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Chapter 0

INTRODUCTION

Different methods for soiving singuiar integral equations exist. One of the most recent methods is

the so-called state space method. This method is based on the fact that a rationai matrix function

VV(^) r,vhich is analytic and invertible at infinity can be represented by

vv(^): D * C(AI - A)-'B, (0.1)

,,vhere A is a square matrix whose order may be larger than that of I,7()), and .8. C and D are

matrices of appropriate sizes. The representation (0.1) allows one to reduce analytic problems about

rational matrix functions to linear algebra ones involving constant matrices, and often it provides

explicit and readily computable formulas for the solutions. In the last fifteen years the state space

approach has proved to be effective in solving various probiems of mathematical analysis (see the

survey paper [BGK3]).

In this mini-thesis rve employ the state space method to solve singular integral equations. These

equations serve as a tool to solve problems in numerous fields of application. For the general theory

and examples of applications (see, for instance, [GKr], [M] and [V]).

J
a
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We rvill consider equations with a rationai matrix symbol and which are of the form:

.-r())p()) +B()) (lr'('\rr) :/()), )et (02)
\;i? Jr p -.^ /

Here the contour f consists of a finite number of disjoint smooth simple Jordan curves. --l(') and B(')

are given rnxm rationai matrix functions, ,,vhich have no poles on l, and / is a given function from

LTG), the space of ail C--valued functions that are square integrable on f . The matrix function

n()),
Ly(^) :: [,.{()) - B(A)]-'IA()) + B())],

which plays an important part in the analysis of (0.2), is, in general, not Proper, and so we use a

modification of the representation (0.1), namely, (see [GKl])

w(^) - D +() - a)C(AG - A)-' B (0 3)

Here A, B and C arc as in (0.i), G is a square matrix of the same order as A, D denotes an invertible

rn xrn matrix and a is a nonzero complex number which is neither a pole nor a zero of VV(^).

In fact, we follow a similar program as in [GK3], but with a different representation. W-e use (0.3)

instead of

W(^):l*C(^G-A)-'B'

The aim is to give necessary and sufficient conditions for the inversion of the equation (0.2) and

an explicit formula for its solution in terms of the matrices A, G, B, C and D. In addition, the

Fredholm characteristics of equation (0.2) will be described in terms of these five matrices.

This mini-thesis consists of two chapters. In chapter 1, we discuss the coupling method, (see [BGKl]).

Firstl,v, the basic properties of this method are described. Next, the coupling method is applied to

the class of singular integrai operators. This method reduces various classes of integral operators

to simpler ones, rvhich are often just finite matrices. In particular, finding the inverse, generalized

4
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inverse, kernel and image of an integral operator is reduced to the corresponding problem for finite

matrices. Chapter 2 concerns the state space method for solving singular integral equations rvith

rational symbol. Here rve provide explicit formulae for invertibiiity and Fredholm characteristics of

the singular integral equation r,vith rational symboi using the representation (0.3) rvhich is different

from the one used in [GI{3]. The main idea of the proof is to reduce the inversion problem to one

for input/output systems.

Finaily, rve give a review of the factorization method. This last section may be seen as an extension

of the theory developed in [BGIi2], [GI(2] rvhich concerns Wiener-Hopf integral operalors, infinite

block Toeplitz matrices and singular integral operators with proper rational symbols.

5
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Chapter 1

THE COT]PLING METHOD FOR

SOLVING SII\GT]LAR INTEGRAL

EQUATIOI\S

W-e follorv the paper [BGK1] in our treatment of Sections 1-3 of this chapter. In Section 4, rve follow

the paper [GK2], see aiso the paper lG12].

1.1 Matricial coupling and indicator

Throughout this section and the next one all spaces are assumed to be complex Banach spaces and

all operators are bounded and linear. The identity operator on a Banach space X is denoted by /,y

or.I.

In this section, the method of reducing operators of various classes to simpler ones is introduced. It

6
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is based on the notion of matriciai coupling of operators, which is defined as follows:

Let T : -Yr -+ 21 and S : Zz -+ X2 be bounded linear operators acting betrveen Banach spaces

lVe call 7 and S rnatricially coupled if S and T are related in the following rvay:

T .{,,

|zt .4zz

This means that one can construct an invertible 2 x 2 operator matrlx

Arr .{r,

Azt .lzz

Brt Brz

Bz, Bzz

Br Bn

Bzt S

Bl Brz

Bzt S

-1

(t 1)

(1 2)

(1.3)

(r 4)

rvith ,{11 : 7, whose inverse is given by

XrOXz -+ Zr&Zz

Zt@Zz -) Xre Xz

D_I D_I B

_ AD_I K - ,+D_I B

with 822: S. We shall refer to (1.1) as the coupling relation and to (1.2) and (1.3) as lhe coupling

rnatrices. If 7 and .9 are matricially coupled operators, then we say that .9 is an indicator of 7 (and

conversely, T is an indicator of S). This notion is of particular interest if S is simpler than 7.

Example: LetA :X -+ Y'and.B :Y -) Xbegivenoperators,andletDandl{be

invertible operators acting on the spaces X and Y, respectively. Then the operators D - B K-r A

and 1{ - AD-rB are matricially coupied operators. Indeed,

:"")-': (

-t
D _ BK_IA _Bli_l

K-r,4 K-r

Theorem 1.1 Assume T : X1 -* 21 and S

let the coupling relation be giuen by

Zz -+ Xz are rnatricially coupled operato'rs, and

T

Azt

I
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Then

TO
o r.r,

where E and F are inue'rtible 2 x 2 operator matrices

-Arz T Bu

I x, Bzr

uith inuerses

E-r - Bz, S Azz

Iz, .4n

):,(

.90
g [2,

F, (1 5)

Azr -4zz
E F_

T .{rz

Bn Bt
.9 Bz,

Proof. By direct computation, using (1.1)

From the definition of equivalent matrices one notes that (1.5) says that after a simple extension the

operators 7 and S are equivalent.

Theorem 1.1 is of particular interest when the operators 7 and S depend on a parameter. For

example, if the entries of the coupling matrix (1.2) depend analytically on a parameter ), for .\ in

some open subset of C, then the same is true for the entries in its inverse (assuming it exists) and

in this case the operators E and F appearing in Theorem 1.1 also depend analyticaily on ).

L.2 Invertibility of matricially coupled operators

In this section rve describe Fredholm properties of matricially coupled operators

8
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Tlreorem 2.1 LetT and S he matrici,ally coupled operators, and let the cou,plin,g reLati,on be giten

bu

TAn
Azr A,

8,, 8,,

Bzt .9

(2 l)

Th,en

[(er T : B,r(t{er S) ; Iier S : Azt(lier T). (2.2)

[m T : B;l (Irn S) ; [m, S : Ar]@n r). Q.3)

Furtltermore, T ltas a generalized inuerse (resp., righ,t, ttto-si,ded inuerse) if and only i,f S lr.as a

generalized i,nuerse (resp., right, ttoo-sided inuerse). If S+ is a generalized inuerse of S, tlt.en,

T+ : Bt - BnS+ Bzr Q.4)

is a ge.neralized inuerse of T, corr.uersely, if T+ is a generalized iruserse of T, tlten

S* : Ar, - AzrT+ Arz (2.5)

is a generaLi,zed inuerse of S. Also T is a (semi-) FredhoLm olterator if and only i.f S i.s a (semi-)

I\-edltolm operator, and in this case ind T : ind S .

Proof. Since the first rnatrix in (2.1) is the inverse of the second matrix in (2.1), we know that

BztT + SAr, - 0. This shows that Im T C B;rl(lm .9). Now assume that BxlJ :Sz. Then

y : TBIA*A12821y

: TBna I AnSz

: TBnA-TBrzz €lmT'

We have proved the first identity in (2.3). Similarly with the other identibies. All other statements

in the theorem are straighbforward consequences of the equivalence relation in (1.5). E

9
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Example: The usual method of reducing the inversion of an operator [ - F, where F has finite

ranl<, to that of a matrix is to be understood and made precise in the context of matricially couplecl

opera,tors. To see this, assume F : X -+ X is given by

n

tr:D \.,6;)rh,
j=l

wlrere rbt,...,fr,, ar€ given vectors in the Banach space X and 6i,...,cfii are continuotts linear func-

l,iona,ls on ,f,.

