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Abstract

In this thesis, we describe linear codes over prime fields obtained from in-
cidence designs of iterated line graphs of complete graphs Li(Kn) where
i = 1,2. In the binary case, results are extended to codes from neighbour-
hood designs of the line graphs Li+l(Kn) using certain elementary relations.
Codes from incidence designs of complete graphs, Kn' and neighbourhood de-
signs of their line graphs, £1(Kn) (the so-called triangular graphs), have been
considered elsewhere by others. We consider codes from incidence designs of
Ll(Kn) and L2(Kn), and neighbourhood designs of L2(Kn) and L3(Kn). In
each case, basic parameters of the codes are determined.

Further, we introduce a family of vertex-transitive graphs r n that are
embeddable into the strong product Ll(Kn) ~ K2' of triangular graphs and
K2' a class which at first sight may seem unnatural but, on closer look,
is a repository of graphs rich with combinatorial structures. For instance,
unlike most regular graphs considered here and elsewhere that only come
with incidence and neighbourhood designs, rnalso has what we have termed
as 6-cycle designs. These are designs in which the point set contains vertices
of the graph and every block contains vertices of a 6-cycle in the graph. Also,
binary codes from incidence matrices of these graphs have other minimum
words in addition to incidence vectors of the blocks. In addition, these graphs
have induced subgraphs isomorphic to the family Hn of complete porcupines
(see Definition 4.11). We describe codes from incidence matrices of r nand
Hn and determine their parameters.

The discussion is concluded with a look at complements of r nand Hn,
respectively denoted by rnand Hn. Among others, the complements rn
are contained in the union of the categorical product Ll(Kn) x Kn' and the
categorical product £1(Kn) x Kn (where £1(Kn) is the complement of the
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triangular graph £1(Kn)). As with the other graphs, we have also considered
codes from the span of incidence matrices ofrnand Hn and determined some
of their properties.

In each case, automorphisms of the graphs, designs and codes have been
determined. For the codes from incidence designs of triangular graphs, em-
beddings of Ll(Kn) x K2 and complements of complete porcupines, we have
exhibited permutation decoding sets (PD-sets) for correcting up to terrors
where t is the full error-correcting capacity of the codes. For the remaining
codes, we have only been able to determine PD-sets for which it is possible
to correct a fraction of t errors (partial permutation decoding). For these
codes we have also determined the number of errors that can be corrected
by permutation decoding in the worst-case.
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Chapter 1

Introduction

Significant effort with considerable success has been directed towards the de-
scription of linear codes from neighbourhood and incidence designs of various
regular graphs. A neighbourhood design of a regular graph is formed by tak-
ing points to be vertices of the graph and each block consists of neighbours
of a given vertex. In the incidence design, points are edges of the graph
and each block consists of edges incident with a given vertex. In most cases,
these codes have been decoded using permutation decoding, a method due
to MacWilliams [52J. This is because combinatorial properties of the graphs
and designs are intimately linked to important properties of the codes includ-
ing minimum weight, minimum words, information sets and automorphism
groups which are pertinent for successful permutation decoding.

Incidence matrices of the neighbourhood designs are also adjacency ma-
trices of the graphs and incidence vectors are rows of the matrices. Lin-
ear codes have since been studied from neighbourhood designs of triangular
graphs [56, 41, 29, 61], complements of triangular graphs [16, 17], n-cubes
[20, 16,45,59], line graphs of n-cubes [21], Hamming graphs [18], line graphs
of Hamming graphs [19], lattice graphs [44, 43, 59], complete multipartite
graphs [59J and various uniform subset graphs [16, 56], among others. In all
these cases, permutation decoding has been employed with varying success.
PD-sets for full permutation decoding have been exhibited for some of the
codes including the binary codes from triangular graphs in [41, 56J. For some
codes, partial permutation decoding, a concept introduced in [39J, has been
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used. Here, one corrects s S; t errors where t is the full error-correcting ca-
pacity of the code. Examples where only partial permutation decoding has
been done include binary codes from adjacency matrices of n-cubes [16, 45],
the Johnson graphs and the Odd graphs considered in [16J.

A lot of focus has recently been on codes from incidence designs of regular
graphs. Incidence matrices of these designs are also incidence matrices of the
graphs. Examples include codes from incidence matrices of complete graphs
examined in [42], n-cubes in [21J and Hamming graphs in [19J. As with codes
from the neighbourhood designs, PD-sets for full and partial permutation
decoding have been obtained. For instance, full permutation decoding has
been achieved for the codes from incidence matrices of complete graphs [42J
and Hamming graphs [19J. In [21], a regular subgroup of the automorphism
group of the binary codes associated with the line graph of the n-cube, for
any information set, is given that can be used for full or partial permutation
decoding.

Let r be a graph with incidence matrix B. Consider the binary code from
the row span of an adjacency matrix A of the line graph L(r). Over lF2, it
is well known that A = BTB. Given the binary code C2(B) from the row
span of B, it is therefore possible to predict some properties of the subcode
C2(A), the binary code from the row span of A. This link between A and B
has been exploited in [21 J where binary codes from incidence matrices of the
n-cube and adjacency matrices of their line graphs have been considered. In
our case, we have used the relationship to determine parameters of the binary
codes C2(A) where A is an adjacency matrix of the iterated line graph Li(Kn)
for i = 2,3, given the binary code from an incidence matrix of Li-l(Kn). A
detailed discussion on these and other relationships between graphs, designs
and codes is given in Section 2.4.

In this thesis, we examine linear codes over all prime fields obtained from
incidence matrices of the line graphs U(Kn) and L2(Kn) (triangular graphs
and their line graphs, respectively). This is a follow-up on work reported
in [42J on non-binary codes from incidence matrices of complete graphs K;
and in [29,41, 56, 61J on binary codes from adjacency matrices of triangular
graphs. To an extent, our approach is similar to that used in [21 J for codes
from line graphs of the n-cube and in [19J where codes from incidence matrices
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and line graphs of Hamming graphs have been examined. We use results on
the binary codes from incidence matrices of LI(Kn) and L2(Kn), and the
relationship between A and B referred to above, to describe binary codes
from adjacency matrices of L2(Kn) and L3(Kn), respectively. In the non-
binary case, we examine codes spanned by differences of rows of incidence
matrices of U(Kn).

We also consider codes from graphs embeddable into graph products in-
volving triangular graphs, their complements and Kn. To this end, we in-
troduce a family of graphs r n that is an embedding of the strong product
LI(Kn) I:?5J K2, of triangular graphs and K2. Complements of these graphs
are contained in the union (LI (Kn) x Kn) U (U (Kn) x Kn), where x de-

notes the categorical product of graphs and U(Kn) is the complement of the
triangular graph U(Kn). It is shown that these graphs are isomorphic to cer-
tain induced subgraphs of L2(Kn) and its complement U(Kn}, respectively.
Complete porcupines Hn (also simply known as porcupines, see [26]) are in-
duced subgraphs of r n. We have determined various properties including
automorphism groups of rn, fn, u; and u;

As with triangular graphs and their line graphs, we have described binary
and non-binary codes from incidence matrices ofrn, fn, Hn and Hn. We have
determined their parameters, minimum words and automorphism groups.
Binary codes from r n are the only ones we have examined that have more
minimum words than just the rows of the matrices. This is also in contrast
with most binary codes obtained from other regular graphs elsewhere. Codes
from Hn are interesting in their own right having unit minimum weight in as
much as they are not full spaces. However, codes from complements of the
complete porcupines are less trivial.

For each class of codes considered, permutation decoding has been em-
ployed. We have exhibited PD-sets for full permutation decoding of codes
from incidence matrices of triangular graphs, r nand Hn. For the other codes
we have determined PD-sets for partial permutation decoding. These include
codes from incidence matrices of fn and L2 (Kn).
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1.1. Thesis outline 4

1.1 Thesis outline

We begin by presenting preliminaries related to codes, graphs and designs
in Chapter 2. The material is standard. However, to aid the discussion,
some results are given in Lemma 2.25, Corollary 2.26 and Proposition 2.30.
Lemma 2.25 has also been used to give an alternative proof to Corollary
2.27, a result that appears in [42]. This result gives an upper bound on the
minimum weight of non-binary codes from adjacency matrices of graphs with
a 4-cycle. A discussion on information set and permutation decoding follows
in Section 2.5. The chapter concludes with a presentation of some results on
codes from complete graphs and triangular graphs in Section 2.6 and codes
from a bipartite uniform subset graph (see Definition 2.4) in Section 2.7.

Chapter 3 focusses on codes from incidence matrices of triangular graphs
Ll(Kn), differences of rows of the matrices and adjacency matrices of their
line graphs L2(Kn). Let Bn be an incidence matrix of Ll(Kn) and An an
adjacency matrix of L2(Kn). For any prime p, let Cp(Bn) and Cp(An) be the
linear codes obtained from the row span over lFpof Bn and An, respectively.
Let Ep(Bn) be the code spanned over lFp by differences of rows of Bn. We
investigate various properties of Cp(Bn) and present results that extend to
the binary codes C2(An). In particular, it is shown that C2(Bn) = C2(An)
if n == 2,3 (mod 4) and that C2(An) = E2(Bn) for all n. Parameters of
Cp(Bn), C2(An) and Ep(Bn) are established for any prime pand n ~ 3. We
also determine automorphism groups of Cp(Bn)' Using a specific information
set, a PD-set for full permutation decoding of Cp(Bn) is exhibited for any
prime p.

In Chapter 4, we introduce vertex-transitive graphs r n that are also em-
beddings of the strong product Ll(Kn) ~ K2 of triangular graphs and K2

where n ~ 3. The graph r n is isomorphic to certain induced subgraphs of
L2(Kn) and it contains the complete porcupine, Hi; Some properties of rn
including automorphism groups are determined. Unlike other regular graphs
considered in this thesis and elsewhere for which one may only associate
neighbourhood and incidence designs, we show that rnalso has what we
have termed as 6-cycle designs. These are l-designs in which every block is
incident with vertices of a 6-cycle in the graph. Codes from incidence ma-
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1.1. Thesis outline 5

trices of rnand Hn are studied and parameters determined. Unlike most
codes from incidence matrices of regular graphs reported here and elsewhere,
binary codes from rn are shown to have n more minimum words in addition
to the rows of the matrices. Since the codes from complete porcupines have
minimum weight one, permutation decoding is only considered for the codes
from rn· We have exhibited PD-sets for full permutation decoding of both
binary and non- binary codes.

In Chapter 5, we consider the complements fn of embeddings of the strong
product £1(Kn) ~ K2 referred to above. These graphs correspond to certain
induced subgraphs of the complements £2(Kn). fn is contained in the union
(£1(Kn) x Kn) U (V(Kn) x Kn). As may have been noted from the discussion
above, complements of complete porcupines Hn are induced subgraphs of fn.
These graphs and their codes are considered first. Automorphism groups of
the graphs and codes are determined and shown to be isomorphic. One
observation on some PD-sets presented here and elsewhere in literature is
that, in most cases, their size is much larger than the lower bound predicted
by Gordon [28J. This is despite that permutation decoding is obviously more
efficient the smaller the size of the PD-sets. The PD-sets we have exhibited
for the codes from incidence matrices of complements of complete porcupines
are only twice the Gordon bound. We also examine codes from incidence
matrices of fn and determine their main parameters, automorphism groups
and PD-sets for partial permutation decoding. The size of this PD-set is also
only twice the Gordon bound.

Since rn corresponds to certain induced subgraphs of L2(Kn), results ob-
tained for the codes of rn in Chapter 4 are used to describe properties of
codes from incidence matrices of L2(Kn) in Chapter 6. These codes also
have some properties which seem to be characteristic of codes from the it-
erated line graphs Li(Kn) in general. For instance, the minimum words are
scalar multiples of the rows of the matrices and their automorphism group is
isomorphic to that of the graphs, the symmetric group Sn. As with the codes
from incidence matrices of Ll(Kn), results from codes of incidence matrices of
L2(Kn) have been used to describe codes from adjacency matrices of L3(Kn).
For these codes we have only considered partial permutation decoding.
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Chapter 2

Preliminaries

This chapter is a presentation of terminology, notation and an overview of
results related to codes, designs and graphs that will be used. The reader is
referred to the textbooks [2, 5, 6, 9, 14, 27, 31, 33, 51, 63J for more informa-
tion.

The chapter is arranged as follows. In Sections 2.1, 2.2 and 2.3, we present
elementary definitions related to codes, designs and graphs, respectively. In
Section 2.4, we discuss links between codes, designs and graphs. We also
describe properties of codes obtained from graphs and designs. Information
set and permutation decoding are discussed in Section 2.5. Some known
results on non-binary codes from incidence matrices of complete graphs and
binary codes from adjacency matrices of triangular graphs are presented in
Section 2.6.

2.1 Codes

Let p be a prime and let q = pt where t is a positive integer. Denote by lF~
the vector space of n- tuples over IFq, the finite field of order q.

In the context of coding theory, a q-ary linear code C is a subspace of
lF~. If C has dimension k then it is said to be an [n, kJq code. Elements of C
are its codewords. The Hamming distance between two codewords Cl, C2 E C,
written d(Cl, C2), is the number of coordinate positions in which they differ.
The minimum distance dof C, also written as d(C), is the minimum of the
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2.1. Godes 8

Hamming distances between any two distinct codewords. If C has dimension
k and minimum distance d then it is said to be an [n, k, dJq code. We will
write this as C = [n, k, dJq.

The minimum distance of a given code determines its error-detecting and
error-correcting capability as stated in the theorem below.

Theorem 2.1. [2, Theorem 2.1.1] Let C be a code with minimum distance

d. If d 2:: s +1 > 1 then C can be used to detect up to s errors in any received

vector. If d 2:: 2t + 1 then C can be used to correct up to t errors in any
received vector.

The Hamming weight of a codeword cE C, written wt(c), is the number
of non-zero coordinate entries of c. Hence wt(c) = d(c,O). The support of c,
Supp(c), is the set of all coordinate positions at which coordinate entries of
c are non-zero, i.e.,

Supp(c) = {i : Cj =1= O}.

Hence wt(c) = [Supp(cj]. As with the minimum distance of C, one may also
define the minimum weight of the code. A minimum word of C is a codeword
of minimum weight. The following proposition is easily seen to hold.

Proposition 2.2. [9, Proposition 9.7] The minimum distance of a linear

code is equal to the minimum weight of all its non-zero codewords.

The two most common ways to represent a linear code are with either a
generator matrix or a parity check matrix.

A generator matrix M of a linear [n, k]q code C is a k x ti matrix whose
rows form a basis for C. The matrix M corresponds to a map F~ -t F~,
sending a message x of length k to a codeword c = xM in C. Any set of
k coordinate positions corresponding to k independent columns of M forms
an information set for the code. The remaining r = n - k positions form a
redundancy set (also called a check set). r is also called the redundancy of
the code.

In general, there are many generator matrices for a given linear code.
Using elementary row operations, a generator matrix M can be written in
the standard form [hIA] where h is the k x k identity matrix and A is
a k x (n - k) matrix. In this form the first k coordinates of the code are

http://uwc.ac.za



2.1. Codes 9

information positions. A generator matrix is systematic if among its columns
there are columns of the k x k identity matrix.

In many instances, properties of a given linear code C may be established
using its orthogonal complement C.l, also called the dual code of C. The
dual code c- of an [n, k, d]q linear code C is defined as the set of all vectors
in IF~orthogonal to C, i.e.,

C': = {v E IF; : (c, v) = 0 for all c E C} (2.1)

where (,) denotes the standard inner product in IF~. In general, c- is linear
regardless of the linearity of C.

A parity-check matrix for C is an (n - k) x n matrix whose rows form
a basis for its dual code C.l. It has standard form H = [-ATI1n_k]. Any
n-tuple cover IFq is a codeword in C if and only if cHT = o.

Let Cl and C2 be linear codes of length n. Then the codes are permu-
tation equivalent if there is a permutation of coordinates mapping Cl to C2.

The permutation can be described using a permutation matrix P, an n x n
matrix with exactly one entry equal to 1 in each row and column and Q's else-
where. Each such matrix represents a permutation of n elements. Suppose
Ml is a generator matrix of Cl. Then Cl and C2 are also said to be permu-
tation equivalent if there exists a permutation matrix P such that Ml P is a
generator matrix for C2.

It is often convenient to use permutations in cycle form other than permu-
tation matrices. Let Sn be the symmetric group on n elements and let o E Sn.
Consider a vector X = Xl· .. Xn. Define (j(x) by (j(x) = X".-l(l) ... X".-l(n).

This way, we have o (z) = xP where P is the permutation matrix given by
Pij = 1 if (j( i) = j and 0 otherwise.

The set of coordinate permutations that map a linear code C to itself
forms a group under composition called the permutation automorphism group
of C, denoted Aut(C). We note that there are more general equivalences of
codes when one considers fields other than IF2. We will not consider these
but the interested reader is referred to Huffman and Pless [33, Section 1.7]
for a detailed discussion.

We now give a definition of the well-known class of reversible codes. A
reversible code has been presented in Lemma 5.12. These codes were in-
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2.2. Designs 10

traduced by Massey in [53J. A block code C is reversible if the block of
digits formed by reversing the order of the digits in a codeword is another
codeword in the same code. That is, a code C is reversible if and only if
(en, Cn-l,' .. .c.) E C whenever (Cl,' .. ,Cn) E C.

2.2 Designs

The basic concept in the theory of designs is that of a finite incidence struc-
ture, a triple S = (P, B, I) where Pand B are disjoint finite sets and I is a
binary relation between Pand B, i.e., I ~ P x B. Members of P are called
points, those of B are blocks and those of I flags. Points are denoted by lower
case letters while blocks by capital letters. If (p, B) E I then the point P is
said to be incident with the block B or B contains the point p.

We only consider incidence structures with a particular degree of regu-
larity. These are called designs or t-designs if the degree of regularity is to
be emphasised. An incidence structure V = (P, B, I) is called at - (v, k, A)
design, or simply a t-design, for some non-negative integers t, v, k and A if
P has v points, every block B E B is incident with precisely k points and
every subset of P of size t is incident with exactly A blocks.

A design is symmetric if the number of points is equal to the number of
blocks. Two distinct blocks are said to be repeated if they are incident with
the same set of points. A design is simple if it has no repeated blocks. A
trivial design is one in which every set of k points is incident with a block.
Designs considered in this thesis are simple and non-trivial I-designs.

An incidence structure may be represented by its incidence matrix. Let
S = (P, B,I) be an incidence structure with point set P = {PI, ... ,Pu} and
black set B = {Bl' ... ,Bb}' An incidence matrix for S is the b x v matrix
M = (mij) with (i,j)th entry 1 if and only if the ith block contains the jth
point and 0 otherwise.

If P ~ P then the incidence vector of P, written u", is the characteristic
vector of P, i.e., vP is such that vP(i) = 1 if iEP and vP(i) = 0 otherwise.
Each row of an incidence matrix M is an incidence vector of the corresponding
block.

For any given design V, there are related structures that yield designs in
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some cases. We are interested in the dual of a given design. Properties of
the dual provide a way of determining dimensions of the codes considered in
Sections 3.4, 3.5, and 6.4.3.

In general, the dual of an incidence structure 5 = (P, B,I) is the struc-
ture 5t = (pt, Bt,:rt) where pt = B, Bt = Pand (B,p) «i: if and only if
(p, B) E I. If B is an incidence matrix of 5 then BT, the transpose of B, is
an incidence matrix of the dual st.

Now that some basic definitions of designs have been introduced, let us
consider the notion of isomorphisms of designs.

Let 5 = (P,B,I) and S' = (P',B',.J') be incidence structures and let
cp: PuB -t P' U B' be a bijection. Then cpis an isomorphism if it satisfies
the following conditions.

(a) cp(P) = P' and cp(B) = B';

(b) (p, B) E I if and only if (cp(p), cp(B)) E I' for all pEP and B E B.

If there is an isomorphism between incidence structures 5 and 5' then they
are said to be isomorphic. If 5 = 5' then cp is an automorphism. The
set of all automorphisms of 5 forms a group under composition called the
automorphism group of 5, denoted Aut(5).

Observe the following: In terms of incidence matrices Mand M' of,
respectively, 5 and S', the incidence structures are isomorphic if there exist
row and column permutations transforming Minto M', i.e, if there exist
permutation matrices Pand Q such that PMQ = M'.

Some classes of designs obtained from regular graphs are considered in
Section 2.4.

2.3 Graphs

We now present terminology from graph theory. The definition of graphs
below is as given in [14J. Such graphs are also termed simple graphs by
others (cf. [63]).

A graph is a pair r = (V, E) of sets such that E ~ V{2}, i.e, E contains
2-element subsets of V. The elements of Vare vertices of the graph and
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those of E are its edges. The vertex set of I' is denoted V (I") and its edge
set by E(f). If e = {u,v} EEthen we write e = [u,v]. The vertices u and
vare said to be adjacent or neighbours. The vertices u and vare also said
to be incident with the edge e. Two distinct edges e and f are adjacent if
they are incident with a common vertex. The parity of a graph f = (V, E)
is the parity of IV (f) I.

Let I' = (V, E) be a graph and consider a vertex v E V (I"). The open

neighbourhood of v, N(v), is the set of all vertices adjacent to v; the set
N[v] = N(v) U {v} is the closed neighbourhood of v. When we must be
explicit, the open and closed neighbourhoods will be denoted Nr( v) and
Nr[v], respectively. When stated without qualification, the neighbourhood
is assumed to be open. The degree (or valency) of a vertex v, denoted deg(v),
is the order of the set N (v). If all vertices of I' have the same degree k then
r is said to be k-regular, or simply regular. When the degrees of all vertices
in a graph are counted, every edge is counted exactly twice, once from each
of its ends. Hence the number of edges of a k-regular graph r = (V, E) is
lEI = ~k . lVI, a result which follows from the hand-shaking lemma.

A walk in a graph I' is a sequence va, VI,' .. ,Vn of vertices such that
[Vi-I, Vi] is an edge for 1 ::; i ::;n; n is the length of the walk. A walk is called
a trail if all edges appearing in it are distinct. It is closed if va = Vn. A walk
is a path if all its vertices are distinct. If there exists a path between any two
vertices of a graph r then the graph is connected. A cycle is a closed trail
with no repeated vertices other than the starting and ending vertices. By
an n-cycle is meant a cycle containing n vertices. A Hamiltonian cycle is a
cycle that goes through every vertex exactly once. A Hamiltonian graph is a
graph with a Hamiltonian cycle. An Euler tour in a graph is a closed walk
which traverses every edge exactly once. A graph is Eulerian if it admits an
Euler tour.

Let r = (V, E) and I" = (V', E') be two graphs such that V' ~ Vand
E' ~ E. Then ï" is a subgraph of f. If f' contains all edges of r that join
two vertices in V' then I" is said to be an induced subgraph of r and this is
written as I"= r[V'].

Let X be a non-empty set. A complete graph Kx is a graph on X in
which every pair of distinct vertices is adjacent. If X = n = {I,··. ,n}
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Bipartite graphs 13

then Kx is denoted Kn. A graph with n vertices has at most G) edges, the
number of edges of Kw A complete subgraph of a given graph is called a
clique. A clique is maximal if it is not properly contained in another clique,
i.e., if u is any vertex not in the clique then there exists a vertex v in the
clique such that u and vare not adjacent. A clique of the largest size is said
to be maximum. The number of vertices in a maximum clique is the clique
number of the graph.

The complement r of a given graph r = (V, E) is the graph on V such
that two vertices are adjacent if and only if they are not adjacent in r. Hence
if r = (V, E) then its complement is the graph r = (V, E( Kv) \ E) where
E( Kv) is the edge set of the complete graph on V. If a graph r is k-regular
then its complement is (lVI - k - I)-regular.

A graph r is k-edge-connected if any subgraph formed by removing any
k - 1 edges is connected. The edge-connectivity of a graph is the minimum
number of edges needed to disconnect it.

2.3.1 Bipartite graphs

The dimension of non-binary codes from incidence matrices of the graph
will be determined by whether the graph is bipartite or not. Details of
this are given in Lemma 2.23. We will also consider bipartite subgraphs of
certain graphs examined in this thesis. Examples include bipartite sub graphs
of triangular graphs in Chapter 3 and embeddings of strong products of
triangular graphs and K2 in Chapter 4.

A graph r is bipartite if its vertex set can be partitioned into two non-
empty subsets U and V such that each edge of r has one end in U and the
other end in V. The pair (U, V) is a bipartition of the graph. A bipartite
graph with bipartition (U, V) is denoted I'(L', V). If each vertex of U is
adjacent to all vertices of V then r(U, V) is a complete bipartite graph. A
complete bipartite graph r(U, V) such that lUI = mand IVI = n is denoted
Km,n. The graph Ki,n is called a star.

As defined, a bipartite graph has no odd cycles. In fact, bipartite graphs
are characterised by this property:

Proposition 2.3. [14, Proposition 1.6.1] A graph is bipartite ij and only ij
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it contains no odd cycle.

Fish, Key and Mwambene introduced the family of bipartite uniform sub-
set graphs in [22J. A bipartite uniform subset graph is an induced subgraph
of the triangular graph Ll(K4) (as observed from an incidence matrix of the
graph in Equation (3.4)).

Definition 2.4. [22J Let n = {I,··· ,n} and let k, l and i be non-negative
integers such that n 2: k, i and k, l 2: i. Let nV} be the set of subsets of
order j of n. The bipartite uniform subset graph r(n, k, l; i) has bipartition
(n{k}, n{l}) such that vertices u E n{k} and v E n{l} are adjacent if and only
if lu nvi = i.

Hence r(n, k, i, i) has (~) + (7) vertices. The degree of each vertex in
n{k} is (7) C=;) and that of each vertex in n{l} is (!) (~=!). The graph has
(~) (7) (~=n= (7) (!) (~=!)edges.

For certain values of n, k, l and i, codes from incidence matrices of bi-
partite uniform subset graphs T{n, k, L, i) have been considered in [22J. In
Lemma 3.2, we need results on codes from incidence matrices of the graphs
I'(S, 2,1,1). Parameters of codes from incidence matrices of the family of
graphs r(n, k, 1, 1) are summarised in Proposition 2.37.

2.3.2 Line graphs

As it has been alluded to in Chapter 1, our work focusses on codes from
iterated line graphs of complete graphs. In this section, we give definitions
of iterated line graphs and consider their pertinent properties.

Let r = (V, E) be a graph. The line graph of r, denoted L(r), is the
graph whose vertex set consists of the set of edges of r and two vertices e
and f are adjacent if and only if they are adjacent as edges of r. For i 2: 1,
the iterated line graph Li(r) is formed by successive applications of the line
graph operator, i.e., £i(r) = L(Li-l(r)) where LO(r) = r.

In general, iterated line graphs grow exponentially regardless of the start-
ing graph. Exceptional cases are the line graph of the path Pn and that of
the cycle en. The line graph of Pn is Pn-1 and L(en) = en. Figure 2.1
depicts iterated line graphs of the star K1,4.
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[12,13[

"~'

[1,51 [1,41

[13,151

(a) (b)

114,151

Figure 2.1: Iterated line graphs of Kl,4: (a) Kl,4, (b) K4 = Ll(Kl,4) and (c)
L(K4) = L2(Kl,4)

Properties of a graph r that depend only on adjacency of edges may be
translated into properties of its line graph that depend on the adjacency of
vertices. For instance, if r is connected then it contains a path connecting
any two edges. This translates to a path in the line graph L(r) connecting
any two vertices. Hence the line graph is also connected. The edges incident
at a vertex of r give rise to a maximal clique in the line graph L(r). Further
properties of L(r) that are relevant to our discussion are stated below,

Lemma 2.5. [27, Lemma 1.7.1] If a graph r is k-reqular then its line graph
L(r) is (2k - 2)-regular.

Proof. Let e = [u, v] E E(r). Then

INL(r)(e)1 = I{[u, x] : x =1= v} U {ly, v] : y =1= u}1 = 2k - 2

o
Theorem 2.6. [3, Theorem 6.4.1, p. 118] If a graph r is Eulerian then its
line graph L(r) is both Eulerian and Hamiltonian.

Theorem 2.7. [3, Corollary 6,4.5, p. 119] The line graph of a Hamiltonian
graph is Hamiltonian.

The triangular graph Ll(Kn) is defined as the line graph of the complete
graph Kn. The complete graph itself is the line graph of the star Kl,n (see
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the example in Figure 2.1). Vertices of the triangular graph correspond to
elements of [2{2}. Hence [u, v J is an edge of L1 (Kn) if and only if lu n vi = 1.
The triangular graph L1(K4) is illustrated in Figure 2.2.

11.2)

1',31 1',4)

Figure 2.2: The triangular graph LI(K4).

2.3.3 Graph homomorphisms

We now consider graph homomorphisms. These are used to characterise
graphs considered in Chapter 4. Also, given two graphs rand H in Lemma
6.3, we need to determine if there is an isomorphism from r to H.

A homomorphism from a graph r to a graph H is a mapping a : V (r) -t

V(H) such that [u, vJ E E(r) implies that [a(u), a(v)J E E(H). If a is injec-
tive then it is an embedding. If a is bijective and a-I is also a homomorphism
then a is an isomorphism.

Two graphs rand H are edge-isomorphic if there exists a bijection (J

between their edge sets that preserves adjacency of edges, i.e., (J : E(r) -t

E(H) is an edge-isomorphism if edges e and f are adjacent in r if and only if
(J(e) and (JU) are adjacent in H. Since every edge is defined by two vertices,
an isomorphism between two graphs induces an edge-isomorphism. However,
the existence of an edge-isomorphism (J does not imply the existence of an
isomorphism a from r to H that induces (J. Whitney [64J proved that, with
only four exceptions, edge isomorphisms between finite connected graphs are
induced by graph isomorphisms. Exceptional cases have been illustrated by
Hemminger in [30J. They include K4' We state Whitney's result below as
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deduced from Hemminger [30].

