INTEGRATED APPROACH TO SOLVING RESERVOIR PROBLEMS AND EVALUATIONS USING SEQUENCE STRATIGRAPHY, GEOLOGICAL STRUCTURES AND DIAGENESIS IN ORANGE BASIN, SOUTH AFRICA.

By

Solomon Adeniyi Adekola

B.Sc. Hons (Ado), M.Sc (Ibadan)

A Thesis submitted in fulfillment of the requirement for the Degree of Doctor of Philosophy in Earth Sciences of The University of the Western Cape.

Supervisor

Dr. A. Akinlua

May, 2010.
DECLARATION

I declare that “Integrated approach to solving reservoir problems and evaluations using Sequence Stratigraphy, Geological Structures and Diagenesis in Orange Basin, South Africa” is my own work, that it has not been submitted before for any degree or examination in any other university, and that all the sources I have used or quoted have been indicated and acknowledged by means of complete references.

Solomon Adeniyi Adekola May 2010

Signature
I want to acknowledge the giver of life, God Almighty, who in His mercies made this dream a reality. I thank Him for protection, provision, presence, good health and sound mind to be able to complete this study.

My sincere appreciation goes to the University of Ado Ekiti, Nigeria for granting me a study leave for this programme. I am indebted to Petroleum Agency South Africa for the release of the data and samples for this study and permission to publish the findings. Appreciations are also due to Inkaba ye Africa for funding part of this research work by providing bursary and part of the cost of the analyses. I am very grateful to the Faculty of Natural Sciences of the University of the Western Cape for funding my trip to GeoForschungsZentrum (GFZ), Potsdam, Germany where some of the analyses were carried out. Special thanks to Prof. Jan van Bever Donker for his immeasurable assistance during the course of this study. I am indebted to many laboratories where some of the analyses were carried out; Prof. Roger M. Smith’s laboratory, Department of Chemistry, Loughborough University, UK for the total organic carbon (TOC) determination of the rock samples. I am grateful to Humble Geochemical Laboratory, USA for the Rock – Eval pyrolysis of the rock samples. Dr. Arthur Kasson of Cornell University, USA for the stable isotope analysis. I am very grateful to my hosts at GFZ, Germany; Prof. B. Horsfield and Dr. K. Mangelsdorf for all their assistance during my stay in Germany. The assistance of Cornelia Karger, Kristin Günther and Anke Kaminski during instrumental analysis of my rock extracts is gratefully appreciated. Thanks to Dr. Remy Bucher of Itemba laboratories for the XRD analysis.

I want to appreciate the staff members of the Department of the Earth Science, UWC, both academic and non academic for a cordial working relationship during this programme. Your contributions, morally and financially will continue to be cherished. Thanks also go to my colleagues at lab 60, you are indeed an asset that will be remembered forever.
I also appreciate the church of God, which God used in nourishing my soul while here in South Africa, especially the prayer group, I am saying thank you for your prayer and love always. I know God will definitely reward your labour of love.

I want to thank my friends from UNAD, LASU, FUTA and every other places here in South Africa, thanks for being there always.

I want to gratefully thank my supervisor, Dr Akinsehinwa Akinlua for his invaluable criticism, insight and suggestions to work where others have not worked before in Orange Basin, am indeed very grateful. Your efforts made the extenuating task of PhD programme enjoyable. This success wouldn’t have been achieved without your tireless efforts.

Lastly, I appreciate my parents, brothers, sisters, my wife, Billy and children, Siju and Toju for the love, support and encouragement.

Adekola S.A.
Dedication:

My loving wife

and children.
Table of content

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title page</td>
<td>i</td>
</tr>
<tr>
<td>Declaration</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iii-iv</td>
</tr>
<tr>
<td>Dedication</td>
<td>v</td>
</tr>
<tr>
<td>Table of content</td>
<td>vi-xi</td>
</tr>
<tr>
<td>List of figures</td>
<td>xii-xvii</td>
</tr>
<tr>
<td>List of tables</td>
<td>xviii-xvii</td>
</tr>
<tr>
<td>List of plates</td>
<td>xix</td>
</tr>
<tr>
<td>Key words</td>
<td>xx</td>
</tr>
</tbody>
</table>

Abstract

1-3

Chapter One

4

1.0 Introduction

4

1.1. Scientific Background and State-of-the-art

4

1.2. Location of the study area

9

1.3. Research objective

11

1.4. Scope of work

12

1.5. Review of previous work (General)

13

1.5.1. Basic sequence stratigraphic concepts

13

1.5.2. Evolution of sequence stratigraphy

13

1.5.3. Sequence stratigraphic elements

14

- Sequence and Sequence boundary
 14

- Parasequences, parasequences set, and systems tract
 16

- Seismic and wireline log signatures of systems tract
 20

 Lowstand Systems Tract (LST)
 20

 Basin Floor Fan (BFF)
 20

 Slope Fan (SF)
 21

 Lowstand Prograding Wedge (PGC)
 22

 Transgressive Systems Tract (TST)
 22

 Highstand Systems Tract (HST)
 22
1.5.4. Diagenesis, sequence stratigraphy and petroleum potential of the Orange Basin

1.5.5. Application of sequence stratigraphy in Orange basin

1.5.6. Diagenesis and sequence stratigraphy approach

Chapter Two

2.0. Geology of the Orange Basin
2.1. Regional geology of the Orange Basin
2.2. The Pay Zones of Orange Basin
2.2.1. Outcrops of the Cretaceous Orange Basin deposits
2.2.2. Stratigraphy
2.3. Orange Basin tectonic evolution

Chapter Three

3.1. Materials and methods
3.1.1. Materials
3.1.2. Methods
3.2. Digital data loading
3.2.1. Wireline logs data loading
3.2.2. Seismic section data loading
3.2.3. Seismic data interpretation (General principle)
 Steps used in interpreting
 Major seismic reflection termination patterns
 Lapout
 Baselap/downlap
 Toplap
 Erosional truncation
 Apparent truncation
 Onlap
 Marine onlap
 Coastal onlap
 Fault truncation
 Seismic facies
Factors that control interpretation of seismic facies

Major Seismic facies

Parallel/Divergent Seismic facies
Progradational Seismic facies

Recognition of Stratigraphic Surfaces from Seismic Data

Determination of Sequence Boundary
Determination of a Transgressive Surface
Determination of a Maximum Flooding Surface

Recognition of Systems Tract on Seismic Data
Recognition of Lowstand Systems Tract
Recognition Transgressive Systems Tract
Recognition of Highstand Systems Tract

3.2.4. Wireline log interpretation (General procedures)

Sequence Stratigraphy from Wireline Logs
The Cleaning up Trend
The Dirtying up Trend
Box Car Log Trends
The Bow Trend
Irregular Trends

The Log Response of Clinoforms
The Log Response of Parasequence
Log Responses from Basinal Environments
Estimation of depositional controls and sequence stratigraphy from log response

Key surfaces
Identification of systems tracts from log response
Log responses from Basinal Environments
Estimation of depositional controls and sequence stratigraphy from log response

3.3. Laboratory analyses procedures

3.3.1. Thin section procedure
3.3.2. XRD procedure 51
3.3.3. SEM/EDS procedure 52
3.3.4. Stable Carbon and Oxygen isotope geochemistry procedure 53
3.3.5. Rock-Eval pyrolysis and total organic carbon (TOC) determination 53
 Total Organic Carbon 53
 Rock-Eval (Programmed Pyrolysis) 53
 Operating Conditions 54
3.3.5.1. Accelerated solvent extraction 54
3.3.5.2. Gas chromatography 55
3.3.5.3. Gas chromatography–mass spectrometry 56

Chapter Four 57
Results and Discussions
4.1. Introduction to interpretation of results 57
4.1.1. Wireline log interpretation 57
4.1.2. Sequence stratigraphic interpretation 58
4.2. Seismic interpretation 58
4.3. Lithostratigraphic interpretation 63
4.3.1. Lithostratigraphic of well succession 63
 Bottom log-6At1 (reservoir zone) 65
 The 6At-14At1 (reservoir zone) 65
 Cycle frequency and stacking patterns 66
4.4. Petrography results 70
4.4.1. Thin section interpretation 70
 LST 70
 TST 73
 HST 78
4.5. Mineralogical analyses results 84
4.5.1. The XRD interpretation 84
 Diagenetic events in Lowstand Systems Tract (LST) 84
 Diagenetic events in Transgressive Systems Tract (TST) 85
Diagenetic events in Highstand Systems Tract (HST) 86

4.5.2. The SEM interpretation 88
 LST 88
 TST 90
 HST 93

4.5.3. The EDS interpretation 96
 LST 96
 TST 99
 HST 104

4.5.4. Stable isotope analysis results 109
 LST isotopic interpretation 113
 TST isotopic interpretation 114
 HST isotopic interpretation 115

4.6. Diagenetic alteration processes and reservoir environmental evolution in the basin 115
 Compaction 116
 Cementation/micitization 117
 Dissolution 117
 Silicification/quartz growth 118
 Fracturing 118

4.7. Diagenetic events within the depositional settings 118

4.8. Source Evaluation 121

4.8.1. Rock-Eval Pyrolysis 121

4.8.1.1. Source Rock Potential within LST 121

4.8.1.2. Source Rock Potential within TST 126

4.8.1.3. Source Rock Potential within HST 130

4.8.2. Organic geochemical evaluation of the shale samples 133

4.8.2.1. \(n \)- and iso-alkanes: provenance and thermal maturity 133

4.8.2.2. Biomarker geochemistry 143
 Origin of the organic matter 143

4.8.3. Thermal maturity of the organic matter 149
Chapter Five

5.0. Conclusions and recommendations 152
5.1. Main scientific contributions of the dissertation 155
5.2. Recommendation for future work 156

References 157
List of Figures

Chapter One

<table>
<thead>
<tr>
<th>Fig</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Map of South Africa showing the position of Orange Basin (Modified from Broad, 2004)</td>
<td>10</td>
</tr>
<tr>
<td>1-2</td>
<td>Map of Orange Basin showing the distribution of the wells within the blocks.</td>
<td>11</td>
</tr>
<tr>
<td>1-3</td>
<td>Typical Type-1 sequence adapted from Van Wagoner et al., (1990).</td>
<td>15</td>
</tr>
<tr>
<td>1-4</td>
<td>Typical Type-2 sequence adapted from Van Wagoner et al., (1990).</td>
<td>15</td>
</tr>
<tr>
<td>1-5</td>
<td>Typical Wave-dominated Parasequence</td>
<td>17</td>
</tr>
<tr>
<td>1-6</td>
<td>Typical Tidal-parasequence</td>
<td>18</td>
</tr>
<tr>
<td>1-7</td>
<td>Typical Progradational Parasequence Set adapted from Van Wagoner et al., 1990</td>
<td>19</td>
</tr>
<tr>
<td>1-8</td>
<td>Typical Aggradational Parasequence Set adapted from Van Wagoner et al., 1990</td>
<td>19</td>
</tr>
<tr>
<td>1-9</td>
<td>Typical Retrogradional Parasequence Set adapted from Van Wagoner et al., 1990</td>
<td>20</td>
</tr>
<tr>
<td>1-10</td>
<td>Well log Response character after Emery and Myers 1996</td>
<td>21</td>
</tr>
</tbody>
</table>
Fig 1-11. Orange Basin standard chronostratigraphy and 2nd and 3rd order unconformities (Brown et al., 1996) 26

Fig 1-12. Generalised Chronostratigraphy and sequence stratigraphy Of Orange Basin offshore Mesozoic basin, based on results of sequence stratigraphic studies (modified after Broad et al., 2006). 28

Chapter Two

Fig 2-1. Gondwana showing African and South American plates (Modified from Broad, 2004) 30

Fig 2-2. Gondwana map showing the different Earth crustal plates (www.parks.tas.gov.au, 2003). 32

Fig 2-3. Map of Western part of South Africa showing the Walvis Ridge (Macdonald et al., 2003). 33

Chapter Three

Fig 3-1. Flow chart of methods of analyses 37

Fig 3-2. The seismic lines acquired in the Orange Basin for interpretation in SMT showing their relationship to one another based on their positions to the globe 39

Chapter Four

Fig 4-1. Interpreted seismic section line A81-007 where yellow lines are sequence boundaries, green lines transgressive surfaces and black lines fault lines. 59

Fig 4-2. Interpreted seismic section line AM-53F where yellow lines are sequence boundaries, green line transgressive surfaces and black lines fault lines 60
Fig 4-3. Interpreted seismic section line A87-047 where yellow lines are sequence boundaries, green lines transgressive surfaces and black lines fault lines. 61

Fig 4-4. Interpreted seismic section line A81-061 where yellow lines are sequence boundaries, green line transgressive surfaces and black lines fault lines. 62

Fig 4-5. The correlation of the wells used in the study 64

Fig 4-6. The photomicrograph of samples taken within LST showing different minerals both plain (PPL) and cross polarised (XP): Micas (M), Quartz (Qtz), Quartz overgrowth (Qtz-o) and Glauconite (G). The arrows: blue showing evidence of fracturing, white showing dense micritic calcite cement and black, filled fractured with quartz. 71-73

Fig 4-7. The photomicrograph of samples taken within TST showing different minerals both plain (PPL) and cross polarised (XP): Micas (M), Quartz (Qtz), Quartz overgrowth (Qtz-o), Pyrite (Pry), Chlorite (Chl), Clay and Glauconite (G). The arrows: blue showing evidence of fracturing and white showing dense micritic calcite cement. 74-78

Fig 4-8. The photomicrograph of samples taken within HST showing different minerals both plain (PPL) and cross polarised (XP): Micas (M), Quartz (Qtz), Quartz overgrowth (Qtz-o), Chlorite (Chl), Clay, Calcite cement (Cal) and Glauconite (G). The arrows: blue showing evidence of fracturing and white showing dense micritic calcite cement. 79-83
Fig 4-9. XRD results showing mineral peaks within the Lowstand System Tract (LST) across the studied wells

Fig 4-10. XRD results showing mineral peaks within the Transgressive Systems Tract (TST) across the studied wells

Fig 4-11. XRD results showing mineral peaks within the High Systems Tract (HST) across the studied wells

Fig 4-12. SEM imageries of samples within LST showing massive quartz overgrowth (Qtz-o), authigenic minerals montmorillonite (Mont) and chlorite (Chl) coating detrital grains, with some nodular pyrite and flattened/fibre like hematite

Fig 4-13. SEM imageries of samples within TST showing massive quartz overgrowth (Qtz-o), authigenic minerals montmorillonite (Mont) and chlorite (Chl) coating detrital grains, with some nodular pyrite and flattened/fibre like hematite

Fig 4-14. SEM imageries of samples within HST showing massive quartz overgrowth (Qtz-o), authigenic minerals montmorillonite (Mont) and chlorite (Chl) coating detrital grains, with some nodular/framboidal pyrite and flattened/fibre like hematite

Fig 4-15. EDS elemental distribution of samples within LST

Fig 4-16. EDS elemental distribution of samples within TST

Fig 4-17. EDS elemental distribution of samples within HST

Fig 4-18. Comparison of $\delta^{18}O$ and $\delta^{13}C$ values within generic packages (System tracts) of calcite cemented sandstone with published stable isotope data of other carbonate cements.

Fig 4-19. Paragenetic sequence of the diagenetic alteration within
the stratigraphic settings of Orange Basin sandstones using XRD and thin section results. The boundary between Eodigenesis and mesodiagenesis is according to Morad et al., (2000).

Fig 4-20. The Plot of Remaining hydrocarbon potential against total organic carbon
Fig 4-21. The Plot of hydrogen index against oxygen index
Fig 4-22. Plot of Hydrogen Index against Tmax
Fig 4-23. The Plot of Production Index against Maturity
Fig 4-24. (a) A representative gas chromatogram of rock extracts of samples from the Orange Basin
(b) A typical mass fragmentogram (m/z = 191) terpanes in rock extracts of samples from the Orange Basin
(c) A typical mass fragmentogram (m/z = 217) of steranes in rock extracts of samples from the Orange Basin
Fig 4-25. The plot of CPI against Pr/Ph of shale samples from stratigraphic sequences of Orange Basin
Fig 4-26. The plot of Pr/C17 vs Ph/C18
Fig 4-27. The ternary plot of steranes inherited directly from higher plants, animals and algae the 20R epimers of C27, C28 and C29 steranes (Peters and Moldowan, 1993), all values in the axes per 100.
Fig 4-28. Cross plot of $C_{29\alpha\beta\beta\alpha}/(\alpha\alpha\alpha\alpha+\alpha\beta\beta\beta)$ vs $C_{29\alpha\alpha\alpha\alpha\alpha}/(S+R)$ steranes
List of Tables

Chapter Four
Table 4.1. The reservoir rock samples positions within the parasequence setting and the sequences. 68
Table 4.2. The source rock samples positions within the parasequence setting and the sequences. 69
Table 4.3a Weight elemental composition from EDS analysis within LST (%) 97
Table 4.3b Atomic elemental composition from EDS analysis within LST (%) 97
Table 4.4a Weight elemental composition from EDS analysis within TST (%) 100
Table 4.4b Atomic elemental composition from EDS analysis within TST (%) 101
Table 4.5a Weight elemental composition from EDS analysis within HST (%) 105
Table 4.5b. Atomic elemental composition from EDS analysis within HST (%) 106
Table 4.6. Geochemical results including pore water data and stable isotopes data of samples from the LST 111
Table 4.7. Geochemical results including pore water data and stable isotopes data of samples from the TST 111
Table 4.8. Geochemical results including pore water data and stable isotopes data of samples from the HST 112
Table 4.9a Results of Rock-Eval analysis of samples sourced from wells within LST 123
Table 4.9b Results of Rock-Eval analysis of samples sourced from wells
within LST

Table 4.10a Results of Rock-Eval analysis of samples sourced from wells within TST

Table 4.10b Results of Rock-Eval analysis of samples sourced from wells within TST

Table 4.11a Results of Rock-Eval analysis of samples sourced from wells within HST

Table 4.11b Results of Rock-Eval analysis of samples sourced from wells within HST

Table 4-12. Gas chromatographic data of Orange Basin sediments within LST

Table 4-13. Gas chromatographic data of Orange Basin sediments within TST

Table 4-14. Gas chromatographic data of Orange Basin sediments within HST

Table 4-15. Re-ordered gas chromatographic and rock eval pyrolysis results of samples collected based on wells, ages and sequences in Orange Basin

Table 4-16. Biomarkers of data within the LST of Orange Basin sediments

Table 4-17. Biomarkers of data within the TST of Orange Basin sediments

Table 4-18. Biomarkers of data within the HST of Orange Basin sediments

Table 4-19. Re-ordered biomarker results of samples collected based on wells, ages and sequences in Orange Basin
List of Plates

Chapter Four

Plate 1. XRD machine 52

Plate 2. Medium Pressure Liquid Chromatography equipment (MPLC) 55
INTEGRATED APPROACH TO SOLVING RESERVOIR PROBLEMS AND EVALUATIONS USING SEQUENCE STRATIGRAPHY, GEOLOGICAL STRUCTURES AND DIAGENESIS IN ORANGE BASIN, SOUTH AFRICA.

Key words:

unconformities,
Wireline logs,
stratigraphy,
reservoir,
seismic,
facies,
lithology,
faults,
sequence boundaries,
systems tract.
Abstract

The use of integrated approach to evaluate reservoir rock quality and source rock potential is becoming increasingly important in petroleum geology. This approach was employed to unravel the reason for variable reservoir quality of sandstones and evaluation of source rock potential of shale intervals of Orange Basin, SW, South Africa.

The data sets acquired for this study include 783.63 km digital 2D seismic lines cutting across the 5 blocks of the basin, digital wireline logs (gamma ray, resistivity, density and neutron), core (sidewall and core) and ditch cutting samples from 10 wells of interest. The digital seismic section and wireline logs were subjected to manual and computer interpretation using specialized softwares (FastTracker, PETREL 2008, and SMT 8.2). The wireline logs of the 10 wells were broken to depositional sequences and systems tracts: lowstand, transgressive and highstand systems tracts. The seismic section was analysed for depositional sequences, systems tracts and structures. Growth faults that are listric and normal were found localized in the basin. The faults are flank faults, crestal faults as well as antithetic faults.

Sandstone and shale samples were selected within the systems tracts for laboratory analyses. The sidewall and core samples were subjected to petrographic thin section analysis, mineralogical analyses which include x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and stable carbon and oxygen isotopes geochemistry to determine the diagenetic alteration at deposition and post deposition in the basin. The shale samples were subjected to Rock-Eval pyrolysis and accelerated solvent extraction (ASE) prior to gas chromatographic (GC) and gas chromatographic-mass spectrometric (GC-MS) analyses of the rock extracts, in order to determine the provenance, type and thermal maturity of organic matter present in sediments of the Orange Basin.

The results revealed a complex diagenetic history of sandstones in this basin, which includes compaction, cementation/micritization, dissolution, silicification/overgrowth of quartz, and fracturing. The Eh-pH shows that the cements in the area of the basin under
investigation were precipitated under weak acidic and slightly alkaline conditions. The \(\delta^{18}O \) isotope values range from -1.648 to 10.054 %, -1.574 to 13.134 %, and -2.644 to 16.180 % in the LST, TST, and HST, respectively. While \(\delta^{13}C \) isotope values range from -25.667 to -12.44 %, -27.862 to -6.954 %, and -27.407 to -19.935 % in the LST, TST, and HST, respectively. The plot of \(\delta^{18}O \) versus \(\delta^{13}C \) shows that the sediments were deposited in shallow marine temperate conditions. The consistency of abundance of \(\delta^{13}C \) isotope across the stratigraphic sequences indicates that the burial diagenesis has no significant effect on geochemical pattern of occurrence of \(\delta^{13}C \) isotope in the sandstones under investigation. The authigenic minerals precipitated blocked the grain interspaces and interlayers and with continued burial, compaction impeded the development of secondary porosity resulting in the poor reservoir quality. The origins of the cementing materials are both autochthonous and allochtonous.

The Rock-Eval pyrolysis and TOC results of the shale samples revealed that LST is characterised by mainly marginally organic rich shale samples with a few organic rich rocks, variable organic matter types ranging from Type II to Type IV, and a few samples are thermally mature but have low organic matter quality. Four samples from two wells (A_F1 and O_A1) in the LST have good petroleum generative potential but not sufficiently mature for petroleum generation. TST is characterised with a few samples being marginally organic rich with only one being organic rich, mainly Type III kerogen with few Type IV kerogen, and only a few samples are thermally mature that has low organic matter quality. HST is characterised by many marginally organic rich rock samples, mainly Type III and a few mixed Type II/III kerogen, and only a few samples are thermally mature. The results of this study show that the LST has the best prospect in terms of petroleum generation potential, followed by HST and TST has least petroleum generation potential. The study also reveals that limited petroleum source rocks exist, which are also impacted by low thermal maturity levels. The basin is more gas prone than oil.

The shale samples were further analysed by Rock-Eval-Pyrolysis and for \(n \)-alkanes, aliphatic isoprenoid hydrocarbons and biomarkers (steranes and hopanes) by gas
chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). For most of the shale samples from the different stratigraphic sequences from Aptian to Campanian age Rock-Eval data (hydrogen (HI) and oxygen index (OI)) and biomarker parameters (oleanane/hopane ratio, proportions of steranes, pristane/n-heptadecane vs. phytane/n-octadecane) point to mainly Typ III terrestrial organic matter. Only a few samples of Turonian age reveal a higher proportion of marine organic matter being classified as Typ II/III or Typ II. Biomarker parameters also suggest that the samples are deposited under suboxic to oxic environmental conditions. Rock-Eval data and biomarker maturity parameters assign for most of the samples a maturity level at the beginning of the oil window with some more mature samples of Aptian, Albian and Cenomanian age. The hydrocarbon generation potential is for most of the samples low as indicated by the S2/S3 ratio and HI values, exceptions are samples from Turonian and Aptian age.
Chapter One

1.0 Introduction

1.1 Scientific Background and State-of-the-art

Petroleum systems (reservoir rocks, source rocks, traps and seals) evaluation has shifted focus from single approach to integrated approach. This is becoming very important in petroleum geology because it has proved that it is worth it in solving exploration and production problems (Ketzer, 2002).

Orange Basin in the south western margin of the Atlantic Ocean showed variable reservoir rock qualities (Macdonald et al., 2003). These Cretaceous (Barremian-Santonian) clastic sediments marked by regional unconformities 6At1 to 15At1 (Brown et al., 1996) have not been widely studied to ascertain the reasons for the variable reservoir qualities as reported by Macdonald et al., (2003). This section of the basin is characterised by drifting and the resulting graben filled with predominantly siliciclastic continental and lacustrine rocks, with variable thicknesses of volcanic rocks (Brown et al., 1996). In the basin, a total of 34 wells have been drilled with only one oil discovery and a number of gas discoveries to date (PASA, 2003a).

There are many crucial unanswered questions, and more importantly, literatures about the events at deposition and post deposition of the sediments are scarce, which present study will attempt to investigate. The investigation will involve looking at the mode of deposition sediment on a regional scale within the genetically related packages and establishes its sources diagenetically. Diagenetic evolution of siliciclastic deposit is complex and controlled by several inter-related factors which include; changes in detrital composition in particular extrabasinal and intrabasinal grains (Garzanti, 1991; Zuffa et al., 1995; Ketzer et al., 2002), pore water chemistry (Mckay et al., 1995; Morad et al., 2000), residence time of sediment under certain geochemical conditions (Wilkinson, 1989; Taylor et al., 1995; Morad et al., 2000). All these complexities have been unravelled by sequence stratigraphic approach because variations in these factors are marked by sequence stratigraphic surfaces (such as parasequence boundaries,
transgressive surface and maximum flooding surfaces (El-ghali et al., 2009). The sequence stratigraphic tool has been widely used to correlate genetically related sedimentary successions bounded at top and base by unconformities or their strata patterns interpreted in response to interaction of eustatic change of sea level, compaction, sediment supply and tectonic subsidence (Van Wagoner et al., 1990).

Sequence stratigraphy has been widely employed in hydrocarbon exploration (Catuneanu and Eriksson, 2007). This tool using the understanding of sea level change has been used to understand the evolution of the sedimentary environments, distribution of sedimentary systems, and the effects on source, reservoir and seal rocks. The Orange Basin Deep Water Licence Area covers an area of about 43,000 km² (PASA, 2003b). Van der Spuy (2003) worked on the source rock in southern Africa basins. Three predominant source rock intervals have been identified in the basin, they are: Upper Jurassic-Necomanian lacustrine source rock (Paton et al., 2007), the Barremian-Lower Aptian marine transitional source rock (Jungslanger, 1999) and Cenomanian-Turonian marine maximum flooding surface source rock (Van der Spuy 2003). Van der Spuy (2003) said there is a strong case for the regional development of a good-quality source rock within the Early Aptian succession in the deeper parts of the Orange Basin. The hydrocarbon distribution in petroleum source rocks can give an insight into the origin, thermal maturity and paleoenvironmental history of petroleum which are essential elements in petroleum exploration (Akinlua and Smith, 2009).

Many workers have applied this concept to improve the understanding of source rocks potential within different stratigraphic settings in the late 80s’ and 90s’ (Vail, 1987; Cross, 1988; Arditto, 1991; Kosters and Suter, 1993; Pasley et al., 1993; Hart et al., 1994; Yancey, 1997; Petersen et al., 1998) in various basins of the world. Recently workers like Ryu (2008) used a stratigraphic framework and organic geochemistry of samples from southern Oregon Costal Range strata to propose petroleum systems for the basin. Akinlua et al. (2005) also used improved Rock-Eval pyrolysis to classify organic matter in the Niger Delta.

The understanding of petroleum system in any sedimentary basin remains a major key issue in the exploration of petroleum (Lopez et al., 1998). In petroleum exploration
activities both at initial and advanced stages organic geochemistry has become a vital tool for the identification of source rock and classification of crude oils into families (Ekweozor et al., 1979; Doust and Omatsola, 1990; Akinlua et al., 2007; Gulbay and Korkmaz, 2008). Source rock identification and classification is useful for the characterisation of an area and to address stratigraphic units of a basin to concentrate effort on during exploration and exploitation activities in order to reduce risk of blind zones target.

Understanding the composition of the source rock can provide detailed information on the original organic source material, the environmental conditions during time of deposition and the level of thermal maturation (Wang and Walters, 2007). Detailed geochemical analysis of source rock can give insight into the characteristics of the hydrocarbons they will generate.

Sequence stratigraphic study has been a useful tool in the prediction and choosing of oil and gas bodies as well as targets for drilling within a basin. There are many studies investigating organic matter deposition within a sequence stratigraphic framework (Pasley and Hazel, 1990; Bohacs and Isaken, 1991; Creaney et al., 1991; Pasley, 1991). In these studies it was indicated that the type and preservation of organic matter deposited in the marine realm is related to the stacking of the deposition systems and consequently, the depositional systems tract in which it is deposited. Hart et al., 1994 stated that during progradation in the lowstand and highstand systems tracts (LST and HST), organic matter is typically terrestrial in origin whereas mostly autochthonous (marine) organic matter is deposited on the shelf during an overall backstepping of depositional systems (transgressive systems tract, TST).

Previous workers like Jungslager (1999) and van der Spuy (2003) have carried out some studies on evaluation of the source rock potential of sediments from the Orange Basin. However, the determination of provenance and thermal maturity of the organic matter of the basin based on organic geochemistry of the rock extracts is not yet documented. Thus, the objectives of this study were to rank the organic matter and to determine its provenance and thermal maturity within the genetically related packages of the Orange Basin thereby suggesting the systems tract or the age penetrated by the wells that would most likely be the best candidate for hydrocarbon generation in the basin.
Catuneanu and Erikson (2007) said that the method of sequence stratigraphy requires the application of the same workflow and principles irrespective of the age of strata under analysis. In the Orange basin, there is possibility of diagenetic alteration related to sequence boundaries which includes mechanical clay infiltration and formation which can affect the reservoir properties in a basin. Siliciclastic reservoirs are known to be good reservoirs because they often have high porosity and permeability. The reverse is the case in most of the wells in the Orange Basin. Even if the petroleum potential of the source rock is not good it cannot affect reservoirs properties. This problem is common in major marginal fields of the world and with recent appraisal using diagenetic and sequence stratigraphic analyses, the one time abandoned, non producing fields are now producing due to better understanding of their reservoir qualities, for example, as in Niger Delta, Nigeria (Onuoha, 2000). The problem of reservoir in the Orange Basin might be as a result of clay infiltrations and formation which can only be studied by integrating sequence stratigraphy with diagenesis. Sand deposited below subaerially exposed sequence boundaries may also be subjected to percolation of meteoric water, which typically results in dissolution of unstable framework grains (e.g. mica and feldspar) and formation of intergranular porosity and kaolinite (De Ros et al., 1994) Favourable conditions for the formation of intergranular porosity and kaolinite occur below unconformities with much longer subaerially exposed time than sequence boundaries in the sequence stratigraphic of sand in humid climates (Van Wagoner et al., 1990). Over the years the use of diagenesis and sequence stratigraphy as a means of characterising reservoir in carbonate or clastic lithofacies has produced a better mode of reservoir construction and predicting the hydrocarbon plays accurately. This is because diagenetic changes affect porosity and thus now considered in petroleum exploration. Diagenesis can now be used based on the minerals and chemical composition to delineate the setting and environment of deposition and precipitation. Petrographic and diagenetic analyses of sandstone within a sequence stratigraphic framework provide a better understanding of the reservoir characteristics by comparison of relative abundance of major detrital framework grains in sandstone (Ryu and Niem, 1999).
As the exploration frontiers extend into progressively deeper waters where enormous capital expenditures and risk are involved, the exploration team is saddled with greater responsibilities necessitating the application of more accurate techniques for stratigraphic analysis. In recent times, sequence stratigraphy is used in reservoir characterization and hydrocarbon exploration in carbonate and/or clastic lithofacies. The technique, combined with seismic and well log interpretation makes the model built by reservoir geologists more accurate and reduces the risk associated with reserve estimation and secondary production. Without the application of sequence stratigraphy to carbonate and/or clastic reservoirs, the interpretation of seismic and well data can be flawed. This is because; the thickness of reservoir interval is often below the vertical resolution of wavelet and the lateral continuity of the reservoir lithologic layer tied between wells is often below the horizontal resolution of the well logs. Thus, predictions of the lateral and vertical reservoir properties have their risk reduced when sequence stratigraphy is applied as a tool to interpret seismic and well data.