Define A : X -| Ci" a,nd B : C" -) X by setting

Ax : col((r, 6:))?=, xeX,

A1

B D o,,h,
J=L

dn

n

Note that Cl : AB acts on C', and its matrix with respect to the standard basis of C", is given by

mat (G) : ((di,di))?, i=, (2 6)

Sirrce F: BA, the operators .Iy - pF and 1, - pG are matricially coupled; in fact

lx - p.F pB

AIn

-1 :(r^ ILB

ln- 1LG

(2.7)

Irrom (2.7) it follows (cf., formula (2.a)) that (/2r - pF)-' : Ix * pB(1"- U,G)-'A whenever

clet (1" - pG) +0.

10
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1.3 Singular integral equations

In the rema.ining sections of this cha,pter, we a,pply the principle of matricial coupiing to the class of

singrrlar integra,l operators with analytical symbol.

Consider the singular integral equation

,4())d()) +B())( !t 44dLt):Jr,), )€r (3.r)
iT? Jf lt, - /\

Ilere f consists oi a finite number o[ disjoint smooth sirnple Jordan curves, ,4 a,nd B a,re given

continuous nxrL matrix functions defineri on l, and the given function / and the unknown function

d are vector functions. As usual in the theory of singular inbegral equations, it is assumed that the

inner domain A-,' of f is conrrected a,nd contains 0, while the otrter domain A- o[ I contains co.

The irroblem is to fincl ,/ such Lhat (3.1) is satisfied. For / a, rational function without poles on [',

we pttt

(srd)()) :!S !@a1,, )€r,
1T1. Jl lL - A

where the integral is taken in the sense of the Cauchy principle value.

Tlre operator Sr clefinetl in ttris way ca,n be extendecl by continuity to a bounded lirrea.r operator,

again denoted by Sr, on a suitable space E. Equation (3.1) can now be written a,s

(Me + M85r)6: J, (3.2 )

where M1 and LIs ale t]re operators of multiplication by A ancl B respectively, a,ncl .9p is the 6asic

sittttu,lar integral operator ancl Sr enjoys the property that S3: 1(see [CG]) The operators M1

a.rA lvIB are also a,ssumed to be bounded linear operators on E. In what follows B will be the spa,ce

L;(l) o[ square integrable functions flom f into a Banaclr space Y : Cn.

Prrh Pp : iU +.9r) and Qp : iU - 5r),where I : Is is the identity operator on E. The opera,tors

Irp and Qp are complementa,ry projections, which can be used to rewrite the operator LI111- MsSr.

11

htttp://etd.uwc.ac.za/



t\ssume that the values of the function A - B are invertible operators on Y and that the operabor

L46-e1-, o[ multiplication by [A()) - B(])]-' is a well-defined boundec-l linear operator on E. Then

Ma * MnSr: l/te-B(PrMwPr + Qr)(l * QrMwPr),

where I\,[w is r]re operator of multiplication 6y w$), with 17()) : IA()) - B())]-'[A()) + B())]

Observe t\at Ms-6 and 1 * QrlvlwPp are both invertible operators. It follows that the invertibility

properties of Ma t MBSr are completely determined by those of the operator

Tw: PrMwPc : E+ -) g+

Here E+ : Im Pr is bhe space consisting of all functions in E that have an extension which is analytic

on the inler domail A1 of f and conbinuous on the closure A+ U f of A1. Similarly, the image of

Qr is the subspa,ce of all functions in LT(f.) that admit an analytic continuation irrto A- and vanish

at oo. We shall write E- for I- 8r, a,nd thus E: E+ @ E-. The operator Tw is called the Toeplitz

operator rui.tlt sym,bolW. The action of Tw ort E+ is given by

l -- ... ... | 1 W(1t)60r) , \Gwd)(^):rwts)d()) +*Jr-p:2ap, )€r' (3.3)

Note that the symbolW is a function on f whose values a,re in L(Y), the space o[ all bounded linear

operators on l;he Banach space Y.

1.4 Indicator

ContinuingthediscussionofSection3wenowassumethatthesymbol I/:f -+.C( C-) isregular.

The following result (taken from [GI(1]) will play a fundamental role in the analysis of the Toeplitz

operator ft42 a,sso<tiated with ttre singular integral operator.

t2
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Tlreorem 4.1 LetlV be aregularrnxm rationalmatrixfunction, andletd+0 be.such,thata is

ncither a pole nor a zero of lV . Th,en W admits a representation

l4l()) :D+()-o)c()G-A)-18 , )€f, (4.1)

uhere G and A are square matrices of the sarne order, B, C antl D are matrices oJ approp'riate .si.zes

uitlt D i,nuertibLe and tlte penci.l )G - A is l-regular.

lVe sha,[ refer to the right hand side o{'(a.1) as a realizationof W. In the sequel the next two lemmas

will be useful, see [Gr1].

Lemma 4.2 LetlV be as in (/r.1), uhere 
^G 

- A isl-regular. Set G* : G + BD-tC and A* :
tl + aBD-tC. Th.en det W'(A) l0 for each ) e | ,f and onlly if the pencil 

^G" 
- A' is l-regu,lar,

and irt tlti.-q case

w(^)-': D-t -()- o)D-'c(^G* -A*)-'BD-l , )€ f. (4.2)

Lerrtma 4.3 Letl,V be as in (4.1), tuhere 
^G 

- A isl-regular. Assume thatdetWQ) f 0 for eaclt

) € f, and setG' :G+ BD-IC antl A': A+dBD-tC. Thenfor )el,

w(^)-'C(^G-A)-' : D-|COG" -A')-',
()G - A)-t BWO)-t : ()G' - A* )-' B D-' ,

()G', - A',)-' : ()G - A)-,- () - o)()G - A)-, BW(^)-rC1tC - A)-,.

Next, we turn to operator pencils. Let X be a complex Banach space, and let G and A be bounded

linear operators on X. The expression )G - A, where ) is a complex parameter, rvill be called a

(li.n,ear) pencil of operators on X. Given a non-empty subset A of the Riemann sphere Coo, we say

t,lrat)G-AisL.-regularif)G-A(orjustGif.\:oo) isinvertibleforeach)inA.

Now we recall the very rtseful spr:ctral decomposition theorem for linear (matrix) pencils, (see [GI(2]

Theorem 2.1).

13
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Tlreorem 4.4 Letl be a Cauclr.y contour uith A,* and A,- as inner and outer domain respectirel'u,

ond Let 
^G 

- A he a l-regular pencil oJ operatol-s on the Banach. space X. Th,en there exi.cts a

projectior-t P and an inuertible operator E, both acting on X , suclt th.at relatiue to the rlecomposition

X : [ier P @ [m P tlt,e following partitioning holds:

()G - A)E :

It ca,n be shown that

)01 -.11 0

^[2 
- Q2

[ier P @ Im P -+ Iier P @ lm P, (4.3)
0

rohere [1 (resp. 12) denotes tlt.e identity oTterator on lier P (resp. Im P), the penci.l )01 - 11 is

r\,r-regular and )lz - 02 is L,- -regular. Furtherrnore, P and E (and hence also the operators {11

u,nd {12) are uniquely determined. In fact,

P : : f-cec - A)-t d^, (4.4)
z1fx Jt

E : * lrO -)-,)()c - A)-,(t^, (4 5)

(n, o\ t r
n : 

[, 
";' 

;, ) 
: *, J,0 - ;-r )G\G - A)-' d^' (4 6)

Tlre 2 x 2 operator matrix in (a.3) is called the f-spectral decomposition of the pencil 
^G 

- A, and

tlre operator Q in (a.6) rvill be referred to as the as.sociated operator corresponding to 
^G 

-,4 and

f . We will refer to the projection P and the operator E in Theorem 4.4 as the separating projecti.on

and the rigltt equiualence operator, respectively.

For the proof of Theorem 4.4, we refer to [GI(2j, see also [GGI(], Chapter 4. I{ere we give a few

essential steps of the proof. Put

0:: [r^c - A)-'\Gd^. (4.7)
2ni Jr'

PG:GQ PA: AQ,

I4
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arrd hence the pencil 
^G 

- A admits the following partitioning

\G _ A: ,\G1 - ,41

0

0

^G2 
- 4.2

I(er Q @ Im Q -+ Iier P O lrn P. (4 8)

The next step is to show that the pencil )Q, - 11 is A.,.-reguiar and )lr- Oz is A--regular. Since

0 e A* and oo e A- it follows that 41 and Cz are invertible. Thus we may set

0
[ier P @ Im P -+ I{er Q g lrn Q, (4 e)

G

arrd f)1 : GtAtt and,flz : ArGi'. Then (4.3) hoids and it also follows that the pencils )Or - 1r

and )12 - f)2 are 4..,.-regular and A--regular, respectively. Now we can prove tha,t E is also given

by (4.5) and f) by (a.6).

