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Chapter 0

INTRODUCTION

It is an established fact that both canonical and non-canonical Wiener-Hopf factorizations of matrix
functions play an important role in various aspects of mathematical analysis and its applications.
Indeed, for instance, the Fredholm properties of a block Toeplitz operator 7', with symbol W from
the m x m matrix Wiener algebra W™ ™ over the unit circle T, may be read off from a (right)

Wiener- Hopf factorization
W)= W_(A)DAW,(X) , Ae T, (0.1)

where W, and W_ are in W™*™ _ the function W} has an analytic extension to the open unit disc D
such that det W, (z) # 0 for z € D, the function W_ has an analytic extension to € U {oo}\ D,
such that det W_(z) # 0 for z € C U {oo}\ D, and

D()) = diag (\*)72, , (0.2)
with &1,...,Kkmn integers. In particular, T is invertible if and only if the factorization is canonical,
i.e., the indices k1, ..., km are all equal to zero, and in this case the inverse of 7' may be constructed
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from the Fourier coefficients of W_(.)~! and W, (.)™! (see [GKr]; also[GF]). Analogous results hold
for Wiener-Hopf and singular integral operators (see the books [GGK], [GF], [GKr] and [MiPr]).

Also in mathematical systems theory, particularly in the analysis of He-control problems, Wiener-
Hopf factorization plays an important role (see, e.g., [BHV],[GGLD], [Fr]). In the latter case the

matrix functions are, in general, rational, i.e., their entries are quotients of polynomials.

Up to the late seventies, the standard construction of the Wiener-Hopf factorization (see [GK1], also
[GF)) did not yield explicit formulas for the factors W, and W_ nor the factorization indices, but only
an algorithm which yields the factors and the indices in a finite number of steps. Subsequent to this,
a new method, known as the state space method (see [BGK4]), was developed to deal with problems
involving rational matrix functions. This method largely depends on the notion of realization which
originates from mathematical systems theory (see [K]) and allows one to reduce problems in analysis

to ones in linear algebra involving matrices.

A realization of a rational matrix function W which is analytic at infinity is a representation of W
in the form:

W(A) =D+ C(\ - A)'B, (0.3)
where A is a square matrix of order n say, and B,C and D are matrices of sizes n x m, m x n and
m xm, respectively. Here D is assumed to be invertible. In the papers [BGK1] and [BGK2], canonical
and non-canonical Wiener-Hopf factorizations (0.1) of W(.) in the form (0.3) are discussed. Explicit
formulas for the right and left factors and the diagonal term D(A) are given in terms of A, B,C, D,

the corresponding Riesz projections and various matrices derived from these transformations.

For a rational matrix function W which is not analytic and invertible at infinity, the realization is

not of the form (0.3) with D invertible, but may be represented as in [GK1], as
W(\) =D+ C(\G - A)'B, (0.4)
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where A, B and C are as above, and G is of the same size as A. In [GKI] the form (0.4) is used
to obtain necessary and sufficient conditions for a canonical Wiener-Hopf factorization and explicit
realization formulas for the factors are given in terms of the matrices A,G, B and C and generalized

Riesz projections.

This dissertation also concerns another case where the rational matrix function is not analytic and
invertible at infinity. The aim is to provide necessary and sufficient conditions for the existence of
a right canonical Wiener-Hopf factorization and corresponding explicit formulas for the factors in
terms of a given left canonical factorization. We present an alternative version of the construction

given in [BR]. Instead of the representation (0.4) we use the form (see [GK1])
W(\) =D+ (A= a)C(A\G - A)~'B, (0.5)

where « is a non-zero complex number which is neither a pole nor a zero of W, the matrices A,G, B
and C have the same properties as in (0.4) and D is a non-singular m x m matrix. The construction
yields an explicit factorization, with factors of the form (0.5). The factors are described explicitly
in terms of the matrices appearing in the realization (0.5) and the corresponding generalized Riesz
projections. In the second chapter our main factorization theorem is described in detail. Note that
the representation (0.5) may be deduced from classical realization results by applying the Mobius
transformation
2X -1
BN =a eI =

Indeed, setting W(A) = W(g())) we have that W()) is a rational matrix function which is analytic

]l 24«
DAz gy

and invertible at infinity and from the discussion earlier, may be represented as

—~ — ~ ~

WA =D+CA-A)'B

where D = W(oo) and A, B and C are matrices of appropriate sizes. If we define A = a3 — A),
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G=-3— A, B=B,C=C and D = D, then it is clear that (0.5) now holds (cf., Theorem 1.9 in
[BGK1}).

This dissertation consists of two chapters. Chapter 1 contains preliminaries, the canonical Wiener-
Hopf factorization theorem for rational matrix functions represented in the form (0.5), a discussion
of a certain operator equation and a derivation of the general inverse formula for rational matrix
functions of the form (0.5). The majority of the results in this chapter (see Proposition 2.1, Corollary
2.2, Lemma 2.3, Theorem 2.4 and Corollary 2.5) are generalizations of results in Chapter I of [BGK1],
which involve realizations of the form (0.3). Also, Theorem 1.3.1 in the sequel is a natural analogue

of Theorem 1.4.1 in [GGK].

In Chapter 2 we provide a statement and proof of our main Wiener- Hopf factorization theorem. This
result provides necessary and sufficient conditions for the existence of a right canonical Wiener-Hopf
factorization and explicit formulas for the right canonical factors in terms of a given left canonical
factorization. We conclude this chapter by considering an application of the aforementioned result

to singular integral operators.
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Chapter 1

PRELIMINARIES AND CANONICAL
FACTORIZATION

In this chapter we discuss preliminaries about spectral properties, canonical factorizations and oper-

ator equations of various types.

Throughout this chapter, we shall consider the representation of rational matrix functions of the

form
WA) =D+ (A= a)C(AG — A)"IB. (0.1)

The main result is a canonical factorization theorem for rational matrix functions represented in the

form (0.1). Many of the results derived below, are analogues of those which involve the realization

form

W(A) = D + C(M — A)'B.
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1.1 SPECTRAL PRELIMINARIES

This section contains definitions which will appear in the factorization theorems derived later.
Firstly, we establish some notation.

A Cauchy contour « is the positively oriented boundary of a bounded Cauchy domain in €. Such
a contour consists of a finite number of non-intersecting closed rectifiable Jordan curves.

The set of points inside 7 is called the inner domain of v and will be denoted by A,. The outer
domain of 7 is the set A_ = C,, \ Ay. We assume that 0 € A;. By definition co € A_.

Next, we consider operator pencils. Let X be a complex Banach space and let G and A be bounded
linear operators on X. For A € C, the expression AG — A will be known as a (linear) operator pencil
on X. Given a non-empty subset A of the Riemann sphere €, we say that A\G — A is A-regular if
MG — A (or just G if A\ = oo) is invertible for each A in A. The spectrum of A\G — A, o(G, A), is the
subset of €, determined by the following properties. co € (G, A) if and only if G is not invertible,
and o(G, A) N C consists of all those A € € for which AG — A is not invertible. Its complement (in
C ) is the resolvent set of A\G — A, denoted by p(G, A).

