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Market Segmentation and Factors A�ecting Stock

Returns on the JSE �

Artwell S Chimanga

Department of Statistics

University of the Western Cape

South Africa

Abstract

This study examines the relationship between stock returns and market segmentation.

Monthly returns of stocks listed on the JSE from 1997-2007 are analysed using mostly

the analytic factor and cluster analysis techniques. Evidence supporting the use of

multi-index models in explaining the return generating process on the JSE is found.

The results provide additional support for Van Rensburg (1997)'s hypothesis on market

segmentation on the JSE.

Keywords: Market-Segmentation, Principal Components, Cluster Analysis, Multifactor

models, Co-variances, Abitrage Pricing Theory, Sector Indices, JSE.

�This project has been submitted in partial ful�llment of the requirements of a \MSc Computational

Finance" at the University of the Western Cape, South Africa.
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1 Introduction

This study seeks to identify the forces that drive stock market returns. The goal is to come

up with factor models that completely capture all the systematic components of stock return

co-variances, which is attributable to the di�erential rate of returns for di�erent sectors or

partial segmentation of �nancial markets. The research will also endeavour to show that

multi-index models are appropriate in capturing the co-variation that is usually relegated to

the residual errors in single index models.

Multivariate techniques are going to be empolyed to test the market hypothesis theory

and come up with factors that explain returns. Factor analysis is applied to compounded

monthly stock returns. The aim of the analysis is to discover and "explain" the degree of

cross-sectional interdependence exhibited by the returns series. A desired result is to sepa-

rate the large set of individual series into a smaller set of clusters of security price changes

that tend to move as homogeneous groups. Conclusions are drawn concerning the degree of

agreement between cluster analysis and the statistical factor analytic method.

The statistical factor analysis yielded a two factor model. The macro-economic identities of

these factors provide interesting insights into the economic determinants of the JSE returns.

The �rst factor can be represented by the Industrial Index and the second factor can be

linked to the Gold Mining Index. These results emphasise the importance of the Market

Segmentation Hypothesis on the JSE's return generating process. Results also show that

the multi-index model provides a better representation of the determinants of stock returns

than the Capital Asset Pricing Model (CAPM). The study also documents the links between

the risk premia obtained in both approaches.

The research is organized as follows. The next section discusses the data and data manipula-

tion used in this project. The third section presents the methodology, and the fourth section

discusses the theoretical framework and reviews of other studies done on factor analysis.
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The �fth section discusses the market segmentation hypothesis. The sixth section reports

the estimation results on market segmentation and risk factor based on cluster and factor

analysis methodology. The seventh section concludes the study.

2 Data Samples and Description

The JSE is the 14th largest equities exchange in the world, with a total market capitalisation

of R5.7 trillion ($730bn). As is the case with most emerging markets, the JSE market is

highly concentrated with the �ve largest companies accounting for almost 37% of the total

market capitalisation. As a result, the remainder of the market su�ers from severe liquidity

problems, with some stocks being traded on a very irregular basis. The JSE market liquidity

is currently around 30%.

To avoid the issue of liquidity the study will focus on portfolios representing various industry

sub-sectors for cluster analysis, and the top 100 shares according to maket capitalisation for

factor analysis. The data sample contains monthly share prices listed from January 1997 to

December 2007. The choice of using a monthly frequency is dictated by the need to avoid

serial correlation among the data. Statistical factor analysis assumes that the data has no

serial correlation, and this assumption is often violated by �nancial data taken with a fre-

quency less than or equal to a week. The tickers for the shares used in this study can be

found in the appendix.

The data were cleaned, using the skipped Huber method. The method involves using con-

�dence limits calculated from medians of share price series to identify extreme values. The

only problem with the method is that it does not di�erentiate between observations that take

on extreme values because of measurement errors and those that are real extreme values.

Missing data were replaced using the mean of nearby data points.
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In the next step the �ltered and standardized data is then used to calculate the returns series.

The returns on equity prices are calculated as log di�erence of the prices plus dividends �

Rjt = loge((Pjt +Djt)=Pjt�1)

where Rjt is the return on share j in month t; Pjt and Pjt�1 are the prices of share j in month

t and Djt is the dividend paid on share j in month t. Since the computation of logarithmic

returns involves the loss of the observation of price in the sample the price series is adjusted

to have the same starting point as the log return series.

�see Barr (1990), R Mangani (2007) for the distributional properties of JSE prices and returns.
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3 Methodology

3.1 Market Segmentation Hypothesis

Cluster analysis which is often referred to as market segmentation analysis, will be used to

help establish market composition of the JSE, by sub-dividing it into discrete groups (known

as 'clusters'). The advantage of using cluster analysis over other techniques used in most

empirical research is that it is a classi�cation technique.

