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FIGURE PAGE NUMBER

Figure 1.1. 7

Prokaryotic RNA polymerase comprising of the four subunits (a, ~1, ~2, and c) in

close complex formation with the nucleotide sequence of the promoter region. The

above figure is not drawn to scale. The sigma (c) unit of the enzyme is believed to

be responsible for directing the enzyme to the promoter.

Figure 1.2. 11

Fig.1.2. Eukaryotic RNA Polymerase I has a core promoter separated by ~70 bp

from the upstream control element (VCE).

Figure 1.3. 13

Cartoon depiction of RNA polymerase II promoter. Promoters are organized on a

principle of 'mix and match'. A variety of elements upstream of the transcriptional

start site can contribute to promoter function, but none is essential for all the

promoters.

Figure 1.4. 15

RNA polymerase III type I (A), type II (B) and type III (C) promoters. Type I

promoter consists of bipartite sequences downstream of the startpoint, with boxA

separated from boxB by intermediate elements (IE). Type II promoters (B) also

consist of two boxes boxA and boxB found downstream of transcription start site

(+ 1). Type three promoters (C) consist of separated sequences upstream of the

startpoint (DSE, PSE and TATA). Transcription termination sites are indicated by

Tn.

Figure l.S. 18

Distribution of nucleotides around transcription start sites (position 51) of 115

E.coli promoter sequences. The canonical -35 (TTGACA) and -10 hexamers
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(TATAAT) are located at positions 15 to 21 and 39 to 44 respectively. Promoter

data was obtained from Hawley and McClure (1983) and the informational analysis

used is sequence logo (Schneider, 1997)

Figure 2.1.1. 30

A HMM modeling sequences of as and bs as two regions of potentially different

residue composition. The model is drawn (top) with circles for states and arrows

for state transitions. A possible state sequence generated from the model is shown,

followed by a possible symbol sequence. The joint probability P(x,[piJ&HMM) of

the symbol sequence and the state sequence is a product of all the transition and

emission probabilities. Notice that another state sequence (1-2-2) could have

generated the same symbol sequence, though probably with a different total

probability. This is the distinction between HMMs and a standard Markov model

with nothing to hide. In HMM, the state sequence (e.g. the biologically meaningful

alignment) is not uniquely determined by the observed symbol sequence, but must

be inferred probabilistically from it. Diagram copied from Sean Eddy's publication

entitled 'Profile hidden Markov models (Eddy, 1998).

Figure 2.2.1. 34

The basic components of an artificial neural network. The propagation rule used

here is the standard 'weighted' summation. The total input to unit k is the

'weighted' sum of the separate outputs from each of the connected units (e.g. Yj)

plus a bias or offset term ek. Unit k then passes on the 'weighted' summation as an

input to another node (neuron) or as an output signal. The figure was obtained via

internet from lecture notes on neural network at the Computer Science Department

at Sheffield university.

Figure 2.3.1. 39

An illustration of how triplets were obtained from sequences.
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Figure 2.3.2. 40

A hash table of scores/figures generated from a promoter non-promoter pair. Each

set of the sequences consisted of 50 sequences of 55 bp sequence-length each. The

actual frequency value of each triplet in the promoter set is subtracted from its

corresponding value in the non-promoter to generate the hash table values. Certain

triplets have high values for example, TAA, TGT and TTT; an indication that they

are more prevalent in the set of promoter sequences as compared to non-promoter

sequences (coding sequences). Similarly, triplets with negative scores are generally

more prevalent in the non-coding sequences as compared to the promoter

sequences e.g. CAG.

Figure 2.3.3. 41

A scatter plot of hash table of scores/figures generated from a promoter non-

promoter pair shown in figure 2.3.1.

Figure 3a. 48
A diagram depicting how various subsets were generated from the original training

dataset of 83 promoters. Diagrams representing sequence subsets are not drawn to

scale.

Figure 3.1. 56

A diagrammatic illustration of how a trained model was used to test fragment sizes

of 75 bp (A) and 101 bp (B). Individual results (column2) and cumulative results

(column 3) obtained from a model of thirty set of sequences of forty-five bp

fragment size (S30(45» on a test sequence of fragment length 75 bp (A) and 101 bp

(B). A moving window of 45 bp is opened from the first nucleotide and shifted one

bp till the end. The scores from alignment of each window to the trained model and

the cumulative scores are shown on the second and third columns respectively. Cut-
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off scores that generated 90% true positive were selected to determine whether the

sequences under investigation be judged promoter or not.

Figure 3.2. 58

Individual trained HMM models with their corresponding false positive results on

5000 coding sequences. Model S4o(45) (forty promoter sequences of 45 bp

sequence each) produced the best results (least number of false positives - 385).

Models were tested on sequences having same fragment sizes as those used in

building the models. A cut-off score that produced 90 % (75/83) True positive (TP)

was used to select the predicted promoters from non-predicted promoters. Thus in

all cases, true positive rate is -90%.

Figure 3.3. 60

Individual HMM sequence models with corresponding false positive results on

5000 coding sequences of 75 bp sequence-length each. Each sequence's score was

obtained by opening a window within the 75 bp sequence, which corresponded to

the model size, and summing the results as the window was shifted 1 bp, fig. 3.1.

As in the previous case, scores that resulted in 90% true positive from the 83

promoters were used as the cut-off score to distinguish between predicted

promoters and non-promoters.

Figure 3.4. 62

Individual HMM sequence models with corresponding false positive results on

5000 coding sequences of 101 bp sequence-length each. Each sequence's score was

obtained by opening a window within the 101 bp sequence, which corresponded to

the model size, and summing the score as the window was shifted 1 bp, fig. 3.2.

Threshold scores that resulted in 90% true positives from the 83 promoters were

used.

Figure 3.5. 67
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Individual trained HMM models with their corresponding false positive results on

5000 B.subtilis coding sequences. Model Sso(70) (fifty promoter sequences of

fragment size 70 bp each) produced the best results (least number of false positives

- 160). Models were tested on sequences having the same sequence length as those

used in building the models. A cut-off score that produced 90 % (75/83) True

positive (TP) was used to select the predicted promoters from non-predicted

promoters.

Figure 3.6. 69

Individual HMM sequence models with corresponding false positive results on

5000 B.subtilis coding sequences of 75 bp sequence-length each. Each sequence's

score was obtained by opening a window within the 75 bp sequence, which

corresponded to the model size, and summing the results as the window was shifted

1 bp, fig. 3.1. Scores that resulted in 90% true positive from the 83 promoters were

used as the cut-off score to distinguish between predicted promoters and non-

promoters.

Figure 3.7. 71

Individual HMM models with corresponding false positive results on five thousand

(5000) coding sequences of 101 bp fragment-size each. Each sequence's score was

obtained by opening a window within the 101 bp sequence, which corresponded to

the model size, and summing the score as the window was shifted 1 bp, fig. 3.1 B.

Cut-off scores that resulted in 90% true positives from the 83 promoters were used.

Figure 3.8. 75

Individual trained HMM models with their corresponding false positive results on

5000 Mycobacterial coding sequences. Model 50_45 (fifty promoter sequences of

fragment size 45 bp each) produced the best results (least number of false positives

- 786). Models were tested on sequences having the same sequence length as those

used in building the models. A cut-off score that produced 90 % (75/83) True
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positive (TP) was used to select the predicted promoters from non-predicted

promoters.

Figure 3.9. 78

Individual HMM models with corresponding false positive results on 5000

Mycobacterial coding sequences of 75 bp sequence length each. Each sequence's

score was obtained by opening a window within the 75 bp sequence, which

corresponded to the model size, and summing the results as the window was shifted

1 bp, fig. 3.1. Scores that resulted in 90% true positive from the 33 promoters were

used as the cut-off score to distinguish between predicted promoters and non-

promoters.

Figure 3.10. 80

Individual HMM models with corresponding false positive results on five thousand

(5000) Mycobacteria coding sequences of 101 bp fragment-size each. Each test

sequence's score was obtained by opening a window within the 101 bp sequence,

which corresponded to the model size, and summing the score as the window was

shifted 1 bp, fig. 3.1 (B). Cut-off scores that resulted in 90% true positives from

the 33 promoters were used.

Figure 4.1. 91

False positive prediction results (average) obtained from testing 5000 coding

sequences using threshold values that resulted in 90% true positives for individual

trained models. Test sequences had the same fragment sizes as the respective

sequences used in training the models. Results from set fifty (50) produced

relatively very good results with the best coming from model Ec50_ 40 (S50(40)) , a

good low of 466 false positives out of 5000 test sequences (9.3%).

Figure 4.2. 93
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False positive prediction results (averages) obtained from testing 5000 coding

sequences using threshold values for individual trained models that resulted in 90%

true positives. Test sequences had fragment sizes of 75 bp. The average score from

five data sets, created from each test of sequence (101 bp) was used Results from

set Ec50 40 produced the best results of 393 (7.9%), though, an equally good

results were obtained from the model ECS20(60)(395).

Figure 4.3. 95

False positive prediction results (averages) obtained from testing 5000 coding

sequences using threshold values for individual trained models that resulted in 90%

true positives for promoter sequences. The entire 101 bp fragment size of each

sequence test set (both promoters and non-promoters) was used. Window sizes

corresponding to model sizes were opened in test sequences and scores summed up

as window was shifted I bp to the end of each sequence.

Figure 4.4. 100

Plot of false positive results (average) obtained from testing 5000 coding sequences

using manually selected threshold values that resulted in 90% true positives for

individual trained models. Test sequences had the same fragment sizes as the

respective sequences used in training the models. Results from set thirty (30)

produced comparatively good results with the best coming from model composed

of thirty sequences of fifty fragment sizes (Bs30_50).

Figure 4.5 103

False positive results (average) obtained from testing 5000 coding sequences using

threshold values for individual trained models that resulted in 90% true positives.

Test sequences had fragment sizes of 75 bp. The average score from five data sets,

created from each test of sequence (10 I bp) was used. Results from model trained

on thirty sequences of 55 bp sequence lengths (Bs30_55) produced the best results

with regard to the number of false positives.
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Figure 4.6. 105

False positive results (average) obtained from testing five thousand (5000) coding

sequences using threshold values for individual trained models that resulted in 90%

true positives for promoter sequences. The entire 101 bp fragment size of each

sequence test set (both promoters and non-promoters) was used. Window sizes that

corresponded to the model sizes were opened in test sequences and scores summed

up as window was shifted 1 bp to the end of each sequence.

Figure 4.7. 110

Plot of false positive results (average) obtained from testing 5000 mycobacterium

coding sequences using manually selected threshold values that resulted in 90%

true positives for individual trained models. Test sequences had the same fragment

sizes as the respective sequences used in training the models. Best results (least

number of false positives) came out of Mt50_60, model trained on fifty promoters

of 60 bp fragment sizes. Thresholds from test promoter that resulted in 90% true

positive were used to categorize 'promoters' from 'non-promoters'.

Figure 4.8. 113

False positive results (average) obtained from testing 5000 coding sequences of

Mituberculosis using threshold values for individual trained models that resulted in

90% true positives. Test sequences had fragment sizes of 75 bp. The average score

from five data sets, created from each test of sequence (101 bp) was used. Results

from model trained on fifty (50) sequences of sixty (60) bp sequence lengths

(Mt50_60) produced the best results with regard to the number of false positives.

Figure 4.9. 115
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False positive results (average) obtained from testing five thousand (5000)

Mituberculosis coding sequences using threshold values for individual trained

models that resulted in 90% true positives for promoter sequences. The entire 101

bp fragment size of each sequence test set (both promoters and non-promoters) was

used. Window sizes that corresponded to the model sizes were opened in test

sequences and scores summed up as window was shifted 1 bp to the end of each

sequence (figure 3.1).

Figure 5.1. 124

Percent nucleotide composition of promoter (Xp) and non-promoter sequences

(Xn) obtained on E.coli, B.subtilis and Mycobacterium sequences. Sequences

analyzed did not include the compliments. Highest GC scores are observed for

Mycobacterium sequences whilst least GC content is observed for B.subtilis.

Figure 5.2. 129-130

Graphical representation of the dinucleotide content of promoter and non-promoter

data of E.coli (A) B.subtilis (B) and Mycobacterium (C). Dinucleotides with the

letter 'n' (e.g. ATn) represent dinucleotides from non-promoter sequences of the

respective organisms. The same information is represented in two different graphs.

The graphs depict similar dinucleotide sets (side by side) from promoter and non-

promoter sets respectively

Figure 5.3. 133

Results indicating the number of false positives obtained from using the differences

in dinucleotide content of promoter non-promoter datasets of E.coli (Ec), B.subtilis

(Bs) and Mycobacterium respectively. Five thousand (5000) non-promoter

sequences of 101 bp were used in the test set for each of the three organisms.

Threshold values that resulted in 90% True Positive (using respective known

promoter sequences for each organism were used to categorize test sequences as
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predicted promoter sequences or non-promoter sequences. The actual data is found

at the bottom of graph.

Figure 5.4. 138-139

Distribution (percentage composition) of the sixty-four (64) possible triplets in

E.coli promoter (squarelblue plot) and non-promoter (triangle/yellow) data set (A),

B.subtilis data set (B) and Mycobacteria data set (C). Variations in the distribution

of certain types of triplets are evident in the two data sets of promoter/non-

promoter. Triplets that are relatively prevalent in both data include AAA, ATT and

TTT whereas the triplets GCG, GCC and CGG fluctuate widely in composition

between the two sets of data. Other triplets ACT, CCT, CTT and GTA are

consistently found to have almost the same composition in all data sets in the three

orgamsms.

Figure 5.5. 144-145

Graphs of results shown in table 5.3 (A), 5.4 (B) and 5.5 (C) which represent the

number of false positives obtained by using hash table values from designed

sequence sets on sequences of the same fragment size (A), of 75 bp fragment size

(B) and 101 bp fragment sizes (C). In all instances, cut-off values that represented

90% true positive were used to determine which test sequences were considered

predicted promoter sequences.

Figure 5.6. 151-153

Graphs of results shown in table 5.8 (A), 5.9 (B) and 5.10 (C) . The three graphs

represent the number of false positives obtained by using hash table values from

designed sequence sets on sequences of the same fragment size (A), of 75 bp

fragment size (B) and 101 bp fragment sizes (C). In all instances, cut-off values

that represented 90% true positive were used to determine which test sequences

were considered predicted promoter sequences. Five thousand (5000) B.subtilis

test promoter sequences were used.

Figure 5.7. 167-158
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Graphs of results shown in table 5.8 (A), 5.9 (B) and 5.10 (C) . The three graphs

represent the number of false positives obtained by using hash table values from

designed sequence sets on sequences of the same fragment size (A), of 75 bp

fragment size (B) and 101 bp fragment sizes (C). In all instances, cut-off values

that represented 90% true positive were used to determine which test sequences

were considered predicted promoter sequences. Five thousand (5000) B.subtilis

test promoter sequences were used.

Figure 6.1. 164

The various models reflecting sequence subsets that produced best results in the 75

bp test category (type B) for the three prediction systems in the three organisms. As

denoted earlier, 50_45 represents a sequence subset comprising 50 sequences of 45

bp fragment sizes each.

Figure 6.2. 166

Prediction results on E.coli (A) and B.subtilis (B) using the subset models of the

three prediction methods (figure 6.1). Test data consisted of 80 genome sequences

each of 481 bp fragment sizes (first test data). Results are the best predictions from

the individual models (Appendix_sixteen).

Figure 6.3. 167

Prediction results on a section of E.coli genome harboring promoters aroP, aceE

and lpd. A 75-bp window was used for predictions. Scores on HMM, ANN and

TFDA were adjusted to accommodate all three on the same plot. Results from

prediction were obtained by continuously moving the window one bp till the end of

the sequence. Positions of the three promoters namely aroP, aceE and lpd in the

dataset are represented by the arrows at positions 2226, 3493 and 8362

respectively. Individual predictions from the three separate methods ANN, HMM

and TFDA on the same test data can be found at Appendix_twenty,

Appendix _twenty one and Appendix _twenty two respectively.
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Figure 6.4. 169

Prediction scores ofNN (green), HMM (blue) and TFDA (red) on 75 bp window

sized sequences covering ~5500 bp region of B.subtilis genome harboring

promoters veg, sspF and spo VG. Test sequences and prediction scores were

obtained by shifting each previous window by 1 bp. Results from HMM were

multiplied by (0.35) to enable the values to fit onto the graphs. Promoters veg, ssrf

and spo VG are found in positions 520, 890 and 3606 respectively as indicated by

the arrows. The individual plots for predictions of ANN, HMM and TFDA can be

found in Appendix _twentythree, Appendix _twentyfour and Appendix _twentyfive

respectively.
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TABLE PAGE NUMBER

Table 3.1. so
The source of the 162 B.subtilis promoter sequences that were split into two sets

(training and testing promoter data). Promoter sequences were obtained from

Helmann (1996) and Yada et al., (1997). Sequences were thoroughly shuffled (no

compromise on which promoters are transcribed by which sigma factors) before

being divided into the two sets i.e. training and test data.

Table 3.2. 57

Number of false positives obtained for HMM trained models on promoter subsets.

Sequences used in testing both promoters and non-promoters had the same number

of nucleotides to those used in development of the models. Those sequence sets

which could not be trained using HMM are marked with '-'. Five sub-fragments

were generated from each test sequence. Depending on the sequence length of sub

fragments, the position of the first nucleotide is randomly selected within the

possible range that would make the size in the 10Ibp. The average and the

percentage false positives are shown on the sixth and the seventh columns

respectively. All promoter and non-promoter data are from E.coli.

Table 3.3. 59

Number of false positives obtained for HMM trained models on promoter subsets.

Nucleotide sequences used for testing both promoters and non-promoters had the

constant sequence length of 75 bp. Five different sequences were generated from

each test sequence of 101 bp. The position of the first nucleotide of each of the five
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sets was randomly selected from nucleotide number one (1) to twenty-six (26).

Individual performances (non-promoters) were obtained by moving a window

within the 75 bp that corresponds with the model and summing up the scores as the

window is shifted one bp, fig 3.1. Sequence sets that could not generate HMM

profiles are marked with '-'. The average and the percentage false positives are

shown on the sixth and the seventh columns respectively.

Table 3.4. 61

Number of false positives obtained from the HMM models trained on the different

subsets of E.coli promoter sequences. Promoter and non-promoter (coding

sequences) fragment sizes of 101 (fig. 3.1.B) were used in the test. Rows marked -,

, indicate promoter subsets that could not be trained or modeled successfully on

HMM.

Table 3.5 66

Number of false positives obtained for HMM trained models on various promoter

subsets. Nucleotide sequences used for testing both promoters and non-promoters

had the same sequence length as those used in developing the respective models.

Five different sequences were generated from each sequence with the position of

the first nucleotide of the sequence being chosen randomly within the possible

range in the 101bp with respect to the size of the sequence from which the models

were built on. The average and the percentage false positives are shown on the

sixth and the seventh columns respectively. Threshold scores were selected to have

90% true positive results for each test set.

Table 3.6 68

Number of false positives obtained for HMM trained models on various B.subtilis

promoter subsets. Nucleotide sequences used for testing both promoters and non-

promoters had the same sequence length of 75 bp. Five different sequences were

generated from each sequence with the position of the first nucleotide of the
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sequence being chosen randomly within the possible range in the 101bp with

respect to the size of the sequence from which the models were built on. The scores

were obtained by opening window within the 75 bp, which corresponds with the

model, and summing up the scores as the window is shifted one bp, fig 3.1. The

average and the percentage false positives are shown on the sixth and the seventh

columns respectively.

Table 3.7. 70

Number of false positives obtained from the HMM models trained on the different

subsets of B.subtilis promoter sequences. Non-promoter (coding sequences)

fragment sizes of 101 (fig. 3.l.B) were used in the test. Fig. 3.6 shows the graph

obtained from plotting the data.

Table 3.8 74

False positive results obtained from trained HMM models on M.tuberculosis

promoter data set on five thousand (5000) coding sequences. Promoter and non-

promoter data set used in testing had the same fragment sizes as those of their

corresponding models. For each non-promoter sequence that was tested, the

average from five fragment sizes that corresponded to the model size was

computed. The average scores for each model and the percent false positive scores

are in the seventh and eight columns respectively.

Table 3.9. 77

False positive results of different trained models ranging from 10_40 to 50_75 on

5000 coding sequences of 75 bp fragment size each. Because the original sequence

length of the test sequences are 101 bp, the average of five random sub fragments

of 75 bp sequence length had to be used to give some credibility to the results. The

averages and percentage scores are shown on the seventh and eight columns

respectively. On the left are the various models trained from respective sequence

subsets.
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Table 3.10. 79

Results obtained testing entire sequence length of 101 bp for both Mycobacterial

promoters and non-promoters.

,Table 4.1. 90

Five sets of sequence sub fragments were generated randomly from each test

sequence and tested on models trained on promoters and non-promoters of same

fragment sizes. Thus a model Ec40_50, which was trained on 40 sets of sequences

of 50 bp fragment sizes, were tested on 50 bp sequences. The average results of the

number of false positives from the five sets together with their percentage false

positive are shown on the seventh and eighth column respectively.

Table 4.2. 92

The various neural net trained models and their corresponding results of false

positives on 5000 coding sequences. Five sub fragments of 75 bp each were

generated randomly from each test sequence and tested on the trained models. A

threshold value that produced 90% true positive value on real promoter sequences

was used in each case. The average results of the number of false positives from the

five sets together with their percentage false positives are shown on the seventh and

eighth column respectively.

Table 4.3 94

Results (false positives) obtained from various trained models on 5000 coding

sequences. A threshold value that produced 90% true positive value on promoter

sequences was used on the test set. Every sequence (101 bp) was tested by opening

a window of size equivalent to the fragment sizes on which model was trained on,
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testing the model on the sequence and adding up the scores as window is shifted I

bp.

Table 4.4. 98

Results on five sets of sequence sub fragments generated randomly from each test

sequence. These sub fragments were tested on models trained on promoters and

non-promoters of same fragment size. Thus a model Bs40_50 trained on 40 sets of

sequences of 50 bp fragment sizes were tested on 50 bp sequences. The average

results of the number of false positives from the five sets together with their

percentage false positive are shown on the seventh and eighth column respectively.

Table 4.5 102

Results (prediction) on various neural-net trained models and their corresponding

results of false positives on 5000 coding sequences. Five sub fragments of 75 bp

each were generated randomly from each test sequence and tested on the trained

models. A threshold value that produced 90% true positive value on real promoter

sequences was selected in each case. The average results of the number of false

positives from the five sets together with their percentage false positives are shown

on the seventh and eighth column respectively.

Table 4.6. 104

Results (false positives) obtained from various trained models on 5000 coding

sequences of B.subtilis. A threshold value that produced 90% true positive value on

promoter sequences was used on the test set. Every sequence (101 bp) was tested

by opening a window of size equivalent to the fragment sizes on which model was

trained on, testing the model on the sequence and adding up the scores as window

is shifted I bp.

Table 4.7 108

Results on five sets of sequence sub fragments generated randomly from each test

sequence. These sub fragments were tested on models trained on promoters and
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non-promoters of same fragment size. Thus a model Mt40_50, trained on 40 sets of

mycobacterium promoter sequences of 50 bp fragment sizes were tested on 50 bp

sequences. Five thousand (5000) mycobacterium-coding sequences and 34

promoter sequences were used to test the models. Threshold values that resulted in

90% True Positive were selected from the promoter sequences and used as cut-off

for the predictions. The average results of the number of false positives from the

five sets together with their percentage false positive are shown on the seventh and

eighth column respectively.

Table 4.8 112

Results on various neural-net trained models and their corresponding results of

false positives on 5000 mycobacterium coding sequences. Five sub fragments of 75

bp each were randomly generated from each test sequence and tested on the trained

models. A threshold value that produced 90% true positive value on real promoter

sequences was selected in each case. The average results of the number of false

positives from the five sets together with their percentage false positives are shown

on the seventh and eighth column respectively.

Table 4.9. 114

Results (false positives) obtained from various trained models on 5000

mycobacterium coding sequences. A threshold value that produced 90% true

positive value on promoter sequences was used on the test set. Every sequence (101

bp) was tested by opening a window of size equivalent to the fragment sizes on

which model was trained on, testing the model on the sequence and adding up the

scores as window is shifted I bp.

Table 5.1. 123

Nucleotide composition of Promoters (P) and Non-promoters (NP) of E.coli,

B.subtilis and Mycobacterium. Also included is the percentage composition of GC

content. Equal lengths of sequences were analyzed to obtain the above results.

Table 5.2. 126
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Results obtained by computing the dinucleotide composition of large data sets

(+8000 per data) of promoters (P) and non-promoters (NP) of Ecoli, B.subtilis and

Mycobacterium. Promoter and Non-promoter data for both E.coli and B.subtilis

consisted of 8000 nucleotides each whilst Mycobacterium promoter and non-

promoter datasets constituted 5000 nucleotides each. Outstanding differences in

composition of between promoters and non-promoters of certain dinucleotides are

observed in all three organisms. They include TT, AA, AT and in E.coli and

B.subtilis, and GC and CG in mycobacterium.

Table 5.3. 136

Percentage composition of all sixty-four triplets in promoter (P) and non-promoter

(NP) of the three organisms namely E.coli, B.subtilis and Mycobacterium. Equal

sizes (numbers and fragment sizes) of nucleotides in their natural genomic

environment were analyzed. Triplets with difference of one percent or more (+ 1%)

are highlighted in bold.

Table 5.4. 141

False positive results obtained from the individual hash tables generated from

promoter and non-promoter sequences of the same size (number of sequences and

sequence lengths). Tested sequences have the same fragment sizes as the sets

(promoter/non-promoter) used to develop the table. Five random sequences were

generated from each of the original test sequences (101 bp) to obtain results very

reflective on the actual test data.

Table 5.5. 142

The procedure used to obtain the data is similar to that used to obtain results in

table 5.4. However, datasets have sequences of 75 bp fragment size each. The

average numbers of false positives together with their respective percentage are

shown in columns seven and eight.

Table 5.6. 143
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Triplet frequency distribution analysis results on five thousand E.coli non-promoter

data of 101 bp fragment size. A cut-off value that resulted in 90% TP (true

positive) was manually selected and used as prediction threshold.

Table 5.7. 147

False positive results obtained five thousand (5000) non-promoter sequences using

triplet frequency analysis. All the test sequences used had same fragment sizes as

those used to generate their respective triplet hash values. Threshold values that

resulted in 90% true positive for the 83 actual promoters used were used to judge

the respective test sequences.

Table 5.8. 148

False positives resulting from usmg generated hash tables from the vanous

sequence subsets. Each test sequence had a sequence length of 75 bp. Five random

sequences were generated from every test sequence. The average is then used to

represent the number of false positives.

Table 5.9. 149

Sequence length of test data sets used is 101 bp each. Total number of test
sequences is 5000.

Table 5.10 154

Results obtained on five sets of mycobacterium test sequences used to test the

ability of TFD to discriminate against non-promoter (coding sequences). The test

sequences had fragment sizes equivalent to those used in developing to the

respective hash tables. The average number of false positives per 5000 and the

percentage false positives are shown in the seventh and eight columns respectively.

Table 5.11. 155
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False positive results obtained on five thousand (5000) mycobacterium test

sequences of 75 bp sequence-length each. In each case, threshold value which

resulted in 90% True Positive (TP) was manually selected and used as the cut-off.

Average score for each set and the percentage true positive values are in the

seventh and the eighth columns respectively.

Table 5.12. 156

Results obtained on 5000 sets of mycobacterium test sequences using the hash

models developed from the various sequence sets. Sequences tested had 101 bp

sizes. Just as in the two previous cases, a threshold was selected to obtain 90% true

positive.
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INTRODUCTION

Recent exponential increases in DNA sequences due to advances in sequencing technology

have brought with it new challenges such as new approaches to gene detection, promoter

detection/prediction and homologous pattern recognition. Computational methods, as

compared to traditional laboratory methods previously used in finding genes and protein

binding sites, have therefore become unavoidable. Many biologists are rising to the occasion,

coming up with hosts of algorithms that meet several of these new challenges. There are

currently for example, many gene prediction packages that are accessible via the internet for

both eukaryotes and prokaryotes. Among others, they include GeneMark

(http://genemark.biology.gatech.eduiGeneMark), Orpheus

(http://pedant.mips.biochem.mpg.de/orpheus), GeneID

(http://kisac.cmb.ki.se/sennlinternetlinterne-geneid.html), GRAIL

(http,://avalon.epm.orn1.gov/GRAILI), Genie (http://www-hgc.lb1.gov/proj-ects/genie.html).

GENSCAN (http://bioweb.pasteur.fr/seqanallinterfaces/genscan.html, HMMGENE

(http://www.cbs.dtu.dklserviceslHMMgenel), NetGene2 (http://www.cbs.dtu.dklser-

viceslNetGene2) and GeneParser (http://beagle.colorado.edul~eesnyder/GeneParser.html)

among others. A list of these gene prediction programs together with the corresponding links

to their websites can be found at the following url:

http://www.hgmp.mrc.ac.uklGenomeWeb/nuc-geneid.html.Itis out of scope of this

introduction to discuss various theories and algorithms behind these prediction packages.

However, it is worth mentioning that, the methods of gene detection/prediction used by these

programs cover statistical analytic and training/learning methods such as artificial neural

network, Markov models, hidden Markov models and Bayesian networks. The varieties of

algorithms/methods that are being applied to sequence analysis studies are perhaps an

indication of the commitment that biological sequence analysts have put into annotating and

elucidating the functional mechanism of genomes. Current genome annotations vis a vis gene

predictions kept at Genbank are not complete unless annotations of the respective promoters

of the corresponding genes promoter are carried out.
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Promoter detection/prediction in a relatively difficult area of research. Prokaryotic promoter

detection/prediction is probably less researched, if the current available number of promoter

prediction tools on internet is used as a measure. Thus, whereas there are quite a number of

promoter detection systems available on the internet

(http://www.hgmp.mrc.ac.uk/GenomeWeb/nu-geneid.html) most of them have been

developed for eukaryotes. Eukaryotic promoter detection systems currently available on the

internet include Autogene (ftp.bionet.nsc.ru/pub/biology/aug), GeneID/Promoter2.0

(Knudsen, 1999), PromFind (Huchinson, 1996), PromoterS can (Prestridge, 1995); TSSG and

TSSW (Solovyevand Salamov, 1997), PromoterInspector

(http://genomatix.gsf.de/accounts/Help/PromoterInspector help.html), NNPP (http://www-

fruitfly.org/seq tools.promoter.html). Also available is the Eukaryotic Promoter Database

(EPD) at the url: http://cmgm.stanford.edu/help/manual/databases/epd.htm1#search. The

prokaryotic prediction/detection on the internet, neural network promoter prediction (NNPP)

was developed using artificial neural network system. A preliminary test of NNPP on a data

set of five E.coli promoters and twenty-six (26) E.coli coding sequences of 75 bp sequence

length using a threshold of 6.0 resulted in 3/5 (60%) true positives (TP), 2/5 (40%) false

negatives (FN), 13/26 (-50%) false positives (FP) and 13/26 (50%) true negatives (TN). This

preliminary analysis revealed the predictive accuracy of the NNPP to be low, having high

false positive rate predictions. This observation has already been noted by other researchers

such as Fickett (Fickett, 1998). One probable reason why NNPP does not do better is

because, it is not designed for a particular prokaryotic organism. Due to the variability of the

transcriptional machinery in prokaryotes as reflected on the availability of several known

sigma factors, promoter prediction in prokaryotes has to be at least species specific for it to

be very effective. Also, species specific programs would be more accurate if enough training

datasets are available. However, some prokaryotic promoters have been found to transcribe

genes found in different species. For example, Mycobacterium heat shock promoters have

been found to function in E.coli (Stover et al., 1991). However, there are reasons to believe

that, most promoters are gene specific and in most cases only transcribe genes in their

respective genomes.