Theorem 2.8. [30, Theorem 1] Let a be a one-to-one function from the edge
set of r onto the edge set of I" where rand I" are connected graphs. Then a
is induced by an isomorphism of I' onto I" if and only if a and a-I preserve
stars.

Corollary 2.9. [30] (Whitney's Theorem for Line Graphs) If rand I" are
connected graphs with isomorphic line graphs then I' and I" are isomorphic
graphs unless one is isomorphic to K3 and the other to KI,3.

An automorphism of a graph I'is an isomorphism from the graph to itself.
For a graph I', an automorphism a is just a permutation of its vertices that
preserves adjacency, i.e., [u,v] E E(f) if and only if [a(u), a(v)] E E(f). We
denote the group of automorphisms of a graph f by Aut(f). Hence Aut(r)
is a subgroup of the symmetric group of all permutations of the vertex-set
V(f).

Since an automorphism a of a graph I'maps edges to edges and non-edges
to non-edges, we have the following.

Lemma 2.10. [27, Lemma 2.10] The automorphism group of a graph is equal
to the automorphism group of its complement.

In general, it is not a trivial task to determine automorphisms of a given
graph or whether a graph has non-trivial automorphisms. The case of Kn
is rather obvious as any permutation of vertices is an automorphism. Hence
Aut(Kn) ~ Sn where Sn denotes the symmetric group on n elements. By
Corollary 2.9, the automorphism group of a graph is isomorphic to that of
its line graph. Hence,

Proposition 2.11. For integers i ~0, n ~ 3 and n =1= 4, Aut(Li(Kn)) = Sn
where Li(Kn) is the iterated line graph of Kn.

A graph I' is vertex-transitive if for any two vertices u and v, there is an
automorphism a E Aut(r) such that a(u) = v. Hence, a 'vertex-transitive
graph is one in which a given vertex cannot be distinguished from any other
based on the vertices and edges surrounding it. Since the group actions on
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a graph and its complement are identical, a graph is vertex-transitive if and
only if its complement is.

A graph I' is edge-transitive if for any given two edges e and f there
exists an automorphism a E Aut(f) such that a(e) = f. It follows that
the line graph of an edge-transitive graph is vertex-transitive. For example,
it is clear that Kn is vertex- and edge-transitive. The vertex-transitivity of
Ll(Kn) is inherited from the edge-transitivity of Kn. It is also easily shown
that U(Kn) is edge-transitive and hence L2(Kn) is vertex-transitive. This
phenomenon, however, does not continue ad infinitum. For instance, L2(Kn)
is not, in general, edge-transitive as shown below.

Lemma 2.12. If n ~ 5 then the iterated line graph L2(Kn) is not edge-
transitive.

Proof. Recall that edges of L2(Kn) have the form [[A, BJ, [G, D]] where A,
B, G and Dare 2-element subsets of n such that lA nBI = 1= lGnDI and
I{A, B} n {G, D}I = 1. By Proposition 2.11, Aut(L2(Kn)) = Sn if n ~ 5.
Let o E Sn. Then a induces an edge-automorphism (j E Sn. Define a map
s .E(L2(Kn)) --+ E(L2(Kn)) by

(j([[A, BJ, [G, DJ]) = [[(j(A), (j(B)J, [(f(G), (j(D)JJ

where
(j( {a, b}) = {(j(a), (j(b)}.

There is no automorphism (j E Sn satisfying

(j([[{ a, b}, {a, c}J, [{a, b}, {a, d}J]) = [[{a, b}, {a, c}J, [{a, b}, {b, d}JJ.

o

2.3.4 Graph products

Graph products are used to construct new graphs ("products") from given
ones ("factors"). Several graph products have been defined in literature.
They are defined on the cartesian product of vertex sets of the factors. Ad-
jacencies in the products depend on adjacencies in the factors. The graphs
considered in Chapter 4 and Chapter 5 of this thesis are, respectively, strong
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and categorical products of triangular graphs and Kn. We give definitions
of these products below including that of the cartesian product. In general,
graph products take any number of graphs. We however restrict ourselves to
products of two graphs. For the product taking any number of graphs, the
interested reader is referred to Sabidussi [57J.

Let fl and f2 be graphs. A product fl * f2 is a graph on the cartesian
product V(f1) x V(f2). The definition of an edge [(UI,VI), (U2, V2)JE E(fl *
f2) depends on whether UI and U2, and VI and V2 are adjacent, identical or
non-adjacent in their respective factors [34J. We give definitions of products
of two graphs below by only specifying adjacency conditions.

Definition 2.13. [62, 57J The cartesian product of two graphs fl and f2 is
denoted fIOf2 and

[(x, y), (X', y')J E E(fIOf2) -¢=>x = X' and ry, y/J E E(f2); or

[x, X/J E E(fI) and y = y'.

It follows that the cartesian product is both commutative and associative.
In a remarkable result, Sabidussi [57Jhas shown that every connected graph
can be expressed uniquely as a cartesian product of its prime factors. For
example, the 4-cycle is the cartesian product K20K2.

Let fl and f2 be graphs and let V = (x, y) E V(fIOf2). Then

N(v) = ({x} x Nr2(y)) U (Nr1(x) x {y}).

Hence

deg(v) = degrJx) + degr2(Y)'

If fl is k-regular and f2 is l-regular then fIOf2 is (k + l)-regular.

Definition 2.14. [3J The categorical product (also called the tensor product
or Kronecker product) of two graphs I'I and I'2 is denoted fIX I'2 and

[(u, v), (Ui, v')J E E(fl x f2) {::} [U, U/J E E(fI) and [v, V/J E E(f2).

The product is not necessarily commutative. It is equivalent to the Kro-
necker product of the adjacency matrices of the graphs. If v = (x, y) is a
vertex of f1 x f2, then
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Hence

Definition 2.15. [3J The strong product of two graphs f1 and f2 is denoted
r, ~r, and

[(u, v), (U', v')J E E(fl ~ f2) ~u = U' and [v, V/J E E(f2); or

[u, U/J E E(fl) and v = v'; or

[u, U/J E E(f1) and [v, V/J E E(f2).

Equivalently,

The strong product is both commutative and associative.

2.3.5 Matchings and d-covered graphs

We now present definitions of independent sets, matchings and d-coveredness
in graphs. Primarily, the focus is on sets of edges that are pairwise non-
adjacent. Identifying such sets in a given graph provides a tool of determining
if certain codes from the graph contain the all-one vector. This in turn is
used to determine dimensions of the codes. These ideas are explored further
in Section 2.4.

An independent set S in a graph I' = (V, E) is a subset of V in which
no pair of vertices is adjacent, i.e., for any vertices u and v in S, [u, vJ is
not an edge of f. Equivalently, each edge of I' has at most one end point in
S. If S is not a proper subset of another independent set then it is maximal
independent. Adding any other vertex to a maximal independent set forces
it to contain an edge. A maximal independent set of the largest size is
maximum. One sees immediately that an independent set in a graph is a
clique in the complement and vice-versa.

Let I' be a graph. A subset M ~ E(f) is a matching if no pair of edges
is adjacent. M is a perfect matching if every vertex of the graph is incident
with exactly one edge in M. Every graph with a perfect matching is even.
A defect-d matching in a graph I' is a matching M which covers all but d
vertices of the graph. A graph is d-couered if for each edge e of I' there exists
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a defect-d matching containing e. Thus a defect-O matching is a perfect
matching.

A characterisation of d-covered graphs is given by Little, Grant and
Holton in [50J. They have shown that a k-regular graph I' with edge-
connectivi ty k or k - 1 is O-covered if IV (f) I is even and J-covered if IV (f) I
is odd. However, for any non-negative integers k and d, there exist k-regular
graphs with edge-connectivity k - 2 that have the parity of d but do not even
have a defect-d matching. The following result has been used in Sections 3.4
and 6.4.3.

Theorem 2.16. [50, Theorem 4.4J Every connected even vertex-transitive
graph is O-covered and every connected odd vertex-transitive graph is I-covered.

2.4 Codes from graphs and designs

Now that basics of codes, designs and graphs that are of interest to us have
been considered in Sections 2.1, 2.2 and 2.3, respectively, we examine links
between the three structures. The relationships are obtained through adja-
cency and incidence matrices of the graphs. If the graphs are regular, these
matrices are also incidence matrices of certain designs from the graphs. The
codes that we consider are generated by adjacency and incidence matrices of
regular graphs.

2.4.1 Adjacency and incidence matrices of graphs; re-
lated designs and codes

In this section we define adjacency and incidence matrices of graphs. Corre-
sponding neighbourhood and incidence designs are also described in the case
of regular graphs. We also consider codes from the designs.

Let f = (V, E) be a graph such that IV (f) I = ti. An adjacency matrix
A = (aij) of T is an rt x n matrix with rows and columns indexed by vertices
of I' such that aij = 1 if vertices Vi and Vj are adjacent and aij = 0 otherwise.
A is symmetric with zero diagonal.

An adjacency matrix of a graph is unique up to a permutation of rows
and columns as it depends on the ordering of vertices. If the graph is regular,
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its adjacency matrix is also an incidence matrix of the neighbourhood design
of the graph.

Definition 2.17. [19J The neighbourhood design 'D = (P,8,I) of a k-

regular graph r = (V, E) with n vertices is the 1 - (n, k, k) design formed
by taking points to be vertices of r and blocks to be sets of neighbours of a
vertex, for each vertex.

Hence the neighbourhood design 'D is symmetric. The incidence vector
of a block ïi of 'D corresponding to a vertex u of the graph is the vector

V
U = L V

W

wEN(u)

where VU is the standard basis vector in IF; with entry 1 in the w-indexed
coordinate position. VU is also the row of A indexed by vertex u.

For any prime p, the p-ary linear code Cp(A) is the span over lFp of rows
of A, i.e.,

Cp(A) = (Vii: u E V(r)).

Cp(A) has length n, the number of vertices of the graph. lts dimension is the
rank of A over lFp'

Another way of describing a graph is by using its incidence matrix. Let
r = (V, E) be a graph with n vertices and m edges. An incidence matrix

B = (bij) of r is an n x m matrix such that bij = 1 if the ith vertex is an
endpoint of the jth edge and bij = 0 otherwise. Rows and columns of Bare
indexed by, respectively, vertices and edges of the graph.

If r is regular then B is also an incidence matrix of the incidence design
of the graph.

Definition 2.18. [19J The incidence design of a k-regular graph r with
m edges is the 1 - (m, k, 2) design formed by taking points to be edges of
the graph and blocks to be sets of edges incident on a given vertex, for each
vertex.

The block ïi of the incidence design contains edges incident with vertex
u. It has incidence vector

VU = L v[u,w]

[u,W]EE(r)
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where v[u,w] is the unit vector in IF; with coordinate entry 1 in the position
indexed by [u, wJ. VU is also the row of B indexed by u. For any prime p, we
denote by Cp(B) the p-ary code spanned by rows of B. That is,

In Propositions 3.8 and 6.6, we will need the following relationship be-
tween an incidence matrix of a graph and an adjacency matrix of its line
graph.

Proposition 2.19. [27, Lemma 8.2.2J Let B be the incidence matrix of the
graph I' and let A be the adjacency matrix of the line graph L(r). Then
BT B = 2I+ A where I is the ti x n identity matrix.

Over IF2 we hence have
BTB = A. (2.2)

The following result gives a relationship between the automorphism group
of a regular graph and that of the corresponding incidence design.

Lemma 2.20. [19, Lemma IJ Let I' be a k-regular graph with m = lEI edges.
Let V be the 1 - (m, k, 2) incidence design from an incidence matrix of f.
Then Aut(f) = Aut(V).

Let C be a code from an incidence matrix of a design V. It is clear that
every automorphism of V induces an automorphism of C. Hence Aut(V) ~
Aut(C).

2.4.2 Codes from incidence matrices of graphs

We now consider properties of codes from incidence matrices of graphs. We
examine relationships between binary codes from these matrices and those
from adjacency matrices of line graphs of the graphs. We also discuss prop-
erties of codes spanned by differences of rows of the incidence matrices.

Since an incidence matrix of a graph is made up of weight-2 column
vectors, the following result is immediate.

Lemma 2.21. If B is an incidence matrix of a graph I'= (V, E) then rows
of B are linearly dependent over IF2.
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If a graph r is connected, then the 2-rank of its incidence matrix Band
hence the dimension of the binary code C2(B), is determined as follows.

Lemma 2.22. [1, Theorem 10, p. 140J Let r = (V, E) be a connected graph
with n = IVI vertices, m = lEI edges and incidence matrix B. Then any
n - 1 rows of B are linearly independent over lF2.

Proof. Suppose rl, r2,· .. .ï « are d ~ n - 1 linearly dependent rows of B.
Then

(2.3)
These rows correspond to d vertices of r. Because r is connected and each
column of B has exactly two entries equal to 1, there is at least one edge e
with one endpoint among these vertices and the other endpoint outside. The
column corresponding to this edge has a single entry equal to one. The sum
of the coordinates corresponding to this column cannot be zero, contradicting
Equation (2.3). 0

If any single row of an incidence matrix B of a graph is removed then
the remaining (n - 1) x m sub-matrix B* has rank ti - 1. Hence only n - 1
rows are needed to completely describe the corresponding graph. The vertex
corresponding to the deleted row is a reference vertex. By Lemma 2.22, any
vertex of r can be made a reference vertex.

For any odd prime p, if a given graph is connected then the p-rank of its
incidence matrix B is determined using the following lemma, deduced from
[46, Result 2J.

Lemma 2.23. [46, Result 2J Let r = (V, E) be a connected graph with ti

vertices and incidence matrix B. For any odd prime p, if r is bipartite then
rankp(B) = ti - 1 while if r is not bipartite then rankp(B) = n.

In Lemma 2.24, some codewords in the duals of binary codes from in-
cidence matrices of regular graphs are given. A similar result appears in
[13J.

Lemma 2.24. Let r = (V, E) be a regular graph with incidence matrix B.
Let C2(B) be the binary code from the row span of B. If r has an l-cycle
Cl = (uo, ... ,Ul-l) where l 2:: 3, then

c = V[UQ,Ul] + V[Ul,U2] + ... + V[UI-2,UI-l] + V[UI-l,UO] E C2(B)1..
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Proof. For any x E V(f), we need to show that (VX, c) = 0 where VX is the
incidence vector of the block x in the incidence design of f.

Suppose x =I Ui for any Ui E Cl' Then VX and c are not commonly incident
at any point. Hence (VX, c) = O.

Suppose x = Ui for some Ui E Cl. Then VX and c are commonly incident at
[Ui-I, Ui] and [Ui, Ui+l] where the indices are added modulo l. Hence (VX, c) =
2 == 0 (mod 2). 0

This result can be extended to codes over any prime field if 1 2: 4 is even
[13]. In this case, c takes the form

In Chapters 3 and 6, apart from codes from incidence designs 1J of the
iterated line graphs Li(Kn), i = 1,2, we have also considered the codes
EF(1J) obtained from the span of differences of incidence vectors of 1J over
a field F. In general, this code has interesting properties. For instance, if a
given graph I' is connected and regular then the binary code from the span
of differences of incidence vectors of 1J is equal to the binary code from the
neighbourhood design of the line graph L(f).

Formally, if S = (P, B, I) is an incidence structure and F a field, the
code EF(S) is obtained as follows.

EF(S) = (vC - vD: C,D E B)

= (vC - vCo : C E B)
(2.4)

where Co E B. The reader is referred to [2, p.44] for a thorough discussion
on these codes and their properties. Since we consider codes over the prime
field lFp and the design 1J has an incidence matrix B, EF(1J) will be denoted
Ep(B).

Lemma 2.25. Consider a regular graph I' and its line graph L(f). Let U

and w be adjacent vertices off, i.e, [u, w] is a vertex of L(f). Let u and w be
blocks corresponding to vertices U and w in the incidence design of I' and let
[u, w] be the block in the neighbourhood design of L(f) containing neighbours
of vertex [u, w] of L(f). Then
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(a) [u, w] = u6w = (u U w) \ {[u, w]};

(b) v[u,w] = VU + VW _ 2v[u,w].

Proof. (a) In the neighbourhood design, the block [u, w] contains neighbours
of [u, w], i.e., elements of

{[u, x] : x =I- w} U {[w,y]: y =I- u}.

In the incidence design, this is equal to the set

({[u,x]: x =I- u} U {[w,y]: y =I- w}) \ {[u,w]}
= (u U w) \ {[u, w]}.

(b) Consider the incidence vector v[u,w] in the neighbourhood design.

v[u,w] = L v[u,x] + L v[w,y]

xfu,w yfu,w

=Lv[u,x] +L v[w,y] - 2v[u,w]

xfu yfw

= VU + VW _ 2v[u,w].

o
Over lF2, Lemma 2.25(b) implies that v[u,w] = VU + vW, the difference of

VU and VWo Since v[u,w] is also a row of an adjacency matrix of the line graph
L(r) of a graph r, we have the following result.

Corollary 2.26. Let r be a regular graph with incidence matrix B and let

E2(B) be the binary code spanned by differences of rows of B. Let C2(A)

be the binary code from the row span of A, an adjacency matrix of the line
graph L(r). Ifr is connected then C2(A) = E2(B).

Proof. For any adjacent vertices u and w of r, we have v[u,w] = VU + vW E

E2(B) by Lemma 2.25(b). Hence C2(A) ~ E2(B).
Conversely, suppose VU + VW E E2(B). Since r is connected, there is a

path connecting u and w. Let u, UI, U2,· .. ,uz, w be such a path. Then

vU + VW = VU + VUl + VUl + + VUl + VUl + VW

= v[u,ul] + V[Ul,U2] + + v[ul'w],

a sum of rows of A. Hence VU + VW E C2(A). o
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We now use Lemma 2.25(b) to give an alternative proof to Corollary 2.27,
a result that also appears in [42]. The result holds for non-binary codes from
adjacency matrices of line graphs of regular graphs with an i-cycle, i even.

Corollary 2.27. Suppose a regular graph r has an i-cycle (ua, UI,'" ,UI-I)

where i :::::4 and i is even. Let A be an adjacency matrix of the line graph

L(r). Then, for any odd prime p, the code Cp(A) from the row span of A
over IFp has minimum weight l or less.

Proof. Consider the codeword

By Lemma 2.25(b),

V[UO,UI) _ V[UI,U2) + ... + V[UI-2,UI-I) _ V[UI-I,UO)

= (vuo + VUl _ 2V[UO,Ul)) _ (VUl + VU2 _ 2V[UI,U2)) + ... +
(VUI-2 + VUI-I _ 2V[UI-2,UI-I)) _ (vuo + VU1-I _ 2V[UI-l,UO])

_ _2V[UO,UI) + 2V[UI,U2) _ ... + 2V[UI-l,UO).

Hence the minimum weight of Gp(A) does not exceed l. o
The triangular graphs LI(Kn) and their line graphs L2(Kn) have 4-cycles .

.It hence follows that non-binary codes from the row span of adjacency ma-
trices of L2(Kn) and L3(Kn) have minimum weight not exceeding 4. These
codes are hence not examined in detail in Chapters 3 and 6, respectively.

Let S be an incidence structure with incidence matrix B. As has been
noted, BT is an incidence matrix of the dual structure st. Let EF(B) be
the code obtained from the span of differences of rows of B. The presence
of the all-one vector J in GF (BT), the code over F of st, determines the
dimension of EF(B) and whether GF(B) = EF(B). Let JB be the all-one
vector of length IBI and by Jp the all-one vector of length IPI.
Proposition 2.28. [2, Proposition 2.4.1, p. 46] Let S = (P,8,I) be an

incidence structure with incidence matrix B and let F be a field. Then EF(B)

has co-dimension at most 1 in GF(B) and EF(B) = GF(B) if and only if

JB ti. GF(BT). Dually, EF(BT) has co-dimension at most 1 in GF(BT) and

EF(BT) = GF(BT) if and only if Jp ti. GF(B).
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Proof. See [2, Proposition 2.4.1, p. 46]. o
Corollary 2.29. [2, Corollary 2.4.1, p. 46] For any incidence structure S with
incidence matrix B and any field F we have that EF(B) is of co-dimension

1 in GF(B) if and only if the all-one vector is in GF(BT).

If a regular graph r has a perfect matching then the presence of J in the
code from the row span of the incidence matrix of the corresponding dual
design is determined as follows.

Proposition 2.30. Let r = (V,E) be a regular graph with incidence matrix

B. Let Gp(B) be the p-ary code obtained from the row span of Baver IFp
where p is any prime. If r has a perfect matching then J E Gp(BT).

Proof. Let M = {[UI, WI],· .. ,[Uk, Wk]} be a perfect matching in r. Consider
the dual design with incidence matrix BT. Since no two edges in M have a
common endpoint and each incidence vector V[Ui,Wi] has weight two, we have
2:1=:;i=:;k V[Ui,Wi] = J, the all one vector of length lV(r)l. 0

For example, since the complete graph is Hamiltonian, it has a perfect
matching when it is even. By Theorem 2.7, the line graphs Li(Kn) are
Hamiltonian. Hence the following result holds.

Corollary 2.31. For i ~OJ let Li(Kn) be the i-iterated line graph of the

complete graph Kn. If IV(Li(Kn))1 is even then Li(Kn) has a perfect match-
mg.

2.5 Information set decoding

The use of information sets as a basis for a decoding algorithm was introduced
by Prange [55]. Since then variations of the principle have been introduced.
These include decoding with multipliers [4], the use of covering polynomials
[35], permutation decoding [52] and, more recently, antiblocking decoding
[47]. Information set decoding is also used in code-based cryptography. The
reader interested in this topic is referred to [54, 60] and references therein.

In general, information set decoding algorithms are designed to work for
any linear code. They are based on the principle that if a received vector
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has no errors in information positions then the transmitted codeword can be
reconstructed. Using a certain procedure and the fact that an information
set of a given code is not unique, various information sets are identified
until one is found such that there are no errors in information positions of a
received vector. Hence all errors occurring outside information positions are
correctable.

The following theorem is a basis for information set decoding techniques.

Theorem 2.32. [32, 33, 51J Let C be an fn, k, dJq code with minimum dis-

tance d ~ 2t + 1. Let H = [-ATIIn_kJ be a parity check matrix for C in
standard form. Suppose a codeword c is sent and a vector y = c + e is re-

ceived such that e has weight t or less. Then the information symbols of y
are correct if and only if the syndrome HyT has weight t or less.

Proof. See [32, Theorem 8.1, p. 1414] or [33, Theorem 10.2.1, p. 403J. 0

In its basic form, information set decoding proceeds as follows. Suppose
a t-error-correcting code C has a generator matrix M and an information set
I. Denote by Mr the restriction of M to its I-indexed columns and by Yx the
restriction of a vector y E lF~to its I-indexed coordinates. Note that Mand
MÏ1 M both generate C. Information set decoding takes as input a vector
y E lF~at a distance t or less from C. Suppose c is the codeword closest to
y. If Yr = Cx then y has no errors in I. Hence YrMÏ1 is the original message
and y - (YrMÏ1)M is the error vector.

By Theorem 2.32, if a parity check matrix H of a linear code is in standard
form then information set decoding allows one to focus on the error pattern.
Ifwt (H yT) ::; t then the error pat tern is zero in I and the portion in the check
positions is identical to the syndrome. Hence an error pattern is identified
if a parity set completely containing it is found. Such a parity set is said to
cover the error pattern. The collection of parity sets which covers all errors
of a particular type is called a covering. Two questions arise at this point.
The first one is, how can a covering be found? And the second is, what is the
minimum number of parity sets in a covering? There is no obvious answer
to the first question. It is however possible to obtain a lower bound on the
minimum size of a covering.
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Information set decoding is related to the combinatorial (n, l, t) covering
set problem [ID, 12Jwhich is stated as follows. Given a set Sof n objects, find
the minimum number N(n, l, t) of subsets of S of size l such that any subset
of size t is contained in at least one of those of size l. With reference to an
[n, k, dJq t-error-correcting code C, this is equivalent to finding the minimum
size of the set of subsets of size n - k covering every error pattern of size t,
i.e., l = n - k. It is only necessary to concentrate on the t-error case since
this also takes care of fewer than t errors. The total number of distinct error
patterns in all positions is G). Since each covering set must have size t, the
maximum number of t-tuples covered by a given parity set is (n;k). Hence

N(n,n-k,t) ~ (~)/(n~k)

n(n - 1) ... (n - t + 1)= ~--~~--~~~~--~----~
(n - k)(n - k - 1) ... (n - k - t + 1)'

Schonheim [58J showed that a tighter bound on N is given by

r n r n-l r r n-t+l 1 111N(n, n - k, t) ~ -- . . . .. . .
n-k n-k-l n-k-t+l (2.5)

This result is often referred to as the Gordon bound [41, 47J. It was used by
Gordon [28J (using a result on coverings by Brouwer [8J) to find minimal PD-
sets (see Section 2.5.1 for definition of PD-sets) for permutation decoding of
binary Golay codes. In relation to the use of coverings in decoding, the result
also appears in Clark and Cain [l l , p. 110J. It is also stated and proved by
Huffman [32, 33J.

2.5.1 Permutation decoding

Permutation decoding was introduced by MacWilliams in [52J. It has been
fully described in [51, Chapter 15], [32, Section 8J and [33, Section 1O.2J.
The technique uses a subset of the automorphism group of the code called a
permutation decoding set.

A permutation decoding set (for short PD-set) S for a t-error-correcting
code C is a set of automorphisms of C with the property that every error
vector of weight at most t is mapped by at least one member of S into a
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vector where the error coordinates are only in check positions. The existence
of a PD-set for a given code is not guaranteed. Much as PD-sets have been
exhibited for some codes, there is no known general method of finding them.

Let C be a t-error-correcting linear code with PD-set S = {al, a2, ... ,as}.
Let H be a parity check matrix for C with In-k in redundancy positions.
Hence the generator matrix M has h in the k information positions and
the map v -1 vM for any length k vector v is a systematic encoder for C.
If a vector y is received such that at most t errors occur, the permutation
decoding algorithm, as stated in [32, 33], proceeds as follows.

• Compute the syndromes Hai(yf for i = 1,2,··· until an i is found
such that wt(H ai(yf) ::; t.

• Extract information symbols of ai(y) and obtain the codeword c E C
that has these information symbols.

• Decode y as a;l(c).

The minimum size of a PD-set for a t-error-correcting [n, k]q code is given
by the Gordon bound (see Equation (2.5)). In many cases, PD-sets that have
been found are much larger than the Gordon bound. For examples, see the
references at the end of this section.

The definition of PD-sets was generalised to that of s-PD-sets in [39] for
purposes of correcting s ::; t errors. An s-PD-set S for a t-error-correcting
linear code C is a set of automorphisms of C with the property that every
error vector of weight s ::; t is mapped by at least one member of S into
a vector where errors occur only in check positions. Partial permutation
decoding is useful in cases where PD-sets for full error correction may not
be found. It is also used in cases where the Gordon bound is greater than
the size of the automorphism group of the code (cf. [39]). The minimum
size of an s-PD-set is calculated by replacing t by s in the Gordon bound in
Equation (2.5).

The following lemma finds a number s such that a code with an auto-
morphism group G has G as an s-PD-set. The result depends only on the
size of the information set.
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Lemma 2.33. [40,Lemma 7] Let C be a code with automorphism group G,
information set I, minimum distance d and check set C. Denote by 0 a
G-orbit and by n the maximum of lonII/lol. lfs = min(l~l-l, ld~lJ)
then G is an s-PD-set for C.

The following theorem gives the worst-case time complexity of the per-
mutation decoding algorithm. It is clear from the theorem that permutation
decoding is more efficient the smaller the size of the PD-set.

Theorem 2.34. [49] The worst-case time complexity of the permutation de-
coding algorithm can be expressed in terms of the size m of the s-PD set
S, the dimension k and the length n of the code C. Permutation decoding
requires at most O(knm) operations in a worst-case situation.

For a review of permutation decoding of various codes, the reader is re-
ferred to Huffman [32]. More recently, permutation decoding has been used
for codes from graphs and designs. The reader is referred to [36, 37, 38]
for Key's review of results on permutation decoding of codes from neigh-
bourhood designs of various regular graphs. Other codes from graphs that
permit permutation decoding but do not appear in these reviews include
those examined in [17, 16, 21, 42].

2.6 Codes from complete graphs and trian-
gular graphs

In this section we present pertinent results on non-binary codes from inci-
dence matrices of complete graphs and binary codes from adjacency matrices
of triangular graphs.

2.6.1 Codes from incidence matrices of complete graphs

Non-binary codes from the row span of incidence matrices of complete graphs
have been considered by Key, Moori and Rodrigues in [42]. We will need
results on these codes in Chapters 3, 4 and 5.
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In [42], an incidence matrix Gn of Kn is written as follows. Rows are in-
dexed by vertices of Kn in the order 1, ... ,n. Columns are ordered according
to the following ordering of edges of K n-

[1,2], [1,3], [2,3], [1,4], [2,4], [3,4], ... , [1, n], [2, n], ... , [n - 1, nl.

This way, Gn takes the form

[
Gn-l In-l]
0 .. ·0 1 .. ·1 .

(2.6)

where In-l is the identity matrix of rank n - 1. We now summarise some
properties of the p-ary linear codes Cp( Gn) generated by Gn where p is any
odd prime. Theorem 2.35 below can be deduced from Theorem 1 of [42].

Theorem 2.35. [42] Denote by Cp(Gn) the p-ary code from the row span of
Gn, an incidence matrix of the complete graph Kn' where p is an odd prime
and ti ~ 5.

