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                                                          ABSTRACT 

This study examines the behaviour of the South African financial markets with regards to 

the Geometric Brownian motion process. It uses the daily, weekly, and monthly stock 

returns time series of some major securities trading in the South African financial market, 

more specifically the US dollar/Euro, JSE ALSI  Total Returns Index, South African All 

Bond Index, Anglo American Corporation, Standard Bank, Sasol, US dollar Gold Price , 

Brent spot oil price, and South African white maize near future. 

 The assumptions underlying the Geometric Brownian motion in finance, namely the 

stationarity, the normality and the independence of stock returns, are tested using both 

graphical (histograms and normal plots) and statistical test (Kolmogorov-Simirnov test, 

Box-Ljung statistic and Augmented Dickey-Fuller test) methods to check whether or not 

the Brownian motion as a model for South African financial markets holds. The Hurst 

exponent or independence index is also applied to support the results from the previous 

test. Theoretically, the independent or Geometric Brownian motion time series should be 

characterised by the Hurst exponent of ½. A value of a Hurst exponent different from that 

would indicate the presence of long memory or fractional Brownian motion in a time 

series. The study shows that at least one assumption is violated when the Geometric 

Brownian motion process is examined assumption by assumption.  

It also reveals the presence of both long memory and random walk or Geometric 

Brownian motion in the South African financial markets returns when the Hurst index 

analysis is used and finds that the Currency market is the most efficient of the South 

African financial markets. The study concludes that although some assumptions 

underlying the process are violated, the Brownian motion as a model in South African 

financial markets can not be rejected. It can be accepted in some instances if some 

parameters such as the Hurst exponent are added. 
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CHAPTER ONE: INTRODUCTION 

1.1 Introduction 

 This chapter discusses the background information covering the Brownian motion, and 

defines the main concepts used in this research. It also presents the research problem, the 

main assumptions underlying the Brownian motion in the financial stock markets and 

states the aims, objectives, importance, limitations of the study and the report structure.  

1.2 Background 

 Models and algorithms, such as the Brownian motion, are formulated to help explain 

unpredictable movements and predict uncertainties. 

The Brownian theory is named after Robert Brown, a Scottish botanist who discovered 

the motion [56, 57, 58, 59, 60, 61]. Brown observed the chaotic behavior of pollen grains 

suspended in a fluid under a microscope and reasoned that their motion was due to large 

numbers of random molecular forces that affected the grains.  

In the 20th century, Guoy [58], revised the Brown theory and concluded that the 

Brownian motion was a clear demonstration of the existence of molecules in continuous 

motion. 

All the 19th century research remained at a qualitative level. At that stage, the 

characteristic of the Brownian motion was the completely irregular and unceasing motion 

of the particles that was not attributed to external causes, or related to nature, but only on 

the particle size. It was only in 1905 that Einstein [3, 58, 59], in his research on 

mathematical laws that govern the movements of particles based on principals of kinetic 

molecular theory and heat, made the research quantitative. He demonstrated that by using 

a formula, the path described by a molecule on the average is not proportional to time but 

proportional to the square root of time [18].  
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Thereafter, the Brownian motion theory has since been applied in many fields including 

physics, astronomy, medicine (medical imaging), robotics, and stock markets (which is 

our research area of interest), amongst others. 

1. 3. Research problem 

Similar to the Brownian motion theory, uncertainties are always found in economic 

relationships. Therefore, people require ways that can help in making better informed 

decisions or choose more optimal business strategies. 

Formulated workable hypotheses that take into consideration uncertainty and randomness 

of the process help form the basis of their decisions. 

Using the same reasoning as Robert Brown, Louis Bachelier [1, 59, 62, 63], in his 

doctoral thesis “La théorie de la speculation” from the University of Paris, proposed for 

the first time the Brownian motion as a model for market prices. He stated that the latter 

follows a random walk or a Brownian motion. That is, the previous change in the value of 

variable is unrelated to the future or past changes. 

The shortcoming of the Bachelier findings was that it allowed the price to be negative. 

Samuelson [64] solved the problem by introducing the Geometric Brownian Motion 

(GBM), which assumed that the logarithm of the share prices rather than the prices 

themselves follows a Brownian motion. 

As in other financial markets, the South African financial markets components, namely 

the share or equity market, the foreign currency market, the bond market and the 

commodity market [88], are all exposed to uncertainties. 

 In our project, we used the Samuelson reasoning to study the behaviour of the major 

securities trading in the South African financial markets, namely, Euro / US dollar, JSE 

ALSI Total Returns Index, South African All Bond Index, Anglo American corporation, 

Standard Bank, Sasol, CRB Commodity Price Index, US dollar Gold Price, Brent spot oil 

price, and South African white maize near future. 
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1.4. Assumptions 

The critical assumptions that underlie the Brownian motion model for stock price as 

discussed in [11] are:  

1. Statistical independence of price changes (price changes or increments are 

uncorrelated or follow a random walk). This means that the current change of a 

price is not influenced by the past changes and does not have any influence on the 

future changes. This assumption seems to be relevant, at least on a long enough 

term. From time to time (second to second, hour to hour, day to day, month to 

month, etc), price changes are probably independent. This assumption has been 

documented by several studies [1, 70, 71, 72] and constitutes the essence of what 

economists generally call the Efficient Market Hypothesis, or the Random Walk 

Hypothesis [63, 64, 73, 75]. This hypothesis states that if the price changes are 

random and therefore unpredictable, it is because investors are properly doing 

their jobs. In this case, all arbitrage opportunities are exploited as much as 

possible. 

2. Normality of price changes (meaning that changes follow a bell shaped curve) 

provides a distribution function characterized by only the mean and the volatility 

and implies a certain contained behaviour of the changes. This assumption seems 

reasonable for stock price fluctuations but does no take into consideration the fact 

that negative stock prices could result from large negative changes. This problem 

is solved by using the log normal distribution from the geometric Brownian 

motion. 

3. The price-change indexes or statistics do not vary with time, meaning that the 

mean and the standard deviation do not change with time. The assumption that the 

variance remains unchanged on different intervals of the same lengths is not 

correct since the variance of stock price changes does not need to be proportional 

to the length of time. 

The above three assumptions constitute the definition of white noise, equivalent to the 

changes of a Brownian motion. 
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1.5. The aim of the study 

The aim of this study was to test if the above assumptions apply in the South African 

financial markets. Thereafter, the study aimed at determining the efficiency of the 

African financial markets and validates the assumptions in financial analysis, including 

the pricing of options and calculation of Value-at-Risk. 

1.6. Research objectives 

1. In order to investigate the above aim, the Box- Ljung statistic for autocorrelation in the 

series together with the Hurst exponent or index was used for the first assumption, the 

Kolmogorov-simirinov test was used for the second assumption, and the Dickey-Fuller 

test was utilized for the last assumption. All the above tests were supported by graphical 

methods.  

2. This study has helped to assess whether or not the Geometric Brownian motion may be 

used as a model in the South African financial markets on the basis of the results obtained 

in 1. 

3. Lastly, the study aimed to lay a foundation for future research about the South African 

financial markets behaviour. 

1.7 Importance of this Research 

The results obtained from this study could help in understanding the behaviour of the 

South African financial markets and improve market assessments as they vary over time. 

The findings could also be more useful to investors who make investment decisions 

based on risk analysis, optimized portfolios, and derivatives structures. They could as 

well have profound input on improving the practices involving the use of Value- at-Risk 

and option pricing models. 
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1.8 Research Design and Analysis. 

The general concepts used for the different approaches were discussed and an analysis of 

quantitative data was carried out. The time series data on of the South African Financial 

major securities were used. The test for each assumption of the Geometric Brownian 

motion using both graphical and statistical test methods was done. The Hurst exponent 

significance values were used to support our findings in the test above. 

 The SPSS, Eviews, and Microsoft Excel spreadsheet were used for analysis. 

1.9. Study limitations 

Among our study limitations, were a limited sample of index numbers and a lot of 

missing data. The problem of missing data was handled by removing the dates for which 

values were missing. 

1.10 Report structure 

This report is structured into five chapters as follows: The first chapter gives an overall 

introduction of the study; the second chapter discusses in brief the major concepts used in 

the study and what has been published so far about this particular topic. The third and 

fourth chapters give a description and analysis of the data. The fifth and last chapter 

provides a conclusion on what has been discussed in the whole study. 
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CHAPTER TWO: REVIEW OF THE LITERATURE 

2.1 Introduction  

In this chapter, the general concepts used in this study are defined and discussed, and a 

brief overview of the application of the Brownian motion in stock markets is given. 

 2.2 Definition of concepts 

2.2.1 Brownian motion 

  A Brownian motion is discussed by [59] as a stochastic process W (t), for t ≥ 0, with the 

following properties:  

1. Every increment W (t)-W(s) over an interval of length t-s is normally distributed 

with mean 0 and variance t – s. 

2. For every pair of disjoint time intervals [t1,t2] and [t3,t4], with t1 < t2 < t3 < t4, the 

increments W(t4) - W(t3) and W(t2) - W(t1) are independent random variables with 

distributions given as in part 1, and similarly for n disjoint time intervals, with n 

being an arbitrary integer.  

3. W(0) = 0  

4. For all t, W (t) must be continuous. 

2.2.2 Geometric Brownian motion 

The Geometric Brownian motion (GBM), also called the exponential Brownian motion, 

is a continuous time stochastic process in which the logarithm of  the randomly varying 

quantity follows a Brownian motion or Wiener process [44]. 

It is used to model financial markets data, especially in option pricing [87] because it 

accommodates positive values, and only fractional changes of the random variate are 

significant.  

As an illustration, let S t  be a stochastic process. Then S t  is said to follow a GBM if the 

following stochastic differential equation is satisfied: 
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         dS t  = µ S t dt + σ S t dW t   ------------------------------------------------------ eq.1 

where W t  is a Wiener process or a Brownian motion and the percentage drift µ  and the 

volatility σ  are constant. 

The analytic solution of the equation is as follows:  

          S t  = S 0 exp (µ -
2

2σ
) t + σ W t  ------------------------------------------------ eq.2 

where S 0  is an initial value which is taken arbitrary. 

The random variable log (
0S
S t ) is normally distributed with mean (µ -

2

2σ
) t and variance 

2σ t. 

This reflects that the increments of Geometric Brownian Motion are normal relative to 

the current price (when dealing with prices), and this is the reason why the process is 

named “geometric”. 

2.2.3 Hurst exponent 

When dealing with financial time series data, it is always crucial to check whether or not 

they are predictable before attempting to model them and forecast their development. The 

Hurst exponent or independence index as a numerical estimate of predictability is always 

applicable. 

The Hurst exponent is referred to as the relative tendency of a time series to either regress 

to a longer term mean value or “cluster” in a direction [43] and helps to classify time 

series in terms of predictability. 