There are some prokaryotic promoter datasets available upon request. Among others are,

Bisubtilis sigma A promoters (Helmann, 1995) and E.coli promoter sequences (Hannah and
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Margalit, 1993). However, they are not catalogued as databases and constitute mostly

experimentally determined promoters. There are still quite a number promoter sequences

available in the respective genomes of organisms whose entire genomes have been

completely sequenced or about to be completely sequenced that need to be elucidated and

analyzed.

There have been many attempts directed at predicting promoter sequences associated with

respective genes, especially in E.coli. The quest has become even more pressing due to the

availability of a number of completely sequenced prokaryotic genomes. Prokaryotic promoter

prediction methods used to date include Statistical Analysis (Horton and Kanehisa, 1992;

Oppon and Hide, 1998), Hidden Markov Models (Yada et al., 1996; Pedersen et al., 1996),

Word and Pattern Matching Analysis (Pesole et al., 1992; Bourn and Babb, 1995), Artificial

Neural Network (Pedersen and Engelbrecht, 1995; O'Neil, 1989; O'Neil, 1992; Mahadevan

and Ghosh, 1994; Lukashin et al., 1989). Other methods that have been used in promoter

prediction are given in algorithms using Expectation Maximization (Cardon and Stormo,

1991), in Rigorous Pattern Recognition Analysis (Galas et al., 1984) and in Cluster Analysis

(Ozoline et. al., 1997). Most of the above approaches have had some degree of success with

the task of promoter prediction, but they also predicted many sequences that were not known

to have promoter activity according to existing data on E.coli promoters. Pederson et al.

(1996) combined Artificial Neural Network (ANN) and Hidden Markov Model (HMM) in a

move to increase the accuracy of promoter prediction. Hypothetically, combined algorithms

(two) are expected to perform better than a single algorithm if the predictions are filtered

through each method and perhaps three models/algorithms even better than two methods. It is

in this context that this research is being undertaken.

OBJECTIVES
The project/research is designed to answer the following questions:

(a) Whether there is a minimum promoter dataset (for most or all prokaryotes) that is needed

to effectively train prediction systems on so as to output predictions of high accuracy.

(b) Determine which section of prokaryotic region, if any, can be classified as 'true'

promoter region.
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(c) To investigate the possibility of integrating more than two prediction systems together so

as to come up with a more effective promoter prediction tool.

(d) Use the integrated prediction systems to create a database of E.coli, B.subtilis and

M. tuberculosis promoter sequences.

The initial focus has been set on M.tuberculosis because of tuberculosis epidemic in the

country (South Africa), especially in the Western Cape. With the regulatory regions of the

various genes well categorized, researchers will be able to focus on genes and their promoters

and use the information in their effort to find a solution to the tuberculosis problem. A

database of Mituberculosis predicted promoters will be established and eventually for other

prokaryotic organisms too. Lastly, a prediction system that would require minimal number of

prokaryotic promoter sequences for training will be created at the website of South African

National Bioinformaties Institute. This prediction system, expected to have high degree of

accuracy will be available to the world scientific community. The promoter prediction system

will incorporate Artificial Neural Network (ANN), Hidden Markov Model (HMM), and a

statistical approach based on analysis of triplet nucleotide composition of promoter and non-

promoter sequences (Triplet Frequency Distribution Analysis - TFDA). ANN and HMM

were selected based on their availability. TFDA used in generating values for specific triplets

is a creation of the author of this dissertation.
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Chapter One

Review on Prokaryotic and Eukaryotic Promoters

ABSTRACT

This chapter outlines basic gene structure and how gene structure is related to promoter

structure in both prokaryotes and eukaryotes and their transcription machinery. An in-depth

discussion is given on variations types of the promoters among both prokaryotes and

eukaryotes and as well as among three prokaryotic organisms namely, E.coli, B.subtilis and

Mycobacteria with emphasis on Mituberculosis.

1.0. What is a Promoter?

The simplest definition that can be given for a promoter is: It is a segment of

Deoxyribonucleic Acid (DNA) sequence located upstream of the 5' end of the gene where the

RNA Polymerase enzyme binds prior to transcription (synthesis of RNA chain representative

of one strand of the duplex DNA). However, promoters are more complex than defined

above. For example, not all sequences upstream of genes can function as promoters even

though they may have features similar to some known promoters (from section 1.2).

Promoters are therefore specific sections of DNA sequences that are also recognized by

specific proteins and therefore differ from other sections of DNA sequences that are

transcribed or translated. The information for directing RNA polymerase to the promoter has

to be in section of DNA sequence defining the promoter region. Transcription in prokaryotes

is initiated when the enzyme RNA polymerase forms a complex with sigma factors at the

promoter site. Before transcription, RNA polymerase must form a tight complex with the

sigma/transcription factor(s) (figure 1.1). The 'tight complex' is then converted into an 'open

complex' by melting of a short region of DNA within the sequence involved in the complex

formation. The final step in transcription initiation involves joining of first two nucleotides in

5
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a phosphodiester linkage (nascent RNA) followed by the release of sigma/transcription

factors. RNA polymerase then continues with the transcription by making a transition from

initiation to elongation of the nascent transcript.
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Figure 1.1. Prokaryotic RNA polymerase comprising of the four subunits (a, ~1, ~2, and c)

in open complex formation with the nucleotide sequence of the promoter region. The above

figure is not drawn to scale. The sigma (o) unit of the enzyme is believed to be responsible

for directing the RNA polymerase to the promoter.
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A detailed study of promoters must encapsulate RNA polymerase together with

transcriptional machinery. Thus, most discussions on promoters in this dissertation are given

in context with RNA polymerase enzyme, transcriptional factors and processes involved in

transcription. In studying prokaryotic promoter regions; the scope of current research, it is

instructive to consider gene structure and the analogous, but more complex, eukaryotic

promoter elements together with the associated transcriptional machinery.

1.1. DNA and Gene Composition.

A gene in its simplest form may be defined as a sequence of deoxyribonucleic acid (DNA)

containing codes for a gene product. DNA usually refers to polynucleotide strands twisted

around each other in a double helix structure. Carbon phosphate backbones on the outside of

the helix support nucleic acid bases adenine (A), thymine (T), guanine (G) and cytosine (C).

Each polynucleotide strand has a chemical polarity and is described as having opposite 5' and

3' ends. The polarity is based on the position of the carbon atom on the pentose ring to which

phosphate groups bind in either direction. Any given region of the DNA helix might contain

genetic information. The genetic code is read as a series of codons from the 5' end of the

gene that has the first nucleotide in the triplet codon. Each codon consists of three base pairs

(bp) equivalent to a reading frame, which in tum corresponds to a single amino acid. There

are 20 amino acids coded for by 61 triplet combinations from the four nucleotides. Genes

may also be defined as the smallest functional unit of inherited genetic information that can

be translated into a diffusible protein product or ribonucleic acid (RNA). Genes may be either

housekeeping genes i.e. expressed in most tissues at all stages of development or tissue

specific genes, i.e. requiring some degree of control over timing and levels of expression.

Genes may be divided into two classes; structural genes and regulatory genes. The products

of structural genes are protein and RNA products. Regulatory genes as the name suggests

code for protein products (structural genes) that are involved with the regulation of other

genes. Regulatory genes together with cis-acting elements (sequence of DNA that functions

only as DNA elements in situ affecting only the DNA to which it is physically linked)

constitute control/regulatory elements. Cis-acting DNA elements include operators in

8
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prokaryotes, enhancers and silencers in eukaryotes, and promoters and terminators in both

prokaryotes and eukaryotes.

1.2. Eukaryotic Promoters

Eukaryotic promoters consist of short sequence elements usually but not always found

upstream of the transcriptional start site and are recognized by transcription binding factors.

These cis-acting elements are usually spread out over a region of 200 bp. The function of the

sequences between them are known to date, although the separation of the elements brought

about the sequences that are not part of the element may have something to do with the

conformation of the binding proteins. Some of these elements and the factors that recognize

them are common: they are found in a variety of promoters and are used constitutively whilst

other elements and their factors are specific to particular classes of genes (Lewin, 1997). The

elements occur in different combinations in individual promoters. Accessory factors

(transcription factors) are needed for transcription initiation but are not required for the

subsequent elongation. The transcription factors other than RNA polymerase enzyme(s) are

principally responsible for recognizing the cis-acting elements in the promoter region.

Transcription initiation at an eukaryotic promoter therefore involves a large number of

transcription factors that bind to a variety of cis-acting elements. An eukaryotic promoter

may there be defined as the region containing all these binding sites. Thus the major feature

defining the promoter for eukaryotic RNA polymerase is the location of binding sites for the

transcription factors. Three types of RNA polymerase namely, RNA polymerase I, II, and III

have been identified in eukaryotes. These three RNA polymerases bind to various kinds of

promoters. Promoters used by RNA polymerases I and II are mostly upstream of the

transcription start site. Some of the promoters used by RNA polymerase III are found

downstream of the transcription start site. RNA polymerase I and III each recognize a

relatively restricted set of promoters, and rely upon a smaller number of accessory factors

(Reeder, 1984; Moss and Stefanovsky, 1995; Kahl et al., 2000). Accessory factors are

proteins that help with transcription but do not make direct contact with the basal

transcription factors. Promoters associated with the various RNA polymerases are discussed

below.
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1.2.1. RNA polymerase I promoters.

Pre-ribosomal RNA is the sole transcript product RNA polymerase I. Consequently, RNA

polymerase I requires recognition of only one kind signal in promoters for the expression of

all genes it transcribes. RNA polymerase I has been found to be highly regulated to respond

to both general metabolism (e.g. growth rate) and to specific environmental changes (Sollner-

Webb and Tower, 1986; Reeder, 1990; Sollner-Webb and Mougey, 1991). Systematic

analyses carried on the nucleotide sequences around the origins of transcription of some

ribosomal DNA (rDNA) in different organisms revealed no common pattern among the

nucleotide sequences (Sommerville, 1984; Moss et al., 1984) constituting promoters. The

authors therefore suggested that, RNA polymerase I transcription system appear to have

diverged considerably between organisms. They perceived the ribosomal transcription to be

generally specific to taxonomic orders, the promoter of one group not being recognized by

the transcription factors of another. Therefore, RNA polymerase I promoters have been

thought to exhibit stringent (Grummt et. al., 1982) but not absolute (Pape et al., 1990) species

specificity in its function. Some evidence suggests the existence of a common organization of

all the promoters (Kownin et. al., 1985; Musters et. al., 1989; Firek et. al., 1990; Read et. al.,

1992). These authors suggest that, the ribosomal promoter consists of essentially two

domains or motifs. There is a 'proximal promoter domain' (also called the minimal or core

promoter) of ~45 bp, which includes the transcription start site. It is believed to be absolutely

required for determining the accuracy of initiation. The other domain is an 'upstream

promoter domain' or 'upstream control element' (VCE), at about ~150 bp from the

transcriptional start site.

Scientific literature reveal that, RNA polymerase I promoter has been best studied in human

cells, where it has been found to consists of a bipartite sequence in the region preceding the

transcriptional start site. The core promoter surrounds the start site extending from -45 to

+20, and is believed to be sufficient for transcription to initiate. However, the efficiency of

the core promoter (-45 to +20) is very much enhanced by the upstream control element

(VCE), which extends from -180 to -107. Both the core promoter and the upstream control
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element have been found to have unusual composition for a promoter because they are very

GeC-rich (Henderson and Sollner- Webb, 1990; Smith et al., 1993).

-170 -110 -40 -20 +1 +10

Fig.l.2. Eukaryotic RNA Polymerase I has a core promoter separated by ~70 bp from the

upstream control element (VCE).

1.2.2. RNA polymerase II Promoters.

Promoters bound by RNA polymerase II are thought to be very diversified. Similarities of

short sequences in the region near the start site are observed whenever promoters used by

RNA polymerase II are compared. Analysis of mRNA transcripts around the start site

revealed a high probability of first nucleotide of the start site to be A, flanked on either side

by pyrimidines. This region around the start site has been defined as initiator, Jnr (Smale and

Baltimore, 1989) and it mostly consists of short weakly conserved motifs (Weis and

Reinberg, 1992). The Jnr is usually found between position -3 and +5. The transcriptional

start site (tss) of RNA polymerase II promoters is usually identified by the Jnr and/or by the

TATA box close by. Mutational analyses have shown that, the initiator element is important

for directing the synthesis of properly initiated transcripts (Goodrich et al., 1992) of all

polymerase II promoters harboring Jnr. The efficiency and specificity with which a promoter

is recognized by RNA polymerase II however, is believed to depend on short sequences

further upstream that are recognized by upstream, or inducible factors. These sequences and
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the factors that recognize them may be common for a wide variety of promoters, or they may

be specific and particular for transcription in a restricted time or place (Nikolov and Burley,

1997).

Three short sequences found around -30, -75 and -90 make up the core promoter. The TATA

box (centered around -30) is the least effective component of the promoter as measured by

the reduction in transcription that is caused by mutations (Lewin, 1997). Although initiation

is not prevented when a TATA box is mutated, the start site of transcription varies from its

usual precise location, confirming the role of the TATA box as a crucial positioning

component of the core promoter (Wang and Stumph, 1995).

The sequence found around -75 is the CAAT box. It is often been found to be located up to-

80. The CAAT box has been found to retain its promoter functionality at distances that vary

considerably from the start site. Mutation experiments in and around the CAAT suggest that,

the CAAT box plays a strong role in determining the rate at which the polymerase transcribes

the adjacent genees). Though CAAT does not appear to playa direct role in promoter

specificity, research has shown that, its increases promoter strength. Another element, the GC

box, is found around -90 and usually contains the sequence GGGCGG. Multiple copies the

GC box in either orientation are found in some polymerase II promoters. Promoters of RNA

polymerase II appear are organized on a principle of "mix and match." Any combination of

the promoter elements may contribute to promoter function, but none of the elements appear

to be essential for all promoters.

12

www.etd.ac.za



•GC CAAT TATA tss Inr

Figure 1.3. Cartoon depiction of RNA polymerase II promoter. Promoters are organized on a

principle of'mix and match'. This means that, none of the elements is absolutely essential for

promoter function but any combination of these elements is good enough for the RNA

polymerase II to start transcription.

1.2.3. RNA Polymerase III promoters

RNA polymerase III promoters can be categorized into two general classes recognized in

different ways by different groups of transcription factors. The promoters for 5S and tRNA

genes are described as internal; that is, they lie downstream of the transcription start site.

Promoters for other genes such as small nuclear RNA (snRNA) genes are found upstream of

transcription start site in the more conventional manner and belong to the second class of

polymerase III promoters (Lobo and Hernandez, 1989; Tichelaar et al., 1994). The internal

control regions required by class I RNA polymerase III promoters are generally composed of

discontinuous elements of essential (necessary for promoter function) motifs separated by not
,

yet functionally elucidated regions. An example can be found with the Xenopus laevis

somatic 5S rRNA gene, which requires three internal elements for efficient transcription.
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These elements are: - an 'A' block, located between +50 and +64, an intermediate element

('B') at +67 to +72 and a C block from +80 to +97 (Roeder et al., 1987). The promoter is

widely believed to relatively intolerant of changes in the spacing between individual elements

(Roeder et al., 1987). The same type of internal motif has also been found in the 5S rRNA

genes of many lower organisms, including D.melanogaster (Sharp and Garcia, 1988) and

S.cerevisiae (Lee et al., 1995). These promoters, described above are unique to 5S rRNA

genes and are referred to as type I promoter (figure l.4A).

The most common promoter arrangement in RNA polymerase III is found in tRNA genes of

the adenovirus VA genes (Paule and White, 2000). Referred to as type II promoter, it is made

up of two highly conserved sequence blocks named block A and block B within the

transcribed region (Fig. I.4B). The distance between block A and block B in a type 2

promoter have been found to vary quite extensively. Studies have revealed that, the boxes

cannot often be brought too close together without abolishing promoter function (Fabrizio et

al., 1987). The position of block B has been found to be extremely variable. Inter block

separation of -30-60 bp are said to be optimal for transcription, though a distance of around

365 bp from the start site have been found to be tolerated (Baker et al., 1987).

A relatively minor group of polymerase III promoters have their promoters sequences located

upstream of the transcriptional start site in the more conventional manner. These promoters

have been grouped into the second class of RNA polymerase III promoters. Human and

mouse U6 snRNA promoters are examples of promoters belonging to this group. The class

two polymerase III promoters have been found to retain full promoter activity even after the

deletion of all sequences downstream of transcriptional start sites (Lobo and Hermandez,

1989). Other promoters that have been found to have similar characteristics are human 7SK

and MRP/7-2 RNA genes (Murphy et al., 1987; Yuan and Reddy, 1991).

The best characterized type III RNA polymerase III promoter belongs to a human U6 gene

(Fig. l.4C). The sequences required for efficient transcription are a TATA box, between -30

and -25, a proximal sequence element (PSE) between -66 and -47 and a distal sequence

element (DSE) between -244 and -214 (Bark et al., 1987; Carbon et al., 1987).
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Figure 1.4_ RNA polymerase III type I (A), type II (B) and type III (C) promoters. Type I

promoter consists of bipartite sequences downstream of the start site, with boxA separated

from boxB by intermediate elements (IE). Type II promoters (B) also consist of two boxes

boxA and boxB found downstream of transcription start site (+1). Type three promoters (C)

consist of separated sequences upstream of the start site (DSE, PSE and TATA).

Transcription termination sites are indicated by Tn.

15

www.etd.ac.za



1.3. Prokaryotic Promoters.

Prokaryotic promoters appear to be less complex (size and number of elements recognizable

by sigma factors) than their eukaryotic counterparts though there are some similarities. For

example, both are recognized by other factors before RNA polymerase binding. Prokaryotic

promoters vary in their affinities for RNA polymerase, a factor very important with regard to

controlling the frequency of transcription and therefore the extent of gene expression.

Unregulated transcription initiation at many prokaryotic promoters have been found to

require only an RNA polymerase holoenzyme, which consists of four core subunits with a

dissociable c factor. Multiple c factors have been identified and each programs the core

enzyme to transcribe from different class of promoters. Prokaryotic promoters direct not only

the site of transcription initiation but also the rate of transcription. Earlier studies

(Chamberlin, 1974; Hawley et al., 1982), have established that, promoter strength (as defined

by degree which transcripts of the corresponding genes are produced) is primarily determined

by two factors: the binding affinity to RNA polymerase and the rate of isomerization from

'closed promotér complexes' (DNA remains duplex) to 'open promoter complexes' (DNA

opened by 'melting').

Since the methods that will be used on mycobacterial promoter study will initially be applied

on a study of E.coli and B.subtilis promoters, the promoters of these two organisms are also

reviewed together with those of mycobacteria.

1.3.1. E.coli promoters

More than 300 promoters have been experimentally characterized by various researchers. A

striking observation is lack of any extensive conservation of sequence over the 60 bp

commonly associated with RNA polymerase interaction. There are four notable features in

most E.coli promoters; the transcriptional start site, the -10 hexamer, the -35 hexamer and the

distance between the -10 and -35 sequences. The transcriptional start site has been found to

be purine in more than 90% of characterized promoters (Hawley and McClure, 1983). It is

common for the transcription start site to be the central base within the sequence CAT, but
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the conservation of this triplet is not great enough to regard it as an obligatory signal

(Rosenberg and Court, 1979; Siebenlist et al., 1980; Hawley and McClure, 1983). Just

upstream of the start site, a six base pair (bp) motif is recognizable in most promoters. The

center of the hexamer is often close to 10 bp upstream of the tss. The distance varies in

known promoters from 18 to 9 from transcriptional start site. Named for its location, the

hexamer is often called -10 sequence. lts consensus is TATAAT and can be summarized in

the form T80A95T45A60A50T96where the subscripts denote the percent occurrence of the most

frequently found base (figure 1.5). The other conserved hexamer is around ~35 bp upstream

of the start site. The consensus for -35 has been universally accepted as TTGACA (Hawley

and McClure, 1983). In more detailed form, the conservation is T82T84G78A65C5~5(figure

1.5) (Hawley and McClure, 1983). The distance separating the -35 and -10 sites has been

found to be between 16 and 18 bp in 90% of the promoters (Hawley and McClure, 1983).

With very unusual exceptions, it may be as short as 15 bp or as wide as 21 bp. The distance

may be critical in holding the two sites at the appropriate distance for the geometry of RNA

polymerase (Olekhnovich and Kadner, 1999). An ideal E.coli promoter may consist of the -

35 hexamer separated by 17 bp from the -10 hexamer with the -10 hexamer lying about 7 bp

upstream of the start site. The -35 motif is said to provide the signal for recognition by RNA

polymerase, while the -10 sequence allows the complex to convert from 'closed' to 'open'

form (Hawley et al., 1982).
Other researchers have established another important sequence element in addition to the four

mentioned in some E.coli promoters (Newlands et al., 1992; Ross et. al., 1993; Rao et. al.,

1994). The seven E.coli rrn genes, which encode ribosomal RNA, are unusually strong,

accounting for more than 60% of total RNA system in rapidly growing cells. The exceptional

strength of the rrn promoter has been attributed to an AT-rich sequence of ~20 bp located

immediately upstream of the -35 motif. This region with the AT-rich motif has been termed

upstream element or UP element (Ross et. al., 1993). The authors used two pieces of

evidence to establish that UP element is recognized by RNA polymerase .

.,.
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·35 and ·10 hexamers

Figure 1.5. shows a mono-nucleotide distribution logo of nucleotides around transcription

start sites (position 51) of 115E.co/i promoter sequences. The canonical-35 (TTGACA) and

-10 hexamers (TATAAT) are located at positions 15 to 21 and 39 to 44 respectively.

Promoter data was obtained from Hawley and McClure (1983) and the informational analysis

used is sequence logo (Schneider, 1997)
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First, the UP element was found to function in vitro in a transcription system containing only

purified RNA polymerase and the promoter DNA sequences. The second evidence was in a

DNAase I footprinting experiments, where RNA polymerase was found to protect the UP

element yielding a ~20 bp extended footprint (Busby and Ebright, 1994). The UP element is

believed to be functional as face of the helix phasing is maintained with respect to the

transcriptional start site. The functional nature of UP elements when kept in phase with the

helix was confirmed when mutations that change the spacer length in promoters altered the

level of transcription in vitro (Ross et al., 1993). RNA polymerase has in general been found

to tolerate changes in spacer length provided that they are compensated for by alterations in

the conformation of the DNA, such as superhelix formation, so that the actual distance

between the -35 and -10 signals remains the same (Ozoline and Tsyganov, 1995). The

sequence immediately around the start site is believed to influence the initiation event and the

initial transcribed region (from +1 to +30) influences the rate at which RNA polymerase

clears the promoter and therefore has an effect upon promoter strength (Lewin, 1997). Thus,

the overall strength of an E.coli promoter cannot be predicted entirely from its -35 and -10

consensus sequences. A typical promoter may rely upon the -35 and -10 hexamers to be

recognized by RNA polymerase, but one or other of these sequences can be absent from some

exceptional promoters (Szoke et al., 1987; Kobayashi et al., 1990). In some of the cases, the

promoters may not be recognized by RNA polymerase alone; it may require the intercession

of ancillary proteins, which are thought to overcome the deficiency in intrinsic interaction

between RNA polymerase and the promoter (Deuschle et al., 1986; Keilty and Rosenberg,

1987; Belyaeva et al., 1993).

1.3.2. B.subtilis Promoters

B.subtilis and E.coli promoters transcribed by either EaA or Ea70 have several similarities:

the conserved sequences in the -35 and -10 hexamers, the distance between the two hexamers

and the position of the transcription start site (Yamada et al., 1993). Thus most B.subtilis

promoters normally function well in E.coli (Henkin and Sonenshein, 1987; Yamada et al.,

1991; Chang et al., 1992). However, some functional E.coli promoters e.g. lacUV5 are not
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transcribed by B.subtilis RNA polymerase (Henkin and Sonenshein, 1987). B.subtilis

promoters have also been found to contain several moderately conserved sequences that may

be the key to promoter being utilized effectively. These features may include A- and T-rich

motifs upstream of the -35 hexamer and A residues just downstream of the -10 hexamer

(Helmann, 1995). In addition to these sequences, a region ending 1 base upstream from the -

10 motif appears to be conserved (Helmann, 1995). The sequence 5'-RTRTG -3' (R = purine)

was first found to be conserved in nine B.subtilis promoters and was termed the -16 motif

(Moran et al., 1982). A more comprehensive analysis of 142 promoters, all with

experimentally determined transcription start site confirmed the conservation of the -16 motif

(Helmann, 1995). A 'TG' dinucleotide motif, positioned 1 base upstream of the -10 motif

was found in 45% of the B.subtilis promoters, T in 52% and the G in 58% of promoters

(Helmann, 1995). The 'T' and the 'R' residues were also found to be correlated with the

presence of the TG dinucleotide in some promoters (Helmann, 1995). Such promoters

(extended -10) include a derivative of the A Pre promoter (Keilty and Rosenberg, 1987), the

galP1 promoter (Chan and Busby, 1989) and the cysG promoter (Belyaeva et al., 1993). The

'extended -10 promoters' lack an identifiable -35 motif but are transcribed by Ecr70 (Camacho

and Salas, 1999). These promoters appear to bypass the need for a -35 motif with the TG

motif (Keilty and Rosenberg, 1987; Belyaeva et al., 1993; Chan et al., 1990). Point mutations

in the TG motif of the A Pre, galP 1 and cysG promoters reduced or eliminated promoter

function (Keilty, and Rosenberg, 1987; Chan, and Busby, 1989; Belyaeva et. al., 1993). The

TG motif was found to reduce the temperature requirement for open complex formation by

20°C after being introduced into gaiPcon6 promoter (Bums and Minchin, 1994). The

reduction in temperature requirement may suggest that, the TG motif may be important in

isomerization of promoter-enzyme-factor complex from a closed to an open complex in

transcription initiation.

Further analysis of the dinucleotide composition of some more Ecr70 revealed A2 (AA) and

T2-rich (TT) sequences in the upstream promoter region (-36 to -70) which are phased with

the DNA helix: An tracts are common near -43, -54, and -65; whilst T, tracts predominate at

the intervening positions (Helmann, 1995). When compared with larger regions of the

genome, upstream promoter regions have an excess of An and T, sequences for n>4
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(Helmann, 1995), where n denotes an integer. These data indicate that, an RNA polymerase

binding site affects DNA sequence as far upstream as -70 (Helrnann, 1995). Overall, the

pattern of nucleotide conservation is reminiscent of that observed for E.coli promoters

(Putzer and Leautey, 1994; Harley and Reynolds, 1987) and can be summarized as TTGaca

(N17+- I) TAtaaT (where bases in capital letters are present in more than 70% of promoters).

As inferred from biochemical studies (Henkin and Sonenshein, 1987; Moran et. al., 1982),

B.subtilis appears to be less tolerant of deviation from this 12 bp consensus than E.coli. On

average, B.subtilis promoters match consensus at 9.1 positions compared with only 7.9 for

E.coli (Lisser and Margalit, 1993; O'Neill, 1989). Perfect (12 out of 12) matches to this

consensus are found in four out of the 125 chromosomal promoters (glnR, rpmH, spoIIE and

trnS) but in none of 298 tabulated E.coli promoters (Lisser and Margalit, 1993). In addition,

relatively few B.subtilis promoters (seven out of 125) lack an identifiable -35 motif (less than

3/6 match to consensus), although not all of the assigned -35 motifs are necessarily functional

(Chassy and Murphy, 1993). Many other positions within the promoter have been found to

exhibit a lesser degree of sequence conservation. Further statistical analysis revealed

conservation of a Tat -48, an A-rich region near -43, TnTG at -17 to -14 and a downstream

extension of the -10 motif (Helmann, 1995). Each of these features was noted previously

based on an alignment of 29 promoters from several different gram-positive organisms

(Graves and Rabinowitz; 1986), but they are not prominent in alignments of E.coli promoters

(Harley and Reynolds, 1987; Hawley and McClure, 1983; Lisser and Margalit, 1993). The

conserved -35 and -10 elements are most frequently separated by a 17 base spacer region as

found for E.coli promoters (Helmann, 1995).

Many of the promoters used in M.tuberculosis studies were actually promoters from other

mycobacteria. This is due to the unavailability of sufficient number of experimentally

characterized M.tuberculosis promoters. As a result, M.tuberculosis promoters are discussed

together with Mycobacterial promoters in general. Details on all the mycobacteria species

and their corresponding promoters used in the study are documented on section 3.2.3.
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1.3.3. Mycobacterial Promoters

1.3.3.1. Functionality in E.coli

Mycobacterial genomes have a high G+C content, for example, Mituberculosis contains

65.9% G+C. Since the G+C content of a genome affects codon usage and promoter

recognition (Nakayama et al., 1989; Ohama et al., 1987), it is expected that, transcription

signals in mycobacteria may differ from those in other bacteria with different G+C

composition such as E.coli. Although there are exceptions, mycobacterial promoters function

poorly in E.coli (Sirokova et al., 1985; Das Gupta et al., 1993). Notable among the

exceptions are mycobacteria heat shock promoters (Stover et al., 1991). Sequence similarities

have been found between the mycobacterial heat shock promoters and consensus promoters

recognized by cr70 and cr32 of E.coli. Among the mycobacterial promoters shown to be

active in E.coli is the 16rRNA promoter of Mibovis. Suzuki et al. (1991), for example,

expressed the Mbovis BCG 16S rRNA promoter in vivo and in vitro using the E.coli RNA

polymerase. The authors identified a promoter upstream of the gene that showed similarity to

E.coli promoters and was recognized by E.coli RNA polymerase. It was demonstrated that,

the strengths of the E.coli and Mbovis BCG rrn promoters were identical when tested in

E.coli. (Suzuki et al., 1991). The E.coli RNA polymerase did not however utilize another

putative promoter of the BCG rrn, suggesting that, the second promoter may be recognized

by a specific o factor not present in E.coli. Other mycobacterial promoters that have been

shown to function in E.coli are those associated with the 65 kDa antigens of Mituberculosis

(Shinnick, 1987), Mbovis BCG (Thole et al., 1987), M.leprae (Mehra et al., 1986) and the

biotin carrier proteins of several species (Collins et al., 1987). More examples include

Mituberculosis 38 kDa antigen (Andersen et al., 1988), M'paratuberculosis pAN promoter

clone (Murray et al., 1992), the M fortuitum blaF (Timm et al., 1994), the Mleprae 18 kDa

antigen (Dellagostin et al., 1995), the Mituberculosis katG (Mulder, 1998) and promoter-

containing clones isolated from M. paratuberculosis (Thomas et al., 1992). In all cases,

expression in E.coli was less efficient than in the natural hosts (Mulder et al., 1997). Das

Gupta et al.(1993), made libraries of Mituberculosis H37Rv and Msmegmatis genomic DNA
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III an E.coli-mycobacterial shuttle vector containing a chloramphenicol acetyltransferase

(CAT) reporter cassette and selected for clones expressing CAT. None of the Mtuberculosis-

derived promoters and only 12 % of the Msmegmatis-derived promoter plasmids conferred

chloramphenicol resistance on E.coli host cells. The authors suggested the existence of a

good sequence similarity between E.coli and mycobacterial promoters at the -35 consensus,

but significant variation at the -10motif. The authors used these promoters and other

mycobacterial promoter sequences to generate the following probable consensus: -35: T (100

%), T (55 %), G (100 %), A (67 %), C (75 %), A (50 %); and -10: T (70 %), A (75 %), T (60

%), A (60 %), NT (40 %), T (75 %). This study was however only limited to mycobacterial

promoters that were known to be active in E.coli.