Next, we look at generalized definitions of concepts associated with the decomposition of (G, A)
(cf.,|GGK], Ch.1). If yNo(G, A) = 0, i.e., v splits the spectrum of A\G' — A, then oG, A) decomposes
into two disjoint compact sets o; and o, such that o, is in the inner domain and o3 is in the outer
domain of 4. Furthermore, if v splits the spectrum of AG — A, then we have generalized Riesz

projections of X associated with A\G — A and ~y, namely the projections

P(G,Ay) = 2—71;1/ G(AG — A)~ld),
i (1.1)
Q(G,A,y) = 2—17;;/1(/\G—A)‘1Gd,\.

The subspaces im P(G, A,v) and im Q(G, A, ) are called the generalized spectral subspaces for
AG — A corresponding to the contour 4. It may be shown that if the spectrum, o(G, A), lies inside
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~, ie., 0(G,A) C Ay, then the projections P and @ are the identity operators on X. Also, if
o(G,A) C A_ then P and @ are both zero.

1.2 PRELIMINARIES ABOUT FACTORIZATION

In the main result in this section (see Theorem 2.4) we derive a canonical factorization theorem
which is a natural analogue of Theorem 1.5 in [BGK1].
Firstly, we define a number of concepts which will appear in the sequel.

Let W(A) be an m x m rational matrix function, and let v be‘a Cauchy contour in the complex
plane C with inner domain Ay and outer domain A_. Assume that W(X) has no pole or zero on
~ and that 0 € A;. Then W(}) admits a (right) Wiener-Hopf factorization relative to v, that is,
W(A) facltorizes as

W) = W_(ADMWi(X) , rer, (2.1)
where W, and W_ are m x m rational matrix functions, W, has no pole or zero in A, U~ and W_

has no pole or zero in A_ U+ (which includes the point 00), and
D()) = diag(X™ ).

Here x, < k2 < -+ < K are integers, which are uniquely determined by W (and 7), and are called
the (right) factorization indices of W relative to v (see, e.g., [CG]). The factorization is called a
(right) canonical Wiener-Hopf factorization if and only if the indices Ky, - -, km are all zero. If W
admits such a factorization, then det W(X) # 0 for each A € 7, but in general, this condition is
only necessary and not sufficient for the existence of a canonical factorization. We refer to a (left)
Wiener-Hopf factorization if in (2.1) the order of the factors are interchanged.

We consider a representation of W of the form (see [GK1}) :

W(A) =D+ (A —a)C(AG — A)'B, (2.2)

8

http://etd.uwc.ac.za/



where we choose a # 0 such that « is neither a pole nor a zero of W, the square matrices G and
A are both of order n say, and B, C' and D are matrices of sizes n x m, m xn and m x m,
respectively. Here we assume D to be invertible. Note that D = limy_, W(}).

Next, we state and prove results which will be useful in the sequel. The first of these results is a

natural analogue of Theorem 1.1 in [BGK1] for realizations of the type (2.2).
Proposition 2.1 Let
W) =D+ (\A=a)C(M\G - A)"'B

be a given realization with invertible external matriz D, let (m1,73) be a pair of projections of a

complez unitary space C™ such that rank m; = rank m, and let

AGy — Ann MG — A B
\G - A= 11 11 12 12 e 1 ,C=(Cl C’g)
AGz — Agr AGoy — A B,
be the matriz representations of \G — A, B and C with respect to the decomposition C" = ker m; @

imm; , t=1,2. Assume D = D,D,, where Dy and D, are invertible matrices on C™.

Write
Wi(A) = Dy + (A — a)C1(AGyy — An) ' BiD; Y, (2.3)

and

Wg()\) = D2 + (/\ — a)Dl“lCz(/\ng — Azz)—lBg. (24)
Set G* =G+ BD7'C and AX = A+ aBD7'C. If (A\G — A)lker m] C ker w3 and
(AGX — AX)[im m] C im mq, then W(X) = Wi (A)Wa(X), X € p(Gi1, Ann) N p(Gaz, Az2) C p(G, A).
Proof. Since (A\G — A)ker m; C ker m,, we have that AGa; — Az = 0. As

AGY — A} (AGiz — A1) + (A — @) B, D' DIC, )

AGX — A% =
(A —a)B:D3' DG AG3 — Az
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maps im 7y into im 7, we have AG1; — Ay = (o — MNBD;' Dy C, .
Hence, for A € p(G11, A11) N p(Gaa, Az2) C p(G, A), we compute that
W) = D+(d—a)C(AG - A)'B
= o+ -a) (G G
. ()\Gn - All)‘l (/\ — a)()\Gll - A11)~1B1D2_1D1_102()\G22 — Azg)“l B
0 (MG — Azz)_l

- D1D2 + (/\ -_ a)Cl()\Gn = An)nlBl
+(A — @)2C1(AG11 — An) 1By D; Dy Co(AGhs — Age) ' By + (A — @)Co(AGay — Azz) ' Bs.

Also, we have that
W](/\)Wz(/\) = [D1 + (/\ 3 OZ)CI()\GH s All)_lBlDQ_I] ) [Dg + ()\ N CY)DI_ICQ(/\GZQ - A22)-1B2]
= D]D2 + (A - a)Cl(/\Gn b 1 A11)~1B1 + (/\ -1 0)201()\6;11 i A]l)_lBnglDl_lcz
-(/\G22 —3 Azz)_le + (A —3 a)Cz(Ang — Agz)_lBg.
So we conclude from the above computations of W(A) and W;(A)W3(A) that they are equal. 3

It is easy to show that the converse of this proposition also holds. Note that the formulas for
the factors are written in terms of the components of the block matrix representations of AG —
A, B, C and D. Under certain conditions, we may express these formulas in terms of the projections

7, and m,. The result is an analogue of the Corollary to Theorem 1.1 in [BGK1].

Corollary 2.2 Let W(A) = D+ () —a)C(AG— A)"'B be a given realization with invertible external
matriz D, and let (w1, m2) be a pair of projections of the state space C™ such that rank 7y = rank m,,

and

(AG — A)lker m] C kermy, (AG* —AX)fimm] C imm,.

10
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Here we set GX = G+ BD™}C and AX = A+ aBD7'C. Assume D = Dy D,, where Dy and D, are
invertible matrices on C™.

Then, for A in some open neighbourhood of a, we have W(X) = W, (M)W, (X), where
Wi (A) = Dy 4+ (A = a)C(AG — A)"Y(I - m)BD;’,

and

Wi, (A) = Dy + (A — a) D7 Cra(AG — A)™'B.

Proof. Let Wi(:) and Wa() be defined as in formulas (2.3) and (2.4). Then by Proposition 2.1,
W(A) = Wi(M)W;(}), for A in some open neighbourhood of a. To complete the proof observe that
Wi()) = Wy, (X) and Wa(X) = Wi, (A), for A near a. 1

The operator pencil \G* — A* is often referred to as the associate operator pencil.

The next lemma is a natural analogue of Lemma 1.4 in [BGK1]. We assume that X; and X are

complex Banach spaces.

