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ABSTRACT 

Nampak packages millions of cans a year and a very small percentage of 

these cans fail due to many reasons. One of the main reasons that cause 2-

piece food cans to fail is split flanges. Split Flanges arises due to a number of 

reasons which will be discussed in detail.  

 

The focus of this thesis was based on the causes of split flanges in 2-piece 

food cans. A study on manufacturing the steel and can making together with 

packaging fish in these cans was conducted. Another study on the reasons for 

split flanges occurring in 2 piece cans was conducted done as well.  

 

The purpose of the investigation was to check if hydrogen embrittlement could 

be the cause for split bodies forming in 2 piece food cans. 2 piece cans are 

drawn and wall ironed from tinplate; the cans were made up of a top and a 

shaped body. It was this shaped body that went through a considerable 

amount of stress during manufacture especially at the top of the can, which 

gave an explanation to why the cans split at the curved area near the flange of 

the can. 

According to previous studies done at Nampak R&D more complaints about 

split bodies were coming from the Fish canneries on the West Coast than the 

Vegetable canneries. These canneries used the exact same cans to package 

their product. The difference between the processes at these canneries was 

the exhaust boxes at the fish canneries. The exhaust box is a long tunnel filled 

with steam used to precook the fish; the vegetables are not precooked in 

exhaust boxes. Non metallic inclusions (NMI) was one of the main reason for 

these split flanges to occur and a reason of particular interest in this research. 

NMI’s were distributed throughout the steel of the cans and since the same 

cans were used for the fish and vegetable canneries, they should be failing at 

the same rate. Yet only complaints came from the fish canneries. So the 

primary focus of the research was to check if the additional steam process 

contributed to the formation of split bodies / flanges. We proposed to 

investigate if hydrogen atoms collect at grain boundaries, vacancies and non 

metallic inclusions and also to check if the steam accelerated embrittlement. 
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Hydrogen is believed to penetrate right into the bare steel of the cans that 

were exposed to steam.  

 

Hydrogen atoms are being investigated because of their small size, their 

ability to diffuse through a metal lattice and form hydrogen molecules within 

the intermetallic vacancies of the metal. The molecules of hydrogen, once 

formed within the internal structure of the metal, remain trapped because of 

their larger size and can generate a significant pressure that can contribute to 

the formation of split bodies. [1] 

 
The first step to prove whether H-embrittlement was present in the cans was 

to check if hydrogen was present. A spectroscopic method namely, elastic 

recoil detection analysis (ERDA) was used to check if H could be detected 

using the Elastic Recoil Detection Analysis technique. Several experiments 

were designed to make sure the technique was suitable for the detection of H. 

Even though it is known that all metals are susceptible to corrosion and H-

embrittlement, the tinplate metals had to be checked in an environment similar 

to the exhaust box (suspected area causing hydrogen embrittlement) in the 

factories.  

 

Further characterization was done using X-Ray Diffraction to measure the 

residual stress and relate it to the effects of H-embrittlement.  If the H had 

penetrated into the metal it would cause some distortion in the atomic 

distances between the atomic planes in Fe atoms and can be measured using 

XRD. 

 

Another effect of hydrogen embrittlement is to reduce the strength in the 

metal. Tensile tests were performed to measure the strengths of the metal. 
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CHAPTER 1 INTRODUCTION 

1.1  Background on H-embrittlement 

The degradation of materials is of great importance to any builder, designer 

and operator of structures made of metals. The damages can cause a loss in 

reliability, a reduction in safety and increased costs due to additional 

maintenance, higher down time or replacement of failed components.  

 

The extent of hydrogen damage is not known to the general public and the 

reduced visual appearance results in greater effort for detection. Three 

different mechanisms can be attributed to the degradation of a material in 

which hydrogen plays a role:  

1. Surface corrosion with formation of hydrogen-compounds, 

2. Stress corrosion cracking, where an anodic dissolution with formation 

of hydrogen occurs along the crack (Metal + H2O > Metal (OH)- + H+), 

3. Hydrogen Embrittlement, where the ductility of a metal is reduced by 

hydrogen atoms or molecules that coalesce in the granular structure of 

the metal. 

 

Some examples where hydrogen causes damage in steel and the implications 

for the operation of the structure are given [1.1]:  

- The rusting of iron under atmospheric conditions in motor vehicles. Many 

cars are taken out of service due to this kind of corrosion or hydrogen damage 

while other mechanical parts are still in good condition. 

 

- Petrochemical Industries contain hundreds of kilometers of pipes and a 

multitude of reaction vessels. These can contain hydrocarbon-compounds at 

high temperature and pressure. The combination of the transported fluid and 

physical properties makes the materials used for construction very susceptible 

to hydrogen degradation. The pipes are often very long and due to 

temperature and pressure changes have to possess a certain degree of 

flexibility. A brittle region in a pipe is thus a potential breaking point. Pipe 

breaks can lead to large production losses, the bursting of a reaction vessel 
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has the potential for serious risk to life and the environment.  Hydrogen 

embrittlement can be caused by dissociation of the water/steam or, in a 

smaller extent, by H2 -gas dissolved in the water. This is similar to the exhaust 

box in the canning factories where the cans are put through.  

- Corrosion is caused by hydrate formation in aircrafts between two riveted 

plates which weakens the stability of the aircraft. Due to strict regulations put 

in place by the aviation industry, aeroplanes are taken out of service until 

repairs are done. 

 

- The most common form of environmental attack on sea must be during ship 

building. Stress Corrosion Cracking (SCC) occurs in heat affected zones 

around welds, while hydrogen embrittlement can occur anywhere in the 

structure. Loss of ductility due to embrittlement seriously impairs the capability 

of the ship to absorb the loads of a rough sea. As these large vessels can not 

ride the waves, they flex quite considerably in a rough sea. Hydrogen 

embrittlement can therefore lead to the breaking of parts of the structure with 

catastrophic results to the crew, the environment and profit margins of the 

ships owner. 

 

1.2 Mechanism of Embrittlement of Steel by Hydrogen 

In general the deformation of metals occurs by means of movement of 

dislocations along certain preferred directions (slip directions) within the 

individual crystals of the metal. Under these conditions, the moving 

dislocations tend to accumulate at barriers, such as grain boundaries or hard 

precipitate particles situated at the end of slip plains. Such an accumulation of 

dislocations can then lead to the formation of an embryo micro crack and/or 

intensive local stress concentration. These stresses can activate a 

neighboring set of dislocations (slip system), however, the harder the material 

and the lower the temperature, the higher the stress has to be to initiate this 

effect. Consequently, these high stresses can lead to the formation of micro 

cracks. The result of this is that the metal fractures in a brittle manner, after 

having sustained only a very small amount of plastic deformation. 
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Temperature plays an important role in this mechanism, as the general 

resistance of a metal to plastic deformation is lower at higher temperature. 

The first type of brittle fracture is intergranular fracture which propagates 

around the grain boundaries of a polycrystalline material. The second is 

transgranular fracture which propagates across a particular plane within a 

crystal. 

 

In any case, the fracture originates from the initiation of a micro-crack, which 

has been formed by the above mentioned accumulation of dislocations. 

Hence, any change in the stress concentration and the formation of micro-

cracks is likely to enhance the possibility of brittle-fracture. Hydrogen 

embrittlement arises as the result of the formation of micro-cracks in 

hydrogen-containing materials. The formation of the micro-crack takes place 

in one of two ways: 

1) The micro-crack forms due to severe internal strains caused by the stress 

induced formation of a local concentration of hydrogen in interstitial solution. 

2) The micro-crack forms as a result of the embrittling effect of hydrogen-rich 

constituents within the grains or at the grain boundaries of metals (reaction of 

alloying components with hydrogen). 

 

Stress induced formation of local concentrations of hydrogen in iron and steel 

can be explained with the trap binding energy of a defect in the crystalline 

structure of the metal. If the binding energy is larger than the lattice migration 

energy of hydrogen in iron, hydrogen gets caught in the trap sites. There are 

four categories of traps: 

1) Point defects with weak interactions. Some trapping of hydrogen occurs, 

however, only enough to influence but not enough to control hydrogen 

embrittlement. 

2) Point defects with moderate to strong interactions. Larger amounts of 

hydrogen are trapped, having a stronger influence on embrittlement. 

3) Dislocations with moderate to strong interactions. The influence on 

embrittlement is similar in magnitude to 2. 
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4) Grain boundaries, interfaces and surfaces with strong interactions. These 

are the strongest two dimensional traps in the structure of a metal and have 

the ability to absorb substantial amounts of hydrogen. 
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CHAPTER 2 TINPLATE 

2.1 HISTORICAL BACKGROUND 

Tinplate was first made in the 14th century in Bavaria, Germany, spreading 

through Europe where it was utilized for articles such as mugs, plates, 

lanterns, tinderboxes and candlesticks. At the time tinplate was made from 

iron hammered into sheet form and dipped into molten tin (hot dipping). The 

use of rolled iron in tinplate was first accomplished in South Wales, UK in the 

mid 1700’s. Food was first canned in the early 1800’s using handmade 

tinplate cans. The electrolytic tinning of tinplate was the next major 

achievement to be accomplished, in Germany in the early 1930’s. Up until the 

mid 1960’s, Hot Dipped tinplate was quite common and is still used in India 

today for a wide variety of uses. In Europe, a company in London still uses 

this method of tinning for gas meters. Nowadays, the tinplate used for sanitary 

cans is electrolytically tinned. [2.1] 

 

2.2 MANUFACTURING THE TINPLATE 

The tinplate is manufactured by making use of a 7-step process as described 

below: 

 

1. Continuous casting of steel slab:  

After refining in a Basic Oxygen Furnace, molten steel is teemed from a 200 

tonne ladle into a 100 tonne “tundish”. Steel from the tundish is cast through 

two water cooled, open ended moulds to form one continuous “string” (Fig. 1). 
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Figure 2-1: Continuous casting of steel. [2.1] 

The continuous “strings” are flame cut into slabs, which are typically 300mm in 

thickness, 1250mm in width and 15m in length. 

 

2. Hot Rolling: 

The slabs are hot rolled from about 300mm thickness to about 2.0 – 2.5mm 

thickness, i.e. from slabs to coils.  The rolling temperature starts at 

approximately 11500C and ends at approximately 8500C. The length of such a 

coil is approximately 600m and this is coiled from strip at approximately 

60km\hr. This breaks down the slab grain structure and reforms the grain. The 

type of grain and its size is governed in the “finishing section” of the hot 

rolling/coiling process. The rolled strip is coiled at approximately 6000C. 
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Figure 2-2: Hot rolling of steel and the effect on grain structure. [2.1] 

 

3. Pickling: 

The hot rolled coil, after cooling to room temperature, is cleaned (pickled) in 

hydrochloric acid, rinsed, dried and then oiled. The purpose of this is to 

remove any surface imperfections caused during the hot rolling process.  

 

4. Cold Reduction: 

The clean strip is then cold rolled down to about 0.20 – 0.30 mm thickness 

using great volumes of coolant to keep, the strip cold. (The strip temperature 

rises to over 2000C during the process but this is considered cold). This 

process increases the hardness and improves the surface appearance. 