Sequence stratigraphy proves to be more appropriate method to perform isochronous than lithological correlation. It has evolved as a branch of stratigraphy that subdivides the rock record using a succession of depositional sequence composed of genetically related strata as regional and interregional correlative units (Haq et al., 1988). Sequence stratigraphic analysis depends on the identification and correlation of major bounding surfaces (sequence boundaries and maximum flooding surfaces). It creates a framework for the subsurface called a sequence stratigraphic architecture, which is built from diagnostic sediments packages and key boundaries that are deposited as sea level falls, the shorelines shift basin ward and landward, while the cyclic patterns of the sediments in the subsurface form the sequence stratigraphic architecture. Elements of this architecture are revealed in subsurface data giving an insight into the subsurface to clarify principal features that operate on many scales from the regional basin scale, to individual prospect scale and the bed to bed scale reservoir characterization.

Vail’s sequence stratigraphic model (Vail et al., 1977; Vail, 1987) recognizes sequences and systems tract boundaries as discontinuity surfaces of their correlative conformities
that bound stacks of strata units. The basin sequence stratigraphic unit is the depositional sequence bounded by regional unconformities or their correlative conformities. Internally, this depositional sequence consists of several key intervals such as the system tracts, parasequences, and surfaces (maximum flooding surfaces and transgressive surfaces). These intervals and surfaces form in response to cyclical changes in relative sea level and they create repetitive and predictable sequences (Brown and Fisher, 1977; Mitchum et al., 1977).

The greatest strength of sequence stratigraphic interpretation lies in its ability to generate a geological sound model consistent with all available multidisciplinary information. Each set of data (seismic section, well log data, and high resolution biostratigraphic data) contributes different piece of the puzzle. This ultimately aids in determination of the real-time line facies correlation with a high degree of certainty as opposed to the commonly recognized lithological correlation (Durand, 1995).

Today, this concept has been accepted and recognized by the oil industries as an effective tool for predicting stratigraphic traps, reservoir and source rocks continuity and quality (Patch et al., 1990; Vail and Wornardt, 1990; Posamentier et al., 1988), thereby helping to unfold the subsurface geology. This helps in reducing risks at exploration stage and improving correlation of reservoir units at exploitation stage.

1.2 Location of the study area

The largest river, in South Africa, Orange River drains the whole Orange Basin (Fig. 1-1). This river flows across almost the whole width of the country. It takes its source from the highland in the east through the Kalahari depression in the west and empties to the South Atlantic Ocean. The Orange Basin of South Africa Atlantic margin provides an ideal location to understand the entire processes of passive continental margin evolution, (Hirsch et al., 2006).
The Orange basin is divided to five blocks, namely blocks 1, 2, 3, 4 and 5. Ten wells across the basin were selected for this study. (Fig. 1-2).
1.3 Research objectives

The objectives of this research work are to:

- Subdivide and interprete the stratigraphic columns of sediments penetrated by the wells into depositional sequences and systems tracts.
- Propose a sequence stratigraphic framework for the fields.
- Diagenetically investigate the basin to get clues to the events at deposition and post-deposition within the basin, whereby revealing the alterations at
burial and post-burial, which in any way must have affected the reservoir quality of the basin.

- Characterize the shale intervals in order to determine their source rock potential, origin, thermal maturity, and paleoenvironment and stratigraphic setting with the best source rock potential.

1.4 Scope of work

- Identification of major faults on seismic data
- Mapping of unconformities based on seismic reflection terminations and truncations.
- Interpretation of lithology from well log character
- Determination of the sequence boundaries on well logs provided
- Bridging the gap between well logs and seismic data in the study area.
- Identification of sequence boundaries and systems tracts on the well logs and seismic profiles.
- Correlation of wells in the study area based on depositional sequences
- Reconstruction of sequence stratigraphic framework
- Comparing the geochemistry of the samples from the wells with the lithology of the wells. The geochemical analysis shall be conducted on the samples by carrying out multi mineral analysis, thin sectioning, SEM, X- Ray Diffraction (XRD) and stable carbon and oxygen isotopes analysis. The petrographic studies will look at the cementing materials and also through SEM.

- Shale samples shall be subjected to source rock evaluation using Rock-Eval pyrolysis, gas chromatography, and gas chromatography-mass-spectrometry.
1.5 Review of previous work and concepts (General)

1.5.1 Basic sequence stratigraphic concepts
Sequence stratigraphic is the study of rock relationships within a chronostratigraphic framework of repetitive, genetically related strata, bounded by surfaces of erosion or non-deposition, or their correlative conformities (Van Wagoner et al., 1988). A similar but more generic definition was however proposed by Posamentier et al., 1988, which did not specify the nature of the bounding surfaces.

1.5.2 Evolution of sequence stratigraphy
Sequence stratigraphy is the science of describing the vertical and lateral relationships of rocks. These relationships may be based on rock type, called lithostratigraphy, on age, called chronostratigraphy, on fossils, termed biostratigraphy, or on magnetic properties, named magnetostratigraphy. Stratigraphy has been in existence since 1600’s with workers such as Nicholas Steno, James Hutton, and Charles Lyell. Sloss in 1948 (Sloss et al., 1949; Sloss, 1963) proposed the sequence as an unconformity-bounded strata unit.

Fairbridge (1961) summarised the main mechanism of sea level changes as tectono-eustacy and glacio-eustacy and stressed that the eustatic hypotheses apply worldwide while the tectonic hypotheses do not vary from region to region. Fairbridge (1961) summarised the perceived goal at the time: “we need therefore to keep all factors in mind and develop an integrated theory. Such an idea is not yet achieved and would involve studies of geophysics, stratigraphy, tectonics, and geochemistry, above sea level and below.”

Another major development in the evolution of sequence stratigraphy took place in 1977, when Vail et al. (1977) published the first instalment of such an integrated theory. Through series of seminar articles, these authors presented the concepts of eustacy and resulting unconformity-bounded strata patterns applied to and documented with seismic data. This new approach of stratigraphy which is referred to as seismic stratigraphy was developed by Vail et al. (1977) based on the idea proposed by Sloss (1963) – the
grouping of layers into unconformity-bounded sequences based on lithology, and by Wheeler (1958) – the grouping of layers based on what has become known as chronostratigraphy (Sloss, 1963). Mitchum et al., (1977) sharpened and broadened the concept of the sequence by defining it as “a stratigraphic unit that composed of a relatively conformable succession of genetically related strata and bounded at its top and base by unconformities or their correlative conformities”.

Subsequent seismic stratigraphic studies in basins around the world produced a set of charts showing the global distribution of major unconformities interpreted from seismic discontinuities for the past 250 million years (Haq et al., 1987). The development of newer accommodation model by Jervey (1988) to explain seismically resolvable strata patterns led to the realisation that the sequence could be subdivided into smaller units, ultimately referred to as systems tract (Brown and Fisher, 1977).

Further studies on well logs, cores and outcrops by several stratigraphers concurrently with the development of the conceptual model revealed that the unconformities interpreted from seismic discontinuities were controlled by relative changes in sea level and that relative changes in sea level can be recognised on well logs and outcrops, with or without seismic sections. This led to the interdisciplinary concept of sequence stratigraphy - a linkage of seismic, wireline log, fossil and outcrop data at local, regional and global scales.

1.5.3 Sequence stratigraphic elements

Sequence and sequence boundary
The fundamental unit of sequence stratigraphy is the depositional sequence, which comprises of sediments deposited during one cycle of sea level fluctuation. By Exxon Convention, this starts at low sea level, goes high and returns to low. It was defined as a succession of relatively conformable, genetically related strata bounded at the top and base by unconformable surfaces or their landward or basinward correlative conformities (Van Wagoner et al., 1990). Basically, there are two types of sequences, which are Type-I (Fig. 1-3) and Type-II (Fig. 1-4) sequences. Based on the variations in the sea level
cycles there may be first order, second order, third order, fourth order, fifth order, or sixth order sequences.

Figure 1-3. Typical Type-1 sequence (adapted from Van Wagoner et al., 1990).

Figure 1-4. Typical Type-2 sequence (adapted from Van Wagoner et al., 1990).

Sequence boundaries are defined as unconformities or landward or basinward correlative conformities, that are laterally continuous over at least the basin scale and separating older underlying sediments from younger overlying sediments by a significant
depositional hiatus. Recognition of sequence boundaries is possible in well logs core, seismic sections and outcrops by one or more criteria:

- Subaerial erosional surfaces (developed paleosol profiles), and downdip submarine erosion
- Stratigraphic onlap unto a coast
- Changes from prograding parasequences set stacking pattern to retrograding parasequences set stacking pattern
- Downward shift in coastal onlap
- Basinward shift environments (landwards facies directly overlying basinward facies with no intermediate environments in between, (Van Wagoner et al., 1990)

On seismic profiles, the upper boundary may be recognised by erosional truncations or toplap while the lower boundary can be recognised by downlap and onlap.

Parasequences, parasequences set, and systems tract

The fundamental unit of the sequence is parasequence. Parasequence is simply a relatively conformable succession of genetically beds or bedsets bounded at the base and top by marine flooding surfaces or their correlative surfaces. Generally, a parasequence shows upward and typically the lower part of parasequence consisting of deeper water facies and its upper part shallower water facies (Fig 1-5).
Fig 1-5. Typical wave dominated-parasequence (adapted from Van Wagoner et al., 1990).

Parasequence boundaries have correlative surfaces both on the coastal plains as an erosive surface, root horizon, or as localised erosion, and basinward as an upward succession of facies suggestive of deepening depositional surface (Fig 1-6). A flooding surface occurs over a paleosol, offshore transition, open marine limestone, or any depositional facies. At some points within the sequence, flooding surfaces reach a maximum landward position known as maximum transgression. The horizon of maximum transgression within a sequence is known as the maximum flooding surface (MFS) (Van Wagoner et al., 1990).
Based on the predictive stacking patterns within a sequence, parasequences are classified into parasequence sets. Parasequence sets are simply a succession of genetically related parasequences forming distinctive stacking patterns typically bounded by major marine flooding surfaces and their correlative surfaces. These parasequence stacking patterns are responsive to variations in sediment supply and accommodation. Although, each parasequence shoals upward (progadational) (Fig. 1-7), represent relatively constant water depth (aggradational) (Fig. 1-8) or may dip upward- backstepping (retrogradational) (Fig. 1-9), all belonging to various forms of systems tract.
Fig. 1-7. Typical progradational parasequence set (adapted from Van Wagoner et al., 1990).

Fig 1-8. Typical aggradational parasequence set (adapted from Van Wagoner et al., 1990).
Fig 1-9. Typical retrogradation parasequence set (adapted from Van Wagoner et al., 1990).

The building blocks of systems tract are the parasequences and parasequence sets. The systems tracts are divided into three- lowstand systems tract (LST), transgressive systems tract (TST), and highstand systems tract (HST) - based on the internal parasequences and parasequence sets stacking pattern, strata geometry of their bounding surfaces and their position within a sequence.

Each systems tract exhibits a characteristic log response, seismic signature and paleontologic fingerprints, and performs a predictable role in oil and gas play-reservoir rock, source rock or seal.

Seismic and wireline log signatures of systems tract

Lowstand Systems Tract (LST): constitutes the oldest deposits in Type I depositional sequence. It is bounded at the base by Type-I sequence boundary and at top by transgressive surface. In a basin characterised by a shelf break, the LST may consist of three units namely the basin floor fan, slope fan complex, and the lowstand prograding wedge (Van Wagoner et al., 1990).

Basin Floor Fan (BFF): This is the earliest portion of the LST and is characterised by sand-rich submarine fan deposition on the basin floor or near the base of the lower slope. It is deposited during a relative sea level fall and its base is a Type-I sequence boundary.
while its top is a surface on which overlying strata downlap. Minor condensed section may occur on the top of the basin floor. On seismic sections it may exhibit relatively parallel and even high amplitude reflection with broad cycle breath and flat or slightly mounded top. On well log, especially gamma ray, they show a blocky character immediately above the sequence boundary (Emery and Myers, 1996) (Fig. 1-10).

![Fig. 1-10 Well log response character (after Emery and Myers, 1996)](image)

Slope Fan (SF): This is the portion of the LST characterised mainly by the deposition of turbidites and debris flows on the lower slope and the basin floor during a relative sea level fall. The slope fan develops the basin floor fan or the sequence boundary. On seismic sections they exhibit a hummocky to mounded character and on gamma ray well log they display a crescentic shape. Minor condensed section may also occur on top of the slope fan complex. Sometimes this unit appear to be a highly variable mixture of thin
to moderately thick sand within a mud background that may produce a wide variety of log character (Emery and Myers, 1996).

Lowstand Prograding Wedge (PGC): This is the latter part of LST and is characterised by progradational or aggradational parasequences that form sedimentary wedges basinward of the shelf break and incised valley fill on the shelf and upper slope. The lowstand prograding wedge and incised valley fill are deposited during late relative sea level fall to early relative sea level rise (Emery and Myers, 1996).

On seismic section they show aggradational offlap seaward of the shelf break and a coarsening upward on well logs.

Transgressive Systems Tract (TST): This is the middle systems tract in an ideal depositional sequence and is deposited during a relative rise in sea level. It is bounded at its base by transgressive surface and at the top by maximum flooding surface (MFS), and contains backstepping or landward stepping parasequences.

On seismic section the TST shows characteristic seismic configuration including apparent truncation and continuous reflection at MFS.

The TST commonly onlaps the sequence boundary in a landward direction from the shelf break and can be recognized on the well logs by fining upward sequence using the maximum gamma ray and shaliest SP and resistivity logs. From biostratigraphic data, the MFS has peak abundance and diversity of microfossil (Emery and Myers 1996).

Highstand Systems Tract (HST): consists of the youngest strata within the depositional sequence and is commonly widespread on the shelf. It is bounded at its base by MFS and at its top by a sequence boundary. The HST is deposited during the late stages of relative rise in sea level to the early stages of relative fall in sea level.

Landward of the shelf break, the HST progresses from aggradational to progradational parasequences representing shallower water facies, whereas in the basin, it consists predominantly of the condensed section.

On seismic section, the HST is recognized by downlap unto the MFS condensed section. The Early HST is characterised predominantly by progradational offlap whereas the Late
HST is characterised by oblique offlap. On well log (GR), they exhibit a coarsening upward sequence (Emery and Myers 1996) (Fig. 1-10).

Integration of diagenesis and sequence stratigraphy helps to unravel and discuss the spatial and temporal distribution of diagenetic alteration in sandstone and source rocks evaluation. Diagenetic alterations in a sequence stratigraphic framework can be discussed based on the following sequence stratigraphic entities; sequence stratigraphy, parasequence boundaries, transgressive surface and maximum flooding surface and systems tract. Diagenetic alterations related to sequence boundaries including mechanical clay infiltration and formation of kaolinite and intergranular porosity below sequence boundaries due to percolation of muddy water below incised and by crevassing and flooding of interfluvial area. Usually, mechanical clays infiltration is low below sequence boundary where sequence boundaries coincide with ravinement surfaces. Though the relationships between diagenetic alterations and changes in the relative sea level in clastic rocks are gaining increasing attention (Taylor et al., 1995, 2000; Loomis and Crossey, 1996; South and Talbot, 2000; Ketzer et al., 2002; Al-Ramadan et al., 2005), the links are less straightforward, and thus not fully explored yet (Ketzer et al., 2003). Diagenetic alterations in clastic rocks that are relatively well constrained within sequence stratigraphy include the distribution of carbonate cements and clay minerals (Taylor et al., 1995; Morad et al., 2000; Ketzer et al., 2002; 2003a; Al-Ramadan et al., 2005).

1.5.4 Diagenesis, sequence stratigraphy and petroleum potential of the Orange Basin

Muntingh et al., (1991) worked on sequence stratigraphic framework for the west coast of South Africa by applying sequence-stratigraphic concepts developed by Exxon to interpret 10,000 km of seismic data within an area of 90,000 km². The sequence-stratigraphic framework and depositional model generated were tested against geophysical log, core, and paleontological data of 31 wells, which showed good correlations. They said the interaction of the sequence-stratigraphic model and substantive, paleontological, source bed, and lithological information lead to a more reliable and refined geological model of the evolution of the Orange Basin.
Ben-Avraham et al., (2002) worked on Orange River delta and they established widespread occurrence of bottom-simulating reflectors (BSRs) in the multichannel seismic profiles on the upper continental slope in the southern periphery of the delta. Their work showed the presence of BSRs on seismic records on the southwest African continental margin south of the Walvis Ridge and also, occurrence of a large number of mud volcanoes. The two are controlled by active faults in the basin. They said the gas hydrate in this region may consist of a mixture of microbial and thermogenic gas, whereas much of the gas flowing through the mud volcanoes probably originated from deep-seated Aptian source shales.

Van Der Spuy, (2003) worked on the source rock samples within the Orange Basin. His finding showed that the source rock of the Aptian played an important role in petroleum systems operating off the west coast of Africa. He said there is strong case for regional development of a good-quality source within the Early Aptian succession in the deeper part of the Orange Basin. This study showed that Aptian sediments should be in the oil window in the large areas to the west of the basin centre.

Paton et al., (2008) worked on structural modeling of the southern part of the Orange Basin passive margin, South Africa using seismic-stratigraphic investigation approach. They predicted that margins alteration has a significant effect on the hydrocarbon system of the area and its potentials. They divided the phase margins evolution into two: the one comprising aggradational shelf margin with little or no deformation during the Cretaceous. The second phase of deposition, during the Tertiary, occurred to the west of the Cretaceous shelf margin and was characterized by significant margin instability and the development of a coupled of growth faults and toe-thrust system. They said the change in passive-margin configuration and the associated switch in the location of overburden accumulation is likely to have increased the petroleum prospectivity of the deep-water part of the margin. They predicted that the rapid western (seaward) migration of sediment accumulation resulted in the maturation of the high-quality distal source
interval, whereas the resulting toe-thrust geometry provides suitable structural traps for the hydrocarbons.

Kuhlmann et al., (2010) used 2D seismic data set that covers part of the Southern Orange Basin offshore to reconstruct the geological evolution of the basin. They used evolutionary model to investigate the occurrence of natural gas within the sedimentary column and the distribution of gas leakage features in relation to sedimentary and tectonic structure developed in the post-rift succession since the Early Cretaceous. They were able to subdivide the Cretaceous succession into five units with Barremian/Aptian and Turonian/Coniacian ages as the highest sedimentation rates in the basin. They concluded that the generated thermogenic gas does not migrate directly through the gravitational faults but driven up-dip along stratigraphical layers, to escape through the sediments to the sea-floor in the inner shelf area.

1.5.5 Application of sequence stratigraphy in Orange basin

Brown et al., (1996) worked on the sequence stratigraphy in offshore South Africa divergent basins. They were able to divide the basins into unconformity-bounded sedimentary sequences (Fig 1-11). They said each sequence is interpreted to have been deposited in response to world-wide (eustatic) relative changes in sea level and is defined at its base by type 1 unconformity as defined by Van Wagoner et al., (1987). Each sequence is associated by a sea-level lowstand followed by highstand flooding events. Their conclusions on the sequence stratigraphy of Orange Basin are as follows;
Fig 1-11. Orange Basin standard chronostratigraphy and 2nd and 3rd order unconformities (Brown et al., 1996)

- Understanding distribution of sand-rich highstand coastal, fluvial and deltaic systems provides an important key to predicting siliciclastic reservoir potential in subsequent lowstand systems tract.
- In the Orange Basin the stacking patterns exhibited by 3rd order sequence are also keys for predicting quality and deep basin delivery of lowstand sands.
- The composition and paleogeography of its depositional systems and their stacking geometries may be used to forecast the location and quality of subsequent lowstand systems
- Construction of regional sequence framework is an important step in preparing to explore for stratigraphic or combination traps
• The framework helps to constrain the areal and stratigraphic boundaries of lowstand fairways having favourable reservoir potential on the shelf and within and basinward of the gravity fault zone.

• All the sequences exhibit incised valley systems updip of shelf wedges, and this play has been verified within sequence 14A LST in borehole 4.

• The incised valley fill displays an excellent seals by the superimposed TST, fault traps, and migration pathways that are either vertically upward along faults or updip via prograding wedges from underlying marine condensed sections.

• The location where each incised valley entered the fault complex marks a point source where sandy sediment may have been introduced to the lowstand systems before faulting.

• Optimum petroleum fairways can be predicted down dip of these incised valleys point sources.

The chronostratigraphic correlation chart produced (Fig 1-12) was based on sequence stratigraphic studies and utilises the time scale of Haq et al., (1988) to provide a geological framework, which is useful for understanding of the distribution of lithofacies through time and space, (Broad et al., 2006).
Fig. 1-12 Generalised chronostratigraphy and sequence stratigraphy of Orange Basin offshore Mesozoic basin, based on results of sequence stratigraphic studies (modified from Broad et al., 2006).
1.5.6 Diagenesis and sequence stratigraphy approach

The combination of diagenesis and sequence stratigraphy over the years has shown its usefulness in accessing reservoir qualities. Mineralogical, textural, cementation and dissolution changes can be used to study diagenesis. These alterations occur at any time from initial deposition to deep burial, and, most of it occurs at the sequence boundary (Taylor et al., 1995; Morad et al., 2000; Ketzer et al., 2002; 2003a; Al-Ramadan et al., 2005). Minerals and chemical composition can be used to assess diagenesis, which is useful to delineate the setting/environment of precipitation. With the use of trace elements such as strontium, manganese, and iron, information can be obtained on interpretation of cement origin (Scholle, 1978). Stable isotopes can also be used to unravel diagenetic history. The two of most common isotopes are ^{18}O and ^{16}O, which always have different compositional ratios depending on the diagenetic environments. The lighter ^{16}O is common in cements precipitated by fresh water or surface water with elevated temperature; it is rare in marine associated cements (Morad et al., 2000). Other common isotopes are ^{13}C and ^{12}C which shows similar relationship. Lighter associated with fresh water and deep burial. Some of the light carbon may be derived from organic carbon associated with migrating hydrocarbon. In all, the precipitation of clay at or beneath the sequence boundary can be studied only by diagenetic analysis. The clays exhibit different properties that can affect reservoir quality, Scholle, (1978).
Chapter Two

2.0 Geology of the Orange Basin

2.1 Regional geology of the Orange Basin

The Orange Basin offshore Southwest Africa is located within the passive continental margin (Jungslager, 1999) of the South Atlantic between 31° and 33.3° latitude. It was formed as a result of the break-up of South America and Africa in the Late Jurassic, which was followed by seafloor spreading and the opening of the South Atlantic Ocean in the Early Cretaceous around 136 Ma (Brown et al., 1996; Reeves and Wit, 2000; Macdonald et al., 2003). It was formed within divergent plate boundary settings in the response to the lithologic extension related to the break-up.

Three major tectonic phases can be recognized in the area (Gerrard and Smith, 1982). On regional terms they are referred to as pre-, syn- and post-rifts. During the pre-rift time (until the Late Triassic), the area was dominated by compressional tectonism and formed part of the Gondwana foreland (Fig 2-1).

Fig 2-1. Gondwana showing African and South American plates (Modified from Broad, 2004)
The Falkland/Malvinas Islands lay east of Africa, the Falkland/Malvinas Plateau was 33% shorter and Patagonia was displaced east with respect to the rest of South America, in part along the line of the Gastre Fault System. Potential source facies are dominantly postglacial black shales of Late Permian age deposited in lacustrine or hyposaline marine environments; these rocks could also act as an effective regional seal. Sandstones deposited in the Late Permian were dominantly volcaniclastic with poor reservoir qualities; Triassic sandstones tend to be more mature. There was significant extension from about 210 Ma (end-Triassic) until the South Atlantic opened at about 130 Ma (Early Cretaceous). In the early syn-rift phase, extensions were accompanied by strike-slip faulting and block rotation; later extension was accompanied by extrusion of large volumes of lava. Early opening of the South Atlantic was oblique, which created basins at high angle to the trend of the ocean on the Argentine margin, and resulted in microplate rotation in NE Brazil. Intermittent physical barriers controlled deposition of Upper Jurassic–Cretaceous anoxic sediments during breakup; some of these mudrock units are effective seals with likely regional extent. During crustal reorganization, clastic sediments changed from a uniform volcaniclastic provenance to local derivation, with variable reservoir quality, (Macdonald et al., 2003). The South Atlantic continental passive margins of Africa comprise the major depocentres on the African plate. They reach 15km in thickness off Angola and extend hundreds of kilometres across the continent-ocean transition. Accumulation of sediments not only records the evolution from the continental rifting and break-up of Gondwana during latest Jurassic-Early Cretaceous, but also provides a complete record of the post-rift evolution of the margin and of the adjacent continent Africa (Fig. 2-2).
Early Cretaceous active rifting south of the Walvis Ridge (Fig. 2-3) resulted in the formation of the SW Africa volcanic margin that displays thick and wide intermediate igneous crust adjacent to thick unstretched continental crust (Gerrard and Smith, 1982). The non-volcanic mode of rifting north of the Walvis ridge, led to the formation of equatorial western Africa margin, characterised by a wide zone of crustal stretching and thinning, and thick, extensive, syn-rift basin. Contrasting lithologies of the early post-rift (salt vs. shale) determined the style of gravitational deformation, whilst periods of activity of the decollements were controlled by period sedimentation rates. Regressive erosion across the prominent shoulder uplift of SW Africa account for high clastic sedimentation rates during the Late-Cretaceous to Eocene. Dominant carbonate production on equatorial western African shelf suggests very little erosion of a low hinterland.
The arid climate in the south indicates a drastic decrease of denudation rate, and thus reduced sedimentation on the margin (Seranne and Anka, 2005). Neogene emplacement of the African super well beneath Southern Africa was responsible for renewal onshore uplift on the margin. Neogene high sedimentation rate reactivated gravitational tectonic activities that had remained quiescent since late Cretaceous. Intercontinental rifting leading to the opening of the future South Atlantic occurred during Late Jurassic-Early Cretaceous. It was accommodated to the south by right-lateral motion on the Agulhas-Falkland fracture zone. However, this rifting was preceded by a “basin and Range type”, late-orogenic extension of a Pan African tectonically thickened crust (Light et al., 1993). This phase allowed deposition of the extensive Permian-Jurassic Karoo continental formation and the development of a shallow marine embayment in the post subsiding axis, localised between the two future continents (Light et al., 1993. Clemson et al., 1997, 1999), recognised an early Triassic syn-rift and late Triassic-Middle Jurassic post rift
sequences, bounded by reactivated Damara (Pan African) fold belt structure, which later controlled the segmentation of South Atlantic rifting. Fault bounded sequences related to South-Atlantic rifting are divided into syn-rift I and syn-rift II in all SW African basins: Orange Basin (Gerrard and Smith, 1982; Jungslager, 1999), Luderitz and Walvis Basin (Maslanyl et al., 1982, Light et al., 1993) are separated by angular unconformities “R” of Valanginian age (Gerrard and Smith, 1982). The age of rift onset marked by “T” unconformity of Gerrard and Smith, (1982) is correlated with Late Jurassic. Syn-rift sequences are characterised by continental “red-bed” and volcanic rocks with rare lacustrine shale occurrences (Jungslager, 1999).

2.2 The Pay Zones of Orange Basin

2.2.1 Outcrops of the Cretaceous Orange Basin deposits

South Africa’s western margin in which the Orange Basin is located comprises of three major groups of source rocks. The source rock from syn-rift, upper Jurassic-Neocomian which is generally lacustrine source rock pods, those sourced from Barrenian-Lower Aptian, generally marine, transitional succession source pods and those possibly sourced from Cenomanian-Turonian boundary, generally marine, drift succession source pods (Jungslager, 1999). The groups are further subdivided to individual petroleum systems in terms of: specific individual source rocks, level of maturity, type of organic matter and extent, and individual exploration play in terms of stratigraphic level of the reservoir and trap type. The predominantly gas bearing areas coincide with the main depocentre of the basin where the lower Aptian source rock is the window. The oil-bearing are predicted outside the depocentre, in the deepwaters, where the Lower Aptian source rock may become more oil prone and are possibly located in the oil window (Van der Spuy, 2003). The source rocks are mainly the shales and claystones. Reservoir rocks are clastic with poor characteristics across the basin.
2.2.2 Stratigraphy

The Orange Basin contains the stratigraphic record from lithospheric extension and rift tectonics throughout a fully evolved post-break-up setting, and thus provides an ideal area to study the evolution of a “passive” continental margin. The stratigraphy comprises a pre-rift successions (older than Late Jurassic, >130 Ma), that is overlain by syn-rift deposits of Late Jurassic to Haueterivian age (121 to 116.5 Ma) and in turn, by sediments of early drift stages up to Aptian age (113 to 108 Ma). Non-restricted marine deposits of an Aptian to present day age overly the Pre-Aptian successions. The rift stage basin was characterized by the development of north to south oriented grabens and half-grabens trending approximately parallel to the rift axis, from near Walvis Bay to south of Cape Town (Gerrard and Smith, 1982). These graben structures were filled predominantly with siliciclastic continental and lacustrine rocks, and variable thicknesses of volcanic rocks (Brown et al., 1996). The syn-rift sequences rest unconformably on the Precambrian or Paleozoic basement and are unconformably overlain by Early Cretaceous to present post-rift successions. Lithologically the early post-rift successions comprise sandstone and shales, and the majority of the post-rift successions are claystones.

2.3. Orange Basin Tectonic Evolution

The Orange Basin of southwestern margin of South Africa is a divergent plate margin that is underlain by synrift graben basin and post-rift or passive margin. The rifting system was as a result of break up of South American and African continental plates which started during the Late Jurassic in response to extensional stress generated. There are several graben formed by rifting of continental crust along a sub parallel to the present coastline. Lower Cretaceous siliciclastic continental and lacustrine sediments filled the rift basin, but with some volcanic rocks present. The pre-rift basement of Precambrian or Palaeozoic is overlain by synrift strata resting unconformably (Jungslander, 1999).

The drifting of the South American and African continental plates and emplacement of oceanic crustal rocks showed the Early Cretaceous onset of the South Atlantic drifting
phase comprising ~10 ma. long subsidence episodes as documented by geohistory curves. The drift onset occurred at ~117.5 Ma in Southern margin of African plate. The early drift siliciclastic sequences in the southern proto-Atlantic ocean contain evaporates, evidence that partially restricted marine environments existed in the basin before the main drifting phase began at 112Ma. A restricted post siliciclastic Cretaceous strata of maximum height of 220m, aged 112Ma occur within the elongated depocentre of the basin, followed by more than 500m open marine post passive margin Cretaceous rocks (Brown et al., 1996). The Orange River was responsible for the deposition of sand-rich sediments at high rates in the northern part of the region after 103Ma. The Olifants drainage system to the south (near Lamberts Bay) also contributed sediments along the Agulhas-Columbine Arch, between 117.5 and 103 Ma. The principal passive margin drifting phase in the southern proto-Atlantic ocean was restricted in the basin by open marine conditions at 112Ma. The main drift phase begins and recorded by the unconformity (112Ma). There was deposition of at least 30 third-order postrift sequences during the Cretaceous (Brown et al., 1996). The total thickness of drift sequence is at least 8000 m within the Orange Basin depocentre.
Chapter Three

3.1 Materials and methods

3.1.1 Materials
The data set for this study was obtained from the Petroleum Agency of South Africa (PASA). These include 783.63 km seismic reflection sections (2D) digital and hard copies, digital wireline logs (gamma ray, resistivity, density, neutron and sonic), Basemap showing the distributions of the wells in the blocks, ditch cuttings, sidewall core and core samples acquired from different stratigraphic sequences in the wells from the area under investigation.