(a) Cp(Gn) = [(;),n,n -1]p;

(b) If n ~ 6 then the minimum words are the scalar multiples of the rows
ofGn;

(c) Forn ~ 6, Aut(Cp(Gn)) ~ Sn, the symmetric group on n = {I,··· ,n}.

2.6.2 Binary codes from triangular graphs

Binary codes from adjacency matrices of triangular graphs have been studied
by Key, Moori and Rodrigues in [41] and [56]. Prior to this, they were
examined by Tonchev [61]and later by Haemers, Peeters and van Rijckevorsel
[29].

Let C2(An) be the binary code from the row span of an adjacency matrix
An of the triangular graph. Let us first consider relationships between C2(An)
and the binary codes E2(Gn) and C2(Gn) where E2(Gn) is obtained from the
span of differences of rows of Gn, an incidence matrix of the complete graph
Kn· The binary code C2(Gn) is obtained from the row span of Gn and it has
parameters [(;), n - 1,n - 1]2 if n is odd.
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By Lemma 2.26, E2(Gn) = C2(An) for all n. By Proposition 2.28, if nis
odd then E2(Gn) = C2(Gn). By Corollary 2.29 and Lemma 2.30, if n is even
then E2(Gn) has codimension 1in C2(Gn). Relationships similar to these are
also obtained in Chapter 3 between binary codes from incidence matrices of
triangular graphs and those from adjacency matrices of their line graphs and
in Chapter 6 between binary codes from incidence matrices of line graphs of
triangular graphs and adjacency matrices of their line graphs.

We formally state some properties of C2(An) in Theorem 2.36 below.
Notice that no particular ordering of rows or columns of An is assumed.

Theorem 2.36. [29,41, 61J Let C2(An) be the binary code obtained from the
row span of an adjacency matrix An of the triangular graph Ll(Kn) where
ti ~ 5.

(a) C2(An) = [(;),n -1, n -lh ifn is odd and C2(An) = [(;),n -1, 2(n-
2)h if ti is even;

(b) lfn ~ 5 andn =16 then Aut(C2(An)) = Sn. lfn = 6 then Aut(C2(An)) ~
As, the alternating group on {I, . . . ,8}.

2.7 Codes from the bipartite uniform subset
graph f(n, k, 1,1)

As has been mentioned in Section 2.3.1, codes from incidence matrices of the
bipartite uniform subset graphs I'(n, k, l, i) (see Definition 2.4) for certain
values of ti, k, l and i have been considered in [22J. In Lemma 3.2, the
following result on codes from incidence matrices M(n, k, 1, 1) of I'(n, k, 1,1),
where n ~ 4 and ti ~ k, will be used.

Proposition 2.37. [22, Proposition 2J For all n ~ 4, ti ~ k, all primes p,
C = Cp(M(n, k, 1, 1)) has minimum weight k if n > k, 1 if n = k and the
minimum words are the non-zero scalar multiples of the rows of M(n, k, 1, 1)
of weight k or 1, respectively. For ti > k, C = [k(~), (~) + n - 1, k]p for all
p.
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Chapter 3

Codes from incidence matrices
of triangular graphs

3.1 Introduction

In this chapter we examine p-ary linear codes Cp(Bn) from the row span of
Bn, an incidence matrix of the triangular graph U(Kn), where ti 2:: 3 and p is
a prime. We also consider the codes C2(An) and Ep(Bn) where C2(An) is the
binary code from the row span of an adjacency matrix of the line graph of the
triangular graph L2(Kn) and Ep(Bn) is the p-ary code, p any prime, from the
span of the differences of the rows of Bn. In all cases, parameters of the codes
and their duals are obtained. We also determine permutation automorphisms
for the codes and exhibit PD-sets for full permutation decoding.

Part of the work in this chapter is the content of [23J. Our main results
are summarized in Theorem 3.1.

Theorem 3.1. For ti 2:: 4, let Bn be an incidence matrix of Ll(Kn), the
line graph of the complete graph, i. e., the triangular graph. Let An be an
adjacency matrix of L2(Kn), the line graph of the triangular graph. For any
prime p, let Cp(Bn) and Cp(An) be the p-ary linear codes spanned by the
rows of Bn and An, respectively. Let Ep(Bn) = (ri - rjh, rj are rows of Bn)
where the span is also taken over lFp. Then we have the following:.

(a) IfpisoddthenCp(Bn) is an [(n-2)(~),G),2(n-2)]p code. Ifp=2
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then C2(Bn) is an [(n - 2)(~), (;) -1, 2(n - 2)L code. In both cases,
the minimum words are the scalar multiples of the rows of Bn.

(b) Ifn 2:: 5 then Aut(Cp(Bn)) ~ Aut(L1(Kn)) = Sn.

(c) If n = 0,1 (mod 4) then C2(An) is an [(n - 2) (~), G) - 2, 4n - 10J2
code and its minimum words are the rows of An. If n = 2,3 (mod 4)
then C2(An) = E2(Bn) = C2(Bn).

(d) If p is odd and n = 4 then Ep(B4) is a [12,5, 4Jp code and its minimum
words include scalar multiples of vectors of the form u = Vla,b)+ vlb,d)+
vlc,d) - vlb,c) - Vla,d)- vla,c) where abc d E {I 2 3 4} and vli,j) is the, , , , , ,
row of B4 corresponding to the vertex [i, jJ.

(e) If p is odd and n 2:: 5 then Ep(Bn) is an [(n - 2) (~), (;) - 1, 4n - 10J
p

code and its minimum words are the scalar multiples of the differences

of the pairs of rows of Bn indexed by adjacent vertices of L1(Kn).

(f) If n 2:: 5 then

In = {[[I, 2], [l,xJ], [[l,y], ry, zJJ: 3 ~ x ~ ti, 2 ~ Y < z ~ n}

is an information set for C2(Bn). The code has PD-set

S = {(I), (1, i), (1, i, x) : x, i =11, 2},

(g) If p is odd and n 2:: 5 then In U {[[I, 3], [1, 4J]} is an information set for
Cp(Bn). The set

S \ {(I, 3), (1,4), (1, 3, 4), (1,4, 3)}

is a PD-set for the code.

The proof of the theorem follows from lemmas and propositions presented
in various sections below. The rest of the chapter is organised as follows. In
Section 3.2 an incidence matrix Bn of £l(Kn) is written inductively. A brief
description is also given of how the codes Cp(An) and Ep(Bn) are obtained.
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Results on the binary and non-binary codes Cp(Bn), their duals and auto-
morphisms are presented in Section 3.3. The codes C2(An) are considered
in Section 3.4. We examine the non-binary codes Ep(Bn) in Section 3.5.
Permutation decoding for the codes is considered in Section 3.6.

3.2 The incidence matrix Bn of L1(Kn) and re-
lated codes

Let Bn be an incidence matrix of the triangular graph Ll(Kn) where n ~ 3.
We write Bn in inductive form as follows. Starting with ti = 3, rows of B3
are ordered according to the ordering

[1, 2], [1,3], [2, 3J

of vertices of the triangle L1(K3). Columns are indexed by edges of U(K3)

in the order
[[1,2], [1, 3J], [[1,2], [2, 3J], [[1,3], [2, 3JJ.

Hence B3 takes the form

U~:J
For each ti > 3 we add to Bn-l rows corresponding to the vertices

(3.1)

[1, n], [2, n], ... , [n - 1, n],

in that order. Additional columns are indexed by edges connecting vertices
of U(Kn-d and the new vertices and, lastly, by edges between the new
vertices. Hence Bn is an (;) x (n - 2) (;) matrix of the form

(3.2)

where

(a) Bn-l is an incidence matrix of the triangular graph Ll(Kn_l);
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(b) L is an (n~l) X (n - 2)(n - 1) with only one entry 1 in each column.
Each row has weight two and the two non-zero entries are consecutive;

(c) M is an (n -1) x (n - 2)(n -1) matrix with one entry 1in each column
is a unit vector and each row has weight n - 2;

(d) Gn-1 is an incidence matrix of the complete graph Kn-l. Recall that
linear codes from these matrices have been considered in [42J and dis-
cussed in Section 2.6.1.

The incidence design of U(Kn) with incidence matrix Bn will be denoted
Vn and the corresponding p-ary linear code by Cp(Bn). If [a, bj is any vertex
of the graph then

[a, bj = {[[a, bj, [a, xJJ, [[a, bj, tb, xJJ : X =1= a, b}

is the block of Vn containing all edges incident with [a, bj. The incidence
vector of the block is the weight-(2n - 4) vector

v[a,b) = L v[[a,b),[a,x)) +L v[[a,bJ,[b,y)).

x~a,b y~a,b

Let An be an adjacency matrix of L2(Kn), the line graph of the triangular
graph. The neighbourhood design of L2(Kn) with incidence matrix An has
incidence vectors of the form

v[[a,bJ,[b,c)) = L v[[a,bJ,[a,w)) + L v[[a,bJ,[b,x)l + L v[[b,cJ,[b,y)) +L v[[b,cJ,[c,z)).

x~a,b,c y~a,b,c z~b,c

These vectors have weight 4n - 10 and they are also rows of An- The p-ary
code with generator matrix An will be denoted Cp(An).

We will also be interested in the p-ary code Ep(Bn) obtained from the
span over IFp,p any prime, of the differences of rows of Bn. Hence by Equation
(2.4),

Ep(Bn) = (v[a,b1 - v[c,dj : [a, bj, [c,dj E V(L1(Kn)))

= (v[a,b)_v[ao,bo1: [a,bJ E V(L1(Kn))) (3.3)

where [ao, boJ is a fixed vertex of U(Kn).
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3.3 The code Cp( Bn) from an incidence matrix
of £l(Kn)

We now discuss the main thrust of this chapter, namely, the codes Cp(Bn)
where p is a prime and n 2:: 3.

The case of n = 3 follows rather easily. If p = 2 then C2(B3) = [3,2,2]2.
Because C2(B3) = {OOO,110, 101, all}, minimum words of the code are the
rows of B3· If p is odd then Cp(B3) = [3,3, l]p. Unit vectors are obtained
from the difference between the sum of any two rows of B3 and the third
row.

We now consider the case of n = 4. By Equation (3.2), Ll(K4) has incidence
matrix

110 110000 000
101 001100 000

B4 =
011 000011 000

(3.4)
000 101000 110
000 010010 101
000 000101 011

Since K3 = Li(K3) for all i, we have B3 = G3 in B4. Also observe that
the submatrix [ft] of B4 (where Land M are as in Equation (3.2)), is
an incidence matrix of the bipartite uniform subset graph f(3, 2,1,1) (see
Definition 2.4).

Parameters of the p-ary codes Cp(B4), p any prime, are determined in
Lemma 3.2. The lemma is used as an induction base in Proposition 3.3 to
establish minimum weights and minimum words of Cp(Bn) where n 2:: 5.

Lemma 3.2. Let B4 be an incidence matrix of Ll(K4) and Cp(B4) the p-ary
linear code from the row span of B4 where p is any prime.

(a) lfp is odd then Cp(B4) = [12,6, 4]p and its minimum words include the
rows of B4·
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(b) If p = 2 then C2(B4) = [12,5, 4}2 and its minimum words are the rows
of B4'

Proof Dimensions of the non-binary and binary codes follow from Lemma
2.23 and Lemma 2.22, respectively, since the triangular graph LI(K4) is
connected and, having triangles, it is also non-bipartite.

Write B4 as in Equation (3.4). Label the first three rows by Rl and the
last three rows by R2. Let c E Cp(B4). Then c is a concatenation of three
vectors, Cl, C2and C3, from the three column blocks of B4 where Cl E lF~,
C2E lF~and C3E lF!. We need to show that wt(c) 2:: 4.

(a) Suppose c is a linear combination of rl rows of Rl, Then wt( cl) 2:: 1
since Cp(B3) = [3,3, IJp if p is odd. Also, wt(C2) = 2rl' If wt(CI) = 1 then
wt(C2) = 6 because the only linear combinations of the rows of B3 giving
a unit vector use all rows of Rl' Hence wt(c) > 4. If wt(CI) = 2 then,
since wt(C2) = 2rl, we have wt(c) 2:: 2 + 2rl 2:: 4. Equality occurs if C is a
scalar multiple of a row of Rl' Similar observations are made if C is a linear
combination of rows of R2.

If C is a linear combination of ri rows of Rl and T2 rows of R2 then
wt(CI) 2:: 1 and wt(C3) 2:: 1. Since [if] is an incidence matrix of the bipartite
uniform subset graph r(3, 2, I, I), wt(C2) 2:: 2 by Proposition 2.37. Hence
wt(c) 2:: 4. This completes the proof for the non-binary case.

(b) In the binary case, suppose c is a sum of rows of Rl, Then wt( Cl) = 2
since C2(B3) = [3,2,2]2. Because wt(C2) 2:: 2, we have wt(c) 2:: 4. From the
form of B4, it is clear that wt(c) = 4 if Cis a row of Rl' A similar observation
is made if C is a sum of rows of R2.

Suppose C is a sum of "i rows of Rl and r2 rows of R2. If rl < 3 and
r2 < 3 then wt(CI) = 2 = wt(C3)' By Proposition 2.37, wt(C2) 2:: 2. Hence
wt(c) > 4.

We also need to consider cases when all rows of Rl or R2 are added since
these give, respectively, Cl = 0 and C3= O. Suppose we add all rows of Rl

and r2 < 3 rows of R2. Then Cl = 0, wt(C2) 2:: 2 and wt(C3) = 2. Hence
wt(c) 2:: 4. It is possible to have wt(c) = 4 if rz = 2. In this case, C is the
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row of R2 that is not added. The case of rl < 3 and r2 = 3 is similar. This
completes the proof for n = 4. 0

If p is odd then, from the proof of Lemma 3.2(a), it is possible to have
other minimum words in addition to the rows of B4' These include scalar
multiples of vectors of the form

( v[a,bj + v[b,dj + V[C,dj) _ (v[b,Cj + v[a,dJ + v[a,cj) (3.5)

= 2 (v[[a,b],[b,dJJ + v[[b,d],[d,cJJ _ v[[a,c],[a,dJ] _ v[[a,c],[b,cJJ) (3.6)

where a, b, c, d E {I, 2, 3, 4}. These are the only. codewords of minimum
weight we have been able to determine apart from scalar multiples of the
rows of B4'

3.3.2 The code Cp(Bn) where n > 5

We now consider the codes Cp(Bn) where n ~ 5 andp is any prime. Minimum
weights and minimum words of the codes are determined in Proposition 3.3
below.

Proposition 3.3. Let Bn be an incidence matrix of LI(Kn) and let Cp(Bn)
be the p-ary code from the row span of Bn where n ~ 5 and p is any prime.

(a) lfp is odd then Cp(Bn) = [(n - 2)(;), (;), 2(n - 2)]p and its minimum
words are the scalar multiples a/the rows of Bn.

(b) C2(Bn) = [(n - 2)(;), (;) - 1, 2(n - 2)L and its minimum words are
the rows of Bn.

Proof As in Lemma 3.2, dimensions of the codes are obtained using Lemmas
2.23 and 2.22. We therefore only need to prove the minimum weight of the
codes.

Write Bn as in Equation (3.2). Label the first (n~l) rows of the matrix by
Rl, i.e., R; is the submatrix [Bn-l/L/O]. Let R2 be the submatrix [O/M/Gn-l]
comprising the last n - 1 rows of Bn. For any prime p, let c E Cp(Bn). Then
c is a concatenation of three vectors c, E JF;i from the three column blocks
of Bn where kl = (n - 2)(n~I), k2 = 2(n~l) and k3 = (n~l).
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We use induction to prove the assertion about the minimum weight and
minimum words using the case of Cp(B4) considered in Lemma 3.2 as the
induction base. We assume that the minimum weight holds up to ti - 1 and
that minimum words are the rows of Bn-I,

(a) Suppose C is a non-zero linear combination of rl rows of Rl, Then
Cl = .L:aibi and C2= .L:cal, where ai E lF; and bi and li are ith rows of Bn-l
and L, respectively. By the induction hypothesis, wt(cl) 2: 2(n - 3). Since
wt(C2) = 2rl, we have wt(c) 2: 2(n - 3) + 2rl 2: 2(n - 2). Equality occurs if
rl = 1, i.e., if c is a scalar multiple of a row of Rl,

Jf c is a non-zero linear combination of ï z rows of R2 then C2= .L:aimi
and C3= .L:aigi where ai E lF; and mi and gi are ith rows of Mand Gn-l,
respectively. Since no two rows of M intersect, we have wt(C2) = r2(n - 2).
By Theorem 2.35, wt(C3) 2: ti - 2. Hence wt(c) 2: (r2 + l)(n - 2) 2: 2(n - 2).
Equality occurs if r2 = 1, i.e., if c is a scalar multiple of a row of R2.

Lastly, suppose c is a linear combination of rl rows of Rl and ï'z rows of
R2· Then Cl = .L:cub., C2= .L: (aili + ajmj) and C3= .L:ajgj where bi, li,
mj and gj are, respectively, rows of Bn-I, L, Mand Gn-l. By the induction
hypothesis, wt(ci) 2: 2(n - 3). Since wt(C3) 2: n - 2 by Theorem 2.35, we
have wt(c) 2: 2(n - 3) + (n - 2) > 2(n - 2).

(b) For the binary codes, in addition to what has been considered in (a)
above when p is odd, we need to examine the weight of c if all rows of Rl or
R2 are added since these give, respectively, Cl= 0 and C3= o.

Suppose c is a sum of all rows of R, and r2 < ti - 1 rows of R2. Then
wt(C2) = 2(n~l) - r2(n - 2). By Theorem 2.35, wt(C3) 2: ti - 2. Hence
wt(c) 2: 2(n~l) - r2(n - 2) + (n - 2) = (n - r2)(n - 2) 2: 2(n - 2) where
1 ~ r2 ~ ti - 2. Equality holds if r2 = n - 2. In this case, c is the row of R2
that is not added.

Jf c is a sum of all rows of R2 and rl < (n~l) rows of Rl then wt(CI) 2:
2(n - 3) and wt(C2) 2: (n - l)(n - 2) - 2rl where 1 ~ rl ~ (n~l) - 1.
Hence wt(c) 2: 2(n - 3) + (n - l)(n - 2) - 2rl 2: 2(n - 2). Equality holds
if rl = G) - 1 in which case c is the row of Rl that is not added. This
completes the proof. 0
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3.3.3 The dual code C2(Bn)j_

We now consider some properties of the duals of the binary codes. We first
present weight-3 vectors of the dual in Lemma 3.4.

Lemma 3.4. For ti ~ 3, let Vn be the incidence design of the triangular
graph Ll(Kn). Let a, b, c, dEn.

(a) The weight-3 vectors of the form

u( a, b, c) = v[[a,b],[a,cJJ + v[[a,bJ,[b,cll + v[[a,c],[b,cll,

u( a, b, c, d) = v[[a,b],[b,cJJ + v[[a,b],[b,dJJ + v[[b,c],[b,dJJ,
(3.7)

(b) C2(Bn).l has minimum weight 3.

Proof That u(a, b, c) and u(a, b, c, d) are in C2(Bn).l is a consequence of
Lemma 2.24. We therefore only need to prove (b).

To show that C2(Bn).l has minimum weight 3, we first observe that the
dual has no codewords of weight 1. This is because for any incidence vector
v[a,bJ, there exists a unit codeword v[[a,b],[a,cJJ such that (v[a,bJ, v[[a,b],[a,cll) i- O.
Hence v[[a,b],[a,cll ~ C2(Bn).l.

Also, for any incidence vector u of Vn, there exists a weight-2 vector
w such that (u, w) i- 0 (mod 2). For example, let u = v[a,bJ and w =
v[[a,b],[a,cll + v[[a,c],[a,dJ. Since the dual has weight-3 codewords, the minimum
weight follows. This completes the proof of the lemma. 0

There are (~) codewords of the form u(a, b, c) and 4(~) of the form
v(a, b, c, d) in the dual. In the next proposition, we show that these are
the only minimum words of the dual.

Proposition 3.5. Let C2(Bn).l be the dual of the binary code from the row

span of Bn, an incidence matrix of the triangular graph Ll(Kn) where ti ~ 3.
Then the weight-3 vectors given in Equation (3.7) are the only minimum
words of C2(Bn).l.

Proof Let w be a minimum word of C2(Bn).l. Let [[a,bj, [b,cj] E Supp(w).
We need to determine all possibilities for the remaining two elements X and
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Y of Supp(w). Note that [[a, bj, [b, cll E [a, bj, [b, cl. We must have X E [a, b]

and Y E [b, c] or X E [b, c] and Y E [a, bl. This assumption is reasonable
because if X or Y is not in [a, b] or [b, c] then (v[a,b], w) = 1 = (v[b,c], w),
contradicting the assumption that w is in the dual.

Without loss of generality, suppose X E [a, b] and Y E [b, cl. Let X =

[[a,bJ, [x,y]] and Y = [[b,c], [x',y']]. To satisfy the required conditions, we
must also have [x, y] = [x', y']. Otherwise, one obtains (v[x,y], w) = 1 =
(v[x',y'],w).

Consider the point X = [[a, bj, [z, yl]. By definition, either x = a or x = b.
If x = a then y = C. Hence

Supp(w) = {[[a, bl, [b, cl], [[a, bl, [a, c]], [rb, cl, [a, cl]}.

Thus w is of the form u(a, b, c) given in Equation (3.7). If x = b then y = d.
In this case

Supp(w) = {[[a, bj, [b, cJJ, [[a, bj, [b, d]J, [rb, cj, [b, dl]},

i.e., w is of the form u(a, b, c, d) given in Equation (3.7). Hence u(a, b, c) and
u(a, b, c, d) are the only minimum words of C2(Bn)j_. 0

Let x and y be elements of n such that x < y. Consider the following
codewords in the dual.

p(x, y,j) = v[[x,y],[x,j]] + v[[x,y],[x,(j+l)]] + v[[x,j],[x,(j+l)]] where y < j < n,

q(x, y, n) = v[[x,y],[x,n]] + v[[x,y],[y,n]] + v[[x,n],[y,n]],

r(x, y, n) = v[[x,n],[y,n]] + v[[x,n],[(Y+l),n]] + v[[y,n],[(y+l),n]],

s(x, y, j) = v[[x,y],[y,j]] + v[[x,y],[y,(j+l)]] + v[[y,j],[y,(j+l)]] where x < j < n.

(3.8)

In s(x, y, j), if j + I = y then take j +1 to be y+ 1. In the proof of Lemma 3.6
below we refer to the vectors v[[x,y],[x,j]] v[[x,y],[x,n]] v[[x,n],[y,n]] and v[[x,y],[y,j]] as, "
leading vectors and show that they are linearly independent. We count them
to show that p, q, rand s form a basis of minimum weight vectors for the
dual.

Lemma 3.6. For n 2: 3, x < y, and [x, y] =J. [n-I, nJ, C2(Bn)j_ has a basis of

minimum weight comprising the vectors p(x, y, j) where y < j < n, q(x, y, n),

r(x, y, n) and s(x, y,j) where x < j < n given in Equation (3.8) above.
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Proof. Each leading vector is used exactly once hence when re-ordered, the
vectors p, q, rand s above yield a matrix in upper triangular form. The
only unit vectors that are not used as leading vectors are the (n~l) vectors
of the form v[[x,y],[y,n])and the n - 2 vectors of the form v[[x,n],[n,(n-l)]].Since
the design has (n - 2) (;) points, the total number of leading vectors is

(n-2)(;) - (n~l) -(n-2)
=(n-2)(;) - ((;) -1)
= dim(C2(Bn)_L).

We therefore have a basis for C2(Bn)_L. o

3.3.4 Automorphisms of codes from incidence matrices
of triangular graphs

We now consider permutation automorphisms of the codes Cp(Bn) for any
prime p.

Proposition 3.7. Let Vn be the incidence design of the triangular graph
Ll(Kn) with incidence matrix Bn where n ~ 5. Let Cp(Bn) be the p-ary linear
code from the row span of Bn where p is any prime. Then Aut( Cp( Bn)) ~
Aut(Vn) = Aut(Ll(Kn)) = Sn.

Proof. By Proposition 2.11, Aut(L1(Kn)) ~ Sn. By Lemma 2.20, Aut(Vn) =

Aut(L1(Kn)). Since every automorphism of the graph induces an auto-
morphism of the code, we have Aut(£1(Kn)) ~ Aut(Cp(Bn)). To show
that Aut(Cp(Bn)) ~ Sn it is hence sufficient to show that Aut(Cp(Bn)) ~
Aut(Vn).

By Proposition 3.3, if n ~ 5 then minimum words of Cp(Bn) are scalar
multiples of incidence vectors of blocks of Vn. Let (J E Aut(Cp(Bn)). Since
(J preserves weight classes of the code, there exist incidence vectors v[a,bJ

and v[a',b'J such that (J( v[a,bJ) = v[a',b'J. By definition, (J acts on coordinate
positions of the code, the points of the design. Hence it maps points from
the block [a, bl to points in a possibly different block [a', b'], permuting the
blocks. Hence (J E Aut(Vn). This completes the proof. 0
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If n = 4 then, by Whitney's theorem [64, Theorem 8], Aut(L1(K4)) =j:. 84.
In fact, Aut(£1(K4)) is the wreath product 82283. To see this, consider the
complement of L1(K4). It is not connected and its edges are [12,34], [13,24]
and [14,23]. That Aut(Ll(K4)) = 82283 hence follows from the main result
in Frucht [25]. Computations using Magma [7] for small values of p suggest
that Aut(Cp(B4)) ~ Aut(L1(K4)).

3.4 The binary codes C2(An) of the line graphs
L2(Kn)

In this section we consider binary codes spanned by the rows of An, an
adjacency matrix of the line graph of the triangular graph. Parameters of
the codes are obtained in Proposition 3.8. If n = 2,3 (mod 4) then C2(An) =
C2(Bn), the binary code from an incidence matrix of the triangular graph
considered in Section 3.3. Otherwise, C2(An) has co-dimension 1 in C2(Bn)

and minimum weight equal to the degree of L2(Kn).

Proposition 3.8. Let Bn be an incidence matrix of the triangular graph
Ll(Kn) and An an adjacency matrix of L2(Kn), the line graph of the trian-
gular graph. Denote the respective binary codes by C2(Bn) and C2(An) . If
n == 0,1 (mod 4) then C2(An) = [(n - 2)(;), (;) - 2,4n -10]2 and its min-
imum words are the rows of An. Ifn == 2,3 (mod 4) then C2(Bn) = C2(An).

Proof. We first determine the dimension of C2(An). Since B~ Bn = An over
lF2, C2(An) is a subcode of C2(Bn). By Corollary 2.26, C2(An) = E2(Bn),
the binary code obtained from the span of the differences of rows of Bn. By
Corollary 2.29, E2(Bn) has co-dimension 1 in C2(Bn) if and only if J E C2(B~)
where J is the all-one vector of length (;). Otherwise, E2(Bn) = C2(Bn). We
hence need to determine when J E C2(B~).

By Theorem 2.16, triangular graphs are O-covered if G) is even. This
is satisfied if ti == 0,1 (mod 4). Hence for these values of n, the triangular
graph has a perfect matching, say M. In the dual design with incidence
matrix B~, this implies that

L v[[a,b],[b,clJ = J

[[a,b],[b,clJEM
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where v[[a,b],[b,c)) is the weight-2 incidence vector of the block [[a, bj, [b, ell.
Henceifn == 0,1 (mod 4) then) E C2(B;:). By Corollary 2.29, dim(C2(An)) =
G) - 2.

If n == 2,3 (mod 4) then G) is odd. Since C2(B;:) is an even weight code,
) tt C2(B;:). By Proposition 2.28, we have C2(An) = E2(Bn) = C2(Bn) if
n == 2,3 (mod 4).

Let us now consider the minimum weight of C2(An) if ti = 0,1 (mod 4).
Let c E C2(An). Since C2(An) = E2(Bn) by Lemma 2.26(a), we use Equation
(3.3) to write

c = L (v[a,b) + v[ao,bo))

[a,b)ES

for some S ~ V(£l(Kn)) \ {lao, bo]} and fixed vertex lao, bol. Simplifying, we
obtain

c = L v[a,b) + Sv[ao,bo)

[a,b)ES

where 8 = lSI· Hence c is a sum of 8 or 8 + 1 incidence vectors of Vn
depending on whether 8 is even or odd. Without loss of generality, suppose
8 is odd. By Lemma 2.25(a),

Supp(c) = C·· (([ao,bol6[al,bll) 6[a2,b2l)'" 6[as,bsl) .

In the worst case, the pairwise intersection of the blocks is non-empty. Hence

Therefore

[Supptcj] ~ 2(8 + l)(n - 2) - 2e; 1)
~ 4n -10.

Equality occurs if 8 = 1 and I {a, b} n {ao, bo} I = 1. Hence vectors of the form

v[a,b) + v[a,bo) = v[[a,b],[a,boll,

the rows of An, are minimum words of the code. This completes the proof. D
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3.5 Non- binary codes from differences of rows
of incidence matrices of triangular graphs

For any odd prime pand n 2:: 3, we now determine parameters of non-binary
codes Ep(Bn) from the span of the differences of rows of Bn. It is easily
checked that Ep(B3) = [3,2, 2lp. The cases for ti 2:: 4 are considered in the
proposition below.

Proposition 3.9. Let Ep(Bn) be the non-binary code spanned over lFp by

differences of rows of Bn where p is an odd prime.

(a) If ti 2:: 4 then dim(Ep(Bn)) = (;) - 1.

(b) Ep(B4) has minimum weight 4 and its minimum words include the
scalar multiples of the vectors of the form v[[a,bJ,[b,dJ]+v[[b,dJ,[c,dJLv[[a,dJ,[a,c]]_

V [[a,cJ, [b,c]].

(c) If ti 2:: 5 then Ep(Bn) has minimum weight 4n - 10 and its minimum

words are the scalar multiples of differences of pairs of rows of Bn
indexed by adjacent vertices of Ll(Kn).