1.3.3.2. Promoters in both Fast and Slowgrowers (Mycobacterium).

Due to the slow growth and pathogenicity of M tuberculosis, most of the promoters from this

organism have been studied in either Msmegmatis or M.bovis Bacillus Calmette-Guerin

(BCG) host. The expression of genes in fast growers such as Mbovis lM.smegmatis using

promoters from slow growers, e.g. M.tuberculosis have provided evidence that,

transcriptional signals are generally conserved among mycobacteria. Bashyam et al. (1996),

for example, demonstrated that the efficiency and specificity of transcriptional recognition is

conserved in Mtuberculosis, M.smegmatis and M.bovis BCG. The promoter clones examined

in these three hosts exhibited similar activities and utilized the same transcription start sites.

The authors suggested that Msmegmatis could be used as a surrogate host, at least for

studying constitutively expressed M.tuberculosis genes. Similar results have been reported

for the M.tuberculosis l6S rRNA (Verma et al., 1994), the Mleprae 18 and 28 kDa antigen

and M.bovis BCG hsp60 genes (Dellagostin et al., 1995). Although certain promoter

sequences appears to be conserved among mycobacteria, there are likely to be differences in

other aspects of the transcription machinery between the slow growers and the fast growers.

The M.smegmatis transcription machinery has been shown to use the M.bovis BCG hsp60

promoter in a similar manner to BCG. However, only one transcription start site was active in

M.smegmatis (Levin and Hatfull, 1993). In addition, Timm et al. (1994), reported differences
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in the relative strengths of three mycobacterial promoters in M.smegmatis and Mbovis BCG.

Thus the viability of studying M.tuberculosis promoters in other mycobacterial hosts may

depend on the particular promoter to be examined.

1.3.3.3. M.tuberculosis Promoters

Unlike E.coli and B.subtilis, relatively fewer Mtuberculosis promoters (-35 to date) have

been experimentally characterized. and even less (-32 promoters) have their transcriptional

start site experimentally characterized. However, many researchers have been actively

involved in elucidating features characteristic of M.tuberculosis promoters. Kremer et al.

(1995), carried out a detailed study of the promoter region of the Mtuberculosis 85A antigen

gene. They made progressive deletions of the 5' end using nuclease BaI3I. All of the

deletions resulted in lower levels of expression than the full length fragment. Removal of the

first 44 bp resulted in a 40 % decrease in promoter activity. Further studies revealed that, the

essential promoter region to be between nucleotide -26 and -136 with respect to the

translation initiation codon. The transcriptional start site was found to be located 63 bp

upstream of the proposed ATG initiation codon. The -10 hexamer showed some similarities

to other mycobacterial promoters and to some Streptomyces promoters (which were not

expressed in E.coli). Two putative -35 motifs were identified. One (17 bp from the -10

hexamer) showed 50% sequence similarity with that of (170 promoters. The other (located 22

bp from the -10 motif), showed 83 % identity with the E.coli (170 consensus sequence and was

identical to the -35 motif of the Mleprae and M.tuberculosis 16S rDNA promoter regions.

Das Gupta et al. (1993) also isolated a number of Mtuberculosis H37Rv and M.smegmatis

DNA fragments able to promote expression of the CAT reporter gene in Msmegmatis. They

found that, the frequency of isolation of promoter clones was 10-20% for Msmegmatis (350

altogether) and 1-2 % for Mtuberculosis (125 altogether). Most of the promoters from

M.tuberculosis gave CAT activities of 5-100 nmol/min/mg protein, while most of the

Msmegmatis promoters gave much higher activity (>500 nmo1/minlmg protein). The authors

suggest that, strong promoters occur less frequently in Mtuberculosis than in Msmegmatis.

This is consistent with the lower frequency of isolation of promoters from M tuberculosis by

Das Gupta et al. (1993). However, the observations may have been due to the expression of
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the M.tuberculosis promoters in a heterologous host (Mulder et al., 1997). Bashyam et al.

(1996) sequenced 10 of the Mtuberculosis promoters isolated in the above-mentioned study

and aligned them on the basis of their transcription start sites. All contained a conserved -10

motif at similar positions upstream of their transcription start sites. The conserved sequences

were T (80 %), A (90 %), Y (60 %), g (40 %), A (60 %), and T (100 %) where Y denotes a

pyrimidine base.

As in E.coli, the first, second, and sixth nuc1eotides of the -10 motif are most strongly

conserved. The less conserved bases tend more towards G and C substitutions. None of the -

35 motifs of the promoters studied were homologous to the E.coli consensus sequence and

none were conserved in the mycobacteria. The authors suggest that the absence of a

conserved -35 motif is a distinctive feature of mycobacterial promoters (Bashyam et al.,

1996). This suggestion from Bashyam et al., (1996) is in contrast to the findings of Ramesh

and Gopinathan (1995), but is supported by the results of Sarkis et al. (1995), Kremer et al.

(1995) and Kenney and Churchward (1996). In other studies, deletion analysis of one

Mituberculosis promoter revealed the -35 motif alone to be insufficient to support

transcription and -10 motif to be essential for transcription. In 9 of 14M.smegmatis and 7 of

10 Mtuberculosis promoters, transcription initiated at a purine (Bashyam and Tyagi, 1998).

Mtuberculosis promoters have a higher G + C content (57 %) from positions -1 to -50, with

respect to the translation initiation codon, than the Msmegmatis promoters (43 %), which

may have had a bearing on the lower strength of the Mituberculosis promoters (Bashyam et

al., 1996). Further support for the importance of the -10 motif in promoter efficiency in the

mycobacteria is provided by the isolation of up-mutations in promoter sequences. Point

mutations in the upstream region, which result in overexpression, have been identified for

Mtuberculosis ahpC genes (Dhandayuthapani et al., 1996; Sherman et al., 1996; Wilson and

Collins, 1996; Heym et al., 1997).

Although -10 and -35 hexamers play an important role in promoter function, other regions of

the DNA upstream of genes can playa supplementary role. It has been found that, maximal

expression of the Mituberculosis katG promoter requires a 155 bp region 300 bp upstream of

the translation start codon and approximately 200 bp upstream of the putative -35 motif

(Mulder, 1999). This 'upstream activator region' binds to one or more M.smegmatis proteins
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and contains a 24 bp AT-rich (66.67 %) sequence which is 79.2 % homologous to a region

located 489 bp upstream of the M fortuiturn katG gene). These regions may be analagous to

the AT-rich upstream (UP) elements found in E.coli that increase promoter activity (Ross et

al., 1993). The presence of such a region upstream of the M.tuberculosis katG genes suggests

common mechanisms of regulation between the Mituberculosis and E.coli katG genes

(Mulder, 1999). Another, possibly analagous region is a 41 bp sequence located 269 bp

upstream of the M tuberculosis recA gene which was found to be essential for expression.

This region contains no functional promoters and may act as an upstream regulatory region

by binding to an activator protein (Movahedzadeh et al., 1997).

1.4. Is there a common structure for Promoters?

The interaction between protein and nucleic acids is an ancient and fundamental feature of

evolution. Such interactions no doubt have under so many constraints through evolution. It is

therefore expected that, sections of sequences that direct transcription of genes have had their

'own' kind of evolution, no doubt, orchestrated by the very genes they transcribe. Organisms

have had to develop a system through evolution, where the 'right' genes had to be transcribed

at the 'appropriate' times. The adoption and use of transcription factors has no doubt been a

very successful strategy to the problem (transcribing vital genes when most needed). This use

of different sigma factors to facilitate transcription has probably been made possible due to

DNA-binding proteins in most cases acting at different sites where they display different

activities. Such acts of DNA-binding proteins would also ensure large number of potential

subtypes of binding sites for any DNA-binding protein, probably explaining why certain

promoter sequences of one organism function successfully in other organisms.

Thus, evolutionary requirements have necessitated the need by organisms to save resources

and utilize them effectively, that is, transcribing genes whose products are needed. An

apparent solution to the problem of efficient utilization of resources seems to be the use of

sigma/transcription factors. The appropriate sigma/transcription factors are used to assemble

the transcription machinery at the promoter region of the gene( s) to be transcribed. The signal

for the positioning of the factors-enzyme complex, that is recognition of the promoter region

therefore has to come from the sequence that define the promoters and probably the adjacent

genees). However, as noted above, not all promoters appear to have the 'known signals' that
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are responsible for assembling factors and polymerase enzyme necessary for the transcription

of the adjacent genees). Somehow, these very promoter regions are recognized by the

respective factors and RNA polymerase enzyme. The problem of what is recognizable as the

'signal' is compounded by the fact that there are other regulatory sequences such as

oppressors and operators that sometimes play major roles in transcription. A prerequisite for

promoter function in both prokaryotes and eukaryotes appears to be, an AT-rich region that

facilitates the opening of the DNA helix structure before transcription. That technically puts

any AT-rich region in a genome as a potential promoter region, but does not necessarily make

every AT-rich region a DNA-binding site. Perhaps, the driving force behind the recognition

of any promoter region is the adjacent genees) to be transcribed since similar or 'stronger'

promoter-like sequences have not been to have promoter function (personal observation). In

any case, certain sequences have features that mask them as promoter sequences. Though not

a perfect system to the human mind as no common feature has not been observed for all

promoters, these sequences exist and they are recognized by the factors and the enzymes that

need to recognize them. If these promoter sequences can be recognized by the various factors

and the polymerase enzyme, then it is possible for methods/systems to be developed that will

recognize them too. As to whether there is a common promoter structure, perhaps there much

more to be learnt that would change the way we perceive structural organization in living

cells.
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Chapter two.

Hidden Markov Model, Artificial Neural Network and Triplet Frequency

Distribution Analysis.

ABSTRACT

Three algorithmic approaches: Hidden Markov Model (HMM), Artificial Neural Network

(ANN) and Triplet Frequency Distribution Analysis (TFDA) have been selected to be used

for study. The study is on the ability to of the three methods to learn and predict promoter

sequences from non-promoter sequences. The prediction systems (HMM, ANN and TFDA)

will be exhaustively assessed independently on known promoter sequences of the three

organisms The three prediction systems will then be combined and used in predicting

promoter sequences from entire genomes of E.coli, B.subtilis and Mtuberculosis. In this

chapter, brief introductions are given on HMM and ANN whilst the rationale, principle and

theory behind TFDA is reviewed.

2.1. Hidden Markov Models.

2.1.1. Introduction

A HMM describes a probability distribution over a certain number of sequences. Because a

probability distribution must sum to one, the 'scores' that a HMM assigns to sequences are

constrained within 0 and 1. Thus the increase in probability of one sequence will result in a

decrease in the probability of one or more other sequences. An simple HMM that models

sequences of two letters (a,b) is shown in figure 2.1.1. The modeled HMM illustrates a

problem in which sequences started with one residue composition (a-rich), then switched

once to a different residue composition (b-rich). The HMM consists of two states connected

by state transitions. Each state has a symbol emission probability distribution for generating
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,

state transitions. Each state has a probability distribution according to whether it matches a

specific symbol in the sequence. Starting in an initial state, a new state with some transition

probability is selected. This new state may be 1, with transition probability ti,l, or state 2

with transition probability ti,2. Then a residue with an emission probability specific to that

state is generated. The transition/emission continues until the end where an end state s. At the

end of the process, there is hidden state sequence that is not observed and a symbol sequence

that is observed. The name 'hidden Markov model' comes from the fact that the state

sequence is a first-order Markov chain, but only the symbol sequence is directly observed.
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p,(a)
pi{b)

1 .... 1 ·... 2 - ....end hidden state sequence. It

,---'---f------------------------·
a .b a observed symbol sequence. x

t . t t1,1 ',2 2,and P(x,n I HMM)

Figure 2.1.1. A HMM modeling sequences of as and bs as two regions of potentially different

residue composition. Circles represent states whilst arrows represent state transitions. A

possible state sequence generated from the model is shown, followed by a possible symbol

sequence. The joint probability of the symbol sequence and the state sequence is given by the

product of all transition and emission probabilities. In HMM, the state sequence (e.g. the

biologically meaningful alignment) is not uniquely determined by the observed symbol

sequence, but must be inferred probabilistically from it. Diagram copied from Sean Eddy's

publication entitled 'Profile hidden Markov models (Eddy, 1998).
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HMM states may be associated with meaningful biological sequences such as the position(s)

of certain nucleotides in a motif. In the above described HMM for instance, states 1 and 2

may correspond to a biological notion of two sequence regions with different residue

composition. Inferring the alignment of the observed protein or DNA sequence to the hidden

state sequence is like labeling the sequence with relevant biological information (Barett et al.,

1997).

An HMM can be built from a set of unaligned sequences by iteratively estimating the

transition/emission probability parameters from the sequence as various alignment options

are considered. Alternatively, a HMM can be built from pre-aligned sequences, that is where

the state paths are known. In the latter case, the parameter estimation problem is simply a

matter of converting observed counts of symbol emissions and state transitions into

probabilities.

Standard HMM training algorithms include Baum-Welch expectation maximization or

gradient descent algorithms. Simulated annealing and genetic algorithm training methods

have been found to be better at avoiding spurious local optima in training HMMs and HMM-

like models (Eddy, 1996; Neuwald et al., 1997; Durbin and Holmes, 1998). Most training

algorithms seek relatively simple maximum likelihood (or maximum a posteriori)

optimization targets. More sophisticated optimization targets are used to compensate for non-

independence of example sequences e.g. biased representation (Eddy, 1996; Bruno, 1996;

Durbin and Holmes, 1998; Karchin and Hughey, 1998; Sunyaev et al., 1998), or to maximize

the ability of a model to discriminate a set of true positive example sequences from a set of

true negative training examples (Mamitsuka, 1996).

Proteins, RNA and other features, including promoters in genomic DNA sequence can be

classified into families of related sequences and structures (Hennikoff et al., 1997). Multiple

alignments of a sequence family reveal relatedness in their pattern of conservation. Some

positions are more conserved than others, e.g. the -35 and -10 boxes of E.coli promoter

sequences, while some regions of a multiple alignment appear to tolerate insertions and

deletions more than other regions. Thus, position specific information needs to be

incorporated in algorithms and models used in database searches for similar sequences.

HMMs (Haussler et al., 1993; Krogh et al., 1994) and related generalized profiles (Bairoch
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and Bucher, 1994) have been used with some degree of success in detecting conserved

patterns in multiple sequences (Baldi et al., 1994; Eddy, 1995; Eddy et al., 1995; Bucher et

al., 1996; Hughey and Krogh, 1996; McClure et al., 1996; Eddy, 1998). HMMs are useful as

formal fully probabilistic forms of profiles (Baldi et al., 1994; Eddy et al., 1995; Krogh et al.,

1994; Stultz et al., 1993). They wield a mathematically consistent description of insertions

and deletions and also offer theoretical insight into the difficulties of combining disparate

forms of information such as in sequences ~Eddy, 1994). One of the features ofHMMs is that

it is possible to train models from initially unaligned sequences, thus producing HMM-based

multiple alignments (Baldi et al., 1994; Krogh et al., 1994). HMMs can therefore be used to

build 'profiles' of promoter sequences that can be used in database searches for other

uncharacterized promoter sequences.
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2.2. Artificial Neural Network.

Most of the literature presented below on artificial neural network together with those on the

various network topologies was obtained from various web sites on the internet. They

constitute mainly lecture notes and slides from academic institutions. The websites include:

http://www.cs.nott.ac.uk/~sbx/winnie/aim/neural, http://www-dse.doc.ic.uk/~ndlsurprisek/

jour-nalIvo 114/cs 11/report.html#Human, http://www.interstate95.com/home/adaptive.

2.2.1 Introduction

Artificial neural networks can be most adequately characterized as 'computational models'

modeled on biological neurons with peculiar properties, such as ability to adapt or learn, to

generalize and to cluster or organize data. It is an information processing system made up a

number of very simple and highly interconnected processors called neurons. The most

important aspect of neural net architectures is the fact that they consist of these simple and

highly interconnected processors, the neurons. Generally, nodes within all neural networks

follow a common model of operation. They sum their input signals, pass the summed value

through an activation function and send that value out as its output signal. The output signal

will either leave the network or will 'travel' along a connection to another node and act as

input to that node. These neurodes are the analogs of the biological neural cells, or neurons in

the brain. There are two primary methods of training a designed neural network. Supervised

training is akin to teaching a child by example. The neural net gets input signals presented at

its input signal and corresponding correct output signals, and the network tries adjust it

tunable parameters to capture the relationship between the input and the output. The second

method, self-organization or unsupervised training allows the neural network to separate a set

of training input patterns into various categories based on similarities and differences

between the input signals.
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Fig. 2.2.1. The basic components of an artificial neural network. The propagation rule used

here is the standard 'weighted' summation. The total input to unit k is the 'weighted' sum of

the separate outputs from each of the connected units (e.g. Yj)plus a bias or offset term ek.
Unit k then passes on the 'weighted' summation as an input to another node (neuron) or as an

output signal. The figure was obtained via internet from lecture notes on neural network at

the Computer Science Department at Sheffield university.

34

www.etd.ac.za



2.2.2. Architecture

A major aspect of a parallel-distributed model of artificial neural network can be

distinguished (McClelland and Rumelhart, 1986). It consists of the following features:

1. A set of processing units ('neurons' cells);

2. A state Yj of activation for every unit, which is equivalent to the output of the unit;

3. Connections between units. Generally each connection is characterized by a weight Wjk

which determines the effect, which the signal of unit j has on unit k.

4. A propagation rule, which determines the effective input Sk of a unit from its external

inputs;

5. An activation function Tk,which determines the new level of activation based on the

effective input Sk (t) and the current activation Yk(t) at period t;

6. An external input (aka bias, offset) fA for each unit;

7. A method for information gathering (the learning rule);

8. An environment within which the system must operate, providing input signals and if

necessary, error signals;

Figure 2.2.1 illustrates these aspects of the architectural structures mentioned above. Each

neural unit performs a relatively simple job; receive input from neighbors or external sources

and use this to compute an output signal, which is propagated to other units or to network

output. Apart from this processing, a second task during training is the adjustment of the

'weights'. Neural network systems are inherently parallel in the sense that, many units can

carries out their computation simultaneously and independently. Three types of units are

identifiable. Input units (indicated by an index i), which receive data from the neural network

environment. Output units (indicated by an index 0), which send data to the neural network

and hidden units (indicated by an index h) whose input and output signals remain within the

neural network. During training, units can be updated either synchronously or

asynchronously. With synchronous updating, all units update their activation simultaneously,

whereas with asynchronous updating, each unit has a (usually fixed) probability of updating

its activation at a time t and usually only one unit will be able to do this at a time.
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2.2.3. Network Topologies

There are two major network topologies. Feed-forward networks and Recurrent networks.

2.2.3.1. Feed Forward Networks

Feed-forward networks: where the data flow from input to output is strictly feed-forward. The

data processing can extend over multiple (layers of) units, but no feedback connections are

present, that is, connections extending from output of units to inputs of units in the same

layer. Classical examples of feed-forward networks are McCulloch-Pitts Neuron, the

Perceptron and Adaline networks.

2.2.3.2. Recurrent networks

Recurrent networks do contain feedback connections unlike feed-forward networks. During

training of recurrent networks, the activation values of the units at neurons undergo a

relaxation processes such that, the network evolves to a stable state in which these activations

do not change anymore. In other applications of recurrent networks, the change of the

activation values of the output neurons are significant, such that the dynamical changes in

values constitute the output of the network (Pearlmutter, 1990). Examples of recurrent

networks include Kohonen (Kohonen, 1977) and Hopfield (Hopfield, 1982) networks.

2.2.4. Training of artificial neural networks

A neural network has to be configured such that the application of a set of inputs produces

(either 'direct' or via a relaxation process) the desired set of outputs. Various methods to set

the strengths of the connections exist. One way is to set the weights explicitly, using a priori

knowledge. Another way is to 'train' the neural net by feeding it teaching patterns and letting

it change its weights according to some learning rule.
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2.2.5. Paradigms of learning

Learning situations can be categorized in two distinct types. Supervised learning, also

referred to as Associative learning; in which the network is trained by providing it with input

and matching output patterns. Unsupervised learning or Self-organization in which an

(output) unit is trained to respond to clusters of pattern within the input. In this paradigm the

system is supposed to discover statistically salient features of the input population. Unlike the

supervised learning paradigm, there is no a priori set of categories into which the patterns are

to be classified; rather the system must develop its own representation of the input stimuli.

When using neural network one has to distinguish two issues that influence the performance

of the system. The first one is the representation power of the network; the second is the

learning algorithm. The representational power of a neural network refers to the ability of a

neural network to represent a desired function. Since neural networks are built from sets of

standard functions, in most cases the network will only approximate the desired function.

Even when the network has an optimal set of weights, the approximation error is never zero.

The second issue is the learning algorithm. If an assumption is made that, there exists a set of

optimal weights and these weights can be achieved, is there a procedure to iteratively find

this set of weights? If these optimal weights can be achieved, the time duration that it takes to

achieve the optimal weights must also be put into consideration.
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2.3. Triplet Frequency Distribution Analysis (TFDA)

2.3.1. Introduction

One of the many observations revealed by biological sequence analysis is the difference in

DNA composition of coding and non-coding regions in genomes. Irrespective of the GC

content of the organism in question, the differences in nucleotide content of the coding

regions and non-coding/regulatory regions have been observed in many organisms. Thus,

most bacterial gene prediction algorithms such as GeneMarkHmm (Besemer and

Borodovsky, 1999) and Orpheus (Frishman et al., 1998) utilize the codon usage of the

bacteria and the statistical differences of the nucleotide composition between coding and non-

coding sections of the genome. The presence of the -10 and -35 consensus motifs in some

prokaryotic promoters including those E.coli, B.subtilis and Streptomyces also confirm that

certain DNA arrangements are peculiar to promoters and/or regulatory sequences as

compared to other regions in the genome. Attempts to utilize this information to study and

conduct statistical-related analysis of nucleotide composition in DNA include; the correlation

between the nearest neighbor bases (Josse et al., 1961; Gatlin, 1966) and the heterogeneity of

base density in fragmented DNAs (Sueoka, 1959). Statistical regularities have also been used

to detect coding regions (Shulman et al; 1981; Shepherd, 1981a; 1981b; Staden and

McLachlan, 1982; Fickett, 1982; Frishman et al., 1998; Borodosky and Besemer, 1999). The

same ideas and principles have been used to study nucleosome formation (Trifonov and

Sussman, 1980) and promoter detection/prediction (Horton and Kanehisa, 1992; Oppon and

Hide, 1998). These studies focused on particular aspects of the correlation structure of DNA

sequences in relation to particular biological problems.

2.3.2. Analysis of Nucleotide (Triplets) composition in DNA sequences.

TFDA is a statistical approach to promoter detection/prediction based on analyzing the

information content of promoters and non-promoter sequences in the form of triplets (not

codons). A unique hash table is generated for each promoter non-promoter set pair. The

outline of the hash tables (relative frequency of nucleotide composition) are similar with
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respect to the relative values of the triplets. For each promoter non-promoter set pair, the

frequency of each of the sixty-four (64) possible triplets (as a 3 bp window is shifted 1 bp

along the sequence) is calculated for both pairs. The frequency value of each triplet from the

non-promoter (f np) then subtracted from the corresponding triplet frequency value in the

promoter set (Jp) to generate a hash table of triplet differences (Jp-fnp), figure 2.3.1.

ACGTGCACATGCGTAACCGTGCATGCGTACGTACGATACAGTGCACTGA
ACG
CGT
GTC
TGC
GCA
CAC

Figure 2.3.1. An illustration of how triplets were obtained from sequences.
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TGG 0.5430 GGT -0.1164 TAT 0.1939
TCT 0.1939 TGT 1.16360 ATA 0.5818
CTA 0.3879 ATC -0.0388 CTC -0.3879
ATG 0.2327 GTA -0.0388 GTC -0.0388
CTG -0.1939 GTG 0.0388 AAA 0.2715
CAA 0.3103 ACA 0.3491 AAC 0.1939
ACC -1. 2024 CCA -0.3879 CAC 0.0388
CCC -0.3103 AGA -0.2327 ATT 0.4267
TTA 0.4655 AAG -0.2327 GAA -0.3103
GAC -0.6206 CTT 0.7370 GCA -0.3879
CAG -0.8533 AGC -0.4654 CGA -0.3491
ACG -0.4654 TTC 0.6982 GCC -0.1164
CGC 0.3103 CCG -0.7758 GGA -0.5430
AGG -0.0388 GAG 0.1164 GTT 0.6982
TTG 0.5818 GCG -0.5430 CGG -0.6982
GGC -0.5430 GGG -0.1939 AAT 0.8533
TAA 0.8533 CAT 0.1164 TAC -0.1164
TCA 0.0010 ACT 0.5430 CCT -0.3103
TCC -0.2327 TGA -0.1551 TAG 0.4267
AGT -0.1552 TTT 1.7842 GAT -0.1552
CGT -0.2715 TGC 0.2327 GCT -0.1164
TCG 0.1939

Figure 2.3.2. A hash table of scores/figures generated from a promoter/non-promoter dataset

pair. Each dataset (promoter or non-promoter) consists of 50 sequences of 55 bp sequence-

length each. The actual frequency value of each triplet in the promoter set is subtracted from

its corresponding value in the non-promoter (equation 2.3.2) to generate the hash table

values. Certain triplets in the hast table have relatively high values. For example, TAA, TGT

and TTT, an indication that, they are more prevalent in the set of promoter sequences as

compared to non-promoter sequences (coding sequences). Similarly, other triplets with

negative scores are generally more prevalent in the non-promoter (coding sequences) as

compared to the promoter sequences e.g. CAG.
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Figure 2.3.3. A scatter plot of hash table of scores/figures generated from a promoter non-

promoter pair shown in figure 2.3.2.
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Cumulative score and therefore the performance of a test sequence is assessed by :

(a) Opening a 3-bp window and extracting all the triplets in the sequence as the

window is shifted 1 bp to the end.

(b) Obtaining each triplet's corresponding hash table value.

(c ) Summing up the scores of all the hash table values that corresponds to the

triplets found in the sequence.

For a given set of sequence S, the frequency f of each triplet is determined by:

2.3.1

where NSt represents the number of times a particular triplet occurs in the sequence set S,M,

is the total number of nucleotides in the set S.

Hash table values for each triplet are obtained by:

2.3.2

where P and NP represent promoter and non-promoter respectively and !::.fa represents the
,.

hash table value of a particular triplet c.
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2.2.3. Scoring on test sequences.

Since hash table values are obtained by subtracting the frequency of a triplet found in non-

promoters from that of the corresponding value in promoters, the higher the value, the greater

the likelihood of the sequence in question being a promoter. Triplets found to be present in

almost equal numbers in both promoters and non-promoters almost cancel out and therefore

have practically no contribution to the score(s). Each test sequence is assessed, by adding up

the hash values of the triplets as a 3-bp window is shifted 1 bp until the end of the sequence.

It must be noted that, the score itself is meaningless unless it is compared to a cut-off or a

threshold value. Such a cut-off score would have to be obtained from a group of known

promoters tested on the same hash table. Examples are found in chapter five, where TFDA

has been used to analyze and predict promoters and non-promoters of E.coli, B.subtilis and

M tuberculosis.
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------------------------------- -

Chapter three.

Using Hidden Markov Models/Profiles on E.coli, B.subtilis and

Mycobacteria promoters.

ABSTRACT

Hidden Markov Models for 'promoter sequence family' were implemented on sequence data

from E.coli, B.subtilis and Mycobacteria. These implementations are based on the assumption

that: features of promoter regions that are determinants for directing RNA polymerase to the

binding site must be present as conserved elements. Promoter profile-like HMMs were

therefore built/developed on various subsets of promoter sequences from E.coli, B.subtilis

and Mycobacteria. The different promoter models (profiles) were then tested on separate

datasets of promoter and non-promoter sequences to determine how the individual

profiles/models discriminated promoter against non-promoter sequences. Results from the

study revealed that, HMM models trained/built on promoters were capable of

predicting/detecting other promoter sequences (not exposed to training) from non-promoter

(coding) sequences effectively. Encouraging results of 90% true positive (TP) to a low false

positive (FP) prediction of ~6% and ~3% were achieved for E.coli and B.subtilis data

respectively. The results (~13% FP) obtained from similar studies on Mycobacteria

promoters were not as encouraging as those obtained on E.coli and B.subtilis. Insufficient

training data as well as 'dirty' training and test data set among others could have been

contributory factors to the poor results on Mycobacteria test data.
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3.1. Introduction

Computational analysis is increasingly becoming important for inferring functions and

structures of regulatory sequences and proteins. Apart from large volumes of sequence data

being generated, increase in computational power and readily available information over the

internet are some of the reasons why biological science is gearing towards the direction of

biocomputation. In this chapter, computational analysis using Hidden Markov Model (HMM)

is applied in detection and prediction of prokaryotic promoters. Proteins, RNAs and

regulatory sequences can usually be classified into families of related sequences and

structures (Henikoff et al., 1997). Ordinarily, sequence alignment would reveal functional

relatedness between the families of related sequences such as promoters. However, the

complex nature of promoters coupled with their variety and size(s) necessitates the inclusion

of position-specific information from multiple alignments when searching for similar

sequences. Pairwise sequence comparison algorithms such as BLAST and FASTA were

designed based on the assumption that, all positions are equally important. However, great

deal of position-specific information is usually available to the sequence families. Profile

methods for building position-specific scoring models from multiple alignments were

introduced for such purposes (Taylor, 1986; Gribskov et al., 1987; Barton, 1990; Henikoff,

1996). A 'profile' is defined as a consensus primary structure model consisting of position-

specific residue scores and insertion/deletion penalties. Hidden Markov Models (HMMs)

provide a coherent theory for profile methods (Henikoff, 1996). Profile HMMs have already

been employed in many biological applications including protein modeling (Krogh et al.,

1994; Baldi and Chauvin, 1995), gene prediction (Borodovsky et al., 1995; Lukashin and

Borodovsky, 1997) and promoter studies (Yada et al., 1996; Pedersen et al., 1996; Lazareva-

Ulitsky et al., 1999).

Regardless of the training method, once HMM has been successfully trained on a family of

sequences, it can be used in a number of different tasks. First, for any sequence, one can

compute the likelihood of the sequence in question to the fit the model. The trained model

can also be used in discriminatory test and database searches (Krogh et al., 1994; Baldi and

Chauvin, 1994) by comparing the likelihood of any sequence to model the sequences in the
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family on which an HMM model has been developed. Finally, the parameters of a model,

such as emission distributions of the backbone (main) states and their entropies can be used

to detect consensus patterns and other signals (Baldi et al., 1995). In this study, various

hidden Markov profiles are modeled on different sequence sets (varied number of sequences

of various fragment sizes) to study how well HMM can model on various sequence numbers

and sizes. The developed models are then tested on their ability to discriminate against non-

similar sequences. HMM is selected for this study because of the properties mentioned above

and also due to its availability in the form ofHMMer (Eddy, 1997).