In this study, an attempt is made to group stocks by sectors. Cluster analysis involves

searching for natural groupings amongst objects and is thus a more inductive approach.

Cluster analysis will be performed over two time-periods i.e. (1997-2002) and (2002-2007).

The reason for splitting the 10-year data into two periods is to give a reection on the

developments within companies over the periods.

3.1.1 Similarity Measures

There are di�erent methods for computing similarity measures between objects. A fun-

damental method is the shortest Euclidean distance method between two p dimensional

observations. For each pair of shares, it is computed as:

distance(x; y) = [�(xi � yi)
2]

1

2

where xi is the total return in month i from share x.

Cluster analysis is used to objectively group the stocks using a hierarchical agglomeration

algorithm. The cluster analysis method uses as input the correlation coe�cients in the form

of a similarity matrix of the listed stocks, and sequentially merges the most similar cases.

The mergers of clusters are represented visually via a tree diagram called a dendogram. This

represents a hierarchical organisation of the relations between the data points. We propose

the use of the average linkage method for calculating the distance between clusters. This

method computes the average of stock returns, and joins stocks to a cluster depending on
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this arithmetic average linkage. Its advantage lies in the fact that averaging returns across

time compensates for the e�ects of the stochastic movement of JSE return series.

3.2 Identifying Factors

This study makes use of purely statistical factors to investigate the degree of commonality

between JSE stock returns. A number of principal components will be extracted and re-

gressed against returns for each market proxy. The technique allows us to compress a large

set of correlated variables into a smaller set of principal components or factors which are

mutually orthogonal and explain a signi�cant proportion of the variability of the original

set of variables. The factors of the Arbitrage Pricing Model (APT model) are the principal

components of the space of security returns. Each variable is assumed to be dependent on

a linear combination of the common factors, and the coe�cients are known as loadings.

Each measured variable also includes a component due to independent random variability,

known as 'speci�c variance' because it is speci�c to one variable. Speci�cally, factor analysis

assumes that the covariance matrix of the data is of the form.

�x = ��T +	

where � is the matrix of loadings and the elements of the diagonal matrix 	 are the speci�c

variances. The decomposition of the index return space generally involves the rotation of

the estimated factors so that the factor loadings are either very large or very small. The

procedure used in order to perform this is known as the Varimax rotation, see Johnson

and Wichern (1982). Orthogonalization eliminates any e�ects of causal interactions among

factors. The actual estimates of the factors through time are known as the factor scores.

These are simply the rotated factors at each point in time as calculated from the equation

above. Factor rotation helps to simplify the structure in the loading matrix, to make it easier

to assign meaningful interpretations to factors.
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3.2.1 Number of Factors

The scree test will be used to determine the number of factors to retain in a factor analysis or

principal component analysis. The scree test involves plotting the eigen-values in descending

order of their magnitude against their factor numbers and determining where they level o�.

The break between the steep slope and leveling o� indicates the number of meaningful factors.

The technique is illustrated and compared with an alternative technique for determining the

number of factors to retain. The theoretical framework behind this methodology is discussed

in the literature review.

3.3 Validation of Risk Factors

After identifying the factors it is necessary to validate them. Here a technique proposed

by Fama and MacBeth (1973) is empolyed. The data set is �rst divided into 120 periods

to estimate the factor sensitivities. The sensitivities referred to here, are the coe�cients

obtained from the regression of our returns on the realizations as described by the equation

below:

rit = �i0 +
kX

k=1

Fik�kt + �it

where rit represents the stock returns, Fik represents the factors, �kt represents the stock

sensitivity, and eit denotes residuals that are uncorrelated to the market. In the second

step, we perform cross-sectional regression on our estimated sensitivities as described in the

equation below:

rit � rrfr = �0t +
kX

j=1

�ik�̂kt + �it

where rrfr is the risk free rate proxied by the call rate, �̂kt is the estimated sensitivity of each

individual stock to the ith factor. This procedure produces estimates of the risk premia for

our factors for the 120 months under study. The next step is to test whether these estimates

are di�erent from zero, if the mean of these estimates are signi�cantly di�erent from zero,

then it means our factors explain the return generating process.
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The cross-sectional regression test is also performed on the estimated sensitivities taking

into consideration the upward and downward markets. It is generally believed that there is a

positive risk-return relationship in upward markets and a negative relationship in downward

movement in the market. The relationship is described in the equation below.

rit � rrfr = �0t +
kX

j=1

�+
jt�j�̂ij +

kX
j=1

��
jt(1� �j)�̂ij + �it

where �0t is the constant term, �
+(�)
jt is the estimated risk premium for factor j conditional

on a positive (negative) realization of factor j in month t, �j is a dummy variable equal to 1

when factor j is positive and equal to 0 otherwise and �it represents the residual error term.
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4 Arbitrage Pricing Theory

The APT of Ross (1976) provides a theoretical framework to determine the expected returns

on stocks, but it does not specify the number of factors nor their identity. Hence, the imple-

mentation of this model follows two avenues: factors can be extracted by means of statistical

procedures, such as factor analysis or principal component analysis, or be pre-speci�ed using

mainly macro-economic variables. This study will focus mainly on the statistical procedures.