It is used in addition to test for the independence of time series and to inform on the 

presence of long memory or long range correlations in time series. Several studies in the 

past have used the Hurst exponent [76, 77, 78, 79, 80], ARFIMA (Autoregressive 

Fractional Integration Moving Average) [81], and FIGARCH (Fractionally Integrated 

Generalized Autoregressive Conditional Heteroscedasticity) [82] to quantify the long-

term memory property in time series data.  
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There are many methods that are used to calculate the Hurst exponent. These include the 

classical rescaled range analysis [34], the generalized Hurst exponent [77], the modified 

Rescale Range (R/S) analysis [84], the GPH method [85], and the Detrended Fluctuation 

Analysis (DFA) [86].  

In our study, we used the Beran approach [69] to calculate the Hurst exponent (H) as 

follows: 

               H = ½{[ln ( ρ +1)/ln (2)] + 1}  --------------------------------------------- eq.3 

where H denotes the Hurst exponent or Hurst index, and ρ , the first order autocorrelation 

of the time series data. 

The values of the Hurst exponent range from zero to one and are interpreted as follows: 

• H= ½ or close to that value indicate a random walk or a Brownian motion. In this 

case no correlation is present between any past, current, and future elements. In 

other words, there is no independence behaviour in the series. Such series are not 

easy to predict. 

• H < ½ indicates the presence of anti-persistence, meaning that if there is an 

increase, the decrease will automatically follow and vice versa. This behaviour is 

also called the mean reversion in the sense that the future values will always tend 

to return to a longer term mean value. 

• H > ½ indicates the presence of the persistence behaviour, meaning that the time 

series is trending. It may be a decreasing or increasing trend. 

The Hurst exponent different from a half also means that the series is not independent. 

Series with higher H values are easier to predict than series with lower H values. 

The Hurst exponent is also discussed in [35] where some other meanings of its values are 

cited: 

§ If H = ½, then the process is Brownian motion. 
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§ If H > ½, then the increments of the process are positively correlated and the 

process exhibits long range dependence. The Hurst parameter above a half also 

means that there is persistence. 

§ If H < ½, then the increments of the process are negatively correlated, and it also 

means that there is an anti-persistence  

 2.2.4 Fractional Geometric Brownian motion 

The concept of Fractional Geometric Brownian motion process is described by [21] as 

follows:  

In the Black & Scholes pricing model, the randomness of a stock price S is due to the 

Brownian motion W such that: 

             dS t  =  S t (µdt + dW t ), S 0  > 0  ---------------------------------------------- eq.4 

According to this model, the logarithmic returns are supposed to be independent normal 

variables. 

The independence issue was studied using the rescale range analysis, a technique 

developed by Hurst [34] and characterized by the Hurst exponent described above. 

The Hurst exponent of a half indicates that the returns are independent. However, some 

studies have revealed a Hurst parameter or index which is different from ½ [23, 24, 25, 

26, 27, 28, 29, 30, 31, 32]. 

To overcome this problem, the Brownian motion W must be replaced by the fractional 

Brownian motion (fBm). 

If X is a fBm, then it is called a continuous and centered Gaussian process having 

stationary increments and variance E [ 2
tX ] = Ht 2 , where H denotes the Hurst index and 

t denotes the time increment of the process. 
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By replacing W with X in the Black and Scholes model, a Geometric fractional Brownian 

motion (GfBm) is generated as follows: 

            dS t  = S t t (µdt + dX t )  --------------------------------------------------------- eq.5   

The properties of the fBm assuming for instance B H   is a Brownian motion that includes 

[46]: 

Ø B H (0) =0,  almost surely.  

Ø B H  has strictly stationary increments, that is the random function M h (t) = 

B H (t+h) - B H (t), h =>0 , is strictly stationary.  

Ø B H  is self-similar of order denoted H – ss. 

Mathematically speaking, an object is said to be self–similar, if it is exactly or 

approximately similar to part of itself. 

Ø Finite dimensional distributions of B H  are Gaussian with E B H (0) = 0 

Ø B H  is almost surely continuous.  

2.2.5 Return 

The term return, as discussed in [20], refers to any number of metrics of the change in 

asset’s or portfolios’ accumulated value over some period of time. In investment 

management, there are two types of returns that need to be distinguished, namely the total 

returns and the net returns. 

Net returns refer to the returns obtained from accumulated values that reflect only price 

appreciation and income from dividends or interest. 

Net returns are obtained from accumulated values that reflect items such as management 

fees, transaction costs, taxes, etc. 
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Two standard metrics of returns, the simple returns and log returns are always calculated 

based on the total or net return. 

If P t is a portfolio’s or asset’s accumulated value at time t, then these returns can be 

mathematically written as follows: 

                     Simple return = 11 /)( −−− ttt PPP  

                      Log returns = ln (P t  / P 1−t ) where the term ln denotes the natural logarithm. 

The simple return, known as arithmetic or discrete rate of return, is defined as the capital 

gain plus any interim payment such as a dividend or a coupon: 

                    R t  = (P t  + D t  - P 1−t ) /P 1−t   --------------------------------------------- eq.6 

 where P denotes the capital gain, and D t , an interim payment.  

R t  is also given as: 

               R t  = (P t  - P 1−t ) /P 1−t   ------------------------------------------------------- eq.7 

 when there is no interim payment as seen previously.                        

Simple returns are close to logarithmic returns. 

Returns are generally calculated over one year or less but always reported on an annual 

basis. This is referred to as annualized returns or rate of returns.                                                

When one has to focus on long-horizon returns, the log returns also known as geometric 

rate of returns are preferred. They are defined in terms of the logarithm of the ratio:   

                   R t  = ln (P t  + D t  / P 1−t ) -------------------------------------------------- eq.8 
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 where the term D t  denotes the interim payment when there is one, or R t  = ln (P t  / P 1−t ) 

when there is none [20].  

The use of these geometric returns has two advantages [9]. 

Firstly they may be more economically meaningful than arithmetic returns. If geometric 

returns are normally distributed, then the distribution can lead to a price that is negative. 

The second advantage of using geometric returns is that they easily allow extensions into 

multiple periods. 

 For example, considering the return over a 2- month period the geometric return can be 

decomposed as: 

R t , 2  = ln( P t   / P 2−t ) = R t , 2  = ln( P t   / P 1−t ) +  ln( P 1−t   / P 2−t ) =  R t + R 1−t  ...eq.9 

This is particularly convenient since the two-month geometric return is simply the sum of 

the two monthly returns. However, the decomposition is not possible with discrete 

returns. 

 

2.2.6 Normality 

Most of statistical methods require data to be normally distributed. When decisions about 

processes are to be made, the normality assumption for the error rates to accept is needed. 

Invalid assumptions on a specified distribution also lead to incorrect conclusions. 

Therefore, random errors need to follow a normal distribution for the test results to be 

reliable. 

The null hypothesis for the test for normality states that the actual distribution of the 

variable is equal to the expected distribution or briefly, the variable is normally 

distributed. 
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There are graphical and statistical tests methods that are used to test for normality. 

Graphical methods inform on the shape of the distribution but do not give us a guarantee 

that the distribution is normal and do not test whether the difference between the normal 

distribution and the sample distribution is significant. With graphical methods, small 

sample sizes tend to pass all tests for normality whereas large sample sizes do not [66]. 

That is, there are always small deviations from normality that may lead to confusion 

when making a decision.  

It is therefore advisable to always use both graphical and statistical test methods when 

testing for normality. 

The concept of normality and some approaches that are used to test for normality are 

discussed by [66] and [68] in the following sections: 

2.2.6.1 Graphical methods 

2.2.6.1.1 Histogram  

The histogram is obtained by splitting the range of data into equal-sized bins which are 

also referred to as classes, then number of points from data set falling into each class is 

counted. 

The histogram graphically summarizes the distribution of a data set and shows its 

location, its spread, the presence of outliers, and the multiple modes in the data [39]. 

Those features explain the proper distributional model for the data. 

 Figure 2.1 shows an example of a bell-shaped and symmetrical histogram with data 

points equally distributed around the middle. 
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Figure 2.1: A bell-shaped and symmetrical histogram. Source, [36]. 

2.2.6.1.2 Stem and leaf plot 

The stem and leaf plot combines the features of a graphic and a table in that the original 

data values are explicitly shown in the display as a stem and a leaf for each value. The 

stems determine a set of bins in which leaves are sorted, and the resulting list of leaves 

for each stem looks like a bar in a histogram. An example of a stem and leaf plot of 

monthly returns of South African bonds share prices (ALBI) from 31/01/1999 to 

31/07/2008 is shown in Figure 2.2. The distribution is normal. 
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Frequency    Stem & Leaf 

     3.00 Extremes    (=<-.037) 

     1.00       -2.  5 

     2.00       -2.  00 

     4.00       -1.  5777 

     4.00       -1.  0112 

     9.00       -0.  555667888 

     6.00       -0.  012244 

    11.00        0.  00000111123 

    15.00        0.  666678888999999 

    13.00        1.  0111223333344 

    12.00        1.  555567788999 

    15.00        2.  000112222233344 

     6.00        2.  666678 

     6.00        3.  001344 

      .00        3. 

     3.00        4.  011 

     2.00        4.  67 

     1.00        5.  3 

     2.00 Extremes    (>=.060) 

 

 Stem width:  .0100000 

 Each leaf:       1 case(s) 

 Figure 2.2 ALBI (CL) Stem-and-Leaf Plot 

2.2.6.1.3 Box plot 

The box plot provides a summary of many aspects of the distribution. It is based on a 5-

number summary (minimum, first quartile, median, third quartile, maximum) of the data. 

It helps to detect and illustrate the location and variation of changes between different 
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groups of data. An example of a box plot is given by Figure 2.3 in which the distribution 

is not normal. 

 

Figure 2.3: The box plot of a non-normal distribution. Source [38] 

2.2.6.1.4 Normal quantile plot (Q-Q Plot) 

This method inspects how a population distribution appears to differ from the normal 

distribution. Normal Q-Q plot shows the quantiles of a variable distribution against the 

quantiles of the normal distribution. 

For values sampled from normal distribution, the points of a Normal Q-Q plot appear on 

or near the straight line drawn through the middle half of the point. The scattered points 

that fall away from the line are suspected outliers that may cause the sample to fail a 

normality test. An example of a normal quantile plot is shown in Figure 2.4. The data 

points do not follow a straight line and therefore the data is not normally distributed. 

 

 

 

 



 29

 

Figure 2.4: A normal quantile from a non-normal distribution. Source [42] 

2.2.6.1.5 Normal probability plot (P-P Plot) 

The normal probability plot is a graphical method that is used to assess whether data 

follow a given distribution [39].  

The data is plotted against the theoretical distribution and the result should approximately 

be a straight line for the assumption for the given distribution to hold. The departure from 

the obtained straight line is a sign of the departure for the given distribution [40]. 

The method also plots observed cumulative probabilities of occurrence of the 

standardized residuals on the Y axis and of the expected normal probabilities of 

occurrence on the X axis. This results in a 45-degree line appearing when the observed 

errors conforms to the normally expected errors and the assumptions of normality 

distributed errors are met .Figure 2.5 shows an example of a normal probability plot that 

shows that the data comes from a normal distribution. 
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Figure 2.5: The normal probability plots of data coming from a normal distribution. 

