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Chapter O

INTRODUCTION

Different methods for solving singular integral equations exist. One of the most recent methods is
the so-called state space method. This method is based on the fact that a rational matrix function

W () which is analytic and invertible at infinity can be represented by
W) =D+ C(\ —-A)""'B, (0.1)

where A is a square matrix whose order may be larger than that of W(A), and B, C and D are
matrices of appropriate sizes. The representation (0.1) allows one to reduce analytic problems about
rational matrix functions to linear algebra ones involving constant matrices, and often it provides
explicit and readily computable formulas for the solutions. In the last fifteen years the state space
approach has proved to be effective in solving various problems of mathematical analysis (see the
survey paper [BGK3)). |

In this mini-thesis we employ the state space method to solve singular integral equations. These
equations serve as a tool to solve problems in numerous fields of application. For the general theory

and examples of applications (see, for instance, [GKr], [M] and [V]).

3

htttp://etd.uwc.ac.za/



We will consider equations with a rational matrix symbol and which are of the form:

1

.MMMM%BM)&;AE%%@):f@L Ael. (0.2)

Here the contour [ consists of a finite number of disjoint smooth simple Jordan curves, A(-) and B(-)
are given m X m rational matrix functions, which have no poles on I', and f is a given function from
L7(T), the space of all €C™-valued functions that are square integrable on I'. The matrix function
WA, |

W) = [A(N) — BOYU[A) + BOVL,

which plays an important part in the analysis of (0.2), is, in general, not proper, and so we use a

modification of the representation (0.1), namely, (see [GK1])
WA =D+ (A—a)C(A\G — 4)"'B. (0.3)

Here A, B and C are as in (0.1), G is a square matrix of the same order as A, D denotes an invertible
m x m matrix and « is a nonzero complex number which is neither a pole nor a zero of W(A).
In fact, we follow a similar program as in [GK3|, but with a different representation. We use (0.3)

instead of

W(\) = [ +C(AG — A)™'B.

The aim is to give necessary and sufficient conditions for the inversion of the equation (0.2) and
an explicit formula for its solution in terms of the matrices A, G, B, C and D. In addition, the
Fredholm characteristics of equation (0.2) will be described in terms of these five matrices.

This mini-thesis consists of two chapters. In chapter 1, we discuss the coupling method, (see [BGKI]).
Firstly, the basic properties of this method are described. Next, the coupling method is appliéd to
the class of singular integral operators. This method reduces various classes of integral operators

to simpler ones, which are often just finite matrices. In particular, finding the inverse, generalized
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inverse, kernel and image of an integral operator is reduced to the corresponding problem for finite
matrices. Chapter 2 concerns the state space method for solving singular integral equations with
_rational symbol. Here we provide explicit formulae for invertibility and Fredholm characteristics of
the singular integral equation with rational symbol using the representation (0.3) which is different
from the one used in {GK3]. The main idea of the proof is to reduce the inversion problem to one
for input/output systems.

Finally, we give a review of the factorization method. This last section may be seen as an extension

of the theory developed in [BGK2], [GK2] which concerns Wiener-Hopf integral operators, infinite

block Toeplitz matrices and singular integral operators with proper rational symbols.

o
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Chapter 1

THE COUPLING METHOD FOR
SOLVING SINGULAR INTEGRAL
EQUATIONS

We follow the paper [BGK1] in our treatment of Sections 1-3 of this chapter. In Section 4, we follow

the paper [GK2], see also the paper [Gr2].

1.1 Matricial coupling and indicator

Throughout this section and the next one all spaces are assumed to be complex Banach spaces and
all operators are bounded and linear. The identity operator on a Banach space X is denoted by [y

or /.

In this section, the method of reducing operators of various classes to simpler ones is introduced. It

6
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is based on the notion of matricial coupling of operators, which is defined as follows:
Let T : Xy = Zyand S : Z, — Xjbe bounded linear operators acting between Banach spaces.

We call T and S matricially coupled if S and T are related in the following way:

-1
T A4 B B
12 — 11 12 . (11)
A An By S

This means that one can construct an invertible 2 x 2 operator matrix

Ay A
: .¥1 D X2 — Z1 D ZQ (12)
Ay Age :
with 4;; = T, whose inverse is given by
B B A
: Zl ) ZQ — X'l 3 .Xz (13)
Bai B

with By, = S. We shall refer to (1.1) as the coupling relation and to (1.2) and (1.3) as the coupling
matrices. If T and S are matricially coupled operators, then we say that S is an indicator of T (and

conversely, T is an indicator of S). This notion is of particular interest if S is simpler than T.

Example: Let A : X — Y and B : Y — X be given operators, and let D and A be
invertible operators acting on the spaces X and Y, respectively. Then the operators D — BK 1A

and K — AD~!'B are matricially coupled operators. Indeed,

-1
D—-BK'A —BK™! D! D~'B
= . (1.4)
K~'A K- —AD™' K —AD™'B

Theorem 1.1 Assume T : Xy — Zy and S : Z, — X, are matricially coupled operators, and

let the coupling relation be given by

-1
T Aq _ By B
Agr An Ba S

-3
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Then
T 0 S 0
0 Ix, 0 Iz

where F and F' are invertible 2 x 2 operator matrices

—A;, TB Agp Ao
B 12 11  F= 21 A2
Iy, Bxn T Ay
with inverses
E_1 . —B21 SA22 F_l ~ B12 Bu
Iz, Al " — T
Proof. By direct computation, using (1.1). (|

From the definition of equivalent matrices one notes that (1.3) says that after a simple extension the
operators T and S are equivalent.

Theorem 1.1 is of particular interest when the operators T and S depend on a parameter. For
example, if the entries of the coupling matrix (1.2) depend analytically on a parameter A, for A in
some open subset of C, then the same is true for the entries in its inverse (assuming it exists) and

in this case the operators E and F appearing in Theorem 1.1 also depend analytically on A.

1.2 Invertibility of matricially coupled operators

In this section we describe Fredholm properties of matricially coupled operators.

htttp://etd.uwc.ac.za/



Theorem 2.1 Let T and S be matricially coupled operators, and let the coupling relation be given

by
-1
T A B B
12 _ . Buo) (2.1)
Ay Aq By S
Then
Ker T = Byo(Ker S) ; Ker S = Ay (Ker T). (2.2)
ImT =Bi'(ImS) ; ImS=A5(mT). (2.3)

Furthermore, T has a generalized inverse (resp., right, two-sided inverse) if and only if S has a

generalized inverse (resp., right, two-sided inverse). If St is a generalized inverse of S, then

Tt = Bi— B,25+le' (2.4)
is a generalized inverse of T, conversely, if T is a generalized inverse of T, then

St = Ay — ATt A, (2.5)

is a generalized inverse of S. Also T is a (semi-) Fredholm operator if and only if S is a (semi-)

[redholm operator, and in this case ind T = ind S.

Proof. Since the first matrix in (2.1) is the inverse of the second matrix in (2.1), we know that

BT + SAq = 0. This shows that Im 7 C B{ll(lm S). Now assume that By;y = Sz. Then

y = TBuy+ AuBay
= TBhy+ ApnSz
= TB“y - TBmZ € Im T.

We have proved the first identity in (2.3). Similarly with the other identities. All other statements

in the theorem are straightforward consequences of the equivalence relation in (1.5). .

9
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Example: The usual method of reducing the inversion of an operator [ — F', where F' has finite
rank, to that of a matrix is to be understood and made precise in the context of matricially coupled

operators. To see this, assume F' : X — X is given by

F=3(, 6

1

n
j=
where ¥y, ...,1, are given vectors in the Banach space X and ¢], ..., ¢}, are continuous linear func-

tionals on X.

