented with other existing risk measures.
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Chapter 1

Introduction

1.1 Background to Value-at-Risk (VaR)

Everyday, in every aspect of life-and in any line-of business, people or organizations are
pursuing new avenues and new ventures. in the -hope-of achieving higher returns. These
ventures come in different forms and are uncertain. People have different aims and
accordingly they allocate capital and resources to achteve them. In doing so, they face

uncertainty, i.e. they face risk. “Gugi et al. (1999) define risk as the:

“Danger of not achieving certain return”.

The face of risk management has changed drastically over the past couple of years. This
is mainly because of the rapid changes in the fields of investment, portfolio and fund
management. These changes have brought along more complications into a system,

which was already complex.



Dowd (1999a) claims that the benefits a risk management system will bring to an
organization can be:
¢ Probabilities of the organization getting into financial distress - organizations are
in distress when they are in financial turmoil;

e Reduction of cash flow volatility.

Risks come in all forms. Some can be measured or quantified while others cannot.
Market risk, which is the risk of loss sustained as a result of adverse changes in the values
of market prices of traded instruments, falls into the category of risk that can be
measured. Dowd (1999a) reports-that quantitative approaches to risk management are
based on three basic essential steps, namely:

(1) The formulation of a risk management policy: this will indicate to the
organizations what risks they want to bear, what risks they are prepared to offset
and what methods they will use to-manage the risk exposures.

(2) The quantification of the risk exposure(s): this involves the measurement of the
relevant risk exposures by appropriate methods which include:

e Duration, duration-convexity and gap analyses to measure interest rate risk;

o Portfolio methods that focus on certain types of risk (i.e., equity risk) which offset
one another in a portfolio;

e Regression analyses, which estimate exposure to interest-rate, equity, foreign
exchange, commodity and other related risks.

¢ Scenario analyses, which estimate the gain or loss under, specified situations; and

e Zero-arbitrage methods, which calculate risk exposures of derivatives positions.



(3) Response to exposure: with the management policy in mind, organizations can
then decide what risks they would want to manage and what instruments will

better serve their purpose.

Each of these methods mentioned in (2) above has its own particulars and advantages in
risk management, but they are also limited. Dowd (1999a) reports that, since the late
1970s, financial institutions have realized these limitations and were accordingly working
on their own models to measure risks. Progress has been steady but slow, both from
academics and industry. Perhaps the most notable private sector initiative towards better
risk management is that of J P_Mergan, which unveiled its RiskMetrics'™ in October

1994 (Jorion, 2004).

The introduction of the RiskMetrics'™ methodology in risk management triggered the
industry into more developments' for'measurements of risks and this gave rise to the
modern era Value-at-Risk (VaR). 'History, however, traces its origins as early as the

1950s when VaR was developed from basic mathematics (Holton, 2002a).

Value-at-Risk is a method to measure market risk and is defined as the maximum amount
(in relevant currency) that a portfolio can lose with a certain probability over a period of
time. VaR collapses an entire profit and loss distribution of portfolio returns into a single
number, which summarizes exposure to market risk as well as the probability of an

adverse move (Jorion, 2004).



In J P Morgan’s RiskMetrics™ , VaR is computed from a system based on standard
portfolio theory. In fact, the system is closely related to Modern Portfolio Theory, using
estimates of the standard deviations and correlations between the returns of different
trading instruments. However, the system relies on too many over-simplifications and
the implementation requires a huge amount of work such as measurement methods,

constructing data and computing systems to carry out the estimations.

During the same period, i.e. early nineties, that ] P Morgan was busy developing its
RiskMetrics™, other financial institutions and also banks were working on their own
VaR systems, as they viewed it as-a Chance-to find-a.common measure of risk across
multiple financial products (McGin, 1998). The principles of their VaR were also based
on portfolio theory though some major differences could be picked up from the
assumptions and procedures. With-rapid changes-in the-field of information technology
and the advent of more powerful' computers, some'other VaR systems were being
developed at the same time. These include a historical approach, which estimated VaR
from a histogram of past profit and loss data (i.e. using past information) for the portfolio
as a whole and a Monte Carlo simulation approach, which was based on a random

number generator to obtain the hypothetical distribution.

Since that period of sustained information technology advancement, VaR has come a
long way and has spread rapidly among financial institutions including securities houses.
Its use is being encouraged by the Bank for International Settlements, the Federal

Reserve Bank and the Securities and Exchange Commission for just about every



derivatives user (Falkenstein, 1997). With the promise that it holds of combining all
quantifiable risks across the business lines of an institution, yielding one firm measure of
risk (Simons, 1996), VaR has also attracted the attention of regulators such as the Basel
Committee in Banking Supervision (BCBS) and regulators in the European Union like
Britain’s Financial Supervisory Authority (Jorion, 2004), Financial Services Board (FSB)

South Africa.

High profile financial disasters- Orange County, Sumitomo, Barings, Daiwa and others,
which have rocked the financial world in the past, all highlighted the importance of a
better risk management. Regulators-are-now-more concerned about the development of a
set of accepted risk management guidelines (Financial Risk Management, Contingency
Analysis, 1996). The important one is the BCBS report from which the main
recommendations (BCBS, Contingency Analysis, 1996) are:
e Need for senior management to-understand the risk of their business and the
importance of them overseeing the risks that lower level managers will take;
e Separation of trading and administrative offices to help detect fraud,
e Need for an independent risk management link that reports directly to top
management;
e Need for full and complete audit and control;
e Importance of good and safe information systems; and

e Use of value-at-risk and stress testing to measure financial risks across the

business.



With these recommendations in mind as well as for practical limitations risk managers

were led to develop alternative methods to implement VaR and further add on to the

existing ones (Ganief, 2001).

1.2 Definition of Research Problem

The financial world experienced some rough times in the late 1980s with the 1987 stock
market crash and the 1990s series of collapses. It all started with the distress in the bond
market in 1994 followed by market crises in Mexico in 1995, in Asia in 1997 and in
Russia in 1998 (Barone-Adesi et al, 2000). ~These events have been the key issues in

finance and henceforth in risk management as well as for international regulatory bodies.

Risk management has witnessed much development. Simons (1996) reports that “risk
management” has become a popular; buzzword- the phrase appearing in the American
Banker “72 times in 1990 and 325 times jin 1995”./ Risk management has grown in
sophistication and usage for the last few years (Winterton, 2003). At the center of all this

interest, is a new approach to risk management called Value-at-Risk (VaR).

According to Schachter (1997), the standard deviation is all what is needed to:
1. Encapsulate all the information about risk which is relevant; and
2. Construct risk-based rules to optimal risk management decisions.

However, managers think of risk in terms of relevant currency of loss and not in terms of

deviations as defined by the standard deviation.



An alternative measure of risk was therefore required, which led to a new interest in an
objective way of gauging the adequacy capital (Simons, 1996). In their search, financial
institutions turned partly to analytical tools and VaR emerged as the favoured method for
measuring risks (Simons, 1996). VaR expresses, in relevant currency terms, the major

concern of risk management, which is the loss to portfolio value.

VaR can be calculated across financial instruments. However, various methods can be
used to calculate VaR, each resulting in a different answer. There are methods that
handle only linear instruments, while others can handle any type of instruments. Jorion
(2004) reports on a couple of commercial vendors offering risk management systems that
compute VaR. According to McGin (1998), VaR is still a phenomenon in the area of risk
management which is advancing beyond the existing| less sophisticated ways to measure
risk and is evolving since it is the measure reguiatory bodies look to for domestic and

international portfolios.

When attempts, to apply the theory from literatures to the practical world of risk
management, are made, a few daunting questions arise. More importantly if “given two
VaR measures, how can the risk manager pick the best one” and “given a VaR measure,

how does the risk manager know it is specified according to the portfolio™?

Despite its popularity for measuring market risk, no common platform has yet been

reached as to the best implementation of VaR approach. This absence of a consensus



particularly based on the implementation of the methods currently in use has some

significant drawbacks (Ganief, 2001).

1.3 Specific Aims of Study

The aims of this research are threefold:

1. To introduce the reader to the VaR concept;

2. To present the different methods to calculate VaR; and

3. To simulate VaR for a portfolio of financial instruments.
In recent years, VaR has become a popular measure of market risk. It is widely used by
financial institutions and non-financial corporates-to-control the market risk in a portfolio
of financial instruments (Hull and White, 1998). The reason for this acquired interest
could be traced to the advantages that VaR holds over traditional risk measures. The first
objective of this research is to provide the reader with some background relationship
between VaR and its counterparts while also discussing the advantages and disadvantages

with respect to each other. The evolution of VaR through the years will also be

investigated.

As mentioned earlier, the computation of VaR can be a daunting process. The power of
the concept lies in its generality, but the challenge of calculating a VaR measure also
crops up from its generality (Measuring VaR, Contingency Analysis, 1996). The most
important step in computing a VaR metric is to find the return (profit and loss)
distribution of the portfolio. The VaR approach is still evolving and experiments and

research on the topic are continuing.



The most common VaR methodologies are:
1. Parametric Approach.
2. Historical Simulation.

3. Monte Carlo Simulation.

The parametric approach to calculate VaR is closely related to the theory of Modem
Portfolio Theory whereby the VaR is expressed as a product of the standard deviation of
the portfolio returns. The historical simulation is somewhat different as it assumes that
the future cannot be that different from the past. As such, it simulates a hypothetical
histogram of returns for a portfolio-using past-market prices and comparing with current
prices. The VaR statistic is then read from the histogram. The Monte Carlo simulation
also computes a histogram of hypothetical returns, which are obtained by selecting at

random (usually a number generator) from a given distribution of price changes estimated

with past data.

All three of these techniques have their advantages and disadvantages. The second aim
of this research will be to take a closer look at these approaches and also elaborating on
their strengths and weaknesses. The conditions under which the different techniques
perform best will also be investigated and a stepwise description of how to apply the
different techniques on a multiple instruments portfolio will also be discussed. This
knowledge will certainly assist investors in selecting the most appropriate approach

considering their scenario.



The third and final aim of this research is the simulation process of a selected portfolio.
A portfolio of financial instruments consisting of four South African government bonds
will be chosen and the VaR measures will be computed by three main methods:
Historical Simulation; Variance-Covariance Method; Monte Carlo Simulation.  The
simulation procedures will be run on the SAS Risk Dimension software and the results
will be analyzed. The research findings and interpretations can be used to model similar
or linear portfolios. The reason to simulate VaR of such a portfolio is to measure how
VaR éstimates vary when changes in the dependent factors take place. Accordingly,
eleven different simulation procedures will be run and their VaR estimates will be
computed and compared. The VaR-measures uiider the three different methods will also
be analyzed and attempts to answer a question like: why the VaR estimates differ or are

the same under different methods when the portfolio is the same, will be made.

In chapter two, the history and ‘evolution of Value-at-Risk'over the years will be analyzed
as well as the contributions and critics that VaR has attracted since its concept. Chapter
three will deal with the existing measures of risk as well as the theory of VaR. The three
known techniques to compute VaR will also be discussed together with their advantages
and disadvantages. In chapter four, the results and the findings of the eleven different

simulation runs will be analyzed and, finally, chapter five will be about the conclusion of

this research.
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Chapter 2

Literature Review

2.1 Risk Management: The History of Value-at-Risk

Risk management was considered a-novelty in 1990, but the term “risk management” is
not new. It has existed for long-andits use can be traced back as far as the 1960s and
1970s when firms were looking for alternatives to insurance (Holton, 2002a). The new
“risk management” that has evolved during the 1990s is quite different from any of its
earlier forms and it is then that the term “value-at-risk” entered the financial lexicon,
although VaR origins also go back a long time. The history of VaR will be split up into
two parts namely:
1. The early days - which will include the years 1920-1980; and

2. The modern era - including years 1990 to now.

11



2.1.1 The Early Days of Value-at-Risk

Value-at-Risk (VaR) has its roots both in Capital Requirement and Portfolio Theory. Its
first appearance can be traced back as early as the year 1922, when the New York Stock
Exchange applied an informal test on the United States (US) Securities firms for capital

requirement (Holton, 2002b).

During the 1950s, portfolio theorists had started to develop basic mathematics for VaR
measures. Academic papers from James Tobin, Jack Treynor, William Sharpe and Jan
Mossin (Holton, 2002a) were contributing to the development of VaR. The kind of VaR
measures they employed at the time were best applicable to equity portfolios (Holton,
2002a). In fact in the same period; Harry Markowitz and Arthur Roy independently
published VaR measures that were supporting portfolio optimization (as reported by

Holton, 2002b).

The 1970s saw an outburst of VaR. First, Schrock and Dusak (Holton, 2002b) came up
with simple VaR measures for futures portfolios and then Lietaer (Holton, 2002b)
described a practical VaR measure for foreign exchange risk positions. In 1975, the US
Securities Exchange Commission (SEC) established a uniform Net Capital Rule, which
included a system of “haircuts”, applied to firms’ capital as safeguard against market
losses and they were based upon statistical analyses of past data. At the same time US
regulators were prompting securities firms to come up with procedures for aggregating
data to support capital computations that were reported in their “FOCUS” reports

(Holton, 2002b). From the late 1970s, a number of major financial firms had started to

12



work on internal models to compute and aggregate risks across the organization as a
whole (Dowd, 1999a). At the start of 1980, the “haircuts” from the US SEC were made
to reflect a 0.95 confidence interval of the amount of money a firm might stand to lose
over a month liquidation period. Whatever crude the “haircuts” could have been, they

were a VaR measure (Holton, 2002b).

The early days of VaR were much ruled by regulators. It was only by 1980 that
organizations saw a real need to develop more advanced VaR measures, but these
remained as practical tools known only to the professionals within the organizations
(Holton, 2002a). Tracing the historical development of institutional VaR is quite tedious
for two main reasons. First of all, VaR was used for internal purposes only by the firms

and secondly, the VaR were not published and very rarely mentioned in literatures

(Holton, 2002b).

One interesting piece of document, however, was a letter from Stephen C. Francis of
Fischer, Francis, Trees and Watts to the Federal Reserve Bank of New York, to indicate
that their VaR measure was similar to SEC’s Uniform Net Capital Rule (UNCR) but only

that they had employed more asset categories - namely 27 of them (Holton, 2002b).

Round about the 1980s, while working at the Bankers Trust, Kenneth Garbade described
advanced VaR measures for fixed income markets (Holton, 2002b). They were believed
to have been influenced, but certainly different from an internal VaR measure Bankers

Trusts had themselves implemented earlier for use with its Risk-adjusted On Capital

13



(RAROC) system of capital allocation (Holton, 2002a). Bankers Trusts threw in even
more efforts to improve existing VaR measures following the 1987 stock market crash
(Holton, 2002b).

In the late 1980s, VaR was certainly not a household name but a lot of organizations were
starting to get interested and involved. Chase Manhattan bank developed, during that
period, a Monte Carlo based VaR measure for its use with its retun on RAROC
international capital allocation system. At the same time Citibank had implemented

another VaR measure for capital allocation (Holton, 2002b).

2.1.2 Modern Era Value-at-Risk

The largest share of advancement and development on the topic of VaR came in the
1990s when the concept of VaR really took off (Holton, 2002b; Winterton, 2003) with
Linsmeir and Pearson (1996) also believing that the concept and the use of VaR is recent.
Though Linsmeir and Pearson (1996) reported that VaR was really being used in the late
1980s to measure the risks of active portfolios, they are adamant that the use of VaR

really exploded in the 1990s.

The reasons for the upcoming of VaR during that time could be attributed to the
proliferation of derivative instruments and the publicized losses that have spurred the
world of finance and the field of risk management (Holton, 2002b). By 1993, a fair
number of financial organizations were employing VaR measures to assess market risk,
allocate capital or monitor risk limits (Holton, 2002a). In the same year, a study by the

Group of Thirty entitled “Derivatives: Practices and Principles” strongly recommended

14




VaR analysis. The study’s recommendations were largely accepted by the industry as the
standard of “best practices” (Simons, 1996). Still, in 1993, the Group of Thirty requested
a survey, which was conducted by Price Waterhouse. One of the main findings of the
survey was that: among 80 responding derivatives dealers, 30% were using VaR to

support risk limits with another 10% planning to do so (Holton, 2002a).

Linsmeir and Pearson (1996) reported that:

“Currently VaR is finding more importance and most major financial firms are using it”.

In 1994, a follow-up to the survey of the Group of Thirty’s global derivatives project
reported that 43% of dealers were using some kind of VaR with 37% indicating at the

time that they planned to use VaR by the end of 1995 (Linsmeir and Pearson, 1996).

The biggest breakthrough on the concept of VaR came from J P Morgan when they
released their RiskMetrics™ in 1994 (Dowd, 1999a). The RiskMetrics™ system is said
to have originated when J P Morgan’s chairman at the time, Dennis Weatherstone
requested from his staff a daily one-page report indicating the risk and potential losses
over the next day across the organization’s entire active portfolio (Dowd, 1999a). To
meet up with the chairman’s demand, the staff of J P Morgan had to develop a system to
measure risk across different trading positions over the whole of the organization and

then aggregate these risks into a single number. The measure used was VaR or the “most

15



likely loss over the next trading day” (Dowd, 1999a; Holton, 2002b; Linsmeir and

Pearson, 1996).

It could be said that RiskMetrics™ triggered quite a revolution among the financial
institutions. VaR became increasingly important and was also being used by smaller
financial firms, non-financial corporations and institutional investors (Linsmeir and
Pearson, 1996). In 1995, a Wharton/CIBC Wood Grundy Survey on derivatives usage
among US non-financial firms reported that 29% of respondents were using VaR to
evaluate the risks of derivatives transactions (Linsmeir and Pearson, 1996). In the same
year, 1995, a related survey by the-Institutional Investor-that time, showed 32% of firms
using VaR as a measure of market risk (Linsmeir and Pearson, 1996). Moreover, a 1995
survey by the New York University Stern School of Business reported that 60% of firms

managing pension funds were using VaR (Linsmeir and Pearson, 1996).

In the modern era of VaR, regulators also played an important role just like in the early
days. They did not remain insensible to the VaR revolution. In 1995, the Basle
Commission on Banking Supervision (BCBS) proposed allowing banks to calculate their
capital requirement for market risk with their own VaR models, but using certain
parameters imposed by the committee (Holton, 2002b). In June 1995, the US Federal
Reserve proposed a “precommitment™ approach to allow banks to use their own VaR
models to compute market risks with fines to be imposed in the event that losses exceed
capital requirement (Holton, 2002b). In December of the same year, the US SEC had

released for comment a proposed rule for corporate risk disclosure, which listed VaR as:

16



“One of the three possible market risk disclosure measures”.

The European Union’s Capital Adequacy Directive (CAD) also jumped on the
bandwagon in 1996 when they allowed VaR models to be used in capital requirements
for foreign exchange positions and they were moving towards a decision to allow VaR to

calculate capital requirements for other market risks (Holton, 2002b).

The rapid development of VaR and its acceptance was something inevitable, as already
the Bank of New York, considered-to be the world’s largest custodian with $6.8 trillion
under custody publicly announced ifs interests in VaR and the release of its
“RiskManager”- a sophisticated tool to compute VaR (Bank of New York Press Release,
1999) a move that did not leave other leaders in VaR technology without any reactions.
In 2003, as financial firms were preparing themselves for Basel 11 (Marlin, 2003), J P
Morgan Chase and SunGard had joined forces to come up with sophisticated offerings to

aid analyze risk (Marlin, 2003).

2.2 Perception of Value-at-Risk by Investors

Value-at-Risk (VaR) has hit the financial world at a time when a new tool to measure risk
was desperately needed. It has attracted a lot of praises from both academics and
practitioners, but VaR has not escaped its detractors who firmly believed that it is more of

a cult than what the market needed. This has brought up the VaR debate and has split the
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financial world into two about the subject. This section analyses the pros and cons of

VaR that has been documented. The debate, however, is still heating up.

2.2.1 The Contributions of Value-at-Risk

The advent of Value-at-Risk (VaR) has been welcomed by a large portion of the
community of investors and praises are still drooling over its benefits. Simons (1996)

was found to be full of praises about the arrival of VaR on the scene when she said:

“In the last two years an approach to risk management called VaR has been accepted by
both practitioners and regulators as the right way to measure risks becoming a de facto

industry standard”.

Schachter (1997) believes that the,idea behind the development of VaR was to provide a
single number, one that could'encapsulate all information about a portfolio’s risk, one
number that could be computed quickly and one that could be communicated to non-
technical senior managers. It was a statement repeated in another article (Measuring

Value-at-Risk, Contingency Analysis, 1996) where it could be read:
“VaR is a powerful tool for assessing market risk; being applicable to all liquid assets

and encompassing, at least in theory, all sources of market risk, VaR is an all-

encompassing measure of market risk”.
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According to McGinn (1998), VaR is still a new phenomenon in the field of risk
management, which is advancing beyond the less sophisticated methods to measure risks
and which is finding a lot of takers and certainly continuous usage in financial
organizations as a risk management tool- a feeling completely shared by numerous

people. One of them, Winterton (2003) quoted:

“Any risk manager would be interested in measuring risk and thus VaR do have some use

in risk management”.

Perhaps leading the pack as far as-praises-for-VaR are.concerned must be Falkenstein
(1997) who reported that VaR has become an “indispensable tool” for monitoring risks
and an “integral part of methodologies that allocate capital to various lines of business”.
This may sound a little like an-over-statement but Jorgensen'(1998) backed this argument
by saying that VaR has emerged as a major tool to measure market risks and that it is

being used as a regulatory tool “for ensuring the soundness of the financial system”.

Amman and Reich (2001) went one step further and reported:

“Most widely used tool to measure, gear and control market risk is VaR”;

and was found to say that various financial firms and “interest groups” have

recommended VaR as a portfolio risk measurement tool. Even the Bank of New York

has jumped on the bandwagon of VaR praises when, in a press release in 1999, the bank
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described VaR as a “critical tool in the risk management process” and is backing its
development by investing into RiskManager - software to compute VaR (Bank of New

York Press release, 1999).
Regulatory bodies have been omnipresent in the development of VaR and it is without
surprise that they think highly of the concept. Hull and White (1998) reported that

central bank regulators have adopted VaR as:

“The major determinant of the capital banks are required to keep to cover potential

losses arising from market risks they are bearing”.

This is placing a lot of faith in a fairly new concept.. However, McGinn (1998) backed

this argument by saying that:

“VaR is still the measure regulators'are asking for, there is still a demand to produce a

VaR”.

Dowd (1999a) has investigated the contributions of VaR from another angle and was
found saying that VaR definitely brings a plus to the risk management process. Dowd

(1999a) quoted that it gives top management:

“A much better handle on risks, thus leading to more informed and better risk

management ”.
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Dowd (1999a) went one step further by saying that VaR:

“Leads to a robust new control system that makes it much harder for fraud and human

error to go undetected”.