Source [37].  

2.2.6.2 Test methods 

2.2.6.2.1 Kolmorgorov-Simirinov statistic 

This test is used to check if the sample originates from a hypothesized distribution and is 

based on the empirical cumulative distribution function (ECDF). 

Assuming that x 1 , … , x n  is a random sample from some continuous distribution with 

CDF F(x). The empirical CDF is denoted by  

                  F n (x) = 
n
1

*[number of observation ≤x]  ----------------------------- eq.10 

The Kolmorgorov-Simirinov statistic (D) is based on the largest vertical difference 

between F x (x) and F n (x) and is defined as  

                  D n  = sup
x
 |F n (x) - F x (x)|  --------------------------------------------- eq.11 

The hypotheses to test are: 
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H 0 : The data follows the specified distribution (normal distribution in our case) 

H a : The data do not follow the specified distribution 

H 0  is rejected at a chosen significance level (α ) if the test statistic is greater than the 

critical value obtained from the table. 

2.2.6.2.2 Lillierfors corrected Kolmogorov-Simirnov statistic 

The Lillierfors corrected Kolmogorov-Simirnov statistic is used to make a comparison 

between the cumulative distribution of the data and the expected cumulative normal 

distribution. Unlike the Kolmogorov-Simirnov (K-S) test, because unknown population 

parameters can be estimated, while the test statistic is the same. Their test statistics differ, 

and therefore, the decisions to be taken must also differ. 

2.2.6.2.3 Shapiro-Wilk test 

The Shapiro-Wilk test depends on the correlation between data that are given and their 

corresponding normal scores. If the test statistic W is significant, the assumption that the 

distribution is normal is rejected.  

The test statistic is as follows: 

       W = 

∑

∑
−

− 2

2
)(

)(

}{

xx

xa

i

ii  ------------------------------------------------------------- eq.12 

where ix  is the ith largest order statistic, x  the sample mean and n the number of 

observations.  

2.2.6.2.4 D’Agostino-Pearson (DAP) Omnibus test 

The D’Agostino-Pearson Omnibus test first analyzes the skewness and kurtosis, 

calculates how each of these values differs from the values expected in a normal 

distribution, and computes a single p-value from the sum of squares of these 
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discrepancies. DAP is a combination of the D’Agostino skewness test and Anscombe-

Glynn kurtosis test. 

The test statistic s given by: 

                 K 2  = Z 2 ( 1b ) + Z 2 ( 2b )  --------------------------------------------- eq.13 

where Z 2 ( 1b ) and Z 2 ( 2b ) are the standard normal deviates equivalent to observing 

1b (Skewness) and 2b (kurtosis). 

The K 2  statistic has approximately the chi-squared distribution with 2 degrees of 

freedom when the population is normally distributed. 

2.2.6.2.5 Jarqua-Bera (JB) test 

This test depends on the skewness and kurtosis statistics. 

The test statistics is given by: 

                 T = n 












 −
+

24
)3(

6

)( 2
2

2
1 bb

  --------------------------------------------- eq.14 

The test statistic has approximately a chi-square distribution with 2 degrees of freedom. 

If the test statistic equals zero, then it means that the distribution has zero skewness and 3 

kurtosis, and therefore the conclusion that the assumption of normality holds becomes 

valid.  

2.2.6.2.6 Anderson-Darling test 

The Anderson-Darling test was named after Theodore Wilbur Anderson [90] and Donald 

A. Darling [68, 91]. It is used with a small sample size n≤8, because large samples may 

reject the assumption of normality with slight imperfections. 
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The test assesses whether the sample comes from a specified distribution. 

The formula for the test statistic A to assess if data {Y1  < Y 2  < … < Y N } (the data must 

be ordered first) originates from a distribution with cumulative distribution function 

(CDF) F is  

               A2 = − N − S  ----------------------------------------------------------------- eq.15 

where S = [ ]))(1ln()(ln
12

1
1

kNk

N

k

YFYF
N
k

−+
=

−+
−

∑ ---------------------------------- eq.16 

The test statistic can be compared to the critical values of the theoretical distribution 

dependent on what F is used, to determine the P-values. The Anderson-Darling test for 

normality is a distance or Empirical Distribution function (EDF) test. It is based upon the 

concept that when given a hypothesized underlying distribution, the data can be 

transformed to a uniform distribution. The transformed sample data can be then tested for 

uniformity with a distance test. 

2.2.6.2.7 Cramer-von-Mises criterion (CvM) 

CvM tests the goodness of fit of a probability distribution F * that is compared to a given 

distribution F. 

It is given by the formula: 

                nW 2  = n [ ] )()()(
2* xdFxFxF −∫

∞

∞−
 ------------------------------------- eq.17 

This test has two applications; on either one sample or on two samples. 

For the one sample, the observed values x 1 , …, x n increase in order. It can then be 

demonstrated that: 
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                    T = nW 2 = 
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 ---------------------------- eq.18 

If this value exceeds the tabulated value, then the hypothesis that the data comes from the 

distribution F (.) is rejected. 

For the two samples, consider the observed values x1 , …, x n  and y1 , …, y m  

that are increasing in order in the first and the second sample respectively. 

Suppose also that  r 1 , …, r n  are the ranks of the x’s in the combined sample and s1 ,…,s m  

are the ranks of the y’s in the combined sample. Then, it can be proved that  

                  T = nW 2  = 
)(6

14
)( nm

mn
mnnm

U
+
−

−
+

 ------------------------------------- eq.19 

where U is given by: 

                  U = n ( ) ( )
2

1

2

1
∑∑
==

−+−
m

j
ji

n

i

jsmir  --------------------------------------- eq.20 

If the value of t exceeds the tabulated value, then the hypothesis that the two samples 

originate from the same distribution is rejected. 

2.2.6.2.8 Pearson‘s chi-square test  

This test is one of the several chi-square tests- statistical procedures that use a chi-square 

distribution to reference its results. It is used to test the null hypothesis that the frequency 

distribution of certain events observed in a sample is consistent with a particular 

theoretical distribution. The events that are taken into consideration have to be mutually 

exclusive and have the probabilities that sum up to one. The Pearson’s chi-square test is 

also used to test the goodness of fit (whether or not the frequency distribution differs 

from the theoretical distribution), and the independence to assess whether paired 
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observations on two variables, expressed in a contingency table are independent of each 

other. 

The chi-square statistic is given by:  

 

                    
2

1

2 )(

i

ii
n

i E
EO −

=∑
=

χ  --------------------------------------------------- eq.21 

Where 2χ stands for chi-square; 

O i  = observed frequency; 

E i = expected (theoretical) frequency that is assessed by the null hypothesis. 

n = number of possible outcomes for each event. 

2.2.7 Stationarity 

Stationarity and time-varying volatility are the most crucial characteristic of financial 

time series data. Therefore, these two properties have to be taken into consideration 

whenever time series data are being analyzed. 

 This section discusses in brief the concept of stationarity and nonstationarity and some 

approaches that are used to test them [10, 16, 44]. 

A time series is said to be stationary if its mean and variance are constant over time and 

the value of the covariance between the two time periods depends only on the distance or 

gap or lag between the two time periods and not the actual time at which the covariance 

is computed. Such series is in general called weakly stationary or covariance stationary.  

As an illustration, consider a time series Y t with mean µ  = E [Y t ],  

variance 2σ = Var(Y t ) = E[Y t - µ ] 2 , and covariance γ
k
= E[(Y t -µ )(Y t k+

-µ )], where 

γ k is the covariance or autocovariance at lag k between Y t  and Y kt+ . 
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In the case k = 0, 

              γ 0  = E [(Y t - µ ) (Y t - µ )] = E [Y t -µ ] 2 = 2σ  

In case k=1, 

γ 1  becomes the covariance between two adjacent values of Y. 

If Y t  is shifted to Y nt+ , then for Y t  to be stationary, its mean, variance, and covariance 

have to be the same as those of Y nt+ , that is, they have to be constant over all lags. The 

type of time series that tends to its mean is called mean reversion and fluctuations about it 

will always have constant amplitude. 

There is a special type of time series called purely random or white noise process, which 

has a zero mean, a constant variance and no serial correlation (or autocorrelation). 

A time series that is not stationary is referred to as a nonstationary time series. Its mean 

or its variance changes with time, or both the mean and the standard deviation vary with 

time. Nonstationarity also means that a variable has a tendency to return to a constant 

value or linear trend [44] 

The Random Walk model is an example of a nonstationary time series. Also 

nonstationary is synonymous to random walk. 

There are two types of random walks: a random walk without drift and a random walk 

with drift. 

(1) A random walk without drift (no constant or intercept term). 

Its form is as follows: 

           Y t  = Y 1−t  + tµ  ------------------------------------------------------------------ eq.22 
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The equation means that the value of Y at time t equals its time value at time t-1 plus a 

random shock tµ . 

By decomposition, 

            Y1  = Y 0 + 1µ  

            Y 2 = Y 1  + 2µ  = Y 0 +µ 1 + 2µ  

              . 

              . 

            Y t  = = Y 0 + ∑ tµ  

The mean and the variance in this case will be respectively: 

             E [Y t ] = Y 0 , 

             Var (Y t ) = t 2σ  

That is, the mean of Y equals its starting or initial value Y 0  which is a constant, but its 

variance grows with time, thus violating the stationarity condition. Y 0  is always set to 

zero, which makes the mean to be zero. 

(2) A random walk with drift  

Its form is as follows: 

                      Y t  = δ + Y 1−t  + tµ   -------------------------------------------------- eq.23 

where δ  is a drift parameter. 
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The name drift originates from the fact that ∆Y t  = Y t  - Y 1−t  = δ + tµ , which means that 

Y t  can drift upward or downward depending on the value of δ  which can be negative or 

positive. 

The mean and the standard deviation will be respectively: 

      E [Y t ] = Y 0 + t*δ , 

Var (Y t ) = t 2σ . 

Thus, both the mean and the variance vary with time, which also violates the stationarity 

condition. 

The random walk is also an example of a unit root process. 

As an illustration, consider a random walk model Y t  such that 

 Y t  = ρ  Y 1−t + tµ , -1<= ρ  <= 1 

For ρ  = 1, Y t  = Y 1−t  + tµ , is a random walk with drift. 

This case is called the unit root problem, meaning also the situation of nonstationarity. 

Therefore, the terms nonstationarity, unit root, and random walk mean the same thing.   

In case ρ  < 1, Y t  becomes stationary. 

2.2.7.1 Some approaches to test for stationarity  

2.2.7.1.1 The graphical analysis 

In this case, time series data is first plotted. If it shows for example an upward trend, 

then it is a sign that the mean is changing, and therefore it is not stationary [10]. If it 

shows a time mean reverting, then it is an indication of the same uncertainty in the price 
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a day in the future and in a month in the future. It can also be a realization of a random 

walk [41].  

An example of time series prices plots is given in Figure 2.6. 