Next, the realization (4.1) can be employed to compute the Fourier coefficients of W. This leads to

the following proposition, see [J] a,nd [G12].

Proposition 4.5 Let W be a rational m x m matrir function uith,out poles ort tlte u,nit circle T,

antl let

l'f()) : D +()-cr)C()G - A)-t B, ) € 1[,

lte a realization of W. Tlten the k-th Fourier coeffficientlVp of W admi,ts tlte folloui.tt,g T'epresentati'ort:

(

| -c nPt-r -oct};(t - P)8, a > o
Irvp-\ o+acE(l-P)B+]EPB , k:o
I

I calo-r-o,Q-k-t)PB, a<0.

I'lere P, E and. f) are, respectively, the separating projection, the rigtrt equivalence operator and the

a,ssocia,ted operator corresponding to the pencil 
^G 

- A and lf , that is, P, E and Q a.re given by

(4.4)-(4.6). In particular, f) has all its eigenvalues in the open unit disc and f) commutes with P.

Finally, we give the main result of this section.

I

,:(o;'

15
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Tlreorern 4.6 Let T be a block Toeplitz operator on ti uith, a rational symbol

w(^) : D t() -o)c()G - A)-tB, ) € 1[,

qinen in realdzed forrn,. Set G* : G * BD-\C and A* : A + dBD-tC. Let P anrJ Px be l,he

gen,eralized l?.iesz projections giuen by

, : ! [ GeG - A)-td^, P': : I c"()c' - A")-ld,^.2riJr zrtJr

Tlr.en the operator

J' : P"lr* e : Im P -+ Im P' (4.10)

i.s an. irr,tlicutnr for tlte 7'oeplitz operatorT. More precisely, tlte J'ollowirt,g couTtlinq relation h,olds:

-t

lrru Px -+

lrn P -+
/)nLf-'p

lm --+-p

Irn P' -+

ImP
lrn P'
ImP

xelmPx,
xelnrP,
rl : (4o,6t'

\ : (do,6r'

r e lrn P*.

(,1.11)

) e tr,

) e t-7,

TU
RJ

(ur)i :
(tJ' x) i :
Rq:
Rrn :
Jx :

TX (,1*

Rx ,l'

ruh.ere

U

U'

R,

Rx

J

!rn.P

!m

_C EOr (t _ p)"

-D-|C E"(Q" )r(1 - P"),

LI-.o Pai Bdi

- DPo P',(O" )i B D-t 6i

Px

Here E and Q are the righ,t equ,iualence operator and the associate operator corresponding to AG - tl

and T . Tlte operator T' is the block Toeplitz operator on li tnith symbol W|\-r.

Proof. In t;he setluel we a,ssume that the pencil )G' - A' is T-regular. To establish the cotrpling

relation (4.11) we employ the method of matricial coupling (see [BGI(1]). lntroduce the following

16
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ol)erators

(;

(;

U

J
tT A lrn Px (i @ Int P,-|

-+
ux ti@lmP 1,7 A lrn P*,
Jx

-Cnni(l-P)*, te ImP',

-D-tCE"(Q*)i(t - P')r, r € Inr. P,
@

r prt' Bdi , n : (60,6r,. ..) e !-7,
,=o*

(u ")i
(u" r)i

Rrr

- ! r'(0* ), B D-'R* rt di, rl : (6o,dr,...) e ti',

J*x: P*r (r e Im P).
,=0

Pr (x e Im P*),

I{ere E ancl 0 are the right equivalenceoperator and associate operator corresponding to )G-A a.nd

lf . The operator 7x is the block Toeplitz operator on !-i with symbolW(')-t. Note that -I" is the

operator defined bV (a.10). Since Q a,nd f)' have their eigenvalues in the open unit disc (Proposition

4.5), bhe operabors U, U', R a.nd R' are well-defined. We will prove that (4.11) holds. In fact,

proving (4.i1) boils dorvn to verifying eight identities. Here we will establis]r four of them, namely

TT* +UR* : Irtr, e.lz)

RT' + J R* :0, (4.13)

TU'+(JJ*:O, (4.I4)

RU* + JJ* -- [mp. (4.15)

The other four identities can be obtained similarly or by interchanging the roles of W(') and WO-t.

Jx

L7
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We fir'st consider the case p : 2. Let Li( T) be the Ililbert space of all C''-valued square

irrtegrable functions on 1[, and let Htr(T ) be the subspa,ce consisting of all / € LT( T) with Fourier

coeflicients c, : 0 for n : -1, -2,.... The orthogonal projection of Li( T) onto Hf (T ) will be

rlenoted by P . If g € LT(T), then Fg has a natural extension to an analytic function on D+

(also denoted by [']9), and we will use the fact that

( egX() : ! [ n(r)=d.r, lq < 1. (4.16)
z1ftJT lt-\

It will be convenient to r:se the Fourier transform

F , Hf (T) -+ li , Fd: (cr)po,

where c; is the 7-th Fourier coefficient of /. Set

Sw

Sw-, vx

.A\I

ly'x

: F-rT F

: F-rT" F

F-IU

F_1U*

: RF,

: R*F.

V

Then

(v,)G) :
(t" r)(O :

N6:

N,,b :
Swd :

C(eC-A)-'(l-P)r, ze ImP', (€T,
D-tC(eG"-A',)-'(l-P',)x, xe ImP, (e lt,
lr

; Jr(( - ") PG(CG - A)-'B6K),ie , ,b € Htr(r),

-* lrrc - o)p'G*(eG" - 11')-' BD-16|)d,e , 6 eHr( r),
P Mw6, Syy-, : P Myy-,$ , de ru71f 1,

wlrere P istheorthogonalprojectionof Li(1I)onto Hf(f)andMyy (resp. Mw-,) istheoperator

of multiplication by W (resp. W-1). lVe have to prove the following identities:

SwSw-, +VNx : [uf(r), (4.t7)

18
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N S,,y-, * ,./l{' : 0,

SwV'+1,/J " - 0,

IVY'+JJ*:lr^p

First we cornpute SwSw-r. Note that

((-o) BD-tg:QtG" -A',) -KC-A)- (p-()G"

(4.18)

(4.1e)

(4 .20 )

(4.2r)

vv (OW (p,)-1

Let g € Hf (T ), and suppose that 9 is a polynomial. Then, by formula (4.16),

Thus

It follows thab for l(l < 1,

{, * G - dc((G - A)-' r} {r-' - 0, - o)D-'c(ptG" - A')-' BD-'}

I - (p - a)C(pG' - A*)-'B D-' + (( - a)C((G - A)-'B D-l

-(t, - d)cGG - A)-'(( - o) BD-|CQfi" - A',)-',BD-l

I - (r" - OC((G - A)-'B D-l

+0, - ")0, - ocKG - A)-tGx 1rG' - A*)-' B D-l .

(s,u-,g)(O : ! t W44or, l(l < r
tTtLJT 11 -\

t s w(C)w(p)-'g(p) ,

nrJ, 1,,-q ou

e(O + C((c - A)-' (* lr0, - o)G" (r,G* - A*)-' B D-t s(p)d.p)

(NIw Svy-, s)(o

Now. rrse the T-specbral decomposition of the pencil pG* - A* (Theorem 4.4). It follows that

(l - P")G*(pG" - A')-'is analytic on D1. Since g e Hf ( i[), we conclude that

2tri t. fu - ")([ - P")G' QtG' - A')-' BD-' g04dp : 0 (4.22)
1
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'f lrrrs

(tut1,ySjy-,g)(O : sG) - C((G - A)-' N' s, l(l < I

The T-spectra,l decomposition of (G -,4 implies that C((G - A)-'P is analytic on D- a,ncl

C:((G - A)-'(f - P) is a,nalytic on D+. Note that all functions involved are rational. Thus

,5w,5w-, - g -V'N*g for each polynomial g in t{tr$ ). But the polynomials are dertse in i/i"(1t),

so the identity (4.1i) is proved.