3.2. METHODS

3.2.1.1. E.coli Promoter Sequences.

Eicoli promoter sequences were taken from the dataset compiled by Lisser and Margalit,

(1993). The total number of promoter sequences in this dataset is 300. Most of the promoter

sequences in the database have sequence length of 101 bp (75 bp to tss and 26 bp after tss).

However, there were a small number promoter sequences with smaller number of nuc1eotides

in the promoter dataset 1. Annotated E.coli genome sequences obtained from Genbank

(version 111) were used to extend shorter promoter sequences to 101 bp using the respective

tss as reference site. For example, if a promoter sequence consisted of 73 bp up to the tss, two

nuc1eotides were added to the 5' end of the sequence and 26 nuc1eotides to the 3' of the

sequence. Overlapping promoter sequences and promoter sequences with multiple or

unconfirmed transcriptional start sites were removed from the data. The resulting set

consisted of 168 promoters. The 168 promoters were randomly divided into two sets with no

regard to relationships between specific promoters and their sigma (o) factors. The first set of

83 promoters (Appendix_one) was used for training whilst the other set (Appendix_two) was

used to test the performances of the various algorithms.
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3.2.1.1.1. Generation of sequence sets for modeling.

To generate promoter sequence subsets for HMM modeling, sequence sets comprising of ten

(SlO) to fifty (S50) sequences were randomly generated from the 83 promoter sequences

making up the training set. Each sequence subset (SIO- S50) subset was further sub-grouped

according to sequence length that ranged from 40 bp to 75 bp (figure 3a). In all cases,

promoter sequence subsets with sequence length up to 50 bp consisted of the transcription

start site and the immediate upstream sequences, that is, -50 to tss inclusive. Promoter

sequence subsets with sequence lengths greater than 50 bp used in training had the first 50 bp

selected from upstream oftss (inclusive) with the only exception being on sequences of75 bp

sequence length (-55 to +20).
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Figure 3a. A diagram depicting how various sequence subsets were generated from the

original training dataset of 83 promoters. The diagrams representing sequence sets are not

drawn to scale.
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3.2.1.2. E.coli Non-Promoter Data

E.coli non-promoter sequences were generated from E.coli coding sequence file 'ecoli.ffn'

obtained from Genbank (version 111). Sequence lengths of 101 bp were extracted from

randomly selected coding sequences in the Genbank file 'ecoli.ffn'. Datasets similar to those

of the promoter sequences were generated. Five thousand (5000) of the selected coding

sequences (Appendix_three) were used as test sequences. All selected coding sequences were

manually screened to ensure that, they did not contain any known E.coli promoter sequences.

However, there is no disputing that they could probably contain promoter(s) not yet

characterized though its quite unlikely considering the number (83).

3.2.2.1. B.subtilis Promoter Data.

B.subtilis promoter sequences were obtained from two sources. Promoters transcribed by

sigma factor A (aA) were obtained from a compilation by Helmann (1995). Promoters

transcribed by other sigma factors (rrB, aC, aD, aE, cF, aG, crH, aK and cl.) were obtained

from the compilation by Yada et al., (1997). Promoter sequences with experimentally

unconfirmed tss and/or multiple tss were removed from the dataset. Annotated B.subtilis

genomic data (Genbank release 111) were used to extend each of the selected sequences to

101 bp each, 75 bp upstream of tss (inclusive) and 26 bp downstream of tss. The selected

promoter sequences (164), were randomly divided into two sets of 83 and 81 sequences. The

set of 81 was used in training/building all the different HMM profiles (Appendix_four).

Promoter sequence subsets were generated in a similar manner to E.coli (section 3.2.1.1.1).

The other set of eighty-one (83) promoters (Appendix_five) was used as test data.
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Type of sigma factor Symbol Number of promoters
used

SigmaA aA 81
SigmaB aB 8
SigmaC aC 4
SigmaD aD 7
SigmaE aE 25
SigmaFG a F and aG 15
SigmaH aH 9
SigmaK aK 9
SigmaL aL 3

Table 3.1. The source of the 162 Bisubtilis promoter sequences that were split into two sets

(training and testing promoter data). Promoter sequences were obtained from Helmann

(1996) and Yada et al., (1997). Sequences were thoroughly shuffled (no compromise on

which promoters are transcribed by which sigma factors) before being divided into the two

sets i.e. training and test data.
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3.2.2.2. B.subtilis Non-Promoter Data

B.subtilis non-promoter sequences were generated from B.subtilis coding sequences

'bsub.ffn'; (Genbank version 111). Sequence lengths of 101 bp were extracted from

randomly selected coding sequences in the Genbank file 'bsub.ffn'. Datasets similar to those

made for E.coli non-promoter sequences were created (Appendix_six). The data sets were

used in testing the ability of the built/developed promoter profiles to discriminate against

non-promoter sequences. Selected non-promoter data were screened for known B.subtilis

promoter sequences as with E.coli non-promoter data.

3.2.3.1. M.tuberculosis promoters

Mtuberculosis promoter sequences were obtained from several publications (Appendix;

seven). Only promoters with experimentally characterized transcriptional start sites (tss) were

used in the training set. Altogether, 26 M.tuberculosis promoter sequences were obtained

with established transcriptional start site (tss). Twenty-four (24) other mycobacterial

promoters (Appendix_eight) were added to the initial 26 to constitute the training set. Where

possible, mycobacterial genome data was used to extend the promoter sequences to 101 bp

(75 bp to tss and 26 bp after tss). Thirty-three (33) other mycobacterial promoters

(Appendix_nine) with unknown tss but known -10 or -35 were selected as the test data.

Mtuberculosis genome data was used to fill in such sequences to101 bp depending on which

of the two canonical hexamers (-10 or -35) was known. For example, a promoter sequence

up to -10 hexamer was extended by about 33 bp (+7 to tss and +26 after tss) and the 5' end

adjusted to make up the 101 bp.

3.2.3.2. M.tuberculosis Non-promoter Data

Mtuberculosis coding sequences were used as non-promoter data. Coding sequences from

the Genbank file 'mtub.ffn' were randomly selected and sequence lengths of 101 generated

from them. Data sets similar to those made for E.coli and B.subtilis promoters were created
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and used to determine the discrimination ability of the individual models/profiles. Total

number of coding sequences used for testing was five thousand (5000). The Mtuberculosis

non-promoter dataset can be found in Appendix_ten. Non-promoter data was screened for

any known mycobacterium promoters in the same manner as those of E.coli and B.subtilis

non-promoter data.

3.2.4. HMMER software

The HMM software used is this research is the HMMer package version 1.8 developed by

Sean Eddy (Eddy, 1995). HMM models were built for each subset from the promoter data

(10-45 to 50-75) using hmmt (hmmtrain). 'The program, 'hmmt' learns patterns shared by

multiple sequences and saves the pattern in hmmfile. Hmmt works by iteratively improving a

new sequence alignment calculated using the model, then a new model using the current

alignment. To avoid or minimize bad local minima in the training process, simulated

annealing is used in the optimization of the alignments. 'Hmma' (hmmaligh with a score

option) which produces scores based on how well the sequence fits/aligns to the built

model/profile, was used to categorize test sequences. Each specific model was used to test

promoter and non-promoter sequences that corresponded to the model with respect to

sequence length. Other tests were carried out on 75 bp fragment sizes and the entire sequence

length of 101 bp. The latter tests were done by opening a sequence window that had same

size as the particular model being used and obtaining the cumulative score as the window is

shifted one bp (figure 3.l.5).

The HMMer package was compiled on a SGr irix workstation (irix 6.3).
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3.2.5. Scoring with HMM.

Respective HMM models trained on the various promoter sequence subsets, (section

3.2.1.1.1) were first tested on test promoter sequences having the same sequence length as the

sequences used to develop the models. Each sequence produces a score when tested on the

corresponding model. The higher the score, the more the sequence 'fits' the HMM model that

was used to test the sequence. The promoter test sequence scores from each category

(fragment/sequence length) length were then arranged in descending order with respect to the

value of the scores. Scores from each promoter test data that resulted in 90% true positives

(TP) were used as threshold values to categorize test sequences (coding sequences) as

predicted promoters/non-promoters.

In the other test cases, where test sequences (coding) were of fixed lengths (75 bp and 101

bp), the same procedure was applied to the promoter test data to obtain threshold values that

resulted in 90% true positive (TP). Depending on which HMM model used, window sizes

equivalent to the size used to develop the models were opened in the test sequence(s) and the

window(s) shifted a bp until the end of the test sequence as illustrated in figure 3.1. Predicted

results were summed up and arranged in descending order starting from the highest value as

above to obtain the threshold values.

53

www.etd.ac.za



3.3. Results and Discussion

Hidden Markov Models (HMM) profiles/models of promoter sequences were successfully

developed by training them on different sets of promoters from E.coli, B.subtilis and

Mycobacteria. The promoter sequences used in training the models were aligned according to

their respective transcriptional start sites (tss). Promoter training datasets ranged from ten

(10) sequences of 40 bp sequence length (SIO(40) or 10_40) to fifty sequences of 75 bp

sequence length 50_75 (S50(75) (as in section 3.2.1.1.1). Eighty-three (83) separate promoter

sequences used to test the performance of the models in both E.coli and Bisubtilis. However,

only thirty-four (34) of such sequences were available for the study on Mycobacteria. In all

the three cases, five thousand (5000) sequences extracted from their respective coding

sequences were used as non-promoter test data. Since a major feature of promoters (both

eukaryotes and prokaryotes ) is what appears to be multiple signal covering the entire

promoter region, three types of tests as described in the protocol section were carried out with

the individual promoter models developed from HMM. In the first designed test, (test A), test

sequences had the same sequence length as the corresponding data used to train/develop

models. Test B was performed on sequences of 75 bp fragment sizes (promoters and non-

promoters), whilst test C was performed on 101 bp sequences (see fig. 3.1). The composition

of all the promoter datasets used in training and testing is as follows: Nucleotide sequences

with fragments up to 50 bp were selected upstream of the transcription start sites inclusive.

Promoter sequences with fragment sizes greater than 50 bp had the extra nucleotides selected

after the transcriptional start site. For example, a promoter sequence fragment of 65 bp would

consist of 50 bp nucleotides upstream to the transcriptional start site and 15 bp downstream to

the transcriptional start site (-50 to +15).

3.3.1. E.coli

Not all of the promoter sequence sets were successfully 'profiled' on HMM. Those

unsuccessful sets include 20_75 in the sets of twenty sequences, 30_75 in the set of thirty
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sequences, 40_65, 40_70, 5o_75 in the set of forty and 5o_65, 5o_70, and 5o_75 for the set

of fifty sequences. Normally, hmmt generates models after thirty to sixty iterations depending

on the number and fragment size of sequences. Inability to develop a model is tantamount to

not being able to reach some kind of consensus on the sequence sets, which usually happens

when sequence set is large with respect to number and fragment size. Most of the sequence

sets that were not 'profiled' have sequence length from 70 bp upwards. Since the first 50 bp

are selected upstream of transcriptional start site inclusive, it is logical to assume that, the

extra sequences (+ 20 bp) after tss are responsible for the difficulty in obtaining profiles on

the sequence sets. Successful model/profiles were tested on known E.coli promoters (83) and

coding sequences (5000) to determine which profile best represented the information

harbored in the promoter training set. In all test cases using the eighty-three (83) promoter

test sequences, individual cut-off scores that resulted in -90% (75/83) true positive were used

to categorize the test sequences (promoters or non-promoters). Tables 3.1, 3.2 and 3.3 show

the results of various promoter-trained models on five thousand (5000) non-promoter

sequences of same length as models, 75 bp and 101 fragment sizes respectively. Because of

the problem of which position to start from when selecting different fragment sizes from the

originallOl bp non-promoter, five (5) test sequences were generated from each original test

sequence for fragment sizes less than 75 bp inclusive. The averages from these five results

were adopted as the results for each test sequence. Plots of the results of the individual false

positives obtained from the different HMM promoter models on coding sequence (CDS) of

same size as model, 75 bp sequences and 1°1 bp sequences are shown in figures 3.2, 3.3 and

3.4 respectively.
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GATCACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGGTTGCCGTATAAAGAAACTAGAGTCCGTTTAGGTGTTTTCACGAGCACTTCA
GATCACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAA -13.556
ATCACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAA -19.514
TCACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAG -21.733
CACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGA -15.378
ACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAG -15.260
CACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGG -17.535
ACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGGT -21.812
CAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGGTT -21.467
AAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGGTTG -16.482

A.

GATCACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGGTTGCCGTATAAAGAAACTAGAGTCCG
GATCACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAA -13.556
ATCACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAA -19.514
TCACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAG -21.733
CACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGA -15.378
ACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAG -15.260
CACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGG -17.535
ACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGGT -21.812
CAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGGTT -21.467
AAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGGTTG -16.482

B.

-33.070
-54.803
-70.181
-85.441

-102.976
-124.788
-146.255
-162.737

-33.070
-54.803
-70.181
-85.441

-102.976
-124.788
-146.255
-162.737

Fig. 3.1. A diagrammatic illustration of how a trained model was used to test fragment sizes

of 75 bp (A) and 101 bp (B). Individual results (column2) and cumulative results (column 3)

obtained from a model trained on a set of thirty sequences with forty-five bp fragment size

(3o_45) on a test sequence of fragment length 75 bp (A) and 101 bp (B). A moving window

of 45 bp is opened from the first nucleotide and shifted one bp till the end. The scores from

alignment of each window to the trained model and the cumulative scores are shown on the

second and third columns respectively. Cut-off scores that generated 90% true positive were

selected to determine whether the sequences under investigation are adjudged as promoter(s)

or not. The only difference between the two test sequences above is that additional scores are

generated for the 101 bp test sequence.
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Set 1 2 3 4 5 Average %FP
10 40 1195 1171 1176 1131 1176 1170 23.4
10 45 846 846 854 794 846 837 16.7
10 50 832 850 832 866 864 849 17.0
10 55 1273 1277 1269 1239 1260 1263 25.3
10 60 922 926 920 859 938 913 18.3
10 65 1142 1123 1099 1122 1168 1131 22.6
10 70 1072 1070 1068 1049 1076 1067 21.3
10 75 1211 1251 1253 1235 1237 1237 24.7

20 40 842 861 859 806 879 849 17.0
20 45 1003 1034 965 1003 1020 1005 20.1
20 50 728 721 740 749 719 731 14.6
20 55 1551 1599 1541 1588 1571 1570 31.4
20 60 612 612 607 596 592 604 12.1
20 65 1426 1431 1410 1441 1393 l420 28.4
20 70 997 981 1030 957 1025 998 20.0
20 75

30 40 699 690 667 663 694 683 13.7
30 45 642 664 643 636 681 653 13.1
30 50 725 689 696 721 712 709 14.2
30 55 1364 1367 1370 1370 1404 1375 27.5
30 60 625 643 663 645 639 643 12.9
30 65 1113 1138 1107 1118 1102 1116 22.3
30 70 668 671 699 667 678 677 l3 .5
30 75

40 40 459 466 442 445 446 452 9.0
40 45 385 378 145 356 398 332 6.6
40 50 454 464 479 479 450 465 9.3
40-55 767 797 783 794 818 792 15.8
40-60 843 840 817 856 798 830 16.6
40-65
40-70
40 75

50 40 591 646 580 547 601 593 11.9
50 45 578 598 578 601 627 596 12.0
50 50 830 805 781 799 820 807 16.1
50 55 613 640 638 648 654 639 12.8
50 60 685 690 685 726 681 693 13.9
50 65
50 70
50 75

Table 3.2. Number of false positives obtained for HMM trained models on promoter subsets. Sequences used in

testing both promoters and non-promoters had the same number of nucleotides as those used in development of

the models. Those sequence sets which could not be trained using HMM are marked with '-'. Five sub-

fragments were generated from each test sequence. Depending on the sequence length of sub fragments, the first

nucleotide position is randomly selected within the possible range that would make the fragment size possible in

the 101 bp sequence. The averages from the five sub-fragments and the corresponding percentage false positives

57

www.etd.ac.za



are shown on the sixth and the seventh columns respectively. All promoter and non-promoter data are from

E.co/i.

THIRlY ~ FORTY -.- FIFTY II ~ lEN -- lWENTY
1800-0 1600

0
0 1400."-- 1200'"CD 1000>
E 800'"0 600c.
CD 400.!
ca 200LL

0
40 45 50 70 75

Fig. 3.2. Individual trained HMM models with their corresponding false positive results on

5000 coding sequences. Model 40_45 (forty promoter sequences of 45 bp sequence each)

produced the best results (least number of false positives - 385). Models were tested on

sequences having same fragment sizes as those used in building the models. A cut-off score

that produced 90 % (75/83) True positive (TP) was used to select the predicted promoters

from non-predicted promoters. Thus in all cases, true positive rate is ~90%.

60 6555
sequence length (bp)
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Sets 1 2 3 4 5 Av. !Is
10 40 753 760 751 742 764 754.0 15.1
10 45 710 719 695 696 701 704.2 14.1
10 50 719 710 711 724 715 715.8 14.3
10 55 771 740 724 758 786 755.8 15.1
10 60 898 900 937 914 909 911. 6 18.2
10 65 1282 1306 1301 1291 1313 1298.6 26.0
10 70 1289 1267 1284 1281 1271 1278.4 25.6
10 75 1551 1573 1545 1553 1537 1551.8 31.0

20 40 609 612 636 632 608 619.4 12.4
20 45 687 682 692 701 676 687.6 13.8
20 50 457 471 472 454 484 467.6 9.4
20 55 759 758 738 763 757 755.0 15.1
20 60 694 677 700 709 694 694.8 13.9
20 65 1236 1257 1231 1243 1274 1248.2 25.0
20 70 910 939 899 923 892 912.6 18.3

30 40 623 611 597 605 599 607.0 12.1
30 45 493 492 498 495 483 492.2 9.8
30 50 513 484 512 505 489 500.6 10.0
30 55 710 687 694 697 693 696.2 13.9
30 60 800 793 781 799 775 789.6 15.8
30 65 501 523 514 516 513 513.4 10.3
30 70 736 731 726 741 721 731. 0 14.6
30 75

40 40 527 540 541 531 518 531.4 10.6
40 45 386 395 405 381 378 389.0 7.8
40 50 527 508 530 520 529 522.8 10.5
40 55 495 509 485 507 495 498.2 10.0
40 60 557 542 553 566 558 555.2 11.1
40 65
40 70
40 75

50 40 445 468 451 452 444 452.0 9.0
50 45 360 362 374 374 357 365.4 7.3
50 50 370 380 372 387 362 374.2 7.5
50 55 446 464 451 462 442 453.0 9.1
50 60 487 469 483 488 474 480.2 9.6
50 65
50 70
50 75

Table 3.3. Number of false positives obtained for HMM trained models on promoter subsets. Nucleotide

sequences used for testing both promoters and non-promoters had the constant sequence length of 75 bp. Five

different sequences were generated from each test sequence of 101 bp. The first nucleotide position of each of

the five sets was selected randomly from nucleotide number one (1) to twenty-six (26). Individual performances

(non-promoters) were obtained by moving a window within the 75 bp that corresponds with the model and

summing up the scores as the window is shifted one bp, fig 3.1. Sequence sets that could not generate HMM
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profiles are marked with '-'. The average and the percentage false positives are shown on the sixth and the

seventh columns respectively. The above results were obtained on 90% true positives.

800~~--~----------------------------~~~
o 700 +-------~~-.._-___;'-.,.----------,rtf1lL--I
o
~ 600 +------~---..,..IIr-...3ior_'-';'500~ t---~~~~~~--~~~~--'~~~--------~
.~ 400 -l-..t::2:::...a-.:::::2t:=~==~~~-?----'----=------I
:!::
~300+------------~=---------__1a.~ 200+----------------------------------------~!!l~ 100+--------------------------------------------~

O+---~----_r----~----._--_r----._----._--~
70 7540 45 50 55 60 65

sequence length (bp)

Fig. 3.3. Individual HMM sequence models with corresponding false positive results on

5000 coding sequences of 75 bp sequence-length each. Each sequence's score was obtained

by opening a window within the 75 bp sequence, which corresponded to the model size, and

summing the results as the window was shifted 1 bp, fig. 3.1. As in the previous case, scores

that resulted in 90% true positive from the 83 promoters were used as the cut-off score to

distinguish between predicted promoters and non-promoters.
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A
TEN TWE THIR FORTY FIFTY

NTY TY
40 421 566 480 391 346
45 496 474 492 474 409
50 714 498 468 422 390
55 699 621 365 427 350
60 504 338 694 444 330
65 506 536 355
70 583 404 365
75 720

B
TEN TWENTY THIRTY FORTY FIFTY

40 8.4 11.3 9.6 7.8 6.9
45 10.0 9.5 9.8 9.5 8.2
50 14.3 10.0 9.4 8.4 7.8
55 14.0 12.4 7.3 8.5 7.0
60 10.1 6.8 13.9 8.9 6.6
65 10.1 10.7 7.1
70 11.7 8.1 7.3
75 14.4

Table 3.4A. Number of false positives obtained from the HMM models trained on the

different subsets of E.coli promoter sequences. Promoter and non-promoter (coding

sequences) fragment sizes of 101 (fig. 3.l.B) were used in the test. Threshold values that

resulted in 90% true positives (TP) were used. Rows marked '-' indicate promoter subsets

that could not be trained or modeled successfully on HMM. Test sequence values were

obtained as in figure 3.1. Table 3.4B is in percentages instead of actual numbers.
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Fig. 3.4. Individual HMM sequence models with corresponding false positive results on

5000 coding sequences of 101 bp sequence-length each (test sequence). Each sequence's

score was obtained by opening a window within the 101 bp sequence, which corresponded to

the model size, and summing the score as the window was shifted 1 bp, fig. 3.2. Threshold

scores that resulted in 90% true positives from the 83 promoters were used.

55

Sequence length (bp)
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Training of the individual promoter sets was performed iteratively until the best

models/profiles were achieved with respect to how well the promoter profiles/models were

able discriminate against non-promoter test sequences. The results from the three tests,

figures 3.2, 3.3 and 3.4 suggest that, false positive rates obtained from the sequence sets get

better (less false positives), with increase in the number of promoter sequences used for

training. Good results were obtained from models trained on sets of forty and fifty sequences.

With greater number of sequences available for training, the model will more reliably capture

statistical properties of the training set. No correlation is apparent between score and

fragment size for any particular set of sequence. Results from the study on E.coli suggest that,

trained HMM models do not necessarily improve (as measured by the ability of the models to

discriminate promoter against non-promoter sequences) with increase in sequence size of the

promoter set. Of course, that would depend on which section of nucleotide sequence is taken

to define promoter. In this study, the entire region of about 101 (76 bp up to tss to 25 bp after

tss) has been under investigation as promoter region. Models appear to peak in performance

(least number of false positives) around the region of +1 to -45 and +1 to -50 bp. The region

about 20 bp from the transcription start site, between 50th nucleotide and 70th produced

variable results for all sequence sets except for the sequence set made up of twenty sequences

produced results/scores that are more variable scores. The best result of the study (least

number of false positives) is observed on the model trained on a set of forty sequences with

fragment sizes of 45 bp (40_45). The false positive (FP) score of 332 (6.7%) is relatively low

compared with the next best score 465, also coming from the model/profile trained on forty

promoter sequences of 40 bp sequence fragments selected upstream of their respective

transcriptional start sites.
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Unlike the scores obtained from testing sequences of the same sequence length as those used

to build/train the models, the best results from both 75 bp and 101 bp sequence fragments

were from models trained on sets of fifty sequences. Model trained on 50_45 (S50(45»

produced the least number of false positives whilst 50_60 (S50(60» resulted in the best for all

10 1 bp test sequences. Certain promoter subsets produced results comparable to S50(45) and

S50(60). They include models on 30_45 (S30(45» and 20_50 (S20(50» for the test on 75 bp

sequences and 30_55 for the 101 bp test sequences. The results obtained on 101 bp sequences

produced fewer false positives than those on 75 bp sequences, which were also better (less

FP) than sequences of same size as models. These results provide support for the hypothesis

that, promoter regions have multiple signals that are interspersed in the region upstream of -

35 hexamer (Newlands et al., 1992). The best results obtained in each category, 6.7% FP

(same test sequence length as models), 7.3% FP (fixed 75 bp test sequence lengths) and 6.7%

FP (101 bp test sequences) are comparable to results obtained by researchers (Lukashin et al.,

1989 (2-6%); O'Neill, 1992 (3-10%); Mahadevan and Ghosh, 1994 (8-10%) using other

prediction methods. The true positive values of these researchers were also around 90%. The

threshold value for all the test sequences was manually selected to give a true positive (TP)

value of 90% for all promoter test sequences.

3.3.2. B.subtilis

Having used E.coli promoter sequences on HMM to perform promoter predictions with some

degree of success, the next task was to apply HMM modeling and prediction to another

organism of significantly different nucleotide composition. This was to gain an insight into

the degree to which nucleotide content or sequence variation would affect application of

HMM in promoter predictability. In simple terms, would the results obtained on E.coli be

different if for instance, the organism had higher or lower percentage GC composition in the

organism's genome? Another significant challenge was to determine the minimal number of

promoter sequences that could be successfully used on HMM model training; considering

that, initial study had revealed that, fifty sequences produced very good results for E.coli.
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Consistency in results obtained from specific data sets would suggest that, the size in

question would do well for other prokaryotes with different genomic composition with

respect to the percentage GC content. B.subtilis was selected because it is a gram-positive

bacterium differing distinctly from E.coli and Mituberculosis, therefore a chance to study the

concept on a different type of prokaryote, and also entertaining universality of the concept.

The second reason is the easy availability of experimentally characterized B.subtilis

promoters. The models were developed from an initial training set of 81 promoters and tested

on 83 promoters. The experimental design was analogous to that used in the development of

models for the E.coli HMM study. The true positive rate of every set was set to 90% by

selecting scores that resulted in 90% true positives as threshold scores. The three types of

tests as described earlier (test A, test B and test C) were also performed on the B.subtilis data.

Five sequences were randomly generated from each non-promoter fragment for sequences

less or equal to 75 bp, table 3.4 and 3.5. The averages from these five results were computed

and adopted as the respective scores for the corresponding test sequences. The results of the

individual false positives obtained from the different HMM models on B.subtilis coding

sequences of same length as models, 75 bp fragment sizes and 101 bp are shown in figures

3.5,3.6 and 3.7 respectively.
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Sets 1 2 3 4 5 Av

10 40
10_45
10 50
10 55
10_60
10 65
10 70
10_75

20 40
20_45
20 50
20_55
20_60
20_65
20_70
20_75

30_40
30_45
30_50
30_55
30_60
30_65
30_70
30_75

40_40
40_45
40_50
40_55
40_60
40 65
40 70
40_75

50_40
50_45
50_50
50_55
50 60
50_65
50_70
50 75

689
743
685
762
790
763
888
764

499
493
555
471
465
808
562
524

396
359
369
254
295
290
346
310

415
419
271
344
399
351
550
296

301
234
302
246
243
209
182
235

642
659
579
642
689
670
804
715

478
415
479
399
354
675
444
458

343
306
264
209
207
246
277
221

394
332
225
253
303
309
440
233

261
218
252
169
172
174
160
170

580
672
619
676
663
700
819
706

457
421
490
402
373
685
441
433

347
283
272
206
217
231
268
231

395
354
244
280
298
287
436
246

268
221
254
192
205
177
164
180

596
702
591
671
681
695
795
676

448
431
478
402
349
663
460
440

363
279
262
209
179
256
246
234

386
328
240
282
329
313
433
245

260
200
234
199
196
171
134
169

580
658
628
669
714
678
781
696

472
443
493
430
348
634
459
454

349
317
254
232
205
244
251
237

358
364
245
283
306
295
452
241

265
209
259
186
178
150
159
174

617
687
620
684
707
701
817
711

471
441
499
421
376
693
473
462

360
309
284
222
221
253
278
247

390
359
245
288
327
311
462
252

271
216
260
198
199
176
160
186

12.3
13.7
12.4
13.7
14.1
14.0
16.8
14.2

9.4
8.8
10.0
8.4
7.6
13 .8
9.4
9.2

7.2
6.2
5.6
4.4
4.4
5.1
5.6
4.9

7.8
7.2
4.9
5.8
6.5
6.2
9.2
5.0

5.4
4.3
5.2
4.0
4.0
3.5
3.2
3.7

Table 3.5. Number of false positives obtained for HMM trained models on various promoter subsets. Nucleotide sequences used

for testing both promoters and non-promoters had the same sequence length as sequence sets used in developing the respective

models. Since there was a problem of which 75 bp windows of the 101 bp windows were to be used for testing, five different
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sequences were generated from each sequence with the nucleotide position of the sequence being randomly selected within the

possible range in the 101bp with respect to the size of the sequence from which the models were built on. The average and the

percentage false positives are shown on the sixth and the seventh columns respectively. Threshold scores were selected to have

90% true positive results for each test set.

I--+- TEN -- TWENTY THIRTY ---M- FORTY ----- FIFTY I

900
800

S 700
Q
Q
lol) 600:::::..
~ 500
;:;
'ii 4000a.
III 300(I)

CG 200u..

100
0

70 7560 6550 5540 45
Sequence length (bp)

Fig. 3.5. Individual trained HMM models with their corresponding false positive results on

5000 B.subtilis coding sequences. Model 50_70 (fifty promoter sequences of fragment size

70 bp each) produced the best results (least number of false positives - 160). Models were

tested on sequences having the same sequence length as those used in building the models. A

cut-off score that produced 90 % (75/83) True positive (TP) was used to select the predicted

promoters from non-predicted promoters.

67

www.etd.ac.za



Sets
10 40
10 45
10 50
10 55
10 60
10 65
10 70
10 75

20 40
20 45
20 50
20 55
20 60
20 65
20 70
20 75

30 40
30 45
30 50
30 55
30 60
30 65
30 70
30 75

40 40
40 45
40 50
40 55
40 60
40 65
40 70
40 75

50 40
50 45
50 50
50 55
50 60
50 65
50 70
50 75

636
616
598
495
455
602
945
825

662
653
578
694
405
711
474
531

588
592
475
485
468
508
501
243

629
650
428
354
622
392
388
322

543
596
432
430
469
375
295
223

1
504
504
491
396
361
504
839
769

510
515
438
522
318
594
354
457

463
455
363
365
352
382
383
180

483
499
347
270
468
303
298
254

428
463
329
347
368
277
234
163

2
495
483
485
378
338
480
854
776

505
494
428
529
325
577
371
433

440
446
367
378
361
378
386
172

474
485
331
273
455
289
312
267

414
456
331
346
358
283
233
171

3
509
494
477
381
360
494
825
723

527
500
438
522
319
576
361
443

434
438
360
390
361
387
362
183

481
484
334
264
470
295
294
261

424
451
330
348
374
293
247
160

4
482
480
489
393
339
479
833
751

498
495
427
514
324
570
367
453

430
420
340
386
348
382
371
204

479
485
317
265
480
312
286
271

423
428
320
347
356
290
225
162

5 Av.
10.5
10.4
10.2
8.2
7.4
10.2
17.2
15.4

10.8
10.6
9.3
11.1
6.8
12.1
7.7
9.3

9.4
9.4
7.6
8.0
7.6
8.2
8.0
3.9

10.2
10.4
7.0
5.7
10.0
6.4
6.3
5.5

9.0
9.6
7.0
7.3
7.7
6.1
4.9
3.5

Table 3.6. Number of false positives obtained for HMM trained models on various B.subtilis promoter subsets.

