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Chapter 0 

Introduction 

This thesis concerns block Toeplitz operators (equations). Consider the block 

Toeplitz operator T = [<I> k-j ]k,j=O' where the <I>k are complex m x m matrices such 

that 
00 

(0.1) 
v=- oo 

The norm in (0.1) is the usual operator norm on an m x m matrix. The condition 

(0.1) means that the symbol 

00 

( 0.2) 
v=- oo 

belongs t.o the Wiener class w mxm of all abso lutely convergent sequences of complex 

m x m matrices. Let 1 ~ p ~ oo be fixed. The block Toeplitz operator T induces a 

bounded linear operator (also denoted by T) on l'';, namely, 

00 

(0.3) Yk = (Tx )k = L <I>k-vXv , k = 0, 1, 2, ... ' 
v=O 

where x = (xo, x 1,X2, ... ) Et;. 

Here <I> k, k = 0, ±1, ±2, ... , are the Fourier coefficients of a rational m x m 

matrix function <I> given by (0.2). In [BGKl , BGK2], equation (0.3) was analyzed 

and solved explicitly for the case when the symbol <I> is both analytic at infinity 

and <I>( oo) is invert ible. Recently, the general rational matrix case (i.e., without any 

restriction on the behaviour at infinity) was analyzed and solved in [GKl]. In [GKl] 

the analysis is based on the following representation c,f the symbol 

(0.4) 

1 
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Here A and G are square matrices of which the order n may be larger than m, the 

penci l >.G - A is regular on the unit circle i>.I = 1, and t he matrices Band C have 

sizes n x m and m x n , respectively. The results in [GKl] are expressed in terms of 

A, G, B , C and matrices derived from A, G, B and C . 

In th is thesis we carry out a similar program as in [GKl], but wit h a different 

representation , namely, 

(0.5 ) <I> (>.) = D + (>. - a)C(>.G - At1 B , i>.I = i. 

Here A, G, B and C are as in (0.4) and D is an invert ible m x m matrix. Choose 

a=/:- 0 such that a is neither a pole nor a zero of <I> . Then any rat ional m x m matrix 

function <I> without poles on l>-1 = 1 admits a representat ion of the form (0.5). The 

representat ion (0.5) has the advantage that the matrices A, G are in general of 

smaller size than the matrices A , G which appear in the representation (0.4), and 

hence (0. 5) leads to formulas of lower numerical complexity than those ari sing from 

(0.4). The representations (0.4) and (0.5) derive from mathematical systems theory 

and are called realizations. The main ideas from [GKl] are extended to the case 

cons idered here. The exposition is based on a separat ion of spectra argument for 

linear operator pencils (the so-called spectral decomposition of pencil s), which may 

be found in F. Stumme! [SJ. 

Furthermore, the method of [BGK2, BGK3], which is based on an equivalence 

of linear systems with boundary conditi ons is rev iewed and extended here. The 

systems whi ch correspond to (0.5 ) are singular systems (cf. [VLK] and [CJ) and 

have th e follow ing form: 

Gpk + B xk, k = 0, 1, 2, ... , 

(0.6) C(aPk+ 1 - Pk)+ Dxk, k = 0, 1, 2 , ... , 

0. 

The matri ces A, G, B , C and D are the same as in (0.5) and Q is the projection 
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The equivalence between (0.3) and (0.6) provides a method to invert (0.3) and 

enables one to compute the Fredholm properties of a block Toeplitz operator T 

with rational symbol <I>. Also, this method is app lied to invert finite block Toeplitz 

matrices. Moreover, the inversion formulas are obtained in a form which is similar 

to the formula for the general solution of a system of ordinary differential equations 

with constant coefficients. In addition, we construct a generalized inverse directly. 

The thesis consists of three chapters (not counting the present introduction ). 

Chapter 1 contains preliminaries, the spectral decomposition of operator pencils 

and the power representation of the Fourier coefficients of <I> corresponding to the 

realization (0.5). 

Chapter 2 explores the inversion of Toeplitz operators with rational symbols. 

We calculate the inverse of double infinite block Toeplitz operators with rational 

symbols. The inversion of semi-infinite block Toeplitz operators is calculated via 

equivalence to singul ar systems with boundary conditions. Inversion of finite block 

Toepltz matrices is also treated in this chapter . 

In chapter 3 we compute Fredholm properties of block Toeplitz operators with 

rational symbols. Fredholm characterist ics are derived and a generalized inverse for 

a block Toeplitz operator with rational symbol is constructed directly. A Riemann­

Hilbert problem is solved as an application. Finally, we illustrate the theory with 

an example. 
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Chapter 1 

Preliminaries and Spe ctral Decomposition 

1.1 Preliminaries 

We first give some preliminari es on notation. T he uni t circle in t he complex plane <C 

will be denoted by 'JI'. We wri te IDl+ for the open uni t disc and ][])_ for t he complement 

on t he Riemann sphere <C,X) =<C U { oo} of t he set IDl+ U 'JI' . By a Cauchy contour r we 

mean t he pos itively ori ented boundary of a bounded Cauchy domain in <C. Such a 

contour consists of a finite number of non intersecting closed rectifia ble Jordan curves. 

T he set of points inside r is call ed t he inner domain of r and will be denoted by 

6 +. The outer domain of r is t he set 6_ = <C00 \ 6+ . We shall always assume t hat 

0 belongs to 6 +. By defini t ion oo E 6 _. 

We denote by L2 (1I' ) t he space of all fu nctions f : 1I' -t <C such t hat 

is Lebesgue measurable and square integrable on t he interval [-7r, 7r]. The space 

L2 (1I' ) is a Hi lbert space . Its inner product and norm are given by 

< f , g >= 2_ 17r f ( eit)g( eit) dt, 
27f -7r 

I 

I/Ill = ( 2~ f~ If( e·it)l2dt) 
2 

An ort honorm al bas is fo r £2 (1I' ) are t he fun ctions (n, ( = eit, n E Z. T he num bers 

4 
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are called the Fourier coeffi cients of f. The subspace of £2(11' ) consist ing of all 

fun ct ion s J E £2(11' ) for whi ch t he Fourier coeffi cients c_ 1 , c_2, ... are zero will be 

denoted by H2(11' ). That is, 

H2(11' ) = {J E £2( 11' ) :< J, e ·int >= 0, n = - 1, -2, ... } . 

T he space H2(11' ) is called the Hardy space of square integrable fun ct ions on t he uni t 

circle. 

We denote by l2 (Z ) the Hilbert space of all square summable double infinite 

sequences of complex numbers. The symbol l2 shall st and for t he usual Hilbert space 

of all square summa bl e infini te sequences of complex numbers. We shall identify l2 

wit h its canoni cal image in l2 (Z), that is, 

T he m ap U whi ch ass igns to a fun ction f E £2(11' ) its sequence of Fourier coeffi cients 

( 1.1 ) f int 
Cn = < , e >, 

is a uni tary operator from £2(11' ) onto l2(Z ), whi ch carri es H2(11') over int o l2. 

Given a Hilbert space H , we denote by Hm the Cartesian product of m copies 

of H. An element x = col (xi)~ 1 of Hm is an m -t upl e of elem ents from H wri tten as 

a co lumn wi t h x 1 , ... , Xm in H. The space H m is a Hilbert space. Its inner product 

and norm are given by 
m 

< x, y >= L < Xj, Yj >, 
j =l 

I 

ll xll = (t ll x; ll ' ) ' 

T he unit ary m ap U: £2(11' ) ---+ l2(Z) defined by (1.1 ) extends in a natural way to 

a unit ary operator , a lso denoted by U, from L~( 'II' ) = L2(1I'r onto l~(Z ) = L2(zr, 

namely 

U f = Ucol(Ji)~ 1 = col(U fi)~ 1 E l~(Z ) . 
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The map U is called the Fourier transformation on L2(11' ) and U f is called the 

Fourier transform of f. If U f = ( cn)~=- oo then f has a complex Fouri er series 

representat ion of the form 

00 

( 1.2) != 2= 
n=- oo 

T he series in the right hand side of (1.2) converges in the norm of L2(11') . From 

( 1.2) we can see that t he elements of the Hardy space H-;'( 11' ) m ay be identified as 

those fun ctions I E L2(11') that have an extension to an analyt ic cm-valued function 

inside the unit circle. 

We shall denote the set of all m x m matri ces with entries in L2 (11') by L;ixm(11' ). 

If <I> E L~xm(11') then a complex Fourier seri es representat ion of <I> is given by 

00 

( 1.3) 
11=-00 

where 

( 1.4) 

is call ed the k-th Fourier coeffi cient of <I> . 

For 1 S p S oo we denote by t; the Banach space of all sequences ( x 0 , x 1 , x 2 , . . . ) 

of vectors in c m such that the corresponding sequence of norms , (llxkll)f=1 , belongs 

to lp, the space of a ll p summable infinite sequences of complex numbers. The space 

of all double infinite sequences of this type is denoted by t; (z), where 

1.2 Spectral D ecomposition of operator pencils 

In t hi s section we recall (from [GKl]) a spectral decomposition theorem which sum­

marizes t he extension to operator penci ls of t he classical Riesz theory abou t sepa­

rat ion of spectra. Let X be a complex Banach space, and let G and A be bounded 

https://etd.uwc.ac.za/
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linear operators on X. The expression >.G - A, where).. is a complex parameter, will 

be called a (linear) pencil of operators on X. Given a non-empty subset 6. of the 

Riemann sphere C00 , we say that >.G - A is 6.-regular if >.G - A (or just G if).. = oo) 

is invertible for each >. in 6.. Assume that O is inside r , where r is a Cauchy contour 

in C 

We now recall the spectral decomposition theorem. 

Theorem 1.1 ([GKl] , Theorem 2.1) . Let r be a Cauchy contour with 6.+ 

and 6._ as inner and outer domain7 respectively7 and let >.G - A be a f - regular 

pencil of operators on the Banach space X. Then there exists a projection P and 

an invertible operator E, both acting on X , such that relative to th e decomposition 

X = ker P EB imP, the follo wing partitioning holds: 

( 1.5) O ] : ker P EB imP --+ ker P EB imP, 
>.12 - n2 

where 11 (resp. 12 ) denotes the identity operator on ker P (resp . imP) 7 the pencil 

>.n 1 - f1 is 6.+-regular and >. ! 2 - D2 is 6._-regular. Furth ermore, P and E (an d 

hence also the operators n1 and D2) are uniquely determined. In fact7 

( 1.6) 

(1.7) 

( 1.8) n = [nl 0 l = _l. { (>.- >.- I )G(>.G- Atld>.. 
0 n2 27ri lr 

Proof. We have to modify the arguments whi ch are used to derive the properti es of 

the Riesz proj ect ion s. Only the main differences will be explained. Let P be defined 

by (1.6) . We also need the fo llowing operator 

( 1.9) Q = -
1

. { (>.G-At 1Gd>.. 
27r i } r 

We shall see that P and Q are proj ect ions. For a pencil , a generalized resolvent 

identity holds, namely 

(1. 10) (AG - At' - (µG - At' = (µ - >. )(>.G - A)- 1G(µG - At 1
, 

https://etd.uwc.ac.za/
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where A and µ are points where the pencil is invert ible. Introduce the following 

auxiliary operator 

Note that 

(1.11) 

[{ = -
1
-. l(AG - Ar 1d>.. 

2m, r 

KG= Q, GI<= P. 

Using the generalized resolvent equation (1.10) and the usual contour integration 

arguments we show that I<GI< = K. Indeed, let r 1 be a Cauchy contour in the 

inner domain of r. Then 

KGK = 

srnce 

( -
1·1 (.XG - Ar

1
d>-) G (-

1 
.1(µG - Ar

1
dµ ) 

27ri r
1 

27ri r 

( ~)2 l l(AG - Ar 1G(µG - Ar 1dµd.X 
27ri r1 r 

(-1 .)21 ( { (.XG - At
1 

- (µG - At
1

} dµd.X 
27ri r

1 
Jr µ - >-

( ~)21 ( (.XG - Ati dµd>. - ( ~)211 (µG - At1 dµd>. 
27ri r1 Jr µ - A 27ri r1 r µ - A 

_l. r (.XG- Ar 1 (~ ( _l_ldµ) d.X 
27rz l r

1 
27rz Jrµ - >. 

