Block Toeplitz Operators with Rational
Symbols and

Discrete Singular Systems

by

Abraham Konegerie

Thesis presented for the Degree of
Master of Science
in the Department of Mathematics and Applied Mathematics
under the supervision of
Professor G. J. Groenewald

and Mr J. J. Jaftha

Copyright by the University of the Western Cape
2001

https://etd.uwc.ac.za/



Contents

0 Introduction . . . . . . ... |
1 Preliminaries and Spectral Decomposition . . . .. .. ... ... ... .. 4
1] Preligiadfion . oo « o c 00 48 « v 88 5 6 vn v B & Ed a0 sp s be 4
1.2 Spectral Decomposition of operator pencils . . . . . . ... ... ... 6
1.3 Realization and Power Representation . . . . ... .. .. ... ... 18
2 Inversion of Toeplitz operators with rational symbols . . . . .. . . .. .. 24
2.1 Inversion of Double Infinite Block Toeplitz Operators with rational
symbols 24
2.2 Inversion of Semi Infini T'a“-mil—-n"-im-wﬁ-‘nnﬁra-i? 1a equwalence to
T R L A i VA
SUTOIEV AT —  — — — — 27
2.3 Inversion of Finite BlockToeplitz Mattices|{i|. |} . . . . . . . .. .. 39
3 Fredholm properties of Block-Foer 49
3.1 Fredholm characterlstl&TMgerErHMTn?[etsk the . . .. ...... 49
3.2 Riemann-Hilbert probldM ESTERN CAPE . . ... ... .. 55
B DRRIPIE 2 o - o+ 6 % oo« B F R ks s d B msd EE R EE G R 60
Bibliography . . . . . . . 66
[Ast SESYVIRBOIE « « « v 5 5 5 » 5 5 5 59 ¥ 5 62 4 5 63 5 50 B O P& HEE DG 69
SUMMATY .« v v v v e e e e e e e e e e e e e e e e e e e e e 71

v

https://etd.uwc.ac.za/



Chapter 0

Introduction

This thesis concerns block Toeplitz operators (equations). Consider the block
Toeplitz operator T' = [®)_;]°,_y, where the ®; are complex m x m matrices such
that

(0.1) Y 1@ < oo

Vv=—00

The norm in (0.1) is the usual operator norm on an m x m matrix. The condition

N N HI l- “E.

L — L — i -

(0.1) means that the symbol

(0.2) (N =

belongs to the Wiener class W™*™ ‘gent sequences of complex

m x m matrices. Let 1 < p < oo befixed—=TFhe-blockToeplitz operator 7' induces a

bounded linear operator (also denoferd [y Eﬁﬁgj’rﬁﬁr}wlm o

R g - e . " |
(03) v = (Ta)e = 100 o R 0% S BE

v=0

where & = (zo, 21, 2,...) € [

Here @y, k = 0,4+1,4£2,..., are the Fourier coefficients of a rational m x m
matrix function ® given by (0.2). In [BGK1, BGK2], equation (0.3) was analyzed
and solved explicitly for the case when the symbol ® is both analytic at infinity
and ®(o0) is invertible. Recently, the general rational matrix case (i.e., without any
restriction on the behaviour at infinity) was analyzed and solved in [GK1]. In [GK1]

the analysis is based on the following representation of the symbol
(0.4) ®(\)=1+C(\G—-A)"'B, [A] = L.

1
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Here A and (G are square matrices of which the order n may be larger than m, the

pencil AG'— A is regular on the unit circle |[A\| = 1, and the matrices B and C' have

sizes n X m and m x n, respectively. The results in [GK1] are expressed in terms of
A, GG, B, C and matrices derived from A, GG, B and C.

In this thesis we carry out a similar program as in [GK1], but with a different

representation, namely,
(0.5) ®(\) =D+ ()—a)C(M\G - A)7'B, |A] = 1.

Here A, G, B and ' are as in (0.4) and D is an invertible m x m matrix. Choose
a # 0 such that « is neither a pole nor a zero of ®. Then any rational m x m matrix
function ® without poles on |A\| = 1 admits a representation of the form (0.5). The
representation (0.5) has the advantage that the matrices A, G are in general of
smaller size than the matrices A, G which appear in the representation (0.4), and

hence (0.5) leads to formulas of lower numerical complexity than those arising from

(0.4). The representations (0.4) az r-inatiiematical systems theory
i -n IIIl I AT
and are called realizations. The mlﬂﬂl' e extended to the case

linear operator pencils (the s0-ca v de n mj 0

be found in F. Stummel [S].
i UNIVERSITY of the
Furthermore, the method of [BGI\‘.;Z BGI\3kwhlch is }iased on an equivalence

considered here. The exposition of spectra argument for

i of pencils), which may

of linear systems with boundary conditions is reviewed and extended here. The
systems which correspond to (0.5) are singular systems (cf. [VLK] and [C]) and
have the following form:

Aprt1 = Gpr + Bxy, k=0,1,2,.5:,
(0.6) Yk = C(apryr — pr) + Dzy, k=0,1,2,...,

(I-Q)po = 0.
The matrices A, G, B, C' and D are the same as in (0.5) and () is the projection

1
Q=—{ (A\G—-A)'Gdxr
21 Jinj=1
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The equivalence between (0.3) and (0.6) provides a method to invert (0.3) and
enables one to compute the Fredholm properties of a block Toeplitz operator T'
with rational symbol ®. Also, this method is applied to invert finite block Toeplitz
matrices. Moreover, the inversion formulas are obtained in a form which is similar
to the formula for the general solution of a system of ordinary differential equations
with constant coefficients. In addition, we construct a generalized inverse directly.

The thesis consists of three chapters (not counting the present introduction).

Chapter 1 contains preliminaries, the spectral decomposition of operator pencils
and the power representation of the Fourier coefficients of ® corresponding to the
realization (0.5).

Chapter 2 explores the inversion of Toeplitz operators with rational symbols.
We calculate the inverse of double infinite block Toeplitz operators with rational
symbols. The inversion of semi-infinite block Toeplitz operators is calculated via

equivalence to singular systems with boundary conditions. Inversion of finite block

”in

Toepltz matrices is also treated pxth

!I-II."-“.II-I!
In chapter 3 we compute -lﬂmm.nmﬁ_ Toeplitz operators with

rational symbols. Fredholm chala [I d n a generalized inverse for
a block Toeplitz operator with 1'a )0 rud directly. A Riemann-
Hilbert problem is solved as an ap&llcanon ) mall)‘l we illustrate the theory with

VERSITY of the
WESTERN CAPE

an example.
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Chapter 1

Preliminaries and Spectral Decomposition

1.1 Preliminaries

We first give some preliminaries on notation. The unit circle in the complex plane C
will be denoted by T. We write D, for the open unit disc and D_ for the complement
on the Riemann sphere C,, = CU{oco} of the set D; UT. By a Cauchy contour I' we

mean the positively oriented boundary of a bounded Cauchy domain in C. Such a

contour consists of a finite numbe ..--m-m tifiable Jordan curves.

| e b A i A e AT A
The set of points inside I' is calle Elll- LAY - “ - “'-i' will be denoted by

0 belongs to A,. By definition oo . ul

We denote by Ly(T) the space of all functions f: T — C wch that
UNIVERSI I Y of the

WESTERN CAPE

all always assume that

A

A4. The outer domain of I is the

is Lebesgue measurable and square integrable on the interval [—m, 7]. The space

Ly(T) is a Hilbert space. Its inner product and norm are given by

) 1 & P
< f,g>= — f(e”)g(e“)dt,
2m J_.

1= (5= [ irenpar)

An orthonormal basis for Ly(T) are the functions (", ( = €*,n € Z. The numbers

1 [ L L
By = — / f(ezt)e——mtdt = f(ezt),emt > 0= 0,:t].,:t2,. .

https://etd.uwc.ac.za/
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are called the Fourier coefficients of f. The subspace of Ly(T) consisting of all
functions f € Ly(T) for which the Fourier coefficients ¢_y,c_y, ... are zero will be

denoted by H,(T). That is,
Hy(T)={f € Ly(T) :< f, €™ >=0, n = —1,-2,...}.

The space Hy(T) is called the Hardy space of square integrable functions on the unit
circle.

We denote by [5(Z) the Hilbert space of all square summable double infinite
sequences of complex numbers. The symbol [, shall stand for the usual Hilbert space
of all square summable infinite sequences of complex numbers. We shall identify [,

with its canonical image in [3(Z), that is,

Iy, = {(uj)"o Elg(Z):uj:Oforj<0}.

Jj=—00

The map U which assigns to a function [ € LodF.).its sequence of Fourier coefficients

(1.1) Uf = (c,) T NIE T NUCR]

is a unitary operator from Ly(T) gato ly(Z ), whidh carties| #>(T) over into 5.

Given a Hilbert space H, we, v e C product of m copies

of H. An element x = col(x;)iZ, off HI'Tigrqn pragupleof glements from H written as
a column with z,...,z,, in H. r{b‘-’]ﬁ_}}éff f[’hi&ka I’Ei-%bérpsplace. Its inner product

and norm are given by

m
<z,y>= Z < Ty 25
=1

1

ol = (i ||:c]-||2) ;

=1

The unitary map U : Ly(T) — l3(Z) defined by (1.1) extends in a natural way to
a unitary operator, also denoted by U, from L5*(T) = Ly(T)™ onto l5(Z) = l5(Z)™,
namely

Uf = Ucol(fi)y = col(U i)y € I3(Z).

https://etd.uwc.ac.za/
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The map U is called the Fourier transformation on L3'(T) and U f is called the
Fourier transform of f. If Uf = (¢,)52_., then f has a complex Fourier series

representation of the form

oo

(1.2) F= X% &g,

The series in the right hand side of (1.2) converges in the norm of L7 (T). From
(1.2) we can see that the elements of the Hardy space H}*(T) may be identified as
those functions f € L7 (T) that have an extension to an analytic C™-valued function
inside the unit circle.

We shall denote the set of all m x m matrices with entries in Lo(T) by L5*™(T).

If ® € L7*™(T) then a complex Fourier series representation of ® is given by

(1.3) ()= > (*@, (=¢",
where
(1.4) o, I8

is called the k-th Fourier cocfficiey

Ii5equences (%o, %1, 22, .. .)

For 1 < p < co we denote bvl

of vectors in C™ such that the cifekspfﬁhdtnﬁs%}rminel@ 031; pprms, (Ilzk|l)3Z;, belongs
[

to {,, the space of all p summabl ’f—\%lrhtﬁb?qﬁrﬁes ?f_ Corppglex numbers. The space
of all double infinite sequences of this r‘rcype is denoted by l;’{'(Z), where

l;n(Z) ={2=(.0.;Tu9,T1,20,T1, Bay+~.) : T3 € C™,

1 € Z: (llzelDiz-o € L(Z)}

1.2 Spectral Decomposition of operator pencils

In this section we recall (from [GK1]) a spectral decomposition theorem which sum-
marizes the extension to operator pencils of the classical Riesz theory about sepa-

ration of spectra. Let X be a complex Banach space, and let (G and A be bounded

https://etd.uwc.ac.za/
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linear operators on X. The expression AG — A, where ) is a complex parameter, will
be called a (linear) pencil of operators on X. Given a non-empty subset A of the
Riemann sphere C.,, we say that AG'— A is A-regular if A\G— A (or just G'if A = o0)
1s invertible for each A in A. Assume that 0 is inside I', where I" is a Cauchy contour
in C.
We now recall the spectral decomposition theorem.