Again, let 9 € Hf (T ) be a polynomial. Then

(//u'g)(() : (Plfig)(o

: p (- * h(( - .,) p'G*(cG" - A')-' BD-'\g(od()

_T S

2ni J r(( - a)PG(CG - A)-t 3 p-t s(Od,(

-, (* 1.rc - eB D-'\c(ec,.- A')-' B D-'1 sG)dC)

ty
- 2_i/n(( - a)PG((G - A)-' Bvv(C)-ts(0d(

-, (* lrte - eBD-'1c(eG" - A')-' tsD-ts(o,t(),

lr5, an application of Lemma4.3. Since P I4l(O-tg(O: W(e)-'g(0, weget that

(JN"g)(0 + (ffSw-,g)(()

: -, (* lrrc - eBD-tcGG* - A*)-' BD-.s(odc) : o

Indeed,

! t (( - o) BD-lcGc' - A')-'BD-ts(()d(
ZT|IJT

* h[(e c. - A.) - ((G - a)] ((G' - A")-' B D-t s(od.(

^]- t B D-t sG)d,C- : [ rcc - A)(,G* - A*)-' B D-t s(Od(
ZTII J T ZTIX J T

! t ((G - /)((G - A)-' Bvv(O-ts(Od( :0.
Z1f?,JT

20
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I{ere we a,pplied Lernma 4.3 and Cauchy's theorem (twice). Since the polynonrials are tlertse in

HI'(T ), the lormula (4.18) is proved.

Next, we take r e lrn P. Note that (t - P)U - P*)r: -(I - P)P"r. Tltrts, usirrg Lemrna4.3,

(lvtwv" x)(() : wG)D-'C((C'* - A')-'(I - P")x

: c(CG - A)-'Q - P')x

: c((G - A)-'PU - P',)* + C(eG - A)-'U - P)U - P*),

: CGC _ A)_, PU _ P")* _ CrcG _ A)-'Q _ P)P*r

: CGG _ A)_, PU _ P*), _ C(\G _ A)-, (I - P)J* X

: c(eG - A)-'PU - P*)* - (VJ* r)(0

Now use the fa,ct that ((G - A)-' P is analytic on D-, it follows that, Swl/' : -VJ*, a'ncl

(4.19) is proved.

Formula, (4.2L) (with p: e) implies that

GG -,4)-'(( - a)BD-tC((C* - A")-': ((G - A)-'- ((G' - A')-'

EorzelmP,

NV, X rc - d)PGGC; - A)-t B(v*r)(Od(

PGIGG - A)-' - ((G', - A")-'] ( - P')rct(

lr
-I2riJr
lr_t

Ztri I r
p(r - p'),- pp*(r - p')r* p (* IrBD-tCGC' - /')-'(t - P*),,tc)

r-JJ"r*P

r-JJ'r,

1

2ri I- B D-|C(eG" - .4')-'(l - P")rd( )

2t
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(* l.BD-lcGG' - A')-'(t - P";,aC) : osince P

Inrlee<I,

, (* I.uD-tcGCt" - A')-'(r - p')",1(): pB (* lrD-.cGG" - A*)-'-n)

rvhere z e [ier PX. Norv, recall that

has an a,nalytic coLrtinuation to Dr., whence

d+(() : D-tc(Cc" - A')-' r, z € l{er P',

I
t. D-t CGG* - A',)-t zd( - o ,2ri

hy Cauchy's theorem. Hence (4.20) is established.

We have now proved the identities (4.12)-(4.15) for p - 2. Next, take an arbitrary p, I < p ( oo.

Since ? and T* are block Toeplitz operators with symbols from the Wiener class, the operator TTx

on ti ha.s a matrix representation, that is,

@

(TT*x)*: I M*jrj, k :0, 1,2,...,
,=o

for each r: (ro,r1,r2,...) in {i. The same is true for UR". So to c.heck (4.12) it suffices to show

tlrat (77' + UR")r : r for all sequences * : (*o)70 with a finite number o[ non-zero elements .

But; the latter sequences a,re all in (.i, and hence (4.I2) holds for any I < p ( oo.

r\ similar argument proves that (4.13) holds for any t Sp ( co. The identities (4.14) and (4.15)

clo not depend on p. E
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Chapter 2

TI{E STATtr SPACE MtrTI{OD FOR

SOLVII\G SINGI]LAR II\TEGRAL

EQI]ATIONS

Irr [C]l(3] the state space method was used to give explicit formulas for the solutions of singular

irrtegral eqrrations with ra,tional symbol of the form

W(^):t*C(^G-A)-'B (0.1)

Ilere A is a square matrix whose order n may be much larger than the size o[ W(^), and B and C

a,l'e matrices of appropriate sizes. G is a square matrix of the same order as A, and 1 stands for the

nL x rn identity matrix.

In ttris chapter lve carry out a similar program as in [GK3] but with a different representation of the

ra,tiona,l symbol, namely

vV(^): D + () - a)C()G - A)-t B' (0'2)

23
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Here a is a non-zero complex number rvhich is neither a pole nor a zero of lV . A, G, B and C

a.re as in (0.1) and D is an invertible matrix. The main ideas from [GI(3] are extendecl to the case

considered here, i.e., explicit formulas for the solutions o[ singular integral equations,,vith the above

representation o[ the symbol are given.

2.L Preliminaries about matrix pencils and realization

Tlrroughoub this cha,pter f is a contour consisting of a finite number of disjoint smooth simple Jorcla.n

crrrves. The inner dornain of f will still be denoted by A+ and its outer domain by A-. [n what

follows we assume that co € A-.

f("). Realization

'f his subsection concerns the special representation (0.2)

Proposition 1.1 A rationalrn. x n1, rnatrix fu"nctionlV uitltout poles on th,e corttour I admits the

f o I loruing repres entation :

t/(^): D t () - o)c()G - A)-1 B )€f, (i 1)

tuherea+0 andu is neith.er apole nor a zero of W. HereG and A are square matrices of tlt.e sarne

si,ze; n x 7t sa,y, tlt e penciL 
^G 

- A is I -regu,lar, and B , C and D are matrices of size-s n x m,) m x n

and n't. x rn res'pectiuely.

The representation (1.1) may be derived from classical rea,lization resuits by a,pplying the Mobiirs

transformation
2^-r

d(^) :o2)+l 6-'Q)
7z*a
2z-a

24
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Inrleed, since I,7()) can be written in the form

Put l,lz'()) -- VV1rtr-t ())). Then

rv()) -D+C(^-A)-'B )ef

B

vv ub-, (\) D+C(,b-l()) - A)-'B
l)*a ,]D+C ,)

!
I

)-o
a()+G) -() A)D+C B

)-a

, + () - o)c[^,-i - A) - "C-r)]
D'+ () -,t)C'()G' - il')-t B'.

1l
Ilere z1' - "G- A) , G' : -r- A, B': B , C': C anrl D': D' Then (1'1) holds'

It W is as in (l.l), then we shall say tl-rat W is in realized, t'orm, and we shall call the right-hand

side of (1.1) a realization of lV. The following proposition will be used in Section 3; its proof can be

found in [Cirl], Section I.2.

proposition 1.2 LetW(\): D+()-a)c( 
^G-A)-tA, 

) € l, beagiuenrealization, ultere

^G-Ai-sf-regu,lar..SetGx:CllBD-ICand,A*:A*aBD-|C-Tlt.ertdetl'y()) 
*0for

eaclt \ € f i/ ard only i.f the Ttenc.il )G* - AX is I -regular, anrl in th,is case ute haue the following

id.entities:

w(^)-r:D-1 -()-o)D-'c(^G', -A')-'BD-l , )€f,

()G" - A")-' : ()G - A)-' - () - a)()G- A)-' BVV(\-tcQG- A)-" ) € f

(1 2)

(1 3)

25

-1

htttp://etd.uwc.ac.za/



1(b). Matrix pencils

Proposition 1.3 Let ),G - A be l-regular, and let tlt.e natrices P and Q be rlefined by Q.a). Tlten

l) anrl Q are pro;jcctions ruhiclt haue th.e fol.louing properties:

(l)PG:ClQandPA:AQ;

(2) (AG - A)-t p : QQG - A)-' on I anrl tltis function ltas an analytic corrtirr,uation on L-

ultich uanislrcs at a;

(3) ()G-.1)-'U-P):(l-O)()G-A)-'onl andtltisJunctionhasananalyticcontinu,ati.ort

on L,a.