-(-1 .)2 11 (µG - At1 d>.dµ 
27ri r r1 µ - >. 

11 1 11 1(111 ) -. (>.G - Ard>. - -. (µG - Ar -. --Id>. dµ 
27rz r

1 
27rz r 27rz r 1 µ - >. 

[{ - 0 = [{, 

1 dµ . 
--, = 27rz (>. E f i) , 

r µ- /\. 1 

d>. 
--, = 0 (µ E f). 

r1 µ- /\. 

Note these ident ities hold , because r 1 is in the inner domain of r. Furthermore, 

in the computation of the second integral, the interchange of integrals are justified 

because t he integrand is a continuous operator function on r1 x r , or , alternat ively 

by an app li cat ion of Fubini 's theorem. Thus the identities in (1.11) imply that P 

and Q are projections. We also have 

(1.12) GQ =PG, AQ =PA, I< = [{ p = Q K. 

https://etd.uwc.ac.za/
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The first identity in (1.12) follows from (1.6) and (1.9), the third is a corollary of 

(1.11) and the fact that I< = I<GI<, and t he second identity in (1.12) is a consequence 

of t he following formula: 

(l.13) >. E p(G, A). 

Formula (l.12) allows us to partition the operators G, A and [{in the following way: 

(1.14) 

(1.15) 

(l.16) 

O ] : ker Q EB imQ ---7 ker P EB imP, 
G2 

O ] : kerQ EB imQ ---7 ker P EB imP, 
A2 

K = [: ~] 'kerP EJ) imP--+ kerQ Ell imQ. 

The identities in (1.11) imply that G2 is invertibl e and a-:; 1 = L. Next, consider 

Using the generalized resolvent identity and both Cauchy 's integral formula and 

integral theorem one checks that 

T( >. )(>.G - A) = 

From the generali zed resolvent equation we deduce that 

(µG - At 1 
- (>.G - At1 

). - µ 
(>.G - A)- 1 - (µG - A)- 1 

µ - ). 

(>.G - At1G(µG - At1
• 
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Thus 

T(>.)(>.G - A) - -. --dµ + -. (µG - A - Gdµ 11 I 11 )1 

27rz r >. - µ 27rz r 

Thus 

( 1.1 7) 

Similarly, we find that 

= { QQ - I for >. inside r , 
for >. outside r. 

{ 
Q - I for >. E 6.+, 

T(>.)(>.G - A)= 
Q for A E 6._. 

(>.G - A)T(>.) = -
1 

. { (>.G - A). 
27rZ lr 
{ (A~~ ~)- 1 

+ (µG - A)- 1G(AG - A)-
1

} dµ 

10 

1 1 { I 1 1

} = -. -, - + (>.G - A)(µG - Ar G(>.G - A)- dµ. 
27ri r /\ - µ 

= _l. r ~Idµ+ - 1
. r G(µG-Ar 1dµ. 

27rz Jr µ - >. 27rz Jr 

Now, using Cauchy 's integral formula, we get 

(1.18) { 

P - I for >. E 6.+, 
(>.G - A)T(A) = 

P for >. E 6._. 

Here I is the identity operator on X. From the generalized identity (1.10) it follows 

that 

T(>.)P 

, https://etd.uwc.ac.za/



T hen 

k 

Apk+I AEDk+1x + AEnN-k y + ~ AEnk- v(I - P )r..p,, 

N 

L AEnv- k-1 Pr..p,, 

k 

nk+l x + n N+l- ky + L n k- v(f - P) r..p,, 

v=k+I 
k-1 

GEDkx + GEnN+i- ky + L GEnk-t-v(I - P) r..p,, 

N 

+( I - P) r..pk - L G Env- k Pr..p,, +Pr.pk 
v=k 

( 

k-l 
G EDkx + EnN+l- ky + ~ Enk-l-v(I - P) r..p,, 

-t. ew-• P<p") + 'P• 

Gpk + 'Pk · 

T he converse st atement is proved as fo llows. Decompose (1.24) as 

(1.27) 

wh ere 

O ] : kerQ EB imQ--+ ker P EB imP, 
A2 

O ] : kerQ EB imQ--+ ker P EB imP, 
G2 

15 
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Equation (1.27) can now be written as two separate difference equat ions, one going 

forwards and the other going backwards. They are 

( l.28a) 

and 

( l.28b) 

From (l.28a) we have 

since A1 is invertible. Put x0 = Al 1 x, where x is a n arbitrary vector in ker P. Now 

estab li sh a general formula for Xk by solving (l.28a) forward in time as follows . 

X1 A] 1 (G1A]1)x+A]1a0 , 

X2 A] 1G1x1+A]1a1 

A]' (G1A] 1
)

2 
x + A] 1 (G1A] 1

) ao + A] 1
a1, 

X 3 Al 1 
G1x2 + Al 1 

a2 

Continuing in th is way, we obtain 

(l.29a) 
Al 1 (G1Al')k x +I:::~ Al 1 (G1A1 1

/_
1
_,, a,, 

EOkx +I:::~ Enk-t-v(f - P)cp,,. 

Making Yk the subject of the formula, we deduce from ( l.28b) that 

since G2 is invertible. Put YN+l = G'2 1y , where y is an arbitrary vector in imP. A 

general formula for Yk can be found similarly by solving (1.28b) backward in time. 

Now 

https://etd.uwc.ac.za/
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YN-1 02 1 
AzYN - 02 1 

(:JN -1 

02 1 (A202 1 
)
2 

y - 02 1 (A202 1
) (JN - 0;- 1(:JN- 1, 

Continuing in this manner, we get 

k 

YN-k = 02 1 
( Az021 

)k+I y - L 021 (A202 1 r (:JN+v-k· 
v=O 

If we make a change of variable N - k H k we get 

N-k 
0 -1 (A o-1)N+1-k ~ o-1 (A o-1 )" r:i Yk = 2 2 2 Y - L..,; 2 2 2 Pk+v· 

v=O 

And another change of vari able v H v - k yields 

N 

Yk = 02 1 (A202 1 )N+l-k y - L 02 1 (A202 1 
r-k (:J,,, 

v=k 

t. e.' 

N 

( 1.296) Yk = EnN+1- ky - L Env-k Pc.p,,. 
v=k 

Combining (1. 29a) and ( l.29b) we get 

[xk l + [ 0 l = EDkx + EnN+ 1-ky + ~ Enk-1 -v (I - P) c.p,, 
0 Yk v=O 

N 

- L E n v- k Pc.p,, , k = 0, . .. , N + 1. q 

v=k 

In what follow s r will often be taken to be the unit circle 11'. In this case the 

regularity condit ions on t he pencils ,.\D1 - ! 1 and ,.\/2 -D2 in (1.5) are just equivalent 

to the requirement t hat D1 and D2 have their spect ra in the open unit disc. 

https://etd.uwc.ac.za/
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Corollary 1.3 ( [GKl] , Corollary 2.3 ). Let >..G - A be a 11'-regular pencil of 

operators. Th en th e corresponding associated operator D has its spectrum in th e 

open unit disc . 

P roof. Use that D is given by the first identity in (1.8) and apply the remark 

preceding the present corollary. q 

1.3 Realization and Power Representation 

Let ([> be an m x m rat ional matrix function, and choose a -=f 0 such that a is neither 

a pole nor a zero of <I> (see [GK2] and [Gl]). Then ([> admits a representation 

(1.30) ([>(>..) = D + (>.. - a)C(>..G - At1 B. 

The representation (1.30) is derived from classical realization results by apply ing the 

Mobius transformation 

(1.31) 

to the reali zation 

(1.32) 

2).. - 1 
</> ()..) = Q 2).. + 1 ' 

<I>(>..) = D + C(>.. - At1 B. 

Indeed, a rational matrix funct ion <i>(>..) which is analytic and invertible at infinity 

can be represented as (see, e.g ., [BGKl]) 

<i>(>..) = b + 6 (>.. - !1)- 113, 

where b = cf>( oo) and A, B and C are matrices of appropriate sizes. Now put 

<I>(>..) <i>( <!>-1(>..)) 

b + 6 [- ~).. + Q - A.]-I fJ 
2>..- Q 

b+(>..-a)C [-~(>..+a)-A(>..-a)] -l B 

' ' [ 1 ' 1 ' ]-I ' D + (>.. - a)C >..(- 2 - A) - a( 2 - A) B. 

https://etd.uwc.ac.za/



19 
1 A 

1 
A A A A 

If we defi ne A = a( 2 - A), G = - 2 - A, B = B , C = C, D = D, then we get 

(see Theorem 1.9, [BGKl]). 

We refer to the right hand side of (1.30) as a realization of <I> . The realization 

(1.30) is said to be minimal if the order of A and G is as small as possible among 

all possib le reali zat ions. Here G and A are square mat ri ces of order, say n x n. The 

matri ces B and C are of size n x m and m x n respect ively, while D is a square 

matrix of order m x m. 

Assume <I>(A ) has no poles on the Cauchy contour r. Then the pencil >..G - A in 

(1.30) can always be chosen to be r-regular. Indeed , if the realization is minimal, 

t hen r-regularity is assured . 

The next two lem mas will be useful later. They are the nat ural analogues of 

Theorem 4.2 and Lemma 4.3 in [GKl]. 

Lemma 1.4 ([G l] , Lemma 2.1 ). Let 

(1.33) 

where >..G - A is r-regular1 be a given realization. Put ex = G + BD- 1C and 

A x = A + a B n-1 C . Th en det <I>().. ) # 0 fo r each ).. E r if and only if the pencil 

).. GX - A x is r -regular) and in this case 

( 1.34) ).. Er. 

Proof. We prove a stronger (pointwise) version of the theorem. Take a fixed ( E r. 

Since det(I - TS) = det(I - ST), we have 

det<I>( () det[D + (( - a)C((G - At1 BJ 

detD[I + (( - a) D- 1 C((G - At1 BJ 

det Ddet[((G - At1{((G - A)+ (( - a)BD- 1C}] 

det Ddet [((G - At 1 ((Gx - Ax)] 

d D
det((G x - A x ) 

et . 
det((G-A) 

https://etd.uwc.ac.za/
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It follows that det<I>( () =/= 0 if and only if det( (Gx -A x) =/= 0. In particular, det<I>( >. ) =/= 

0 for each >. E r if and only if the penci l ).Q X - A x is f-regular. 

Next , assume that det(>.G x - A x )=/= 0, and let us solve the equation <I>(>.)x = y. 

Introduce a new unknown by sett ing z = (>.G - A )- 1 Bx. Then given y we have to 

compute x from 

(1.35) { 
>.Gz = Az +Bx, 

y = (>. - a)Cz + Dx. 

Apply BD- 1 to the second equat ion in (1.35) and subtract the result from the first 

equation in (1.35). This y ields the following equivalent system 

(1.36) { 

>. e x z = A x z + B n-1 y , 

y = (>.-a)C z +Dx. 

which proves (1.34). q 

Lemma 1.5 ([Gl], Lemma 2 .2). Let <I> be as in (1. 33) , where >.G - A is f­

regular. Assume that det <I>(>.)=/= 0 for each>. E r, and set e x = G + BD-1C and 

A X =A+ aBD-1C. Th en fo r >. Er, 

<I>(>.t1C(>.G - A)- 1 

(>.G - At1 B<I>(>.t1 

(>.Gx - A xtl 

Proof. First note that 

i. e.' 