3.1.2 Methods
The flow chart of the methods used in this study is presented below.

![Flow chart of methods of analyses.](image-url)

Fig. 3-1 Flow chart of methods of analyses.
3.2 Digital data loading

3.2.1 Wireline logs data loading
The data sets obtained from Petroleum Agency of South Africa (PASA) were prepared in LAS format showing different runs in each well. In order to obtain a continuous run for each well the data files were opened using, FastTracker, PETREL 2008 and seismic micro-technology (SMT 8.2) to check the files to see the depth available. The continuous depths were then extracted, meaning joining the runs to make a complete run for each well. As the extract from the files was being taken it was saved in excel spreadsheet to get lithology from top to bottom. When the extraction was completed the file was saved as text file (txt). The position of the wells to the globe was also obtained in Universal Transverse Mercator (UTM) format and it was also saved as text file in excel spreadsheet. The UTM text file was first loaded before loading the well extract in text format, which then showed the complete run for each well. The signature obtained from each well was then studied to prepare for data editing. The editing involved checking the minimum and maximum values on gamma ray log to remove null values and arbitrary values were also removed. This was done for each well in conjunction with calliper log and other log types available. At the end of the editing the log is ready for interpretation.

3.2.2 Seismic section data loading
The data sets obtained were prepared in SEGY format for each of the lines picked. The cross line A87-047 controlled wells K_D1 and A_U1, in-line A81-061 controlled wells A_C2 and A_C3, the cross line AM-53 controlled wells K_B1, K_A2 and A_K2, and in-line A81-007 controlled wells A_F1 and A_O1 (Fig 3-2).
Fig 3-2. The seismic lines acquired in the Orange Basin for interpretation in SMT showing their relationship to one another based on their positions to the globe.

The digital SEGY files were opened in SMT 8.2. The data are in two way travelled time (TWT) format. The navigation data for each of the line were first loaded in the SMT 8.2 software to know their positions relative to one another. After which the seismic data was loaded to get the visual expression of the seismic section. The image format in TIF format was also obtained to get the image look so as to make comparison with the digital seismic section. The well positions were located on the seismic section based on the shot point values as obtained from the well reports from PASA. The seismic sections were subjected to analyses by looking for the reflection termination and truncation, structural features, and studying the unconformities patterns as regard to periods of non-deposition and erosional effects.
3.2.3 Seismic data interpretation (General principle)

The seismic data acquired for this study are 2D seismic sections and were used for structural and sequence stratigraphic analyses. Structural analysis involved the identification and mapping of faults. The seismic sequence stratigraphic analysis procedure entails the following:

- Identifying the unconformities in the area of interest. These generally occur at an angle to underlying and/or overlying strata surfaces.
- Drawing the unconformity surface between the onlapping and downlapping reflections above and the truncating and toplapping reflections below.
- Extending the unconformity surface over the complete section. Where the boundary become conformable, its position was traced across the seismic section by visually correlating the reflections.

This process of identifying the bounding unconformities was carried out on all the seismic profiles provided in the fields of interest and the interpretation was done to tie correctly along all correlation loops throughout the grid.

Having identified the sequence boundary, the systems tracts (LST, TST, and HST) within each sequence were recognized based on the aforementioned characteristic seismic and log signatures. Primary seismic reflections are generated in response to significant impedance changes along stratal surfaces or unconformities. The seismic stratigraphy technique was employed in interpreting the stratigraphic information from seismic data. The fundamental principle of seismic stratigraphy is that within the resolution of the seismic method, seismic reflections follow gross bedding patterns are presented in time lines. A key message in seismic is that in which the correlative impedance contrasts are represented on seismic data from bedding interfaces but not lateral facies changes.

Steps used in interpreting

- First, determined the horizontal and vertical scale of the section and read trace headers and other data information.
- Looked for ways of determining the major multiples.
• Divided the seismic data into the discrete natural stratigraphic packages by marking reflection terminations.
• After marking all the seismic surfaces a similar exercise was performed on other lines.

Major Seismic Reflection Termination Patterns

The reflections terminations were characterized by the geometric relationship between the reflection and the seismic surface against which they terminates. The following terms introduced by Mitchum et al. (1977) were mapped:

Lapout was mapped between the lateral terminations of a reflector (generally a bedding plane) at its depositional limit.

Baselap/downlap - lapout of reflectors was mapped against an underlying seismic surface. Baselap which consist of downlap, where the dip of the surface is greater, and downlap, seen at the base of the prograding clinoforms representing the progradation of a basin margin slope system into deep water, were also mapped.

Toplap - a termination of inclined reflections (clinoforms) against an overlying lower angle surface believed to represent the proximal depositional limit. An apparent toplap in which clinoforms pass upwards into topsets that are too thin to resolve seismically were also encountered.

Erosional Truncation - is a termination of strata against an overlying erosional surface, in which toplap developed into erosional surface, but truncations are more extreme than toplap and led to development of erosional relief and the development of angular unconformity. The erosional surface in marine such as the base of a canyon, channel or major scour surface, or of non-marine erosional surface developed in a sequence boundary also mapped.
Apparent Truncation - is a termination of relatively low angle seismic reflectors beneath a dipping seismic surface in which the surface represents a marine condensation where termination process represents a distal depositional limit (or thinning) below seismic resolution, generally within topset strata, but sometimes also within submarine fan also mapped.

Onlap is recognized on seismic data by the truncation of low-angle reflection against a steeper seismic surface. Two types of onlap were recognized in this study, namely marine and coastal:

Marine onlap represents a change from marine deposition to non marine deposition or condensation. Marine onlap reflects a submarine facies change from significant rates of deposition to a much lower energy pelagic drape. The seismic surface of marine onlap was mapped as marine hiatus or condensed interval.

Coastal onlap, an onlap of non-marine, paralic, or marginal marine strata was mapped at a zone of deposition between basin margin (subaerial or shelf) erosion and non deposition.

Fault Truncation marked the termination of reflections against a syn or post depositional fault, slump, glide or intrusion plane.

Seismic Facies

Further geological interpretations are done by interpreting seismic facies and attributes once the seismic data has been divided into its component depositional packages. Seismic facies an aerially definable 3-dimensional unit composed of seismic reflections whose elements, such as reflection configuration, amplitude, continuity, frequency and interval velocity differ from the elements of adjacent facies unit. A seismic facies was interpreted to express certain lithologies, stratification and depositional features of the deposits that generate the reflections in the study area.
Factors that control interpretation of Seismic facies include:

- Internal reflection composition and configuration: Continuity, amplitude/frequency, interval velocity
- Boundary Relationship: Terminational and Transitional
- External Geometry
- Lateral facies relationship

Major Seismic Facies

Parallel/Divergent Seismic facies: They are the most common reflections within the basin they are parallel or sub-parallel or divergent in configuration. Parallel reflections suggest uniform deposition in a stable or uniformly subsiding surface whereas, divergent reflections indicate variation in the rate of deposition from one area to another or else gradual tilting (Mitchum et al., 1977). Because of wide, relatively uniform lateral extent in the basin it can be inferred that these facies were deposited on a broad, relatively stable shelf, delta platform or, even if less likely, on a broad basinal plain.

Progradational seismic facies: In dip sections, reflections were found inclined relative to underlying and overlying reflections and were called offlap reflections. This facies always deposited within prodelta and, or slope environments during basinward shifting of shelf/platform or delta systems, were also mapped. A variety of progradational configurations are possible: oblique, sigmoid singled complex/composition. Among them two types encountered are oblique and sigmoid. They occur in some progradational system. Oblique configuration was distinguished by toplap termination of clinoform reflections. They are found associated with deltaic progradation or with neritic shelf/platform environments in the basin. Consequently, they consist of terrigenous clastic sediments and these clinoforms are indication of higher sand content up/dip in shallow – marine delta and fan-delta facies.
Recognition of Stratigraphic Surfaces from Seismic Data

Determination of Sequence Boundary
Development of a high relief truncation surface; particularly one which erodes the topsets of older units indicates a sequence boundary. The downward shift in coastal onlap across the boundary was also used in the sequence boundary determination.

Determination of a Transgressive Surface
A transgressive surface marks the end of lowstand progradation and the onset of transgression. It was found associated with reflection terminations, and marks the boundary between a topset clinoform and the topsets interval.

Determination of a Maximum Flooding Surface
A maximum flooding surface was recognized on seismic data as a surface where clinoforms downlap onto underlying topsets, thereby displaying backstepping and apparent truncation.

Recognition of Systems Tracts on Seismic Data
The principle applied to recognise the system tracts from seismic data (systems Tracts) was based on the nature of their boundaries, and by the stacking pattern of their internal stratigraphy.

Recognition of Lowstand Systems Tract:
A lowstand systems tract is bounded below by a sequence boundary, and above by a transgressive surface it is also overlain by a transgressive surface (a transition to a retrograding topset unit and it contains a basinal fan unit), it was recognised as a mounded unit of a couple of reflection lower and more distal from the clinoform. The lowstand systems tract were divided into two parts; a lowstand fan and a younger lowstand wedge in which the fan was the most dominant in the basin.
Recognition Transgressive Systems Tract:

Transgressive systems tract are bounded below by a transgressive surface and above by a maximum flooding surface. It was recognised on seismic section by retrograding topset parasequences. Transgressive systems tract often very thin, and consist of no more than one reflection as seen in this study. It is recognised as a transgressive systems tract as its base marks the transition from an underlying interval of mainly clinoforms, to an interval of mostly or entirely topsets. It also clearly showed internal retrogradational geometries. The transgressive systems tract overlain by a maximum flooding surface was recognized by the downlap of overlying clinoforms.

Recognition of Highstand Systems Tract

Highstand systems tract are bounded below by a maximum flooding surface and above by sequence boundary and exhibits progradational geometries. It consists of prograding topsets and clinoforms representing progradation and it overlies a maximum flooding surface, clinoforms within the system tract downlap topsets of the underlying systems tract. Apparent transactions were seen beneath the surface and the underlying systems tract infill erosional relief on an older sequence boundary.

3.2.4 Wireline log interpretation (General procedures)

Van Wagoner et al., (1990) dealt specifically with high resolution sequence stratigraphy from outcrop, core and wireline log data. Their work on high resolution sequence stratigraphy has reached wider audience and much progress has been made in the last few years. The most important wireline logs utilized in well logs sequence stratigraphic analysis are the gamma ray and resistivity logs with respect to overall log response or characters. These log shapes and overall log responses are initially used in identifying, matching and tying sequence stratigraphic surfaces (sequence boundary, SB, maximum flooding surface (MFS), and transgressive surface (TS) and subsequently in interpreting the stacking patterns of the vertical sedimentary sequences.
This application of sequence stratigraphic principles to well logs allowed resolving genetically and chronostratigraphically related packages of strata that are too thin to recognise within seismic reflection data alone. In this study, gamma ray and resistivity logs were analysed using the criteria for well logs sequence stratigraphic interpretation discussed by Emery and Myers (1996) (Fig 1-10) and Vail and Wornardt (1991).

At the inception of the well logs sequence stratigraphic analysis, the predominance of sequence stratigraphic surfaces was first identified. After establishing the sequence boundary and transgressive surfaces, the parasequences stacking pattern and their position within the parasequence was used in determining the systems tracts that are enveloped by the sequence boundaries. Having established the systems tracts and the sequence stratigraphic surfaces from each well log, correlation of the well was carried out using sequence stratigraphic concepts. The general principles and procedures of wireline logs are hereby presented and employed in the data analyses.

Sequence Stratigraphy from Wireline Logs:

Wireline log data provides a better tool of analysing subsurface conditions. Log data provides information on lithology and depositional environment of a particular borehole and but when tied with seismic sections or correlated with other wells it can provide better subsurface understanding. Trends in log response may equate with trends in depositional energy and thus can infer basin infill history. A number of distinct log trends can be recognized on wireline logs. Of all of them, the gamma ray log infers a good response for identifying lithology. The major log trends used in this study, that is the Cleaning up trend, Dirtying up trend, Boxcar trend, Bow trend and Irregular trend, are discussed below.

The Cleaning up Trend
The cleaning-up trend showed a progressive upward decrease in the gamma reading representing a gradual upward change in clay-mineral content. In shallow marine settings the cleaning-up motif is usually related to an upward transition from shale-rich to shale-free lithologies, owing to upward increases in depositional energy, upward
shallowing and upward coarsening. Occasionally, cleaning up units were seen as a result of a gradual change from clastic to carbonate deposition of a gradual decrease in anoxicity, neither of which need be necessarily related to upward shallowing or propagation of a depositional system.

The Dirtying up Trend:
The dirtying up trend showed a progressive upward increase in the gamma reading related to a gradual upward change in the clay-mineral component. This is a lithology change from sand to shale or an upward thinning of sand beds in a thinly interbedded sand-shale unit. Both imply decrease in depositional energy. Upward fining predominates within meandering or tidal channel deposits, in which it represents an upward decrease in fluid velocity and energy within the channel. The largest fining up units was found in coarse fluvial succession and in estuarine fills. Channel deposits have a basal lag which affects the gamma response when the lag contains shale clasts or heavy minerals. In shallow marine settings the dirtying-up trend reflected the retreat or abandonment of shoreline-shelf systems, resulting in upward deepening and decrease in depositional energy. The dirtying up trend results also as a result of gradual increase in anoxicity or gradual change from carbonate to clastic deposition.

Box Car Log Trends
This is also known as a cylindrical motif. Box car trends were recognised by sharp-based low gamma units with an internally relatively constant gamma reading, set within a higher gamma background unit. The boundaries with the overlying and underlying shales were abrupt. The sonic readings from the sands had higher and lower transit time for the shales, depending on cementation and compaction. Turbidite boxcar units generally showed a much greater range of thickness than boxcar fluvial channel units. Shallow marine sand bodies had truncated bases due to faulting or sharp bases as a result of falls in a relative sea level or other factors.
The Bow Trend

It is also known as barrel or symmetric trend. The bow trend consists of a cleaning up trend, overlain by a dirtying up trend of similar thickness and with no sharp break between the two. A bow trend, formed from the waxing and waning of clastic sedimentation rate in a basinal setting where the sediments are unconstrained by base level, was encountered. The bow trends were found developed in shallow marine settings, where base level constraints led to thicker progradational and thinner transgressive units.

Irregular Trends

Irregular trends were found to have no systematic change in either baseline or lack the clean character of the boxcar trend. They represent aggradation of a shaly or silty lithology, typical of shelfal settings; a lacustrine succession or muddy alluvial overbank facies. There is evidence of a subtle and systematic shift in the base line which appears to be an irregular trend. Irregular log trends were not recognised in shelfal or paralic facies because cyclic changes in water depth are likely recognised as cyclic log trends and identified as parasequences.

The Log Response of Clinoforms

On well logs, the clinoform unit had a cleaning upward pattern that reflects upward shallowing. The base of the cleaning up trend was equivalent to a downlap surface. Confirmation that this log response represents a prograding clinoform pattern supporting upward shallowing because upward shallowing in clastic systems occur through progradation. The base of a clinoform unit was reported as a downlap horizon. This was recognized as a distinct base to the cleaning-up unit, with a log facies diagnostic of marine condensation, with high-gamma shale and a cemented horizon. The top of a cleaning-up clinoform trend was marked by an abrupt increase in shale content (gamma reading) resulting from abrupt deepening across the transgressive surface and overlain by topsets. An abrupt increase in the shale content within the clinoform trend implies an abrupt jump to a deeper facies, resulting from lobe switching or transgressions, during relative sea level rise. Similarly, an abrupt decrease in the gamma response implies an
abrupt jump to shallower facies, identified as sequence boundary, a normal fault or slump.

The Log Response of Parasequence
Topset parasequence were recognised by repeated cycles of filling of accommodation space between the offlap break and the coastal onlap point, and seen as small scale cycles on the logs interpreted. The most common cleaning-up motif recognized in parasequence is an evidence of marine settings. In the cleaning up motif the shale content decreases upwards whereas primary porosity and bed thickness increases upward. The marine flooding surfaces were recognized as abrupt upward increases in shale content. The parasequences are small-scale upward cleaning log units and the marine flooding surfaces showed abrupt increase in gamma reading.

Log Responses from Basinal Environments
Mud-rich basinal units show a symmetrical bow response whereas sand-prone systems tend to show a box-car or cylindrical log trend. Log trends were separated by log markers that represent background pelagic sedimentation, uninterrupted by sediment gravity flows from the basin margin. These markers showed thin shales with little or no silt and sand. They also showed anomalously high gamma response, low density, low resistivity and low sonic velocity.

Estimation of depositional controls and sequence stratigraphy from log response
Periods of basin-margin progradation and retrogradation, and the recognition of variations of relative sea-level from a well-log suite were used for sequence analysis. Progradation was recognised from a clinoform log response (large-scale cleaning and shallowing-up unit). Retrogradation of the basin margin showed significant upward-deepening units marked by upward deepening. The response of accelerating relative sea-level rise was suggested by a thinning-up stack of parasequences.
Key surfaces:
A maximum flooding surface was marked by log response in between a dirtying-up and cleaning-up trend. The maximum flooding surfaces pass laterally into shelfal, a condensed interval which showed a gamma peak, a resistivity trough, density maximum or minimum. A maximum progradation surface represented a surface between a prograding unit and an overlying retrograding unit, marked by cleaning-up and dirtying-up trends respectively. A marine condensed interval in the basin was recognized as the shale-break between basinal log motifs. A downlap surface represents a large scale cleaning-up motif. On the clinoform slope, a sequence boundary results in a jump to a significantly cleaner log response within the cleaning-up motif. Sequence boundaries were marked by an abrupt upward change from a progradational (cleaning-up) log motif to an aggradational or retrogradational log motif.

Identification of systems tracts from log response:
A lowstand fan was recognized as fan unit bounded by marine condensed intervals. A transgressive systems tract was recognized as a retrogradational parasequence set. It was bounded below by a maximum progradational surface (often coincident with the sequence boundary) and above by a maximum flooding surface or its correlative condensed interval. A highstand systems tract was recognized as a prograding basin-margin unit bounded below by a maximum flooding surface and above by a sequence boundary.

Log Responses from Basinal Environments:
Estimation of depositional controls and sequence stratigraphy from log response:
Progradation was recognised by a clinoform log response (large scale cleaning and shallowing up unit) and the progradational stacking of topset parasequences. Evidence of Basin margin progradation was found only within basin margin units (topsets, clinoform, and lowsets)
3.3 Laboratory analyses procedures

3.3.1 Thin section procedure

Thin section involves laying samples set in open sample trays with clean glass slides. Sample numbers were marked on the glass slide with diamond scriber. Samples number checked against the marked number on the glass slides to ensure the sample identity is correct. The samples were ground to a flat surface using only diamond abrasive with distilled water. Sample grinding was done by hand on a flat plate for the core samples. Samples that required stabilization (the side wall core samples) prior to grinding, were stabilized. Epoxy stabilization was done in a plastic using Epon 815-diethylene-triamine. The glass slide tray was ensured to be next to the samples. The sample was allowed to cure at room temperature. Final grinding of the surface to be mounted on the glass slide was done using 400-mesh diamond plate. Lapping was done using glass impregnated plate. 10 X-power magnification microscopes were used in observing the progress of the grinding. The prepared slides were analysed using petrographic microscope.

3.3.2 XRD technique

The core and side wall core samples collected at various stratigraphic sequences were analysed by XRD to assess any mineralogical changes. The samples were pulverised. A Bruker D8 Advance instrument with a pw3830 x-ray generator operated at 40 kV per 25mA was used and a scan speed of 4° (2 theta) mins. (Plate 1). The samples were oven-dried at 100°C for 12 hours to remove the adsorbed water. The samples were pressed into rectangular aluminium sample holders using an alcohol wiped spatula and then clipped into the instrument sample holder. The samples were step-scanned from 5 to 100 degrees 2 theta at intervals of 0.02 and counted for 0.5 seconds per step, later probe to less than 2 microns metre for authigenic minerals identification.
3.3.3 SEM/EDS Method

The SEM/EDS analyses involve each samples coated with gold palladium for about 30 minutes. This was done to make the samples conductive. The coated sample was put on a palette-like stand which was placed under an electron beam. SEM analysis was performed using a LEO Stereoscan 440 which is a high vacuum microscope. It has a stereo workstation attached to the instrument which enables the image taken by the electron microscope to be viewed on the computer. There is an allowance for magnification adjustment of the view in order to have a better and accurate view of the image. Freezing the view enables the image to be taken and snapshot of the desired image (s) can be taken for analysis. A dispersive X-ray spectrometer (EDS) coupled with a computer based multichannel analyzer (MCA) was used for this analysis. The SEM and the EDS were done simultaneously. A conventional Be window, Si (Li) detector with a 1024 channel MCA set to 10eV per channel was employed. Picoammeter was attached to measure beam and or specimen current. Samples were metallographically polished starting with 6 micron to 3 micron and ending with 1 micron grit with diamond paste to make them conductive. The detrital and authigenic minerals identification in the samples was carried out using X-ray diffraction.
3.3.4 Stable Carbon and Oxygen isotope geochemistry procedure:

Oxygen and carbon isotopes data were obtained from bulk-rock samples. Roasting of the samples were done for 40 min at 430 °C in high vacuum glass followed by dissolution in 100 % hydrochloric acid at 25 °C under high vacuum for 12 hours. The evolving CO$_2$ was cryogenetically separated from other gases and measured with a Finnigan Delta S mass spectrometer. The isotopic results were reported in the usual δ notation versus the sea mean ocean water (SMOW) for oxygen and Vienna PeeDee Belemnite (PDB) standards for carbon.

3.3.5 Rock-Eval pyrolysis and total organic carbon (TOC) determination

Sample Preparation: Samples for TOC and Rock-Eval were ground, and material passing through a 60 mesh (250 micron) sieve was used for analysis.

Total Organic Carbon: Approximately 0.10 g of ground rock was accurately weighed and then treated with concentrated hydrochloric acid to remove carbonates. The samples were left in acid for a minimum of two hours. The acid was removed from the sample with a filtration apparatus fitted with a glass microfiber filter. The filter was placed in a LECO crucible and dried at 110 °C for a minimum of one hour. After drying the sample was analyzed with a LECO 600 Carbon Analyzer.

Rock-Eval (Programmed Pyrolysis): In Rock-Eval pyrolysis, ground samples were heated in an inert environment to measure yields in three portions (S1, S2 and S3), measured as three peaks on a pyrogram. Sample heating at 300 °C for 3 min produced the S1 peak by vaporizing the free (unbound) hydrocarbons. High S1 values indicate either large amounts of kerogen-derived bitumen (as in an active source rock) or the presence of migrated hydrocarbons or components of the drilling mud system. The oven then increased in temperature by 25 °C per minute to 600 °C and the S2 and S3 peaks were measured from the pyrolytic degradation of the kerogen in the sample. The S2 peak is proportional to the amount of hydrogen-rich kerogen in the rock, and the S3 peak measures the carbon dioxide released (to 390 °C) providing an assessment of the oxygen content of the organic portion of the rock. The temperature at which the S2 peak reaches a maximum, “Tmax”, is a measure of the source rock maturity. Rock-Eval II instrument
was used for the Rock-Eval pyrolysis and a summary of operating conditions is as follows:

Operating Conditions:

- S1: 300 °C for 3 minutes
- S2: 300 °C to 600 °C at 25 °C/min; held at 600 °C for 1 minute
- S3: CO2 trapped between 300 to 390 °C

3.3.5.1 Accelerated solvent extraction

The samples were powdered using mortal and pestle, 20 g of each sample and 4 spoons of pre-extracted diatomaceous earth were thoroughly mixed. For extraction the metal tube of an Accelerated Solvent Extractor (ASE) system was filled with the sample material with filter paper placed at both ends of the tube before tightly sealed to avoid leakage. The tube was placed in an ASE 200 (DIONEX) extraction system using dichloromethane: methanol (99:1) as extraction solvents. Each extraction was carried out for 20 min at 75 °C and pressure of 50 bar. The extracts were concentrated using a Turbo Vap 500 closed cell concentrator and further concentrated by evaporating the solvent in a stream of nitrogen gas. After the addition of internal standards (ISTD: 5α-androstan, ethylpyren, 5α-androst-17-on, erucic acid) the extracts were fractionated by medium-pressure liquid chromatography (MPLC) (Radke et al, 1980) into fractions of aliphatic/alcyclic hydrocarbons, aromatic hydrocarbons and polar hetero-components (nitrogen, sulphur and oxygen containing compounds, NSO) using n-hexane and methanol as eluents. Each fraction was concentrated prior to GC and GC-MS analyses.
3.3.5.2 Gas chromatography

Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) was performed on the saturated hydrocarbon fraction in order to determine the \(n \)-alkanes and isoprenoid hydrocarbons. GC-analysis was conducted on a Hewlett Packard 5890 series II gas chromatograph equipped with a Agilent Ultra 1 capillary column (50 m length, 0.22 mm inner diameter, 0.33 µm film thickness) linked with PTV splitless injector and a flame ionisation detector (FID). The GC oven was programmed from 40 °C (hold time 2 min) to 300 °C (hold time 60 min) at 5 °C/min. The carrier gas was helium. The peak areas were electronically detected and identification was based on the retention times and comparison with standard. The peak integration was achieved using the Agilent ChemStation software.
3.3.5.3 Gas chromatography–mass spectrometry

GC-MS analysis was performed on Thermo Trace GC Ultra coupled to a Thermo Trace DSQ mass spectrometer. The GC was equipped with a PTV injection system operating in the splitless mode and a SGE BPX 5 fused silica capillary column (50 m length, 0.22 mm inner diameter, 0.25 µm film thickness) using the following temperature program: initial temperature 50 °C, heating rate 3 °C/min to 310 °C, held isothermal for 30 min. The MS operated in the electron impact mode at 70 eV and Helium was used as a carrier gas. To improve the signal to noise ratio hopanes and steranes were measured in the single ion monitoring (SIM) mode using m/z 191 for hopanes and m/z 217, 218, 372, 386, 400 and 414 for steranes at a scan rate of 0.8 s per scan. The peak integration was achieved using the Xcalibur software.
Chapter Four

4.0 Results and Discussions

4.1 Introduction to interpretation of results

4.1.1 Wireline log interpretation

Wireline log is the main source of accurate information on the depths as well as apparent and real thickness of beds. They yield information on the subsurface geology including formation boundaries, lithology, fluid content, and porosity amongst others. The wireline log suite obtained for this study includes Gamma ray, Sonic, Resistivity, Neutron and Density which were used in lithostratigraphic and sequence stratigraphic analyses of the wells in the basin.

The Gamma ray log is used in measurement of natural radioactivity of the formation. It reflects the shale content since radioactive elements tends to concentrate in shale and clays and low in sand bodies. Clean formations tend to have very low level of radioactivity unless radioactive contaminants are present or the formation contains dissolved radioactive sediments. With increase in the shale content, the level of radioactivity increases.

Resistivity logs measure formation resistivity which is a reciprocal of conductivity. Formation resistivity depends on the resistivity of formation water, amount of water present and the pore structure geometry.

Neutron log is a radioactive log, can give an indication of amount of hydrogen present in a sedimentary sequence, which is an indication of the fluid porosity. Neutron logs are used primarily for delineation of porous formation and determination of their porosity. When combined with another porosity log or core analysis, it can yield more accurate porosity value and identification, including evaluation of shale content.

Sonic log is simply a recording versus depth of the time (ΔT) required for a compressional sound wave to traverse one foot of formation known as interval transit time. ΔT is the reciprocal of the velocity of the compressional sound wave. The interval transit time for a given formation depends on lithology and porosity.
Formation density log is a radioactive log. It measures the electron density of the formation. This is related to the true bulk density, which in turn depends on the density of the rock matrix material, formation porosity and the density of the fluid filling the pores.

4.1.2 Sequence stratigraphic interpretation
The wireline logs were broken down to parasequence sets using the log signatures. The coarsening and fining upward sequences were mainly used for the interpretation. This approach is a function of the lithologies encountered. The gamma ray was used in all the wells for the systems tracts delineation. This is because of the definite break between the sand and shale using the shale line and GR values in the software. The textural parameter of the lithology was used, studying the fining and coarsening upward sequence for sand to shale and vice versa for shale and sand. These two events signify progradation, retrogradation and aggradation which are products of sea level rise and fall. The rise and fall of sea level determines the type of sediment that will be deposited. The sharp break between the events is denoting episodes of deposition. Where there is two distinct break exist they are termed as sequence boundary. Sequence stratigraphic analysis is useful in the determination of the stratal pattern of depositional sequences and their constituent systems tract.

4.2 Seismic interpretation
Primary seismic reflections are generated in response to significant impedance changes along stratal surfaces or unconformities. The fundamental principle that seismic reflection follows is gross bedding and therefore approximate time lines are the basis for seismic sequence stratigraphy. Detailed study of seismic profile for faults identification was done on the dip section (cross lines) since faults are easily recognised on dip section than on strike sections. Though fault zone is normally too thin to be imaged on seismic data, but can easily be identified as line-ups of reflection discontinuities on vertical seismic sections (Loseth, et al., 2009). Series of faults, which are listric and normal, were picked on the section profiles. The seismic database of the area consists of 783.63km of
migrated stack 2D data on Seg-Y format. The in-line A81-007 controlled by wells A_O1 and A_F1 (Fig. 4-1) was interpreted based on sequence packages.

Fig. 4-1. Interpreted seismic section line A81-007 where yellow lines are sequence boundaries, green lines transgressive surfaces and black lines fault lines.

The interpretation was done based on 4 terminations: onlap, downlap, toplap and truncation. The sediments are Upper Cretaceous basin floor fan deposited in regular orders. At the southern part of the section at depth 2.300sec and below is Rift/Drift
unconformity marked by onlap in the south-western and downlap in the southeastern part of the section. The line AM-53F (Fig. 4-2) that controlled wells A_K2, K_A2, and K_B1 in block 2 of the basin shows Late Cretaceous growth-fault rollover as seen in the entire section area.

Fig. 4-2. Interpreted seismic section line AM-53F where yellow lines are sequence boundaries, green line transgressive surfaces and black lines fault lines.

Also there is Cretaceous/Tertiary unconformity at depth 0.500-0.800sec at the north-eastern part of the section. The basement rocks start to show at depth 1.600sec downwards. There are several toplapping at the middle of the section at Shot Point (SP) 1250 at depth 0.800sec of the Cretaceous/Tertiary unconformity which is rolling over to growth fault and faulted at SP 1950. The faulting trend is regular though faulted in opposite directions but of the same trend. The line A87-047 (Fig. 4-3) controlled by wells
K_D1 and A_U1 in block 3 on the top showing regular deposition of Tertiary sequences. There is rifting between SPs 1150 and 1300 just below the Tertiary sequences.

Fig. 4-3 Interpreted seismic section line A87-047 where yellow lines are sequence boundaries, green lines transgressive surfaces and black lines fault lines.
The Tertiary/Cretaceous unconformity separates the Tertiary sequences from the Cretaceous sequences. The faulting is in the same direction as seen in SPs 600 and 780 at depths 1.500 and 1.900sec respectively. The sediments are deposited regularly in Upper Cretaceous basin floor as fan. Line A81-061 (Fig. 4-4) controls wells A_C2 and A_C3 in block 4.

Fig. 4-4. Interpreted seismic section line A81-061 where yellow lines are sequence boundaries, green line transgressive surfaces and black lines fault lines.