VaR also helps to discourage excessive risk taking (Dowd, 1999a) and before its advent,

shareholders were not in a position to access the total trading risks financial organizations

were assuming (Jorion, 2002).

It has to be left to Jorion (2002), considered-to-be one of the pioneers of VaR to wrap up

the list of VaR contributions. Jorion (2002) agreed with the earlier authors:

“VaR has become a standard benchmark for measuring visks’ .

Jorion (2002) backed his statement with an extract from the Group of Thirty’s report on

derivatives which stated that “market risk is best measured as VaR”. Overall, it seems

that VaR is an:

“Indispensable tool for navigating through financial markets”. (Jorion, 2004).
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2.2.2 The Critics on Value-at-Risk

Like any new concept that wants to establish itself, Value-at-Risk (VaR) has not escaped
the critics and over times VaR has attracted a fair share of criticism. According to Holton
(2002a), criticisms of VaR tend to follow three themes:

1. Different implementations of VaR produced inconsistent results;

2. As a measure of market risk, VaR is conceptually flawed; and

3. Widespread application of VaR entails systemic risks.

Critics in the first camp include Beder (Holton, 2002a) who performed an experiment
using Monte Carlo and Historical “approaches—{ocompute sixteen different VaR
measurements for each of three portfolios; all the results tended to be inconsistent, which
led the experimenter to describe “VaR as seductive but dangerous”. Simons (1996) also

backed up this inconsistency when she wrote:

“There is no generally accepted way to calculate it and various methods can yield widely

different results”.

Marshall and Siegel (Holton, 2002a) also carried out a little test on their own when they
approached eleven software vendors and provided each one of them with several
portfolios, such that each vendor would be calculating VaR for the same portfolios; the
vendors should have got the same results, but they did not. Winterton (2003) on his side

believes that one problem could be in the methodology assumption:
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“The future cannot differ very much from the past, and in some cases, only relatively

recent past is taken, intuitively, new developments can occur”.

McGinn’s (1998) remark also fall in this category of criticism when he said that:

“VaR offers a snapshot, it is not comprehensive. With all the data requirements that

exist, to do a good VaR, you may have to run several iterations”.

The second line of criticism attacked VaR on its conceptuality and believed it is flawed.

Leading the pack, here, is Taleb (Holton, 20022a) who was-found to say:

“The condensation of complex factors naturally does not just affect the accuracy of the

measure. Critics of VaR argue that simplifications could result in such distortions as to

nullify the value of the measurement .

Perhaps this could have been a critic that could be overlooked. However, first Hoppe

(1999) reported that:

“The powerful industry consensus behind VaR cannot hide the fact that the measure rests
on statistical assumptions that do not correspond to the real world. The results of VaR

calculations are thus literally nonsensical”,

and second, Dowd (1999b) was found to say that:
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“A major problem facing VaR practitioners is that VaR is an extreme quantile on a
return distribution and yet we have relatively few extreme observations with which to

estimate it. QOur VaR estimates are therefore imprecise”.

However, the above problem could be resolved by Extreme Value Theory (Ganief, 2001).

The founder of the Algorithmics software, Dembo (Holton, 2002a) also goes along with
this criticism and believes that the concept of VaR is a pretty good idea, but the way that
it is being calculated nowadays is bad news as the calculation errors could be huge. He

said:

“Often the number that is being computed is almost meaningless”.

Winterton (2003) could not have been more direct when he talked about the different
“guises” of VaR and believed VaR is compromised by too many unrealistic assumptions.
Simons (1996) thinks that VaR is only one of the many tools to manage risk and
according to her also VaR is based on a number of unrealistic assumptions. Wallace

(1997) went even further with his article on non-financial corporations and reported:

“As a state-of-the-art risk management tool, VaR has been remarkably unsuccessful in

catching on with non-financial corporations. This is part due to its relative statistical

complexity”.
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These critics are based on a practical note, but underlying them are certainly

philosophical issues identified by Harry Markowitz and reported by Holton (2002a):

“If probabilities are subjective, it makes no sense to speak of the ‘accuracy’ of a VaR

measure or of a ‘forecast’ of the correlation matrix”.

The third line of criticism suggests that, if numerous market players use VaR for capital
allocation or maintain risk limits, they will tend to simultaneously liquidate positions
during market turmoil periods (Holton, 2002a). This is also a feeling shared by

Falkenstein (1997) who wrote:

“One major problem in equating VaR to risk capital, however, is that it is contradicted
by how actual firms have historically ‘used up’ their capital (i.e. defaulted) from losses

due to position taking”.

These days, VaR is being adopted for just every need: risk reporting, regulatory capital,

and internal allocation of capital and performance measurement. However, the question

is:

“Is VaR the answer to all risk management challenges?” (Schachter, 1997)

Dowd (1999b) believes, on the other hand, that there is no theory that exists to prove that

VaR is the adequate measure to rely for optimal decision rules.
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2.2.3 The Verdict

With the two camps well anchored on their positions and both backing their arguments, it
might not ever be possible to close the curtains on the VaR debate. Schachter (1997)
reported that: maybe it is the holy scale after all, but others are well present to contradict
especially when it seems that VaR is not unanimous especially that according to

Winterton (2003) it has failed the corporate world.

Schachter (1997) goes one extra yard and poses the question of whether VaR is:

"4 tool or a rule"?

about which there seems very much of confusion as Schachter (1997) believes that VaR
is getting used for simply anything and that is where investors are committing the

mistake.

Value-at-Risk is a powerful tool to measure market risk and that is because it captures the
risk of an asset or a portfolio of financial instruments across different positions of risks.
However, care must be applied about its applications. It is better to look at VaR as a tool
but certainly not a rule. Specialists must investigate whether its use in an organization is
going to be a value-added and whether it is applicable to the business of the firm. It is

recommended that VaR is not used alone as a market risk measure and it is better if it is

complemented by other existing auxiliary methods.
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Chapter 3

Value-at-Risk

3.1 Risk

In any line of business and in eyery aspect of life, people venture in new avenues in the
pursuit of high returns. Accordingly they allocate resources and capital. In return for
their investments they expect rewards in the form of money, However, these investments
are not sure or guaranteed of achieving the rewards that might be expected. They are
exposed to an element of uncertainty. According to Contingency Analysis (1996), risk is
made up of two components namely:

1. Exposure.

2. Uncertainty.

Another word for uncertainty is ignorance. The reason why investors face market risk is
simply because of their ignorance of the future behaviour of the markets they are trading
in. They can assess and even make predictions about the market behaviours but to know

exactly what is going to happen is impossible. To be able to make predictions or even
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take decisions, investors or risk managers must quantify this exposure to uncertainty, i.e.

this risk.

Organizations accept willingly or not, the assumption, management and pricing of risk.
In a broader picture, risk entails different forms. These usually include:

e Market Risk;

o (Credit Risk;

e Liquidity Risk; and

e Operational Risk.

"Market risk is exposure to the uncertain market value of a portfolio", (Holton, 2002a).

Credit risk is the cropping up ‘from failure of counterparty to meet its legal obligation.
Liquidity risk, on the other hand, is the risk of loss arising from the inability to settle
payments or inability to re-finance financial obligations. Finally, operational risk is the
exposure to a wide range of risks namely: processing failure (operational), legal,

regulatory and technological.

Knowing the existence of all these risks is one thing, but managing them is certainly a
different perspective. The process of managing risks, as it is understood today is called
"Risk Management". According to the article Financial Risk Management, Contingency

Analysis (1996) and Linsmeir and Pearson (1996), Risk Management has become more
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pronounced lately because of some events that have certainly marked the financial world
namely:

e Increase in risk profile of organizations;

e Volatility of markets;

e Proliferation of derivative instruments;

e High-profile disasters;

e Crashes of financial markets; and

e Regulatory requirements for a better management of risk.

The emphasis of this research:is on-market risk. ~Tradmng and market risk management
encompass the overall risk profile of a firm. Strategic planning accesses the identified
risk factors. It is important to understand and manage market risk before making

investments decisions.

3.2 Market Risk and its Management

The earlier definition of market risk is too broad. Perhaps, to arrive to a more precise
definition of market risk, it is better to analyze the factors composing market risk. The
four most common market risk factors are:

1. Interest rates.

2. Foreign exchange rates.

3. Equity prices.

4. Commodity prices.
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Interest rate risk is the unpredictable changes in interest rates that may adversely affect
the value of a financial instrument or the valuation of a portfolio or the condition of the
firm as a whole. Foreign-exchange risk is the uncertain movements in exchange rates
that may affect the value of an organization's holdings and thus its financial position.
Equity-price risk is the potential for adverse changes in the value of an organization's
equity-related investments. Finally, commodity-price risk is the potential for adverse
changes in the value of an organization's commodity-related holdings. With all the
factors making up market risk, a more precise definition of market risk can be formed.
Market risk can be defined as the risk to an entity of losses arising from potential adverse
changes in the asset prices they-are exposed-to, including changes in interest rates,

foreign-exchange rates, equity prices and commodity prices,.

The exposure to market risk can be measured by the loss'in capital invested. Such a
measurement is important to the management of market risk. Sound market risk
management will require that each market risk exposure is identified and compared to a
firm's tolerance (riskpsychology.net, 2003). A nominal exposure report is one such
method of reporting market risk. The key to the management of market risk is to decide
whether or not to hedge the risky assets. Hedging of risky assets or simply the offsetting
of risky investments is achieved through derivative instruments, more precisely through

derivative contracts.
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The method to measure market risk is quite straightforward. A portfolio is decomposed
into its underlying risk factors according to the presence of the different types of financial
instruments. The risk decomposition process will entail a further breakdown of each

financial instrument into its pure risk components.

The decomposed portfolio will be then processed in two separate ways, namely:
1. Risk Measurement: This is the projected rates and prices used to estimate the
risk of the portfolio.
2. Valuation or Pricing: This is revaluating the portfolio using current prices and

rates for the relevant risk factors to estimate the earnings of the portfolio.

The valuation or pricing process of the portfolio of financial instruments implies the
marking of the portfolio to market using current prices and rates. The mark-to-market
will establish the value of the portfolio on'a liquidation basis. This will provide valuable
information on the success or failure of the transaction entered into, the earnings of the

portfolio and the liquidation value of the portfolio.

Market Risk Management is helped through sophisticated market risk measurement
techniques (riskpsychology.net, 2003) designed to estimate potential adverse changes in

the market prices and rates and the quantification of the impact of these changes on the

portfolio's value.
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3.3 Traditional Market Risk Measures

There are numerous Market Risk measures that exist to compute such kind of risks. This
has been termed traditional measures simply because they are measures that investors or
risk managers have been using all this time. It is not to say that they are of no use
nowadays. On the contrary, they are still here and are used to complement the
sophisticated techniques. The traditional market risk measures that will be developed in
this section are:

1. Volatility;

2. Beta;

3. The Greeks;

4. Duration and convexity; and

5. The other Market Risk measures.

3.3.1 Volatility

The volatility of financial variables is their degree of variability. A variable that
fluctuates widely over time is said to have high volatility and one, which is stable, has

low volatility. In finance the standard definition for volatility is:

"The volatility of a random variable is the standard deviation of its returns" (Volatility,

Contingency Analysis, 1996).

32



In practice, volatilities are computed for variables such as: market value of a portfolio,
interest rates, stock prices, exchange rates and so on. Two methods exist to estimate
volatility and they are namely:

1. Historical volatility: This approach to estimating volatility is based on the
application of time series techniques to historical data for a variable whose
volatility must be estimated. This method is usually based on daily data.

2. Implied volatility: This method of estimating volatility is derived from option
prices. Options pricing require volatility estimates as inputs. Options prices are

volatile and the volatility models for the option can be used for the underlier.

A common question arising as a result-of those two existing methods is: which one offers
a better indication of market risk? No adequate answer exists as each has its strengths

and definitely its limitations.

According to the article ‘Volatility’ (Contingency Analysis, 1996) implied volatilities are

an
"Indication of risk that combines the insights of many market participants”,

However, since implied volatilities are mainly prices, they can be biased. Historical
volatilities, on the other hand, are highly flexible and reflect actual market fluctuations.

They are applicable to any financial instrument or portfolio for which market data exist.

The limitation of historical volatility is precisely about its data dependence. It may be
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that the data upon which historical volatility is based is stale, i.e. encompassing a period,
which is not reflective of current market conditions. As a result, this estimate can
measure a false or not adequate measure of risk. Also, for many instruments, historical
volatility will say nothing about the riskiness, e.g. if this technique is applied to a call
option, which was out-of-the-money but now is in-the-money, the historical volatility

will be misleading.

3.3.2 Beta

Beta (3) is a market risk measure, which is employed mostly in the equity markets.
Since it is related to equity markets, it will have equity-related risks (Beta, Contingency
Analysis, 1996). According to the Capital Asset Pricing Model (CAPM), equity-related
risk has two components:

1. Systematic Risk: This is the risk of holding the market portfolio.

2. Specific Risk: This is the risk arising from causes unique to individual stocks.

Specific risk can be diversified. Diversification is the reduction in market risk by
investing in unrelated financial instruments. If a portfolio is largely diversified, an
investor may find himself left with a portfolio which is close to the market portfolio.
Such a portfolio has no specific risk. Since, technically, the composure of such a
portfolio is the same as the market portfolio, it will bear only systematic risk. However,
systematic risk is a risk, which cannot be diversified. Beta is such a market risk measure
that calculates an instrument's (a share's) or a portfolio's systematic risk.

Mathematically, beta is equal to (Beta, Contingency Analysis, 1996):
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Cov(x,,x,)
Beta(f8) = ————.
o)

m

Where: Cov(x,,x,)is the covariance between a portfolio’s (instrument) return and

market return and

o’ is the squared market volatility.

Beta is more often used as a measure for a portfolio's risk. For a largely diversified
portfolio, it can be informative as systematic risk will be the primary source of risk for
such portfolios. However, for lesser diversified portfolios, specific risk together with

systematic risk will be present. (As such, beta for these portfolios will be misleading.

3.33 The Greeks

Derivative instruments as well as options'tend to create a lot'of risk exposures which are
quite unpredictable but confinable. "When trying to hedge a financial instrument or a

portfolio, it is important to understand specific exposures to all sources of risks.

The Greeks are a set of factor sensitivities, which are extensively used by investors to
calculate the exposures of portfolios that contain options and derivatives (Greeks,
Contingency Analysis, 1996). Each one of the measures will calculate how the
portfolio's market value will respond to changes in some variable, namely an underlier,
implied volatility, interest rate or time. An underlier is the value from which a derivative
derives its value. There are five Greeks namely (Greeks, Contingency Analysis, 1996):

1. Delta;
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2. Gamma;

3. Theta;
4. Rho; and
5. Vega.

Delta (6) : The changes in values of an underlier are more often the primary source of

risk in a portfolio containing derivatives instruments. Delta represents a first-order

measure of sensitivity to an underlier (Delta, Contingency Analysis, 1996).

Assume that a portfolio, P, responds to changes of soifie-underlier, x, with a current
market value. Then there exists a relationship P-= g (x) between the value of the portfolio
and the price of the underlier, assuming other market variables to be constant.
Accordingly, the value of the portfolio increases if the price of the underlier increases and
the value of the portfolio will decrease if the price of the underlier decreases. This is the
kind of information that delta conveys, along with the magnitude of such sensitivity

(Delta, Contingency Analysis, 1996).

If a tangent line is fitted to the curve at the underlier current market value, the gradient or
slope of that line will capture the magnitude and direction of the portfolio's sensitivity to

the underlier. In fact, the value of the gradient of that tangent line is equal to the value of

delta.

Analogously, in calculus, this is simply calculating the slope of a tangent line and it can

be achieved by using differentiation:
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AP
IfP= ,theng'(x)=—.
g(x), then g'(x) Ar

Since ¢ is the slope of the tangent line, thend = % .

As a result, an approximation for the behaviour of a portfolio can be obtained as:

AP = deltax Ax .

This is called the delta approximation and for any small change in the current value of the
underlier, the portfolio will experience a corresponding small change (Delta, Contingency

Analysis, 1996).

Gamma (y): If delta summartizes-the most-significant-information about a portfolio's
sensitivity to an underlier, gamma captures the second most order significant piece of
information. While delta captures the sloping effect of graph P = g(x), gamma will
capture its curvature effect. Since gamma is a second-order measure it comes as no
surprise that it will be obtained by the second derivative, i.e. g"(x) (Gamma, Contingency

Analysis, 1996).

An approximation of gamma can be obtained by best-fitting a parabola to P = g(x) at its
current market value. Generally, the best-fitting parabola has the form:
Best-fit parabola = ax’ + bx + ¢

where a, b, ¢ are constants which can be determined to achieve the best fit.

Gamma is equal to twice the coefficient of xz, 1.e. 2a. Moreover, the best-fit parabola
q p

also gives the portfolio's delta and that is equal to the constant b. Gamma not only
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provides information about the magnitude of the curvature, but about its directions as
well. Positive gamma implies an open-upward curvature while a negative gamma

corresponds to an open-downward curvature (Gamma, Contingency Analysis, 1996).

Formally, gamma is defined as follows, using the techniques of calculus:

AP
Ax?

y=g"(x)=

As a result, the portfolio's value can be calculated in response to small changes in the

underlier as such:
APz%Aﬁ+&n

This is the delta-gamma approximation (Gamma, Contingency Analysis, 1996).

Rho (p): It is one of the Greek factor sensitivities which are used by investors to
measure exposures in portfolios..containing -derivatives ;instruments. In fact, rho
calculates the linear exposure to the changes in the risk-free interest rate of a portfolio.
The risk-free interest rate is considered to be a theoretical interest rate at which an
investment may earn interest without incurring any risk. In practice, the risk-free rate is

often assumed to be a short term Treasury rate (Rho, Contingency Analysis, 1996).

If P is the current value for the portfolio and underlier, then P = g (r) represents the
relationship between the portfolio and the interest rate, r. Since rho is a first-order
sensitivity measure and rho represents the gradient to the tangent line of the above

function, then by using the techniques of calculus rho can be formally derived:
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If P=g(r)

oP AP
then =g'(r)=—=—.
p=g1(r or Ar
Thus, rho can be approximated as: AP = px Ar

where Ar is the small change in the risk free rate and AP is the corresponding change in

portfolio's value (Rho, Contingency Analysis, 1996).

For most portfolios, sensitivity to risk free rate is minor compared to other possible

sensitivities. Thus rho is less significant but certainly not unimportant.

Theta (8): This is a factor sensitivity applied by investors to calculate exposures to a

portfolio containing derivatives. It is the only one amongst the Greeks that measures a

portfolio's linear exposure with respect to time. Accordingly, theta gives an indication of

the evolution of a portfolio when time changes, assuming all other market variables

remain constant (Theta, Contingency Analysis, 1996).

If T denotes time and Pr denotes a portfolio's value at time T, then

9= AL
or AT

with the derivative evaluated at time = 0. Analogously, in calculus, this is simply the rate

of change of the value of the portfolio with time.
Theta can be approximated as follows:

AP, ~@x AT
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where AT is the small interval change in time and AP, is the corresponding portfolio's

change in value (Theta, Contingency Analysis, 1996).

Vega: Also referred to as kappa, this is the fifth factor sensitivity used by investors to
measure exposures in a portfolio containing derivatives. Vega is mostly informative to
portfolios that contain options which are either direct or imbedded. These portfolios are
sensitive to the implied volatility of the underliers (Vega, Contingency Analysis, 1996).
Generally, it can be seen that a long option position benefits from rising implied
volatilities and will suffer from declining of such effects. On the other hand, a short

position will show opposite behaviour.

Mathematically, vega is defined much the same like the delta and as the delta, it is also a
first-order linear approximation of the price sensitivity of the portfolio. The only
difference from those two measures is that delta calculates sensitivity to the underlier
while vega calculates the sensitivity to its implied volatility. Formally, vega is defined as
follows (Vega, Contingency Analysis, 1996):

If portfolio P is a function of implied volatilities, then

P=g(o).

A tangent line is to be fitted to the curve at the current volatility. The slope of that line is
the instrument's vega. Fitting of a tangent line and calculating the gradient are analogous

to differentiation in calculus. Thus,

, OP AP
MR A L v
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As a result, vega can be approximated as such:

AP ~ vegax Ao
where Ao is a small change in implied volatility from its current value and AP is the
corresponding change in the portfolio's value as a result of the change in implied
volatility. If a portfolio holds options on different underliers, it will have a different vega

for each of the implied volatilities.

3.34 Duration and Convexity

Duration and convexity are factor sensitivities describing exposures to parallel shifts in
the spot curve. A spot curve is yield in the interest rate curve. They are both applicable
to fixed income instruments and a portfolio containing fixed income. Fixed income
instruments are particularly sensitive to the changes in interest rates (Duration and

Convexity, Contingency Analysis, 1996).

The fractional change in a portfolio containing fixed income instruments is a function of

parallel shifts in the spot curve, i.e. a parallel shift in interest rates. It is important to note
that the curve describing the relationship 5 = g(Ar) captures the important information

that a portfolio value will decrease if interest rate increases and the value will rise if
interest rate falls. If a tangent line is fitted to the curve of price of fixed income against
parallel shift in the interest rate, that tangent line will capture the magnitude and direction
of the portfolio's sensitivity to interest rates. Duration is defined as that tangent line

multiplied by negative one (Duration and Convexity, Contingency Analysis, 1996).
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Mathematically, duration can be described as follows:
Let AP be the change in a portfolio's value,

Ar be a parallel shift in spot curve, measured in percentage,

AP is the percentage change in portfolio's value.

Accordingly, % = g(Ar) is a relationship describing a portfolio's sensitivity to shifts in

spot curve. From calculus, the tangent line is obtained as such:

Duration is obtained by multiplying by -1 thus:

Duration = —lxa—P= —-Ix R =—1x(é€xl).
pon par p Ar
This leads to the approximation:
% ~'—duration < Ar'.

The unit of duration is normally years. Duration captures a fixed income instrument or a

portfolio containing such instruments with a single number.

While duration investigates the downward sloping nature of the relationship% = g(Ar),

it says nothing about its upward curvature. Convexity is the measurement describing

curvature (Duration and Convexity, Contingency Analysis, 1996).
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To approximate convexity, a parabola is best fitted to the relationship of the function.
Best-fit parabola= U(Ar)? +V(Ar)
where U and V are constants.

Hence, convexity = 2U.

Convexity also investigates direction on top of magnitude. Positive convexity is

curvature bending upward while negative convexity is curvature bending downward.