The first part of the figure gives the idea of a mean reverting, the second the random 

walk and the last the trend. 

 

Figure 2.6: Time series prices plots. The mean reverting, the random walk and the 

trend. Source [41] 
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2.2.7.1.2 Autocorrelation function (ACF) and correlogram 

The ACF is defined as: 

                kρ =
0γ
γ k = cov at lag k / variance ----------------------------------------- eq.24 

where the covariance and variance are as previously defined. 

If k = 0, then 0ρ =1. 

The graph of kρ  against k (lags) is referred to as a population correlogram. 

The sample autocorrelation function is also computed as: 

                    
∧

kρ =
∧

∧

0γ

γ k  ----------------------------------------------------------------- eq.25 

 where 
∧

kγ  is the covariance given by 

∧

kγ  =  
n

YYYY ktt∑
−

−

+ −− ))((
; 

      
∧

0γ  = 
n

YYt∑
−

− 2)(
; 

         
−

Y  is the mean, and n is the sample size. 

A graph of 
∧

kρ versus k is called the sample correlogram. 

If the autocorrelation coefficient starts at a higher value at lag 1 and declines slowly, it is 

an indication that the time series is nonstationary, indicating a change in mean or 

variance, or in both. 
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If the autocorrelations at various lags prowl about zero on a diagram, then it is an 

indication of stationarity. 

The significance of the autocorrelation coefficients is discussed by Box and Ljung.  

According to them, the joint hypothesis test that all the correlations (ρ j ) up to certain 

lags are simultaneously equal to zero is done, instead of testing the statistical significance 

of any individual autocorrelation. The test statistic is defined as: 

                     Q LB  = n (n + 2)
jn
jh

j −∑
=

)(2

1

ρ
  ------------------------------------------- eq.26 

Where n is the sample size, ρ (j) is the autocorrelation at lag j, and h is the lag length. 

If the computed Q LB  exceeds the Q value from the chi-square distribution at the chosen 

level of significance, the null hypothesis that all ( ρ j ) are zero is rejected; at least some 

of them must be nonzero. 

Also if the probability of obtaining an LB value under the null hypothesis that the sum of 

j squared estimated autocorrelation coefficients is zero, is practically zero; then one can 

conclude that the given time series is nonstationary. 

Nonstationarity can also be tested by a correlogram of a time series, which is a graph of 

autocorrelation at various lags. The correlogram dies or diminishes gradually for 

nonstationary time series [10].   

                  2.2.7.1.3 The unit root test      

Another powerful suggested method to test for stationarity is the unit root test [10, 44, 

83]. 

Before looking at the test itself, we first explain the concept. 
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If Y t  = ρ  Y t 1− + tµ ,   -1<= ρ  <= 1, where tµ  is a white noise error term, for k = 1, 

this corresponds to a unit root case or random walk without drift, which is nonstationary. 

By taking the first difference, we have:  

tY∆  = Y t  - Y t 1−  = ρ  Y t  - Y t 1−  + tµ  

                             = ( ρ -1) Y t 1−  + tµ  

                             = δ  Y t 1−  + tµ , where δ  = ρ -1, and ∆  is the first difference. 

The null hypothesis to be tested is H 0 : δ = 0. 

If  ρ  = 1, then we have a unit root, meaning that the time series is nonstationary. 

In that case, we have tY∆ = 1−− tt YY  = tµ , which is a stationary white noise. 

One of the approaches to test for unit rule is the Dickey -Fuller (DF) and the Augmented 

Dickey- Fuller tests [10, 47, 48, 49, 50]. The assumptions underlying these approaches 

are as follows: the error term is uncorrelated and the error term is correlated. 

(1)Assuming the error term is uncorrelated 

The approach is discussed under three different hypotheses: 

a) The case where Y t  is a random walk. That is, 

tY∆  = δ  - Y t 1−  = δ Y t  - Y t 1−  + tµ as previously seen. 

b) The case where Y t  is a random walk with drift. That is, 

tY∆  = Y t  - Y t 1−  =  1β  + δ Y t  - Y t 1−  + tµ  

c) The Case where Y t  is a random walk with drift around a stochastic trend: 

That is,  
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            tY∆  = Y t  - Y t 1−  =  1β  + t*2β  +  δ Y t  - Y t 1−  + tµ , where t denotes a 

time or trend variable. 

The hypotheses to test are: 

H 0 : δ  = 0, that is, there is a unit root, or the time series is nonstationary. 

H1 : δ  < 0, that is, the time series stationary.  

The value of the test statistic:  

                      DF r  = 
)(

^

^

γ

γ

SE
 ---------------------------------------------------------- eq.27 

 is computed and compared to value of the critical for the test (DF or ADF) If the test 

statistic is greater (in absolute value) than the critical value, then the null hypothesis is 

rejected and no unit root is present in the series. 

If the null hypothesis H 0  is rejected, then the time series is stationary with the following 

characteristics:  

Mean µ  = 0 in case of a) 

Mean µ  = 
ρ

β
−1

1  for the case of b) above. 

Y t   is a stationary around a deterministic trend, or predictable trend. 

(2)Assuming the error term is correlated 

With his approach, lagged values of the dependent variable tY∆  are added to equations in 

a), b), and c) above. 
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As an example, if we consider the equation in c), the Augmented Dickey-Fuller test 

(ADF) has a regression form such as:   

tY∆  =  1β  + t*2β  +  δ Y t 1−  + it

m

i
i Y −

=

∆∑
1

β  + tε  

where tε  is a pure white noise error term. 

Also 

1−∆ tY  = Y t 1−  - Y 2−t  

∆Y 2−t   = Y 2−t  - Y 3−t , etc. 

The hypotheses to test for DF and ADF statistics are the same, as well as the critical 

values that they both use. 

2.2.8 Volatility  

The concept of volatility is discussed in [9, 10, 19, 20, 41]  

Volatility is referred to as a measure of frequency and size of fluctuation in the price of a 

share. It is an annualized standard deviation of daily percentage changes in stock prices. 

Volatility plays a major role in the value of the options. Nowadays, investors tend to 

make decisions on the basis of how stock prices move. 

If they believe that the stock prices will go up, they buy the stock. If they believe that the 

price will fall, they sell the stock or avoid buying it. Their success always depends on the 

decisions they make depending on how the stock prices behave [13] 

In mathematical term, the volatility can be expressed as: 

              Volatility = std (log (Q t /Q 1−t )) -------------------------------------------- eq.28 
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where  Q t  Q 1−t ,…, are stochastic processes, which in terms may represent prices, 

accumulated values, exchange rates, interest rates and so on, and std denotes the standard 

deviation of the time t return, and log stands for a natural logarithm. Simple returns may 

also be used, especially in the context of portfolio theory. 

The above definition (expression) is more precise if one assumes that returns are 

conditionally heteroscedastic, that is, if the volatility is stationary. In this case returns are 

conditionally heteroscedastic, the volatility represents the standard deviation of the time t 

log return conditional n the information available at time t-1. 

The expression may be changed to: 

               Volatility = std 1−t  (log (Q t /Q 1−t )) ---------------------------------------- eq.29 

When fluctuations in a stochastic process from one time to another are correlated, there is 

no relationship between, say daily volatility and weekly volatility, monthly volatility, etc. 

However, if those fluctuations are independent; the so-called square root of time rule is 

introduced. This concept says that the volatility grows with the square root of unit time. 

Prices that follow a Brownian motion, a random walk, and a geometric Brownian motion 

satisfy the independence condition, and therefore, their volatilities increase with the 

square root of time. 

This rule is precise if volatilities are calculated on the log returns basis. 

As previously seen, the geometric returns can be decomposed into multiple periods. 

If for instance we consider two-month period returns, then we will have the following:             

R 2,t = ln (P t /P 2−t  = ln (P t /P 1−t ) + ln (P 1−t /P 2−t ) = R 1−t +R t  --------------------- eq.30 

It is also known that  

              E[X 1  + X 2 ] = E[X1 ] + E[X 2 ]  
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                                                  and  

              Var (X 1  + X 2 ) = Var(X 1 ) + Var(X 2 ) +2Cov( X1  , X 2 ) 

If price follows a random walk (uncorrelated) as it is commonly believed, then   

Cov (X1  , X 2 ) = 0. 

Assuming the returns are identically distributed over time, 

 i.e.,  

                        E [R 1−t ] = E[R t ] = E[R]  

                                     and 

                Var (R 1−t ) = Var(R t ) = Var (R), 

 we have  

                E[R 2,t ] = E[R 1−t ] + E[R t ] = 2E[R]   

                                           and  

                Var(R 2,t ) = Var( R 1−t ) + Var(R t ) = 2Var(R) 

Thus, we see that the expected return over two days is twice the expected return. So is the 

estimated variance. Therefore, it is generalized that the variance and the expected return 

have a linear growth over time. In contrast, the volatility grows with the square root of 

time. As a summary, if one has to go from annual to daily, monthly or quarterly data, we 

will have the following:  

                                 µ  = annualµ T 

                                 σ = annualσ T  

where T stands for the number of years  

It can be seen for instance that 1/12 is used for monthly data because we have 12 months 

in a year, 1/252 if it is daily data assuming there are 252 trading days in a year. 

 

 

 

 



 47

The table 2.1 illustrates the change in means and volatility over various horizons, 

assuming the volatility (growing with the square root of time) is 13.5% and the mean 

(growing with time) is 12.2%. 

 

HORIZON YEARS (T) MEAN (µ ) VOLATILITY (σ ) 

Annual 1 12.2% 13.5% 

Quarterly 0.25000 3.0500% 6.75000% 

Monthly 0.08333 1.0166% 3.89704% 

Weekly 0.01918 0.2340% 1.86964% 

Daily 0.00397 0.0484% 0.85061% 

Hourly 0.00050 0.0061% 0.301869% 

Table 2.1: Mean and volatility over various horizons. Source, [9] 

 The volatility between two time periods is also expressed as follows:  

             YX +σ  = ( )YXYX σρσσσ 222 ++   for x # y 

                      = )1(2 px +σ , for x = y and ρ # 0 

                      = xσ 2  , for 0=ρ . 

The above approach is considered when returns are not correlated across periods. 

 Consider the case where they are correlated: 

Suppose that tX  follows a first order autoregression with shocks or error terms in returns 

related to shocks in previous time period. 

Then tX  = 1−tXρ  + tµ , where tµ  is innovations, which are assumed to have the same 

variance as previously seen. 
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If the volatility changes with time, then we will have the following: 

the variance over a 2-day return = Var ( tX  + X 1−t ) = 2σ  + 2σ  +2 2ρσ   

                                                                                          = 2σ (2 +2 ρ ) 

The volatility in this case will be: 

                                                        xσ   = xσ )1(2 ρ+  for 0≠ρ  

If  ρ  > 0, then the value of this volatility will be higher than the one of the independent 

identically distributed returns, which is the case of trending markets. 