AGu — A AGra — Axz

0 MGy — Ag
C" = X; ® X, such that ker m = X{. Then for the compression \nG — wA lim » and AGaa — A2

Lemma 2.3 Let \G — A = ( ) be given, and let m be a projection of

there exists an invertible operator E :1im © — X, such that E-'(A\Gaa — An)E = AnG — A lim
Furthermore, X, is a spectral subspace for A\G — A if and only if o(Gi1, A1) No(Gaz, Azg) = 0,
and in this case o(G, A) = 0(G11, A1) U 0(Gaz, As2) and

X, = im [L,/ G(AG — A)7ldN], (2.5)

27

where v is a Cauchy contour around o(Gi1, A1) separating o(Ghy, A1) from 0(Gaz, Az2)-

11
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Proof. Let P be the projection of C" = X; & X, onto X, along X,. As ker P = ker m, we have
P = Pr and the map E = P |ims: im ™ — X3 is an invertible operator. Denote the compression of

MG — A to im 7 by AGo — Ag. Take & = wy. Then

E(A\Go — Ag)z = Pr(AG - A)ry
P(\G — A)my

i

= P(AG — A)Pry
= ()\ng _— AQQ)E:E,

and hence (A\Go — Ag) = E71 (MG, — Ax)E.

Now suppose that o(Gi1, A1) No(Gaa, Agg) = 0. Since AG — A is in upper triangular form, it is easy
to verify that (G, A) = 0(Gy1, An) U 0(Gag, Agz). Let v be a Cauchy contour around o(Gii, A1)
separating o(G1y, A1) from 0(Gaz, A2;). Note that v splits the spectrum of AG — A. TFor the

corresponding generalized Riesz projection we have

I x
P(G’Aa7):(0 0) ’

and it is clear that X; = im P(G, A,7).

So X, is a spectral subspace for A\G — A and (2.5) holds.

Next, assume that X; = im R, where Ris a generalized Riesz projection associated with A\G—A and 7.
Put # = I — R, and let A\Go— Ag be the restriction of \G— A toim 7. Then o(G11, A1) N o(Go, Ao) =
0. Since, by the first part of the proof, we have E-Y(AGp — An)E = \Go — Ag, it follows that
o(Go, Ao) = 0(G22, Azz), and hence we have shown that o(Gi1, A11) N 0(Gaz, Azg) = 0. O

Note that we may obtain a similar result, as the one above, for the generalized spectral subspace

12
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of the form,

Q(G, A, ) = im [% 06 - 4y 1Gan.

T

In the main result of our present section, we consider the right canonical Wiener-Hopf factorization
of a rational matrix function given in realized form (2.2). Necessary and sufficient conditions for the
existence of such a factorization and explicit formulas for the factors are given in terms of the data
which appear in the realization. In the proof, we will make extensive use of Proposition 2.1, Corollary

2.2 and Lemma 2.3. The theorem may be regarded as a natural analogue of Theorem 1.5 in [BGK1].

Theorem 2.4 Let W()) admit a realization of the form W(A) = D+ (A= a)C(AG — A)™' B, where
we assume that D = Dy D, , with Dy and D, invertible matrices on €C™. Set GX = G+ BD™'C and
A = A+ aBD™C. Let v be a Cauchy contour that splits the spectra of \G — A and A\G* — A*.

Assume that

(i) € =im P(G,A,7) @ ker P(G¥, A% ),

(i) C" =1m Q(G,A,7) ® ker Q(G*,A*,7),

where
1
P AY B2 AN | — A)ldA
(G, A7) QM.LG(/\G )1d),
1
P(G* X 2 X X _ AXy\-1
(6%, A%, ) 2m./yG (AGX — A%)~1d)
1
Q(G,A,y) = —zm./(AG—A)—IGdA,
Y
QG™, A%, y) = 2—:::'/()‘(;)( — A)IGXdA.
¥

Let w1 be the projection of C™ onto ker P(G*, A*,v) along im P(G, A,v) and m; be the projection
of C™ onto ker Q(G*, A*,v) along tm Q(G, A,7), and let

13
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MGy — A MG — A B
G — A= 11 11 12 12 B= 1 ,C:<Cl C2>
0 /\Ggg——Agz B2

be the matriz representations of \G — A, B and C with respect to the decomposition (i) or (ii).
Define
W_(/\) = D1 + (/\ - a)Cl(/\Gu - All)_lBngl,

and

W+(/\) = Dg + (/\ e Q)DIICQ(AGzz = Agg)_lBg.

Then W(A) = W_( M)W, (X) for X € p(G, A), and this factorization is a right canonical Wiener-Hopf
factorization of W with respect to .

Conversely, if W = W_W, is a right canonical Wiener-Hopf factorization with respect to v and
W_(o0) = D1, where D, is an invertible m x m matriz, then there exists a realization
W)=D+(A-a)C(A\G-A)"'B

on a neighbourhood of v and the contour v splits the spectra of \G — A and A\G* — A*. Furthermore,

decompositions (i) and (it) hold. With respect to these decompositions

MG, — A L8, DE*DEXC B
so—a=| T WESTRECH BN | € ,C=(cl cz),D:DIDQ,
0 AGy — Ay B,

and if ™y is a projection of C™ onto ker P(G*,A*,v) along im P(G, A,7) and 7, is a projection of
C" onto ker Q(G*,A*,v) along im Q(G, A,~), the factors W_()) and W4 ()) for a right canonical
factorization W(X) = W_(X\)W,(X) are given by the formulas

W_()\) = D1 + (/\ - a)Cl(/\Gl - Al)—lBlDi—l, A € A_,

14
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and

W+()\) = D2 + ()\ - a)DfICZ(AGg — A2)_1B2, A E A+.

Proof. We note that the matching conditions (i) and (ii) are equivalent, (see, e.g., [GK2]). I'rom
the upper (respectively, lower) triangular form of AG — A (respectively, \G* — A*) we deduce that
(AG — A)lker m] C ker mp and (A\G* — A*)[im m;] C im 7. It follows directly from Proposition 2.1
that W()) = W_(A)W4(X), for each

A € p(Giry A1) N p(Gaz, Aza). (2.6)

Since X; is a generalized spectral subspace for A\G — A we can apply Lemma 2.3 to show that
O’(Gll, Au) ﬂa(ng, A22) = m But then p(G, A) = p(Glla A11) ﬂ[)(GQQ, Azg) and it follows that (26)
holds for each A € p(G, A).

Also, we have from Lemma 2.3 that

(G, An) =o(G,A)NA,, 0(Ga2, An) = a(G,A)NA_ . (2.7)

In a similar way, one may show that

O'(Gll, A]l) = O'(GX,AX) N A+ , 0(G22,A22) = O'(GX,AX) N A_. (28)

Since W_()) = D; + (A — @)C1(AG11 — A1) "' By D;', we know that W_ is defined and analytic on
the complement of o(Gy1, A11) and det W_()) # 0 for each A ¢ o(Gyy, Af))-
So using the first parts of (2.7) and (2.8), it follows that W_ is an m x m matrix which is continuous

on A_; analytic on A_ and det W_()) # 0 for each A € A_. In the same way, using the second

15
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parts of (2.7) and (2.8), one proves that W, is an m x m matrix which is continuous on A ; analytic

on Ay and det W, ()\) # 0 for each A € A,.