Define A : X — C"and B : €C*" — X by setting

Az =col({z,d)))=; , z€X,
ay
Bl @ | =) a;
=1
Qn

Note that ' = AB acts on C", and its matrix with respect to the standard basis of C", is given by

mat (G) = ((v;, ¢7))7 j=1- (2.6)

Since F' = BA, the operators [x — 1F and I, — uG are matricially coupled; in fact

-1
Ix —puF uB Ix ;B
SoRER = X ) (2.7)
A I -A I, —pnG A

From (2.7) it follows (cf., formula (2.4)) that (Ix — pF)™' = Ix + pB([, — pG)™' A whenever
det (I, — uG) #0.

10
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1.3 Singular integral equations

In the remaining sections of this chapter, we apply the principle of matricial coupling to the class of
singular integral operators with analytical symbol.

Consider the singular integral equation

ANBN) + B(A)(% i Ni(_’%— du) = f()) , AeT. (3.1)

[lere ' consists of a finite number of disjoint smooth simple Jordan curves, A and B are given
continuous n X n matrix functions defined on I, and the given function f and the unknown function
$ are vector functions. As usual in the theory of singular integral equations, it is assumed that the
inner domain A, of ' is connected and contains 0, while the outer domain A_ of I' contains co.
The problem is to find ¢ such that (3.1) is satisfied. For ¢ a rational function without poles on T,
we put

(e = — [ 2Ly,

mJr p— A

) /\GF,

where the integral is taken in the sense of the Cauchy principle value.
The operator St defined in this way can be extended by continuity to a bounded linear operator,

again denoted by Sr, on a suitable space E. Equation (3.1) can now be written as
(M4 + MgSr)¢ = (3.2)

where M4 and Mp are the operators of multiplication by A and B respectively, and St is the basic
singular integral operator and St enjoys the property that S = [ (see [CG]). The operators My
and Mp are also assumed to be bounded linear operators on E. In what follows £ will be the space
L3 (T) of square integrable functions from I' into a Banach space Y = C™

Put Pr = (I + Sr) and Qr = L([ — St), where I = I is the identity operator on E. The operators

Pr and Qr are complementary projections, which can be used to rewrite the operator M4 + Mp.Sr.

11
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Assume that the values of the function A — B are invertible operators on Y and that the operator

M(a—p)-1 of multiplication by [A(A) — B(A)]~" is a well-defined bounded linear operator on E. Then
M + MpSr = M,y_p(PrMwPr + Qr)(I + QrMw Pr),

where My is the operator of multiplication by W(A), with W(A) = [A(A) — B(V)]7HA(A) + B(A)].
Observe that M,_g and [ + QrMw Pr are both invertible operators. It follows that the invertibility

properties of M4 + MpSr are completely determined by those of the operator
TW = PFIWWP[‘ i E+ i E+.

Here E* = Iin Pr is the space consisting of all functions in E that have an extension which is analytic
on the inner domain A4 of T' and continuous on the closure Ay U T of Ay. Similarly, the image of
Qr is the subspace of all functions in LJ*(T') that admit an analytic continuation into A_ and vanish
al co. We shall write £~ for Im Qr, and thus E = E* @ E~. The operator Ty is called the Toeplitz
operator with symbol W. The action of T on Et is given by

(Twe)(A) = %W(A)q&(/\) + i?/r%ﬂd“ —xerl (3.3)
Note that the symbol W is a function on I' whose values are in L(Y'), the space of all bounded linear

operators on the Banach space Y.

1.4 Indicator

Continuing the discussion of Section 3 we now assume that the symbol W : ' — £( C™) is regular.
The following result (taken from [GK1]) will play a fundamental role in the analysis of the Toeplitz

operator Ty associated with the singular integral operator.

12
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Theorem 4.1 Let W be a regular mm x m rational matriz function, and let o # 0 be such that « is

neither a pole nor a zero of W. Then W admits a representation
WN=D+(M=-a)C(A\G-A)'B , MeT, (4.1)

where G and A are square matrices of the same order, B, C and D are matrices of appropriate sizes

with D invertible and the pencil \G — A is [-regular.

We shall refer to the right hand side of (4.1) as a realization of W. In the sequel the next two lemmas

will be useful, see [Grl].

Lemma 4.2 Let W be as in (4.1), where AG — A is [-regular. Set G* = G+ BD7'C and A* =
A+ aBD'C. Then det W(A) # 0 for each X € T if and only if the pencil \G* — AX is [-regular,

and in this case
WA =D - (N=a)D'C(AGX = AX)'BD™! |, Xel. (4.2)

Lemma 4.3 Let W be as in ({.1), where A\G — A is ['-regular. Assume that det W(A) # 0 for each
ANeTl, and set G* =G+ BD71C and AX = A+ aBD~'C. Then for A € T,

WNTICOG - A)" = D'C(AGS — A%)™,
(AG — A)'BW(A)™' = (AGX — A)"'BD™,

(/\Gx _ AX)—l

(AG — A)"' — (A — a)(AG — A)"'BW()\)"'C(AG — A)~".

Next, we turn to operator pencils. Let X be a complex Banach space, and let G and A be bounded
linear operators on X. The expression A\G — A, where ) is a complex parameter, will be called a
(linear) pencil of operators on X. Given a non-empty subset A of the Riemann sphere C,,, we say
that AG — A is A-regular if A\G — A (or just G if A = oo) is invertible for each A in A.

Now we recall the very useful spectral decomposition theorem for linear (matrix) pencils, (see [GK2]

Theorem 2.1).

13
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Theorem 4.4 Let I be a Cauchy contour with Ay and A_ as inner and outer domain respectively,
and let A\G — A be a T-regular pencil of operators on the Banach space X. Then there exists a
projection P and an invertible operator E, both acting on X, such that relative to the decomposition

X =Ker P® Im P the following partitioning holds:

Ay — 1 0

(MG — A)E =
0 AL -0,

) : Ker P® Im P— Ker P® Im P, (4.3)

where Iy (resp. I;) denotes the identity operator on Ker P (resp. Im P), the pencil AQyy — I is
Ay-regular-and My — Qq is A_ -regular. Furthermore, P and E (and hence also the operators Q;

and 3) are uniquely determined. In fact,

g vy Y
P_2MAGQG A, (4.4)
f, —— ._l_. i3 -1 s -1 [
E_Qmﬁu A"YAG = A)dA, (4.5)
Q 0
Q=1 =ij/O—XﬂGMG~ArMX (4.6)
0 Qz 271 Jr

The 2 x 2 operator matrix in (4.3) is called the I'—spectral decomposition of the pencil AG — A, and
the operator §2 in (4.6) will be referred to as the associated operator corresponding to AG — A and
['. We will refer to the projection P and the operator E in Theorem 4.4 as the separating projection
and the right equivalence operator, respectively.

For the proof of Theorem 4.4, we refer to [GK2], see also [GGK], Chapter 4. Here we give a few

essential steps of the proof. Put

Q=—— [(0G = A4)"'Gdx (4.7)
2w Jr
[t can be shown that
PG=GQ , PA=AQ,

14
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and hence the pencil AG — A admits the following partitioning.

MGy — Ay 0 .
NG — A= c KerQ® ImQ — Ker P® [Im P. (4.8)
0 AGy — Ay

The next step is to show that the pencil AQ; — [; is A-regular and A, — Qs is A_-regular. Since
0 € A, and oo € A_ it follows that A; and G, are invertible. Thus we may set

ATY 0
E:( ! ]) : Ker P Im P = Ker Q& Im Q, (4.9)
0 Gy

and ; = G A7 and O, = A,G5'. Then (4.3) holds and it also follows that the pencils AQ, — [
and A, — Q; are A, -regular and A_-regular, respectively. Now we can prove that E is also given
by (4.5) and by (4.6).