Proof. (a) Let J be the all-one vector of length (;). From the proof of Propo-
sition 3.8, if n == 0,1 (mod 4) then J E Cp(B;:). It remains to check if
JE Cp(B;:) when n == 2,3 (mod 4).

Recall that the triangular graph Ll(Kn) is vertex-transitive. Hence by
Theorem 2.16, the graph is l-covered if IV(L1(Kn))1 = G) is odd. In particu-
lar, the subgraph of Li(Kn) induced by V (LI (Kn)) \ {[n - 2, nl} has a perfect
matching. Further, the subgraph of Ll(Kn) induced by V(Ll(Kn))\T, where

T = {fn - 2, n - 1], [n - 1, n], [n - 2, nl},

has a defect-3 matching M.
Let v[[a,bJ,[b,c]] be an incidence vector of the block [[a, b], [b, ell in the dual

structure with incidence matrix B;:. [[a, b], [b, ell contains the two vertices
[a, bl and [b, cl incident with edge [[a, bl, [b, ell. Then the vector

2:= v[[ai,bi],[bi,Ci]] =;'
[[ai ,bi],[bi,Ci]] EM
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has entries 0 in the three coordinate positions indexed by elements of T. The
remaining (;) - 3 entries are 1. Also, the vector

v[[n-l,n],[n-2,nJ] + v[[n-l,n].[n-2,n-l]] + v[[n-2,n].[n-2,n-l]] = J

has coordinate entries 2 in the three coordinate positions indexed by elements
of Tand 0 in the (;) - 3 coordinate positions where entries of l' are 1. Since
l' and J are not commonly incident, we have

2/ + J = 2).

Hence) E Cp(B;:) for all n. By Corollary 2.29, Ep(Bn) has co-dimension 1
in Cp(Bn). This concludes our proof on the dimension of Ep(Bn) if n 2: 4.

(b) Since Ep(B4) is a subcode of Cp(B4) = [12,6, 4]p, its minimum weight
does not exceed 4. In fact, Ep(B4) also has minimum weight 4 because, like
its supercode Cp(B4), it contains the weight-4 codewords in Equation (3.6).
Notice that Equation (3.5) can also be expressed as a sum of the differences
of rows of B4' By definition, these are codewords of Ep(B4).

(c) We now need to prove the assertion about the minimum weight and
minimum words of Ep(Bn) if n 2: 5. To do this, we use the fact that Ep(Bn) ~
Cp(Bn) and show that Cp(Bn) does not contain a codeword c such that
2n - 3 ~ wt(c) ~ 4n - 11 but it has codewords of weight 4n - 10 which are
also in Ep(Bn).

Let c E Cp(Bn) be a non-zero linear combination of r 2: 2 rows of Bn.
Then

c = L nabV[a,b] (3.9)
[a,b]ER

for same R ~ V(L1(Kn)) and nab E lF;. Let c([[a, bj, [b,dJ]) be the coordinate
entry of c in the position indexed by edge [[a, bj, [b, dl]. If nabV[a,b] and nbdv[b,dJ

are both non-zero in Equation (3.9) then

c([[a, bj, [b, dJ]) = nab + nbd.

c([[a, bj, [b, dJ]) = nab E Supp(c). (3.10)
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Now, wt(c) 2: 2r(n - 2) - 2t where t, 0 :s; t :s; (n - 2) (;), is the number of
coordinate positions such that the r rows intersect. In these positions, it is
possible to have CXab + CXbd = O. Let us first consider the possibilities for t.

If r = (;) then t = (n -2)(;). Hence wt(c) 2: O. We however know
from Proposition 3.3 that wt(c) 2: 2(n - 2). If r = (;) - 1 then there is an
incidence vector v[a,bJ that is not in the linear combination in Equation (3.9).
Hence [a, bj ~ Supp(c) and wt(c) 2: I[a, bJI = 2(n - 2). If r = (;) - 2 then,
similarly, Supp(c) has at least 4n - 10 non-zero entries. Proceeding in this
manner, notice that if 3 :s; r :s; (;) - 3 then Supp(c) has more than 4n - 10
elements. To show that wt(c) 2: 4n - 10 if r 2: 2 then we need to show that
wt(c) 1- 4n - 10 if r = (;) - 1 or if r = (;). We adapt a method used by
Key, Moori and Rodrigues in [42J.

Suppose r = (;) - 1, i.e., R = n{2} \ {[a, bj} for some reference vertex
[a, bj. Then

c([[a, b], [b, xlJ) = CXbx =f. o.
Also,

c([[a, b], [a, xlJ) = CXax =f. o.
Hence

{[[a, b], [b, xJ], [[a, b], [a, xJJ : x =f. a, b} = [a, bj ~ Supp(e).

Since wt(c) > 2(n - 2) by assumption, Supp(e) =f. [a, bj.
For any three distinct vertices [a',y], [b',yJ and [e',yJ such that y =f. a.b,

it is not possible to have

At least one of the points [[al,y],[y,b/J], [[al,y],[y,e/JJ and [[b',y],[y,c'JJ is
therefore in Supp(c). We count the number of possibilities of choosing one
of these points exactly once. For every choice of yEn such that y =f. a, b,
the three distinct elements a', b' and d determine the coordinate positions
[[a', y], ry, b'J], [[a', y], ry, dJJ and [[b', y], ry, dJJ. There are (n;l) possibilities for
a', b' and c'. Any two of these elements, say a' and b', are together on the
n - 3 triples a', b', x where x =f. a', b', y. Hence there are at least ~=~(n;l)
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coordinate positions in Supp(c) chosen this way. And so

n - 2 (n -1)wt(c) ~ 2(n - 2) + n _ 3 3 ~ 4n - 10 if ti ~ 4.

Similarly, if r = (;) then

ti (n - 1) n(n - l)(n - 2)wt(c) > -- = > 4n - 10 for ti > 5.-n-3 3 6 - -

It is easily seen that scalar multiples of codewords of the form v[a,bJ - V[c,dJ

have minimum weight if [a, b] and [c,d] are adjacent, i.e., if the corresponding
rows of Bn intersect. This completes the proof. D

3.6 Permutation decoding

In this section, we consider permutation decoding of the codes discussed
above. An information set for the binary codes is given in Lemma 3.10 and
PD-sets exhibited in Proposition 3.11. A similar treatment is given to the
non-binary codes in Lemma 3.12 and Proposition 3.13, respectively.

3.6.1 PD-sets for the binary code C2(Bn)

Lemma 3.10. For n ~ 5, let C2(Bn) be the binary code from the row span
of Bn' an incidence matrix of the triangular graph Ll(Kn). Then

In = {[[I, 2], [1, x]], [[1, y], ry, z]] : 3 ~ x ~ n, 2 ~ y < z ~ n} (3.11)

is an information set for the code.

Proof Consider the submatrix B~ formed by all rows of Bn excluding the
one indexed by the vertex [1,2]. Re-order columns of B~ so that they start
with those indexed by the points

[[1,2], [1,3]], [[1,2], [2,3]], [[1,2], [1,4]], [[1,2], [2,4]], [[1,3], [3,4]], [[1,2], [1,5]],

[[1,2], [2,5]], [[1,3], [3,5]], [[1,4], [4,5]], ... , [[1,2], [1,nl], [[1,2], [2,nl],
[[1,3], [3,n]], ... , [[1,(n - 1)], [(n - 1), nl],
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in that order. These are followed by columns indexed by the remaining
(n - 3)(;) + 1 check points in any order. Looked at as edges of £1(Kn),
the endpoints [b, c] in each coordinate position [[a, bj, [b, c]] are ordered as
the rows v[b,c] of B~. Hence we get a square ((;) - 1) x ((~) - 1) upper
triangular submatrix in the first (~) - 1 columns of B~. All entries on the
main diagonal are equal to 1. Hence columns indexed by points in In are
linearly independent and In is an information set. 0

Notice that the only rows that have non-zero entries off the main diagonal
in the first (~) - 1 columns are those indexed by vertices of the form [I, x]
where 3 ::; x ::;n - 1. There are n - x such entries in each row. Replacing
every row of this form with the row

V[l,x] + L V[x,X+i],

l::;i::;n

one obtains a generator matrix in standard form.

Proposition 3.11. For ti ;::::5, let C2(Bn) be the binary code from the row
span of Bn, an incidence matrix of the triangular graph. Let In be the infor-
mation set of C2(Bn) obtained in Lemma 3.10. Then the set

S = {(I), (I, i), (I, z, x) : x, z # I, 2} (3.12)

of 1+ (n~l) elements of Sn is a PD-set for the binary code C2(Bn) with
information set In.

Proof. Let

Cl = {[[I, ij, [I, yl] : 3 ::; i < y ::; n},
C2 = {[[I, yl, [y, i]] : 2 ::; Z < y ::; n},
C3 = {[[x,yJ,[y,z]]: x,y,z# I}.

In view of Lemma 3.10, the check set for the code is the set C = Cl UC2uC3•

Recall that the code corrects up to ti - 3 errors in a received word. Suppose a
codeword c is sent and a vector y = c+e is received such that wt( e) ::; n - 3,
i.e., at most n - 3 errors occur. Let £ denote the set of error positions of y,
i.e., the coordinate positions where coordinate entries of e are non-zero. We
show that every possible error pattern in E is mapped by some element of S
into C. The possible cases are as follows.
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1. If £ c C then the identity element (1) of Sn can be used to keep the
errors in the check set C.

2. Suppose £ c In. We examine three possible cases.

(a) e C {[[I, 2], [I, xJJ : x ~ 3}. Any transposition of the form (I, i),
where i =1= 1,2, will do.

(b) e c {[[I, y], [y, zJJ : 2 ::; y < z ::; n}. Since we assume that
1£1 ::; ti - 3 and there are ti - 2 possible values that z can take,
there is at least one value i E n \ {I, 2} that z does not take.
(I, i) will do.

(c) e C {[[I, 2], [I, xJJ : x ~ 3}U{[[l, yJ, [y, =ll. 2::; Y < z ::;n}. If there
is at least one error in each of positions of the form [[I, 2J, [I, xJJ
and [[I, y], [y, zJ], then

1{[[l, y], [y, zJJ : 2 ::; y < z ::; n}1 ::; ti - 4.

Hence there is an element i E n \ {I, 2} such that z =1= i . (I, i)
will do.

3. E c In U C. Transpositions of the form (I, i) (where i is the element
mentioned in 2(b) and 2(c)) map all errors from In into C. Since some
error positions are already in C, there is a possibility that (I, i) maps
these into In. We show that in all such cases, automorphisms of the
form (I, i, i) can be used where i E n\ {I, 2, i}. We have the following
possibilities:

(a) e c In U {[[I, x], [I, yJJ : 3 ::; i < y ::; n}. It is possible to have
error positions in C such that i = X. The transpositions (I, i) map
such positions to positions of the form [[I, i], [i, yJJ E In (since
x < ii by assumption). Use automorphisms of the form (I, i, i),
where i =1= 1,2, i to map E into C and fix in C errors already in
C. Error positions of the form [[I, x], [I, yJJ are then mapped to
[[i, ij, [i, yJJ an element of C.

(b) e c In U {[[I, y], [Y, ill :2 ::; i < y ::; n}. The transposition (I, i)
will do unless there is an error position in C such that i = 2 and
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i = y. In this case, use (I, i, x), i, x E n \ {I, 2}. In particular,
the point [[I, ij, [2, ill is mapped to [[i, xJ, [2, xJ].

(c) £ c In U {[[x,yJ, [y,i]] : x,y,i =1= l,x < s}. It is possible to have
error positions in C such that:

(i) i = x and y < i.
(ii) z = y and x = 2.

(iii) z = i and y < ii,

The transpositions (I, z) map such errors into In. Use automor-
phisms of the form (l,i,x) where z,x E n\ {1,2}.

(d) £ c In U {[[I, ij, [I, yJJ, [[I, yj, [y, ill : 3 :::;i < y :::; n,2 ::; i <
iJ :::; n}. Use transpositions of the form (I, i) except if we have the
cases listed in 3(a) and 3(b) occurring or if i = i = Y and i = 2.
(I, i, i), e, x E n \ {I, 2} will do where i, xE n \ {I, 2}.

(e) e c In U {[[x, yJ, [y, ijj, [[I, xJ, [I, yJJ : s; y, i =1= I, x < s.s ::;i <
Y :::; n}. In addition to cases listed in 3(a) and 3(c) above, the
transpositions (I, i) map errors in C into In if

(i) z = x = x, y < i.
(ii) i = Y = i, x = 2.
(iii) i = i = i, Y < ii:

Use automorphisms of the form (I, i, x), i, x En \ {I, 2}.

(f) c c In U {[[x, yJ, [y, ijj, [[I, yJ, [y, ill : x, y, z =1= I, x < i,2 :::; i <
Y :::;n}. In addition to cases listed in 3(a) and 3(b), (l~z) maps
errors from C into In if one of the cases below occur.

(i) i = Y = y, i = x = 2.

(ii) i = x = y, y < i, i = 2.

(iii) i = i = y, y < ii ; i = 2.

Use automorphisms of the form (I, i,x), i, i: E n\ {I, 2}.
(g) £ c In U {[[I, ij, [I, yJj, [[I, yj, [y, ijj, [[x, yj, [y, ill : 3 :::;x < y :::;

ti, 2 :::;i < y :::;n, x, y, i =1= I}. In addition to the cases mentioned
above, transpositions of the form (I, i) map errors from C into In
if one of the following cases occur:
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(i) i = x = y = x, y < i and z = 2.

(ii) i = x = y = y and x = z = 2.
(iii) i = x = y = i, Z = 2 and y < ii:

Automorphisms of the form (1, i, x) will do where i, x E D\ {I, 2}.

o

3.6.2 PD-sets for the non-binary code Cp(Bn)

In this section we consider PD-sets for the non-binary code Cp(Bn) from the
row span of Bn where p is any odd prime and n 2': 5. The PD-set given here
has four elements less than that of the binary codes. As was done for the
binary codes, we first give an information set for the codes.

Lemma 3.12. Let i; be as in Equation (3.11). Then In U {[[I, 3], [1,4]]}
is an information set for the non-binary codes Cp(Bn) from the row span of
Bn, an incidence matrix of the triangular graph, where p is any odd prime
and n 2': 5.

Proof. We need to show that columns of Bn indexed by points in In U
{[[I, 3], [1, 4]]} are linearly independent over lFp. First, order these columns
so that they begin with those indexed by the points below in the given order.

[[1,2], [1,3]], [[1,2], [2,3]], [[1,2], [1,4]], [[1,2], [2,4]], [[1,3], [3,4]], [[1,2], [1,5]],

[[1,2], [2,5]], [[1,3], [3,5]], [[1,4], [4,5]], ... , [[1,2], [1,nl], [[1,2], [2,nl],
[[1,3], [3,nl], ... , [[1, (n - 1)], [(n - 1), nl], [[1,3], [1,4]].

(3.13)

Order the rows of Bn from vM to v[n-l,n] as before and make vM the last
row. Since the ordering of rows from V[1,3] to v[n-l,n] corresponds to the
ordering of the vertices [b,c] in the points [[a,b], [b,c]] in (3.13) above, the
submatrix of Bn in the first (;) -1 rows and columns is right triangular. V[1,2]

has non-zero entries at positions of the form [[1,2], [l,x]] and [[1,2], [2,x]]
where 3 ~ x ~ n. Let

u = L (V[l,X] + V[2,X])

3:S;x:S;n
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and let
w = vM+ L V[x,x+i].

2<x<n-1
l~i~n-x

In the first (;) coordinate positions,

u=(l,l,··· ,1,2)

and

w=(l,l,···l,O).

Hence u - w = (0, ... ,0,2) in these positions. We can therefore replace vM
with u - w to obtain a right triangular matrix in the first (;) columns. 0

For the PD-sets of Cp(Bn), in addition to cases studied in Proposition
3.11, we choose automorphisms such that errors are not mapped to the point
[[1,3], [1,4]].

Proposition 3.13. Let Cp(Bn) be an the non-binary code from the row span
of incidence matrices Bn of triangular graphs where p is an odd prime and
n ~ 5. Let S be as in Equation (3.12). The set

S \ {(I, 3); (1,4), (1,3,4), (1, 4, 3)}

of elements of Sn is a PD-set for Cp(Bn) where p is an odd prime.

Proof. We use the following notation: £ refers to a set of at most n - 3 error
positions, fn is the information set In U{[[I, 3], [1,4J]} and C is the check set
C \ {[[I, 3], [1,4J]}. The possible cases are as follows:

(a) e C {[[I, 2], [1,xJ], [[1,3], [1,4JJ : x ~ 3}. Any transposition of the
form (1, i) where i E n\ {I, 2, 3}, will do.

(b) £ C {[[I, y], ry, zJ], [[1,3], [1,4JJ : 2 ::; y < z ::;n}. If [[1,3], [1,4]] E

E then z can take up to n - 4 values. Hence there are at least
two elements il,i2 E n \ {I, 2} such that z i- ii. Since both
are not 3, any transposition of the form (1, x), where x is one of
these values and x i- 3, will do. If [[1,3], [1,4JJ ~ e then, from
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the proof of Proposition 3.11, there is an element i E n \ {l, 2}
such that z =f. i. Since it is possible to have [[1,3], [3, 4JJ in E,
the transpositions (I, i) cannot be used if i = 3 or if i = 4. Use
automorphisms of the form (I, i,x) where x =f.3 if i = 4.

(c) e C {[[I, 2], [I, xJ], [[I, y], [y, zJ], [[1,3], [1,4]] : x 2:: 3, 2 ~ y < z ~
n}. If there is an error in at least each of the positions of the form
[[1,2], [1, xJ], [[1, y], [y, zJJ and [[1,3], [1,4]], then

I{[[l,y],[y,z]]: 2 ~ y < z ~ n}1 ~ ti -5.

Hence there are at least three values iI, i2 and i3 in n\ {I, 2} such
that z =f. ii' Use a transposition of the form (I, x) where x = ii
and x =f.3.

2. £ C In uC. Since elements of Sn are bijections and we are interested in
identifying cases where errors are mapped to [[1,3J, [1,4]], it is sufficient
to consider the cases e C In U {[[I, i], [I, yJJ : 3 ~ i < Y ~ ti, y =f. 4},
e C In U {[[l,y], [y,iJJ : 2 ~ i < Y ~ n} and e C In U {[[x,y], [y,zJJ :
x,y,z=f.l}.

(a) e C In U {[[I, x], [I, y]] : 3 ~ i < Y ~ n, y =f. 4}. There is no
transposition of the form (I, i) that maps a point of the form
[[I, x], [I, yJ], y =f. 4 to [[1,3], [1,4]]. Hence this case can hence be
handled as the cases in 1. above.

(b) e C In U {[[I, y], [Y, iJJ: 2 ~ i < Y ~ n}. It is possible in this case
to have [[1,4], [4,3]] E E and i = 4. Use an automorphism of the
form (I, i, x) where x =f.3 if i = 4 and x =f. 4 if i = 3.

(c) £ C InU{[[x,y]'[y,zJJ: x,y,z =f. l,x < s}, It is possible to
have a point of the form [[3, y], [y, 4JJ E £ and i = y. Use an
automorphism of the form (I, i,x).

o
Note. Using Magma [7], the Gordon bound on the size of a PD-set S for

the codes Cp(Bn), p any prime, appears to be lSI 2:: n - 2 for any prime p. In
our case, lSI = (n~l) + 1 if p = 2 and lSI = (n~l) - 3 if p is any odd prime.
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Chapter 4

Embeddings of strong products
of triangular graphs and K2 and
their codes

4.1 Introduction

In this chapter we introduce a class of vertex-transitive graphs rn that are
embeddable into the strong product L1(Kn)r5!JK2 of triangular graphs Ll(Kn)
and K2. Pertinent properties of the graphs are determined. In addition
to neighbourhood and incidence designs that naturally come with regular
graphs, we show that rn has 6-cycle designs; these are l-designs in which
points are vertices of the graph and every block contains vertices of a 6-cycle
in the graph.

For any prime p, we consider p-ary linear codes obtained from the row
span of incidence matrices of rn- We determine main parameters of the codes
and their permutation automorphism groups. Unlike most binary codes ob-
tained from incidence and neighbourhood designs of regular graphs in this
thesis and in the literature in general, we show that binary codes from in-
cidence matrices of rn have other minimum words apart from rows of the
matrices. Using specific information sets, we have exhibited PD-sets for full
permutation decoding of the codes.

Further, we consider complete porcupines (see Definition 4.11). These
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graphs are induced subgraphs of fn' Codes from incidence matrices of com-
plete porcupines are therefore considered first.

Part of the work in this chapter is the content of [24J. The graph fn that
has been alluded to is defined as follows.

Definition 4.1. For n 2: 3, let n = {I, ... ,n}. Let n{k} be the set of subsets
of n of size k. Consider the cartesian product X = n{2} x n{l}. Define a
graph fn by

V(rn) = {(A, B) EX: A ::)B};
[(A, B), (A', B')J E E(fn) ~ A = A' or B = B'.

Our main results are summarised in Theorem 4.2.

Theorem 4.2. For any prime pand n 2: 4, let Cp(Gn) be the p-ary code
obtained from the row span over IFp of Gn, an incidence matrix of fn, the
graph of Definition 4.1. Let Al = {[({a,n},{a}),({a,x},{a})J/x =1= a,n},
A2 = {[({b,n},{n}),({b,n},{b})J/b=l=n} and
A3 = {[({n - 1, n}, {n} ), ({c, n}, {n} )J / c =1= n - 1, n} .

(a) lfp is odd then Cp(Gn) = [(n -1)(;),2(;),n -IJp and its minimum
words are the scalar multiples of the rows of Gn.

(b) C2(Gn) = [(n -1)(;),2(;) -1,n -IL and its minimum words are the
rows of Gn and the n vectors Lx v({a,x},{a})where x =1= a.

(d) In = U;=l Ai is an information set for the binary code C2 (Gn). If p is
odd then

In U {[({n - 3,n}, {n}), ({n - 2,n}, {n})]}

is an information set for Cp( Gn).

(e) Ifp = 2 then

s = {(I), (n - 1,y)(x, n)/1 ~ x, y ~ n - 1,x =1= y}
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consisting of n + (n - 2)2 elements of Sn is a PD-set for C2(Gn) with
In as information set. If p is odd then

Su {(n - 2,y)(n,x): x,y E n \ {n},y ~ n - 4}

is a PD-set with

In u {[({n - 3,n}, {n}), ({n - 2,n}, {n})]}

as information set.

The proof of Theorem 4.2 follows from a series of lemmas and propositions
presented in the various section below.

The rest of the chapter is organized as follows. In Section 4.2, we show
that rn is an embedding of the strong product LI (Kn) [8J K2 of triangular
graphs and K2· We also consider properties of the graphs including automor-
phism groups. 6-cycle designs of the graphs are considered in Section 4.2.2.
In Section 4.2.3, we describe how incidence matrices of rn will be written.
Codes from incidence matrices of complete porcupines are discussed in Sec-
tion 4.3. Codes from incidence matrices of rn are examined in Section 4.4.
Permutation automorphism groups of these codes are determined in Section
4.5. We also determine PD-sets for full permutation decoding of the codes.

For n 2:: 3, let rn be as in Definition 4.l. The graph has 2(;) vertices. The
neighbour hood of each vertex ({a, b}, {a}) is the set

N(({a,b},{a})) = {({a,b},{b})} U {({a,x}, {a}) : x i= a}.

Hence rn is (n - I)-regular and it has (n - 1)(;) edges. r3 is the 6-cycle.
We have illustrated r4 in Figure 4.l.

Identifying the vertex-set of the triangular graph with n{2} and that of
K2 with {O, I}, we give the following characterisation of rn.

Proposition 4.3. rn is an embedding of the strong product Ll(Kn) [8J K2 of
triangular graphs and K2.
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212

Figure 4.1: f4 (iji denotes the vertex ({i,j}, {i}))

Proof. Define a map ¢ :V(f n) -+ V (Ll(Kn) I:8:l K2) by

¢(({a,b}, {a})) = {([a,bJ,O), if a <.b
([a, bj, 1), otherwise

We first show that ¢ is a homomorphism. Let u = ({a, b}, {a}) be an ar-
bitrary vertex of fn. Then u is adjacent to v = ({a,b}, {b}) and to n - 2
vertices of the form w = ({a, x}, {a}) where x =J. a, b.

Suppose a < b. Then [¢(u), ¢(v)] = [([a, bj, 0), ([a, bj, 1)J, an edge in the
graph product Ll(Kn) I:8:l K2.

Let us now consider the edges [¢(u), ¢(w)]. There are two possibilities. If
a < x then [¢(u), ¢(w)] = [([a, bl,'0), ([a, xJ, 0)]. If a> x then [¢(u), ¢(w)] =
[([a, bj, 0), ([a, xJ, 1)]. In either case, we have [¢(u), ¢(w)] E E(Ll(Kn) I:8:l K2).

A similar result is obtained if a > b. Hence ¢ is a homomorphism.
That ¢ is injective follows from the definition of the map. Hence ¢ is an

embedding of Ll(Kn) I:8:l K2· 0

4.2.1 Automorphisms of rn
We now consider automorphisms of fn. Let a E Sn. Define a map (Jo

vrr n) -+ vrr n) by

(Jo(({a,b}, {a})) = ({a(a),a(b)},{a(a)}).

Claim 4.4. (Jo E Aut(f n).

Proof. Since (Jo is clearly one-to-one and hence onto, it remains to show that
it preserves adjacency in the graph. There are two cases to consider. Any
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vertex u = ({a, b}, {a}) is adj acent to v = ({a, b}, {b}) and to n - 2 vertices
of the form w = ({a, x}, {a}) where x =1= a, b. We see that O"O'( u) is adjacent
to O"O'(v) and to O"O'(w). Hence 0"0' E Aut(rn). 0

Remark 4.5. The graphs r n are vertex-transitive. To see this, consider any
two distinct vertices ({a, b}, {a}) and ({a', b'}, {a'}) of r n' There exists a
permutation a E Sn such that a(a) = a' and a(b) = b'. Hence a induces an
automorphism 0"0' E Aut(r n) such that O"O'( ({ a, b}, {a})) = ({a', b'}, {a'}).

Let
Xa = {({a, x}, {a}) : x =1= a} .

There are n sets of this form and they partition V(r n)' Let

P = {Xa : a En}.

The quotient graph r nlP has vertex set P and two vertices Xa and Xb are
adjacent if there exists u E Xa and v E Xb such that [u, v] is an edge of r n·
It is readily seen that r nl P is isomorphic to the complete graph ~n'

Lemma 4.6. Xa is a maximum clique.

Proof. That Xa is a clique follows from the definition of adjacency in r n· We
need to show that the clique is maximum.

Consider the closed neighbourhood of a vertex v = ({a, b}, {a}) E Xa,
i.e.,

N[v] = {({a,b}, {b})} U {({a,x}, {a}) : x =1= a}.

Since r n is regular and vertex-transitive, to show that Xa is maximum it is
sufficient to show that Xa is the largest clique containing v in N[v]. This is
easily seen to hold because in N[v], the vertex ({a,b}, {b}) is adjacent only
to v. The remaining vertices in

N[v] \ {({a,b}, {b})} = x,

are pairwise adjacent. Hence Xa is the largest clique in N[v]. o

Corollary 4.7. r n has clique number n - 1 and it has n maximum cliques.
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We now consider automorphisms of r n for n 2:: 4. Recall that r3 is the
6-cycle and hence has automorphism group D6, the dihedral group.

Proposition 4.8. If n 2:: 4 then Aut(r n) ~ Sn.

Proof. Let exE Sn· Since exinduces a permutation 0'0: of V(r n), define a map
f : Sn -+ Aut(rn) by f(ex) = 0'0:' Then f is a homomorphism. It remains to
show that f is also bijective.

Let exand jJ be distinct permutations in Sn. Then there exists an element
a in D such that ex(a) i= jJ(a). Let u = ({a,b}, {a}) E V(rn). Then O'o:(u) =
({ex(a),ex(b)},{ex(a)}) and O'{3(u) = ({jJ(a),jJ(b)},{jJ(a)}). Since O'o:(u) i=
O'{3(u), f is injective.

Let cj; E Aut(rn). By definition, cj; preserves maximum cliques of rn, i.e.,
cj; : Xa -+ Xb for some a, bED. Since every maximum clique corresponds to
an element of D, cj; induces a permutation exE Sn defined by cj;(Xa) = Xo:(a).

Hence f is onto. 0

4.2.2 Designs from embeddings of Ll(Kn) ~ K2

In this section we consider designs obtained from r n. We show that, in
addition to the incidence design whose codes are our primary interest in
Section 4.4, the graphs have what we have termed as 6-cycle designs.

In the incidence design of r n, the block containing edges incident on a
vertex v = ({a, b}, {b}) is the set

({a,b},{b})

= {[({a, b}, {b}), ({ a, b}, {a})]} U {[( {a, b}, {b} ), ({ b, x}, {b})] : x i= a, b} .

It has incidence vector

v({a,b},{b}) = v[({a,b},{b}),({a,b},{a})] + 2:= v[({a,b},{b}),({b,x},{b})].

x;>fa,b

The 6-cycle design of r n has parameters 1 - (2 (;),6, n - 2) . lts points
are vertices of the graph. Each block contains vertices of a 6-cycle in the
graph. Hence for any distinct elements a, band c of D, the points

({a,b}, {a}), ({a,c}, {a}), ({a,c},{c}), ({b,c},{c}), ({b,c},{b}), ({a,b}, {b})
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make up one block of the design. Notice that the 6-cycle formed by these
vertices contains a pair of points from each of the maximum cliques Xa, X

b

and Xc' Hence any pair of points from a given maximum clique determines
a 6-cycle in the graph. Since every vertex in a maximum clique is adj acent
to the remaining n - 2 vertices, it lies on (n - 2) 6-cycles determined this
way. By [2, Equation (1.2), p. 7], the design has (n;2) G) blocks.