 

5. Annealing: 

The coil is now very hard (work hardened) and must be annealed to soften it 

before further processing. Annealing can take place by two technologies – 

Continuous Annealing for 3-piece tinplate and Drawn With Iron (DWI) food 

can plate and Batch Annealing for DWI beverage tinplate. 
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Figure 2-3: A low carbon sheet steel in the (a) as cold rolled unannealed condition, (b) partially 
recrystallized annealed condition, and (c) fully recrystallised annealed condition. [2.1] 

The annealing process recrystallises the steel structure, ensuring that all 

previous distorted structures are obliterated. 

 

6. Tempering: 

The strip is now very soft and needs to be hardened (Tempered) to the 

required, controlled degree for can making. Temper rolling gives the required 

strength, hardness, surface roughness and shape to the strip by reducing its 

thickness slightly and stretching it slightly between two rolls. In this case, the 

extension (stretch) of the strip is between 0.5 and 3% in length – depending 

on the required temper. This equates to a reduction in thickness of 

approximately the same amount. 

 

7. Electrolytic Tinning: 

The next stage is to apply tin and this is carried out electrolytically in an 

Electrolytic Tinning Line (ETL). The lines are some 250m long and 40m in 

height and all the following process steps are carried out sequentially in such 

lines: 

  

a) The ETL's are of the Halogen type – using basic halide technology. 

In these lines, the strip is plated in a horizontal orientation and only one 

surface of the strip is plated at a time. 
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b) Flow melting is performed on the freshly tinned strip for 3-piece 

cans by heating the strip momentarily just above the melting point of tin and 

immediately freezing again. This forms the lustrous appearance and the alloy 

layer.  

c) Passivation is then done in a sodium dichromate bath, either 

electrolytically passivation (for plate destined for food cans) or as a dip in 

passivation for plate destined for beverage cans.  

d) Finally, Dioctyle sebacate (DOS) is applied in a mist through an 

electrostatic process. The strip passes between electrostatically charged 

wires that suspend the DOS mist. The strip is negatively charged and the mist 

is positively charged – the strip thus attracting the mist. 

 

8. The completed coil is then re-coiled and packaged for dispatch to the can-

maker. 

2.3 THE STRUCTURE OF TINPLATE 

Tinplate consists of four to five layers which are not always totally separate as 

they merge with one another: 

1. Steel substrate  

2. Tin coating  

3. Free Tin and Alloyed Tin 

4. Tin oxide (if present)  

5. Protective layer 

These layers can be ideally represented as in figure 2.4: 

 
Figure 2-4: The layered structure of tin free steel and tinplate. 
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1. Steel Substrate 

Steel is an alloy consisting predominantly of iron with less than 2 wt% carbon. 

The steel used in tinplate is similar to mild steel and has less than 0.12 wt% 

carbon. This carbon level is usually less than 0.08 wt% if the tinplate is used 

for welded can bodies.  

2-piece cans are produced by the Drawn-and-Wall-Ironed (DWI) process. The 

forming processes are severe and require more stringent control over the 

steel properties. A higher degree of homogeneity, cleanliness, ductility, draw 

ability and low work hardening rate is required and carbon is usually 

maintained below 0.05 wt%.  The microstructure contains grains with a 

density of up to 13 000 grains/mm2. 

 

2. Tin Coating: Free Tin and Alloy Tin Layers 

Depending on the application different masses of tin coating are used. Cans 

that are internally lacquered (meat, fish) require a lighter tin coating than cans 

containing fruit. The fruit in the latter cans reacts with the tin to retain its fresh 

appearance. This absorption of tin requires a much higher initial level of tin 

coating to provide the same protection. Certain can manufacturing processes 

may also require higher tin coatings for lubricity. 

 

2.1 Free Tin  

The free tin layer consists of pure tin, covering the surface of the tinplate. The 

most common low tin coating in South Africa is E1 (2.8\2.8 gm-2), i.e. the 

internal tin coating is 2.8 g.m-2 and the external tin coating is 2.8 g.m-2. It 

provides a largely continuous coverage of the surface although thin spots and 

breaks in the layer ("pores") can be found. This is not necessarily a problem 

due to the presence of the alloy layer. 
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2.2 Alloy Layer: 

The alloy layer consists of FeSn2 needle-like crystals. Ideally this layer would 

have a compact, dense structure to protect the underlying steel. In the event 

that both the free tin and alloy layer are broken and expose the steel, 

corrosion of the steel inside the can is minimised through galvanic protection. 

This is the same mechanism found in galvanized steel where the underlying 

steel is protected from corrosion by the preferential corrosion of the zinc 

coating. In the same way under anaerobic food can conditions the tin is 

anodic with respect to steel and will corrode preferentially, thereby protecting 

the steel. 

 

3. Dioctyl Sebacate (DOS) Oil Layer 

DOS is applied to the tinplate to provide lubricity for the manufacturing 

processes (sheet separation primarily although, on plain cans, beading, 

flanging) and corrosion resistance may be slightly aided. Exceeding a DOS 

level of ~10 mg/m2 may lead to lacquer adhesion problems. 

 

 

2.4 2 PIECE CAN MAKING 

The 2-piece can continuous production line is made up of the following 

process steps.  

 

1. De-reeler   

The ±10 tonne coils are automatically unwound and fed through the 

inspection light and lubricator. 

 

2. Lubricator  

A thin film of drawing fluid is applied to both sides of the tinplate, to facilitate 

the metal forming process. 
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3. Cupping Press  

Feed rollers “index” the plate into the cupping press at precisely the correct 

time and at exactly the right pitch, to present it to the two rows of tooling.   

The cupping press has a double action; the first action “blanks” out round 

discs and the second action draw the discs into shallow cups, approximately 

96mm in diameter. 

 

4. Body-makers  

These are horizontal presses which perform the following steps on one cup-

at-a-time, at up to 300 cans per minute  

 

• Re draws the cup to 73mm diameter 

• “Wall irons” the can once, reducing the wall thickness and increasing 

its height 

• “Wall-irons” the can a second time, further reducing the wall 

thickness and increasing its height 

• Forms the base profile of the can 

 

In the body maker the tinplate thickness is reduced from 0,31mm to 

0,135mm at the mid wall area and 0,180mm at the top wall. 

5. Trimmers  

These machines trim off the rough edge of the cans leaving a can body of 

precisely the correct height. 

 

6. Can Washer  

The trimmed cans are covered in lubricant and therefore must be washed.  

They are conveyed upside down through the washer, on an open weave 

mat, approximately 2m wide.  Inside the washer a caustic solution is 

sprayed onto and into the cans. The washing solution also contains a 

passivation chemical that prepares the surface for subsequent coating. 

Immediately after the chemical wash, the cans are rinsed clean with 

softened water and then with de-ionised water.  
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7. Wash Coater  

After cleansing, the cans pass into the wash coater, where they are flooded 

with a wash-coat solution over the entire outside surface of the cans. The 

excess coating that remains in the inverted bases of the cans is blown out 

with an air jet. 

 

8. Rim Dip  

After a settling period, the cans are transferred by a magnetic conveyor, 

which lifts the cans by their bases and conveys them over a water bath.  

The excess coating that has accumulated around the open ends of the cans 

is removed by dipping the cans 5mm into the water. By the time that the 

cans have been transferred onto the drying oven mat, the remaining wash 

coat has flowed back over the flange area, leaving a thin film of coating over 

the whole can. 

 

9. Drying Oven   

The oven dries out the water inside the cans and cures the wash coat.  

 

 

 

10. Flanger  

Spin flanging is used to create the flange and to minimize the risk of split 

flanges. 

 

11. Video inspection  

A camera inspects the inside of each can to ensure that the trimmed-off 

portion of the can has not stuck inside the can. A can with a trim inside or 

with a dented body will be ejected from the conveyor into a scrap basket. 
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12. Beader  

Beading is carried out in a 16 head machine, where the roll-bead is also 

created.  The roll-bead increases the strength of the lower wall of the can and 

also assists in the can handling.  

13. Light tester   

The tester is used to reject any cans with pinholes or split flanges. 

 

14. Coding   

A Video-jet machine prints the day/date and time on each can. 

 

15. Internal spray machines 

These machines spray a water based lacquer onto the inside surface of the 

can whilst they are spinning at high speed.  In this way an even layer of 

coating is applied to the entire inner surface of the cans. 

 

16. Internal Bake Oven  

The cans are conveyed; open-end-up through a wide oven in which the 

water-based lacquer is dried and cured. 

 

 

 

17. Inspection Station  

Here cans are removed for Enamel rating, to check internal coating integrity 

and for immersion into copper sulphate to check the external coating. 

 

18. Palletiser  

A semi-automatic palletiser is used to form the pallets. At this point, 

outgoing Inspection is carried out on 30 cans from each pallet. 
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19. Strappers  

Two strappers are used in order to apply at 2 x 3 strap configuration on 

each pallet: This is required in order to prevent movement of the cans 

during transit. 

 

2.5 Split Bodies in 2-piece food cans 

 

 
Figure 2-5: A split flange that occurs immediately after the cans are seamed.  [2.2] 

 

Causes of Split Flanges / Bodies 
 

This problem can be caused at the steel maker, can maker, during transport 

to the can filler or at the can filler. Many reasons have been assigned to the 

causes of split flanges such as the presence of non metallic inclusions caused 

by the steel makers, peening caused by the cans vibrating against each other 

during transportation in trucks, trimming defects caused by the can makers 

during manufacture, excess material on the can bodies etc. and still there are 

a number of cases that have no explanation assigned to the cause of a split 

flange. Each of these problems will be discussed in this section together with 

the proposal for H-embrittlement as a cause for can failure. 
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1. Non Metallic Inclusions (NMIs) Caused at the Steel Makers. 
This is by far the greatest cause of split flanges \ bodies. The term is self 

explanatory and these are small particles of non-metallic compounds (usually 

oxides) which have been accidentally included in the steel. 

 

NMI’s usually originate at the steel making section of the steel works and 

come from the refractories used to cast the molten steel. Refractories are 

used throughout the steel making process to contain the heat of the molten or 

red-hot metal within a steel furnace or its associated casting processes by 

usually lining the carrying vessels similar to bricks in a wall. In the continuous 

casting process – such as that used to manufacture the steel from which 

tinplate for DWI cans is made – refractory powders are also used to cover the 

surface of the molten steel to prevent oxidation of the steel. Other refractories 

are used for the nozzles through which the molten steel is teemed (poured) 

into the moulds. All these refractories become worn away slowly because 

molten steel is very abrasive. These become dissolved into the steel. Some of 

the refractory powder floating on top of the molten steel can also become 

entrapped and dissolve into the molten steel. All these become “NMIs” as they 

are not metallic. 