Generally, if we have M periods, the variance will be expressed as: 

   Var (∑
=

+

M

i
itX

1

)  =   2σ  [M + 2(M-1) ρ  + 2(M-2) ρ (2) + …+ 2(1)] ρ (M-1)...eq.31 

where ρ (2), …, ρ (2) denotes the second order autocorrelation, ρ (M-1) stands for the 

(M-1) order autocorrelation, etc. 

2.2.8.1 Some appropriate models to estimate the volatility 

There are appropriate models to estimate the volatility. Some of them are the moving 

average, the Expected Weighted Moving Average (EWMA), the autoregressive 

conditional heteroscedacity (ARCH) and the generalized autoregressive conditional 

heteroscedacity (GARCH) models [5, 9, 10, 12, 89]. 

 2.2.8.1.1 The moving average approach 

Suppose that we observe returns r t  over N days. Then the volatility which is constructed 

from the moving average is as follows:  

                        2
tσ   = (1/N) ∑

=
−

N

i
itr

1

2  --------------------------------------------------- eq.32 

In this case, the focus is on raw returns instead of returns around the mean. 
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The forecast is updated daily by adding information from the previous day and dropping 

the information from (N+1) days ago. The weights on past returns are all equal to 1/N. 

2.2.8.1.2 The Expected Weighted Moving Average (EWMA) approach 

Variances and means are modelled using an exponentially weighted moving average 

(EMW) forecast. The forecast for time t is a weighted average of the previous forecast, 

using weightλ , and the latest squared innovation, using weight 1-λ : 

                          h t  = λ h 1−t  + (1 - λ ) r 2
1−t  ------------------------------------------ eq.33 

The parameter λ  is called the decay factor and it is supposed to be less than unity. 

This model places geometrically declining weights on past observations, thus assigning 

greater importance to recent observations. 

2.2.8.1.3 The Generalized Autoregressive Heteroscedastic (GARCH) approach  

GARCH stands for the Generalized Autoregressive Heteroscedastic model. This is 

proposed by Engle [5] and Bollerslev [89], which assumes that the variance of returns 

follows a predictable process as described by [9]. 

The conditional variance depends not only on the latest innovation but also on the 

previous conditional variance. 

Consider the conditional variance h t  using information up to time t-1, and r 1−t  as the 

previous day’s return.  

The simplest such model is the GARCH (1, 1) process: 

                       H t  = 0α  + 
1

α r 2
1−t  + β  h 1−t  ----------------------------------------- eq.34 

This means that the conditional variance of r at time t depends not only on the squared 

error term in the previous period, but also on its conditional variance in the previous time 

period. 
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This model can be generalized to GARCH (p, q) model with p lagged terms of the 

squared error term and q terms of the lagged conditional variances. 

The average, unconditional variance is found by setting E(r 2
1−t ) = h t  = h 1−t  = h. Solving 

for h, we find the following:  

                         h = 0α / (1- 1α - β ) ---------------------------------------------------- eq.35 

This model is stationary if 1α  + β  < 1, otherwise it is nonstationary. 

2.3 Overview of the application of the Brownian motion in stock markets. 

In the past years, the application of the Brownian motion process to analyze financial 

time series has been under the scrutiny of empirical research. This process, as suggested 

earlier on, was originally used by Louis Bachelier [1] and later on, was reviewed in a 

quite number of pieces of research including: 

• Osborne [7] who applied the Brownian motion in stocks markets and managed to 

show that the logs of common stock prices and the value of the money can be 

regarded as an ensemble of decisions in a statistical equilibrium. He found that 

this ensemble of logs of prices, each changing with time, is similar to the 

ensemble of coordinates of a large number of molecules in the Brownian motion 

theory. 

• Black and Scholes [87] for pricing options, which was based on the statistical 

properties of the Brownian motions. 

• Smith [8] who applied the Brownian motion theory to investigate the price 

controls. He analyzed the effects of price stabilization schemes on investment 

when the demand is uncertain, by using the method of regulated Brownian 

motion. The methods and conclusions he came up with in his research are 

applicable to any economic situation that involves smooth costs of adjustment of 

stocks when there is uncertainty of prices, but subject to government control. 

• Etc.
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CHAPTER 3: DATA DESCRIPTION 

                  3.1 Introduction 

Our data was sourced from I-Net Bridge [54]. They are daily, weekly and monthly stock 

prices of some of the major securities trading in the South African financial market, more 

specially the Rand/ US$, Rand/Euro, JSE ALSI  Total Returns Index, South African All 

Bond Index, Anglo American Corporation, Standard Bank, Sasol, Gold Price US$, Brent 

Spot oil price, and South African White Maize Near Future. 

The returns were calculated for each one as follows: 

                 R t  = ln (P t  + D t  / P 1−t ) --------------------------------------------------- eq.36 

 where the R t  denotes the stock returns, P t  stands for the closing stock price on day, 

week or month t, and D t  denotes the dividends on day, week or month t.                            

         3.2 EURO/US DOLLAR 

The data set for the logarithmic daily returns of EURUSD was composed of 369 

observations from 17 January 2007 to 23 July 2008. 

The weekly data set included 399 observations from 17 December 2000 to 27 July 2008 

Lastly, the monthly data set was composed of 399 observations from 31 May 1975 to 31 

July 2008. 
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                3.3 OTHER SECURITIES 

Similarly, the composition and time periods of data sets for other securities returns for 

each frequency are found in the table 3.1. 

 DAILY WEEKLY MONTHLY 

 No. of 
observ
ations 

Time period No. of 
observ
ations 

Time period No. of 
observ
ations 

Time period 

BRSPOT 369 17/01/2007 to 

23/07/2008 

399 17/12/2000 to 

27/07/2008 

329 30/09/1975 to 

31/07/2008 

J2O3T 369 17/01/2007 to 

23/07/2008 

399 17/12/2000 to 

27/07/2008 

157 31/07/1995  to 

31/07/2007 

ALBI 369 17/01/2007 to 

23/07/2008 

399 17/12/2000 to 

27/07/2008 

115 31/01/1999 to 

31/07/2008 

FCRB 369 17/01/2007 to 

23/07/2008 

399 17/12/2000 to 

27/07/2008 

399 31/05/1975 to 

31/07/2008 

AGL 369 17/01/2007 to 

23/07/2008 

399 17/12/2000 to 

27/07/2008 

399 31/05/1975 to 

31/07/2008 

SBK 369 17/01/2007 to 

23/07/2008 

399 17/12/2000 to 

27/07/2008 

399 31/05/1975 to 

31/07/2008 

SOL 369 17/01/2007 to 

23/07/2008 

399 17/12/2000 to 

27/07/2008 

344 31/02/1979 to 

31/07/2008 

DGLDS 369 17/01/2007 to 

23/07/2008 

399 17/12/2000 to 

27/07/2008 

182 30/06/1993 to 

31/07/2008 

WMAZN 369 17/01/2007 to 

23/07/2008 

399 17/12/2000 to 

27/07/2008 

137 31/03/1997 to 

31/07/2008 

Table 3.1: Compositions and time periods of data sets of major securities other than 

the EURUSD, trading in the South African financial market. 
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CHAPTER 4: DATA ANALYSIS 

                                    4.1 Introduction 

To assess whether each security follows a Geometric Brownian motion or not, we studied 

the assumptions underlying this process, namely the sationarity, the normality and the 

independence. 

We first tested the stationarity through the sequence plots together with the Dickey- 

Fuller test. Secondly, we studied the normality through the graphical methods 

(histograms and normal quantile plots) and test method (Kolmogorov- Simirnov statistic) 

provided in the literature. Lastly, we studied the independence behaviour through the 

Box-Ljung statistic significance of autocorrelations at the significance level of a half for 

the first order autocorrelations only. We used the Hurst exponent in order to support our 

analysis when making the final decision (in assessing the Geometric Brownian motion as 

a model for South African financial markets). The results are provided in appendix 

(Sequence plots, histograms together with normal quantile plots and the Augmented 

Dickey-Fuller test Eviews outputs results for the three frequencies (daily, weekly and 

monthly), in tables 4.4, 4.5, 4.6 for Kolmogorov-Simirnov, Box-Ljung and Hurst 

exponent statistics respectively ). 

                                          4.2 EURO/US DOLLAR 

The sequence plots of the EURUSD returns  reveal a kind of periodic/cyclic time series 

[4], with the volatility varying over time: large changes (upwards or downwards) are 

often being followed by large fluctuations, and small changes are tending to be followed 

by small fluctuations; thus visually violating the stationarity assumptions for a Geometric 

Brownian motion process. 

The Augmented Dickey-Fuller test Eviews outputs results for the three frequencies 

(daily, weekly and monthly) are also shown in table 4.1 below. 
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        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -20.14382  0.0000 

Test critical values: 1% level  -3.447914  

 5% level  -2.869176  

 10% level  -2.570905  

     
     *MacKinnon (1996) one-sided p-values.  

Table 4.1: Eviews output results for the Augmented Dickey-Fuller test for stationarity in 

the daily data. 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -20.51208  0.0000 

Test critical values: 1% level  -3.446567  

 5% level  -2.868583  

 10% level  -2.570588  

     
     *MacKinnon (1996) one-sided p-values.  

Table 4.2: Eviews output results for the Augmented Dickey-Fuller test for stationarity in 

the weekly data. 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -9.107412  0.0000 

Test critical values: 1% level  -3.482879  

 5% level  -2.884477  

 10% level  -2.579080  

     
     *MacKinnon (1996) one-sided p-values.  

Table 4.3: Eviews output results for the Augmented Dickey-Fuller test for stationarity in 

the monthly data. 
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The results show that the test statistics from all the frequencies are less than the relevant 

critical values. Therefore, we fail to reject the null hypothesis of a unit root in the 

EURUSD daily, weekly and monthly returns series at any of significance levels, and 

conclude that there are unit roots or the EURUSD time series returns are nonstationary. 

We then studied the normality assumptions through the histogram and normality plot 

together with the Kolmogorov-Simirnov statistic. 

The graphical methods, as mentioned in the literature [66], show the shape of the 

distributions but do not guarantee that the data originates from a specified distribution. . 

That is why; we need to support them with the test methods.  

In the case of the EURUSD daily time series data, the histogram shows a kind of a 

symmetrical distribution but the normal Q-Q plot shows some dots that are flying away 

from the straight line which makes us doubt about the distribution of the data.  

Similarly the EURUSD weekly and monthly data plots can not allow us as well to decide 

on the distribution of the data since the shape of their histograms are not fully bell-shapes 

and their normal Q-Q plot does not as well convince us that all dots will be on or close to 

the straight lines. 

We supported our results by the Kolmogorov-Simirnov test. Normally, the hypothesis 

test for the normality tests the null hypothesis that the variable is normal [66]. That is, the 

actual distribution of the variable fits the pattern that we would expect if it is normal. 

Failure to reject the null hypothesis leads to conclude that the null hypothesis is normal. 