Next, the realization (4.1) can be employed to compute the Fourier coefficients of W. This leads to

the following proposition, see [J] and [Gr2].

Proposition 4.5 Let W be a rational m x m matriz function without poles on the unit circle T,
and let
WA =D+(MXA=-a)C(AG-A)'B, Xe T,

be a realization of W. Then the k-th Fourier coeffficient Wy of W admits the following representation:

_CEQ*' —a¥)(I - P)B , k>0
Wi=<{ D+aCE(I-P)B+CEPB , k=0
CE(Q~* - aQ~*1)PB . k<o

Here P, E and Q are, respectively, the separating projection, the right equivalence operator and the
associated operator corresponding to the pencil AG — A and T, that is, P, E and Q are given by
(4.4)-(4.6). In particular,  has all its eigenvalues in the open unit disc and {} commutes with P.

Finally, we give the main result of this section.

15
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Theorem 4.6 Let T be a block Toeplitz operator on £ with a rational symbol
WN=D+(A—a)C(AG-A)'B, Me T,

given in realized form. Set G* = G 4+ BD™'C and A* = A+ aBD™'C. Let P and P* be the

generalized Riesz projections given by

1
b= _'/ GG — Ay ldx | P* == [ GX(AG* = a%)MdA.
2miJT 2miJ T
Then the operator
J*=Pmp : ImP— Im P> (4.10)

is an indicator for the Toeplitz operator T. More precisely, the following coupling relation holds:

-
el lwmitlca o
R 7| \re o]’ (4.1

where

U : ImP* — , (Uz); = —CEQ(I- Pz , ¢ € Im P*,

ux . ImP — N it ) R —D-'CEX(Q*)(I — P*)z , z€Im P,
R - Im P |, Rn = 20 PQY Bg; , = (do,b1...) €L,
R* o —  ImpRa=ssslien = - ;’;OP"(QX)iBD‘Icﬁj , n="(¢o,b1...) €L,
J c ImP* - Im P | Jz =BapP , € Im P*.

Here E and §) are the right equivalence operator and the associate operator corresponding to AG' — A

and T. The operator T* is the block Toeplitz operator on £ with symbol W)t

Proof. In the sequel we assume that the pencil A\G* — A* is T-regular. To establish the coupling

relation (4.11) we employ the method of matricial coupling (see [BGK1]). Introduce the following

16
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operators:

T U
: f;"EB[m P = f;"@[m P,
R J

T% UX
:Z;"@[mP — ﬂ;,"@[me,

R* JX
(Uz); = —CEQ(I—-P)z, z€lm P,
(U*z); = —DT'CEX(QXY(I - P¥)z, z€lmP,
Rn = ZPQdey, n=(¢o,¢1,--.) € 7,
=0
R*n = =3 PX(Q*YBD '¢;, n=_(do,b,...) €,
1=0

J T NS Rt SR e e A 5 = BIES ra| SEREM it ) .

Here E and Q are the right equivalence operator and associate operator corresponding to AG — A and
T. The operator T* is the block Toeplitz operator on /7 with symbol W(-)~!. Note that J* is the
operator defined by (4.10). Since Q and Q% have their eigenvalues in the open unit disc (Proposition
4.5), the operators U, U*, R and R* are well-defined. We will prove that (4.11) holds. In fact,

proving (4.11) boils down to verifying eight identities. Here we will establish four of them, namely

TT* + UR* = I, (4.12)
RT* + JR* =0, (4.13)
TU* +UJ* =0, (4.14)
RU* + JJ* = I1mp. (415)

The other four identities can be obtained similarly or by interchanging the roles of W(:) and W(-)~'.

17
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We first consider the case p = 2. Let L( T) be the Hilbert space of all C™-valued square

integrable functionson T, and let H*( T) be the subspace consisting of all ¢ € L7*( T') with Fourier

coefficients ¢, = 0 for n = —1, —2,.... The orthogonal projection of LT( T) onto HJ*( T) will be

denoted by P . If g € L7(T), then Pg has a natural extension to an analytic function on D

(also denoted by P g), and we will use the fact that

(Po)(O) = = [ 98 0y el <1

C2miJr o=

[t will be convenient to use the Fourier transform

F o HMNT) =83, Fé=(g)2

1=0"
where ¢; 1s the j-th Fourier coefficient of ¢. Set

Sw = F'TF |,V = FYW , N
Sw-1 = F-ITXF . VX = F-1y % . N¥

Then

(Va)(() = C((G—-A)y'(I-P), z€lmP*, (€T,

(4.16)

RF,
R*F.

(V*2)(¢() = DT'CG* =AY Y I =Pz, z€ImP, ¢e T,

N¢ = ﬁ/r(c—a)PG(gG-A)'qué(C)dC, ¢ € Hy(T),
N*p = -é%/T(C—a)PXG"(CG"—A")“BD_qu(C)dC, ¢ H(T),

Swe = PMwo, Sw-1r= PMwad, o€ H'(T),

where P is the orthogonal projection of LJ*( T') onto H3*( T') and Mw (resp. My -1) is the operator

of multiplication by W (resp. W~1). We have to prove the following identities:

SwSw-1 + VN = Iym(1),

18
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NSy + JN* =0, (4.18)
SwV* +VJX =0, (4.19)
NV* 4 JJ* = Iimp. ; (4.20)

First we compute Sy Sw-1. Note that

(( = @)BD™'C = (uG* — A%) = ((G — A) — (1 = ()G*. (4.21)

WOW()™ = {D+(=a)C(G~A)'B}{D" - D™ C(uG* ~ A*)7'BD™}
| = [—(p—a)C(uG* — A*)'BD™! + ({ —a)C «G—wn”BD*

—(jt = a)C(¢G — A)7(¢ = ) BDTC(uG* = A)T' BD™!
= I[=(u=CKG~A)"'BD™

+(u = a)(n — ()C((G = A)T'G* (uG* -~ A*)"'BDT".

Let g € H*( T), and suppose that g is a polynomial. Then, by formula (4.16),

(Sw-1g)(¢) = %;/T —W(“—)_—lc(—)du, I¢| < 1.

[t follows that for |(| < I,
1 WIOW () =Lg(1
(MwSw-1g)(¢) = 2_/ OW(" 9w, ,
mLJ T 7 —(

= g(()+C(G—A)! (2}” /T(,u —a)G* (uG* — Ax)'lBD_lg(/J.)du> )

Now use the T-spectral decomposition of the pencil uG* — A* (Theorem 4.4). It follows that
(I — P*)G*(nG* — A*)7! is analyticon Dy. Since g € H*( T'), we conclude that

L /T(u —a)(I = P*)G*(uG* — A)"'BD ™ g(u)dp = 0. (4.22)

2m1 J

19
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Thus
(MwSw-19)(() = g(¢) = C(CG = A)T'N*g, [¢l< L.

The T-spectral decomposition of (G — A implies that C((G — A)~'P is analytic on D_ and
C((G — A)™Y(I — P) is analytic on D,. Note that all functions involved are rational. Thus
SwSw-1 = g — VN*g for each polynomial g in H*( T'). But the polynomials are dense in H7*( T),
so the identity (4.17) is proved.