Duration and convexity are considered good means to measure market risks in different
situations. However, their limitations come from the-fact that they only consider

exposure to parallel shift in the spot curves:

3.35 Other Measures

According to Dowd (1999a), the following are also used as market risk measures:

® Regression analyses that estimate the exposures to interest rates, foreign
exchange, equity, commodity and other market risks based on estimated
regression relationships;

e Scenario (or 'what if') analyses estimating what is expected to be gained or lost
under specific situations/scenarios;

e Zero arbitrage methods which use stochastic models to estimate risk exposures of
portfolios containing derivatives; and

e Portfolio analyses focusing on the ways in which certain types of risks offset each

other in a portfolio.
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All these above measures have their particular uses but they are also flanked with
limitations. Again according to Dowd (1999a), these above measures are limited as such:
e Regression analyses rely on the stability of assumed regression relationships and
can be inexact if there are changes in these relationships;
e Scenario analyses can be difficult to carry out;
e Models are difficult to use and implement and they have their own limitations;
and
e Portfolio analyses require too much data and run into problems if assumptions are

violated.

While each of these measures has their own limitations, they also share common ones

like the difficulty to compare and encompass risk across different financial instruments in

a portfolio.

3.4 Value-at-Risk (VaR)

Value-at-risk (VaR) is a statistical risk measure that captures the market risk exposure of

an asset or a portfolio. A technical definition is given by (Value-at-Risk, Contingency

Analysis, 1996):

"VaR is an amount of money such that the portfolio will lose less than that amount over a

specified period with a specific probability".

Jorion (2004) carries on on this path and further provides a technical definition of VaR:
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"VaR summarizes the predicted maximum loss (or worst loss) over the target horizon

with a given confidence interval”,

Both those definitions are broad and technical and a simpler definition has to be found to

explain VaR.

In simpler words, VaR is a risk measure enabling investors and risk managers to
determine how much the value of an asset or a portfolio could decline over a given time
horizon with a defined probability-as-a result-of adverse changes in market conditions
(Gugi et al, 1999). All these definitions show that VaR is based on two factors namely:

1. Time horizon: The period over which the asset in the portfolio will be held, also
called holding period. For active portfolios with liquid assets, the typical holding
period is 1-trading day, although regulators like the ‘European Capital Adequacy
Derivatives (CAD) require 10 days. Ideally the time horizon should correspond
to the largest period required for orderly portfolio liquidation.

2. Probability: This is the confidence interval or significance level at which the
estimate will be made. Choices about the confidence interval depend on its use.
Risk aversion or high costs will imply that a larger amount of cash should cover
possible losses, thus implying a higher confidence interval. Popular choices of

confidence intervals are 95% and 99%.
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Op uou

Diagraml: A | - day 95% VaR (Value-at-Risk, Contingency Analysis, 1996)

Basically, VaR expresses in relevant currency units the expected worst loss that may be
incurred over a defined time horizon and with-a specific significance level (Gugi et al,
1999). For example, if the daily VaR of an organization's trading portfolio is ZAR 50
million at the 99% confidence interval then it means that there is only 1 chance out of a

100 assuming normal market conditions for a loss greater-than ZAR 50 million to be

incurred.

According to Jorion (2004), VaR is a simple number that captures the exposure of a
portfolio to market risk together with the probability of an adverse market move. VaR
measures risk in the same units, i.e. the relevant country currency. This is the main
difference from the other market risk measures. It is then left to the investors or risk

managers to decide whether they are comfortable with this level of risk.

While VaR measures how much could be lost on the value of an asset or portfolio, it also

gives an idea of how much cash that should be put aside as cushion for days when losses
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will unexpectedly be large. As a result, VaR is not only a market risk tool to quantify
risk but it also aids risk management (Value-at-risk, Contingency Analysis, 1996). While
Jorion (2002) believes that VaR captures the effects of leverage, diversification and
probability of adverse market movements into a single relevant currency amount which is
easy to communicate to management, Schachter (1997) reports that VaR was designed to

produce a single number that would encapsulate information about a portfolio's risk.

Formally, Value-at-Risk (VaR) is a type of risk measures that describes the market risk of
a portfolio probabilistically. In itself, VaR is a powerful tool but it is also quite a
challenge. The main force of VaR-is its generality and.its applicability to all liquid
assets. Since VaR encompasses, at least in theory, all the sources of market risk it is

therefore an all-encompassing measure of market risk (Value-at-Risk, Contingency

Analysis, 1996).

The challenge posed by VaR also comes from its generality, as with its force. To be able
to measure market risk in a trading portfolio using VaR, some fneans have to be found for
determining the probability distribution of the portfolio's returns. The two following
concepts must be distinguished:

1. A VaR measure

2. A VaR metric.
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3.4.1 Developing a Value-at-risk Measure

A VaR measure is a series of operations that are performed to calculate VaR of a trading
portfolio. In order to apply a VaR measure, it has to be implemented in some manner. In
this section, a VaR measurement derivation will be elaborated.
Before deriving a VaR measure, the following notations must be defined (Value-at-Risk,
Contingency Analysis, 1996):

e Time is measured in trading days;

e Current timeis 0;

e Portfolio current market value is P

e Market value in trading day 1 is P’ and is unknown; and

e x'indicates a parameter for the portfolio-in time.1 conditional on information

available in time 0.

The task is about finding a probability distribution for P’. One way that exists to achieve

this is to assume a standard statistical distribution. Specifically, the Normal distribution

is adopted, as its parameters (u and o'? ) are fully described. Now, if P! follows a Normal
distribution, then all that is needed to compute VaR is to estimate the "’ and the o' of

that characterized distribution. Assuming a 95% confidence interval, VaR can be

obtained as follows:

VaR=1.645 " +(P° — ™) .o (A)
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where the 5% quantile in Normal distribution is 1.645. In practice, however, u"is often

close to P. Thus, the above equation A reduces to:

VaR=1.645 0" ... (B)
If o' can be estimated, then equation B will be able to give a value of VaR.
Estimating o' of a portfolio's market value is analogous to the task of estimating o of a
portfolio of returns as in Modern Portfolio Theory, only that VaR deals with market
values and not returns.

10

To obtaino ™, the following is derived:

Suppose X;... Xn are random variables with-standard deviations o, and correlations p, , .

Let Y, a random variable, be defined as a linear polynomial of the X; such that

YEa+h X .. 4b, X, ..ol ©

Then, o, will be given by

o, = \/Z(bi’ai)z +2Z(b'_,a-i)(bj,o-/.)pi'/. .................. (D)

21

' of the portfolio's market value.

Expression D can now be used to estimate o
For that to happen, however, let the portfolio's holdings (elements) be v, instruments in m

assets. The accumulated market values of the m assets at time 1 are random variables,

which will be denoted by S!. As a result, the portfolio's value at time T = 1 will be:

Based on expression (E) and applying expression (D), ' can be obtained. All that are

needed are simply information about o,and p, of S;. This can be a daunting process

and a manageable solution could be to model the portfolio's behaviour, not in terms of its
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assets but rather in terms of the relevant risk factors that are specific to the assets in the

portfolio.

The n modeled risk factors are termed key factors and their values are denoted at time

T=1asR', where

R

2

A valuation formula 4, must be defined for each asset such that:

M5, Zv/?. (RO e @)

As aresult,

wheref = Av, .

Expression (H) is called a portfolio mapping where 8 is the portfolio mapping function.

The portfolio mapping function &, will map the n-dimensional space of the key factors to

the 1-dimensional space of the portfolio's market value. Knowing one realization of R',
@ will yield the corresponding value of P'. This process, however, does not give the

entire distribution of P, which is needed to be able to estimate '°. This is because R'is
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independent of the composition of the portfolio and will therefore not be able to tell how

risky the portfolio is.

The problem is how to achieve the entire distribution of P'?

One way to achieve this is to assume the linearity of the portfolio, but what if the

portfolio is not linear?

Since the concept of VaR is being generalized here, it is preferable that the above
problem is being solved in a general way. To be able to succeed here, the general

problem facing the calculations.of VaR must be formulated.

To calculate VaR, the distribution of P' must be characterized conditional on
information at time T = 0. The problem is two-fold (Linsmeir and Pearson, 1996; Value-
at-Risk, Contingency Analysis, 1996):
1. The first part is about the key factors, R/. Since they are observable financial
variables, data about their past (historical data) must be available for them.
Basing on these data, the joint distribution of R' can be characterized using the

information of ¢and p forR!. The distribution of R' must be converted into

a characterization for R'. On its own, however, the characterization of the
distribution of R' cannot achieve this procedure, as it is independent of the

composition of the portfolio. As such, the distribution of R! alone cannot tell how

risky the portfolio is.

51



2. The second part is about the mapping that relates P'to R'. This is a formula that
will change constantly to reflect the portfolio's evolving composition. The
expression (H) contributes to the analysis what the characterization of the
distribution of R' (part 1) does not. It will reflect the composition of the
portfolio. However, on its own, the mapping cannot also give an indication bf the
riskiness of the portfolio, as it does not contain any information about market

factors.

To obtain an estimate fora"’, it is therefore necessary to merge the two parts of the
problem. What has to be done is simply to somechow filter the market information
contained in the characterization of the distribution of R' (part 1) into the portfolio

information contained in the portfolio mapping function (part 2).

Every VaR measure will address this two-folded problem. All of the VaR measures
share common components for solving this issue. All of them must somehow specify a

portfolio mapping function; all must also characterize the distribution of R'; and all VaR

measures must combine those two pieces to draw the distribution of P'.

52



Input:
Historical
Market Data

Characterization
of the Conditicnal
Distribution of 'R

Portfolio
Mapping
fFunction ©

e i e e R R T TR

VaR Measure

Value for the
VaR Metric

Diagram 2: Procedural Steps of VaR Measure (Value-at-Risk, Contingency Analysis,

1996)
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Any practical VaR measure as shown by the above flowchart includes three basic
procedures namely:

1. The Mapping Procedure;

2. The Inference Procedure; and

3. The Transformation Procedure.

By specifying a portfolio mapping function, a mapping procedure will describe the
portfolio's exposures. By characterizing the joint distribution of R', an inference
procedure will on its turn describe the portfolio's uncertainty. Now, both exposure and
uncertainty are the two components of risk-and the transformation procedure will then
combine these two components of risk to describe the distribution of P' that will
summarize the value in the form of a VaR metric. As a result, a transformation procedure

will describe risk (Value-at-Risk, Contingency Analysis, 1996).

A mapping procedure will accept a portfolio's composition as its input. The output will
be a portfolio's mapping function @ that defines P' as a function of R, i.e. P'=8(R").
To specifyd, the portfolio mapping function, is a task belonging more to the field of
financial engineering (Value-at-Risk, Contingency Analysis, 1996). This issue will not

be addressed here as it falls outside the scope of this research.
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An inference procedure consists of characterizing the joint distribution of the key vector
R' conditional on the availability on information at the moment time T = 0. Generally, it
will accept past information (historical data) as input and will apply time series analysis
techniques to characterize the joint distribution conditional on past information available.
The most common technique applied is the Exponential Weighted Moving Average

(EWMA).

A transformation procedure will combine those two outputs from the relevant two

described procedures, i.e. the mapping and the inference procedures, and will use them to
characterize the distribution of P', conditional on past information at time T = 0. Based

on that characterization and maybe the portfolio's current value P°, the transformation

procedure determines the value of the desired VaR metric. The result is a VaR

measurement.

Three basic forms of transformations exist (Value-at-Risk, Contingency Analysis, 1996)
and they are namely:

1. Linear;

2. Historical Simulation; and

3. Monte Carlo Simulation.

All three forms have different ways to actually characterize the distribution of P' and

thus obtaining the value of 6", from which the VaR can be computed. Traditionally,
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VaR measures have always been categorized according to the different transformation
procedures they employ as enumerated above. They are namely:

1. A linear VaR measure, also called Parametric VaR;.

2. Historical VaR measure; and

3. Monte Carlo VaR measure.

Those three above categories actually characterize the three methodologies that exist to

compute VaR (extensively discussed in section 3.5).

3.4.2 Interpretation of a VaR Metric

A measure is simply an operation for assigning a number to something. A metric is
defined as the interpretation of the number assigned. ' And finally, a measurement is the
outcome of applying a measure; and obtaininga-number (VaR Metric, Contingency
Analysis, 1996). There are several risk metrics like: volatility, the Greeks, duration and
convexity, beta and so on. Value-at-Risk (VaR) is also a risk metric since it measures

risk.

The same variables definition used in the previous section is applicable here and will thus
not be redefined. Formally, a VaR metric is just a real-valued function of namely:
1. The portfolio's current value P’ and

2. The distribution of P', conditional on past information available at time T = 0.
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A couple of VaR metrics exist and they will be investigated here (VaR Metric,
Contingency Analysis, 1996):
e Standard Deviation of portfolio simple return Z’, conditional on past

information is a VaR metric:

std(Z')=std[Pl—P0J !

PO = F std (P : )
e Quantiles of portfolio's loss: L' = P° — P'.
e Expected tail loss (ETL), also called expected shortfall, is also a good VaR

metric. This is the mean loss of the portfolio assuming that loss exceeds

some quantiles of loss:

Formally, to specify a VaR metric the three following things must be distinguished:
1. Time period: this is the VaR horizon; e.g. I day, I month, 1 year and so on;
2. The base currency: this is the currency-in which P” and P’ are denominated; and

3. The function of P° and the conditional distribution of P’.

Reporting of VaR metrics follow some kind of convention so as to make them standard
and meaningful for different countries. The following is adopted as some kind of
convention for naming VaR metrics (VaR Metric, Contingency Analysis, 1996):
e The metric's name is given in the order: horizon, function and currency
followed by "VaR";
e If horizon is expressed in days but without further qualification, it is

understood that that they are actually trading days; and
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o If function is a quantile of loss, it will be indicated as a percentage.

The following are examples of VaR metrics which are quoted for portfolios:
e |-day standard deviation of simple return ZAR VaR;
e 1-week 90% JPY VaR; and

o 2-week 95% ETL USD VaR.

3.4.3 Advantages of Value-at-Risk

Value-at-risk (VaR) is known as the maximum likely loss on a portfolio, which is
predicted on a level of likelihood ona time horizon.-A-VaR has important characteristics
and consequently advantages (Dowd, 1999a):

e A VaR figure or digit (i.e. 'a VaR metric) provides a common consistent
quantification of risk across different positions and risk factors. VaR eases the
comparisons of risks across.different -portfolios-and certainly across different
assets or financial instruments;

e It enables risk managers and investors to aggregate risk across different positions
and risk factors, so that such risks can be added, like adding fixed-income risk to
equity risk; and

e VaR takes account of the correlations between distinct risk factors, e.g. if two risk
factors offset each other, VaR will allow this offset while informing that the

overall risk is quite low.
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344 Limitations of Value-at-Risk (VaR)

Value-at-Risk is an important tool and a useful tool in the management of risk but it is
certainly not a panacea (Simons, 1996). For investors and traders, VaR is just another
measurement item in their toolkit. The risk managers will be looking at the different
traditional measures of risk which means that they will go beyond VaR. Limitations of
Value-at-risk include (Simons, 1996):
e VaR focuses on a single arbitrary point on the profit and loss distributions, while
it would be preferable to be looking at the whole distribution;
e VaR provides little information on how risks are to be measured in conditions of
extreme market; and
e VaR computations are difficult during times of market crises when correlations
between financial products break down, liquidity vanishes and price data might be
unavailable. To model risk in such conditions would be quite a daunting task as a

lot of information would be withheld due to competition.

3.5 Value-at-Risk Methodologies

As seen in Section 3.4, VaR methodologies are actually categorized by the way they
process the transformation procedure. There are three important transformation
procedures and accordingly they characterize the three different VaR methodologies that
will be discussed in this section. The three methods are namely:

1. Parametric Method;

2. Historical Simulation Method; and

3. Monte Carlo Simulation Method.
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Each method will be discussed separately followed by a five-step procedure to apply each
method for a multiple instrument portfolio just like the one understudy in this research.
The advantages and disadvantages of each method will also be discussed and finally, in a
subsection, the three methods will be put on the same platform and compared

accordingly.

3.5.1 The Parametric Method

When Value-at-risk was first developed, the parametric approach was the standard as it
was computationally efficient. ~Its efficiency depends on its analytical approach that
directly calculates a solution (Capital Market Risk Advisors, 2001). The parametric

approach is most of the time termed the Variance-Covariance Method, precisely because

of its analytical approach.

The Variance-Covariance approach is based on the assumption that the underlying
market factors follow a multivariate Normal distribution. With this assumption in mind,
it is possible to find the distribution of mark-to-market portfolio profit and loss, which
will also be Normal (Linsmeir and Pearson, 1996). Once the distribution of Profit and
Loss has been obtained, and because it follows a Normal distribution, its properties can
be applied to determine the loss that will be equaled or exceeded x % of the time, i.e. the
VaR. The reason why the properties are determinants for the loss is because the Normal

distribution is fully defined with its two parameters.
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While this approach seems more like a "black box" because it depends on a handful of
statistical formulas, it does capture the determinants of VaR (Linsmeir and Pearson,
1996). The Variance-Covariance method identifies the notions of variability and the co-
movements with concepts from Statistics like standard deviation and correlation. These
two Statistical concepts will determine the Variance-Covariance matrix of the assumed

Normal distribution of changes in the market factors (Linsmeir and Pearson, 1996).

A key step about this approach is known as the "risk mapping", which was discussed
earlier. This involves taking the actual instruments and "maps" them on a set of simpler,
standardized instruments or positions. - Each of these-positions is actually associated with
a single market factor. This approach-remains an excellent one especially for a portfolio
containing minimal optionality (or option iinstruments) and holdings in highly efficient

markets when they can be expected to follow a Normal distribution (Capital Market Risk

Advisors, 2001).

Variance-Covariance Methodology Application for a Multiple Instrument Portfolio

(Linsmeir and Pearson, 1996)

Step 1: Investigate the different market factors and the following standardized positions,

which are directly related to these market factors. Map these instruments onto the

standardized positions.
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Step 2: Assume a multivariate Normal Distribution for the percentage changes in the

market factors. Further estimate the parameters of that distribution (o, and p, ;).

Step 3: Using the standard deviations and correlations of the market factors, determine

the o,'sand p, ;'s of changes in the values of the standardized positions. The o;'s in the

values of the standardized positions can be determined by multiplying the standard
deviations of the market factors and the sensitivities of the standardized positions to the
changes in the market factors. The correlations between changes in the values of the
standardized positions and the correlations between the market factors are equal, except
that the sign of the correlation will change if the value of one of the standardized

positions changes inversely with changes in the market factors.

Step 4: With the standard deviations and correlations between changes in the value of the
standard positions now known (from. step 3), the variance and accordingly the standard
deviation of the portfolio can be computed using the properties of the sum of Normal

random variables. The distribution of the portfolio profit and loss can be obtained.

Step 5: One of the properties of the Normal distribution is that outcomes less or equal to
1.65 standard deviations below the mean will occur only 5% of times. If a probability of

5% is therefore used to determine VaR, then VaR will be equaled to 1.65 times the

portfolio standard deviation.
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Advantages of the Variance-Covariance Method

Easy to implement;

Calculations are quickly performed;

Easy to investigate alternative assumptions about correlations/standard deviations;
Based on well-known applications in Modermn Portfolio Theory and widely
disseminated by J P Morgan RiskMetrics'™; and

Easy to compute in an excel spreadsheet if the input values are known.

Disadvantages of the Variance-Covariance Method

Inability to capture the risks-of portfolios including options;

Difficult to report to top management;

Produces Misleading VaR estimates when the past is atypical;

The assumption of Normality is not always true; and

The linearization of the prices is quite a problem when the portfolio contains a fair

share of options.

3.5.2 The Historical Simulation Approach

The historical simulation methodology repeatedly values the financial instruments of a

portfolio according to the market conditions that have existed over a specific period of

time.

This method is therefore quite intuitive (Capital Market Risk Advisors, 2001).

Historical simulation is a plain, atheoretical method which requires relatively few

assumptions about the statistical distribution of the market factors. In essence the method

is about using past information (historical data) in market rates and prices to determine a
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distribution of potential future profit and loss of a portfolio and then reading off the VaR

as simply the loss that exceeds only x% of the time, with x% to be decided on (Linsmeir

and Pearson, 1996).

Generally, the historical simulation works as follows:
A distribution for the profit and loss distribution is characterized by taking the current
portfolio and subjecting it to the actual changes in the market factors that have been

experienced for some N periods of time, in this case over trading days.

In a simpler language, N sets of hypothetical market factors are being constructed using
the current values and the changes experienced over the past N periods. With these
hypothetical values of market factors obtained, N hypbthetical mark-to-market portfolio
values are calculated. This process will yield N hypothetical mark-to-market profit and
loss of the portfolio when compared to the current mark-to-market portfolio values. Once
the hypothetical mark-to-market profit and loss values for each of the past N periods have
been computed, the distribution can be characterized and the value-at-risk can be

obtained (Linsmeir and Pearson, 1996).

Historical Simulation Application to a Multiple Instrument Portfolio (Linsmeir and

Pearson, 1996)

Step 1: Investigate the different market factors and try to obtain formulas expressing

mark-to-market values of the instruments in terms of the market factors, risk factors.
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Step 2: The past information (historical values) of all the market factors have to be
obtained for the last N periods. The daily changes in these rates will be used to construct
hypothetical values of the market factors which are used in the computation of the
hypothetical profit and loss (step 3) since the daily VaR metric is a measure of the

portfolio loss caused by changes over a daily holding period.

Step 3: This is the crucial step. It is important that the mark-to-market profit and loss on

each instrument in the portfolio be calculated and then added together for every day.

Step 4: Rank the mark-to-market profit and loss from biggest profit to the smallest loss.

Step 5: Choose the loss which'is equaled or exceeded x% of the time, where x has to be

predetermined. Using a probability of x%; this is the value-at-risk.

Advantages of Historical Simulation (Linsmeir and Pearson, 1996)
e Ability to capture the risks of portfolios that contain options;
e Ease of implementation;
e Computations are performed rather quickly; and

e Fairly easy to communicate to top management.

Disadvantages of Historical Simulation (Linsmeir and Pearson, 1996)

e Will produce quite misleading VaR measures when the recent past is atypical;
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e Difficult to perform the analysis for examining the effects of alternative
assumptions; and

e The recent past might not be reflective of the changes for the period understudy.

3.5.3 The Monte Carlo Simulation

Monte Carlo simulation is seen as a hybrid between the parametric approach and the
historical approach. The Monte Carlo technique will use the variance-covariance matrix
as the parametric approach to compute an analytical solution, which will drive the

simulation (Capital Market Risk Advisors, 2001).

The Monte Carlo simulation technique has numerous similarities to historical simulation.
The main difference noticed is the that instead of driving the simulation using observed
changes in the market factors over the past N periods to characterize N hypothetical
portfolio profit and loss values, the Monte Carlo technique selects a statistical distribution
that is thought to adequately capture the potential changes in the market factors.

A pseudo-random number generator is used afterwards to generate thousands or even
many more hypothetical changes in the market factors. These are further used to
characterize thousands of hypothetical portfolio profit and loss values based on the
current portfolio, and the distribution of potential portfolio profit and loss. Finally, the

VaR is computed from this distribution (Linsmeir and Pearson, 1996).