In Kolmogorov-Simirnov test for normality, the null hypothesis says that the actual 

distribution of the variable equals the expected distribution, that is, the variable is 

normally distributed. The distribution of EURUSD is associated with the low (<0.05) 

significance value of 0.035 in the weekly data which leads us to reject the null hypothesis 

and conclude that the weekly EURUSD logarithmic returns are not normally distributed. 

Again the distribution of EURUSD logarithmic returns are associated with the high 

(>0.05) significance values of 0.080 (for daily returns), and 0.200 (for weekly returns) 
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that lead us not to reject the null hypothesis and conclude that the normality assumption 

holds or daily and monthly logarithmic returns of the EURUSD are normally distributed.   

 

Security Daily Weekly Monthly 

 Statistic Significance Statistic Significance Statistic Significance 

EURUSD 0.044* 0.080 0.047 0.035 0.027* 0.200 

J203T 0.049 0.031 0.64 0.001 0.071* 0.053 

ALBI 0.056 0.008 0.084 0.000 0.062* 0.200 

FCRB 0.051 0.021 0.055 0.005 0.034* 0.200 

AGL 0.039* 0.200 0.041* 0.115 0.043* 0.079 

SBK 0.062 0.002 0.044* 0.062 0.053 0.009 

SOL 0.035* 0.200 0.049 0.021 0.046* 0.083 

DGLDS 0.059 0.003 0.064 0.001 0.070 0.028 

BRSPOT 0.057 0.006 0.064 0.000 0.076 0.000 

WMAZN 0.049 0.033 0.056 0.004 0.046* 0.200 

* Not significant at the level of α =0.05 

Table 4.4: Kolmogorov- Simirnov test for normality results for daily, weekly and 

monthly data: SPSS output results. 

To identify the independence behaviour, we studied the first order autocorrelations at 

each frequency (daily, weekly and monthly basis) using the Box-Ljung statistics for the 

significance of autocorrelation at the level of 0.05, as discussed in the literature.  

The results are found in Table 4.5.  
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SECURITY DAILY WEEKLY MONTHLY 

EURUSD -0.054* -0.031* 0.115 

J203T -0.031* -0.000* 0.-0.024* 

ALBI 0.191 0.113 0.094* 

FCRB -0.032* -0.009* 0.004* 

AGL 0.003* -0.067* 0.032* 

SBK -0.099* -0.112 0.070* 

SOL 0.011* -0.112 0.028* 

DGLDS -0.034* -0.094* -0.035* 

BRSPOT -0.100 0.005* 0.041* 

WMAZN 0.050* 0.117 0.190 

Not significant (the probability is substantially greater than 0.05) 

Table 4.5: First order autocorrelations for daily, weekly, and monthly data. Results 

obtained using SPSS. 

Our findings show that the first order autocorrelations of the EURUSD daily and weekly 

logarithmic returns are not statistically significant (the probability is greater than 0.05) 

whereas the autocorrelations for monthly returns are significant (the probability is less 

than 0.05). This means that for the first case, the autocorrelation is zero (series are 

independent) between the returns at time t and the returns at time t-1, otherwise the 

autocorrelation is present in the series (there is a serial correlation). Therefore, we 

conclude that the EURUSD daily and weekly returns are independent whereas the 

EURUSD monthly returns are dependent (serially correlated). 

Putting everything together, we find that we can not assess whether or not the EURUSD 

daily and weekly and monthly logarithmic returns follow a random walk or a Geometric 

Brownian motion on the basis of the study of the assumptions underlying the process, 

since at least one of the three assumptions underlying the process is violated in the study. 

To solve our problem, we studied the independence of the returns or simply the 

Geometric Brownian motion through the significance of the Hurst exponent values. Table 
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4.6 contains the results calculated manually using the Hurst exponent formula provided in 

the literature and the first order autocorrelations in Table 4.5. 

SECURITY DAILY WEEKLY MONTHLY 

EURUSD 0.46 0.48 0.58 

J203T 0.48 0.50 0.49 

ALBI 0.63 0.58 0.56 

FCRB 0.48 0.49 0.50 

AGL 0.50 0.45 0.52 

SBK 0.42 0.41 0.55 

SOL 0.51 0.41 0.52 

DGLDS 0.48 0.43 0.47 

BRSPOT 0.42 0.50 0.53 

WMAZN 0.54 0.58 0.58 

Table 4.6 Hurst exponent values for daily, weekly, and monthly data. 

Hurst exponent values of 0.46, 0.48 and 0.58 were found in the daily, weekly and 

monthly logarithmic returns respectively. 

The first two values are close to 0.5, which is consistent with what was found other 

currency studies such as [23], and because no autocorrelations are present, the series are 

random walks or Geometric Brownian, or simply there is a short memory (non-long 

memory). This also means that there is independence behaviour in the returns of the 

EURUSD security and therefore, the data can be modeled using the Geometric Brownian 

motion.  

The last value is far greater than 0.5 which indicates that that there is a long memory or 

long range correlations in the logarithmic returns of the EURUSD logarithmic returns 

series. In this case the Fractional Geometric Brownian motion is appropriate to model the 

data. 
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Therefore, based on Hurst exponent significance values, our analysis shows that the 

Geometric Brownian motion can not be rejected as a model for daily, weekly and 

monthly returns of the EURUSD. 

                 4.3 Other securities 

The same analysis was also done for other securities .The sequence plots, histograms 

(together with normality plots) and Dickey- Fuller unit root test results of the logarithmic 

returns of the major securities trading in the South African financial market are also 

found in Appendix, whereas the test results (Kolmogorov-Simirnov, Box-Ljung and 

Hurst exponent statistics) are contained in Tables 4.4, 4.5 and 4.6 respectively. Table 4.7 

provides a summary of our findings.  

SECURITY DAILY WEEKLY MONTHLY 

EURUSD • Independent 

• Nonstationary 

• Normally distributed 

• Independent 

• Nonstationary  

• Not normally 

distributed 

• Not independent 

• Nonstationary 

• Normally distributed 

J203T • Independent 

• Nonstationary  

• Not normally 

distributed 

• Independent 

• Nonstationary  

• Not normally 

distributed 

• Independent  

• Nonstationary 

• Normally distributed 

 

ALBI • Not independent 

• Nonstationary 

• Not normally 

distributed 

• Not independent 

• Nonstationary 

• Not normally 

distributed 

• Independent  

• Nonstationary 

• Normally distributed 

FCRB • Independent 

• Nonstationary  

• Not normally 

distributed 

• Independent 

• Nonstationary  

• Not normally 

distributed 

• Independent 

• Nonstationary 

• Normally distributed 

AGL • Independent • Independent • Independent 
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• Nonstationary 

• Normally distributed 

• Nonstationary 

• Normally distributed 

• Nonstationary 

• Normally distributed 

SBK • Independent 

• Nonstationary 

• Not normally 

distributed 

• Not independent 

• Nonstationary  

• Normally distributed 

• Independent 

• Nonstationary 

• Not normally 

distributed 

SOL • Independent 

• Nonstationary 

• Normally distributed 

• Not independent 

• Nonstationary 

• Not normally 

distributed 

• Independent 

• Nonstationary 

• Normally distributed 

DGLDS • Independent 

• Nonstationary  

• Not normally 

distributed 

• Independent 

• Nonstationary 

• Not normally 

distributed 

• Independent 

• Nonstationary 

• Not normally 

distributed 

BRSPOT • Independent 

• Nonstationary 

• Not normally 

distributed 

• Not independent 

• Nonstationary 

• Not normally 

distributed 

• Independent 

• Nonstationary 

• Not normally 

distributed 

WMAZN • Independent 

• Nonstationary 

• Not normally 

distributed 

• Not independent 

• Nonstationary 

• Not normally 

distributed 

• Independent 

• Nonstationary  

• Normally distributed 

Table 4.7: Overall summary of findings about the assumptions underlying the 

Brownian motion process in the major securities trading in the South African 

financial markets. 

From the results in the table above, we see that high frequency financial market returns 

tend to be more normally distributed than the lower ones, thus making it easy to make 

inferences about them.  
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South African financial markets returns were found to be nonstationary. This is consistent 

with what was mentioned by some other studies in other financial markets which state 

that financial market returns are nonstationary [2, 10, 33]. We also realize that most of 

the South African financial markets returns are independent, which is also consistent with 

what was mentioned by the same studies [2, 10, and 33].  

In Table 4.6, the Hurst exponent values of 0.48, 0.50, and 0.49 were found in the daily, 

weekly and monthly of the J203T logarithmic returns respectively. These values are 

equal or close to 0.5, but because there are no autocorrelations in the series, this indicates 

that the series are independent or random walk or follow a Geometric Brownian motion. 

The Hurst exponent values of 0.63, 0.58 and 0.56 were found in the daily, weekly, and 

monthly ALBI returns series respectively. These values are bigger than the 0.50 and 

because of the presence of autocorrelations in the series; this indicates the presence of 

long memory or long range correlations in ALBI returns series. In this case, the fractional 

Brownian motion can be used to model these series. Hurst exponent values of 0.48, 0.49, 

and 0.50 were found in the daily, weekly and monthly of the FCRB returns respectively. 

These values are equal or close to 0.5, but because of the absence of autocorrelations in 

the series, these are independent or follow the Geometric Brownian motion. The Hurst 

exponent values of 0.50, 0.45, and 0.52 were found in the daily, weekly and monthly of 

the AGL logarithmic returns respectively. These values are equal or close to 0.5, and 

because no autocorrelations are found in the series, the series are independent or behave 

according the Geometric Brownian motion. The Hurst exponent values of 0.42 and 0.41 

with negative autocorrelations were found in the daily and weekly SBK logarithmic 

returns respectively. These values are less than 0.5, indicating the presence of long 

memory (antiperisistence behaviour) in the series. Such series are modeled using the 

fractional Geometric Brownian motion. 

Hurst exponent values of 0.51 and 0.52 were found in the daily and monthly SOL 

logarithmic returns respectively. These values are equal or close to 0.5 and because the 

series are not serially correlated, this indicates that they are random walk or follow the 

Geometric Brownian motion. The Hurst exponent value of 0.41 (less than 0.5) associated 

with the presence of negative autocorrelation was also found in the weekly Sol returns 

 

 

 

 



 62

series, which indicates the presence of  long memory in the series, more specifically the 

antiperisistence behaviour or fractional Brownian Motion process.  

Hurst exponent values of 0.48 and 0.47 which are close to 0.50 were found in the daily 

and weekly DGLDS logarithmic returns respectively. Because the series are not 

independent, the process is a random walk or Geometric Brownian motion. 

The Hurst exponent value of 0.43 (< 0.50) associated with the negative autocorrelation 

was also found in the weekly DGLDS returns series, indicating the presence of long 

memory or antiperisistence behaviour. Therefore, the process follows a fractional 

Brownian motion. 

Hurst exponent value of 0.42 (<0.50) was found in the daily BRSPOT logarithmic 

returns, indicating the presence of long memory or Fractional Brownian motion process. 

The Hurst exponent values of 0.50, and 0.53 were found as well in the weekly and 

monthly BRSPOT logarithmic returns respectively. But because the series are not 

independent, the process is a random walk or Geometric Brownian motion.  