Note that the above proposition also holds for the associate pencil AG* -,4" and the corresponcling

sepa,rating pro.jection Px .

Let, A anr-i Ci l>e n x zr cornplex rnatrices. The expression )G - A, where ) is a complex pa,ra,tneter,

is callecl a, (littear rnatrir) pencil. We say that the pencil 
^G 

- Ais l-regularil tlet' ()G -,4) I 0 For

each ) on the c.ontour f . In tlris ca,se one ca,n define the following matrices:

1r
'lTZ .lt titx Jl

(r .1)

I r ,rx\-rJ,, /'\x I [,,'.-*P.x : * .lr*- ((G' - A")-t dC , Q' 2rr, ./r\*.. - Ar )-'G" tlc.

lVe shail need the following spectral clecomposition result. For its proof we refer to [GI(2], Section 2.
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2.2 Reduction of the inversion problem for singular integral

equations

This section consists of a, proposition that summa.rizes one of the main steps in the proofs o[ theorems

that will be dealt with in the next section. Its central idea is the reduction of the inversion problem

to a problem [or input/output syst;ems.

We sha,ll refer to the irrtegral etluation introduced in Section 1.3, namely,

,,t()){()) + B()) (l f otp),.1r) : /()) ,) € r (2.1)
\7r2JrF-A /

As [relore, bhe contour f consists of a finite number of disjoint smooth simple .Jordan curves ancl the

coefHcients .4( ) and B( ) are rn x nL ra.tional matrix functions, which have no poles on l. Qr, Pr

ancl Sp a.rc as before.

Assrrme rrow that det (A()) - B())) l0 for ) e f. Then equation (2.1) may be rewritten in the

[orln

(Mw Pr * Qr)$ : s, (2.2)

where lllry is t]re operator of multiplication by the n'L x n'L matrix function

w(^): [A()) - B())]-'[A()) +B())], ) € f, (2 3)

a.nd the right-hand side g is given by

g()) : [A()) - B())]-1l()) )ef (2.4)

lVe shall refer to MwPr * Qr as the singular integral operator with symbolW. In fact, the symbol

is the diagonal matrix I,l/( ) e /p, where Ip denotes the function which is iden[ically equal on f to

the rn x m identity matrix; in the sequel we will omit this second function.
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Proposition 2.1 Let fi,twPr * Qr be the singular integral operator on Li(l) ruith symbol (1.1),

ontlletgeL;'(l). PutG'=G+BD-IC andA':A+aBD-tC. A.ssunt;tlr.at )G'- A* i's

| -regular, and lr:t P antL P' be the projections defined by $.a). Th,ert, the equ,ati'on

(Mw Pr * Qr)d : g (2 5)

Itas o, solu,tion d e f,7 (f) il and only i.f

lrrc - o)P*G'((G' - A')-' tsD-t s(Ode e P*ltrn P), (2.6)

and i,n. this ca.se the general solutiort of (2 5) is giuen by

D6+Q)+,/-()) : [g()) -C(^G-A)-'y*CQG" -A*)-'a-|)-a)C$G'-A')-'BD-' (Prg)())],

(2 7)

ult,e',ra: y is an arhitrary uecto'r in Im P .such tltat

P*y: 
-l- 

t(( -.r) P*G*((G" - A')-' BD-lsG),iq. (2.8)
z1ft Jl

f{ere $,,()) : (Prd)()) and cf-()) : (Qrd)(l) fo, d e Ltr[).

Proof. We follow the same line of rea,soning as in the prool of Proposition 3.1 in [GIi3]. See also

Proposition 2.3 irr [Gr1], Section II.2.

Iror r/ € LT(f), put

d+()) :: (Prd)()l : |otrl * * I,

d-(^) :: (gnd)()l : |olrl - * l,

6rc)d,c
(-)

6(e)d.c

)€f,

)ef

(2.e)

(2.10)(-)
Assume now ttrat 6 e tT(f) is a solution of (2.5). We shall now show that in this case g satisfies

(2.6) and that @ is given by (2.7). First, we introduce the auxiliary frrnction

p()) :() - a)()G - A)-' 86+0), ) e f
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Next, from the representation (1.1) for Hz'it follows that the connection bebween / arrti g in (2.5) is

rlescribecl by the lollowing input/outpub system:

I scplss : Ap(^)+ () - a)Bgag), ) € r,( "' / \ / "\ (2.11)

I g(r) : cp(^)+Dd+()) +d-())

Note that p € L;(l). The first identity in (2.11) implies that the function

()G - A)p(^): () - a)B/.,.()) € Im Pp (where Pr is now considered onto t|(f)).
I

Since Pr : ;(1 * Sr) a,nd ()G - A)p(S) € Irn Pp it follows from (2.9) that

()G- A)p(^l : |t.rc - A)p(\+*l,_f=3.p6)dc

[-lence,

1

2
(AG - ,a)p(.)) _)-tG?o3;,d,czTTzJt q- 

! t=l=tre -))G+()G -a))pG)a(,z1fz.tlq- 

8',)Gx*()G-A)

I p(C)aC € c"
JI

(*I )€[',

where

I lence,

t
T n*;L II L

Brrt then we see (use (2.10)) that

f;o{t):()G - A)-'Gr**1,

i.".,

!G),ae, )€r,(-^

()c - A)-tGr p()) -*1, de:(Qrp)()) , )e r1

2

p(e)

(-.\

p-()) : ()G - A)-lGx, ) € f. (2.t2)
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Since PGr € Im P, we may apply Proposition 1.3(2) to show that ()G - A)-'PGx extends to a,n

analytic function on A- which .,,a,nishes at infinity. The functior p- has the sa,me properties. Thus.

Ir"v (2.12), also the function ()G - rl)-t(l - P)Gr may be extended to an analytic function on A-

wlriclr vanishes at co. On the other hand, by Proposition 1.3(3), the function ()G -,4)-'(t - P)Gx

is a.nalytic on A.,, U f . Thus this function is an entire function which is zero at irrfinity. Tlrerefore, by

Liouville's theorem, ()G-,4)-'(t - P)Gr is identicallyzero, which implies t,l'rat, Gr = PGr € Im P.

Frorn (2.12) it lollows tlrat l,]re first iclentity in (2.11) can be written as:

AGp*()) :,4p+()) -Gr+()-a)B/.,.(,\), )e t (2.13)

By applying Pp to the seconcl identity in (2.11) we get

g+()) :cp+())+Dd+(^), )e f (2.r4)

N,rw mrrltipl.v (2 l4) from the left by () - a)BD-r and subtract the resulting identil,y ironr (2.13).

This yields

)G'p1()) : A'p+()) - Gx + () - a)BD- 'g*()), ) € f, (2.15)

a.n<l thus

()-cr)()G'-,4')-tBD-'g*()) :p+()) +()G'-A")-tGr , )e t. (2.16)

Frorn Proposition 1.3(3) (rvith ()CJ' - A') instead of ()G - A)) we knorv that the function

()a;* - A')-tU - P" )Gr extends to a function which is ana,lytic at each point of A1 U f, ancl thus

t,lre ftrrrction ()G' - Ax)-'(/ - P*)Gr beiongs to Im Pr: I(er Qp. .Also p+ € l(er Qp. Therefore

Qp applied to (2.16) yields:

i,^ - cr)()G' - A')-' B D-'\g+()) - *[ ffi((G, - A, )-, B D-,g+(od( 
(z.LT)

:()G* -A")-'P"Gx, )€f,
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and so

P* Gt : l,^
2'
((c

- a)B D-t g+ ())I: -(l2'
1

- a)B D-t g+())

* _ Ax)-, BD-,

i
- 2"i

s+(Od'

t G,-a)
/r (( - .l)

(

[()-()G"+((c'-A")]

2ri f !! - :] B D-'s+(od(rr((-^) (2 18)

2tri ly - o)G*((c' - A")-' B D-t s+G)dC

: ! t(( - *)G,((G, - A,)-, BD-.s.,(gd,(.
'Ztrz J r "

Proposition 1.3(1) and 1.3(2) imply tirat the last integral does not change if in the integra'nd G* is

replaced lry P"G'. But P*Gx((C- - A")-tBD-r is analyl;icon A- and vanishes at oo'

There[ore,
I t.

*i JrK - c')P* G* ((G" - A" )-' B D-'g-(Od( : 0'

Thus

P'Gx: : [rc - dP"G"((G" -,4')-' BD-'s+(Od(
'Lnt Jr

which shows that (2.6) is satisfied.

Put y : Gt:. Then (2.8) holds. Furthermore, by the seconcl identity in (2.11), and formulas (2.12)

anrl (2.16) we ha,ve

Dd+Q) + d_ ()) e())-cp+(^)-cp-(^)

s()) - C(^G -A)-'y+CQG" -A")-'y

-() - o)C()G' - A")-tBD-t (Prg)())

rvhich proves (2.7)

Next, we prove the converse statement. So, we assume that / is given implicitly 6y (2.7), rvith y a

vector in Im P satisfying (2.8).

+
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Pub

r,1()) : ()G - A)-'y,, pz()) : -()G* - ,4')-'Y,

pa(A) : () - cY)()G' - A" )-' B D-t g*()),

where ) e f. From y e Im P and Proposition 1.3(2) it follows that p1 € Im Qp

Further, note that

pr(^): -()G' - A')-'P"y - ()G" - r1')-'(t - P")v

Nor,v, applying Proposition 1.3 and Qr to the above equation yielcls

@rpr)(^):-()G" -A*)-'P'y, )e f

Furthermore,

P,Y ! t(( - o) P'G'((c' - A")-'BD-t g+(1de
Zif?, JI

* Irr - cv)G'((G. - A')-' B D-'s+(O,l(

i,^- a)BD-'g*()) -()G'-A") (*Iffi (CG* - A*)-' B D-t s+(Ode

To prove the la,st equality one uses bhe same type of reasoning as in (2.18).

From the above calculation it follows that (2.17) holds with y instead of Gr,i.e.,

()G'- tt')-'p'y-- lt^-a)(,\G'-A')-'BD-'s+())-l t(('-o)'rG'-A')-'BD-tg+(OdC
2' /\ rr ) uu y+\,,) 2ri.lr ((_)),r.

rvhich slrows tha[

(QrPr)()) :()G" -A")-'P*Y, A€f'

Thus p2 I p:te l(er Q1 : Im Pp. As Dd+*d-: g-CPr-C(pr+ h), we conclude that

$- : g- - Cpr, Dd+ : t+ -C(pr+ Pr).
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Irrorr-r the definitions of p.2 and. p3 we irave

()G- rt)(pr(A) +p:())) : ()c' - A')(pr(^) + pr(A)) - () - a)BD-tC(pr(^) + pr()))

: -y * () - ") 
BD-'s*()) - () - o) BD-tC(pr(^) + p3()))

: -y * () - a)BD-' [g*()) - C(pr(^) + pe()))]

: -y + () - a)B/a())

: -()G - A)p'()) + () - a)B/a()).

14/(\6+0) +d_()) : [D+() -a)CQG - A)-'B)6+Q) +d-())

: Dd+()) +Cp()) +d-())
: C p(^) t Dd+()) + ,/- ())

: 9()), )€f,

a,rrrl thus D6+ * /- is a solution of (2.5). n

2.3 Inversion and Fredholm properties

Equation (2.1) has a unique solution 6 e t71f) for each choice of / € L;'(l) if and only if the

singular integral operabor Mw Pr * Qr is invertible, and in this case the solution / is giverr by

d : (Mw Pr * Qr)-lg,

where y is clefined by (2.4). in this section we give a necessa,ry and sufficient condition for the

invertibility of MsrPy * Qr and a,n explicit formula for its inverse. Also we shall describe the

Frerllrolm properties of the operabor l'[wPr * Qr.

If follows ttrat wiih p: pr -t p, + p3 the identities in (2.11) hold. But this implies thab
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Since the coeFEcients A(.) and B( ) in (2.1) are rational and have no poles on l, we see trom (2.3)

t,lrat tfie sanre is true tor lV. It follows (see Section 1(a)) that lV admits a realization o[ the lorm

w(^) : D +() -a)c()G - A)-t B, ) € f, (3 l)

where 
^G 

- A is a f-regula,r matrix pencil.

Recall (see [TL]) that an operator T on Li(l) is Fredholmif kn 7 is closed ancl

dim t(er T ( oo, coclim Im ? : dt- (fi?) . -.

If 7 is Fretlholm, then its index is the integer

ind 7 :: dim I(er 7 - codim Im 7

lVe say tlrat 7+ \s a generalized inuerse (in a weak sense) of T if TT+T : T

lVe now have the following theorems.

Tlreorem 8.1 LetT: N[wPr *Qr be th,e si,ngular integral operator on Li(l) uith symbol (3 1)

Put G, : G * BD-\C and A' : A+ crBD-rC. ThenT i.s a Fredholnt. operator i.f and orily i.f tlte

Ttencil )G, - Ax is I - regulat-, and in tlti,s case the following equalities hoLd:

Ir'erT : {61 Dd+(^)+d-()) : -C(^G - A)-ty+C(^G' - A*)-'y, U e Im Pa lier P-], (3.2)

tmT : {g e LT[) lffe - o)P'G*(eG'- A')-t BD-'g(OdC € Im P a t(er P']

dim l(er T : dim(lrn. P o lier P"), codim ImT : dim

indT : ranlc P - ranlc P'.

C"
ImP*lierPx'

(3 3)

(3 4)

(3 5)
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[{er-e P anrl P* are as bet'ore, andn is the order of the matrices A andG. I\rth,ernlor€t a generalized

i.ruterse T* of T i.s gi,uen by:

(7*g)()) : s()) - () - a)C() Gx - A')-' B D-t (Prg)())

+ {C(^G" -.1')-' - C(^G - A)-' } (3 6)

,. (* I,t, -o)p' G* (eG" - A*)-'B D-'1g(od() , ) € r,

ruhere ,J+ '. [m, P* -+ Im P i,s a generalized i,nuerse of tlte linear transfonruation

J:P*llnP: ImP-+lmP' (3 i)

Proof. From the generai theory of singular integral equations (see [G], also [CG]) it is known that

T = MwPr-lQr is Fredholm if and only if det llz()) +0, ) e f. But by Proposition I.2,Tis
Irredholm if and only if det ()G'- A*)10 for each ) € f.

Assume that bhe latter conclition hoids. An immediate application o[ Proposition 2.1 (wit;h g:0)
gives (3.2). Also (3.3) follows directly from Propostion 2.1; one only ha,s 1;o note that lor z € Im PX:

x e Px[Im P] +) z € Im P * I(er P'

To prove the first identity in (3.a) it suffices to show that lor y € Im P O I(er Px the identity

C(AG - A)-'y : C(^G* - A")-tY, ) € f (3 8)

irnplies U :0. Since y € Im P, the left-hand side of (3.8) extends to an analytic functioti on A-

which va,nishes at oo. Frorn y € l(er P' it follows that the right hand-side o[ (3.8) lras an arral.vtic

continuation on A-p. So, by Liouville's theorem, both functions are identica,lly zero on f. But then

lve can apply the ident;ity (1.3) to show that

()G' - A')-'a :0G - A)-'y )ef (3.e)

t.:
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Alrply G' Lo both sicles of (3.9) a.ncl irrtegra,te over the contorrr f. One sees blia,t y: Py: P*ll:0
and t,lrus the firsl, identity in (3.a) is proved. In an analogous way one proves the seconcl iclentity in

(r] 4)

Fronr (3.4) it lollows that

ind 7 dim(lm P o I(er P*) - ai*----J'-' ImP+[(erP'
climlmP-dim ImP

ImPol(erPx
ImP*l(erP"

C"
InrP*l(erP'

C"

- dim

dimlmP-dim - dim
I(er P* ImP*l(erP"

clim Im P - dirn Im P*

which proves (3 5)

Finally, let us show that the operator 7'* defined by (3.6) is a generalized inverse of 7. Take an

a.rbitrary $ e f791, and put g:76. Then (2.6) holds, that is,

,,: l, (( - o)P" G* (eG" - A*)-' B D-t g!)de e Inr ,.I (3.i0)

wltere J is defined by (3.7). Put y :.Jrz. Since J+ is a generalized inverse of ,,i, the rnap -/./+ a.cts

as the irlentity operator on Im J, and therefore P'!J: J,J+z: z. It follows that (2.8) irolds. Also

.U € Irn P. Thus Proposition 2.1 implies that T+g is a, solution of (2.5). But then

T6: g:T(T+g):TT+?,6.