Properties of the design are summarized in the following definition.

Definition4.9. LetC6 bethe6-cycle( ({a,b},{a}), ({a,c},{a}), ({a,c},{c}),
({b,c},{c}), ({b,c},{b}), ({a,b},{b})) in fn where a, band c are distinct
elements of D = {I, ... ,n}. Then the 6-cycle design of fn is a 1 _
(2(;),6, n - 2) design with points the vertices of fn and blocks the (n;2) (;)
6-cycles of the form C6.

4.2.3 Incidence matrices of the graphs

Let fn be an embedding of the strong product Ll(Kn) ~ K2 as presented in
Definition 4.1. In this section we describe how incidence matrices Gn of the
graphs will be written.

Let

Vi = {({a,b},{a}),({a,b},{b}): o.b e {I,2,3},a < b}.

For 4 ::; i ::;n, let

Vi-2 = {({a, i}, {a}), ({a, i}, {i}) : 4::; i ::; n, a < i}.

Write Gn as follows. Order rows of Gn so that for given values of a and i, a
row corresponding to a vertex ({a, i}, {a} ) is followed by a row corresponding
to ({a,i},{i}). The first (n - 2)(n;1) columns of Gn correspond to edges
between vertices in U7:13Vi· These are followed by columns corresponding to
edges between vertices in U:-13 Vi and vertices in Vn-2, i.e., (U7:13Vi, Vn-2) is
a bipartition. Lastly, write columns corresponding to edges between vertices
in Vn-2. The resulting matrix is 2(;) x (n - 1) (;) of the form

c; = [Gn-l I 0 1
o J Mn-l

(4.1)

where:
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(a) Gn-l is an incidence matrix of rn-l;

(b) I is the identity matrix of rank (n - l)(n - 2);

(c) J is a 2(n - 1) x (n - l)(n - 2) matrix where every column is a unit
vector. For a < n, each row corresponding to a vertex of the form
({a, n}, {a}) has weight n - 2. The remaining n - 1 rows corresponding
to vertices of the form ({a, n}, {n}) are zero vectors;

(d) Mn-l is an incidence matrix of the complete porcupine Hn-l (see Def-
inition 4.11).

Example 4.10. The twelve vertices of I', are ordered as follows: ({I, 2}, {I}),
({1,2},{2}), ({1,3},{1}), ({1,3},{3}), ({2,3},{2}), ({2,3},{3}), ({1,4},{1}),
({1,4},{4}), ({2,4},{2}), ({2,4},{4}), ({3,4},{3}), ({3,4},{4}). lts inci-
dence matrix is

110000 100000 000000
101000 010000 000000
010100 001000 000000
000110 000100 000000
001001 000010 000000

G4 =
000011 000001 000000

(4.2)000000 101000 100000
000000 000000 111000
000000 010010 000100
000000 000000 010110
000000 000101 000001
000000 000000 001011

4.3 Complete porcupines and their codes

We now consider complete porcupines (also simply called porcupines in [26])
and codes from their incidence matrices. We begin by defining the graphs.
Codes from these graphs are examined in Proposition 4.12 and Corollary
4.13.
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Definition 4.11. Let D = {I, ... ,n} where n ~ 3. Let A = {(a, 0) : a E D}
and B = {(b, 1) : bED}. Let KA be the complete graph on A. The complete
porcupine Hn is defined by V(Hn) = AUB and E(Hn) = E(KA) UEQ where
EQ = {[(a, 0), (a, 1)]la E D} is the set of quills.

Let Mn be an incidence matrix of the complete porcupine Hn. Write Mn
as follows. Order its rows by first listing vertices in A followed by vertices in
B. Order columns of the matrix by first obtaining edges between vertices in
A followed by edges corresponding to quills of the complete porcupine. Then
Mn takes the form

(4.3)

where Ln is an incidence matrix of KA.

Proposition 4.12. For n ~ 3 and any prime p, let Cp(Mn) be the p-ary

code from the row span of Mn, an incidence matrix of the complete porcu-

pine Hn. Then C2(Mn) = [(n~l), 2n - I, IJ2' If P is odd then Cp(Mn) =
[(n~l), 2n, 1]p' In both cases, minimum words are the n unit vectors corre-
sponding to quills of the porcupine.

Proof. The length of the code is the order of E(Hn) = E(KA) U EQ where,
as in Definition 4.11, KA is the complete graph on A = {(a,O) : a E D} and
EQ is the set of quills. Since the minimum weight and minimum words are
easy to see, we only check the dimension of the codes.

The complete porcupine is connected and hence by Lemma 2.22, Mn has
dimension 2n - lover lF2· Since the graph is not bipartite (as it has odd
cycles in KA), by Lemma 2.23, Mn has full rank over lFp if p is odd. 0

Notice that the codes Cp(Mn) are not full spaces despite having codewords
of weight one. The following corollary is useful.

Corollary 4.13. Let Mn be an incidence matrix of the complete porcupine

as presented in Equation (4.3). For any prime p, let Cp(Mn) be the p-ary

code from the row span of Mn. Let Cp(Nn) be the subcode of Cp(Mn) from

the row span over lFp of the submatrix Nn = [LnII] of Mn. Then Cp(Nn) =

[(n~l),n,n]p' Minimum words are scalar multiples of the rows of Nn.
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Proof. The length and dimension are clear. For the minimum weight, let
C E Cp(Nn). Then C is a concatenation of two vectors Cl and C2from the
two column blocks in Nn. By Theorem 2.35, we have wt(CI) ~ n - 1. Since
wt(C2) ~ 1, the result follows. 0

4.4 Codes from embeddings of the strong prod-
ucts LI (Kn) ~ K2

We now turn to the main issue at hand; namely, the description and per-
mutation decoding of codes from embeddings rn of the strong products
£1(Kn) I:8l K2 of triangular graphs and K2. The case of ti = 3 is less in-
teresting; r3 being a 6-cycle. It is stated in the following lemma.

Lemma .4.14. Let G3 be an incidence matrix of the 6-cycle r3 and let Cp(G3)

be the p-ary code from the row span of G3 where p is any prime. Then
Cp(G3) = [6,5, 2Jp.

Proof. Dimensions of the binary and non-binary codes follow from Lemmas
2.22 and 2.23, respectively, since the 6-cycle is connected and bipartite.

Since Cp( G3) is spanned by weight-2 vectors, the binary code is even hence
it does not have unit codewords. We need to check the minimum weight of
Cp( G3) if p is an odd prime.

Write G3 as the left uppermost submatrix of G4 in Equation (4.2). Parti-
tion rows of the matrix as follows. Let Rl be the block of the first three rows
of G3 and R2 the remaining three rows of the matrix. Partition the columns
into two blocks, the first comprising the first three columns.

Let C E Cp( G3). Then C is a concatenation of two vectors, Cl, C2 E lF~,
from the two column blocks of G3. Observe that each of the four submatrices
of G3 obtained from the partition described above has a unit vector. Thus
if all possible linear combinations of rows of G3 are considered, one obtains
Wt(CI) ~ 1 and wt(C2) ~ 1. Hence wt(c) ~ 2. This completes the proof of
the lemma. 0

Other minimum words of Cp( G3) are scalar multiples of codewords of the
form V

U
- V

W where u and ware any adjacent vertices of r3. The following
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codewords also have minimum weight:

v({a,b},{b}) - L v({a',b'},{b'}).
({a',b'},{b'})EN« {a,b},{b}»

We now determine parameters of the codes Cp( Gn) where n ~ 4.

Proposition 4.15. For ti ~ 4 let C; be an incidence matrix of rn. Let
Cp( Gn) be the p-ary code from the row span of Gn where p is any prime.

(a) lfp is odd then Cp(Gn) = [en -1)(;),2(;),n -l]p and its minimum
words are scalar multiples of the rows of Gn.

(b) C2(Gn) = [en -1)(;),2(;) -l,n -1]2 and its minimum words are
rows of Gn and the n vectors of the form Lx v({a,x},{a}) where x =I- a.

Proof. Recall that the complete porcupine Hn-l is an induced subgraph of
rrr- Hn-l has odd cycles because it contains the complete graph. Hence by
Proposition 2.3, rn is non-bipartite. Since the graph is also connected, the
non-binary codes have dimension 2(;) by Lemma 2.23. On the other hand,
the binary codes have dimension 2(;) - 1 by Lemma 2.22.

We now use induction to prove the assertion about the minimum weight
of Cp(Gn) noting that it holds for Cp(G3) in Lemma 4.14. Suppose the result
holds for n -1. Write Gn as in Equation (4.1). Label the first (n -l)(n - 2)
rows of Gn by Rl and the remaining 2(n-1) rows by R2, i.e., Rl = [Gn-IJIJO]
and R2 = [OIJJMn-I].

Let c E Cp(Gn). Then c is a concatenation of three vectors, Cl, C2and
C3, from the three column blocks of Gn where C; E JF;;, kl = (n - 2) (n~ I),
k2 = (n - l)(n - 2) and k3 = (;).

(a) Suppose c is a linear combination of rl rows of Rl' Then Cl= L aigi
and C2= L ail where ai E JF; and gi is the ith row of Gn-l. By assumption,
wt(cI) ~ n - 2. Since wt(C2) = rl, we have wt(c) ~ n - 2+ rl ~ n -1. From
the form of Gn, it is clear that wt(c) = n -1 if Cis a scalar multiple of a row
of Rl'

Suppose C is a linear combination of r2 rows of R2. Then C2= L adi
and C3= L cam; where o, E JF; and ji and mi are ith rows of J and Mn-I,
respectively. If ji =I- 0 for any i then wt(C2) ~ n - 2 since no pair of rows of
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J is commonly incident. Equality occurs if c is a non-zero row of J in which

case wt(C3) = 1. Hence wt(c) 2: ti -1with equality if c is a scalar multiple of
a row of R2. If c is a linear combination of rows corresponding to vertices of
the form ({a, n}, {n}) then C2= O. By Corollary 4.13, wt(c) = wt(C3) 2: n-1
with equality if c is a multiple of an ({a, n}, {n} )-indexed row of Gn.

Finally, suppose c is a linear combination of rl rows of Rl and r2 rows
of R2. By assumption, wt(CI) 2: n - 2. By Proposition 4.12, wt(C3) 2: 1. If
wt(C3) = 1 then it is clear that C2 =1= O. Hence wt(c) 2: (n-1)+wt(c2) > n-l.

(b) Let us now consider the minimum weight of the binary codes. Since
the result of adding all rows of an incidence matrix is the zero vector, in
addition to cases considered in (a) above, we only need to examine situations
where all rows of Gn-l or Mn-l are added.

Let c E C2(Gn). Suppose c is a sum of all rows of Rl' Then C2= 2:iei
where ei is the ith row of the identity matrix I. Since I has rank (n -1) (n- 2),
we have wt(c) = wt(C2) = (n - l)(n - 2) > n - 1.

Suppose c is a sum of all rows of R2. Then C2= 2:i i, where i, is the ith
row of J. Since no pair of rows of J is commonly incident and the n - 1 non-
zero rows have weight n-2, we have wt(c) = wt(C2) = (n-1)(n-2) > n-1.

Suppose c is a sum of rl rows of R, and r2 rows of R2. There are two
possible cases to consider in addition to those examined in (a).

Case (i). rl = (n - l)(n - 2) and r2 < 2(n - 1).

If r; of the r2 rows of J are non-zero then wt(C2) = (n-1)(n-2)-r;(n-2)
and wtCC3) 2: 1. If r; = n - 1 then all non-zero rows of J are added. Hence
wt(C2) = 0 and C3is a sum of n - 1 unit vectors. We have wt(c) = wt(C3) =
n - 1. In this case, c has support

{[({a,n},{a}),({a,n},{n})]: a < n} = Supp (Lv({a,n},{n})).

a<n

Hence c = 2: v({a,n},{n}).
a<n

If r; < n - 1 then at least one ({a, n}, {a})- indexed row of J is not used

in the sum. Hence wt(C2) 2: n - 2, wt(C3) 2: 1 and wt(c) 2: n - 1. Equality
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occurs if r; = r2 = n - 2 and c is the ({a, n}, {a} )-indexed row of J that is
not in the sum.

Case (ii). rl < (n - 1)(n - 2) and r2 = 2(n - 1).

This case gives wt(CI) 2:: n - 2, wt(C2) 2:: 1 and C3= O. wt(C2) = 1 if
Tl = (n - 1)(n - 2) - 1 in which case C2is a row of J. Hence wt(c) = n - 1
if c is the row of Gn that is not added.

As seen from observations above, C2( Gn) has other minimum words in
addition to rows of Gn. Since the n -1 vertices in Xa form a complete graph
for each a E 0, the n -1 incidence vectors v({a,x},{a}), where ({a,x},{a}) E

Xa, are pairwise commonly incident at exactly (n~l) coordinate positions.
Therefore the codeword Lx v({a,x},{a}) has weight (n - 1)2 - 2(n~l) = n -1.
This way, we determine n more minimum words. 0

4.5 Permutation decoding

In this section we determine permutation automorphisms of the p-ary codes
Cp(Gn), p any prime, obtained from the row span of incidence matrices Gn

of the graphs rn of Definition 4.1. An information set for the codes is given
in Proposition 4.17 where PD-sets for full permutation decoding are also
exhibited.

Proposition 4.16. For any prime pand n 2:: 4, let Cp( Gn) be the p-ary code
from the row span of Gn/ an incidence matrix of rrr- Let V be the incidence
design ofrn. Then Aut(Cp(Gn) ~ Aut(V) = Sn.

Proof. As in Proposition 3.7, we only need to show that Aut(Cp(Gn») C
Aut(V). Cases of p odd and p = 2 are treated separately.

Case (i). p odd.

By Proposition 4.15, if p is odd then minimum words of Cp( Gn) are scalar
multiples of incidence vectors of blocks of V. Let p E Aut(Cp(Gn». Since p
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preserves weight classes of the code, it permutes the minimum words. For
each incidence vector v({a,b},{a}) there exists an incidence vector v({a',b'},{a'})

such that p(v({a,b},{a})) = v({a',b'},{a'}). Hence p induces a permutation of
blocks of V that preserves incidence of points with blocks. Therefore p cor-
responds to an automorphism of the design.

Case (ii). p = 2.

By Proposition 4.15, minimum words of the binary codes are rows of On
and codewords of the form 2::::xfa v({a,x},{a}) where a is constant.

We show that it is not possible for an automorphism of C2(On) to map a
row of On to a codeword of the form 2::::#a v({a,x},{a}). Let

Sa = {[({a, x}, {a}), ({a, x}, {x})] : x =Ja} = Supp (2: v({a,x},{a})) •

xfa

A fixed element [({a, b}, {a}), ({ a, b}, {b})] of Sa is also in the support Sb

of 2::::#b v({b,x},{b}). This holds for every element of Sa. Therefore minimum
words of the form 2::::xfa v({a,x},{a}) are pairwise commonly incident. This
property is not satisfied by rows of On. An automorphism of C2(On) must
preserve this property. It hence maps rows to rows and codewords of the form
2::::xfa v({a,x},{a}) to similar codewords. By permuting the incidence vectors (as
observed in the odd p case above), every automorphism of C2(On) induces an
automorphism of the design. Hence Aut(C2(On)) ~ Aut(V). This completes
the proof. 0

We now give information sets for Cp( On) and exhibit PD-sets for full
permutation decoding.

Proposition 4.17. For any prime pand n 2: 5, let Cp(Gn) be the p-
ary code from the row span of On, an incidence matrix of rn. Let Al =

{[({a,n}, {a}), ({a,k}, {a})]lk =Ja,n}, A2 = {[({b,n}, {n}), ({b,n}, {b})]lb=J
nl, A3 = {[({n - 1, nl, {n}), ({c, nl, {nl )]Ic =Jti - 1, nl. Then

(a) In = U~=IAis an information setforC2(Gn). lfp is odd then

In U {[({n - 3,n}, {nl), ({n - 2,n}, {nl)]}
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is an information set for Cp( Gn);

(b) If p = 2 then the set

S = {(I), (n - 1,y)(n, x)11 ::;x, y ::;n - 1,x =I y}

of n + (n - 2)2 elements of Sn is a PD-set for C2(Gn) with In as
information set.

If p is odd then

Su {(n - 2,y)(n,x): x,y E n \ {n},y::; ti - 4}

is a P Ir-set with

In U {[({n - 3,n}, {n}), ({n - 2,n}, {n})]}

as information set.

Proof. (a) We first show that columns of Gn indexed by points in In are
linearly independent over lF2 and hence In is an information set for C2(Gn).

Write Gn as in Equation (4.1). Points in Al are indices of the 2 (n;l)
columns of the identity matrix.

Re-order rows and columns of Mn-l as follows. List rows corresponding
to vertices in

Bl = {({b,n},{b})lb=ln}

followed by rows corresponding to vertices in

B2 = {({b, n}, {n} )Ib =I n}

in lexicographic order. Write columns corresponding to edges between ver-
tices in Bl and vertices in B2 followed by columns corresponding to edges
between vertices in B2. In this way, Mn-l takes the form

(4.4)

where I is the (n - 1) x (n - 1) identity matrix and Ln-l is an incidence
matrix of Kn-l' Columns of I are indexed by points in A2.
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Re-arrange columns of Ln-l so that they begin with those indexed by the
following points in the given order.

[({I, n}, {n}), ({ n - I, n}, {n})], ... , [({n - 2, n}, {n}), ({ n - I, n}, {n})],
[({n - 3,n}, {n}), ({n - 2,n}, {n})J.

Then Ln-l takes the form

[ I I Ln-' ]
11· :·1 00···0

where I is the (n - 2) x (n - 2) identity matrix with columns indexed by
points in A3, Ln-2 is an incidence matrix of Kn-2.

With these permutations of rows and columns, Gn takes the form

Gn-1 I 0
I 0

0 J I Ln-2I
1· . ·1 0·· ·0

Excluding the last row from consideration, columns with the identity
matrices are easily seen to be linearly independent over IF2. They are indexed
by elements of In· Hence In is an information set for C2(Gn).

If p is odd, adding to In the point

[({n - 3, n}, {n} ), ({n - 2, n}, {n} )J

gives a linearly independent set of columns. Hence

In U {[({n - 3,n}, {n}), ({n - 2,n}, {n})]}

is an information set for Cp( Gn).

(b) Let

A4 = {[({d, n}, {n} ), ([e, n}, {n} )J Id, e =I- n - 1, n},
A5 = {[({I, g}, {g}), ({I, g}, {f} )JI/, 9 =I- n},
A6 = {[({h, l}, {l}), ({j, l}, {l} )JIJ, h; l =I- n}.
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Then C = A4 UA5 uA6 is a check set for C2(Gn). The non-binary codes have
check set

C \ {[({n - 3,n}, {nl), ({n - 2,n}, {n})]}.

Notice that As U A6 = E(rn-l).
We first determine PD-sets for the binary codes. Since the minimum dis-

tance is ti -1, the codes correct up to l(n - 2)/2 J errors. Suppose a codeword
is sent and a vector y is received such that t ~ l(n - 2)/2J errors occur. Let
E be the set of error coordinates of y. There are three possible cases.

Case (i). £ c c.

Use the identity permutation (1) of Sn to fix errors in the check set C.

Case (ii). £ c In UC \ A6'

Suppose there are at most ti; errors in Ai where 1 ~ i ~ 5. Then
2l:ni ~ n - 2. Let Ti = {al,'" ,anllkl,'" ,knJ, T2 = {bl,'" ,bn2},
73 = {Cl,'" ,Cn3,n-1}, 74 = {dl,'" ,dn"el,'" ,en,},
Is = {h, ... , ins' gl, ... ,gns}. Let T = U~=l1i,. Then

ITI ~ 2nl + n2 + n3 + 1+ 2n4 + 2n5 < n.

Since 2l:ni ~ n - 2, we have ITI ~ n - 2. Hence there exists x E [2 \ {nl
such that x rt. T. Use a transposition of the form (n, x) to map E into C and
fix errors already in C.

Case (iii). £ c In U c.

Suppose at most n6 errors occur in A6' Let

Then
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Since 2 Lni :::;n - 2, there exists x En \ {n} such that x ti. Tu~. Use a
transposition of the form (n, x).

Suppose x = l and there is an error coordinate [((n - l)l, i), (jl, l)J in A6
where j :::;n - 2. Then (n, x) maps this point to an information position in
A3. Use an automorphism of the form (y, n - l)(n, x) where y :::;ti - 2 and
y =f. i.x.

In addition to cases considered above, if p is odd there is a problem if
h = ti - 2, j = ti - 3 and x = i for points in A6 because a transposition of the
form (n,l) maps [({n-2,l},{l}),({n-3,l},{l})J to [({n-2,n},{n}),({n-
3, n}, {n} )J, an information position. Use an automorphism of the form (n _
2, y)(n, x) where 1 :::;y :::;ti - 4. 0

Remark 4.18. Computations using Magma [7Jfor small values of n suggest
that the Gordon bound is ~ + 1 if n is even and n;-l if n is odd.
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Chapter 5

Codes from graphs related to
the categorical product of
triangular graphs and Kn

5.1 Introduction

In the previous chapter, we considered two classes of graphs, Hn and rn,
where ti ;:::3, Hn is the complete porcupine and rn is an embedding of
Ll(Kn) ~ K2, the strong product of triangular graphs and K2. Also recall
that if ti ;:::4 then Hn-l is an induced subgraph of rn- We also examined
codes from incidence matrices of the graphs and exhibited PD-sets for full
permutation decoding of codes from rn-

In this chapter, we consider complements of Hn and rn and codes from
their incidence matrices. The graphs are denoted Hn and fn, respectively.
Since most properties of the graphs that are of interest to us are concluded
from those of Hn and rn, we only establish automorphisms of the complete
porcupines as this was not done in Chapter 4. We also show that fn is
contained in the union of Ll(Kn) x Kn and £1(Kn) x Kn, where x is the
categorical product of graphs and £1(Kn) is the complement of the triangular
graph £l(Kn). In both cases, permutation decoding is used for codes from
incidence matrices of the graphs. Even though the graphs Hn are not edge-
transitive, we have achieved full permutation decoding for codes from their

http://uwc.ac.za



5.1. Introduction 77

incidence matrices. In the case of codes from Ï\, we only exhibit PD-sets for
partial permutation decoding.

What is presented in this chapter is the content of [48J. Our main results
are summarised in the two theorems below. Theorem 5.1 is on codes from
incidence matrices of Hn and Theorem 5.2 is on codes from incidence matrices
offn.

Theorem 5.1. For n ;::::3, let Hn be the complement of the complete por-
cupine, the graph of Definition 4.11. Let Gn be an incidence matrix of Hn.
For any prime p, let Cp(Gn) be the p-ary linear code from the row span
of Gn· Let Al = {[(I, 1), (a, I)J : a =I- I}, A2 = {[(I, 1), (b,O)J: b =I- I} and
A3 = {[(2, 1), (1, O)]). Then

(a) Aut(Hn) ~ Sn S:! Aut(Cp(Gn));

(c) C2(Gn) = [3(;),2n -I,n -1]2. Ifp is odd then
Cp(Gn) = [3(;), 2n, n - 1]v' In both cases minimum words are scalar
multiples of the rows indexed by vertices of degree n - 1;

(d) In = U~=lA is an information set for C2(Gn). If p is odd then In U
{[(2, 1), (n, O)]} is an information set for Cp(Gn).

The set {(l),(I,x): xE .0\ {I}} ofn elements of Sn is a PD-setfor
Cp(Gn) for any prime p.

Theorem 5.2. For n ;::::4, let fn be the complement of an embedding rn of
the strong product U(Kn) ~ K2 presented in Definition 4.1. Let Mn be an
incidence matrix offn- For any prime p, let Cp(Mn) be the p-ary code from
the row span of Mn. Let 1) be the incidence design of fn. Let
Al = {[({I, 2}, {I}), uJ : u E N(( {I, 2}, {I}))} and
A2 = {[({I,2},{2}),({I,x},{I})J: 3:S x:S n}.

(a) C2(Mn) = [(n2
- 2n) (;), 2(;) -1, n(n - 2)]2 and its minimum words

are rows of Mn;

(b) If p is odd then Cp(Mn) = [(n2 - 2n) (;),2(;), n(n - 2)]p and its min-
imum words are scalar multiples of the rows of Mn;
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(d) In = Al U A2 U {[(12, 2), (13, 3)]} is an information set for C2(Mn).

The set

S = {(I), (1, x)(2, y) : x, u =1= 1,2}
of (n;2) + 1 elements of Sn is an ln2_~n+6J -PD-set for C2(Mn) with

In as information set.

As has been done in previous chapters, the two theorems are proved using
a series of lemmas and propositions in Sections 5.2 and 5.3, respectively. In
Section 5.2 properties ofHn are given and automorphism groups of the graphs
determined .. The main focus of this section is the description and permutation
decoding of binary and non- binary codes from incidence matrices of Hn'

An information set and PD-sets for full permutation decoding of the codes
are exhibited in Proposition 5.9. The size of the PD-sets is only twice the
Gordon bound. In Section 5.3, the main focus is on codes from incidence
matrices of fn' Again, the main results of this section are the determination
of parameters of the codes and PD-sets for partial permutation decoding of
the binary codes.

5.2 The graphs H n and their codes

The definition of Hn follows from Definition 4.11. We however state it for-
mally below as done in [48J. This way some properties of the graphs are
easier to see.

Definition 5.3. Let D = {I,··· ,n} where n ~ 3. Let A = {(a, 0) : a ED}
and B = {(a, 1) : a ED}. Then the complement of the complete porcupine
Hn is defined by

V(Hn)=AUB
E(Hn) = E(KB) U {[(a, 0), (b, I)J : a, bED, a =1= b}.

We make the following observations. Each vertex of the form (i,O) has
degree n -1 since it is adjacent to vertices of the form (j, 1)where JED and
j =1= i. Each vertex of the form (i, 1) has degree 2(n - 1) since it is adjacent
to vertices of the form (j,0) and (j, 1) where JED and j =1= i. Hence H n is
not regular. It has 3(;) edges. H4 is illustrated in Figure 5.1.
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Figure 5.1: The graph H4

5.2.1 Automorphisms of complete porcupines

In this section we determine automorphisms of complete porcupines Hno

Lemma 5.4. For n 2: 3, let H n be the complement of the complete porcupine
as given in Definition 5.3. Let a E Sn. Then a induces an automorphism of
u;

Proof. Define a map aa : V(Hn) -+ V(Hn) by aa((a, x)) = (a(a),x) where
x = 0,1. We need to show that aa E Aut(Hn).

It is clear that aa is bijective. Also, O"apreserves adjacency in the graph.
To see this, let u and v be any two adjacent vertices in Hn' By the adjacency
conditions in Definition 5.3, either u = (a, 1) and v = (b, 1) or u = (a, 1) and
v = (b,O) for distinct a, bEn. In both cases, [aa(U), O"a(v)] E E(Hn). Hence
ao: E Aut(Hn). 0

We now show that Aut(Hn) is isomorphic to Sn, the symmetric group on
n.

Proposition 5.5. For n 2: 3, let H n be the complement of the complete
porcupine as presented in Definition 5.3. Then Aut(H n) ~ Sn.

Proof. Let a E Sn. By Lemma 5.4, a induces an automorphism ao: of Hno
Define a map f : Sn -+ Aut(Hn) by f(a) = O"a·Then f is a homomorphism.
We need to show that f is also bijective.

Let a and f3 be distinct elements of Sn. Then there exists a E n such
that a(a) =J. f3(a). Consider the vertex (a, x) where x = 0 or x = l. Since
ao:((a, x)) =J. a,e((a,x)), f is injective. It remains to show that f is onto.
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Let B be as in Definition 5.3. Consider KB, the maximum clique in
Hn· Let rp E Aut(Hn). By definition, rp preserves maximum cliques. Hence
rp((a, 1)) = (b, 1) for some vertices (a, I) and (b,l) in B. Thus rp induces a
permutation a E Sn such that a(a) = b. This completes the proof. 0

Notice that the complement of the complete porcupine is neither vertex-
transitive nor edge-transitive.

5.2.2 Incidence matrices of the graphs

We now describe how incidence matrices of Hn will be written. Recall that
V(Hn) = A U B where A = {(a, 0) : a E D} and B = {(a, 1) : a ED}.

Let Gn be an incidence matrix of H n- Write Gn as follows. Rows are
ordered by first writing rows corresponding to vertices in B followed by those
corresponding to vertices in A. List columns corresponding to edges between
vertices in B. These are followed by columns corresponding to edges between
vertices in B and those in A. Then Gn is a 2n x 3 (;) matrix of the form

(5.1)

where

(a) i; is an n x (;) incidence matrix of «;
(b) M is an n x 2(;) matrix such that each row has n - 1 consecutive

entries 1 and no pair of row vectors is commonly incident;

(c) N is a column permutation of M.

Example 5.6. If n = 4 then

111000 111000000000
100110 000111000000
010101 000000111000

G4= 001011 000000000111
000000 000100100100
000000 100000010010
000000 010010000001
000000 001001001000
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5.2.3 Codes from complements of complete porcupines

In the proposition below, we determine parameters of the codes Cp(Gn)

spanned over lFp by rows of Gn where p is any prime.

Proposition 5.7. For n 2: 3 and any prime P, let Cp(Gn) be the p-ary
code from the row span of GnJ an incidence matrix of the complement of the
complete porcupine (see Definition 5.3). If p = 2 then C2(Gn) = [3(~), 2n -
l,n - 1]2 while ifp is odd then Cp(Gn) = [3(;),2n,n -1]p. For any P,
minimum words of Cp( Gn) are scalar multiples of the rows of Gn of weight
n-l.