The sediments are Upper Cretaceous basin floor fan. Within the section there is rifting between SP 25 and 75 at depth 0.600sec. There is toplapping between SPs 150 and 200 on the surface at depth 0.600sec. The faulting trend is in the same direction at the western
part of the section. Towards the east the trending is same but different from the one at SP 600.

4.3 Lithostratigraphic interpretation

Detailed qualitative interpretation of wireline log suite was carried out, thus allowing lithology and depositional patterns to be inferred from the well succession cross examined. This was based on the well log response of the sedimentary deposits which may equate to trends in depositional energy and hence the sedimentary infill pattern. The Gamma ray log shale reference line of 50 % API was chosen for all the API value range in this study. Deflection to the left and right to this reference line indicate sand and shale respectively.

Much emphasis was placed on the Gamma ray log as a tool for lithologic interpretation. The interpretation was cross examined with the available log in order to confirm that they corroborate the same interpretation. This interpretation which requires that certain characteristics of the open-hole tool be known and a systematic approach be followed was utilised in this study by comparing the logs horizontally starting with Gamma ray log to their other available logs.

Broad classification of lithology into sand, claystone and shale using characteristics log motifs of these lithological indicators were used in identification and delineation of the logged interval.

4.3.1 Lithostratigraphic interpretation of well succession

Lithostratigraphic interpretation was based on the relative percentage of sand and shale and the presence of shale intercalation. Two major lithostratigraphic units encountered are ones between bottom log and 6At1 and those above 6At1 and 14J1 unconformities in the correlated wells (Fig. 4-5).
Fig. 4-5. The correlation of the wells used in the study
Bottom log-6At1 (reservoir zone)

These consist of sand predominantly sandy with little or no shale intercalation. The predominantly sandy nature of the deposit suggests deposition in high energy depositional environments, probably during the progradational phase of the basin (Fig. 4-5).

The 6At-14At1 (reservoir zone)

These consist of thick succession of sands and shale intercalations with sands (upper paralic), upper marine and lower paralic. Members consist of alternation of sand and shale sections subdivided into three lithofacies units as follows:

1. The ones consist of predominantly sands interbeded with shales, thickness varies between 3500.38 m and 3656.28 m in well A_O1. The serrate cylinder upward fining and occasional upward coarsening motif of the gamma ray (GR) log probably represents subaqueous channel and subaqueous mouth bar deposits (Fig. 4-5).

2. Monotonously shaly except for minor serrate cylinder shaped subaqueous channel sands noted over intervals 3550 m to 3872 m in well A_C3. The predominantly shaly character of this sub unit suggests deposition in low energy probably deep marine setting.

3. Predominantly sandy with alternating shale and sands observed on the GR log, with the shaly beds usually thinner than sandy one. Shale beds become progressively thicker at depth with shallower portion becoming sandy (Fig. 4-5).

The sands show hybrid unit consisting of a build up of multi-serrate cylinder-shaped, upward fining, as well as upward coarsening units, probably of subaqueous channel and barrier bar deposits in shallow water setting. The sand thickness varies between 21 m and 70 m in wells A_K2 and A_U1 in sequence IV marked by 14JTI unconformities.

The upper marine stands out amongst local members in the regional study. On the GR log studied it occurs in depth 968 m to 1723.43 m in well K_B1. It lower limit is defined by a sharp deflection from sand to claystone. It is predominantly shaly in character with minor sandy portion. The predominantly shaly base in well A_U1 is indicative of deposition in a low energy depositional environment well. The sands grade vertically upwards into the transitional shallow marine sand as observed in the well (Fig. 4-5).
Cycle frequency and stacking patterns

Eight depositional sequences bounded by nine sequence boundaries have been delineated in the area of study. Each of these sequences is produced by one cycle of sea level fluctuation and have been designated sequences I, II, III, IV, V, VI, VII and VIII from base to top of the study area.

Close examination of these eight sequences revealed that all sequences occur regionally throughout the study area and are underlain by Type 1 sequence boundaries. Sequence stratigraphic analysis of the wells and the subsequent comparison with seismic reflection permitted the delineation of the sequence stratigraphic elements of the depositional sequences (Fig. 4-5).

Lowstand systems tract (LST) occurs in some of the sequences represented by slope complex. In some instances the prograding complex overlies it. The basin floor fan is absent in some cases while recognition of the slope fan is a pointer to deposition on the continental slope or shelf edge.

Slope fan deposition occurred as sea level bottoms out and begins to rise and has seismic impression of gull-wing shape with an indication of channelization and some chaotic flows. Some of the slope fan complex show evidence of sharp base and slightly blocky pattern suggestive of basin floor fan but with fining upward sequence pattern. This slightly blocky pattern was interpreted to be that the well penetrated the channel centre. The sharp base within the crescent is indicative of sand in channel, while the bell shaped fining upward pattern suggests channel abandonment (Fig. 4-5 in well A_U1).

Deposition of transgressive systems tract resulted from a rapid rise in sea level above the relic shelf break causing sandiest sediments to be moved landward. Its top which is the maximum flooding surface is represented by laterally extensive and thick sometimes doublet seismic reflection while on well logs it is identified as clay rich layer with high gamma ray and low resistivity values.

Highstand systems tract recognized are laterally extensive and are associated generally with a of period stand still sea level as represented by the aggradational pattern as sand build basinward. However, the stand still aggradational pattern was dominant suggesting cessation of sediments supply in Fig. 4-5 well A_O1.
The age of the eight sequences (I-VIII) ranged from Barremian to Campanian (6At1 and 17At1; the marked major unconformities in the basin). None of the 33 sandstone samples collected for this study intersected sequence VI (Table 4.1). 40 shale samples were collected for this study (Table 4.2). The source shale samples intersect sequences II to VIII. None of the samples intersected the first sequence of Barremian age.
Table 4.1. The reservoir rock samples positions within the systems tracts and the sequences.

<table>
<thead>
<tr>
<th>Reservoir rock samples</th>
<th>Age</th>
<th>Systems tracts</th>
<th>Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_B1 (1350 m)</td>
<td></td>
<td>HST</td>
<td></td>
</tr>
<tr>
<td>K_B1 (1910 m)</td>
<td>Campanian</td>
<td>TST</td>
<td>VIII</td>
</tr>
<tr>
<td>K_B1 (1950 m), K_B1 (2060 m)</td>
<td>Santonian</td>
<td>LST</td>
<td>VII</td>
</tr>
<tr>
<td>A_F1 (1178 m), A_F1 (1179 m), A_F1 (1180 m), (K_A2 (1690 m)</td>
<td>Coniacian</td>
<td>HST</td>
<td>VI</td>
</tr>
<tr>
<td>K_A2 (1963 m), K_A2 (2215 m)</td>
<td></td>
<td>TST</td>
<td></td>
</tr>
<tr>
<td>A_U1 (2688 m), A_U1 (2694 m), A_U1 (2697 m)</td>
<td>Cenomanian</td>
<td>LST</td>
<td>IV</td>
</tr>
<tr>
<td>K_D1 (3652 m), K_D1 (3174 m), K_A2 (2765 m)</td>
<td></td>
<td>HST</td>
<td></td>
</tr>
<tr>
<td>K_D1 (3272 m), K_A2 (2795 m), A_C3 (3597 m)</td>
<td>Albian</td>
<td>LST</td>
<td>III</td>
</tr>
<tr>
<td>A_O1 (3601 m), (3679 m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_C2 (3245 m), A_C2 (3246 m), A_C3 (3670 m), A_C3 (3675 m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_D1 (3692 m)</td>
<td>Aptian</td>
<td>LST</td>
<td>II</td>
</tr>
<tr>
<td>A_O1 (3940 m), (3950 m), (3242 m), (3175 m), A_C3 (3727 m)</td>
<td></td>
<td>HST</td>
<td></td>
</tr>
<tr>
<td>A_O1 (3305 m), (3493 m)</td>
<td></td>
<td>TST</td>
<td></td>
</tr>
<tr>
<td>A_O1 (3601 m), (3679 m)</td>
<td></td>
<td></td>
<td>I</td>
</tr>
</tbody>
</table>
Table 4.2. The source rock samples positions within the systems tracts and the sequences.

<table>
<thead>
<tr>
<th>Source rock samples</th>
<th>Age</th>
<th>Systems tracts</th>
<th>Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_B1 (1855 m)</td>
<td>Campanian</td>
<td>HST</td>
<td>VIII</td>
</tr>
<tr>
<td>K_B1 (2084 m)</td>
<td></td>
<td>TST</td>
<td></td>
</tr>
<tr>
<td>K_B1 (2423 m), K_B1 (2718 m), K_B1 (2721 m), K_B1 (2808 m)</td>
<td>Santonian</td>
<td>HST</td>
<td>VII</td>
</tr>
<tr>
<td>K_B1 (2742 m)</td>
<td>Coniacian</td>
<td>TST</td>
<td>VI</td>
</tr>
<tr>
<td>A_F1 (1270 m), A_F1 (1290 m), A_F1 (1300 m), A_F1 (1320 m)</td>
<td></td>
<td>TST</td>
<td></td>
</tr>
<tr>
<td>A_F1 (1430 m), K_A2 (1855 m)</td>
<td>Turonian</td>
<td>HST</td>
<td>V</td>
</tr>
<tr>
<td>A_K2 (2405 m), K_A2 (2572 m)</td>
<td></td>
<td>TST</td>
<td></td>
</tr>
<tr>
<td>A_F1 (1700 m), (1980 m), (1990 m), K_A2 (2655 m), A_K2 (2525 m), (2530 m)</td>
<td></td>
<td>TST</td>
<td></td>
</tr>
<tr>
<td>A_F1 (1780 m), A_U1 (2210 m), (2220 m), A_K2 (2540 m), (2545 m)</td>
<td>Cenomanian</td>
<td>HST</td>
<td>IV</td>
</tr>
<tr>
<td>K_D1 (2947 m), (2979 m), (2988 m), (3008 m)</td>
<td></td>
<td>TST</td>
<td></td>
</tr>
<tr>
<td>A_U1 (3068 m), K_D1 (2997 m)</td>
<td></td>
<td>TST</td>
<td>III</td>
</tr>
<tr>
<td>O_A1 (3741 m), (3756 m), (3741 m)</td>
<td>Albian</td>
<td>LST</td>
<td></td>
</tr>
<tr>
<td>K_D1 (3447 m), A_C3 (3129 m), O_A1 (3771 m), (3789 m), (3792 m)</td>
<td></td>
<td>TST</td>
<td>II</td>
</tr>
<tr>
<td>Barremian</td>
<td></td>
<td>LST</td>
<td>I</td>
</tr>
</tbody>
</table>
4.4 Petrography results

4.4.1 Thin section interpretation

LST
The thin sections at depths 3679 m and 3601 m in well A_O1 (Fig. 4-6) under cross polarised light (XP) shows ductile mineral mica in spec scattered within the entire mass which is deformed by looking at the shape. In well K_B1 at depth 2060 m the mica is flattened or platy which can be as a result of severe compaction and it is embedded within quartz. There is also presence of glauconite at this depth, which is shown by green colour in both plane (PL) and cross polarised lights. The glauconite is diagnostic of the continental shelf marine depositional environment which might have been formed due to diagenetic alterations of mica under a reducing condition (Odin and Matter, 1981). There are evidences of fracturing denoted by the blue arrows (Fig. 4-6) in wells K_A2 (2795 m); K_B1 (2060 m); K_D1 (3692.5 m, 3272 m) and A_C3 (3597.5 m). The cementing material within the setting is micritic calcite. The cementing material might have filled the pore spaces before quartz cement could grow. The porosity within the setting is being controlled by lithic grains of detrital ductile minerals. There is evidence of healing of the fracture as shown by sample from well K_B1 (1950 m) by quartz. There must have been injection of magma rich in quartz to be able to crystallise in the fracture created as a result of deformation. The feldspar which is one of the major mineralogical compositions of sandstone is seen to have been altered to clay. The sandstone is polycrystalline in nature. Porosity within the setting is generally poor because of feldspar conversion to clay. The micas are angular to sub-angular meaning that they might not have travelled far from their source to place of deposition. The grain contacts are concave-convex surface that may have likely resulted from compaction. There is evidence of clay variation with depth.
The sample at depth 3305 m in well A_O1 (Fig. 4-7) shows a good attribute of well sorted sandstone. The clay, chlorite and mica are completely mixed within the matrix indicating a severe diagenetic event. The detrital grains are coated by clay and mica, at

TST

The sample at depth 3305 m in well A_O1 (Fig. 4-7) shows a good attribute of well sorted sandstone. The clay, chlorite and mica are completely mixed within the matrix indicating a severe diagenetic event. The detrital grains are coated by clay and mica, at
depth 3493 m in the same well, the micritic calcite holds the grains acting as a cementing material. Evidence of fracturing is seen in wells, K_A2 at depths 2215 m, and 1963 m; A_U1 (2688.1 m); A_C2 (3246.32 m) and A_C3 (3670 m). The presence of glauconite in well A_C3 at depth 3675 m is an indication of shallow marine deposition (Odin and Matter, 1981). In well A_C2 at 3245.16 m depth there is presence of pyrite. The framboidal pyrite in the setting is confirming the marine sedimentary environment deposition in reducing conditions within the TST (Sauer et al., 1992). There are over growth of quartz within the setting as shown in wells A_O1 (301m); A_U1 (2694.05m); A_C2 (3245.16 m); A_C3 (3675 m) and A_C3 (3670 m). There are specs of mica as seen in A_O1 (3305 m); A_U1 (2694.05 m) and A_U1 (2688.1 m). They appear as specs except in A_C2 (3245.16 m) which shows complete alteration and grading. There is alot of chloritization within the setting. This must have been the one of the reasons why the porosity quality is generally poor. The fracturing and the pores are not linked hence the poor permeability characteristics within the setting (Fig. 4-7 in A_C2 (3245.16m). The clay clusters seen in the photomicrograph A_U1 (2697.55 m); A_U1 (2694.05 m); A_U1 (2688.1 m) and A_C3 (3670 m) must have resulted from alteration of feldspar due to diagenetic events. These series of diagenetic and post-depositional events must have been responsible for the poor porosity and permeability within the setting.
A_U1 (2697.55m) XP

A_U1 (2697.55m) PPL

A_U1 (2694.05m) XP

A_U1 (2696.05m) PPL

A_U1 (2688.1m) XP

A_U1 (2688.1m) PPL
The oldest sample in well A_F1 (1180m) in the setting shows a complete cementation by calcite. The influence of calcite cements increase with depth. This is an attribute of a fluvial deposition. At depth 1180 m there is no trace of mica (Fig. 4-8). At 1179 m and 1178.5 m there are traces of elongated mica chips which might likely be as a result of compaction. There are also over growth of quartz within the setting. The well A_O1 at depths 3175m and 3242 m showed a lot of clay covering the detrital grains. There are also evidence of fracturing and precipitation of brown-reddish clays at the edges of the fractures. Glauconite droplets are seen in A_O1 (3175m) which may be due to alteration of mica by shallow marine diagenesis under a reducing condition. In well K_A2 at depth 2765 m, clay covers the entire detrital grains. At depth 1690 m of the same well, the detrital grains are very prominent, meaning that the influence of the clay increase with depth in the wells within the stratigraphic setting. In K_B1 at depth 1910 m there are evidences of fracturing whose intensity increase with depth. A clay ball was noticed in at depth 1950 m in well K_B1 which can be due to reworking of the sediments. Specs of glauconite also noticed in well K_B1 (1350m). K_D1 at greater depth, 3174 m shows...
severe chloritization, its influence was reduced as depth 3652 m. In well A_C3 calcite mud (micrite) cover greater part of the detrital grains. Well O_A1 at depth 3874 m there is over growth of quartz and some flattened mica. The clay covers nearly all the detrital grains as seen at depths 3940 m and 3950 m in well O_A1. The influence of clay within HST is enormous. This must have been responsible for the poor quality of porosity and permeability in this stratigraphic setting.
Fig. 4-8. The photomicrograph of samples taken within HST showing different minerals both plain (PPL) and cross polarised (XP): Micas (M), Quartz (Qtz), Quartz overgrowth (Qtz-o), Chlorite (Chl), Clay, Calcite cement (Cal) and Glauconite (G). The arrows: blue showing evidence of fracturing and white showing dense micritic calcite cement.
4.5 Mineralogical analyses results

4.5.1 The XRD interpretation

The sediments in Orange Basin from the XRD results show limited early diagenetic minerals. During early diagenesis the sandstones must have likely experienced severe compaction before cementation, which is likely to be due to predominance of compaction and precipitation of authigenic minerals which are common in all the stratigraphic sequences of the basin. Diagenetic reactions are those that transform unconsolidated sediments deposited at the earth’s surface- sand, mud, carbonates and organic matter into coherent lithified rock of sandstone, shale, limestone and coal respectively as they are buried (De Ros, 1998).

Diagenetic events in Lowstand Systems Tract (LST)

The LST is defined an area bound by a sequence boundary below and transgressive surface above. It contains retrograding or aggrading parasequence sets. The LST deposits may be in incised valleys, shelf margin delta/lowstand shoreline system, lowstand fans or lowstand wedge.

Eight samples from various depths from 5 wells intersected this sequence stratigraphic setting (Fig. 4-9) which are A_O1 3601 m, 3679 m, K_A2 2795 m, K_B1 1950 m, 2060 m, K_D1 3692 m, 3272 m and A_C3 3597.5 m. The setting shows a good place for understanding of reducing environment because of the presence of pyrite.
Diagenetic events in Transgressive System Tract (TST)

The TST is defined as the area bound by transgressive surface below and maximum flooding surface above. It contains retrograding parasequence sets. Strata include shallow marine shelf systems, condensed slope/basin interval. Eleven samples from 5 of the wells intersected this systems tract and they are A_O1 3301 m, 3493 m, K_A2 1963 m, 2215 m, A_U1 2688.1 m, 2692.55 m, 2694 m, A_C2 3245.16 m, 3246.33 m, A_C3 3670 m, and 3675 m (Fig. 4-10). This systems tract is characterized by formation of (i) cement under oxic conditions at and immediately below seafloor, (ii) grain-coating, grain replacement from sub-oxic pore water, (iii) primary replacement of mica grains under weakly reducing condition (Curtis, 1987). The XRD results show more pyrite meaning that the setting is more reducing than oxidizing. This is supported by low amount of hematite which is found mainly in oxidizing environment. Pyrite formation is indicative of iron-reduction in the setting, an example of eogenetic alteration linked to sequence stratigraphy. This is formed as a result of maximum flooding event in the setting. There is relative abundance of chlorite in the setting because it is less extensively coated during late diagenetic events.
Fig. 4.10. XRD results showing mineral peaks within the Transgressive System Tract (TST) across the studied wells

Diagenetic events in Highstand System Tract (HST)

HST is defined as the area bound by maximum flooding surface below and sequence boundary above. It contains aggrading to prograding parasequence sets. Strata include outbudding shallow marine shelf system, minor slope/basin floor system.

7 wells of the well in this study intersect the HST and they are A_F1 1178 m, 1179 m, 1180 m, A_O1 3242 m, 3175 m, K_A2 1690 m, 2765, K_B1 1910 m, 1350 m, K_D1 3174 m, 3652 m, A_C3 3727.5 m, O_A1 3940 m, and 3950 m (Fig 4-11).
Diagenetic alterations in the HST sandstones are similar to those in the TST sandstones except for the extensive and wide conversion of early authigenic clays such as kaolinite to chlorite and formation of considerable amount of quartz in the HST sandstones. The silica needed for the formation of quartz is presumably derived internally from the intergranular dissolution of quartz grains in the sandstone (Ehrenberg, 1993, Bloch et al; 2002, Walderhaug, 1994, Walderhaug and Bjorkum, 2003).

The results of XRD show more quartz which is likely to be achieved as a result of progradation and aggradation in HST (Posamentier et al., 1988). This is supported by the presence of hematite which is formed in oxidizing environments. There is limited grain coating which is responsible for the abundance of quartz in the setting. There is a possibility of feldspar conversion to montmorillonite and montmorillonite conversion to chlorite. There is presence of large amount of clay in the setting, which is a product of mesogenetic alteration (Morad et al., 2000) as a result of dissolution in the setting. Many investigators believe chlorites are formed directly from montmorillonite and Mg-rich solution. This is because kaolinite grades to montmorillonite and montmorillonite to chlorite. Kaolinite can also be converted to chlorite directly from the reaction of kaolinite.
with quartz and availability of Mg$^{2+}$ and Fe$^{2+}$ in solution. For the Mg end member chlorite, the reaction would be:

$$7H_2O + Al_2Si_3O_5(OH)_4 + 5Mg^{2+} + SiO_2 \rightarrow Mg_5Al(AlSi_3)O_{10}(OH)_8 + 10H^+$$

| Kaolinite | Quartz | Clinochlore |

K$^+$, Al$^{3+}$, Si$^{4+}$ are needed for the formation of early diagenetic K-feldspar which was not detected in any of the samples in this study. K$^+$ is believed to be derived from sea water, on the other hand K$^+$, Al$^{3+}$, and Si$^{4+}$ could also be derived from partial dissolution of mica and K-feldspar grains (De Ros, 1998). The abundance of silica (quartz) across the the systems tracts is an evidence of late (deeper) diagenetic events in the basin.

4.5.2 The SEM interpretation

LST

The SEM imagery was done using magnification of 20, energy of 20 kV, probed to 50pA. Within the LST there is abundance of quartz and some overgrowth of quartz as a result of diagenesis (Fig. 4-12). There are framboidal, nodular and flattened pyrite in the samples, A_O1 (3679 m), A_O1 (3601 m), and K_B1 (2060 m). This is indicative of a marine reducing condition (Greensmith, 1989). Pyrite mineralization often take places along fractures, it may have been precipitated from diagenetic fluids that were passing through the reducing environment. The entire samples in the setting show few montmorillonite and more chlorite. The montmorillonite exists as flakes, while the chlorite is found around quartz and other framework grains. The montmorillonite found in few samples A_O1 (3679 m) and K_B1, and chlorite found in all the samples in this setting may be as a result of clay conversion. There is possibility of one clay mineal transforming into another under a favourable time and temperature (Zhang et al., 2008). The authigenic clay minerals must have been responsible for the poor porosity and permeability within the setting. The infiltrated clays in the LST are probably attributed to high initial depositional permeability (Moraes and De Ros, 1992). The grain-coating chlorite appear to have preserved some porosity by restricting subsequent quartz cementation during burial at higher temperature (Wilson and Pittman, 1977; Moraes and De Ros, 1989;
Storvol et al., 2002; Primmer et al., 1997; and Imam, 1986) as seen in samples K_B1 (1910 m) and A_C3 (3597.5 m). The sample A_O1 (3679 m) shows very tight grain contact making porosity to be very low. The presence of fewer hematites in samples K_A2 (2795 m), K_B1 (1950 m) and K_B1 (2060 m) must have been as a result of exposure to groundwater with dissolved oxygen or water that has been exposed to atmosphere.
Fig. 4-12. SEM imageries of samples within LST showing massive quartz overgrowth (Qtz-o), authigenic minerals montmorillonite (Mont) and chlorite (Chl) coating detrital grains, with some nodular pyrite and flattened/fibre like hematite.

TST

The TST is formed by progradational event, with the transgressive surface below and maximum flooding surface on top. There is overgrowth of quartz across the setting. The overgrowth of quartz is an evidence of mesodiagenetic event in this system tract (Zhang et al., 2008). Quartz has significant presence; authigenic montmorillonite and chlorite are also present with trace of hematite and pyrite. Pyrite is most common in this package than in the retrogradational setting. The pyrite occurs as framboidal A_O1 (3305 m), A_O1 (3493 m), A_C2 (3245.5 m), A_C2 (3246.32 m) and A_C3 (3670 m) (Fig. 4-13). Silica that was used for the formation of quartz overgrowth must have been derived internally from the intergranular dissolution of quartz grains in the sandstones (Giles et al., 1992). In well A_O1, the effect of authigenic clay minerals at depths 3493 m and 3305 m is similar. The clay covers nearly all the pore spaces in the well making porosity to be poor. In well A_U1 (2697.55 m), the overgrowth of quartz is nodular, which may enhance secondary porosity. The initial porosity was obliterated by quartz overgrowth and authigenic clay deposits. The TST show early, near-surface grain-coating by authigenic clays, pyrite and grain-coating of micro-quartz. These are seen throughout the setting. The TST shows a place for understanding redox condition. This is established by the
presence of pyrite and hematite (Fig. 4-13 in A_C2 (3245.5m). Pyrite is more in abundance than hematite meaning it is more reducing than oxidizing. Pyrite is known to be formed under a marine reducing condition and hematite in oxidizing condition, A_O1 (3493 m) and A_C2 (3245.5 m). There is relatively high abundance of chlorite in this genetically related package because chlorites are less extensively coated during late diagenetic events, an attribute of physical weathering of rock formed under cold and dry climate (Ehrmann et al., 1992; Ehrmann and Mackensen, 1992).
Fig. 4-13. SEM imageries of samples within TST showing massive quartz overgrowth (Qtz-o), authigenic minerals montmorillonite (Mont) and chlorite (Chl) coating detrital grains, with some nodular pyrite and flattened/ fibre like hematite.

HST

Diagenetic alterations of the HST sandstones are similar to those of the TST sandstones except for the extensive and wide conversion of early authigenic clays such as montmorillonite to chlorite and formation of considerable amount of quartz overgrowth in the former sandstone. The silica needed for the formation of quartz overgrowth is presumably derived internally from the intergranular dissolution of quartz grains in the sandstone (Ehrenberg, 1993; Bloch et al., 2002; Walderhaug, 1994; Walderhaug and Bjorkum, 2003). The abundance of quartz in the setting was as a result of progradation and aggradation in HST (Fig. 4-14). This is supported by more hematite which is formed in oxidizing environment. The hematite formation is due to exposure to oxidizing conditions during the period immediately following burial. The stratigraphic setting shows limited grain coating compared with other settings which might be responsible for the abundance quartz in the setting. The bent needle-like chlorite as seen in A_F1 (1179 m) (Fig. 4-14) might have been as a result of mechanical compaction. Across this setting there is grain coating by authigenic clay minerals. The chloritization in the systems tract may be due to clay conversion (De Ros, 1998). There is a wide range conversion of
montmorillonite to chlorite in the setting making the chlorite to be more abundant (Ehrenberg, 1993). Mechanical and chemical compaction in most sandstone is of more importance than cementation in the destruction of intergranular porosity (Morad and De Ros, 1994; Morad et al., 2000). The evidence of chemical compaction is the squeezing of the authigenic clay within the mass of the sample across this systems tract.
O_A1 (3940 m) O_A1 (3950 m)

Fig. 4-14. SEM imageries of samples within HST showing massive quartz overgrowth (Qtz-o), authigenic minerals montmorillonite (Mont) and chlorite (Chl) coating detrital grains, with some nodular/framboidal pyrite and flattened/ fibre like hematite

4.5.3 The EDS interpretation

LST

The results of EDS are presented graphically and in tabular form, with the plot of energy (keV) against the Intensity (%) (Fig. 4-15). Within the LST, intensity of the elemental composition varies from samples to samples. Silicon has the highest intensity ranging between 950 (%) and 2000 (%) with energy of about 200 keV. Elements distribution within this systems tract shows the presence of O, Mg, Al, Si, S, Cl, K, Ca, Ti, Fe, and Ni, which are presented % weight of elemental composition and % atomic composition, respectively (Tables 4.3a and 4.3b).
Table 4.3a Weight elemental composition from EDS analysis within LST (%)

<table>
<thead>
<tr>
<th>Well</th>
<th>Depth (m)</th>
<th>O</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cl</th>
<th>Cr</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>Fe</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_O1</td>
<td>3601</td>
<td>12.72</td>
<td>0.47</td>
<td>9.62</td>
<td>42.07</td>
<td>na</td>
<td>na</td>
<td>1.57</td>
<td>na</td>
<td>14.52</td>
<td>3.46</td>
<td>2.56</td>
<td>13.02</td>
<td>na</td>
</tr>
<tr>
<td>K_A2</td>
<td>2795</td>
<td>12.84</td>
<td>0.76</td>
<td>11.97</td>
<td>43.61</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>12.11</td>
<td>1.69</td>
<td>17.03</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>K_B1</td>
<td>1950</td>
<td>12.32</td>
<td>0.9</td>
<td>11.37</td>
<td>43.92</td>
<td>na</td>
<td>2.13</td>
<td>na</td>
<td>na</td>
<td>6.37</td>
<td>1.57</td>
<td>3.02</td>
<td>18.4</td>
<td>na</td>
</tr>
<tr>
<td>K_B1</td>
<td>2060</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>1.38</td>
<td>11.32</td>
<td>na</td>
<td>na</td>
<td>76.09</td>
<td>11.21</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>K_D1</td>
<td>3272</td>
<td>16.35</td>
<td>0.34</td>
<td>9.95</td>
<td>38.97</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>8.8</td>
<td>11.87</td>
<td>0.97</td>
<td>12.74</td>
<td>na</td>
</tr>
<tr>
<td>K_D1</td>
<td>3692</td>
<td>8.39</td>
<td>0.88</td>
<td>12.5</td>
<td>38.71</td>
<td>na</td>
<td>0.86</td>
<td>na</td>
<td>na</td>
<td>12.65</td>
<td>1.59</td>
<td>24.42</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>A_C3</td>
<td>3597</td>
<td>8.24</td>
<td>na</td>
<td>12.3</td>
<td>44.33</td>
<td>0.9</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>17.15</td>
<td>1.98</td>
<td>15.1</td>
<td>na</td>
<td>na</td>
</tr>
</tbody>
</table>

Table 4.3b Atomic elemental composition from EDS analysis within LST (%)

<table>
<thead>
<tr>
<th>Well</th>
<th>Depth (m)</th>
<th>O</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cl</th>
<th>Cr</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>Fe</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_O1</td>
<td>3601</td>
<td>23</td>
<td>0.56</td>
<td>10.32</td>
<td>43.32</td>
<td>na</td>
<td>na</td>
<td>1.28</td>
<td>na</td>
<td>10.74</td>
<td>2.5</td>
<td>1.55</td>
<td>6.74</td>
<td>na</td>
</tr>
<tr>
<td>A_O1</td>
<td>3679</td>
<td>21.12</td>
<td>0.31</td>
<td>5.11</td>
<td>59.56</td>
<td>na</td>
<td>na</td>
<td>0.6</td>
<td>na</td>
<td>6.33</td>
<td>0.52</td>
<td>na</td>
<td>6.45</td>
<td>na</td>
</tr>
<tr>
<td>K_A2</td>
<td>2795</td>
<td>23.06</td>
<td>0.89</td>
<td>12.74</td>
<td>44.62</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>8.9</td>
<td>1.01</td>
<td>8.76</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>K_B1</td>
<td>1950</td>
<td>22.3</td>
<td>1.07</td>
<td>12.2</td>
<td>45.28</td>
<td>na</td>
<td>1.92</td>
<td>na</td>
<td>na</td>
<td>4.72</td>
<td>1.13</td>
<td>1.83</td>
<td>9.54</td>
<td>na</td>
</tr>
<tr>
<td>K_B1</td>
<td>2060</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>2.15</td>
<td>12.02</td>
<td>na</td>
<td>na</td>
<td>75.28</td>
<td>10.55</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>K_D1</td>
<td>3272</td>
<td>28.69</td>
<td>0.39</td>
<td>10.35</td>
<td>38.96</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>6.32</td>
<td>8.32</td>
<td>0.57</td>
<td>6.4</td>
<td>na</td>
</tr>
<tr>
<td>K_D1</td>
<td>3692</td>
<td>16.26</td>
<td>1.12</td>
<td>14.38</td>
<td>42.77</td>
<td>na</td>
<td>0.83</td>
<td>na</td>
<td>na</td>
<td>10.04</td>
<td>1.03</td>
<td>13.57</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>A_C3</td>
<td>3597</td>
<td>15.46</td>
<td>na</td>
<td>13.7</td>
<td>47.42</td>
<td>0.87</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>13.18</td>
<td>1.24</td>
<td>8.13</td>
<td>na</td>
<td>na</td>
</tr>
</tbody>
</table>

Note:
O- Oxygen, Mg- Magnesium, Al- Aluminium, Si- Silicon, P- Phosphorous, S- Sulphur, Cl- Chlorine, Cr- Chromium, K- Potassium, Ca- Calcium, Ti- Titanium, Fe- Iron and Ni- Nickel.
The presence of Ni and Cr in the sample K_B1 (2060 m) suggests marine influence (Garver et al., 1996). In the same sample there is complete replacement of aluminium by chromium. Iron also replaced silicon showing high intensity. The presence of chlorine in A_O1 (3601 m) and A_O1 (3679 m) in the setting is an indication of sea water influence. The soluble elements Mg, Ca, and K show low intensity except K which may be due to concentration of its bearing salts. The less soluble Si, Al, and Fe show more intensities and more relatively high abundance. The sulphur presence in sample K_B1 and K_D1 (3692 m) is an indication of volcanic (basaltic) deposit source of the sediment making up the sandstone (Rickwood, 1981). Titanium is found in all the samples in this setting except in A_O1 (3679 m) and K_B1 (2060 m), the presence of this element is an indication of the source of the sandstone because they are found associated with granitic silicate rocks (Choo et al., 2002). The presence of these elements confirms the minerals found in this setting: quartz, montmorillonite, pyrite, hematite, and chlorite in XRD result. In sample K_B1 (2060 m), the presence of nickel and iron supports the formation of nimite a nickel-rich chlorite and chamosite, iron-rich chlorite. The phosphorus presence in well A_C3 (3597.5 m) may be due to input from the shell of marine invertebrate confirming the marine deposition environment (Garver et al., 1996).
The elemental distributions within the TST are: O, Mg, Al, Si, S, Cl, K, Ca, Ti, and Fe. Tables 4.4a and 4.4b are presented in % weight of elemental composition and % atomic composition, respectively.