The Hurst exponent values of 0.54, 0.58 and 0.58 (all greater than 0.50) were found in the 

daily, weekly, and monthly WMAZN returns series respectively. Because of the presence 

of autocorrelations in the series; this indicates that there is a long memory in the 

WMAZN returns series or the process is a fractional Brownian motion. 

Therefore, based on the Hurst exponent significance values analysis, we cannot deny the 

presence of the long memory in the South African financial market returns, and therefore 

the assumption of long memory should be added to the other assumptions underlying 

price variations in the markets.   

More generally, we find that studying the South African financial markets behaviour 

through the assumptions underlying the process is not an advisable method that can lead 

to a good conclusion in assessing whether or not the financial market follows a 

Geometric Brownian motion because at least one assumption among the three is violated. 
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This study must be supported by any other method such as the Hurst exponent 

significance values to strengthen the conclusion.  

Generally, we find that although some assumptions underlying the Geometric Brownian 

motion are violated in the EURUSD logarithmic returns at some frequencies, the 

Geometric Brownian motion process cannot be rejected as a model in South African 

financial markets. 
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CHAPTER 5: CONCLUSION 

While examining the behaviour of the South African financial markets with regard to the 

Geometric Brownian motion, we analysed the securities indices of the South African 

financial markets. We looked at the US dollar/Euro, JSE ALSI Total Returns Index, 

South African All Bond Index, Anglo American Corporation, Standard Bank, Sasol, Gold 

Price US$, Brent Spot oil price, and South African White Maize Near Future, to study the 

assumptions underlying the process namely the stationarity, the normality, as well as the 

independence.  

We used both graphical and statistical methods which are appropriate for each 

assumption, specifically the Dickey-Fuller test (for stationarity), the Kolmogorov-

Simirnov test (for normality) and the Box-Ljung statistic test (for independence). 

The results have not allowed us to verify the applicability of the Geometric Brownian 

motion as a model of the South African financial markets, since at least one assumption 

among the three assumptions underlying the process was violated.  

Therefore, we concluded that studying the behaviour of the South African financial 

markets through the assumptions underlying the Geometric Brownian process is not a 

proper method. An attempt must be made to extend or refine the model.  

To solve our problem, we utilised the Hurst exponent, which is a tool used to test the 

memory in time series, and therefore helps to determine the behaviour and efficiency of 

the markets. 

A Hurst exponent who is equal to 0.50 indicates independence behaviour of the series or 

a Geometric Brownian motion, whereas the Hurst exponent values different from ½ show 

the presence of long memory or long range dependence which is characterised by the 

fractional Brownian motion model. 
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Our findings have revealed the presence of both short and long memory in the South 

African financial market time series when the Hurst exponent analysis is used. They have 

also allowed us to classify the South African Financial markets behaviour in three 

categories, that is, those which follow a random walk or Geometric Brownian motion 

process (GBM), those which are inconclusive or mixed (both random walk and long 

memory are present in their series) and those which have long memory or follow a 

fractional Geometric Brownian motion process. The table 5.1 below gives a brief 

summary of our findings by showing the behaviour of each financial security grouped in 

its respective market category. 

 

MARKET BEHAVIOUR 

 Random Walk or GBM Inconclusive or 

Mixed 

Long memory or 

fGBM 

Currency - EURUSD - 

Equity J203T 

AGL 

SBK 

SOL 

- 

Bond - - ALBI 

Commodity FCRB BRSPOT 

DGLDS 

WMAZN 

 

 Table 5.1: Summary of our findings of each financial security grouped in its 

respective market category. 

 

The key-findings as shown in Table 5.1 are: 

• The currency market is inconclusive or mixed; that is, it is characterised by both 

long memory (at higher frequency) and random walk or Geometric Brownian 

motion (at lower frequency). 

• Among the components of the equity market, the J203T and the AGL follow a 

random walk or a Geometric Brownian motion and therefore they are more 
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efficient than the other components (SBK and SOL) which are inconclusive or 

mixed. 

• The bond market is characterised by a long memory and therefore it is inefficient.  

• In commodity market, the FCRB follows a random walk or a Geometric 

Brownian motion and therefore, it is more efficient than other commodity market 

components, more specifically the BRSPOT and DGLDS which are inconclusive 

(both long memory and random walk are found in their logarithmic returns) and 

the WMAZN which is characterised by the long memory and therefore becoming 

inefficient.  

In view of the findings in Table 5.1, we have found that the currency market is the 

most efficient of the South African financial markets.  

In summary, the findings highlighted above led us to conclude that we cannot reject 

the hypothesis that both the Geometric Brownian motion and the fractional Brownian 

motion processes as models of the South African financial markets prices fluctuations 

holds. We also suggest that long memory assumption should be added to the 

assumptions underlying price variations in the South African financial markets in 

particular and in quantitative finance in general. In fact, the presence of memory in 

financial market does not imply an inefficient market. Indeed, it was shown that some 

of the most efficient markets (such as the currency market) contain some memory. 

This should be expected since it would be unrealistic to expect market participants, 

who are real life people after all, to be without memory. In fact, much of the trading 

in financial and commodity markets are not driven by forward looking fundamental 

analysis, but backward looking technical analysis which is wholly dependent on 

historical prices and volumes.   
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APPENDIX 

This section contains the sequence plots, histograms together with normal quantile plots 

and the Augmented Dickey-Fuller unit root test results of daily, weekly and monthly 

logarithmic returns of the major securities trading in the South African financial market; 

namely the EURO/US dollar, JSE ALSI Total Returns Index, South African All Bond 

Index, Anglo American Corporation, Standard Bank, Sasol, US dollar Gold Price, CRB 

Commodity Price, Index Brent spot oil price, and South African white maize near future. 

The sequence plots of these securities show a kind of periodic/cyclic time series [4] with 

a volatility changing with time and thus violating the stationarity assumption of a 

Geometric Brownian motion process. 

The Augmented Dickey-Fuller unit test results reveal that the test statistics at all the 

frequencies (daily, weekly and monthly data) are lower than the relevant critical values, 

which allows us to conclude that there are unit roots in the logarithmic returns of these 

securities or  the log returns of these securities are nonstationary. 

Histograms of most of the securities show a substantial violation of normality caused 

generally by some extremely large values and outliers and their normal quantile plots 

contains dots that do not fit (on or closer) the straight line. Only the histograms and 

normal plots of the EURO/US dollar (for daily and monthly data), Anglo American 

Corporation (for daily, weekly and monthly data), Sasol (for weekly and monthly data), 

All Bonds Index, All, CRB Commodity Price Index, and South African white maize near 

future (for monthly data only) fulfill the normality assumption. 

.  
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1 DAILY DATA 

 

1.1 EURO/US DOLLAR (EURUSD) 

1.1.1 Sequence plot 
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1.2 Histogram and normal quantile plot of the data 
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1.1.3Augmented Dickey- Fuller unit root test Eviews output results 

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -20.14382  0.0000 

Test critical values: 1% level  -3.447914  

 5% level  -2.869176  

 10% level  -2.570905  

     
     *MacKinnon (1996) one-sided p-values.  

 

 
 

 

1.2 JSE ALL SHARE TOTAL RETURNS INDEX (J203T) 

1.2.1 Sequence plot 
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1.2.2 Histogram and normal quantile plots of the data 
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1.2.3 Augmented Dickey- Fuller unit root test Eviews output results 

 

 

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -19.74172  0.0000 

Test critical values: 1% level  -3.447914  

 5% level  -2.869176  

 10% level  -2.570905  

     
     *MacKinnon (1996) one-sided p-values.  

  

 

 

1.3 SOUTH AFRICAN ALL BOND INDEX (ALBI) 

1.3.1 Sequence plot 
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1.3.2 Histogram and normal quantile plot of the data 
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1.3.3 Augmented Dickey- Fuller unit root test Eviews output results 

 

 

 

   

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -15.78104  0.0000 

Test critical values: 1% level  -3.447914  

 5% level  -2.869176  

 10% level  -2.570905  

     
     *MacKinnon (1996) one-sided p-values.  

 

 

1.4 CRB COMMODITY PRICE INDEX (FCRB) 

1.4.1 Sequence plot 
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1.4.2 Histogram and normal quantile plot of the data 
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1.4.3 Augmented Dickey- Fuller unit root test Eviews output results 

 

 

   

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -19.71570  0.0000 

Test critical values: 1% level  -3.447914  

 5% level  -2.869176  

 10% level  -2.570905  

     
     *MacKinnon (1996) one-sided p-values.  

 
 

1.5 ANGLO AMERICAN CORPORATION (AGL) 

1.5.1 Sequence plot 
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1.5.2 Histogram and normal quantile plot of the data 
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1.5.3 Augmented Dickey- Fuller unit root test Eviews output results 

 

 

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -19.04376  0.0000 

Test critical values: 1% level  -3.447914  

 5% level  -2.869176  

 10% level  -2.570905  

     
     *MacKinnon (1996) one-sided p-values.  

 
 

 

 

 

1.6 US DOLLAR GOLD PRICE (DGLDS) 

1.6.1 Sequence plot 
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1.6.2 Histogram and normal quantile plot of the data 
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1.6.3 Augmented Dickey- Fuller unit root test Eviews output results 

 

 

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -19.67798  0.0000 

Test critical values: 1% level  -3.447914  

 5% level  -2.869176  

 10% level  -2.570905  

     
     *MacKinnon (1996) one-sided p-values.  

 

 

1.7 BRENT SPOT OIL PRICE (BRSPOT) 

1.7.1 Sequence plot 
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1.7.2 Histogram and normal quantile plot of the data 
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1.7.3 Augmented Dickey- Fuller unit root test Eviews output results 

 

 

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -21.03959  0.0000 

Test critical values: 1% level  -3.447914  

 5% level  -2.869176  

 10% level  -2.570905  

     
     *MacKinnon (1996) one-sided p-values.  

         

  
 

 

 

1.8 SASOL (SOL) 

1.8.1 Sequence plot 
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1.8.2 Histogram and normal quantile plot of the data 
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1.8.3 Augmented Dickey- Fuller unit root test Eviews output results 

 

  

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -18.77467  0.0000 

Test critical values: 1% level  -3.447914  

 5% level  -2.869176  

 10% level  -2.570905  

     
     *MacKinnon (1996) one-sided p-values.  

 
 

 

 

 

1.9 SOUTH AFRICAN WHITE MAIZE NEAR FUTURE (WMAZN) 

1.9.1 Sequence plot 
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1.9.2 Histogram and normal quantile plot of the data 
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1.9.3 Augmented Dickey- Fuller unit root test Eviews output results 

 
 

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -18.29253  0.0000 

Test critical values: 1% level  -3.447914  

 5% level  -2.869176  

 10% level  -2.570905  

     
     *MacKinnon (1996) one-sided p-values.  