 

During the subsequent rolling processes to manufacture tinplate, the NMIs 

become dispersed throughout the steel. From any one cast slab, the final coil 

length is approximately 10 000m and its width is 936mm and the NMIs will be 

dispersed throughout this area. Should one or several compounded NMIs 

occur in the top wall of the finished ironed can (i.e. where the flange will be 

turned) then a split flange will result. This is because the NMI weakens the 

steel at that point where it occurs. The can is then rejected from the 

production process by light testers. 
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Figure 2-6: A micrographs of Non-Metallic Inclusions in the (Split) Flange of a Can: These 

particles are very small – ranging from 10 - 200µ in size. [2.1] 

 

 

 
Figure 2-7: A micrographs of Non-Metallic Inclusions in the (Split) Flange of a Can. [2.1] Sizes of 
the indicated NMIs (from Left to Right) are 65µ, 55µ and 175µ. [2.1] 

(In this case, the NMIs are an aluminium \ calcium oxide rich complex as 

indicated in the analysis spectrum below – probably sourced during steel 

casting.) 
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Figure 2-8: A typical EDS spectrum highlighting which elements the NMI was made of. [2.1] 

 

2. Can Making defects (poor trim) 

Can defects which can affect flange integrity during can making include poor 

trimming. The drawn and wall ironed can is uneven around its top rim. The 

unevenness is trimmed off using rotary knives and sometimes the can may be 

cocked or angled on the trimmer spindle and a spiral trim result as indicated in 

the photograph below: 
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Figure 2-9: A spiral trim. [2.1] 

Should the trim whisker break off, then a stepped can results. This is 

illustrated below: 

 

Figure 2-10: A stepped can. [2.1]
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3) Can (Flange) Damage 

This can occur anywhere in the supply chain. Such damage often results in a 

split flange \ body of the filled and processed can. An example of some 

damaged flanges is given in the following photographs: 

 
Figure 2-11: Damaged flange. [2.1] 

 

 
Figure 2-12: Damaged flange. [2.1] 
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Figure 2-13: Damaged flange. [2.1] 

 

4. Transport Damage (Peening) 

The fourth most common cause of split flanges is that caused during 

transportation of empty cans to the can filler.  It is caused by high frequency 

vibration at very low loads of the flange of the can against the truck bulkheads 

or against steel top frames of the pallets. The term Peening was coined as the 

damage done to the edge of the flange by the high frequency / low load 

impacts is similar to that seen on the end of a cold chisel – the metal flows 

into a mushroom shape and this flow is accompanied by several very small 

fractures. Such fractures develop into split flanges / bodies on subsequent 

filling / seaming / processing. 
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Illustrations of this defect are given below: 

 

Figure 2-14: Damage caused by peening. [2.1]  

 

 

Figure 2-15: damage caused by peening. [2.1] 

 

Sections of the split flange at the fracture face readily indicate the flow of 

metal into the characteristic “mushroom” shape. 
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Figure 2-16: The flow of metal into the characteristic mushroom shape. [2.1] 
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CHAPTER 3 ANALYTICAL TECHNIQUES 

3.1 Elastic Recoil Detection Analysis 

 

3.11 Background 

 

Elastic recoil detection (ERD) is an analytical technique giving information on 

the atomic composition profile of materials. For some years ion beam based 

analytical techniques have offered a wide range of possibilities like giving 

complementary information in the determination of the composition and 

structure of materials.  Elastic Recoil Detection (ERD) is quite well accepted 

by the materials and solid state researchers’ community because of its unique 

capabilities as a widely applicable analytical tool. The basic physical event in 

the technique is the elastic collision between the incoming and target nuclei 

[3.1].  

 

In the analysis of solids, elastic recoil detection analysis (ERDA) generally 

allow the determination of the depth profiles, down to a depth resolution and 

absolute concentrations of monolayers of atoms in the surface layers of solids 

[3.2]. As the physical processes involved in this technique is very well 

understood, computer codes have been developed providing simple and 

efficient means of performing quantitative ERD analysis.  

 

Hydrogen is a very important element that can modify mechanical, electrical, 

and optical properties of materials. The presence of hydrogen in a metal will 

most likely weaken its structure and cause cracking and failure of the material 

under stress or extreme environmental conditions. Hydrogen induced cracking 

(HIC) is a serious problem in oil pipes. Hydrogen atoms diffuse through a 

metal lattice because of their small size and form molecular hydrogen within 

the intermetallic vacancies of a metal. Molecules of hydrogen once formed 

within an internal structural defect remain trapped because of their larger size 

and generate a pressure that can be as high as 300 atmospheres which may 

cause severe damage [3.3]. This phenomenon is frequently referred as 
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hydrogen embrittlement [3.4]. There are several methods to detect hydrogen 

in a metallic structure. The commonly used methods of elemental analysis are 

not suitable or have limited applicability for the determination of concentration 

profile of hydrogen and most of the techniques are destructive. In contrast the 

Elastic Recoil Detection Analysis (ERDA) technique using 2-3 MeV He++ 

beams is a powerful non-destructive technique in profiling near surface 

hydrogen in non hydrogenous solids. 

 

3.12) Theory 
 
Basic Concepts 
 
Rutherford Backscattering (RBS) is based on collisions between atomic nuclei 

and derives its name from Lord Ernest Rutherford, who in 1911 was the first to 

prove experimentally the existence of positively charged nuclei in atoms. The 

measurement involves measuring the yield, and energy, of ions in a beam 

which backscatter after colliding with atoms in the near-surface region of a 

sample at which the beam has been targeted. With this information, it is 

possible to determine atomic mass and elemental concentrations versus 

depth below the surface. RBS is ideally suited for determining the 

concentration of trace elements heavier than the major constituents of the 

substrate. Its sensitivity for light masses, and for the makeup of samples well 

below the surface, is poor. 

In RBS experiments, the detector is placed at an angle larger than 90o with 

respect to the beam direction and only backscattered projectiles are detected.  

The only parameter measured is the energy of the particles detected and 

based on that one determines the masses and depth distribution of the target 

constituents. In ERDA measurements, the detector is placed at angles smaller 

than 900 with respect to the beam direction. Target atoms that recoil out of the 

sample after scattering with He++ beam are detected. One of the main 

problems in ERDA is that these recoils need to be separated from the 

scattered projectiles. The measured energy distribution for the recoil is then 

used to determine its depth distribution in the sample, thus avoiding 
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ambiguity. The mass ratio between projectile and recoil mainly determines 

which technique can be used to perform that separation or identification. [3.5]  

The energy measured for a particle backscattered at a given angle depends 

upon two processes. Particles loose energy while they pass through the 

sample, both before and after a collision. The amount of energy lost is 

dependent on the stopping power of the target material. The amount of energy 

lost in the projectile depends on the masses of the projectile and the target 

atoms. The ratio of the energies of the projectile before and after collision is 

called the Kinematic factor. 

The number of backscattering events that occur from a given element in a 

sample depend upon two factors: the concentration of the element and the 

effective size of its nucleus. The probability that the beam and the material 

collide in such a way that the ejected hydrogen is directed towards the 

detector is called its scattering cross section.  

Kinematic Factor: Qualitative Analysis 

For scattering at the sample surface the only energy loss mechanism is 

momentum transfer to the target atom. An important issue is that He++ will not 

scatter backwards from H atoms in a sample. Elements of comparable mass 

lighter than the projectile element will instead scatter in forward trajectories 

with significant energy. Thus, these elements cannot be detected using 

classical RBS. However, by placing a detector so that these forward scattering 

events can be recorded, these elements can be quantitatively measured using 

the same principles as RBS. 

A classical geometry of a scattering experiment in the laboratory frame of 

reference is given in figure 3.1. A projectile of mass M1, charge Z1 and with 

energy E0 impinges on a target atom at rest with mass M2 and charge Z2. 

After collision, the projectile has energy E1 and is scattered at an angle θ with 

respect to the direction of the incoming beam, while the target atom recoils at 

an angle ϕ with energy E2. The plane in which both particles move is defined 

as the scatter plane. The plane perpendicular to the scatter plane is defined 
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as the vertical plane. Restricting us to the case of elastic scattering, the 

energies of both the scattered projectile E1 (detected in RBS) and the recoil E2 

(detected in ERDA) can be calculated from the laws of conservation of energy 

and momentum: 

 

Figure 3-1: Schematic representation of a classical geometry of a scattering experiment in the 
laboratory frame of reference. Left is before and right is after the scattering event. [3.6] 
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At a fixed angle of detection, the only factor affecting the kinematic factors, K1 

and K2, is the mass ratio, M1/M2. If M1<M2 then the plus sign in equation 3.1 

holds and when M1>M2 there are two solutions resulting in possibly two 

kinematic factors. The kinematic factor K1 is for the scattered particle and K2 

is the Kinematic Factor for the recoiled particle. The maximum angle at which 

projectiles can be scattered is θmax = arcsin(M2/M1). It appears that the energy 

of the recoil particle is maximal when M1 = M2. Further, for M2/M1 > 1 the 

kinematic factor for scattering of the primary particle is larger than the 

kinematic factor for recoiling and, importantly, increases with increasing the 

mass ratio. The consequence is that particles moving in the direction of a 
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detector, located at an angle smaller than 900 with the incident beam 

direction, have larger energies when they originate from a scattering process 

involving a heavy target: for M2/M1<1 the largest energy is carried by the 

heaviest recoils and for M2/M1>1 the scattered primaries have a larger energy 

when scattered at a heavier nucleus. The implication is that a simple 

measurement of the number and energy of particles at angles smaller than 

900 do not result in an enhanced sensitivity for light elements when compared 

with RBS. [3.6]  

 

Scattering Cross Sections: Quantitative Analysis 

The relative number of particles backscattered from a target atom into a given 

solid angle for a given number of incident particles is related to the differential 

scattering cross section. The scattering cross section is basically proportional 

to the square of the atomic number of the target atom. [3.7] 

An important characteristic of each type of collision is the probability with 

which it takes place. The chance that one particle from the ion beam ejects a 

recoil (Z2, M2) in such a way that it starts moving in the direction of the 

detector is proportional to the areal density (atoms.cm-2) of this element and 

the solid angle of the detector. The proportionality constant is known as the 

Rutherford differential cross section: [3.7] 
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M1 and M2 are the masses of the projectile and the recoil respectively, ϕ is the 

scattering angle and E1 is the energy of the recoiled atoms.  

The total Yield Yj of scattered projectiles or recoils for a specific element j as 

measured by the detector can be expressed as: [3.7] 

Yj = NjQΩσj          (3.4) 

Where Nj is the number of target atoms per unit area, Q is the number of 

projectiles, Ω is the solid angle of the detector and σj is the differential cross 

section averaged over the surface of the detector. 

When the solid angle Ω, the cross section σj and the number of incident 

projectiles Q are known, it is straight forward to calculate the areal density of 

the target atoms Nj, and straight forward to quantify the results. In practice Ω 

and Q are difficult to determine accurately; standards are used to determine 

them accurately. In ERDA experiment a reference sample is used, i.e. a 

sample of well known composition. In this thesis, the areal densities are 

determined using Kapton reference (C22N2O5H10) for which the composition is 

well known.   

Stopping Power: Depth Profiling 

Ions propagating through matter loose kinetic energy in collisions with the 

target material. The so called stopping power is defined as the ion’s energy 

loss per unit length: S=dE/dx. Sometimes the energy loss is expressed in 

terms of the so called stopping cross section ε = 1/N (dE/dx), where N is the 

particle density (1015 at/cm3) or ε = 1/ρ (dE/dx), where ρ is the mass density 

(g/cm3). When the stopping power is known, it can be used to extract depth 

information from measured energy spectra. This is illustrated in Figure 3.2 for 

an ERDA experiment at glancing angle geometry. A projectile impinges on the 

target at an angle ψ. A recoil originating from the surface has an energy       

E2 = K2E0. When the collision takes place at a depth t, the energy of the recoil 

upon leaving the sample at an angle α is: [3.7] 
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where the subscripts ‘in’ and ‘out’ denote the energy loss of the projectile on 

the inward path and the energy loss of the recoil on the outward path, 

respectively. The calculation of stopping powers is not straight forward, 

because they are a function of energy and sample composition. [3.7] 

The energy difference ΔE between recoil originating from the surface and 

recoil originating from depth t now becomes: 
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The symbol [S] is called the ‘energy loss factor’ and is the key to convert 

energy into depth information. It also relates the energy resolution δE to the 

depth resolution δt via   δt = δE/[S], where δt is the minimum thickness one 

can experimentally resolve. 