4.1 Single-Index Model

This is the single-index covariance matrix of Sharpe (1963). Sharpe (1963)'s single-index

model assumes that stock returns are generated by:

rit = �i + �ir0t + �it

where �i and �i are regression coe�ents, and residuals eit are uncorrelated to market returns

r0t and to one another. Also, within stocks the variance is constant, that is, V ar(eit) = �ii.

The covariance matrix implied by this model is:

� = �200��
0

+�

where �200 is the variance of market returns, � is the vector of slopes and � is the diagonal

matrix containing residual variances �ii. Let �ij be the (i; j) � th entry of �. This model

can be estimated by running a regression of stock i0s returns on the market. Let bi be the

slope estimate and dii the residual variance estimate. Then the single-index model yields the

following estimator for the covariance matrix of stock returns:

F = s200bb
0

+D

where s200 is the sample variance of market returns, b is the vector of slope estimates and

D is the diagonal matrix containing residual variance estimates dii. Let fij be the (i; j)-th

entry of F.
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Two technical assumptions are made.

� Assumption 1. � 6= �.

� Assumption 2. The market portfolio has positive variance, that is, �200 > 0.

There is a close relationship between the single index model and the CAPM. The only major

di�erence between the two is that the exact composition of the market portfolio is not as

critical here as it is for the CAPM (Roll, 1977). This means that any market index would

do as long as it explains a signi�cant part of the variance of most stocks.

4.2 Industry Factors

This re�nement of the single-index model assumes that market residuals are generated by

industry factors:

rit = �i + �ir0t +
kX

k=1

cikzkt + �it

where k is the number of industry factors, cik is a dummy variable equal to one if stock i

belongs to industry category k; zkt is the return to the k-th industry factor in period t and

ekt denotes residuals that are uncorrelated to the market, to industry factors and to each

other. Industry factor returns are de�ned as the return to an equally-weighted portfolio of

the stocks from this industry in our sample.

4.3 Statistical Factors

An alternative approach to multifactor models is to extract the factors from the sample

covariance matrix itself using a statistical method such as principal components, see Chen

et al., (1986). Statistical factor models treat the common factors as unobservable or latent

variables to be estimated from return series. Since principal components are chosen solely

for their ability to explain risk, fewer factors are necessary, but they do not have any direct

economic interpretation. However, o�ering economic insight does not necessarily generate a

valid model, see Fama (1991). The advantage of factor analysis is the absolute objectivity

10

 

 

 

 



of the approach. Neither the sensitivities nor the factors are de�ned in advance, but rather

are estimated based on the data.

Lets consider the return r
0

t
of k assets at time period t and assume that the return series rt

is weakly stationary with mean � and covariance matrix �r. The statistical factor model is

in the form

rt � � = �ft + �t

where � = [�ij]k�m is the matrix of factor loadings, �ij is the loading of the ith variable

on the jth factor, and �it is the speci�c error of rit. A key feature of the statistical factor

model is that the factors fit and the factor-loadings �ij are unobsevable. Our factor model

is orthogonal if it sati�es the following assumptions,

� Assumption 1. E(ft) = 0 and Cov(ft) = Im, an m�m identity matrix;

� Assumption 2. E(�t) = 0 and Cov(�t) =D=diag(�
2
1; ::::::; �

2
k)

� Assumption 3. ft and �t are independent so that Cov(ft; �t) = E(ft�t) = 0m�k.

4.3.1 Estimation

The orthogonal factor model can be estimated by two methods. The �rst estimation method

uses the principal component analysis. This method does not require the normality assump-

tion of the data nor the prespeci�cation of the number of common factors. It applies to

both the covariance and correlation matrices. The second method is the maxium likelihood

method that uses normal density and requires a pre-speci�cation for the number of common

factors.
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Principal Component Method

Let (b�1; be1); :::::::::; (b�k; bek) be pairs of the eigenvalues and eigenvectors of the sample covari-

ance matrix b�r, where b�1 � b�2 � � b�k. Let m < k be the number of common factors. then

the matrix of factor loadings is given by

b� � [b�ij] = [

qb�1be1j
qb�2be2j:::::::::::::j

qb�mbem]:
The estimated speci�c variances are the diagonal elements of the matrix b�r� b�b� 0

. The error

matrix derived by approximation is

b�r � (b�b� 0

+ bD):

Ideally, this matrix should be close to zero. The estimated factor loadings based on the prin-

cipal components method do not change as the number of common factors m is increased.