66




Monte Carlo Simulation Application to a Multiple Instrument Portfolio (Linsmeir

and Pearson, 1996)

Step 1: Investigate the different market factors and try to obtain pricing formulas

expressing the mark-to-market values of the different financial instruments in terms of

the market factors.

Step 2: Determine or assume a joint distribution of potential changes in the values of all-
of the market factors that are present. The ability to pick up on the distribution is the

main feature of Monte Carlo simulation. Once the distribution has been specified,

estimate the values of o,and p, ..

Step 3: Once the distribution has been chosen, a pseudo-random number generator is
used to generate N hypothetical values of the changes in the market factors. Then
calculate the mark-to-market profit and loss on every instrument present in the portfolio

and add together for each day.

Step 4: Rank the mark-to-market profit and loss from largest profit to smallest loss.

Step 5: Choose the loss that is equaled or exceeded x% of the time, where x% has to be

predetermined as usual. Using a probability of x%, this is the value-at-risk.

Advantages of the Monte Carlo Simulation (Linsmeir and Pearson, 1996)

e The ability to capture the risks of portfolios containing options; and
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e Easy to perform analyses for examining effect of alternative assumptions.

Disadvantages of the Monte Carlo Simulation (Linsmeir and Pearson, 1996)
¢ Computations take long;
¢ Not easy to explain to top management; and

e Will produce misleading VaR when recent past is atypical.

3.5.4 Comparison between the Methodologies

Schachter (1999) talks about the accuracy of the VaR methodologies by saying:
"Accuracy is in the eye of the beholder”,

For Linsmeir and Pearson (1996), the question is simple; from the three existing

methodologies of VaR:
"Which method of calculating Value-at-Risk is best?"

Unfortunately, there is no simple answer to what looks to be an easy question, as it will
depend on the nature of the portfolio and certainly on the data that will be used in the
estimation of VaR (Schachter, 1997). The three methods differ in different aspects as
discussed in the advantages and disadvantages in the previous section, and summarized
here (Linsmeir and Pearson, 1996):

e Ability to capture the risks of options and option-like financial instruments;
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e The ease of the implementation of the methodologies;
¢ The ease of communicating and explaining to top management;
e The reliability of the results obtained; and

o The flexibility of analyses of the effects of potential changes in the assumptions.

3.6 Applications of Value-at-Risk

Financial organizations can either be dealers or simply investment firms. They both are
exposed to risk the same way as-a result of their trading activities and their investment
positions. Value-at-risk can mieasure the risks of these different types of institutions,
although a few differences will exist in the application of the VaR. However, the
principal elements in the use of VaR are similar. According to Dowd (1999a), VaR
figures have numerous uses. Therefore, VaR measurements attract a lot of users. "
According to Dowd (1999a) the main applications of Value-at-risk are namely:

e Performance Evaluation;

e Capital Allocation;

e Trading Decision; and

e Enterprise-wide Risk Management (EWRM).
Value-at-risk can also be the basis for communicating market risk to the other players in

the financial world in the form of incorporating VaR values in end-of-year reports of

companies, or even disclosing them to shareholders (Jorion, 2002).
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3.6.1 Performance Evaluation

VaR is used in performance evaluation to assess decisions taken by decentralized fund
managers and also traders (Dowd, 1999a). The information contained in VaR does help
risk mangers to compare the Risk-adjusted Performance Measurement (RAPM) across
distinct portfolios. As an example RAPM will help to assess the trading revenues of
distinct traders in similar markets and will compare them with respect to the following
ratios (Dowd, 1999a):

e Sharpe Ratio: Profit and Loss/ Volatility;

e Risk Ratio: Profit and Loss/ VaR;and

e Efficiency Ratio: VaR/ volatility.

So far, performance of positions takers and. traders has been assessed basing on returns
only. The RAPM certainly brings another perspective of assessment and is definitely

more meaningful for the purposes of comparison (Dowd, 1999a).

3.6.2 Capital Allocation

VaR is being used to determine an organization's capital requirement. VaR is also
helpful when it comes to the allocation of capital across an organization's different

business units (Dowd, 1999a).

The existence of RAPM system helps evaluating both organizations and their products in

terms of Risk-adjusted returns. This involves the evaluation of returns from single
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activities and then comparing them with the organization's cost of capital. If the return
turns out to be lower than the cost of capital, the activity should therefore be discontinued

to avoid a potential loss of value.

3.6.3 Trading Decision

The ability of a VaR measure to encapsulate and consolidate risk across different
positions in a portfolio or simply across different assets classes and communicate the
total risk on an overall basis in the form of a single digit representing the relevant

currency (e.g. Rand) is one of the most important applications of VaR.

With the VaR information, risk managers can take better-informed decisions about their
trading or investment strategies. The taking of position should be directed towards the
maximization of returns given a level of risk tolerance. If a risk manager calculates the
incremental rise in the value of the VaR of any investment, better decisions for optimal

performance of active trading portfolios can be taken (Dowd, 1999a)

3.6.4 Enterprise-Wide Risk Management (EWRM)

On top of the above applications, VaR also opens up the chance of a radical approach to
enterprise-wide risk management. These radically new approaches go beyond the
existing risk management and definitely require a major transformation in the existing
way that organizations position and govern themselves. It certainly improves on

traditional management techniques and is summarized below (Dowd, 1999a):
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e It provides top management with a much better grip on risks, thus leading to a
more informed risk management;

e [t leads to a robust new control system, which renders it more difficult for fraud
and errors to go undetected,;

e It helps firms respond more appropriately to regulators in particular to the capital
adequacy regulations that firms face, thus helping them on how to deal with the
burden of such regulations; and

e Systems based on VaR methods are useful to quantify other risks like liquidity,
credit, cash flow as well as other forms of market risks leading to a more

integrated approach to the different forms.of risks:

3.7 Conclusion on Value-at-Risk

The concept of Value-at-risk - (VaR) does bring -a plus in the computation and
management of risk. However, \VaR also has its limitations and some critics even go as
far as saying that it should be buried. To already bury VaR is a little premature, as VaR
has shown some promise ever since its first implementations. Extensions are now being

applied by a wider audience.

To use or not to use VaR as a measure of market risk is therefore the biggest question.
Objectively, the use of VaR will return better results when it is complemented by other
market risk measures and existing techniques to quantify risk. After all, VaR is
considered just like another tool in the investor’s toolkit. The techniques that

complement VaR measures well are:
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e Stress testing: This is a measure of potential losses as a result of possible events in
an abnormal market environment. There are two common types of stress testing.
The first is based on economic scenarios. Pretend that a portfolio experiences the
1987 stock market crash again. The second is "matrix" based. Change some
assumptions about variances and correlations and see what happens. Neither is
statistical in nature, in contrast to VaR, i.e. the probability of the scenario is
unknown (Schachter, 1997).

e Back testing: This is a statistical procedure to validate the accuracy of VaR
models. Banking regulators require back testing for banks that use VaR for capital
allocation. It involves a comparison between-the-frequency a VaR model under-
predicts the subsequent day's loss, against the number of time such an under-
prediction is expected. If losses exceeding VaR have a 1 in 100 chance of

occurring, then 2 or 3 of those are expected in a year (Schachter, 1997).

The next chapter is about the simulation procedures-ofthis research. A portfolio of four
South African bonds will be exposed to the three main methodologies described in this
chapter and the different VaR estimates will be computed and compared. Eleven

different simulations will be undertaken and the underlying factors of VaR will be

measured.
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Chapter 4

Research Findings and Analysis

4.1 The Portfolio of Financial Instruments

The previous chapter (Chapter 3)-dealt with- the theory, the methodologies and the
applications of VaR. The next step now, is to apply the techniques of VaR to a portfolio
of financial instruments and to analyze how the dependent factors of VaR react. For this

research, a portfolio of financial instruments consisting of four South African government

bonds was selected.

The four government bonds included in the portfolio to be analyzed are:
1. RI153
2. R157
3. E168

4. DVO7
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Each of the four bonds has different characteristics as far as the maturity dates, book-
closed and coupon payments are concerned. Table 1 (Appendix IlI) summarizes the

features of the different bonds.

4.2 The factors to be measured

In Chapter 3, (Section 3.4), it was found that VaR is based on two main factors namely:

1. Time horizon: The period over which the asset in the portfolio will be held, also
called holding period. For active portfolios with liquid assets, typical holding
period is 1-trading day, although regulators like the European Capital Adequacy
Derivatives (CAD) require-10-days. Ideally, time horizon should correspond to
the largest period required for orderly portfolio liquidation.

2. Probability: This is the confidence interval or significance level at which the
estimate will be made. Choices about confidence interval depend on its use. Risk
aversion or high costs will imply that a larger amount of cash should cover
possible losses, thus implying a higher confidence interval. Popular choices of

confidence intervals are 95% and 99%.

The two above-mentioned factors will then be measured and analyzed. The SAS Risk
Dimension software will conduct the analysis. It was found that Risk Dimension is also
sensitive to the dates (day/month/year) on which the simulation of the portfolio takes
place. Thus, the third factor of measurement will be “effective date” and depending on
when the simulation is run, the different effective dates will be termed:

1. The Past - simulation run on effective date 25 Sep 2002;
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2. The Present - simulation run on effective date 25 Sep 2003; and

3. The Future - simulation run on effective date 14 May 2004.

The reason why this factor is worth measuring is simply because it is interesting to see
how the VaR of a portfolio evolves through time, i.e. it is quite informative to observe
what VaR a portfolio has now, what it was a year back and what it will be in a year’s
time, with other conditions being fixed. With this kind of information on hand, decision-
making is rendered easier for an investor as far as a time frame is concerned. This piece
of information gives the investor the freedom to decide on the best time to act on the
portfolio. Knowing how the VaR of a‘portfolio-evolved over the past year and by how
much it will change over the coming year is quite helpful to the investor and accordingly
measures can be taken to limit the changes to @ minimum, i.e. actions can be taken to

minimize the overall risk.

Throughout this research, it was found that market risk of a portfolio is dependent on the
composition of the particular portfolio, i.e. the individual risks of the instruments have an
effect on the overall portfolio risk. As a result, changing the composition of the portfolio
will actually change the portfolio overall risk and will have an effect on the value of the
VaR. The composition of this particular portfolio comprises of four government bonds.
However, for this research, the techniques of VaR will be carried out with the assumption
that each government bond has an equal weightage, i.e. with the assumption that an equal

amount of money is invested in the four different government bonds of this portfolio.
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The objective in this research is to try minimizing VaR value for this particular portfolio
and to identify which government bond causes more influence on the VaR estimates and
explain why. In real-life situations, this is common practice, since a fund manager or an
investor will definitely look at minimizing the overall risk of a portfolio. One of the
features of a VaR analysis is that it allows the user to vary the composition or weightage
of a portfolio to bring the risk down. However, it is very difficult to incorporate
‘portfolio composition’ in SAS Risk Dimension and accordingly, it will be assumed that

the different bonds have an equal weightage.

4.3 The Processes

The portfolio will be subjected to the main methodologies of VaR described in this
research. In Chapter 3, all three methodologies were elaborated. Now, the technical
process on how these methodologies act upon a portfolio and especially how SAS Risk
Dimension handles these different methodologies, will be described. The three main
processes are:

(1) Historical VaR;

(2) Variance-Covariance VaR; and

(3) Monte Carlo VaR.
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4.3.1 Historical VaR

The data available for the four bonds range from Dec 1999 to 14 May 2004. To calculate
a VaR estimate, the basic market prices and rates that affect a portfolio must be known
(Ganief, 2001). In fact, these can be considered as the risk factors for simple portfolios.

In Chapter 3(Section 3.4.1), a general approach was taken for the development of a VaR

estimate.

Accordingly, in that section, risk decomposition of the portfolio was discussed in terms
of risk factors, but it should be noted that indeed two situations of portfolio
decomposition exist to calculate the VaR of a portfolio (Ganief, 2001). They are:
1. The Fully Aggregated Position — this situation is mostly applicable for portfolios
with few instruments and in stable conditions.
2. The Market Position — this situation is suitable for complex portfolios with many
different instruments and a time changing composition. This is also the situation
which selects the risk factors of the different instruments to decompose the

portfolio and whose process is outlined in section 3.4.1.
Due to the fact that the portfolio contains few financial instruments, all of the same type,

it is not necessary to decompose the risk by the general approach outlined in section

3.4.1, i.e. by the risk factors (The Market Position).
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The process indeed will be based on the financial instruments themselves. Historical VaR

requires little information about the statistical distribution of market risk factors and as a

result can be applied directly on the financial instruments in the portfolio, which is the

way SAS Risk Dimension will handle the Historical Simulation for this portfolio.

Historical VaR re-evaluates the current portfolio using historical rates and prices to

obtain the risk of the portfolios. Applications of this process require the following

procedures, (Ganief, 2001):

1.

The portfolio is defined in terms of risk factors, either in a fully aggregated
situation or a market situation. —Under the fully. aggregated situation, a set of
historical data for the different instruments is needed while under a market
situation, each instrument will have to be decomposed into defined risk factors
and the market values-for these risk factors will have to be known. Usually,
complex portfolios will use the market situation to compute Historical VaR, while
simple ones will apply the fully aggregated situation to arrive to a Historical VaR.
A historical set of data is needed. Usually a period between 90 to 500 days will
be sufficient. This data consists of market rates and prices, which have been
recorded.

The historical set of data is changed to the current valuation date of the VaR
estimate.

The portfolio is revalued by utilizing pricing models based on the historical set of

data to obtain the changes in the portfolio values.
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5. The VaR estimate is obtained from the set of value changes computed using a
percentile ranking. This requires the matching of the value of the confidence

level with the ranked profit and loss histogram.

For this research, the portfolio is composed of only one type of financial instrument and
there are only four of them. As a result, instead of decomposing the portfolio by the risk
factors (outlined in section 3.4.1), also known as the Market Situation, the Fully
Aggregated situation will decompose the portfolio. This means that the Historical VaR

will be obtained by applying the method directly on the financial instruments.

4.3.2 Variance-Covariance VaR

This process arises from the Variance-Covariance Method or Analytical VaR although
very often, it is also called the Delta-Normal method as in SAS Risk Dimension. This
elegant way of calculating VaR was developed by J P Mosgan through its RiskMetrics™
(Jorion, 2004). Analytical VaR is commonly applicable to portfolios and it is about using

historical correlations and volatilities to derive the portfolio’s market risk (Ganief, 2001).

VaR of a portfolio is the measurement of risk over a given horizon. Usually, VaR
requires the construction of a return distribution for the portfolio. However, for this
method the distribution is assumed to be Normal and accordingly the problem of the
assumed distribution is eliminated as the Normal distribution is fully defined by its two

parameters namely x and o (Ganief, 2001).
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With the distribution assumed to be Normal and defined by the above parameters, then all
that are required to compute a VaR value is to estimate the two parameters 4 and o.
These two estimates will provide the necessary information needed to compute the VaR
statistics. Usually, VaR is a measure calculated as the maximum loss that can occur at a
confidence level of 95% (Ganief, 2001). As such, under this process, the VaR statistic
will simply be:
16450 -4 vevviiniiiiiiiiiiiiiiiii Equation 1

To find an estimate for u is quite simple. However, since VaR is usually calculated over
short horizons, u is typically set as zero. As a result, Equation 1 is reduced to the

following:

| Y S e RN Equation 2
Accordingly, estimating VaR through this process resembles a simple task of calculating
the standard deviation, o, of the return distribution of the portfolio. Generally, there exist
three ways to compute such a standard deviation (Ganief, 2001):
1. Estimation from the historical data;
2. The Fully Aggregated Approach; and

3. Decomposition of the portfolio into identified risk factors.

In this research, the computation of the standard deviation for the Variance-Covariance
VaR is estimated from the historical data in terms of the volatilities and correlations
between the financial instruments, in the form of a matrix supported by SAS Risk

Dimension. Once the standard deviation is estimated, a VaR value can be calculated by
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using equation 4.3.3. For different confidence levels, the Normal table is used to read off

the quantile values.

4.3.3 Monte Carlo VaR

Another way to compute VaR is by the Monte Carlo Simulation. Monte Carlo
Simulation is made up of three important factors (Risk Dimension Documentation, 2001),
namely:

1. Simulation of the world's future states;

2. State variable transformation; and

3. Pricing of the portfolio.

Because of the fact the world's future states are not known, models of state variables are
used to forecast the future states. Historical data of the state variables can be used to
develop future states though a lot 'of emphasis is being put'on model application. SAS
Risk Dimension supports Monte Carlo Simulation through both the model specification
and the use of historical data in the form of a matrix. For this research, the Monte Carlo
Simulation performed was supported by a matrix of statistical information rather than a

defined model. As a result, only this type of Monte Carlo Simulation will be described

here.

Such a Monte Carlo Simulation randomly generates scenarios based on some assumed
joint probability distribution of the risk factors (Ganief, 2001). Historical data can be

used to obtain the statistics needed to form the matrix. The statistics composing the
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matrix are volatilities and correlations and they will define the distribution. Once the
assumed distribution is set up, a random number generator, which has to be chosen, will
produce a selection of scenarios (Ganief, 2001). As such, the selected scenarios will be
inferred from the assumed distribution and they will reflect the statistical characteristics

drawn from the available historical data.

4.4 The Analysis from SAS Risk Dimension

Section 4.2 investigated the different factors that will be analyzed for a VaR value for this
portfolio of government bonds under the three different methodologies described in this
thesis. The portfolio will be subjected-to different conditions and accordingly the VaR
value will be measured. The different conditions or factors to be measured will be:

1. Time horizon;

2. Probability; and

3. Effective date.

The aim is to observe how the portfolio reacts to these conditions under the three
different techniques outlined earlier. An attempt to find an optimal environment for this
particular portfolio will be made, i.e. under what level of conditions will this portfolio be
exposed to the lowest risk possible. SAS Risk Dimension features VaR values in two
different forms under a Historical Simulation namely:

1. Profit and Loss;

2. Exposure, also called exposure-at-risk: This is the relevance to non-performance

at some point in the remaining life of the portfolio.
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Different simulations based on different conditions will be run for this particular
portfolio. The Control Simulation or Benchmark Portfolio will bear the following
conditions in mind:

o Effective date: 25 September 2003, “The Present”;

e Confidence level: Probability: 95%;

e Holding Period: 1-trading day for each government bond; and

e Composition/Weightage: Each instrument is assumed to have equal weightage.

The Control Simulation in this situation will be the reference point and the benchmark
against which all the other simulations-will-be-analyzed.. The conditions selected for the
control simulation are as such because 95% probability and 1-trading day are most
common levels for calculating VaR. The present (corresponding to the purchase dates of
the bonds) value of the VaR is-what is required and an equal weightage for the different

bonds is the assumption.

4.5 The Different Simulations

For this research, the following simulations will be run at various levels for the different

factors under measurement. The different simulations run will bear the following

conditions:

1. The Control Simulation (As defined in section 4.3), which is also ‘The Present’.
2. Equal Weightage, 1-trading day holding period at 99% probability run on

effective date 25 September 2003.
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10.

11.

Equal Weightage, 1-trading day holding period at 90% probability run on
effective date 25 September 2003.

Equal Weightage, 1-trading day holding period at 92.5% probability run on
effective date 25 September 2003.

Equal Weightage, 1-trading day holding period at 97.5% probability run on
effective date 25 September 2003.

Equal Weightage, 1-trading day holding period at 95% probability run on
effective date 25 September 2002, which is also ‘The Past’.

Equal Weightage, 1-trading day holding period at 95% probability run on
effective date 14 May 2004, which-is also‘The Future’.

Equal Weightage, bond R153 with a 10-trading day holding period at 95% run
on effective date 25 September 2003.

Equal Weightage, bond R157 with a 10-trading day holding period at 95% run
on effective date 25 September 2003.

Equal Weightage, bond E168 with a 10-trading day holding period at 95% run
on effective date 25 September 2003.

Equal Weightage, bond DV07 with a 10-trading day holding period at 95% run

on effective date 25 September 2003.

Simulations 1 to 5 will be used to measure how VaR estimates react to changes in
probability level while simulation 1 together with simulations 6 and 7 will be used to
measure the factor effective date on VaR values. Finally, simulation 1 together with

simulations 8 to 11 will be used to check upon the effects of holding period on the VaR
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values. It must be noted that the measurements of the factors will be for the three

different methodologies.

4.5.1 The Control Simulation

The Control Simulation or Benchmark Portfolio is also termed “The Present”. It is the
simulation which is run on the effective date of 25 September 2003 at a confidence level
of 95%. The different government bonds are assumed to have an equal weightage and
their holding period is fixed at 1-trading day. The reason why the effective date, 25
September 2003, is termed "The Present" is simply because the instruments in the
portfolio all have a purchase date (Table-1,-Appendix 1iI) corresponding to the above
effective date. The three techniques of computing VaR are applied on that portfolio with

the above conditions and run in SAS Risk Dimension.

Section 1 (Appendix I) shows the different tables for the Control Simulation under the
three different techniques together with the VaR distributions figures, both in absolute
values and percentage. Table Al.l (Appendix I) summarizes the statistics for this
Control Simulation under Historical Simulation whilst Table A1.2 (Appendix I) shows

the statistics for the exposure-at-risk (EaR) under Historical Simulation.

It can be seen that under Historical Simulation process, the VaR estimate for the Control
Simulation is 255,748.47 whilst the EaR is 46,514,815.66. This means that 95 times out
a 100, the Control Simulation or Benchmark Portfolio will stand to lose at most ZAR

255,748.47. Table B1.1 on the other hand summarizes the Variance-Covariance VaR
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estimates for the Control Simulation. It is seen that the VaR value under this
methodology is 43,155.45. Finally table C1.3 gives the statistics for this Benchmark
portfolio under the Monte Carlo Simulation and it is found that the VaR value this time is

29,117.16.

4.5.2 Equal Weightage, 1-trading day holding period at 90%

probability run on effective date 25 September 2003.

This second simulation run has the above characteristics. Compared to the Control
Simulation, there is only one difference — instead of the simulation being run at the 95%
probability, it is being run at a lesser level, i.e. the 90% probability level with the other

conditions being the same as the Control Simulation.

Tables A2.1 to A2.2 (Appendix I) summarize the statistics and the results for this
simulation run. Under Historical Simulation, it -is found that the VaR estimate is
174,730.57 while the exposure-at-risk is 46,444,548.25. This means that 90 times out of
100, this portfolio with the above characteristics will lose at most ZAR 174,730.57.
When the portfolio is subjected to the Variance-Covariance Method, it is found that the
VaR value is 33,623.62 while under the Monte Carlo Simulation, the VaR estimate is
20,951.89. As aresult, 90 times out of 100, this particular portfolio will lose at most ZAR

33,623.62 under the Variance-Covariance Method and ZAR 33,623.62 under the Monte

Carlo Simulation.
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4.5.3 Equal Weightage, 1-trading day holding period at 99%

probability run on effective date 25 September 2003.