 

Figure 3-2: Recoils scattered from the surface have energy E2, while recoils scattered from depth 
t have energy E3, the x-axis is perpendicular to the surface of the sample. [3.5] 

There are two main mechanisms responsible for energy loss. First, ions loose 

energy by collisions with the electrons of the target atoms (electronic 

stopping) and secondly, they lose energy in elastic collisions with the target 

nuclei as a whole (‘nuclear’ stopping). Projectile energies routinely used in 
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RBS or ERDA measurements, however, are in the order of 1 MeV or higher. 

Nuclear energy loss can then be neglected and inelastic collisions with the 

atomic electrons (electronic stopping) becomes the main interaction. [3.4] 

Only a small fraction of the incident particles undergo a close encounter with 

an atomic nucleus and are backscattered out of the sample. The vast majority 

of the incident He++ atoms end up implanted in the sample. When the 

incoming beam penetrates to some depth in a dense medium, projectile 

energy dissipates due to interactions with electrons (electronic stopping) and 

to glancing collisions with the nuclei of target atoms (nuclear stopping). This 

means that a particle which backscatters from an element at some depth in a 

sample will have less energy than a particle which backscatters from the 

same element on the sample surface. The amount of energy a projectile loses 

per distance traversed in a sample depends on the projectile, its velocity, the 

elements in the sample, and the density of the sample material. Typical 

energy losses for 2 MeV He ranges between 100 and 800 eV/nm. This energy 

loss dependence on sample composition and density enables RBS 

measurements of layer thicknesses, a process called depth profiling. 

The higher portion in energy loss is caused by electronic stopping which 

behaves (roughly) like friction between the probing particles and the electron 

clouds of the target atoms. Nuclear stopping is caused by the large number of 

glancing collisions which occur along the path of the probing atom. Nuclear 

stopping contributes significant energy losses only at low particle energies. 

The ratio of energy loss to two-dimensional atom density for a given material 

is known as its stopping cross section. Since the higher portion of energy loss 

is caused by interactions with electrons, the electronic structure of the target 

material has a significant affect upon its stopping power. 
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Straggling and multiple Scattering: Limits in resolution 

 

The loss of energy of an ion travelling is not a continuous process. It is rather 

a process where energy is lost in a large number of discrete steps, thus of 

statistical nature. When a beam of mono-energetic charged particles 

penetrates matter, statistical fluctuations in the exact number of interactions 

and in the energy transfer, result in a spreading of energy, a phenomenon 

called straggling. Since straggling broadens measured energy distributions, it 

puts a limit to depth and mass resolution. Bohr derived a simple expression 

for straggling in the high-energy limit [3.8]: 

xNZ)Z(4)eVnm44.1( 2
2

1
22

B Δπ=Ω       (3.7) 

where ΩB is the Bohr value for the variance of the energy loss fluctuation Ω, 

Δx is the thickness of the traversed material and N is the atomic density of the 

target. Straggling increases with the square root of the path length in the 

material. At a certain depth in the sample, straggling will become larger than 

the other contributions to the inaccuracy of the energy measurement and will 

thus limit the energy resolution.  

 

Due to multiple small angle scattering events, the trajectories of incoming and 

outgoing particles in RBS and ERDA experiments are not completely straight. 

This effect is referred to as multiple scattering. Particles thus undergo 

deflections, which results in changes in angles θ or ϕ. This influences both the 

Kinematic Factors and the cross sections.  

 

3.13 Experimental Setup 

The ERD measurements were made in the Van de Graaff accelerators facility 

at iThemba LABS in Cape Town. The 6.0 MV machine accelerated 4He ions 

as projectiles up to energies 3 MeV through a 2 mm collimator before they hit 

the sample kept in a chamber evacuated to vacuum pressures better than 10-5 

mbar. The sample was tilted to an angle of 75° with respect to the ion incident 

beam and a Surface Silicon Barrier (SSB) detector positioned at a recoil angle 
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of 30° was used to collect the recoiled atoms. The detector had an active area 

of 100 mm2, a depletion depth of 100 μm and a nominal resolution of 15 keV. 
 

The implanted area was analysed by ERDA with a 3MeV He++ beam at an 

incident angle of 750 with a scattering angle at 300. The measured ERDA 

spectra have been converted into H depth profiles with a software package 

called SIMNRA. [3.9]  

 

A He++ beam with energy of 3 MeV was used to analyse the H present in the 

tinplate. A total charge of 10000 nC was collected each time with a current of 

40 nA. SIMNRA 6, a simulation program for nuclear reactions was used to 

analyse the spectra. 

 

Experimental Setup used in SIMNRA: 

 
Figure 3-3: Geometry of a scattering experiment. Incident angle α, exit angle β and scattering 
angle θ. [3.8] 

 

For ERDA: 

α = 750 

β = 750 

θ = 300 
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3.14 Energy Calibration 

A good energy per channel calibration was required for quantifying the results. 

This was done with three 125µm Kapton (C22H10N2O5) reference standard 

samples. The first Kapton reference was bombarded with He++ particles at 

energy of 2.0 MeV and the current was set to 10 nA; the second Kapton 

reference was bombarded with He++ particles at energy of 2.5 MeV and the 

last one by 3.0 MeV. As these samples are calibrated reference standards, 

the signal was used for the determination of the product of the solid angle of 

the detector and dose, taking into account the depth of the implantation and 

screening effects for the evaluation of the scattering cross section. A Mylar foil 

with a thickness of 15 µm was placed in front of the detector to prevent 

scattered He++ ions from being detected and to ensure that only H atoms are 

detected. The samples of interest were bombarded with He++ particles at 

3.0MeV while the current was set to 40 nA. 

A correlation between the recorded energies and channels was done using 

the following linear form: 

E [keV] = A + B × channel        (3.8) 

where E is the particle energy, A the calibration offset and B the energy per 

channel factor. For illustration purposes fig.3.7 shows how the detected 

energies are related to the channels.  
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 Figure 3-4: The spectrum from a kapton reference sample bombarded by 2 MeV He++ 
projectiles. 

 

 

 Figure 3-5: The spectrum from a kapton reference sample bombarded by 2.5 MeV He++ 
projectiles. 
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Figure 3-6: The spectrum from a kapton reference sample bombarded by 3 MeV He++ 
projectiles.  

Table 3-1: Data for energy calibration. 

Channel 
Number 

E0            
(keV) 

E1                  

(keV) 
Eloss              

(keV) 
Edetected               

(keV) 

423 3000 1440 449.765 990.235 

285 2500 1200 537.606 662.394 

102 2000 960 719.988 240.012 
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Figure 3-7: Energy-channel calibration experiment; the three points shown on the graph 
correspond to 3 calculated detected energies from an initial beam of 2, 2.5 and 3 MeV 
respectively. 
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In the above table the energy E1 was calculated from E0 based on the 

Kinematic factor between Hydrogen and Helium as discussed in section 3.22 

and equation 3.2. The energy loss was calculated using an in build function in 

SIMNRA and takes into account factors like the scattering cross section and 

the stopping power of the target material as discussed in sections 3.23 and 

3.24. 

     

The energy calibration determined above is an initial estimate. The Kapton 

spectrum measured at 3 MeV was simulated to give the actual energy per 

channel ratio with the calibration offset.  

 

 
Figure 3-8: The simulated ERDA spectrum at 3 MeV.  

 
 
 
 
 
 
 

 

 

 

 



CHAPTER 3 Analytical Techniques  

 38

3.15 Thickness determinations of layers in monolayers 

Table 3-2: Molar Mass details for Mylar foil 

C10H8O4 Element 
Element 

Contribution % 

Atomic 
mass 

(g.mol-1) 

individual 
contribution 

in mole 
(g.mol-1) 

 C 10 45.45 12.01 5.46 

 H 8 36.36 1.008 0.37 

 O 4 18.18 15.999 2.91 

SUM C10H8O4 22 100  8.73 

 

The molar mass of the Mylar foil is 8.73g.mol-1, the density of the Mylar foil is 

1.39g/cm3 and Avogrado’s constant is 6.02×1023 atoms.mol-1. 

monolayers143701.81Thickness
atoms.cm10143701.81DensityAreal

atoms.cm101.43701811DensityAreal
μm 15atoms.cm109.58DensityAreal

ThicknessDensityAtomicDensityAreal

atoms.cm109.58
8.73g.mol

atoms.mol106.021.39g.cmDensityAtomic

MassMolar
ConstantsAvogrado'DensityDensityAtomic

215

220

322

322
1

1233

=
×=

×=

××=

×=

×=
××

=

×
=

−

−

−

−
−

−−

   

Table 3-3: Molar Mass details for Kapton standards 

C22H10N2O5 Element 
Element 

Contribution % 

Atomic 
mass 

(g.mol-1) 

individual 
contribution 

in mole 
(g.mol-1) 

 C 22 56.41 12.01 6.77 

 H 10 25.64 1.008 0.26 

 N 2 5.13 14.007 0.72 

 O 5 12.82 15.999 2.05 

SUM C22H10N2O5 39 100  9.80 
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The molar mass of the Kapton is 9.80g.mol-1, the density of the Kapton is 

1.42g/cm3 and Avogrado’s constant is 6.02×1023 atoms.mol-1. 

monolayers1090046.27Thickness
atoms.cm101090046.27DensityAreal
atoms.cm1011.09004627DensityAreal

μm 125atoms.cm108.72DensityAreal
ThicknessDensityAtomicDensityAreal

atoms.cm108.72
9.80g.mol

atoms.mol106.021.42g.cmDensityAtomic

MassMolar
ConstantsAvogrado'DensityDensityAtomic

215

221

322

322
1

1233

=
×=

×=

××=

×=

×=
××

=

×
=

−

−

−

−
−

−−

   

 

 

Can Layers 

 

The thicknesses of the various layers in the samples used in the experiment 

were not known accurately, because the measurements of the different layers 

were done with the tinplate sheets by Nampak experts before the cans were 

made. The thickness of the layers after the cans were made will be calculated. 

The thickness of the Sn layer was 0.354µm and the FeSn2 alloy was 0.089µm 

before the metal plates are drawn into cans. 

 

 
Figure 3-9: The disc on the left is a tinplate sheet before it gets drawn into the can on the right. 
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The inner disc is the base of the can which remains the same. It is the surface 

area coloured in yellow that forms the body of the can. So the ratio of the 

outer disc surface area and the surface area of the body of the can would 

determine by how much the tinplate thickness was reduced and by how much 

the layer thicknesses was reduced. The thicknesses of the layers are 

reduced, because the surface area of the can is more than the surface area of 

the sheet. 

Outer surface area of Disc: 
22222

1 mm072.13486)5.3675()rR(A =−π=−π=  

Where R is the radius of the outer circle and r is the radius of the inner circle.  