Fig. 4-15. EDS elemental distribution of samples within LST
Table 4.4a Weight elemental composition from EDS analysis within TST (%)

<table>
<thead>
<tr>
<th>Well</th>
<th>Depth (m)</th>
<th>O</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>S</th>
<th>Cl</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_O1</td>
<td>3305</td>
<td>11.96</td>
<td>0.78</td>
<td>4.53</td>
<td>19.42</td>
<td>na</td>
<td>1.83</td>
<td>5.35</td>
<td>32.22</td>
<td>na</td>
<td>23.91</td>
</tr>
<tr>
<td>A_O1</td>
<td>3493</td>
<td>11.39</td>
<td>0.23</td>
<td>4.58</td>
<td>68.08</td>
<td>na</td>
<td>1</td>
<td>5.9</td>
<td>0.54</td>
<td>0.43</td>
<td>7.85</td>
</tr>
<tr>
<td>K_A2</td>
<td>1963</td>
<td>12.8</td>
<td>0.34</td>
<td>7.29</td>
<td>59.39</td>
<td>na</td>
<td>0.64</td>
<td>3.9</td>
<td>na</td>
<td>1.52</td>
<td>14.12</td>
</tr>
<tr>
<td>K_A2</td>
<td>2215</td>
<td>14.52</td>
<td>0.29</td>
<td>9.11</td>
<td>57.68</td>
<td>na</td>
<td>na</td>
<td>7.16</td>
<td>na</td>
<td>2.47</td>
<td>8.77</td>
</tr>
<tr>
<td>A_U1</td>
<td>2688</td>
<td>14.51</td>
<td>0.35</td>
<td>8.66</td>
<td>55.57</td>
<td>1.17</td>
<td>na</td>
<td>6.89</td>
<td>0.96</td>
<td>1.17</td>
<td>10.72</td>
</tr>
<tr>
<td>A_U1</td>
<td>2694</td>
<td>11.21</td>
<td>0.29</td>
<td>12.49</td>
<td>41.67</td>
<td>0.48</td>
<td>na</td>
<td>13.91</td>
<td>1.49</td>
<td>4.03</td>
<td>14.41</td>
</tr>
<tr>
<td>A_U1</td>
<td>2697</td>
<td>15.92</td>
<td>0.21</td>
<td>12.36</td>
<td>54.52</td>
<td>1.87</td>
<td>na</td>
<td>6.01</td>
<td>1.25</td>
<td>0.82</td>
<td>7.04</td>
</tr>
<tr>
<td>A_C2</td>
<td>3245</td>
<td>16.99</td>
<td>na</td>
<td>4.3</td>
<td>73.93</td>
<td>na</td>
<td>na</td>
<td>4.78</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>A_C2</td>
<td>3246</td>
<td>11.27</td>
<td>na</td>
<td>9.93</td>
<td>40.32</td>
<td>na</td>
<td>3.48</td>
<td>14</td>
<td>1.63</td>
<td>1.57</td>
<td>17.8</td>
</tr>
<tr>
<td>A_C3</td>
<td>3670</td>
<td>7.51</td>
<td>0.18</td>
<td>9.33</td>
<td>47.04</td>
<td>na</td>
<td>1.55</td>
<td>32.06</td>
<td>na</td>
<td>0.65</td>
<td>1.68</td>
</tr>
<tr>
<td>A_C3</td>
<td>3675</td>
<td>13.42</td>
<td>na</td>
<td>10.58</td>
<td>57.5</td>
<td>na</td>
<td>na</td>
<td>10.91</td>
<td>na</td>
<td>na</td>
<td>7.59</td>
</tr>
</tbody>
</table>
Table 4.4b Atomic elemental composition from EDS analysis within TST (%)

<table>
<thead>
<tr>
<th>Well</th>
<th>Depth (m)</th>
<th>O</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>S</th>
<th>Cl</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_O1</td>
<td>3305</td>
<td>24.43</td>
<td>1.05</td>
<td>5.48</td>
<td>22.6</td>
<td>na</td>
<td>1.68</td>
<td>4.48</td>
<td>26.28</td>
<td>na</td>
<td>13.99</td>
</tr>
<tr>
<td>A_O1</td>
<td>3493</td>
<td>19.47</td>
<td>0.26</td>
<td>4.64</td>
<td>66.27</td>
<td>na</td>
<td>0.77</td>
<td>4.13</td>
<td>0.37</td>
<td>0.24</td>
<td>3.84</td>
</tr>
<tr>
<td>K_A2</td>
<td>1963</td>
<td>22.22</td>
<td>0.39</td>
<td>7.5</td>
<td>58.72</td>
<td>na</td>
<td>0.5</td>
<td>2.77</td>
<td>na</td>
<td>0.88</td>
<td>7.02</td>
</tr>
<tr>
<td>K_A2</td>
<td>2215</td>
<td>24.51</td>
<td>0.33</td>
<td>9.12</td>
<td>55.47</td>
<td>na</td>
<td>na</td>
<td>4.95</td>
<td>na</td>
<td>1.39</td>
<td>4.24</td>
</tr>
<tr>
<td>A_U1</td>
<td>2688</td>
<td>24.69</td>
<td>0.39</td>
<td>8.73</td>
<td>53.86</td>
<td>0.99</td>
<td>na</td>
<td>4.79</td>
<td>0.65</td>
<td>0.66</td>
<td>5.22</td>
</tr>
<tr>
<td>A_U1</td>
<td>2694</td>
<td>20.55</td>
<td>0.35</td>
<td>13.57</td>
<td>43.51</td>
<td>0.44</td>
<td>na</td>
<td>10.43</td>
<td>1.09</td>
<td>2.47</td>
<td>7.57</td>
</tr>
<tr>
<td>A_U1</td>
<td>2697</td>
<td>26.26</td>
<td>0.23</td>
<td>12.09</td>
<td>51.22</td>
<td>1.54</td>
<td>na</td>
<td>4.05</td>
<td>0.82</td>
<td>0.45</td>
<td>3.33</td>
</tr>
<tr>
<td>A_C2</td>
<td>3245</td>
<td>26.72</td>
<td>na</td>
<td>4</td>
<td>66.2</td>
<td>na</td>
<td>na</td>
<td>3.08</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>A_C2</td>
<td>3246</td>
<td>20.92</td>
<td>na</td>
<td>10.93</td>
<td>42.65</td>
<td>na</td>
<td>3.22</td>
<td>10.63</td>
<td>1.21</td>
<td>0.97</td>
<td>9.47</td>
</tr>
<tr>
<td>A_C3</td>
<td>3670</td>
<td>13.79</td>
<td>0.21</td>
<td>10.16</td>
<td>49.2</td>
<td>na</td>
<td>1.28</td>
<td>24.08</td>
<td>na</td>
<td>0.4</td>
<td>0.88</td>
</tr>
<tr>
<td>A_C3</td>
<td>3675</td>
<td>22.72</td>
<td>0</td>
<td>10.62</td>
<td>55.43</td>
<td>na</td>
<td>na</td>
<td>7.56</td>
<td>na</td>
<td>na</td>
<td>3.68</td>
</tr>
</tbody>
</table>

Note:
O- Oxygen, Mg- Magnesium, Al- Aluminium, Si- Silicon, P- Phosphorous, S- Sulphur, Cl- Chlorine, Cr- Chromium, K- Potassium, Ca- Calcium, Ti- Titanium, Fe- Iron and Ni- Nickel.
The EDS graphs (Fig. 4-16) showed silicon as the element with highest intensity ranging between 800 and 4,500 (%). This confirms the samples to be siliciclastic. Aluminium and potassium shows high intensity in all the samples of the setting. Calcium shows an exceptional high intensity in sample A_O1 (3303 m) being a soluble metal and with the intensity, which suggests presence of high content of calcium salts in the sediment. The presence of chlorine in samples A_O1 (3304 m), A_O1 (3493 m), K_A2 (1963 m), A_C2 (3246.32 m) and A_C3 (3670 m) indicates sea water influence within the setting (Mitchell, 1997). Sulphur is found localised in the well A_U1 at depths 2688.2 m and 2694.05 m, titanium is found in samples A_O1 (3493 m), K_A2 (1690 m), K-A2 (2215 m), A_C2 (3246.32 m) and A_C3 (3670 m). The sulphur and titanium are indication of the source of the sediment. The presence of sulphur and titanium in sample A_U1 (2688.1 m) and A_U1 (2694.05 m) is an indication of two different sources. Sulphur presence is an indication of volcanic (basaltic) deposit source while titanium is an indication of granitic silicate source (Choo et al., 2002; Rickwood, 1981). The elemental distribution supports the distribution of different minerals found in the setting by the XRD analysis which are: chlorite, montmorillonite, pyrite, quartz and hematite.
The elemental distributions within the HST are: O, Mg, Al, Si, Cl, K, Ca, Ti, and Fe (Fig. 4-17). Silicon has the element with the highest intensity in this setting which ranges between 450 and 2,250 (%). The results of their % weight and % atomic compositions are presented in table 4.5a and 4.5b respectively.

HST

The elemental distributions within the HST are: O, Mg, Al, Si, Cl, K, Ca, Ti, and Fe (Fig. 4-17). Silicon has the element with the highest intensity in this setting which ranges between 450 and 2,250 (%). The results of their % weight and % atomic compositions are presented in table 4.5a and 4.5b respectively.

Fig. 4-16. EDS elemental distribution of samples within TST
Table 4.5a Weight elemental composition from EDS analysis within HST (%)

<table>
<thead>
<tr>
<th>Well</th>
<th>Depth (m)</th>
<th>O</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cl</th>
<th>Cr</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>Fe</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_F1</td>
<td>1178</td>
<td>14.58</td>
<td>0.25</td>
<td>10.2</td>
<td>62.24</td>
<td>na</td>
<td>na</td>
<td>0.56</td>
<td>na</td>
<td>2.66</td>
<td>na</td>
<td>0.83</td>
<td>8.69</td>
<td>na</td>
</tr>
<tr>
<td>A_F1</td>
<td>1179</td>
<td>11.54</td>
<td>0.88</td>
<td>11.99</td>
<td>44.99</td>
<td>na</td>
<td>na</td>
<td>1.24</td>
<td>na</td>
<td>4.26</td>
<td>na</td>
<td>na</td>
<td>25.1</td>
<td>na</td>
</tr>
<tr>
<td>A_F1</td>
<td>1180</td>
<td>12.23</td>
<td>0.62</td>
<td>11</td>
<td>51.02</td>
<td>na</td>
<td>na</td>
<td>1.64</td>
<td>na</td>
<td>4.42</td>
<td>na</td>
<td>1.11</td>
<td>17.96</td>
<td>na</td>
</tr>
<tr>
<td>A_O1</td>
<td>3242</td>
<td>11.21</td>
<td>6.65</td>
<td>9.6</td>
<td>34.59</td>
<td>na</td>
<td>na</td>
<td>2.91</td>
<td>na</td>
<td>7.03</td>
<td>1.52</td>
<td>0.62</td>
<td>25.86</td>
<td>na</td>
</tr>
<tr>
<td>A_O1</td>
<td>3175</td>
<td>12.24</td>
<td>0.63</td>
<td>6.99</td>
<td>48.49</td>
<td>na</td>
<td>0.79</td>
<td>na</td>
<td>8.41</td>
<td>1.1</td>
<td>2.36</td>
<td>18.98</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>K_A2</td>
<td>1690</td>
<td>11.38</td>
<td>1.41</td>
<td>13.03</td>
<td>43.54</td>
<td>na</td>
<td>na</td>
<td>2.17</td>
<td>na</td>
<td>2.64</td>
<td>na</td>
<td>na</td>
<td>25.83</td>
<td>na</td>
</tr>
<tr>
<td>K_A2</td>
<td>2765</td>
<td>12.84</td>
<td>0.76</td>
<td>11.97</td>
<td>43.61</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>12.11</td>
<td>na</td>
<td>1.69</td>
<td>na</td>
<td>17.03</td>
<td>na</td>
</tr>
<tr>
<td>K_B1</td>
<td>1350</td>
<td>12</td>
<td>1.05</td>
<td>10.69</td>
<td>45.63</td>
<td>na</td>
<td>1.04</td>
<td>na</td>
<td>na</td>
<td>5.76</td>
<td>2.09</td>
<td>2.68</td>
<td>19.04</td>
<td>na</td>
</tr>
<tr>
<td>K_B1</td>
<td>1910</td>
<td>15.75</td>
<td>0.57</td>
<td>9.62</td>
<td>44.31</td>
<td>na</td>
<td>1.7</td>
<td>na</td>
<td>6.26</td>
<td>3.46</td>
<td>2.3</td>
<td>16.03</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>K_D1</td>
<td>3652</td>
<td>10.54</td>
<td>0.47</td>
<td>12.27</td>
<td>47.14</td>
<td>na</td>
<td>1.45</td>
<td>na</td>
<td>na</td>
<td>11.5</td>
<td>1.36</td>
<td>15.27</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>K_D1</td>
<td>3174</td>
<td>12.77</td>
<td>0.16</td>
<td>7.65</td>
<td>50.78</td>
<td>na</td>
<td>5.64</td>
<td>na</td>
<td>8.4</td>
<td>4.4</td>
<td>10.2</td>
<td>na</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_C3</td>
<td>3727</td>
<td>11.81</td>
<td>0.25</td>
<td>13.68</td>
<td>41.4</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>15.22</td>
<td>na</td>
<td>1.21</td>
<td>16.43</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>O_A1</td>
<td>3940</td>
<td>14.08</td>
<td>na</td>
<td>13.44</td>
<td>39.85</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>20.4</td>
<td>2.63</td>
<td>9.59</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>O_A1</td>
<td>3950</td>
<td>11.19</td>
<td>na</td>
<td>6.38</td>
<td>53.18</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>15.43</td>
<td>na</td>
<td>na</td>
<td>13.82</td>
<td>na</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.5b. Atomic elemental composition from EDS analysis within HST (%)

<table>
<thead>
<tr>
<th>Well</th>
<th>Depth (m)</th>
<th>O</th>
<th>Mg</th>
<th>Al</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Cl</th>
<th>Cr</th>
<th>K</th>
<th>Ca</th>
<th>Ti</th>
<th>Fe</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_F1</td>
<td>1178</td>
<td>24.16</td>
<td>0.27</td>
<td>10.02</td>
<td>58.74</td>
<td>na</td>
<td>na</td>
<td>0.42</td>
<td>na</td>
<td>1.8</td>
<td>na</td>
<td>0.46</td>
<td>4.12</td>
<td>na</td>
</tr>
<tr>
<td>A_F1</td>
<td>1179</td>
<td>21.24</td>
<td>1.06</td>
<td>13.08</td>
<td>47.15</td>
<td>na</td>
<td>na</td>
<td>1.03</td>
<td>na</td>
<td>3.21</td>
<td>na</td>
<td>na</td>
<td>13.23</td>
<td>na</td>
</tr>
<tr>
<td>A_F1</td>
<td>1180</td>
<td>21.72</td>
<td>0.72</td>
<td>11.59</td>
<td>51.64</td>
<td>na</td>
<td>na</td>
<td>1.31</td>
<td>na</td>
<td>3.21</td>
<td>na</td>
<td>0.66</td>
<td>9.14</td>
<td>na</td>
</tr>
<tr>
<td>A_O1</td>
<td>3242</td>
<td>20.98</td>
<td>8.19</td>
<td>10.66</td>
<td>36.9</td>
<td>na</td>
<td>na</td>
<td>2.46</td>
<td>na</td>
<td>5.39</td>
<td>1.14</td>
<td>0.39</td>
<td>13.87</td>
<td>na</td>
</tr>
<tr>
<td>A_O1</td>
<td>3175</td>
<td>22.28</td>
<td>0.75</td>
<td>7.55</td>
<td>50.29</td>
<td>na</td>
<td>0.72</td>
<td>na</td>
<td>na</td>
<td>6.27</td>
<td>0.8</td>
<td>1.44</td>
<td>9.9</td>
<td>na</td>
</tr>
<tr>
<td>K_A2</td>
<td>1690</td>
<td>20.96</td>
<td>1.71</td>
<td>14.23</td>
<td>45.69</td>
<td>na</td>
<td>na</td>
<td>1.8</td>
<td>na</td>
<td>1.99</td>
<td>na</td>
<td>na</td>
<td>13.63</td>
<td>na</td>
</tr>
<tr>
<td>K_A2</td>
<td>2765</td>
<td>23.06</td>
<td>0.89</td>
<td>12.74</td>
<td>44.62</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>8.9</td>
<td>na</td>
<td>1.01</td>
<td>8.76</td>
<td>na</td>
</tr>
<tr>
<td>K_B1</td>
<td>1350</td>
<td>21.79</td>
<td>1.25</td>
<td>11.5</td>
<td>47.18</td>
<td>na</td>
<td>0.94</td>
<td>na</td>
<td>na</td>
<td>4.28</td>
<td>1.52</td>
<td>1.63</td>
<td>9.9</td>
<td>na</td>
</tr>
<tr>
<td>K_B1</td>
<td>1910</td>
<td>27.52</td>
<td>0.65</td>
<td>9.97</td>
<td>44.11</td>
<td>na</td>
<td>1.48</td>
<td>na</td>
<td>na</td>
<td>4.48</td>
<td>2.42</td>
<td>1.34</td>
<td>8.02</td>
<td>na</td>
</tr>
<tr>
<td>K_D1</td>
<td>3652</td>
<td>19.08</td>
<td>0.56</td>
<td>13.18</td>
<td>48.61</td>
<td>na</td>
<td>1.31</td>
<td>na</td>
<td>na</td>
<td>8.52</td>
<td>0.82</td>
<td>7.92</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>K_D1</td>
<td>3174</td>
<td>22.41</td>
<td>0.18</td>
<td>7.96</td>
<td>50.77</td>
<td>na</td>
<td>4.94</td>
<td>na</td>
<td>na</td>
<td>6.03</td>
<td>2.58</td>
<td>5.13</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>A_C3</td>
<td>3727</td>
<td>21.48</td>
<td>0.3</td>
<td>14.74</td>
<td>42.87</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>11.32</td>
<td>na</td>
<td>0.74</td>
<td>8.56</td>
<td>na</td>
</tr>
<tr>
<td>O_A1</td>
<td>3940</td>
<td>24.82</td>
<td>na</td>
<td>14.05</td>
<td>40.02</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>14.71</td>
<td>na</td>
<td>1.55</td>
<td>4.84</td>
<td>na</td>
</tr>
<tr>
<td>O_A1</td>
<td>3950</td>
<td>20.15</td>
<td>na</td>
<td>6.81</td>
<td>54.54</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>11.37</td>
<td>na</td>
<td>11.37</td>
<td>na</td>
<td>na</td>
</tr>
</tbody>
</table>

Note:
O- Oxygen, Mg- Magnesium, Al- Aluminium, Si- Silicon, P- Phosphorous, S- Sulphur, Cl- Chlorine, Cr- Chromium, K- Potassium, Ca- Calcium, Ti- Titanium, Fe- Iron and Ni- Nickel.
Silicon has the highest % weight composition and % atomic composition across the setting. HST sediment is typical of high silica content, which is confirmed by the % weight and % atomic composition of silicon and oxygen. Aluminium and potassium shows almost equal intensity across the setting except in some few cases where the intensity of iron is more than that of Al and K: A_O1 (3242 m), A_F1 (1179 m) and A_F1 (1180 m). Within wells A_F1, K_A2, K_D1, A_C3 and O_A1 samples, Fe replaces Ca making formation of iron-rich chamosite chlorite possible. Chlorine is found in all A_F1 samples, A_O1 (3242 m) and K_A2 (1690 m) which indicates sea water influence in the setting. Sulphur is only found in samples A_O1 (3175 m), K_B1 (1350 m), K_B1 (1910 m), K_D1 (3652 m) and K_D1 (3174 m) indicating basaltic origin of the sediment. Titanium exists in the samples in the setting except A_F1 (1179 m), K_A2 (1690 m) and O_A1 (3950 m) which indicates granitic silicate source (Choo et al., 2002). The elemental composition supports the formation of various minerals seen in the XRD results in the setting which are: montmorillonite, chlorite, quartz, hematite and pyrite.
4.5.6 Stable isotope analysis results

Carbon and oxygen isotope data were reported in the $\delta^{13}C$ and $\delta^{18}O$ values were reported in the δ notation relative to the Vienna PeeDee Belemite (PBB) and standard mean ocean water (SMOW), respectively, in tables 4.6 to 4.8.

The variations in $\delta^{13}C$ and $\delta^{18}O$ values in all the settings are illustrated in figure 4-18. The values of $\delta^{13}C$ and $\delta^{18}O$ increase with depth in all the wells except in well K_D1 within LST. The oxygen isotope data within LST shows a range of -1.648 to 10.054 vs SMOW with an average of 5.19 and $\delta^{13}C$, -25.667 to -12.44 vs PDB. The age of the samples in the LST range from Barremian - Santonian (Table 4.6). The TST shows similar trend of $\delta^{13}C$ and $\delta^{18}O$ except in well A_C2. The TST shows a range of -1.574 to
13.134 vs SMOW for oxygen and -27.862 to -6.954 vs PDB for carbon with the age ranging from Barremian - Turonian (Table 4.7). In the HST, the values of δ^{13}C increase with depth except in well K_D1. The δ^{18}O values increase with depth in all the wells except in wells K_D1 and K_A2, with the age ranging from Barremian - Campanian (Table 4.8).
Table 4.6. Geochemical results including pore water data and stable isotopes data of samples from the LST.

<table>
<thead>
<tr>
<th>Well name</th>
<th>Depth (m)</th>
<th>Age</th>
<th>normalized Uδ13C vs. VPDB</th>
<th>normalized Uδ18O vs. VSMOW</th>
<th>pH</th>
<th>Ec</th>
<th>tds</th>
<th>eh</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_O1</td>
<td>3175</td>
<td>Barremian</td>
<td>-9.750</td>
<td>7.356</td>
<td>6.7</td>
<td>0.54</td>
<td>0.62</td>
<td>143</td>
</tr>
<tr>
<td>A_O1</td>
<td>3305</td>
<td>Barremian</td>
<td>-7.820</td>
<td>9.628</td>
<td>8.6</td>
<td>0.46</td>
<td>0.3</td>
<td>168</td>
</tr>
<tr>
<td>K_A2</td>
<td>2765</td>
<td>Lower Albian</td>
<td>-25.667</td>
<td>2.099</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>K_B1</td>
<td>1910</td>
<td>Santonian</td>
<td>-25.244</td>
<td>3.910</td>
<td>7.2</td>
<td>0.42</td>
<td>0.46</td>
<td>152</td>
</tr>
<tr>
<td>K_B1</td>
<td>1950</td>
<td>Santonian</td>
<td>-12.512</td>
<td>10.054</td>
<td>7.6</td>
<td>0.62</td>
<td>0.39</td>
<td>160</td>
</tr>
<tr>
<td>K_D1</td>
<td>3272</td>
<td>Aptian</td>
<td>-14.954</td>
<td>7.155</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>K_D1</td>
<td>3652</td>
<td>Aptian</td>
<td>-23.018</td>
<td>4.956</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>A_C3</td>
<td>3597</td>
<td>Aptian</td>
<td>-23.203</td>
<td>-1.648</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>

Table 4.7. Geochemical results including pore water data and stable isotopes data of samples from the TST.

<table>
<thead>
<tr>
<th>Well name</th>
<th>Depth (m)</th>
<th>Age</th>
<th>normalized Uδ13C vs. VPDB</th>
<th>normalized Uδ18O vs. VSMOW</th>
<th>pH</th>
<th>Ec</th>
<th>tds</th>
<th>eh</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_O1</td>
<td>3242</td>
<td>Barremian</td>
<td>-6.954</td>
<td>13.134</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>A_O1</td>
<td>3601</td>
<td>Barremian</td>
<td>-27.862</td>
<td>0.162</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>K_A2</td>
<td>1690</td>
<td>Turonian</td>
<td>-23.224</td>
<td>7.376</td>
<td>7.8</td>
<td>0.56</td>
<td>0.44</td>
<td>169</td>
</tr>
<tr>
<td>K_A2</td>
<td>2215</td>
<td>Turonian</td>
<td>-24.142</td>
<td>7.961</td>
<td>7.62</td>
<td>0.61</td>
<td>0.3</td>
<td>132</td>
</tr>
<tr>
<td>A_U1</td>
<td>2688</td>
<td>Cenomanian Mid-Early</td>
<td>-23.839</td>
<td>2.345</td>
<td>8.15</td>
<td>0.44</td>
<td>0.25</td>
<td>178</td>
</tr>
<tr>
<td>A_U1</td>
<td>2694</td>
<td>Cenomanian Mid-Early</td>
<td>-23.239</td>
<td>0.924</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>A_U1</td>
<td>2697</td>
<td>Cenomanian Mid-Early</td>
<td>-20.657</td>
<td>3.969</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>A_C2</td>
<td>3245</td>
<td>Aptian</td>
<td>-22.089</td>
<td>-1.574</td>
<td>5.72</td>
<td>0.63</td>
<td>0.37</td>
<td>123</td>
</tr>
<tr>
<td>A_C2</td>
<td>3246</td>
<td>Aptian</td>
<td>-22.104</td>
<td>-1.169</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>A_C3</td>
<td>3670</td>
<td>Aptian</td>
<td>-23.149</td>
<td>3.705</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>A_C3</td>
<td>3675</td>
<td>Aptian</td>
<td>-24.502</td>
<td>1.567</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>
Table 4.8. Geochemical results including pore water data and stable isotopes data of samples from the HST.

<table>
<thead>
<tr>
<th>Well name</th>
<th>Depth (m)</th>
<th>Age</th>
<th>normalized δ^{13}C vs. VPDB</th>
<th>normalized δ^{18}O vs. VSMOW</th>
<th>pH</th>
<th>Ec</th>
<th>tds</th>
<th>eh</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_F1</td>
<td>1178</td>
<td>Turonian</td>
<td>-24.847</td>
<td>-0.267</td>
<td>6.79</td>
<td>1.36</td>
<td>0.78</td>
<td>185</td>
</tr>
<tr>
<td>A_F1</td>
<td>1179</td>
<td>Turonian</td>
<td>-24.841</td>
<td>0.482</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>A_F1</td>
<td>1180</td>
<td>Turonian</td>
<td>-21.307</td>
<td>16.180</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>A_O1</td>
<td>3493</td>
<td>Barremian</td>
<td>-19.935</td>
<td>2.233</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>A_O1</td>
<td>3679</td>
<td>Barremian</td>
<td>-27.407</td>
<td>0.685</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>K_A2</td>
<td>1963</td>
<td>Turonian</td>
<td>-27.009</td>
<td>1.919</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>K_A2</td>
<td>2795</td>
<td>Mid Albian</td>
<td>-25.057</td>
<td>1.634</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>K_B1</td>
<td>1350</td>
<td>Campanian</td>
<td>-21.963</td>
<td>4.026</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>K_B1</td>
<td>2060</td>
<td>Santonian</td>
<td>-20.569</td>
<td>6.883</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>K_D1</td>
<td>3174</td>
<td>Lower Albian</td>
<td>-22.064</td>
<td>3.920</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>K_D1</td>
<td>3692</td>
<td>Lower Albian</td>
<td>-24.381</td>
<td>2.227</td>
<td>8</td>
<td>0.52</td>
<td>0.46</td>
<td>142</td>
</tr>
<tr>
<td>A_C3</td>
<td>3727</td>
<td>Barremian</td>
<td>-25.904</td>
<td>-1.712</td>
<td>6.26</td>
<td>1.12</td>
<td>0.68</td>
<td>180</td>
</tr>
<tr>
<td>O_A1</td>
<td>3862</td>
<td>Barremian</td>
<td>-22.834</td>
<td>-2.644</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>O_A1</td>
<td>3874</td>
<td>Barremian</td>
<td>-22.636</td>
<td>-1.132</td>
<td>7.2</td>
<td>0.43</td>
<td>0.25</td>
<td>191</td>
</tr>
</tbody>
</table>
Fig. 4-18. Comparison of \(\delta^{18}O \) and \(\delta^{13}C \) values within generic packages (Systems tracts) of sandstone with published stable isotope data of other sandstone in the world.

LST isotopic interpretation

The oxygen isotope data within the LST show a range of -1.648 to 10.054 vs VSMOW with an average of 5.191 vs VSMOW (Table 4.6). This range falls within modern sea water and normal marine precipitated calcite cement (Shikazono and Utada, 1997; Scholle, 1978; Bellanca et al., 2005). The first marine input to the basin happened between Late Hauterivian and Early Aptian (112-117.5 Ma) just after the break-up unconformity at 117.5 Ma (Brown et al., 1996; Jungslanger, 1996; Soekor, 1994a, b). The age of the samples in this setting ranged from Lower Albian - Conaician. Rust and Summerfield, (1990) reported the increase in the rate of sedimentation near the mouth of Orange River in Late Cretaceous. This was substantiated by Gilchrist et al., (1994)
suggesting that breaching may have occurred at this time in the southwestern African margin. Some of the samples in this setting must have been deposited at this time as a result of filling the gap that was created.

There is oxygen enrichment with depth in wells A_O1 and K_B1 samples that intersected the LST setting. Well K_D1 samples show oxygen isotope depletion down the depth. This depletion may be as a result of re-crystallisation and meteoric water influence (Bellanca et al., 2005). 50 % of the samples in the setting fall within the range of mixture of detrital quartz which is put at between 6.4 to 20 % for δ¹⁸O (Garlic and Epstein, 1967; Savin and Epstein, 1970; Clayton et al., 1972; Eslinger et al., 1973; Blatt, 1986 and Graham et al., 1996). The carbon isotope shows a range of -25.667 to -7.820 with an average of 17.565 vs VPDB. The moderately negative carbon isotope composition of 50 % of the samples indicates a normal marine signature likely modified by sedimentary organic matter decay (Bellanca et al., 2005). Comparison of the stable isotope data set from different parts of the world by Allan and Wiggins (1993) with the data of present study shows that the samples plot within relative low temperature zone which also confirms the thermal subsidence evidence in the basin between Albian and Cenomanian (Brown et al., 1996; Jungsrawler, 1996; Seokor, 1994a, b).