Again, let g € H*( T) be a polynomial. Then

(JNZg)O) = (PN g)(()
= P (=5 [ (0= )PGX (G = 44 BD5()ac )

T o (¢~ 0)PG(SG — 4)~'BD'g(0)dC

2m
P (5= [ (¢~ e)BDT (6" — 4) BD()dc)
=~ [ (- @PGEG ~ AT BW(Q) g(0)d
1 — X Xy—1 -1 -
-P <%/W(<—Q)BD C((G* — A*)"'BD g(C)dc>,

by an application of Lemma 4.3. Since P W(()™'g(¢) = W(()™"g((), we get that

(JN*g)(C) + (NSw-19)(¢)
= ~P(5= [ (€~ @)BDO(G* - 49)BDg(0)dC) =

27
Indeed,

1 § » ,

mm/(<—®30 C(CG™* = AX)T'BD™ g(¢)d¢
= o [ (66" - A7) = (G - A)] (€G™ = 4*) " BDg(0)¢
N ﬁ/ BD™g(() dC—_/ (CG — AY(CG* — A)™'BD™g(()d¢
- 271m/<€G A)((G = AT BW(()'g(¢)d¢ = 0.
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Here we applied Lemma 4.3 and Cauchy’s theorem (twice). Since the polynomials are dense in

H*( T), the formula (4.18) is proved.
Next, we take = € [rn P. Note that ([ — P)(I — P*)z = —(I — P)P*z. Thus, using Lemma 4.3,

(MwV*z)(() = W(()D'C(G* = A*)" (I - P¥)x

= C(G— A~ Pz
Yo+ C((G - A Y (I - P)I— Pz
Vo —C((G—A)'(I - P)P*z

.,\
Q
2>

(

( )" P(I — P*
= C(G—-A)'PU-P

( (I - Pz —C((G~A) (I -P)J"z

(€G = A)'P(I = P*)z — (VJ*z)(C).

Now use the fact that (¢G — A)~!P is analytic on D_, it follows that SwV>* = —VJ*, and
(4.19) is proved.
Formula (4.21) (with p = {) implies that

((G — A)(( = a)BDT'C((G* = A)™h = ((G = A)7" = (¢G* — A)

Forz € Im P,
1
NVie = o [ (C- PGG - )7 BV )9
!
= 51 o POlCG = A7 = (66 = AT (1 = PF)ads

= P([—P"):c—PP"([——P")x+P(-—l—,/ BD“C’(CG"——A")“([—P")xa’()_
2miJ T

— — X, __l__ -1 X _ Axy-1 _ X

= z—JJ J:+P<27”,/TBD C(CG* — A) Y[ P )xd()

= z-JJ"z,
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. L -1 X AXN=1lor . pX >_
smceP(QM/TBD CCG* — AX) (I = PX)zd() = 0.

Indeed,
1 1
P (—/ BD™'C(CC™ — AX) V(I - P")md() ~ PB <—-/ DlC(cax — A*)“zdg‘) ,
2miJ T 2mJT
where z € Ker P*. Now, recall that
¢+(() = D7'C((G* = A)" 'z, z€ Ker P*,
has an analytic continuation to D ., whence
—1—/ PFCeE =2 zdég=0
2mi J T ‘ i

hy Cauchy’s theorem. Hence (4.20) is established.

We have now proved the identities (4.12)-(4.15) for p = 2. Next, take an arbitrary p, 1 < p < oco.
Since T and T are block Toeplitz operators with symbols from the Wiener class, the operator TT*
on £ has a matrix representation, that is,

(TT*)e =3 Myz;, k=0,1,2,...,
j=0
for each ¢ = (2o, 1, 22,...) In 7. The same is true for UR*. So to check (4.12) it suffices to show
that (TT* + UR*)z = z for all sequences = = (zx);-, with a finite number of non-zero elements .
But the latter sequences are all in /73', and hence (4.12) holds for any 1 < p < co.
A similar argument proves that (4.13) holds for any 1 < p < co. The identities (4.14) and (4.15)

do not depend on p. O
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Chapter 2

THE STATE SPACE METHOD FOR
SOLVING SINGULAR INTEGRAL
EQUATIONS

In [GK3] the state space method was used to give explicit formulas for the solutions of singular

integral equations with rational symbol of the form
W(X) =F+C(G = A)'B. (0.1)

Here A is a square matrix whose order n may be much larger than the size of W(A), and B and C
are matrices of appropriate sizes. G is a square matrix of the same order as A, and [ stands for the
m x m identity matrix.

In this chapter we carry out a similar program as in [GK3] but with a different representation of the

rational symbol, namely

W(A) =D+ (A —a)C(A\G — A)"'B. (0.2)
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Here o is a non-zero complex number which is neither a pole nor a zero of W. A, G, B and C
are as in (0.1) and D is an invertible matrix. The main ideas from [GK3] are extended to the case
considered here, i.e., explicit formulas for the solutions of singular integral equations with the above

representation of the symbol are given.

2.1 Preliminaries about matrix pencils and realization

Throughout this chapter I is a contour consisting of a finite number of disjoint smooth simple Jordan
curves. The inner domain of I' will still be denoted by A, and its outer domain by A_. In what
follows we assume that co € A_.

1(a). Realization

This subsection concerns the special representation (0.2).

Proposition 1.1 A rational m x m matriz function W without poles on the contour I' admits the

following representation:
WA =D+ (A-a)C(A\G—-A)'B , XeT, (L.1)

where a # 0 and « is neither a pole nor a zero of W. Here G and A are square matrices of the same
size; n X n say, the pencil \G — A is ['-regular, and B, C and D are matrices of sizesn X m, m X n

and m X m respectively.

The representation (1.1) may be derived from classical realization results by applying the Mobius

transformation

20 -1 -1 lz4+«
=i, # e = s
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Indeed, since W()) can be written in the form
WA\ =D+CA-A)'B , rxel.
Put W'(X) = W(é7'(A)). Then

W(p™'(\) = D+C(é7'(\)—A)'B
LA+« A} 5

- picl

20—«
IO RS T o
= D+(/\—a)C’[A(—%—A)——a(%—A)]_xB

= D'+ (A=—a)C' (MG — A) B

1 1
Here A’ = a(é- -A), G = 13 - A, B =B, C'=Cand D'=D. Then (1.1) holds.

If W is as in (1.1), then we shall say that W is in realized form, and we shall call the right-hand

side of (1.1) a realization of W. The following proposition will be used in Section 3; its proof can be

found in [Grl], Section [.2.

Proposition 1.2 Let W(X) = D 4 (A — a)C(AG = A)"'B, X €T, be a given realization, where
AG — A is T -reqular. Set GX = G+ BD™'C and A* = A+ aBD-1C. Then det W(X) # 0 for
each A € T if and only if the pencil A\GX — A* is T -regular, and in this case we have the following

identities:
I/V(/\)'1 =D~ (A— a)D—lC(/\Gx — A’()_IBD—1 , AeT, (1.2)
(A\G™ — Ax)_l =(A\G — A)"l — (A= a)(AG - A)“BW(/\)“C(/\G — A)—l, rAel. (1.3)
25
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1(b). Matrix pencils

Let A and G be n x n complex matrices. The expression A\G — A, where X is a complex parameter,
is called a (linear matriz) pencil. We say that the pencil AG — A is [-regular if det (A\G — A) # 0 for

each X on the contour I'. In this case one can define the following matrices:

1 1
p = —./G(CG—A)“‘dg‘, Q = ;——./(CG-—A)‘IG’dC,
2w Jr 2m Jr
(1.4)
1 I
PX — . T’X - 1)( . Xx\—1 X = ;S - 7)( _ X —-lGX ".
N K (S o o [cGr — Ao

We shall need the following spectral decomposition result. For its proof we refer to [GK2], Section 2.

Proposition 1.3 Let A\G — A be [-regular, and let the matrices P and Q be defined by (1.4). Then

P and Q) are projections which have the following properties:

(1) PG =GQ and PA = AQ;

(2) (AG — A)7'P = Q(AG — A)™! on T and this function has an analytic continuation on A_

which vanishes at co;

(3) (A\G—=A)"YI—-P)=(I-Q)AG—A)"! on [ and this function has an analytic continuation

on Ay.

Note that the above proposition also holds for the associate pencil AG* — A* and the corresponding

separating projection PX.
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2.2 Reduction of the inversion problem for singular integral
equations

This section consists of a proposition that summarizes one of the main steps in the proofs of theorems
that will be dealt with in the next section. Its central idea is the reduction of the inversion problem
to a problem for input/output systems.

‘We shall refer to the integral equation introduced in Section 1.3, namely,

AN)(A) + B (i. M@) = f(A) ,AeT. (2.1)

mLJr o — A

As before, the contour ' consists of a finite number of disjoint smooth simple Jordan curves and the
coefficients A(-) and B(-) are m x m rational matrix functions, which have no poles on I'. Qr, Pr
and Sr are as before.

Assume now that det (A(X) — B(A)) # 0 for A € I. Then equation (2.1) may be rewritten in the

form

(Mw Pr + Qr)¢ = g, (2.2)

where M is the operator of multiplication by the m x m matrix function
W) = [A(N) - BW AN + BV, AeT, (2.3)
and the right-hand side g is given by
g(A) =[A(2) = BT f(A) , AeT. (2.4)

We shall refer to Mw Pr + Qr as the singular integral operator with symbol W. In fact, the symbol
is the diagonal matrix W(-) @ Ir, where Ir denotes the function which is identically equal on I' to

the m x m identity matrix; in the sequel we will omit this second function.
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Proposition 2.1 Let Mw Pr + Qr be the singular integral operator on L7([) with symbol (1.1),
and let g € LP(D). Put GX = G+ BD7'C and AX = A+ aBD7'C. Assume that A\G* — A% is
[ -regular, and let P and P* be the projections defined by (1.4). Then the cquation

(MwPr+Qr)g=g (2.5)
has a solution ¢ € L(T) if and only if
/r(c — Q) PXGX(CGF — ANV BD™ g(¢)d¢ € PX[Im P), (2.6)
“and in this case the general solution of (2.5) is given by

Dy (N +4-(\) = [9() —C(AG=A)ly+C(AG* =A%)y = (A= a)C(AG* = A*) 7' BD™' (Prg)(N)],

(2.7)
where y is an arbitrary vector in Im P such that
1
PXy= 5= [ (= )P*G*((G* = )7 BDg(Q)dC. (2.8)
1

Here 1.(A) = (Pré)(A) and ¢-(A) = (Qra)(A) for ¢ € LF(T).

Proof. We follow the same line of reasoning as in the proof of Proposition 3.1 in [GK3]. See also
Proposition 2.3 in [Grl], Section 1L.2.
For ¢ € LT(T), put

50 = (R = 360+ 5 [ 29F e (2.9
¢-(A) == (Qré)(A) = <i>() 5t GSC(C)/\ . derl. (2.10)

Assume now that ¢ € L7 (D) is a solution of (2.5). We shall now show that in this case g satisfies

(2.6) and that ¢ is given by (2.7). First, we introduce the auxiliary function
p(N) = (A — a)(AG — A By (A), A€l
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Next, from the representation (1.1) for W it follows that the connection between ¢ and g in (2.3) is

described by the following input/output system:

AGp(A) = Ap(M)+ (A —a)Boye(N) , AT, 2.11)
g0 = Cp(\) + Dbu(A) +6(N).
Note that p € L}(T'). The first identity in (2.11) implies that the function
(MG = A)p(A) = (A = a)Bp+(A) € Im Pr (where Pr is now considered onto L3(I)).
Since Pr = é([ + .Sr) and (AG — A)p(A) € Im Pr it follows from (2.9) that
, e (G = A)
(MG = A)op(N) = FAG ~ A)p(A) + 5 | Bl
Hence,
Lo - _ L ree=4
S0G =)0 = = [ i PO
L N
= 57 [ 7T5C =06+ (06 - (O
— Q) e ~
— e A)(zm/ C_/\dg> —
where
1 - n
w=%ﬁp(@)dce cn.
But then we see (use (2.10)) that
1 1
5p(\) = (AG — A)"'Ga +2m/4_A A, NeT,
le.,
— 1 = =p
(\G — A)'Gz = 27”/ - A (Qrp)()), reTl.
Hence,
p-(\)=(AG - A)"'Gz , reTl. (2.12)
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Since PGz € Im P, we may apply Proposition 1.3(2) to show that (AG — A)~! PGz extends to an
analytic function on A_ which vanishes at infinity. The function p_ has the same properties. Thus,
by (2.12), also the function (AG — A)~'({ — P)Gx may be extended to an analytic function on A_
which vanishes at co. On the other hand, by Proposition 1.3(3), the function (A\G — A)~Y(I — P)Gx
is analyticon Ay UT'. Thus this function is an entire function which is zero at infinity. Therefore, by
Liouville'’s theorem, (AG — A)~(/ — P)Gz is identically zero, which implies that Gz = PGz € Im P.

From (2.12) it follows that the first identity in (2.11) can be written as:
AGpy(N) = Apy(X) = Gz + (A — a)Bé (M), A€l (2.13)
By applying Pr to the second identity in (2.11) we gt
9+(A) =Cpr(XN) + Dé+(}), Ael. (2.14)

Now multiply (2.14) from the left by (A — «)BD~! and subtract the resulting identity (rom (2.13).
This yields
AG*pr(N) = Ap (M) =Gz + (A —a)BD gy (X)), A eT, (2.15)

and thus

(A=) AGX =AY 'BD ge(N) = ps (V) + (DG* = A7 'Gx , Xel. (2.16)

From Proposition 1.3(3) (with (AG* — A*) instead of (AG — A)) we know that the function

(AG* — AX)~1(] — P*)Gz extends to a function which is analytic at each point of AL UT, and thus
the function (AG* — A*)~!(I — P*)Gz belongs to Im Pr = Ker Qr. Also p; € Ker Qp. Therefore
O applied to (2.16) yields: |

(A= @)(AG* = A BD g (3) — 5 [ Eg - §§<CGX - AIBD e O

[N

= (A\G* — AX)"'P*Gz , MeT,
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and so

X _1_ _ -1 _L ((:—Ol) _ X SrIX AKX
PXGz = (A=a)BD™'gr() 2m./r(c_ﬂw $)G* + ((G* — A%))
(CGX = A)TBD gy (QdC
_ Loz -1 _ b <_<—_a)_ -1 -
= 21«\ @)BD g0 (N) — 5 [ (5 BD 9 (O 218
+ o (6= )GX (" = A4 BD g, (Q)dC
= - [0~ @G (6T — AT BD gel ).

Proposition 1.3(1) and 1.3(2) imply that the last integral does not change if in the integrand G* is
replaced by PXG*. But P*G*((G* — A*)"'BD~! is analytic on A_ and vanishes at oco.

Therefore,
1 .
5 (6~ )P*GX((C* — A%) ' BD g (0)dC = D.
Thus
- X _L X X X x\—1 -1 .
P*Gr = = [ (¢ = @) PXG*((C* = A)T'BD™ g (O

which shows that (2.6) is satisfied.

Put y = Ga. Then (2.8) holds. Furthermore, by the second identity in (2.11), and formulas (2.12)

and (2.16) we have
DN +9-(A) = g(A) = Cps(A) = Cp-(})
= g(A\) = C(AG — A)'y + C(AGX — A¥) 1y
—(A = a)C(AG* = A*)"'BD™(Prg)(\)

which proves (2.7).