Proof. Dimensions of the binary and non-binary codes are obtained using
Lemmas 2.22 and 2.23, respectively, since the graphs are connected and,
having 3-cycles in KB, non-bipartite. We hence only prove the assertion
about the minimum weights.

Write C; as in Equation (5.1). Let R, and R2 be the submatrices [LnIM]

and [OIN], respectively. Let C E Cp(Gn). Then C is a concatenation of two

vectors, Cl and C2, from the two column blocks of Gn where Cl E lF~;) and
C2E lF~(;).

Suppose C is a linear combination of rl rows of Rl' By Theorem 2.35,
wt(Cl) 2: n-1 (the minimum weight of non-binary codes in Theorem 2.35 also
holds for the binary codes as remarked in Section 2.6.2). Since wt(C2) = (n-
l)rl, we have wt(c) 2: (n-l)(l+rl) > n-1. UrI = 1 then wt(c) = 2(n-l)
and C is a row of Rl' Over lF2, if all rows of Rl are added then Cl = 0 and
wt(C2) = 2(;) > n - 1.

Suppose C is a linear combination of r2 rows of R2. Since no pair of
rows of R2 commonly incident, wt(C2) = (n - l)r2 2: n - 1. U r2 = 1 then
wt(c) = wt(C2) = n - I, i.e., c is a row of R2.

Suppose Cis a linear combination of rl rows of Rl and r2 rows of R2. We
first consider the binary case.

Over lF2, if r1 =1= nand r2 =1= n then wt(cl) 2: n -1 by Theorem 2.35. Also,
wt(C2) =1= O. Hence wt(c) > n - 1. If r, = nand r2 =1= n then Cl = O. Since
the sum of all rows of M is the all-one vector, wt(C2) 2: n - 1 with equality
if C2is a row of N. Url =1= nand r2 = n then wt( Cl) 2: n - 1 and wt( C2) =1= O.
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Hence wt(c) > n - 1.

Over lFp,p odd, we have wt(CI) 2': n - 1 by Theorem 2.35. If wt(C2) =J. 0
then we are done. If wt(C2) = 0 then a scalar multiple of the sum of all rows
of Rl is subtracted from that of all rows of R2. Since wt(ct) = n -1only if c
is a scalar multiple of a row of Ln by Theorem 2.35, we have wt(ct) > n -1,
completing the proof. 0

5.2.4 Permutation decoding

We now consider permutation decoding of the codes obtained in Proposition
5.7. We first determine the permutation automorphism group of the code.
A subset of this group is used in Proposition 5.9 for permutation decoding
of both the binary and non-binary codes.

Proposition 5.8. Let Cp(Gn) be the p-ary code from the row span of Gn,
an incidence matrix of the complement of the complete porcupine H n where

n 2': 3 and p is any prime. Then Aut(Cp(Gn)) ~ Aut(Hn) ~ Sn.

Proof. As done in Propositions 3.7 and 5.3, we only need to show that
Aut(Cp(Gn) ~ Aut(Hn).

Let (J E Aut(Cp(Gn)). Then (J preserves minimum words of the code.
By Proposition 5.7, minimum words of Cp(Gn) are scalar multiples of the
rows of the form v(a,O). Hence there exist incidence vectors v(a,O) and v(b,O)

such that (J(v(a,O») = v(b,O). Let [(a, 0), (c, 1)] E Supp(v(a,O»), the support
of v(a,O). Since (J permutes coordinate positions of Cp( Gn), there exists a
point [(b, 0), (d, 1)] E Supp(v(b,O»)such that (J([(a, 0), (c, 1)]) = [(b, 0), (d, 1)].
Therefore (J corresponds to a permutation if E Sn such that if(a) = band
if(c) = d where a, b, c, dEn. Thus Aut(Cp(Gn) ~ Aut(Hn) = Sn. This
completes the proof. o

We now exhibit a subset of Sn for full permutation decoding of both the
binary and non-binary codes.

Proposition 5.9. For any prime pand n 2': 3, let Cp( Gn) be the p-ary

linear codes from the row span of Gn, an incidence matrix of the comple-

ment of the complete porcupine. Let Al = {[(I, 1), (a, 1)] : a =J. I}, A2 =

{[(I, 1), (b, 0)] : b =J. I} and A3 = {[(2, 1), (1, O)]).
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(a) In = U~=lAi is an information set for C2(Gn). If p is odd then In U
{[(2, 1), (n, D)]} is an information setfor Cp(Gn);

(b) S = {(I, x) :XED} is a PD-set for C2(Gn) of n elements of Sn.

If p is odd then S U {(I, 2, n)} is a PD-set for Cp(Gn).

Proof (a) We first show that columns of Gn indexed by edges in In are
linearly independent over lF2. Permute rows and columns of Gn as follows.
Order rows of the matrix according to the following ordering of vertices of
the graph.

(1,1), ... ,(n, 1), (2,0),· .. ,(n, 0), (1,0).

First list columns indexed by edges between (1,1) and vertices in the set

{(a, 1): a =J I} U {(b,O): b =J I}.

These are followed by the column indexed by [(2,1), (1,0)]. The remaining
columns are written in any order. In this way, the first 2n - 1 columns take
the form

[

111 .. ·111 ]
hn-2 u

000· ··000

where 12n-2 is the identity matrix of rank 2n-2 and u = 0100· .. 1. Excluding
the first row from consideration, columns indexed by points in In are seen
to be linearly independent over IF2. Hence In is an information set for the
binary codes.

Over lFp, p an odd prime, adding a column indexed by [(2,1), (n, 0)] to In
gives a linearly independent set.

(b) Let C be the check set for C2(Gn). Then C = Cl U C2 where

Cl = {[(c, 1), (d, 1)] : c, d =J I}

and

C2 = {[(e, 0), (J, 1)] : e, fED, f =J I} \ {[(2, 1), (1, D)]).

Since the code has minimum distance n - 1, it corrects up to t ~ ln~2 J
errors. Suppose a codeword c is sent and a vector y = c+ e is received such
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that the error vector e has weight at most n - 1. Let E be the set of error
positions in y, i.e., the non-zero coordinates of e. There are two possible cases.

Case (i). e ~ C

Use the identity (1) of Sn to fix the errors in the check set C.

Case (ii). e ~ In UC

Suppose there are i errors in AI, j errors in A2, k errors in Cl and l errors
in C2 U A3 where i + j + IA31 =I- 0, i.e., there is at least one error in the
information positions. Let

£ = {[(I, 1), (ab 1)],· .. , [(1, 1), (ai, 1)], [(1, 1), (bl, 0)], ... , [(1, 1), (bj, 0)],
[(Cl, 1), (dl, 1)),· .. , [(Ck, 1), (dk, I)), [(el, 0), (ft, 1)), ... , [(el, 0), (ft, 1)] }.

Let

T = {al ... a· bl ... b. Cl ... Ck dl ... dk el ... el Jl ... fl}, ''lo), 'J" '" , " '" , Jl'

Then

ITI ~ i+ j + 2k + 2l.

Since

In- 2Ji+ j + k + l = t ~ -2- ,

we have
2i + 2j + 2k + 2l ~ n - 2.

Hence ITI ~ n - 2. Since T ~ n \ {I}, there exists x E n\ {I} such that
x ~ T. Use a transposition of the form (1, x) to map the errors into C and
fix the errors already in C.

If p is odd and x = n then (1, n) maps [(2,1), (1,0)] to [(2,1), (n, 0)),
an information position. Use an automorphism of the form (1,2, n) to map
[(2,1), (1,0)] to [en, 1), (2, 0)], a check position. It is sufficient to consider
this case because at this point we have ti ~ Tand [(2,1), (1,0)] is the only
error coordinate that is mapped to an information position by (1, n). 0
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We remark that the Gordon bound for PD-sets of Cp(Gn) is n/2 if n is
even and (n - 1)/2 if n is odd. Hence the PD-set exhibited in Proposition
5.9 above is roughly twice the Gordon bound.

5.3 The graphs rn and their codes

As has been alluded to, the complements fn of embeddings rn of Ll(Kn)~K2,
the strong product of triangular graphs and K2, have been considered in [48]
where they are defined as follows.

Definition 5.10. For n ~ 3, let n = {I,· .. ,n} and let X = n{2} x n{l}.

Let fn be the complement of the graph rn of Definition 4.1. Then fn is
defined by

V(fn) ={(A, B) EX: B CA};
[(A, B), (A', B')] E E(fn) {=:?IA nA'l = 1 and B i= B' or ;

AnA' = 0.

Hence fn is (n2-2n)-regular. By Proposition 4.8,ifn ~ 4 then Aut(fn) 9:!

Sn. If n = 3 then f3 is the 3-prism, the complement of the 6-cycle. The 3-
prism is also defined as the line graph of the complete bipartite graph K2,3;

and also as the cartesian product C3DK2. It has automorphism group the
dihedral group D6. We illustrate the graph in Figure 5.2.

Figure 5.2: The 3-prism

We make the following observation.

Lemma 5.11. Let fn be the complement of the graph rn of Definition 4.1
where n ~ 3. Then fn is a subgraph of (Ll(Kn) x Kn)U(£1(Kn) x Kn) where
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x is the categorical product of graphs and £1(Kn) is the complement of the
triangular graph U(Kn).

Proo]. Let r; = (Ll(Kn) x Kn) U (£1(Kn) x Kn). We need to show that
V(fn) s:;; V(r~) and that E(fn) s:;; E(r~).

By Definition 5.10, it is clear that there is a one-to-one correspondence
between V(fn) and the following subset of V(r~).

{([a, bj, c) : [a, b] E V(Ll(Kn)) and c = a, b}.

Hence V(fn) s:;; V(r~).
Let [(A, B), (A', B')] E E(fn). By Definition 5.10, either IAnA'i = 1 and

B =f B' or AnA' = 0. The first adjacency condition implies that each edge of
fn corresponds to an edge of Ll(Kn) x Kn. The second adjacency condition
implies that [(A, B), (A', B')] E E(£1(Kn) x Kn). Hence E(fn) s:;; E(r~),
completing the proof. 0

5.3.1 Incidence matrices of rn
Let fn be the graph of Definition 5.10 and let n= {I,.·. ,n} where ti ~ 3.
We now describe how incidence matrices of the graphs will be written.

Let
Vi = {({a, b}, {a}) : a, b e {I, 2, 3}}.

For 4 ~ i ~n, let

Vi-2 = {({a, i}, {a} ) , ({a, i}, {i}) : a, i E n and a < i} .

Let Mn be an incidence matrix offn. Write Mn as follows. Order rows of Mn
so that, for given values of a and i, an incidence vector of the form v({a,i},{i})

is preceded by an incidence vector of the form v({a,i},{a}). Columns of the
matrix are ordered beginning with those indexed by edges between vertices
in U::13Vi. These are followed by columns indexed by edges between vertices
in U::13Vi and Vn-2 and, lastly, columns indexed by edges between vertices
in Vn-2. The resulting 2(;) x (n2 - 2n) (;) incidence matrix has the form

(5.2)
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where

(a) Mn-l is an incidence matrix of I'n-l;

(b) N is a 2(n~l) x 2(2n - 3)(n~l) matrix such that each row has 2n - 3
consecutive entries 1 and no pair of row vectors is commonly incident;

(c) P is a 2(n -1) x 2(2n - 3) (n~l) matrix such that each column is a unit
vector. Rows of P indexed by vertices of the form ({a, n}, { n}) have
weight 2 (n~I) and those indexed by vertices of the form ({a, n}, {a} )
have weight (n - 2)2;

(d) Gn-l is an incidence matrix of the complement of the complete por-
cupine Hn-l' Hence Hn-l is an induced subgraph of I'n. For a < n,
rows of Gn-l indexed by vertices of the form ({a, n}, {n}) have weight
n - 2 and those indexed by vertices of the form ({a, n}, {a} ) have weight
2(n - 2).

5.3.2 Codes from incidence matrices of the graphs fn

We now consider codes from incidence matrices Mn of I'n. Unlike in the
general case of Mn, order rows of M3 as follows.

v( {1,2},{1})v( {1,3},{3})v( {2,3},{2})v( {2,3},{3})v( {1,2},{2})v( {1,3},{1}), , , , , .

Columns of M3 are ordered according to the following ordering of edges of
I'3.

[({I, 2}, {I}), ({I, 3}, {3})], [({I, 2}, {I}), ({2, 3}, {2})],

[({I, 3}, {3}), ({2, 3}, {2})], [({2, 3}, {3}), ({I, 2}, {2})],

[({2, 3}, {3}), ({I, 3}, {I})], [({I, 2}, {2}), ({I, 3}, {I} )J.

In this way, M3 takes the form

(5.3)

where L3 is an incidence matrix of K3 written as in Equation (3.1). 13 is the
rank-3 identity matrix. The following result is easily seen to hold.
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Lemma 5.12. Let M3 be an incidence matrix of the 3-prism as presented
in Equation (5.3). Let Cp(M3) be the p-ary linear code from the row span of
M3' Then Cp(M3) is reversible.

Parameters of Cp(M3) are obtained in the following lemma.

Lemma 5.13. For any prime p, let Cp(M3) be the p-ary linear code from
the row span of M3, an incidence matrix ofr3, the 3-prism.

(a) C2(M3) = [9,5,3]2 and its minimum words are rows of M3'

(b) If p is odd then Cp(M3) = [9,6, 2Jp and its minimum words are scalar
multiples of the following codewords.

( V(12,1)+ v(13,3) _ V(23,2)) _ (V(23,3) + V(12,2) _ V(13,1)) ,

(V(12,1) + V(23,2) _ V(13,3)) _ (v(23,3) + V(13,1) _ V(12,2)) , (5.4)

( V(13,3)+ V(23,2) _ V(12,1)) _ (V(12,2) + V(13,1) _ V(23,3)) .

Proof. The 3-prism is connected. Since it has triangles, it is non-bipartite.
Dimensions of the binary and non- binary codes of their incidence matrices
are therefore obtained by Lemmas 2.22 and 2.23, respectively.

Let C E Cp(M3). Then c is a concatenation of three vectors, Cl, C2and
C3,from the three column blocks of M3 where £; E 1F~.Let Rl and R2 be the
row blocks [L311310J and [0II3IL3], respectively.

(a) Recall from the remark preceding Section 3.3.1 that C2(L3) = [3,2,2]2
and its minimum words are rows of L3' Let CE C2(M3). If Cis a sum of rows
of R, then wt(CI) ~ 2 since Cl E C2(L3). We also have wt(C2) ~ 1. Hence
wt(c) ~ 3 with equality if C is a row of Rl' A similar result is obtained if C
is a sum of rows of R2.

If c is a sum of rows of Rl and R2 then wt(CI) ~ 2 and wt(C3) ~ 2. Hence
wt(c) > 3. This completes the proof for the binary codes.

(b) Suppose c is a linear combination of rows of Rl. Then wt( cl) ~ 1
because Cp(M3) = [3,3, 1Jp if p is odd. We also have wt(C2) ~ 1. Minimum
words of Cp(L3) are the difference between the sum of any two rows and the
third row of L3' Hence if wt(ct) = 1 then wt(C2)= 3, i.e., wt(c) > 2. If fewer
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than three rows of R, are added then wt(CI) ~ 2 and wt(C2) 2: 1. Again,
wt(c) > 2. A similar observation is made if c is a linear combination of rows
of R2.

Suppose c is a linear combination of rows of Rl and R2. Then wt(CI) ~ 1
and wt(C3) 2: 1. If wt(CI) = 1 = wt(C3), it is possible to have wt(C2) = 0 if c
is a scalar multiple of one of the vectors in Equation (5.4). Hence wt(c) ~ 2.
Since the code is small, an exhaustive search shows that scalar multiples of
codewords in Equation (5.4) are the only minimum words. This completes
the proof for n = 3. 0

For any prime pand n ~ 3, the codes Cp(M3) are the only ones in the
family Cp(Mn) having different minimum weights depending on the parity
of p. It will be shown in Lemma 5.15 and Proposition 5.16 that, in general,
these codes have minimum weight n(n - 2). Meanwhile, we need to establish
minimum weights of codes from the row span of Qn = [~] where matrices
Nand P are as in Equation (5.2). The result is used in the proof of Lemma
5.15 and Proposition 5.16. Qn has the following general form.

PI P2 Pk

where k = (n -l)(n - 2) and each submatrix Pi is 2(n -1) x (2n - 3) having
exactly 2n - 3 weight-1 rows and one zero vector. No pair of unit row vectors
of P; is commonly incident.

1· . ·1
1·.. 1

1· . ·1
(5.5)

Lemma 5.14. Let p be a prime. For n 2: 4, let Cp(Qn) be the p-ary code
from the row span ofQn, the matrix given in Equation (5.5). Then Cp(Q4)
has minimum weight 4 with minimum words the weight-4 rows of P. If n ~ 5
then Cp(Qn) has minimum weight 2n - 3 with minimum words the rows of
N.

Proof. We only prove the case of n 2: 5. If n = 4, a similar proof shows that
Cp(Q4) has minimum weight (n - 2)2 = 4 with minimum words the weight-4
rows of P.
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Let c E Cp (Qn) . Then c is a concatenation of vectors c, from the (n -
l)(n - 2) column blocks of Qn where Ci E lF~2n-3).Let Nand P be as in the
discussion following Equation (5.2). By Equation (5.5), P = [P1IP21· . ·IPk]

where k = (n - l)(n - 2).
If c is a linear combination of nl rows of N then wt(c) = (2n - 3)nl since

no pair of rows of the matrix is commonly incident. Hence minimum words
are rows of N.

Suppose c is a linear combination of rows of P. Let n2 be the number of
weight-(n - 2)2 rows of P and let n3 be the number of weight-(n - l)(n - 2)
rows of the matrix. Because no pair of rows of P is commonly incident,
wt(c) = (n - 2)2n2 + (n - l)(n - 2)n3 > 2n - 3 provided n ~ 5.

Suppose c is a linear combination of at least one row of N and one row
of P. Since the submatrices Pi have unit row vectors, wt(Ci) ~ 1 for 1 ~ i ~
(n - l)(n - 2). Hence wt(c) ~ (n - l)(n - 2) > 2n - 3.. This completes the
proof of the lemma. 0

We now determine parameters of Cp(M4) in Lemma 5.15. In the proof,
we use an observation that if p is odd then Cp(M3), the code of Lemma 5.13,
has other weight-3 codewords in addition to rows of M3' For instance, the
following is also a weight-3 codeword of Cp(M3).

(V(12,1)+V(13,3)_ v(23,2)) + (V(23,3) _ V(12,2)+V(13,1)). (5.6)

Lemma 5.15. For any prime p, let Cp(M4) be the p-ary linear code from

the row span of M4, an incidence matrix of the graph f4 of Definition 5.10.

(a) If p is odd then Cp(M4) = [48,12, 8]p and its minimum words are the

scalar multiples of the rows of M4'

(b) C2(M4) = [48,11, 8h and its minimum words are rows of M4'

Proof. Again, we only prove the minimum weight.
Let cE Cp(M4) where p is any prime. Then c is a concatenation of three

vectors, Cl, C2and C3, from the three column blocks of M4 where Cl E lF~,
C2E lF~oand C3E lF~. Let R; be the row block [M3INIO] and R2 the block
[OIPIG3].

http://uwc.ac.za



Codes from incidence matrices of the graphs rn 91

(a) Suppose c is a linear combination of rl rows of Rl' By Lemma 5.13,
wt(Cl) ~ 2. We also have wt(C2) = 5rl' However, this does not imply that
it is possible to obtain wt(c) = 7. By Lemma 5.13, wt(Cl) = 2 only if Cl is
a scalar multiple of any of the codewords in Equation (5.4). Because no two
rows of N are commonly incident, this gives wt(C2) = 30 > 8.

Now, wt(c) = 8 if C is a row of Rl' To see this, note that if wt(Cl) = 3
and Cl is not a row of M3 then it is a linear combination of rl > 1 rows of the
matrix as in Equation (5.6). Since no two rows of N are commonly incident,
this gives wt(C2) = 5rl > 8.

Suppose Cis a linear combination of rows of R2. Let r be the number of
weight-4 rows indexed by vertices of the form ({4, a}, {a}) and s the number
of rows indexed by vertices of the form ({4, a}, {4}) where a < 4. Because
no pair of rows of P is commonly incident, we have wt( c) = 4r + 6s + wt( C3).
We need to examine possibilities for rand s.

If rand s are both non-zero then the result is easily seen to hold. Suppose
r = 0 and s =I- O. Then no two rows of C3 have a non-zero entry in the same
coordinate position. Hence wt(C3) = 2s. This gives wt(c) = 8s ~ 8 with
equality if C is a row corresponding to a vertex of the form ({4, a}, {4}).
If r =I- 0 and s = 0 then wt(c) = 4r + wt(C3)' In this case, rows of C3

are commonly incident in exactly (;) coordinate positions. Hence wt(c) ~
8r - 2(;) ~ 8 since 1 :::;r :::;3. If r = 1 then 2(;) = 0 so that wt(c) = 8 if c
is a row of R2 corresponding to a vertex of the form ({4, a}, {a} ).

Suppose c is a linear combination of rl rows of Rl and r2 rows of R2. Then
wt(cl) ~ 2 by Lemma 5.13. By Proposition 5.7, wt(C3) ~ 2. From the proof
of the case of n = 4 in Lemma 5.14, one obtains wt(C2) > 4 if C2is a linear
combination ofrows from the two row blocks of the matrix. Hence wt(c) > 8.

(b) We now turn to the binary codes C2(M4). In addition to cases con-
sidered in (a) above, we need to examine values of wt(c) if c is a sum of all
rows of Rl or R2. These cases give Cl = ° and C3= 0, respectively.

Suppose c is a sum of all rows of Rl and r2 < 6 rows of R2. By Lemma
5.14, wt(C2) ~ 4. By Proposition 5.3, wt(C3) ~ 2. If r2 = 1 then either
wt(C2) = 4 or wt(C2) = 6. If wt(C2) = 4 then wt(C3) = 4, i.e., Cis a row of P
corresponding a vertex ({a,4}, {a}), a < 4. If wt(C2) = 6 then wt(C3) = 2,
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i.e., c is a row of P corresponding to ({a, 4}, {4}). If at least two rows are
added then wt(C2) 2:: 10 > 8.

Suppose Cis a sum of all rows of R2 and 1'1rows of Rl' Then wt( Cl) 2:: 3 by
Lemma 5.13. Since no two rows of Rl are commonly incident, wt(Cl) = 51'1'
Thus wt(c) = 3 + 51'1 2:: 8 with equality if c is a row of Rl, This completes
the proof for n = 4. 0

For n 2:: 5, parameters of Cp(Mn) are now determined in Proposition 5.16.
The proof of minimum weights of the codes is by induction with base the
case of n = 4 considered in Lemma 5.15.

Proposition 5.16. For any prime pand n 2:: 4, let Cp(Mn) be the p-ary code
from the row span of Mn, an incidence matrix of the graph rn of Definition
5.10.

(a) If p is odd then Cp(Mn) = [(n2 - 2n) (;), 2G), n(n - 2)]p and its min-
imum words are the scalar multiples of the rows of Mn·

(b) C2(Mn) = [(n2 - 2n) (;), 2G) - 1, n(n - 2)]2 and its minimum words
are the rows of Mn.

Proof. Since the graphs are connected and, having triangles, are non-bipartite,
dimensions of the codes follow from Lemmas 2.22 and 2.23. We therefore only
need to prove the minimum weight of the codes.

Write Mn as in Equation (5.2). Let Rl and R2 be the row blocks [Mn-lINIO]
and [OIPIGn-l], respectively. For any prime p, let CE Cp(Mn). Then c is a
concatenation of three vectors, Cl, C2and C3,from the three column blocks
of Mn where c, E IF;i, kl = (n - l)(n - 3)(n;I), k2 = 2(2n - 3)(n;l) and
k3 = 3(n;1).

We prove the assertion about the minimum weight by induction. For
n 2:: 5 we assume that Cp(Mn-l) has minimum weight (n - l)(n - 3) and
that minimum words are scalar multiples of the rows of Mn-I' The induction
base is the content of Lemma 5.15.

Case (a). Minimum weight of Cp(Mn), p an odd prime.
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Suppose c is a sum of rl rows of Rl. Then wt(CI) ~ (n -l)(n - 3). Since
wt(C2) = (2n - 3)rl' we have wt(c) ~ n(n - 2) with equality if c is a row of

ti;
Suppose c is a sum of rows of R2. Let rand s be the number of rows corre-

sponding to vertices of the form ({a, n}, {a}) and ({a, n}, {n } ), respectively,
where a < n. If rand s are both non-zero then, because no two rows of Pare
commonly incident, wt(C2) = (n_2)2r+2(n;l)s ~ (2n-3)(n-2) > n(n-2)
provided n ~ 4.

Suppose r =I 0 and s = O. Note that rows of Gn-l indexed by vertices of
the form ({a,n},{a}) can be written in the form [Ln-IIK] where Ln-l is an
incidence matrix of the complete graph Kn-l and K is a matrix such that
each column is a unit vector and each row has weight n - 2. By Theorem
2.35, we have wt(C3) ~ (n - 2) + (n - 2)r ~ 2(n - 2). Hence wt(c) ~
(n - 2)2r + (n - 2)r + (n - 2) = ((n - l)r + l)(n - 2) ~ n(n - 2). Equality
holds if c is a row of R2·

If r = 0 and s =I 0 then wt(C2) = 2(n;l)s. Since no two row vectors of
Gn-l indexed by vertices of the form ({a, n}, {n}) are commonly incident,
wt(C3) = (n - 2)s. Hence wt(c) = n(n - 2)s. Again, wt(c) = n(n - 2) if cis
a row of R2.

Suppose c is a sum of rl rows of R; and r2 rows of R2 where ri =I O.
By the induction hypothesis, wt(CI) ~ (n - l)(n - 3). By Lemma 5.14,
wt(C2) ~ 2n - 3 and, by Proposition 5.7, wt(C3) ~ n - 2. Hence wt(c) ~
n2 - n - 2 > n(n - 2).

It is possible to have C2 = 0 if c is the difference of a scalar multi-
ple of the sum of all rows of Rl and that of all rows of R2· In -this case,
wt(CI) = (n -l)(n - 3)(n;l) > n(n - 2). This proves the minimum weights
of the non-binary codes.

Case (b). Minimum weight of C2(Mn).

For the binary codes, in addition to cases considered above, we also need
to check cases when all rows of Rl or R2 are added as these give, respectively,

Cl= 0 or C3= o.
Suppose c is a sum of all rows of R, and r2 rows of R2· Let rand s be as
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in (a) above.
If rand s are both non-zero then wt(C2) = 2(2n - 3)(n;1) - 2(n;1)s_

(n - 2)21' where r + s < 2(n - 1). By Proposition 5.7, wt(C3) :2: ti - 2.
If r = 0 and s =1= 0 then wt(C2) = 2(2n - 3)(n;1) - 2(n;1)s and wt(C3) =

(n - 2)s where s .s ti - 1. Hence in the worst case, wt(C2) = (2n - 3)(n -
l)(n - 2) - (n - 1)2(n - 2) = (n - l)(n - 2)2 > n(n - 2) provided ti :2: 4.

If r =1= 0 and s = 0 then wt(C2) = 2(2n - 3) (n;l) - (n - 2)21'. From the
proof of (a) above, wt(C3) :2: (n - 2)+ (n - 2)1' where r .s ti -1. In the worst
case, wt(C2) = 2(2n - 3)(n;l) - (n - 2)2(n -1) = (n - 1)2(n - 2) > n(n - 2)
provided ti :2: 4.

Suppose c is a sum of all rows of R2 and 1'1 < (n - l)(n - 2) rows of
Rl' By the induction hypothesis, wt(C1) :2: (n - l)(n - 3). By Lemma 5.14,
wt(C2) :2: 2n - 3. Hence wt(c) :2: n(n - 2) with equality if c is a row of Rl'
This completes the proof for all ri :2: 5. 0

5.3.3 Automorphisms of the codes

We now determine permutation automorphism groups of p-ary codes Cp(Mn)
from the row span of Mn, an incidence matrix of the graphs fn of Definition
5.10 where p is any prime and n :2: 4.

Proposition 5.17. Let Cp(Mn) be the p-ary code from the row span of Mn'
an incidence matrix offn, the graphs of Definition 5.10 where ti :2: 4 and p
is any prime. Let V be the incidence design offn. Then Aut(Cp(Mn)) ~
Aut(V) ~ Sn.

Proof. As in Propositions 3.7, 4.16 and 5.3, we only need to show that
Aut(Cp(Mn)) ~ Aut(V). Let (J E Aut(Cp(Mn)). By definition, (J preserves
minimum words of the code. By Proposition 5.16, minimum words of Cp(Mn)
are scalar multiples of the incidence vectors of blocks of V. Hence there
exist incidence vectors v({a,b},{a}) and v({a',b'},{a'}) such that (J(v({a,b},{a}») =

v({a',b'},{a'}). Since (J acts on coordinate positions, it induces a permuta-
tion ëf such that ëf(q1) = q2 and ëf(({a,b},{a})) = ëf(({a',b'},{a'})) where
q1 E ({a,b},{a}) and q2 E ({a',b'},{a'}). Hence ir E Aut(V). 0
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5.3.4 Partial permutation decoding for binary codes

We now consider partial permutation decoding for the binary codes C2(Mn)

where n 2:: 4. An information set for the codes is given in Proposition 5.18.
In the proposition, we also exhibit an ln2_~n+6 J-PD-set for the codes.