TST isotopic interpretation

The TST setting shows a range of -1.574 to 13.134 vs VSMOW for δ¹⁸O isotope and -27.862 to -6.954 vs VPDB for δ¹³C (Table 4.7). The oldest sample was sourced from Barremian which is part of the first incursion of marine to the basin (Brown et al., 1996; Jungsrawler, 1996; Seokor, 1994a, b). The oxygen isotope range falls within normal marine environment (Scholle, 1978; Bellanca et al., 2005). Two of the samples fall within sea water range of between -1.2 to -0.7 % VSMOW (Lavelle et al, 2001). Two of the samples in this systems tract (A_O1 3305 m; K_A2 1963 m) indicate mixture of detrital quartz grains using 6.4 to 20 vs VSMOW for δ¹⁸O (Garlic and Epstein, 1967; Savin and Epstein, 1970; Clayton et al., 1972; Eslinger et al., 1973; Blatt, 1986 and Graham et al., 1996).
Approximately 10% of the samples in this setting show moderately negative carbon isotope composition which may reflect normal marine signature slightly modified by variable contribution of CO\textsubscript{2} derived from sedimentary organic matter decay (Bellanca et al., 2005).

HST isotopic interpretation

The oxygen isotope data of samples from the HST show high values indicating a marine water precipitation (Scholles, 1978). Approximately 15% of the samples fall within sea water field between -1.2 and -0.7 % VSMOW (Lavelle et al, 2001). 15% of the samples also indicate mixture of detrital grains using 6.4 to 20 % for δ18O (Garlic and Epstein, 1967; Savin and Epstein, 1970; Clayton et al., 1972; Eslinger et al., 1973; Blatt, 1986 and Graham et al., 1996). All the samples in the setting show extremely negative δ13C values (between -27 and -20 %). The consistency in δ13C occurrence across the stratigraphic sequences with exception of well A_O1 in the LST and one sample in the TST is an indication that the burial diagenesis has not shown significant effect on the abundance and geochemical significance of the δ13C (Schmid et al., 2006).

As observed in the other systems tracts, all the samples in this setting show extremely negative δ13C values, suggesting influence of terrestrial organic matter decay (Bellanca et al., 2005).

4.6 Diagenetic alteration processes and reservoir environmental evolution in the basin

The combination of stable isotope data with petrographic data of the rock samples can be used to determine the geochemical environment of formation of authigenic minerals and thereby elucidate diagenetic mechanisms (Shikazono and Utada, 1997). The petrographic studies showed that the Orange Basin has had a complex diagenetic history (Fig. 4-19). These diagenetic processes include compaction, cementation /micritization, dissolution silicification, and fracturing.
Fig. 4-19. Paragenetic sequence of the diagenetic alteration sandstones within the stratigraphic settings of Orange Basin using XRD and thin section results. The boundary between eodiagenesis is < 2 km and mesodiagenesis is > 2 km according to Morad et al., (2000).

Compaction

The samples analysed for petrographic studies within HST shows evidence of tight packing, point grain contacts thereby reducing primary depositional porosity before cementation began (Fig. 4-6). As reported by Morad et al., (2000), eodiagenesis takes place at a depth less than 2 km and temperature less than 70 °C. Samples from well K_A2 (1690 m) supports this postulation (Fig. 4-8). There was increase in the rate of sedimentation near the mouth of the Orange River during the Late Cretaceous (Rust and Summerfield, 1990) which led to breaching at this period in the southwestern Africa margin (Gilchrist et al., 1994). This must have imposed severe pressure on the sediments

<table>
<thead>
<tr>
<th>Diagenetic minerals</th>
<th>Eodiagenesis</th>
<th>Mesodiagenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>LST Chlorite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montmorillonite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glaucnate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz overgrowths</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micritic calcite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TST Chlorite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montmorillonite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glaucnate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz overgrowths</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poikilitopic calcite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HST Chlorite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montmorillonite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glaucnate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz overgrowths</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poikilitopic calcite</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
thereby enhancing the constituent particles to be tightly packed. The grain contact in samples of TST and HST also support this (Figs. 4-7 and 4-8). Other evidence of compaction is the flattening of mica and rock fragment in K_B1 (2060 m) in LST even distal to the mouth of Orange River (Fig. 4-6 in K_B1 1950m and 2060 m) and HST samples (Fig. 4-8 A_C3 (3727.5 m).

Cementation/micitization

The different fabric displayed by the cements of the sandstone is suggesting that precipitation of the cements occur in different diagenetic environments, from marine through meteoric. The cement observed in samples in the LST is micritic calcite, completely filling the pore which is an evidence of marine diagenesis (El-ghali et al., 2009). The first marine incursion to the basin was during Barremian (Broad et al., 2006) in which the oldest sample in this study was deposited. The cementing conditions within TST and HST are not similar; this is suggesting different precipitation conditions within these systems tract. The cement type range from dense micritic calcite to grains embedded in poikilitopic calcite cement and also chlorite cement completely filling the pore spaces in TST, for example in sample A_C2 (3245.16 m) (Fig. 4-7). The cementation process really reduced the primary porosity because the pore spaces are severely blocked thereby contributing to the poor quality of reservoir rock in these wells.

Dissolution

The LST samples show an average pH value of 7.8 an alkaline condition (Table 4.7). The results of pore water analysis show that the pH condition within TST and HST is between weak acidic to slightly alkaline conditions (Tables 4.7 and 4.8). This should ordinarily aid leaching and generation of secondary porosity. This is not so in the wells studied because the pore spaces that might have been created through leaching are completely filled up by the process of cementation in all the stratigraphic as a result of the prevailing alkaline condition. The above conditions must have been responsible for the authigenic minerals and cementing materials found across the stratigraphic sequences. Chlorite and montmorillonite which are the common authigenic minerals in the study are reported to be precipitated under weak acidic to alkaline conditions (Krumbein and Garrels 1952,
Shikazono and Utada 1997). The micrite calcite cement is also reported to be formed under these conditions. The authigenic kaolinite that is formed under strong acidic condition was not encountered in this study.

Silicification/quart growth

Well K_D1 samples at depths 3272 m and 3692 m (Fig. 4-6) within LST show evidence of silicification which affect the whole skeletal grains in the samples. This is also observed in K_B1 (1350 m) and A_C3 (3727. 5 m) samples in the HST (Fig. 4-8). Generally silica occurs in the form of chert and microcrystalline quartz. There is also an evidence of growth of quartz forming quartz overgrowth within TST and HST settings (Figs. 4-7 and 4-8).

Fracturing

The petrography of sandstones within LST reveals severe fracturing (Fig. 4-6). In some cases the fractures are healed up by new materials (Fig. 4-6 K_D1 1950 m), in some fracture still preserved (Fig. 4-6 K_B1 2060 m, K_D1 3693 and K_D1 3272 m). It was observed in the samples within TST and HST that fractures are covered or filled up with secondary calcite cements (Figs. 4-7 and 4-8). Fracturing can enhance reservoir quality because when connected it improves permeability and transmissivity. In the stratigraphic sequences under investigation the secondary mineral deposition severely impaired the reservoir quality of the sandstones, by covering every available space resulting in the poor quality of the reservoir rock (Fig. 4-6).

4.7 Diagenetic events within the depositional settings

The isotope results showed that the cementing materials were precipitated in temperate water, shallow marine condition (Fig. 4-18). A marine environment is characterised by slightly alkaline waters (sea water pH is 8.3). The LST deposition occurs as a response to fall and slow rise in relative sea level (Worden and Morad, 2003). The basin floor fan sediment of the LST setting must have bypassed the shelf through the incised valleys and deposited on the slope (Brown et al., 1996). Burial and mechanical compaction of the ductile interclast resulted in the formation of pseudomatrix as seen in
the thin sections. During the early to middle Aptian extensive drowning of the margin occurred and regional organic rich petroleum source shale was deposited (Van der Spuy, 2003). The setting shows carbon isotope range of -25.667 to -7.820 %. The extremely negative $\delta^{13}C$ values (between -25 and -16 %) of some samples may point to methane as a major source of the carbon (Bellanca et al., 2005). The moderately negative carbon isotope values indicate a normal marine signature which may be slightly modified by a variable contribution of CO$_2$ derived from sedimentary organic matter decay.

The authigenic calcite occurs in pores and fractures as micritic and coarsely crystalline or poikilitic calcite cements. Texturally the calcite was formed after chlorite and quartz overgrowth, because the calcites are seen covering all these authigenic minerals in all the settings. Within TST the micritic calcite cement was observed to continue to deeper depths (Fig. 4-7). The original depositional textures are obscured in the sandstone across the stratigraphic sequence of Orange Basin, in which calcite cements occur as grains replacement. The poikilitic calcite cement in HST samples in A_F1 (1180 m) was preserved and virtually outlines the grain contacts.

Chlorite precipitation implies basic pore solutions enriched in Fe$^{2+}$ and Mg$^{2+}$ (Small et al., 1992). A large volume basic water source is sea water which is typically buffered between pH 8.0 and 8.4 (Brownlow, 1979). The pore water analysis of samples across the basin shows a near similar condition. The LST shows average pH of 7.80, conductivity (Ec) average of 0.51 mS, and average redox potential (eh) 0.16 mV (Table 5.6). Within TST the average pH is 7.32, with conductivity (Ec) average of 0.56 mS and average oxidation-reduction potential (eh) of 0.15 mV (Table 4.7). The HST has average pH of 7.06, Ec of 0.86 mS and average eh of 0.74 mV (Table 4.8). These conditions support clay conversion (De Ros et al., 1994). The pH values within the stratigraphic settings exceed 7, thereby facilitating the reaction of HCO$_3^-$ with dissolved Ca$^{2+}$ to form calcite (Morse and Mackenzie, 1990; Schulz and Zabel, 2000). It is inferred that montmorillonite might have been converted to chlorite in the basin based on the XRD results and the dominance of chlorite over montmorillonite in the thin sections. The prevailing condition of the basin using chemical evaluation parameter discussed above satisfies Krumbein and Garrels, (1952) explanations for determination of origin of these authigenic minerals. Pyrite found in the basin my have been formed from precipitation in
alkaline condition. The silica requires weakly alkaline condition for its precipitation. The hematite that require oxidising condition for it precipitation can also persist in slightly reducing alkaline condition (Krumbein and Garrels, 1952).

Diagenetic alteration within different stratigraphic settings shows both eodiagenetic and mesodiagenetic events (Fig. 4-19). Within the LST the eodiagenesis event includes montmorillonite precipitation. The micritic calcite and the pyrite trend span from eodiagenesis to mesodiagenesis. Chlorite, quartz overgrowth and hematite formation are mainly mesodiagenetic event in the LST. Deposition of the LST occurs as a response to fall and slow rise in the relative sea level. The TST shows limited eodiagenesis events only in pyrite and hematite formations. This may be as a result of coarse grained sediments entrapped landward there by increasing the concentration of glauconite. This must have been the reason for the glauconite formation being pushed to the mesogenesis. The other mesodiagenetic events in the TST include chlorite, montmorillonite and quartz overgrowth formation. The main cementing materials in the settings are chlorite, micritic calcite and coarse crystalline calcite.

The HST shows more eodiagenesis events that span to mesodiagenesis with quartz overgrowth, hematite, pyrite and poikilitic calcite formations. The authigenic chlorite and montmorillonite are products of mesodiagenetic events. Deposition in the HST occurs in response to gradual sea level rise and later during initial stages of sea level fall. There was high influx of sediments in the Orange Basin during Late Cretaceous (Brown et al., 1990; Dingle and Hendry, 1984; Rust and Summerfield, 1990); this may thereby cause shoreline transgression to give way for regression and also increasing progradational stacking (Worden and Morad, 2003). This scenario may increase sand and mud ratio up the HST being accompanied by increase in the amount of authigenic glauconite, the reason for the eodiagenetic glauconite in HST. Landward top of HST is associated with widespread fluvial deposition (Posamentier et al., 1988). The fluvial deposit in well A_F1 within the HST maybe formed as a result of prevailing temperate climatic conditions which are subjected to clay infiltration pedogenesis or the formation of Mg-rich clay minerals in the setting.
4.8 Source Evaluation

4.8.1 Rock-Eval Pyrolysis

The results of Rock-Eval pyrolysis and Total Organic Carbon (TOC wt %) are presented based on the systems tract (LST, TST and HST) and the results are presented in Tables 4.9a to 4.11b.

4.8.1.1 Source Rock Potential within LST

The results of the LST samples which age range from Early Cretaceous to Late Cretaceous show most of the samples being marginally organic rich, a few samples are organic rich though (Table 4.9a). About 31% of the samples have good source rock potential, the remaining samples have poor source rock potential (Table 4.9b). The LST TOC values ranged from 0.15 to 4.03 wt % with an average of 1.44 wt %.

The overall distribution of TOC is skewed towards values greater than 1.0, with approximately 77 % of the samples falling in the range of marginally organic rich to organic rich organic rocks, which could be potential source rocks if they are thermally mature and of good quality organic matter type (Peters and Cassa, 1994). This may be as a result of anoxic conditions which are possible within the LST parasequence set (Katz, 1994) that aided the preservation of the variable organic matter quality supplied. The LST prograding has some potential for organic matter development during aggradational phase and the few organic rich materials observed here may be restricted to incised valley (Emery et al., 1996).

The LST of the Orange Basin is found to contain incised valleys as seen on seismic and reported by Brown et al. (1996). The plot of TOC versus hydrocarbon potential (Fig. 4-20) shows that a preponderance of the samples is organic rich while a good number of the samples are organic lean. The hydrogen and oxygen indices as plotted on van Krevelen plot shows a variable organic matter type ranging from, marine Type II to mixed Type II/III, terrestrial Type III and inert Type IV (Fig. 4-21) (Tissot and Welte, 1984; Bordenave, 1993). S2/S3 values of these samples also indicate the kerogen type to range from Type II to mixed Type II/III, terrestrial Type III and inert Type IV (Table 4.9a). The S2 yield, liberated during pyrolysis is very useful to determine the generative potential of the source rock (Peters, 1986, Bordenave, 1993). A preponderance of the samples have S2 values less than 4.0 mgHC/g rock (Table 4.9a).
Pyrolysis S2 yields less than 4.0 mgHC/g rock is generally considered to be source rock with poor generative potential, yields greater than 4.0 mgHC/g rock are common in petroleum source rocks (Bordaenave, 1993). Therefore, only four samples, A_F1(1300 m), A_F1(1430 m), O_A1(3789 m), and O_A1(3792 m) can be considered to have good petroleum generative potential (Table 4.9a), the values of S1+S2 of these samples also support this. Sample A_C3 (3129 m) although displaying a TOC of 2.03 wt% and Tmax of 438 °C, could have been rated to be good to very good potential source rock but with the values of S2 of 1.34 mgHC/g rock, this suggest poor generative potential, and at best could yield gas. The maturity of the source rock samples were also determined using Tmax values, based on Peters and Cassa (1994) report, about 50 % of the samples are thermally immature with a few samples marginally mature (Table 4.9b, Fig. 4-22). The two samples that could be considered thermally mature have poor kerogen quality.
Table 4.9a Results of Rock-Eval analysis of samples sourced from wells within LST

<table>
<thead>
<tr>
<th>Well name</th>
<th>Top Depth (m)</th>
<th>TOC (%)</th>
<th>S1 (mgHC/g rock)</th>
<th>S2 (mgHC/g rock)</th>
<th>S3 (mgCO2/g rock)</th>
<th>Tmax (°C)</th>
<th>HI</th>
<th>OI</th>
<th>S2/S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_F1</td>
<td>1430</td>
<td>4.03</td>
<td>0.42</td>
<td>6.81</td>
<td>0.95</td>
<td>431</td>
<td>169</td>
<td>2.00</td>
<td>7.20</td>
</tr>
<tr>
<td>A_F1</td>
<td>1780</td>
<td>0.63</td>
<td>0.00</td>
<td>0.01</td>
<td>0.08</td>
<td>ND</td>
<td>100</td>
<td>14.00</td>
<td>0.70</td>
</tr>
<tr>
<td>A_K2</td>
<td>2540</td>
<td>1.02</td>
<td>0.32</td>
<td>0.63</td>
<td>0.85</td>
<td>433</td>
<td>116</td>
<td>9.00</td>
<td>1.00</td>
</tr>
<tr>
<td>A_K2</td>
<td>2545</td>
<td>0.76</td>
<td>0.37</td>
<td>1.18</td>
<td>1.23</td>
<td>433</td>
<td>46</td>
<td>12.00</td>
<td>0.10</td>
</tr>
<tr>
<td>K_A2</td>
<td>1855</td>
<td>0.15</td>
<td>0.03</td>
<td>0.35</td>
<td>3.88</td>
<td>428</td>
<td>7</td>
<td>60.00</td>
<td>0.10</td>
</tr>
<tr>
<td>K_D1</td>
<td>3447</td>
<td>1.11</td>
<td>0.16</td>
<td>0.70</td>
<td>1.89</td>
<td>430</td>
<td>63</td>
<td>8.00</td>
<td>0.40</td>
</tr>
<tr>
<td>A_U1</td>
<td>2210</td>
<td>1.37</td>
<td>0.24</td>
<td>0.77</td>
<td>1.23</td>
<td>430</td>
<td>56</td>
<td>7.00</td>
<td>0.60</td>
</tr>
<tr>
<td>A_U1</td>
<td>2220</td>
<td>1.27</td>
<td>0.23</td>
<td>0.39</td>
<td>1.98</td>
<td>438</td>
<td>31</td>
<td>7.00</td>
<td>0.20</td>
</tr>
<tr>
<td>A_C3</td>
<td>3129</td>
<td>2.03</td>
<td>0.62</td>
<td>1.34</td>
<td>1.25</td>
<td>438</td>
<td>66</td>
<td>4.00</td>
<td>1.10</td>
</tr>
<tr>
<td>O_A1</td>
<td>3741</td>
<td>1.69</td>
<td>0.38</td>
<td>0.77</td>
<td>2.55</td>
<td>429</td>
<td>46</td>
<td>5.00</td>
<td>0.30</td>
</tr>
<tr>
<td>O_A1</td>
<td>3789</td>
<td>3.07</td>
<td>3.06</td>
<td>4.68</td>
<td>0.28</td>
<td>433</td>
<td>152</td>
<td>3.00</td>
<td>16.70</td>
</tr>
<tr>
<td>O_A1</td>
<td>3792</td>
<td>3.08</td>
<td>2.64</td>
<td>5.08</td>
<td>1.20</td>
<td>429</td>
<td>165</td>
<td>3.00</td>
<td>4.20</td>
</tr>
</tbody>
</table>

Note: HI indicates hydrogen index, OI indicates oxygen index

HI = hydrogen index = S2 x 100 / TOC
OI = oxygen index = S3 x 100 / TOC
Table 4.9b Results of Rock-Eval analysis of samples sourced from wells within LST

<table>
<thead>
<tr>
<th>Well name</th>
<th>Top Depth (m)</th>
<th>Ti = (S1*100/TOC)</th>
<th>PI = (S1/(S1+S2))</th>
<th>(S1+S2) (mgHC/g rock)</th>
<th>SRP</th>
<th>Maturation</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_F1</td>
<td>1430</td>
<td>10.00</td>
<td>0.06</td>
<td>7.23</td>
<td>Good</td>
<td>Marginally mature</td>
<td>Turonian</td>
</tr>
<tr>
<td>A_F1</td>
<td>1780</td>
<td>51.00</td>
<td>0.34</td>
<td>0.01</td>
<td>Poor</td>
<td>Immature</td>
<td>Cenomanian</td>
</tr>
<tr>
<td>A_K2</td>
<td>2540</td>
<td>36.00</td>
<td>0.24</td>
<td>0.95</td>
<td>Poor</td>
<td>Immature</td>
<td>Cenomanian</td>
</tr>
<tr>
<td>A_K2</td>
<td>2545</td>
<td>4.00</td>
<td>0.08</td>
<td>1.55</td>
<td>Fair</td>
<td>Immature</td>
<td>Cenomanian</td>
</tr>
<tr>
<td>K_A2</td>
<td>1855</td>
<td>0.00</td>
<td>0.00</td>
<td>0.38</td>
<td>Poor</td>
<td>Immature</td>
<td>Turonian</td>
</tr>
<tr>
<td>K_D1</td>
<td>3447</td>
<td>14.00</td>
<td>0.19</td>
<td>0.86</td>
<td>Poor</td>
<td>Marginally mature</td>
<td>Late Aptian</td>
</tr>
<tr>
<td>A_U1</td>
<td>2210</td>
<td>18.00</td>
<td>0.24</td>
<td>1.01</td>
<td>Fair</td>
<td>Marginally mature</td>
<td>Late Cenomanian</td>
</tr>
<tr>
<td>A_U1</td>
<td>2220</td>
<td>18.00</td>
<td>0.37</td>
<td>0.62</td>
<td>Poor</td>
<td>Mature</td>
<td>Late Cenomanian</td>
</tr>
<tr>
<td>A_C3</td>
<td>3129</td>
<td>30.00</td>
<td>0.32</td>
<td>1.96</td>
<td>Fair</td>
<td>Mature</td>
<td>Late Aptian</td>
</tr>
<tr>
<td>O_A1</td>
<td>3741</td>
<td>22.00</td>
<td>0.33</td>
<td>1.15</td>
<td>Fair</td>
<td>Immature</td>
<td>Late Aptian</td>
</tr>
<tr>
<td>O_A1</td>
<td>3789</td>
<td>100.00</td>
<td>0.40</td>
<td>7.74</td>
<td>Good</td>
<td>Marginally mature</td>
<td>Early Aptian</td>
</tr>
<tr>
<td>O_A1</td>
<td>3792</td>
<td>86.00</td>
<td>0.34</td>
<td>7.72</td>
<td>Good</td>
<td>Immature</td>
<td>Early Aptian</td>
</tr>
</tbody>
</table>

Note: PI indicates production index, SRP indicates source rock potential
Fig 4-20 The Plot of Remaining hydrocarbon potential against total organic carbon

Fig 4-21. The Plot of hydrogen index against oxygen index
4.8.1.2 Source Rock Potential within TST

This is a parasequence set that is marked by transgressive surface below and maximum flooding surface above (Van Wagoner et al., 1990). 12 samples from 5 wells at TST intersections were collected for analyses. Many authors have reported that the TST setting shows good correlation between occurrence of organic matter and regional transgression (Demaison and Moore, 1980; Jenkyns, 1980; Loutit et al., 1988). This should have resulted in the development of marine oil-prone source rocks in this setting (Demaison and Moore, 1980; Jenkyns, 1980; Loutit et al., 1988). The TOC values of the samples indicate that only one sample is organic rich, a few samples are marginally organic rich and the remaining samples are organic lean (Table 4.10a). S2 values indicate only one sample to have good petroleum generation potential while the rest of the samples have poor petroleum generation potential (Table 4.10a). The cross plot of HI versus OI (Fig. 4-20) indicate that most of the samples are Type III while others are Type
IV. Thus, this indicates allochthonous organic matter input and the HI values of these samples do not suggest anoxic depositional environments. Therefore the results of the study do not support the development of marine prone source rocks in the TST. The Tmax values of the samples indicate that less than 30% of the samples are thermally mature (Fig. 4-22, Table 4.10a), the thermally mature samples are of low organic matter quality (Table 4.10b).

The development of TST involves accommodation space becoming landward of backstepping shorelines and as a result of this the shelf becomes starved with sediments (Van Wagoner et al., 1988). The interval that results from this is called a condensed section. The condensed section leads to decrease in accumulation of the organic matter on the shelf due to bioturbation (Kosters et al., 2000). This was reported in the Orange Basin within TST by Brown et al. (1996). The Orange Basin is an ideal place for the understanding of passive continental margin (Macdonald et al., 2003; Reeves and Wit, 2000; Brown et al., 1996). The poor organic matter generative potential in the basin within TST may be as a result of oxygenation which is typical of passive continental margin (Emery et al., 1996).
Table 4.10a Results of Rock-Eval analysis of samples sourced from wells within TST

<table>
<thead>
<tr>
<th>Well name</th>
<th>Top Depth (m)</th>
<th>TOC (%)</th>
<th>S1 (mgHC/g rock)</th>
<th>S2 (mgHC/g rock)</th>
<th>S3 (mgCO₂/g rock)</th>
<th>Tmax (°C)</th>
<th>HI</th>
<th>OI</th>
<th>S2/S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_F1</td>
<td>1300</td>
<td>4.30</td>
<td>0.52</td>
<td>20.15</td>
<td>1.41</td>
<td>430</td>
<td>469</td>
<td>2.00</td>
<td>14.30</td>
</tr>
<tr>
<td>A_F1</td>
<td>1320</td>
<td>0.25</td>
<td>0.11</td>
<td>0.02</td>
<td>3.12</td>
<td>448</td>
<td>8.00</td>
<td>36.00</td>
<td>0.01</td>
</tr>
<tr>
<td>A_F1</td>
<td>1700</td>
<td>0.58</td>
<td>0.07</td>
<td>0.09</td>
<td>0.57</td>
<td>447</td>
<td>16.00</td>
<td>16.00</td>
<td>0.16</td>
</tr>
<tr>
<td>A_F1</td>
<td>1980</td>
<td>0.41</td>
<td>0.08</td>
<td>0.03</td>
<td>1.00</td>
<td>313</td>
<td>7.00</td>
<td>22.00</td>
<td>0.03</td>
</tr>
<tr>
<td>A_F1</td>
<td>1990</td>
<td>0.82</td>
<td>0.32</td>
<td>1.49</td>
<td>1.32</td>
<td>469</td>
<td>182.00</td>
<td>11.00</td>
<td>1.13</td>
</tr>
<tr>
<td>A_K2</td>
<td>2525</td>
<td>1.51</td>
<td>0.49</td>
<td>1.77</td>
<td>0.92</td>
<td>434</td>
<td>117.00</td>
<td>6.00</td>
<td>1.92</td>
</tr>
<tr>
<td>A_K2</td>
<td>2530</td>
<td>1.14</td>
<td>0.29</td>
<td>1.18</td>
<td>0.63</td>
<td>434</td>
<td>104.00</td>
<td>8.00</td>
<td>1.87</td>
</tr>
<tr>
<td>K_A2</td>
<td>2655</td>
<td>1.41</td>
<td>0.11</td>
<td>0.49</td>
<td>4.54</td>
<td>427</td>
<td>35.00</td>
<td>6.00</td>
<td>0.11</td>
</tr>
<tr>
<td>K_B1</td>
<td>1855</td>
<td>1.27</td>
<td>0.49</td>
<td>0.92</td>
<td>4.63</td>
<td>432</td>
<td>72.00</td>
<td>7.00</td>
<td>0.20</td>
</tr>
<tr>
<td>K_D1</td>
<td>2997</td>
<td>0.78</td>
<td>0.18</td>
<td>0.46</td>
<td>1.04</td>
<td>429</td>
<td>59.00</td>
<td>12.00</td>
<td>0.44</td>
</tr>
<tr>
<td>A_U1</td>
<td>3008</td>
<td>1.05</td>
<td>0.64</td>
<td>1.09</td>
<td>2.74</td>
<td>441</td>
<td>104.00</td>
<td>9.00</td>
<td>0.40</td>
</tr>
<tr>
<td>A_U1</td>
<td>3068</td>
<td>0.82</td>
<td>0.22</td>
<td>0.39</td>
<td>1.00</td>
<td>440</td>
<td>48.00</td>
<td>11.00</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Note: HI indicates hydrogen index, OI indicates oxygen index,
HI = hydrogen index = S2 x 100 / TOC
OI = oxygen index = S3 x 100 / TOC
Table 4.10b Results of Rock-Eval analysis of samples sourced from wells within TST

<table>
<thead>
<tr>
<th>Well name</th>
<th>Top Depth (m)</th>
<th>TI = (S1*100/TOC)</th>
<th>Pl</th>
<th>(S1+S2) (mgHC/g rock)</th>
<th>SRP</th>
<th>Maturation</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_F1</td>
<td>1300</td>
<td>12.00</td>
<td>0.03</td>
<td>20.67</td>
<td>Good</td>
<td>Mature</td>
<td>Turonian</td>
</tr>
<tr>
<td>A_F1</td>
<td>1320</td>
<td>44.00</td>
<td>0.85</td>
<td>0.13</td>
<td>Poor</td>
<td>Mature peak</td>
<td>Turonian</td>
</tr>
<tr>
<td>A_F1</td>
<td>1700</td>
<td>12.00</td>
<td>0.44</td>
<td>0.16</td>
<td>Poor</td>
<td>Mature peak</td>
<td>Cenomanian</td>
</tr>
<tr>
<td>A_F1</td>
<td>1980</td>
<td>20.00</td>
<td>0.73</td>
<td>0.11</td>
<td>Poor</td>
<td>Immature</td>
<td>Cenomanian</td>
</tr>
<tr>
<td>A_F1</td>
<td>1990</td>
<td>39.00</td>
<td>0.18</td>
<td>1.81</td>
<td>Poor</td>
<td>Mature late</td>
<td>Cenomanian</td>
</tr>
<tr>
<td>A_K2</td>
<td>2525</td>
<td>32.00</td>
<td>0.22</td>
<td>2.26</td>
<td>Poor</td>
<td>Mature</td>
<td>Cenomanian</td>
</tr>
<tr>
<td>A_K2</td>
<td>2530</td>
<td>26.00</td>
<td>0.20</td>
<td>1.47</td>
<td>Fair</td>
<td>Immature</td>
<td>Cenomanian</td>
</tr>
<tr>
<td>K_A2</td>
<td>2655</td>
<td>8.00</td>
<td>0.18</td>
<td>0.60</td>
<td>Poor</td>
<td>Immature</td>
<td>Cenomanian</td>
</tr>
<tr>
<td>K_B1</td>
<td>1855</td>
<td>39.00</td>
<td>0.35</td>
<td>1.41</td>
<td>Fair</td>
<td>Immature</td>
<td>Campanian</td>
</tr>
<tr>
<td>K_D1</td>
<td>2997</td>
<td>23.00</td>
<td>0.28</td>
<td>0.64</td>
<td>Poor</td>
<td>Immature</td>
<td>Albian</td>
</tr>
<tr>
<td>A_U1</td>
<td>3008</td>
<td>61.00</td>
<td>0.37</td>
<td>1.73</td>
<td>Fair</td>
<td>Mature</td>
<td>Albian</td>
</tr>
<tr>
<td>A_U1</td>
<td>3068</td>
<td>26.00</td>
<td>0.36</td>
<td>0.61</td>
<td>Poor</td>
<td>Mature early</td>
<td>Albian</td>
</tr>
</tbody>
</table>

Note: PI indicates production index, SRP indicates source rock potential.
Marine dominated HST has the potential for high organic content if the rate of progradation is low and the organic matter are mixed with contribution from both terrestrial and marine organic matter particles (Emery, 1996). The HST is typified by maximum flooring surface below and sequence boundary above (Posamentier, 1988). In this setting organic matter is transported from continent to the ocean, the shelf functions as a trap for sediments and continent derived organic matter (Kosters et al., 2000). The trapping mechanism is only efficient when the shelf is relatively wide and the rivers contain abundant fine-grained sediments and organic matter, a condition mostly achieved during sea-level fall in HST (Kosters, et al., 2000).
Table 4.11a Results of Rock-Eval analysis of samples sourced from wells within HST