This simulation run bears the above conditions. Compared to the Control Simulation,
there is only one change — instead of a 95% probability, the simulation is now run at 99%

with the other factors being kept the same as the Control Simulation.

Tables A3.1 and A3.4 (Appendix I) summarize the results for this simulation. It is found
that for this simulation run, the VaR is 567,792.30 and the exposure-at-risk to be
46,713,354.12. This is now under the Historical Simulation and it implies that 99 times
out of 100, this portfolio will lose at most ZAR 567,792.30. Under Variance-Covariance,
the VaR value was found to be 61,035:58 and the VaR estimate is 54,034.87. As a result,
the portfolio will lose at most ZAR 61,035.58 under the Variance-Covariance Method
and at most ZAR 54,034.87 under the Monte Carlo Simulation and that 99 times out of

100.

4.5.4 Equal Weightage, 1-trading day holding period at 92.5%

probability run on effective date 25 September 2003.

This fourth simulation run has the above characteristics. Compared to the Control
Simulation, there is only one difference — instead of the simulation being run at the 95%
probability, it is being run at a lesser level, i.e. the 92.5% probability level with the other

conditions being the same as the Control Simulation.
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Tables A4.1 and A4.2 (Appendix 1) summarize the statistics and figures A4.1 and A4.2
show the distributions for this simulation run. Under Historical Simulation, it is found
that the VaR estimate is 201,749.24 while the exposure-at-risk is 46,474,519.85. This
means that at a confidence level of 92.5%, this portfolio with the above characteristics
will lose at most ZAR 201,749.24. When the portfolio is subjected to the Variance-
Covariance Method, it is found that the VaR estimate is 37,768.49 while under the Monte
Carlo Simulation, the VaR value is 24,762.08. As a result, at a confidence level of 92.5%,
this particular portfolio will lose at most ZAR 37,768.49 under the Variance-Covariance
Method and ZAR 24,762.08 under the Monte Carlo Simulation. Figure C4.1 displays the

Monte Carlo Simulation distribution for this simulation run.

4.5.5 Equal Weightage, 1-trading day holding period at 97.5%

probability run on effective date 25 September 2003.

This simulation run bears the above, conditions.. Compared to the Control Simulation,
there is only one change — instead of a 95% probability, the simulation is now run at

97.5% with the other factors being kept the same as the Benchmark Portfolio.

Tables AS.1 é.nd A35.2 (Appendix 1) summarize the results for this simulation. It is found
that for this simulation run, the VaR is 336,032.02 and the exposure-at-risk to be
46,604,229.75. This is now under the Historical Simulation and it implies that at a 97.5%
confidence level, this portfolio will lose at most ZAR 336,032.02. Figures A5.1 and A5.2
display the distribution of the VaR and EaR under the Historical Simulation. Under

Variance-Covariance, the VaR value was found to be 51,422.89 and the VaR estimate is
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52,609.27, under the Monte Carlo Simulation. As a result, the portfolio will lose at most
ZAR 51,422.89 under the Variance-Covariance Method and at most ZAR 52,609.27

under the Monte Carlo Simulation at 97.5% confidence level.

4.5.6 Equal Weightage, 1-trading day holding period at 95%

probability run on effective date 25 September 2002 — ‘The

Past’.

This simulation run is termed ‘The Past’ as its effective date is 25 September 2002, a year
ago from the time of the purchase of the instruments in the portfolio (purchase date: 25
September 2003, Table 1, Appendix i). Compared to the Control Simulation, the only
difference is about the effective date with the other conditions being the same. The
reason why this simulation is‘important is because it is informative to know how this

particular portfolio was performing in the past compared to the present.

Tables A6.1 to A6.2 (Appendix 1) summarize the statistics and figures A6.1 and A6.2
display the results for this simulation run. Under Historical Simulation, it is found that
the VaR estimate is 281,357.6 while the exposure-at-risk is 46,963,303.69. This means
that 95 times out of 100, this portfolio with the above conditions will lose at most ZAR
281,357.68. When the portfolio is subjected to Variance-Covariance Method, it is found
that the VaR value is 47,363.37 while under the Monte Carlo Simulation the VaR
estimate is found to be 32,948.70. As a result, when the portfolio is subjected to the

Variance-Covariance Method, 95 times out a 100, it will lose at most ZAR 47, 363.37
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and at most ZAR 32,948.70 under the Monte Carlo Simulation. Figure C6.1 (Appendix

I) display the Monte Carlo VaR analysis for this simulation run.

4.5.7 Equal Weightage, 1-trading day holding period at 95%

probability run on effective date 14 May 2004 — ‘The Future’.

This simulation is termed ‘The Future’ as it ran on effective date 14 May 2004.
Compared to the control simulation, once again there is only one difference and that is
about the effective date. If running a simulation in the past is informative, then running
one in the future in no less informative. It does give an edge to know how a portfolio
with the same characteristics will perform in-a future not so distant. Due to the fact that
the historical data ranges until 14 May 2004, the simulation run "The Future" cannot take

place exactly a year in time, i.e. on 25 September 2004. If this is performed, then there

will be a case of missing values.

Tables A7.1 to A7.2 (Appendix I) summarize the statistics and figures A7.1 to A7.2
display the results for this simulation run. Under Historical Simulation, it is found that
the VaR estimate is 215,244.60 while the exposure-at-risk is 45,445,069.80. This means
that 95 times out of 100, this portfolio with the above conditions will lose at most ZAR
215,244.60 under the technique of Historical Simulation. When the portfolio is subjected
to Variance-Covariance Method, it is found that the VaR value is 41,019.38 while under
the Monte Carlo Simulation the VaR estimate is found to be 424.08. As a result, when

the portfolio is subjected to the Variance-Covariance method, it will lose ZAR 41,019.38
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and ZAR 424.08 under Monte Carlo Simulation and that 95 times out a 100. Figure C7.1

(Appendix I) displays the Monte Carlo VaR analysis for this simulation run.

4.5.8 Equal Weightage, bond R153 with a 10-day holding

period at 95% run on effective date 25 September 2003.

This simulation run has the above conditions. Compared to the Control Simulation, the
only change is the holding period of one bond in the portfolio and that is bond R153 with
a 10-trading day holding period. The three remaining bonds in the portfolio still have the
same holding period, i.e.1-trading day each.

Tables A8.1 and A8.2 (Appendix I} summarize the statistics for this simulation run. It is
found that the VaR estimate is 793,167.88 and the exposure-at-risk to be 151,108,949.72
under Historical Simulation. This implies that 95 times out of 100, this portfolio will lose
at most ZAR 793,167.88. Under the methodology of Variance-Covariance, the VaR
estimate is found to be 129,526.43 and the Monte Carlo VaR is 100,244.78. Figures
A8.3 and C8.2 display the contribution of the instruments towards risk under the
conditions. These figures are very informative, though it is quite logical that the more an

investor hold to an instrument, the more risk that instrument is exposed to.
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4.5.9 Equal Weightage, bond R157 with a 10-day holding
period at 95% run on effective date 25 September 2003.

This simulation run bears the above characteristics. Compared to the Control Simulation,
there is one single difference and that is bond R157 has a 10-trading day holding period
compared to a holding period of 1-trading day in the Control Simulation. The remaining

three bonds in this particular portfolio still bear a 1-trading day holding period.

Tables A9.1 and A9.2 (Appendix I) summarize the statistics of this simulation. It is
found that the VaR estimate of this portfolio is 1,157,801.80 while the exposure-at-risk is
156,981,146.64 under Historical Simulation. This impli€s 95 times out of 100, under
Historical Simulation, this particular portfolio stands to lose at most ZAR 1,157,801.80.
Under Variance-Covariance the VaR estimate is found to be 183,774.89 and the Monte
Carlo VaR estimate is 127,957.55. This means that under the Variance-Covariance
Method, this portfolio will lose at most ZAR 183,774.89 and ZAR 127,957.55 under

Monte Carlo and that 95 times out of a 100.

4.5.10 Equal Weightage, bond E168 with a 10-day holding
period at 95% run on effective date 25 September 2003.

This simulation run has the above conditions. Compared to the Control Simulation, there
is again one change — bond E168 in the portfolio has a 10-trading day holding period
compared to the 1-trading day holding period. The remaining four instruments still have

their original holding period of 1-trading day.
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Tables A10.1 and A10.4 (Appendix I) summarize the simulation statistics. Under
Historical Simulation, the VaR estimate is found to be 650.358.82 while the exposure-at-
risk is 136,403,977.59. This implies that under Historical Simulation, 95 times out of
100, this particular portfolio will lose at most ZAR 650.358.82. Under Variance-
Covariance, the VaR estimate is equal to 110,282.71 while under the Monte Carlo
Simulation, the VaR value is found to be 57,549.41. As a result, 95 times out of a 100,
this portfolio will lose at most ZAR 110,282.71 and ZAR 57,549.41 under the Variance-

Covariance and Monte Carlo Simulation respectively.

4.5.11 Equal Weightage, bond DV§7 with a 10-day holding
period at 95% run on effective date 25 September 2003.

This simulation run bears the above characteristics. Compared to the Control Simulation,
there is one change — this time it is bond DV07 that has a 10-trading day holding period

with the remaining four bonds still.having the same l-trading day holding period.

Tables Al1.1 and A11.2 (Appendix I) summarize the statistics for this simulation run. It
is found that the VaR estimate is 790,159.07 and the exposure-at-risk to be
160,387,408.21 under Historical Simulation. This implies that 95 times out of 100, this
portfolio will lose at most ZAR 790,159.07. Figures All.l1 to All.3 display the
simulation under this technique and also the instrument risk contribution for this
portfolio. Under the Variance-Covariance Methodology, the VaR estimate is found to be

149,999.62 and the Monte Carlo VaR is equal to 111,700.66.
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4.6 The effects on VaR due to changes in the factors

The simulations that have been run were for a purpose and that was to see how the
dependent factors react to changing conditions. The factors under measurement here
were:

1. Probability Level;

2. Effective Date; and

3. Holding Period.

Accordingly, different simulations were described that would indeed measure the effects

on these factors.

4.6.1 Effect of a changing "confidence interval' on VaR

The Control Simulation as well as:simulations run 4.5.2 t0'4.5.5 are the portfolios that
have been set up accordingly to measure the effects of a changing confidence interval.
The following table summarizes the different VaR values under the different level of

confidence at that for all three different methodologies and the exposure.
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Method 90% 92.5% 95% (Control | 97.5% 99%
Simulation)

Historical 174,730.57 201,749.24 255,748.47 336,032.02 567,792.30

Exposure 46,444,548.25 | 46,474,519.85 | 46,514,815.66 | 46,604,229.75 | 46,713,354.12

Variance- 33,623.62 37,768.49 43,155.45 51,422.89 61,035.58

Covariance

Monte-Carlo 20,951.89 24,762.08 29,117.16 52,609.27 54,034.87

Table 4.6.1: Summary of VaR values for different Confidence Levels

It can be seen from table 4.6.1 that when the confidence level increases, the VaR estimate

also increases and that is true for any of the three methodologies as well as the exposure.

The lesser the probability level, the less reliable the VaR estimate will be. It is therefore,

misleading to try to bring the VaR estimate down, i.e. the risk, by decreasing the

probability level, as by no means is it informative. An investor would want to be able to

rely on the figures of VaR and not make the VaR estimates look reasonable. Increasing

the level of the probability is a case of risk aversion, as higher cost will be needed to

minimize possible losses. Therefore, the VaR values being higher as the probability level

increases, just confirm the theory of VaR for this factor.
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Figures 1.1 to 1.4 (Appendix II) depict scatter-plots of VaR estimates according to the
methodologies with confidence levels. All four plots show a positive slope, which
implies that the value of VaR will increase with increase in probability level. The
regression line is also fitted in all four cases and the regression equations given in each
situation. This is the functional form of VaR where it gives VaR as a function of the
confidence level, i.e. VaR = f(probability level) and this equation is given for all three

methodologies as well as the exposure-at-risk in Appendix II.

4.6.2 Effect of a changing "effective date'" on VaR

To investigate the effects of changing the effective dates on the value of VaR, the
following simulations weré run and they were:

1. The Control Simulation;

2. The simulation run, "The Past™; and

3. The simulation run, "The Future".

The following table summarizes the results for the VaR estimates for the different

methodologies as well as the exposure.
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Method "The Past" Control Simulation | "The Future"
Historical 281,357.60 255,748.47 244,119.82
Simulation

Exposure-at-risk 46,963,303.69 46,514,815.66 46,030,534.61
Variance- 47,363.37 43,155.45 41,679.86
Covariance

Monte-Carlo 32,948.70 29,117.16 25,887.17

Table 4.6.2: Summary of VaR values for different effective dates

From table 4.6.2, it can be noted that as the portfolio is moved backward in time, the
value of the VaR estimates increase — "The Past" simulation having a larger value than
the Control Simulation and finalty "The Future simulation. " This is notable for all three

methodologies as well as the exposure-at-risk.

- To explain the rise in the VaR estimates, the characteristics of the government bonds in
the portfolio must be analyzed. One reason why ‘The Past’ portfolio bears a higher VaR
value could be because the maturity dates of the different bonds are still far away. If this

is the case, then the closer to the maturity dates this portfolio is valued, the VaR estimate

must decrease.

To show this trend, the functional form of VaR against effective date has been found.

Figures 2.1 to 2.4 (Appendix I1I) depict scatter plots of VaR estimates against numerous
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dates for this portfolio. The range of the dates is from 25 March 2000 to 25 March 2004
(historical data permitting). To plot the two variables, the date values were given ranks
with 25 March given a rank '1' up to the last date available. The regression line is also
fitted for the four situations and the equations also provided (Section 2, Appendix I1I). It
can be seen that in all four situations, the regression line has a decreasing slope which
means that as the portfolio is moved forward in time, VaR decreases. For a portfolio
consisting of government bonds, this can be attributed to moving closer to the different

maturity dates of the bonds.

It was not possible to run "The Future" simulation exactly one year ahead in time. This is
because the historical data available-ends-on 14 May 2004, However, if there was a need
to actually know the VaR value exactly one year ahead, a prediction can be made from

the regression analysis. For the Historical-Simulation, the regression equation is

VaR = 345702 — 10883(effective date)............ Equation 1

To obtain an estimate for the VaR under this method for the effective date, 25 September
2004, which is exactly a year ahead in time from the purchase of the instruments, the
following can be done:

The rank of the effective date 25 September 2004 is equal to 10. Substituting in equation
1, the VaR estimate will be equal to 236872. This value is less than the simulated value
of "The Future" simulation whose effective date is 25 March 2004. It shows that the

forecasted value is indeed lesser for an effective date even further forward in time.
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4.6.3 Effect of a changing ""holding period" on VaR

The Control Simulation as well as simulations runs 4.5.8 to 4.5.11 were set up to measure

the changes on VaR values due to a changing holding period of the bonds in the portfolio.

The following table summarizes the VaR results of these simulations:

Method Control R153 with a|R157 with a|E168 with a|DV07 with a

Simulation 10-day holding | 10-day holding | 10-day holding | 10-day holding
period (4.5.8) | period (4.5.9) | period (4.5.10) | period (4.5.11)

Historical | 255,748.47 793;167.88 1,157,801.80 | 650,358.82 790,159.07

Simulation

Exposure | 46,514,815.66 | 151,108,949.72 | 156,981,146.64 | 136,403,977.59 | 160,387,408.21

Variance- | 43,155.45 129.526.43 183,744.89 110,282.71 146,999.62

Covariance

Monte- 29,117.96 100,244.78 127,957.55 57,549.41 111,700.66

Carlo

Table 4.6.3: Summary of VaR estimates for the different bonds at a 10-day holding

period.
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The only difference of the above simulations with the Control Simulation is that each
time, one of the bonds is having a holding period of 10-trading days with the rest kept at
I-trading day. The Control Simulation has all the bonds kept at a holding period of 1-
trading day.

From Table 4.6.3, a few trends can be noted. It can be seen that keeping bond R157 at a
10-day holding period will cause the highest value of the VaR estimate. This is because
the maturity date of bond R157 is 15 September 2015 (Table 1, Appendix 11I). Holding
on to more days to a bond whose maturity date is latest in the portfolio will automatically

have more risk. As aresult, under all three methodologies, the VaR values are high.

On the other hand, holding on to'10-trading days on to bond E168 causes the lowest VaR
value compared to the other simulations. This comes as no surprise as already maturity
dates have been identified as the component on which risk in a portfolio of bonds
depends. The maturity date of bond E168 is/ 01 June 2008 (Table 1, Appendix III).
Compared to the other bonds in the portfolio, E168 ‘will reach maturity first. As a result,

its VaR value is lowest compared to the other simulation runs.

One notable fact when comparing these simulations runs to measure holding period is
between bonds R153 and DVO7. If maturity date is responsible for the risk of a portfolio
of bonds, then bond R153 with a maturity date of 08 August 2010 (Table 1, Appendix 11I)
must have a smaller VaR value than bond DV07 whose maturity date is 30 September
2010. However, this is not the case for all the methodologies. If indeed this is true for

the Variance-Covariance method, the Monte Carlo Simulation and the exposure-at-risk,
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the historical simulation shows a bigger VaR value for bond R153 compared to bond
DVO07. This can be explained by the coupon dates of the two bonds. Under the
Historical Simulation, coupon dates are important when holding period is being
measured. Though bond DVO07 has a later maturity date than R153, its first coupon date,
CDl1 is earlier than that of R153 (CD1 of DV07 is 31 March 2004 whilst CD1 of R153 is

31 August 2004, Table 1, Appendix III).

The factor holding period shows that holding on to risky instruments will cause larger
VaR values. In this portfolio holding on to bonds with the latest maturity dates will cause
the VaR values to increase. However, if the holding period of the whole portfolio is
changed and not only one bond at-a time, the VaR values increase proportionally. It
means that if the holding period of all bonds is changed to 10-trading days the VaR
values will be 10 times the VaR value when all bonds are kept at 1-trading day, i.e. 10

times the VaR estimates of the Control Simulation.

As a result, based on the assumption that change in holding period occurs throughout the
portfolio, the functional form VaR = f(holding period) is a proportional increasing
function as described in section 3(Appendix III) by the scatter plot and the regression

analysis. This trend is true for all three methodologies.
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4.7 Comparison of the VaR between the different

Methodologies

It will be noted that the three different methodologies have been giving very different
VaR values for the same portfolio. It must be mentioned that first of all the portfolio is
composed of the same type of financial instruments. As a result, it would have been
expected that the VaR values, though not equal to, but would rather be close to one
another. However, the three methodologies have yielded contrasting values but have kept

up with all the patterns.

If reference is made to Tables 4.6.1 to 4.6.3, this notable effect will be seen. It can be
noted that the Historical Simulation gives very big VaR values compared to the Variance-
Covariance Method and the Monte Carlo Simulation. For the latter two, though the VaR
values are not quite the same, they do not show high differences. It would be thought
that for such a simple portfolio containing the same type ofiinstruments, the VaR values
will rather coincide in one way or the other. For an investor this situation will be quite
confusing and if care is not taken, problems are bound to arise. The main question here
will be: with three very different VaR estimates available for the same portfolio, which

one does the investor chooses?

The answer is definitely not to choose the lowest value of the VaR estimate. This can be
quite misleading. It will depend on how much faith the investor will want to put in these
VaR values. The differences in the VaR values in this case can be attributed to the way

the different methodologies handle bonds and also to the data. Moreover, SAS Risk
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Dimension must also be looked at and that is why the three technical processes were
described in Section 4.3. The way that SAS Risk Dimension handles these three
processes was also mentioned for that matter. It is known that the Monte Carlo
Simulation handle financial instruments that are difficult to be priced like derivatives.
This in no means can justify the difference of the VaR values for a portfolio of bonds.
The Monte Carlo simulation was run in SAS Risk Dimension based on the covariance
matrix but not on a defined model. SAS Risk Dimension has the option of running a
Monte Carlo Simulation based on either a covariance matrix or a defined model. In fact,
it is the same covariance matrix that was defined to be used by the Variance-Covariance
Method. It could be one reason why the twe-VaR values are closer but yet very different
from the Historical Simulation. Moreover, -the Variance-Covariance Method assumes
that the distribution is Normal. It could be that in this case, the distribution cannot be
assumed to be Normal. All these suppositions, however, will not help the investor on

which VaR estimate to choose.
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Chapter 5

Conclusion and Recommendations

5.1 Reliability of Results

The previous chapter (Chapter 4) is_abeut the practical part of this research. In that
chapter, the portfolio is presented as well as the financial instruments. The software that
is used is also introduced. The chapter also deals with the factors under measurement in
this research as well as providing details about the different simulation runs under the

three main methods of VaR. Finally, the results are presented and analyzed as well as

interpreted.

The next step is to discuss the reliability of the different results (Appendix I). Chapter 3
deals with the theory and methodologies of VaR and already then, an idea on how the
results are supposed to turn out, were made. It happens that the different set of results for

the distinct simulation runs fit the theory of VaR accordingly.

The first simulation run was termed the Control Simulation (4.5.1) and against which the
other ten (4.5.2 - 4.5.11) were compared. Simulation runs 4.5.2 to 4.5.5 measured the

influence of the factor probability level on VaR estimates. With the probability level set
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at 95% in the Control Simulation, the simulation run of 4.5.2 to 4.5.5 had theirs set at
90%, 99%, 92.5% and 97.5% respectively. The results are in accordance to what the
theory of VaR suggests about an increase in confidence level from 90% to 95% and then

to 99%.

The results for the three simulations above are summarized (Appendix I) and they show
that, when the probability level increases from 90% to 99% (with other factors staying
unchanged in the portfolio), the VaR estimates increase as predicted by the theory of VaR

(Section 3.4.2).

Simulation runs 4.5.6 and 4.5.7 were set to-measure the effect of the factor “effective
date” on VaR estimates. It is important to note here that "effective date" is not a factor
that is discussed by the theory of VaR. It is-a practical factor which advantageously is
featured by SAS Risk Dimension. "The simulation run 4.5.6;was termed "The Past" while
the simulation run 4.5.7 was called "The Future".- The Control Simulation was also

termed "The Present”.

The chosen “effective date” is about the date the simulation is run. For this research, the
chosen “effective date” is 25 September 2003. The choice of this particular date is
appropriate since it will represent the purchase dates of the different bonds in the

portfolio and it will match the “effective date” of the Control Simulation.
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Analyzing the results (Appendix I) of "The Past" and "The Future" and comparing both
with the Control Simulation ("The Present"), a simple logical and sensible pattern could
be detected. Compared to the Control Simulation, "The Past" had a larger VaR estimate
while "The Future" had a lesser VaR estimate. The reason why “The Future” have a
lesser VaR estimate than the Control Simulation could be that the more the portfolio is
valued in time the closer it gets to the different maturity dates of the government bonds
and accordingly less risk will be taken in by the portfolio. Another plausible reason
could be that a couple of coupons are already paid for the different government bonds.

