Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | Quick Submission Guide | About Us | FAQs | Login
    View Item 
    •   ETD Home
    • Faculty of Natural Science
    • Department of Chemistry
    • Magister Scientiae - MSc (Chemistry)
    • View Item
    •   ETD Home
    • Faculty of Natural Science
    • Department of Chemistry
    • Magister Scientiae - MSc (Chemistry)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of novel hypervalent iodine conjugation strategies towards pneumococcal conjugate vaccines

    Thumbnail
    View/Open
    Fumbatha_MSC_2013.pdf (12.65Mb)
    Date
    2013
    Author
    Fumbatha, Sinethemba
    Metadata
    Show full item record
    Abstract
    Invasive pneumococcal disease (IPD), which includes potentially fatal conditions such as meningitis, septicaemia and pneumonia poses a threat in children aged <5 years, pneumonia being the leading cause of child mortality worldwide. Even though capsular polysaccharides are the main antigens involved in the immunity to encapsulated bacteria, it was found that in children in that age group, the immune system was unresponsive. Conjugate vaccines however induce immunologic memory and provide long-term protective immunity. Therefore the aim of this project was to develop novel conjugation strategies towards a pneumococcal conjugate vaccines and focuses mainly on the serotypes that are a burden to the African continent. The chemistry involved in developing a conjugate vaccine is of importance beacuse while some polysaccharides contain chemical grouping which can be conveniently utilized for conjugation, many medically important ones require derivatization before they can be coupled to protein. Derivatization of which can be achieved through various strategies, important to note is through hypervalent iodine oxidants. Two hypervalent iodine reagents, O-Methyl substituted-1-hydroxy-1,2-benziodoxol-3(1H)-one 1-oxide (Me-IBX)and modified 1-hydroxy-1,2-benziodoxol-3(1H)-one 1-oxide (mIBX)were successfully synthesized in preparation for the use in polysaccharide, polyribitol phosphate, (PRP) oxidation. The polysaccharide to be oxidised was first size reduced by microfluidisation to allow maximum oxidation. However, the extent to which oxidisation was achieved was not enough to conjugate the polysaccharide to the protein of preference, Bovine Serum Albumin, (BSA).
    URI
    http://hdl.handle.net/11394/3551
    Collections
    • Magister Scientiae - MSc (Chemistry) [177]

    DSpace 5.5 | Ubuntu 14.04 | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 5.5 | Ubuntu 14.04 | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV