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Chapter 0

INTRODT]CTION

It is an established fact that both canonical and non-canonical Wiener-Hopf factorizations o[ matrix

functions play an important role in various aspects of mathematical analysis and its applications.

Indeed, for instance, the Fredholm properties of a block Toeplitz operator 7, with symbol W f.ron

the rn x rn matrix Wiener algebra Wnaxm over the unit circle T, may be read off from a (right)

Wiener- Hopf factorization

W(^)-t\/-())r())14l+()) , )€1r, (0.1)

where lVa and W- are in W*'*, the funct\on Wa has an analytic extension to the open unit disc D

such that det Wa@) f 0 for z e D, th" function W- has an analytic extension to 0 U {-}\ D,

such that det W-(z) I 0 for z € Q u {-}\ D, and

D()) : diag ()K,)7, , (0.2)

with rc1 t. . .t K^ integers. In particular, 7 is invertible if and only if the factorizal,ion is can,onical,

i.e., the indices Ktt . . . ) Krn are all equal to zero, and in this case the inverse of 7 may be constructed
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from the Fourier coefficients ol W-(.)-r and W*(.)-' (see [GKr]; also[GF]). Analogous results hold

for Wiener-Hopf and singular integral operators (see the books [GGK], [GF], [GKr] and [MiPr]).

Also in mathematical systems theory, particularly in the analysis of Iloo-control problems, Wiener-

Hopf factorization plays an important role (see, e.g., [BHV],[GGLD], [Pr]). In the latter ca,se tlte

matrix functions are, in general, rational, i.e., their entries are quotients of polynomials.

Up to the late seventies, the standard construction of the Wiener-Hopf facLorization (see [CI(r], also

[GF]) did not yield explicit formulas for the factors Wr, and W- nor the factorization indices, but only

an algorithm which yields the factors and the indices in a finite number of steps. Subsequent to this,

a new method, known as the state space method (see [BGK4]), was developed to deal with problems

involving rational matrix functions. This method largely depends on the notion of realization which

originates from mathematical systems theory (see [K]) and allows one to reduce ploblerns in analysis

to ones in linear algebra involving matrices.

A realization of a rational matrix function [4/ which is analytic at infinity is a representation of lV

in the form:

W(^): D *C(^I - A)-'B, (0 3)

where A is a square matrixof order n say, and B,C and D are matrices of sizes n xITt) nr x n and

rnxm) respectively. Here D is assumed to be invertible. In the papers IBGK1] and [BGI(2], canonical

and non-canonical Wiener-Hopf factorizations (0.1) of W(.) in the form (0.3) a,re discussecl. Explicit

formulas for the right and left factors and the diagonal term D()) are given in terms of. A,B,C,D,

the corresponding Riesz projections and various matrices derived from these transformations.

For a rational matrix function I/ which is not analytic and invertible at infinity, the realization is

not of the form (0.3) with D invertible, but may be represented as in [GK1], as

W(^): D *C(^G - A)-'8, (0'4)
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where A,B and C are as above, and G is of the same size as A. In [GK1] the form (0.4) is used

to obtain necessary and su{ficient conditions for a canonical Wiener-Hopf factorization and explicit

realization formulas for the factors are given in terms of the matrices A,G, B and C and generalized

Riesz projections.

This dissertation also concerns another case where the rational matrix function is not analytic and

invertible at infinity. The aim is to provide necessary and sufficient conditions for the existence of

a right canonical Wiener-Hopf factorization and corresponding explicit formulas for the factors in

terms of a given left canonical factori zation. We present an alternative version of the construction

given in [BR]. Instead of the representation (0.4) we use the form (see [GK1])

W(^) : D +() - a)C()G - A)-t B, (0 5)

where a is a non-zero complex number which is neither a pole nor a zero of W , the matrices A, G, B

and C have the same properties as in (0.4) and D is a non-singular nx x m matrix. The construction

yields an explicit factorization, with factors of the form (0.5). The factors are described explicitly

in terms of the matrices appearing in the realization (0.5) and the corresponding generalized Riesz

projections. In the second chapter our main factorization theorem is described in detail. Note that

the representation (0.5) may be deduced from classical realization results by applying the Mobius

transformation

d()) :"r#, d-rQ):_i=
Indeed, setting fr@ : W(d$)) we have that fr()) is a rational matrix function which is analytic

and invertible at infinity and from the discussion earlier, may be represented as

where D : fr(*) and A, E und 0 ur. matrices of appropriate sizes. If we define A -- o(+ - A),

fr(r) :D + 0(t - h-'E
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G - -+- A, B : E, C :0 and ,: D, then it is clear that (0.5) now holds (cf., Theorem 1.9 in

lBGKll).

This dissertation consists of two chapters. Chapter 1 contains preliminaries, the canonical Wiener-

Hopf factorization theorem for rational matrix functions represented in the form (0.5), a discussion

of a certain operator equation and a derivation of the general inverse formula for rational matrix

functions of the form (0.5). The majority of the results in this chapter (see Proposition 2.1, Corollaty

2.2,Lemma2.3, Theorem 2.4 and Corollary 2.5) are generalizations of results in Chapter I of [BGK1],

which involve realizations of the form (0.3). Also, Theorem 1.3.1 in the sequel is a natural analogue

of Theorem 1.4.1 in [GGK].

In Chapter 2 we provide a statement and proof of our main Wiener- Flopf factorization theorem. 'I'his

result provides necessary and sufficient conditions for the existence of a right canonical Wiener-llopf

factorization and explicit formulas for the right canonical factors in terms of a given left canorlical

factorization. We conclude this chapter by considering an application of the aforementioned result

to singular integral operators.

5
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Chapter 1

PRELIMINARIES AND CANONICAL

FACTORIZATION

In this chapter we discuss preliminaries about spectral properties, canonical factorizations and opet'-

ator equations of various types.

Throughout this chapter, we shall consider the representation of rational matrix functions of the

form

w(^): Dt ()-o)c()G- A)-tB. (o'1)

The main result is a canonical factorization theorem for rational matrix functions represented in the

form (0.1). Many of the results derived below, are analogues of those which involve the realization

form

W(^):D*C(^I-A)-'B'

6
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1.1. SPECTRAL PRELIMINARIES

This section contains definitions which will appear in the factorization theorems derived later.

Firstly, we establish some notation.

A Cauchy contour 7 is the positively oriented boundary of a bounded Cauchy domain in C. Such

a contour consists of a finite number of non-intersecting closed rectifiable Jordan curves.

The set of points insideT is called the inner dornain of 7 and will be denoted by A+. The outer

domain of 7 is the set A- - O"" \ A*. We assume that 0 € A+. By definition oo € A-.

Next, we consider operator pencils. Let X be a complex Banach space and let G and zl be bounded

IinearoperatorsonX. For)€ 0,theexpression AG-Awillbeknown asa(linear) operatot-pencil

on X. Given a non-empty subset A of the Riemann sphere C"o, we say that 
^G 

- A is A-regular if

^G-A(orjustGif 
.\:oo)isinvertibleforeach.\inA. Thespectr-umoI^G-A, o(G,A),isthe

subset of Coo determined by the following properties. a e o(G,A) if and only if G is not invertible,

and a(G, A) n CI consists of all those ) e C for which 
^G 

-.r1 is not invertible. Its complement (in

C-) is the resolaent set of )G - A, denoted by p(G,A).