Theorem 1.1 ([GK1], Theorem 2.1). Let I' be a Cauchy contour with Ay
and A_ as inner and outer domain, respectively, and let \G — A be a I'—regular
pencil of operators on the Banach space X. Then there exists a projection P and
an invertible operator E,| both acting on X, such that relative to the decomposition
X = ker P & imP, the following partitioning holds:

A — [

(1.5) (/\G—A)Ez[ ;

0
:ker P& imP — ker P & imP,
A,

where I (resp. I) denotes the identity operator on ker P (resp. imP), the pencil
MY — I is Ay -reqular and N ]

=N urthermore, P and E (and

1] 1 II _NIN NIN NI
hence also the operators Q0 and ‘ln-. LA ;Il'mmw-mr d. In fact,

(16) T Hlilil!lﬂl il“ )

1) E=mﬁ“{%—'ﬁﬁf\ffﬁ);}%-

Q WESTERN CAPE
1
=

(1.8) = /()\ A GG — A)ld.

2m r

0
Proof. We have to modify the arguments which are used to derive the properties of
the Riesz projections. Only the main differences will be explained. Let P be defined

by (1.6). We also need the following operator

(1.9) Q=5- /r()\G A)"'Gd).

We shall see that P and @) are projections. For a pencil, a generalized resolvent

identity holds, namely

(1.10) (AG = A) = (uG = A)7' = (u = N)(AG = A)7'G(uG — A)7,

https://etd.uwc.ac.za/
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where A and p are points where the pencil is invertible. Introduce the following

auxiliary operator

K=— [(xG = A)"dr
271'7, I

Note that
(1.11) KG =@, GK =P

Using the generalized resolvent equation (1.10) and the usual contour integration
arguments we show that AGK = K. Indeed, let I'; be a Cauchy contour in the

inner domain of I'. Then

BGK = (L/ ()\G—A)_ld/\) G( ! /(,uG’ A)” 1d,u>
2m Jp, 2m

- _1_2 AN -l
= (5 /rl/(/\G A)'G(uG — A) dpd)

B (AG — A)7! — (uG — A)!
B 27rz /l“l/{ /1—/\ ik

(/\G = n-“"—-_-."""i- (0G = A)™!
= : %— d'Ud)\
Iy T = A
..-——
_ N !..‘ .'_- 3 r
27r2 (/\G ] 21t [l
27rz r, ,._, x
- L[ oe- 4)1"22'5\1_11'7?,1@11/{ rr(_ _m> s
Iy
~ K-0=K, WESTE "hf‘ﬂ"
since
du . dA
2 9w (XETY), 2§ {peld
[t =mivery. [ Zi=0per)

Note these identities hold, because I'; is in the inner domain of I'. Furthermore,
in the computation of the second integral, the interchange of integrals are justified
because the integrand is a continuous operator function on I'y x I'; or, alternatively
by an application of Fubini’s theorem. Thus the identities in (1.11) imply that P

and () are projections. We also have

(1.12) GQ = PG, AQ = PA, K=KP=0K.

https://etd.uwc.ac.za/
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The first identity in (1.12) follows from (1.6) and (1.9), the third is a corollary of
(1.11) and the fact that K = K'G K, and the second identity in (1.12) is a consequence

of the following formula:
(1.13) AMG — A)7'G =G(\G — A)7A, A€ p(G,A).

Formula (1.12) allows us to partition the operators G, A and K in the following way:

-

(G, 0
(1.14) = 1 s ker @ & im@Q) — ker P & imP,
L 0 G2_
T 0
(1.15) A= s ker @ & imQ — ker P & imP,
0 Ay
0 0
(1.16) B = [0 LJ : ker P @ imP — ker @) @ imQ).

The identities in (1.11) imply that G} is invertible and G;' = L. Next, consider

1
A) = —
T( ) 271'2.‘[“

Using the generalized resolvent i

integral theorem one checks that

TG =4) = 7= OV HEESTDY () do
_ 1 WRSTHRN,CARE _ a1
= %Lﬁ o NogdBhEoue A)]
(AG — A)dp.

From the generalized resolvent equation we deduce that

(4G = ARG - AYY =

A—p
_ (G4 - (uG - A)!
- =

https://etd.uwc.ac.za/
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Thus
TO)(AG — A) = /——du+ (i~ Ay G
27rz i
— [ for X inside F
- Q for X outside I'.
Thus
— [ for A € Ay,
Q for N € A_.
Similarly, we find that
1
(AG— AT = 5— [ (AG-A4)
2m Jr
NG — AT
{(—GT_T)— + (pG — A)_IG(/\G — A)‘l} du
o e
- 2m T . G()\G A) }dlj,
! - -1
= o Je A = A)” dp.

Now, using Cauchy’s integral fﬂﬂﬂiﬂv’{? ﬁeElII Y of the
g |
(1.18) (G — ATHY { TAPA

P for A € A_.

Here [ is the identity operator on X. From the generalized identity (1.10) it follows

TP = (2;Z/F(/\ u) N (uG — A)” 1du> (21 /FlG(sG—A)‘lds)

N 575)2 / /rl(A — )7 (UG — A)T'G(sG — A) dsdp

= // (A= p)"'(sG = A)” LG(uG — A)"'dsdp
271"1 i

that

= e [_/(SG Ay ‘Gds] (A — )" (G — A)'dp

2mi Jp | 2m

https://etd.uwc.ac.za/




Then

k
AEQMe + AEQN ™y + 3" AEQY(I - P)g,

v=0

Apit

N
= ) AEQ 1Py,

v=k+1

k
= Qe+ VR 1N 01 - Py,

v=0

N
- Z Qr—& Py,

v=k+1
k—1

= GEQ'z+ GEQV*'™ 'y + Y " GEQ'~"(I - P)p,

v=0

N
+(I = P)or — Y GEQ ™" Py, + Py,

v=k

k—1
= G (Eﬂkx 4 Byt EQ17(I — P)y,

_ Z EQY M--."'&E"- IN BIN Wi
v=k 4
= Gpk + ¢x.

The converse statement is prove!i']ag:fxﬁg&ﬁé.Rl)%!oplﬁ-lz)lgg}er(r 1&54) as

WESTERN CAP
A] 0 Hoy | G1 0 Tk (092
0 Ay | a1 0 Gaof |uk Br
where i
(A, 0
A= : ker @ & im@Q — ker P @ imP,
| 0 Ay
g=|% Y] ker Q @ imQ — ker P & imP
= s ker Q) & 1m@) — ker P & imP,
[0 G
_.’Ek (697
P = and ¢y = ‘
| Yk By

https://etd.uwc.ac.za/
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Equation (1.27) can now be written as two separate difference equations, one going

forwards and the other going backwards. They are

(1280) A].’L’k+1 = Gl.’l:k + o
and
(1.28b) Agyr+1 = Gayk + Br.

From (1.28a) we have

-1 -1
Zry1 = A7 Grzg + A7 o,

since A; is invertible. Put zo = Ay'z, where z is an arbitrary vector in ker P. Now

establish a general formula for z; by solving (1.28a) forward in time as follows.

v = A7 (GiATY) @ + AT o,
Lo = A"1G1x1+A_1a1

= A7l
2y = A1—1G1$2+A1_10’2 -

UNIVERSITY of the

Continuing in this way, we obtain

WESTERN CAPE
= AT (GiATY) z+z“A-‘(GA N1,

(1.29a) % i
= EQ’“&:-}-Z EQ*1=v([ — P)p,.

Making yi. the subject of the formula, we deduce from (1.28b) that
yr = Gy ' Agyrsr — G3 ' B,

since (7 is invertible. Put yn4, = G3'y, where y is an arbitrary vector in imP. A
general formula for y; can be found similarly by solving (1.28b) backward in time.

Now

yv = G3;'Awyns — Gy'Bn

https://etd.uwc.ac.za/
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= G (A:G;") y — G7'Bn,
ynv-1 = Gy'Ayn — Gy 'Bn-
= G7' (A:G7") "y — G7' (A2G5") By — G7' B,
yn—2 = G3'Ayyn—1— G3'Bn-s
G7' (A4:G7")y — G7' (AxG3") By — G7' (A2G3") Bvey — G5 By -2

Continuing in this manner, we get

yn—k = G5! (A2 k+1 —ZG" (A2G3")" Brtw—r.

p=0

If we make a change of variable N — k < k we get

Ye = G (A2 N+l k - Z G21 ﬁk-i-u-

pe=0)

And another change of variable m

1484,

(1.29%) i — ERNTY ESSGAT Y the
WESTERN CAPE
Combining (1.29a) and (1.29b) we get

Pk = I
0 Yk
N
- EQ"*Pg,, k=0,...,N+1.14
py=k

k=1
= EQ*z + EQVY' "y + 3" BQ*1(1 - Pg,

v=0

In what follows I' will often be taken to be the unit circle T. In this case the
regularity conditions on the pencils AQ; — I; and A, — Q5 in (1.5) are just equivalent

to the requirement that ©, and €, have their spectra in the open unit disc.

https://etd.uwc.ac.za/
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Corollary 1.3 ([GK1], Corollary 2.3). Let A\G — A be a T-regular pencil of
operators. Then the corresponding associated operator () has its spectrum in the
open unit disc.

Proof. Use that (2 is given by the first identity in (1.8) and apply the remark

preceding the present corollary. f

1.3 Realization and Power Representation

Let @ be an mm x m rational matrix function, and choose a # 0 such that « is neither

a pole nor a zero of ¢ (see [GK2] and [G1]). Then ® admits a representation
(1.30) (N =D+ (A—a)C(A\G - A)"'B,

The representation (1.30) is derived from classical realization results by applying the

Mobius transformation

(1.31) d(A) = «

to the realization

(1.32)
Indeed, a rational matrix functlon 0 /\{ which is analytic and invertible at infinity
ERSITY of the
can be represented as (see, e.g., [BGI\I]_)I >
ERN CAPE
dN)=D+C(A—A)'B

where D = é(oo) and /1, B and C are matrices of appropriate sizes. Now put

(\) = d(67'(N)

https://etd.uwc.ac.za/
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If we define A = of —A),G:—%—A,B=B,C=é,D=D,thenweget

1
®(A\) =D + (A —a)C(A\G — A)"'B

(see Theorem 1.9, [BGK1]).

We refer to the right hand side of (1.30) as a realization of ®. The realization
(1.30) is said to be minimal if the order of A and G is as small as possible among
all possible realizations. Here G’ and A are square matrices of order, say n x n. The
matrices B and C are of size n x m and m x n respectively, while D is a square
matrix of order m x m.

Assume ®(\) has no poles on the Cauchy contour I'. Then the pencil A\G' — A in
(1.30) can always be chosen to be I'-regular. Indeed, if the realization is minimal,
then I'-regularity is assured.

The next two lemmas will be useful later. They are the natural analogues of
Theorem 4.2 and Lemma 4.3 in [GK1].

Lemma 1.4 ([G1], Lemma 2.1).

(1.33) (D(/\):D—i-(/\—ﬂinim erl,

where \G — A is T-reqular, be a |given|redizatian. |But (@ = G + BD™'C and

A* = A+ aBD7'C. Then det OM£0 fo A& Lf and only if the pencil
X 2 s 9 7 7 >

AG* — A* is '-regular, and in thllﬁ ﬁliﬁhf ERSITY -!'.:f!!'-f.".ri-'

(134) o) =D - (A B PRE N AOABRT,  Ael.