<table>
<thead>
<tr>
<th>Well name</th>
<th>Top Depth (m)</th>
<th>TOC (%)</th>
<th>S1 (mgHC/g rock)</th>
<th>S2 (mgHC/g rock)</th>
<th>S3 (mgCO2/g rock)</th>
<th>Tmax (°C)</th>
<th>HI</th>
<th>OI</th>
<th>S2/S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_F1</td>
<td>1270</td>
<td>2.37</td>
<td>0.26</td>
<td>5.61</td>
<td>0.13</td>
<td>434</td>
<td>237.00</td>
<td>2.00</td>
<td>43.20</td>
</tr>
<tr>
<td>A_F1</td>
<td>1290</td>
<td>5.91</td>
<td>0.24</td>
<td>7.36</td>
<td>1.30</td>
<td>424</td>
<td>124.53</td>
<td>22.00</td>
<td>5.66</td>
</tr>
<tr>
<td>A_K2</td>
<td>2405</td>
<td>0.76</td>
<td>0.30</td>
<td>1.19</td>
<td>3.40</td>
<td>431</td>
<td>157.00</td>
<td>12.00</td>
<td>0.30</td>
</tr>
<tr>
<td>K_A2</td>
<td>2572</td>
<td>1.81</td>
<td>0.21</td>
<td>1.72</td>
<td>0.44</td>
<td>430</td>
<td>95.00</td>
<td>5.00</td>
<td>3.90</td>
</tr>
<tr>
<td>K_B1</td>
<td>2084</td>
<td>0.84</td>
<td>0.37</td>
<td>0.74</td>
<td>2.74</td>
<td>425</td>
<td>88.00</td>
<td>11.00</td>
<td>0.30</td>
</tr>
<tr>
<td>K_B1</td>
<td>2423</td>
<td>3.73</td>
<td>0.49</td>
<td>1.90</td>
<td>0.38</td>
<td>426</td>
<td>50.94</td>
<td>10.19</td>
<td>5.00</td>
</tr>
<tr>
<td>K_B1</td>
<td>2718</td>
<td>0.80</td>
<td>0.33</td>
<td>0.57</td>
<td>2.74</td>
<td>430</td>
<td>71.00</td>
<td>11.00</td>
<td>0.20</td>
</tr>
<tr>
<td>K_B1</td>
<td>2721</td>
<td>1.02</td>
<td>0.36</td>
<td>0.78</td>
<td>3.12</td>
<td>431</td>
<td>76.00</td>
<td>9.00</td>
<td>0.30</td>
</tr>
<tr>
<td>K_B1</td>
<td>2742</td>
<td>1.06</td>
<td>0.33</td>
<td>0.71</td>
<td>1.10</td>
<td>434</td>
<td>67.00</td>
<td>8.00</td>
<td>0.65</td>
</tr>
<tr>
<td>K_B1</td>
<td>2808</td>
<td>0.89</td>
<td>0.66</td>
<td>1.15</td>
<td>3.02</td>
<td>433</td>
<td>129.00</td>
<td>10.00</td>
<td>0.40</td>
</tr>
<tr>
<td>K_D1</td>
<td>2947</td>
<td>1.03</td>
<td>0.27</td>
<td>0.63</td>
<td>2.55</td>
<td>435</td>
<td>61.00</td>
<td>9.00</td>
<td>0.20</td>
</tr>
<tr>
<td>K_D1</td>
<td>2979</td>
<td>0.99</td>
<td>0.34</td>
<td>0.61</td>
<td>1.04</td>
<td>429</td>
<td>62.00</td>
<td>9.00</td>
<td>0.60</td>
</tr>
<tr>
<td>K_D1</td>
<td>2988</td>
<td>1.11</td>
<td>0.30</td>
<td>0.42</td>
<td>3.21</td>
<td>447</td>
<td>38.00</td>
<td>8.00</td>
<td>0.10</td>
</tr>
<tr>
<td>O_A1</td>
<td>3741</td>
<td>1.20</td>
<td>0.38</td>
<td>0.77</td>
<td>2.55</td>
<td>429</td>
<td>90.00</td>
<td>8.00</td>
<td>0.20</td>
</tr>
<tr>
<td>O_A1</td>
<td>3756</td>
<td>1.46</td>
<td>0.68</td>
<td>1.08</td>
<td>5.29</td>
<td>434</td>
<td>201.00</td>
<td>6.00</td>
<td>2.20</td>
</tr>
<tr>
<td>O_A1</td>
<td>3771</td>
<td>2.60</td>
<td>1.84</td>
<td>2.93</td>
<td>1.32</td>
<td>428</td>
<td>134.00</td>
<td>3.00</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Note: HI indicates hydrogen index, OI indicates oxygen index
HI = hydrogen index = S2 x 100 / TOC
OI = oxygen index = S3 x 100 / TOC
Table 4.11b Results of Rock-Eval analysis of samples sourced from wells within HST

<table>
<thead>
<tr>
<th>Well name</th>
<th>Top Depth (m)</th>
<th>TI = (S1*100/TOC)</th>
<th>PI</th>
<th>(S1+S2) (mgHC/g rock)</th>
<th>SRP</th>
<th>Maturation</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_F1</td>
<td>1270</td>
<td>11.00</td>
<td>0.04</td>
<td>5.87</td>
<td>Good</td>
<td>Marginally matured</td>
<td>Turonian</td>
</tr>
<tr>
<td>A_F1</td>
<td>1290</td>
<td>0.10</td>
<td>0.04</td>
<td>7.60</td>
<td>Good</td>
<td>Marginally matured</td>
<td>Turonian</td>
</tr>
<tr>
<td>A_K2</td>
<td>2405</td>
<td>39.00</td>
<td>0.20</td>
<td>1.49</td>
<td>Fair</td>
<td>Marginally matured</td>
<td>Cenomanian</td>
</tr>
<tr>
<td>K_A2</td>
<td>2572</td>
<td>12.00</td>
<td>0.11</td>
<td>1.93</td>
<td>Fair</td>
<td>Marginally matured</td>
<td>Cenomanian</td>
</tr>
<tr>
<td>K_B1</td>
<td>2084</td>
<td>44.00</td>
<td>0.33</td>
<td>1.11</td>
<td>Fair</td>
<td>Marginally matured</td>
<td>Cenomanian</td>
</tr>
<tr>
<td>K_B1</td>
<td>2423</td>
<td>44.05</td>
<td>0.04</td>
<td>2.39</td>
<td>Poor</td>
<td>Marginally matured</td>
<td>Santonian</td>
</tr>
<tr>
<td>K_B1</td>
<td>2718</td>
<td>41.00</td>
<td>0.04</td>
<td>0.90</td>
<td>Fair</td>
<td>Marginally matured</td>
<td>Coniacian</td>
</tr>
<tr>
<td>K_B1</td>
<td>2742</td>
<td>31.00</td>
<td>0.32</td>
<td>1.14</td>
<td>Fair</td>
<td>Marginally matured</td>
<td>Coniacian</td>
</tr>
<tr>
<td>K_B1</td>
<td>2721</td>
<td>35.00</td>
<td>0.32</td>
<td>1.04</td>
<td>Fair</td>
<td>Marginally matured</td>
<td>Coniacian</td>
</tr>
<tr>
<td>K_B1</td>
<td>2808</td>
<td>74.00</td>
<td>0.36</td>
<td>1.81</td>
<td>Good</td>
<td>Mature</td>
<td>Coniacian</td>
</tr>
<tr>
<td>K_D1</td>
<td>2947</td>
<td>26.00</td>
<td>0.30</td>
<td>0.90</td>
<td>Poor</td>
<td>Mature</td>
<td>Albian</td>
</tr>
<tr>
<td>K_D1</td>
<td>2979</td>
<td>34.00</td>
<td>0.36</td>
<td>0.95</td>
<td>Poor</td>
<td>Mature</td>
<td>Albian</td>
</tr>
<tr>
<td>K_D1</td>
<td>2988</td>
<td>27.00</td>
<td>0.42</td>
<td>0.72</td>
<td>Poor</td>
<td>Mature</td>
<td>Albian</td>
</tr>
<tr>
<td>O_A1</td>
<td>3741</td>
<td>56.00</td>
<td>0.39</td>
<td>1.15</td>
<td>Fair</td>
<td>Marginally matured</td>
<td>Late Aptian</td>
</tr>
<tr>
<td>O_A1</td>
<td>3756</td>
<td>126.00</td>
<td>0.39</td>
<td>1.76</td>
<td>Fair</td>
<td>Immature</td>
<td>Late Aptian</td>
</tr>
<tr>
<td>O_A1</td>
<td>3771</td>
<td>97.00</td>
<td>0.42</td>
<td>4.77</td>
<td>Good</td>
<td>Immature</td>
<td>Late Aptian</td>
</tr>
</tbody>
</table>

Note: PI indicates production index, SRP indicates source rock potential
16 samples were collected for analyses in this setting and the results are presented in (Table 4.11a). The samples were obtained from 6 wells within the Early Cretaceous to Late Cretaceous (Table 4.11b). The TOC values ranged from 0.76 to 3.73 wt % with an average of 1.44 wt %. The TOC values indicate that about 70 % of the samples are fair to good potential source rocks while other samples have fair source rock potential (Table 4.11b). S2/S3 values also indicate prevalent of Type III and Type IV kerogen, although, one sample (A_F1, 1290 m) is suggested to be mixed Type II/III. Sample A_F1 (1290 m) that has good source rock potential is thermally immature.

The Tmax values of the samples indicate that most of the samples are immature to marginally mature while only a few samples are mature (Tissot and Welte, 1984). The cross plot of HI versus OI revealed that the samples are mainly Type III while two samples (A_F1, 1270 m and O_A1, 3756 m) are mixed Type II/III with one Type IV kerogen. These results suggest contributions mainly from allochtonous organic matter with subordinate autochtonous organic matter. These results seem not to be in perfectly consistent with the Emery et al. (1996) and Kosters et al. (2000) assertion, although, there were contributions from both terrestrial organic matter and marine organic matter but the contribution from the terrestrial is pervasive. The kerogen conversion plot of the samples showed that samples are mainly immature with only a few samples in the oil window (Fig. 4-23). The only one sample (from well A_F1 at depth 1290 m) that was discriminated as marine Type II organic matter that has good source rock potential is not mature sufficiently for petroleum generation (Tables 4.11a and 4.11b).

4.8.2 Organic geochemical evaluation of the shale samples

4.8.2.1. Geochemical parameters from Rock-Eval pyrolysis, n-alkanes and isoprenoids

Geochemical parameters derived from gas chromatographic data of the rock extracts of the selected shale samples are presented in Tables 4.12 to 4.15. Values for the following parameters were calculated from GC data: pristane/phytane (Pr/Ph), pristane/n-heptadecan (Pr/nC$_{17}$), phytane/n-octadecan (Ph/nC$_{18}$), and carbon preference index (CPI)
of n-alkanes ($nC_{25-33,nC_{24-34}}$). The values of the Tmax, hydrogen index (HI), oxygen index (OI) and S2 (hydrocarbon generated from kerogen using pyrolysis)/S3 (released and trapped CO$_2$ during pyrolysis) ratio were obtained by Rock Eval pyrolysis and were also listed in Table 4.15.

A representative gas chromatogram (sample O_A1 3792) for the shale sample extracts show n-alkanes ranging from n-C_{12} to n-C_{35} with a unimodal distribution and a maxima at n-C_{17} (Fig. 4-24a) indicating a typical n-alkane distribution for oil-derived hydrocarbons. The carbon number preference index (CPI) of the n-alkanes in the investigated sample set range from 0.97-1.96 (Table 4.15) and a bimodal distribution is not visible anymore in the chromatograms, thus, most samples already show an advanced level of maturity (Gulbay and Korkmaz, 2008). Samples of Aptian and Albian age and some of Cenomanian age show the highest maturity with CPI values close to one. CPI values higher than 1.5 is an indication of less mature source rocks. Based on their CPI values and compared to the other samples the Turonian and Campanian samples seem to indicate a lower maturity level (Table 4.15).

Pr/Ph values (Table 4.15) ranged from 1.21-6.30 suggesting suboxic to oxic depositional environments for most of the samples. With one exception (A_F1 1990 m depth) the Pr/Ph values of samples in all system tracts at ages between Cenomanian to Turonian are higher than 3 (Table 4.15), suggesting an input from terrestrial organic matter deposited under oxic depositional conditions (Powell, 1988). Samples of Aptian, Albian, Coniacian, Santonian and Campanian age in the wells studied show Pr/Ph ratios that ranged from 1.14-2.97 suggesting suboxic to oxic depositional conditions (Powell, 1988). The plot of carbon preference index (CPI) against Pr/Ph (Fig. 4-25; after Meyers and Snowdon, 1993) visualized that most of the samples fall into the field of more oxidizing depositional conditions with some marginal samples. However, it has to be kept in mind that the Pr/Ph ratio can be influenced by other source material than phytol from chlorophylls (ten Haven et al., 1987) and by maturity related alteration of the organic matter (Radke et al., 1980b; Dzou et al., 1995; Vu et al., 2009).

Further geochemical plots were constructed from the biomarker ratios to understand the geochemical trends in the Orange Basin. Pr/nC_{17} and Ph/nC_{18} values
ranged from 0.06-4.13 and 0.05-1.11, respectively (Table 4.15). The cross plot of these parameters (Fig. 4-26) after Peters et al. (1999) suggests three organic matter types: mainly terrigenous organic matter Type III (Tissot and Welte, 1984, Peters and Cassa, 1994, Peters et al., 1999) deposited under oxidizing conditions, mixed Type II/III organic matter (Table 4.15) (Tissot and Welte, 1984, Peters and Cassa, 1994, Peters et al., 1999) and few marine algal Type II in Late Aptian and Campanian samples. The results from the Peters et al. (1999) plot does not match in some case with the results of the kerogen typ analysis (Table 4.15) deduced from comparing the oxygen index (OI), hydrogen index (HI) and S2/S3 ratios (Table 4.15) (Tissot and Welte, 1984). However, also these data indicate mainly mixed Type III and partly Type II/III kerogen. The Aptian (Early and Late), Albian, Cenomanian, Coniacian, Santonian and Campanian samples are mainly terrestrial organic matter Type III, marine Typ II and mixed Type II/III organic matter occur in the Turonian (Table 4.15).

Information about the type and the quality of the organic matter present in the source rock was obtained from the ratio of S2 (hydrocarbon generated from kerogen using pyrolysis) to S3 (released and trapped CO₂ during pyrolysis) (Table 4.15). Peters and Cassa (1994) stated that S2/S3 less than 1 cannot generate any products. Bulk of the samples from the Campanian, Santonian, Coniacian, Cenomanian, Albian and Aptian showed S2/S3 values less than 1. Exception are sample K_B1 2423 m from the Coniacian, A_F1 1990 m, A_K2 2525 m and A_K2 2530 m from the Cenomanian as well as O_A1 3756 m and A_C3 3129 m from the late Aptian. The Early Aptian and Turonian samples (with exception of A_F1 1320 m) reveal higher S2/S3 ratios ranging from 4.2 to 43.2. This is an indication of extinite, extinite/vitrinite or vitrinite kerogen composition (Peters and Cassa, 1994) (Table 4.15). In most cases, these samples also show higher HI values indicating their hydrocarbon generation potential (Table 4.15).

Generally, samples deposited under different systems tracts (LST, TST and HST) show mainly terrestrial organic matter typified by kerogen Type III (Table 4.15). An exception form some samples of Turonian age showing marine Typ II and Typ II/III transitional organic matters in the TST and HST samples A_F1 1300 and A_F1 1270, respectively (Table 4.15).
Table 4.12. Gas chromatographic data of Orange Basin sediments within LST

<table>
<thead>
<tr>
<th>Well name</th>
<th>Top Depth (m)</th>
<th>Age</th>
<th>Pr/Ph</th>
<th>Pr/nC17</th>
<th>Ph/nC18</th>
<th>CPI</th>
<th>TAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_K2</td>
<td>2540</td>
<td>Cenomanian</td>
<td>5.21</td>
<td>1.47</td>
<td>0.33</td>
<td>1.08</td>
<td>0.68</td>
</tr>
<tr>
<td>A_K2</td>
<td>2545</td>
<td>Cenomanian</td>
<td>4.84</td>
<td>1.33</td>
<td>0.37</td>
<td>1.10</td>
<td>0.99</td>
</tr>
<tr>
<td>K_D1</td>
<td>3447</td>
<td>Late Aptian</td>
<td>1.22</td>
<td>0.21</td>
<td>0.30</td>
<td>1.04</td>
<td>0.09</td>
</tr>
<tr>
<td>A_U1</td>
<td>2520</td>
<td>Cenomanian</td>
<td>5.37</td>
<td>3.75</td>
<td>0.89</td>
<td>1.29</td>
<td>1.65</td>
</tr>
<tr>
<td>A_U1</td>
<td>2210</td>
<td>Late Cenomanian</td>
<td>5.37</td>
<td>3.75</td>
<td>0.89</td>
<td>1.29</td>
<td>1.65</td>
</tr>
<tr>
<td>A_U1</td>
<td>2220</td>
<td>Cenomanian</td>
<td>4.92</td>
<td>4.13</td>
<td>1.11</td>
<td>1.29</td>
<td>1.37</td>
</tr>
<tr>
<td>A_U1</td>
<td>3129</td>
<td>Late Aptian</td>
<td>1.51</td>
<td>0.14</td>
<td>0.14</td>
<td>1.08</td>
<td>0.09</td>
</tr>
<tr>
<td>O_A1</td>
<td>3789</td>
<td>Early Aptian</td>
<td>1.72</td>
<td>0.71</td>
<td>0.46</td>
<td>0.97</td>
<td>0.29</td>
</tr>
<tr>
<td>O_A1</td>
<td>3792</td>
<td>Early Aptian</td>
<td>1.70</td>
<td>0.70</td>
<td>0.46</td>
<td>1.01</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Table 4.13. Gas chromatographic data of Orange Basin sediments within TST

<table>
<thead>
<tr>
<th>Well name</th>
<th>Top Depth (m)</th>
<th>Age</th>
<th>Pr/Ph</th>
<th>Pr/nC17</th>
<th>Ph/nC18</th>
<th>CPI</th>
<th>TAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_F1</td>
<td>1300</td>
<td>Turonian</td>
<td>5.13</td>
<td>2.86</td>
<td>0.60</td>
<td>1.9</td>
<td>6.05</td>
</tr>
<tr>
<td>A_F1</td>
<td>1320</td>
<td>Turonian</td>
<td>4.18</td>
<td>1.91</td>
<td>0.57</td>
<td>1.74</td>
<td>5.14</td>
</tr>
<tr>
<td>A_F1</td>
<td>1990</td>
<td>Cenomanian</td>
<td>1.76</td>
<td>0.80</td>
<td>0.51</td>
<td>1.09</td>
<td>1.31</td>
</tr>
<tr>
<td>A_K2</td>
<td>2525</td>
<td>Cenomanian</td>
<td>4.88</td>
<td>1.38</td>
<td>0.39</td>
<td>1.12</td>
<td>0.98</td>
</tr>
<tr>
<td>A_K2</td>
<td>2530</td>
<td>Cenomanian</td>
<td>5.35</td>
<td>1.35</td>
<td>0.33</td>
<td>1.20</td>
<td>0.77</td>
</tr>
<tr>
<td>K_B1</td>
<td>1855</td>
<td>Campanian</td>
<td>1.52</td>
<td>0.42</td>
<td>0.43</td>
<td>1.90</td>
<td>0.64</td>
</tr>
<tr>
<td>A_U1</td>
<td>3008</td>
<td>Albian</td>
<td>2.47</td>
<td>0.53</td>
<td>0.26</td>
<td>1.05</td>
<td>0.27</td>
</tr>
<tr>
<td>A_U1</td>
<td>3068</td>
<td>Albian</td>
<td>2.67</td>
<td>0.46</td>
<td>0.2</td>
<td>1.02</td>
<td>0.21</td>
</tr>
</tbody>
</table>
Table 4.14. Gas chromatographic data of Orange Basin sediments within HST

<table>
<thead>
<tr>
<th>Well name</th>
<th>Top Depth (m)</th>
<th>Age</th>
<th>Pr/Ph</th>
<th>Pr/nC17</th>
<th>Ph/nC18</th>
<th>CPI</th>
<th>TAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_F1</td>
<td>1270</td>
<td>Turonian</td>
<td>6.39</td>
<td>3.76</td>
<td>0.6</td>
<td>1.96</td>
<td>8.53</td>
</tr>
<tr>
<td>A_F1</td>
<td>1290</td>
<td>Turonian</td>
<td>5.78</td>
<td>3.62</td>
<td>0.65</td>
<td>1.86</td>
<td>7.17</td>
</tr>
<tr>
<td>A_K2</td>
<td>2405</td>
<td>Cenomanian</td>
<td>4.86</td>
<td>1.88</td>
<td>0.47</td>
<td>1.12</td>
<td>1.1</td>
</tr>
<tr>
<td>K_B1</td>
<td>2084</td>
<td>Santonian</td>
<td>1.14</td>
<td>0.74</td>
<td>0.65</td>
<td>1.24</td>
<td>0.43</td>
</tr>
<tr>
<td>K_B1</td>
<td>2423</td>
<td>Coniacian</td>
<td>1.47</td>
<td>0.85</td>
<td>0.71</td>
<td>1.18</td>
<td>0.42</td>
</tr>
<tr>
<td>K_B1</td>
<td>2718</td>
<td>Coniacian</td>
<td>2.64</td>
<td>1.27</td>
<td>0.58</td>
<td>1.15</td>
<td>0.59</td>
</tr>
<tr>
<td>K_B1</td>
<td>2721</td>
<td>Coniacian</td>
<td>2.03</td>
<td>0.98</td>
<td>0.59</td>
<td>1.13</td>
<td>0.46</td>
</tr>
<tr>
<td>K_B1</td>
<td>2742</td>
<td>Coniacian</td>
<td>2.02</td>
<td>0.98</td>
<td>0.65</td>
<td>1.13</td>
<td>0.61</td>
</tr>
<tr>
<td>K_B1</td>
<td>2808</td>
<td>Coniacian</td>
<td>2.88</td>
<td>1.27</td>
<td>0.55</td>
<td>1.15</td>
<td>0.04</td>
</tr>
<tr>
<td>K_D1</td>
<td>2947</td>
<td>Albian</td>
<td>1.64</td>
<td>0.09</td>
<td>0.10</td>
<td>1.09</td>
<td>0.06</td>
</tr>
<tr>
<td>K_D1</td>
<td>2979</td>
<td>Albian</td>
<td>1.96</td>
<td>0.10</td>
<td>0.10</td>
<td>1.01</td>
<td>0.07</td>
</tr>
<tr>
<td>K_D1</td>
<td>2997</td>
<td>Albian</td>
<td>2.06</td>
<td>0.06</td>
<td>0.06</td>
<td>1.02</td>
<td>0.04</td>
</tr>
<tr>
<td>K_D1</td>
<td>2998</td>
<td>Albian</td>
<td>2.09</td>
<td>0.06</td>
<td>0.05</td>
<td>0.99</td>
<td>0.25</td>
</tr>
<tr>
<td>O_A1</td>
<td>3741</td>
<td>Late Aptian</td>
<td>1.76</td>
<td>0.75</td>
<td>0.46</td>
<td>0.99</td>
<td>0.28</td>
</tr>
<tr>
<td>O_A1</td>
<td>3756</td>
<td>Late Aptian</td>
<td>2.04</td>
<td>0.84</td>
<td>0.45</td>
<td>0.99</td>
<td>0.27</td>
</tr>
<tr>
<td>O_A1</td>
<td>3771</td>
<td>Late Aptian</td>
<td>2.97</td>
<td>1.11</td>
<td>0.50</td>
<td>1.09</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Pr= Pristane, Ph= Phytane, CPI= Carbon Preference Ratio, TAR= Terrigeneous Aquatic Ratio.
Table 4.15 Re-ordered gas chromatographic and rock eval pyrolysis results of samples collected based on wells, ages and sequences in Orange Basin

<table>
<thead>
<tr>
<th>Well name</th>
<th>Top Depth (m)</th>
<th>Age</th>
<th>Sequence</th>
<th>TOC (wt %)</th>
<th>HI (mgHC/gTOC)</th>
<th>OI (mgHC/gTOC)</th>
<th>S2/S3</th>
<th>Kerogen type</th>
<th>Tmax (°C)</th>
<th>Pr/Ph</th>
<th>Pr/nC17</th>
<th>Ph/nC18</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_B1</td>
<td>1855</td>
<td>Campanian</td>
<td>TST</td>
<td>1.27</td>
<td>72</td>
<td>7</td>
<td>0.2</td>
<td>Type III</td>
<td>432</td>
<td>1.52</td>
<td>0.42</td>
<td>0.43</td>
<td>1.9</td>
</tr>
<tr>
<td>K_B1</td>
<td>2084</td>
<td>Santonian</td>
<td>HST</td>
<td>0.84</td>
<td>88</td>
<td>11</td>
<td>0.3</td>
<td>Type III</td>
<td>425</td>
<td>1.14</td>
<td>0.74</td>
<td>0.65</td>
<td>1.24</td>
</tr>
<tr>
<td>K_B1</td>
<td>2423</td>
<td>Coniacian</td>
<td>HST</td>
<td>0.8</td>
<td>51</td>
<td>10</td>
<td>5</td>
<td>Type III</td>
<td>430</td>
<td>1.47</td>
<td>0.85</td>
<td>0.71</td>
<td>1.18</td>
</tr>
<tr>
<td>K_B1</td>
<td>2718</td>
<td>Coniacian</td>
<td>HST</td>
<td>1.02</td>
<td>71</td>
<td>11</td>
<td>0.2</td>
<td>Type III</td>
<td>431</td>
<td>2.64</td>
<td>1.27</td>
<td>0.58</td>
<td>1.15</td>
</tr>
<tr>
<td>K_B1</td>
<td>2721</td>
<td>Coniacian</td>
<td>HST</td>
<td>0.89</td>
<td>76</td>
<td>9</td>
<td>0.3</td>
<td>Type III</td>
<td>433</td>
<td>2.03</td>
<td>0.98</td>
<td>0.59</td>
<td>1.13</td>
</tr>
<tr>
<td>K_B1</td>
<td>2742</td>
<td>Coniacian</td>
<td>HST</td>
<td>1.06</td>
<td>67</td>
<td>8</td>
<td>0.65</td>
<td>Type III</td>
<td>434</td>
<td>2.02</td>
<td>0.98</td>
<td>0.65</td>
<td>1.13</td>
</tr>
<tr>
<td>K_B1</td>
<td>2808</td>
<td>Coniacian</td>
<td>HST</td>
<td>3.73</td>
<td>129</td>
<td>10</td>
<td>0.4</td>
<td>Type III</td>
<td>426</td>
<td>2.88</td>
<td>1.27</td>
<td>0.55</td>
<td>1.15</td>
</tr>
<tr>
<td>A_F1</td>
<td>1290</td>
<td>Turonian</td>
<td>HST</td>
<td>5.91</td>
<td>125</td>
<td>22</td>
<td>5.66</td>
<td>Type III</td>
<td>424</td>
<td>5.78</td>
<td>3.62</td>
<td>0.65</td>
<td>1.86</td>
</tr>
<tr>
<td>A_F1</td>
<td>1270</td>
<td>Turonian</td>
<td>HST</td>
<td>2.37</td>
<td>237</td>
<td>2</td>
<td>43.2</td>
<td>Type II/III</td>
<td>434</td>
<td>6.39</td>
<td>3.76</td>
<td>0.6</td>
<td>1.96</td>
</tr>
<tr>
<td>A_F1</td>
<td>1300</td>
<td>Turonian</td>
<td>TST</td>
<td>4.3</td>
<td>469</td>
<td>2</td>
<td>14.3</td>
<td>Type II</td>
<td>430</td>
<td>5.13</td>
<td>2.86</td>
<td>0.6</td>
<td>1.9</td>
</tr>
<tr>
<td>A_F1</td>
<td>1320</td>
<td>Turonian</td>
<td>TST</td>
<td>0.25</td>
<td>8</td>
<td>36</td>
<td>0.01</td>
<td>Type IV</td>
<td>448</td>
<td>4.18</td>
<td>1.91</td>
<td>0.57</td>
<td>1.74</td>
</tr>
<tr>
<td>A_F1</td>
<td>1990</td>
<td>Cenomanian</td>
<td>TST</td>
<td>0.82</td>
<td>182</td>
<td>11</td>
<td>1.13</td>
<td>Type III</td>
<td>469</td>
<td>1.76</td>
<td>0.8</td>
<td>0.51</td>
<td>1.09</td>
</tr>
<tr>
<td>A_K2</td>
<td>2405</td>
<td>Cenomanian</td>
<td>HST</td>
<td>0.76</td>
<td>157</td>
<td>12</td>
<td>0.3</td>
<td>Type III</td>
<td>431</td>
<td>4.86</td>
<td>1.88</td>
<td>0.47</td>
<td>1.12</td>
</tr>
<tr>
<td>A_K2</td>
<td>2525</td>
<td>Cenomanian</td>
<td>TST</td>
<td>1.02</td>
<td>117</td>
<td>6</td>
<td>1.92</td>
<td>Type III</td>
<td>433</td>
<td>4.88</td>
<td>1.38</td>
<td>0.39</td>
<td>1.12</td>
</tr>
<tr>
<td>A_K2</td>
<td>2530</td>
<td>Cenomanian</td>
<td>TST</td>
<td>0.76</td>
<td>104</td>
<td>8</td>
<td>1.87</td>
<td>Type III</td>
<td>433</td>
<td>5.35</td>
<td>1.35</td>
<td>0.33</td>
<td>1.2</td>
</tr>
<tr>
<td>A_K2</td>
<td>2540</td>
<td>Cenomanian</td>
<td>LST</td>
<td>1.51</td>
<td>116</td>
<td>9</td>
<td>0.1</td>
<td>Type III</td>
<td>434</td>
<td>5.21</td>
<td>1.47</td>
<td>0.33</td>
<td>1.08</td>
</tr>
<tr>
<td>A_K2</td>
<td>2545</td>
<td>Cenomanian</td>
<td>LST</td>
<td>1.14</td>
<td>46</td>
<td>12</td>
<td>0.1</td>
<td>Type III</td>
<td>434</td>
<td>4.84</td>
<td>1.33</td>
<td>0.37</td>
<td>1.1</td>
</tr>
<tr>
<td>Code</td>
<td>Age</td>
<td>Event</td>
<td>Type</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_U1</td>
<td>Cenomanian</td>
<td>LST</td>
<td>1.37</td>
<td>56</td>
<td>7</td>
<td>0.6</td>
<td>430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_U1</td>
<td>Cenomanian</td>
<td>LST</td>
<td>1.27</td>
<td>31</td>
<td>7</td>
<td>0.2</td>
<td>438</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_U1</td>
<td>Albian</td>
<td>TST</td>
<td>1.05</td>
<td>104</td>
<td>9</td>
<td>0.4</td>
<td>441</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_U1</td>
<td>Albian</td>
<td>TST</td>
<td>0.82</td>
<td>48</td>
<td>11</td>
<td>0.39</td>
<td>440</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_D1</td>
<td>Albian</td>
<td>HST</td>
<td>1.03</td>
<td>61</td>
<td>9</td>
<td>0.2</td>
<td>435</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_D1</td>
<td>Albian</td>
<td>HST</td>
<td>0.99</td>
<td>62</td>
<td>9</td>
<td>0.6</td>
<td>429</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_D1</td>
<td>Albian</td>
<td>HST</td>
<td>0.78</td>
<td>59</td>
<td>12</td>
<td>0.44</td>
<td>429</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_D1</td>
<td>Albian</td>
<td>HST</td>
<td>1.11</td>
<td>38</td>
<td>8</td>
<td>0.1</td>
<td>447</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_D1</td>
<td>Late Aptian</td>
<td>LST</td>
<td>1.11</td>
<td>63</td>
<td>8</td>
<td>0.4</td>
<td>430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_A1</td>
<td>Late Aptian</td>
<td>HST</td>
<td>1.69</td>
<td>90</td>
<td>8</td>
<td>0.2</td>
<td>429</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_A1</td>
<td>Late Aptian</td>
<td>HST</td>
<td>1.46</td>
<td>201</td>
<td>6</td>
<td>2.2</td>
<td>434</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_A1</td>
<td>Late Aptian</td>
<td>HST</td>
<td>2.6</td>
<td>134</td>
<td>3</td>
<td>0.9</td>
<td>428</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_C3</td>
<td>Late Aptian</td>
<td>LST</td>
<td>2.03</td>
<td>66</td>
<td>4</td>
<td>1.1</td>
<td>438</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_A1</td>
<td>Early Aptian</td>
<td>LST</td>
<td>3.07</td>
<td>152</td>
<td>3</td>
<td>16.7</td>
<td>433</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_A1</td>
<td>Early Aptian</td>
<td>LST</td>
<td>3.08</td>
<td>165</td>
<td>3</td>
<td>4.2</td>
<td>429</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
a) GC/FID

Time [min] 0 20 30 40 50 60 70
Intensity [pA] 0 200 400 600 800

b) GC/MS, SIM-Mode

m/z 191
Relative Abundance [%]

Time [min] 85 90 95 100 105 110

NL: 3.71E5 m/z 191

GC/MS, SIM-Mode
Fig. 4-24. (a) A representative gas chromatogram of rock extracts of samples from the Orange Basin
(b) A typical mass fragmentogram (m/z = 191) terpanes in rock extracts of samples from the Orange Basin
(c) A typical mass fragmentogram (m/z = 217) of steranes in rock extracts of samples from the Orange Basin
Fig. 4-25. The plot of CPI against Pr/Ph of shale samples from stratigraphic sequences of Orange Basin

Fig. 4-26. The plot of Pr/nC₁₇ vs Ph/nC₁₈ of source rock samples from stratigraphic sequences of Orange Basin using Peters et al. 1999.
4.8.2.2 Biomarker geochemistry

Origin of the organic matter

The investigated samples contain pentacyclic triterpanes with both oleanane and hopane skeletons as well as steranes. Source and thermal maturity dependent parameters were calculated from these biomarker distributions.