Next, we look at generalized definitions of concepts associated with the decomposition of o(G,A)

(cf.,[GGK], Ch.1). If f no(G, A) : A, i.e., ? splits the spectrum of .\G - A, then o(G, A) decomposes

into two disjoint compact sets o1 and o2 such that o1 is in the inner domain and o2 is in the outer

domain of 7. Furthermore, if 7 splits the spectrum of 
^G 

- A, then we have generalized Riesz

projections of X associated with 
^G 

- A and 7, namely the projections

(1.1)

The subspaces im P(G,A,7) and imQ(G,A,1) are called the generalized spectral subspaces for

^G 
- A corresponding to the contour 7. It may be shown that if the spectrurn, o(G,A), lies inside

P(G, A,1)

Q(G,, A,I)

G()G - A)-td^,

()c - A)-tGd^.
*t.7r
2.i J -,

I
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.Y, i.e., o(G,A) C A+, then the projections P and Q are the identity operators on X. Also, if

o(G,A) C A- then P and Q are both zero'

I,2 PRELIMINARIES ABOUT FACTORIZATION

In the main result in this section (see Theor em 2.4) we clerive a canonical factorization theorem

which is a natural analogue of Theorem 1'5 in [BGK1]'

Firstly, we define a number of concepts which will appear in the sequel'

Let IaZ()) be a,n n7 x tnrational matrix function, and let 7 be a cauchy contottr in the complex

plane o with inner domain A", and outer domain A-. Assume that w()) has tro pole or zero on

7 and that 0 € A+. Then w(^) admits a (right) Wiener-Ilopf factorizationrelative t'o 7, that is'

W()) factorizes as

W()) -t[/-())r())W+(,\) , )€7 , (2'1)

where wa and. w- are ?7t x rn rational matrix functions, I4l.. has no pole or zelo in A",' u 1 and w-

has no pole or zero in a- u 7 (which includes the point oo), and

,()) : diag()"')pr.

Here rc1 3 nz I . .. 1 rc* are integers, which are uniquely deterrnined by I/ (and 7)' and are called

the (right) factorization indices ol w relative to 7 (see, e.g., [cGl)' The factorization is called a

(right) canonical wiener-Hopf factorizationtI and only if the indices K7t"')Km are all zero' If w

admits such a factorization, then det Iaz()) I 0 for each ,\ € 7, but in general, this condition is

only necessary and not sufficient for lhe existence of a canonical factorization' we refer to a (le[t)

wiener-Hopf factorizationif. in (2.1) the order of the factors are interchanged'

We consider a representation of W of the form (see [GKt]) :

I4l()) :D*(.\-o)C()G-A)-tB, Q'2)
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where we choose c, # 0 such that o is neither a pole nor a zero of W, the square matrices G and

Aarebothof ordernsay,and,B, Cand Darc matricesof sizesnxlTL) mxn and ntxnt)

respectively. Here we assume D to be invertible. Note that D: limr*"W(^).

Next, we state a,nrl prove results which will be useful in thc scquel. The first of these resrrlts is a,

natural analogue of Theorem 1.1 in IBGK1] for realizations of the type (2.2).

Proposition 2.1 Let

w(^) : D +() - o)C()G - A)-t B

be a giaen realization with inaertible erternal rnatrfu D, let (nr,or) be a pair of projections of a

compler unitary space C" such that rank 7rr : ranlc 12, and let

),G _ A: )
\G1 - A1 )Gn - Arz

),G21 - A21 AGzz - Azz
C Ct CzB (

Br

B2

be the matrir representations of 
^G 

- A, B and C with respect to the decomposition Cn : ker ri @

im r; , i : 1,,2. Assume D : DtDz, where D1 and. D2 are inaertible matt"ices on C*.

Write

w,()) : Dr * () - o)cr()G,, - Arr)-'BrD;" (2.3)

and

wr(A) : Dz * () - o)Df 'Cr(^Gr, - Arr)'' Br. (2.4)

SetG*:G*BD-rC and, A*: A+aBD-rC. If (^G- A)lker rrl c ker12 and

()G'- A')limr,l C im12, thenWQ)-Wr())Wr()), \e p(Gn,Arr)op(Grr,Arr)c p(G,A).

Proof. Since (lG - A)ker 11 C ker 7r2,,we have that )Gn - Azr:0. As

)G,_A,:( )cir - /il
Q - a)B2D;'Dr'C,

()Gr, - A..) + () - a)BrD;t D;|C,

^G;2 
- A;2
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maps im zr'1 into im 12,'vtr- have )G12 - An: (a - 
^)hD;r 

Dr'C, ,

Hence, for ) € p(Gt,Arr)(\ p(Grr,Azz) C p(G,A), we compute that

w(^) D+(^-a)CQ,G-A)-'A

DrDr+(,\-o) Ct Cz( )

()G,, - Arr)-,

0

() - o)()G,, - Arr)-t &D;r Dt'Cr1),Gr, - Arr)-'

()Gr, - Arr)-'

B1

B2

So we conclude from the above computations of W(^) and Wr())il/r()) that they are equal

DrDz+ () - a)C1()G11 - A'.r)-' B,

+() - d)2c{^Gt - Arr)-' BrDi'Drrc2(^Gr, - Arr)-'B, + Q, - a)cr(\Gzz - Arr)-'Br.

Also, we have that

wt(^)w2(^) lh * (.\ - o)C1()G,, - Arr)-'BrDi'l'[Dr+ () - a)Dr'Cr(^Gr, - Arr)-'Br)

DrDz + () - a)C1()G11 - Arr)-'Br * () - o)'Cr()Gr, - Arr)-'BrDi' Dr'C,

'(\Gzz - Arr)-'Bz -f (\ - a)Cz$Gr, - Arr)-'Br.

E

It is easy to show that the converse of this proposition also holds. Note tliat the formulas for

the factors are written in terms of the components of the block matrix representations of 
^G 

-
A, B, C and D. Under certain conditions, we may express these formulas in terms of the projections

7r1 and 12. The result is an analogue of the Corollary to Theorem l.i in [BGKl].

Corollary 2.2 LetWQ): D+()-o)C()G-A1'tB be a giaen realizationwitlr, inuertible erternal

rnatrix D, and let Qr1rr2) be a pair of projections of the state space C" such, that rank rr : raTlk Tzt

and

()G - A)fker r] C ker 12, ()G" - A')lim r1l C inz rz.

10
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Here we set G' : G * BD-|C and. A' : A* aBD-rC. Assume D : DrD2, wh'er-e D1 an'd' D2 al'e

inuertible matrices on A*.

Then, for \ in some open neighbourhood of a' u)e haueWQ) -Wnt(^)W",(\), where

W,,(^) : Dr *() - a)C()G - A)-'(I - r)BDrt,

and

W,,(^) : Dz * () - a)D1 tCrr(),G - A)-'B

proof. Let Wr(,) and WrO be defined as in formulas (2.3) and (2.4). Then by Proposition 2'1,

W(^): Wr(\)Wz()), for ) in some open neighbourhood of o. To complete the proof observe that

Wr(^) - Wnt()) and Wr(^) : W,,(\), for ) near o' E

The operator pencil ,\GX - A' is often referred to as the associate operator Ttencil.

The next lemma is a natural analogue of Lemma 1.4 in [BGKl]. We assume bhat X1 and X2 are

complex Banach spaces.

Lemma2.B Let)G-A-(rc"-Atr ^Gn-A 
\t2 
| b, glrer, and, let r be a Projection of

\ o )Grr-AnI
An:Xr O Xzsuch,thatkerr_ Xr. Thenforthecompression\nG-rAl;*n an'd)Gzz-Azz

there exists an inaertible operator E : im r --+ Xz such that E-1()Gzz - Arr)E : )rG - rA l;* n'

Furtherrnore, X1 is a spectral subspace for \G - A if and only if o(Gt,Att)no(G22,Arr):0,

and, in this case o(G, A) : o(Gr, Art) U o(G22, A22) and

xt : ,* l* l.,c1sc - A)-' d^), (2.5)

where 1 is a cauchy contour around o(Gt,A1) separating o(G1,Arr) from o(G2r,Arr).

11
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Proof. Let P be the projection of C" - XIOXz onto X2 along X1' As ker P : ker 7r, we have

P: Pr and the map B: P li-,,: im zr -+ X2 is an invertibleoperator' Denote the cornpression of

^G 
- A to im r by )Gs - As. Take r - lty' Then

E(^Go - Ao)n : Pr(\G - A)"Y

: P(^G - A)"y

: P(^G - A)Pry

: (\Gzz - A22)Ex,

and hence ()Go - Ao): E-t(^G22 - Arr)E'

Now suppose that o(Grr,Arr)f\o(G22,Azz):0. Since 
^G-A 

is in upper triangular form, it is easy

to verify that o(G, A): o(G,,,A,,) Uo(G22,A22),Let 7 be a Cauchy contour arouncl o(G,,,A,,)

separating o(Gt,Arr) from o(G2r,Arr). Note that 7 splits the spectrum of 
^G 

- A' For the

corresponding generalized Riesz projection we have

(r *\
P(G,A,7) :l I'

\0 0l

and it is clear that Xr : im P(G, A,1).

So Xr is a spectral subspace for .\G - A and (2'5) holds'

Next, assume that X1 - im R, where R is a generalized Riesz projection associated with )G-'21 and'y'

put zr. : I - R,and let \Go- Aobe the restriction of )G- A to im r. Then ,(Grr, Arr) ) o(Gs, Ao) :

a. Since, by the first part of the proof, we have E-r()Gzz - Arr)E - )Go - Ao, it follows that

o(Go, Ar) : o(Gzz, A22), arrd' hence we have shown that a(G11 , Arr) A o(Gzz' A") : A' E

Note that we may obtain a similar result, as the one above, for the generalizecl spectral subspace

t2
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of the form,

g(G,A,7) : im t* 1.,a" - A)-1Gd^1.

In the main result of our present section, we consider the right canonical Wiener-Hopf factolization

of a rational matrix function given in realized form (2.2). Necessary and sufficient conditions for the

existence of such a factorization and explicit formulas for the factors are given in terms of the clata

which appear in the realization. In the proof, we will makeextensive use of Proposition2.l, Corollary

2.2 and Lemma 2.3. The theorem may be regarded as a natural analogue of Theorern 1.5 in [BGI(l].

Theorem 2.4 LetW(A) admit a realization of th,e formW(\) : D + () - a)CQG - A)-'B, uhere

ue assurnethat D: DtDz , with D1 and, D2 inuertible matrices on C^. SetG' :G+ BD-'C and

A* : A-l aBD-tC. Let 1 be a Cau,ch,y contour that splits the spectra of ),G - A and 
^G" 

- A'.

Assume that

(i) On -- inr P(G,,A,?) 0 ker P(Gx,A',1),

(ii) On : int Q(G,A,7) O ker Q(G' , A* ,1),

where

P(G, A,1)

P(G' , A* ,-Y)

Q(G, A,I)

Q(G" , A' ,1)

G(^G - A)-1d^,

G"(^G', - trx1-rd)

()G - A)-|Gd^,

()G' - A")-tG"d^.

lr
2"i J-,

lr
2"i J-,

*t,
*t,

Letrl be the projection of C,' onto ker P(G*,A',.y) along imP(G,A,1) and12 be the projectiort

of C" onto ker q(G" , A* ,1) along im Q(G, A,'t), and let

13
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)G _ A: )^Gt 
- An 

^Gn 
- An

0 )Gz, - Azz

(a - \)tuD;'D,'C,

^G2 
- A2

C Cr CzB (
Br

Bz

be the matrix representations of 
^G 

- A, B and C with respect to the decomposition (i) or (ii).

Define

W-(^) : Dr * Q - a)C1()G,t - Arr)-' BrDi',

and

w+(^) : Dz * () - a)D;'cr(^Gr, - Arr)-' Br.

Then W()) : W-())14l+(,\) for ), e p(G, A), and this factorization is a right canonical Wiener-llopf

factorization of W with respect to 7.

Conaersely, il W : W-W+ is a right canonical Wiener-llopf factorizatiott. witlt. respect to 1 and

W-(*) - Dr, where D1 is an inaertible m x m matrir, then there erists a realization

W(^) - D +() - o)C()G - A)-t B

on aneighbourhoodof l andthe contourl splitsthe spectra of )G-A and )G'- Ax. Furth.ernlore,

decompositions (i) and (ii) hold. Witlt. respect to these decompositions

\G_A: ^Gr 
- Ar

0
CB

Br

B2
( Cr Cz , D: DtDz,)

and if 11 is a projection of C^ onto ker P(G",,A*,1) along imP(G,A,1) and12 is a projection of

C" onto kerQ(G*,A',1) along inzQ(G,A,'y), the factorsW-(^) andWlQ) for a rigltt canonical

factorizationWQ) - l(-(.\)1,7+()) are giuen by the formulas

W-(^) : Dr *() - o)Cr()G, - Ar)-'BrD;', 
^€ 

A-,

t4
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and

w+(^) : Dz l(.\ - o)D,-'cr(^G, - Ar)-' Bz, )€ A+.

Proof. We note that the matching conditions (i) and (ii) are equivalent, (see, e.g., [GK2]). Frorn

the upper (respectively, lower) triangular form of 
^G 

- z1 (respectively, )G' - Ax ) we clecluce that

(,\G - A)[ker ,r] C ker 12 and (,\G* - A')[im rr] C im 12. It follows directly front Proposition 2.1

that l7()) - ll/-(^)W+()), for each

\ e p(G1, Arr) ) p(G22, A22) (2.6)

Since X1 is a generalized spectral subspace for )G - zl we can apply Lemma 2.3 to show that

o(Gtr,, Arr) i o(G22, Ar) : A. But then p(G, A) : p(Gt, Arr) fi p(Grr, A22) and it follows that (2.6)

holds for each 
^ 

€ p(G,,A).

Also, we have from Lemma 2.3 that

o(Grr., Arr) : o(G,,4) n A+ ,, o(Gzz, Arz) : o(G, A) n A- (2.7)

In a similar way, one may show that

o(Grr,Arr): o(Gx,A")n L,1 , o(G2r,Arr): o(G',A")n A-' (2'8)

since w_(^) : Dr * () - a)c1()Gr, - Arr)-, BrDi', we know that W- is defined a,nd analyl,ic on

the complement of o(Gn,, A1n) and det W-(^) I 0 for each ) # ,(Gir, Ai).

So using the first parts of (2.7) and (2.8), it follows that W- is an rn x rn matrix which is continuous

on A-; analytic on A- and detW-(^) + 0 for each ) e A-. In the same way, using the second

15
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parts of (2.7) and (2.8), one proves thatW,, is an nz x m matrix which is continuous on A.,.; analytic

on Aa and det W+(^) l0 for each ) € A+.

To prove the second part of the theorem, let us assume that I4z()) - l'\,/-(^)W+()) is a riglit

canonical Wiener-Hopf factorization with respect to 7 and W-(*) - D1. As I,l/- is analytic on a

neighbourhood of A- and W-(^) is invertible for each ) e A-, it follows from an analogue of tlie

classical realization theorem (see, [GK2] and [GK3]) t[rat one can find a realization I4lr()) : Dr*
(,\ - o)C1()G, - A)-r &D;r for W- or a neighbourhood of A- such that o(Gr,A1) and o(Gi , Ai)

are subsets of 41. Also, l[ admits a realization W2()) : Dz * () - o)D, 'Cr(^G, - Ar)-t,82 such

that o(G2,A2) and "(G;,Al) are subsets of A-.

Put I,l/6"()): Wr())Wr(^), ) e p(Gr,Ar) o p(Gz,A2). Then Wc"(A): D + () - a)C(^G -
A)-'8, where An: Xr OX2 and

),G _ A: ^Gr 
- Ar

0

(a - \)tuD;'D,'c,

^G2 
- A2

Ct Cz ,D:DrDzCB
Br

B2
( )

As o(G1,Ar)O o(Gz,Az) =A,wehave o(G, A): o(Gr,Ar)U o(G2,.42). But then 7 C p(G,A):

p(Gr,,A') n p(Gz,A2) and Wc"(^): Wl\)Wz()) : W-(^)W+()) : W(^), 
^ 

e p(G,A). So

D + (^ - a)CQ,G - A)-'n is a realization for W or a neighbourhood of 7. Since )G - A is

represented in triangular form, we have that 7 splits o(G, A). Also, by consideration of Lemma 2.3,

it follows that X1 : im P(G,A,1). Since

)c,-o.:( '\GI-AI ' )
\ tl - o)B2Drt Dr'c, 

^G; 
- A; )

we havethat the contour 7 splits the spectrumof )GX - A' too, and Xz: ker P(G',A*,1).

Itfollowsthat C" - X1@Xz: imP(G,A,l)@kerP(G',A','l). Inasimilarwaywemayshow

16
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that the decomposition c' : im Q(G,A,7) O ker Q(G'*,A*',^l) holds' If z1 is the projection of

O* onto Xz: ker p(G, ,A*,.y) along Xt : im P(G,A,'y) and zrz is the projection of C" onto

ker Q(G' ,A','t)along imQ(G,A,'Y),then I4l-('\) : Iyt(I) for '\ € A- and W+()) : W2()) for

.\ e A1, and the Proof is comPlete' E

The following corollary allows us to express the right canonical factors, appealing in Theorem

2.4,in terms of the projections 7r1 and 7r2'

CorollarY 2.5

Assum,e

LetW('), D, G*, Ax antl the Cauclry contourl be described' as in Theoremz'4

(i) O" : im P(G,, A,l) @ ker P(G' , A* 
"Y)'

(ii) A 
n : int' Q(G, A,t) @ ker Q(G" , A* 

'1)'

where P(G,A,'i, P(G',A',1),Q(G,A,1) and'Q(G''A'"1) are as in Theorem2'4' Letrl be th'e

projection of C* onto ker P(G",A*,'Y) along im P(G,A,1) and' 12 be the projection of [)" onto

ker Q(G" , A* ,1) along im Q(G, A,7), and define

w-(I) : Dt *(.\ - o)c() G - A)-'(I - r)BDrt '' (2 e)

and,

W*()) -- Dz * (.\ - a)D, tCr2()G - A)'' B

Thenw(\):w-())14l*())for\r-p(G,A),and,thisfactorizationisarightcanonicalwiener-Hopf

factorization of W with respect to 1 '

Conaersely,ifW_W_WlisarightcanonicalWiener-HopffactorizationofWwithrespectto

1 and,ly-(-) - Dr, where Dt is an inttertible rnatrit, then there exists a realization

w()) : D +() -a)C()G - A)-rB

(2.10)

t7
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on a neighbourhood of 1, the contour 1 splits the spectra of )G - A and, 
^G* 

- A" ,

Cn : im P(G, A,l) 0 ker P(Gx , A* ,1),

Cn : int Q(G, A,l) @ ker Q(Gx , A' ,1),

and, if 11 is a projection ol C" onto ker P(G*,A',1) along im P(G,,A,'1), and 12 is a projectiort

ol A" onto ker Q(G*,A','y) alon,g imQ(G,A,"y),then the lactorsW-(^) andWa()) /or a right

canonical factorization WQ) - ll,/-())14l+()) are giaen by

w-(^): Drt (,\ - o)c()G - a1-tU - or)BD;', .\ € A-,

and

w+(^) : Dz *() - a)D, tcr2()G - A)-' B, ) e A*.

Proof. Let W- and Wa be the rational matrix functions defined by (2.9) and (2.10). From the given

7r'1, w€ have that I _ rr is a projection of C" onto im P(G,4,7) along ker P(G',A",7). Thus

I-n1 : (;:)

W-(^) : Dr * () - a)(Q C2)

I Br

B2

()Gt, - Arr)-t () - o)(.\Gr, - ,4rr)-r BrD-lC2(^G2z - Arr)-'

o ()Gzz - Arr)-'

irn P(G,, A,l) @ ker P(G* , A* ,'y) im P(G, A,l) @ ker P(G' , A' ,'y)---+

By using the block matrix representations of 
^G 

- A, B, C, D and 1 - ?r1 w€ have that

:)(
D -1

2

0

Dr * (,\ - a)(Q C2)
()Gr, - Arr)-'B:,

-l

0

Dr * () - a)C{)Gt - An)-' BrD;'

D2

18
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Similarly, for the computation of W1, we need the projection

im Q(G, A,t) @ ker Q(G', A','y) im Q(G,, A,,t) @ ker Q(G' , A* ,1),,r: (
0

0

0

I
---+

in order to obtain

w*(^): Dz * () - a)D,-tCr(^Gr, - Arr)-'Br.

The proof is completed by combining the observations made above and Theorern2.4. Z

1.3 MORE ABOUT REALIZATIONS AND

OTHER OPERATOR EQUATIONS

As before, in this section we consider a regulat m x rn rational matrix function W which is not

necessarily analytic and invertible at infinity. Here we may represent W' in the realization form

w(A):D+()-a)c()G-A)-tB, )€7, (3 1)

where ,y is a Cauchy contour in O. In the first part of this section we look at the invertibility of

(3.1) and under certain given conditions provide an explicit formula for its inverse. Note thab a

necessary and sufficient condition for the invertibility of. W on 7r is that .\G' - Ax is 7-regular,

where G' : G + BD-rC and A' : A+ dBD-lC (cf.., [G], Theorem I.2.1).

We now show that we may compute W-t in terms of G' and A', i.e., we have that

w(^)-r:D-r -()- d)D-'C(^G* -A')-tBD-r, )€7. (3.2)

Indeed, from an earlier note, we may assume for invertible W()) : D *() - a)C() G - l1-r B , \ e 1 ,

that )Gx - A' is invertible for each ) e z. Set z: ()G - A)-rBt.
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Given y we compute r from

I sCr: Az*Bx,( - (3'3)

I u : Q-a)Cz*Dx'
Applying B D-r to the second equation in (3.3) and subtracting the result from the first equation in

(3.3) we obtain the following equivalent system

)G'z

!t

: Axz*BD''A,
: $-a)Cz*Dx

(3.4 )

Hence z : (^G" - Ax)-' BD-'y and llz())-'y : * : D-|y - (^ - a)p-tC(^C;' - Ax)-t BD-ty

This proves (3.2). D

From the above, it is easy to see that the formulas (2.9) and (2.10) in the previous section have

the inverses

w-(^)-' - Drt - () - ,)Dr'C(I - r2)()G' - tr"1-t BD-l ,

and

w*())-' - D;'- (.\ - a)o-tcQ,G* - A")-1n1BDrt,

respectively.

Next, we consider an operator equation of the form

ArZGz - G1Z A2 : Q (3.5)

Here A1, Gr, Az and G2 are given operators acting between the Banach space X. In this regard, we

will attempt to find Z e L(X), for a given C e L(X) such that (3.5) holds. The next theorem is the

analogue of Theorem I.4.1 in [GGI{].
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Theorem 3.1 If th,e spectra of tlrc pencils )G, - A1 an,d, \Gz - A2 are disjoirtt, then Jor any

C e L(X), equation (3.5) hcs a unique solution Z e L(X). More precisely, ue haae that

()G, - Ar)-'C(^G2- A2)-td^I1

2"iZ
11

-*t
12

()G, - Ar)-'C(^G2- Az)-td^,

Gt(^q - At)-td^ I

(3.6)

(3.7)

where.fl and J2 are Cauchy contours around o(Gr,A1) and o(Gr,A2), respectiaely, wlich sepat'ate

o(Gr, A1) from o(G2, A2).

Proof. Firstly, we validate the choice of the Cauchy contours'/1 and 72. Since o(Gr, A1))o(G2, Ar) :

0, the point oo cannot be in both spectra. So without loss of generality we rnay assttme that oo f
o(Gr,A1). Then o(Gr,,211) is a compact subset of C which lies in the open set I/ : {)\o(G2,A2).

ChooseaboundedCauchydomainAsuchthata(G1 ,Ar)CAcACT,andle[71 betheoriented

boundary of A. Then 71 is a Cauchy contour, o(Gr,,41) is in the inner domain of 71 and o(G2,A2)

is in the outer domain of ?r. In a similar way, one is able to prove the existence of a Cauchy contottr

72, with o(Gz,A2) in its inner domain and o(G1,41) in its outer domain.

It suffices to show that (3.6) gives the unique solution of (3.5). As noted earlier, from the location

of o(G1, 41) and o(Gr, A2), it follows that

1

2ri

1

2ri

I11

I,, Q,Gz - A2)-rGzd^ 0

2I
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Also,
1 ()Gr - At)-tGfi^ I

2ri 1t

.\G1()G1 _ 'q)-'C(\Gz - Ar)-'G2d^

I
(3.8)

lr

'z"t 
J',,G'()G' - A2)-1d^ : o'

where 1 is the identity operator on X.

Let Z be the first identity in (3.6). Then Z e L(X) and because of (3.7)

AIZG2 h(^G | - Ar)-' C ()Gz - Ar)-' G2d^

-CQGz - A)-tG2d^

1
+ 

zTri

* l,,Gt(^Gt - Ar)-'c()Gz - Ar)-'(\G, - Az * Az)rt\

* I,,c,()c1 - At)-tcd) * Grz Az

c + Grz 42.

Conversely,if Z is a solution of (3.5). Then

A\ZG2 - )GtZGz * 
^GrZG2 

- GrZA2

-()G, - A1)ZGz + GrZ(^G, - Ar).

*t,,
*t,,

t,,

Hence Z is a solution of (3.5)

C
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Also, it follows from (3.8) that

1

2ni t,,

1

- 2"i

()Gr - Ar)-'C(tC2 - A)-1d^

1
_L_' zoi1.,,'"rl^*2 - Az)-td'^ ()G, - Ar)-'GtZd^

t,,
Z

If we replace 71 by 72 in the above a,rgument, then we obtain the second identity in (3.6). We

have now proved that equation (3.5) is uniquely solvable and its solution is given by (3.6). tl
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Chapter 2

LEFT VERST]S RIGHT CANONICAL

WIENER- I{ O P F FAC T O RIZATIO N

2.L INTRODUCTION AND MAIN THEOREM

Let W (\) be an rn x ?-rL rational matrix function, and let 7 be a Cauchy contour in the complex plane

C with inner domain A.,. and outer dornain A-. If we assume that I4z()) is analytic ancl invertible

at oo, we know that W may be represented in the form

W(^): I^*C(^h- A)-tB,

where we assumed without loss of genera,lity that the value of. W at oo is the identity matt'ix 1-.

Under these conditions, the existence of a right Wiener-Hopf factorization for W may be char-

acterized in terms of a left canonical Wiener-Hopf factorization. Also, formulas for the factors in a

right factorization may be given in terms of the formulas for the factors in a given left factoriza,tion.

These principles are encapsulated in Theorem 2.1 in [BR].
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In the main result of this chapter we show that a similar analysis may be done when I'l is not

necessarily analytic and invertible at oo, that is, where W may be represented in the form

w(^): D + () - a)c()G - A)-tB. (1'1)

In this regard, we shall assume that the factors 1l and Y- of a left canonical Wiener-Ilopf factoriza-

tion I4r()) : y+())y-()) are known. We give a necessary and sufficient condition for the existence

of a right canonica,l Wiener-Hopf factorization I/(,\) : W_())LII+()) ; providing explicit formtrlas

forthefactors W-arrdWaintermsof therealizationsof Y1 andY-. Inordertoobtainthisresult,

we make extensive use of Theorem 1.2.4 and Corollary 1.2.5. The result is as follows'

Theorem 1.1 Suppose that the rational rn x rn matrir function W(^) (not analytic and inuertible

at a) has a left canonical Wiener-Hopf factorization with res2tect to 1, that is,lM(A) factorizes as

w(^): v+(.\)r-(.\),

where

)'+()) - D +() - a)C1()G' - Ar)-' Br, (1.2)

and

Y-()) : I* * () - o)D-'cr1)G, - Ar)-'Br, (1'3)

for a l0 and. a neither a pole nor a zero of W(^). Set Gx :: G*BD-|C and A* :: AIaBD-|C '

We may assun1e that \Gr - A1 and, )GI - Al are r\ x n1 matrices with spectra inside L,- and that

\Gz- Az and. 
^G; 

- Al arer1.2X't1.2 matrices with sTtectra inside L4'

Let U and T be th'e unique solutions to the Lyapu,nou equations

A;UG\ - G;U Ai : -BzD-|cr, (1 4)
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and 
t n^ /^1 q1 

^ - a.I'r-r(:^ (1.5)
ArTGz-GrTA2- B'D-rCz'

Then W has a right ca*onical Wiener-Hopf factorization if and onty if th'e nt x n1 matt'i:t

In, - (aG1 - A)T(aG, - Ar)U is inaertible, or equirtalently, if antl onty if th'e n'2 x rt'2 nt'atri'x

In, - (aG2 - A2)U(aG, - Ar)T is inuertible, or equiualerttly, if and' only if the n1 x n'1 nt'atri:t

I*r-T(aG2- A2)U(aGr- Ar) is inaertible, or etluiualently, if and' only if th'en2xn2 mat'rir

I*, - U(aG1 - A)T(aGz - A,) is in'uertible'

In this case, trre factorsw_()) and wa(\) for a right canonicar wiener-Iropf factorization

w(^) - w-())l/*())

are giaen bY the formulas

w-(^) :

I4l+ ())-'

, + () - a)lc!(aGz - tr) * grl()Gz - A')-'

'11,, - (aGz - A2)(J (aGr - Ar)Tl-'l@' - aGz)tl h * Bzl'

and

w+()) : /-+() - o)D-r[cl + cz(](aGt-A1)1u,, -T(aGz-A2)U(aG,-A',)l-' (1 7)

'()G, - Ar)-'[,B, + (A, - oG1)T B2)'

Their inaerses are giuen bY

W-())-' : p-t -(.\-o)D-tlC[(aGz- Az)*C2]lI"-U(acl-- A)T(aG'- A')l-'

.(^G; - A;)-'l@r-",Gz)Uh+ BzlD-t 
(1.s)

and,

(1 .6)

(1 e)I* - (^ - o)D-'[Cl + Cz(](aGr- A')l()GI - AI)-'

'lI*, -(oGr - A1)T(aGz - A')Ul-'[Br * (A' - aC]t)TBzl
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Proof. From the realizations (1.2) and (1.3) we compute a realization for their product

r4l()) - v+(,\)v-())

as W()) - D +() - o)C('\G - A)-t B'

where
Ar -aBrD-rCz
0Az (;;)

Ct Ct

0

A;

0

G;

B-A-

( )
Gt -B1D-rCz
0 Gz

C_G_

From this we have that

A* : A+ aBD-rC :

G* ..-_ G + BD'tc =

Ai

aBzD-rCr

Gr

BzD-rCr

where A| :: A| + aBlD_lC1 and A| :: Az + aBzD-tCz, a*d

where Gl :: G, + hD-lC1 and Gi t-- Gz + BzD-rC'

Now, bY assumPtion the sPectrurm, o(G1,A1), of )Gr - 41 is contained in A- ' while that

From the triangular form of '\G - A we see that o(G'A) :

the spectral subspace for )G - A associated with A- must be
of. \Gz - Az

o(Gr,Ar) U

m (:')

is contained in A1

o(Gr,A2) and that

The spectral subspaces 4 and 0 for ),G - A corresponding to A1 is cletermined by

(: 
)the fact that they must be complementary to the spectral subspace im for A- , artd that
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(,\G - A)n C 0. These conditions force ry to have the form

n
.1

2ri

1

2ri

1.,,r(^, - A)-td^

t,,
Gr()Gr - Ar)-,

0

-(oG, - At)(^q - Ar)-' B'.D-rC2(^G, - Ar)-'

G2(^G2 - Ar)''
d^

:lm
(oG., - lr)T

1,,

for some n1 xn2 matrix 7, which is the solution of the Lyapunov equation (1.5), and of the form

T - -! t ()G, - Ar)-, BrD-,cr(\G2 - A2)-1d),
2rz Jn'

where 72 is a Cauchy contour around o(G2,,r12) which separates o(Gr,A2) from o(G1,A1). Also,

from our assumption that the spectra of )Gr -.41 and \Gz - A2 are disjoint, it follows that 7 is a

unique solution of (1.5) (see Theorem 1.3.1). In a similar way, we have that

o - ,^*1.,,(^r-A)-'Gd^

lm
T(aGz - Az)

In,

We have thus identified the spectral subspaces 17 and 0 of )G-A for A1 as ? : im
(oG, - er)T

In,

andd:im
T(aG2 - Az)

, where 7 is the unique solution of (1.5).
In,

Since, by assumption, .\Gf - Af has its spectrum in A-, while 
^G; 

- A| has its spectrum in A,. ,

the same analysis applies to )GX - A'.
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We see that the spectral subspaces of )Gt - Ax for A- are the spaces

xtl :lm Jn,

(oG, - Ar)U

In,

U(aG1 - Ar)

Oim

and

or

or

d":im

(oG, - lr)T
In,

T(aG2 - Az)

In,

rn,

(oG, - lr)U

for the T72 x Ttl matrix U, which is the unique solution of the Lyapunov equation (1.4), and is of the

form

u : ! [ oc; - A;)-, B,D-,c,()Gi - Ai)-,d^,
2rz J1'

where 71 is a Cauchy contour around o(Gr,A1) which separates o(Gr,,41) from o(G2,A2).

Applying Theorem 1.2.4, we have that the matrix function W'has a right canonical Wiener-Hopf

factorizationl4z()) :W-(l)14l+()) if andonlyif Cnr+nz:? 0 rl'or Cnt*nz =0 @ g',thatis,

if and only if

lmn2+17C

6nr*nz - 1*

respectively. One easily checks that these direct sum decompositions hold if and only if the square

matrices

Oim
In,

U(aG1 - At)

J,.,

(oG, - ,4r)U

I,,r

U(aG1 - Ar)

(oG, - er)T

In,

T(aG2 - Az)

In,

( 1.10)

(1.1 1)
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are invertible. we consider the case (1.10). By standard row and column operations this matrix can

be diagonalized in either of two ways:

(

:(

=(

In,

(oG, - ,4r)U

In, (oG, - ,4r)T

0 In,

(oG, - lr)T

0In,

(aGz - A2)U

In,

)(

)(

,:( 
In' 

),r,, -(oGr - A1)T(aG2- A2)u\-t(t^l' \ (aGz - Ar)u I

1., - (aG1- A1)T(aG, - Ar)U 0

0 In,

Inr o

g In, - (oG, - Az)(I(aG, - Ar)T

In,

0

Iqo
(oG, - Ar)U In,

(aGr - Ar)T

1,,,In,

Thus we see that the invertibitity of the matrix in (1.10) is equivalent to the invertibilitv of

I*,-(aG1- A)T(rrGr-Ar)(landalsototheinvertibilityolln,-(oGr-A2)U(aG'-A')T'

similarly, we may show that the invertibility of the matrix in (1'11) is equivalent to the invert-

ibility of In,-T(aG2- A2)u(aG, -Ar) and also to the invertibility of- In,-u(aG1- A)T(aGr- Ar)'

Now suppose that this necessary and suffrcient condition for the existence of a right canonical

Wiener-Hopf factorization W()) : W-())14l+(,\) holds' Next, we compute explicit formulas for the

right factors I4z1(,\) and I4l-(.\) and their inverses'

Let pbethe projection of Ant*nz onto 17' - im

We compute easilY that

In,

(aGz - lr)U

(oG, - ,qt)T
along ? : im

Jnz

(Ar, - oGr)T'),
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and that

0-im

and that

I-p:
(oGt - lr)T

lI*, - (oG, - Az)u (aGr - A')T\-' ((A' - oG')U I,r)

In,

Inr

Also, if we let r be the projection of 0"'*" onto 0x : im
U(aQ - At)

along

T(aGz - Az)

In,

LI(aGr - Ar)

, we have that

,: (
In,

lI*, - T(aGz - Az)u(aG, - A')l-'(/'' T(Az - oG'))'

T(aGz - Az

' ) ,r,, - 
u(aGt - A)T(aG, - A,))-'(u(A' - .,G) I*')'