Surface Area of Can body: 
2

2 mm989.25226mm110mm73DHA =××π=π=  

Where D is the diameter of the can and H is the height of the can. 

 

Ratio: 

1.87
mm 13486.072
mm 25226.989

A
A

2

2

1

2 ==  

Based on the above Calculation each layer thickness is reduced by 1.87 times 

at the top of the can. 

 
Table 3-4: A comparison of the thicknesses before and after the can was drawn. 

Layer Tinplate Sheet 

Thickness Before (µm) 

Tinplate Can Thickness 

After (µm) 

Sn 0.268 0.1433 

FeSn2 0.089 0.0476 

 

Sn Layer 

So the molar mass of the Sn is 118.71g.mol-1 and the density of the Sn is 

7.283g/cm3 [3.10] and Avogrado’s constant is 6.02×1023 atoms.mol-1. 
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monolayers529.31Thickness
atoms.cm10529.31DensityAreal

atoms.cm105.293131DensityAreal
μm 0.1433atoms.cm103.69DensityAreal

ThicknessDensityAtomicDensityAreal

atoms.cm103.69
l118.71g.mo

atoms.mol106.027.283g.cmDensityAtomic

MassMolar
ConstantsAvogrado'DensityDensityAtomic
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1

1233

=
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××=
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×=
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=

×
=

−

−

−

−
−

−−

   

 

FeSn2 Layer 

 
Table 3-5: Molar Mass details for FeSn2 layer in the can. 

FeSn2 Element 
Element 

Contribution % 

Atomic 
mass 

(g.mol-1) 

individual 
contribution 

in mole 
(g.mol-1) 

 Fe 1 33.33 55.85 18.62 

 Sn 2 66.67 118.71 79.14 

SUM FeSn2 3 100  97.76 

 

Density of FeSn2 =
3
2Sn)(Fe + = 3cm.g478.7

3
283.72867.7 −=

×+   

So the molar mass of the FeSn2 is 97.76g.mol-1 and the density of the FeSn2 

is 7.478g/cm3 and Avogrado’s constant is 6.02×1023 atoms.mol-1. 

monolayers219.16Thickness
atoms.cm10219.16DensityAreal

atoms.cm102.191616DensityAreal
μm 0.0476atoms.cm104.605DensityAreal

ThicknessDensityAtomicDensityAreal
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97.76g.mol

atoms.mol106.027.478g.cmDensityAtomic

MassMolar
ConstantsAvogrado'DensityDensityAtomic
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1
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=
×=

×=

××=
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−
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−−
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The above mentioned layers were necessary for inputs in SIMNRA. The 

software only recognizes thicknesses in monolayers. 

 

After all the simulations are complete in SIMNRA, the hydrogen concentration 

at different depths in the sample is known. The average H concentration 

throughout the sample is calculated as follows: 

∑=
n

nn

T
tH

concHAverage
1

       [3.8b] 

Where H is the H+ concentration at a specific layer, t is the thickness at that 

specific layer and T is the total thickness and n is the number of layers in the 

sample. 

 

3.2 Stress Analysis by XRD 

3.2.1) FUNDAMENTAL CONCEPTS IN X-RAY DIFFRACTION 
 

Diffraction methods of residual stress determination basically measure the 

angles at which the maximum diffracted intensity take place when a crystalline 

sample is subjected to x-rays. From these angles it is possible to obtain the 

interplanar spacing of the diffraction planes using Bragg’s law. If the residual 

stress exists within the sample, then the d spacing will be different than that of 

an unstressed state. This difference is proportional to magnitude of the 

residual stress. 

  

 
Figure 3-10: Diffractometer scheme.  [3.10] 
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The incident beam diffracts X-rays of wavelength λ from planes which satisfy 

Bragg’s law. If the surface is in compression then the planes are closer 

together than in the stress-free state because of Poisson’s ratio. The 

interplanar spacing d is obtained from the peak in intensity versus scattering 

angle and Bragg’s law [3.10]. 

With reference to Figure 3.10, assume that the detector is turned over a range 

of angles, 2θ, to find the angle, θ, of the diffraction from grains which satisfy 

Bragg’s law. In other words the grains that have planes of atoms with 

interplanar spacing “d” such that λ =2dsinθ. The grains that have planes with 

this spacing that are parallel to the surface will diffract as in Figure 3.10. This 

diffraction occurs from a thin surface layer which is about 20 μm. If the surface 

is in compression, then the interplanar spacing “d” is smaller than in the stress 

free state as a result of Poisson’s effect. When the specimen is tilted with 

respect to the incoming beam new grains will diffract and the orientation of the 

diffraction planes is more nearly perpendicular to the stress direction (Figure 

3.12). 

 

 
Figure 3-11: When the sample is tilted, diffraction will take place from other grains, but from the 
same planes (that satisfy Bragg’s law). The peak takes place at higher values of 2θ. [3.10] 

 
As a result of the tilt, the d spacing decreases and the angle 2θ increases, as 

seen in the figures. In this case the d spacing acts as a strain gauge. Because 

of the fact that the interplanar spacing is so small, both micro and macro 

stresses will effect it. The XRD measures the sum of all these stresses. 
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3.2.2. X-ray Source 
In early 1895, W. C. Roentgen (1845-1923) discovered that if the electrons 

are accelerated by a high voltage in a vacuum tube and allowed to strike a 

glass or metal surface, fluorescent minerals some distance away would glow, 

and photographic film would become exposed. He attributed these effects to a 

new type of radiation which are different from cathode rays. They were given 

the name X-rays which means an unknown quantity. X-rays are produced 

similar to Roentgen’s today. X-rays are produced in a standard way: by 

accelerating electrons with a high voltage and allowing them to collide with a 

metal target. Electrons are produced by heating a cathode tungsten filament 

in a vacuum. The cathode is at a high negative potential, and the electrons 

are accelerated toward the anode, which is at ground potential. Then the 

electrons hit the anode with a very high velocity. The loss of energy results in 

x-rays. [3.11] 
 
3.2.3. Absorption of X-rays 
 
X-rays are attenuated when they pass through matter, thus the transmitted 

beam is weaker than the incident beam. Many different processes cause the 

decrease in the incident beam. Scattering (coherent & incoherent), heat 

production or excitations of photoelectrons, etc. are some of the contributors. 

The total loss in the intensity is termed absorption. The attenuation related to 

thickness of an infinitesimal slab is given by the relation [3.12] 

dz
I

dI μ−=           (3.9) 

where I is the intensity of the transmitted beam, μ is the linear absorption 

coefficient. It is proportional to density and is usually listed as (μ/ρ). This ratio 

is known as mass absorption coefficient. It is a property of the material and 

independent of the material phase. Equation 3.9 can be integrated (for a 

homogenous finite slab thickness of z) to give [3.12] 

z

z eII
ρρ

μ )(

0

−
=          (3.10) 

where I0 is the intensity of the incident beam. 
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3.2.4. Scattering of X-rays 
When a beam of x-rays is incident on the specimen, the photons collide with 

the electrons and scatter in different directions. There are two types of 

collisions. First type is elastic and the second one is inelastic. The former is 

the case when the x-rays collide with the electrons that are tightly bound to 

nucleus (usually the inner orbital electrons). There is no momentum transfer 

between the photon and electron which means scattered photon has the 

same energy and wavelength after the collision. This type of scattering is 

called coherent scattering. On the other hand, for the inelastic collision there 

is a momentum transfer from photon to electron. Due to this momentum 

transfer, photon looses energy and has longer wavelength. In the former there 

is a relation between phases of incident and scattered x-rays, whereas this is 

not the case for the latter. The latter is called Compton modified scattering or 

incoherent scattering. In both cases the photons are scattered in all directions. 

 

3.2.5. Bragg’s Law 
When atoms spaced at regular intervals are irradiated by X-ray beams, the 

scattered radiation undergoes interference. Destructive interference occurs 

when the path difference is not a multiple of d and constructive interference is 

when the path difference is a multiple of d. The law that governs constructive 

interference (diffraction) is known as Bragg’s law. When x-rays strikes a 

crystal, the beam is reflected not only from the surface atoms but also from 

the atoms underneath the top surface to some considerable depth (Figure 3-

12). 

 

 

 

 

 



CHAPTER 3 Analytical Techniques  

 46

 
Figure 3-12: Diffraction of x-rays by a crystal and Bragg’s law [3.11] 

 

Figure 3-12 shows reflection of an x-ray beam from two parallel lattice planes. 

In reality there would be many other planes. In the figure, the distance 

between two parallel planes is represented by “d” (interplanar spacing). Lines 

Ai and Ar are drawn perpendicular to incident and reflected beams 

respectively. The line OAi is a wave front. Point’s o and m must be in phase 

because they lie on this line. The same condition is valid for point’s o and n. 

This condition can be satisfied when the distance mpn equals a multiple of a 

complete wavelength. That is to say that it must equal nλ where n is an 

integer and λ is wavelength of x-rays. From the figure, the distances mp and 

np equal dsinθ. The distance mpn is 2dsinθ. When this quantity equated to nλ 

we have: [3.11] 

 

nλ= 2dsinθ          (3.11) 

  

where n= 1, 2, 3…, λ is wavelength, d is interplanar spacing, θ is angle of 

reflection. 

This equation is known as Bragg’s law. 

 

 

 
 

 

 

 

 



   

 47

3.2.6. Diffractometer Geometry 
The diffractometer is the most common apparatus used for determining 

diffraction patterns. The diffractometer uses electronic counters, rotation tools 

to rotate the sample, and a detector to measure x-ray intensities. In Figure 3.9 

the basic geometry of an x-ray diffractometer is shown. X-rays coming from an 

x-ray source strikes the specimen which is stabilized by a sample holder. The 

sample holder can be rotated around X axis perpendicular to the plane of the 

diffractometer. Then the diffracted beam is detected by a suitable detector. 

The detector can be rotated around X along the circumference of the 

diffractometer. The angle spanned by the detector can be limited to some 

degrees (in 2θ units). The step size and the time/step will depend on the 

accuracy you want to achieve and the statistics desired respectively.  

  

 
Figure 3-13: An x-ray diffractometer scheme [3.10]. 

 

The detector is moved along with the diffractometer circle to detect the 

diffracted beam.  
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3.2.7. Penetration Depth of X-rays 
The attenuation due to absorption limits the x-ray penetration depth. The 

penetration depth depends on the absorption coefficient of the material and 

the beam dimensions on specimen surface. Because attenuation of the 

incident beam is proportional to the thickness of the material it passes 

through, the contribution to the diffracted beam from layers deeper down in 

the material within the irradiated volume is less. Also because the diffracted 

beam has to traverse more material before leaving the surface, there will be 

more attenuation.  

 

 
 
 
 
 
 
3.2.8. Calculation of stress by x-ray diffraction 
 
In this section the concepts related to x-ray diffraction and residual stress will 

be discussed. It is important to note that stress is not measured directly by the 

x-ray diffraction; it is always strain that is measured. Then the stress is 

calculated using appropriate equations of elasticity. 

 

3.2.8.1. Brief History on the Method 
This method was first proposed by Lester and Aborn in 1925. In 1930, Sachs 

and Weerts showed that the accuracy obtained was similar to other methods. 