(1.37) 

n-tc(>.Gx -Axt1, 

(>.G x - A xt l BD-1, 

(>.G - At1 - (>. - a) 

·(>.G - A)- 1 B<I>(>.)- 1C(>.G - A)- 1
• 
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We also know, from Lemma 1.4, that )...Q X - Ax is invertible for each )... E f. For 

the first identity 

<I>(>..)-1 C(>..G - At1 

= {D- 1C - (>.. - a)n- 1cp.,ax - AXtl BD-1C}(>..G - At1 

= {n- 1c - n-1c (>..a x - Axt 1 [(>..e x - Ax) - (>..e - A)]}(>..e- At 1 

= n-1c(>..ex - AX)- 1• 

For the second identity 

(>..e - A)- 1 B<I>(>..)- 1 

= (>..e- At'{BD-1 
- (>..- a)BD-1C(>..e x -A x)-1BD- 1 } 

= (>..e - At1{BD- 1 
- [(>..ex - Ax) - (>..e - A)](>..ex - Axt 1 BD-1} 

=(>..ex -Axt1Bn-1. 

And for the third identity 

(>..e - A)- 1 
- (>.. - a)(>..e - At1 B<I>(>..t1 C(>..e - A)- 1 

= (>..e - A)- 1 
- (>.. - a)(>..ex - Axt' BD-1C(>..e - At1 

= (>..e - At1 
- (>..ex - Axt1{(>..e x - AX) - (>..e - A)}(>..e - At1 

=(>..ex - Ax)-'. Q 

If r is identified with the unit circle 11' in (1.33), then the realization (1.33) can 

be used to compute the Fourier coefficients <I> k of <I>. This leads to the following 

corollary, which is the natural analogue of Corollary 3.2 in [GKl]. 

Corollary 1. 6 ([JJ]). Let <I> be a rational m x m matrix function without poles on 

the unit circle 11' ) and Let 

(1.38) <!>(>..) = D + (>.. - a)C(>..e - At1 B, 

be a realization of <I>. Then the k-th Fourier coeffici ent <I> k of <I> admits the following 

representation: 

(1.39) 
{

-C E(D/- 1 
- aDk)(I - P)B, 

<I> k = D + aCE(l - P)B + CEPB, 

CE(D-k - an-k- 1)PB, 

k > 0, 

k = 0, 

k < 0. 

fl ere P ) E and D are) respectively) the separating projection) the right equivalence 

operator and the associated operator corresponding to >..e - A and 11' ) that is! P) E 
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and D are given by (1.6) - (1.8) . In particular, D has all its eigenvalues in the open 

unit disc and D commutes with P . 

Proof. Let D be as in (1.8). Since >.D 1 - 11 is regular on [})+ U 11' and >.!2 - D2 is 

regular on [})_ U 11' , the matrices D1 and D2 have all their eigenvalues in [})+. Hence 

t he eigenvalues of t he matrix D have the required location. According to Theorem 

1. 1, 

<ll ( >. ) 
[ 

(AD1 - I1 t 1 
D +(A - a)C E 

0 

[ 

~oo ->.vn v 
D + (>. - a)C E Dv=O 0 I 

[ 

~oo ->.vn v 
D + (>. - a)C E L..,,,=o 0 I 

since 
00 

(>.D1 - I1 t 1 = 2=->.vn~ , >.E'll', 
v=O 
00 

(>. !2 - D2t1 = L >.- v-in~, 
v=O 

It follows that 

~, CE [-~;-i : l B - aC E [ -~; : l B 

- C E(nk- i - aDk)(I - P)B , k > 0, 
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<I> o 
[ 

0 0 l [-/1 D + C E B- o:CE 
0 12 0 

D + o:C E(I - P)B + C EPB , 

~k c E [: n;' l B - aC E [: n,~-1] B 

c E (n-k - o:n-k-I )PB, k < 0, 

and the corollary is proved. Q 

We refer to (1.39) as the power representation of the Fourier coefficients of <I> 

corresponding to the real ization (1.38). 
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Chapter 2 

Inversion of Toeplitz operators with rational 

symbols 

2.1 Inversion of Double Infinite Block Toeplitz Operators 

with rational symbols 

We review and modify Sect ion 4 from [GKl]. See also Sect ion 3, [G2]. In this sect ion 

L = [<I>·i-j]i,j=- oo is a double infinite block Toepli tz operator on l;;1(Z). We assume 

that the symbol 
00 

v=- oo 

is a rational matrix function. Since <I> has no poles on 11' , it adm its a reali zat ion . 

The next theorem describes the invers ion of L in terms of the data appearing in the 

realizat ion of its symbol. 

Theorem 2.1. Let L be a double infinite block Toeplitz operator on l;;1(Z) with a 

rational symbol 

(2.1) >. E 11' , 

given in realized form } where a f. 0 is neither a pole nor a zero of <I>. Put ax = 

G + B D- 1 C and Ax = A + a B n-1 C . Then L is invertible if and only if the pencil 

{ 

D- 1cEx[UV)k- 1 - a(SV)k](I - px)BD- 1 , k > 0, 

(2.2) <I>~= n- 1 - n- 1cEx [p x +a(! - px)]BD- 1 , k = 0, 

D- 1 C Ex [a(!V )-k- 1 - (nx )-k] p x BD- 1 , k < 0. 

24 
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Here p x, ex and n x are, respectively, the separating projection, the right equiva­

lence operator, and the associated operator corresponding to the pencil >..Gx - Ax 

and r , with r = 11' , i. e., 

(2.3) 

(2.4) 

(2.5) 

Proof. The symbol <I> is continuous on 11'. It is known (see [GKr]) that Lis invertible 

if and only if det <I>(>..) =/:- 0 for each>.. E 11' , and in this case L- 1 = [<I>Lj]0 =- , where 

<I> : is the k-th Fourier coefficient of <I>(-)- 1
. Now apply Lemma 1.4 with r = 11'. 

Then L is invertible if and only if >..G x - Ax is 11'-regular. 

Next, assume that L is invertible. Lemma 1.4 implies that 

(2.6) 

Apply Corollary 1.6 and compute the power representation of the Fourier coefficients 

of <I>(-t 1 corresponding to the realization (2 .6). This gives the formula (2.2). Indeed, 

[ (
>..nx rt1 

D-1 - (>.. - a)D-icex I ~ 1 

D- 1 - (>.. - a)D- 1CEx 

·[ I::o -o>.."(D~)" o ] sD-1 

I::"=o >..-v-1 ( n; )" 

D-1 - (>.. - a)D- 1 C ex 

. 
[ 
I::o -0>.."(D~ )" 0 l BD-1 

2=~:_1 >.."(n; tv-1 
D- 1 - D- 1cex 

. [ 2=:'.':o -A;+t (fl;)" 
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since 
CXl 

(,\n; - It t 1 = 2:= - ,\v(n;y, ,\ E 11' , 
v=O 

CXl 

(,\f2X - nn -1 = L ,\-v-l (n;y, 
v= O 

We deduce t hat 

<!> ~ = -D-' CEx r- ( il~ )k -1 :J BD-1 

+a D-' C Ex r- (~;)' : ] BD-1 

= n-1 C Ex ( (n x )k- 1 - o:(n x )k) (I - p x )BD-1 ' k > 0, 

<!>~ = D-1 
- D-' cEx [: [:X ] BD- ' 

[
-fX OJ +o: D-I CEX 01 0 BD-1 

= n-1 - n-i cEx [p x + o:(I - p x) ]BD- 1, 

k < 0. Q 
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2.2 Inversion of Semi Infinite Block Toeplitz Operators via 

equivalence to singular systems 

Here we review and modify Section 7 of [GKl]. In this section , we develop an 

approach for invert ing block Toepli tz operators with rational symbols, which is 

based on connections between Toepli tz operators and discrete singular systems with 

boundary conditions. Theorems 2.2 and 2.4 are, respectively, the natural analogues 

of Theorems 7.1 and 7.3 in [GI<I], whereas Lemma 7.2 remains unchanged as Lemma 

2.3. 

Theorem 2.2. Let 1 :::; p:::; oo , and let T = [<P j-kL,k=O be a block To eplitz operator 

on r:; with symbol 

(2.7) 

gwen in realized form, where a =J- 0 is neither a po le nor a ze ro of <I>. Th en the 

Toeplitz equation 

(2.8)) Tx = z, 

is equivalent to th e following discrete boundary value system: 

Gpk + Buk, k = 0, 1, 2, ... , 

(2.9) C(aPk+ 1 - Pk)+ Duk, k = 0, 1, 2, ... , 

0. 

Here Q is the projection given by (1.9) with r = 11' and th e equivalence between 

(2 .8) and (2.9) has to be understood in the following sense: If x = (xk)ko in r; 
is a solution of (2.8), then the system (2 .9) with input Uk = Xk (k = 0, 1, 2, ... ) 

has output Yk = Zk ( k = 0, 1, 2, ... L and, conversely, if the system (2. 9) with input 

u = (uk) k=O from r; has output Yk = Zk (k = 0, 1, 2, ... ), then x = u is a solution of 

(2 .8). 

The statement of t he theorem is made precise by not ing that the system (2.9) 

with input u = ( uk)ko from t; is said to have output y = (Ykh=o if and only if 
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there exists p = (pk)~0 in 1;, where n is the order of the matrices A and G, such 

that (I - Q)po = 0 and the sequence p0 , p1 , ... satisfies the two equations in (2.9). In 

the proof of Theorem 2.2 we shall see that in this case p is uniquely determined by 

the input u. Theorem 2.2 therefore states that the system (2.9) has a well-defined 

input/output map which is equal to the block Toeplitz operator T. We need the 

fo llowing lemma in the proof of Theorem 2.2 . 

Lemma 2.3 ((GKl], Lemma 7.2). Let >..G - A be a T-regular pencil of n x n 

matrices . Fix 1 :S p :S oo, and let ( <pk)k=O be in l; . Th en th e general solution in l; 

of the equation 

(2. 10) k = 0, 1, 2, ... ' 

is given by 

(2.11) 
ED,k + "l\' k-1 Enk-1-v( I _ P) 'r/ L., v=O 'f>v 

k=0,1 , 2, ... 

Here P , E and n are given by (1 .6) -(1.8) with r = T and 'r/ is an arbitrary vector 

in ker P . 

Proof. Let 'r/ be an arb itrary vector in en, and let p = (Pk)~0 be given by (2.11). 

We first prove that p E 1;. Put 

P = g + S<.p 

where 

s: l; -t 1;. 

The operator S : 1; -t l; is defined by 

00 

(Su)k =I: J'vh- vuv, k = 0, 1, 2, ... ' 
v=O 

where 

{ 

Enk- i (I - P) , 
Mk = 

-en-k P 
' 

k = 1, 2, ... ' 

k = 0, -1 , -2, . .. 

If we can show that g E 1; and S is a well-defined block Toeplitz operator , then 

p = g + S<.p E 1;, since 1; is a vector space. Since n has all its eigenvalues in the 
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open uni t di sc (see Corollary 1.3), llDll < 1, and 

00 

k=O k=O 

Thus g E t;. To show that S is a block Toeplitz operator on t;, we only need to 

show that t he entri es in Mk are bounded. The defining fun ction of S is <I> (>. ) = 

L n=- >.n Mn. Since llD ll < 1 we have that ll Dl lk < 1 for each k E N, and so 

llNhll :::; JJEll· T herefore the entries in Mk are bounded . Thus S : t; --+ t; is a block 

Toeplitz operator. 