Since / is a.rbitra.ry, we have proved tha,t 7+ is a generalized inverse of 7'

Tlreorem 3.2 Let l'[,,vPr * Qr be the singular integral operator on LiQ) uitlr. symbol (3.1). Pu,t

C;\ - G + BD-|C and A* : A+ ttBD-tC. Then [l4yyPr * Qr i-s irutartiltle i,-f ar-rd onl,y i,f {hr:

fol,louirtg ttno r:onditions are satisfied:
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(u ) tlrc pencil )G" -./lx i.s I - regtt"la'r,

(0)C": [nt,P@lierP*,

rulru-e rt i,s tlte, order oJ tlt,e ntatrices Cl att,d A, and

p:: Ic6c-,.1)-1rl) , p':: [_c'1sc"-A*)-rd). (3.11)
Zri lr ' 2rz Jr

[n tlti.s ca.se,

(MwPr + Qr)-'g()) : s()) - () - a)C()G' - A*)-'BD-t (Prg)())

+{c()G' -.4")-' - C(AG - A)-'}(1- ")
(* Ir - o)P'G'((G' - A')-' e o-'s4laq), ) € r,

rultere r is tlt.e projection of C^ onto lier Px along lrn P.

Proof. Assrrmettrat 7 '.- Mr,vPr-lQr is invertible. Then 7 is Fredholm, and tirus, by Theorem 3.1

condition (a) is tulfilled. Furtliermore, since

dim l(er T :0 , codim Im 7:0 (3.12)

lormula, (3.4) shows that condition (0) i. fulfilled.

Conversel.v) assume that (a) and ((/) hold. Then, by Theorem 3.1, the operator 7 is Fredholm ancl

(3.12) holds. But, this rreans that 7 is invertibie.

To computeT-1, let zr be the projection o[ C" onto I(er PX along Ln P, and define

,l+ :' hn P' -+ Irn P,by setting,

J*x: (l - n)r , r € Im P'. (3.13)

Let ,l be the map clelinect hy (3.7). Prom

JJ+Jz: P*(l - n)Jz: P*,12, z elm P,

,,7t)l

(
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it follows that ./+ is a generalized inverse of J. Now, let 7+ be the operator defined by (3.6) with

./+ given bV (3.13). Then 7+ is a generalized inverse of 7. But 7 is invertible, a,nd thus ?'+ :T-r,
rvhich proves the formula for T-r. E

2.4 The factorization method

The classical way to invert the singular integral operator lvlwPr * Qr is based on the idea of factor-

ization. First, one iooks for a, so-called riglfi canonical factorization of the slrmbol lrl relative to the

c:ontour f , that is, a factorization of the form

w(^) : tv_())r4l+()) )€f, (4 1)

where, for v: +, -, the matrix flunc.tion W, is continuous on A, U f and analytic on A,, and

rlettT,()) l0foreach)€A,Uf. Inparticular,thefactorW-isanalyticatooanddellV-(-) l0

l\s in the previous sections, Iet us assume that the symbol lrl is rational. Then ib is well-l<nown (see

e.g. [CG], Theorem I.3.1) that the singular integral operator MwPr * Qr is invertible if and only if

its symbol a.clmits a right canonical factorizabion, and in this case

(Lrw Pr + Qr)-'g)()) : w*())-'Qy(w-t s))O)w-(\(Qr(w--'g))(r) ) e r. (42)

rvhere W- and lUa are facbors in a right canonical factorization of I,l/ relative to f . By definition,

W-1g is the function VV-O-'gO To apply this method in an effective way one needs necessary

and sufficient conditions that guarantee the existence of the canonical factorization and one needs

explicit formula.s for the factors in bhe factorization (and also for their inverses). The representa,tion

of the symbol (3.1) a,llows one to find srrch conditions and to derive the factors and their inverses

explicitly. The following theorem holds; its proof may be found in [Gr1, Theorem I.3.1].
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Theorem 4.1 Let l,V be a rational m x nt matrix function uithou,t poles on tlt.e contour l, and let

lV be giuen, in realized form:

v/(^) : D *() - a)c()G - A)-t B )ef

Pu,t G* : G * BD-|C and ,tlx : A+ uBD-tC. ThenlV admi,ts a right canonical fo,ct.orization

reLati.ue: to I if arr,d onltl if tlr.e follouirzg ttoo conditions lr,old:

(i) tlte pencil 
^G" 

- A' is I - regular,

(ii) C' : Im P @ Iier P* and C' : I* Q @ Iier Q"

[{ere n, i,s tlt.e order of the matri.ces G and A, and

11

2tri t, 2ri t,
DX1- G*()G' _ Ax)-,d),P G(^G - A)-raS

a : ! t()G- A)-tGd^, e* : ! t()G, - A*)-,G*ct^.
ZT|L JI Z1f?, JI

ln this case a right canonical factorization W(^) : ll/-(,\)ty+()) ,/ W relatiue to I is obtained by

taking:

vv_(^) :
vv+(^) :

r,7_())-1 :

W*(A)-' :

D +Q- a)CQG - A)-'(t -r)8, ) € rua-,
1+() - o)D-'CrQG - A)-'8, ) € f uA+,

D-l -()-*) D-|CU-r)()G"-A")-'BD-t, )e fua-,
1- () - o)D-'C(^G', - A*)-trB, ) € f uA+.

I{ere r is th.e projection of C" onto l{er Q* along I* Q and n' is the projection of C* onto lier P*

along lrn P. Fu'rthermore, the tuo equ,alities in (ii) are equiualent.
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[,et l/[wPr * Qr be the singular operator with symbolW. Assume that I4l is rationa,l ancl given in

t;lre rea,lizecl lornr (3 1) Theorem 4.1 and the general theory of singular inhegral operators reviewed irr

l,he first trvo paragraphs of this section imply that MyyPr't Qr is invertible if a,nd only if conditions

(i) and (ii) in Theorem 4.1 a,re fulfilled. Since the two conclitions in Theorem 4.1(ii) a,re etlttiva.lenl.,

we reprove in this rva,y the first part of Theorem 3.2.

T'he formulafor (MwPr +Qr)-t appearing in Theorem 3.2, may also be obtainecl from Tlreorem z[.1

and the genera,l theory referred to above. For this purpose we use formula (4.2), ancl we irtsert irr

tlris expression the explicit formulas for the faciors W-,V/-t and W,l appearing in Theorem 4.1.

We first rewrite (a.2) in the following form:

((MwPr + Qr)-'y)()) : |of 
r) *f,*r^)-'g())

(4 3)

I+ z"i

Next, observe that, by Theorem ,[.1,

{n/*())-' -vv-(^)}w-(O-'g(Od(, ) e t

-()-a)CQG"-A")-trB
-()-a)C$G-A)-'(t-n)B
+() - a)CQG* - A*)-'(( -.)
.rBC(l - r)(eG" - A")-t B

+((- a)CQG -A)-'()-")( I -")
.BC(l - r)GG" - A")-1 B.

T
1

(-)

{rv*())-, - I4l-())} w_K)-'

The latter formulas can be simplified furtirer. Indeed, note that

nA(l-r) :0
(l - r)A'r :0 (1-zr)G*r:0

(4.4)

rG(l-r) :0,
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Since (( - o) BC : ((C' - A*) - GC - A), it follows that

((-o)rBC(l -r) : (nG'(l -r)-rA*(t -r)-e"G(l -,)1rA(l -r)
: (nG"-(G"r_ rA*+A*r
: (.4' - )G")r - n(A" - <G') - (( - ))G'r.

Also, note that

((-")( I -")BC(t -r) : (t -r)((G* - A*)-GG- A)(t -r)

But G:G* - BC and G( I -"):(l -n)G(l -r') implythat

((-.)(1 - rr)BC(t -r) : (A-)G)( I -r) -(1- ")(A* -eG") -((-))(1 -n)G" (1-')

+((-))(1 -r)BC(t-r)
lvirence

(A - cr)( I - r)BC(t - r) : (A-)G)(/ - r) - (t - n)(A" - eG') - (( - ))( I - n)G"(t - ")'
lnserting ttrese expressions into (4.4) yields

{14l+())-1 - vV-())} l7-(O-' : -(( - a)C((G" - A*)-'B + (( - ))
.Cr((G" - A")-' B + G- ))C()G - A)-'(r - r)B

-(( - )X) - a)C()G" - A')-'rG*r((G' - A")-t B (4 5)

-(( - ))(( - ct)c()G - A)-'
-(l - r)Gx (l - r)((G' - A* )-'B.