 
 

 
1.10 STANDARD BANK (SBK) 

1.10.1 Sequence plot 
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1.10.2 Histogram and normal quantile plot of the data 
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1.10.3 Augmented Dickey- Fuller unit root test Eviews output results 

 
   

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -20.88485  0.0000 

Test critical values: 1% level  -3.447914  

 5% level  -2.869176  

 10% level  -2.570905  

     
     *MacKinnon (1996) one-sided p-values.  

 

 
 
 

 
                                                           2 WEEKLY DATA 

2.1 EURO/USD DOLLAR (EURUSD) 

2.1.1 Sequence plot 
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2.1.2 Histogram and normal quantile plot of the data 
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2.1.3 Augmented Dickey- Fuller unit root test Eviews output results 

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -20.51208  0.0000 

Test critical values: 1% level  -3.446567  

 5% level  -2.868583  

 10% level  -2.570588  

     
     *MacKinnon (1996) one-sided p-values.  

 

 

 

                                       

2.2 JSE ALL SHARE TOTAL RETURNS INDEX (J203T) 
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2.2.2 Histogram and normal quantile plot of the data 
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2.2.3 Augmented Dickey- Fuller unit root test Eviews output results 

  
 

   

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -19.95405  0.0000 

Test critical values: 1% level  -3.446567  

 5% level  -2.868583  

 10% level  -2.570588  

     
     *MacKinnon (1996) one-sided p-values.  

     

     

 

 
2.3 SOUTH AFRICAN ALL BOND INDEX (ALBI) 

2.3.1 Sequence plot 
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2.3.2 Histogram and normal quantile plot of the data 
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2.3.3 Augmented Dickey- Fuller unit root test Eviews output results 

 

 

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -17.76120  0.0000 

Test critical values: 1% level  -3.446567  

 5% level  -2.868583  

 10% level  -2.570588  

     
     *MacKinnon (1996) one-sided p-values.  

 

 

 

2.4 CRB COMMODITY PRICE INDEX (FCRB) 

2.4.2 Sequence plot 
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2.4.2 Histogram and normal quantile plot of the data 
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2.4.3 Augmented Dickey- Fuller unit root test Eviews output 

results 

 

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -20.00923  0.0000 

Test critical values: 1% level  -3.446567  

 5% level  -2.868583  

 10% level  -2.570588  

     
     *MacKinnon (1996) one-sided p-values.  

 

 

2.5 ANGLO AMERICAN CORPORATION (AGL) 

2.5.1 Sequence plot 
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2.5.2 Histogram and normal quantile plot of the data 
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2.5.3 Augmented Dickey- Fuller unit root test Eviews output results 

 

 

   

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -21.32824  0.0000 

Test critical values: 1% level  -3.446567  

 5% level  -2.868583  

 10% level  -2.570588  

     
     *MacKinnon (1996) one-sided p-values.  

 

 

 

2.6 STANDARD BANK (SBK) 

2.6.1 Sequence plot 
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2.6.2 Histogram and normal quantile plot of the data 
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2.6.3 Augmented Dickey- Fuller unit root test Eviews output results 

 

 

   

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -22.32941  0.0000 

Test critical values: 1% level  -3.446567  

 5% level  -2.868583  

 10% level  -2.570588  

     
     *MacKinnon (1996) one-sided p-values.  

 

 

 

2.7 US DOLLAR GOLD PRICE (DGLDS) 

2.7.1 Sequence plot 
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2.7.2 Histogram and normal quantile plot of the data 
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2.7.3 Augmented Dickey- Fuller unit root test Eviews output results 

 

 

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -21.81857  0.0000 

Test critical values: 1% level  -3.446567  

 5% level  -2.868583  

 10% level  -2.570588  

     
     *MacKinnon (1996) one-sided p-values.  

 
 

 

 

 

 

2.8 BRENT SPOT OIL PRICE (BRSPOT) 

2.8.1 Sequence plot 
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2.8.2 Histogram and normal quantile plot of the data 

 

BRSPOT (CL)
0.1000000000000.000000000000-0.100000000000-0.200000000000

Fr
eq

ue
nc

y

80

60

40

20

0

Histogram

Mean =0.003399882133%
Std. Dev. =0.
044114465271%

N =399

 

 

Observed Value
0.20.10.0-0.1-0.2-0.3

E
xp

ec
te

d 
N

or
m

al

3

2

1

0

-1

-2

-3

Normal Q-Q Plot of BRSPOT (CL)

 

 

 

 

 

 

 

 



 113

2.8.3 Augmented Dickey- Fuller unit root test Eviews output results 

 

   

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -20.10967  0.0000 

Test critical values: 1% level  -3.446567  

 5% level  -2.868583  

 10% level  -2.570588  

     
     *MacKinnon (1996) one-sided p-values.  

 

 

 

 

 

 

2.9 SOUTH AFRICAN WHITE MAIZE NEAR FUTURE (WMAZN) 

2.9.1 Sequence plot 
 

 

date
8/26/2007389989/25/20053826910/26/20033753911/25/200136810

W
MA

ZN
 (C

L)

0.30000000000

0.20000000000

0.10000000000

0.00000000000

-0.10000000000

-0.20000000000

-0.30000000000

 

 

 

 

 

 

 



 114

2.9.2 Histogram and normal quantile plot of the data 
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2.9.3 Augmented Dickey- Fuller unit root test Eviews output results 

 

   

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -17.69808  0.0000 

Test critical values: 1% level  -3.446567  

 5% level  -2.868583  

 10% level  -2.570588  

     
     *MacKinnon (1996) one-sided p-values.  

     

 

2.10 SASOL (SOL) 

2.10.1 Sequence plot 
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2.10.2 Histogram and normal quantile plot of the data 
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2.10.3 Augmented Dickey- Fuller unit root test Eviews output results 

   

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -22.28731  0.0000 

Test critical values: 1% level  -3.446567  

 5% level  -2.868583  

 10% level  -2.570588  

     
     *MacKinnon (1996) one-sided p-values.  

 

 

 

3 MONTHLY DATA 

 

3.1 EURO/US DOLLAR (EURUSD) 

3.1.1 Sequence plot 
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3.1.2 Histogram and normal quantile plot of the data 
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3.1.3 Augmented Dickey- Fuller unit root test Eviews output results 

 

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -9.107412  0.0000 

Test critical values: 1% level  -3.482879  

 5% level  -2.884477  

 10% level  -2.579080  

     
     *MacKinnon (1996) one-sided p-values.  

 

 

3.2 JSE ALL SHARE TOTAL RETURNS INDEX (J203T) 

3.2.1 Sequence plot 
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3.2.2 Histogram and normal quantile plot of the data 
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3.2.3 Augmented Dickey- Fuller unit root test Eviews output results 

 

 

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -12.56450  0.0000 

Test critical values: 1% level  -3.472534  

 5% level  -2.879966  

 10% level  -2.576674  

     
     *MacKinnon (1996) one-sided p-values.  

 

 

 

                                                                         

3.3 SOUTH AFRICAN ALL BOND INDEX (ALBI) 

3.3.1 Sequence plot 
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3.3.2 Histogram and normal quantile plot of the data 
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3.3.3 Augmented Dickey- Fuller unit root test Eviews output results 

   

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -8.864867  0.0000 

Test critical values: 1% level  -3.488585  

 5% level  -2.886959  

 10% level  -2.580402  

     
     *MacKinnon (1996) one-sided p-values.  

 

 

 

3.4 ANGLO AMERICAN CORPORATION (AGL) 

3.4.1 Sequence plot 
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3.4.2 Histogram and normal quantile plot of the data 
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3.4.3 Augmented Dickey- Fuller unit root test Eviews output results 

 
     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -8.838207  0.0000 

Test critical values: 1% level  -3.482879  

 5% level  -2.884477  

 10% level  -2.579080  

     
     *MacKinnon (1996) one-sided p-values.  

 

 

3.5 US DOLLAR GOLD PRICE (DGLDS) 

3.5.1 Sequence plot 
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3.5.2 Histogram and normal quantile plot of the data 
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3.5.3 Augmented Dickey- Fuller unit root test Eviews output results 

 

 

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -13.84980  0.0000 

Test critical values: 1% level  -3.466580  

 5% level  -2.877363  

 10% level  -2.575284  

     
     *MacKinnon (1996) one-sided p-values.  

 

 

 

 

3.6 CRB COMMODITY PRICE INDEX (FCRB) 

3.6.1 Sequence plot 
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3.6.2 Histogram and normal quantile plot of the data 
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3.6.3 Augmented Dickey- Fuller unit root test Eviews output results 

 

 
   

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -10.59615  0.0000 

Test critical values: 1% level  -3.482879  

 5% level  -2.884477  

 10% level  -2.579080  

     
     *MacKinnon (1996) one-sided p-values.  

 

 
 

3.7 STANDARD BANK (SBK) 

3.7.1 Sequence plot 
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3.7.2 Histogram and normal quantile plot of the data 
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3.7.3 Augmented Dickey- Fuller unit root test Eviews output results 

   

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -8.816134  0.0000 

Test critical values: 1% level  -3.482879  

 5% level  -2.884477  

 10% level  -2.579080  

     
     *MacKinnon (1996) one-sided p-values.  

 
 
 
 

3.8 SASOL (SOL) 

3.8.1 Sequence plot 
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3.8.2 Histogram and normal quantile plot of the data 
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3.8.3 Augmented Dickey- Fuller unit root test Eviews output results 

 
 
   

 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -17.92814  0.0000 

Test critical values: 1% level  -3.449220  

 5% level  -2.869750  

 10% level  -2.571213  

     
     *MacKinnon (1996) one-sided p-values.  

 
 

3.9 BRENT SPOT OIL PRICE (BRSPOT) 

3.9.1 Sequence plot 
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3.9.2 Histogram and normal quantile plot of the data 

 
 
 

BRSPOT (CL)
0.40000000000.20000000000.0000000000-0.2000000000-0.4000000000-0.6000000000

Fr
eq

ue
nc

y

100

80

60

40

20

0

Histogram

Mean =0.0075775076%
Std. Dev. =0.
1016162759%

N =329

 

 

Observed Value
0.250.00-0.25-0.50-0.75

Ex
pe

ct
ed

 N
or

m
al

3

2

1

0

-1

-2

-3

Normal Q-Q Plot of BRSPOT (CL)

 

 
 
 
 
 

 

 

 

 



 135

3.9.3 Augmented Dickey- Fuller unit root test Eviews output results 

 
 
 
 
     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -17.29689  0.0000 

Test critical values: 1% level  -3.450099  

 5% level  -2.870137  

 10% level  -2.571420  

     
     *MacKinnon (1996) one-sided p-values.  

 
 

3.10 SOUTH AFRICAN WHITE MAIZE NEAR FUTURE (WMAZN) 

3.10. Sequence plot 
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3.10.2 Histogram and normal quantile plot of the data 
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3.10.3 Augmented Dickey- Fuller unit root test Eviews output results 
   

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -9.422120  0.0000 

Test critical values: 1% level  -3.478911  

 5% level  -2.882748  

 10% level  -2.578158  

     
     *MacKinnon (1996) one-sided p-values.  
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