Maximum Likelihood Method

If the common factors ft and the speci�c factor errors �t are jointly normal, then rt is

multivariate normal with mean � and covariance matrix �r = ��
0

+ D. The maximum

likehood method can be used to obtain estimates of � and D under the constraint �
0

D�1� =

�, which is a diagonal matrix. Here � is estimated by the sample mean see, Johnson and

Wichern (1982). In using the maximum likelihood method, the number of common factors

must be given a priori. In practice, one can use a modi�ed likelihood ratio test to check the

adequacy of a �tted m-factor model. The test statistic is

LR(m) = �[T � 1�
1

6
(2k + 5)�

2

3
m](lnjc�rj � Injb�b� 0

+ bDj)
which, under the null hypothesis of m factors, is asymptotically distributed as a chi-squared

with 1
2
[(k �m)2 � k �m] degrees of freedom.
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4.3.2 Factor Rotation

As mentioned before, for any m�m orthogonal matrix P,

rt � � = �ft + �t = ��f�
t
+ �t;

where �� = � P and f�
t
= P

0

ft. In addition,

��
0

+D = �PP
0

�
0

+D = ��(��)
0

+D

This result indicates that the commonalities and the speci�c variances remain unchanged

under an orthogonal transformation. It is then reasonable to �nd an orthogonal matrix P to

transform the factor model so that the common factors have simple interpretations. Denote

the rotated matrix of factor loadings by �� = [��ij] and the ith communality by c2i . De�ne

e��ij = �ij=ci to be rotated coe�cients scaled by the (positive) square root of communalities.

The varimax procedure selects the orthogonal matrix P that maximises the quantity.

V =
1

k

mX
j=1

[
kX

i=1

(e��ij)4 � 1

k
(

kX
i=1

��2ij )
2]:

Maximising V corresponds to spreading out the squares of the loadings on each factor as

much as possible. Consequently, the procedure is to �nd groups of large and negligible

coe�cients in any column of the rotated matrix of factor loadings.

4.4 Asymptotic Principal Component Analysis

The classic principal components analysis (PCA) discussed in section 4.3.1 only works in

cases where the time series dimension T is greater than the cross-sectional dimension k (i.e.

the number of stocks). In cases where T < k, the asymptotic principal component analysis

(APCA) is used (Connor and Korajczyk (1993)). The method relies on the asymptotic results

as the number of assets k increases to in�nity. Thus, the APCA is based on eigenvalue-

eigenvector analysis of the T � T matrix below
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b
T =
1

k � 1

kX
i=1

(Ri �R
 1
0

k
)(Ri �R
 1

0

k
)

0

where Ri is the time series of the ith asset, R = 1
k

Pk

i Ri and 1k is the k-dimensional vector

of ones.y Connor and Korajczyk (1993) proposed re�ning the estimation of bft (the �rst m
eigenvectors of b
T) as follows:

� use the sample covariance matrix to obtain an initial estimate of bft for t = (1; ::::; T ).

� For each asset, perform the OLS estimation of the model rit = �i + �
0

i
bft + �it where

t = (1; ::::::; T ) and compute the residual variance b�2i .
� Form the diagonal matrix bD = diagfb�21; :::::; b�2kg and rescale the returns.

� Compute the T � T covariance matrix using R� the re�ned estimate of Ri as

b
� =
1

k � 1

kX
i=1

(R� �R� 
 1
0

k
)(R� �R� 
 1

0

k
)

0

where R� is the vector of row averages of R�, and perform eigenvalue-eigenvector

analysis of b
� to obtain a re�ned estimate of ft, called ft�.

4.4.1 Selecting the Number of Factors

Determining the appropriate number of factors is crucial to APT analysis. Two methods are

available to help select the number of factors in factor analysis. The �rst method proposed

by Connor and Korajczyk (1993) makes use of the idea that if m is the proper number of

common factors, then there should be no signi�cant decrease in the cross-sectional variances

of the asset speci�c error �it when the number of factors moves from m to m+1. The second

method proposed by Bai and Ng (2002) adopts some information criteria to select the number

of factors. This latter method is based on the observation that the eigenvalue-eigenvector

analysis of 
̂T solves the least squares problem

yNote: As k !1 eigenvalue-eigenvector analysis of b
T is equivalent to the traditional statistical factor

analysis.
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min�;�;ft
1

kT

kX
i=1

TX
t=1

(rit � �i � �
0

ift)
2

where it is assumed that there are m factors so that ft is m-dimensional. Let b�2i (m) be the

residual variance of the inner regression of the prior least squares problem for asset i. The

study will be focusing mainly on the second methodology, as it is more intuitive and easy to

implement.
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5 Market Segmentation

5.1 An Overview of International Markets

In the international literature the segmentation of �nancial markets is mainly attributed to

government controls and restrictions on international capital ows. All of the market seg-

mentation attributes are predominantly found in emerging markets where governments still

have major control over �nancial markets, see Choi and Rajan (1996). Empirical analysis

indicates that national equity markets can be described as being partially segmented and

partially integrated rather than a polar case of complete segmentation or complete integra-

tion. Some studies also suggest that market segmentation can be attributed increasingly to

globalisation. For instance, Gri�n and Karolyi (1998) �nd that industries with internation-

ally traded goods are more sensitive to global industry factors than �rms that produce goods

that are only domestically traded.