Next, use tha,t

(( - A)C(.\ Gx - Ar )-' G" (CG" - A*)-t B

: c()G* _ A")-' {((G>( _ A") _ ()G* _ A")} ((C" - A")-1 B

: c()G" _ A')-r B _ CrcGx _ Ax)-t B
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anci thus rewrite (4.5) as

{r,rz*1,1y-' - w,,-())} Ly-(()-'

So,

{r,r/+())-1 - vv_(^)} ry_(0-,

-(( - a)C((Ct. - .4* )-'B + (( - ))Cr((G* - A* )-'B
+(( - A)C(^G-,4)-'U - ")B - () - cv)C()G* - A')-'B

+() - a)C((G' - A")-1 B

+(( - ))() - a)cQG" - A").'(G', - rGxr)((G'* - A*)-' B

-(c - ))(( - a)cQG - ,4)-' (r - r)G* (r - r)(ecx - ,4x)-1 B

-(( - 
^)C(1 

-,)GG" - A")-' B + (e- ))C()G - A)-'(t - r)B

-() - a)C()G" - A")-1 B

+(( - ))() - a)CQG" - A*)-'G*(I -,)(eG" - A")-' B

-(( - )x( - a)c()G" -.4')-'(r - r)G'* (1-,)((cx - Ax)-l B

+(( - ))(( - a)cQG" - ,,1" )-' (I - r)G" (I - r)((Gx - 14x)-t B

-(( - ))(( - a)cQ,G - A)-'(r - r)G',(r - r)((G* - A'*)-' B.

-() - cu)C()G" - A")-t B

-(( - 
^)C(t 

-,)(eG" - A")-1 B

+(( - ))c()G - A)-'(t - r)B
-(( - 

^)2C(^G" 
- A')-'G" (t - ,)((G- - A")-t B

+(( - )X( - a)C()G" - Ax)-lrcx
.(I - r)((Gx - Ax)-L B

+(( - )) {c()G, - A")-, - C(^G - A)-,}
(( - ")( 

I - r) Px G' ((G' - A*)-t B .

(4 6)

42

htttp://etd.uwc.ac.za/



By inserting (4.6) and (1,3) in (4.3) we obtain

(ttw Pr+ 8r)-'g()) : s()) - i,^ - a)C()G' - A')-' Bg(^)

_() _ a)c(),G, _,4,)-, , (*[,*r,od()
+ {c1,lc' - A")-' - c(^G - A)-'} {t - ")
( t 

[,tc - o) P'G" ((c' - .4')-' gg(od()
\zni L

lr-; Jrr(t - r)((G* - A')-' Bg(1dC

lr+=:. I clsc - A)-'(t -r)Bs(O,/('2niJr-' / \

lr
2tri lr
lr+; JrG - a)cQG" - tr"1-tnG'(1 - ')((G" - .4')-' BsG)dC

Since (l -n)P" - I -zr and Pp is given by (2.9), we have found the expression for (tvtwPT + Qr)-'

a,ppearing in Theorem 3.2 and four additional terms. It remains to show that bhese surplus terms

ate equal to zero.

Indeed, it follows from the spectral decomposition theorem (see [GI(2], Theorem 2.i) that the third

term,
1

Irrt, - ")((G' - A*)-' Bgq)dc

lrrrr"r - AI)-' Bg(Ode o

2ri

0

1

:( 2ni
0

Since 9a(-) and (OI - .If are analytic on A.,. and

* Ic((Gi - AI)-' Bs+nd,c: * I,ror )-'((crl - /r)-' Bs+(c)d(,
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il follows by Ca.uchy's theorem that

! t cU -,)((G' -.4')-' Bsa(Od(: a.
2ri Jr

On the other ha,ncl, since 1 - r : (t - r)Q* we have

! t cU -,)((G' - A")-'Bg-G)de
2ni lr

: : I cg - r)e"((c' - A')-' Bg-G)de
Ztri Jr -

Ilrrt Q'((G* - A')-'.8 is analytic on A- and vanishes at oo" Hence,

! t c(t -')((c. - A')-' Bs-(gct(: a,
z7f2 Jt

so the third terrn is zero.

Next, sinceg..(') is analytic on A*, it follows by Cauchy's theorem that

! t c0G - A)-'(t - r)Bs+(Od( : o.ZniJr \ /

On the other hand, note the resolvent identity

()G - A)-' : KG -A)-' + (( - ))()G - A)-'G(CG - A)-'

Clearly, since ( I - ")BU-O e Im P, we have that

! t cec - A)-' (I - r)Bs-(Od(
?"0 l': * lrrg* - A)-' PQ - r)Bs-(gd(

+c(^G - A)-'" (* lrrc - ))((c - A)-'pu - n)Bs-((,/()

But, ((G - A)-' P is analytic on A- and vanishes at oo. Therefore,

! t cGc - A)-' PU - n)Bs-(gd( : o
27f1, Jl
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arld 
!t((-))((c -A)-'p(t-n)Bs-(od(:0,zTfL Jr

whence the fourth berm is zero.

Irurthermore, the fifth term equals

c()c, - A*)-, ,. (* Ir, - )X/ - ,)GG" - .4*)-' Bs(O,tc)

Then, ib follows once aga,in from the spectral decomposition theorem (see [GI(2], T]reoreur 2.1) that

lrte - )xr -')((G' - A*)-' Bsc)dc
I

2ni

:( 2712

1

ly - )X(GI - AI)-' ngq)de o

0 0

Since g-,.(.) and (ClI - If are analytic on 41 a,nd

lrlr
*i J,(( - ))((Gr - /l)-'Bs+rc)d(: * JrG - ))(AI)-',((oi - 1I)-',Bs+(O,tC,

it fo[]ows by Cauchy's theorem that

1

t,2ri
(( - ))(1 - ')((G- - A* )-' Bsa!)d( : a

On the other hand, since 1 - r : (l - ")Q" we have

2ri
(( - ))C(.\G* - A')-'G"(l - ")Q'((G* - A*)-' Bs-G)de1

t,
: c()G* - A*)-'G" (t - ,) (* lrte - ))8- ((c- - A')-' sg-G)dC)

But, QX((C- -,4')-'B is analytic on A- and vanishes at oo. Thus,

2ni lrre - ))o'((G' - A')-' Bs-(od,( : a,
1
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so the fifth term is zero.

Arralogously, one can show that the sixth term is zero.

Tlre Frerlholm properties o[ MwPr *Qp may also be derived via the factoriza.tion rnet]rod. This one

ca.n cl<-, by constnrcfing a non-canonical factorization via the state space method (see [BGI(21, [GI(R.]

and [Gr1]). However, the formulas a,re much more complicated than those in Theorem 4.1, and hence

for the Frerlholm ca,se the approach employed in Section 3 via input/output systems is mc-'re direct.
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SUMMARY

In this dissertation rve studied the state space method for solving singular integral equations explic-

itly [rorn tlre representation of a matrix furrcbion in realization form. r\ rational mat;rix fttnction l'V,

rvhich is ana,lytic and inverbible at infinity, may be represented in the form

W(A):D*C(AI-A)-'B, (l)

where,4isar-xnsquarematrix,sa,y,BandCarenxtnandn'Lxntna,trices,respectively,and

D is an invertible rn x nt matrix. The process of constructing explicii formulas for the genera,lizetl

inverse (resp., inverse) of a singula,r integral operator with rational symbol is well-known for rationai

matrix functions in the form (1). Flowever, in our work, rve ltave concentrated on ttte ca,se rvhere ['7

cloes not have these properties at infinity a,ncl has a realization o[ the form

W(^)- D+ ()-a)C()G- A)-tB, (2)

where A, B, C,and DareasaboveandGisof thesameordet'asA. InthemairtresultsinC)lrapter2,

we glve rrecessa,l'y and sufficient conditions for the existence oIa,n inverse (resp., getrera,lizetl irrverse)

oI a, singular irrtegral operator with rational symbol. In addition, we have shown that the explicit

formulas (in realized form (2)) for the generaiizecl inverse (resp., inverse) may be written in terrns

o[ the matrices A, G, B, C and D and va,rious other matrices derived from thern. In this cha,pter,

we ma,de exhensive use of bhe Riesz theory associa,ted with the tlecomposition of the spectrtrm of the

pencil 
^G 

- A. Finally, we review the factorization method.
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