Proof. We prove a stronger (pointwise) version of the theorem. Take a fixed ¢ € I'.

Since det(I — T'S) = det(I — ST, we have

det®(¢) = det[D + (¢ — a)C(¢G — A)™'B]
— detD[I + (¢ — a)D™'C(¢G — A)~'B]
— detDdet[(CG — A){(¢CG — A) + (¢ — a)BD™'CY]

= detDdet[((G — A)~1((G* — A%)]
det(CG* — AX)

= geib det(CG — A)

https://etd.uwc.ac.za/
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It follows that det®(() # 0 if and only if det({G* —A*) # 0. In particular, det®(\) #
0 for each A € I' if and only if the pencil A\G* — A* is ['-regular.

Next, assume that det(AG* — A*) # 0, and let us solve the equation ®(\)z = y.

Introduce a new unknown by setting z = (MG — A)~! Bz. Then given y we have to

compute z from

MGz = Az+ Bz,
{1385]

y = (A—a)Cz+ Dz.
Apply BD™! to the second equation in (1.35) and subtract the result from the first
equation in (1.35). This yields the following equivalent system
AG*z = AXz+ BD 1y,
(1.36)
y = (A—a)Cz+ Dz.

Hence z = (A\G* — AX)"1BD~!y and

dN)'y=Dly—(A—a)D'C(AG* = A*)"'BD™ 1y,

which proves (1.34). f
Lemma 1.5 ([G1l], Lemmay,2.2)beb P be—asoin, (1.33), where \G' — A is I'-
reqular. Assume that det ®(X) #|0 forleadh A €, and set G* = G+ BD™'C and
AX = A+ aBD 'C. Then f A BIT

dN)ICOG - BN I¥ ERSIXY ofaliy !,

(AG — A) 'BeWE S BRIN LA'BE

(AG* =AY = WG-A)"'-(A—-a)
(MG — A)YBO(AIC(AG — A)7.

Proof. First note that

(A= a)BD™'C = \(G+ BD™'C) — (A+ aBD™'C) + (A — AG),

(1.37) (A —a)BD™IC = (A\G* — A%) — (AG — A).

https://etd.uwc.ac.za/
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We also know, from Lemma 1.4, that A\G* — A is invertible for each A € I. For
the first identity
O(N)IC(AG — A)!
={D71C — (A = @)D"'C(AG* — AX)"1BD-1C}AG — A)~!
= {D1C — D'C(AG* — AX)"1[(AGX — AX) — (AG — A)]}(AG — A)~!
= D7IC(AG* — AX)1,
For the second identity
(AG — A)~1BO())~!
= (AG — A)"YBD™! — (A — a)BD"'C(A\GX — AX)"'BD"'}
= (AG — A)"Y{BD! - [(AG* — AX) — (AG — A)|(AG* — AX)"1BD1}
= (A\G* — AX)"1BD"1.
And for the third identity
(MG — A = (A = a)(AG = A)1BO(N)"1C(AG — A)~!
= (AG = A)™' — (A = a)(AGX — AX)"1BD1C()\G — A)™!
= (AG — A)™" — (AG* — A HEAEF = AT =G A)}(AG — A)™!
= (AG* — AX)1. '

3 leads to the following

corollary, which is the natural aniﬂogue of Corollary 3.2 in [GK1].

Corollary 1.6 ([JJ]). Let ® be }Ir%zgr}aﬁrrgﬁr% rEc)tr?yfdr;{ctwn without poles on
WESTERN CAPE

the unit circle T, and let
(1.38) P(A) =D+ (N—a)C(\G - A)'B, A€eT,

be a realization of ®. Then the k-th Fourier coefficient ®, of ® admits the following
representation:
—CEQ*! —aQ*)(I - P)B, k>0,
(1.39) ¢, =¢ D+aCE(l - P)B+CEPB, k=0,
CE(Q* — a1 PB, k <O0.
Here P, E and Q are, respectively, the separating projection, the right equivalence

operator and the associated operator corresponding to \G — A and T, that is, P, E
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and Q are giwen by (1.6)-(1.8). In particular, ) has all its eigenvalues in the open
unit disc and 0 commutes with P.

Proof. Let Q be as in (1.8). Since AQ; — [ is regular on Dy U T and Al; — 2y 1s
regular on D_ U T, the matrices ; and 2, have all their eigenvalues in D;. Hence

the eigenvalues of the matrix Q have the required location. According to Theorem

1.1,
(X6 — L) 0
®(\) = D+(\—a)CE B, XeT
I 0 (X — )"
[ A 0
= D+(A-a)CE B
| 0 Dm0 AT
[ e 0
= D+(A\—a)CE 2= ‘
i 0 Sl Ay
AL 0
= D+CE| ™"~
0 Z,E‘;l Jpigges-l
—aCFE
_ pecE [
OU"\ I‘-,%”R"d’ 'ilz‘l of the
WESTERN CAPE
since
(A8 —~ E)~ Z e, AET,
(Ady — E s 1L AeT.
v=0
[t follows that
-1 0 -QF 0
o, = CE B—aCE B
0 0 0 0

= —CEQ'—aQf)(I-P)B, k>0,
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¢y, = D—|—CE{

0 I 0 0

= D+aCE(I - P)B+CEPB,

¢, = CE

and the corollary is proved.

0 0 - 0
B —aCE B

23

We refer to (1.39) as the power representation of the Fourier coefficients of ®

corresponding to the realization (1.38).

UNIVERSITY of the
WESTERN CAPE
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Chapter 2

Inversion of Toeplitz operators with rational

symbols

2.1 Inversion of Double Infinite Block Toeplitz Operators

with rational symbols

We review and modify Section 4 from [GK1]. See also Section 3, [G2]. In this section
L = [®;-;]55-_ is a double infinite block.Feeplita.operator on [*(Z). We assume

that the symbol
®()) = in AT,

Uz + oo

is a rational matrix function. Singd ® has o poles on Tlit admits a realization.
The next theorem describes the inversion of L in terms of the data appearing in the

realization of its symbol.
Theorem 2.1. Let L be a double infinite block™ Toeplitz operator on U(Z) with a

rational symbol
(2.1) (M) =D+ (A—a)C(MG—-A)'B, AeT,

given in realized form, where a # 0 is neither a pole nor a zero of ®. Put G* =
G+ BD7'C and A* = A+ aBD7'C. Then L is invertible if and only if the pencil

AG* — A* is T-regular, and in this case L™" = [®;.]%__, with

]
DICEX[(Q¥)*! — a(QX)¥]|(I — PX)BD~Y, k>0,
(2.2) ®X ={ D' — DICEX[P* + o(I — P*)|BD", k=0,
D-'CEX[a(Q%)~*' — (Q%)"K|PXBD-',  k<O.

24
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Here P*, E* and Q* are, respectively, the separating projection, the right equiva-
lence operator, and the associated operator corresponding to the pencil \G* — A*

and I, with ' =T, i.e.,

(2.3) /Gx AG* — AX)1dA,
" omi
(2.4) £ = L (1= X"H(AG* — A*)71d),
2m Jp
(2.5) 0" = or 0 = /(/\ ATHGE*(AG™ — A%)7dA
' 0 Qf T 2mi r '

Proof. The symbol @ is continuous on T. It is known (see [GKr]) that L is invertible
if and only if det ®(X) # 0 for each A € T, and in this case L™ = [®;;]&__, where
@ is the k-th Fourier coefficient of ®(-)~'. Now apply Lemma 1.4 with I' = T.
Then L is invertible if and only if A\G* — i

Next, assume that L is invertib

(2.6) ®(A)'=D"'—(—a)D) . e

Apply Corollary 1.6 and computethepowerrepresentationofthe Fourier coefficients
of ®(-)~" corresponding to the realizatian (2:6): q,“lirfg’ithﬁ,etformula (2.2). Indeed,

WESMERN;EAPE o0
®(N)' = D' —(A—a)D"'CE*
0 (X — Q)

BD™!

= D'—(A—a)D'CE"

v X\v
=M (QF) 0 -

i O EOO )\—u 1 2)u

= D'—(A—a)D"'CE*
Dm0 — A ()" 0 —

I 0 2ol ()
= D'- D'CE*

[ 3700 5 =Xt (O ) 0

0 (Qr) g
I 0 Do AHH(Q) ™
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Zf;o _)‘V(Qi( )” 0 1
) BD~
O Zuil /\V(Q;)_V—l
) =) 0 1
| BD™
O ZV:O /\ (QZ ) !
b0 — A" () 0
0 T Mg

+aD'CE* [

= D plgn* [

$aD™ OB [

since

We deduce that

5 = —D“CE"[

X -1 ‘.I—l b4 2 v -1
®% =D -V E"{)R};J JTBEBW’J‘IH-'

WESTFERN CAPE
+aD'CE” . BD™!
0

= D7' = D'CEX[P* 4 a(I - P¥)|BD™,

0
r = —D‘ICEX[ BD™

0 (Qi)‘k}

0 0
+al) " O BF
0 (05)+

= —D7ICE*((Q%)™* — a(*)*-YP*BD™!, k<0.4

5o
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2.2 Inversion of Semi Infinite Block Toeplitz Operators via

equivalence to singular systems

Here we review and modify Section 7 of [GK1]. In this section, we develop an
approach for inverting block Toeplitz operators with rational symbols, which is
based on connections between Toeplitz operators and discrete singular systems with
boundary conditions. Theorems 2.2 and 2.4 are, respectively, the natural analogues
of Theorems 7.1 and 7.3 in [GK1], whereas Lemma 7.2 remains unchanged as Lemma
2.3

Theorem 2.2. Let 1 <p < oo, and let T = [®;_]%—y be a block Toeplitz operator

on 7" with symbol
(2.7) ®(A\) =D+ () —a)0(\NG - A)'B, AeT,

given n realized form, where o« # 0 is neither a pole nor a zero of ®. Then the

Toeplitz equation __..-"‘_—.-"-'-u._ -

T — —
L e )
/i

.-‘ !

-

is equivalent to the following discy

A = ONPPERSITY affne >
(29) v = Sprs TR cAPR D
(I =Q)po = 0.

Here @) is the projection given by (1.9) with I' = T and the equivalence between
(2.8) and (2.9) has to be understood in the following sense: If v = (1)L, in I
is a solution of (2.8), then the system (2.9) with input up = z (k = 0,1,2,...)
has output yr = z; (k= 0,1,2,...), and, conversely, if the system (2.9) with input
u = (ur)go from U7 has output yx = 2. (k =0,1,2,...), then x = u is a solution of
(2.8).

The statement of the theorem is made precise by noting that the system (2.9)

with input u = (ux)jZ, from [7* is said to have output y = (yx)3Z, if and only if
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n

», where n is the order of the matrices A and G, such

there exists p = (pr)72, in [
that (I —Q)po = 0 and the sequence pyg, p1, ... satisfies the two equations in (2.9). In
the proof of Theorem 2.2 we shall see that in this case p is uniquely determined by
the input u. Theorem 2.2 therefore states that the system (2.9) has a well-defined
input/output map which is equal to the block Toeplitz operator 7. We need the
following lemma in the proof of Theorem 2.2.