To prove the second part of the theorem, let us assume that W(X) = W_(A)W,(}) is a right
canonical Wiener-Hopf factorization with respect to v and W_(o0) = D;. As W_ is analytic on a
neighbourhood of A_ and W_()) is invertible for each A € A_, it follows from an analogue of the
classical realization theorem (see, [GK2] and [GK3]) that one can find a realization W;(A) = D, +
(A= a)C1(AGy — A1) 1B D3 for W_ on a neighbourhood of A_ such that o(G1, A1) and o(GY, AY)
are subsets of A,. Also, W admits a realization Wy(A) = Dy + (X = a) D' Co(AGy — A) ™' By such
that o(G2, A2) and o(G5, AY) are subsets of A_.

Put Wen(X) = Wi(A)Wa(X), A € p(Gq, A)) N p(G2, Az). Then Wen(A) = D+ (A — a)C(AG —
A)7!'B, where C" = X; & X, and
AG, — A - AN)B.D;'DJ'C B
MG~ A= ' ' (a )12 17 ,B = | ’C:<Cl C2),D=D1D2-
0 AG? — Bg
As 0(Gy, A})No(Gy, Az) = 0, we have o(G, A) = 0(G1, A1) Uo(Ga, Az). But then v C p(G, A) =
p(Gry A1) 1 p(Ga, A) and Wen(X) = Wi()Wa(A) = Wo(OW4(X) = W(X), A € p(G,A). So
D+ (A — @)C(AG — A)™'B is a realization for W on a neighbourhood of 7. Since AG — A is
represented in triangular form, we have that « splits (G, A). Also, by consideration of Lemma 2.3,

it follows that X; = im P(G, A, ). Since

G A% — AGE — AF 0
(A - a)BzD;IDl_lcl )\G; - A;

we have that the contour 7 splits the spectrum of A\G* — A* too, and X, = ker P(G*, A*,~).
It follows that C™ = X; @ X, = im P(G, A,v) ® ker P(G*, A*,v). In a similar way we may show

16
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that the decomposition C" = im Q(G, A,7v) @ ker Q(G*, A*,v) holds. If 7, is the projection of
C™ onto X; = ker P(GX,A*,v) along X; = im P(G,A,7) and 7y is the projection of C™ onto
ker Q(G*,A*,7) along im Q(G, A,7), then W_(\) = Wy(}) for A € A_ and W, ()) = Wy(}) for
X € Ay, and the proof is complete. [

The following Corollary allows us to express the right canonical factors, appearing in Theorem

2.4, in terms of the projections m and 7.

Corollary 2.5 Let W(-), D, G*, A* and the Cauchy contour 7y be described as in Theorem 2.4.

Assume

(1) C" =im P(G,A,7) @ ker P(G™, A*,7),
(i) C" = im Q(G,A,7) @ ker Q(G™,A%,7);

where P(G, A,7), P(G*,A%,7), Q(G, A,v) and Q(G*, A%,y) are as Theorem 2.4. Let m be the
projection of C™ onto ker P(G*,A%,y) along mm P(G, A,v) and 73 be the projection of C" onto
ker Q(G*,AX,~) along um Q(G, A,7), and define

W_(A) = Dy + (A = @)C(AG — A) (I —m)BD3 ", (2.9)

and

W, (\) = D2 + (A — @)Dy 'Cma(AG — A)7'B. (2.10)

Then W(X) = W_(A)Wy(X) for X € p(G,A), and this factorization is a right canonical Wiener-Hopf
factorization of W with respect to .

Conversely, if W = W_W, 1is a right canonical Wiener-Hopf factorization of W with respect to

~ and W_(o0) = Dy, where D, is an invertible matriz, then there ezists a realization
W) =D+ (A —a)C(AG - A)'B
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on a neighbourhood of v, the contour v splits the spectra of \G — A and \G* — A%,
C" =im P(G, A7) ® ker P(G*,A%,),

C™ =1m Q(G, A,y) ® ker Q(G*,A*,7),

and if ™1 is a projection of C™ onto ker P(G*,A*,y) along im P(G, A,v), and 73 is a projection
of C™ onto ker Q(G*,AX,v) along im Q(G, A,7), then the factors W_(X) and Wi()) for a right
canonical factorization W(AX) = W_(A)W,(X) are given by

W_(\) = Dy + (A= a)C(AG — A (I —m)BD7', A € A,
and

Wi(A) = Dy + (A —a)D{'Cra(AG — A)7'B, A € Ay

Proof. Let W_ and W, be the rational matrix functions defined by (2.9) and (2.10). From the given
71, we have that I — m; is a projection of C" onto im P(G, A,7) along ker P(G*, A*,v). Thus

I0
I—7r1=( ): im P(G,A,v) @ ker P(G*,A*,v) — im P(G, A,v)® ker P(G*, AX,~).
00

By using the block matrix representations of A\G — A, B, C, D and I — 7 we have that

(AGi1 = An) 7t (A — @)(AG1y — Ay) "By D7 Co(AGar — Az) ™!
0 (AGa2 — Ag2)™!

W.() = Di+(A—a)C cz)(

(02)(5)

( (AG1 — An)™' By ) »
= D] + (/\ — a)(Cl 02) D2

0
= D1 + ()\ - a)Cl(/\Gu - All)_lBlDi.l.
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Similarly, for the computation of W, we need the projection

00
7r2=(0 I): im Q(G, A,7) ® ker Q(G*,A*,v) — im Q(G, A,7v) ® ker Q(G™, A%,7),

in order to obtain

W+(/\) = Dg + (/\ - a)D;IC'z(/\G22 - AQQ)—IBQ.

The proof is completed by combining the observations made above and Theorem 2.4. ™I

1.3 MORE ABOUT REALIZATIONS AND
OTHER OPERATOR EQUATIONS

As before, in this section we consider a regular m x m rational matrix function W which is not

necessarily analytic and invertible at infinity. Here we may represent W in the realization form
W) =D+ (\-a)C(AG - A)'B, )€, (3.1)

where 7 is a Cauchy contour in C. In the first part of this section we look at the invertibility of
(3.1) and under certain given conditions provide an explicit formula for its inverse. Note that a
necessary and sufficient condition for the invertibility of W on v, is that AGX — AX is y-regular,

where G* = G 4+ BD"'C and AX = A+ aBD™'C (cf, [G], Theorem 1.2.1).

We now show that we may compute W™ in terms of G* and A*, i.e., we have that
W\ T=D1-(A- a)D7'C(AG* — A)'BD™', A en. (3.2)

Indeed, from an earlier note, we may assume for invertible W(A) = D+(A—a)C(A\G—-A)'B, A€,
that A\G* — AX is invertible for each A € 7. Set z = (A\G — A)~'Bz.
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Given y we compute z from

MGz = Az + Bz
{ z z T (3.3)

y = (A—a)lCz+Dzx.
Applying BD™! to the second equation in (3.3) and subtracting the result from the first equation in

(3.3) we obtain the following equivalent system

(3.4)

AG*z = AXz+BD 'y,
y = (A—a)Cz4+Dx.