5.2 A South African Perspective

The JSE comprises of 32% international shares and the rest are domestic shares. Firms with

international traded goods are dependent on international politics and economic events that

are usually di�erent to developments in the South African economy. This brings another

dimension to the pricing paradigm, as the stock returns are mostly likely to be a�ected by

di�erent underlying factors.

In 1979 Campbell pioneered work on the segmentation of the JSE. It was found that the

CAPM beta of the industrial index was negatively related to beta of the Gold Index. This

meant that the single index model was no longer su�cient to explain stock returns. It was

also found that this non-stationarity of the beta was also predominant among individual

shares within each index indicating that di�erent macro-economic factors a�ected each set

of shares over the ten year period under study. This study also revealed that individual
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share betas were more stable when measured against their respective sector indices.

Van Rensburg and Slaney (1997) documented that segmentation exist on the JSE. They

suggested that the JSE Actuaries All Gold and Industrial Indices might be employed as

observable proxies for the �rst two factors analytically extracted on the JSE. They went on

to claim that a two factor model speci�ed in this manner provides a more comprehensive

explanation of the generating process operational on the JSE than the single index model

of Markowitz (1959) and Sharpe (1963). The implication of their �nding is that there is

a separate pricing paradigm for mining and industrial assets. These results seem to sup-

port the two Security Market Line (SML) approach suggest by Campbell (1979) and Venter,

Brad�eld and Bowie (1992).

Contrary to the above �nds Ward (1994) applied a clustering technique to the di�erent sector

indices; Ward found the use of the All Share Index rather than the relevant sector index

an appropriate market index. Ward also found that there was not a statistical di�erence

between the clusters observed on the JSE, supporting the notion of an integrated rather than

a segmented market.
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6 Analysis

6.1 Factor Analysis

The method proposed by Bai and Ng (2002) was initially used to determine the number

of relevant factors. The method identi�es factors by examining scree plots of eigenvalues

against the factors; the break between the steep slope and levelling o� indicates the number

of meaningful factors. Judging from the scree plot and pareto chart, it can be seen that

the factor structure can be explained by two factors. The method developed by Connor and

Korajczyk (1993) also gives the same result as the Bai and Ng (2002) method. Table 1 reports

the values of these statistics for the di�erent number of factors. The statistic rejects the null

hypothesis at K = 3, meaning only the �rst two factors are relevant. Figure 1 displays the

pareto plot explaining variablity and �gure 2 presents the scree plot of eigenvalues.

Figure 1: Pareto plot explaining variability.
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Figure 2: Scree plot of eigenvalues.
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Table 1: Test of the number of statistical factors

Number of factors K Asymptotic t-statistic(�K;K+1)

1 2.34

2 4.39

3 2.53*

4 0.65

5 2.42

6 1.28

7 3.65

8 4.52

9 3.27

10 1.23

* Null hypothesis of having K factors is rejected at the 5% level.

Table 2: Extraction sums of squared loadings.

Component Total % of Variance Cumulative %

1 29.094 18.812 18.812

2 7.778 9.227 28.039

3 5.65 5.071 33.11

4 5.217 4.635 37.745

5 4.878 3.651 41.396

6 4.753 3.483 44.879

7 4.3 3.237 48.116

8 3.841 3.087 51.203

9 3.733 3.009 54.212

10 3.586 2.881 57.260
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The principal component analysis is then run in order to determine how much each factor

contributes to the JSE stock market returns. Table 2 shows the results for the principal

component analysis. The �rst factor explains 18.812% of the variance, the second factor

9.227%, the third 5.071%, while the ten variables together explain 57.26% of the variance of

the stock returns.

6.2 Factor Identi�cation

In this section an attempt is made to give economic interpretation to our statistical factors

identi�ed above. The economic factors identi�ed in this section are going to be used as the

index proxies for the regression model. The factor variables are identi�ed by correlating the

factor scores against economic indicators that we suspect will explain the return generating

process. Most of these economic factors have already been identi�ed as being signi�cant in

explaining risk in the previous studies done on the JSE. Judging from the results in table 3

it can be seen that there is a very high correlation between Industrials and the �rst factor

(0.891), which means Industrials explain the factor better than the other macro-economic

factors. The second factor is best explained by the Gold mining index (0.689), an alternative

index could be Resources as it explains almost the same variability (0.663).