Lemma 2.3 ([GK1], Lemma 7.2). Let A\G — A be a T-regular pencil of n x n

matrices. Fiz 1 < p < oo, and let (pr)72, be in [. Then the general solution in I}

of the equation
(210) A,Dk+1 = ka+(pk, E= 01,201,

is given by
pe = EQn+ Y07 EQF1(1 - P)g,
< EQUkp k=0,1,2,... .

v=k -

Here P, E and ) are given by :!Iiggiug"!qa!--a
I8 NIW B [ ]
in ker P.

(2.11)

Proof. Let n be an arbitrary vecto

We first prove that p € [7. Put = 2

URIVERSITY of the

where WESTERN CAPE
g= (B,  S:h—l.

The operator S': [} — [ is defined by

(Su) = ZM;C_,,U,,, k=0,1,2,...,

v=0

where

EQ*YI-P), k=12,...,
M, =
—EQ7FP, ke=0,~=1,~2::x .
If we can show that g € [} and S is a well-defined block Toeplitz operator, then

p =g+ Sp €1}, since [} is a vector space. Since {} has all its eigenvalues in the
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open unit disc (see Corollary 1.3), ||| < 1, and

9|2 = Z | EQE|[” < ||E|*|In|l? Z QP < oco.

Thus g € [7. To show that S is a block Toeplitz operator on [}, we only need to
show that the entries in M are bounded. The defining function of S is ®(A) =
S ATM™. Since ||| < 1 we have that ||Q||* < 1 for each k¥ € N, and so
| My]| < [[E]|. Therefore the entries in M), are bounded. Thus S : [ — [ is a block
Toeplitz operator.

Next, we show that p = (pi)72, given by (2.11) is a solution of the difference
equation (2.10). Take N > 0, and note that the first N + 1 elements in p may be

rewritten as
k-1

pe = EQq+) EQM'(I- P, — Y EQTF Py,

v=0 v=k
k—1 N 00

= Ean+ZEQk-1-"(1— i — > EQ*Py,
v=0 - m v=N+1
m

k—1
= EQ'n+ ) BV

py=0

o0

o (15" bl

v=0

U1 ’h ERS r i
= EQMy 4 EQNHIRy +§§ AR I ‘1 of H”ZEQ” kP,
WESTE R"\ - ‘H E =

where

YN == Z QVPS‘QV-}-N-{-I'

v=0

Since

Q, 0
U= :ker P @ imP — ker P & imP,
0 9

we have yny4; € imP. But then we can apply Lemma 1.2 to show that po,...,pn41

is a solution to the finite difference equation

(2.12) Apr+1 = Gpr + ¢k, b= N
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30

Since N is arbitrary, this implies that p is a solution of (2.10).
To prove the converse, let p = (pi);Z, in [} be a solution of (2.10). Take N > 0.

Then po, ..., pn41 is a solution of (2.12). So, using Lemma 1.2 we get the form
_— pr = EQFzy., + EQVH~Fyy 4+ S EQR1Y (1 - Py,
' -V EQ Py, k=0,...,N+1,

where x4+ € ker P and yn41 € imP. Then

N
po = Bznyy + EQV P lyny, — Z EQY Py,
v=0

and

N
pne1 = EQV oy + Byng + Z EQN=Y(I — P)eg,

v=0
Recall that @ = EPE~! and QP = PQ, where @ is given by (1.9) with ' = T.

Since zny4+1 € ker P, ynyy1 € imP, Py, € imP we have

(I =Q)po =

and

UNIVERSITY of the
Qv = QB znng @y R L APE (- Ple

= 0+ Eyny1 +0.

Thus

(2.14) (I —Q)po = Exnya, Qpny1 = Eynn

where @ is given by (1.9). The first identity in (2.14) implies that x4, is indepen-
dent of N. Put n = E=Y(I — Q)po. Then = zy4, for each N and 5 € ker P. Since

p € I7, the sequence po, pi, ... is a bounded sequence in C*. Thus yx = E~'Qpy is
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also a bounded sequence in C*. Therefore EQN*1=%yn.; — 0 as N — oo since

12|l < 1. Furthermore, since (¢1)32, € [; and ||2|| < 1 we have that

<IENPIlieloe Y IR < oo,

v=0

i EQ“ %Py,

v=k

where [[plloc = sup {llelly i 1 < p < o0} < oo as @ € 2. So X%, BYF Py, is
absolutely convergent. Since C" is a Banach space, the series is also convergent.
Thus (2.13) becomes (2.11) as N — 0. {
Proof of Theorem 2.2. Since the symbol ® is given by (2.7), the entries of 7'
admit the following power representation:

—CE(Q* —a*)(I - P)B, k>0,
(2.15) ¢, =¢ D+aCE(l-P)B+CEPB, k=0,

CE(Q* - aQ*1)PB, k<0,
where P, E and ( are given by (1.6)-(1.8) with I' = T. Assume z = (z)3Z, € [J" is
a solution of (2.8). Put -

(2.16) pe=Y EQ(1 L k=0,1,2,... .

v=0

Note that px (kK =0,1,2,...) is th S& ded that in (2.11) we take

n =0 and ¢, = Bz, k =0, 1,21 N 152 Iﬁﬁ alzls'imalﬁhf?fthat p = (pr)2, is in

[ and the sequence po, p1, . .. sat{sﬁes the first equatlon{n (2 9) with ux = z¢, k=
0,1,2,.... The power representatlon'-(z 15) &nphes that (pk)kl_o satisfies the second
equation in (2.9) with yx = zx and ux = x, k = 0,1,2,... . This can be seen as
follows. Note that we can write
(T2l = ) Dyl
v=0

where @y is given by (2.15). So

2z = (Txh

= Z Oy 2y = Z Sz, + Pozi + Z Qs zy

v=k+1
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k—1
Y —CEQ**" — al*)(I - P)Bu,

v=0

+(D+aCE(I -~ P)B+CEPB)ay+ Y CE(Q"™ — o ~*+) pRy,

v=k+1

k—1
aC {Z EQ*“(I — P)Bz, + E(I — P)Bz,

v=0

- > EQ"‘(’““))PB:C,,}

v=k+1

k—1
2 {Z EQ*"Y(I — P)Bz, — EPBuz;

rv=0

- Z EQ”"“PBm,,} + Dz,

v=k+1
aC {Z EQ*(I - P)Bz, — Z EQv=(k+1) PB:::,,}
v=0 v=k+1
—C{Z EQ*1="(] - P)B; z, 3 + Dxy.
Rk = C(apk+1 —[ ) s ="()}—1 By - -

Furthermore, QP = PQ) and EP HHE{HTEH&I})VEW@H] the

and

NOW7 Po =

E, \]HII RN CAPE
] kerP@lmP—)kerQ@lmQ
2

O 0
() = :ker P @ imP — ker P & imP.
0 O

— > o EQ”PBz,. Thus

(I-Q)po = —(I—Q)EiQ”PB:c,,:—E([—P)iPQ”B:c,,

v=0 v=0

= —E(I-P)P) Q'Bz, =0,

v=0
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since P is a projection. Thus (pr)32, € [} is a solution of (2.9) with uy = z; and
=g =012, .

To prove the converse, suppose p = (pi)Z, is a solution in {7 of the singular
system (2.9) with u = (ux)3Z, from [J. Put )y = uy and 2, =y, kK =0,1,2,... .

Then z and z are in l;”. We want to show that Tz = z. Observe that Lemma 2.3

implies that
k—1 00
= EQ*'n+ ) EQ*'""(I- P)Bz, - Y EQ"*PBz,, k=0,1,2,...,
v=0 v=k

where 7 is some vector in ker P. Since po = — ) _  EQ"PBz, + En, and

0=(I-Q)po = —(I-Q)) EQ"PBz,+(I-Q)Ey
— 04 E(I- Py

(using the boundary condition 1 .' ker P) we have n = 0.

So the sequence py, p1,... is uniq |' Eiii d a «i en by (2.16). Using the
second equation in (2.9) and the pow prese u 15), we obtain
yr = Claprsr —px) AINIVERSITY of the
»
_ aC{ZEQk WE B BE RN Gy Pin pp, }

v=k+1

i {Z EQ¥~Y(I — P)Bz, — Z EQ"""PBx,,} + Dz

v=0 v=k
= Y —CE(Q'—a0*") (I - P)Bz,
+[D +aCE(I — P)B+ CEPB]zy

+ Y CE(QF - a™*") PBa,

V—k+1

= Z(I)k l,:c,,-*-q)ol?k-l‘ Z <I)lc vly

v=k+1
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= Z (I)k_,,l‘,, = (T:L’)k = Zr

v=0

Hence = (z¢)3, € [} solves Tz = z.
Note that the last part of the proof of Theorem 2.2 shows that for given input
and output in " the solution p = (pr )7, of (2.9) in 7 is unique (assuming it exists).
The equivalence in Theorem 2.2 implies that we may get solutions of equation
(2.8) by inverting the system (2.9). This is done as follows. First interchange in
(2.9) the roles of input and output. Apply BD~! to the second equation to give

BD 'y, = BD_IC(apk+1 — pr) + Buy.
Now subtract this equation from the first equation. This yields

Apkr = Gpr + BD7 'y — BD™'Claprsr — p).

Thus — —
(1N NIN EIN NIN NIN NI

(A+aBD™'C) ot (G BDCloinde BD™ yi.
Therefore the inverse system is [II Illlll‘l“
A¥pp1 = G ek =10.1.2.......

(2.17) w = ~IINEERIDTPopther =012,
(I-@)o = OLWESTERN CAPE

where AX = A+aBD™!C and G* = G+ BD~'C. We may assume that y = (yx)3Z,
is a given element in . The problem is now to find (px)3Z, in [ satisfying the
first equation in (2.17) and the boundary condition (I — Q)po = 0. Note that the
projection Q comes from the pencil AG — A and is not directly related to AG* —
A*. and hence it is not straightforward to find a sequence (pi)3z, with the desired
properties. In fact, the problem may not be solvable or if it is solvable it may have
many solutions. However, if such a sequence (px )32, has been found, then a solution
of the equation Tu = y is obtained by taking ux = —D7'C(aprs1 —pr)+ D 'yx, k =

0,1,2,... . In this manner we are led to the following theorem.
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Theorem 2.4. Let 1 < p < oo, and let y = (yr)72, be in [J'. Consider the block

Toeplitz equation

(2.18) ifbk_,,ul,zyk, k=0,1,2,...,
where @y are the Fourier coefficients of a rational matriz function
(2.19) (N =D+ (N—a)C(\G—-A)'B, AeT,

given in realized form, where o # 0 is neither a pole nor a zero of ®. Put A* =
A+ aBD7'C and G* = G + BD™'C, and assume that the pencil \G* — A* is
T-regular. Then the equation (2.18) is solvable in 7" if and only if

(2.20) > (@*)*P*BD 'y, € imP + ker P¥,

v=0

and in this case the general solution in " of (2.18) is given by

(2.21) wp = DTICE™ [(0) e P lunua."ﬁ" k=12....
Here P is the separating projection Hllailﬁ nd T, and the operators
P*, E* and * are, respectively, arating’ projection, the right equivalence
operator and the associate operatiiz,;{)zirﬁgzi}ali.g gItf é : ”IAX and T,
1T i O of the
= k-1 =1
DICE (RS TERN (EaPED ™ *>0,

(2.22) ®X ={ D' — DICEX[P* + (I — P¥)] BD™", k=0,
DICE* [o(*)*1 — (%)~¥] PXBD"!, k<0,

and n is an arbitrary vector in ker P* such that

(2.23) n— (%)"P*BD™'y, € imP.

v=0

In particular, the general solution in IJ* of the homogeneous equation

(2.24) > @ u, =0, k=0,1,2,...,

v=0
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is given by
(2.25) ug = DT'CE* [(9)%! — a(2%)] n, k=1,2,...,

where n is an arbitrary vector in ker P* N imP.
Proof. Let () be the projection defined by (1.9) with I' = T, and let * be the
corresponding projection for A\G* — A* and T, that 1s,

1

(AG* — AX)IG*d), F=T.
omi r

(2.26) Q% =

From Theorem 2.2, and the statements made in the discussion preceding this the-
orem, it follows that (2.18) is solvable in [J* if and only if there exists (px)3Z, in {}

satisfying the first equation in (2.17) and the boundary condition (I — @Q)po = 0.
According to Lemma 2.3 the general solution in [} of the first equation in (2.17) is

given by

(2.27)

Since E*v € ker Q*, the first equl‘tiidi‘)ﬁ Invfi% ?‘Tagg Elﬂf:g{{é('pk);“;o in [} satisfying
the boundary condition (I — Q) /)0“ Fo Sr Aokt (E%l;;"‘lf{ APE

(2.28) EX(Q*)*P*BD™'y, € ker Q* +imQ.