Hence z = (AG* — A*)"'BD 'y and WAy =z = D7y — (A — a)D~'C(AG* — A*)"'BD7y.
This proves (3.2). @

From the above, it is easy to see that the formulas (2.9) and (2.10) in the previous section have

the inverses

W_(M) 7= Dt — (A — a) Dy C(I = m)(AG* — AX)T'BD!,

and

Wo(\)=D;' —(A—a)D7ICOOG* - A*) 'mBD; Y,
respectively.

Next, we consider an operator equation of the form
AIZG2 - G1ZA2 = C (35)

Here Ay, G1, A; and G, are given operators acting between the Banach space X. In this regard, we
will attempt to find Z € £(X), for a given C € L(X) such that (3.5) holds. The next theorem is the
analogue of Theorem 1.4.1 in [GGK].
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Theorem 3.1 If the spectra of the pencils AGy — Ay and MGy — Ay are disjoint, then for any
C € L(X), equation (3.5) has a unique solution Z € L(X). More precisely, we have that

1
v /w,(AGl — A)TIC(AG: — Az)7ldA
(3.6)
1
= —— [ (MG = A)T'C(AG; — Ap) ),
2wt J 4,

where v, and vy, are Cauchy contours around o(G1, A1) and o(G2, Az), respectively, which separate

(G, A1) from o(Ga, As).

Proof. Firstly, we validate the choice of the Cauchy contours 4; and .. Since o(G1, Ay)No (G2, Az) =
0, the point co cannot be in both spectra. So without loss of generality we may assume that oo ¢
0(G1,A1). Then o(Gq, A1) is a compact subset of € which lies in the open set V= C\ o(Gq, Ay).
Choose a bounded Cauchy domain A such that o(Gy, A;) C A C A C V, and let 4; be the oriented
boundary of A. Then 7, is a Cauchy contour, o(Gy, A;) is in the inner domain of 7, and g(Gy, A)
is in the outer domain of ;. In a similar way, one is able to prove the existence of a Cauchy contour

42, with (G2, A3) in its inner domain and o(Gy, A;) in its outer domain.

It suffices to show that (3.6) gives the unique solution of (3.5). As noted earlier, from the location
of 0(G1, A1) and (G2, As), it follows that

1
———/ Gi(AGy — A)tdX = I,
g4t

2me
(3.7)
—1—-] (AGy — A)1Gadh = 0.
Y1

2m1
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Also,

1 -1 —
5 /M(AG1 ~AN)\GdA = T,
1 -1 —
o /’YIG2(AG2—A2) d\ = 0,

where I is the identity operator on X.

Let Z be the first identity in (3.6). Then Z € £(X) and because of (3.7)

1

AZGy = o [ M(AG=A) T CAGs = 42)”' Gad)
2V
o 5,;;/7 ~C(AGq = Ag)™ GadA
1
i /7 AG1(AGy — A)'C(AG, — A;) 7 Gad)
1
= bk G1(AGy — A))TTC(AGy — A2) 1 (AG2 — Ay + Az)d)
Y

s 1 -1
- I L C(AG1 — A)"ICdN + Gy Z A,
= C+G1ZA2

Hence Z is a solution of (3.5).

Conversely, if Z is a solution of (3.5). Then

C — A]ZG2 - /\G]ZGQ + )\G1ZGQ X G1ZA2
= —(/\Gl - Al)ZG2 + Glz(/\Gz - Ag)
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Also, it follows from (3.8) that

1
“/ (AG1 — A1)"'C(AGy — Ay)~1dA
7

2me

1
~ ——,/ ZGa(AGy — Az) M\ + %/ (AGy — A) " G1ZdA
Y1 "

i )
= Z

If we replace 4, by 7, in the above argument, then we obtain the second identity in (3.6). We

have now proved that equation (3.5) is uniquely solvable and its solution is given by (3.6). 3
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Chapter 2

LEFT VERSUS RIGHT CANONICAL
WIENER-HOPF FACTORIZATION

2.1 INTRODUCTION AND MAIN THEOREM

Let W()) be an m x m rational matrix function, and let oy be a Cauchy contour in the complex plane
€ with inner domain A, and outer domain A_. If we assume that W(\) is analytic and invertible

at oo, we know that W may be represented in the form
W) =1I,+C\, - A)"'B,

where we assumed without loss of generality that the value of W at oo is the identity matrix I.
Under these conditions, the existence of a right Wiener-Hopf factorization for W may be char-

acterized in terms of a left canonical Wiener-Hopf factorization. Also, formulas for the factors in a

right factorization may be given in terms of the formulas for the factors in a given left factorization.

These principles are encapsulated in Theorem 2.1 in [BR].
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In the main result of this chapter we show that a similar analysis may be done when W is not

necessarily analytic and invertible at oo, that is, where W may be represented in the form
W(X) =D+ (A —a)C(\G - A)"'B. (1.1)

In this regard, we shall assume that the factors Y} and Y_ of a left canonical Wiener-Hopf factoriza-
tion W(A) = Y, (M)Y_()) are known. We give a necessary and sufficient condition for the existence
of a right canonical Wiener-Hopf factorization W(A) = W_(MW4(}) ; providing explicit formulas
for the factors W_ and W, in terms of the realizations of Yy and Y_. In order to obtain this result,

we make extensive use of Theorem 1.2.4 and Corollary 1.2.5. The result is as follows.

Theorem 1.1 Suppose that the rational m x m matriz function W(A) (not analytic and invertible

at 00) has a left canonical Wiener-Hopf factorization with respect to v, that is, W(A) factorizes as
W(N) = Yy (Y- (N),

where

Y+(/\) = D+(/\—a)Cl()\G1 —Al)—]Bl, (12)

and

K e e A0 D3 A (A G/ BB, (1.3)

for o # 0 and a neither a pole nor a zero of W(X). Set G* := G+ BD'C and A := A+aBD™'C.
We may assume that \Gy — Ay and AGY — A are ny X nq matrices with spectra inside A_ and that

AGo — Aq and A\GY — AY are ny x ny matrices with spectra inside Ay.

Let U and T be the unique solutions to the Lyapunov equations
AYUGY — GRUAY = —B,D7'Cy, (1.4)
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and
ATG, - GiTAy = B, D' Cs. (1.5)
Then W has a right canonical Wiener-Hopf factorization if and only if the ny x ny matriz
I, — (@Gy — AT (aGa — A9)U is invertible, or equivalently, if and only if the ny X ng malriz
I, — (@Gy — Ag)U(aGy — AT is invertible, or equivalently, if and only if the nq x ny matriz
I, — T(aGz — A2)U(aGy — Ay) is invertible, or equivalently, if and only if the ngy X ny matrix
I, — U(aG1 — AT (aGs — Ay) is invertible.