Next, we show that p = (pk)f:0 given by (2.11 ) is a solution of the difference 

equation (2 .10). Take N ~ 0, and note that the first N + 1 elements in p may be 

rewritten as 

k-I oo 

Pk = EDkry + L Enk-I-v(I - P )r.pv - L Env- k Pr.pv 
v=k 

k- I N oo 

EDkry + L Enk-I-v(I - P )r.pv - L Env- k Pr.pv - L E n v- k Pr.pv 
v=k 

k-I N 
E Dkry + L Enk-I-v(I - P )r.pv - L Env- k Pr.pv 

v=k 

+EnN+< -k ( (-) t, w P'P•+N+1) 

k-I N 

EDkry + En N+1- kYN+1 + L E n k-1-v(I - P )r.pv - L Env- k Pr.pv, 

where 
00 

YN +I = - L n,v Plfv+N+I · 
v=O 

Sin ce 

n = [Di O l : ker P EB imP --+ ker P EB imP, 
0 D2 

we have YN+ i E imP. But then we can apply Lemma 1.2 to show that po, ... , PN+1 

is a solut ion to t he fini te difference equation 

(2. 12) k = O, ... ,N. 
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Since N is arbitrary, t his implies that p is a solution of (2.1 0). 

To prove the converse, let p = (pk)k=O in t; be a solution of (2 .10). Take N ~ 0. 

Then p0 , ... , PN+I is a solution of (2.12). So, using Lemma 1.2 we get the form 

Pk = ErJkxN+1 + ErJN+ l-kYN+1 + L~=~ Enk-I-v(I - P )ep,, 

- L~=k Env-k Pep,,, k = 0, ... , N + 1, 
(2.13) 

where XN+1 E ker P and YN+I E imP. Then 

N 

Po= ExN+1 + EnN+1YN+1 - L ED,, Pep,, 
v=O 

and 
N 

PN+1 = EDN+1xN+1 + EYN+1 + L EDN-v(I - P) ep,,. 
v=O 

Recall that Q = EP e-1 and DP = PD , where Q is given by (1.9) with f = 11'. 

Sin ce XN+ i E ker P, YN+ i E imP, Pep ,, E imP we have 

N 

(I - Q)po (I - Q)ExN+1 +(I - Q)EDN+1YN+1 - (I - Q) L ED,, Pep,, 
v=O 

ExN+1+0+0 

and 

N 

QEDN+1xN+1 + QEYN+1 + Q L EDN-v(I - P) ep,, 
v=O 

0 + EYN+I + 0. 

Thus 

(2 .14) 

where Q is given by (1.9). The first ident ity in (2.14) implies that XN+ i is indepen­

dent of N. Put T/ = E-1 (I - Q)p0 . Then T/ = XN+ I for each N and T/ E ker P. Since 

p E t;, the sequence po ,p1 , . •• is a bounded sequence in en. Thus Yk = E- 1Qpk is 
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also a bounded sequence in en. Therefore EftN+I-kYN+I ----7 0 as N ----7 00 since 

jj fl JI < 1. Furthermore, since ( 'Pk)k'=o E t; and llDll < 1 we have that 

00 00 

L Env-k Pep ,, :S llElll!Plf fl'Pll oo L lffljf ,, < oo, 
v=O 

where If 'P ll oo = sup {i!'PllP : 1 :S p < oo} < oo as cp E t;. So L:~=k Env-k Pep,, is 

absolutely convergent. Since en is a Banach space, the ser ies is also convergent . 

Thus (2.13) becomes (2.11 ) as N ----7 oo . q 

Proof of Theorem 2.2. Since the symbol <I> is given by (2.7), the entries of T 

admit the following power representation: 

(2 .15) 
{

-CE(D,k-t - aflk)(I - P)B, k > 0, 

<I> k = D + aCE(I - P)B + C EPB , k = 0, 

C E(D,-k ~ an-k- 1 )PB, k < 0, 

where P , E and fl are given by (1.6)-(1.8) with f = 'IL. Assume x = (xk)f: 0 E l''; is 

a solution of (2.8). Put 

k- 1 00 

(2.16) Pk = L Enk-l-v(I - P)Bx,, - L Env-k P B x,,, k = 0, 1, 2, ... 
v=O 

Note that Pk (k = 0, 1, 2, ... ) is the same as in (2.11) provided that in (2.11) we take 

T/ = 0 and 'Pk = B xk, k = 0, 1, 2, .... So Lemma 2.3 implies that p = (Pk)f: 0 is in 

t; and the sequence p0 ,p1 , ... satisfies the first equat ion in (2.9) with Uk= xk, k = 

0, 1, 2, .. .. The power representat ion (2 .15) implies that (pk)f:0 satisfies the second 

equation in (2.9) with Yk = Zk and Uk = xk, k = 0, 1, 2, .... This can be seen as 

fo llows. ote that we can write 

00 

(Tx )k = L <I> k_,,x,,, 
v=O 

where <I> k is given by (2.15). So 

00 k-1 00 

L <I> k-vXv = L <I>k-vXv + <I> oXk + L <I>k-vXv 
v=O v=O v=k+l 
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L - C E(Dk-v-l - o:Dk-v)(I - P)Bx,, 
v=O 

00 

+(D + o:C E(I - P)B + C EP B) xk + L C E(Dv-k - o:Dv-(k+l) P B x,,, 

{ 

k -1 

o:C ~ EDk-v(I - P)Bx,,, + E(I - P)Bxk 

- f EDv-(k+1l)PBx,,,} 
v=k+1 

{ 

k- 1 
- C ~ EDk-v-l (I - P)Bx,,, - EP B xk 

- f EDv- k P B x,,, } + Dxk 
v=k+ l 

aC {~ En'-"(! - P)Bx. - .t.
1 

En•-l'+1l P Bx. } 

{

k-1 00 } 

- C ~ EDk-l-v (I - P)Bx,,, - ~ EDv-k P Bx,,, + Dxk. 

Thus 

k = 0, 1, 2, .... 

Furthermore, DP= PD and EP = QE. This follows from 

and 

O ] : ker P EB imP ~ ker Q EB imQ 
E2 

O ] : ker P EB imP ~ ker P EB imP. 
Dz 

Now, Po= - L:: o ED"' P Bx,,,. Thus 

(X) (X) 

(I - Q)po = -(I - Q)E L D"' P Bx,,, = -E(I - P) L PD"' B x,,, 
v=O v=O 

00 

= -E(I- P)PLD"' Bx ,,, = 0, 
v=O 

32 
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since P is a proj ect ion . Thus (pk)~0 E t; is a solut ion of (2 .9) with Uk = Xk and 

Yk = Zk, k = 0, 1, 2, .. . . 

To prove t he converse, suppose p = (pk)k=O is a solution in t; of the singular 

system (2.9) wi t h u = ( uk)k=O from t;. Put Xk = Uk and Zk = Yk, k = 0, 1, 2, .. . . 

Then x and z are in r; . We want to show t hat Tx = z. Observe that Lemma 2.3 

implies t hat 

k-1 00 

Pk = EflkTJ + L Enk-I-v (I - P)Bxv - L Env- k P B xv, k = 0, 1, 2, ... , 
v=O v=k 

where TJ is some vector in ker P. Since p0 = - l:: o Efl" P B xv + ETJ , and 

00 

0 = (I - Q)po -(I - Q) L Efl" P B xv +(I - Q)ETJ 

0 + E(I - P)TJ 

ETJ , 

(using the boundary condition in (2.9) and the fact that T/ E ker P) we have T/ = 0. 

So the sequence p0 , p1 , .. . is uniquely determined and given by (2.16). Us ing the 

second equation in (2.9) and the power representation (2 .15), we obtain 

Yk C( a pk+1 - Pk)+ Dxk 

aC {~En'-" (! - P )Bx" - "~1 Ef!"-IH
1
I ?Bx" } 

- C { ~ En'-"- 1(1 - P )Bx" - t. En"-' P Bx" } + Dx, 

k-1 L -CE (n k-v-l - an k- v) (I - P )B xv 

+ [D + a.C E(! - P )B + C EPB] xk 
00 

+ L c E (nv- k - an v- k-1) p B xv 
v=k+l 

k-1 00 

L <I> k- vXv + <l>o Xk + L <I> k- vXv 
v=k+ l 
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00 

L <I>k-11 X11 = (Tx )k = zk 

11= 0 

Hence x = (xk)~0 E l''; solves T x = z . q 

Note that the last part of the proof of Theorem 2.2 shows that for given input 

and output in l''; the solution p = (pk)~0 of (2.9) int; is unique (assuming it exists). 

The equivalence in Theorem 2.2 implies that we may get solutions of equation 

(2.8) by inverting the system (2.9). This is done as follows. First interchange in 

(2.9) the roles of input and output. Apply BD- 1 to the second equation to give 

Now subtract this equation from the first equation. This yields 

Thus 

Therefore the inverse system is 

Gxpk+BD- 1yk , k = 0,1,2 , ... , 

(2 .17) -D- 1C(apk+1 - Pk)+ D- 1 yk, k = 0, 1, 2, ... , 

0, 

where A X = A +aBD-1C and ax = G + BD- 1C. We may assume that y = (Yk)~o 

is a given element in t:;. The problem is now to find (pk)~0 in t; satisfying the 

first equation in (2 .17) and the boundary condition (! - Q)p0 = 0. Note that the 

project ion Q comes from the penci l >..G - A and is not directly related to >..G x -

A x, and hence it is not straightforward to find a sequence (pk)k=O with the desired 

properties. In fact, the problem may not be solvable or if it is solvab le it may have 

many solutions. However, if such a sequence (Pk)k=O has been found, then a solution 

of the equation Tu= y is obtained by taking uk = -D- 1C(apk+i - Pk) +D- 1yk, k = 

0, 1, 2, .... In th is manner we are led to the fo llowing theorem. 
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Theorem 2.4. Let 1 :S p :S oo , and let y = (yk)'f: 0 be in t;. Consider the block 

To eplitz equation 

(2.18) 
00 

L <l> k_,,u,, = Yk, 
v =O 

k = 0, 1, 2, ... ' 

where <I> k are the Fourier coeffi cients of a rational matrix fun ction 

(2 .19) 

given in realized form, where a =f 0 is neither a pole nor a zero of <I> . Put A x 

A + aB D- 1 C and ex = G + B D-1 C, and assume that the pencil >.Gx - A x is 

'II' -regular. Then the equation (2.18) is solvable in r; if and only if 

00 

(2.20) L (!V)" p x BD- 1 y,, E imP + ker p x, 
v=O 

and in this case the general solution in r; of (2.18) is given by 

00 

(2.21) Uk= D-1 C Ex [(n x )k-1 - a(n x )k] 17 + L <I> :_,, y,,, k = 1, 2, . .. 
v=O 

Here P is the separating projection corresponding to >.G-A and 'II' , and the operators 

P x, E x and n x are, respectively, the separating projection, the right equivalence 

operator and the associate operator corresponding to >.Gx - A x and 'II' , 

(2 .22) 
{ 

D-1 cex [(n x)k-1 _ a(nx)k] (I- p x) BD-1 , 

<I> : = D-1 - D-1 C E x [P x +a(! - p x )] BD-1, 

D-1c E x [a(nx t k-1 - (nx tk] px BD-1 , 

and 17 is an arbitrary vector in ker p x such that 

00 

(2 .23) 17 - I )nx)" p x BD- 1y,, E imP. 
v =O 

In particular, the general solution in 1;1 of the homogeneous equation 

00 

(2.24) L <I> k_,,u,, = o, k = 0, 1, 2, . .. ' 
v=O 

k > 0, 

k = 0, 

k < 0, 
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is given by 

(2.25) k = 1, 2, ... ) 

where T) is an arbitrary vector in ker p x n imP . 

Proof. Let Q be the proj ection defined by (1.9) with r = 11' , and let QX be the 

corresponding projection for >.. ex - Ax and 11' , t hat is , 

(2 .26) r = 11'. 

From Theorem 2.2, and the statements made in the di scussion preceding this the­

orem , it fo llows that (2.18) is solvable in l;' if and only if there exists (pk) k=O in z; 
sat isfying the first equation in (2.17) and the boundary condition (I - Q)p0 = 0. 