NE

Il
=}

v

This can be seen as follows. Note that (I — @Q)po = 0 implies that Qpo = po, 1.e.,

po € im@). Thus
Xy — ZE ) P*BD™ 'y, € imQ.
Thus
S EX(@%)"PXBD™y, = E*y — po € ker @ +imQ.
v=0
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In this case the output u = (uy)32, of (2.17) is given by

we = —=D7'Clapryr — pr) + D'y,
= —D HaCpr41 — Cpr — yi}
= = {QC[ k+17+ZEx )*=(I — P*)BD 'y,
v=0
. Z EX(QX)V—(k+1)PxBD—1yV
v=k+1
k-1
== IVEX(QX 7+ZEX k 1- U(I’ PX)BD Yy
v=0
_ZEX(QX)V—I:PX BD—Iyu:l _ yk}
v=k ,
= DT'OE* [(@%) — o(2)1] 4
k—1
+ZD—ICEX [(QX)k—I—u _ a(QX)k—u] ([_ PX)BD_ly,,
v=0
—aD '\ OEX(Q%)(1 —
+D7'y+ > D C
v=k+1
— D—ICEx [(QX)k —
k-1
+ZD"CE" [(Qx)“" = = f'”'}‘BD"ly,,
”=°_1 . UNIV ER"&IT‘E f the
+{D CE* [P* +ofl — P~ j ;
- WESTE R ]l{’
+ Y DT'CEX [o() ) ‘—(Q") k ] P*BD™ 'y,
v=k+1
k-1
= DT'OE*[()F — a(@ )]y + 3 08y, + B3 yi + Z OF_, Y,
v=0 v=k+1
Thus

(2.29) up = DTICE* [(Q%)F — a(Q%)*+!] 7+Z<1>k Uy k=0,1,2, ...,

v=0

https://etd.uwc.ac.za/



38

where the ®; are defined by (2.22) and 7 is an arbitrary vector in ker P* such that
(2.30) E*y =Y EX(2¥)"P*BD™'y, € imQ.

v=0
Therefore (2.28) is a necessary and sufficient condition for (2.18) to have a solution
in {7, If this condition is satisfied, then the general solution (ux)7Z, in 7" of (2.18)
is given by (2.29).

For the remainder of the proof we must show that (2.20) is equivalent to (2.28)
and (2.21) gives the same set of sequences as (2.29). Denote the left hand side of
(2.20) by zo. Then zo = 3 o2 (*)*PXBD 'y, = P* 5> (2%)*BD™'y, implies
that zop € imP*. So G*E*zy = G*EXPXzy = P*zy = zo. Next, note that the

operators
Q™ imQ : im@Q — imQ* and P*|imP : imP — imP*
are equivalent. Indeed, we know that

e ——

GXQX: _ 5

[%=7 - AL 15 e 5 RS T
(IR NIN RIS NFH WmiN Wil
T o L A W A § it

Moreover, G* maps imQ* (resp. im( a ghie-onié manner pnto imP* (resp. imP).
p p

Therefore the operators

G7lim@ : imQ — g TV ERRPTYIU the P
WESTERN CAPE

are invertible and
(2.31) (GTimQ*)(Q*[ImQ) = (P*[imP)(G™[im@Q).
It follows that

EXzy € kerQ* +imQ <= E*zy € im(Q*|imQ)
< G*E*z¢ € im(P*|imP)
< 0 € im(P*|imP)

& gy € ker P* +imP,
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which proves the equivalence of (2.20) and (2.28).

Also, note that Q*(I — P*) = G*E*(I — P*) (see the first identity in (2.22b),
[GK1]). Thus

Ny = G*E*~, v € ker P*.

Let L, be the set of all v € ker P* satisfying (2.30), i.e., EXy — E*zq € imQ.
Let L, be the set of all n € ker P* such that (2.23) holds, i.e., n — 2o € imP. To
prove that (2.21) and (2.29) define the same set of sequences, it suffices to show that
G*E*(Ly) = Ly. Takey € Ly. Thus EXy — EXzy € imQ. Since G* maps im@ into
im P, this implies that

G*E*y —z9 = G*E*y — G*E*zo € imP.

Also, G* E*(ker P*) C ker P*. So G*E*y € L, = G*E*(L;) C L. Conversely,
take n € Ly. Then there exists u € im@Q such that n — 2o = G*u. Thus

Thus —E*z¢ = Q*u (€ im(Q*
exists v € ker P* such that £*~

5= = R RS T of ™

Thus n = GXE*y € G*E*(Ly) %Eﬁg‘d",ﬂ‘ﬁ,)(aniﬂ the theorem is proved. f

2.3 Inversion of Finite Block Toeplitz Matrices

In this section the inversion method based on equivalence to linear systems, which
was used in the previous section, is developed further for finite block Toeplitz
matrices.

Theorem 2.5. Consider the finite block Toeplitz equation

N
(2.32) Y B, =5, k=0,...,N,

v=0
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where ®_n, ..., ®n are the —N to N Fourier coefficients of a rational matriz func-
tion
(2.33) ®(A) =D+ (A—a)C(MG - A)7'B, AeT

given in realized form, where o # 0 is neither a pole nor a zero of ®. Then Equation

(2.32) s equivalent to the following discrete boundary value system:

Apis =  Gpr + Buy, k=01, 8,
(234) Yk = C(aPk+l _Pk)‘i’Duk» k=071a"',N$
(I=Q)po = 0, Qpns1=0,

where Q) is the projection given by (1.9) with ' = T. The equivalence between
(2.32) and (2.34) has to be understood in the following sense: If x = (x1)N_, is a
solution of (2.32), then the system (2.34) with input uy = z (k =0,1,...,N) has
output yr. = zx (k = 0,1,...,N), and, conversely, if the system (2.34) with input
u = (up)N_o has output yp = 2z, (k =0,1,.. M. then = u is a solution of (2.32).

Proof. Since the symbol ® is givenby{(2.33)-the-matrixegefficients ¢_n,..., Py
!I-II."-“.II-H

in (2.32) are given by

= -_——__—_-__“--_
-

CEQ" —EQCW’FQESIT Yoof i —2
where P, £ and ) are given by\-'(’l]ﬁ){j(i]‘i%}‘gﬂt_hj[‘{_:fli'ﬁi[‘}‘-‘ Assume xo,...,ZN is a
solution of (2.32). Put
pr = Y F1EQF1-v(I - P)Bz,
—yN EQ*PBz, k=0,1,...,N +1.
Using the identities AE(I — P) =1 — P, AEP = QP, GE(I — P) = ([ — P) and
GEP = P we get

(2.35) o,

I
)
+
2
(')

(2.36)

N
Aprit ZAEQ’“ “(I — P)Bz, — Y AEQ"*'PBau,
v=k+1
k N
= Y Q**(I-P)Bz,— Y Q" *PBuz,
v=0 v=k+1
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Thus po, . ..

U = Tk, k=0,1,...,

Zk

41

Zﬂk v P)Bz, — ZQV_ICPBCB,,

v=0 v=k

+QO([ — P)B.’Ek + QOPBJIk

= N
> QU - PY*'"" Bz, — " PO**Bz, + Bz,
v=0 v=k

k-1

G E(I - P)Q*'"" Bz,

v=0

N
—GZ EPQ""*Bz, + Bz,

v=k
k—1
{Z EQ1(] — P\Bg, — ZEQ”"“PB:E,,} + Bay,
v=0 v=k
Gpr + Bzy.

;PN+1 18 a solution of the first equation in (2.34) with

zz:épk vy —'jz:(pk vy
v=0
Z—CE(Q’“““"—an.-‘;:;' P18,

v=0

+[D+aCE(I - P)BLIEPERRSITY of the

N
DR (Vs

v=k+1

MESTERN CAPE

k—1
C {Z —E (' —aQ*") (I - P)Bz,
v=0

N
+(aB(I = P)B+ EPB)zi+ »  E (7% — o) PB:cu} + Day,
v=k+1

ol
I

k—1 N
Y EQY(I = P)Bz, + E(I — P)Bzy— . EQ ™! PBa;UJ
v=0 v=k+1
k—
Y EQ*'""(I - P)Bz, — EPBz;, — Z EQY- kPBx,,J } + Dzy
v=k+1

https://etd.uwc.ac.za/



42

k N
{a [Z EQ*¥(I — P)Bz, — Z EQ”"‘“PBx,,J

v=0 v=k+1
k-1
[Z EQF'-*(I — P)Bz, — ZEQ"-’“PB;E,] } + Day,
v=0 v=k
= Claprs1 — pr) + Dzy
Therefore pg,...,pny41 satisfy the second equation in (2.34) with w, = z; and

Y = 2k, k = 0,1,..., N. Furthermore, since EP = QF and QP = P}, py =

— N, EQYPBz, implies that (I — Q)po = —(I — Q) N, EQ*PBz, =
—(E-EP)PYN OBz, = —(EP-EP)YN 0'Bz, = —(EP-EP)S.  Q’Bz, =
0. Also, pny1 = S EQN=¥(I — P)Ba,, implies that Qpn4; =

SN B QEQN(I-P)Bz, = YN EP(I-P)QN-*Bz, =N BE(P—P2)QN-"Bg, =

Zu o, E(P—P)QN-"Baz, = 0. TO,l,...,N)thesystem

(2.34) has output y = 2z (k = 05 u-n Al 30BN 1) W 1) 1]
R L RO [ SO P
The @ solution of (2.34) with

To prove the converse staterié
yr = zk, K =10,1,..., N. We neg
then Tga = z, where & = u andfjf=—2. From Lenima 1.2-We know that pj is given
by UNIVERSITY of the

WESTERN CAPE
pr = EQFp 4+ EQNFI- k§+z EQ*'-"(I — P)Bz,

v=0

e input with output y,

N
- EQ"*PBa,, k=0,1,....N +1,

v=k

where 17 € ker P and ¢ € imP. Thus py = En + EQN*'¢ — SN EQ“PBz, and
pN+1 = EQN 4+ E{-}-Z,],V:O EQN=¥(I— P)Bz,. From the first boundary condition

we get

N
0=(I-Q)po=(I-Q)En+(I-QEQ*¢—(I-Q)) EQPBu,

v=0
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le.,

0=(/-Q)En+(I-QEQ" .