In 1934 the method was improved by Barret and Gensamer which was used 

to measure sum of eigenstresses. In 1935, Glocker showed that it was 

possible to evaluate each of the eigenstresses. Since then, because of both 

technological improvements and better understanding of the deformation of 

the crystal lattice, especially the influence of anisotropy and crystallographic 

texture, remarkable progress was made on the method. Today, it is one of the 

most common techniques that is used to measure residual stress. [3.10] 
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3.2.8.2. Fundamental Equations 
 

The orthogonal coordinate system in the following discussion is shown in 

Figure 3.14. There are two coordinate systems, the sample coordinate system 

Si where S1 and S2 are on the surface. The second coordinate system is the 

laboratory coordinate system Li and L3 is normal to the family of (hkl) planes 

whose spacing is measured by x-ray diffraction. L2 makes an angleφ  with S2 

and is in the plane defined by S1 and S2. In the following discussion primed 

tensor quantities refer to the Laboratory system Li and unprimed tensor 

quantities refer to the sample coordinate system Si. When the interplanar 

lattice spacing d is obtained from the diffraction peak for a given reflection hkl, 

the strain component along L3 can be obtained using the formula [3.10]: 

 

 

( )
0

0φψ
φψ

'
33 d

dd
ε

−
=         (3.12) 

where d0 is the unstressed interplanar spacing. The strain in equation 3.12 

can be transformed to the sample coordinate system using tensor 

transformation. 

 

( ) 1313φψ
'
33ε kk aa ε=         (3.13) 

where a3k , a31 are the direction cosines between L3, Sk and L3 , Sl 

 
Figure 3-14: Sample and laboratory coordinate systems. [3.10] 
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ω is defined as a right-handed rotation about L3 axis. The ω axis is fixed on 
the laboratory coordinates. 
 

Then the direction cosine matrix will be: [3.10] 

ψψφψφ
φφ

ψψφψφ

cossinsinsincos
0cossin

sincossincoscos
−

−
=ika      (3.14) 

 

Substituting a3k, a31 in equation 3.13 one gets: [3.11] 
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ψφεψφεψε

ψφεψφεψφε
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ε
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33
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−

=
 (3.15) 

 

Equation 3.15 is the fundamental relation that is used in x-ray diffraction for  

strain measurement. 

  

3.2.8.3. Geometry Conventions in 2D-XRD systems 
 

Figure 3.15 describes the geometric definition of diffraction cones in the 

laboratory coordinates system, XLYLZL. Analogous to the conventional 3-circle 

and 4-circle goniometer, the direct X-ray beam propagates along the XL axis, 

ZL is up, and YL makes up a right-handed rectangular coordinate system. The 

axis XL is also the rotation axis of the cones. The apex angles of the cones 

are determined by the 2θ values given by the Bragg equation. The γ  angle is 

the azimuthal angle from the origin at the 6 o’clock direction (-ZL direction) 

with a right-handed rotation axis along the opposite direction of the incident 

beam (-XL direction). Since χ  has also been used to denote one of the 

goniometer angles in 4-circle convention, γ  will be used hereafter to 

represent this angle. The γ  angle here is used to define the direction of the 

diffracted beam on the cone. The γ  angle actually defines a half plane with 

the XL axis as the edge, referred to as γ -plane hereafter. Intersections of any 

diffraction cones with a γ -plane have the same γ  value. The conventional 

diffractometer plane consists of two γ -planes with one γ = 900 plane in the 
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negative YL side and γ = 2700 plane in the positive YL side. γ and 2θ angles 

forms a kind of spherical coordinate system which covers all the directions 

from the origin of the sample (goniometer center). The γ -2θ system is fixed in 

the laboratory systems XLYLZL, which is independent of the sample orientation 

in the goniometer. This is a very important concept when we deal with the 2D 

diffraction data. [3.12]  

 

 
 Figure 3-15: The geometric definition of diffraction rings in laboratory axes. [3.11] 

 

3.2.8.4. Stress Measurement with 2D-XRD 
 

The two-dimensional (2D) diffraction pattern contains far more information 

than a one-dimensional (1D) profile collected with the conventional 

diffractometer. When used for stress measurement, 2D X-ray diffraction 

systems have many advantages over the conventional one dimensional 

diffraction systems in dealing with highly textured materials, large grain size, 

small sample area, weak diffraction, stress mapping, and stress tensor 

measurement. The stress measurement is based on the fundamental 

relationship between the stress tensor and the diffraction cone distortion. The 

benefit of the 2D method is that all the data points on diffraction rings are used 

to calculate stresses in order to get better measurement results with less data 

collection time. 
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The fundamental equation for strain measurement using a 2D detector is 

given by: [3.12] 

 

⎟
⎠
⎞

⎜
⎝
⎛=+++++

θ
θεεεεεε

sin
sinln 0

333323231313222212121111 ffffff   

 

with: 

Strain 

Coefficients 

F11 f12 f22 f13 f23 f33 

= A2 2AB B2 2AC 2BC C2 

ωθγωθ sincossincossin +=a  

θγ coscos−=b  

ωθγωθ coscossinsinsin −=c  

φψφψφ sinsinsincoscos cbaA +−=  

φψφψφ cossincoscossin cbaB −+=  

ψψ cossin cbC +=  

 

 
Figure 3-16: The relationship between the three spaces and the laboratory coordinates. [3.12] 

 

3.2.8.5. True Stress Free Lattice D-spacing 
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In the Biaxial (2D) and Biaxial + Shear (2D) calculation, we have assumed 

that σ33 is zero so that we can calculate stress with an approximation of d0 (or 

2θ0). Any error in d0 (or 2θ0) will contribute only to a pseudo-hydrostatic term 

σph. Figure 3.17 shows the biaxial stress tensor measured from a shot peened 

Almen strip with different input d0 in the range of 1.165 Å to 1.175Å. The 

measured stress tensor is independent of the input d0, (σ11 =623MPa, σ12 

=638MPa, σ22 = 80MPa), where the pseudo-hydrostatic term σph changes with 

the input d0.The true d0 corresponds to the cross point of σph line and zero 

stress. 

 

 
Figure 3-17: The measured biaxial stress tensor and pseudo hydrostatic stress as a function of 
input d0. [3.11] 

 

If we use d’0 to represent the initial input, the true d0 (or 2θ0) can be calculated 

from σph with the following equations: [3.12] 
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Figure 3-18: The diffracted rings detected by a 2D detector 

 

 
Figure 3-19: Red point focusing on the sample using the video alignment system 
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3.3 Tensile Testing 

2.1-Young’s Modulus 
 
In order to calculate Young’s modulus for each material a graph of stress vs 

strain was needed, because the relation between stress and strain is: [3.11] 

 

εσ E=            (1) 

whereσ  is the stress applied to the material, E is the Young’s modulus andε  

is the strain of the material. The stress is calculated from the force (F) applied 

to an area (A) of the material: [3.11] 

 

 
A
F

=σ           (2) 

The strain of the material is expressed by the ratio between the extension and 

the original length of the material: [3.11] 

 

L
LΔ

=ε           (3) 

where L is the original length of the material and LΔ is the extension. 

 

2.2-Tensile Strength 
 

When calculating the tensile strengths of the materials, a 2% offset line was 

drawn parallel to the elastic deformation straight line and the point where this 

line intersected the stress-strain graph was the margin between elastic and 

plastic deformation. So since the tensile strength of the material is the 

resistance of a material to permanently deform, this point where the 2% offset 

line intersects the graph is the strength of the material. A typical Stress vs 

Strain spectrum is shown below: 
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Figure 3-20: All the factors involved in a Stress Strain graph 
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CHAPTER 4 EXPERIMENTAL PROCEDURE 
 

4.1) Elastic Recoil Detection Analysis 
 

Two sets of samples were prepared in this experiment. The first was to 

simulate an actual case of hydrogen embrittlement, using unprotected tinplate 

(i.e. no lacquer present). The second set of samples was used to investigate 

the hydrogen embrittlement in protected tinplate. 

 

Firstly the top 2cm of all the cans were removed with a tin snips and guillotine. 

The sample was 2 cm wide and the length was the circumference of the can. 

These strips were cut into 1.5 cm length to fit the sample holder used for 

ERDA. The lacquer of the first set of samples were removed by dipping the 

samples for a few seconds stripping solution (900g Dimethylformamide, 50g 

oxalic acid and 50g water) heated to 980C. The samples were prepared 

according to the table below: 

 
Table 4-1: A comparison of the samples that will be prepared for ion beam analysis 

No Steam Steam 

Untreated  Steam only 

Acid Acid 

Fish + Tomato Sauce Fish + Tomato Sauce 

 

The steam was provided by a steam cooker that was heated by gas. All the 

steamed samples were exposed to steam for 33 min i.e. the time it took the 

cans to pass through the exhaust box at the canneries. The sample strips 

were placed on a metal plate full of holes in the steam cooker approximately 5 

cm above the water to prevent the samples from being submerged in the 

water. This was to ensure that the samples were only exposed to steam. The 

clean samples had no other treatment apart from the steam, so the strip was 

placed directly onto the metal plate in the steam cooker. The samples 

exposed to acid were placed in a Petri dish filled with acid. The final samples 

were placed in a can filled with Fish. The samples that were not exposed to 
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steam were prepared in exactly the same way next to the steam cooker for 

exactly the same time periods and in the absence of any steam at normal 

room temperature under standard laboratory conditions. The samples were 

then dried with paper towel and placed into a Petri dish. These Petri dishes 

were placed in a dessicator to prevent any further air contamination.  

 
4.2) Residual Stress Analysis by XRD 
 

The sample preparation was relatively simple compared the other techniques 

used. The cans were sent through their respective treatments in the steam 

cookers then mounted onto the XRD machine. None of the cans were cut and 

none of the layers protecting the metal was removed. 

The measurement was performed using a Bruker’s D8 GADDS. Experimental 

setup on the primary side includes Co tube, graphite monochromator, 0.8mm 

collimator and a laser alignment system with an accuracy of 50 micron. The 

data were collected using a 2D detector. The analysis of data was done with a 

Bruker’s Leptos v6 software. The measurement of strain was done in iso 

inclination geometry. The measurement details are given in table 7: 

 

Table 2: Measurement details from the Brukers Leptos v6 software: 

Omega range:  75 deg to 135 deg 

Omega step size:  10 deg 

Psi:  0 deg 

Measurement time :  150s 

Generator settings 

Voltage:  35 kV 

Current :  35 mA 
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Due to the hardware limits of the diffractometer, the 310 peaks for Co could 

not be detected. The Co radiation peak is at 1610 compared and the Cu 

radiation peak is at 1160. The peak 220 peak for cobalt was used at 1230. The 

peaks referred to above are from the hkl planes that are diffracting the x-rays 

to form constructive interference.  

 

4.3) Tensile Testing 
 

The cans went through their respective treatment in the steam cooker. The 

split flanges occurred at the top 2cm of the cans. The top 2cm of the cans 

were removed and further trimmed to 1.8 cm in width using a guillotine. The 

samples were cut into 22 cm lengths which conformed to ASTM standards. 