6.3 Regression Results

This section test the hypothesis that returns are generated by the two-factor model below

rit = �i + �iindrindt + �igoldrgoldt + �it

where �iind is the industrial index sensitivity measure, Rindt is the industrial index return,

�igold is the gold mines index sensitivity, Rgoldt is the gold mines returns and and ekt denotes

residuals that are uncorrelated to the market, factors and each other.

From table 4 it is clear, that our model provides support for the APT. Thus, the inclusion

of the two macro-economic variables gives us better explanation of equities' returns. The
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Table 3: Correlations between factor scores and economic factors.

REGR factor score 1 REGR factor score 2 REGR factor score 3

Resources (J258) 0.536(**) .663(**) .080

Indusrial(J520) .891(**) .092 -.023

Financials(J580) .854(**) -.063 -.007

Gold mines(J150) .269(**) .689(**) -.051

Platinum mines(J153) .324(**) .571(**) .148

Other mineral (J154) .467(**) .405(**) .039

USDZAR -.297(**) .275(**) .076

Commodities(WCPALL) .310(**) .121 .097

Long rate bond(RLRS) -.558(**) .167 -.038

S&P 500 (FSPI) .548(**) .013 .108

** Signi�cant correlations at 5%.

Table 4: Results of the cross-sectional test of the statistical APT.

Average risk premia computed over the whole sample

Constant Factor 1 Factor 2

Average risk premia .00066 .045 .054

Positive factor realisation - 0.245* 0.423*

Negative factor realisation - -0.757* -0.564*

Risk premia di�erence - -0.512 -0.141

*Average risk premium is signi�cant at the 5% level.

Table 5: Average R2 results from regression.

Gold and Industrial as proxies Model with ALSI as proxy.

Average Adjusted R2 .417 .262

Average mean of variation .0808 .269
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average adjusted R2 is equal to 0.417 and the average cross-sectional R2 is 0.6401. These

levels of explanatory power are very high for cross-sections of stock returns. As the cross-

sectional regressions are performed on excess returns, the constant term should be equal to

zero. Table 3 indicates that the average risk premium on the intercept is close to zero and

cannot be statistically distinguished from this value, which shows that the cross-sectional

variation in excess returns is fully captured by the sensitivities to the two factors. It is

noted that the risk premia values for both factors were not signi�cant at the 5 % level. Their

signi�cance however improved when the positive and negative realisations of the factors were

taken into account. It is also evident from table 4 that our two factor model explained 15.5%

more of the average variation in individual share returns when compared to the CAPM.
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6.4 An Analysis of Segmentation

This section gives a brief discussion of the market segementation results. Cluster analysis

and the factor analytic method were used to test for market segmentation. Sector indices

were included together with share returns for the factor analysis. Returns of the following

indices were used in the analysis; Resources (J258), Industrial (J520), Financials (J580),

Gold mines (J150), Platinum mines (J153), Other mineral (J154), USDZAR, Commodities

(WCPALL), Long rate bond (RLRS) and SP 500 (FSPI). The varimax factor loadings are

graphically presented in �gure 3. z

The factor analytic results seem to suggest that the market is divided into two segments;

the Gold mining/Resources for the smaller group of shares and Industrial/Financials for the

larger group. These results give further evidence to Page (1996), Gilbertson and Goldberg

(1981) and Van Rensberg and Slaney (1997)'s two index multi-market models that employ

the All Gold and Industrial indices as proxies for the return generating process.

Cluster analysis results were inconclusive as clusters constituents kept changing over the

two periods under study. Sokal and Rohlf (1962) suggested that in order to claim market

segmentation, the dendogram should have the same cluster constituents over the periods

under study. On the other hand to claim market integration it is imperative that the within

cluster sum of squares be as close to zero as possible, so as to indicate a tight spread around

the centroid which is not the case with our results. Hence we cannot make any meaningful

conclusion from cluster analysis. Dendograms showing cluster analysis results are given in

the appendix.

zVerimax rotation was used in factors analysis to help simplify the structure in the loading matrix, to make

it easier to assign meaningful interpretations to factors.Promax rotation results are given in the appendix.
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Figure 3: Factor pattern using varimax rotation.
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7 Conclusion

This study proposed the use of multi-index models in explaining the return generating process

on the JSE. The argument for the use of multi-index models is based on the APT which

states that stock market returns can be determined by two or more factors and the fact that

emerging markets are generally segmented. Our method involved extracting the model fac-

tors using purely statistical methods; principal components and factor analysis. The factors

were chosen solely for their ability to explain risk; hence fewer factors were necessary.