Similarly, from the second boundary condition we get

N
0=Qpny1 = QEQVT'n+ QEE+ ) " QE(I — P)AN™"Ba,,

0=QEQN*y 4+ QEE.
Here we have two equations in ¢ and 7. The second equation yields EPQN+1y +
EPE = EQNY'Py 4+ EPE = BE€ = 0. Thus ¢ = 0. From the first equation we get
(I —Q)En=En—QFEn= En— EPn= En=0. Thus n = 0. Therefore p; can be

expressed as

k—1
pr =Y EQ'"*(I - P)Bz, - ZEQ””“PBm,,, k=0,1,...,N+1,
=0 p=k

which is the same as (2.36). Usinghe --?-Tfm oiim=(2:34) we find that

D

o C(a/)k {IIiIIi ll ‘ “ :
Thus l II I :

z w,, k=01 .
- Zi KIVERSITY m the

This is obtained from a previouscaleglationpamthe proof pf Theorem 2.2. Thus
zr =uk, k=0,1,..., N is a solution of (2.32).

Using the equivalence in Theorem 2.5 one may solve Equation (2.32). The final

result is the following theorem.

Theorem 2.6. Let yo,y1,...,yn be given vectors in C™, and consider the equation
(2.37) > rou =y, k=0,...,N,

where ®_y,...,®xn are the —N to N Fourier coefficients of a rational matriz func-
tion

dN) =D+ (A—a)C(M\G—A)'B,  AeT,
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gwen in realized form, where o # 0 is neither a pole nor a zero of ®. Put A* =
A+ aBD7'C and G* = G 4+ BD™'C, and assume that the pencil \G* — AX s
T-regular. Introduce
. W = (1= QEX(I - PX)+ (I - Q)EX(@Q<)N+1 P>
+QEX(Q*)N+Y] — PX) 4+ QE* PX,

where Q) is the projection given by (1.9) with I' = T and P*, E* and Q% are,
respectively, the separating projection, the right equivalence operator and the associ-
ated operator corresponding to A\G* — A* and T. Then Equation (2.37) is solvable
if and only if
- Lo (1 — Q)B* (@) P~

—QEX(Q)N=(I — P¥)] BD™'y, € imVy,

and in this case the general solution of (2.37) is given by
ug = DT'CE* [(0)F — a(Q*)H1] (1 = PX)p
(2.40) +D-1CEx [(QX )kt
+ X0

where 1 is an arbitrary vector in CT] fwil

that Van is equal to the left side o

— — 9 I
'Y v r— e ot e e F SRR =Y

D-'CE* (PRt D!, k>0,
(2.41) ¢ = ¢ D' — D EIEN A E BB L PY)j tire, k=0,
D'CE* [d0B)STERN- AP, k<o,

In particular, the general solution of the homogeneous equation

N
> Biu, =0, k=0,...,N,

v=0
is given by
W = DWCE* [(Qx)k - a(Qx)k“] (I — PX)yn+ D-'CE*-

(2.42)
[(QX)N+1=F _ o()N=*] P*p, k=0,...,N,

where 1 is an arbitrary vector in ker V. Furthermore, the block Toeplitz matriz

Ty = [®-;]ij=0
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is invertible if and only if detVy # 0, and in this case the entries of the inverse

T5' = [PYIN 2o admits the following representation:
(2.43) Ty =@, + KN, k,j=0,...,N,
where ®* ..., ®F are as in (2.41) and
Ky = DT'OEX{[(9%)F — ()] (I — P*)
+ (@) — (V] P VR
{(I-QEX (Y P* - QEX()N(I - PX)} BD™!

Proof. By Theorem 2.5 the sequence u = (ux)}_ is a solution of (2.37) if and only
if there exist po, p1, ..., pn4+1 satisfying (2.34). The inverse system of (2.34) is

Axpk+1 = prk+BD_lyk7 kZO""aNa
uy, = —D7'C(aprts — pr)
(2.44) J — :
: i = 7N’
(I=Q)po =
From Lemma 1.2 we know that t " lon 'rst equation in (2.44) is

given by

e = E*(m)

HTW
(2.45) i1 DRI AT ‘35’*5
—ZU ké"!" Lty Ay v

where 7 is an arbitrary vector in C*. Thus
= EX{(I = P¥)+ EX(QX)¥H1pxg — 370 B¥(Q%)*P*BD 'y, and
P41 = EX(QX)NH(T — PX)77+E"PX17+Z EA QX" #(I = P*)BD'y,. The

first boundary condition is

0 = (I=Q)po
= (1= Q)EX(I- Py +(I - Q)EX (@) Pey

N
Q)Y EX(2)'P*BD™ 'y,

v=0
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while the second boundary condition is

0 = @pny1
= QEX(QX)N+1(I_PX)77+QEXPX77

N
+Q Y EX(@)N"(I — PX)BD 1y,

v=0

From these two equations for the boundary conditions it follows that
(1 = QE*(I - PX) + (I - Q) E* ()N *! P~
FQEX@ NI = PX) + QE*PX]
= TN [ - QEX Q%) PX — QEX(QX)N-¥(I — PX)] BD 1y,.

\
|
‘ Thus the vectors po,...,pn41 in (2.45) satisfy the boundary conditions in (2.44) if

and only if
N
Vi =3 [(I = Q) B (R )pE=aFs GFRERELS P BD ™,
v=0 L - -
I T [ SR WP { GOl

From (2.44) we have that

O vs

— _1 — ” —
= ~DTHeCre ~ GONTVERSITY of the
= —D7HaC [E* O T Ehsy B DR P
k

+Z EX(QX)k—V([_ PX)BD_ly,,

v=0

up = —D7'C(apri —pi)

—ZEX kL PXBD Ty,

v=k+1

—C [EX(QX)k(I _ Px)77 8 EX(QX)N+1—]CPX77

ZEX klu[ PX)BD Yy

v=0
y }

_ DR (@) - a0 ] (1 - Py

—ZEX *)kPXBD™y,

https://etd.uwc.ac.za/



47

-}-D_ICEX [(QX)N-{-I—k _a(QX)N—k] Pxn
k—1

+Z D—ICEX [(QX)k—l—V . a(QX)k—u] ([ _ PX)BD_ly,,
v=0

—aD 'CEX(Q%)°(I — PX)BD 'y, — D'CE*(2*)°P*BD ™y,

N
+D7'y+ Y DTOE [a(@) 1 — (9%)*] PXBD My,
v=k+1
= DTICEX [0 — a(@ )] (1= Py

+D—ICEX [(QX)N+1—1¢: _ a(QX)N—k] P><17
k—1

+) DTOE* () — o(Q¥)E] (I - PX)BD Yy,
v=0

+{D™' = DT'CE* [P* + a(I — P*)] BD™'} 1

N
4 Z D—ICEX [a(QX)—k—l+u _ (QX)-—k-{-u] PXBD_ly,,
v=k+1

= DT'CE*[(W)" — a()"*'] (1= P¥)y
+D—1CE>< [(QX)N-H—k -

+Zq>k LY + O ] [N

v=0 Ve

Thus

U = D*lcix [gsleﬂf—agng)k‘f;]({—"PX)n
DN IYERSIT Y o sty px,
+2N_"§" ESTERN CAPE

In particular, the homogeneous equation
N
¥ 0w =0, k=0l 5

has solution as given by (2.42), where Vyn = 0 since yr =0, £ =0,1,..., N. Thus
n € ker Viy. In the nonhomogeneous case the solution for uy is given by (2.40) with
n an arbitrary element in C*. Suppose Vy invertible <= 1 unique <= u; unique

<= Ty invertible.
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Let us return to the nonhomogeneous case. We have that

N
V=3 [(I - QEX(Q*)"P* = QEX(Q*)V™"(I - P¥)] BD™y,.

v=0

N
=Y {Vi'(l - QEX(Q)"P*BD™ — Vy'QEX(Q)N=(I - P*)BD ™'} y,,
since the inverse Vy;' exists. But then for k =0,1,..., N we have that

we = DT'CEX [(Q%)F — a(Q)"*]) (1 = P*)y

+D—ICE>< [(QX)N+1-—k —a(QX)N_k] PXT]
N

+Z<I>k_uyu, =11 % -

=0
N

- ZD_ICEX {[(QX)k_a(QX)k+l] ([_ PX)

v=0

+Zq)k uy"’ i

v=0

UNIVERSITY of the

L WESTERN CAPE
uk—EFka]—Z q):_j-l—lxkj]yj, g =01, N,
7=0

where

K = DT'CE* {[() — ()] (I - P¥)
4 [(QX)N+1—I¢ _ a(QX)N—k] Px} V]\71 .
{(I = Q)EX(yY P* —QE* (V)N (I — P*)} BD™'. 4
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Chapter 3

Fredholm properties of Block Toeplitz Operators

with rational symbols

3.1 Fredholm characteristics and generalized inverse

In this section we derive the Fredholm properties and generalized inverse for a block
Toeplitz operator with rational symbol. The symbol is given in realized form and all
results are expressed explicitly in terms-ef-thesdataappearing in the realization. In
what follows the term generalized ifversaismsediin axweak §ense, i.e., an operator S
is said to have a generalized invers¢| S+ whenpver |3 = §9% 5. Recall that a bounded
linear operator A : X — Y, acting between|comple |Banach spaces X and Y, is

called a Fredholm operator if its‘range imA s closed-and thesnumbers
(3.1) n(A) = dimker A, d(A).=.dim(Y/imA)

is finite. In this case the ind A = n(A) — d(A) is said to be the index of A. Note
that dim(Y/imA) is also written as codim (imA).

Lemma 3.1. Suppose T' is a block Toeplitz operator with rational symbol
[3.2] ®(\) =D+ () —a)C(AG - A)™'B, AeT,

given in realized form, where a # 0 is neither a pole nor a zero of ®. Assume that

AG* — A* is T- regular. If ¢ € kerT then
(3.3) ¢ = DTICE* [(Q)* ! — a(2%)F] n

49
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where n € ker P* N imP.
Proof. Let ¢ € kerT". Then there exists p (see (2.9)) such that

Apk-H = ka+B¢k, k=0,1,2,...,
0 = Clopys —p)+ Ddn, k=10,1,2,...,
(I-Q)po = 0.