The mid section of the samples was machined to form the standard dumbbell 

shape of a typical tensile. The new width of the mid section of the sample was 

measured with a micrometer. Before the thickness of the steel could be 

measured, all the protective layers had to be removed in the middle of the 

sample. The lacquer stripping solution was used to remove the lacquer and a 

detinning solution was used to remove the tin. The thickness of each sample 

was then measured using a digital micrometer. Once the preparation of the 

samples finished, the computer system and the tensile tester was calibrated.  

The samples were then firmly mounted to the tensile tester and stretched till 

the sample was fractured. The results were displayed digitally. 
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CHAPTER 5 RESULTS AND DISCUSSION 
 

5.1) Elastic Recoil Detection Analysis 
 

For ERDA two sets of results will be presented. The first set of samples was 

sent through the steam process without protection (no lacquer). This was 

done to check if the metal was susceptible to H embrittlement in the exhaust 

box without protection. It was also done to check if ERDA was a suitable 

technique for checking if H embrittlement could be caused by steam in an 

exhaust box. The second set of samples had protection. All the experimental 

data was simulated in SIMNRA in order to probe into the H-depth profile. A 

few of the simulated spectra are shown below; the scattered data are the 

experimental while the yellow continuous curve is the simulated spectrum.  

 
Figure 5-1: A simulated ERDA spectrum for a sample with no H treatment. 
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Figure 5-2: A simulated ERDA spectrum for the sample exposed to steam only. 

 

 

 

 
Figure 5-3: A simulated ERDA spectrum for the sample exposed to steam and acid 
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Figure 5-4: A simulated ERDA spectrum for the sample exposed to steam and fish. 

After the experimental data were simulated, they were checked for 

consistency. This was done by preparing each sample type twice and 

checking if the spectra were repeatable. Two of the comparisons are shown 

below: 
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Figure 5-5: A comparison of two ERDA spectra for different samples with no H treatment. 

 
Figure 5-6: A comparison of two ERDA spectra for different samples treated with steam and 
product. 
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Every sample prepared had a duplicate and both were measured to check for 

consistency. All of the samples that were prepared similarly had similar 

spectra and fitted on each other like the two spectra for the samples exposed 

to steam in fig 5.5. All the spectra had the same profile but the yields were 

different at the surface level only. The 1st sample had more surface hydrogen 

but less hydrogen deeper in the metal compared to the second sample. The 

1st measurement could have been taken at one of the voids in the sample 

where more hydrogen collected closer to the surface.   

The above spectra showed the samples were prepared consistently. The next 

step was to compare the samples prepared with different conditions. The 

following figure will show how different the spectra looks compared to the 

sample parameters. 

 

 
Figure 5-7: A comparison of the ERDA spectra for differently prepared samples with no 
protection. 

 

The above spectra show the exact same trend for all the samples regardless 

of how they were prepared. Based on this fact, all the samples should have 

higher hydrogen concentrations at the surface levels as compared to levels 
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deeper in the sample. The samples exposed to steam only and the samples 

exposed to steam and acid fits has comparable spectra. This means that the 

concentration of hydrogen of these samples would be similar. It is observed 

that the hydrogen content in these samples is higher than that in samples 

prepared with no hydrogen treatment. The samples that were exposed to 

steam and fish had the most surface hydrogen and the most hydrogen that 

diffused deeper into the material as well.  

Based on the above discussion ERDA was a useful technique to determine 

whether or not hydrogen diffused into the metal. It appeals that when 

unprotected tinplate was exposed to steam a definite hydrogen uptake 

occurred in the samples. And when unprotected tinplate was exposed to 

steam and fish even higher hydrogen uptake occurred in the samples.    

 

 
Figure 5-8: A close up on the ERDA spectrum for differently prepared samples with different 
treatment. 

 

By taking a closer look at the spectrum the samples with no treatment, the 

yield moves closer down to background much quicker than any of the 

samples. As expected less hydrogen penetrated far deeper in samples with 
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no hydrogen treatment. The samples exposed to steam and acid had less 

hydrogen penetrating deeper into the metal compared to the samples 

exposed to steam only and steam and product. The samples exposed to 

steam only had a similar amount of hydrogen penetrating into the metal 

compared to the samples exposed to steam and fish.  This above discussion 

was summarized into a depth profiling figure below.  

 

The information obtained from the spectra displayed in figure 5.9 was the 

depth profiling of the samples and the exact H concentration in the sample. 

The depth profiling of all the differently prepared samples are shown below: 
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Figure 5-9: A depth profiling curve for differently prepared samples with no lacquer protection. 

A depth profiling curve was compiled by layers of various thicknesses in the 

tinplate sample. 
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Table 3: A sample with no treatment with different layers with their thicknesses 

  Layer Thickness 
Film 

Thickness 
Film 

Thickness 
H 

concentration 
  (1015Atoms/cm2) (µm) (µm) at % 

Layer  1 230.00 0.062 0.062 14.88 
Layer  2 299.31 0.081 0.143 3.16 
Layer  3 219.16 0.048 0.191 1.40 
Layer  4 1000.00 0.118 0.309 0.90 
Layer  5 1370.55 0.162 0.470 0.64 

When the H+ concentration in the steel matrix was calculated, both surface 

layers were excluded. The average H concentrations throughout the sample 

and the average H concentration in the Steel matrix are shown below: 
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Figure 5-10: Quantitative analysis of the average hydrogen concentrations for different H 
treatments. 

 

Based on the above figure, any of the treatments would cause H to diffuse 

into the unprotected tinplate samples. Even if the samples were exposed to 

acid or product without steam, some hydrogen uptake would occur throughout 

the samples. When the unprotected samples were exposed to steam, whether 

it is with acid or fish severe hydrogen uptake occurred throughout the 

samples.  
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This confirms the fact that the exhaust box would cause severe H uptake to 

the unprotected cans. This damage refers to hydrogen uptake and the effects 

of hydrogen uptake in metals. This is not the case in factories though; all cans 

are protected inside and outside. In the next section the samples will be 

prepared with all the protection on the samples.  

 

 

 

 

 

 

The second set of comparisons will now follow: 

 

 
Figure 5-11: A comparison of the ERDA spectra for differently prepared samples protected with 
lacquer protection. 

 

According to the spectra all the samples behaved the same. Some minor 

differences occurred at the surface in terms of hydrogen concentration, but 

they all definitely overlap. Compared to the spectra for unprotected samples 
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all these samples displayed no differences. This means the can that was sent 

through the exhaust box was exactly the same as the can that was still in the 

crates before it went through. The exhaust box does not affect the cans in 

terms of hydrogen uptake. Hydrogen did not diffuse into the metal matrix 

when the tinplate had the lacquer protection.   

 

 

 

 
Figure 5-12: A close up ERDA spectrum of the comparison for differently prepared samples 

By taking a closer look at the spectrum above it is difficult to distinguish which 

graph is higher or lower. This confirms that the H+ concentration of all the 

samples were similar.  This also confirms that the H+ concentration for the 

untreated samples were the same as the treated samples. Therefore no H+ 

diffused into the material.  
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Figure 5-13: A depth profiling curve for differently prepared samples with lacquer protection. 

 

The concentration of H throughout the sample and the concentration of H in 

the Steel matrix are shown below: 
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Figure 5-14: A quantitative analysis of the hydrogen concentration throughout the sample and in 
the steel matrix of the protected samples. 
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Based on the figure above the hydrogen concentration throughout the 

protected samples are consistent to within 2 at%. And the hydrogen 

concentration in the steel matrix is consistent to within 0.5 at%. Compared to 

the unprotected samples all these samples had the same hydrogen 

concentration.  Based on the above figure it is safe to say that the steam or 

the steam together with the product did not affect the protected samples.  

 

 

5.2) Residual Stress Analysis 
For this set of analysis the samples were prepared as in the second set of 

samples prepared for ERDA. The cans were sent through their respective 

treatments then put in to XRD machine. The whole can was put into the 

machine due to the fact that the metal would relax if the can was cut. 

The tinplate sample consists of many layers as discussed above. The only 

layer that could cause the can to fail is the Fe layer. The residual stress was 

measured in the Fe layer. 

The first step was to check if the X-ray beam would penetrate all the surface 

layers. Phase analysis was done on a piece of tinplate and peaks for all the 

layers were shown. The phase analysis was done at iThemba LABS in Cape 

Town. 
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Figure 5-15: Phase Analysis for a tinplate sample. 

  

The sample was analysed on the inside and the outside of the can. The 

protective layer on the inside is thicker than the layer on the outside. It can 

clearly be seen by the difference in the number of counts. The peaks for the 

Fe layers were very clear. So it was assumed that the stress analysis in the 

Fe layer wouldn’t be a problem.  

 

The residual stress analysis at NECSA was done using 2-dimensional x-ray 

diffraction.  The (310) plane of the Fe layer was analysed with 0.154055nm 

Cu radiation at a 2θ peak position 1160. The Poison ratio was 0.32 and 

Young’s Modulus was 181159 N.m. The (220) plane of the Fe layer was also 

analysed with 0.178897nm Co radiation at a 2θ peak position 1230. The 

Poison ratio was 0.28 and Young’s Modulus was 220264.00 N.m. 

 

The samples were tilted in many different ways. The sample was tilted in 6 

different phi directions. For each phi tilt the sample was tilted another 7 

different omega directions. The sample was tilted in 35 different directions to 

produce a good estimate of the residual stress. 
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The data collected by a 2 dimensional detector were not a spectrum but as 

follows: 

 
Figure 5-16: Images of the diffracted beam at different sample tilts for 2D XRD. 

 

The Pearson VII Peak Evaluation Method (PEM) and the triaxial stress model 

were used to analyse the above data. When the data were analysed a stress 

tensor in the form of a 3 by 3 matrix was produced. 
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A typical Stress Tensor: 

⎟
⎟
⎟

⎠
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⎜
⎜
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⎝

⎛

±−±±−
±−±−±−
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8.1046.1054.2660.836.222.25
4.2606.836.2227.8247.836.107
6.2220.257.836.1077.1890.539

   

This matrix can be manipulated so that all the shear components are 

removed. The result is called the principle stress tensor: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−

8.9200
02.5090
004.867

 

The d0 was calculated using the software to be 0.0905nm. 

 

The first set of cans were measured with a Cu tube and the second set were 

measured with a Cr tube. The principle stress tensors will be compared for 

each can. 3 similar cans went through the same treatment. The cans were 

only treated with steam and steam + product and were compared to untreated 

cans. In total 9 cans were used. 

 
Table 5-4: Residual Stress data for 3 different stress orientations and all the respective 
treatments using the Cu tube. 

H Treatment σ1 (MPa) σ2 (MPa) σ3 (MPa) 

No Treatment 1 -424.4 -229.7 29.6 
No Treatment 2 448.8 221.5 4.2 

No Treatment 3 -311.8 -110.3 0.7 

Steam 1 -867.4 -509.2 -92.8 

Steam 2 -868.3 -241 48.3 

Steam 3 -340 -107.3 0.6 

Steam + Fish 1 -1015.5 -523.6 -105.7 

Steam + Fish 2 -281.0 -172.6 25.1 

Steam + Fish 3 -284.3 -125.8 15.0 

 

 

 

 

 

 



   

 75

Table 5-5: Average Residual Stresses measured with the Cu tube for the respective treatments. 