Nucleotide sequences used for testing both promoters and non-promoters had the same sequence length of 75

bp. Five different sequences were generated from each sequence with the nucleotide position of the sequence

being chosen randomly within the possible range in the 101bp with respect to the size of the sequence from

which the models were built on. The scores were obtained by opening window within the 75 bp, which
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525
515
508
409
371
512
859
769

540
531
462
556
338
606
385
463

471
470
381
401
378
407
401
196

509
521
351
285
499
318
316
275

446
479
348
364
385
304
247
176
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corresponds with the model, and summing up the scores as the window is shifted one bp, fig 3.1. The average

and the percentage false positives are shown on the sixth and the seventh columns respectively.

lHRJY -*- F<RTY _._ FFTY I

-0
0 8000
It)--fn 600CD>
E 400fn
0
C.
CD 200.!ca
U-

0
65 70 7550 55 6040 45

Sequence length (bp)

Fig.3.6. Individual HMM sequence models with corresponding false positive results on 5000

B.subtilis coding sequences of 75 bp sequence-length each. Each sequence's score was

obtained by opening a window within the 75 bp sequence, which corresponded to the model

size, and summing the results as the window was shifted 1 bp, fig. 3.1A. Scores that resulted

in 90% true positive from the 83 promoters were used as the cut-off score to distinguish

between predicted promoters and non-promoters.
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A
SETS

bp TEN(%) TWENTY THIRTY FORTY FIFTY
40 591 599 518 638 507
45 646 743 644 728 640
50 674 673 551 503 654
55 575 667 513 526 498
60 666 768 535 721 579
65 630 607 566 567 547
70 844 623 732 509 671
75 727 624 534 566 622

B
SETS

bp TEN{%) TWENTY THIRTY FORTY FIFTY
40 11.8 12.0 10.4 12.8 10.1
45 12.9 14.9 12.9 14.6 12.8
50 13.5 13 .5 11.0 10.1 13.1
55 11.5 13.3 10.3 10.5 10.0
60 13.3 15.4 10.7 14.4 11.6
65 12.6 12.1 11.3 11.3 17.0
70 16.9 12.5 14.6 10.2 13.4
75 14.5 12.5 10.7 11.3 12.4

Table 3.7A. Number of false positives obtained on 5000 B.subtilis coding sequences of 101

bp sequence lengths. Threshold values that resulted on 90% B.subtilis promoter sequences

were used. Fig. 3.6 shows the graph obtained from plotting the data. In table 3.7B, the false

positive values are expressed as percentages. Figures in first column represent sequence

length of the test sequences in the respective sets used for testing.
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Fig. 3.7. Individual HMM models with corresponding false positive results on five thousand

(5000) coding sequences of 101 bp fragment-size each. Each sequence's score was obtained

by opening a window within the 101 bp sequence, which corresponded to the model size, and

summing the score as the window was shifted 1 bp, fig. 3.1 B. Cut-off scores that resulted in

90% true positives from the 83 promoters were used.
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The results obtained from B.subtilis promoters and their corresponding non-promoters of

coding sequences appear to be better than those obtained from E.coli. A best false positive

rate of 3.2% for B.subtilis as compared to that of 6.7% for E.coli. There are some similarities

between the two results. For example, promoters trained on smaller number of sequences (ten

and twenty) produced inferior results as compared to promoters trained on more sequences

(thirty, forty, and fifty). Also, most of trained models that seemed to discriminate best were

on the sequence subsets with 55 fragment sizes (50 bp upstream of transcription start site

inclusive plus 5 bp after tss). Obtaining a strong signal in the region 50 bp to the tss is once

again expected as it harbors the conserved -10 and -35 hexamers. However, the extra five

after tss is perhaps a region that needs to be carefully studied. In the same size as

model/profile category, best results are obtained from sets of S50(40) to S50(75). However, the

next best results are not from S40set but rather S30, in agreement with the earlier observation

made on the study on E.coli promoters; increase in training does not necessarily always

transform to better results. In the 75 bp test sequence category, the results (false positive) are

more 'clustered' compared to the others. Best results are from this category (50_75). A close

parallel relationship in scores with regard to false positives, seems to exist between set of S30

and S50 in both 75 and 101 bp test categories. The results seem to suggest that, HMM is better

at learning information content of sequences in the same stretch of promoter region in

B.subtilis compared to E.coli. Unlike certain E.coli training sets, HMMs trained well on all

the sequence sets including the very last set i.e. 50_75 S50(75), were. The most likely

explanation for getting models to train well on B.subtilis promoter sets is probably due to the

presence of several moderately conserved elements throughout most of B.subtilis promoter

regions as suggested by Helmann, (1995). Equally, good results (low FP rates) were obtained

with 101 bp test sequences with overall false positive rate being lower than what was

obtained from E.coli.
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3.3.3 Mycobacteria

The same procedures used to carry out the promoter predictions after models were trained on

E.coli and B.subtilis were applied to the study on Mtubercu/osis sequence data. The major

difference with regard to data between M. tuberculosis and the previous two is; other

mycobacterial promoters were added to the collection of the original experimentally

characterized M.tubercu/osis promoter dataset. Also, the test dataset used consisted of only

34 promoters. It comprised of collection of mycobacterial promoters including those of

M tuberculosis. However, none of the test promoter datasets had the transcriptional start site

experimentally characterized. Few have both -10 and -35 hexamers mapped experimentally

but most had either the -10 or -35 hexamers experimentally characterized (refer to section on

Mtubercu/osis Data). Thus the promoter regions used as test data were selected based on

extrapolations from either one or both of known hexamer(s) in the sequence. The

extrapolations based on the hexamer(s) definitely affected the results on Mtuberculosis, since

the main established features of prokaryotic promoters are the two hexamers (-35 and -10)

and the corresponding spacer region between them. However, this shortcoming may be

reduced and may actually be less significant in the final prediction because a single prediction

comprising the best in each category of inter-orf is selected instead of using a threshold value

to categorize a sequence as a promoter or non-promoter as done in this chapter. Due to the

adjustments necessary with regard to the data set of both training and test data, the results

were not expected to be comparable to those accomplished on E.coli and B.subtilis datasets.
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Sets

29.4
39.5

1 2 3 4 5 Av. %
10 40
10 45
10 50
10 55
10 60
10 65
10 70
10 75

20 40
20 45
20 50
20 55
20 60
20 65
20 70
20 75

30 40
30 45
30 50
30 55
30 60
30 65
30 70
30 75

40 40
40 45
40 50
40 55
40 60
40 65
40 70
40 75

50 40
50 45
50 50
50 55
50 60
50 65
50 70
50 75

1533 1544 1532 1529 1518 1531 30.6
1489 1496 1484 1479 1506 1490 29.8
1592 1583 1582 1582 1583 1584 31.7
1895 1952 1886 1930 1877 1908 38.2
1499 1535 1532 1520 1482 1513 30.3
1529 1476 1485 1527 146=3 1496 29.9
1462 1461
1948 1963

1858 1888
1358 1389
1164 1134
1656 1662
1533 1544
1549 1579
1699 1722
1968 2021

1243 1166
1193 1198
1664 1713
1640 1679
1164 1179
1079 1105
1673 1637
1241 1305

1294 1243
1381 1450
1624 1645
1441 1504
1499 1475
1397 1372
1801 1754
1575 1644

876 866
768 817
1111 1062
1071 1111
1184 1238
1554 1520
1621 1590
1723 1753

1455
1975

1805
1307
1128
1672
1552
1577
1697
2003

1200
1143
1695
1642
1180
1084
1641
1283

1260
1366
1628
1395
1487
1370
1796
1637

883
763
1081
1070
1180
1526
1616
1783

1466
1958

1823
1370
1113
1674
1532
1570
1694
2013

1227
1197
1643
1667
1176
1104
1635
1281

1277
1351
1602
1431
1489
1460
1752
1622

832
787
1094
1024
1143
1547
1574
1764

1497
2024

1812
1366
1125
1712
1543
1596
1700
2010

1214
1205
1679
1697
1196
1109
1597
1291

1180
1421
1632
1464
1468
1397
1721
1614

838
798
1072
1106
1223
1540
1560
1727

1468
1973

1837
1358
1132
1675
1540
1574
1702
2003

1210
1187
1678
1665
1179
1096
1636
1280

1250
1393
1626
1447
1483
1399
1764
1618

859
786
1084
1076
1193
1537
1592
1750

36.7
27.2
22.7
33.5
30.8
31.5
34.0
40.1

24.2
23.7
33.6
33.3
23.6
21.9
32.7
25.6

25.0
27.9
32.5
28.9
29.7
28.0
35.3
32.4

17.2
15.7
21.7
21.5
23.9
30.7
31.8
35.0

Table 3.8. False positive results obtained from trained HMM models on Mtubercu/osis promoter data set on

five thousand (5000) coding sequences. Promoter and non-promoter data set used in testing had the same

fragment sizes as those of their corresponding models. For each non-promoter sequence that was tested, the

average from five fragment sizes that corresponded to the model size was computed. The average scores for

each model and the percent false positive scores are in the seventh and eight columns respectively. As in

previous cases, threshold values that resulted in 90% TP were used.
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Fig. 3.8. Individual trained HMM models with their corresponding false positive results on

5000 Mycobacterial coding sequences. Model 50_45 (fifty promoter sequences of fragment

size 45 bp each) produced the best results (least number of false positives - 786). Models

were tested on sequences having the same sequence length as those used in building the

models. A cut-off score that produced 90 % (75/83) True positive (TP) was used to select the

predicted promoters from non-predicted promoters.
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As expected, false positive results are generally higher for all the three classes of test, figures

3.8,3.9 and 3.10. Since many Mituberculosis promoters are functional in other mycobacteria

species (Mulder et al., 1997), one would expect the training data, though minimal, to be

sufficient for promoter modeling on all the three methods (HMM, ANN and TFDA). The

problem however, is most probably due to the test data. It is likely that, (a) the selected

portions of the 30 promoters used for testing were not representative of the actual trained

models or (b) there were not enough data for testing. Perhaps a distinctive feature, the

absence of conserved -35 hexamer as proposed by Bashyam et. al., (1996) is being exposed

in this HMMer study. Unfortunately, none of the mentioned hypothesis can be tested as there

are not enough experimentally characterized promoters of M tuberculosis. The results are still

very encouraging; the best score for type A test being 15.7% false positive S50(45). The

results from sets of twenty and thirty were also very encouraging particularly those of S20(50)

and S30(65). The pattern of results from same-as-model sequence to model type C test were

generally similar to those of the previous two with bigger sequence sets producing better

results than lesser sequence sets. Also, a direct correlation between fragment size and scores

as is the case with E.coli and B.subtilis is not observed. The major noticeable difference

between the pattern of results obtained on M.tuberculosis compared to those of E.coli and

B.subtilis is the relative high false positive rated for different sets of test data.
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SETS 1 2 3 4 5 Ave.
28.8
27.7
27.6
29.7
19.6
17.0
17.8
24.6

10 40
10 45
10 50
10 55
10 60
10 65
10_70
10_75

20 40
20 45
20 50
20 55
20 60
20 65
20_70
20 75

30 40
30 45
30_50
30_55
30 60
30 65
30 70
30_75

40 40
40_45
40 50
40 55
40 60
40 65
40 70
40 75

50 40
50 45
50 50
50 55
50 60

50 65
50 70
50_75

2715
2669
2663
2810
2153
2007
2056
2469

2463
2711
2554
2788
2247
2316
2122
2459

2718
2800
2591
2844
2498
2361
2441
1705

2646
2681
2677
2729
2371
2610
2211
2443

2443
2602
2574
2780
2036

2576
2394
2384

2740
2653
2656
2791
2153
1995
2048
2462

2489
2711
2548
2784
2215
2288
2183
2483

2715
2803
2585
2839
2509
2353
2454
1757

2644
2687
2686
2724
2357
2627
2248
2485

2439
2620
2576
2777
2010

2581
2407
2435

2742
2667
2674
2804
2169
2004
2036
2466

2473
2690
2538
2777
2237
2319
2205
2473

2705
2880
2583
2836
2499
2348
2479
1731

2635
2680
2676
2738
2394
2635
2270
2464

2438
2614
2572
2767
2019

2585
2433
2425

2729
2679
2651
2790
2168
1984
2069
2460

2465
2719
2509
2775
2228
2300
2138
2481

2713
2806
2583
2840
2493
2362
2494
1728

2629
2688
2683
2743
2385
2634
2240
2480

2425
2621
2563
2762
2020

2587
2446
2412

2749 1442
2669 1383.6
2662 1378.6
2797 1486.4
2164 980.8
2007 848
2049 890.4
2515 1230.6

2519 1239.2
2724 1418.8
2555 1280
2772 1471.6
2242 1034.4
2317 1094.8
2158 986.8
2466 1230.6

2708 1418.2
2812 1494.2
2593 1318.8
2833 1519.6
2495 1249.2
2370 1136.6
2449 1225.2
1762 645.6

2643 1360.2
2701 1401. 2
2680 1395
2739 1438.8
2359 1149
2615 1352.2
2216 1044.8
2467 1229.2

2444 1199.2
2619 1344.8
2584 1309
2774 1466
2025 864.8

2576 1315.8
2403 1187.8
2401 1184.6

24.8
28.4
25.6
29.4
20.7
21.9
19.7
24.6

28.4
,29.9
26.4
30.4
25.0
22.7
24.5
12.9

27.2
28.0
27.9
28.8
23.0
27.0
20.9
24.6

24.0
26.9
26.2
29.3
17.3

26.3
23.8
23.7

Table 3.9. False positive results of different trained models ranging from 10_40 to 50_75 on 5000 coding

sequences of 75 bp fragment size each. Because the original sequence length of the test sequences are 101 bp,

the average of five random sub fragments of75 bp sequence length had to be used to give some credibility to the

results. Sub fragments were generated by randomly selecting a position in the sequence that would make it

possible to generate the 75 bp test sequence. The averages and percentage scores are shown on the seventh and

eight columns respectively. On the left are the various models trained from respective sequence subsets.
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Fig. 3.9. Individual HMM models with corresponding false positive results on 5000

Mycobacterial coding sequences of 75 bp sequence length each. Each sequence's score was

obtained by opening a window within the 75 bp sequence, which corresponded to the model

size, and summing the results as the window was shifted 1 bp, fig. 3.1. Scores that resulted in

90% true positive from the 33 promoters were used as the cut-off score to distinguish

between predicted promoters and non-promoters.

55 65

Sequence length (bp)
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A

Sequence Sequence Sets
length TEN TWENTY THIRTY FORTY FIFTY
40 1915 1719 1961 1879 1756
45 1977 2069 2052 1918 1848
50 1983 1616 1972 2026 1891
55 1972 2077 2102 2064 1885
60 1983 1973 1976 1970 1974
65 2062 1859 1964 2006 2085
70 1942 1998 2084 2055 2047
75 1803 1934 1802 2065 2019

B

Sequence Sequence Sets
length TEN TWENTY THIRTY FORTY FIFTY
40 38.3 34.4 39.2 37.6 35.1
45 39.5 41.4 41.0 38.4 37.0
50 39.7 32.3 39.4 40.5 37.8
55 39.4 41.5 42.0 41.3 37.7
60 39.7 39.5 39.5 39.4 39.5
65 41.2 37.2 39.3 40.1 41.7
70 38.8 40.0 41.7 41.1 40.9
75 36.1 38.7 36.0 41.3 40.4

Table 3.10A. Results obtained on 5000 coding sequences of 101 bp sequence length each

using threshold values that resulted in 90% true positives. Table 3.10B is the percentage

equivalent of the results obtained in table 3.1OA.
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Fig. 3.10. Individual HMM models with corresponding false positive results on five

thousand (5000) Mycobacteria coding sequences of 101 bp fragment-size each. Each test

sequence's score was obtained by opening a window within the 101 bp sequence, which

corresponded to the model size, and summing the score as the window was shifted 1 bp, fig.

3.1 (B). Cut-off scores that resulted in 90% true positives from the 33 promoters were used.
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Model 50_45, 30_75 and 50_50 respectively produced the least number of false positives for

the three classes of designed test as shown in figures 3.8, 3.9 and 3.10 respectively. Once

again, overall observed pattern appear to be random. Nevertheless, some models especially

those with fragment sizes ranging from 45 bp to 55 bp produced relatively fewer false

positives compared to test sequences of larger fragment sizes.

An approach to promoter detection/prediction using HMMer with options of training and

alignment has been used to study the information content of three prokaryotic promoter

elements with reasonably satisfactory results. Since all promoter data available for three

organisms namely E.coli, B.subtilis and Mycobacterium are aligned according to their

transcriptional start sites (tss) with no attention paid to -10, and -35 and motif in between the

two hexamers, hmmt was the obvious choice of the HMMer package. This is because hmmt is

able to train effectively on previously unaligned sequences. Training a HMM (hmmt) is an

iterative process that seeks to maximize the probability that developed model(s) represent the

example sequences. The model is not usually guaranteed to be the best model. So in order to

obtain some reasonable degree of success with the models, many training sets were done for

each sequence subset. The best HMM models (models with the least number of false

positives) were selected for each sequence set. Results obtained for different organisms were

similar in pattern. Some models produced very good results especially between E.coli (6.7%

for 40_45) and B.subtilis (3.9% for 30_75). It is not a coincidence that models trained on

promoter sequences 45 to 50 from the transcription start site (upstream) discriminated best

against the coding sequences. This region S_(45) to (S_50) contains the canonical-lO and-

35 boxes. A major observation from the three different organisms (E.coli, B.subtilis and

Mycobacterium) in the study is; the lack of a single subset of promoter sequences that

consistently produced better results than other subsets. Each organism's promoter sequences

produced unique results. This seems to suggest that, no particular sequence set can be

earmarked as the set to produce the best results; the concept of the involvement of other

transcriptional factors/accessories perhaps accounting for the inconsistent results obtained on

all the test sequences. Each case of prokaryotic promoter sequence modeling using HMM

detection must be treated and analyzed independently; the best model with respect to its
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prediction efficiency may then be used for the task of detecting promoter sequences from

non-promoters for that particular organism. The results however suggest that, better results

are obtainable from fragment sizes within the range of 45 bp-55 bp across all three

organisms. This range might not necessary produce better results in the other two prediction

methods.

83

www.etd.ac.za



Chapter four

ANN studies on E.coli, B.subtilis and Mycobacterium promoters.

ABSTRACT

Three layered back-propagation networks were trained on various datasets of promoters and

non-promoters from E.coli, B.subtilis and Mycobacterium. Promoter and non-promoter

sequence datasets ranged from ten sequences of 40 bp fragment sizes (10_40) to fifty

sequences of seventy-five bp fragment sizes (50_75). In most of the designed sequence

subsets, (10_40 to 50_75), neural network models were successfully trained on the combined

datasets of promoters and non-promoters. True positive (TP) prediction rates were set at 90%

by manually selecting threshold scores. Promoter and non-promoter datasets ranging from 40

to 101 bp fragment sizes were tested with the trained neural network models. False positive

(FP) rates as low as 6.6%, 6.7% and 13.9% were achieved for E.coli, B.subtilis and

Mtuberculosis respectively on their respective datasets. The relatively high false positive

(FP) rates for Mtuberculosis data may be attributed to 'not so clean' extrapolated sequence

data as explained in the section on Mtuberculosis promoters (section 3.2.3.1).

4.1. Introduction

Of the tools available to biologists involved in biological sequence analysis, perhaps the most

promising is the use of artificial neural networks. This is because neural network offers a

somewhat direct approach to the problem by direct learning of the information content in

nucleotide sequences. There have already been studies by some researchers (Lukashin et al.,

1989; O'Neil, 1990, 1992; Pedersen et al., 1995) in neural network approach to promoter

detection. However, these studies were carried out on E.coli and most focussed on specific

regions of promoters such as the -10, -35 and transcriptional start sites. By being selective in

which regions to study, the authors probably missed an opportunity to learn some more
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information harbored in the set of promoter sequences used in their study. For example,

regions as far as 25 bp after transcriptional start in E.coli (Lewin, 1997) have been found to

affect activity of certain promoters. There is also an unanswered debate on which regions

upstream of transcriptional start site contribute to promoter activity. Some researchers have

postulated that, regions as far as 70 bp upstream of the tss may affect transcription (Lukashin

et al., 1989). The preliminary objective of the work described in this chapter was to train

neural network architectures on set of sequences covering about 100 bp of E.coli, B.subtilis

and M.tuberculosis. This would hopefully help to find out which regions around

transcriptional start sites harbor the strongest promoter signal(s). The study done in this

chapter allowed every possible information with respect to nucleotides, that enables RNA

polymerase to identify the promoter region to be detected. The entire section around promoter

sequences covering ~ 100 bp were therefore trained and studied on various neural network

structures. The approach, which is designed to pick best-trained models within a sequence

frame of 101 bp by training on different fragment sizes from 45 bp to 101 bp of separate

sequence sizes (10 to 50 sets) is quite different from what most other researchers have done

to date. Best-trained models for each organism's promoter dataset would be used with other

prediction methods to elucidate promoter sequences in entire genomes of three organisms

namely E.coli, B.subtilis and M.tuberculosis (chapter six).

4.2. METHODS.

4.2.1.1. E.coli Promoter Sequences ...
The same E.coli promoter sequences in section 3.2.1.1 were used in analysis in this chapter.

4.2.1.2. E.coli Non-Promoter Training Data

E.coli non-promoter sequences (~500 sequences) used for training were generated from

E.coli coding sequences 'ecoli.ffn' (Genbank version 111). Sequence lengths of 101 bp were

extracted from randomly selected coding sequences in the Genbank file 'ecoli.ffn'. Sequence

subsets consisting of sets often (10) to fifty (50) sequences were randomly generated from the
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training sets (promoters and non-promoters). The subsets were further assorted into different

subsets according to fragment size that ranged from 40 bp to 75 bp (table 3.1).

4.2.1.3. E.coli Non-Promoter Test Data.
Same as in section 3.2.12.

4.2.2.1. B.subtilis Promoter Data.
Same as those used in section 3.2.2.1.

4.2.2.2. B.subtilis Non-Promoter Training Data
B.subtilis non-promoter sequences (500) were generated from B.subtilis coding sequence file

'bsub.ffn', obtained from Genbank (version 111). Sequence lengths of 101 bp were extracted

from randomly selected coding sequences in the Genbank file 'bsub.ffn'. Data sets similar to

those made for E.coli non-promoter sequences were created (10_40 to 50_75).

4.2.2.3. B.subtilis Non-promoter Test Data.
Same as in section 3.2.2.2.

4.2.3.1. M.tuberculosis Promoter Data

Same data set used in section 3.2.3.1 was used for the neural net training and testing of

Mycobacterium promoter sequences.

4.2.3.2. M.tuberculosis Non-Promoter Training Data.
Five hundred (500) sequences were randomly extracted from M.tuberculosis coding sequence

file 'Mtub.ffn' (Genbank version 111). Sequences ranging from ten (10) to fifty (50) were

selected randomly from the 500 sequences and used to train neural network

models/architectures to recognize non-promoter sequences.
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4.2.3.3. M.tubercu/osis Non-promoter Test sequences

The same Mtuberculosis data used for the HMM testing (section 3.2.3.2) was used in for

neural network tests.

4.2.3. ARTIFICIAL NEURAL NETWORK

4.2.3.1. ANN Software

The neural network package used this study is Artificial Neural Networks (ANN) freeware

obtained from Nureka Artificial Neural Systems (ANS); http://www.bgif.no/nureka. The

software comes in two packages, 'nn' and 'xnn', Nn is a specification language for building

artificial neural network simulators based on modular layered neural network models. With

nn, the topology of such a network, along with training rules, activation functions,

initializations and connectivity among others can be specified. The language consists of

abstract high level statements that describe the topology, learning rules and input data of the

network. Nn creates a C-function from these specifications, which, when called with the

proper parameters, will execute the network on a user supplied dataset (patterns) and return

the results as an output parameter. A network generated by the nn compiler can be run on

train and recall mode. The nn compiler can also create an executable file directly, which is

capable of performing both train and recall tasks of the network. Xnn is the graphical window

interface component of nn.

4.2.3.2. ANN ARCHITECTURE

The architecture of the networks used is a feed forward network with three layers of neurons

and trained using the back-propagation training rule. The software was compiled and

executed on a UNIX workstation (SGI). Several versions of Backpropagation network were

designed with the number of hidden neurons ranging from one (1) to seven (7) whilst the

input layers varied from 160 (for 40 bp fragment size) to 300 (for 75 bp fragment size).
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4.2.3.3. INPUT DATA

DNA sequences were encoded into a string by using a coding scheme where each nucleotide

is represented by four (4) binary digits: A = 0001, C= 0010, G = 0100 T= 1000 (Brunak, et.

al., 1991). It has been found that this leads to a significantly better performance than a more

compact coding scheme (A = 00, T = 01, G = 10, C = 11) presumably due to the identical

Hamming distances between the nucleotide encoding (Demeler and Zhou, 1991). However,

the compact coding scheme problem can be eliminated by doubling the number of neurons in

the middle layer. The output layer in all networks consisted of one neuron, which determined

whether a given sequence was a promoter or not. Promoter sequences were trained to output a

value of 0.9 compared to the value of 0.1 to non-promoter sequences. Neural network

training was carried out on each promoter subset using same number of non-promoters (CDS)

of same fragment sizes. The trained networks were then tested on different sets of promoter

and non-promoter sequences of same fragment sizes as those used in training the individual

models. In the other two tests, sequences of fragment sizes 75 and 101 bp were tested by

opening windows within the test sequences which corresponded to the fragment size used in

training the particular model and taking the cumulative score as the window is shifted one bp

(fig.3.1).
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4.3. RESULTS AND DISCUSSION

Sequence subsets of promoter and non-promoter have been trained on different structures of

feed forward network. The objective has been to train these various different network

structures to distinguish and predict promoter elements from non-promoter sequences. The

subsets used in training consisted of sequence sizes ranging from ten (10) to fifty (50). These

sequence sets were further subdivided into categories according to sizes that also ranged from

40 bp fragment size to 75. In training the various neural net models, a problem of defining

optimal trained models arose. There was always the problem of models being either under-

trained or over-trained. The problem became even more heightened as there were over 40

models be trained for each of the three organisms (E.coli, B.subtilis and Mycobacteria). To

overcome the problem, training of the various neural network models/architectures were

terminated intermittently to test their predictability efficiency on the dataset of promoters and

non-promoters. An epoch of 500 (100 per cycle) was chosen as the period to check how

'well' the networks(s) had trained by cross validating with test promoter and non-promoter

sequences. Certain models went through training until they achieved the optimal level with

respect to the ability to distinguish between the two set of sequences. Some of the trained

models turned out to be optimal; others were not and had to be trained under constant

supervision. Once a model has been trained successfully, a file with information on the

training is created. This file enables results to be reproducible. Unlike the HMM study where

profiles/models were trained entirely on promoter sequences, neural network training had to

incorporate non-promoter sequences as well. Equal sizes (same sequence number and

fragment sizes) of promoter and non-promoter sequences were used in each specific model's

training. Every test set up to 75 bp fragment size was carried out on five sets of sub fragments

from the same sequence, that is, the first nucleotide in a sub fragment is selected from

random position depending on the size of the test fragment. The strategy was adopted to

minimize biases resulting from selecting particular sub fragments in the test sequence data.

88

www.etd.ac.za



-------------------------------------------- ----

4.3.1. E.coli

Table 4.1, 4.2 and 4.3 show the results obtained from various models on test sequences of

equal sizes as their corresponding trained models, 75 bp fragment sizes and 101 bp fragment

sizes respectively.