By the first equation of the inverse system (2.17) we obtain
A* pry1 = G py, =032 ..
But then from (2.27) we obtain
= EX(Q%)ky, k=0,1,2,...,
and so (see(2.29))

¢ = DTICE*[() - o(2)*']y,  k=0,1,2,...,
= D7'CE* [(

Here v € ker P*. Thus G* E*~ [| — Q)po = 0 implies that

E*~ € imQ (see (2.30)). Thus EXEX5cm 7 % = G*EXy. Then
, INIVEE .jsiT‘bn{lfu
h= W E RN E

where n € ker P* NimP. {

Lemma 3.2. Suppose T' is a block Toeplitz operator with rational symbol
&(X) =D+ (A - a)C(AG - A)'B, AeT,

given in realized form, where o # 0 is neither a pole nor a zero of ®. Assume that

AG* — A* is T- regular. If ¢ € imT then

o0

(3.4) > (9¥)"P*BD™'¢, € imP + ker P*.

v=0

Furthermore, codim (imT") = codim (imP + ker P*).
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Proof. Let ¢ € imT. Put T'f = ¢, f € [7. Then there exists p such that

Api+1 = Gpr + Bfi, k=lh1d ey
O = C(opry1 —pr) + Dfx, k£=0,1,2,...,
(I =Q)po = 0.
But then, for the inverse system, we get
A% iy = G*pr+ BD ¢y, k=0,1,2,...,
fx = =D 'Claprsr —pr) + D', k=0,1,2,...,
(I=Q)po = 0.
By Lemma 2.3 we have that
e = 7+ZEx )¥=1=*(1 — PX)BD™¢,
V=0

=Y EX(@*)*P*BD™'¢,, k=0,1,2,...,

v=k

Gpo = GxE*ﬂL’rﬁﬁtﬁi@fW‘ﬁiM%

I“‘-.Ii RN, CAPE
% BD ‘¢, (GXE*P* = P*)

= 0%y - Z(m) P*BD™'¢, € imP.

v=0

Thus
> (X)) P*BD™'¢, € imP + ker P*.

v=0

Define a mapping ¢ : [*/imT" — C"/(imP + ker P*) by [¢] — [R(#)], where
R(¢) = Y0, (%) P*BD™'¢,, or equivalently, 8([¢]) = [R(¢)] or ¢ + imT —
R(¢) +1mP + ker P*.
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To show 6 is injective, suppose 0([¢]) = [0], i.e., [¢] € kerd. Then [R(¢)] = [0]
or R(¢) € imP + ker P*. But then ¢ € imT', showing that [¢] = [0]. Hence 6 is
infjective,

To show that § i surjective. it wonld suffice to show that
C" = imR+1mP + ker P*. To this end, let w € ker P and let f be the function with

—aC FEw, k=0,
. { —CE (o — O* Y w, k>1.
Then

R(f) = —aP*BD 'CEw — Z (Qx)y P*BD"'CE (aQ” = Q”_l) w

v=1

= —aP*BD7'CEw-a) (%) P*BD™'CEQ w

v=1

+3 (%) PXBDTICEQ

0
=) ()" PAQYGH G R w

v=0
= i ()" PAEQ w — i ()" PXAXEQ"w
v=0 v=0
- i Q)" P*Q*GEQ w + i (9%)" P*Q*G*EQ w
v=0 v=0
= i ()" P*Q"w — i ()" PXQ*G*EQ"w
v=0 v=0
- i (%) P*Q* 00" w + i ()" PXQ*G* EQw
v=0 v=0
= i P (Q%)" Q'w — i P (0%)" Q"w
v=0 v=1
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since A — A* = —aBD™'C, G- G* = —BD'C, AE(I — P) = - P, PXA* =
A*Q* = ABXEX)YIQ* = AXEB*P*(B*)™) = @ P*{(EX)! = *P*@* and
GE(I — P) = QI — P). Thus w = P*w + (I — P*)w = R(f) + (I — P*)w from
which it follows that z € C*, 2= Pz+([—P)z = Pz+w = Pz+ R(f)+ (I — P*)w.
Hence @ is an invertible linear operator. Thus

o i g s c T %
codim (im7') = dim(/;* /imT') = dim P+ ket Pr = codim (imP + ker P™). |

Theorem 3.3. Let T' be a block Toeplitz operator on I)* with rational symbol
®(N) =D+ (A—a)C(M\G - A)'B, AeT,

given in realized form, where o # 0 is neither a pole nor a zero of ®. Put A* =

A+ aBD7'C and G* = G + a 'm operator if and only

if \G* —

(35) keeT = {(D-'CE* [{F)H

(3.6)  imT = {(¢k)i’io eirl” } ;
NIV FR“'}I TY of the
WESTERN CAP !(C”
(37) n(T) = dlm(ker P*N il’I]P), d(T) = dim m,
(3.8) ind (7') = rank P — rank P*,

and a generalized inverse of T is given by T+ = [[F]%5_, with

(3.9) P =8 + K}

1))

i,7=0,1,2,...,

D-I1CE* [(9*)F! — a(Q*)*] (I — PX)BD7!, k>0,
(3.10) 8% = ¢ Dt~ DACERP* +ull - P*Y BD, k=0,
D'CEX [a(QX)7F1 — (Q*)~*] PXBD™!, k<0,
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(3.11) K} = —D'CEX[(Q)! — ()] (I — P*)(JX)H(Q*)IP*BD™,

ij
where (J*)t is a generalized inverse of the operator
(3.12) J* = P*[imP : imP — imP*.

Here P is the separating projection corresponding to A\G— A and T, and the operators
P*, E* and Q* are, respectively, the separating projection, the right equivalence
operator and the associated operator corresponding to \G* — A* and T.

Proof. Gohberg and Feldman (1974) proved that 7" is Fredholm if and only if
det®(A) # 0, A € T. By Lemma 2.1 ([G1]) the latter condition is equivalent to the
requirement that AG* — A* is T-regular.

Suppose T' is Fredholm, i.e., A\G* — A* is T-regular. From Lemma 3.1 and Lemma

3.2 the formulas for ker 7" and imT follows. From Lemma 3.1 it follows that

n(T) = dlmkerT = dimfrmp ﬂkerPx);
m

and from Lemma 3.2 it follows tha

UNIVERSITY of the
ind(T) = n(T)-WHSTERN CAPE
o o Cr
= dlm(lmP N kerP ) A dlm m
= {dimimP + dimker P* — dim(imP + ker P*)}

Therefore

—{dimC" — dim(imP + ker P*)}
= dim(imP) + dim ker P* — n
= dim(imP) — (n — dimker P*)
= dim(imP) — dimim(P>)
= rank P — rank P*.
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What remains to be checked, is the formula for a generalized inverse. If T'f = ¢, we
know from Theorem 2.4 that
fe=DT'CE [(@)! —a(@ )] n+ > 0F b, k=1,2,...,
v=0

where 1) € ker PX. Put Tt = [[}]9_,, so

(T+f)k Z ICEx X)k—l N a(QX)k] .

=0

(I = P*)(J*)"P(QYBD™' fi+ > &

= —D7'CE* [(Q)"" — a(Q%)"] - -
( +ZP>< BD lfu_l_Z@nyu

To show that T is a generalized inverse for T' we need to show that TT+Tf =T f
for every f € D(T'). Suppose that-EF="d"Then==ntQX )" P*BD ¢, = R(¢)
€ imP + ker P*. Then x, == =PI+ R{(#) G ker P*. Note from the
expression for f; above that
(Tte) = —D7'CEEHPOY=E—af@ )t
(I = PRI NE ppa) BD—1¢V+Z<1>

ve=0 p=0

= DT'CEF () — o) xs+ > 0L,
v=0
(from Theorem 2.4). Thus T(T*¢) = T(T*Tf) = Tf, showing that 7'f coincides
with TT*T f, or equivalently, T = TT*T.
3.2 Riemann-Hilbert problem

Let ® be an m x m rational matrix function without poles on the unit circle T.

Recall that a pair of C™-valued functions (¢4,v_) is said to be a solution of the
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homogeneous Riemann-Hilbert boundary problem (see, e.g., [CG]) for ®(A) relative

to T if ¥4 is analytic in D,, continuous on D, the function
(3.13) Y_(A) = ¢( M) (N), AeT,

extends to an analytic function in D_, is continuous on D_ and ¢ _()) has the value

zero at infinity.

Theorem 3.4. Let
(3.14) ®(A) =D+ (XA —a)C(AG — A)_IB, AeT,

be given in realized form, where o # 0 is neither a pole nor a zero of ®. Put

A*=A+aBD7'C and G* = G+ BD7'C. Let P and P* be the projections given

by

/G(/\G — Ay, Pr= = [ @ (AG* — 4%\, T =T.
{1

m™ Jr

B |
T om

P

Then the general solution of the

given by

(3.15)

where x is an arbitrary vector ir‘zllmu'*’ frker P*—Moreover, the vector z is uniquely
determined by the solution (1, b J¥ LV ERSTTY of the

Proof. From the T-spectral deubnlprsdlén Of Phe '-}yeﬂc!f XG — A we know, since
z € imP, that Y_(A) = —(A — a)C(A\G — A)™'z = —(A — @)C(AG — A)~'Pz has
an analytic continuation to D_, also denoted by ¥ _ and ¥_(A\) — 0 as A — co.
Similarly, since € ker P*, the T-spectral decomposition of the pencil A\G* — A*
allows us to conclude that ¢ (A) = —(A — a)D"'C'(AG* — A*)~'z has an analytic

continuation to Dy, which we also denote by ¥, . Also, recall from Lemma 1.5 that
B(N)1C(AG - A)! = DIC(AG* - AXY.

So, any pair (¢4, 1_) of the form (3.15) is a solution of the Riemann-Hilbert problem
for ®(A) relative to T.
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Conversely, let (14,1 _) be a solution of the Riemann-Hilbert problem for ®())
relative to T. We know that a block Toeplitz operator Ty with defining function @
is unitarily equivalent to the compression to the Hardy space HJ*(T) of the operator

of multiplication by ® on L7*(T). That is,
U 'TeU f = PMsf, f e HT),

where U is the Fourier transformation on H}*(T), the operator Mg is the operator
of multiplication by ® on L}*(T) and P is the orthogonal projection of L}*(T) on
HJ'(T) (see Corollary 3.3, [GGK2]). Then

U™ To Uty (3) = PO(AN4 () = Py—(A) =

Therefore ToUr4(A) = 0. So, clearly Uy € kerTy. From Theorem 3.3, and the
fact that v, € HJ*(T), Uty is of the form

Uty = (er)io = (D

. )D_IC(/\GX _AX)—-I

where (k)32 are the Fourier coefhig

z € imP Nker P*, with ¢, = 0 for, s can be seen as follows:

I Ill.

(N = —(A—a)D'CB—AT "7

(= o)D" C;J_ OWERSETY of tioe
- Y7 UWESTBRN qapEe)-]|”
[ — X (0F 0
= —(A—a)D"'CE* 2o ~X ()" N ]x
L 0 Zu:O /\_V_l (Q; )V
[ oo —\(QX)W 0
= —(A—a)D7'CE* =0 () ] &
. 0 oo A (25)
o0 _Au+1 X\v
_ _D_ICEX ZIJ:O (Ql ) 0 5
0 RN Laat (1) g
+aD 'CE* 2vmo =N (M) ’ v
0 e A(Q)
A (Q 0
T Dover —A(Q)"” i
0 Yoo A ()
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Z:):o _)‘V(QT )V 0 .
0 L ()

V=—00

+aD O E* [

Thus

0 0 I 0
gy = . —DIOE* z+aD 'CE* z
0 I 0 0

= —D'CEX[P* 4+ oI = P¥)]z,
= —D—IC'E'X[P>< +al — aP*]z
= —aD7'CE*z (P*z=0),

—(0X k—1 0 —(QX k 0
ce = —D'CEX (6) z+aD 'CEX () &; k>0,
0 0 0 0

= DTICEX [()! — a()] (I = PX)z, k>0,
= D-ICEX [(QX)k—l ;

- ~

0 0
cp = —D_ICEXI: L E

x, k<0,

0 (7= Y 'Cﬂr?)"““J

= —DICEX (@) HEW RS PTY ko e
= 0, k<0. WESTERN CAPE

Now it is plain that
v-(A) = 2(A)p4(A)

= —(A=a)®(\)D'C(A\G* — A) "'z
= —(A—a)C(M\G — A) 'z, € imP N ker P*,

(see first identity, Lemma 1.5).
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It remains to show that z in (3.15) is uniquely determined. If
Vi) = =(A = a)DIC(AG* — A¥)1z; = —(A — a)D7IC(AG* — AX)"'z,, with
z1, 29 € imP N ker P*, then

—(/\ = a)D-IC(/\Gx = Ax)_l(IL'] ax .'L'z) = 0,

—(A=a)C(A\G — A)"Y(zy — z3) = 0.