)
Then, from Corollary 1'2'5' we have that the formulas for the rightInz

I-r:

and

Assume that W-(oo) : D

canonical spectral factors of W are

From formula (1'12

we have that

w-()) D + () - o)(Cr Cr)
(.\ - o)()G, - Ar)-' BP-|CI(^G' - A')-t

Q'Gz - A')-'

W-()) : D +(.\ - o)C()G - A)-'(I - P)B'
( r.12)

W+()) - I +(,\ - a)D-tCrltc - A)-' B (1.13)

), the matrix representations introduced earlier, and the Lyapunov equation (1'5)

()Gr - A,)-'

0
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( @c,- a,)r \
\ rn, )v- 

- @G, - A2)u(aGr - Ar)"1-1((A, - aG2)u 
",, ( ;; )

D + () - o)[C1(.\G, - Ar)-'(oG, - A)TOG, - Ar) + () - o)C1()G1 - Ar1-'BrD-l

.cz * c2l(^G2 - Ar)-'lI^, - (oG, - A2)U(aG1 - Ar)Tl-'l@' - aG2)U fu * Bzl

,D + (,\ - a)[cr()G, - Ar)-1{,\oGlTGz* AIA2- 
^G{A2- 

oArTGz} +Cz)

.(\G, - Ar)-'lI^, - (oG, - Ar)U(a& - Ar)Tl-'l@, - aG2)U $ * nzl

D + (,\ - a)fc{(aGz - lr) * cr)(^G2 - Ar)-'lI^, - (aGz - A2)U(aG1 - Ar)71-'

'l@r-aG2)Ug*821.

Similarly, from formula (1.13), the matrix representations introduced earlier and the Lyapunov

equation (1.5) we have that

w+(^) : 1- + () - o)D-'lc, + czu(aGr- Ar)l[1,, - T(aGz - A2)U(aG, - A,)]-'

'[Br*(Ar-aG1)T82]

Next, we calculate the inverses W-(^)-' and W1(i)-t. Ar we noted earlier, the inverseformulas

for (1.12) and (1.13) are given by

w-(^)-' : D-t - () - o)D-'C(I - r)(lG' - Ax)-tBD-t (1.14)

and

u/*())-t - I* - () - a)D-'C1)G', - A')-'pB, (1.15)

respectively. From formula (1.14), the matrix representations introduced earlier and the Lyapunov

equation (1.4) we have that

w-(^)-' D-t-e-d)D-t(q Cz)
T(aGz - Az)

Inz
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'11,, - U(aG1 - A)T(aG, - Ar)l-'(U(A, - ,.Gr) 1",)

(acr-Al)-' o )1,r,)
\ r" - )x)c; - A;)-'B2p-tc,()Gi - Ai)-' (^c; - A;)-' ) \ ,, )

D-t - (.\ - a)D-tlcrr@Gr- Ar)+c2l[1.,-u(aG1 - A)T(aGr- Ar))-'

.(^G; - A;)-'[()G; - A;)u(AI - "GIX)Gi - Ai)-' B,

*(o - \1BrD-'Cl^Gi - Ai)-'Br-t B2)D-l

D-| -() - o)D-tlcrTloc, - Ar) + cr)ll^, - u(aGr - A1)T(aG, - Ar)l-'

.(lci - A;)-' [{-)oci uGi - A;u Ai * aGiu Ai + 
^A;uGi}

.()GI - Ai)-'Bt -t B2lD-1

D-t - () - a)D-'lcrr1"G, - Ar) + crl[I^, - u(aQ - A)T(aG, - Ar))-'

.(^G; - A;)-'[(a, - aGz)U B, * BrlD-' .

Similarly, using formula (1.15), we have that

r/*())-' r^ - (^ - o)D-'lQ + czu(aGr - A1)](.\GI - AI )-'
.[I,, - (oGr. - Ar)T(aGz - Ar)U]-'18,, * (A, - aGy)T B2l

D-r

This completes the proof E

The main result above gives a necessary and sufficient condition for a right canonical Wiener-Hopf

factorization to exist under the assumption that factors of a left canonical Wiener-Hopf factorization

are given in realized form (1.1).

If we suppose that this condition is not met, i.e., 1,, - (aGr - A1)T(aG, - Ar)U,

I^,-(aG2- A2)U(oGr- Ar)T,I^,-T(aGz- Az)U(oGr- A) and 1,,, -U(aG1- A1)T(aGr- Ar)
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fail to be i,vertible, the right factorization is not canonical ancl an analysis of the righ[ factorization

indices of w(,\) becomes imperative. However, this case wilr be the subject of further investigation'

The fact that I,V-(m): D allows us to apply the latter part of Theorem 1'2'4 directly' The

method of proof of our theorem, differs frorn the one given in [BR], in that it involves the clirect

computation of the appropriate Itiesz projections and corresponding spectral subspaces' Note that

the resulting explicit form,las for I4z-(,\) and I4Z1()) and their inverses are also represented in realized

form (1.1).

In the last part of this section, we provide a one-dimensional example to illustrate sorne of the

key concepts in Theorem 1'1'

Let the Cauchy contour be the real axis of the complex plane C, with the inner domain as the

upper half-plane and the outer domain as the lower half-plane' We make the following choices for

the matrices appearing in the statement of the theorem:

Ct:Cz- Gt:Gz: Br- Bz: I^: D:l' At: -i and Az:i'

From the above we have that
)-o)( 3,\ - a)

W(^): I * (.\+i)()-i
Also, from the above we deduce that Gf : G; :2', Al : (1 - i' A; : a * i'

Moreover, the solutions of the Lyapunov equations are given by U : i and T : i'

For convenience, we choose o:1. Then, the left canonical factors are given by

v+()) :1+(,\-lx)+i)-" Y-()) :1+(,\-1)() -i)''

which have no poles or zeroes on the upper and lower half-planes, respectively'

(

)
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Furthermore, by replacing the appropriate values in the formulas for lVlO), W-()) and tlieir

inverses we have that:

w*(^):1*(.\- 1)(.\+i)-', w-(^) - 1+()- 1X.\ -d)-'

and

u/*(l)-'- 1-(,\- 1x2)- 1*i)-r, W_(^)-' - 1-(.\-1)(2.\ - 1-i)-'.

2.2 APPTICATIONS TO SINGULAR INTEGRAL

OPERATORS

In the sequel, we apply the main factorization theorem delived in the previous section in order to

determine necessary and sufficient conditions for the invertibility of a singular integral operator with

a rational symbol. For p fixed, 1 < p ( oo, we denote bV LT\) the Banach space of all O"-valued

functions which are p-integrable (w.r.t. Lebesque measure) on the Cauchy contour 7 irr C. As is

usual in the theory of singular integral operators, we assume that the innel domain A1 of 7 contains

0, while the outer domain A- of 7 contains oo.

Consider the operator of singular integration,

51 , Li\) -+ Lih) oD 7,

given by

(s.,dx)) : t. I d?)ra, ,] € 7,7l?J1T-A

where the integral is taken in the sense of the Cauchy principal value and / is a rational function
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without poles on 7. Note that tlie operator ,S,, has the ploperby that Str : t. Introduce the operators

It is clear that P, and Q., are complernentary projection. o" Ii(Z) ,,r.e. Pl : P-, ,Q1 : Q, ancl

P., + Q.r: I.
Next, we consider the singular integral operator

r., : 
f,U * s.,) and, Q., : f,r, s"Y

.9 , ti1) Lij) siven by--+

(sdx,\) : A())(P1dx)) + B())(81d)())' (2.i)

where A()) and B(.\) are rational matrix functions withoub poles or zeroes on ?.