..
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SETS 1 2 3 4 5 Av %
10_40 1676 1660 1621 1641 1672 1654 33.1
10 45 1542 1586 1519 1532 1552 1546 30.9
10_50 1488 1517 1526 1494 1476 1500 30.0
10_55 1510 1484 1474 1504 1515 149729.9
10_60 1408 1398 1421 1410 1388 140528.1
10_65 1270 1249 1250 1260 1288 1263 25.3
10_70 1417 1386 1372 1419 1408 1400 28.0
10 75 1365 1367 1399 1398 1362 137827.6

20_40 1243 1243 1202 1239 1249 123524.7
20_45 1056 1098 1051 1062 1080 1069 21.4
20_50 1009 1030 1056 1047 1042 103720.7
20 55 1107 1089 1099 1065 1055 108321.7
20_60 1053 1039 1019 1067 990 103420.7
20 65 978 982 973 1003 1020 991 19.8
20_70 1107 1146 1164 1138 1142 113922.8
20_75 1049 1018 1047 1007 1030 103020.6

30 40 821 820 803 802 850 81916.4
30_45 1039 1048 1050 1064 1077 1056 21.1
30 50 1287 1270 1283 1273 1304 1283 25.7
30_55 1110 1135 1130 1124 1161 1132 22.6
30_60 1469 1393 1398 1417 1389 1413 28.3
30_65 1774 1775 1804 1769 1780 178035.6
30_70 843 847 850 855 844 847 17.0
30 75 1175 1188 1144 1145 1167 1164 23.3

40 40 699 694 679 673 729 695 13.9
40_45 947 974 924 921 972 948 19.0
40_50 1037 1064 1058 1044 1067 110521.1
40 55 1100 1126 1077 1103 1107 1103 22.1
40_60 1370 1386 1443 1417 1380 139928.0
40 65 1187 1232 1215 1150 1173 1191 23.8
40_70 863 859 892 885 841 868 17.4
40_75 843 860 820 800 808 826 16.5

50_40 467 465 472 448 478 466 9.3
50 45 774 829 765 802 809 796 15.9
50_50 529 534 556 554 520 53910.8
50_55 664 660 650 649 628 650 13.0
50_60 875 882 878 876 861 87417.5
50 65 668 672 683 688 718 686 13.7
50 70 854 814 807 828 832 82716.5
50 75 670 635 656 651 634 64913.0

Table 4.1. Five sets of sequence sub fragments were generated randomly from each test sequence and tested on

models trained on promoters and non-promoters of same fragment sizes. Thus a model Ec40_50 which was

trained on a set of 40 sequences of 50 bp fragment sizes were tested on sequences of 50 bp fragment sizes. The

average results of the number of false positives from the five sets together with their percentage false positive

are shown on the seventh and eighth column respectively.
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Figure 4.1. False positive prediction results (average) obtained from testing 5000 coding

sequences using threshold values that resulted in 90% true positives for individual trained

models. Test sequences had the same fragment sizes as the respective sequences used in

training the models. Results from set fifty (50) produced relatively very good results with the

best coming from model Ec50_40, a good low of 466 false positives out of 5000 test

sequences (9.3%).
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SETS 1 2 3 4 5 Av. %
10 40 1030 1032 1044 1045 1038 1037 20.8
10 45 919 894 922 917 899 910 18.2
10 50 947 942 930 907 934 932 18.6
10 55 831 880 869 858 847 857 17.1
10 60 960 941 970 959 953 956 19.1
10 65 620 648 665 636 628 639 12.8
10 70 1150 1088 1121 1125 1093 1115 22.3
10 75 1234 1228 1229 1193 1201 1217 24.3

20 40 538 534 544 552 543 542 10.8
20 45 455 459 454 441 455 453 9.0
20 50 545 570 558 554 564 558 11.0
20 55 425 434 448 446 435 438 8.8
20 60 409 390 392 397 386 395 7.9
20 65 465 444 470 472 456 461 9.2
20 70 733 749 769 731 770 750 ;1.5.2
20 75 1144 1137 1174 1167 1140 1152 23.1

30 40 467 480 471 476 473 473 9.5
30 45 473 471 472 476 483 475 9.5
30 50 455 466 453 462 449 457 9.1
30 55 437 425 446 433 428 434 8.7
30 60 485 516 480 485 498 493 9.9
30 65 441 427 470 450 436 445 8.9
30 70 543 547 529 528 522 539 10.7
30 75 1175 1214 1165 1200 1190 1189 23.8

40 40 538 542 545 530 530 537 10.7
40 45 597 574 591 575 594 586 11.7
40 50 551 544 551 526 527 540 10.8
40 55 575 572 534 551 544 555 11.1
40 60 437 451 448 465 442 449 9.0
40 65 376 389 409 410 409 399 8.0
40 70 575 567 577 586 557 572 11.4
40 75 905 961 951 949 928 939 18.8

50 40 393 388 382 403 401 393 7.9
50 45 406 408 406 405 398 404 8.1
50 50 450 445 451 461 436 449 9.0
50 55 498 494 505 498 517 502 10.0
50 60 623 599 626 618 620 617 12.3
50 65 501 487 497 501 501 497 9.9
50 70 592 609 623 594 577 599 12.0
50 75 869 868 897 898 840 874 17.5

Table 4.2. The various neural net trained models and their corresponding results of false positives on 5000

coding sequences. Five sub fragments of 75 bp each were generated randomly from each test sequence as was

done in the previous chapter used for testing. A threshold value that produced 90% true positive value on real

promoter sequences was used in each case. The average results of the number of false positives from the five

sets together with their percentage false positives are shown on the seventh and eighth column respectively.
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Figure 4.2. False positive prediction results (averages) obtained from testing 5000 coding

sequences using threshold values for individual trained models that resulted in 90% true

positives. Test sequences had fragment sizes of75 bp. The average score from five data sets,

created from each test of sequence (101 bp) was used Results from set Ec50_40 produced the

best results of 393 (7.9%), though, an equally good results were obtained from the model

Ec20_60 (395).
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A
TEN TWENTY THIRTY FORTY FIFTY

40 785 508 341 424 329
45 843 397 440 447 357
50 850 464 383 545 338
55 847 390 419 534 413
60 623 345 430 336 491
65 379 494 350 370 350
70 649 442 420 396 396
75 807 458 493 367 335

B

TEN TWENTY THIRTY FORTY FIFTY
40 15.7 10.2 6.8 8.5 6.6
45 16.9 7.9 8.8 8.9 7.1
50 17.0 9.3 7.7 10.9 6.8
55 16.9 7.8 8.4 10.7 8.3
60 12.5 6.9 8.6 6.7 9.8
65 7.6 9.8 7.0 7.4 7.0
70 13.0 8.8 8.4 7.9 7.9
75 16.1 9.2 9.9 7.3 6.7

Table 4.3A. Results (false positives) obtained from various trained models on 5000 coding

sequences. A threshold value that produced 90% true positive value on promoter sequences

was used on the test set. Every sequence (101 bp) was tested by opening a window of size

equivalent to the fragment sizes on which model was trained on, testing the model on the

sequence and adding up the scores as window is shifted 1 bp. Table 4.3B consist of the

results in table 4.3A expressed as percentages.
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Figure 4.3. False positive prediction results (averages) obtained from testing 5000 coding

sequences using threshold values for individual trained models that resulted in 90% true

positives for promoter sequences. The entire 101 bp fragment size of each sequence test set

(both promoters and non-promoters) was used. Window sizes corresponding to model sizes

were opened in test sequences and scores summed up as window was shifted 1 bp to the end

of each sequence.
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Analysis of the results revealed that, best prediction results were generally obtained from 40

bp up to 55 bp for almost all the models trained on the various sequence sets. As with the

results obtained from HMM models (chapter three), larger sets resulted in overall better

prediction results than smaller sets. Also, the overall results appeared to be best (least number

of false positive) with typee (test on sequence fragments of 101 bp) followed by typeB tests

(test on sequence fragments of 75 bp); least false positives (percentage) being 6.6%, 7.9%

and 9.3% respectively. The entire results were encouraging, especially on the dataset

comprising fifty (50) sequences followed by forty sequences (figure 3.1). Again, as was the

case with HMM, no obvious extended correlation was observed between fragment length and

scores. It is worth drawing attention to the fact that, model trained on 5o_40 consistently

produced the best results in all the three test categories (typeA, typeB and typeC). Good

prediction results were also obtained from the models trained on 20_60, 40_65 and 3o_65.

The prediction results obtained from models tested on the entire 1°1 bp produced very similar

results to those obtained on 75 bp sequence lengths, with better overall results (less false

positives), ranging in numbers between 300 and 550. This result suggests that, with regard to

neutral net training on E.coli promoter sequences, the longer the promoter region considered,

the better the results. However, the results from the set of ten sequences though have

relatively been poor in the previous cases, seem to be completely out of phase to the results

from the other sets. Sequence subsets having 65 bp fragment sizes produced consistent results

in this test category of 1°1 bp test datasets. Sixty five (65) bp fragments are therefore highly

recommendable for training neural net models for prediction on 1°1 bp test datasets.
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4.3.2. B.subtilis

Sequence subsets of B.subtilis promoter and non-promoter sequences have also been

thoroughly trained on different architectures of Backpropagation network as done with E.coli.

The objective, to train these various different network architectures to distinguish and predict

promoter elements from non-promoter sequences. The same problem of over-training or

under-training and identifying optimally trained models were encountered. The approach

adopted in tackling the E.coli problem was also applied to this study. It involved use of

procedural iteration to get the best-trained model for each promoter/non-promoter subset; by

stopping the training process intermittently to test the predictability of the trained model on

test set of promoters and non-promoters. Some of the models went through an automated

training until they achieved optima, whilst others models had to be stopped from becoming

over-trained. The results of the various models on test sequences of same size as those used

to train the models, 75 bp sequence length and 101 bp are shown in tables 4.4, 4.5 and 4.6

respectively. The results are represented graphically in figures 4.4, 4.5 and 4.6.
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SETS 1 2 3 4 5 Av

10_40 1473 1447
10 45 1654 1650
10_50 1698 1716
10_55 1483 1470
10 60 1567 1559
10_65 1120 1055
10 70 1629 1606
10_75 1482 1469

20_40 1590 1605
20_45 1458 1400
20_50 1322 1287
20_55 1602 1609
20_60 1305 1250
20_65 1739 1712
20 70 1158 1148
20_75 1456 1391

30_40 1369 1314
30_45 1053 1028
30_50 953 870
30_55 1140 1083
30_60 1847 1834
30 65 1107 1069
30_70 1225 1183
30 75 1338 1303

40_40 1569 1529
40_45 1252 1149
40_50 1636 1524
40 55 1071 985
40_60 1409 1432
40_65 1670 1682
40_70 1103 1073
40_75 1684 1681

50 40 1041 978
50_45 1283 1228
50 50 1257 1162
50 55 1626 1585
50_60 1667 1645
50_65 1228 1177
50 70 1764 1780
50_75 1405 1332

1443
1644
1735
1488
1500
1068
1613
1487

1588
1382
1270
1615
1244
1708
1091
1385

1312
998
850

1054
1809
1027
1189
1285

1540
1181
1580
989

1403
1659
1052
1683

986
1239
1184
1638
1628
1164
1781
1333

1442
1648
1696
1441
1535
1054
1632
1477

1460 1453.0
1666 1652.4
1721 1713.2
1449 1466.2
1523 1536.8
1066 1072.6
1635 1623.0
1449 1472.8

1560
1439
1258
1590
1246
1741
1107
1405

1596 1587.8
1445 1424.8
1262 1279.8
1557 1594.6
1247 1258.4
1699 1719.8
1146 1130.0
1362 1399.8

1319
997
853

1115
1827
1060
1205
1295

1351 1333.0
986 1012.4
859 877.0

1066 1091.6
1805 1824.4
1059 1064.4
1215 1203.4
1256 1295.4

1509
1189
1567
966

1430
1675
1083
1677

1546 1538.6
1185 1191.2
1588 1579.0
997 1001.6

1373 1409.4
1698 1676.8
1059 1074.0
1687 1682.4

952
1231
1150
1618
1611
1212
1745
1318

1002 991.8
1240 1244.2
1194 1189.4
1619 1617.2
1641 1638.4
1186 1193.4
1746 1763.2
1357 1349.0

98

29.1
33.0
34.3
29.3
30.7
21.5
32.5
29.5

31.8

28.5
25.6
31.9
25.2
34.4
22.6
28.0

26.7
20.2
17.5
21.8
36.5
21.3
24.1
25.9

30.8
23.8
31.6
20.0
28.2
33.5
21.5
33.6

19.8
24.9
23.8
32.3
32.8
23.9
35.3
27.0
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Table 4.4. Results on five sets of sequence sub fragments generated randomly from each test

sequence. These sub fragments were tested on models trained on promoters and non-

promoters of same fragment size. Thus a model Bs40_50 trained on 40 sets of sequences of

50 bp fragment sizes were tested on 50 bp sequences. The average results of the number of

false positives from the five sets together with their percentage false positive are shown on

the seventh and eighth column respectively.
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Figure 4.4. Plot of false positive results (average) obtained from testing 5000 coding

sequences using manually selected threshold values that resulted in 90% true positives for

individual trained models. Test sequences had the same fragment sizes as the respective

sequences used in training the models. Results from set thirty (30) produced comparatively

good results with the best coming from model composed of thirty sequences of fifty fragment

sizes (Bs30_50).
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SETS 1 2 3 4 5 Av

10 40
10 45
10 50
10 55

10 60
10 65
10 70
10 75

20 40
20 45
20 50
20 55
20 60
20 65
20 70

20 75

30 40
30 45
30 50
30 55
30 60
30 65
30 70
30 75

40 40
40 45
40 50
40 55
40 60
40 65
40 70
40 75

50 40
50 45
50 50
50 55

781
1496
1602
1176

657
758
1327
1558

792
1053
763
1787
1160
1467
798

1579

840
766
588
446
598

566
1086
1408

808
705
811
629
563
1576
656

1684

590
573
685
1303

814

1489
1577
1161

652
759
1323
1556

804
1039
762
1794
1100
1463
844

1584

825
775
599
443
611

558
1153
1435

799
708
831
611
551
1546
668
1681

600
577
677
1347

795
1492
1597
1169

673
778

1338
1572

793
1052
780
1775
1123
1468
833

1560

836
752
598
438
599

540
1139
1414

782
701
802
616
577
1583
659
1683

565
585
674
1344

890
1529
1625
1256

773
910

1405
1552

901
1172
872
1798
1149
1519
915

1613

956
946
756
573
728

708
1251
1454

916
835
930
748
688
1620
770
1677

810
1470
1593
1179

656
785
1297
1520

802
1032
778
1772
1132
1449
825

1524

842
759
594
431
593
555
1131
1387

681
667
808
1439

592
563
674
1334

101

818.0
1495.2
1598.8
1188.2

682.2
798.0
1338.0
1551.6

818.4
1069.6
791.0
1785.2
1132.8
1473.2
843.0

1572.0

859.8
799.6
627.0
466.2
625.8
585.4

1152.0
1419.6

771
705
818
597
570
1579
662
1687

815.2
730.8
838.4
640.2
589.8

1580.8
683.0

1682.4

605.6
593.0
703.6
1353.4

16.4
29.9
32.0
23.8

13.6
16.0
26.8
31.0

16.4
21.4
15.8
35.7
22.7
29.5
16.9

31.4

17.2
16.0

12.5
9.3

12.5
11.7
23.0
28.4

16.3
14.6
16.8
12.8
11.8
31.6
13.7
33.6

12.1
11.9
14.1
27.1
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50 60
50 65
50 70
50 75

1220
590
1592
1318

1222
597
1585
1332

1235
581
1559
1333

1251
674

1612
1405

1231
612
1575
1357

1231.8
610.8
1584.6
1349.0

24.6
12.2
31. 7
27.0

Table 4.5. Results (prediction) on various neural-net trained models and their corresponding

results of false positives on 5000 coding sequences. Five sub fragments of 75 bp each were

generated randomly from each test sequence and tested on the trained models. A threshold

value that produced 90% true positive value on real promoter sequences was selected in each

case. The average results of the number of false positives from the five sets together with

their percentage false positives are shown on the seventh and eighth column respectively.
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Figure 4.5. False positive results (average) obtained from testing 5000 coding sequences

using threshold values for individual trained models that resulted in 90% true positives. Test

sequences had fragment sizes of 75 bp. The average score from five data sets, created from

each test of sequence (101 bp) was used. Results from model trained on thirty sequences of

55 bp sequence lengths (Bs30_55) produced the best results with regard to the number of

false positives.
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A
TEN TWENTY THIRTY FORTY FIFTY

40 744 640 560 608 486
45 1663 696 643 628 447
50 1181 638 499 786 699
55 1143 1765 428 623 976
60 655 1022 586 392 1156
65 634 1493 659 1531 593
70 1042 606 891 558 1364
75 1310 1205 691 746 450

B

TEN TWENTY THIRTY FORTY FIFTY
40 14.9 12.8 11.2 12.2 9.7
45 33.3 13.9 12.9 12.6 8.9
50 23.6 12.8 10.0 15.7 14.0
55 22.9 35.3 8.6 12.5 19.5
60 13.1 20.44 11.7 7.8 23.1
65 12.9 29.9 13.2 30.6 11.9
70 20.8 12.1 17.8 11.2 27.3
75 26.2 24.1 13.8 14.9 9.0

Table 4.6A. Results (false positives) obtained from various trained models on 5000 coding

sequences of B.subtilis. Table 4.6B is the equivalent of table 4.6A expressed as percentages.

Threshold values that produced 90% true positives on promoter test sequences were used.

Every sequence (10 1 bp) was tested by opening a window of size equivalent to the fragment

sizes on which model was trained on, testing the model on the sequence and adding up the

scores as window is shifted 1 bp as described previously.
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Figure 4.6. False positive results (average) obtained from testing five thousand (5000) coding

sequences using threshold values for individual trained models that resulted in 90% true

positives for promoter sequences. The entire 101 bp fragment size of each sequence test set

(both promoters and non-promoters) was used. Window sizes that corresponded to the model

sizes were opened in test sequences and scores summed up as window was shifted 1 bp to the

end of each sequence.
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The application of trained neural network models on B.subtilis promoters appear to follow a

pattern similar to the results achieved with E.coli datasets; in that no obvious correlation is

established between sequence size (number of sequences in the set) and prediction results.

However, overall prediction patterns appear to be similar those obtained on E.coli. Larger

(more number of sequences) sets generally produced better results compared to smaller

sequence sets as generally reflected on sets often and twenty, figure 4.4. No sequence subset

consistently produced bad results (high percentage of false positives) in all the three test

categories. Sequence set of thirty produced the best (least number of false positives) results in

the same-size-as-model category. Model trained on thirty (30) promoter sequences of fifty

(50) bp fragment size (30_50) prediction resulted as the best score with 877 false.positives

out of five thousand (5000) sequences. Large fluctuations in prediction scores are observed

for almost all the models. False positives range from 877 (17.5%) to an unacceptable high of

1824 (36.5%). Again, models producing very good results were those trained on sequences

from the region with the canonical-35 and -10 hexamers.

Results from the 75 bp category (sequences of 75 bp fragment sizes) revealed a different

strength in model pattern. An impressive least score of 466 false positives out of five

thousand (5000) test sequences is observed for model built and trained on 30 55. Model

trained on thirty sequences of fifty bp (30_55), which performed best in the same size as

model category also produced comparative results of (627/5000), fourth overall best with

differences between the scores from the other two 40_60 and 30_60 being less than 40

sequences. The overall results, like those obtained for E.coli sequences of 75 bp were better

than results on sequences having similar sequence length as the models. Still better results

were obtained when entire 101 bp sequences were tested as compared to sequences of 75 bp

fragment sizes. Results from testing entire 101 bp sequence fragments revealed yet another

trained model 40_60 with a very impressive prediction score of 392 (7.8%). Prediction result

obtained from mode130_55 (428) was still comparable to the best result of392.
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4.3.3. M.tuberculosis

ANN was trained on mycobacterium promoter subset data as described in section 3.2.3.1 to

develop various trained models capable of identifying mycobacterium tuberculosis promoters

from non-promoters. The principle and rationale behind the experiment is the same as those

used for E.coli and Bisubtilis promoter and non-promoter datasets. Optimal training for each

network model was achieved 'manually' for each model by stopping the training

intermittently to test the prediction efficiency of the trained models on test promoters and

non-promoters. Same problems of under-training and over-training in certain models came

up. There were -40 individual models to be trained. Tables 4.7, 4.8 and 4.9 show the various

results obtained by testing sequences of same length as models, 75 bp fragment sizes and 101

bp fragment sizes respectively. Five thousand (5000) sequences from Mituberculosis coding

sequences were used for testing the non-promoters whereas only 34 promoter data were

available for testing predictability on true positives.
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SETS 1 2 3 4 5 Av.
10 40
10 45
10 50
10 55
10 60
10 65
10 70
10 75

20 40
20 45
20 50
20 55
20 60
20 65
20 70
20 75

30 40
30 45
30 50
30 55
30 60
30 65
30 70
30 75

40 40
40 45
40 50
40 55
40 60
40 65
40 70
40 75

50 40

1316
2110
1622
1941
2160
1860
1753
1687

1931
2029
1280
1692
2298
1640
1923
1932

1584
2082
1817
1769
1443
2260
1913
2398

2119
2217
2043
2381
1504
1725
2394
2129

1751

1280
2097
1600
1961
2150
1887
1750
1732

1916
2023
1269
1694
2292
1622
1899
1863

1626
2091
1801
1807
1443
2238
1898
2397

2138
2205
2035
2383
1483
1764
2392
2151

1765

1280 1286
2123 2103
1561 1565
1952 1965
2174 2162
1844 1881
1747 1766
1734 1750

1961 1943
2018 2002
1246 1250
1657 1683
2280 2292
1587 1649
1929 1903
1879 1890

1600 1599
2110 2115
1777 1763
1792 1775
1439 1402
2223 2215
1915 1899
2399 2398

2103 2130
2217 2184
2040 2053
2377 2372
1486 1479
1787 1794
2395 2394
2130 2165

1777 1771

1289
2107
1597
2014
2194
1868
1744
1721

1909
2019
1275
1704
2295
1608
1887
1852

1626
2134
1796
1779
1414
2220
1869
2398

2130
2190
2020
2377
1464
1743
2393
2162

1742

108

1290.2
2108.0
1589.0
1966.6
2168.0
1868.0
1752.0
1724.8

1932.0
2018.2
1264.0
1686.0
2291.4
1621.2
1908.2
1883.2

1607.0
2106.4
1790.8
1784.4
1428.2
2231.2
1898.8
2398.0

2124.0
2202.6
2038.2
2378.0
1483.2
1762.6
2393.6
2147.4

1761. 2

25.8
42.2
31.8
39.3
43.4
37.4
35.0
34.5

38.6
40.4
25.3
33.7
45.8
32.4
38.2
37.7

32.1
42.1
35.8
35.7
28.6
44.6
38.0
48.0

42.5
44.1
40.8
47.6
29.7
35.3
47.9
42.9

35.2
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50 45 1429 1438 1469 1411 1499 1449.2 29.0
50 50 2364 2369 2382 2372 2380 2373.4 47.5
50 55 1631 1669 1666 1628 1677 1654.2 33.1
50 60 911 943 952 952 933 938.2 18.8
50 65 2251 2261 2285 2299 2273 2273.8 45.5
50 70 2399 2399 2399 2399 2399 2399.0 48.0
50 75 2328 2334 2333 2344 2340 2335.8 46.7

Table 4.7. Results on five sets of sequence sub fragments generated randomly from each test

sequence. These sub fragments were tested on models trained on promoters and non-

promoters of same fragment size. Thus a model Mt40_50, trained on 40 sets of

mycobacterium promoter sequences of 50 bp fragment sizes were tested on 50 bp sequences.

Five thousand (5000) mycobacterium-coding sequences and 34 promoter sequences were

used to test the models. Threshold values that resulted in 90% True Positive were selected

from the promoter sequences and used as cut-off for the predictions. The average results of

the number of false positives from the five sets together with their percentage false positive

are shown on the seventh and eighth column respectively.
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Figure 4.7. Plot of false positive results (average) obtained from testing 5000 mycobacterium

coding sequences using manually selected threshold values that resulted in 90% true positives

for individual trained models. Test sequences had the same fragment sizes as the respective

sequences used in training the models. Best results (least number of false positives) came out

of Mt50 _60, model trained on fifty promoters of 60 bp fragment sizes. Thresholds from test

promoter that resulted in 90% true positive were used to categorize 'promoters' from 'non-

promoters' .
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SETS 1 2 3 4 5 Av. %

10 40
10 45
10 50
10 55
10 60
10 65
10 70
10 75

20 40
20 45
20 50
20 55
20 60
20 65
20 70
20 75

30 40
30 45
30 50
30 55
30 60
30 65
30 70
30 75

40 40
40 45
40 50
40 55
40 60
40 65
40 70
40 75

50 40
50 45
50 50
50 55
50 60

1903
1850
1504
2057
1379
1763
1804
1750

2042
2060
2127
1955
2263
1731
1896
1890

2026
1935
1591
1717
1868
2008
2003
2398

1580
1697
1903
2017
1593
2015
1621
2165

1638
1737
1900
1470
1309

1914
1883
1496
2074
1384
1724
1812
1732

2015
2054
2128
1967
2265
1668
1834
1863

2005
1915
1571
1743
1884
1982
2005
2397

1581
1676
1907
2014
1547
2024
1614
2151

1633
1741
1884
1434
1302

1917
1884
1518
2062
1390
1750
1839
1734

2026
2047
2121
1968
2267
1743
1872
1879

2013
1939
1594
1691
1892
1979
1973
2399

1570
1684
1875
2032
1568
2031
1597
2130

1635
1733
1918
1428
1297

1911
1845
1485
2054
1365
1731
1826
1687

2032
2055
2130
1939
2275
1699
1865
1932

2004
1925
1563
1721
1898
2004
1991
2398

1564
1699
1879
2016
1561
2023
1581
2129

1628
1731
1885
1450
1317

1917
1884
1540
2074
1407
1746
1826
1721

2038
2047
2116
1936
2273
1711
1875
1852

2013
1938
1598
1743
1907
2006
1988
2398

1585
1673
1904
2014
1590
2020
1640
2162

1651
1745
1906
1479
1309

III

1912.438.2
1869.237.4
1508.630.2
2064.241.3
1385.027.7
1742.834.9
1821.4 36.4
1724.834.5

2030.640.6
2052.641.1
2124.442.5
1953.0 39.1
2268.645.4
1710.434.2
1868.437.4
1883.237.7

2012.240.2
1930.438.6
1583.4 31.7
1723.034.5
1889.8 37.8
1995.839.9
1992.039.8
2398.0 48.0

1576.031.5
1685.833.7
1893.637.9
2018.640.4
1571. 8 31.4
2022.640.5
1610.632.2
2147.442.9

1637.032.7
1737.434.7
1898.638.0
1452.2 29.0
1306.826.1
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50 65

50 70

50 75

1477

1412

2344

1456

1422

2334

1507

1457

2333

1476

1432

2328

1478 1478.8 29.6

1471 1438.8 28.8

2340 2335.846.7

Table 4.8. Results on various neural-net trained models and their corresponding results of

false positives on 5000 mycobacterium coding sequences. Five sub fragments of 75 bp each

were generated randomly from each test sequence and tested on the trained models. A

threshold value that produced 90% true positive value on real promoter sequences was

selected in each case. The average results of the number of false positives from the five sets

together with their percentage false positives are shown on the seventh and eighth column

respectively.
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Figure 4.8. False positive results (average) obtained from testing 5000 coding sequences of

Mtuberculosis using threshold values for individual trained models that resulted in 90% true

positives. Test sequences had fragment sizes of 75 bp. The average score from five data sets,

created from each test of sequence (101 bp) was used. Results from model trained on fifty

(50) sequences of sixty (60) bp sequence lengths (Mt50_60) produced the best results with

regard to the number of false positives.
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A

TEN TWENTY THIRTY FORTY FIFTY
40 1305 1354 1169 1223 918
45 1344 922 930 902 1111
50 1193 1153 897 1345 1045
55 1335 1146 1171 1488 1139
60 1029 1288 1203 1139 1289
65 955 1199 1429 1289 1269
70 1100 1220 969 1150 693
75 946 1451 1585 1484 864

B

TEN TWENTY THIRTY FORTY FIFTY
40 1305 1354 1169 1223 918
45 1344 922 930 902 1111
50 1193 1153 897 1345 1045
55 1335 1146 1171 1488 1139
60 1029 1288 1203 1139 1289
65 955 1199 1429 1289 1269
70 1100 1220 969 1150 693
75 946 1451 1585 1484 864

Table 4.9. Results (false positives) obtained from vanous trained models on 5000

mycobacterium coding sequences. A threshold value that produced 90% true positive value

on promoter sequences was used on the test set. Every sequence (10 I bp) was tested by

opening a window of size equivalent to the fragment sizes on which model was trained on,

testing the model on the sequence and adding up the scores as window is shifted I bp.
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Figure 4.9. False positive results (average) obtained from testing five thousand (5000)

Mtuberculosis coding sequences using threshold values for individual trained models that

resulted in 90% true positives for promoter sequences. The entire 101 bp fragment size of

each sequence test set (both promoters and non-promoters) was used. Window sizes that

corresponded to the model sizes were opened in test sequences and scores summed up as

window was shifted 1 bp to the end of each sequence (figure 3.1).
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Results obtained from testing the individual models on five thousand mycobacterium coding

sequences and promoter sequences portray no correlation between size of training data and

performance nor fragment size and performance, figure 4.7., suggesting little correlation or

influence between training dataset and predictability of the network. This is similar to the

results attained on E.coli and B.subtilis test data. Scores peak and dip reflecting consecutive

results of better and worse in almost all the models. No outstanding predictive performance is

observed in this study (tested sequence having the same data set as models). However, results

from model Mt50_60 appear to be relatively good (18.8% false positives) though not

comparable to the best results achieved for E.coli (9.3%). The overall results on models

trained on Mycobacterium promoters and non-promoters (number of false positives) appear

to be worse than the results obtained from B.subtilis and E.coli. Figure 4.8 depicts the plot of

results obtained with individual models on fixed fragment sizes of 75 bp. The pattern

observed on E.coli and Bisubtilis with respect to relationship between increase in fragment

size and the number of predicted false positives is observed here. Further increase from 75 bp

to 101 bp, figure 4.9 results in lower false positive scores for almost all the models. Model

50_60 performed best in both study A and study B whereas 50_70 produced the best results

for study C (101 bp test sequences).

A wide variety of multi-layered feed forward network structures have been developed and

trained on promoter and non-promoter sequences of Ecoli, Bisubtilis and Mycobacterium.

Inputs nodes from the various architecture ranged from 160 (40 bp region) to 300 (75 bp

sequence region). The promoters subjected to the various network architectures were not

classified into any categories especially with regard to which ones are transcribed from which

sigma factors. Secondly, no attention was paid spacing classes (distance between -35 and -

10) of the promoter. Results obtained from the study though not exceptional, are very

promising and clearly demonstrate the ability of neural network to discriminate against

certain variables when trained properly to do so. Other researchers had obtained better true

positive results using neural network on specifically E.coli promoters (DemeIer and Zhou,

1991 (98%); Lukashin et al., 1989 (96-98%); Mahadevan and Ghosh, 1994 (98%)). However,

these researchers designed their neural networks to accommodate the already known

information around the consensus hexamers (-35 and -10) and the spacing between the
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hexamers. On the other hand, O'Neil (1992), tried to use a generalized network to predict

E.coli promoters of 16, 17 and 18 spacer classes and came up with a lesser true positive

percentage of 60%. Aside from not incorporating possible dependencies and correlations of

position specific bases into the study, the number of promoters used by the mentioned

researchers for training far exceed the maximum of fifty (50) used in this study. Most of the

trained networks in this study were used with a consistent degree of success in distinguishing

promoter sequences from non-promoter sequences. In the study on the Mycobacterium

promoter sequences in particular, the predicted results were disappointing compared to those

of E.coli and B.subtilis. The disappointing results may be on Mycobacteria attributed partly to

lack of enough information in the training sets rather than the inherent power of neural

networks. This is particularly so in the case of Mituberculosis, where the information used as

test data constituted a collection of promoter data with experimentally undetermined

transcriptional start sites. The relatively poor results may therefore be attributed to the

threshold values (90% true positives) used as cut-off to classify test sequences. The overall

performance in this case depends to a large extent on the true positives (actual promoters)

used in the test. Because, a threshold value that automatically results in 90% TP is used as

cut-off in the prediction. Neural network is no doubt a very powerful analytical tool and quite

easy to use. The results clearly show the discriminatory ability of neural network if well

trained. Coupled with the fact that it requires very little if any mathematical or programming

skills, it is a very useful tool for studying promoter detection/prediction. However it does

require patience and time to obtain optimally trained models, that is, models that do not over-

generalize or under- generalize. As was the case with HMM, the best predictive models could

be integrated and used on entire genomic sequences.
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Chapter five

Use of Statistical Analysis in study and prediction of E.coli, B.subtilis and

Mycobacterial promoters

ABSTRACT

Statistical analyses of promoters and non-promoters belonging to E.coli, B.subtilis and

M tuberculosis datasets were performed. Statistical analysis performed included overall

nucleotide composition, percent GC content, and dinucleotide/trinucleotide composition of

the promoter/non-promoter dataset pairs of these organisms. Subtle but significant

differences in nucleotide composition were observed between promoter and non-promoter

sub datasets of equal sizes (equal number of promoters and non-promoters of same fragment

sizes). These differences in composition were exploited to develop a prediction system

named Triplet Frequency Distribution Analysis (TFDA). TFDA utilizes differences in

trinucleotide composition of both promoters and non-promoters to produce a hash table of

scores for each of the sixty-four possible triplets. Results of TFDA on promoter prediction

were very comparable to those obtained from ANN (Artificial Neural Net) and HMM

(Hidden Markov Model). TFDA produced true positive (TP) results of 90% and best false

positive prediction results of ~5.9%, ~5.9% and ~20.4 for E.coli, Bisubtilis and

M.tuberculosis datasets respectively. The high false positive rate obtained on Mituberculosis

may be attributed to the minimal size of Mycobacteria promoter test data. Our analysis

reveals that this statistical method predicts promoter sequences effectively with minimal

errors when compared to other approaches such as HMM and NN.
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5.1. Introduction

Alignment of sequences having the same or similar functions have enabled researchers to

identify certain novel consensus features in these sequences. In some cases, it has resulted in

identification of the function of previously unknown sequences. Thus sequence alignment has

been the backbone of scientific approach to elucidate function(s) of previously unknown

sequences. A typical example is the identification of the canonical -10and -35 hexamers of

E.coli promoters (Hawley and McClure, 1983; Harley and Reynolds, 1987; Lisser and

Margalit, 1993). At the backbone of sequence analysis via alignment, is the composition of

DNA in the sequence strings. The very fact existence of codon usage preferences in

organisms emphasizes the significance of importance of skewed nucleotide composition.