Thus
(A—@)BD'C(ANG* — A*) Hz1 — 22) = 0,

(A—a)BD'C(A\G — A) (21 — z3) = 0.

Using (2.8) we see that
[(AG* — AX) — (AG — A)] (A\G" — A")™ (a1 — x3) = 0,

[(AG* — A%) —

Thus

o v g, UNIVERSITY of the
G- ks YE R ckpg A€ T

Therefore, for I' = T

—1— X _ -1 _ 1 X X %=1
37 ) GTOG = A Az — ) = %/FG (AG* — A¥) 1d\ (21 — 23)
= Px(.'L'l —.'172)
= {)
That is,

L (@ +BDC)AG = A)'dA (@1 — 2) = 0

2m T
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implies that

1

i/ GG — A)YdM(zy —23) = —=— | BD™'C(AG — A)"'dA(z1 — )
B

2m 2m Jp

= 0

(from Cauchy’s theorem). Thus
0= P(:EI—CEQ) = (1131—.’132)
since P is a projection, i.e., 21 — 2y = 0. That is, 1 = z2. §

3.3 Example

In this section we calculate the inverse.of=a=bleck Toeplitz operator with rational

symbol using discrete singula nditions. Note that all
1. M

ye a block Toeplitz operator

calculations were done with there

on [7* with rational symbol

(3.16) ®(\)=DT(—a)C(\G _A) "B, reT,
UNIVERSITY of the

given in realized form. Considét thesfiniite loek Toeplitz equation

N
(3.17) > By oy = By, o= 0,00, .

v=0
We use the results of Section 2.3 to invert a finite block Toeplitz matrix that corre-
sponds to Equation (3.17). Finally we calculate the formula for the inverse as given
in Section 3.1.

Let T" be the block Toeplitz operator with symbol
0 -1

(3.18) B()) = ,A€eT.
(3A2 4+ 13X +4)/3%  2(3X +4)(A — 1)/3A
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We first write ® as a transfer function of a system. Introduce

1 0 0 0 0 0
A=1|D0 =1/2 0|,G= |0 -1 0 , a=—4/3,
0o 0 0 0 0 -—1/2
1 2
0 -1 0 0 -1
B=|0 0],€C= ; B = i
-1 0 -1 2 0
1/2 -1
Clearly ®(a) = D, which is well-defined with inverse
0 1/2
Bla)" =D = :
-1 0

The pencil A\G — A is T-regular and one finds that

~1 0 0
MG -A)t=]0 -2/2x-1) 0 |,XxeT.

Thus

Calculation of the projections

ciated operator ) yields

UNIVEBRSITY of the

WEESTF RN ((APE

00 1
1 0 0 0 0 0
E=|0 -1 0|,Q=]0 1/2 0
0 0 -2 0 0 0

One checks that the identities

PG = GQ, PA = AQ, QP = PQ,
-1 0
(AG—AE=]0 X=1/2 0 =[

A — I 0 ]
0 0 A

0 My —
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are satisfied.

Taking N = 2 we compute the Fourier coefficients ®_3, ®_;, @9, ®; and @, as

0 0 0 0
(I)—2 = ) q)—l = ’
0 0 4/3 —8/3
0 -1
(DOZ )
13/3 2/3

0 0 0 0
¢, = s Py = .
1 2 0 0
The block Toeplitz matrix (with N = 2) is

0 -1 0 0 0 0
13/3 2/3 4/3 —8/3 0 0

0O 0 0 -1 0 0
(3.19) Ty =

1 2 13/3 2/3 4/3 —8/3

0 0 0 0 0 -1

5/3
A= 0
1/3
The determinant of A\G* — A‘qus(‘—Ih(AF)\R—H ?517’314 4\-th&5/24 JA 4+ 1/6 with roots
A=1/2,—-1/3,—4. Thus the Rfi“‘ff__@‘q E—[@ _'.,,..,IS _f?ﬁgPli-‘f’ i.e., no roots lie on the

unit circle. Before we can calculate the Fourier coefficients ®; of ®(-)~! we first

have to compute the separating projection P*, the right equivalence operator £*

and the associate operator Q* corresponding to the pencil A\G* — A* and T. We

note that
— 3A +4)(A — 1)/(3)2 + 131 +4) BA/(3X? + 13X + 4)
-1 0
The projections and operators are
—1/11 —160/99 6/11 —1/11  80/27 —4/11
P = 0 1 0 ¢ G = 0 1 0 y
—2/11 —=80/297 12/11 3/11  —=20/27 12/11
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2/11 —8/33 —64/33 —1/22
1/2 0
—164/99 —15/44

7/11  —T776/297

E* = 0 -1 0 ; i = 0

/11 788/297 —17/11 1/66
Once more the identities

PxGx = GXQX,PXAX - AXQX,QXPX — PXQX

are satisfied. The eigenvalues of Q% are 1/2,—1/3,—1/4 and one computes that

112 .1 48 1 160 1
)k (__)k7

1, 1 12, 1
ka :______k ) e 1. X\ K _______k g, = kad
( )[1,1] 11( 3) + 11( 4) ) (Q )[1,2] 45 (2) + 55( 3 99 4

6 Il 6 1 1
(—Z)k, @)y =0, (g = (5)

k o k k k _
()3 = ﬁ(—f’;) — s ()3 = 0,

2. 1 2., 1 272 .1 9% 1 80 1
ka =____k 2 \E Xk :___k YV 2\ OV T\E
12, 1 1 1
QX = 24Dy (_D)E
(@)= 53" - 77
Thus : :
"!I W TN W NI NI > o,
_' War
(3.20) or = { =0,
["11 = 24700 371 =
S S R e o oa e ),
(LBI{ INVERSITY|of the

One finds that WESTERN CAPE

8§ 1 1 320 48 1 616 1
V :_______N+1 ——— il A 7 o o il G b i o |
Now =17 7 17 3) » VN 297+55( 3) 135(2) ’

4 6 1
)N+lv Wy = 05 Vg = =15 Vivpy =0,

L e VI TA
80 1y 868

2, Ling 3
Wior = =7 (=3 90 View = =597 (=37 + 597
1 1yy, 18
VN(gyg] = H(_Z) - 1_1.

The determinant of Vy is equal to

det(Vy) = 12/11 — 1/11(=1/3)N+} (=1/4)N+!,
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which has no zeroes for positive integer values N. Thus

| ~3 =11

K = 11—1(—-;-)1(—%)"[0 .
(3.21) L Ll 1y, [5/3 —1/4
+H(_é_l) (—g) " g |

8o T = [<I),>:_J- + Aﬁ]%:m where @ is given by (3.20) and K,g by (3.21). Putting
N = 2, we find

F 2 471 _ 1264 _ 12 448 48 ]
1885 1885 1885 145 1885 1885
-1 0 0 0 0 0
72 _ 9 26 39 _12  _ 12
- 145 145 145 145 145 145
(3.22) " =
0 0 ~1 0 0 0
__ 216 27 792 _ 9 626 471
1885 1885 1885 145 1885 1885
0 0 0 0 -1 0

If we multiply (3.19) with (3.22) we get the required 6 x 6 identity matrix.

Finally, we find the inverse 7! of a semi-infinite Toeplitz operator. We use Theorem

— ==
3.3 to show that T is invertibl .10 and ker P* =
- ET A g ] r) 1
6
span ¢ | 0| 3, we have that kerPXmimP =50} -Fhusn{L) = dim(ker P*NimP) =
L) UNIVERSITY of the
0, so T' is injective. And _ B
- WESTERN CAPE
d(T) = dim ————— = dim C" — dim(imP + ker P*) =3 -3 =0

imP + ker PX
implies that T is surjective. Thus T is invertible. We calculate J* from
P, —160/99 6/11
J* = P*imP = | B | 0 ;
Py —80/297 12/11
where Py, P, are arbitrary, and P; = —7/2P; 4+ 388/27P, — 25/6. One possible J* is
—25/33 —160/99 6/11
J* = 0 1 0
-50/33 —80/297 12/11
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A generalized inverse of J* is
g

-33/25 0 0
T 0 1 0
0 80/27 0

One easily verifies that J* = P*|imP : imP — imP* and that J* = J*(J*)tJ*.

The inverse of T' is given by

F:‘;:q)ix_j"f'[{.‘- iaj=0a1727"'a

Uk

where @} is given by (3.20) and K by

. -2 -—1/4
Kf = (=307 [ / } .

UNIVERSITY of the
WESTERN CAPE
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List of Symbols

C subset

R set of real numbers

Z set of integers

C set of complex numbers
C. Riemann sphere CU oo

T unit circle in the complex plane

D, open unit disc in C

D_ complement of Dy U T

[' Cauchy contour in C

UNIVERSITY of the
WESTERN CAPE

A4 inner domain of '
A_ outer domain of I’

Ly(T) set of all Lebesgue measurable and square integrable functions on the interval

[=m, 7]
H,(T) space of all square integrable functions on the unit circle
Ly(Z) Hilbert space of all square summable infinite sequences of complex numbers
kerT" kernel (nullspace) of the operator T'
im 7" image (range) of the operator T'
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Summary

In this dissertation we studied the modern state space method for inverting semi-
infinite block Toeplitz operators with rational matrix symbols explicitly from the
representation of its symbol in realization form. A rational matrix function ® which

is analytic and invertible at infinity, may be represented in the form
(1) ®(N)=D+CM - A)'B,

where A is an n X n square matrix, say, B and C are n xm and m xn matrices, respec-

tively, and D is an invertible m x m matrix. The method for constructing explicit for-

we have emphasized the case where ¢

has a realization of the form

. o0 PV ERGI Y I

where A, B, C and D are as above and /G:/Hs 6f the /$amé order as A. In the main

results in Chapter 2, we give necessary and sufficient conditions for the equivalence
between block Toeplitz operators with rational symbol and discrete singular systems
with boundary conditions. In addition, this equivalence implies that the explicit
formulas (in realized form (2)) for the inverse may be written in terms of the matrices
A, G, B, C and D and various other matrices derived from them. We also deal with
the special case of finite block Toeplitz matrices. Different Fredholm characteristics
are computed and a Riemann-Hilbert problem is solved as an application. The
exposition is based on extensive use of a separation of spectra argument for linear

operator pencils, the so-called spectral decomposition of the pencil AG' — A.
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T-! inverse of the operator T

T+ generalized inverse of the operator T, i.e., T = TT*T
T|x restriction of the operator 7' to the set X

ind 7" index of the operator T'

Ix, I, identity operator on X, m x m identity matrix
X @Y direct sum of the linear spaces X and Y

C™ Unitary space of dimension n over the field C

< z, y > inner product of z and y

o non-empty subset of the complex plane

p(G, A) resolvent set of the op

diag (A;)72; m x m diagonal magfirix vi

[7(T) space of C™-valued p-summable-sequences-ont
UN I‘;-’ERSI);[Y of the

L(X) class of all bounded linear operators on

WESTERN CAPE

L7(T') space of C™-valued p-integrable functions on I

WTX™ m x m matrix Wiener algebra
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