In this case, the factors W_(}) and Wi ()) for a right canonical Wiener-Hopf factorization
W(A) = W-(A)Wi(A)

are given by the formulas

W_(/\) = D + ()\ =3 a)[ClT(aGg —_ Az) + Cz]()\Gz b Az)—‘l
[In2 ° (C!Gg 3| A2)U(aG1 T A1)T]—1[(A2 o aG2)UBl + B?],

(1.6)

and

W+()\) = Im + ()\ e a)D—l[Cl + CgU(aGl . Al)][lnl s T(an == Az)U(aGl - Al)]—l (1 7)
()\Gl = Al)—l[Bl + (A] -t aGl)TBg].
Their inverses are given by
W_(A)_l = D_l = (/\ . a)D“l[ClT(aGg = Az) + 02][1n2 — U(aG1 — Al)T(aGg — Ag)]_l

(AGS — AL (As — aG2)U By + Ba} D7,
(1.8)

and
W+(/\)_l = I, — ()\ - a)D‘l[Cl + CzU(dGl — Al)](/\Gi( — AT)—I

[Inl - (aG1 - Al)T(an - A2)U]_1[B] + (A] - aGl)TBg]

(1.9)

26

http://etd.uwc.ac.za/



Proof. From the realizations (1.2) and (1.3) we compute a realization for their product
W) = Y (MY-(})

as W(A\) =D+ (- a)C(\G — A)7' B,

A, —aBD7'C B
A= 1 oy 2 , B= 1 ’
0 A2 B2

G1 —BlD_IC2
G = 3 C = ( C, Ci ) .
0 G,

1 iy
AX=A+aBD™ C = )

where

From this we have that

aBgD_lcl A;

where A] := A + aB;D1C; and A3 := A2 + aB,D~1C,, and

i Gy 0
G* =G+ BD'C = A
B, D™'C, G5

where G := Gy + ByD™Cy and G§ = G2+ B2D7'Ca,

Now, by assumption the spectrum, a(G1, A1), of AGy — A, is contained in A_ , while that
of AG; — A, is contained in Ay . From the triangular form of AG — A we see that o(G,A) =

o(G1,A;) U o(Gz, Az) and that the spectral subspace for A\G — A associated with A_ must be

I
im * |. The spectral subspaces 7 and 0 for \G — A corresponding to A, is determined by

0

In
the fact that they must be complementary to the spectral subspace im ( ' ) for A_ , and that
0
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(MG — A)n C 8. These conditions force 5 to have the form

1 »
n = 1mrLzG(AG—A) dr

e
} 1 / Gl()\Gl — Al)—l —(an — Al)(/\Gl — Al)—lBlD_ICQ(AG2 — Ag)_l A
2me Jm 0 G2(AGy — Ay)!

. ( (QG1 - A])T )
= 1mm y
I,

for some n; x ny matrix T, which is the solution of the Lyapunov equation (1.5), and of the form

Ty ——1-/ (AG1 — A1) Bi D™ Co(AG — Ag) " 'd,
Y2

2T

where 72 is a Cauchy contour around (G5, A;) which separates o(G,, A;) from o(Gy, Ay). Also,
from our assumption that the spectra of A\G; — A, and A\G, — A, are disjoint, it follows that 7' is a

unique solution of (1.5) (see Theorem 1.3.1). In a similar way, we have that

0 = imi/ (AG — A)"'GdA
Y2

271
: ( T(QGQ ~d Ag) )
= 1m .
&

N : (aGy — AT
We have thus identified the spectral subspaces n and 6 of \G—A for Ay as = im

I,
T(aG2 - Ag)
I,

Since, by assumption, AG5y — A[ has its spectrum in A_, while A\G5 — A} has its spectrum in Ay

and 6 =im ( ) , where T' is the unique solution of (1.5).

the same analysis applies to A\G* — A%,
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We see that the spectral subspaces of A\G* — AX for A_ are the spaces

I,
n* =im
(an - Az)U

* =im L
U(aG1 - Al)

for the ny X ny matrix U, which is the unique solution of the Lyapunov equation (1.4), and is of the

and

form

1
Ug ——/ (AG="A%) "1 B, D~ C, (NG A= 0
71

T om

where 7, is a Cauchy contour around o(Gy, A;) which separates o(G1, 4;) from o(G2, Az).

Applying Theorem 1.2.4, we have that the matrix function W has a right canonical Wiener-Hopf
factorization W(A) = W_(A)W,(X) if and only if C"*™ =9 @ X or C™"*™ =0 @ 6%, that is,

G — A T Inl
®n1+n2 =t (a 1 1) @ P
Ing (aGg =2 A2)U

T G e A Im
Cn1+n2 et (a 2 2) AT ,
Inz U(aG1 - Al)

respectively. One easily checks that these direct sum decompositions hold if and only if the square

if and only if

or

matrices
I, G, — AT
(oG = 4) (1.10)
(aGg—AQ)U In;
or
I, T(aG, — A
‘ (aGz = As) (1.11)
U(aG: — Ay) I,
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are invertible. We consider the case (1.10). By standard row and column operations this matrix can

be diagonalized in either of two ways:

Im (aG1 - Al)T
(Oth — Az)U In2

_ In1 (aGl - Al)T Im -— (aG1 — Al)T(aGg — AQ)U 0 Inl 0
0 In2 0 In2 (an - A2)U Inz

~ I, 0 I, 0 L. (aGi— A)T
(aGa — AU Ty, 0 I, — (aGs — A)U(aGy = A)T 0 I, '

Thus we see that the invertibility of the matrix in (1.10) is equivalent to the invertibility of
I, — (aG1 — A)T(aGa = A)U and also to the invertibility of I, — (aGz — A2)U(aGy — AT

Similarly, we may show that the invertibility of the matrix in (1.11) is equivalent to the invert-

ibility of I,, — T(aGy— A2)U(aG1 — Ay) and also to the invertibility of I, —U(aG1—A1)T(aG2— As).

Now suppose that this necessary and sufficient condition for the existence of a right canonical
Wiener-Hopf factorization W(X) = W_(A)W4()) holds. Next, we compute explicit formulas for the
right factors W(X) and W_(}) and their inverses.

. : In, . (aGy — AT
Let p be the projection of C™ "2 onto p* = im along 7 = 1m .
(an - Az)U ]n2

We compute easily that

p= ( I’” ) U, — (aGy — A)T(aGy — AU (Iny (A1 —aGO)T),
(aGz — A2)U
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and that

(aG1 e Al)T -
I— P = ( I ) [1,12 - (aGg - Az)U(CYGl - A])T] 1((A2 — CYGg)U Ing)

I
Also, if we let 7 be the projection of ™1™ onto 6% =1m ( ' along
)

U(aG’1 — A1
T(aGy — A
f =im ( (oG 2) ), we have that

I,
I,
T = [Im ! T(aGg — AQ)U(OZG1 = Al)]_l(lnl T(A2 b aGg)),
U(aG1 2 Al)
and that

T(aGs — A2) | ]
I—7= ( i ) [Im - U(aG1 . Al)T(an 1 A2)] (U(Al - aGl) Im)'

Assume that W_(co) = D. Then, from Corollary 1.2.5, we have that the formulas for the right

canonical spectral factors of W are
W_(A) =D+ (A— a)C(AG = Ay (I — p)B, (1.12)

and

Wo) = I+ (A= o)~ Cr(AG = A) "B (1.13)

From formula (1.12), the matrix representations introduced earlier, and the Lyapunov equation (1.5)

we have that

_A) (A= a)(AGy — A1)t B DT (MG — Ay)~! )