These differences in various regions of the entire genome have been exploited in gene

prediction/finding. (Krogh, 2000; Rees et al., 2000; Kulp et al., 1997; Shmatkov et al., 1999).

A coding region of even the AT-rich E.coli, would not be expected to contain many

aggregates of A's and T's; in case some form of mutation results in a stop codon (TAA, TGA

and TAG) in the middle of the string. Likewise, one does not expect many strings of C and

G's in promoter regions of even the GC-rich Mtuberculosis as that would result in more

energy to open up the helix in the process of forming an 'open-enzyme-promoter complex.

Within the same organism (E.coli), statistical analysis of nucleotide composition in the

genome has enabled the recognition of certain genes as 'acquired genes' (Medigue et al.,

1991; Munoz, 1998). 'Acquired genes' are genes thought to acquired later through evolution

by horizontal gene transfer. Statistical analysis has already been applied to promoter

detection (Cardon and Stormo, 1991; Horton and Kaneshia, 1992; Ozoline et al., 1997;

Besemer and Borodovsky, 1999), though none of these researchers dealt directly with

dinucleotide and trinucleotide composition of the datasets of the organism, which in all cases

was E.coli. Nucleotide composition analysis in the form of TFDA was used to carry out

detailed analysis of nucleotides in both promoters and non-promoters of E.coli, B.subtilis and

Mycobacterium. The outcome of the analysis led to a prediction system being built on the

information gained from the analysis. This prediction system has been employed with some

degree of success in predicting promoter sequences from the three organisms.
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5.2. METHODS.

5.2.1.1. E.coli Promoter Sequences.

As in section 3.2.1.1 were used in this chapter.

5.2.1.2. E.coli Non-Promoter Training Data.

Same as in section 4.2.1.2.

5.2.1.3. E.coli Non-Promoter Data

The same E.coli non-promoter sequences in section 4.2.1.3.

5.2.2.1. B.subtilis Promoter Data.

Same as those used in section 3.2.3.1.

5.2.2.2. B.subtilis Non-Promoter Training Data

Same as in section 4.2.2.2.

5.2.2.3. B.subtilis Non-Promoter Data

As in section 4.2.2.3.

5.2.3.1. M.tuberculosis Promoters

Same data set used in section 3.2.3.1 was used for the neural net training and testing of

Mycobacterium promoter sequences.

5.2.3.2. M.tuberculosis Non-promoter Training Data

As in section 4.2.3.2.

5.2.3.3. M.tuberculosis Non-Promoter sequences

As in section 4.2.3.3.
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5.3. Triplet Frequency Distribution Analysis (TFDA).

5.3.1. Production ofPromoterlNon-promoter Hash Tables.

Promoter and non-promoter sequences were divided into sets and subsets as described in the

methodology section of chapter three. Each promoter and non-promoter subsets (same

number of sequences and fragment sizes) of the three organisms was analyzed for triplets in

nucleotide composition. The triplet frequency of each promoter non-promoter dataset pair

was obtained by the following procedure:

(a) A three bp size window is opened from the first nucleotide in each sequence in the

sequence set.

(b) An inventory of all the triplets in each sequence in the set was taken as the window is

moved by one base pair (1 bp) to the end of the entire sequence.

(c) Similar triplets were grouped and counted to obtain the numbers present for all 64

possible triplets in the set.

(d) Actual triplet frequency in a particular sequence set was obtained by using the following

formula:

Itrip/et = fM..)(43)

M 5.1.

121

Where N, represent the number of times a particular triplet occurs in the sequence, M is the

total number of nucleotides in the entire sequence set and Itrip/et denotes the actual frequency

of the triplet in the set. Hash tables were created by subtracting the frequency of a particular

triplet in non-promoter set from the corresponding frequency of the same triplet in the

promoter dataset. Thus, triplets more prevalent in promoter sequences will have relatively

high positive scores compared to triplets more prevalent in non-promoter sets (they will

actually have negative scores) in the hash table, figure 5.1.
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5.3.2. Scoring System.

Test sequences are appraised by: Opening a three base pair window, shifting the 3 bp window

by a base pair at a time and adding up all the corresponding hash table values of the triplets in

the sequence. Thus to compare sequences, the sequences in question have to be of the same

sequence lengths. The higher the score on the test sequence the better the chances of the

sequence in question having promoter function. In all the study cases, ranking was used to

select a threshold value that would result in 90% true positive for the known promoter test

sequences. Test sequences are then assessed using the selected threshold value. All

computations and analysis of sequence data were done on a SGI (irix 6.3) workstation.

Computational codes were written in C, C++ and Perl programming languages.

5.4. Results and Discussion

5.4.1. Nucleotide Composition (Promoters and Non-promoters)

Nucleotide composition and percentage GC content of promoters and non-promoters of the

three organisms were studied by, carrying out statistical analysis on the same number of

sequences and same fragment size for each dataset. Table 5.1 shows the results of nucleotide

composition analysis on the three organisms. Results shown in table 5 are illustrated

graphically in figure 5.1. In all the three organisms, promoter regions appear NT rich

compared to non-promoter regions, which rather appear to be GIC -rich.

122

www.etd.ac.za



E.coli B.subtilis Mycobacterium
NP P NP P NP P

A 24.4 27.9 29.7 33.8 19.2 20.9
C 24.7 21.8 19.3 14.8 32.1 28.4
G 27.6 20.5 24.2 18.8 30.1 31.0
T 23.3 29.7 26.9 32.6 18.6 19.7

%GC 52.3 42.3 43.5 33.6 62.2 59.4

Table 5.1. Nucleotide composition of Promoters (P) and Non-promoters (NP) of E.coli,

B.subtilis and Mycobacterium. Also included is the percentage composition of GC content.

Equal lengths of sequences were analyzed to obtain the above results.
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Figure 5.1. Percent nucleotide composition of promoter (Xp) and non-promoter sequences

(Xn) obtained on E.coli, B.subti/is and Mycobacterium sequences. Sequences analyzed did

not include the complements. Highest GC scores are observed for Mycobacterium sequences

whilst least GC content is observed for B.subti/is.
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The orgamsm with the highest GC content in both promoters and non-promoters is

Mycobacterium. That confirms what has already been established (Kvasnikovet al., 1978;

Danchin, 1997; Raghavan et al., 2000). Among the three organisms, mycobacterium is the

most GC rich organism. Also, in all the three organisms, the percent A and T composition in

promoters are relatively higher than those in their respective non-promoter dataset. The

opposite is true for non-promoters, where the percent composition of G and C in the non-

promoter data set is higher than found in their corresponding promoter data. Though both

B.subtilis and E.coli are relatively AT rich organisms with respect to their nucleotide

composition, B.subtilis has the higher NT content in both its promoter and non-promoter

data compared to E.coli.

5.4.2 DINUCLEOTIDE COMPOSITION (Promoter/Non-Promoter)

Table 5.2 shows the results obtained by carrying out dinucleotide analysis on the promoter

(P) and non-promoter (NP) datasets of E.coli, B.subtilis and the Mycobacterium data.

Dinucleotides AA, AT and TT (figure 5.2) appear to have very significant differences in the

percentage composition in their promoter and non-promoter sequences with the higher score

reflecting on the promoter sequences. On the other hand, the dinuc1eotides CG, GC and GG

stand out in the percentage composition in both promoters and non-promoters of all the three

organisms, though in most cases, it is the non-promoter data sets that have higher values of

the dinuc1eotides.
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E.coli B.subtilis Mycobacterium
p NP P NP P NP

AA 9.3 6.9 13.0 10.4 4.4 4.1
AC 5.5 5.8 4.9 4.9 6.3 7.0
AG 5.1 5.2 5.7 6.1 5.6 3.9
AT 8.0 6.6 10.2 8.2 4.5 4.2
CA 6.3 6.4 5.6 6.0 5.8 6.9
CC 4.7 5.3 2.6 3.3 8.1 8.0
CG 5.3 7.9 2.5 4.8 9.8 11.9
CT 5.5 5.1 4.1 5.2 4.6 5.1
GA 5.4 6.9 6.6 7.7 7.4 6.2
GC 5.9 8.4 2.8 5.5 8.2 10.2
GG 3.7 6.8 4.3 5.7 9.0 8.2
GT 5.5 5.5 5.1 5.3 6.6 5.6
TA 6.8 4.2 8.7 5.5 3.3 1.8
TC 5.7 5.3 4.6 5.6 5.6 7.0
TG 6.4 7.6 6.3 7.7 6.7 6.1
TT 10.8 6.2 13.0 8.1 4.1 3.8

Table 5.2. Results obtained by computing the dinucleotide composition of large data sets

(+80 sequences per data) of promoters (P) and non-promoters (NP) of E.coli, Bisubtilis and

Mycobacterium. Promoter and Non-promoter data for both E.coli and B.subtilis consisted of

8000 nucleotides each whilst Mycobacterium promoter and non-promoter datasets constituted

5000 nucleotides each. Outstanding differences in composition of between promoters and

non-promoters of certain dinucleotides are observed in all three organisms. They include TT,

AA, AT and in E.coli and B.subtilis, and GC and CG in mycobacterium.
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Figure 5.2. Graphical representation of the dinucleotide content of promoter and non-

promoter data of E.coli (A) B.subtilis (B) and Mycobacterium (C). Dinucleotides with the

letter on' (e.g. ATn) represent dinucleotides from non-promoter sequences of the respective

organisms. The same information is represented in two different graphs. The graphs depict

similar dinucleotide sets (side by side) from promoter and non-promoter sets respectively.
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In E.coli promoters, AA, TT and AT are the predominant dinucleotide pairs (9.3%, 10.8 %

and 8% respectively). The remaining dinucleotides have percentage composition around 6%

(±0.5%) with GG having the lowest representation at 3.7% (figure 5.2A). E.coli coding

sequence (used as a non-promoter in the comparison) reveals elevated CG (7.9%) and GC

(8.4%) in the sequence dataset. The following dinucleotides, AA (13%), AT (10.2%) and TT

(13%) are also relatively higher in B.subtilis promoter dataset. The proportion of AT (8%)

and TA (10%) are also relatively high compared to the other dinucleotides. Percentage

compositions of most dinucleotides in the promoter set are well below 6% with CC as low as

2.4%. Distribution in B.subtilis non-promoter sequences is more uniform compared to that of

the promoter dataset, even though, dinucleotides AA and TT stand out amongst the rest of the

dinucleotides. Again, the relative abundance of the two dinucleotides (AA and TT) is not

comparable to their equivalents in the promoter data. There is a relative sharp rise in CC

(3.3%) numbers in the non-promoter (coding sequence) data as compared to percentage in the

promoter data (2.6%).

The dinucleotides CG, GC, GG, CC and TC are more prevalent in both Mycobacterium

promoter and non-promoter sequences. The percentage compositions of these dinucleotides

(CG, GC, GG and CC) are higher in the non-promoter data. A smaller proportion of the AT-

rich dinucleotides TA, TT, AA and AT are usually more predominant in promoters and are

even lower in the non-promoter datasets. The dinucleotide composition in the mycobacterium

promoter datasets is more of a reflection of the composition in the non-promoter promoter

data with less numbers of dinucleotides resulting from W (A and/or T). A critical analysis of

the graph in figure 5.2 reveals a non-uniform distribution of dinucleotides in all the three

promoter/non-promoter datasets.

Percentage GC content analysis was performed on the entire genomes (Genbank: version 111)

of the three organisms i.e. E.coli, B.subtilis and Mtuberculosis. The percentage GC

composition was 50%, 44% ~66% for E.coli, B.subtilis and Mtuberculosis respectively. The

analysis of the promoter data and non-promoter data used in the study revealed a different
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GC content in both promoters and non-promoters. The percentage GC content of the

promoter/non-promoter datasets were 43%/52% for E.coli, 33%/45% for B.subtilis and

58%/65% for Mtuberculosis. The figures from the analysis emphasize the point made earlier

concerning the distribution of nucleotides in coding and non-coding sections of genomes.

Clearly, a system that apportions some score/values (higher for certain particular

dinucleotides e.g. prevalent in promoters) would seem to be an effective way of detecting

promoter data from non-promoter data. One approach would be to award higher points to

dinucleotides prevalent in promoters and associating higher score of a test sequence with a

hypothetical promoter.

5.4.3. DINUCLEOTIDE FREQUENCY DISTRIBUTION ANALYSIS (DFDA).

The percentage composition of the dinucleotides of each organism's promoter and non-

promoter dataset was used to generate a hash table of dinucleotides for the particular

organism. In order to develop a system of measure to predict promoter sequences from non-

promoter sequences, the percentage composition of each dinucleotide in the non-promoter

dataset was subtracted from the corresponding percentage in the promoter dataset.

Dtv = Dt[J Dmp. 5.2

Where Dtv is the dinucleotide value of the D, in the hash table; Dt[J and Dinp represent the

percentage composition of the dinucleotide D, in promoter and non-promoter sequences

respectively. A test sequence is analyzed by adding up the respective hash table values of all

the dinucleotides in the sequence. A threshold selected by applying the measure on actual

promoter sequences can then be used as a cut-off in the prediction. The dinucleotide score for

the sequence in question will be:

Where Sc is the aggregate of the hash table values of all the dinucleotides found in the test

sequence as a 2-bp window is moved a 1 bp to the end.
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Fig.5.3. Results indicating the number of false positives obtained from using the differences

in dinucleotide content of promoter non-promoter datasets of E.coli (Ec), B.subtilis (Bs) and

Mycobacterium respectively. Five thousand (5000) non-promoter sequences of 101 bp were

used in the test set for each of the three organisms. Threshold values that resulted in 90%

True Positive (using respective known promoter sequences for each organism were used to

categorize test sequences as predicted promoter sequences or non-promoter sequences. The

actual data is found at the bottom of graph.
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Figure 5.3 illustrates the results obtained by using such analysis. The false positive scores for

E.coli and B.subtilis are quite impressive. The best scores (least number of false positives) are

360/5000 and 517/5000 for E.coli and B.subtilis respectively. These scores are fact

comparable to those obtained for such recognized prediction system as neural network. Like

the other results obtained on neural network and HMM systems, the results obtained for

Mycobacterium are not quite as good. As discussed earlier in the previous two chapters, this

might be attributed to a number of reasons including minimal test promoter dataset and using

estimated (refer to section on Mituberculosis promoter testdata) region based on either known

-10 or -35 for true positive tests (promoter test data annotated not conclusive). Though best

prediction score obtained on Mituberculosis is 2009/5000 (40%), the score is still less than

50% and therefore DFDA has the potential of being used as a promoter prediction tool.

5.4.4. TRIPLET COMPOSITION ANALYSIS

The nucleotide composition analysis has been extended to triplet from dinucleotide as shown

in table 5.3 and figure 5.3. Subtle but detectable differences between the composition of most

of the triplets in the different data are observed in all three bacteria. Some triplets including

ATT, ATA, CAT, TAT, TTT, TTA, CGC, CTG, GCG and GCG were found to vary

considerably in composition (+1%) between the promoter sequences and coding (non-

promoter) sequences.

An examination of the above table (table 5.3) reveals triplet with higher proportion of A or T

(W) to be relatively higher in composition in promoter data as compared to non-promoter

data. A few of such triplets are highlighted in bold (table 5.3). The higher composition of W

nucleotides for promoter data is even true for the high GC-rich mycobacterium data. On the

other hand, GC-rich triplets tend to be more predominant in non-promoter sequences

compared to promoter sequences in each of the three organisms, figure 5.3. The differences
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In composition of some of the AT dominated and GC dominated nucleotides in

promoter/non-promoter data are in some cases very significant. Examples include AAA,

ATA, ATT, TAT, TTA, TTT in E.coli and B.subtilis and CGC, TCG among others in

Mycobacterium. The pattern of distribution of triplets in B.subtilis promoter and

E.coli B.subtilis Mycobacterium
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0.8
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1.1
0.6
0.3
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1.2
0.7
2.0
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ACG
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AGG
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CCG
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CGA
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TAG 1.2 0.7 1.0 0.3 0.8 0.2
TAT 3.1 2.0 2.3 1.8 0.9 0.7
TCA 1.7 1.9 2.3 1.3 1.5 1.5
TCC 0.9 1.0 1.1 0.5 1.3 1.4
TCG 0.7 1.2 0.8 1.3 2.1 3.1
TCT 1.3 1.5 1.9 1.3 0.8 0.9
TGA 2.2 2.8 1.9 2.1 1.8 1.1
TGC 0.9 1.4 1.8 2.1 1.6 1.8
TGG 1.1 1.8 1.4 2.8 2.0 2.1
TGT 2.1 1.7 1.3 0.8 1.3 1.2
TTA 3.0 1.9 2.4 1.6 0.5 0.2
TTC 1.8 1.8 2.3 1.2 1.3 1.6
TTG 2.4 2.2 2.0 1.6 1.5 1.3
TTT 5.9 2.3 3.1 2.3 0.9 0.7

Table 5.3. Percentage composition of all sixty-four triplets in promoter (P) and non-promoter

(NP) of the three organisms namely E.coli, B.subtilis and Mycobacterium. Equal sizes

(numbers and fragment sizes) of nucleotides as arranged in their respective genome were

analyzed. Triplets with difference of one percent or more (+ 1%) are highlighted in bold.
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non-promoter appears to be similar to those of E.coli. Since both have high AT-rich

chromosomes.

However, the actual composition/content of triplets vary in frequency. Certain triplets in both

sets of data i.e. promoter and non-promoter appear to be insignificant in almost all the

organisms with respect to its composition. Such triplets include ACG, GTA, CCT and CTT;

may play different role(s) that may have nothing to do with the quantity in the promoter

region. Triplet analysis, just like the dinucleotide sequence analysis revealed a clear

difference in nucleotide composition between promoters and non-promoters in the respective

organisms. These distinctive differences may be utilized to develop a system capable of

distinguishing promoter sequences of an organism from its coding sequences, as was the case

with the dinucleotides.
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Figure 5.4. Distribution (percentage composition) of the sixty-four (64) possible triplets in

E.coli promoter (square/blue plot) and non-promoter (triangle/yellow) data set (A), B.subtilis

data set (B) and Mycobacteria data set (C). Variations in the distribution of certain types of

triplets are evident in the two data sets of promoter/non-promoter. Triplets that are relatively

prevalent in both data include AAA, ATT and TTT whereas the triplets GCG, GCC and CGG

fluctuate widely in composition between the two sets of data. Other triplets ACT, CCT, CTT

and GTA are consistently found to have almost the same composition in all data sets in the

three organisms.
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5.4.5. Triplet Frequency Distribution Analysis on E.coli.

Results from prediction using hash table generated from triplet frequency distribution of same

fragment size as test data, fixed 75-bp fragment sizes and fixed 101 bp fragment sizes are

shown in table 5.5,5.6 and 5.7 respectively. Corresponding graphs are shown in figures 5.5A,

5.5B and 5.5C. The trend is similar to those observed for neural network and HMM

prediction. Once again, there is no obvious direct correlation between fragment size and

predictability. However, the overall results are better (less number of false positives) than

results obtained from both HMM and Neural network. Triplet Frequency Distribution

analysis is favored because it gives more variables for the hash table (64) as compared to

sixteen (16) for dinucleotide frequency analysis.
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SETS 1 2 3 4 5 Av. %
10 40 1009 994 968 963 994 985.6 19.7
10 45 646 703 655 678 657 667.8 13.4
10 50 642 625 653 620 620 632.0 12.6
10 55 656 627 635 651 626 639.0 12.8
10 60 462 473 485 492 453 473.0 9.5
10 65 488 485 500 494 497 492.8 9.9
10 70 564 553 565 557 569 561. 6 11.2
10 75 490 474 504 491 498 491.4 9.8

20 40 971 939 936 948 943 947.4 18.9
20 45 543 550 535 559 541 545.6 10.9
20 50 588 585 588 570 561 578.4 11.6
20 55 535 528 520 526 515 524.8 10.5
20 60 514 516 503 524 504 512.2 10.2
20 65 382 373 379 385 382 380.2 7.6
20 70 469 444 444 447 433 447.4 8.9
20 75 345 353 361 344 353 351.2 7.0

30 40 767 734 747 753 770 754.2 15.1
30 45 637 655 622 650 638 640.4 12.8
30 50 580 578 567 563 558 569.2 11.4
30 55 436 425 426 420 431 427.6 8.6
30 60 311 330 313 312 290 311.2 6.2
30 65 400 398 405 409 408 404.0 8.1
30 70 353 343 355 355 354 352.0 7.0
30 75 300 312 333 324 335 320.8 6.4

40 40 900 876 844 857 884 872.2 17.4
40 45 533 524 500 515 514 517.2 10.3
40 50 543 568 571 546 558 557.2 11.1
40 55 462 463 444 454 459 456.4 9.1
40 60 381 393 396 383 351 380.8 7.6
40 65 388 388 386 374 376 382.4 7.6
40 70 334 307 315 312 309 315.4 6.3
40 75 349 349 368 344 335 349.0 7.0

50 40 712 701 677 671 690 690.2 13.8
50 45 584 592 582 593 583 586.8 11.7
50 50 496 522 494 508 495 503.0 10.1
50 55 448 447 413 441 433 436.4 8.7
50 60 444 451 429 455 429 441.6 8.8
50 65 392 384 385 377 382 384.0 7.7
50 70 407 371 371 375 376 380.0 7.6
50 75 356 356 371 358 362 360.6 7.2

Table 5.4. False positive results obtained from the individual hash tables generated from promoter and non-

promoter sequences of the same size (number of sequences and sequence lengths). Tested sequences have the

same fragment sizes as the sets (promoter/non-promoter) used to develop the table. Five random sequences were

generated from each of the original test sequences (101 bp) to obtain results very reflective on the actual test

data.
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SETS 1 2 3 4 5 Av. !Is
10 40 595 592 618 600 605 602.0 12.0
10 45 586 593 604 586 610 595.8 12.0
10 50 595 600 615 592 591 598.6 12.0
10 55 555 549 563 545 568 556.0 11.0
10 60 452 442 450 450 459 450.6 9.0
10 65 430 432 439 437 450 437.6 8.8
10 70 544 544 564 557 559 553.6 11.1
10 75 476 458 483 469 480 473.2 9.5

20 40 446 451 452 443 449 448.2 9.0
20 45 418 417 428 414 427 420.8 8.4
20 50 357 351 350 341 347 349.2 7.0
20 55 440 446 460 450 449 449.0 9.0
20 60 500 493 512 504 487 499.2 10.0
20 65 392 409 402 398 409 402.0 8.0
20 70 344 358 359 351 338 350.0 7.0
20 75 370 380 381 369 372 374.4 7.5

30 40 491 507 509 502 521 506.0 10.1
30 45 481 500 513 490 510 498.8 10.0
30 50 446 453 455 443 463 452.0 9.0
30 55 354 346 359 355 352 353.2 7.1
30 60 292 284 302 304 295 295.4 5.9
30 65 346 337 351 352 355 348.2 7.0
30 70 324 318 332 329 333 327.2 6.5
30 75 324 331 353 345 355 341.6 6.8

40 40 426 412 421 404 408 414.2 8.3
40 45 356 361 371 359 356 360.6 7.2
40 50 408 397 408 382 398 398.6 8.0
40 55 420 418 420 409 408 415.0 8.3
40 60 352 345 366 341 332 347.2 6.9
40 65 350 360 362 357 335 352.8 7.1
40 70 319 318 334 321 305 319.4 6.4
40 75 333 327 349 330 306 329.0 6.6

50 40 312 311 329 311 322 317.0 6.3
50 45 347 349 373 360 358 357.4 7.1
50 50 314 303 321 311 315 312.8 6.3
50 55 334 347 359 343 349 346.4 6.9
50 60 405 417 430 415 439 421.2 8.4
50 65 391 412 406 408 418 407.0 8.1
50 70 357 373 370 357 354 362.2 7.2
50 75 313 322 329 316 317 319.4 6.4

Table 5.5. The procedure used to obtain the data is similar to that used to obtain results in table 5.4. However,

datasets have sequences of 75 bp fragment size each. The average numbers of false positives together with their

respective percentage are shown in columns seven and eight.
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TEN TWENTY THIRTY FORTY FIFTY
40 701 521 329 451 418
45 548 496 446 397 382
50 650 407 290 455 334
55 680 518 276 326 301
60 496 518 229 304 357
65 470 352 321 310 488
70 502 344 271 274 366
75 315 400 281 317 336

Table 5.6. Triplet frequency distribution analysis results on five thousand E.coli non-promoter data of 101 bp

fragment size. A cut-off value that resulted in 90% TP (true positive) was manually selected and used as

prediction threshold.
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Figure 5.5. Graphs of results shown in table 5.3 (A), 5.4 (B) and 5.5 (C) which represent the

number of false positives obtained by using hash table values from designed sequence sets on

sequences of the same fragment size (A), of 75 bp fragment size (B) and 101 bp fragment

sizes (C). In all instances, cut-off values that represented 90% true positive were used to

determine which test sequences were considered predicted promoter sequences.
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A consistent trend is observed in the first type of designed set where the test sequences are

varied depending on which sequence subset was used to generate the hash table. An increase

in size of test sequences from 40 bp results in decrease in number of false positives. Also, the

differences in the results do not fluctuate as seen with the previous methods of neural

network and hidden Markov model. Percentage false positive results ranges from a high

19.7% (10_40) to an impressive low of 6.2% for hash table values developed from a

sequence subset of thirty sequences of 60 bp (30_60) fragment size each. As in NN and

HMM methods, results were better on test sequences fixed at 75 bp, which emphasizes a

belief from this study that, a longer region of 75 bp is probably the ideal practical fragment

size that should be used in promoter prediction/detection. A worst result of 12% false

positives is reflected on sub sequence set 10_40 with indistinguishable results from 10_45 .

However, the best result, also derived from 30_60 (thirty sequences of 60 bp fragment sizes

each) of 5.9% is even better than that obtained for the previous test set of 60 bp. A consistent

trend in all the three methods of prediction has been the overall better results as test

sequences are increased from a fixed 75 bp to 101.

5.4.6. Triplet Frequency Distribution analysis on B.subtilis

The same triplet frequency analysis procedure used on E.coli data was applied to B.subtilis.

The sequence subsets used are the same as those used for HMM and NN analysis. Results

from this analysis is very similar to those of E.coli with hash values from sequence subset of

fifty (50) producing the best results (least number of false positives) as compared to thirty

(30) in E.coli. False positives range from slightly fewer than eight hundred (800) to just

above four hundred (400), except for the false positive results obtained from 10_60 (1003).
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1 2 3 4 5 Av. %
10 40 673 629 614 633 647 639.2 12.8
10 45 833 746 745 728 741 758.6 15.2
10 50 891 726 737 719 703 755.2 15.1
10 55 603 495 504 515 510 525.4 10.5
10 60 1131 1004 979 1003 992 1021.8
20.4
10 65 748 576 560 555 550 597.8 12.0
10 70 664 538 527 537 520 557.2 11.1
10 75 644 497 484 477 475 515.4 10.3

20 40 715 620 612 588 612 629.4 12.6
20 45 592 515 499 492 487 517.0 10.3
20 50 931 784 793 797 799 820.8 16.4
20 55 651 525 537 541 544 559.6 11.2
20 60 796 655 655 653 661 684.0 13.7
20 65 817 691 668 666 690 706.4 14.1
20 70 857 676 689 694 679 719.0 14.4
20 75 694 539 530 538 543 568.8 11.4

30 40 787 679 678 683 703 706.0 14.1
30 45 688 583 538 578 547 586.8 11.7
30 50 684 586 575 562 557 592.8 11. 9
30 55 672 512 540 535 531 558.0 11.2
30 60 757 636 604 612 592 640.2 12.8
30 65 684 535 541 526 547 566.6 11.3
30 70 743 551 563 578 566 600.2 12.0
30 75 852 662 679 674 665 706.4 14.1

40 40 615 557 567 535 553 565.4 11.3
40 45 554 492 469 462 445 484.4 9.7
40 50 715 599 588 563 585 610.0 12.2
40 55 629 527 545 557 542 560.0 11.2
40 60 668 566 562 559 570 585.0 11.7
40 65 855 740 709 722 728 750.8 15.0
40 70 725 593 590 603 585 619.2 12.4
40 75 715 551 560 559 559 588.8 11.8

50 40 634 606 569 573 594 595.2 11. 9
50 45 737 629 608 614 621 641.8 12.8
50 50 675 562 524 542 538 568.2 11.4
50 55 630 503 501 524 511 533.8 10.7
50 60 709 613 575 580 583 612.0 12.2
50 65 642 545 547 542 536 562.4 11.2
50 70 715 565 576 586 589 606.2 12.1
50 75 572 415 434 424 420 453.0 9.1

Table 5.7. False positive results obtained five thousand (5000) non-promoter sequences using triplet frequency

analysis. All the test sequences used had same fragment sizes as those used to generate their respective triplet

hash values. Threshold values that resulted in 90% true positive for the 83 actual promoters used were used to

judge the respective test sequences.
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1 2 3 4 5 Av. %
10 40
10 45
10 50
10 55
10 60
10 65
10 70
10 75

20 40
20 45
20 50
20 55
20 60
20 65
20 70
20 75

30 40
30 45
30 50
30 55
30 60
30 65
30 70
30 75

40 40
40 45
40 50
40 55
40 60
40 65
40 70
40 75

50 40
50 45
50 50
50 55
50 60
50 65
50 70
50 75

616 616 525 511 520 557.6 11.2
1012 1012 906
834 834 651
731 731 587
1189 1189 1058
746 746 568
856 856 673
644 644 484

876 876 691
813 813 651
842 842 654
813 813 655
703 703 556
979 979 774
831 831 641
694 694 530

614 614 488
668 668 499
530 530 409
671 671 502
747 747 576
711 711 531
684 684 522
852 852 679

694 694 545
595 595 471
806 806 649
731 731 594
663 663 526
731 731 599
641
715

641
715

504
560

885 894 941.8 18.8
649 649 723.4 14.5
558 570 635.4 12.7
1024 1041 1100 22.0
565 562 637.4 12.7
678 666 745.8 14.9
477 475 544.8 10.9

701 691 767.0 15.3
652 642 714.2 14.3
689 681 741.6 14.8
661 651 718.6 14.4
552 548 612.4 12.2
778 781 858.2 17.2
645 649 719.4 14.4
538 543 599.8 12.0

484 477 535.4 10.7
506 489 566.0 11.3
411 391 454.2 9.1
505 505 570.8 11.4
572 577 643.8 12.9
534 546 606.6 12.1
525 514 585.8 11.7
674 665 744.4 14.9

543 525 600.2 12.0
460 463 516.8 10.3
653 646 712.0 14.2
589 589 646.8 12.9
541 531 584.8 11.7
597 592 650.0 13.0
511
559

499
559

559.2 11.2
621.6 12.4

Table 5.8. False positives resulting from using generated hash tables from the various sequence subsets. Each

test sequence had a sequence length of 75 bp. Five random sequences were generated from every test sequence.

The average is then used to represent the number of false positives.