Next, we prove the converse statement. So, we assume that ¢ is given implicitly by (2.7), with y a

vector in Im P satisfying (2.8).
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Put
pm(N) = (AG — A)ly, pa(h) = —(AG* — A*)y,

p3(A) = (A —a)(AGX = A)'BD g (N),

where A € T. From v € Im P and Proposition 1.3(2) it follows that p; € Im Qr.

Further, note that
pa(3) = —(AG* — A%)" PXy—(AGX — A)7'(1 = P¥)y.
Now, applying Proposition 1.3 and Qr to the above equation yields

(P Cle L4 Bl L, BN N

Furt.hermore,
X _}__ - X ¥X X _ AX\— -
Py = o= [(C= @) PXG(CG" ~ AT BD g ()d
!
- %/r(g _Q)GX(CG = A)'BD T g (Q)dC
_ _l_ _ ~1 _ X _ AX _l___ ((:—Ot) covX Axy—1 -1 p
- Lo a0 067 - a0 (5 [ S or - poa o)

To prove the last equality one uses the same type of reasoning as in (2.18).

From the above calculation it follows that (2.17) holds with y instead of Gz, i.e.,

(G* — A7) PRy = L= )G ~ 407 BD gy () 5 [ S0 - 407 BD g ()

which shiows that

(Qeas)(\) = (AGX — A*)7'P*y , A€l
Thus po +p3 € Ker Qr =Im Pr. As D¢y + ¢ =g—Cp1 — C(pz + p3), we conclude that
¢-=g-—Cp1 , Doy =gy —Clpz+p3)
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['rom the definitions of p, and p3 we have

(AG = A)(p2(N) + p3(2)) = (AG™ = A)(p2(X) + p3(N)) = (A = ) BD™'C(p2(A) + p3(A))
= —y+(A=a)BD7g1(A) = (A = @) BDT'C(p2(A) + p3(1))
= —y+(A=a)BD7 [g:+(A) = C(p2(A) + p3(2))]

= —y+ (A —a)Béi(})

= —(AG = A)p(N) + (A= a) Bbs ().
It follows that with p = p; + py + p3 the identities in (2.11) hold. But this implies that
WNés () +d-(N) = [D+(A=a)CAG = A Blge () +6-()
= Dy () +Cp(\) + 6-(N)

= Cp(A) + Doy (A) + ¢-(A)
= g(A), reT,

and thus D¢y + ¢_ is a solution of (2.5). ]

2.3 Inversion and Fredholm properties

Equation (2.1) has a unique solution ¢ € LT (T) for each choice of f € L7*(I') if and only if the

singular integral operator My Pr 4+ Qr is invertible, and in this case the solution ¢ is given by

¢=(MwPr+Qr) 'y,

where ¢ is defined by (2.4). In this section we give a necessary and sufficient condition for the
invertibility of Mw Pr + Qr and an explicit formula for its inverse. Also we shall describe the

[Fredholm properties of the operator Mw Pr + Qr.
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Since the coefficients A(-) and B(-) in (2.1) are rational and have no poles on I, we see from (2.3)

that the same is true for W. It follows (see Section 1(a)) that W admits a realization of the form
WA =D+(\-—a)C(A\G—-A)"" B, XeT, (3.1)

where MG — A is a I'-regular matrix pencil.

Recall (see [TL]) that an operator T on L}(T') is Fredholm if Im T is closed and

L;"(F)> -

dim Ker T < 0o, codim Im T = dim
ImT

If T is Fredholm, then its indez is the integer
ind T := dim Ker T — codim Im T.

We say that T is a generalized inverse (in a weak sense) of T if TT*T =T

We now have the following theorems.

Theorem 3.1 Let T = Mw Pr + Qr be the singular integral operator on L7 (I') with symbol (3.1).
Put G* = G+ BD"'C and AX = A+ aBD™'C. Then T is a Fredholm operator if and only if the

pencil \G* — AX is I - regular, and in this case the following equalities hold:
Ker T ={¢]| Dpr(N)+6-()) = -C(AG—A)"'y+C(AG* - Ay, y e Im PN Ker P*}, (3.2)

ImT = {ge L) | /r(c @) PXGX(CG* — AX) ' BD g(¢)d¢ € Im P+ Ker X} (3.3)

CTL
Im P+ Ker P*’
ind T = rank P — rank P*. (3.5)

dim Ker T = dim(Im PN Ker P*), codim Im T = dim (3.4)
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Here P and P* are as before, and n is the order of the matrices A and G. [urthermore, a generalized

inverse T of T is given by:

(T*g)(A) = g(A) = (A = )C(AG* — AX)7' BD™!(Prg)(A)

+H{CAG* =A™ = C(AG - A)'} (3.6)
t (%/“ — ) PEE(CE - A*)"‘BD-‘g(oczC) . AeT,

where J* ¢ Im P* — Im P is a generalized inverse of the linear transformation
J=P*|Im P : Im P— Im P*. (3.7)

Proof. From the general theory of singular integral equations (see [G], also [CG]) it is known that
T = MwPr + Qr is Fredholm if and only if det W/(A\) # 0, A € [ But by Proposition 1.2, T is
Fredholm if and only if det (AG* — A*) # 0 for each A € T".

Assume that the latter condition holds. An immediate application of Proposition 2.1 (with g = 0)

gives (3.2). Also (3.3) follows directly from Propostion 2.1; one only has to note that for z € Im P*:
z € P*[Im P] & z € Im P 4+ Ker P*.
To pfove the first identity in (3.4) it suffices to show that for y € Im P N Ker P* the identity
CAG —A)ly=C(AG* -A")"'y , Ael (3.8)

iraplies ¥ = 0. Since y € Im P, the left-hand side of (3.8) extends to an analytic function on A_
which vanishes at co. From y € Ker PX it follows that the right hand-side of (3.8) has an analytic
continuation on A,. So, by Liouville’s theorem, both functions are identically zero on T'. But then

we can apply the identity (1.3) to show that
MG —A)ly=(\G—-A)'y , rel. (3.9)
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Apply G* to both sides of (3.9) and integrate over the contour I'. One sees that y = Py = P*Xy =0
and thus the first identity in (3.4) is proved. In an analogous way one proves the second identity in
(3.4).

From (3.4) it follows that

Cn
ind 7 = dim(Im PN T —d
ind im(Im Ker P) dlmIm P + Ker Px
. Im P C"L
aim im lmIm P N Ker PX lmIrn P + Ker PX*
' Im P + Ker P* cr
im Im dim Ker PX (lmIm P + Ker PX

= dim Im P — dim Im P*

which proves (3.5).
Finally, let us show that the operator T'* defined by (3.6) is a generalized inverse of T. Take an

arbitrary ¢ € L7H(I'), and put g = T'¢. Then (2.6) holds, that is,
2= /r(_c — Q)P*G*((G* — A)'BD 'g(¢)d¢ € Im J (3.10)

where J is defined by (3.7). Put y = J*z. Since J* is a generalized inverse of J, the map JJ* acts
as the identity operator on Im J, and therefore P*y = JJ*z = z. It follows that (2.8) holds. Also
y € Im P. Thus Proposition 2.1 implies that T*g¢ is a solution of (2.5). But then

Té=g=T(T*g) = TT*T¢.
Since ¢ is arbitrary, we have proved that T is a generalized inverse of T'. O

Theorem 3.2 Let Mw Pr + Qr be the singular integral operator on LT (') with symbol (3.1). Put
G* =G+ BD7'C and A* = A+ aBD™'C. Then MwPr + Qr is invertible if and only if the

following two conditions are satisfied:
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(a ) the pencil \G* — A* is ' - regular,
(3) C"= Im P® Ker P,

where n is the order of the matrices G and A, and

1 1
= — /\'— _1, X = — X X - )~ /\ -
p 2m_/rc:(c Ay, P [ Gxe* - a7 (3.11)

2m

I this case,

(M B +Qe)"g(0) = g(3) = (A = @)COG* = A) 7 BD™ (Frg)()
H{OOG* = A —COAG = A (T =)
(5= [(c =P X (CG* = A BDg(0)dC) , A€,

21

where 7 is the projection of C™ onto Ker P* along Im P.