( (AGh
W.()) = D+(A—-a)Ci Co)
0 (AG — Az)™"
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I,
D + (/\ - a)[Cl(/\Gl - Al)"l(aGl - AI)T(/\Gg - Ag) + (A — Q)Cl(/\Gl - Al)-lBlD_l

'Cz + Cg](/\Gg - Ag)—l[ln2 - (C!Gg —_ Az)U(aGl - Al)T]_l[(Az - an)UBl + Bz]
= D + (/\ - a)[Cl(/\G'l - Al)_l{)\aGlTGg + AITAZ b AGlTAz - CYA]TG2} + CQ]
()\Gz - Ag)—l[_[nz - ((102 — A‘Z)U(aGl — Al)T]—l[(Ag - QGQ)UBl + BQ]

( (C!Gl - A])T ) _1 ( Bl )
. [Inz - (an - AQ)U(QGI — Al)T] ((A2 - an)U 1712) B

D + (/\ - a)[ClT(aG’z - Ag) + Cg](/\Gg = Az)—1[1n2 - (an — Az)U(aGl - Al)T]_l

[(A2 - aGg)UBl + Bz]

Similarly, from formula (1.13), the matrix representations introduced earlier and the Lyapunov
equation (1.5) we have that
W.{..(A) = m + (/\ -3 a)D"l[Cl + CzU(aGl s Al)”Inl 2 T(QGQ w Ag)U(QG] - Al)]_l
[B] + (Al T aG1 )TBQ]

Next, we calculate the inverses W_())~! and Wy(X)~!. As we noted earlier, the inverse formulas

for (1.12) and (1.13) are given by
W_ (AN t=D1—(\=—a)D'C(I -7)(A\G* — A*)"'BD™! (1.14)

and

Wi () IR (G DF I C O G = WY=L, (1.15)

respectively. From formula (1.14), the matrix representations introduced earlier and the Lyapunov

equation (1.4) we have that

» . . (T@@—Aﬁ)
W_(\)' = D' —(A—a)DNCi Ca)

I,
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'[In2 - U(aG’l - AI)T(QG'Z - A'z)]—l(U(Al — C!Gl) In;)

| ( (AGX = AX)=L 0 ) ( B, ) o
(@ = VOGS — A B, D-1CL{(AGE — A1 (AGE — ANt | \ B,

= D' — (A =)D [CiT(aGs — A2) + Callln, — U(aGy — A1)T(aGy — A3)] ™
{(AG} — AN) TGS — ADU(A] — aGY)(AGY — Af) ™' By
+(a = A\)BaD™'C(AGY — A*)™ B, + By) D!

= D' — (A — @)D CiT(aGs — A) + Cal[Iny — U(aGy — A)T(aGs — Ay)]™!
(MG = AN {=AaGIUGH = AJUAX +aGLUAY + MAFUGT)
(AGX = AX)"'By + By)D™!

= D' — (A — @)D CiT(aGs — A2) + Calll, — U(aGy — AT (aG; — As)] ™!
(AGS — A [(A3 — aG2)UB; + Ba] D",

Similarly, using formula (1.15), we have that

W+(/\)_l = Im T (/\ 2 a)D‘l[Cl 8- CgU(aGl iy Al)](x\G;( i Ai‘)-l
'[In1 - (aG'1 - Al)T(aGg - Az)U]_l[Bl + (Al == aGI)TBZ].

This completes the proof. @

The main result above gives a necessary and sufficient condition for a right canonical Wiener-Hopf
factorization to exist under the assumption that factors of a left canonical Wiener-Hopf factorization

are given in realized form (1.1).

If we suppose that this condition is not met, i.e., I, — (aG1 — A1)T(aG; — A2)U,
In2 - (an - Az)U(QGl - A])T, Inl - T(QGQ - Az)U(aGl - Al) and In2 — U(aG1 — AI)T(QGz - Ag)
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fail to be invertible, the right factorization is not canonical and an analysis of the right factorization

indices of W()) becomes imperative. However, this case will be the subject of further investigation.

The fact that W_(oo) = D allows us to apply the latter part of Theorem 1.2.4 directly. The
method of proof of our theorem, differs from the one given in [BRY], in that it involves the direct
computation of the appropriate Riesz projections and corresponding spectral subspaces. Note that
the resulting explicit formulas for W_()) and W, ()) and their inverses are also represented in realized

form (1.1).

In the last part of this section, we provide a one-dimensional example to illustrate some of the
key concepts in Theorem 1.1.
Let the Cauchy contour be the real axis of the complex plane €, with the inner domain as the
upper half-plane and the outer domain as the lower half-plane. We make the following choices for

the matrices appearing in the statement of the theorem:
01:CZZG]:G2:31:B2:Im:D:1, Al-—--—iandAgzi.

From the above we have that
(A —a)(3A —a)

A+D)A—1)
Also, from the above we deduce that G} = G =2 Af=a—1, A =a+t.

W) =1+

Moreover, the solutions of the Lyapunov equations are given by U = % and T' = %

For convenience, we choose a = 1. Then, the left canonical factors are given by:
Vo) = 14—+, Y- =1+ =1A=d)

which have no poles or zeroes on the upper and lower half-planes, respectively.
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Furthermore, by replacing the appropriate values in the formulas for W, (X), W_(X) and their

iIlVQI'SCS we have that:
Wed) =1+ (A =D+, W) =1+(A—1)(A—i)"

and

WA\ '=1-0=-1DCr=1+)7", W. M) '=1-(A-1)Cr-1-4)""

2.2 APPLICATIONS TO SINGULAR INTEGRAL
OPERATORS

In the sequel, we apply the main factorization theorem derived in the previous section in order to
determine necessary and sufficient conditions for the invertibility of a singular integral operator with
a rational symbol. For p fixed, 1 < p < oo, we denote by L7(7) the Banach space of all C"-valued
functions which are p-integrable (w.r.t. Lebesque measure) on the Cauchy contour v in €. As is
usual in the theory of singular integral operators, we assume that the inner domain A, of v contains

0, while the outer domain A_ of v contains co.

Consider the operator of singular integration,

Sy +Ly(y) — Ly(vy)on~,

given by

s == [ Xar e,

7ty T — A

where the integral is taken in the sense of the Cauchy principal value and ¢ is a rational function
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without poles on 4. Note that the operator S, has the property that 52 = I. Introduce the operators
1 1
P, = §(I+ Sy) and Qy = "2‘(] = 55)-

It is clear that P, and Q, are complementary projections on L2(y) ,i.e. P = P, ,Q% = @, and
Py+Qy=1

Next, we consider the singular integral operator

S +Ly(y) — Ly(y) given by

(SE)A) = APy 9)(A) + BA(Q1¢)(A), (2.1)

where A()) and B()) are rational matrix functions without poles or zeroes on 7.
The symbol of S is the function W(}X) = B(A)"*A(}) (see, e.g., [CG], Section 1.3). From [CG] we

know that S is invertible if and only if W()\) admits a right canonical factorization
W(X) = W_ (M)W (A), (2.2)

in which case
(ST1)(N) = WA (R, W BT ) () + W (A)(Q, W2 BT ) (M) (2.3)

We may use Theorem 1.1 to investigate the invertibility of S in terms of either one of the following

operators:

(519)(A) = BA)(Py8)(A) + AN (Q+4)(V),
(S:6)(N) = [BO) T (P #)(A) + [AN)TTT(Q48) (V).