According to Lemm a 2.3 the general solution in z; of the first equation in (2.17) is 

given by 

(2 .27) 
-~oo E x(n x)v- kp x3D-1y D v=k ,,, k = 0, 1, 2, ... ' 

where I is an arbitrary vector in ker p x. Note that 

00 

Po= E x/ - L E x(n xy p x BD- 1y,,. 

v=O 

Since E X, E ker Q X' the first equation in (2 .17) has a solution (pk) k:o in z; sat isfying 

the boundary condition (I - Q)p0 = 0 if and only if 

00 

(2.28) LEx(n xypx3D-1y,, E kerQ x +imQ. 
v=O 

This can be seen as follows. Note that (I - Q)po = 0 implies that Qpo = po, i.e., 

Po E imQ. Thus 
00 

ex, - L E x(n xy p x BD- 1y,, E imQ. 
v=O 

Thus 
00 

L E x(n x r p x BD-1y,, = E x, - Po E ker Qx + imQ. 
v=O 
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In this case the output u = ( uk)~0 of (2. 17) is given by 

Uk = -D-1C(aPk+1 -pk)+D-1yk 

= -D- 1{aCpk+1 - Cpk - yk} 

= -D- 1 { cxC [ E x( fJX )'+11 + t, Ex(nx}'-"(I - p x) BD-1y" 

- f Ex (!Y y-(k+ l) p x BD-l y,, ] 
v=k+l 

-C [E x (!Y)'1 + ~ E x(!Y) ' -1-"(I - p x )BD-1y" 

-t. E'(fl x r' p x BD-1y"] - y,} 
= D-1 cEx [(~Y) k - a(.{Y)k+1] I 

k-1 
+ L D-1 cEx [(!Y) k-1-v - a(.{Y) k- v] (I - p x)BD-1y,, 

v=O 

00 

+D-iyk + L D-1 cex [a(~-Yy-k- 1 - (!-Y)"-k] p x sD-1y,, 

= D-1 cEx [(.{Y)k - a(!Y)k+1J I 
k-1 

+ L D- 1c E x [(!-Y)(k-v)-1 _ a(Dx)k-v] (I_ p x)BD-1y,, 

00 

+ L D-1 c E x [a(n xr(k- v) -1 - (n xr(k-v)J p x BD-1y,, 

k-1 00 

- D-1 cEx [(D x )k-a(Dx)k+1]1+ 2.:<I> ~_,,y,, +<I>~yk + L <I> L,, y,,. 

Thus 

00 

(2.29) uk = D- 1 C E x [(n x )k - a(nx )k+i J / + L <I> L,, y,,, k = 0, 1, 2, ... , 
v=O 

37 
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where the cl>: are defined by (2 .22) and --y is an arbitrary vector inker p x such that 

00 

(2 .30) Ex--y - L E x (D.Xt p x BD-1yv E imQ. 
v =O 

Therefore (2 .28) is a necessary and sufficient condition for (2.18) to have a solution 

in t;. If this condition is satisfied , then the general solution (uk)~0 int; of (2.18) 

is given by (2.29). 

For the remainder of the proof we must show that (2.20) is equivalent to (2 .28) 

and (2.21) gives the same set of sequences as (2.29). Denote the left hand side of 

(2 .20) by x 0 . Then x 0 = I:: 0 (n x )v p x BD- 1yv = p x 2=:=0 (n xy BD-1 yv implies 

that Xo E imP X. So a x E X Xo = ax E X p x Xo = px Xo = Xo. Next , note that the 

operators 

Q x /imQ : imQ --t imQ x and px /imP : imP --t imP x 

are equivalent . Indeed, we know that 

Moreover , a x maps imQ x (resp. imQ) in a one-one manner onto imP x (resp. imP). 

Therefore the operators 

a x /imQ : imQ --t imP, 

are invertible and 

(2.31) 

It follows that 

Exxo E kerQ x + imQ {::::=:;> Exx0 E im(Qx/imQ) 

¢::=:;> a x Exx0 E im(P x /imP) 

¢::=:;> Xo E im( p x /imP) 

¢::=:;> Xo E ker p x + imP, 
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which proves the equivalence of (2.20) and (2.28) . 

Also, note that f),X (I - px) = ex EX (I - p x) (see t he first identity in (2.22b ), 

[GKl]). Thus 

/ E ker p x. 

Let L1 be the set of all I E ker p x sat isfying (2.30), i.e., ex, - EX Xo E imQ. 

Let L2 be the set of all T/ E ker p x such that (2.23) holds , i.e ., T/ - x0 E imP. To 

prove that (2.21) and (2. 29) define the same set of sequences, it suffices to show that 

ax EX (Li) = L2. Take IE L1. Thus ex, - EX Xo E imQ. Since ax maps imQ into 

imP , this implies that 

Also , a xEx(kerPx) ~ kerP x. So ex Ex/ E £ 2 ===} cxEx(L1 ) ~ L2 . Conversely, 

take T/ E L2 . Then there exists u E imQ such that T/ - x0 = cxu. Thus 

Thus -Exxo = Qxu (E im(Q x limQ)) since ax is one-one on imQ x. But then there 

exists I E ker p x such that E X, - ex Xo = u. So I E L1 and 

2.3 Inversion of Finite Block Toeplitz Matrices 

In t hi s section the inversion method based on equivalence to linear systems, which 

was used in the previous sect ion , is developed furth er for finit e block Toepl itz 

matrices. 

Theorem 2 .5. Consider the finite block To eplitz equation 

(2.32) 
N 

L ([> k- 11X11 = Zk, 

11=0 

k =0 , ... ,N, 
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where <l> _N, ... , <I> N are the -N to N Fourier coefficients of a rational matrix June-

tion 

(2.33) <I> (>.) = D + (>. - a)C(>.G - At 1 B, 

given in realized form , where a f:- 0 is neither a pole nor a zero of <I> . Then Equation 

(2 .32) is equivalent to the follo wing discrete boundary value system: 

Gpk + B uk, k = 0, 1, ... , N, 

(2.34) C(aPk+t - Pk)+ Duk , k = 0, 1, . .. , N, 

0, QpN+ l = 0, 

where Q is the projection given by ( 1. 9) with r = 'f . The equivalence between 

(2.32) and (2.34) has to be understood in the follow ing sense: If x = (xk)f=o is a 

solution of (2.32) 1 then the system (2 .34) with input Uk = Xk (k = 0, 1, ... , N) has 

output Yk = Zk (k = 0, 1, ... , N) 1 and1 conversely1 if the system (2.34) with input 

u = (uk)f=0 has output Yk = Zk (k = 0, 1, . .. , N) , then x = u is a solution of (2.32) . 

P roof. Since t he symbol <I> is given by (2 .33), the m atrix coefficients <l>_ N, ... , <l>N 

in (2.32) are given by 

(2.35) 
{

- C E(nk-i - a Dk)(I - P )B , 

<J? k = D + aCE(I - P )B + CE PB , 

C E(D-k - a n -k- t )PB, 

k = 1, 2, . . . , N, 

k = 0, 

k = -1 , -2, . . . ,-N, 

where P, E and n are given by (1.6)-(1.8) with r = 'f. Assume Xo, ... 'XN is a 

so lu t ion of (2.32) . Put 

(2 .36 ) 
'l\"k- t EDk-t-v(I - P )B x Pk = L.,,v=O v 

- ~~=k Env-k PBx,,, k = 0, 1, ... , N + 1. 

Using the ident ities AE(I - P) =I - P, AEP =DP, GE(! - P) = D(I - P) and 

GE P = P we get 

k N 

Apk+1 = L AEnk-v(T - P )B x,, - L AEnv-k-I P B x,, 
v=O v=k+ L 

k N 

L n k-v(I - P)Bx,, - L n v-k p B x,, 
v=O v=k+l 
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k-1 N 

L n k-v (l - P)Bx,, - L n v- k p B x,, 

+n°(! - P)B xk + n° P B xk 
k -1 N 

L n(I - P )n k-l-v B x,, - L Pnv- k B x,,+ Bxk 
v=O v=k 

k-1 

G L E(I - P)nk-l-v B x,, 

N 

-G L EPnv- k B x,, + B xk 
v=k 

{ 

k- 1 N } 
G ~ Enk-l-v(I - P)Bx,, - ~ Env-k P B x,, + B xk 

Gpk + B xk . 

Thus Po , ... , PN+1 is a solution of the first equation in (2.34) with 

Uk= Xk, k = 0, 1, ... , N. Also, 

N k -1 N 

Zk L <I>k-vXv = L <I> k- vXv + <l>o Xk + L <I>k-v Xv 
v=O 
k-1 

L -C E(nk-l-v - an k-v) (I - P )Bx,, 

+ [D + aCE(I - P)B + CEPB] Xk 
N 

+ L c E(nv-k - anv-k-l )P B x,, 

41 
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C {a [t, E!J.'-"(I - P )Bx" - "~1 Ew-'-
1 
?Bx"] 

- [~ En'- 1
- "(I - P)Bx" - t. En"-' P Bx" l} + Dx, 

C( apk+i - Pk)+ Dxk 

42 

Therefore po , .. . ,PN+i satisfy the second equat ion in (2 .34) with uk = Xk and 

Yk = Zk, k = 0, 1, .. . , N . Furthermore, sin ce EP = QE and DP = PD , p0 = 

- L~=o EDv P B xv implies that (I - Q)po = -(I - Q) L~=o EDv P B xv = 
-(E-EP)P L~=O Dv B xv = -(EP-EP2

) L~=O Dv Bxv = - (EP-EP) L~=O Dv B xv = 

0. Also , PN+I = L~=O EDN-v(I - P)Bxv implies that QPN+l = 

'\' N QED,N- v( l-P )Bx = '\'N EP(!-P)DN- v B x = '\' N E(P-P 2 )DN-v B x = 6v=0 11 LJv=O v 6 v=O v 

L~=O E(P -P)DN-v B xv = 0. Thus with input Uk= Xk (k = 0, 1, . .. , N) the system 

(2.34) has output Yk = Zk (k = 0, 1, ... , N) . 

To prove the converse statement , let p0 , ... , PN be a solution of (2.34) with 

Yk = Zk, k = 0, 1, ... , N. We need to show that if Uk is the input with output Yk, 

then T<!>x = z, where x = u and y = z . From Lemma 1.2 we know that Pk is given 

by 

k-1 

Pk EDkT/ + EDN+1-k( + L Enk- 1-v(I - P)Bxv 
v=O 

N 

- L EDv-k P Bxv, k = 0, 1, ... ,N + 1, 
v=k 

where T/ E ker P and ( E imP. Thus p0 = ETJ + EDN+ 1
( - L~=o EDv P B xv and 

PN+l = EDN+lTJ+ E( + L~=O EDN- v(I -P)Bxv . From the first boundary condition 

we get 

N 

0 = (I - Q)po = (I - Q)ETJ +(I - Q)EDN+ 1
( - (I - Q) L EDv P B x,,, 

v=O 
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i.e ., 

Similarly, from the second boundary condi t ion we get 

N 

O = QPN+ 1 = QEnN+1ry + QEe + L QE(I - P )n N- v B xv, 
v=O 

i. e., 

Here we have two equat ions in ( and T/· The second equation yields EPftN+1ry + 
EPe = EftN+ 1 Pry+ EPe = E( = 0. Thus ( = 0. From the first equation we get 

(I - Q)Ery = Ery - QEry = Ery - EPry = Ery = 0. Thus T/ = 0. Therefore Pk can be 

expressed as 

k-1 N 

Pk = L E n k-l-v(I - P)Bxv - L Env-k P Bxv , k = 0, 1, . . . , N + 1, 

v=O 

which is the same as (2.36). Using the second equation in (2.34) we find that 

Zk = Yk = C(aPk+l - Pk)+ Duk , k = 0, 1, ... , N. 