555
603
531
607
538
606
667
572

555
603
531
607
538
606
667
572

452
487
416
476
441
491
538
434

450
466
411
473
437
490
542
424

441
461
415
470
433
475
538
420

490.6 9.8
524.0 10.5
460.8 9.2
526.6 10.5
477.4 9.5
533.6 10.7
590.4 11.8
484.4 9.7
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TEN TWENTY THIRTY FORTY FIFTY
40 558 568 458 358 385
45 770 421 499 507 364
50 725 595 414 483 362
55 534 401 337 503 293
60 843 467 465 392 357
65 506 512 405 492 368
70 437 513 418 397 322
75 432 463 360 398 351

Table 5.9. Sequence length of test data sets used is 101 bp each. Total number of test

sequences is 5000.
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Results obtained by testing sequences of the same sequence length, 75-bp sequence length,

and 101-bp sequence length, figure 5.6A, 5.6B and 5.6C respectively are not very different

from that corresponding to E.coli. As expected, the worst results were obtained from subsets

made up of only ten sequences. However, unlike the case of E.coli, the best results in all the

three categories of test came from the set of fifty sequences. The overall results from test

sequences of fragment size 101 were better than test sequences of fragment size 75 bp which

were also better than test sequences of the same length as subsets used to generate their

respective hash table of scores.
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Figure 5.6. Graphs of results shown in table 5.8 (A), 5.9 (B) and 5.10 (C) . The three graphs

represent the number of false positives obtained by using hash table values from designed

sequence sets on sequences of the same fragment size (A), of 75 bp fragment size (B) and

101 bp fragment sizes (C). In all instances, cut-off values that represented 90% true positive

were used to determine which test sequences were considered predicted promoter sequences.

Five thousand (5000) B.subtilis test promoter sequences were used.
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5.4.7. Triplet Frequency Analysis on Mycobacterium data (Promoter and
Non-promoter).

Results are less encouraging and the explanation/reasons have been mentioned in the

previous discussions on HMM and NN methods on mycobacterium. The trend in the three

types of test as depicted in figure 5.7A, 5.7B and 5.7C is the same as observed in the other

two methods of test with test sequences of 101 bp producing the best results. Sequence

subset 30_50 resulted in best results for the first two tests generating false positive values of

26.9 % and 31% respectively. However, test on sequence length of 101 bp produced best

result from 30 60.

153

www.etd.ac.za



Sets 1 2 3 4 5 Av %
10 40 2297 2254 2257 2279 2286 1819.4 36.4
1o_45 2318 2314 2305 2356 2315 1860.6 37.2
10_50 2075 2066 2115 2073 2073 1667.8 33.4
10_55 1996 1978 1967 1957 1947 158l.6 3l.6
10_60 2062 2070 2064 2058 2084 1652.8 33.1
1o_65 1908 1913 1933 1958 1934 1544.4 30.9
10_70 1854 1835 1816 1850 1823 1473 29.5
10_75 1735 1750 1744 1741 1731 1396 27.9

20_40 1858 1919 1864 1893 1880 1510.8 30.2
20_45 2310 2310 2317 2291 2328 1849.6 37.0
20_50 2252 2212 2263 2240 2223 1797.4 36.0
20_55 2419 2402 2395 2413 2399 1929.8 38.6
20_60 2428 2457 2466 2474 2452 1969 39.4
20_65 2046 2073 2038 2063 2027 1648 33.0
20_70 1939 1972 1981 2013 2026 1585 3l.7
20_75 2224 2219 2232 2211 2233 178l.2 35.6

3o_40 2260 2252 2304 2272 2332 1823.6 36.5
3o_45 2499 2497 2474 2479 2520 1995.8 40.0
3o_50 2486 2480 2474 2504 2480 1994.8 39.9
3o_55 2238 2274 2256 2231 2258 1805.8 36.1
3o_60 2533 2535 2543 2551 2565, 2038.4 40.8
3o_65 2350 2346 2352 2371 2333 1889.8 37.8
3o_70 1986 1989 1967 Ul96 1989 1593.6 3l.9
3o_75 1883 1881 1903 1907 1915 1520.8 30.4

40_40 2207 2222 2201 2209 2201 1775.8 35.5
40_45 1664 1676 1669 1673 1674 1344.4 26.9
40_50 1936 1921 1920 1921 1968 1547.6 3l.0
40_55 1731 1730 1719 1702 1732 l384.4 27.7
40_60 1833 1883 1843 1869 1852 1493.6 29.9
40_65 1818 1822 1840 1842 1808 1472.4 29.5
40_70 1953 1946 1945 1955 1931 1567.8 3l.4
40_75 1826 1816 1840 1816 1823 1467.6 ·29.4

5o_40 2218 2190 2218 2231 2233 178l.4 35.6
5o_45 2457 2455 2428 2446 2445 1967.2 39.3
5o_50 2342 2357 2374 2355 2347 1895.6 37.9
5o_55 2423 2466 2448 2424 2421 1962.2 39.2
5o_60 2237 2239 2245 2255 2234 1805.2 36.1
5o_65 2262 2281 2282 2289 2275 1832.8 36.7
5o_70 2223 2213 2209 2244 2231 1787.8 35.8
50 75 2116 2110 2131 2131 2143 1707.6 34.2

Table 5.10. Results obtained on five sets of mycobacterium test sequences used to test the ability of TFD to

discriminate against non-promoter (coding sequences). The test sequences had fragment sizes equivalent to

those used in developing to the respective hash tables. The average number of false positives per 5000 and the

percentage false positives are shown in the seventh and eight columns respectively.
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Sets 1 2 3 4 5 Av. %
10 40 2449 2441 2460 2445 2449 2448.80 48.98
10 45 2459 2457 2473 2448 2459 2459.20 49.18
10 50 2411 2394 2411 2385 2411 2402.40 48.05
10 55 1810 1801 1826 1779 1810 1805.20 36.10
10 60 1876 1846 1866 1850 1876 1862.80 37.26
10 65 1852 1845 1865 1836 1852 1850.00 37.00
10 70 1792 1784 1774 1774 1792 1783.20 35.66
10 75 1735 1750 1744 1741 1735 1741.00 34.82

20 40 2284 2282 2264 2275 2284 2277.80 45.56
20 45 2214 2214 2204 2227 2214 2214.60 44.29
20 50 2272 2284 2270 2261 2272 2271. 80 45.44
20 55 2152 2144 2167 2170 2152 2157.00 43.14
20 60 2213 2211 2223 2208 2213 2213.60 44.27
20 65 2331 2336 2358 2328 2331 2336.80 46.74
20 70 2354 2358 2368 2339 2354 2354.60 47.09
20 75 2224 2219 2232 2211 2224 2222.00 44.44

30 40 2497 2499 2492 2498 2497 2496.60 49.93
30 45 2381 2396 2396 2403 2381 2391.40 47.83
30 50 2219 2221 2222 2233 2219 2222.80 44.46
30 55 2023 2047 2058 2056 2023 2041.40 40.83
30 60 1966 1981 1988 1990 1966 1978.20 39.56
30 65 2014 2029 2023 2032 2014 2022.40 40.45
30 70 1767 1776 1791 1788 1767 1777.80 35.56
30 75 1883 1881 1903 1907 1883 1891.40 37.83

40 40 2141 2124 2146 2115 2141 2133.40 42.67
40 45 2037 2031 2030 2010 2037 2029.00 40.58
40 50 1896 1865 1886 1858 1896 1880.20 37.60
40 55 1885 1860 1884 1852 1885 1873.20 37.46
40 60 1791 1756 1797 1767 1791 1780.40 35.61
40 65 1948 1925 1926 1933 1948 1936.00 38.72
40 70 1580 1554 1574 1546 1580 1566.80 31.34
40 75 1826 1816 1840 1816 1826 1824.80 36.50

50 40 2451 2457 2447 2444 2451 2450.00 49.00
50 45 2369 2354 2359 2361 2369 2362.40 47.25
50 50 2450 2439 2438 2449 2450 2445.20 48.90
50 55 2429 2415 2420 2439 2429 2426.40 48.53
50 60 2287 2273 2283 2267 2287 2279.40 45.59
50 65 2211 2204 2210 2224 2211 2212.00 44.24
50 70 2101 2106 2130 2116 2101 2110.80 42.22
50 75 2116 2110 2131 2131 2116 2120.80 42.42

Table 5.11. False positive results obtained on five thousand (5000) mycobacterium test sequences of 75 bp

sequence-length each. In each case, threshold value which resulted in 90% True Positive (TP) was manually

selected and used as the cut-off. Average score for each set and the percentage true positive values are in the

seventh and the eighth columns respectively.
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TEN TWENTY TmRTY FORTY FIFTY
40 1406 1354 1268 1282 1402
45 1369 1447 1299 1334 1160
50 1307 1496 1274 1469 1156
55 1131 1526 1094 1188 1251
60 1135 1593 1068 1158 1335
65 1166 1566 1390 1201 1326
70 1223 1551 1281 1019 1283
75 1135 1584 1272 1023 1303

Table 5.12. Results obtained on 5000 sets of mycobacterium test sequences using the hash

models developed from the various sequence sets. Sequences tested had 101 bp sizes. Just as

in the two previous cases, a threshold was selected to obtain 90% true positive.
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Figure 5.7. Graphs of results shown in table 5.8 (A), 5.9 (B) and 5.10 (C) . The three graphs

represent the number of false positives obtained by using hash table values from designed

sequence sets on sequences of the same fragment size (A), of 75 bp fragment size (B) and

101 bp fragment sizes (C). In all instances, cut-off values that represented 90% true positive

were used to determine which test sequences were considered predicted promoter sequences.

Five thousand (5000) B.subtilis test promoter sequences were used.
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Most of the knowledge gained to date on functional and regulatory elements is based on

statistical analysis of experimental data. Difference in nucleotide composition of sequences is

the basis of most of the computational methods used in sequence analysis. This has been

exploited successfully in distinguishing promoter sequences from non-promoters. False

positive prediction results of the three prokaryotes (at 90% true positives) are low enough to

be used in promoter prediction of M.tubercu/osis that has very few experimentally

characterized promoters. Though false positive results on Mtubercu/osis predictions are high,

it is our opinion that, they do not really represent false positives due to the fact that the true

promoter test dataset contain a lot of 'noise' as already discussed. Comparison of the results

of DFDA to TFDA (false positive values of 360/5000, 517/5000 and 2009/5000 for E.coli,

B.subtilis and Mycobacterium respectively to 229/5000, 293/5000 and 1068/5000 from

TFDA) revealed TFDA to be a better prediction methodology compared to DFDA. The ratios

of false positives above (TFDA to DFDA) are approximately 4:6,4:6 and 3.5:6.5 for E.coli,

B.subtilis and Mtubercu/osis respectively. A brief statistical analysis also exposed that, there

is not enough available promoter data to carry out tetranucleotide analysis, which would have

resulted in 256 possible combinations instead of 64 for trinucleotides. TFDA therefore falls

into the same category as ANN and HMM as very useful methodology to predict/detect

promoter sequences.
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Chapter six

Combining all three prediction systems (HMM, NN and TFDA).

ABSTRACT

The best parameters from each of the sets in the three methodologies have been combined in

an attempt to optimize the predictability of the methods on promoters of E.coli, B.subtilis and

most importantly, Mtuberculosis. Models developed on ANN, HMM and TFDA that

produced best scores (least number of false positives) in the previous three chapters for

E.coli, B.subtilis and Mituberculosis (75 bp windows) were used. Three test datasets were

constructed. The first data consisted of E.coli and B.subtilis genome sequences (80 sets each)

of 481 bp with their respective eighty test promoters (101 bp each) surrounded by 190

nucleotides on either side as found in their respective genomes. Second data consisted of

sections of the respective genomes of E.coli and B.subtilis (-5-10 kb), harboring three known

test promoter sequences. Third data consisted of the intergenic regions of the three organisms

namely, E.coli, B.subtilis and M.tuberculosis. Selected models were used on first and third

datasets individually and then as a combined tool. Test on the first testdata using the selected

models individually (not combined) resulted in 72.5%/27.5% TPIFP and 89%/11 % TPIFP for

E.coli and B.subtilis respectively. As combined (filtering through all three methods), 47

(59%) and 75 (82%) true positive predictions were achieved for E.coli and B.subtilis

respectively. Plotting results from the test on the nucleotide regions covering -5-10 kb of the

respective genomes revealed distinct peaks at sections where the promoters were known to be

located in the respective genomes of the organisms (E.coli and B.subtilis). Due to the nature

of the results obtained using the prediction methods (individually and as combined), both

types of predictions were carried out on intergenic regions in the entire genomes of E.coli,

B.subtilis and Mtuberculosis. The results on the predictions have been made public and can

be assessed at the following uniform resource locators (url):

http://www.sanbi.ac.zaltb/promoters.html.
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6.1. INTRODUCTION

One of the major problems frequently encountered by researchers using prediction systems is

ranking and subsequent correlation of predicted results. The problem of correlation and

integration of predicted results is often compounded due to the fact that, prediction systems

are often based on different methods and algorithms. In the study of the prediction systems in

the previous three chapters, models developed on certain sequence subsets had been expected

to perform well by producing results that are consistent and good. Though models on some

subsets did produce very good results, the results were not very consistent. Hence, models

developed on sequence subsets that produced best results (least number of false positives) for

each prediction system (figure 6.1) were selected to represent the methods. This chapter gives

an insight into the attempt at developing an integrated prediction system based on the models

developed on subsequences that produced best results in the previous three chapters. The

resultant integrated prediction tool if successful, would be used on the entire genomes of

E.coli, B.subtilis and Mtuberculosis in predicting promoter sequences upstream of their

respective genes.

6.2. Methods
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6.2.1. Defining Promoter Prediction Region

A problem consistently encountered in this study was defining a section that constitutes

promoter region. In all the three prediction systems, the average results for 75 bp fragment

windows were in most cases better than tests carried on sequences of the same size as

models. A 75 bp window was selected as the promoter test window in all predictions done in

this chapter. With the test cases where known promoters were placed between protein coding

sequences (refer to test data), presence of 15 or more nucleotides in predicted promoter

sequences (75 bp window) were considered successful predictions. Any predictions with less

than 15 nuc1eotides of the original 101 bp fragments were considered incorrect predictions.
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6.2.2. Test Data

6.2.2.1. First Test Data (fragment sizes of 481 bp).

Eighty (80) of the original 83 test promoter sequences from both E.coli and B.subtilis test

promoters were located in their respective annotated genomes. Each promoter sequence (101

bp) was extracted together with additional 190 bp on either side of the promoter in the

genome. Eighty, instead of the original eighty-three (83) E.coli promoter test data were used

because three promoters in the original E.coli promoter dataset from Lisser and Margalit

(1993) could not be located in the annotated genome data (ecoli.fna). The three promoters

that were not found in the annotated E.coli genome have been documented in

Appendix_eleven. Because the three promoters from E.coli were not available, eighty (80)

B.subtilis promoters were used instead of eighty-three (to maintain uniformity on test data

with that used for E.coli). The total fragment size of each test sequence came up to 481 bp.

Test datasets used for E.coli and B.subtilis can be found in Appendix_twelve and

Appendixthirteen respectively.
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6.2.2.2. Second Test Data (sections covering --5-10 kb of genome)

Individual genomes of both E.coli and B.subtilis were scanned for regions that had at least

three of the test promoter sequences of respective organisms within a section of ~ 10 kb

nuc1eotides. Two such regions covering approximately 6 kb for B.subtilis (Appendixfifteen)

and 11 kb for E.coli (Appendix fourteen) were selected. The selected B.subtilis region

contained known promoters veg (vegetative), sspF (small acid-soluble spore proteins) and

spoVG (sporulation) whilst E.coli region harbored promoters aroP (a member of the tyrR

regulon), aceE (pyruvate dehydrogenase complex) and lpd (pyruvate dehydrogenase

complex).
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6.2.2.3. Third Test Data (Regions upstream of annotated genes)

Annotated genome files of E.coli (ecoli.ffn and ecoli.fna), B.subtilis (bsub.ffn and bsub.fna)

and Mituberculosis (mtub.ffn and mtub.fna) were obtained from Genbank (version 111).

Using the respective annotated genome files (extension ffn), regions between the coding

sequences were processed as intergenic regions. Annotated genes were classified into four

groups using next consecutive genes.

Category A: gene in direct frame followed by another in direct frame (direct and parallel).

Category B: gene in direct frame followed by complement gene (convergent).

Category C: complement gene followed by another complement gene (complementary and

parallel).

Category D: complement gene followed by a gene in direct frame (divergent).

Nucleotide sequences between convergent genes were ignored since these region promoters

are not supposed to harbor promoters. Category D genes (divergent) were extracted and

processed for two promoters in respective orientations. All sequences between category A

and category C genes were extracted. On relatively few instances where category D genes

overlapped, 250 bp nucleotides upstream of the genes were extracted and used as inter-orfs.
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6.2.3. Types of Test.

Types of tests carried on the test datasets listed above are as follows:

A) Given a fragment of sequence (481 bp for first test data and inter-orfregion for third test

data), the sequence fragment (75 bp window) with the best score for each prediction method

was selected as the predicted promoter in the entire section. Thus, three sets of prediction

results were generated (from the three different methods) for each of the eighty test datasets.

B) Combined predictions from the all the three methods on first and third test data sets. Initial

prediction values (all three systems) for the first 75 bp window were stored together with the

sequence in the window (75 bp). Subsequent predictions as the test window was moved in 1
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bp increments were compared to the previous ones. Predicted sequence was replaced only

when all three scores were better than previous corresponding scores. Thus only one

prediction score for each test case was generated.

(C) About 5 to 10 kb of nuc1eotides (with three known promoters) covering sections of

respective genomes of both E.coli and B.subtilis (second test data) were analyzed using a 75

bp window. Prediction results (all three methods) of each 75 bp window was recorded and

plotted on graph, as the window was shifted in 1 bp increments to the end. The plot is meant

to portray the 'signals' as one 'walks' along a section of the genomes of the respective

organisms.

6.2.4. Choice of Models for Integrated Prediction

The models/profiles that produced the best results in the 75 bp test categories (test type B) for

all the three prediction systems namely, Hidden Markov Model, Neural Network and TFDA

in the previous three chapters are shown below.

E.coli B.subtilis Mycobacterium

HMM 50 45 50 75 30 75

NN 30 60 30 55 50 60

TFDA 30 60 50 50 40 70

Figure 6.1. The various models reflecting sequence subsets that produced best results in the

75 bp test category (type B) for the three prediction systems in the three organisms. As

denoted earlier, 50_45 represents a sequence subset comprising 50 sequences of 45 bp

fragment sizes each. The models developed on these subsequences were used in all the

predictions in this chapter.

6.2.5. Prediction Quality Ranking Methods
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A simple system of ranking based on results of predictions from all three prediction methods

on the eighty test sequences (section 6.2.3) was used in the combined prediction tool.

Comparison of predicted scores to previous predictions were in the order TFDA, HMM and

NN for both E.coli and B.subtilis. This is based on the results represented in figure 6.2. For

example, TFDA results were compared first because TFDA had the highest score of predicted

results followed by HMM in B.subtilis though both ANN and HMM scored same number of

correct predictions in E.coli.

6.3. Results and Discussion

Prediction results of the individual methods on first data set (a promoter lying between 190

bp nuc1eotides on either side) for both E.coli and B.subtilis are shown in figure 6.2A and 6.2B

respectively. Models trained on subsets of 50_45, 30_60 and 30_60 representing prediction

methods HMM, NN and TFDA respectively were used entirely in this chapter. Promoter

predictions were on a 75 bp window. A prediction was categorized as positive if more than a

15 bp section of the original promoter was found in the predicted 75 bp window. Of the 80

promoter test sequences, 30 E.coli promoters were correctly predicted by the three prediction

systems in E.coli whilst forty-four (44) were correctly predicted on B.subtilis testdata. In

almost all the thirty predictions on E.coli, predicted sequences covered more than 55 bp of

original promoters (Appendix_sixteen). Analysis of the predicted results on E.coli test data

uncovered TFDA as the best prediction method of the three (HMM, ANN and TFDA).

Prediction from TFDA (47/80) produced five (5) more positives than results from both HMM

and NN (42/80 each). In all, 72.5% (58/80) of the E.coli test data (first test data) were

correctly predicted by at least one of the prediction models and therefore there existed a

27.5% false negative rate.

A. E.coli

Total Number of test sequences = 80

Size of each test fragment = 481

Test sequences not predicted by any of the three =22
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Test sequences predicted correctly by all three (3) = 30

Test sequences predicted correctly by HMM = 42

Test sequences predicted correctly by ANN = 42

Test sequences predicted correctly by TFDA = 47

B. B.subtilis

Total Number of test sequences = 80

Size of each test fragment = 481

Test sequences not predicted by any of the three =9

Test sequences predicted correctly by all three (3) = 44

Test sequences predicted correctly by HMM = 61

Test sequences predicted correctly by ANN = 55

Test sequences predicted correctly by TFDA = 62

Figure 6.2. Prediction results on E.coli (A) and B.subtilis (B) using the subset models of the

three prediction methods (figure 6.1). Test data consisted of 80 genome sequences each of

481 bp fragment sizes (first test data). Results are the best predictions from the individual

models (Appendix_sixteen).
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ProMoter predictions (E.coli) using AHH. HM" and TFDA on 75 bp windows
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Figure 6.3. Prediction results on a section ofE.coli genome harboring promoters aroP, aceE

and lpd. A 75-bp window was used for predictions. Scores on HMM, ANN and TFDA were

adjusted to accommodate all three on the same plot. Results from prediction were obtained by

continuously moving the window one bp till the end of the sequence. Positions of the three

promoters namely aroP, aceE and lpd in the dataset are represented by the arrows at positions

2226, 3493 and 8362 respectively. Individual predictions from the three separate methods

ANN, HMM and TFDA on the same test data can be found at Appendix_twenty,

Appendix_twentyone and Appendix_twentytwo respectively.
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Prediction results from B.subtilis datasets on the similar test data (first test data) were much

better, with 42 predictions from all the three prediction systems and only nine (9) 'incorrect'

predictions (Appendix_seventeen). Seventy-one (71) of the eighty (80) test data were

correctly predicted by at least one of the methods. Once again, TFDA excelled as the most

efficient predicting system for B.subtilis with 62 correct predictions of the 80 promoters

correctly predicted. Correct predictions for HMM, NN and TFDA were 61, 55 and 62

respectively (Appendix_seventeen). The second sets of predictions were performed on the

same testdata (first test data), this time combining the strengths of the three prediction

methods. Prediction results had to be the best from the combination of all three predictions as

explained in the section 6.2.3B. Results from the combined predictions on both E.coli and

B.subtilis can be found in Appendix_eighteen and Appendix_nineteen respectively. Thirty-

three (33) of E.coli promoters were not predicted 'correctly' as compared to fifteen (15)

B.subtilis promoters.

The test results on sequences covering a region around promoters aroP, aceE and lptiA for

E.coli and veg, sspF and spoVG for B.subtilis are shown in figures 6.3 and 6.4 respectively.

Peaks are evident at sections where the known promoter sequences were located as indicated

by arrows in the respective diagrams. Comment is reserved on the other peaks as the study

was focused on the known promoters. Individual plots of the prediction system can be found

in Appendix_twenty to Appendix_twenty two for E.coli and Appendix_twentythree to

Appendix_twentyfive for B.subtilis. Of particular interest is the second peak around 2500

after the aroP promoter's peak (2226) in the E.coli data. The peak (-2500) in question

portrays the sequence window (-75 bp) covering the region to promoter features. The peak is

reflected in the plots of all the three prediction systems (figure 6.3). Sequence windows

portraying such peaks need to be experimentally analyzed for promoter function(s). Such an

analysis would give an indication of what to expect from similar peaks throughout the

genome.
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ProMoter predictions using ANN, HMM and TFDA on 75 bp windows
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Figure 6.4. Prediction scores ofNN (green), HMM (blue) and TFDA (red) on 75 bp window

sized sequences covering ~5500 bp region of B.subtilis genome harboring promoters veg,

sspF and spoVG. Test sequences and prediction scores were obtained by shifting each

previous window by 1 bp. Results from HMM were multiplied by (0.35) to enable the values

to fit onto the graphs. Promoters veg, ssrf and spo VG are found in positions 520, 890 and

3606 respectively as indicated by the arrows. The individual plots for predictions of ANN,

HMM and TFDA can be found in Appendix_twentythree, Appendix_twentyfour and

Appendix_twentyfive respectively.
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Promoter test sequence predictions that were 'incorrect' were investigated against the

background of the predicted promoter sequences. The predicted sequences obviously have

more promoter features/characteristics than the original promoter sequences in the test data.

In most of the 'incorrect' predictions for E.coli, a least two of the three predictions were on

specific 75-bp window. Most of the 'incorrect' predictions had all three predictions (uvrA,

purD, rnalP, pnp, sulA, and pncB among others) within the same 75 bp window

(Appendix_sixteen). Four possible explanations come to mind with such predictions. (1) The

predicted promoters may be second/alternative promoters that have not been established. (2)

The predicted promoters may have their functions suppressed by other cis-acting sequences,

for example, oppressors. (3) The actual promoters not predicted may be used by different or

alternative sigma factors. (4). Finally, the features analyzed in the study are not sufficiently

characteristic of functional promoters. These are of course hypotheses as they have not been

proven experimentally. Whatever the case is, the 'incorrect' predictions noted as false

positives cannot just be ignored.

Dual or multiple promoters have been found in E.coli (uvrB, van den Berg et al., 1983; pheV,

Caillet et al., 1985; met Y-nusA-infB, Granston et al., 1990;), B.subtilis (spoVG, Johnson et

al., 1983; opuE, Spiegelhalter and Bremer, 1996) and Mituberculosis (recA, Mohahedzadeh

et al., 1997; katG, Andesen et al., 1988). It is interesting to note that, almost all the twenty-

two 'incorrectly' predicted E.coli promoters, figure 6.2A are promoters of house keeping

genes. The 'incorrectly' predicted E.coli promoters are indexed in Appendix_twentysix.

Perhaps, the predicted promoters are alternative promoters with unknown role(s). The nine

B.subtilis promoter sequences not predicted by any of the three prediction systems can be

found in Appendix _twentyseven.

A slightly different picture is observed with B.subtilis where ~89% (71/80) percent of the

promoters were correctly predicted by at least one of the prediction systems. Of the nine

'incorrectly' predicted promoters namely spoVE, rpoD, degQ, cotF, cspB, cotH, spolliG,

cotB and abr (Appendix _twentyseven), seven of the predictions were centered around the

same 75 bp window in all the three predictions for each predicted promoter. Only predictions

for promoters of abr and cotH did not have the three predictions not covering a region around

the same 75 bp window. Even then, for cotH, both HMM and ANN predictions were similar

(covered about the same 75 bp window). Similarly, HMM and TFDA predicted the almost
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the same window for abr promoter. The prediction results for spo VE for example centered on

the first promoter PI of its tandem promoters PI and P2 (Miyao et al., 1993). Thus, it is very

important to incorporate graphical information in analyzing these predictions so that the

predictions can be viewed in context to the neighboring nucleotide sequences. Another

important reason for incorporating graphical information is the fact that, predicted results

were relative to the test sequences. Whereas for example, a TFDA score of 6.3000 for a

window may be the highest in a particular test sequence, it may not probably appear in the

top ten of another test sequence. In the application of the prediction system to the intergenie

regions of entire genomes, sequences less than 75 bp were left untouched. Sequences from 75

to about 200 represented a relatively easy task with respect to correct predictions being made.

The problematic area could be with intergenie sequences over 400 bp. In E.coli for example,

over 330 intergenie regions were found to be nucleotides greater than 400 bp. The results on

entire intergenie regions of E.coli, B.subtilis and Mituberculosis can be found in

Appendix _twentyeight, Appendix_twentynine and Appendix_thirty respectively. Since only

the regions between genes are analyzed, promoter sequences located in coding sequences

would be missed. Sadly, little can be done at this stage until more information is available on

prokaryotic transcription machinery. The current approach is; promoter sequences must be

referenced to the genes or operons and therefore focus has been on the inter-orfs. It is

therefore envisaged that, users of the predicted information will study the graphical

predictions around the immediate region surrounding each predicted promoter and not take

the predicted promoter out of context with the surrounding sequences. Though true positive

scores are relatively high even among 481 bp sequences, some promoters used by specific

RNA polymerases may be missed in the prediction. This may not necessarily be false or non-

promoters. Possible explanations include probable alternate promoters or promoters being

used by or co-transcribed alternative sigma factors.
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Chapter seven

Conclusion

Promoter detection, especially in prokaryotes, has always been an uphill task and may remain

so, because of the many varieties of sigma factors employed by various organisms in

transcription. The situation is made more complex by the fact, that any seemingly

unimportant sequence segment may be turned into a promoter sequence by an activator or

repressor (if the actual promoter sequence is made unavailable). Nevertheless, a

computational approach to promoter detection has to be performed due to number of reasons.

The obvious that comes to mind is the long and tedious process involved in elucidating

promoters in the 'wet' laboratories not to mention the financial aspect of such endeavors.

Promoter detection/prediction of an organism with few characterized promoters

(M.tuberculosis) as envisaged at the beginning of this work was never going to be easy. Even

for the few known Mycobacterial promoters, most of the respective sigma factors associated

with their transcription were not known. If the information (promoter-sigma) were available,

the research would have been focused on categorizing the promoters according to sigma

factors and training the methods on the respective categories. That is assuming that, there

would be enough training data for the respective categories. Most promoter

detection/prediction studies have been carried out on E.coli because of the availability of a

number of experimentally characterized promoters (+- 310). Even then, no researcher to date

has extended the research to the entire E.coli genome.
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Since prokaryotic promoter detection in various forms have been tackled by other researchers

using various methods, the idea of integrating some prediction methods using small training

data have been very appealing. Plus, with the recent advancement in genome sequencing

techniques, there will always be a lot of annotated (genes) available. Annotation is really

incomplete without other chromosomal features such as promoters, oppressors and

repressors, thus reinforcing the need to tackle the promoter detection problem.

We have used promoter sequences available for E.coli, B.subtilis and Mtuberculosis and

trained models of ANN, HMM and TFDA (creation of author) on these promoters to study
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promoter detection and prediction. The study has resulted in creation of database of predicted

promoters of E.coli and B.subtilis at the website of South African National Bioinformaties

(SANBI) website. Experience gained on the study on E.coli and B.subtilis have been applied

to establish a similar database for Mtubercu/osis at the same website. Three types of

information on the promoters are available at the website for researchers:

1. The best predicted promoter sequence for particular genes or operons {in a 75 bp size

window using the combined strength of all the three prediction systems.

2. The best predictions from the individual prediction systems, that is best of ANN, HMM

and TFDA for any particular gene or operon.

3. A chance to have a graphical view of the prediction scores from all three prediction

systems on the sequence region of interest.
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With such information available, and with information like -10 and -35 hexamers, ribosomal

binding sites which were not directly incorporated in the study, we are certain that

researchers will be able to eyeball the promoters of their respective genes under

investigations if they are not known. A useful exercise will be to pick about ten of the

Mtubercu/osis predicted promoters randomly from the database and test their ability to

enable the transcription of the respective genes.
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APPENDICES

Appendices have been placed at the following ftp site.

ftp.sanbi.ac.za/pub/ekow/APPENDIX.

Username: anonymous

Password: email address

Or

ftp://ftp.sanbi.ac.za/pub/ekow/'APPENDIX
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Postscript files may have to be downloaded and viewed with appropriate
postscript viewer such as gsview, psview or ghostview.
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