Proof. Assume that 7' := Mw Pr + Qr is invertible. Then T is Fredholm, and thus, by Theorem 3.1

condition («) is fulfilled. Furthermore, since
dim Ker T7=0 , codimIm7T =0 (3.12)

formula (3.4) shows that condition (3) is fulfilled.

Conversely, assume that (a) and (3) hold. Then, by Theorem 3.1, the operator T is Fredholm and
(3.12) holds. But, this means that T is invertible.

To compute T~!, let 7 be the projection of €™ onto Ker P* along I;n P, and define

J* . Im P* = Im P, by setting,

Jte=(I-m)z , zelm P*. (3.13)
Let J be the map defined by (3.7). From
JJYJz = P*([ —m)Jz=P*Jz , z€ImP,
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it follows that J* is a generalized inverse of J. Now, let Tt be the operator defined by (3.6) with
J* given by (3.13). Then T is a generalized inverse of T. But T is invertible, and thus 7% = T~!,

which proves the formula for 7!, O

2.4 The factorization method

The classical way to invert the singular integral operator Mw Pr + Qr is based on the idea of factor-
ization. First, one looks for a so-called right canonical factorization of the symbol W relative to the

contour I', that is, a factorization of the form
W(A) = W_(MWW,L(A) , MeT, (4.1)

where, for v = +, —, the matrix function W, is continuous on A, UT and analytic on A,, and

det W, () # 0 for each A € A,UT. In particular, the factor W_ is analytic at co and det W_(o0) # 0.

As in the previous sections, let us assume that the symbol W is rational. Then it is well-known (see
e.g. [CG], Theorem [.3.1) that the singular integral operator Mw Pr + Qr is invertible if and only if

its symbol admits a right canonical factorization, and in this case

(Mw Pr + Qr)7'g)(A) = Wy (\) T (Pr(WZg))(\W_(M)(Qr(W2'g)() , AeT. (4.2)

where W_ and W, are factors in a right canonical factorization of W relative to ['. By definition,
WZ-lg is the function W_(-)"'g(:). To apply this method in an effective way one needs necessary
and sufficient conditions that guarantee the existence of the canonical factorization and one needs
explicit formulas for the factors in the factorization (and also for their inverses). The representation
of the symbol (3.1) allows one to find such conditions and to derive the factors and their inverses

explicitly. The following theorem holds; its proof may be found in [Grl, Theorem 1.3.1].
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Theorem 4.1 Let W be a rational m x m matriz function without poles on the contour I', and let

W be given in realized form:
WA =D+(M)—-a)C(A\G—-A)'B , Mel.

Put G* = G+ BD™'C and A* = A+ aBD7'C. Then W admits a right canonical factorization
relative to ' if and only if the following two conditions hold:
(i) the pencil \G* — A* is ' - regular,

(1)) C" = Im P® Ker P* and C™ = Im Q & Ker Q*.

Here n is the order of the matrices G and A, and

_ L g x = L [ex6x — Ax)
P = QM,/FG(/\G Ady P _M/FG(AG AX)1d),

._L . A1 x__L_ X _ AX\—1/71%
Q = /r(/\G A-lGdy , Q< = /F(/\G A)-1G*d,

2 2me
In this case a right canonical factorization W(A) = W_(A)Wi(X) of W relative to T is obtained by

taking:

= D+(A=-a)C(AG-A)(I-7)B , YeTUA_,

= I+(A=a)D7'CT(MG—-A)'B , XeTUA,,

W_(\N)"' = D' —=(A=a)D7'C(I - 1)(AG* = A)'BD™" | AeTUA_,
Wi(A)™' = [—=(A=—a)D7'C(AG* =A%) "B , MeTUA,.

Here 7 is the projection of C™ onto Ker Q* along Im Q) and 7 is the projection of C™ onto Ker P>

along Im P. Furthermore, the two equalities in (11) are equivalent.
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Let Mw Pr + Qr be the singular operator with symbol W. Assume that W is rational and given in
the realized form (3.1). Theorem 4.1 and the general theory of singular integral operators reviewed in
the first two paragraphs of this section imply that Mw Pr + Qr is invertible if and only if conditions
(i) and (ii) in Theorem 4.1 are fulfilled. Since the two conditions in Theorem 4.1(ii) are equivalent,
we reprove in this way the first part of Theorem 3.2.

The formula for (Mw Pr+ Qr)~" appearing in Theorem 3.2, may also be obtained {rom Theorem 4.1
and the general theory referred to above. For this purpose we use formula (4.2), and we insert in
this expression the explicit formulas for the factors W_, VV_‘l and W1 appearing in Theorem 4.1.

We first rewrite (4.2) in the following form:

(M Pr+Qr) " 0)() = £9(A) + sW(A)g(A)

(4.3)

+ —1—-/ ;{W (AN = W_o(MIW_(O)tg(¢)d¢ , AeT

2 Jr ¢ — A * B B B > '

Next, observe that, by Theorem 4.1,
(Wo ()™ = WO} WO = —(A—a)C(AGX — A%)~'n B
—(A=a)C(A\G - A"} (I-n)B

+HA = a)C(ANG* = A7) — a) (4.4)

aBC(I — 7)(¢CG* — AX)™'B
+(¢ = a)C(AG = AT = a)(I = 7)
BC(I — 7)(¢G* — A*)™'B.

The latter formulas can be simplified further. Indeed, note that

TA(l-7)=0 , nG([-71)=0, .
(I -—m)A*r=0 , (I-m)G*r=0.
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Since (¢ — @) BC = (CG* — AX) — (¢G — A), it follows that
(C—a)tBC(I—71) = (rG*(I=7)—7AY([ —7)=(nGI —7)+7AU —7)
= (rG* = (G*T —mA* + A%T
= (A¥ = AGX)T — 7 (AX = (G*) = (( = NG*T.
Also, note that
(C—a)(I—m)BC(I—7) = ([-m)((G* =A%) - ((G-A) -7
= (A=XG)(I —7) = (I =m)(A* = (G*) = (¢ = NG = 7).
But G = G* — BC and G(I —7) = (I = 7)G(I — m) imply that
(C—a)(I-m)BC(I~7) = (A=XG)I =7)— (I =m)(A* = (GC*) = ({ = ([ —m)G*([ = 7)
+(¢ =N =m)BC(I - 1)
whence
(A= a)([ —=m)BC(I—=7) = (A= AG)([ — 1) — (I = m)(A* = (G*) = (¢ = NI = m)G*(I = 7).
Inserting these expressions into (4.4) yields
Wi ' = WP W) = (- a)C(G* — A*)T B +(( = 4)
Or(CG* — A B+ ({ = N)C(\G — A)~Y(I —m)B
—(C = M)A —a)C(AG* — AX)"\nG*r((G* — A)7'B (4.5)
—(¢ =N —a)C(AG - A)~!
(I —m)GX(I = 7)(¢CG* — AX)™1B.
Next, use that
(¢ = N)CAG* — AX)"IGX(¢G* — AX)™'B
= C(AGX — A¥)"H{((G* — A¥) — (AG* — A¥)}((G* — A*)"'B
= C(\G* —= A 1B - C((G* — A¥)"'B
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and thus rewrite (4.5) as

{We)™t =W we(¢

So,

{We ()= = W_ ()} W_(O)!