Thus 
N 

Zk = L <l> k-vUv, k = 0, 1, ... , N. 
v=O 

Th is is obtained from a previous calculat ion in t he proof of Theorem 2.2. Thus 

Xk = uk , k = 0, 1, .. . , N is a solution of (2.32) . q 

Using the equivalence in Theorem 2.5 one may solve Equation (2.32). The final 

result is the following t heorem . 

Theorem 2.6. Let Yo , y1, . .. , YN be given vectors in <Cm , and consider the equation 

(2.37) 
N 

L <I> k- vUv = Yk , 
v=O 

k = O, . .. ,N, 

where <l> _N, ... , <I> N are the - N to N Fourier coefficients of a rational matrix func­

tion 

<I> (>.) = D + (>. - a)C( >. G - At1 B , >. E 'Ir , 
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given in realized fo rm, where a =fo 0 is neither a pole nor a zero of <I>. Put Ax 

A+ aBD- 1C and ex = e + BD- 1C, and assume that the pencil >.ex - AX ZS 

'Ir -regular. Introduce 

(2 .38) 
(I_ Q)E x (I_ p x) +(I_ Q)E x (ftx )N+I p x 

+QE X( f2 x)N+1(I _ p x) + QE X p x, 

where Q is the projection given by (1.9) with r = 'Ir and p x' EX and n x are, 

respectively, the separating projection) the right equivalence operator and the associ-

ated operator corresponding to >.ex - A x and 'Ir. Then Equation (2 . 37) is solvable 

if and only if 

(2. 39) 
L~=O [(/ - Q)E x (Dx )v p x 

-QE X( f2 X)N - v(I - p x) ] BD-lyv E imVN, 

and in this case the general solution of (2.37) is given by 

Uk = D- 1cEx [(D x)k - a(f2x)k+ 1J (I - p x )TJ 

(2.40) +n-1cE x [(n x)N+1- k _ a(Dx)N-k] p xTJ 

+ L~=O <I> :_vYv, k = 0, 1, ... , N, 

where TJ is an arbitrary vector in en (with n the order of the matrices e and A) such 

that VNTJ is equal to the left side of (2.39) and 

{ 

n-1c E x [(nx)k-I - a(DX)k] (I - P X) BD- 1, k > 0, 

(2 .41) <I> : = n-1 - n-1 c EX [P X +a(! - p x )] BD-1) k = 0, 

n-1cEx [a(D x) -k-1 -(Dxtk] p xBn-1 , k < 0. 

In particular) the general solution of the homogeneous equation 

is given by 

(2.42) 

N 

L <I>k-vUv = 0, 
v=O 

k = O, ... ,N, 

n-1cE x [(D x)k _ a(Dx)k+IJ (I_ p x )TJ + n-1cE x· 

[(n x)N+1-k _ a(nx )N-k] p xTJ, k = o, ... , N, 

where TJ is an arbitrary vector in ker VN. Furthermore, the block To eplitz matrix 
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is invertible if and only if det VN "I- 0) and in this case the entries of the inverse 

T[/ = [r~ ] f,j=o admits the following representation: 

(2.43) r N ;r..x + } ·' N kj = 'l!k- j '- kji k , j = 0, . . . , N , 

where <I> .'.'._N, ... , <I> ~ are as in {2.41) and 

r.r N 
1i. kj = n-1cEx { [(SV) k - a(SY)k+ 1J (I - P x) 

+ [(SV)N+t-k - a(D xt-k] px} VN1. 

{(I - Q)e x(D x )j p x - Qe x (DX t-ju - px)} BD-l 

P roof. By Theorem 2.5 the sequence u = ( uk)f=o is a solution of (2.37) if and only 

if there exist p0 , p1 , ... ,PN+i satisfying (2.34). The inverse system of (2.34) is 

(2.44) 

e x Pk + BD- 1yk, 

-D- 1 C( apk+1 - Pk) 

k = O, ... , N , 

+D-1 yk, k = 0, . . . , N , 

(I - Q)po = 0, QpN+l = 0. 

From Lemma 1.2 we know that the general solution of the first equation in (2.44) is 

given by 

ex(D x)k(I - p x )TJ + E X(D x)N+l-kp xT/ 

(2.45) + L~=~ ex(D X)k-l-v(J - px)BD-lyl/ 

- L~=k ex (D X y-k p x BD- 1y,,, k = 0, 1, ... ) N + 1, 

where 17 is an arbitrary vector in en. Thus 

Po= e x (I - p x )TJ +ex (D X )N+I pxT/ - L~=O e x(D X y p x BD-lyl/ and 

PN+I =E X (DX )N+l(J - px )TJ +ex pxT/ + L~=O ex (D X )N-v(I - p x )BD-lYv· The 

first boundary condition is 

0 (I - Q)po 

(I_ Q)e x (I_ p x )TJ +(I_ Q)E x (D x t+l p xT/ 
N 

-(I - Q) L e x (Dxy px BD-lyv , 
v=O 

https://etd.uwc.ac.za/



while the second boundary condition is 

0 = QpN+ l 

QE x(n xt+1(f _ p x )T/ + QE x p xT/ 
N 

+Q L Ex(n x)N- v(f _ p x) BD-lYv· 
v=O 

From these two equations for the boundary conditions it follows that 

[(! _ Q)E x(I _ p x ) + (! _ Q)E x(n x)N+I p x 

+QE X(D, x )N+l(I _ p x ) + QE x p x] T/ 

= L:~=O [(! _ Q)E x(n xyp x _ QEx(nx)N-v(I- p x )] BD-lYv· 

46 

Thus the vectors p0 , .. . , PN+I in (2.45) satisfy the boundary conditions in (2.44) if 

and only if 

N 

VNT/ = L [(I - Q)E x(n xy p x - QE x(n x )N-v(I - p x )] BD-IYv· 
v=O 

From (2.44) we have that 

Uk = -D-1C(o:Pk+1 - Pk) + D- 1Yk 

-D- 1{aCpk+1 - Cpk -yk} 

= -D-1 {o:C [E x(n x)k+1(I- p x) TJ + E x(n x)N-kpx 17 
k 

+ L E x(n x)k-v(! _ p x )BD-Lyv 
v=O 

-t Ex (n xy-k-1 p x BD-1Yv] 
v=k+l 

-C [E x(n x )k(I _ p x)TJ + E x(n x)N+I-kp x17 
k-1 

+ L E x(n x)k-1-v(I _ p x) BD-iyv 
v=O 

-t.Ex(n')"-'PXBD- 1y"l-y,} 
= D-i cex [(D x)k _ a(Dx)k+l] (I_ p x)TJ 
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+n-1cEx [(D x)N+1-k _ a(nxt- k] p xT/ 
k-1 

+ L n-lcEx [(D x)k-1-v - a( Dx)k- v] (I - p x) BD-lyv 

-aD-1CEx(D x)o(I - p x)BD-1yk - n-1 cEx(Dx)o p x BD- 1yk 
N 

+D-lyk + L n-1 cEx [a(n xy-k-1 - (n xy-k ] p x BD-lyv 

n-1 cex [(D x)k _ a(Dx)k+1J (I_ p x)ry 

+n-1cEx [(n xt+i-k _ a(Dx)N- k] p xT/ 
k-1 

+ L n-1 c E x [(n x )k-1-v - a(Dx )k-v] (I - p x )BD-lyv 

+{D-1 -n- 1 cex [P X + a(!- P X)] BD- 1 }yk 
N 

+ L n-l cEx [a(n xrk-l+v - (n xrk+v] p x BD-lyv 

n-1 cEx [(Dx)k _ a(Dx)k+1J (I_ p x)'f! 

+n-1 c E x [(nxt+i-k - a( Dxt-k] p xT/ 
k- 1 N 

+ L <I> ;_vY11 +<I>~ Yk + L <I> ;_vYv· 

n-1 cEx [(Dx)k - a(Dx)k+ IJ (I - p x)'f! 

+n-1 cEx [(D x)N+1-k _ a(Dx)N-k] p x17 

+ 'L: ~=O <I> ;_11 y11 , k = 0, 1, ... , N . 

In parti cular , the homogeneous equation 

N 

L <I> k-vUv = 0, 
v=O 

k=O,l, ... , N 

47 

has solution as given by (2.42), where VNT/ = 0 since Yk = 0, k = 0, 1, ... , N. Thus 

T/ E ker VN . In the nonhomogeneous case the solution for Uk is given by (2.40) with 

T/ an arbitrary element in en. Suppose VN invertible ~ T/ unique ~ Uk unique 

~ TN invertibl e. 
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Let us return to the nonhomogeneous case. We have that 

N 

VN1J = L [(I - Q)E x(n xt p x - QE x(n xt-vu - p x )] sn-lYv· 
v =O 

Thus 

N 

17 = L {VN" 1(I - Q)E x(n xt p x BD-1 - VN"1QEx(nxt - "(I - p x) BD-1} Yv, 
v =O 

since the inverse VN" 1 exists. But then for k = 0, 1, .. . , N we have that 

Thus 

where 

Uk = n- 1 c E x [(n x)k - a(Dx)k+1J (I - p x) 1J 

+n-1cEx [(nxt+i-k _ a(Dx)N-k] p x11 
N 

+ L ~:-vYv, k = 0, 1, ... , N, 

N 

= L n-icex { [(nx)k - a(Dx)k+l ] (I - P X) 

+ [(n x )N+1-k _ a(nx t-k] p x} VN" 1 . 

{(I - Q)E x (Dx t p x - Q E x (Dx t-"(I - p x)} B n-1 Yv 
N 

+ L ~~- v Yv, k = 0, 1, ... , N. 
v=O 

N N 

uk = L r~y1 = L [~~-j +I<~ ] y1, k , j = o, 1, ... , N, 
j=O j =O 

n - icex { [(D x)k _ a(Dx)k+1J (I_ p x) 

+ [(n x )N+ 1-k _ a(nx )N-k] p x} VN"1 . 

{(I - Q)E x(n x)j p x - QE x(n xt- j(I - p x)} BD-1. Q 

https://etd.uwc.ac.za/



Chapter 3 

Fredholm properties of Block Toeplitz Operators 

with rational symbols 

3.1 Fredholm characteristics and generalized inverse 

In this section we derive the Fredholm properties and generalized inverse for a block 

Toeplitz operator with rational symbol. The symbol is given in realized form and all 

results are expressed expli citly in terms of the data appearing in the realization. In 

what follows the term generalized inverse is used in a weak sense, i.e., an operator S 

is said to have a generalized inverse s+ whenever S = ss+ S. Recall that a bounded 

linear operator A : X -t Y, act ing between complex Banach spaces X and Y , is 

called a Fredholm operator if its range imA is closed and the numbers 

(3.1) n(A) =dim ker A , d(A) = dim(Y/imA) 

is finite. In this case the ind A = n(A) - d(A) is said to be the index of A. Note 

that dim(Y/imA) is also written as codim (imA ). 

Lemma 3.1. Suppose T is a block Toeplitz operator with rational symbol 

(3.2) <I>(A) = D + (>. - a)C(>.G - At 1 B , 

given in realized form , where a =J 0 is neither a pole nor a zero of <I>. Assume that 

>.Gx - Ax is 11'- regular. If </> E ker T then 

(3.3) 

49 
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where rt E ker p x n imP. 

Proof. Let </> E ker T . Then there exists p (see (2.9)) such that 

epk + B </>k, k = 0, 1, 2, ... , 

C(a.Pk+ I -pk)+ D</>k, k = 0,1,2, ... ' 

0. 

By t he first equation of the inverse system (2.17) we obtain 

k = 0, 1, 2, .... 

But then from (2.27) we obtain 

and so (see(2 .29)) 

k=0,1 , 2, . . . , 

D-1cE x [(!Y)k - a.(n x)k+ 1J /, 
D-1 C E x [(nx ) k-1 _ a.(nx )k] nx,, 

k = 0, 1, 2, ... ) 

k = 1, 2, .... 