Proposition 5.18. Let Al = {[({I, 2}, {I}), u] : u E N(( {I, 2}, {I}))} and
A2 = {[({I, 2}, {2}), ({I, x}, {I})] : 3 ~ x ~ n} where n 2:: 4. Let C2(Mn) be
the binary code from the row span of Mn' an incidence matrix of the graphs
fn of Definition 5.10. Then

(a) 'In = Al U A2 U {[({I, 2}, {2}), ({I, 3}, {3})]} is an information set for
C2(Mn);

(b) The set
S = {(I), (I, x)(2, y) : x, y =II, 2}

of (n~2) + 1 elements of Sn is an ln2_~n+6 J -PD-set for C2(Mn) with
In as information set.

Proof. (a) We first show that 'In is an information set. We do this by permut-
ing rows and columns of Mn as follows. Write the row indexed by ({I, 2}, {I})
followed by rows indexed by its neighbours. Then write the row indexed by
({I, 2}, {2}) followed by the remaining n - 2 vertices of the form ({I, x}, {I})
where 3 ~ x ~ n. Write columns of the matrix so that the first n(n.- 2) are
indexed by the edges of the form [({I, 2}, {I}), u] where u E N(( {I, 2}, {I} ));
the neighbour hood of ({I, 2}, {I} ). These are followed by columns indexed by
the edges [({1,2},{2}),({1,3},{3})] and [({l,2},{2}),({l,x},{1})] where
3 ~ x ~ n. The remaining columns are written in any order. In this way,
the first 2(;) - 1 columns of the incidence matrix take the form

1· . ·1 0 0·· ·0
1 0·· ·0

I(nL2n) 0
1 1· . ·1

0 In-2

where h is the identity matrix of dimension k. Excluding the first row from
consideration, columns of the remaining upper triangular matrix are seen to
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be linearly independent over IF2·

(b) Suppose a codeword c E C2(Mn) is sent and a vector y = c + e is
received such the error vector e has weight at most t = ln2_~n+6 J . Let C be
the check set of the code and E the set of error coordinates. We need to show
that for any such e, there exists an automorphism a E S such that a( £) ~ C.

First observe the following. Let n{2} be the set of subsets of size two of

n\ {1, 2}. Consider the set

A = (n{2} \ {{a,b}}) U {{1, 2}}

for some fixed {a, b} E n{2}. Since coordinate positions of C2( Mn) correspond
to edges of rn and lAl = (n;2), at most Hn;2) coordinate positions are
obtained using each element of A exactly once as an edge-endpoint.

There are two main cases to consider for E,

Case (i). e ~ C.

Use the identity (1) to fix the errors in the check set C.

Case (ii). e ~ In U C.

From the preceding remarks, there exists a subset {a, b} E n {2} such that
{1, 2} n {a, b} = 0 and both ({a, b}, {a}) and ({a, b}, {b}) are not endpoints
of any edge in E,

Let a = (1, a)(2, b). Consider errors in information positions of the
form [({1,2},{1}),u] where u E N(({1,2},{1})). These are mapped by
a to coordinate positions of the form [({a, b}, {a} ), u'] where u' = a(u) E

N(( {a, b}, {a} )). Since u =J ({a, b}, {a}), we have a(u) =J ({1, 2}, {1}). Also,
a(u) =J ({1,2},{2}) because u =J ({a,b},{b}). Hence [({a,b},{a}),u'] E C.
A similar observation is made if errors occur in information positions of
the form [({1,2},{2}),({2,3},{3})] and [({1,2},{2}),({1,'x},{1})] where

3 S x sn.
It is not possible for errors in C to be mapped into In because a =

(1, a)(2, b) is chosen such that there are no errors in any coordinate position
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corresponding to an edge with either ({a, b}, {a}) or ({a, b}, {b}) as endpoint.
o

From computations using Magma [7], the Gordon bound for the size of

l 2 5 +6 J r n2 - 5n + 8lan n -4n -PD-set ofC2(Mn) appears to be I 4 ; roughly, half

the size of S.

5.3.5 Partial permutation decoding for the non-binary
codes

In this section we use Lemma 2.33 to show that Sn is an (In;21 - l)-PD-
set for non-binary codes from incidence matrices of Ï\. We first make some
observations regarding neighbours of a given vertex ({a, b}, {a}) of fn. In
this way, it is possible to determine forms of edges of the graph and hence
coordinate positions of the codes.

Let [({a, b}, {a}), ({c, d}, {c})] be a coordinate position of Cp(Mn). Then:

1. By the first adjacency condition in Definition 5.10, either a = d or
b = e or b = d: Hence ({e, d}, { c}) is equal to either ({a, e}, {c})
or ({b, d}, {b}) or ({b, e}, {c}). There are n - 2 possibilities for each
of these vertices. The graph therefore has (n - 2)(;) edges of each
of the forms [({a, b}, { a } ), ( { a, e}, {c} )], [({ a, b}, {a} ), ( {b, d}, {b} )] and
[({a,b},{a}),({b,c},{e})];

2. By the second adjacency condition in Definition 5.10, {a, b}n{ c, d} = 0.
Since there are 2 (n~2) vertices ({e, d}, {e}) such that e, d =1= a, b for a
given vertex ({a, b}, {a} ), the code has 2 (n~2) (;) coordinate positions
of this form.

Consider the sets

01 = {[({a,b}, {a}), ({a,e}, {c})]: a,b,e En},
O2 = {[({a,b}, {a}), ({b,d}, {b})] : a,b,d En},
03 = {[({a, b}, {a}), ({b, c}, {c})] : a, b, eEn},
04 = {[({a, b}, { a}), ({e,d}, { e})] : a, b, e, dEn} .

(5.7)

From the discussion above, it is clear that Ut=l O, = P = E(f n).
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Lemma 5.19. Sn has three orbits in its induced action on P.

Proof. Let a E Sn. Define a map a : P -+ P by

a ([({a, b}, { a}), ({c, d}, { c})]) =
[({a(a), a(b)}, {a( a)}), {( a(c), a(d)}, {a( c)})].

Let O, be as in Equations (5.7). Let PI = [({a,b},{a}),({a,c},{c})] E
01 and let P2 = [({a,b}, {a}),({b,d}, {b})] E O2. If a = (c,a,b,d) then
a(pl) = P2. Hence for every coordinate position PI E 01 there exists an
automorphism a in Sn such that a(Pl) E O2. Thus points in 01 U O2 are in
one orbit under the action of Sn·

Notice that each coordinate position in 03 is identified by three distinct
elements of n and each such element belongs to exactly two sets. Coordinate
positions in 03 are the only ones with this property. Because a is bijective,
a(p3) E 03 for each P3 E 03. Since points in 04 are the only ones identified
by four distinct elements of n, a(P4) E 04 whenever P4 E 04. Hence P has
three orbits under the action of Sn. These are eh = 01 U O2, O2 = 03 and
03 = 04. 0

In the proposition below, the ratios I~~nl, i = 1,2,3, are calculated.
Lemma 2.33 is then used to determine the number of errors correctable by
permutation decoding with PD-set Sn·

Proposition 5.20. For n ~ 5 and P an odd prime, let Cp(Mn) be the P-
ary code from the row span of Mn, an incidence matrix of the graphs rn of
Definition 5.10. Then Sn is an (ln221-1)-PD-setfor Cp(Mn).

Proof. Let O, be the orbits of P under the action of Aut(Cp(Mn)) = Sn
obtained in Lemma 5.19. Let In be an information set for the codes. In the
worst case, O, nIn = In. Hence

101 nInI 1nl = =--Ol n - 2'
102 nInI 2n2 = =--O2 n - 2'
101 nInl 1

n3 = 01 = (n~2)·
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Let N = max(nl, n2, n3). Then N = n2. By Lemma 2.33, Sn is an s-PD-set
for Cp(Mn) where

s =min (f ~ 1- I, ln(n -22) - IJ)

= . (fn-21- In(n-2)-IJ)mm 2 I, 2

= f n ~ 21-1.
o
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Chapter 6

Codes from incidence matrices
of line graphs of triangular
graphs

6.1 Introduction

We now use results obtained in Chapter 3 and Chapter 4 to describe linear
codes from the row span of incidence matrices of line graphs of triangular
graphs L2(Kn) where n ~ 4. The triangular graphs and the embeddings rn
of Ll(Kn) IZIK2' the strong product of triangular graphs and K2' are both
induced subgraphs of L2(Kn). We determine parameters of both binary and
non-binary codes of incidence matrices of L2(Kn). We show that the codes
have permutation automorphism group Sn. We also exhibit ln33 J-PD-sets
in Sn for partial permutation decoding of the codes. If Sn is used as a PD-set
with the given information set, the codes are shown to correct up to r~l-1
errors by permutation decoding.

As intimated, the vertex-set of L2(Kn) is the edge set of the triangular
graph. Because every vertex {{a, b}, {b, e}} is also a path of length one in the
triangular graph, it will be denoted (ab, be). Since edges of L2(Kn) are paths
of length two in the triangular graph, an edge {{{a, b}, {b, e}}, {{b, e}, {c, d}}}
will be denoted (ab, be, cd). By definition, this is also the form of coordinate
positions of the corresponding code. Notice that be = {b, e} in (ab, be, cd) is
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the common endpoint of vertices (ab, bc) and (bc, cd).
Our main results are summarised in Theorem 6.1 below.

Theorem 6.1. For any prime pand n 2: 4, let Cp(Mn) be the p-ary linear

code from the row span of an incidence matrix Mn of L2(Kn), the line graph
of the triangular graph £1(Kn). Let

A I = {(bl Cl, al bl, bl n) : ab bl, Cl E 0 \ {n}, al < Cl} ,

A2 = {(a2b2, a2n, b2n) : a2, b2 E 0 \ {nl, a2 < b2},

A3 = {(b3n, a3n, (n -l)n) : a3, b3 EO \ {n -1, nl, a3 < b3},

A4 = {((n - 2)n, (n - l)n, a4n) : a4 ~ n - 3} .

(a) If p is odd then Cp(Mn) = [(2n - 5)(n - 2) (;), (n - 2) (;), 4n - lO]p
and its minimum words are the scalar multiples of the rows of Mn.

(b) C2(Mn) = [(2n - 5)(n - 2) (;), (n - 2) (;) - 1, 4n - lOL and its mini-
mum words are the rows of Mn.

(c) Ifn 2: 5 then Aut(Cp(Mn)) 2:! Sn.

(d) The set S = {(n, x) : x E O} of n elements of Sn is an ln~3 J-PD-set
for the binary code C2(Mn) with information set In = U;=l Ai'

If p is odd then S is also an ln~3J -PD-set for the non-binary codes
Cp(Mn) with information set In U {(In, 2n, 3n)}.

(e) With In and In U {(In, 2n, 3n)} as information sets for p = 2 and p

an odd prime, respectively, and Sn as PD-set, Cp(Mn) corrects up tor~1- 1 errors by permutation decoding.

The theorem is proved in the various sections below using a series of
lemmas and propositions. In Section 6.2 we describe how we write incidence
matrices Mn of L2(Kn). We also describe incidence vectors of the incidence
design of the graph and the neighbourhood design of its line graph. Codes
from incidence matrices of the graphs are considered in Section 6.4. In Section
6.4.3 we determine parameters of binary codes from adjacency matrices of
L3(Kn) using results obtained in Section 6.4. Partial permutation decoding
for the codes is considered in Section 6.5.
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6.2 Incidence matrices of L2(Kn) and related
codes

In this section we first describe how incidence matrices Mn of the graphs
L2 (Kn) will be written. Let

Xn = {(ab,an) : a.b E st \ {n}} (6.1)

and let
Yn = {(an, bn) : a, bEn \ {n}}. (6.2)

Order vertices of L2(Kn) using the ordering of edges of the triangular graph
LI(Kn) obtained in Chapter 3. Thus the (n-3) (n;l) vertices of L2(Kn_l) are
listed first followed by the 2 (n~l) vertices in X; and, lastly, the (n;l) vertices
in Yn. In each case, vertices are ordered lexicographically (see Example
(6.2)). Additional columns of Mn are indexed by edges between vertices
in V(L2(Kn_t)) and Xn. These are followed by columns indexed by edges
between vertices in Xn, then edges between vertices in Xn and Yn and, lastly,
edges between vertices in Yn. The resulting (n - 2)(;) x (2n - 5)(n - 2)(;)
incidence matrix Mn takes the form

[
Mn-l Nl 0 0 0
0 PI Qn N2 0
0 0 0 P2 Tn-l ] (6.3)

where

(a) Mn-l is an incidence matrix of L2(Kn_I);

(b) Nl is an (n - 3) (n;l) X 4(n - 3) (n;l) matrix. Each row has four
consecutive entries equal to 1 since every vertex (ab, ac) of L2(Kn_d
is incident with the four edges of the form (ab, ac, an), (ab, ac, cn),
(ac, ab, an) and (ac, ab, bn);

(c) PI is a 2(n;l) x 4(n - 3)(n;l) matrix in which every column is a unit
vector. Each row has weight 2n - 6 since every vertex (ab, an) in Xn
indexing rows of PI is incident with edges of the form (an, ab, ax) and
(an, ab, by) where x, y =1= a, b, n;
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(d) Qn is a 2(n;1) x (n - 2)(n;1) incidence matrix of the induced sub-
graph L2(Kn) [Xn), an (n - 2)-regular graph that is isomorphic to an
embedding of the strong product Ll(Kn_I)~K2 (see Definition 4.1 and
Lemma 6.3) considered in Chapter 4;

(e) N2 is a 2(n;1) x 2(n - 2)(n;1) matrix. Each row has weight n - 2
since every vertex (ab, an) corresponding to a row of N2 is incident
with edges of the form (ab, an, xn) where x =f. a, n. The n - 2 non-zero
entries in each row are consecutive;

(f) P2 is an (n;l) X 2(n - 2) (n;l) matrix with the property that every row
vector has weight 2n - 4 and every column is a unit vector;

(g) Tn-1 is an incidence matrix of the triangular graph L1(Kn_l).

In the example below we give an ordering of vertices of L2(K4) and write
its incidence matrix M4 as per the discussion above.

Example 6.2. Rows of M4, an incidence matrix of the graph L2(K4), are
ordered according to the following ordering of vertices of the graph. (12,13),
(12,23), (13,23), (12,14), (12,24), (13,14), (13,34), (23,24), (23,34), (14,24),
(14,34) and (24,34). Therefore

110 111100000000 000000 000000000000 000
101 000011110000 000000 000000000000 000
011 000000001111 000000 000000000000 000
000 100010000000 110000 110000000000 000
000 010001000000 101000 001100000000 000
000 001000001000 010100 000011000000 000
000 000100000100 000110 000000110000 000
000 000000100010 001001 000000001100 000
000 000000010001 000011 000000000011 000
000 000000000000 000000 101010001000 110
000 000000000000 000000 010001100010 101
000 000000000000 000000 000100010101 011

(6.4)
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We denote the incidence design of L2(Kn) by Vn. For any prime p, the
p-ary linear code from the row span of Mn is denoted Cp(Mn). Let (ab, be)
be the block of Vn comprising edges incident with vertex (ab, be). Then

(ab,be) ={(ab,bc,bw),(ab,be,ex): w =F a,b,e and x =F b,e}

U {(be, ab, by), (be, ab, az) : y =F a, b, e and z =F a, b}.

Hence

v(ab,bc) = 2:::: v(ab,bc,bw) + 2:::: v(ab,bc,cx) + 2:::: v(bc,ab,by) + ~ v(bc,ab,az)

w#a,b,c x#b,c y#a,b,c z#a,b

is the weight-(4n - 10) incidence vector of the block (ab, be). We also have

Let An be an adjacency matrix of L3(Kn). As alluded to, we also consider
the binary code C2(An) from the row span of An· Recall from Corollary 2.26
that C2(An) = E2(Mn) where E2(Mn) is the binary code from the span of
differences of rows of Mn. Hence

C2(An) = (VU + vw: U,w adjacent vertices of L2(Kn)). (6.5)

6.3 The graphs rn-1 and L2(Kn) [Xn] are iso-
morphic

Let rn be an embedding of the strong product LI (Kn) 1:81 K2 as given in
Definition 4.1 where n 2 4. We now show that rn-l is isomorphic to the
induced subgraph L2(Kn)[Xnl where Xn is the set given in Equation (6.1).
This allows us to use Theorem 4.2 to determine parameters of the p-ary codes
Cp( Qn) from the row span of Qn in proofs of Lemma 6.4 and Proposition 6.5.

Lemma 6.3. Let n = {l,··· ,n} and Xn = {(ab, an) : a, bEn \ {n}} where
ti 2 4. Let rn-l be an embedding of £1(Kn-1) 1:81 K2 presented in Definition
4.1. Let L2(Kn)[Xnl be the induced subgraph of L2(Kn) with vertex set Xn.
Then rn-l and L2(Kn) [Xnl are isomorphic.
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Proof. By Definition 4.1, V(rn-l) = {({a,b},{a}) :a,bED\{n}}. Define
a map ¢: V(fn-l) --t Xn by ¢(({a,b},{a})) = (ab,an). Since ¢ is clearly
injective and !V(rn-l)1 = IXnl, ¢ is bijective. Because e E E(fn-d if and
only if ¢(e) E E(L2(Kn) [Xn]), ¢ also preserves adjacency in the graphs.
Hence rn-l and L2(Kn)[Xn] are isomorphic. 0

6.4 The code Cp(Mn) from an incidence ma-
trix of L2(Kn)

Let Cp(Mn) be the p-ary code from the row span of Mn' an incidence matrix
of the graph L2(Kn) where n 2: 4. Parameters of Cp(M4) are obtained
in Lemma 6.4. This lemma is used as a base for the inductive proof in
Proposition 6.5 on the minimum weight and words of the codes.

We now determine the parameters of Cp(M4).

Lemma 6.4. Let p be any prime and let Cp(M4) be the p-ary code from the

row span of M41 an incidence matrix of L2(K4).

(a) Ifp is odd then Cp(M4) = [36,12, 6]p and minimum words are the scalar

multiples of the rows of M4.

(b) If p = 2 then C2(M4) = [36,11,6]2 and minimum words are the rows

of M4.

Proof. Since L2(K4) is a line graph of a connected graph, it is also connected.
As seen from its incidence matrix in Equation (6.4), L2(K4) contains the
triangle U(K3), an odd cycle. Hence by Proposition 2.3, L2(K4) is non-
bipartite. Dimensions of Cp(M4), for any p, hence follow from Lemmas 2.22
and 2.23.

Write M4 as in Equation (6.4). Label the submatrix comprising the first
three rows of M4 by Rl, the next six rows by R2 and the last three rows
by R3. Let c E Cp(M4). Then c is a concatenation of five vectors from the
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five column blocks of M4, i.e., C= CIC2C3C4C5where Cl,C5ElF;, C2,C4E lF~2
and C3E lF~.We show that wt(c) ~ 6. The non-binary case is considered first.

(a) Suppose Cis a linear combination of Tl rows of Rl' Since Cp(M3) =

[3,3, l]p if p is odd, we have wt(CI) ~ 1. It is clear that wt(C2) = 4TI· Now,
wt(CI) = 1 only if the sum of any two rows of M3 is subtracted from the
third row. This possibility gives wt(C2) = 12 > 6. Otherwise, wt(cl) = 2 or
wt(cl) = 3. In either case, wt(c) ~ 6. Equality occurs if c is a multiple of a
row of Rl, Similarly, wt(c) ~ 6 if c is a linear combination of rows of R3'

Suppose c is a linear combination of T2 rows of R2. Since no two row
vectors of R2 are commonly incident at any coordinate position, wt(C2) =
wt(C4) = 2T2' By Lemma 4.14, wt(C3) ~ 2. Hence wt(c) ~ 4T2 + 2 ~ 6.
Equality holds if c is a row of R2. There are two further cases to consider.

Case (i).

By Lemma 4.14 and the remark following it, Cp(Q4) has other weight-2
codewords apart from rows of Q4. By the remark following Lemma 4.14,
these codewords are a linear combination of at least two rows of Q4. How-
ever, this gives wt(C2) ~ 4 and wt(C4) ~ 4. Thus wt(c) > 6.

Case (ii).

Since Q4 is an incidence matrix of the 6-cycle, a bipartite graph, its rows
are linearly dependent over lFp' Any linear combination of rows of Q4 giving
the zero vector uses more than one row. Hence wt(C2) = wt(C4) = 2T2' We
get wt(c) ~ 4T2 > 6 since T2 ~ 2.

Next, suppose c is a linear combination of Tl rows of R, and T2 rows
of R2. Then wt(Cl) ~ 1 and, by Lemma 4.14, wt(C3) ~ 2. We also have
wt(C4) = 2T2' If wt(C4) = 2 then C2is non-zero, in fact, wt(C2) > 2. Hence
wt(c) > 6.

Since [*] is an incidence matrix of a bipartite graph, it is possible to
have C2= 0 if the sum of all rows of Nl is subtracted from that of all rows
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of Pl. This implies that wt(C4) = 12 > 6.
If c is a linear combination of rl rows of Rl and "a rows of R3 then

wt(C2) = 4rl and wt(C4) = 4r3. Hence wt(c) > 6.
If c is a linear combination of rows of R2 and R3 then wt(C2) 2: 2, wt(C3) 2:

2 (by Lemma 4.14) and wt(C5) 2: 1. We need to examine possibilities for C4·

It is possible to have C4= 0 if the sum of all rows of N2 is subtracted from
that of all rows of P2. This however gives wt(C2) = 12 > 6. If C4 =1= 0 then
wt(c) 2: 6. It is however not possible to have wt(c) = 6 because if wt(C5) = 1
then C5is obtained from the difference between the sum of any two rows of
P2 and the third row, a case which clearly gives wt(C4) 2: 2 and wt(c) > 6.
If wt(C5) 2: 2 then we have wt(c) > 6.

Suppose c is a linear combination of rl, r2 and r3 rows of Rl, R2 and R3,
respectively. Then wt(cI) 2: 1, wt(C5) 2: 1 and, by Lemma 4.14, wt(C3) 2: 2.
wt(CI) = 1 if a scalar multiple of the sum of any two rows of Rl is subtracted
from that of the third row. This gives wt(C2) 2: 2. Similarly, if Wt(C5)= 1
then Wt(C4)2: 2. Hence wt(c) > 6.

Since [!fJ:] are incidence matrices of bipartite graphs, it is possible to
have C2= C4= 0 if the sum of all rows of Ni is subtracted from that of all
rows of Pi. In this case, wt(C3) = 6. Since Cl and C5are both non-zero, we
have wt(c) > 6.

It is possible to have C3= 0 since Q4 is an incidence matrix of the 6-
cycle, a bipartite graph. This only happens if the sum of any three rows of
Q4 that are not pairwise commonly incident at any point is subtracted from
the sum of the remaining three rows. As seen from the form of the matrices,
this gives wt(C2) > 2 and Wt(C4)> 2. Hence we also have wt(c) > 6. This
concludes the proof for the minimum weight of the non-binary codes Cp(M4).

(b) We now consider the minimum weight of the binary codes C2(M4).

Note that C2(M3) = [3,2,2]2-
In addition to observations made above for non-binary codes, we show

that wt(c) 2: 6 if wt(Ci) 2: 2 for i = 1,5 or if all rows of Rl or R2 or R3 are
added since these give, respectively, Cl= 000, C2= 000000 and C3= 000.

Suppose c is a sum of rl rows of Rl. Since Wt(CI) 2: 2 and wt(C2) = 4rl,
we have wt(c) 2: 6. It is clear that equality holds if c is a row of Rs, If all
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rows of Rl are added then wt(C2) = 12 > 6. Similar observations are made
if c is a sum of rows of R3.

If c is a sum of all six rows of R2 then wt(C2) = 12 = wt(C4). Hence
wt(c) > 6.

Suppose c is a sum of rows of Rl and R2. If c is a sum of all rows of Rl
and rz < 6 rows of R2 then) because C2([*"]) is even) wt(C2) ~ 2. By Lemma
4.14) wt(C3) ~ 2. We also have wt(C4) ~ 2. Now) wt(C2) = 2 if five rows of
R2 are added giving wt(C4) = 10. Otherwise) wt(C2) > 2. Hence wt(c) > 6.
If rl < 3 and all rows of R2 are added then wt(C4) = 12 > 6.

Suppose c is a sum of rows of Rl and R3. If rl = 3 and r3 < 3 then

wtCC2) = 12 > 6. If all rows of R3 are added and rl < 3 then wt]C4) = 12 > 6.
Suppose c is a sum of rows of R2 and R3. If all rows of R2 are added and

rs < 3 then wt(C2) = 12 > 6. If all rows of R3 are added and r2 < 6 then
wt(C2) ~ 2 and) by Lemma 4.14) wt(C3) ~ 2. Since wt(C4) ~ 2) the result
follows. It is possible to have wt(c) = 6 if r2 = 5) i.e., if c is a row of R2.

Suppose c is a sum of rl) rz and "a rows of Rl) R2 and R3) respectively.
There are six cases.

Case (i). rl = 3) r2 < 6 and rs < 3. Then wt(C2) ~ 2 and wt(C5) ~ 2.
By Lemma 4.14) wt(C3). Since any 8 rows of If,; are independent) C4 =f. o.
Hence wt(c) > 6;

Case (ii). rl < 3) r2 = 6 and r3 < 3. Then wt(Cl) ~ 2) wt(C2) ~ 4 and
wt(C5) ~ 2. Hence wt(c) > 6;

Case (iii). rl < 3) r2 < 6 and r3 = 3. Then wt(Ci) ~ 2 for i = 1) 2) 3) 4.
Hence wtCc) > 6;

Case (iv). rl = 3) r2 = 6 and r3 < 3. Then wt(C4) ~ 4 and wt(C5) ~ 2.
If r3 = 2 then wt(c) = 6 and c is the row of R3 that is not added;

Case (v). rl = 3) r2 < 6 and r3 = 3. Then wt(Ci) ~ 2 for i = 2)3)4. We

can have wt(c) = 6 if r2 = 5. In this case) c is the row of R2 that is not in
the sum. Otherwise) wt(C2) > 2.
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Case (vi). rl < 3, r2 = 6 and r3 = 3. Then wt(cI) ~ 2 and wt(C2) ~ 4.
It is possible to have wt(c) = 6 if "i = 2. In this case, c is the row of R, that
is not added.

In all cases, we have wt(c) ~ 6. This completes the proof for n = 4. 0

6.4.2 The Cp(Mn) where n > 5

We now consider the codes Cp(Mn) for any prime pand n ~ 5. The minimum
weight is established by induction using Cp(M4) as the base case.

Proposition 6.5. Let Cp(Mn) be the p-ary linear code from the row span of
Mn where n ~ 5 and p is any prime.

(a) lfp is odd then Cp(Mn) = [(2n-5)(n-2)(;),(n-2)(;),4n-lO]p and
its minimum words are the scalar multiples of the rows of Mn.

(b) C2(Mn) = [(2n-5)(n-2)(;), (n-2)(;) -1,4n-l0]2 and its minimum
words are the rows of Mn.

Proof As done elsewhere, we only need to prove the assertion about the
minimum weight of the codes. We do this by induction using the case of
ti = 4 considered in Lemma 6.4 as the base. We assume that Cp(Mn-d has
minimum weight 4n-14 and that its minimum words are the scalar multiples
of the rows of Mn-I.

Write Mn as in Equation (6.3) and label it as follows. Let Rl be the sub-
matrix of Mn comprising the first (n - 3) (n~l) rows, R2 the next 2(n~l) rows
and R3 the last (n~l) rows. Thus Rl = [Mn-IINIIOIOIO],R2 = [OIPIIQnIN210]
and R3 = [OIOIOIP2ITn-d. Let c E Cp(Mn). Then c is a concatenation of
five vectors from the five column blocks of Mn, i.e., c = CIC2C3C4C5where
C; E JF;i, kl = (2n - 7)(n - 3)(n~I), k2 = 4(n - 3)(n~I), k3 = (n _ 2)(n~I),
k4 = 2(n - 2)(n~l) and k5 = (n - 3)(n~I).

(a) Suppose c is a linear combination of rl rows of Rl, By assumption,
wt( cI) ~ 4n-14. It is also clear that wt( C2)= 4rl' If c is a linear combination
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of r2 rows of R2 then, because no pair of rows of PI is commonly incident,
wt(C2) = (2n - 6)r2. Similarly, wt(C4) = (n - 2)r2. By Proposition 4.15,
wt( C3)~ n - 2. If Cis a linear combination of r3 rows of R3 then, because no
pair ofrows of P2 is commonly incident, wt(C4) = (2n-4)r2' By Proposition
3.3, wt(C5) ~ 2n - 6. In all cases, wt(c) ~ 4n - 10 with equality if ri = 1,
i.e., if c is a row of ~.

Suppose C is a linear combination of rows of Rl and R2. Then wt(CI) ~
4n - 14 and wt(C4) = (n - 2)r2. Hence wt(c) > 4n - 10. It is possible
to have C2= 0 if the sum of all rows of Nl is subtracted from that of all
rows of Pl' Since no pair of rows of N2 is commonly incident, this gives
wt(C4) = (n - l)(n - 2)2 > 4n - 10 for n ~ 4.

If c is a linear combination of rows of Rl and R3 then wt( cI) ~ 4n - 14
and, by Proposition 3.3, wt(C5) ~ 2n - 6. Hence wt(c) > 4n - 10.

If c is a linear combination of rows of R2 and R3 then wt(C2) = (2n-6)r2'
By Proposition 4.15, wt(C3) ~ n-2 and, by Proposition 3.3, wt(C5) ~ 2n-6.
Hence wt(c) > 4n - 10. Note that this also holds even if C4= O.

If c is a linear combination of rows of Rl, R2 and R3 then, by the induc-
tion hypothesis, wt(CI) ~ 4n - 14 and, by Proposition 3.3, wt(C5) ~ 2n - 6.
Hence wt(c) > 4n - 10. This completes the proof if p is odd.