The symbol of S is the function W(^): B(.\)-r,4()) (see, e.g., [CG], Section 1.3). From [CG] we

know that ^9 is invertible if and only if W(^) adrnits a riglit canonical factorization

w(^) : w_0)w+0), (2 2)

in which case

(s-'dx)) : w;'(^)(hw:'B-'d)()) + w-(\(Q$-'B-',/)()) (2.3)

We may use Theorem 1.1 to investigate the invertibility of S in terms of either one of the tbllowing

operators:

(s,d)()) : B())(P.,d)()) + A(.\)(81dX))'

(s,dx)) : [B(.\)-l]',(&oxr) + [A())-r]' (Q"il(s).

Note that the symbol of ^9r is I4z())-r and that of 52 is W(^)'. We may formulate the following

theorems, which may be proved by considering the remarks above and Theorem l.l'
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Theorem 2.1 Assume th,at $ is inaertible and let the right Wiener-Hopf factorization of the symbol

of 31 be giaen by

W (^)-' : A())-rB()) : Y- ())-' Y*())-',

where

y_())-, - r* -(.\ - a)D-'crQGi - Ai)-' Br,

and,

v*())-' : D-t - (.\ - d)D-tCl^Gi - Al)-t &D-1.

Set G;: Gi - B;D-rCi, (i : 1,2), and A, -- Ai - oB;D-rC;, (i:1,2).

Let U anil T be the unique solutions of the Lyapunou equations

A;UG\ -G;UA\:-BzD-tCr, Q.4)

and

ArTG2 - GrTA|: BrD-rCz, (2.5)

respectiaely.

Then S is inaertible if and onty if In, - (aG1- A)T(aG, - Ar)U is inaertible, or equiualently, if

and only if
In,-(oG,- A2)u(aG1 -,qr)T is inuertible, or equiualently, if and only if

Inr-T(aGz- A2)U(aGr- Ar) is inuertible, or equiaalently, if and only if

Inz - U(aGr - A1)T(aG, - Ar) is inuertible.

Also, we have the following result.

Theorem 2.2 Assume that 52 is inaertible and let the right canonical Wiener-Hopf factorization

of the symbol of 52 be giuen by

w(^)' : A(\r B-r())" : Y-())rY+())r,
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where

v-(l)' : Dr + () - a)BTQGT - AT)-'}T ,

and

)'*())' : r* * () - a)B{(^GT - AT)-tCl@-\r .

SetGl :G;* B;D-|C; ,(i:1,2), and Al : A;*aB;D-rC; ,,(i:1,2).
Let U and T be the unique solutions to the Lyapunoa equations (2.4) and (2.5), respectiuely. Then

S is inuertible if and only if In, - (aG1 - A1)T(aG, - Ar)U is inaertible, or equiualently, if and

only if In, - (oG, - A2)U(a& - ,qr)T is inuertible, or eqtriualently, if and only if

In, - T(aG2 - Ar)U(aG, - Ar) is inuertible, or equiaalently, if and only if

Inz - U(aG1 - A1)T(aG, - Ar) is inuertible.

In the two theorems above, the formulas for the factors W- and W', in the canonical factorization

(2.2) of the symbol of S and the formulas for their inverses are given by (1.6) - (1 9) in the previotts

section. In this case, we have that (2.3) gives an explicit formula for the inverse S-1. Also, we

may reformulate Theorems 2.1 and2.2 entirely in terms of ,9 and its symbol W(^). In this regard,

if I4i(,\) admits a left canonical Wiener-Hopf factorization W()) : Y+())y-()) with factors Y.,.

and Y- as given by (1.2) and (1.3) then the invertibility of S is equivalent to the invertibility

of Jn, - (oG, - A2)U(aQ - Ar)T where U and T are the unique solutions of. (2.a) and (2.5),

respectively. Indeed, from [BGK3] we know that In, - (oG, - A2)U(aGr - Ar)T is an indicator

for the singular integral operator ,Sr as well as for the Toeplitz operator with symbol W. Also, we

havefrom Theorem lII.2.2 in [BGK3], that an indicator for S is given by the operator

P'l,- p,imP -) imP',

where P 1.".p P"; i. the generalized Riesz projection of )G - A (resp 
^G" 

- A') corresponding

to A.,., where 
^G 

- A and )G'- Ax are derived from the realization of W. Remember, here, we
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consider generalized Riesz projections of the form

which, in terms of the notation adopted in Theorem 1.1, means that

P(G, A,-i : * l.,C1tc - A)-t d^

1.,,'r^* - A)-td^1

and

F' : * 1.,,G"(^G" - A")-1d^,

where 12is a Cauchy contour around o(Gr,A2) (contained in Aa), which separatcs o(CJ2,212) frorn

o(G1, A1).

It is easily seen (from the proof of Theorem 1.1) that

F - 2tri

imP:im (oG, - ,4r)T

In,

and

0

(A, - aG2)U

0
P x

In,

It follows that P" li- p ir given by In, - (oGr - A2)u(aGr - Ar)T. A similar analysis may be clone

for the cases where the invertibility of S is equivalent to the invertibility of

In,-(aG1- A)T(aGr- Ar)U,, 1.,-U(aG1- A1)T(aG2- A2) and I*, -T(aG2- A2)U(aGr- Ar).

Further applications of our main theorem to spectral and antispectral factorization on the unit

circle and symmetrized canonical spectral factorization on the imaginary axis will not be considered

here.
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resolvent of the operator pencil 
^G 

- A
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direct sum of the linear spaces X and Y
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Euclidean space of dimension rn over the field C

class of bounded linear operators on a space X

space of C - -valued p-integrable functions on 7
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P(G, A)

diag ();)pr
X AY
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c^
L(x)
t;(t)
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SUMMARY

In this dissertation we have a,pplied the state space method to construct a right canonical Wiener-

Hopf factorization of a rational matrix function explicitly from the representation of a matrix lunction

in realization form. A rational matrix function Illl, which is analytic and invertible at infini[y, may

be represented in the form

W(^):D+C(^I-A)-tB, (1)

where Ais anxn square matrix, say, B and C are n x rn and tnxn matrices, respectively, and D is

an invertiblem x m matrix. The process of constructing the factorization and determining explicit

formulas for the factors is well known for rational matrix functions in the form (1). However, in our

discussion, we have concentrated on the situation where I4l does not have these properties at infinity

and has a realization of the form

w(^) : D *() - o)C(.\G - A)-t B, (2)

where A, B, C and D are as above and G is of the same order as .zl. In the main result in Cliapter

2, we have established necessary and sufficient conditions for the existence of a right canonical

Wiener-Hopf factorization in terms of a left canonical Wiener-Hopf factorization and the unique

solutions of generalized Lyapunov equations. In addition, we have shown that the explicit formulas

(in realized form(2)) for the right canonical factors and their inverses may be wribten in terms of

the formulas for the left canonical factors. In the proof of this result, we made extensive use of the

Riesz theory associated with the decomposition of the spectrum of 
^G 

- A into two disjoint closed

subsets. Finally, we apply this result to singular integral operators; while brief mention is also made

of Toeplitz operators.
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