50 

Here/ E ker p x. Thus e x E X, = nx, E ker p x. Also , (I - Q)po = 0 implies that 

E X, E imQ (see (2.30)). Thus e x E X, E imP. Put T/ = nx, = e x Ex,. Then 

where rt E ker p x n imP. Q 

Lemma 3.2. Suppose T is a block Toeplitz operator with rational symbol 

<I>(>.) = D + (>. - a.)C(>.e - At1 B , 

given in realized form} where a -=f 0 is neither a pole nor a zero of <I> . Assume that 

>.e x - Ax is 11' - regular. If </> E imT then 

00 

(3.4) I)nx)" p x BD- 1</>,, E imP + ker p x . 
v =O 

Furthermore} codim (imT) = codim (imP + ker px ). 
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P roof. Let <P E imT. Put T f = </>, f E l ;;'. Then there exists p such that 

Gpk+Bfk, k=0,1,2, . .. , 

C(apk+ 1-pk)+Dfk, k=0,1 , 2, ... , 

0. 

But then , for the inverse system , we get 

cxpk + BD- 1 </>k, k = 0, 1, 2, ... , 

-D- 1C(apk+1 - Pk)+ D- 1</>k, k = 0, 1, 2, ... , 

0. 

By Lemma 2.3 we have that 

k-1 
Pk = E x(n x )k! + L E x(n x )k- 1-v(I - p x)BD-1 </>v 

v=O 
00 

- L E x(n xy-k p x BD- 1</>v, k = 0, 1, 2, .. . , 
v=k 

where/ E ker p x. Therefore 

00 

Po= e x, _ L e x(n xtp x BD-1</>v E imQ . 
v=O 

We know that e x ex/= n x/ E ker p x and 

CXl 

v=O 
CXl 

v=O 
CXl 

n x, - L (nx t p x BD- 1</>v E imP. 
v=O 

Thus 
00 

L (nxy p x BD-1</>v E imP + ker p x. 
v=O 

Define a mapping(}: l''(:/ imT -t Cn/( imP+kerP x) by[</>] t--7 [R( <P)], where 

R( <P) = I::o (nxt p x BD- 1<Pv, or equivalently, (}([<P]) = [R( <P)] or <P + imT t--7 

R( <P) + imP + ker p x. 
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To show() is injective, suppose B([ef>]) = [O], i.e. , [4>] E kerB. Then [R( ef>)] = [O] 

or R( ef>) E imP + ker px. But then 4> E imT, showing that [ef>] = [O]. Hence() is 

inject ive. 

To show that () is surjective, it would suffice to show that 

en = imR + imP + ker p x. To this end, let w E ker P and let j be the function with 

{

- aCEw, k = 0, 

fk = -CE (a.Dk - nk- 1) w, k > 1. 

Then 

00 

R(.f) -a.Px BD-1CEw - I.= (nxr p x BD-1C E (anv - nv- 1
) w 

v=I 

v=I 
00 

v=l 
00 

v=O 
00 

v=O 
00 

= L (!Yr P x( A - Ax)EDvw 
v=O 

00 

v=O 
00 00 

L (nxr p x AEnvw - L (nxr px A x Envw 
v=O v=O 

00 00 

v=O v=O 
00 00 

L (nxr pxnvw - L (nxr p xn xax Envw 
v=O v=O 

00 00 

v=O v=O 
00 00 

v=O v=l 
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since A - A X = -aBD- 1C e - e x = -Bn- 1c AE(I - P) =I - p p x A X = 
) ) ) 

Ax Q x = A x E x (E x t IQ x = A x E x p x (E x t I = n x p x (E x )-1 = n x p x e x and 

GE(! - P ) = f!(I - P). Thus w = p xw +(I - p x )w = R(J) +(I - p x )w from 

which it follows that z E e n, z = P z +(I-P)z = Pz +w = Pz +R(J)+(I-P x)w . 

Hence () is an invertible linear operator. Thus 

codim (imT) = dim(l;:1 / imT) = dim. e n = codim (imP + ker p x ). q 
1mP + ker p x 

Theorem 3.3 . Let T be a block To eplitz operator on l''; with rational symbol 

<I>(,>t) = D + (,\ - a)C(,\G - At 1 B , A E 'JI' , 

given in realized form , where a -f. 0 is neither a pole nor a zero of <I>. Put A x = 

A+ aBD- 1C and e x = e + BD- 1C . Then T is a Fredholm operator if and only 

if Aex - A x is a 'JI' -regular pencil. Assume that the latter condition holds. Th en 

(3. 6) 

(3.7) n(T) = dim(ker p x n imP), d(T) = dim. p C~ p , 
1m + <er x 

(3.8) ind (T) = rank P - rank p x, 

and a generalized inverse of T is given by r+ = [rtJi.i=o with 

(3.9) r~ = <I> x . + f{-f: 
iJ i - J iJ' i,j =0, 1, 2, . .. , 

{ 

n-icex [(nx)k-1 - a(n x)k] (I - p x )BD-1 , k > 0, 

(3.10) <I> : = n- 1 - n- 1cEx [P X+ a (I - P X)] BD-1, k = 0, 

n-• c £X [ a(nx tk-1 - (nx tk] p x B n-1 ' k < 0, 
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(3.11) [{-f: 
•J 

where ( J x )+ is a generalized inverse of th e operator 

(3. 12) J x = px limP : imP --+ imP x. 

Here P is the separating projection corresponding to ,\G-A and 11' , and th e operators 

p x' ex and nx are, respectively, th e separating projection, the right equivalence 

operator and the associated operator corresponding to ,\Gx - A x and 11'. 

P roof. Gohberg and Feldman (1974) proved that T is Fredholm if and only if 

det<P(,\) # 0, ,\ E 11' . By Lemma 2.1 ([Gl]) the latter condition is equivalent to the 

requirement that ,\Qx - Ax is 11'-regular. 

Suppose T is Fredholm , i. e . , ,\Gx - A x is 11'-regular. From Lemma 3.1 and Lemma 

3.2 the formulas for ker T and imT follows. From Lemma 3.1 it follows that 

n(T) =dim kerT = dim(imP n ker P X); 

and from Lemma 3.2 it follows that 

Th erefore 

ind (T) 

en 
d(T) =dim. p I p 

1m + <er x 

n(T) - d(T) 

dim(imP n ker p x) - dim. p e: p 
1m + er x 

{dim imP +dim ker p x - dim(imP + ker p x)} 

- {dim en - dim(imP + ker p x) } 

dim(imP) +dim ker p x - n 

dim(imP) - (n - dimker P x) 

dim(imP) - dimim(P x) 

rank P - rank p x. 
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What remains to be checked, is the formula for a generalized inverse. If T J = </> , we 

know from Theorem 2.4 that 

00 

f k = n-1cEx [(fY)k-l - a( fY )k] T/ + L if> ~-v<Pv, k = 1, 2, ... ' 
v=O 

where rJ E ker p x. Put r+ = [ftJiJ=0 , so 

00 

j =O 
00 

v=O 

00 00 

v=O v=O 

To show that r+ is a generalized inverse for T we need to show that TT+T j = T j 

for every J E D(T). Suppose that Tf = </>. Then "£: 0 (fl x)v p x3n- 1<1>v = R( </>) 

E imP + ker P x. Then X<t> = -(!- p x)( J x)+R(<P) E kerP x. Note from the 

expression for J k above that 

00 00 

v=O v=O 
00 

v=O 

(from Theorem 2.4) . Thus T(T+<f>) = T(T+T !) = T J, showing that T f coincides 

with TT+T J, or equivalently, T = TT+T. q 

3.2 Riemann-Hilbert problem 

Let cI> be an m x m rational matrix fun ction without poles on the unit circle 11' . 

Recall that a pair of cm-valued fun ctions ( 'l/J+, 'lj;_) is said to be a solution of the 
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homogeneous Riemann-Hilbert boundary problem (see, e.g. , [CG]) for <I>(>,) relative 

to 11' if 'l/J+ is analytic in JD)+ , continuous on JD)+ , the function 

(3 .13 ) 

extends t o an analyti c function in JD)_ , is continuous on JD)_ and 'l/J - ( >.) has the value 

zero at infinity. 

Theorem 3.4. Let 

(3.14) <I>(>.) = D + (>. - a)C(>.G - At1 B, >. E 11' , 

be given m realized form} where a -::J 0 is neither a pole nor a zero of <I>. Put 

A x = A+aBD-1 C andG x =G+Bn- 1c. LetP andP x be the projections given 

by 

Th en the general solution of the Riemann-Hilbert boundary value problem (3 .13) is 

given by 

(3.15) 
-(>. - a )D- 1C (>.G x - A xt 1x , 

-(A - a)C(AG - A)-1x, 

where x is an arbitrary vector in imP n ker p x . Moreover} the vector x is uniquely 

determined by the solution ( '!/J+, '!j;_). 

Proof. From the 11'-spectral decomposition of t he pencil >.G - A we know , since 

x E imP, that '!j; _( >. ) = -(>. - a )C(>.G - At1x = -(>. - a)C(AG - At 1 Px has 

an analytic continuat ion to JD)_ , also denoted by '!j;_ and '!j;_(>. ) ~ 0 as >. ~ oo . 

Similarly, since x E ker p x, t he 11'-spectral decomposition of the pencil >. Gx - A x 

allows us to conclude that 'l/J+(>.) = -(>. - a) D- 1C (>. Gx - A xt 1x has an analytic 

continuation to JD)+ , which we also denote by '!/J+. Also , recall from Lemma 1.5 that 

So , any pair ('l/J+, '!/J -) of the form (3.15) is a solution of t he Riemann-Hilbert problem 

for <I> (>.) relative to 11' . 

https://etd.uwc.ac.za/



57 

Conversely, let ('f+, 'f_) be a solution of the Riemann-Hilbert problem for <I> ( >. ) 

relative to 11'. We know that a block Toeplitz operator Tep with defining function <I> 

is unitarily equivalent to the compress ion to the Hardy space H;'('If ) of t he operator 

of multip lication by <I> on L;'('If ). That is, 

f E H;1'(1f), 

where U is the Fourier transformation on H;'('If) , the operator Mcp is the operator 

of multiplicat ion by <I> on L;'('If) and IP' is the orthogonal projection of L;'('If ) on 

H;'('If ) (see Corollary 3.3 , [GGK2]). Then 

Therefore TcpU'f/J+(>.) = 0. So , clearly U'f/J+ E kerTcp . From Theorem 3.3, and the 

fact that 'f+ E H;'( 'If) , U'f+ is of the form 

where ( ck)~0 are the Fourier coefficients of 'f+(>.) = -(>. - a)D-1C(>.G x - Ax )- 1 x, 

x E imP n ker p x, with en= 0 for n = -1 , -2, -3, .... This can be seen as follows: 

0 l 
2::: ~~-oo >, v+1 (D; )-v-1 

L:~~-= >.~ (nn---1] x 

z:=-= :.(nn-·] x 

x 
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Thus 

-D-1CE' [~ 0 ] [-I' ~ ] x Co = x + a D- 1CEx 
1 

f X Q 
2 

= -D- 1 CEx [p x + a(! - P x)]x, 

= -D- 1CEx [p x + al - a P x]x 

- - a D- 1 C E x x (P xx = 0), 

[ 
(!Y)k-1 OJ [ (!Y)k 

Ck = - D- 1CEX - ~ 0 x + a D- 1CE X - 0
1 

= D- 1cEx [(!Y)k-l - a(!Y)k] (I - P x)x, k > 0, 

= D-1cEx [(!Y)k-l - a(!Y)k] x, k > 0, 

ck= -D- 1 CEx [
0 

O ] x + aD- 1cex [
0 

O ] x,k< O, o (n; t k o (n; )- k-1 

- -D-1 C E x [(nx tk - a (D x t k-1 J p x x, k < 0, 

- 0, k < 0. 