We found evidence of partial segmentation on the JSE using the factor analytic method.

The results seem to suggest that the Gold Mining and Industrial Indices can be used to ex-

plain returns for the JSE. Factor analysis gives further support to Van Rensberg and Slaney

(1997)'s work on market segmentation. We also employed cluster analysis to give supporting

evidence of market segmentation, but the results were inconclusive, as the cluster's con-

stituents kept changing over the two periods under study.

The validity of our two factor model and the CAPM was tested, using a technique initially

proposed by Fama and MacBeth (1973). The test shows that neither our model or the CAPM

signi�cantly explains the relationship between risk and return. The risk-returns for the two

factor model only became signi�cant when we considered the change in sign of our factor

realisations. The result was however di�erent for the CAPM whose risk -return relationship

remained insigni�cant even after considering the positive and negative realisations. This

result clearly con�rms that APT better explains risk-relationship as compared to CAPM.

Future research should investigate whether �nancial markets in developed and other emerging

markets are also segmented. It is possible that this phenomenon is not only unique to the

JSE, but prevalent in most �nancial markets. Future research should also consider looking at

the time varying components included in the factor models using methods, such as GARCH

and the Kalman-�lter method.
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7.1 Limitations

During the course of implementing this research project several limitations became appar-

ent. First, our dataset was reduced in the data cleaning process as cluster analysis data is

required to have the same time series size. Sampling errors might have crept in. Second,

sub-sector portfolios indices were created according to the FTSE/JSE global classi�cation;

this might present problems if there are stocks with a di�erent natural classi�cation.
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8 Appendix

Matlab code for cluster analysis

tic %keeps track of time

clear all;clc;

%Imports data from excel

[numeric,txt,raw]=xlsread('D:\Dat\clusters2.xls',-1);

%Converts data to a financial time series

% n = datenum(datestr(datenum(text(1,2:end), 'dd.mm.yyyy'),1);

n=datenum(txt(1,2:end))

Tickseries=fints(n,numeric',txt(2:end,1)','monthly','Sector returns');

returns=fts2mat(Tickseries);

returns=numeric'

%splits returns set from Jan 1998-Nov 2002

category1 = returns(:,1:end/2);

%%splits returns set for Dec 1998- Dec 2007

category2 = returns(:,end/2+1:end);

%cluster analysis

%pdist caculates the Euclidean distance.

cluster1=pdist(category1);

cluster2=pdist(category2);

%linkage takes the distance information generated by pdist and links

pairs of objects that are close together into binary clusters

cluster1a = linkage(cluster1,'average');

cluster2b=linkage(cluster2,'average');

%Compute Spearman's rank correlation between the

%dissimilarities and the cophenetic distances

[c,D] = cophenet(cluster1a,cluster1);
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r = corr(cluster1',D','type','spearman')

[c,E] = cophenet(cluster2b,cluster2);

v= corr(cluster2',E','type','spearman')

dendrogram(cluster1a,'colorthreshold','default');

title('Cluster analysis from 1998-2002')

subplot(2,1,1)

dendrogram(cluster2b,'colorthreshold','default');

title('Cluster analysis from 2002-2007')

subplot(2,1,2)

toc % Keep track of time

Matlab code for factor analysis

tic % Keep track of time

%Clear Workspace

clear all;clc;

%Imports Data from excel

[numeric,txt,raw]=xlsread('D:\CLEANEDDATA.xls',-1);

%Converts my raw data to continuously compounded return series.

% n = datenum(datestr(txt(1,3:end), 'dd.mm.yyyy'),1));

n=datenum(txt(1,3:end));

Tickseries=fints(n,numeric',txt(2:end,1)','monthly','JSE returns');

returns = tick2ret(fts2mat(Tickseries),[], 'Continuous');

[SUCCESS,MESSAGE]=XLSWRITE('E:\CLEANEDDATA.xls',returns,'economicdata','a1')

%Principal component analysis

[pc, score, latent, tsquare] = princomp(returns);

pareto(latent)

xlabel('Principal Component')

ylabel('Variance Explained (%)')
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%Factor Loadings-Returns

returns=returns(all(~isnan(returns),2),:);

for i=1:7

[Prices,specVar,T,stats,F] = factoran(returns,7,'scores','regr')

end

%Factor pattern using verimax rotation.

biplot(Prices,'scores',F,'varlabels',num2str((1:end)'))

subplot(1,1,1);

xlabel('Component 1');

ylabel('Component 2');

zlabel('Component 3');

axis square;

view();

toc % Keep track of time
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Cluster analysis results

Figure 4: Dendograms showing clusters
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Figure 5: Factor pattern using promax rotation.
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Ticker Ticker Sub-Sector Classi�cation Market Capitalization

