Show simple item record

dc.contributor.advisorSewell, Bryan Trevor
dc.contributor.authorThuku, Robert Ndoria
dc.contributor.other
dc.contributor.other
dc.date.accessioned2013-08-20T12:09:48Z
dc.date.available2007/08/30 13:54
dc.date.available2007/08/30
dc.date.available2013-08-20T12:09:48Z
dc.date.issued2006
dc.identifier.urihttp://hdl.handle.net/11394/1968
dc.descriptionMagister Scientiae - MScen_US
dc.description.abstractThe nitrilases are an important class of industrial enzymes that are found in all phyla. These enzymes are expressed widely in prokaryotes and eukaryotes. Nitrilases convert nitriles to corresponding acids and ammonia. They are used in industry as biocatalysts because of their specificity and enantioselectivity. These enzymes belong to the nitrilase superfamily in which members share a common αββα structural fold and a unique cys, glu,lys catalytic triad with divergent N- and C-terminals.There are four atomic structures of distant homologues in the superfamily, namely 1ems, 1erz, 1f89 and 1j31. All structures have two-fold symmetry which conserves the αββα-αββα fold across the dimer interface known as the A surface. The construction of a 3D model based on the solved structures revealed the enzyme has two significant insertions in its sequence relative to the solved structures, which possibly correspond to the C surface. In addition there are intermolecular interactions in a region of a conserved helix, called the D surface. These surfaces contribute additional interactions responsible for spiral formation and are absent in the atomic resolution homologues.The recombinant enzyme from R.rhodochrous J1 was expressed in E. coli BL21 cells and eluted by gel filtration chromatography as an active 480 kDa oligomer and an inactive 80 kDa dimer in the absence of benzonitrile. This contradicts previous observations, which reported the native enzyme exists as an inactive dimer and elutes as a decamer in the presence benzonitrile. Reducing SDS-PAGE showed a subunit atomic mass of ~40 kDa. EM and image analysis revealed single particles of various shapes and sizes, including c-shaped particles, which could not form spirals due to steric hindrances in its C terminal.Chromatographic re-elution of an active fraction of 1-month old J1 nitrilase enabled us to identify an active form with a mass greater than 1.5 MDa. Reducing SDS-PAGE, N-terminal sequencing and mass spectroscopy showed the molecular weight was ~36.5 kDa as result of specific proteolysis in its C terminal. EM revealed the enzyme forms regular long fibres. Micrographs (109) were recorded on film using a JEOL 1200EXII operating at 120 kV at 50K magnification. Two independent 3D reconstructions were generated using the IHRSR algorithm executed in SPIDER. These converged to the same structure and the resolution using the FSC 0.5 criterion was 1.7 nm. The helix structure has a diameter of 13nm with ~5 dimers per turn in a pitch of 77.23 Å. Homology modeling and subsequent fitting into the EM map has revealed the helix is built primarily from dimers, which interact via the C and D surfaces. The residues, which potentially interact across the D surface, have been identified and these confer stability to the helix. The conservation of the insertions and the possibility of salt bridge formation on the D surface suggest that spiral formation is common among microbial nitrilases. Furthermore, the presence of the C terminal domain in J1 nitrilase creates a steric hindrance that prevents spiral formation. When this is lost – either by specific proteolysis or autolysis - an active helix is formed.en_US
dc.language.isoenen_US
dc.publisherUniversity of the Western Capeen_US
dc.subjectEnzymesen_US
dc.subjectBiotechnologyen_US
dc.subjectIndustrial applicationsen_US
dc.titleThe structure of the nitrilase from Rhodococcus Rhodochrous J1: homology modeling and three-dimensional reconstructionen_US
dc.typeThesisen_US
dc.rights.holderUniversity of the Western Capeen_US
dc.description.countrySouth Africa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record