Now it is plain t hat 

7/J _(>, ) = <I> (,\ )7/J+(,\ ) 

- - (,\ - a) <l> (,\ )D- 1C (,\Gx - Axt1x 

= - (,\ - a )C( ,\G - At 1x, x E im P n ker p x, 

(see first ident ity, Lemma 1.5). 
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It remains to show that x in (3.15) is uniquely determined. If 

1/J+(>.) = -(>. - a)D- 1C(>.Gx - Ax)- 1x1 = -(>. - a)D-1C(>.Gx - Axt 1x 2 , with 

X1, X 2 E imP n ker p x' then 

Thus 

(>. - a)BD-1C(>.Gx - Axt 1(x1 - x2) = 0, 

(>. - a)BD- 1C(>.G - At1(x1 - x2) = 0. 

Using (2.8) we see that 

Thus 

1.e.' 

[(>.Gx - Ax) - (>.G - A)] (>.G x - Axt 1(x1 - x2) = 0, 

[(>.Gx - Ax) - (>.G - A)] (AG - A)-1(x1 - x2) = 0. 

Therefore, for r = 1l 

== 0. 

That is , 

https://etd.uwc.ac.za/



implies that 

(from Cauchy 's theorem) . Thus 

-~ r BD-1C(>..G - At1d>.(x1 - Xz) 
27ri Jr 

0. 

O=P(x1- x2) 

since P is a projection, i. e., x 1 - x2 = 0. That is , x 1 = x 2 . Q 

3.3 Example 

60 

In this section we calculate the inverse of a block Toeplitz operator with rational 

symbol using discrete singular systems with boundary conditions. Note that all 

calcu lations were done with the aid of MAPLE. Let T be a block Toeplitz operator 

on r:; with rational symbol 

(3.16) <I>(>.)= D + (>. - o:)C(>.G - At1 B , >. E 'IT' , 

given in realized form. Consider the finite block Toeplitz equation 

(3.17) 

N 

L <I>k-11X11 = Zk, k = 0, . .. 'N. 
11=0 

We use the results of Section 2.3 to invert a finite block Toeplitz matrix that corre­

sponds to Equation (3.17). Finally we calculate the formula for the inverse as given 

in Section 3.1. 

Let T be the block Toeplitz operator with symbol 

(3.18) 
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We first write <I> as a transfer function of a system. Introduce 

~ ] , a= -4/3, 

-1/2 

o] ,D=[o -1]· 
-1 2 0 

Clearly <I>( a) = D, which is well-defined with inverse 

<l>(att = D-1 = [ 0 1/2] · 
-1 0 

The pencil >.G - A is 11'-regular and one finds that 

Thus 

[

-1 

(>.G - A)-1 
= ~ 

0 

-2/(2>. - 1) 

0 

~ ] ' ).. E 11'. 

-2/).. 

<I>(>.)= D + (>. - a)C(>.G - At1 B , >. E 11'. 

61 

Calculation of the projections P and Q, the right equivalence operator E and asso-

ciated operator n yields 

[~ 
0 

:J ' P=Q= 1 

0 

[~ 
0 

~] . n=[~ 
0 

~] E= -1 1/2 

0 -2 0 0 

One checks that the identities 

PG = GQ' p A = AQ' nP = Pn, 

[-] 0 

~] = [ An,
0
-11 (AG-A)E= ~ ).. - 1/2 AI,~ n,] 

0 
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are satisfied . 

Taking N = 2 we compute the Fourier coefficients <I>_2 , <I>-1, <I>o , <I>1 and <I>2 as 

~-2 = [~ ~l · ~-! = [ 4~3 _;/3], 

~o = [ 130/3 ~~ l · 
~! = [ ~ ~ l · ~, = [ ~ ~ l 

The block Toeplitz matrix (with N = 2) is 

0 -1 0 0 0 0 

13/3 2/3 4/3 - 8/3 0 0 

0 0 0 -1 0 0 
(3.19) TN= 

1 2 13/3 2/3 4/3 -8/3 

0 0 0 0 0 -1 

0 0 1 2 13/3 2/3 

The next step is to analyze the pencil >..G x - A x. One finds that 

r

5/3 -8/3 2/3

1 

r -1/2 2 

A x = 0 -1 /2 0 , Gx = 0 -1 

1/3 4/3 1/3 -1/4 -1 

-1/2 1 
0 . 

-3/4 

The determinant of >..ex - Ax is (-1/4)>..3 - (23/24)>.. 2 + (5/24)>.. + 1/6 with roots 

).. = 1/2, -1/3, -4. Thus the pencil >..Gx - A x is 1r-regular, i.e., no roots lie on the 

unit circle. Before we can calculate the Fourier coefficients <I>~ of <I>(-t1 we first 

have to compute the separating projection p x , the right equivalence operator E x 

and the associate operator nx corresponding to the pencil >..G x - Ax and 1r. We 

note that 

<I>(>..)-1 = . 
[

2(3>.. + 4)(>.. - 1)/(3>..2 + 13).. + 4) 3>../(3>- 2 + 13).. + 4) l 
-1 0 

The projections and operators are 

1

-1 /11 -160/99 

p x = 0 1 

-2/11 -80/297 

6/11 I i-1 /11 
0 , Qx = 0 

12/11 3/11 

80/27 

1 

-20/27 

-4/111 
0 ' 

12/11 
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Ex = 0 -1 
[ 

7 /11 -776/297 

0 nx = 0 
2/11 ] [-8/33 

-17 /11 ) 1/66 

-64/33 

1/2 

-164/99 

0 . 
-1/22 ] 

1/11 788/297 -15/44 

Once more the identities 

are satisfied. The eigenvalues of nx are 1/2, -1/3, -1/4 and one computes that 

Thus 

(--l 1 [-20/11 
4 0 

3/011] ' k > 0, 

(3.20) <I> ~ = [ 2~111 3/011] ' k = 0, 

(--tk 1 [24/11 
3 0 

3/011] ' k < 0. 

One finds that 

\!'. _ ~ _ 2_(-~)N+I \!'. _ 320 48 (-~)N+I _ 616 (~)N+I 
N[i , i] - 11 11 3 ' N[l ,2] - 297 + 55 3 135 2 ' 

4 6 1 N+I 
VN[l ,3] =-ii+ ii(-3) ) VN12,1] = 0, VN12,2] = -1, VN[2 ,3] = 0, 

\/, _ -~(-~)N+ I 2_ \/, __ 80 (-~)N+l 868 
N13 ,i] - 11 4 + 11' Nl3 ,2l - 297 4 + 297' 

\/, - 2_(- ~)N+l - 18 
N[3,3l - 11 4 11 . 

The determ inant of VN is equal to 

63 
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which has no zeroes for positive integer values N. Thus 

f{N = 2_(-~)1(-~) k [ -2 -1/4 ] 
k1 11 3 4 0 0 

+2-(- ~)N -j ( -~)N-k [5/3 -1/4] · 
11 4 3 0 0 

(3.21) 

So TN 1 = [<I>~-j + I<kjJr,j=O > where <I>~ is given by (3.20) and I<kj by (3 .21). Putting 

N = 2, we find 

2 471 1264 12 448 48 
1885 1885 1885 145 1885 1885 

-1 0 0 0 0 0 

72 9 ~ ~ 112 12 

(3.22) r.-1 - 145 145 145 145 145 145 
2 -

0 0 -1 0 0 0 

216 27 792 -~ 626 471 
1885 1885 1885 145 1885 1885 

0 0 0 0 -1 0 

If we mult iply (3.19) with (3.22) we get the required 6 x 6 identity matrix. 

Finally, we find the inverse r- 1 of a semi-infinite Toepl itz operator. We use Theorem 

3.3 to show that T is invert ible. Since imP = span { [ : ] , [ ~ ] } and ker P' = 

span { [ ~ ] } , we have that ker P' nimP = {O}. Thus n(T) = dim(ker P' nimP) = 

0, so T is injective. And 

en 
d(T) = dim. p k =dim en - dim(imP + ker p x) = 3 - 3 = 0 

1m + erPx 

implies that T is surjective. Thus T is invertible. We calculate J X from 

-160/99 

1 

-80/297 

6/11 ] 

12~11 
where P1 , P2 are arbitrary, and P3 = - 7 /2P1 + 388/27 P2 - 25/6. One possible J x is 

[

-25/33 -160/99 

j X = 0 1 

-50/33 -80/297 

6/11 ] 
0 . 

12/11 
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A generalized inverse of J X is 

[

-330/25 01 000] 
(Jx )+ = 

0 80/27 

One easily verifies that J X = p x limP : imP ---+ imP x and that Jx = JX (Jx )+ J X. 

The inverse of T is given by 

r-! = <I> x . + [{+: 
'J i - J 'J ) 

i,j = 0,1 ,2, ... , 

where <I> ; is given by (3.20) and K/j by 
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List of Symbols 

C subset 

IR set of real numbers 

Z set of integers 

C set of complex numbers 

C00 Riemann sph ere C U oo 

'[' uni t circle in t he complex plane 

ID\ open uni t di sc in C 

[»_ complement of IT»+ U '[' 

r Cauchy contour in C 

~+ inner domain of r 

~- outer domain of r 

£2 (1r) set of all Lebesgue measurable and square integrable fun ct ions on the interval 

[-7r , 7r] 

H2 (1r) space of a ll square integrable fun ct ions on the uni t circle 

£2 (Z ) Hilbert space of all square summable infini te sequences of complex numbers 

kerT kernel (nullspace) of the operator T 

im T image (range) of t he operator T 
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Summary 

In this dissertation we studied the modern state space method for inverting semi­

infinite block Toeplitz operators with rational matrix symbols explicitly from the 

representation of its symbol in realization form. A rational matrix function <I> which 

is analytic and invertible at infinity, may be represented in the form 

(1) <I>(A) = D + C(A! - At1 B, 

where A is an n x n square matrix, say, Band Caren x m and m x n matrices, respec­

tively, and Dis an invertible m x m matrix. The method for constructing explicit for­

mulas for the inverse of a semi-infinite block Toeplitz operator with rational symbol 

is well-known for rational matrix functions in the form (1). However, in our work, 

we have emphasized the case where <I> does not have these properties at infinity and 

has a realization of the form 

(2) <I>(A) = D +(A - a)C(AG - At1 B , 

where A, B, C and D are as above and G is of the same order as A. In the main 

results in Chapter 2, we give necessary and sufficient conditions for the equivalence 

between block Toeplitz operators with rational symbol and discrete singular systems 

with boundary conditions. In addition, this equivalence implies that the exp li cit 

formulas (in realized form (2)) for the inverse may be written in terms of the matrices 

A, G, B, C and D and various other matrices derived from them. We also deal with 

the special case of finite block Toeplitz matrices. Different Fredholm characteristics 

are computed and a Riemann-Hilbert problem is solved as an application. The 

exposition is based on extensive use of a separntion of spectra argument for linear 

operator penci ls, the so-called spectral decomposition of the pencil AG - A. 
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r -1 inverse of t he operator T 

r+ generalized inverse of the operator T , i. e., T = TT+T 

Tix restri ct ion of the operator T to the set X 

ind T index of the operator T 

Ix, Im identity operator on X, m x m identity matrix 

X EB Y direct sum of the linear spaces X and Y 

en unitary space of dimension n over the field c 

< x, y > inner product of x and y 

er non-empty subset of the complex plane 

cr(G, A) spectrum of the operator pencil >..G - A 

p( G, A) resolvent set of the operator pencil >..G - A 

diag (>.. j )~ 1 m x m diagonal matrix with diagonal entries >.. 1 up to Am 

t;(r) space of c m-valued p-summable sequences on r 

L(X) class of all bounded linear operators on X 

L;(r) space of c m-valued p-integrable functions on r 

w mxm m x m matrix Wiener algebra 

70 

https://etd.uwc.ac.za/



https://etd.uwc.ac.za/



https://etd.uwc.ac.za/


	Title page:Block Toeplitz Operators with RationalSymbols andDiscrete Singular Systems
	Contents
	Introduction