1 AGL Metals & Minerals 686834.02

2 BIL Metals & Minerals 630291.74

3 MTN Wireless Telecom Services 280710.86

4 SOL Oil - Integrated 280022.85

5 SAB Beverages - Brewers 266146.49

6 IMP Platinum 202105.21

7 OML Life Assurance 105191.1

8 ACL Steel 104306

9 REM Diversi�ed Industrials 89643.57

10 FSR Banks 88219.33

11 LON Platinum 74049.68

12 ANG Gold Mining 73050.43

13 NPN Broadcasting Contractors 66949.36

14 GFI Gold Mining 65253.85

15 ASA Banks 64645.41

16 ARI Metals & Minerals 54542.43

17 NED Banks 53385.95

18 LBT Real Estate Investment Trusts 51517.35

19 SLM Life Assurance 44690.16

20 HAR Gold Mining 35895.04

21 RMH Banks 29816.69

22 MUR Other Construction 29657.92

23 AEG Other Construction 25269.67
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Ticker Ticker Sub-Sector Classi�cation Market Capitalization

25 TBS Food Processors 24998.91

26 SHP Food & Drug Retailers 23722.88

27 BAW Diversi�ed Industrials 22609.82

28 PPC Building & Construction Materials 21472.24

29 LGL Life Assurance 21255.62

30 ABL Consumer Finance 20933.16

31 HVL Steel 17351.27

32 IPL Shipping & Ports 16334

33 GRT Real Estate Holdings & Development 16165.29

34 NTC Hospital Management &Long Term Care 16065.88

35 NHM Platinum 15728.02

36 PIK Food & Drug Retailers 14981.56

37 DSY Life Assurance 14502.85

38 MSM Retailers - Multi Department 14444.8

39 INL Investment Banks 13308.88

40 MVL Metals & Minerals 12693.5

41 GND Marine Transportation 12176.41

42 APN Pharmaceuticals 12126.52

43 TRU Retailers - Soft Goods 11895.59

44 MDC Hospital Management &Long Term Care 11575.63

45 DDT Computer Services 11237.47

46 RLO Electrical Equipment 11188.31

47 NPK Containers & Packaging 10851.17

48 ILV Food Processors 10838.34

49 WHL Retailers - Multi Department 10655.41
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Ticker Ticker Sub-Sector Classi�cation Market Capitalization

50 SNT Insurance - Non-Life 9915.2

51 HCI Investment Companies 9183.32

52 FOS Retailers - Soft Goods 8898.43

53 AFX Chemicals - Speciality 8605.61

54 MRF Metals & Minerals 8551.09

55 MTX Metals& Minerals 8393.09

56 WBO Other Construction 8314.68

57 AFE Chemicals - Speciality 7969.01

58 MET Life Assurance 7053.65

59 PAM Nonferrous Metals 7008.94

60 CAT Publishing & Printing 6740.7

61 JDG Retailers - Hardlines 6570

62 HYP Real Estate Holdings & Development 6187.72

63 SAC Real Estate Investment Trusts 6163.9

64 GDF Gaming 6073.4

65 GRF Other Construction 5950.8

66 ALT Wireless Telecom Services 5832.71

67 RDF Real Estate Holdings & Development 5529.08

68 FPT Real Estate Investment Trusts 5528.04

69 AVI Food Processors 5019.65

70 DTC Computer Services 4619.53

71 NCL Retailers - Multi Department 4507.99

72 RBW Farming& Fishing 4495.07

73 SIM Gold Mining 4364.95

74 SNU Metals & Minerals 4322.63
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Ticker Ticker Sub-Sector Classi�cation Market Capitalization

75 MPC Retailers - Soft Goods 4179.41

76 BEL Leisure Equipment 4078.95

77 PAP Real Estate Holdings & Development 4017.08

78 ATN Electrical Equipment 3957.31

79 PSG Investment Banks 3713.86

80 OMN Chemicals - Speciality 3659.37

81 PGR Investment Banks 3113.96

82 CLH Hotels 3105.59

83 DAW Building & Construction Materials 2680.5

84 PET Metals & Minerals 2610.61

85 HDC Engineering - General 2594.39

86 CPL Real Estate Investment Trusts 2564.35

87 AFR Farming & Fishing 2429.66

88 CLE Life Assurance 2426.25

89 OCE Farming& Fishing 2353.79

90 BAT Investment Banks 2320.23

91 MTA Auto Parts 2135.45

92 WES Automobiles 2102.01

93 BSR Other Construction 2049.84

94 DRD Gold Mining 2003.1

95 KGM Broadcasting Contractors 1735.6

96 ART Diversi�ed Industrials 1717.53

97 RAH Investment Companies 1672.91

98 ADH Specialised Consumer Services 1661.27

99 TRT Leisure Facilities 1610.88

100 ILA Builders Merchants 1594.66
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