Accordingly, the portfolio has already cashed in and the VaR estimates decrease

logically.

"The Past" had a higher VaR estimate compared to both the Control Simulation and "The
Future". "The Past" arose when the same portfolio-is measured for VaR back in time, i.e.
when the Control Simulation is run a year ago. The fact of "The Past" bearing a higher
VaR value than "The Present” can be explained by the same arguments as above, only
that this time, it will be that the maturity dates are too far away and also no coupon

payments have been made yet.

On a more positive note, however, effective date provides useful insight of how a very
same portfolio performed back in time and will perform in the future. What is also
interesting, is that the portfolio can be run as far away as possible both in the past and in
the future, obviously to the limit of plausibility; like for this particular portfolio it will be

insensible to run the portfolio after the latest maturity date of the government bonds.
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Unfortunately, it could be that not all computer software available to estimate the VaR of

a portfolio bears this feature.

Simulation runs 4.5.8 to 4.5.11 measure the influence of holding period on the estimation
of the VaR for a portfolio. Holding period is the second factor that is discussed by the
theory of VaR and which, when varied, should produce different values of VaR
estimates. In real life, investors do change holding period of financial instruments to try

and bring overall risk of a portfolio down.

One of the requirements of Banking Regulation is that financial instruments must bear a
10-day holding period for capital (Chapter 3). In-this-research, the Control Simulation
had all of its five government bonds with 1-day holding period. Simulation runs 4.5.8 to
4.5.11 had each time one government bond with a 10-day holding period with the other
bonds with a 1-day holding' period.’ The different results (Appendix I) are very
informative about the factor “holding period” and depending on which bond had its
holding period increased, the VaR estimates changed accordingly. The reason why some

VaR estimates were higher than others for the simulation runs 4.5.8 to 4.5.11 was

explained in Chapter 4.
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5.2 Problems Encountered

This research explores the factors influencing the measurement of VaR estimates. If the
SAS Risk environment was successfully set up as well as the different simulations run, it
was definitely not without hassles. A few problems were encountered in the build-up of

the Risk Environment and afterwards not everything that was desirable was implemented.

The problem encountered during this research was to accommodate the factor
"weightage" in the measurement of VaR estimates. It is common knowledge that, in
practice, when a financial instrument in a portfolio has been analyzed to bear less risk
over a period of time, more money-is invested in-that instrument. In other words, the
ratio of capital invested switches-in the portfolio.. This indeed has an impact on the value
of a VaR estimate for a portfolio. Unfortunately, it has not been possible to measure the
factor weightage for this particular portfolio and it was assumed that an equal amount of
money was invested in each of the different government bonds. The problem arose from
SAS Risk Dimension itself. It was discovered at a later stage during this research that
SAS Risk Dimension does not support dynamic portfolios yet. The problem has already

been taken up by the software vendor and it looks like it is to be remedied in the future.
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5.3 Limitations of the Research

In section 5.1, the reliability of the results for this research was discussed. Although, it
could be found that the results are reliable and in accordance with theory of VaR, it
cannot go without mentioning that some over-simplifications have taken place. On top of
those over-simplifications, it must be said that if care is not taken in the setting up of the

Risk Environment, then all the results can become misleading.

First of all, one limitation of this research is about the chosen portfolio of financial
instruments. The particular portfolio contains only one type of financial instrument and
that is the government bond. All-four of them have different characteristics but they are
all still of the same type. As a result, one can argue aspects about the reliability of these
results though one must accept that the results fit the theory of VaR pretty well. The
main question here would be: if the portfolio had different types of financial instruments,

would the result still be fitting the theory of VaR?

Secondly, in theory government bonds are considered to be risk-free financial
instruments. Their presence in a portfolio is usually to try to bring down the overall risk.
VaR of a portfolio is the amount of money that a portfolio can expect to lose at most over
a period of time. Now, if government bonds are risk free and this portfolio is entirely
made up of government bonds, how can that particular portfolio be at risk? It would
make sense to calculate the VaR of a portfolio composed of a mixture of financial
instruments or even for a portfolio which is made up of only one type of financial

instrument but which certainly are not risk-free. But still, a portfolio of government
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bonds was selected for this research and VaR estimates could be obtained from that

portfolio and under different conditions.

The one limitation of this research concerns the results directly. The factor "effective
date" that was measured in this research is not a theoretical factor of VaR but more a
practical factor of SAS Risk Dimension that certainly is important and informative. In
section 5.1, its reliability is discussed but the factor "effective date" has to be handled
with care. If on one hand it does provide valuable information to an investor, it can be
misleading if attention is not paid to the particulars of the portfolio. It simply means that
the dates of running the simulation have to be decided and known. Accordingly, if this is

overlooked, then the VaR estimate will be very misleading.

One other limitation that was neticed during this research and which is very important is
about the VaR values under the different methodologies. It,will definitely not be helpful
for an investor to have three very different VaR values for a very same portfolio and none
of them coincide, though the VaR estimates from the Variance-Covariance Method and
Monte Carlo Simulation are close. The reason for that was provided in Chapter 4.
Which one must the investor choose and why, will be a very difficult question to answer
and it will depend a lot on his experience and his knowledge of VaR. However, even so

though he can land into trouble.
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5.4 Value-at-Risk - The Final Verdict

This research is about the theory and methodologies of Value-at-Risk (VaR). The
application of the theory to a physical portfolio of financial instruments is also explored
(Chapter 4). The factors that can influence a VaR estimate for a portfolio are under
scrutiny in this research. The three main methodologies described in this research are
applied on the physical portfolio and the VaR values they produced are discussed. The

pros and cons of VaR are weighted. In all, this research covers most of the areas on the

topic of VaR.

Now, the inevitable question can be asked-about VaR: Should VaR be adopted or must it
be rejected? Based on this research alone, a stand cannot be taken. It must be said, that
many positive things were discovered about VaR during the research exercise. The
simulations were very informative. On the other hand, VaR is definitely not the answer
to muster financial risk. The literature review of this thesis together with the practical

problems illustrated are proofs that VaR is far away from being the "holy scale" to

measure risk.

VaR is certainly a very powerful measure of risk but it is definitely not the only one. The
important thing here is that VaR must be used together with other existing measures of
risk and then VaR estimates become very helpful. If an investor relies solely on VaR
measures, he has to be extremely careful and it will all depend on how much faith he
wants to put in these VaR estimates. His problem gets worse when he has three different

VaR estimates for the very same portfolio. One author has said and reported in this
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research that: "VaR is seductive but dangerous" while another one makes mention about

VaR being: "the answer to investors' prayers".

A true and fair reflection about the VaR hysteria will be: while VaR is very informative it
can also be misleading. Does it boil down to say that after all VaR is just like the existing
risk measures? The answer to this question is definitely no. VaR is certainly more
powerful than the existing risk measures as it gives more information and can definitely
look into different aspects of a portfolio. However, VaR must be used in parallel with the
existing risk measures and before putting a lot of faith in VaR estimates, it is important to

check on the reliability of the results.

5.5 Prospect for new research

The topic Value-at-Risk still remaing very imysterious,, /It must be agreed that over the
years and with technology progressing, VaR has 'gained more and more importance.
However, not all the problems of VaR have been solved. If many financial firms have
worked on the technological development of computer software to more easily compute

VaR, even more people want to look into the theoretical aspect of the topic and discuss

its reliability.

To find the minimum value of a VaR estimate for a particular portfolio (if this exists), an
investor has to do it by trial and error. Obviously, he will not change the probability level
to reduce the VaR estimate of his portfolio. He will try to change the weightage of

investment of the different financial instruments and also change the holding period of
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the instruments in the portfolio, once he has identified which financial instrument is more

at risk than the others.

To look at a portfolio and know which financial instrument is the most at risk is an
impossible task and even an experienced investor will be unable to detect this easily.
VaR estimates can detect the above and accordingly measures can be taken to minimize

the risk of the portfolio.

Having already investigated a portfolio of government bonds under the three main
methodologies, this analysis should be-taken a step-further in future research. It will be
very interesting to analyze the VaR -results of a portfolio of diversified financial
instruments. There are a few other portfolio permutations that are interesting to research
under different VaR methodologies. Historical-Simulation’s ability to cope with a

portfolio of derivatives, swaps or contracts should be studied in future projects.

All the above can be investigated at a higher level for further research. A few important
factors must be considered for research of this nature. First of all, it must be made certain
that financial data relative to the different financial instruments, to be included in the
different portfolios, are available and over a long enough period of time. Secondly, more
training on the SAS Risk Dimension software will be required. Finally, no important

research can be achieved or made possible without the availability of the necessary funds.
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APPENDIX 1

(1) EQUAL WEIGHTAGE, 95% PROBABILITY, 1-DAY HOLDING
PERIOD, RUN ON 25 SEPTEMBER 2003, "THE PRESENT", CONTROL

SIMULATION

(A) HISTORICAL VaR

Statistic

__E stimate L

T

At-Risk Value (ZAR)

At-Risk Value as percent of Base Value

Number of Instruments in Portfolio

olo|vio|alaiwn]-

Number of Replications Actually Used

13| Standard D eviation of Profit/Loss
.14} Skewness of Profit/L.oss
15| Kurtosis of Profit/Loss

17] Median Profit/Loss (ZAR)

Table Al.1: VaR statistics by Historical Simulation

L Statistic’

Lower Tolerance Limit of At-Risk Value (Z24R)
Upper Tolerance Limit of At-Risk Value (ZAR)

Lower Tol Limit of VaR as percent of Base
Upper Tol Limit of VaR as percent of Base

T otal Number of Simulation Replications
10| Number of Unadjusted Missing Replications

11| Number of Missing Adjusted Replications
12| Mean Profit/Loss over Simulations (ZAaR]

18] Minimum Profit/Loss over Simulations (ZAR)

18| Maximum Profit/Loss over Simulations (AR )

E stimate -

255.748.47
222.658.44
277.547.52
0.55
0.48

0.80
4
1092
1092
o
o
16.515.16
216.887.28
-1.98977:
42 27753

-2.997.430.29
14.801.38 "

1.875.922

&

AtRisk Value (ZAR)

At-Risk Value as percent of Base Value

Number of Instruments in Portfolio
T otal Number of Simulation Replications
Number of Replications Actually Used

ojo|~jo|als |wln]=

13| Standard Deviation of Profit/Loss
14| Skewness of Profit/Loss
15| Kurtosis of Profit/Loss

17| Median Profit/Loss (2AR)

Table A1.2: EaR statistics by Historical Simulation
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Lower Tolesrance Limit of At-Risk Value (ZAR)
Upper Tolerance Limit of At-Risk Value (ZAR)

Lower T ol Limit of VaR as percent of Base
Upper Tol Limit of VaR as percent of Base

10| Number of Unadjusted Missing Replications
11} Number of Missing Adjusted Replications
12 Mean Profit/Loss over Simulations (ZAR)

16| Minimum Profit/Loss over Simulations [Z2AR)

18| Maximum Profit/Loss over Simulations (ZAR)

46.514,815.66

46.492,933.94
46.555.832.25

100.62

100.57

100.71°

4 .

1092:

1092 .

o

(0}

46,244 615.47
216.887.28
-1.98977
42.27753
43.230.670.02
46.242,901.69
48.103.423.11
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(B) Variance-Covariance Method

JANLSYS 1. DeltaNormal
Ninst 4
NMissing 0
AnalysisNumber 3
BaseDate 255EP2003
_date 265EP2003
MM 46.228,100.31
VaR 43,155.45
VaRPct 0.09
Dvo7Y -5799363
E168Y -3871764
R153Y -5035836
R157Y . -8076768

(C) Monte Carlo Simulation

Table B1.1: VaR Statistics by Variance-Covariance Method

. Statietic.

o Estimmate

o winf=

g Aar-Risk Value (Z24AR)
Lower Tolerance Limit of At-Risk Value (A7)
Upper Tolerance Limit of At-Risk Value [ZaR)
Ar-RAisk Value as parcent of Base Value

Lower Tol Limit of VaR as percent of Base
Upper Tol Limit of VaR as psrcent of Base

-} Number of lnstruments in Portfolio

;] Totat Number of Simulation Replications

Number of Unadjusted Missing Replications

. &
rd
8
9 | Number of Replications Actually Used
10
11

Number of Missing Adjusted Replications

12| Mean Profit/Loss over Simulations (AR}

13| Standard Deviation of Profit/LLoss

14} Skewness of Profit/Loss

A8 Kurtosis of Profit/LLoss
1 6] Minimum Profit/Loss over Simulations [(Z24R)

1T17] Meadian Profit/Loss (AR )

18| Maximum Profit/Loss over Simulations Z&FR]

29.117.96 ;

20.951.89.
53.823.20 "

0.06 .
0.05 "
o112,
4 .
100"
100"
o
o:

11.408.39

26.504.40;,
-0.00944

0.00455 :
-54.034.987
B8.475. a4
B84.198.48

Table C1.1: VaR Statistics by Monte Carlo Simulation
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(2) EQUAL WEIGHTAGE, 90% PROBABILITY, 1-HOLDING DAY, RUN

ON 25 SEPTEMBER 2003.

(A) Historical Simulation

Statistic |

E stimate

At-Risk Value (ZAR)

Lower Tolerance Limit of At-Risk Value (ZAR)
Upper Tolerance Limit of At-Risk Value ZAR])
At-Risk Value as percent of Base Value

| Lower Tol Limit of vaR as percent of Base
Upper Tol Limit of VaR as percent of Base
Number of Instruments in Portfolio

T otal Number of Simulation Replications
Number of Replications Actually Used

10| Number of Unadjusted Missing Replications
11 Number of Missing Adjusted RAeplications

12| Mean Profit/Loss over Simulations (ZAR)

13} Standard Deviation of Profit/Loss

14| Skewness of Profit/L_Loss

15| Kurtosis of Profit/Loss

16| Minimum Profit/Loss over Simulations =AaR)
17| Median Profit/Loss (24AR)

18| M aximum Profit/L.oss over Simulatior_'ls ZAR)

0@ N[O aB N

Table A2.1: VaR statistics by Historical Simulation

174.730.57
160.348.50
188.476.08
0.38

0.35

o0.41

4

1092

1092

[n]

o
16.515.16
216.887.28
-1.98977
42 27753
-2.997.430.29

14.801.38 .
. 1.875.322.80

Statistic e |

Lo Estinnate o U

I [ AtRisk valus ZAR) 46.444 548 25
22| Lower Tolerance Limit of At-Risk \alue =aR) 46.427.471.09
.3 | Upper Tolerance Limit of At-Risk Valus (AR ) 46.461.078.59
41 A-Risk Value as percent of Base Valus 100.47

S | Lower Tol Limit of VaR as parcent of Baze 100.43
2B Upper Tot Limit of VaR as percent of Base 100.50

Z.] Number of Instruments in Portfolio 4 -
8. Total Number of Simulation Fleplications 1092
. 9 | Number of Replications Actually Used 1092
10| Number of Unadjusted Missing Replications (]
11| Numbers of Missing Adjusted Replications o
31.2] Mean Profit/l_oss over Simulations (ZAR) 465.244.615. 47
13| Standard Deviation of Profit/Loss 216.887.28
14§ Skewrness of Profit/Loss -1.98977
15| Kurtosis of Profit/Loss a2.27753 .
18] Minimum Profit/Loss over Simulations (AR ) 43.230.670.02
1 7] Median Profit/Loss (Z4A) 45.242.901.69
18| Maximum Profit/Loss over Simulations =AaR) 46.103.423.11

Table A2.2: EaR statistics by Historical Simulation
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Figure A2.1: VaR Distribution by Historical Simulation
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(B) Variance-Covariance Method

" ANLSYS. | 1. DeltaNormal|
Ninst. =~ 4
NMissing - 0
AnaysisNumber 3
BaseDale . | 25SEP2003:
‘date. . | 26SEP2003
MM - | 46,228,100.31
VaR | 3362362
(vaRPct - 0.07
pvoRY. .| 5799363
E168Y. -3871764
RISy . 5035836
RIS?Y |  -8076768

Table B2.1: VaR by Variance-Covariance Method

(C) Monte Carlo Simulation

] S tatistic - - I E stimate ]
1 | At-Risk Value (Z2aR} 20.9%51.8
21 Lower Tolerance Limit of At-Risk Values [ZAR) 14.999.33
3 | Upper Tolerance Limit of At-Risk Value (ZAR) 26.738.85
4 | Ar-Aisk Value as percent of Base Value 0.05%
5 | Lower Tol Limit of VaR as percent of Base 0.03
6 | Upper Tol Limit of VaR as percent of Base 0.06
7 | Number of Instruments in Portfolio 4
8 | Total Number of Simultation Replications 100
9 | Number of Replications Actually Used 100
10} Number of Unadjusted Missing Replications [s]
11| Number of Missing Aadiusted Replications o
12| Mean Profit/Loss over Simulations (ZARA) 11.408.39
13| Standard Deviation of Profit/L.oss 26.504 40
14| Skewness of Profit/L.oss -0.00944
15| Kurtosis of Profit/Loss 0.00455
18| Minimum Profit/Loss over Simulations [(Z2AR) -54.034.87
A7 Median Profit/Loss [ZAR) 8.475.84
18| Maximum Profit/Loss over Simulations (Z2AR) 84 198 48

Table C2.1: VaR Statistics by Monte Carlo Simulation
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(3) EQUAL WEIGHTAGE, 99% PROBABILITY, 1-HOLDING DAY, RUN ON
25 SEPTEMBER 2003.

(A) Historical Simulation

Statistic

Estimat, |

5l6N[=) -

alalajalalaiblEtal doke
DNIO|(ls W IN|=[0[0{OIN|00

Ar-Risk Value [(ZAR)
Lower Tolerance Limit of At-Risk Valuse [(Z4R)
Upper Tolerance Limit of At-Risk Value ZAR)
Atr-Risk Value as parcent of Base Value
Lower Tol Limit of VaR as percent of Base
Upper Tol Limit of VaF as percent of Base
Number of Instruments in FPortfolio b

T otal Number of Sinmulatiorn Replicatiorns
Number of Replications Actually Used
Number of Unadjusted Missing Replications
Number of Missing Adjusted Beplications
Mean Profit/Loss over Simulations (ZAR)
Standard Deviation of Profit/Loss

Skewness of Profit/Loss

Kurtosis of Profit/Loss

Minimum Profit/Loss over Simulations (Z4R)
Median Profit/Loss (ZA5R)

Maximum Profit/Loss over Simulations (ZAR)

Table A3.1: VaR by Historical Simulation

567.792.30 .
477.794.91
716.339.43
1,235

1.03:

1.55

. 4

10892

1092
o -

D B
16.515.16 -
216.887.28

-1.98977

42 27753

-2.997.430.29

14.801.38

_1.875.322.80

Statistic 1

: .Ectlrﬁ;!."'- 5

46.713.354.12

B(OIN|O|AL(WiN|-

At-ARisk Value (ZAR)

Lower Tolerance Limit of At-Risk Values (ZAR)
Upper Tolaerance Limit of At-Risk Value (ZAR)
Ar-Risk Value as percent of Base Value
Lower Tol Limit of vVaR as percent of Base
Upper Tol Limit of VaR as percent of Base
Number of Instruments in Portfolio

T otal Number of Simulation Replications
Number of Replications Actually Used
Number of Unadjusted Missing Replications
Number of Missing Adjusted RAeplications
Mean Profit/Loss over Simulations (ZAR)
Standard Deviatiorn of Profit/Loss

Skewness of Profit/Loss

Kurtosis of Profit/Loss

Mimimum Profit/Loss over Simulations (Z2AR)
Median Profit/Loss (Z2AR)

M aximum Profit/Loss over Simulations (AR}

Table A3.2: EaR by Historical Simulation
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46.634.085.46
46.963.898.60
101.05

100.88

101.59

r.3

1092

1092

o

s
46.244.615.47
216.887.28
-1.98977

42 27753
43.230.670.02
46.242.901 .69
48.103.423.11
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Figure A3.1: VaR Distribution by Historical simulation
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Figure A3.2: EaR Distribution by Historical Simulation

(B) Variance-Covariance Method

_ANLSYS_ - | 1. DeltaNoimal|
Ninst 4
NMissing 0
AnalysisNumber 3
BaseDats 25SEP2003
_date_ 26SEP2003
MM 46.228.100.31
vaR 61.035.58
YaRPct 013
DvOo7Y -5799363
E168Y -3871764
R153Y -5035836
R157Y -8076768

Table B3.1: VaR by Variance-Covariance Method
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(C) Monte Carlo Simulation

Statistic | Estimate = .