Note that the symbol of Sy is W(A)™! and that of S, is W(X\)T. We may formulate the following

theorems, which may be proved by considering the remarks above and Theorem 1.1.
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Theorem 2.1 Assume that S; is invertible and let the right Wiener-Hopf factorization of the symbol

of Sy be given by
W)™ = A B = V-0 Y)Y

where

Y_()\)—'l = Im - (/\ - a)D_1C2()\G; - A;)_le,

and
Yy =D (A- )D7'Ci(\Gf — Ai‘)‘lBlD’l.

Set G; = GX — B;D™'C;, (i=1,2), and A; = A — aB:D7'C;, (1 =1,2).
Let U and T be the unique solutions of the Lyapunov equations
AXUGY = GFUAY = =By D™ Cy, (2.4)
and
AlTGg 1 G]TAz = BID_IC2, (25)

respectively.

Then S is invertible if and only if I, — (oG — A1)T(aG, — A3)U is invertible, or equivalently, if
and only if

I, — (aG2 — A)U(aG:1 — A1)T is invertible, or equivalently, if and only if

I,, — T(aGz — A2)U(aG1 — Ay) is invertible, or equivalently, if and only if

I, — U(aGy — AT (aGy — Aj) is invertible.

Also, we have the following result.

Theorem 2.2 Assume that Sy is invertible and let the right canonical Wiener-Hopf factorization
- of the symbol of S, be given by

W) = AN BTN = Y-V (W),
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where

Y-(N)T = DT + (A — o)BI(AGT — ATY' (],

and
Yo = I+ (A — ) BYOAGE — AT GF (DY

Set G¥ =G+ B;D7'C; ,(1=1,2), and AX = A; + aB;D7IC; ,(1=1,2).

Let U and T be the unique solutions to the Lyapunov equations (2.4) and (2.5), respectively. Then
S is invertible if and only if I, — (G — A))T(aG, — A3)U is invertible, or equivalently, if and
only if I, — (aGz — A2)U(aGi — A1)T is invertible, or equivalently, if and only if

I, — T(aGy — A)U(aGy — A1) is invertible, or equivalently, if and only if

I, — U{aG1 — A1)T (oG, — A,) is invertible.

In the two theorems above, the formulas for the factors W_ and W, in the canonical factorization
(2.2) of the symbol of S and the formulas for their inverses are given by (1.6) — (1.9) in the previous
section. In this case, we have that (2.3) gives an explicit formula for the inverse S7'. Also, we
may reformulate Theorems 2.1 and 2.2 entirely in terms of S and its symbol W(X). In this regard,
if W()) admits a left canonical Wiener-Hopf factorization W(A) = Y, (A)Y_(}) with factors Y,
and Y_ as given by (1.2) and (1.3) then the invertibility of S is equivalent to the invertibility
of I, — (aGy — A2)U(aGy — A;)T where U and T are the unique solutions of (2.4) and (2.5),
respectively. Indeed, from [BGK3] we know that I, — (G, — A2)U(aGy — Ay)T is an indicator
for the singular integral operator S; as well as for the Toeplitz operator with symbol W. Also, we

have from Theorem II1.2.2 in [BGK3], that an indicator for S is given by the operator

A

P X L 5 . X
P*|, p:imP — im P*,

where P (resp P*) is the generalized Riesz projection of A\G — A (resp AG* — A*) corresponding

to Ay, where A\G — A and A\G* — AX are derived from the realization of W. Remember, here, we
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consider generalized Riesz projections of the form

P(G, A7) = 51— GG — A)dX

Y Jy

which, in terms of the notation adopted in Theorem 1.1, means that

n 1
P=— AG — A) YA
271 [y, GG - 4) ’
and
px = _L_/ GX(AG* — AX)1d),
271 Jyy

where 7, is a Cauchy contour around o(Gy, A;) (contained in Ay ), which separates o((ia, Az) from
a(G1, Ar).
It is easily seen (from the proof of Theorem 1.1) that

1 Gy — AT
lmP_—_lrn((a [ 1) ),
I,

b 0 0
(Az= aG U~ da, %)+

It follows that P* |, p is given by I, — (aGq — A3)U(aG1 — A;)T. A similar analysis may be done

and

for the cases where the invertibility of S is equivalent to the invertibility of

I, — (aG1— AT (aGz — A2)U, I, —U(aGy — A)T(aGy— Az) and I, =T (aGz— A2)U(aG1— Ay).

Further applications of our main theorem to spectral and antispectral factorization on the unit
circle and symmetrized canonical spectral factorization on the imaginary axis will not be considered

here.
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LIST OF SYMBOLS

R set of real numbers
C set of complex numbers
Cw Riemann sphere C U {oc0}
T the unit circle
D the unit disc
v Cauchy contour in C
non-empty subset of the complex plane
Ay inner domain of v
A_ outer domain of
ker A kernel (nullspace) of the operator A
im A image (range) of the operator A
Al inverse of the operator A
Alx restriction of the operator A to the set X
Ix, I, m x m identity matrix
o(G, A) spectrum of the operator pencil AG — A
p(G, A) resolvent of the operator pencil \G' — A
diag (A\;)™,; m x m diagonal matrix with diagonal entries A\; up to An
XeY direct sum of the linear spaces X and Y
n generalized spectral subspace
cm Euclidean space of dimension m over the field C
L(X) class of bounded linear operators on a space X
L7 () space of C™ -valued p-integrable functions on -y
wmxm m x m matrix Wiener algebra
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SUMMARY

In this dissertation we have applied the state space method to construct a right canonical Wiener-
Hopf factorization of a rational matrix function explicitly from the representation of a matrix function
in realization form. A rational matrix function W, which is analytic and invertible at infinity, may

be represented in the form
W(A) =D+ C(M\ - A)'B, (1)

where A is a n X n square matrix, say, B and C' are n x m and m x n_matrices, respectively, and D is
an invertible m x m matrix. The process of constructing the factorization and determining explicit
formulas for the factors is well known for rational matrix functions in the form (1). However, in our
discussion, we have concentrated on the situation where W does not have these properties at infinity

and has a realization of the form
W(A)=D+()A—a)C(A\G - A)'IB, (2)

where A, B,C and D are as above and G is of the same order as A. In the main result in Chapter
2, we have established necessary and sufficient conditions for the existence of a right canonical
Wiener-Hopf factorization in terms of a left canonical Wiener-Hopf factorization and the unique
solutions of generalized Lyapunov equations. In addition, we have shown that the explicit formulas
(in realized form(2)) for the right canonical factors and their inverses may be written in terms of
the formulas for the left canonical factors. In the proof of this result, we made extensive use of the
Riesz theory associated with the decomposition of the spectrum of AG — A into two disjoint closed
subsets. Finally, we apply this result to singular integral operators; while brief mention is also made

of Toeplitz operators.
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