(b) In addition to observations made above, if the code is binary then we
also need to examine cases when all rows of Rl or R2 or R3 are added as
these give, respectively, Cl= 0, C3= 0 and C5= o.

Let C E C2(Mn). If c is a sum of all rows of Rl then wt(c) = wt(C2) =
4(n - 3) (n~l) > 4n - 10. If c is a sum of all rows of R2 then wt(C2) _
2(2n - 6) (n~l) > 4n - 10. If c is a sum of all rows of R3 then wt( c) =
wt(C4) = (2n - 4)(n~l) > 4n - 10.

Suppose c is a sum of rows from any two row blocks of Mn. There are six
possible cases.

Case (i). c is a sum of all rows of Rl and r2 < 2(n;l) rows of R2. Then
Wt(C2) ~ 2n - 6, wt(C3) ~ n - 2 and wt(C4) ~ n - 2. It is possible to have
wt(c) = 4n -10 if r2 = 2(n~l) -1. In this case c is the row of R2 that is not
in the sum.
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Case (ii). c is a sum of rl < (n - 3) (n~l) rows of Rl and all rows of R2•

Then wt(C4) = 2(n - 2)(n~l) > 4n -10.

Case (iii). c is a sum of all rows of Rl and r3 < (n~l) rows of R3' Then
wt(C2) = 4(n - 3) (n;l) > 4n - 10.

Case (iv). c is a sum of rl < (n - 3) (n~l) rows of Rl and all rows of R3'
Then wt(C4) = 2(n - 2) (n~l) > 4n - 10.

Case (v). c is a sum of all rows of R2 and r3 < (n~l) rows of R3' Then
wt(C2) = 4(n - 3) (n~l) > 4n - 10.

Case (vi). c is a sum of r2 < 2(n~l) rows of R2 and all rows of R3'
Since no pair of rows of PI is commonly incident, wt(C2) = (2n - 6)r2. By
Proposition 4.15, wt(C3) ~ n - 2. We also have wt(C4) ~ (n - 2). Hence
wt(c) ~ 4n - 10. It is possible to have wt(c) = 4n - 10 if r2 = 2(n~l) - l.
In this case, c is the row of R2 that is not in the sum.

Lastly, suppose c is a sum of rl rows of Rl, r2 rows of R2 and r3 rows of
R3' There are six possible cases.

Case (i). c is a sum of all rows of Rl, r2 < 2(n~l) rows of R2 and
r3 < (n~l) rows of R3' Then wt(C2) ~ 2n - 6 and, by Proposition 4.15,
wt(C3) ~ n - 2. By Proposition 3.3, wt(C5) ~ 2n - 6. Hence wt(c) > 4n -10.

Case (ii). c is a sum of all rows of R2' rl < (n - 3) (n;l) rows of R,
and "a < (n;l) rows of R3' Then, by assumption, wt(cl) ~ 4n - 14 and, by
Proposition 3.3, wt(C5) ~ 2n - 6. Hence wt(c) > 4n - 10.

Case (iii). c is a sum of all rows of R3, rl < (n - 3)(n;l) rows of R;
and r2 < 2(n;l) rows of R2. Then wt(CI) ~ 4n -14 and, by Proposition 3.3,
wt(C3) ~ n - 2. Hence wt(c) > 4n - 10.
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Case (iv). All rows of Rl and R2 are added and r3 < (n~l). Then
wt(C4) 2:: 2n - 4 and, by Proposition 3.3, wt(C5) 2:: 2n - 6. Hence wt(c) 2::
4n - 10 with equality if r3 = (n~l) - 1. In this case, c is the row of R3 that
is not in the sum.

Case (v). All rows of R, and R3 are added and r2 < 2(n~I). Then
wt(C2) 2:: 2n - 6 and wt(C4) 2:: n - 2. By Proposition 4.15, wt(C3) 2:: n - 2.
Hence wt(c) 2:: 4n - 10. Equality occurs if r2 = 2(n~l) - 1. In this case, cis
the row of R2 that is not in the sum.

Case (vi). All rows of R2 and R3 are added and rl < (n - 3) (n~I). Then
wt(CI) 2:: 4n - 14 and wt(C2) 2:: 4. Hence wt(c) 2:: 4n - 10 with equality if
rl = (n - 3)(n~l) -1. Again equality occurs if c is the row of R; not in the
sum.

o

6.4.3 Codes from adjacency matrices of L3(Kn)

We now the result of Proposition 6.5 to determine parameters of binary codes
generated by adjacency matrices An of the iterated line graphs L3(Kn).

Proposition 6.6. Let An be an adjacency matrix of the iterated line graph
L3(Kn) and let C2(An) be the binary code from the row span of An. If n ==
0,1,2 (mod 4) then C2(An) = [(2n - 5)(n - 2) (;), (n - 2) (;) - 2, 8n - 22]2
and its minimum words are the rows of An. Ifn == 3 (mod 4) then C2(An) =

C2(Mn).

Proof. We first determine the dimension of C2(An).
Consider the binary code E2(Mn) generated by differences of rows of

Mn, an incidence matrix of L2(Kn) (see Equation (6.3». By Lemma 2.26,
E2(Mn) = C2(An) for all n. By Corollary 2.29, E2(Mn) has codimension 1
in C2(Mn) if and only if J E C2(MJ) where J is the all-one vector of length
(n - 2) (;). Otherwise, E2(Mn) = C2(Mn). We hence need to determine
when J E C2(MJ).

Being a line graph of an edge transitive graph, L3(Kn) is vertex-transitive.
Hence by Theorem 2.16, the graph is a-covered if it is even. This is satisfied
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if n = 0,1,2 (mod 4). By Corollary 2.31, for these values of n, there exists
a perfect matching, say M, in the graph. In the dual design with incidence
matrix M~, this implies that LeiEM vei = J where ei is the block comprising
the two endpoints of edge ei. Therefore J E C2(M~) if n == 0,1,2 (mod 4).

(n - 2)G) is odd if n = 3 (mod 4). Hence J fj. C2(MJ) if n == 3 (mod 4)
since the code is even. By Corollary 2.29, we therefore have C2(An) =
C2(Mn).

At this point, we need to determine the minimum weight of C2(An) if
n = 0,1,2 (mod 4). Let c E C2(An). Since C2(An) = E2(Mn) by Corollary
2.26, we use Equation (6.5) to write

c = I:::: (v(aibi,biCi) + v(aobo,boCo»)

(aibi ,biCi)ES

for some S s:; V (L2 (Kn)) and fixed incidence vector v(aobo,boco). This simplifies
to

where s = lSI. Hence c is a sum of s or s + 1 incidence vectors of Vn, the
incidence design of L2(Kn), depending on whether s is even or odd. Without
loss of generality, suppose s is odd. Then

c = I:::: v(aib;,biCi).

O~i~s

Hence

Supp(c) = C .. (( (aobo, boco)6(albl, blcI)) 6(a2b2, b2c2)) ... 6(asbs, bscs))

where 6 is the symmetric difference of sets. In the worst case, the pairwise
intersection of the blocks is non-empty, i.e., corresponding incidence vectors
are pairwise commonly incident. Hence

ISupp(c)1 ~ (4n-lO)(s+1)-2(s;1) ~8n-22.

Note that wt(c) = 8n - 22 if s = 1 and the two vectors are commonly
incident. Hence C2(An) has minimum words of the form

o
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6.5 Partial permutation decoding of Cp(Mn)

In this section, we show that Sn is the permutation automorphism group of
the codes Cp(Mn) for any prime pand n ~ 5. Using a specific information
set, we determine l(n - 3)/3 J -PD-sets for partial permutation decoding of the
codes. With this information set and Sn as PD-set, we show using Lemma
2.33 that the codes correct up to r~l- 1 errors by permutation decoding.

Proposition 6.7. For any prime pand n ~ 5, let Cp(Mn) be the p-ary linear
code from the row span of Mn, an incidence matrix of the line graph of the

triangular graph L2(Kn). Let Vn be the incidence design of the graph. Then
Aut(Cp(Mn)) '" Aut(Vn) = Aut(L2(Kn)) = Sn.

Proof. That Aut(Vn) = Aut(L2(Kn)) == Sn follows from Proposition 2.11
and Lemma 2.20. It remains to show that Aut(Cp(Mn)) ~ Aut(Vn).

Let u be a minimum word of the code. By Proposition 6.5, u is a scalar
multiple of a row of Mn. Let p E Aut(Cp(Mn)). Then there exist minimum
words v(ab,bc) and v(a'b',b'c') such that p(v(ab,bc») = v(a'b',b'c'). Thus pinduces

a permutation p of blocks of V such that p((ab, bc)) = io/b', b'c'). Hence
Aut(Cp(Mn)) ~ Aut(V). 0

We now give an information set for the codes Cp(Mn), p any prime.

Lemma 6.8. For n ~ 5 and any prime p, let Cp(Mn) be the p-ary code from
the row span of Mn, an incidence matrix of the graph L2(Kn). Let

Al = {(blCl, albl, bIn) : al, bl, Cl E il \ {n}, al < Cl},

A2 = {(a2b2,a2n,b2n): a2,b2 E il\ {n}},

A3 = {(b3n, a3n, (n -1)n) : a3, b3 E il \ {n - 1,n}, a3 < b3},

A4 = {((n - 2)n, (n - l)n, a4n) : 1 :::;a4 :::;n - 3}.

Then

(a) U:=l Ai is an information set for C2(Mn).

(b) If p is odd then U;=l Ai U {( 1n, 2n, 3n)} is an information set for
Cp(Mn).
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Proof. Write Mn as in Equation (6.3). By permuting rows and columns of
Mn, we show that columns of the matrix indexed by points in U~=lAi are
linearly independent over IF'2.

Consider the submatrix Nl of Mn. It is possible to permute columns
of Nl such that the matrix takes the form [IINi3)] where I is the identity

matrix of rank (n - 3)(n;l) with columns indexed by points in AI. NP) has
weight-3 row vectors such that no pair is commonly incident at any point.
A similar observation is made for points in A2. In this case, it is possible to
write N2 in the form [IINJn-3)] where I is the rank-2(n;l) identity matrix

and NJn-3) is such that each row vector has weight (n - 3) and no pair of
rows is commonly incident at any point.

Permute rows corresponding to vertices in Yn so that they begin with
(n;2) rows indexed by vertices of the form (an, bn) where a, b =J ti - 1, ti.
These are followed by rows indexed by n - 2 vertices of the form (an, (n -I)n)
where a < n - 1. With this ordering, Tn-l takes the form

[
Tn-2 A 0 1
o B Gn-2

(6.6)

where:

(i) Tn-2 is an incidence matrix of the triangular graph LI(Kn_2);

(ii) A is an (n;2) X (n - 3)(n - 2) matrix such that each row has weight
two and each column is a unit vector;

(iii) B is an (n - 2) x (n - 3)(n - 2) matrix such that each row is a vector
of weight ti - 3 and each column is a unit vector;

(iv) Gn-2 is an incidence matrix of the complete graph Kn-2.

Permute columns of A so that the matrix takes the form [IIIJ where I is
the rank (n;2) identity matrix. Then one of the identity matrices is indexed
by points in A3.

Write Gn-2 as follows. Order rows of Gn-2 according to the following
ordering of vertices of the form (an, (n - I)n) where n 2:: n - 2.

(In, (n - I)n), (2n, (n - I)n),·· . ,((n - 3)n, (n - I)n), ((n - 2)n, (n - I)n).
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Columns of Gn-2 are ordered by first obtaining edges joining vertices of the
form (an, (n -l)n), a :S n - 3, and the vertex ((n - 2)n, (n -l)n). These are
followed by edges between the vertices (an, (n - l)n) where 1 :S a :S n - 3.
This is similar to the way incidence matrices of complete graphs are written
in Equation (2.6). Hence Gn-2 takes the form

[ I I Gn-3 ]
1···1 0···0

where Gn-3 is an incidence matrix of Kn-3.
With these permutations of rows and columns of Mn, the matrix takes

the form

Mn-l N3 0 0 0 0 I 0 0I

0 Pl2 Qn Nin 3) 0 0 Pu I 0

*
0 I 0

0 0 0 P22 Gn-3 0 P21 I
2

0·· ·0
Bl

1·. ·1

where the last three main column blocks are indexed by points in In. Ex-
cluding the last row from consideration, it is clear that columns indexed by
points in In are linearly independent over lF2. Hence In is an information set
for the binary codes.

If p is odd, adding the point (In, 2n, 3n) to In gives a set of linearly
independent columns over lFp. This completes the proof. 0

Let C be the check set of the code. Then C is written as a union of the
following sets.

(a) A5, a set of (2n - 7)(n - 3) (n~l) points corresponding to columns of
Mn-I· (n-4)(n-3) (n~l) of these points have the form (a5c5, a5b5, a5x)
while the remaining (n_3)2(n~l) have the form (a5C5, a5b5, b5y) where
a5, b5, C5,x, yEn \ {n}, x =1= a5, b5, C5 and y =1= a5, b5;

(b) A6, a set of 2(n - 3)(n~l) points of the form (b6C6,a6b6, a6n) and (n-
3)(n~l) of the form (a6b6, b6C6,b6n) where a6, b6, C6 E n \ {n}. These
points are indices of columns of Ni3);
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(c) A7, a set of 2(n - 3)(n~1) points of the form (a7b7,xn,yn) where x =
a7, b7 and y =1= a7, b7, n. These points correspond to columns of NJn-3).

(d) Ag, a set of (n - 2) (n~1) points corresponding to columns of the sub-
matrix Qn. These have the form (agn, agbg, bgn) and (agbg, agn, agcg)

where ag, bg, Cg E n\ {n} and ag < bg;

(e) Ag, a set of points of the form (bgn, agn, egn) corresponding to the
(n - 4)(n~2) columns of Tn-2 where ag, bg, Cg E n \ {n -l,n};

(f) AIO, a set of (n~2) points of the form (aIOn, blOn, (n -l)n) where alO <
blO' These points correspond to columns of matrix A in Equation (6.6)
that are not used in the information set;

(g) All, a set of points corresponding to the (n~3) columns of Gn-3. These
have the form (ann, (n - l)n, blln) where all < bll :s; n - 3.

In the proposition below, we exhibit PD-sets for partial permutation de-
coding of codes Cp(Mn).

Proposition 6.9. For any prime p, let Cp(Mn) be the p-ary code from the
row span of Mn' an incidence matrix of the graph L2(Kn). Fori = 1,'" ,11,
let A be as in Lemma 6.8 and the discussion above. Then

S = {(n,x) : 1 :s; x:S; n}

is an ln33 J -PD-set for C2(Mn) of ti elements of Sn with 'In = U~lA as
information set. If p is odd then S is also a PD-set for Cp(Mn) with infor-
mation set In U {(In, 2n, 3n)}.

Proof. Suppose a codeword c is sent and a vector y = c + e is received such
that wt( e) :s; ln33 J, i.e., at most ln33 J errors occur. Let e be the set of
error coordinates. From the discussion above, the binary code has check set
C = U;~5Ai' We examine two main cases.

Case 1. £ ~ 'In.
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Suppose there are i errors in AI, j errors in A2, k errors in A3 and l errors
in A4 where i+ j + k + l ~ n;3. Let the respective error positions be

(bucu, aubu, bun), ... , (bliCli, alibli, blin),

(a2Ib21, a2ln, b2In),· .. , (a2jb2j, a2jn, b2jn),

(b3In, a3ln, (n - l)n), , (b3kn, a3kn, (n - l)n),

(In, (n - l)n, a4In), , (In, (n - l)n, a4In).

Let

T = {bIl ... bl' CII ... Cl' a21 ... a2' b21 ... b2, b31 ... b3k' , ~, , , ~, , , J' , , J' , , ,

Then

ITI ~ 2i+2j+k+l.

Since
i+j+k+l~n;3,

we have ITI ~ n - 3. Hence there exists a E n \ {n} such that a ~ T Use
an automorphism of the form (n, a) to map errors from 'In into C.

Case 2. e ~ 'In UC.

Suppose there is at least one error in 'In and at least one error in C, i.e., at
most n;6 errors in C. We need to show that for errors in each of the sets Ai,
5 ~ i ~10, it is possible to use an automorphism of the form (n, a) to keep
the errors in C. The method naturally extends to errors in Ui~5Ai, Since
this is similar to the way errors in 'In are corrected above, it further extends
to correction errors in I UC.

(a) Errors in A5, Suppose there are errors in coordinates of the form
(a5c5, a5b5, b5x). Consider the set

(6.7)

Since ITs I ~ 2t and t ~ n;6, we have 2t ~ n - 6. There exists a E

st \ {n} such that a ~ T, i.e., a =J a5i and a =J b5i for any i. Use an
automorphism of the form (n, a).
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Notice that if a = C5i in any error position then

which is in C since {a5i,b5i} n {b5i,x} =1= {a5i,b5i} n {a5i,n}.

Suppose at most t5 ~ n3'6 errors occur in coordinate positions of the
form (a5c5, a5b5, a5x). Let

Since IT51 ~ 3t and t ~ n3'6, we have IT51 ~ n - 6. Hence there
exists a E n \ {n} such that a ~ {T5}, i.e., a =1= a5, C5, x. Use an
automorphism of the form (n, a) to fix these errors in C.

(b) Errors in A6' Suppose at most il errors occur in coordinate positions
of the form (b6c6, a6b6, a6n) and i2 errors in coordinate positions of the
form (a6b6, b6ë6, b6n) such that il + i2 ~ n3'6. Consider the set

Since ITI ~ 2il + 2i2 and il + i2 ~ n3'6, we have that 3il + 3i2 ::; n - 6.
Hence there exists at least one element a in n \ {n} such that a ~ T
Use an automorphism of the form (n, a).

(c) Errors in A7' Any automorphism of the form (n, a), a =1= n, will do.
Without loss of generality, let x = a. Then (n, a) maps points of the
form (ab, an, yn) to points of the form (ab, an, ya). These are in As. If
a = y then (ab, an, an) is mapped to (ab, aa, an), a point in A6' The
cases a = a and a = b are also seen to hold.

(d) Errors in As. Suppose there are kl and k2 errors in coordinate positions
of the form (asn, asbs, bsn) and (asbs, asn, ascs), respectively. As done
in other cases above, there exists an element a E n \ {n} such that a =1=

as, bs in error positions of the form (asn, asbs, bsn) and a =1= as, bs, Cs in
error positions of the form (asbs, asn, ascs). Use an automorphism of
the form (n, a).
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(e) Errors in Ag. In this case, it is possible to find a E n \ {n - 1,n} such
that x i= bg, Cg in any error position. Hence (n, a) will do.

(f) Errors in AlO' Use (n, a) where a E [2 \ {n} and a i= alO.

(g) Errors in All' Use the automorphism (n, n - 1).

If p is odd, a transposition of the form (n, a) will do. The only error
position that is mapped to (In, 2n, 3n) by (n, a) is (Jo, 2a, 3a). However,
notice that the choice of a in 1 above assumes that (Lo, 2a, 3a) is not in
~ill. 0

6.5.1 Partial permutation decoding with PD-set Sn

For any prime pand ti 2: 5, we now determine to what extent permutation
decoding can be used for the codes Cp(Mn) with the information set given in
Lemma 6.8. To do this, we take for PD-set the permutation automorphism
group Sn of Cp(Mn) and use Lemma 2.33.

Recall that coordinate positions of Cp(Mn) have the form (uv, wx, yz) and
that, by definition, I{u, v} n {w, x}1 = 1 = I{w, x} n {y, z }I. The following
are possible cases for a given coordinate position (uv, wx, yz).

Case 1. {u,v}n{w,x}={w,x}n{y,z}.

Without loss of generality, suppose {u, v }n{w, x} = {w, x }n{y, z} = {x}.
Hence (uv, wx, yz) = (ux, wx, yx). Since there are (;) possibilities for {w, x},
ti - 2 for u and n - 3 for y, there are 2 (n;2) (;) coordinate positions of the
form (ux, wx, YX).

Case 2. {U, V} n {W, X} i= {W, X} n {y, z}.

There are two possibilities. Either {U, V} n{y, z} = 0 or I{u, V} n{y, z} I =
1.

Case 2(a). {u,v}n{y,z}=0.
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Without loss of generality, let {u, v} n {w, x} = {x} and {w, x} n {y, z} =
{w}. Then the coordinate position takes the form (ux,wx,wy). Since there
are (;) possibilities for {w, x}, ti - 2 for u and ti - 3 for y, the code has
2 (n;2) G) coordinate positions of this form.

Case 2(b). l{u,v}n{y,z}1 = 1.

The coordinate positions take the form (uw, wx, ux). Since there are (;)
possibilities for {w, x} and n - 2 for u, the code has (n - 2) (;) coordinate
positions of this form.

Consider the sets

01 = {(ux,wx,yx): u,w,x,y En},
O2 = {(ux, wx, wy) : U, w, X, yEn},
03= {(uw,wx,ux): u,w,x En}.

From the discussion above, it is clear that 01, O2 and 03 partition E(L2(Kn)) =

(6.8)

P, the set of coordinate positions of the code.

Lemma 6.10. Sn has three orbits in its induced action on P.

Proof. Since the graph is connected, it follows from Whitney's theorem [64,
Theorem 8J (also see Theorem 2.8) that edge-automorphisms are induced by
graph automorphisms. By Theorem 6.7, Aut(L2(Kn)) ~ Sn. Let Q E Sn.
Then Q induces an edge-automorphism a, Define a map a- : P -+ P by
a-((uv, wx, yz)) = (a-(U)a-(V), a-(W)a-(X), a-(y)a-(z)).

Let pEP. Either p is of the form (ux, wx, yx) or (ux, wx, wy) or
(uw,wx,ux) for some u,w,x,y E n. Consider the element a-(p). Let 01,
O2 and 03 be as in Equation (6.8). Because a- respects intersections of sub-
sets of n, we must have a-(p) E 01 if p has the form (ux,wx,yx). Also,
a-(p) E O2 if P E O2 and a-(p) E 03 if P E 03, Hence Sn partitions Pinto
the orbits 01, O2 and 03, 0

We now use Lemma 2.33 to determine the number of errors Cp(Mn) cor-
rects by permutation decoding with PD-set Sn.
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The discussion below is for the binary codes but the result also holds if
the code is non-binary. Recall that C2(Mn) has information set In = U~l Ai
where the sets Ai are as in Lemma 6.8.

Let ni = I~~I where i = 1,2,3. Then n2 = O. We also have

IAII + IA31+ IA41
nl = 1011

(n - 3) (n~l) + (n~2) + (n - 3)
-

n(n - 1) (n~2)
n2 - 2n + 2

-
n3 - 3n2 + 2n'

and
IA21 2(n~1) 2

n3 = 1031 = (n - 2)(;) n

Let N = max(nl,n2,n3). Since n3 - nl > 0, we have N = n3 = ~. Let

Then, by Lemma 2.33, Sn is an U~l - 1)-PD-set for C2(Mn).
Notice that much as we are able to correct more errors by using Sn as

PD-set, Sn is much larger than the PD-set exhibited in Proposition 6.9.

http://uwc.ac.za



123

Appendix A

Computer programs

We now present programs that were used to investigate some of the codes
obtained in this thesis.

A.1 Gordon bound

The program below is written in Python [15]. It calculates the Gordon bound
(see Equation (2.5)) for the PD-set of a given linear code. Parameters used
in the program (length, dim and dist) are of codes from embed dings of the
strong product of triangular graphs and K2 considered in Chapter 4. They
can be changed to calculate the Gordon bound for the PD-set of any code of
one's interest.

from scipy import mod, ceil, product, floor

# constants
n 5
length = (n-1)*(n-1)*n/2.0
dim = n*(n-1)-1
dist n-1
r = length - dim
t int((dist-1)/2.0)
errors = range(t)
fractions = [J

# length of code
# dimension of the codes
# minimum distance
# code redundancy
# number of correctable errors
# range of correctable errors
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# The loop below calculates values of all fractions in the
# Gordon bound formula

for i in errors:
num length - i
den r-i
fract num/den
fractions.append(fract)

gordonbound = ceil(fractions[-1])

#calculating Gordon bound
for i in range(1,len(fractions)):

gordonbound = ceil(fractions[-i-1]*gordonbound)

# Gordon bound
print gordonbound

A.2 Codes from triangular graphs and differ-
ences of rows of their incidence matrices

The Magma [7J program below examines codes from incidence matrices of
triangular graphs and differences of rows of the matrices.

n := 4;

omega {1 ..n};
omegasubsets Subsets(omega,2);
p 2;

II f Open("C:\\Users\\khumbo\\Desktop\\magma\\results.txt","w");
II Overwrite := true;

II Triangular Graph
triangular Graph<omegasubsetsl{{u,v}: u,v in omegasubsetsl
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vertexset
edgeset
genmatrix
M
Gen

#(u meet v) eq i}>;
VertexSet(triangular);

:= EdgeSet(triangular);
:= IncidenceMatrix(triangular);
:= KMatrixSpace(FiniteField(p), #vertexset, #edgeset);
:= M!genmatrix;

II Codes obtained from incidence matrices of triangular graphs
II are C:= LinearCode(Gen). Their properties can now be
II investigated using standard magma commands.

II In the loop below we obtain differences of rows of incidence
II matrices of triangular graphs.
len := NumberOfRows(Gen);
S : = [];
for i in [i..len] do

a := Gen[i] - Gen[i] ;
Append(-S,a);

end for;

II Below, we generate the codes En from differences of rows of
II incidence matrices of triangular graphs.
NewGen := M!Matrix(#vertexset,#edgeset,S);
En := LinearCode(NewGen);
len := Length(En);
dim := Dimension(En);
mindist MinimumDistance(En);

A.3 Codes from embeddings of strong prod-
ucts of triangular graphs and K2

The Magma [7]program in this section investigates properties of linear codes
from embed dings of strong products and K2 considered in Chapter 4.
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II constants
n _ 5;

P
_ 3',

Omega .= {1. .n};

II V is the vertex set of the graph. Each vertex is written
II as a list of 3 elements. Thus [a,b,b] represents the
II vertex ({a,b},{b}).
V := {[a,b,b]: a,b in Omega I a ne b};

II El and E2 are sets of edges of the graphs. Edges in El
II satisfy the first adjacency condition of Definition 4.1.
II Edges in E2 satisfy the second adjacency condition.
El {{u,v}: u,v in V I {u[1],u[2]} eq {v[1],v[2]} and u ne v};
E2 {{u,v}: u,v in V I #({u[l] ,u[2]} meet {v[1],v[2]}) eq 1

and u[3] eq v[3]};
E El join E2;

Gamman := Graph<VIE>;
II Generate the graph $\Gamma_{n}$ of Chapter 4. The command
II Gamman :=Complement(Gamman) switches the investigation to that
II of codes from complements of $\Gamma_{n}$ considered in Chapter 5.

II Properties of the graph and codes from its incidence
II matrices can now be investigated using standard magma commands.
Gn IncidenceMatrix(Gamman);
M KMatrixSpace(FiniteField(p), #V, #E);
Gn := M!Gn;
C LinearCode(Gn);
AutC AutomorphismGroup(C);
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A.4 Codes from incidence matrices of line graphs
of triangular graphs

The Magma [7] program below examines the action of the automorphism
group G = Sn on coordinate positions of binary codes from incidence matrices
of line graphs of triangular graphs considered in Section 6.5.1. G-orbits of
the action are obtained. Using Lemma 2.33, the program computes the
maximum of the ratios 'Iï~t"where In is an information set and 0 is a
G-orbit. The output of the program is a number s of errors that the codes
correct by permutation decoding with G as PD-set.

II Constants
n - 5;

P - 2·,
Omega - {1. .n};
Omega! - {1. .n-i};
Omega2 - {1. .n-2};
Omega3 - {1. .n-3};
Omegatwo := Subsets(Omega,2);
G - Sym(n);

II 2-element subsets of Omega
II Symmetric Group on n elements.

110pen file to write results to, full path to file required.
f := Open("C:\\Documents and Settings\\khumbo

\\Desktop\\mymagma\\orbitsresults.txt","w");
overwrite := true;

II Generate coordinate positions of the code of $L-{2}(K_{n})$ and
II print output in file orbitsresults.txt
points := {{{u,v},{v,w}}: U,V,w in Omegatwo

I #(u meet v) eq ! and #(v meet w) eq ! and u ne w};
Put(f,Sprint(points));

II Find G-orbits when G acts on the set of coordinate positions.
orbits {};
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for p in points do
porbit := p-G;
orbits := orbits join {porbit};
points := points diff porbit;
if #points eq 0 then break; end if;

end for;
II print G-orbits to file
Put(f,Sprint(orbits»;

II Information set of the binary codes is the union of
II Ai, A2, A2i, A3 and A4 below.
Ai := {{{{a,b},{b,c}},{{a,b},{b,n}}} :a,b,c in

Omegai I a ne b and b ne c and a lt c};
A2 {{{{a,b},{b,n}},{{a,n},{b,n}}}:a,b in Omegail a It b};
A2i {{{{a,b},{a,n}},{{a,n},{b,n}}}:a,b in Omegail a It b};
A3 {{{{a,n},{b,n}},{{a,n},{n-i,n}}}:a,b in Omega21 a lt b};
A4 {{{{n-2,n},{n-i,n}},{{a,n},{n-i,n}}}: a in Omega3};
infoset := Ai join A2 join A2i join A3 join A4;

IICalculate the ratios $1\mathcal{O}\cap \mathcal{I}I/I\mathcal{O}I$
II where $\mathcal{O}$ is a G-orbit.
N :={};

for Gorbit in orbits do;
nn := #(infoset meet Gorbit)1 #Gorbit;
Include(-N,nn);

end for;
max := Maximum(N);

II maximum number of errors $t$ correctable by the code.
t := Floor((4*n-ii)/2);

II number of errors correctable by permutation decoding
s Minimum(Ceiling(i/max)-i, t);
s;
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