1 | At-Risk Value [(ZAR) 54.034.87

2 | Lower Tolerance Limit of At-Risk Value (ZARA)

3 | Upper Tolerance Limit of At-Risk Value (Z2AR)

4 | At-Risk Value as parcent of Base Value .12

S | Lower Tol Limit of VaR as percent of Base

8 | Upper Tol Limit of VaR as percent of Base

7 | Number of Instruments in Portfolio 4q -
B8 | Total Number of Simulation Replications 100

9 { Number of Replications Actually Used 100
10| Number of Unadjusted Missing Replications a
11| Number of Missing Adjusted Aaplications 0O:-
12] Mean Profit/Loss over Simulations (ZAR) 11.408.39:
13| Standard Deviatiorn of Profit/Loss 26.504.40
14| Skewness of Profit/Loss -0.00944
15] Kurtosis of Profit/Loss 0.00455
18] Minimum Profit/Loss over Simulations (ZAR) -54.034.87
17| Median Profit/Loss (ZAFR) 8.475 84
18] Maximum Profit/LLoss over Simulations (ZAR) 84.198.48

Table C3.1: VaR statistics by Monte Carlo Method

PlobablityDendy Estimate. -

Figure C3.1: VaR Distribution by Monte Carlo Simulation
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(4) EQUAL WEIGHTAGE, 92.5% PROBABILITY,

25 SEPTEMBER 2003.

(A) Historical Simulation

1-HOLDING DAY, RUN ON

Statistic

-] E stimate :

At-Risk Value (Z4R)
Lower Tolerances Limit of At-Risk “Value =ZAaR)
Upper Tolerance Limit of At-Risk Value [ZAR)
At-Risk Value as percent of Base Value
Lower Tol Limit of VaR as percent of Base
Upper Tol Limit of VaR as percent of Base
Number of Instruments in Portfolio

T otal Number of Simulation Replications
Number of Aeplications Actually Used
Number of Unadjusted Missing Replications
Number of Missing Adjusted Replications
Moan Profit/Loss over Simulations (ZAaR)
Standard Deviation of Profit/L_oss

Skewnrness of Profit/LLoss

Kurtosis of Profit/Loss

Minimum Profit/Loss over Simulations [(Z2AR)
Mediarn Profit/Loss (Z2AR)

M aximum Profit/Loss over Simulations =AR)

b fd o f o i f o ok [ f :
,mvmmawmaowhﬂhuauna

201.74924
185.493.87 -
222.658.44
0.44
0.40
0.48
4
1082
1092
o
o
16.515.18
216.097.28
-1.99977
42.27753
-2.997.430.29
14.801.38
1.875.322.80

Table A4.1: VaR statistics by Historical Simulation

- Statistic i i e

1 AT Aisk value (ZARA] i T 46.474.519.85 .
-~ 2] Lower Tolerance Limit of At-Risk Valus (ZAR}) 46.454.454.09
3| Upper Tolerance Limit of At-Risk Value (=ZAR) 46.492.933.94
L] Ar-Fisk Value as percent of Base Value 100.53 .
485 Lower Tol Limit of VaR as percent of Base 100.49°
.6 Upper Tol Limit of VaFRl as percent of Base 100.57
i ] Number of Instruments inm Portfolio 4
8| Total Number of Simulation RAeplications 1092
9| Number of Replications Actually Lsed 1092
1.0} Number of Unadjusted Missing Replications [}
13| Number of Missing Adjusted Raeplications (= B9
12] Meanr Profit/Loss over Simulations (Z4R) 46.244 615 47 :
13| Standard Deviation of Profit/Loss 216.887.28:
14| Skewness of Profit/Loss -1.98977
18| Kurtosis of Profit/Loss 42.27753
18| Minimum Profit/Loss over Simulations (AR ) 43.230.670.02
1.7} Median Profit/Loss (ZAR) 46.242 901 .SS;j
18| Maximum Profit/Loss over Simulations [Z‘AH]\ ¥ 48.1 93,423.1 1‘
Table A4.2: EaR statistics by Historical Simulation
Probabifty Diensity € stimate . o
Normalized . R K
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Figure A4.1: VaR Distribution by Historical Simulation
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Normalized

Probabifity Density E stimate

1.0

0.8
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0.2+
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Figure A4.2: EaR Distribution by Historical Simulation

(B) Variance-Covariance Method

-
CANLSYS . ] 1. DekaNormai)
MNlnst o 4
MNMissing - a}
AnalpsisNumber 3
BaseDate 25SEP2003
_date: 26SEP2003
MM 46,228,100.31
{van , 37.768.49
vaRPct ' - 0.08
DVO?Y. - 5799363
E168Y -3871764
R153Y 5035836
R157Y -80765768

P

475 .48 4857

Table B4.1: VaR statistics by Variance-Covariance Method

(C)Monte Carlo Simulation

. Statistic

E ctima!é

OIOINIO|A&|WIN[-

Table C4.1: VaR statistics by Monte Carlo Simulation

At-Risk Value (ZAR)
Lower Tolerance Limit of At-Risk Value (ZaR)
Upper Tolerance Limit of At-Risk Value (Z2AR)
At-Risk Value as percent of Base Value
Lower Tol Limit of VaR as percent of Base
Upper Tol Limit of VaR as pesrcent of Base
Number of Instruments in Portfolio

T otal Number of Simulation Replications
Number of RAeplications Actually Used

10| Number of Unadjusted Missing Replications
11 ] Number of Missing Adijusted Replications

12 Mean Profit/Loss over Simulations [(Z4R)

13] Standard Deviation of Profit/Loss

14| Skewness of Profit/Loss
15| Kurtosis of Profit/Loss
16} Minimum Profit/Loss over Simulations (Z2AR)
17| Median Profit/Loss (ZAR)
18] Maximum Profit/Loss over Simulations (Z4R)
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24.762.08
18.668.47
30.269.10

0.05

0.04

0.07

4

100

100

]

o
11.408.39
26.504.40
-0.00944
0.00455
-54.034.87
B8.475.84
84.1S8.48
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Figure C4.1: VaR Distribution by Monte Carlo Simulation

(5) EQUAL WEIGHTAGE, 97.5% PROBABILITY, 1-HOLDING DAY, RUN ON

25 SEPTEMBER 2003.

(A) Historical Simulation

E stimate - .

- . e Statistic ;. ¢
1| At-Risk Value (ZAR) 336.032.02:
2 | Lower Tolerance Limit of At-Risk Value (ZAR) 300.876.05
3 | Upper Tolerance Limit of At-Risk Value (ZAR) 449.389.85 -
4 | At-Risk Value as parcent of Base Value 0.73
5 | Lower Tol Limit of VaR as percent of Base 0.65
|- 6| Upper Tol Limit of VaR as percent of Base 0.97
“ 7] Number of Instruments in Portfolio 4
8 Total Number of Simulation Replications 1092.:
9 | Number of Replications Actually Used 1092
10] Number of Unadjusted Missing Reaplications 8]
11 ] Number of Missing Adjusted Replications (o Y
12| Mean Profit/Loss over Simulations (Z4R) 16.515.16
13] Standard Deviation of Profit/Loss 216.887.28
14| Skewness of Profit/Loss -1.98977
15| Kurtosis of Profit/l_oss 42 27753 -
18] Minimum Profit/lLoss over Simulations (ZAR) -2.997.430.29
17| Median Profit/Loss [Z2aR) 14.801.38
18| Maximum Profit/Loss over Simulations (ZAR) 1.875.322.80

Figure AS.1: VaR statistics by Historical Simulation

136




Statistic | E stimate |
1 | At-Risk Value (ZAR) 46.604.229.75
2 | Lowser Tolerance Limit of At-Risk Value (ZAR) 46.571.006.93
3 | Upper Tolerance Limit of At-Risk Value (ZAR) 46.628.678.37
4 | At-Risk Value as percent of Base Value 100.81
S | Lower Taol Limit of VaR as parcent of Base 100.74
6 | Upper Tol Limit of VaR as percent of Base 100.87
7 | Number of Instruments in Portfolio 4
8 | Total Number of Simulation Replications 1092
9 | Number of Replications Actually Used 1082
10} Number of Unadjusted Missing Replications o
11| Number of Missing Adjusted R eplications o
12| Mean Profit/Loss over Simulations (ZAR) 46.244,.615.47
13] Standard Deviation of Profit/Loss 216.887.28
14| Skewness of Profit/Loss -1.98977
15| Kurtosis of Profit/Loss 42.27753
16| Minimum Profit/l_Loss over Simulations [ZAR) 43,230.670.02
17} Median Profit/Loss (Z2AR) 46.242.901.69
18| Maximum Profit/Loss over Simulations (ZAR) 48.103.423.11
Figure A5.2: EaR statistics by Historical Simulation
Probabiility Denti@y‘Esli
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:
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|
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Figure AS.1: VaR Distribution by Historical Simulation
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Figure AS5.2: EaR Distribution by Historical Simulation
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(B) Variance-Covariance Method

T

_ANLSYS 1. DeltaNormal
Ninst 4
NMissing 0
AnalysisNumber 3
BaseDate 255EP2003
date 26SEP2003
Mt 46,228,100.31
YVaR 51,422.89

YaRPct 0.11
DVO7Y -5799363
E168Y -3871764
R153Yy -5035836
R157Y . -8076768

Figure B5.1: VaR statistics by Variance-Covariance Method

(C) Monte Carlo Simulation

Statistic

" Estimats:

Table C5.1: VaR statistics by Monte Carlo Simulation

Probability Density E stimate

T

T | At-Risk Value (24AR) 52.609.27
2 | Lower Tolerance Limit of At-Risk Value (ZAR) . 25,915.53
3.| Upper Tolerance Limit of At-Risk Value (AR ] 54.034.87 ¢
4 | At-Risk Value as percent of Base Valus 0.771 .
S | Lower Tol Limit of VaFA as parcent of Base 0.06
5 | Upper Tol Limit of VaR as parcent of Base 012
7] Number of Instruments in Portfolio 4
8 | Total Number of Simulation Replications 100:
9 | Number of Replications Actually Used 100
10} Number of Unadjusted Missing Replica!ions [= ]
11| Number of Missing Adjusted Replications (=
12| Mean Profit/LLoss over Simulations (ZAR) 11.408.39;,
13| Standard Deviation of Profit/boss 26.504.40;
14| Skewness of Profit/lLoss -0.00944 -
15] Kurntosis of Profit/Loss 0.004S5
16| Minimum Profit/Loss over Simulations (ZAR]) -54.034.87
3 7] Median Profit/Loss (ZAR) 8.475.84 -
18| Maximum Profit/Loss over Simulations (ZAR) 84.198.49

VRN

0 20

Figure C5.1: VaR Distribution by Monte Carlo Simulation

Profit/L.oss {thousands ZAR)
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(6) EQUAL WEIGHTAGE, 95% PROBABILITY, 1-HOLDING DAY, RUN ON
25 SEPTEMBER 2002 — The Past.

(A) Historical Simulation

Table A6.2: EaR statistics by Historical Simulation

139

Statistic E stimate

1 ] AvRisk Value (24R) 281.357.68

2 | Lower Tolerance Limit of At-Risk Value [Z4R) 246.672.94

3 | Upper Tolerance Limit of At-Risk Value (Z2AR) 305.319.28

4 | At-Risk Value as parcent of Base VValues 0.60

S | Lower Tol Limit of VaR as percent of Base 0.53

B | Upper Tol Limit of VaR as percent of Base 0.65

7 | Number of Instruments in Portfolio 4

8 | Total Number of Simulation Aeplications 1092

9 | Number of Replications Actually Used 1082
10| Number of Unadjusted Missing Replications o

11 | Number of Missing Adjusted Replications 0.
12| Mean Profit/l.oss over Simulations 2AR) 17.252.33
13| Standard Deviation of Profit/Loss 237.826.96 .
14 Skewness of Profit/Loss -1.95652
15| Kurtosis of Profit/Loss 41.91976
16| Minimum Profit/Loss over Simulations (Z4R) -3.277.133.84
17| Median Profit/Loss (Z2AR) 14,993 .44
18| Maximum Profit/lLoss over Simulations (ZAR) 2.0617.801.65 .

Table A6.1: VaR statistics by Historical Simulation

: ULy Statistic E stimate . d

1] At-Risk Valua (ZAR) 46.963.303.69 ::
2 | Lower Tolerance Limit of At-Risk VWalue (Z4AR) 46.939.238.91
3| Upper Tolerance Limit of At-Risk Walue [(ZAR) 47.009.659.59
4 | At-Risk Value as percent of Base Value 100.67 .
S| Lower Tol Limit of VaR as psrcent of Base 100.62
6. | Upper Totl Limit of VaR as percent of Base 100.77:
7.1 Number of Instruments in Partfolio 4
B8 ] Total Number of Simulation Raplicaticihs 1082
9 | Number of Replications Actually Used 10892
10| Number of Unadjusted Missing Beplications qa:
I3 Number of Missing Adjusted Replications o
12| Mean Profit/Loss over Simulations (ZAR) 46.667.824.02 -
13! Standard Deviation of Profit/Loss 237.826.96°
14| Skewness of Profit/Loss -1.95652
15| Kurtosis of Profit/Loss 41.91976 .
16} Minimum Profit/Loss over Simulations (Z2AR) 43.373.437.85
17| Median Profit/LLoss [Z2AR]) 46.665.565.13
18| Maximum Profit/Loss over Simulations [(ZAR) 48.712.373.34
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Figure A6.2: EaR Distribution by Historical Simulation

(B) Variance-Covariance Method

I
_ANLSYS_ | 1. DeltaNormal|
Ninst 4
NMissing 0
AnalysisNumber 3
BaseD ate 25SEP2002
_date 26SEP2002
MM 46.,650.571.69
vVaR 47.363.37
VaRPct 0.10
DvO7Y -6410617
E168Y -44883992
R153Y -5637046
R157Y -8472279

Table B6.1: VaR statistics by Variance-Covariance Method
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(C) Monte Carlo Simulation

Statistic | K E stimate

Figure C6.1: VaR Distribution by Monte Carlo Simulation
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1 [ At-Risk Value (ZAR) 32.948.70

2 ] Lower Tolerance Limit of At-Risk Value (ZARA) 23.962.08

3 | Upper Tolerance Limit of At-Risk Value (ZAA) 60.106.61

4 | At-Risk Value as percent of Base Value 0.07

5 | Lower Tol Limit of VaR as parcent of Base D.0S5

6 | Upper Tol Limit of VaR as percent of Base 0.13

7 | Number of Instruments in Portfolio 4

8 | Total Number of Simulation Replications 100

9 | Number of Replications Actually Used 100
10} Number of Unadjusted Missing Aeplications [m]
11| Number of Missing Adjusted Replications o
12| Mean Profit/Loss over Simulations [Z2AR) 11.567.12
-13] Standard Deaviation of Profit/Loss 29.086.94
14| Skewness of Profit/Loss -0.00893
15| Kurtosis of Profit/Loss 0.00672
16| Minimum Profit/Loss over Simulations [ZAR) -60.140.28 .
171 Madian Profit/Loss (ZAR) B8.383.25
18| Maximum Profit/Loss over Simulations _ZAFU 91.625.57

Table C6.1: VaR statistics by Monte Carlo Simulation
. .
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(7) EQUAL WEIGHTAGE, 95% PROBABILITY, 1-HOLDING DAY, RUN ON 14
May 2004 — The Future.

(A) Historical Simulation

Statistic I E stimate J

1 | Ar-Risk Value (Z2AR) 244.119.82
2 | Lower Tolerance Limit of At-Risk Value (Z2AR]) 211.280.84
3 | Upper Tolerance Limit of At-Risk Value (Z24R) 266.687.62
4 | At-Risk Value as poarcent of Baze Value 0.53
5 | Lower T ol Limit of VaR as percent of Base 0.46
B | Upper T ol Limit of VaR as parcent of Base 0.58
7 | Numbers of | nstruments in Partfolio 4
B | Total Number of Simulation Replications 1092
9. ] Number of Replications Actually Used 1092
19| Number of Unadjusted Missing Replications o

11 | Number of Missing Adjusted Replications o

12| Mean Profit/Loss over Simulations (Z2ARA) 18.209.94
13] Standard Deviation of Profit/Loss 209.629.33
14| Skewness of Profit/Loss -2.00188
15| Kurtosis of Profit/LLoss 42 38182
Minimum Profit/Loss over Simulations (ZAR) -2.897.883.56
Median Profit/Loss (Z2RA) 168.667.47
Maximum Profit/Loss over Simulations (ZAFR) 1.812.312.15

Table A7.1: VaR statistics by Historical Simulation

 Statistic o |  Estmate . i

1 | At-Risk Value (ZaR) 46.030.534.61
2 | Lower Tolerance Limit of At-Risk Value [ZAR) 46.008.811.52
3 | Upper Tolerance Limit of At-Risk Valus (Z2AR) 46.069.506.86
4 | At-Risk Value az percent of Base Value 100.671 =
5 | Lower Tol Limit of VaR as percent of B ase 100.56:°
6 | Upper T ol Limit of VaFR as percent of Base 100.70:
7| Number of instruments in Partfolio 4
B | Total Number of Simulatiorn Replications 1092
S | Number of Replications Actually Used 1092 .
10| Number of Unadjusted Missing Replications o
11 | Number of Missing Adjusted Replications [n]
12| Mean Profit/Loss over Simulatiorns (Z=aR) 45.768.637.02
13| Standard Deviation of Profit/Loss 209.629.33
14| Skewneaess of Profit/Loss -2.00188
15] Kurtosis of Profit/Loss 42.38182 .
16| Minimum Profit/Loss over Simulations 2Z24R) 42.852.543.51 .
17| Median Profit/Loss (Z4H) 45 .767.094.55
18| Maximum Profit/Loss over Simulations &A1) 47 .562.739.23
Table A7.2: EaR statistics by Historical Simulation
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Figure A7.1: VaR Distribution by Historical Simulation
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Figure A7.2: EaR Distribution by Historical Simulation
(B) Variance-Covariance Method
ANLSYS 1. DettaNormal|
Ninst = . 40
NMissing o
AnalysisNumber 3
BaseD ate. 25MAR2004
. date, " 26MAR2004 - %
MM - 45,750,427.07
- [ vaR K 41,679.86
VaRPct - o 0.09
DVO7Y -5476839
E168BY . -3550986
R1S3Y s -5108467 )
R157Y ) -7866949
Table B7.1: VaR statistics by Variance-Covariance Method
(C) Monte Carlo Simulation
Statistic E stimate | =
1 | At-Risk Value (ZAR) 25.887.17
2 | Lower Tolerance Limit of At-Risk Valus =ZAaR) 17.832.40
3 | Upper Tolerance Limit of At-Risk Value 24R) 49.696.93
4 | Ar-Risk Value as percent of Base Value 0.06
5 | Lower Tol Limit of VaR as percent of Base 0.04
6 | Upper Tol Limit of VaR as percent of Base o011
7 | Number of Instruments in Portfolio 4
8 | Total Number of Simulatiorn Replications 100
9 | Number of Replications Actually Used 100
10| Number of Unadijusted Missing Replications o
11} Number of Missing Adjusted R eplications o]
12| Mean Profit/Loss over Simulations (24AR) 13.301.49
13| Standard Deviation of Profit/Loss 25.594.73
14| Skewness of Profit/Loss -0.01011
15| Kurtosis of Profit/Loss 0.00419
16| Minimum Profit/Loss over Simulations (Z4R) -50.041.16
17| Median Profit/Loss [2AR) 10.408.00
18| Maximum Profit/Loss over Simulations (ZAR) 83.514.94

Table C7.1: VaR statistics by Monte Carlo Simulation
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Figure C7.1: VaR Distribution by Monte Carlo Simulation

(8) EQUAL WEIGHTAGE, 95% PROBABILITY, 10-HOLDING DAYS FOR

R153, RUN ON 25 SEPTEMBER 2003.

(A) Historical Simulation

i Statistic i . oy

E stimate

At-Risk Value (Z24R)
Lower Tolerance Limit of At-Risk Value (Z4R)
Upper Tolerance Limit of At-Risk Value (ZAaR)
At-Risk Value as percent of Base Value
Lower Tot Limit of VaR as pearcent of Base
Upper Tol Limit of VaR as percent of Base
Number of Instruments in Portfolio

T otal Number of Simulation Replications
Number of Replications Actualiv-Used

19| Number of Unadjusted Missing Replications
11} Number of Missing Adjusted Replications

12| Mean Profit/Loss over Simulations (ZAR)

13| Standard Deviation of Profit/Loss

14| Skewness of Profit/Loss

15] Kurtosis of Profit/Loss

16| Minimum Profit/Loss over Simulations (ZAR)
17| Median Profit/Loss (ZA4FR)

18| Maximum Profit/l_Loss over Simulations (ZAR)

V|0 |NID &L IN=

Table A8.1: VaR statistics by Historical Simulation
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793.167.88.

707.423.50
911.655.38°
0.53.

0.47

0.61

4
1092"
1092

0"

0.
37.352.96
662.086.29 |

-2.03240

41.43560

-9.143.878.35
30.518.16
5.603.083.41



Statistic

E stimate

At-Risk Value ZAR)

Lower Tolerance Limit of At-Risk Value (ZAR)

Upper Tolerancs Limit of At-Risk Value (24R)

At-Risk Value as percent of Base Value

Lower Tol Limit of VaR as percent of Base

Upper Tol Limit of VaR as percent of Base

Number of Instruments in Portfolio

Total Number of Simulation Aeplications

O|ON|O (B BILIN-<

Number of Replications Actually Used

10| Number of Unadjusted Missing Replications

11| Number of Missing Adjusted Replications

12] Mean Profit/Loss over Simulations [Z2AR)

13| Standard Deviation of Profit/L.oss

14| Skewness of Profit/Loss

15| Kurtosis of Profit/Loss

16| Minimum Profit/Loss over Simulations [ZAR)

171 Median Profit/Loss (Z4A)

18| Maximum Profit/Loss over Simulations (ZAR)

151.108.949.72
151.008.584.99
1651.203.430.50
100.60

100.54

100.67

4

1092

1082

o

[a]
150.239.992.65
662.086.29
-2.03240
41.43560
141.058.761.34
150.233.257.86
155.805.723.10

Table A8.2: EaR statistics by Historical Simulation

Probabifity Dersity E sti
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Figure A8.1: VaR Distribution by Historical Simulation
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Figure A8.2: EaR Distribution by Historical Simulation
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Risk Factor Variable Nanme

R1S3Y
R157Y
E168Y

DVo?Y

Relative Information of Risk Factor

Figure A8.3: Information Measures by Historical Simulation

(B) Variance-Covariance Method
I

ZANLSYS, 1. DelaMormalf
Ninst . =~ 4
NMissing - o
AnalysisNumber 1
BaseDate - 25SEP2003
_date . 26SEP2003
MEM 150.202.633.69
vaR S 129.526.43
VaRPct. . 0.08
DVOTY -5799363
E168Y. .. - -3871764
R153Y L -50358364
R157Y . -8076768

Table B8.1: VaR statistics by Variance-Covariance Method
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(C) Monte Carlo Simulation

Statistic

E stimate |

Ar-Risk Values (Z2AR)
Lower Tolerance Limit of At-Risk Value =AaR)
Uppeor Tolerance Limit of At-Risk Value =AaRA)

100.244.78
79.476.04
177.910.69

1
2
3
4 | At-Aisk Value as percent of Base Value 0.07
S | Lower Tol Limit of VaR as percent of Base 0.05
8 | Upper Tol Limit of VaR as parcent of Base a.12
7 | Number of Instruments in Portfolio 4
B | Total Number of Simultatior Replications 100
39 | Number of Aeplications Actually Used 100
10)] Number of Unadjusted Mis=sing Replications [s]
11| Number of Missing Adjusted Replications o
12| Mean Profit/Loss over Simulations =AR) 21 .930.36
13| Standard Deviation of Profit/Loss 79.174.01
14| Skevwness of Profit/Loss -0.02644
15] Kurtosis of Profit/Loss 0.048%51
16| Minimum Profit/Loss over Simulations =AR) -182.799.52
17| Median Profit/Loss (ZAR) 17.521.02
18 Menimum Profit/Loss over Simulations (Z2AR) 239,592. 78
Table C8.1: VaR statistics by Monte Carlo Simulation
™ . Probabiity Density E stimate
Normalized . H AR
1.0 EN ] ; .
: : P
084 R ol / \\ e e [ SR RN N
; H / f \
i '
06 : : I A S .
. : / .
0.4 i ) :
' ‘
' '
. i
02 4 B e Y
' ] .
: , v
0.0 G -k i . v , i
-260 -50 R 801 100 150 300 350
- Profit/Loss (tHousands ZAR)
Figure C8.1: VaR Distribution by Monte Carlo Simulation
Risk Factor Variable Name
R153Y
R1S7Y
Kl68Y
DVO7?Y
0.0 0.1 0.2 0.3 G.4 0.5 0. Q. 0.5 1.0

Relative Information of Risk Factor

Figure C8.2: Information Measures by Monte Carlo Simulation
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(9) EQUAL WEIGHTAGE, 95% PROBABILITY, 10-HOLDING DAYS FOR
R157, RUN ON 25 SEPTEMBER 2003.