—(( = a)C(CG" = A*)T'B+(( = NCr(¢G* — A*)'B
+({ = NCAG — A Y —=7)B = (A —a)C(NG* — AX)"'B
+(A —a)C((G* - A*)'B
+(¢ = AN = a)C(AG* — A HG —nG*T)(¢CG* — A)'B
—(C =X = a)CAG — )Y = 7)G* (I —7)(CG* — 4™ 'B
(= NC(I =7)((G* = A) "B+ (¢ —XN)C(\G - A)"'(I-m)B
—(A=a)C(AG*X — AX)'B
+(¢ = N(A = )C(AGX - A)T'GX (I = 7)((G* — A)™'B
—(( =N = )CAG* = A) (I = m)G*(I ~7)((G* - A*)'B
+H(C = A = a)CAG" = A)TH I = m)G*(I = T)((G* - 4*)7'B
—(C =N = a)C(AG — A)THI - m)G™(I - 7)((G* — A*)™'B.
SR AT A DN AL LAY

W (RN Rt i (. L N

+(( = MNCAG = A)'(I=m)B

—(( = A)PCAG* = AX)1G*(I - 7)(CG* — AX)"'B (4.6)

+(C = A(¢ —a)C(AG* — AX)"InG™

(I = 7)((G* — A¥)"'B

+(C =N {COAG* = A¥)' = C(AG - A)"1}

(¢ —a)(I —m)P*G*((G* — A¥)"'B.
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By inserting (4.6) and (1.3) in (4.3) we obtain

(MwPr+ Q)™ g0) = g(A) = 500 = @)COGT =A%) Bg()

~(A—a)C(AG* —A)"'B (L/r?i—ig(odc)

2m
+H{COAG* - A = C(AG = AT} (T =)

- (i. [(¢~ )P G*(¢G* — 4% By(0)dk

2m

271'1 / C(I - 7)(¢G™ = A*)™" Bg(¢)d(

= [.COG — Ay (1 - m)Bg(O)d

= — /(C ACAG* = A)7'G* (I — 7)(CG* — A*)™' Bg(¢)d¢
1

+—./(g — )OGS = A) ' GX (I = T)(CG* — A%) ™ Bg({)dc.

2mi Jr
Since (I —m)P* = [ — and Pr is given by (2.9), we have found the expression for (Mw Pr + Qr)”!
appearing in Theorem 3.2 and four additional terms. It remains to show that these surplus terms

are equal to zero.

Indeed, it follows from the spectral decomposition theorem (see [GI(2], Theorem 2.1) that the third

term,

= [ = )(CG — A%)* Bo(Q)dC

2mJr

:(zﬂ/cgax—A)lBg( C)d¢ o)
0 0

Since g4 (-) and (Qf — I are analytic on A, and

o [ 0(CGE ~ AT Bay(Q)de = 5= [ C(AT) (007 = YT Bar (O,

2m
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it follows by Cauchy’s theorem that

1
— [[Cr = )(¢G* = A Bou(0)dC =0.

"On the other hand, since [ —7 = ([ — 7)Q* we have

%/rcu — 7)(CG* — A*)™'Bg_(¢)d¢

- CNOX (A% A%

= o— [ €U = 1)Q (G = 4*) ™ Ba-(0)dC.
But @Q*(¢G* — AX)~' B is analytic on A_ and vanishes at oo, Hence,

Lo = 7)o = A By (A =0

2m1 Jr - g

so the third term is zero.

Next, since g4 (-) is analytic on AL, it follows by Cauchy’s theorem that

5= [ COG = )7 (1 - mBa () =0.

2w

On the other hand, note the resolvent identity
ANG - AT =G —-A)"+((—N(G - A)T'G(G - A)T!
Clearly, since (I — 7)Bg_(-) € Im P, we have that

1 4
= Jo0G = A7 =m)Ba-()d
= 5 [[C(¢G = Ay PI = ) Bo-(C)dC
+C(\G — A)"'G ( » /(g — )G — AP - W)Bg_(CdC>

But, ((G — A)~'P is analytic on A_ and vanishes at co. Therefore,

[ 0(¢G — A7 P(T = ) By (Q)d¢ = 0

2m1 Jr
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and

1

2m1

= [(€= NG = A)7 P = m)Bo-(¢)de =0,

whence the fourth term is zero.

Furthermore, the fifth term equals

COG* ~ A6 (5= [[(€ =M = )(CG™ = A Bo(O)dc)

Then, it follows once again from the spectral decomposition theorem (see [GK2], Theorem 2.

1
2

— [(C =N =)(CEX = 4%)~' By(¢)dg

:(ofm [ = MG ~ AT Ba(0)de o)
0 0

Since g4 () and (Qf — I are analytic on Ay and

o [ = N(CGE ~ AN Bon(0)de = 5= [(¢ = MAF) (R = 1) By (e,

2m Jr
it follows by Cauchy’s theorem that

1

= [C =N =7)(¢G* = 4)7 By ()de = 0.
On the other hand, since [ — 7 = ([ — 7)Q* we have

1

2w
= COG* A7 (1= (5= [(¢ = V@ (G = A% By (O)dc) .

But, Q*((G* — A*)~! B is analytic on A_ and vanishes at co. Thus,

— [((=NCOG* = 47 GX (I =)@ ((C* ~ A") ™ By-(C)d

o= [(C = N@*(G* — 47 By ()¢ =0,

2m Jr
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so the fifth term is zero.

Analogously, one can show that the sixth term is zero.

The Fredholm properties of My Pr + Qr may also be derived via the factorization method. This one
can do by constructing a non-canonical factorization via the state space method (see [BGK2], [GKR]
and [Grl]). However, the formulas are much more complicated than those in Theorem 4.1, and hence

for the Fredholm case the approach employed in Section 3 via input/output systems is more direct.
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LIST OF SYMBOLS

C subset

C set of complex numbers

I Cauchy contour in C

Ay inner domain of [’

A_ outer domain of I'

Ker T kernel (nullspace) of the operator T

ImT image (range) of the operator T

T inverse of the operator T’

T+ generalized inverse of the operator T

T |x restriction of the operator T' to the set X

ind T index of the operator T'

A/X, I identity operator on X, m x m identity matrix
XY direct sum of the linear spaces X and Y

(i Unitary space of dimension n over the field €
L(X) class of bounded linear operators on a space X
LT space of C™ -valued square-integrable functions on '
(z,y) inner product of z and y
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SUMMARY

In this dissertation we studied the state space method for solving singular integral equations explic-
itly from the representation of a matrix function in realization form. A rational matrix function W,

which is analytic and invertible at infinity, may be represented in the form

W(A) =D+ C(\—A)"'B, (1)
where A is a n x n square matrix, say, B and C are n x m and m X n matrices, respectively, and
D is an invertible m x m matrix. The process of constructing expvlicit formulas for the generalized
inverse (resp., inverse) of a singular integral operator with rational symbol is well-known for rational
matrix functions in the form (1). However, in our work, we have concentrated on the case where W

does not have these properties at infinity and has a realization of the form

W) =D+ (A= a)C(AG — A)7'B, (2)
where A, B, C, and D are as above and G is of the same order as A. In the main results in Chapter 2,
We give necessary and sufficient conditions for the existence of an inverse (resp., generalized inverse)
of a singular integral operator with rational symbol. In addition, we have shown that the explicit
formulas (in realized form (2)) for the generalized inverse (resp., inverse) may be written in terms
of the matrices A, G, B, C and D and various other matrices derived from them. In this chapter,
we made extensive use of the Riesz theory associated with the decomposition of the spectrum of the

pencil AG — A. Finally, we review the factorization method.
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