H Treatment  σ1 (MPa) σ2 (MPa) σ3 (MPa) 

No H treatment Average Stress -95.8 -39.5 11.5 

Standard Dev. 475.0 233.8 15.8 
Steam Average Stress -691.9 -285.8 -14.6 

Standard Dev. 304.8 204.7 71.8 
Steam + Product Average Stress -526.9 -274.0 -21.9 

Standard Dev. 423.1 217.4 72.8 
 

 
Figure 5-17: Average Residual Stress measurements for the respective treatments with a Cu tube. 

 

The reason for measuring the residual stress was to check if any hydrogen 

penetrating into the steel matrix caused some distortion between the atomic 

lattice planes.  

All the results for σ3 are close to 0 MPa. The results for σ1 and σ2 were both 

in compression. Metals split when they are in tension and not in compression. 

The stress orientation of concern was σ1 because the cans split along the 

circumference of the can. The results showed that the material was 
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compressive in the σ1 stress but had a data variation of 1000 MPa which was 

not acceptable. The material was also in a compressive stress state in the σ2 

direction but also had a data variation of 600 MPa. These results were not 

acceptable because any difference in residual stress would not be detected. 

If the results were to be accepted the samples had a higher surface 

compression which is good for the can. This was the opposite effect of 

hydrogen embrittlement. Based on the above results for residual stress, when 

the samples were treated the stress state was improved.  

 

The measurements were repeated with a Co tube. This was done after 

comparing the signal to noise ratios of Co to Cu. The following data displayed 

the peaks above background: 

 

 
Figure 5-18: The signal to noise ratio for the Cu tube.  
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Figure 5-19: The signal to noise ratio for the Co tube. 

 
The black graph displays the raw data and the blue graph displays the 

processed data. The data was processed with the software by smoothing the 

data and removing the background. The graphs for the Cu tube displays a 

very high background and the graphs for the Co tube displays very nice peaks 

above background, bearing in mind that the background is being subtracted. 

When looking at the graphs produced with the Cu tube the peak is not very 

visible and it looks like there is a little shoulder present as well. These are a 

few factors of concern when doing stress analysis and can affect the results if 

the wrong tube is used. When looking at the graphs produced by the Co tube 

the peaks are very clear and no shoulder is present. The above two figure 
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makes it very clear that the results produced with the Co tube is much more 

reliable than those of the Cu tube. 
Table 5-6: Residual Stress data for 3 different stress orientations and all the respective 
treatments with the Co tube. 

H Treatment σ1 (MPa) σ2 (MPa) σ3 (MPa) 

No Treatment 1 136 46.8 -0.5
No Treatment 2 74.3 -21.8 0.1
No Treatment 3 56.8 20.7 -2
No Treatment 4 71 -15.7 1.7

Steam 1 86.8 35.9 -0.4
Steam 2 95.4 -11.6 2.7
Steam 3 84.6 22.6 -2.5
Steam 4 58.7 -28.1 1.6

Steam + Fish 1 53 -36.5 -0.6
Steam + Fish 2 75.2 -28.3 -0.1
Steam + Fish 3 34.5 26.7 10.9
Steam + Fish 4 98.4 -16 -0.1

 

 
 

Table 5-7: Average Residual Stress measurements for the respective treatments with the Co tube. 

H Treatment  σ1 (MPa) σ2 (Mpa) σ3 (Mpa) 

No H treatment Average Stress 84.53 7.50 -0.18 

Standard Dev. 35.15 32.23 1.53 
Steam Average Stress 81.38 4.70 0.35 

Standard Dev. 15.82 29.64 2.29 
Steam + Fish Average Stress 65.28 -13.53 2.53 

Standard Dev. 27.65 28.11 5.59 
 

 

 

 

 



   

 79

 
Figure 5-20: Average Residual Stress measurements for the respective treatments using the Co 
tube. 

 

The solid bar graph indicates the average stress in its particular stress 

orientation. The error bars displays the data variation for the 4 cans prepared 

similarly. 

 

In the σ1 stress orientation the samples had an average residual stress of 80 

MPa and a data variation of 70 Mpa. As the sample was treated with steam 

and steam with product, the σ1 stress state of the metal was improved slightly. 

The samples were in a tensile state which was of concern but when compared 

to the ultimate tensile strength of 700 MPa, the residual stress was negligible.  

 

In the σ2 stress orientation the samples had an average residual stress of 5 

MPa and a data variation of 60 MPa. As the sample was treated the stress 

state in the σ2 direction also improved by a minimal amount. 

 

In the σ3 stress orientation the samples had an average residual stress of 0 

MPa and a data variation of 5 MPa. As the sample was treated with steam the 
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stress state remained the same and when the sample was treated with steam 

and product the stress state in the σ3 direction degraded by a minimal 

amount. 

In summary none of the stress values were exactly the same when the 

samples were prepared similarly. This was the case for treated and untreated 

samples. All the samples had the same data variation and this meant that no 

can would be in a single stress state. Each sample preparation had a range of 

stresses and no significant changes were observed when the samples were 

treated compared to the untreated samples. 

 

Since the residual stresses of the treated samples were the same as the 

untreated samples, the steam or the product does not affect the can in 

anyway. And no distortion between atomic planes was observed; hence no 

observation of hydrogen embrittlement was detected using 2D x-ray 

diffraction. Therefore the exhaust box did not cause any distortion between 

the atomic planes in the Fe layer of the cans. 
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Tensile Testing  
Table 5-8: Samples with no treatment. 

Sample 
Name 

Load 
at 

Offset 
Yield 
(kN) 

Stress 
at 

offset 
Yield 
(Mpa) 

Load 
at 

Max 
Load 
(kN) 

Stress 
at Max 
Load 
(Mpa) 

Maximum 
Diasplacement 

(mm) 

Maximum 
Percent 
Strain 

(%) 

1 1.531 814.002 1.534 815.667 0.931 1.862 

2 1.443 759.176 1.558 819.707 0.353 0.707 

3 1.035 586.483 1.325 750.891 0.409 0.819 

4 1.491 769.966 1.522 785.832 0.244 0.488 

5 1.393 821.965 1.393 821.800 0.204 0.409 

Mean 1.379 750.318 1.466 798.779 0.428 0.857 

S.D 0.199 95.519 0.102 30.471 0.293 0.585 

Minimum 1.035 586.483 1.325 750.891 0.204 0.409 

Max 1.531 821.965 1.558 821.800 0.931 1.862 

   
Table 5-9: Samples exposed to steam only 

Sample 
Name 

Load 
at 

Offset 
Yield 
(kN) 

Stress 
at 

offset 
Yield 
(Mpa) 

Load 
at 

Max 
Load 
(kN) 

Stress 
at Max 
Load 
(Mpa) 

Maximum 
Diasplacement 

(mm) 

Maximum 
Percent 
Strain 

(%) 

1 1.506 840.030 1.544 861.203 0.262 0.524 

2 1.511 805.079 1.544 822.808 0.252 0.505 

3 1.007 559.096 1.542 855.811 0.617 1.234 

4 1.198 617.353 1.221 629.216 0.267 0.534 

5 1.383 746.202 1.552 837.253 0.384 0.767 

Mean 1.321 713.552 1.481 801.258 0.356 0.713 

S.D 0.217 120.986 0.145 97.375 0.155 0.310 

Minimum 1.007 559.096 1.221 629.216 0.252 0.505 

Max 1.511 840.030 1.552 861.203 0.617 1.234 

 

 

 

 

 



Results and Discussion  

 82

Table 5-10: Samples exposed to Steam + Fish 

Sample 
Name 

Load 
at 

Offset 
Yield 
(kN) 

Stress 
at 

offset 
Yield 
(Mpa) 

Load 
at 

Max 
Load 
(kN) 

Stress 
at Max 
Load 
(Mpa) 

Maximum 
Diasplacement 

(mm) 

Maximum 
Percent 
Strain 

(%) 

1 1.476 795.716 1.493 804.973 0.833 1.666 

2 1.338 748.106 1.338 747.967 0.219 0.437 

3 1.424 714.466 1.572 788.634 0.339 0.677 

4 1.192 628.793 1.358 716.396 0.376 0.753 

5 1.624 847.868 1.624 847.785 0.275 0.550 

Mean 1.411 746.990 1.477 781.151 0.408 0.817 

S.D 0.161 83.036 0.127 50.887 0.245 0.490 

Minimum 1.192 628.793 1.338 716.396 0.219 0.437 

Max 1.624 847.868 1.624 847.785 0.833 1.666 

 

 

 

 
Figure 5-21: Average tensile stresses for differently prepared samples. 

 

 

 

 



   

 83

The tensile tests were performed to check if the available diffused hydrogen or 

the heat process produced by the exhaust box reduced the yield stress of the 

steel in the cans. Based on the above figure, all the yield strengths and the 

ultimate tensile strengths were the same within the error bars displayed. This 

means the hydrogen treatments and the heat process produced in the 

exhaust did not affect the strength of the metal in the cans.  

  

 

The results above was the best produced out of many trials. The problems 

encountered were due to the complex structure of the tinplate sample. The 

sample was multilayered, curved and very corrosive in atmospheric 

conditions. 

 

Sample preparation for ERDA was very complicated. When the lacquer and 

the tin layers were removed the sample corroded within five minutes. The last 

trial was done with the last tin protection layer present to prevent the 

corrosion.  

 

For XRD, mounting a can turned out to be very time consuming since the 

machine was built to suit flat and tiny samples. Cutting the cans would cause 

them to relax in terms of stress and would produce unreliable results. The fact 

that the samples had many layers was a problem as well and the size of the 

samples sometimes caused shading to the detector affecting the results.  

 

For tensile testing, technical aspects were encountered like a non 

homogeneous thickness of the sample, the sample was very thin for sample 

preparation, i.e. during machining, and the software only accommodated built 

in functions for tinplate sheets not cans.    

 

The above mentioned problems were a few out of many that were 

encountered and solved during the measurements taken with the mentioned 

techniques used. Planning any kind of work on hydrogen embrittlement or 

corrosion was quite difficult. Research was done in this field of science with 

results and theories contradicting each other.  
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In the end a good literature review was done together with the best equipment 

available in South Africa for measurements. The results could not be 

compared to previous measurements done by other research, since tinplate 

was not measured with the equipment mentioned above. The theories put 

forward and the discussions were logical.      
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CONCLUSION 

Many theories have been put forward as to why H embrittlement caused 

metals to fail. These theories were put to test to check if H embrittlement 

contributed towards the formation of split bodies/flanges in the cans due to the 

exhaust box. When the theories were put to test, no indication of H 

embrittlement was displayed. 

Based on the ERDA results a simulation of potential hydrogen embrittlement 

occurred when tinplate cans without any lacquer was sent through the 

exhaust box. When the real case fish factory scenario was simulated no 

indication of H embrittlement was present in the protected cans. The results 

really displayed the benefit of the lacquer in 2-piece cans.  

The residual stress showed no indication of planes being distorted and hence 

no hydrogen embrittlement either. The results also proved that the Co tube 

produced better results than the Cu tube. It only confirmed the good state of 

the metal. The tensile strengths displayed no differences when the samples 

were exposed to the various hydrogen treatments. The tensile tests confirmed 

that the steam did not reduce the strength of the metal. 

After all the results and the discussions displayed above no indication of 

hydrogen embrittlement was found present. If the exhaust box was the reason 

the cans failed, hydrogen embrittlement was not the cause.      
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