(A) Historical Simulation

Statistic ] E stimate
1 | At-Risk Value [ZAR) 1.157.801.80
2 | Lower Tolerance Limit of At-Aisk Value [ZAA) 1.033.653.30
3 | Upper Tolerance Limit of At-Risk Value (ZAR) 1.314.119.32
4 | At-Risk Value as percent of Base Value 0.74
5 | Lower Tol Limit of VaR as percent of Base 0.66
5 | Upper Tot Limit of VvaR as percent of Base 0.84
7 | Number of Instruments in Portfolio 4
8 | Total Number of Simulation Replications 1092
9 | Number of Replications Actually Used 1092
10| Number of Unadjusted Missing Replications o
11| Number of Missing Adjusted Replications a
12| Mean Profit/Loss over Simulations (ZAR) 54.835.89
13| Standard Deviatiorn of Profit/Loss S940.111.93
14) Skewness of Profit/Loss -1.72517
15] Kurtosis of Profit/L.oss 36.34546
16| Minimum Profit/LLoss over Simulatiorns (ZAR) -12.466.759.85
17| Median Profit/Loss (Z24R) 67.371.55
18| Maximum Profit/lLLoss over Simulations (4R} 8.020.816.05

Table A9.1: VaR statistics by-Historical simulation

B Statistic i i | Estimate © 1
1 I At-Risk Value (ZAR) 156.981.146.64
-2 | Lower Tolerance Limit of At-Risk Valus (ZAR) 156.897.820.02
3 | Upper Tolerance Limit of At-Risk Yalus =AaR) 157.125.946.96
4 | At-Risk Value as percent of Base Valus 100.83
5| Lower Tol Limit of VaR as parcent of Base 100.78
- B8 | Upper Tol Limit of VaR as percent of Base 100.92
7| Number of Instruments in Portfolio 4
8| Total Number of Simulation Replications ) 1092
g ]| Number of Replications Actually Used 1092
10} Number of Unadjusted Missing Replications 0
111 Number of Missing Adjusted Reaplications O_
12 Mean Profit/Loss over Simulations (Z4R) 155.753.566.22 .
:13} Standard Deviation of Profit/Loss 940.111.93
14] Skewness of Profit/Loss -1.72517
15] Kurtosis of Profit/LLoss 36.34546
16| Minimum Profit/Loss over Simulations (ZAR) 143.221.970.49°
17| Median Profit/LLoss (ZAR) 155.756.101.88
18| Maximum Profit/Loss over Simulations (Z4R) 163.708.546.38
Table A9.2: EaR statistics by Historical Simulation
Probability D ensity inate
Normalized
1.0 : T i ]
@ ]
i | :
0.4 4
0.2+
.
0.0 . . +
-14 12 -10 -8 -8 -4 -2 0 2 4 6 B 10

Profit/Loss {millions ZAR)

Figure A9.1: VaR Distribution by Historical Simulation
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Normakized

Probability Density E stimate

1.0

0.8

0.6

0.4

0.2

0.0-
142 144

Figure A9.2: EaR Distribution by Historical Simulation

146 148

150

152 154 156
E xposure [millions ZAR)

158

160

162 164

166

Risk Factor Variable Name

R157Y

R1S3Y

R168Y

DVO7Y

Relative Informacion of Risk Factor

Figure A9.3: Information Measures by Historical Simulation

(B) Variance-Covariance Method

_ANLSYS 1. DeltaNormal
Ninst 4
NMissing 0
AnalysisMumber 3
BaseDate 25SEP2003
_date_ 26SEP2003
MtM 155,688,730.34
YVaR 183.774.83
VaRPct 012
DvVO7Y -5799363
E168Y -3871764
R153Y -5035836
R157Y -80767679

Table B9.1: VaR statistics by Variance-Covariance Method
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(C) Monte Carlo Simulation

Statistic E stimate
1 | At-Risk vValue (24AR) 127.957.55
2 | Lower Tolerance Limit of At-Risk Value (ZAR) 88.210.05
3 | Upper Tolerance Limit of At-Risk Value (ZAR) 229.754.72
4 | At-Risk Value as percent of Base Value 0.08
5 | Lower Tol Limit of VaR as percent of Base 0.06
6 | Upper Tol Limit of VaR as percent of Base 015
7| Number of Instruments in Portfolio 4
8 | Total Number of Simulation Replications 100
9 | Number of Aeplications Actually LUised 100
10} Number of Unadjusted Missing Replications o
11} Number of Missing Adjusted Replications [n]
12| Mean Profit/Loss over Simulations (Z4AR) 43.029.22
13| Standard Deviation of Profit/Loss 113.069.72
14| Skewness of Profit/Loss -0.03728
15| Kurtosis of Profit/Loss -0.03063
16| Minimum Profit/Loss over Simulations (ZAR} -256.363.48
17| Median Profit/l.oss [(Z24AR) 42.754.59
18} Maximum Profit/Loss over Simulations (ZAR) 333.836.81
Table C9.1: VaR statistics by Monte Carlo Simulation
™ - ™ Probabilty Den‘siy Estimate
Noimalized ' '
1.0 -+ — - T . -
. a /_”’ i !
: : z [ |
0.84 ot / i (b ‘ - ]
: e S
| = |
5 TR SO N Sy |
. j L
0.4 . ! \ .
] ! '
0.2 : - \
| ,
" —

0.0+ ) . |
-400 -350 -300.  -250. -200 -150. 00 | 50 O 50
: : - Profit/Loss (thousands ZAR)

Figure C9.1: VaR Distribution by Monte Carlo Simulation
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s
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Relative Information of Risk Factor

Figure C9.2: Information Measures by Monte Carlo Simulation
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(10) EQUAL WEIGHTAGE, 95% PROBABILITY, 10-HOLDING DAYS FOR

E168, RUN ON 25 SEPTEMBER 2003.

(A) Historical Simulation

Statistic

I E stimats /

T

At-RAisk Value (ZAR)

Lower Tolerance Limit of At-Risk Value (Z4AR)
Upper Tolarance Limit of At-Risk Value (ZAR)
Ar-Risk Value as percent of Base Value
L.ower Tol Limit of VaR as percent of Basea
Upper Tol Limit of VvaR as percent of Base
Number of Instruments in Portfolio

T otal Number of Simulation Replications
Number of Replications Actually Used
Number of Unadjusted Missing Replications
Number of Missing Adjusted Replications
Meart Profit/Loss over Simulations (ZaR)
Standard Deviation of Profit/Loss

S kewness of Profit/Loss

15| Kurtosis of Profit/Loss

16| Minimum Profit/lLoss over Simulations (ZAR)
17} Median Profit/Lozs (Z24R)

18| Maximum Profit/Loss over Simulations =AR)

i |aafa
B0 [ol@@INIOOAWIN-

650.358.8
808.279.36
743.146.60
0.48
0.45
0.55
4
10892
1092
u ]
a
50.027.83
557.747.66
-1.98619
39.90732
-7.610.425.40
49.024 .88
4.682.746.23

Table A10.1: VaR statistics by Historical Simulation

Statistic

| E stimate

At-Risk Value (Z2AaR) .
Lower Tolerance Limit of At-Aisk Value [ZAR)
Upper Tolerance Limit of At-Risk Value [ZAR)
At-Risk Value as percent of Base Values
Lower Tol Limit of VaR as percent of Base
Upper Tol Limit of VaR as parcent of Base
Number of Instruments in Portfolio

T otal Number of Simulation Replications
Number of Replications Actually Used

10| Number of Unadjusted Missing Replications
11| Number of Missing Adjusted Replications

12 Mean Profit/Loss over Simulations (Z4R)

13| Standard Deviation of Profit/Loss

14| Skewness of Profit/Loss

15| Kurtosis of Profit/LLoss

18| Minimum Profit/Loss over Simulations [Z&R)
17| Median Profit/Loss (ZAR)

18| Maximum Profit/Loss over Simulations (ZAR)

OONID | & W|N|=

136.403.977.59

136.322.107.65

136.499.784.58
100.57
100.51
100.64

1082

1082

o

o

135.683.812.17

557.747.66

-1.98619

39.90732

128.023.358.93
135.682.8098.21

140.316.530.57

Table A10.2: EaR statistics by Historical Simulation

4

Probability Dansity E stim.
Normalized

1.0

0.8 § L g

0.6

0.4 1

0.2

0.0
-8 -7 6 5 -4 -3 -2 -1
Profit/Loss (millions ZAR)

Figure A10.1: VaR Distribution by Historical Simulation
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Normalized

Probabiity Density E stimate

1.0

0.6

0.6

0.4

024 -

0.0

127 128

129

Figure A10.2: EaR Distribution by Historical Simulation
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Relative Information of Risk Factor
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T
0.70 0.750.80

Figure A10.3: Information Measures by Historical Simulation

(B) Variance-Covariance Method

“ANLSYS_ - | 1. DeltaNormal |
Ninst 4
NMissing u]
AnalysisNumber 1
BaseD ate 255EP2003
_date 26SEP2003
MtM 135.633.784.34
vaR 110.282.71
VaRPct 0.08
DVO7Y -5799363
E168Y -38717640
R153Y -5035836
R157Y -8076768

Table B10.1: VaR statistics by Variance-Covariance Method
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(C) Monte Carlo Simulation

Statistic E stimate

1 | At-Risk Value (ZAR) 57.5493. 41
2 ]| Lower Tolerance Limit of At-Risk Value (24A) 43.606.13
3 | Upper Tolerance Limit of At-Risk Value (24R) 131.379.29
4 | At-Risk Value as percent of Base Value 0.04
S | Lower Tol Limit of VaR as percent of Base 0.04
6 | Upper Tol Limit of VaR as percent of Base 0.10
7 | Number of Instruments in Portfolio 4
8 | Total Number of Simulation Replications 100
9 | Number of Replications Actually Used 100
10| Number of Unadjusted Missing Replications o
11| Number of Missing Adjusted Replications [u]
12| Mean Profit/Loss over Simulations (ZAR) 37.337.94
13} Standard Deviation of Profit/Loss 67.613.68
14| Skewness of Profit/L.oss -0.023668
0.093393

15| Kurtosis of Profit/Loss

186} Minimum Profit/Loss over Simulations (2AR)

17| Median Profit/Loss [ZAR)

18| Maximum Profit/Loss over Simulations (24R)

Table C10.1: VaR statistics by Monte Carlo Simulation

Probabibly Density E stimate
Normalized

-138.154.02
36.584.66
231.042.75

1.0

0.8+

0.6~

044 JEODSS S

0 50 100
Profit/Loss (thousands ZAR}

8
3
s

Figure C10.1: VaR Distribution by Monte Carlo Simulation

Risk Factor Variable Name
EKl68Y
R187Y
R1S3Y

DVO7Y

T T T v ™ T T Y T

0.60 0.05 0.10 ©0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.58

Relative Information of Risk Factor

0.65 ©0.70 0©0.75 0.80

T Y T

Figure C10.2: Information Measures by Monte Carlo Simulation
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(11) EQUAL WEIGHTAGE, 95% PROBABILITY, 10-HOLDING DAYS FOR
DV07, RUN ON 25 SEPTEMBER 2003.

(A) Historical Simulation

Statistic

E stimate T

N|-*

i
i
i

A|u

-t
[a]

nj=

|

w

H
i

a

At-Riskc Value (ZAR)

Lower Tolerance Limit of At-Risk Value [(Z2AR)
Upper Tolerance Limit of At-Risk Value (Z4R)

At-Risk Value as parcent of Base Value

Lower Tol Limit of VaR as parcent of Base
Upper Tol Limit of VaR as parcent of Base
Number of Instrumeants in Portfolio

T otal Number of Simulation Replications
Number of Replications Actually Used
Number of Unadjusted Missing Replications
Number of Missing Adjusted Replications
Mean Profit/lLoss over Simulations (Z4AR)
Standard Deviatiorn of Profit/Loss
Skewrness of Profit/Loss

Kurtosis of Profit/Loss

Minimum Profit/Loss over Simulations (Z4R)
Median Profit/LLoss (Z2AR)

M aximum Profit/L.oss over Simulations [Z2AR)

Table A11.1: VaR statistics by Historical Simulation

790.159.07
713.007.95
895.033.28
0.50
0.45
0.56
4
1092
1032
]
o

62.480.41
716.647.26
-1.93056
40.33238
-9.745.530.15
49.859.23
6.072.550.68

Statistic

E stimate ] J

At-Risk Value (ZAR)

Lower Tolerance Limit of At-Risk Value [Z2AR)

Upper Tolerance Limit of At-Risk Value [Z4F]

At-Risk Value as percent of Base Value

Lower Tol Limit of VaR as pasrcent of Base

Upper Tol Limit of VaR as pasrcent of Base

Number of Instruments in Portfolio

T otal Number of Simulatiorn Replications

oim|~Nim(ofsiv|n 2

Number of Replications Actually Used

10} Number of Unadjusted Missing Replications

11| Numbers of Missing Adjusted Replications

12] Mean Profit/Loss over Simulations [Z4R)

1.3| Standard Deaviation of Profit/Loss

14| Skewness of Profit/Loss

15| Kurtosis of Profit/Loss

16] Minimum Profit/Loss over Simulations (ZaR)

17} Median Profit/Loss (ZaR)

18| Maximum Profit/Loss over Simulations [ZAR)

Table A11.2: EaR statistics by Historical Simulation
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160.387.408.21 -
160.308.276.66 -
160.527.685.67,
100.59
100.54
100.68 -
4
1092
1092
o
o
159.6502.630.09
716.647.26
-1.930586
40.39238-
149.694 . 619.53
159.490.008.91
165.512.700.36




Normalized
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Figure A11.1: VaR Distribution by Historical Simulation
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Figure A11.2: EaR Distribution by Historical Simulation
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Figure A11.3: Information Measures by Historical Simulation
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(B) Variance-Covariance Method

T

ANLSYS_ | 1. DeltaNormal]
Ninst 4
NMissihng 0
AnalysisNumber 3
BaseD ate 25SEP2003
_date_ 26SEP2003
MM 159,440.149.68
VaR 146,999.62
vaRPct , 0.09
DVvo7Y 57993630
E168Y . 3871764
R153Y 5035836
R157Y -8076768

Table B11.1: VaR statistics by Variance-Covariance Method

(C) Monte Carlo Simulation

Statistic_.

E stimate

olojNiniala|uini

At-Risk Value (Z2AR)
Lower Tolerance Limit of At-Risk Value Z4AFR)
Upper Tolerance Limit of At-Risk Value ZAR)
At-Risk Value as percent of Base Value
Lower Tol Limit of VaR as psrcent of B ase
Upper Tol Limit of VaFR as percent of Base
Number of Instruments in Portfolio

T otal Number of Simulation Replications
Number of Replications Actually Used
Number of Unadjusted Missing Replications
Number of Missing Adjusted Replications
Mean Profit/Loss over Simulations (ZAR)
Standard Deviation of ProfitZlloss

Skewness of Profit/Loss

Kurtosis of Profit/LLoss

Minimum Profit/Loss over Simulations (ZAR)
Median Profit/Loss (Z2AR)

M aximum Profit/Loss over Simulations (ZAR)

Table C11.1: VaR statistics by Monte Carlo Simulation
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111.700.686

76.500.42

153.882.15

0.07

0.05

0.10

a4

100

100

o

fa)

46.011.54

90.452.20
0.02604
-0.05460

-188.299.13
44.758.01
290.307.85



Normalized
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Figure C11.1: VaR Distribution by Monte Carlo Simulation
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Figure C11.2: Information Measures by Monte Carlo Simulation
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APPENDIX 11

(1) Functional Form: VaR = f(probability level)

VaR
4 e+05 5 e+05

3 e+05

2 e+05
o

T T T T

0.90 092 084 096 098

problevel
Figure 1.1: Linear Regression of VaR (Historical Simulation) against Probability Level

Coefficients:
(Intercept) problevel
-3321929 3828206

Regression line (Historical Simulation):

VaR =-3321929 + 3828206(problevel)
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46650000

EaR

46550000

46450000

090 092 0.94 096 098

problevel

Figure 1.2: Linear. Regression of EaR against Probability

Coefficients:
(Intercept) problevel
43873050 2824097

Regression line:

EaR = 43873050 + 2824097(problevel)
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VaR
45000 50000 55000 60000
1 i 1 ]

40000
]

35000
)

T T T T T

0.90 092 0.94 096 0.98

problevel

Figure 1.3: Linear Regression-of VaR (Vanance-Covariance) against probability
level

Coefficients:
(Intercept) problevel
-231282 291860

Regression line:

VaR = -231282 + 291860(problevel)
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1

20000 25000 30000 35000 40000 45000 50000 55000

%
>
0.90 0.92 0.94 095 098
problevel
Figure 1.4: Linear Regression of VaR (Monte Carlo) against Probability level
Coefficients:

(Intercept) problevel
-350155 407649

Regression Line:

VaR = -350155 + 407649(problevel)

161




(2) Functional form VaR = f(effective date)

VaR
300000 320000
i

280000
I

260000
1

effectivedate
Figure 2.1: Linear Regression of VaR (Historical Simulation) against effective date

Coefficients:
(Intercept) effectivedate
345702 -10883

Regression line:

VaR = 345702 — 10883 (effectivedate)
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47500000 48000000
]
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47000000

46500000

46000000
1

effectivedate

Figure 2.1: Linear Regression of EaR (Historical'Simulation) against effective date

Coefficients:
(Intercept) effectivedate
47986675 -166299

Regression line:

EaR = 47986675 — 166299(effectivedate)
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Figure 2.3: Linear Regression of VaR (Variance-Covariance) against effective date
Coefficients:
(Intercept) effectivedate

59065 -1925

Regression Line:

VaR = 59065 — 1925(effectivedate)

164




VaR
1 1 1 1
<o

26000 28000 30000 32000 34000 36000 38000 40000
1
(-3

effectivedate

Figure 2.4: Linear Regression of VaR (Monte Carlo) against effective date

Coefficients:
(Intercept) effectivedate
36650.7 -881.5

Regression Line:

VaR = 36650.7 — 881.5(effectivedate)
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(3) Functional form VaR = f(holding period)

VaR
1500000 2000000
1 1

1000000
1

500000

holding

Figure 3.1: Linear Regression of VaR (All Methodologies) against holding period

Coefficients:
(Intercept)  holding
-8.603e-11 2.557e+05

Regression Line:

VaR =-8.603e-11 + 2.557e¢+05(holding)
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APPENDIX 1l
InstriD  Yield Coupon

R153 R153Y 13

R157 R157Y 13.5

E168 E168Y 11

DV07 DVO7Y 14.5

PurchaseDate

25-Sep-03

25-Sep-03

25-Sep-03

25-Sep-03

Maturities

8-Aug-10
15-Sep-
15
1-Jun-08

30-Sep-
10

CD1

31-
Aug-
04
16-
Sep-
04

1-Jun-
04
31-
Mar-
04

CD2

28-
Feb-
05
15-
Mar-
05

1-Dec-
04

30-
Sep-
04

BC1

31-
Jul-04
15-
Aug-
04

1-
May-
04
29-
Feb-
04

Table 1: Portfolio Characteristics for Control Simulation

InstriD  Yield Coupon

R163 R153Y 13

R157 R157Y 13.5

E168 E168Y 11

DV07 DVO7Y 14.5

PurchaseDate Maturities

25:Sep-03

25-Sep-03

25-Sep-03

25-Sep-03

8-Aug-10
15-Sep-
15
1-Jun-08

30-Sep-
10

CD1

31-
Aug-
04
16=
Sep-
04

1-Jun-
04
31-
Mar-
04

CD2

28-
Feb-
05
15-
Mar-
05

1-Dec-
04

30-
Sep-
04

BC1

31-
Jul-04
16-
Aug-
04

1-
May-
04
29-
Feb-
04

Table 2: Portfolio Characteristics for Simulation Run 4.5.8

InstriD  Yield Coupon

R153 R153Y 13

R157 R157Y 13.56

E168 E168Y 11

DVG67 DVO7Y 14.5

PurchaseDate

25-Sep-03

25-Sep-03

25-Sep-03

25-Sep-03

Maturities
8-Aug-10
15-Sep-
15
1-Jun-08

30-Sep-
10

CD1
31-
Aug-04

15-
Sep-04

1-Jun-
04

31-
Mar-04

CD2
28-
Feb-05

15-
Mar-05

1-Dec-
04

30-
Sep-04

BC1
31-
Jui-04
15-
Aug-
04
1-
May-
04
29-
Feb-
04

Table 3: Portfolio Characteristics for Simulation Run 4.5.9
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BC2
31-
Jan-
05
15-
Feb-
05
1-
Nov-
04
31-
Aug-
04

BC2
31-
Jan-
05
15-
Feb-
05
1-
Nov-
04
31-
Aug-
04

BC2
31-
Jan-05

15-
Feb-05

1-Nov-
04

31-
Aug-
04

Holding

Holding

10

Holding
1

10



InstriD  Yield Coupon PurchaseDate Maturites CD1 CD2 BC1
31-Aug- 28-Feb-  31-Jul-
R153 R153Y 13 25-Sep-03  8-Aug-10 04 05 04
15-Sep- 15-Sep- 15-Mar- 156-
R157 R157Y 13.5 25-Sep-03 15 04 05 Aug-04
1-Jun- 1-Dec- 1-May-
E168 E168Y 11 25-Sep-03  1-Jun-08 04 04 04
30-Sep- 31-Mar- 30-Sep- 29-Feb-
DV07 DVO7Y 14.5 25-Sep-03 10 04 04 04

Table 4: Portfolio Characteristics for Simulation Run 4.5.10

InstriD  Yield Coupon PurchaseDate Maturities CD1 CD2 BC1
31-Aug- 28-Feb-  31-Jul-
R153 R153Y 13 25-Sep-03  8-Aug=10 04 05 04
16-Sep- 15-Sep-~-15-Mar- 15-Aug-
R157 R157Y 13.5 25-Sep-03 15 04 05 04
1-Dec- 1-May-
E168 E168Y 11 25-Sep-03  1-Jun:08 1-Jun-04 04 04
30-Sep- | 31-Mar- | 30-Sep- 29-Feb-
DV0O7 DVO7Y 14.5 25-Sep-03 10 04 04 04

Table 5: Portfolio Characteristics for Simulation Run4.5.11

Date R153Y1}/ R167Y' [ E168Y ( DVOTY
14-May-
04 01014 01036 0.10645 0.1064

Table 6: Current Market Information for Pricing of Portfolio

168

BC2
31-Jan-
05
15-Feb-
05
1-Nov-
04
31-Aug-
04

BC2

31-Jan-
05
15-Feb-
05
1-Nov-
04
31-Aug-
04

Holding
1
1

10

Holding
1
1
1

10
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