The presence of \(18\alpha(H)\)-oleanane, a biomarker for angiosperms, in some of the samples across the basin (Table 4.19, Fig. 4-24b) is an indication of terrestrial organic matter supply and that these rock samples have organic matter of Cretaceous to younger as a result of the first occurrence of angiosperm land plant during the Cretaceous (Philp and Gilbert, 1986; Rival et al., 1988; Ekwezor and Udo, 1988; Waples and Machihara, 1991; Peters and Moldowan, 1993; Moldowan et al., 1994; Hunts, 1995; Lopez et al., 1998; Peters et al., 2004). The samples analysed across the stratigraphic sequences of Orange Basin from Upper Cretaceous showed the presence of oleanane in all shales of the Campanian, Santonian and Coniacian. In the samples from the Turonian oleanane was not detected. However, in some of the Cenomanian samples it was measured again (Table 4.19). In the Lower Cretaceous oleanane was detected in three Albian shales and only one shale sample from the Late Aptian (Table 4.19). The relatively wide spread presence of oleanane, although very low in abundance in some ages, is an indication of terrestrial organic matter input to the basin. If compared to the kerogen typ data in table 4.15 the absence of \(18\alpha(H)\)-oleanane in some of the samples may not indicate insignificant contribution of terrestrial organic matter to those samples. However, the lack of oleanane in some of the Turonian samples might be the result of a higher marine influence (Table 4.19).

Steranes or their sterol precursors inherited directly from higher plants, animals and algae. Although an unambiguously assignment of sterols to precursor organisms is difficult, a rough classification of steroid biomarkers into marine and terrestrial biomarkers is tentatively possible. \(C_{27}\) - and \(C_{28}\) -sterols are mainly from marine phytoplanctonic material, whereas zooplankton contains more \(C_{27}\) - and phytoplankton more \(C_{28}\) -sterols. Terrestrial biomass is thought to contain more \(C_{29}\) -sterols (Huang and Meinschein, 1976 and 1979; Volkman, 1986; Volkman et al., 1998). However, due to the
fact that also marine organisms appear to contain C$_{29}$-sterols (Volkman, 1986; Volkman et al., 1998) interpretation must be drawn with caution and the location and depositional conditions have to be reviewed whether a terrestrial supply of organic matter is plausible. In a ternary diagram the geochemical degradation products of the sterols the 20R epimers of C$_{27}$-, C$_{28}$- and C$_{29}$-steranes (Fig. 4.24c) (Peters and Moldowan 1993) plot predominantly in the centre indicating a mixture of marine and terrestrial biomass, which is typical for a depositional system along a continental margin (Fig 4-27). The data show a slight dominance of % C$_{28}$ 20R in ages between Cenomanian and Coniacian over % C$_{27}$ 20R and % C$_{29}$ 20R. There is significantly higher proportion of C$_{27}$ 20R in the basin in the ages from Early and Late Aptian. In general, there is no definite pattern of the steranes distribution across the stratigraphic sequences of the basin. The higher proportion of C$_{28}$ steranes may be related to the increase diversification of phytoplanktonic assemblages, including diatoms, cocolithophores and dinoflagellates during their deposition in the Cretaceous period (Grantham and Wakefield, 1988). The proportion of C$_{29}$ sterane is higher in the Campanian (Fig. 4-27; Table 4.19). This might be an indication of an above-average relative supply of terrestrial organic matter during that time in this basin. In spite of the fact that for most samples the organic matter was classified to be kerogen Type III, the sterane data suggest also a supply of marine organic material to the total organic matrix. Something, which can be expected at a continental margin.
Table 4.16 Biomarkers of data within the LST of Orange Basin sediments

<table>
<thead>
<tr>
<th>Well name</th>
<th>Top Depth (m)</th>
<th>Ole/C30H</th>
<th>Ts/(Ts+Tm)</th>
<th>% C27 20R</th>
<th>% C28 20R</th>
<th>% C29 20R</th>
<th>C29 20S/20R</th>
<th>C29 20S/S+R</th>
<th>C29αβ20R/(αββR+αααR)</th>
<th>βα30/C30H (Mor/Hop)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_K2</td>
<td>2540</td>
<td>0.1</td>
<td>0.31</td>
<td>28.98</td>
<td>44.97</td>
<td>26.05</td>
<td>0.85</td>
<td>0.46</td>
<td>0.55</td>
<td>0.42</td>
</tr>
<tr>
<td>A_K2</td>
<td>2545</td>
<td>0.10</td>
<td>0.22</td>
<td>33.96</td>
<td>41.21</td>
<td>24.84</td>
<td>0.66</td>
<td>0.40</td>
<td>0.52</td>
<td>0.4</td>
</tr>
<tr>
<td>K_D1</td>
<td>3447</td>
<td>0.23</td>
<td>0.34</td>
<td>40.65</td>
<td>36.01</td>
<td>23.34</td>
<td>0.66</td>
<td>0.40</td>
<td>0.61</td>
<td>0.31</td>
</tr>
<tr>
<td>A_U1</td>
<td>2210</td>
<td>ND</td>
<td>0.16</td>
<td>26.87</td>
<td>44.87</td>
<td>28.26</td>
<td>0.38</td>
<td>0.28</td>
<td>0.39</td>
<td>0.58</td>
</tr>
<tr>
<td>A_U1</td>
<td>2220</td>
<td>0.11</td>
<td>0.23</td>
<td>33.11</td>
<td>39.61</td>
<td>27.28</td>
<td>0.34</td>
<td>0.25</td>
<td>0.42</td>
<td>0.49</td>
</tr>
<tr>
<td>A_C3</td>
<td>3129</td>
<td>ND</td>
<td>0.42</td>
<td>42.66</td>
<td>33.09</td>
<td>24.25</td>
<td>0.81</td>
<td>0.45</td>
<td>0.63</td>
<td>0.14</td>
</tr>
<tr>
<td>O_A1</td>
<td>3789</td>
<td>ND</td>
<td>0.51</td>
<td>61.77</td>
<td>20.86</td>
<td>17.38</td>
<td>1.05</td>
<td>0.51</td>
<td>0.67</td>
<td>0.05</td>
</tr>
<tr>
<td>O_A1</td>
<td>3792</td>
<td>ND</td>
<td>0.51</td>
<td>55.02</td>
<td>26.07</td>
<td>18.91</td>
<td>0.97</td>
<td>0.49</td>
<td>0.66</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Table 4.17 Biomarkers of data within the TST of Orange Basin sediments

<table>
<thead>
<tr>
<th>Well name</th>
<th>Top Depth (m)</th>
<th>Ole/C30H</th>
<th>Ts/(Ts+Tm)</th>
<th>% C27 20R</th>
<th>% C28 20R</th>
<th>% C29 20R</th>
<th>C29 20S/20R</th>
<th>C29 20S/S+R</th>
<th>C29αβ20R/(αββR+αααR)</th>
<th>βα30/C30H (Mor/Hop)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_F1</td>
<td>1320</td>
<td>ND</td>
<td>0.21</td>
<td>29.26</td>
<td>41.56</td>
<td>29.18</td>
<td>0.36</td>
<td>0.26</td>
<td>0.52</td>
<td>0.46</td>
</tr>
<tr>
<td>A_F1</td>
<td>1990</td>
<td>ND</td>
<td>0.30</td>
<td>30.74</td>
<td>35.66</td>
<td>33.59</td>
<td>0.84</td>
<td>0.46</td>
<td>0.53</td>
<td>0.93</td>
</tr>
<tr>
<td>A_K2</td>
<td>2525</td>
<td>ND</td>
<td>0.29</td>
<td>37.94</td>
<td>40.01</td>
<td>22.05</td>
<td>1.55</td>
<td>0.61</td>
<td>0.63</td>
<td>0.72</td>
</tr>
<tr>
<td>A_K2</td>
<td>2530</td>
<td>ND</td>
<td>0.17</td>
<td>30.87</td>
<td>48.44</td>
<td>20.69</td>
<td>0.63</td>
<td>0.39</td>
<td>0.43</td>
<td>0.61</td>
</tr>
<tr>
<td>K_B1</td>
<td>1855</td>
<td>0.29</td>
<td>0.15</td>
<td>20.62</td>
<td>29.37</td>
<td>50.01</td>
<td>0.11</td>
<td>0.10</td>
<td>0.31</td>
<td>0.42</td>
</tr>
<tr>
<td>A_U1</td>
<td>3008</td>
<td>0.18</td>
<td>0.36</td>
<td>39.72</td>
<td>38.68</td>
<td>21.6</td>
<td>0.83</td>
<td>0.45</td>
<td>0.64</td>
<td>0.2</td>
</tr>
<tr>
<td>A_U1</td>
<td>3068</td>
<td>0.19</td>
<td>0.45</td>
<td>44.21</td>
<td>32.17</td>
<td>23.62</td>
<td>0.59</td>
<td>0.37</td>
<td>0.61</td>
<td>0.34</td>
</tr>
</tbody>
</table>
Table 4.18 Biomarkers of data within the HST of Orange Basin sediments

<table>
<thead>
<tr>
<th>Well name</th>
<th>Top Depth (m)</th>
<th>Ole/C30H</th>
<th>Ts/(Ts+Tm)</th>
<th>% C27 20R</th>
<th>% C28 20R</th>
<th>% C29 20R</th>
<th>C29 20s/S+R</th>
<th>C29 αββ20R/(αββR+αααR)</th>
<th>βα30/C30H (Mor/Hop)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_F1</td>
<td>1290</td>
<td>ND</td>
<td>0.19</td>
<td>26.87</td>
<td>45.89</td>
<td>27.24</td>
<td>0.26</td>
<td>0.21</td>
<td>0.58</td>
</tr>
<tr>
<td>A_K2</td>
<td>2405</td>
<td>ND</td>
<td>0.32</td>
<td>30.67</td>
<td>46.41</td>
<td>22.93</td>
<td>0.78</td>
<td>0.44</td>
<td>0.53</td>
</tr>
<tr>
<td>K_B1</td>
<td>2084</td>
<td>0.2</td>
<td>0.27</td>
<td>28.47</td>
<td>35.74</td>
<td>35.79</td>
<td>0.3</td>
<td>0.23</td>
<td>0.42</td>
</tr>
<tr>
<td>K_B1</td>
<td>2423</td>
<td>0.11</td>
<td>0.23</td>
<td>27.41</td>
<td>43.93</td>
<td>28.65</td>
<td>0.59</td>
<td>0.37</td>
<td>0.34</td>
</tr>
<tr>
<td>K_B1</td>
<td>2718</td>
<td>0.1</td>
<td>0.25</td>
<td>25.98</td>
<td>44.91</td>
<td>29.10</td>
<td>0.58</td>
<td>0.37</td>
<td>0.45</td>
</tr>
<tr>
<td>K_B1</td>
<td>2721</td>
<td>0.11</td>
<td>0.30</td>
<td>30.93</td>
<td>41.65</td>
<td>27.42</td>
<td>0.65</td>
<td>0.39</td>
<td>0.5</td>
</tr>
<tr>
<td>K_B1</td>
<td>2742</td>
<td>0.41</td>
<td>0.34</td>
<td>30.51</td>
<td>32.97</td>
<td>36.52</td>
<td>0.61</td>
<td>0.38</td>
<td>0.29</td>
</tr>
<tr>
<td>K_B1</td>
<td>2808</td>
<td>0.11</td>
<td>0.24</td>
<td>28.31</td>
<td>42.58</td>
<td>29.12</td>
<td>0.67</td>
<td>0.40</td>
<td>0.46</td>
</tr>
<tr>
<td>K_D1</td>
<td>2947</td>
<td>0.10</td>
<td>0.25</td>
<td>28.89</td>
<td>47.7</td>
<td>23.41</td>
<td>0.49</td>
<td>0.33</td>
<td>0.48</td>
</tr>
<tr>
<td>K_D1</td>
<td>2979</td>
<td>ND</td>
<td>0.27</td>
<td>31.73</td>
<td>47.65</td>
<td>20.63</td>
<td>0.74</td>
<td>0.42</td>
<td>0.55</td>
</tr>
<tr>
<td>K_D1</td>
<td>2997</td>
<td>ND</td>
<td>0.29</td>
<td>33.36</td>
<td>43.44</td>
<td>23.2</td>
<td>0.59</td>
<td>0.37</td>
<td>0.51</td>
</tr>
<tr>
<td>K_D1</td>
<td>2998</td>
<td>ND</td>
<td>0.26</td>
<td>28.88</td>
<td>49.34</td>
<td>21.78</td>
<td>0.56</td>
<td>0.36</td>
<td>0.57</td>
</tr>
<tr>
<td>O_A1</td>
<td>3741</td>
<td>ND</td>
<td>0.55</td>
<td>64.38</td>
<td>17.97</td>
<td>17.65</td>
<td>0.82</td>
<td>0.45</td>
<td>0.70</td>
</tr>
<tr>
<td>O_A1</td>
<td>3756</td>
<td>ND</td>
<td>0.47</td>
<td>49.39</td>
<td>25.55</td>
<td>25.06</td>
<td>0.75</td>
<td>0.43</td>
<td>0.66</td>
</tr>
<tr>
<td>O_A1</td>
<td>3771</td>
<td>ND</td>
<td>0.33</td>
<td>36.08</td>
<td>36.15</td>
<td>27.77</td>
<td>0.86</td>
<td>0.46</td>
<td>0.64</td>
</tr>
</tbody>
</table>

ND- Not detected
Ole- Oloeanane
C30H- 17 α (H)-21 β((H)-hopane
Ts- 18α(H)-22,29,30-trinornerohopane
Tm- 17α(H)-22,29,30-trinorhopane
Table 4.19 Re-ordered biomarker results of samples collected based on wells, ages and sequences in Orange Basin

<table>
<thead>
<tr>
<th>Well name</th>
<th>Top Depth (m)</th>
<th>Age</th>
<th>Sequence</th>
<th>Ole/ C_{29}H</th>
<th>Ts/ (Ts+Tm)</th>
<th>βα/αβ</th>
<th>Mor/Hop C_{30}H</th>
<th>αβ/(αβ+βα)</th>
<th>C_{27} 20R (%)</th>
<th>C_{28} 20R (%)</th>
<th>C_{29} 20R (%)</th>
<th>20S/ (20S+20R)</th>
<th>αβ/ (αβ+αααα)</th>
<th>C_{29} 20R</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_B1</td>
<td>1855</td>
<td>Campanian</td>
<td>TST</td>
<td>0.29</td>
<td>0.15</td>
<td>0.42</td>
<td>0.71</td>
<td>0.40</td>
<td>20.62</td>
<td>29.37</td>
<td>50.01</td>
<td>0.10</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>K_B1</td>
<td>2084</td>
<td>Santonian</td>
<td>HST</td>
<td>0.20</td>
<td>0.27</td>
<td>0.35</td>
<td>0.74</td>
<td>0.51</td>
<td>28.47</td>
<td>35.74</td>
<td>35.79</td>
<td>0.23</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>K_B1</td>
<td>2423</td>
<td>Coniacian</td>
<td>HST</td>
<td>0.11</td>
<td>0.23</td>
<td>0.36</td>
<td>0.74</td>
<td>0.55</td>
<td>27.41</td>
<td>43.93</td>
<td>28.65</td>
<td>0.37</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>K_B1</td>
<td>2718</td>
<td>Coniacian</td>
<td>HST</td>
<td>0.10</td>
<td>0.25</td>
<td>0.41</td>
<td>0.71</td>
<td>0.58</td>
<td>25.98</td>
<td>44.91</td>
<td>29.1</td>
<td>0.37</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>K_B1</td>
<td>2721</td>
<td>Coniacian</td>
<td>HST</td>
<td>0.11</td>
<td>0.30</td>
<td>0.35</td>
<td>0.74</td>
<td>0.56</td>
<td>30.93</td>
<td>41.65</td>
<td>27.42</td>
<td>0.39</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>K_B1</td>
<td>2742</td>
<td>Coniacian</td>
<td>HST</td>
<td>0.41</td>
<td>0.34</td>
<td>0.62</td>
<td>0.62</td>
<td>0.52</td>
<td>30.51</td>
<td>32.97</td>
<td>36.52</td>
<td>0.38</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>K_B1</td>
<td>2808</td>
<td>Coniacian</td>
<td>HST</td>
<td>0.11</td>
<td>0.24</td>
<td>0.33</td>
<td>0.75</td>
<td>0.55</td>
<td>28.31</td>
<td>42.58</td>
<td>29.12</td>
<td>0.4</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>A_F1</td>
<td>1270</td>
<td>Turonian</td>
<td>HST</td>
<td>ND</td>
<td>0.31</td>
<td>0.56</td>
<td>0.64</td>
<td>0.28</td>
<td>26.00</td>
<td>38.00</td>
<td>35.59</td>
<td>0.15</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>A_F1</td>
<td>1290</td>
<td>Turonian</td>
<td>HST</td>
<td>ND</td>
<td>0.19</td>
<td>0.6</td>
<td>0.62</td>
<td>0.28</td>
<td>26.87</td>
<td>45.89</td>
<td>27.24</td>
<td>0.21</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>A_F1</td>
<td>1300</td>
<td>Turonian</td>
<td>TST</td>
<td>ND</td>
<td>0.19</td>
<td>0.44</td>
<td>0.69</td>
<td>0.27</td>
<td>27.27</td>
<td>43.63</td>
<td>29.11</td>
<td>0.23</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>A_F1</td>
<td>1320</td>
<td>Turonian</td>
<td>TST</td>
<td>ND</td>
<td>0.21</td>
<td>0.46</td>
<td>0.68</td>
<td>0.35</td>
<td>29.26</td>
<td>41.56</td>
<td>29.18</td>
<td>0.26</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>A_F1</td>
<td>1990</td>
<td>Cenomanian</td>
<td>TST</td>
<td>ND</td>
<td>0.30</td>
<td>0.93</td>
<td>0.52</td>
<td>0.60</td>
<td>30.74</td>
<td>35.66</td>
<td>33.59</td>
<td>0.46</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>A_K2</td>
<td>2405</td>
<td>Cenomanian</td>
<td>TST</td>
<td>ND</td>
<td>0.32</td>
<td>0.57</td>
<td>0.64</td>
<td>0.60</td>
<td>30.67</td>
<td>46.41</td>
<td>22.93</td>
<td>0.44</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>A_K2</td>
<td>2525</td>
<td>Cenomanian</td>
<td>TST</td>
<td>ND</td>
<td>0.29</td>
<td>0.72</td>
<td>0.58</td>
<td>0.62</td>
<td>37.94</td>
<td>40.01</td>
<td>22.05</td>
<td>0.53</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>A_K2</td>
<td>2530</td>
<td>Cenomanian</td>
<td>TST</td>
<td>ND</td>
<td>0.17</td>
<td>0.61</td>
<td>0.62</td>
<td>0.55</td>
<td>30.87</td>
<td>48.44</td>
<td>20.69</td>
<td>0.39</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>A_K2</td>
<td>2540</td>
<td>Cenomanian</td>
<td>LST</td>
<td>0.10</td>
<td>0.31</td>
<td>0.42</td>
<td>0.71</td>
<td>0.57</td>
<td>28.98</td>
<td>44.97</td>
<td>26.05</td>
<td>0.46</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>A_K2</td>
<td>2545</td>
<td>Cenomanian</td>
<td>LST</td>
<td>0.10</td>
<td>0.22</td>
<td>0.40</td>
<td>0.71</td>
<td>0.55</td>
<td>33.96</td>
<td>41.21</td>
<td>24.84</td>
<td>0.40</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>A_U1</td>
<td>2210</td>
<td>Cenomanian</td>
<td>LST</td>
<td>ND</td>
<td>0.16</td>
<td>0.58</td>
<td>0.63</td>
<td>0.53</td>
<td>26.87</td>
<td>44.87</td>
<td>28.26</td>
<td>0.28</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>A_U1</td>
<td>2220</td>
<td>Cenomanian</td>
<td>LST</td>
<td>0.11</td>
<td>0.23</td>
<td>0.49</td>
<td>0.67</td>
<td>0.61</td>
<td>33.11</td>
<td>39.61</td>
<td>27.28</td>
<td>0.25</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>A_U1</td>
<td>3008</td>
<td>Albion</td>
<td>TST</td>
<td>0.18</td>
<td>0.36</td>
<td>0.2</td>
<td>0.83</td>
<td>0.52</td>
<td>39.72</td>
<td>38.68</td>
<td>21.6</td>
<td>0.45</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>A_U1</td>
<td>3068</td>
<td>Albion</td>
<td>TST</td>
<td>0.19</td>
<td>0.45</td>
<td>0.34</td>
<td>0.75</td>
<td>0.47</td>
<td>44.21</td>
<td>32.17</td>
<td>23.62</td>
<td>0.37</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>K_D1</td>
<td>2947</td>
<td>Albion</td>
<td>HST</td>
<td>0.10</td>
<td>0.25</td>
<td>0.36</td>
<td>0.74</td>
<td>0.55</td>
<td>28.89</td>
<td>47.7</td>
<td>23.41</td>
<td>0.33</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>K_D1</td>
<td>2979</td>
<td>Albion</td>
<td>HST</td>
<td>ND</td>
<td>0.27</td>
<td>0.22</td>
<td>0.82</td>
<td>0.54</td>
<td>31.73</td>
<td>47.65</td>
<td>20.63</td>
<td>0.42</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_D1</td>
<td>2988</td>
<td>Albian</td>
<td>HST</td>
<td>ND</td>
<td>0.26</td>
<td>0.26</td>
<td>0.80</td>
<td>0.51</td>
<td>28.88</td>
<td>49.34</td>
<td>21.78</td>
<td>0.36</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>K_D1</td>
<td>2997</td>
<td>Albian</td>
<td>HST</td>
<td>ND</td>
<td>0.29</td>
<td>0.27</td>
<td>0.79</td>
<td>0.55</td>
<td>33.36</td>
<td>43.44</td>
<td>23.2</td>
<td>0.37</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>K_D1</td>
<td>3447</td>
<td>Late Aptian</td>
<td>LST</td>
<td>ND</td>
<td>0.23</td>
<td>0.34</td>
<td>0.31</td>
<td>0.76</td>
<td>0.57</td>
<td>40.65</td>
<td>36.01</td>
<td>23.34</td>
<td>0.40</td>
<td>0.61</td>
</tr>
<tr>
<td>O_A1</td>
<td>3741</td>
<td>Late Aptian</td>
<td>HST</td>
<td>ND</td>
<td>0.55</td>
<td>0.26</td>
<td>0.79</td>
<td>0.46</td>
<td>64.38</td>
<td>17.97</td>
<td>17.65</td>
<td>0.45</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>O_A1</td>
<td>3756</td>
<td>Late Aptian</td>
<td>HST</td>
<td>ND</td>
<td>0.47</td>
<td>0.16</td>
<td>0.86</td>
<td>0.52</td>
<td>49.39</td>
<td>25.55</td>
<td>25.06</td>
<td>0.43</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>O_A1</td>
<td>3771</td>
<td>Late Aptian</td>
<td>HST</td>
<td>ND</td>
<td>0.33</td>
<td>0.26</td>
<td>0.79</td>
<td>0.54</td>
<td>36.08</td>
<td>36.15</td>
<td>27.77</td>
<td>0.46</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>O_A1</td>
<td>3789</td>
<td>Early Aptian</td>
<td>LST</td>
<td>ND</td>
<td>0.51</td>
<td>0.05</td>
<td>0.95</td>
<td>0.52</td>
<td>61.77</td>
<td>20.86</td>
<td>17.38</td>
<td>0.51</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>O_A1</td>
<td>3792</td>
<td>Early Aptian</td>
<td>LST</td>
<td>ND</td>
<td>0.51</td>
<td>0.15</td>
<td>0.87</td>
<td>0.50</td>
<td>55.02</td>
<td>26.07</td>
<td>18.91</td>
<td>0.49</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>A_C3</td>
<td>3129</td>
<td>Late Aptian</td>
<td>LST</td>
<td>ND</td>
<td>0.42</td>
<td>0.14</td>
<td>0.88</td>
<td>0.54</td>
<td>42.66</td>
<td>33.09</td>
<td>24.25</td>
<td>0.45</td>
<td>0.63</td>
<td></td>
</tr>
</tbody>
</table>

Note:
ND- Not detected
Ole = Oleanane
C_{30}H = 17 \alpha(H), 21\beta(H)-hopane
Ts = 22,29,30-trisnor-18\alpha(H)- neohopane
Tm = 22,29,30-trisnor-17\alpha(H)-hopane;
\beta\alpha/\alpha\beta C_{30}H (Mor/Hop) and \alpha\beta/(\alpha\beta+\beta\alpha)C_{30}H (Mor/Hop) = ratios of the 17\alpha(H),21\beta(H)-hopane and 17\beta(H), 21\alpha(H)-hopane (Moretane),
22S/(22S+22R) C_{31}H = 22S and 22R epimer ratio of 29-homo-17 \alpha(H)-21\beta(H)-hopane
C_{27} 20R = (20R)-5\alpha(H),14\alpha(H),17\alpha(H)-cholestane
C_{29} 20R = (20R)-5\alpha(H),14\alpha(H),17\alpha(H)-methylcholestane
C_{29} 20R = (20R)-5\alpha(H),14\alpha(H),17\alpha(H)-ethylcholestane
20S/(20S+20R) \alpha\alpha-C_{29} = 20S and 20R epimer ratio of the 5 \alpha(H),14\alpha(H),17\alpha(H)-ethylcholestane
\alpha\beta/\alpha\beta \alpha\alpha C_{29}20R = ratio of the (20R)-5\alpha(H),14\beta(H),17\beta(H)- and (20S)-5\alpha(H),14\beta(H),17\beta(H)-ethylcholestane
Thermal maturity of the organic matter

Thermal maturity of the organic matter was assessed based on parameters calculated from the terpane and sterane distributions in the rock extracts. During maturation the 18α(H)-trisnor-neohopane (Ts) is less stable relative to 17α(H)-trisnor-hopane (Tm) (Table 4.19). Therefore, the Ts/(Ts+Tm) ratio increases with increasing thermal maturity (Seifert and Moldowan, 1978; Hunt, 1995). In contrast, the moretane/hopane ratio (17β(H),21α(H)−/(17α(H),21β(H))-hopane) decreases with maturity (Seifert and Moldowan, 1980; Grantham, 1986; Kvenvolden and Simoneit, 1990) due to the higher thermal stability of the α,β-configurated hopane.

In the current study the Ts/(Ts+Tm) ratio shows highest values (0.42 to 0.55) in the oldest samples from the Early and Late Aptian. The lowest value was determined in the youngest samples from the Campanian with 0.15. Sample from Santonian to Albian age show varying values between 0.16 and 0.45.
Moretane/hopane ratios higher than 0.8 are an indication of immature source rocks, ratios between 0.8 and 0.15 indicate mature and less than 0.15 highly mature source rocks (Peters and Moldowan, 1993). In the samples analysed the ratios of moretane/hopane range between 0.05-0.93 (Table 4.19). Almost all samples investigated fall within the range indicating early mature to mature source rocks (Seifert and Moldowan, 1986; Peters and Moldowan, 1993). Lowest values, indicating a higher maturity level, are indicated for the Albian, Late and Early Aptian samples.

The isomerisation of C$_{31}$ homohopane commonly equilibrates at a ratio around 0.58 to 0.62 at vitrinite reflectance (Ro) > 0.6% (Peters and Moldowan 1993). It is believed that the approach to equilibrium of C$_{31}$-hopane 22S/(22S+22R) ratios in the range of 0.5 to 0.54 may indicate the onset of oil generation while the attainment of equilibrium in the range of 0.57 to 0.62 indicates that the main phase of oil generation has been reached or surpassed (Peters and Moldowan 1993). Observation from this study showed that most C$_{31}$-hopane 22S/(22S+22R) values are in the range of the early to main oil window. However, the Campanian and some Turonian samples appear to have significantly lower parameter values (Table 4.19).

The 17α,21β/(17α,21β + 17β,21α) C$_{30}$-hopane parameter (Fig. 4-28a) usually range between a variable value and 0.9 (Seifert and Moldowan, 1980) covering the maturity transition from early catagenesis to the main oil window. Most values are higher than 0.6 and highest values are again determined for the oldest samples from Albian, Late and Early Aptian age. In the cross plot of the two hopane parameters (Fig. 4-28a) most samples are plotting in the upper right corner of the diagram showing that most samples already reached a maturity level being at the end indicated by the hopanes parameters. The Campanian and some Turonian samples show lower maturities.

Steranes cover a higher maturity range. The C$_{29}$-5α,14β,17β-20R/(αββ + ααα) and the C$_{29}$-5α,14α,17α-20S/(20S+20R) sterane parameters of the investigated shales, both increasing with thermal maturity, show values ranging from 0.29-0.70 and 0.10-0.51, respectively (Tables 4.19, Fig. 4-28b). Highly mature sediments are expected to reach about 70 % for C$_{29}$-αββ-20R/(αββ + ααα) and about 50 % for the C$_{29}$-ααα-20S/(20S+20R) (Seifert and Moldowan, 1986). In general for the samples both parameters show a consistent maturity trend as indicated by the diagonal distribution of
the data points in the cross plot (Fig. 4-28b). There are some deviations from this trend in the Turonian and Coniacian sample set. The cross-plot of these parameters show a higher thermal maturity for the older sediments of Aptian, Albian and Cenomanian age (Fig. 4-28a and 4-28b). The younger sediments of Turonian, Santonian and especially Campanian age show, in general, parameter values indicating a lower maturity level. The Coniacian samples plot in between both sample sets. The sterane parameter values of these rock samples suggest that some of the samples must have undergone complete sterane isomerization (Grantham, 1986), which could be the result of favourable time/temperature conditions on the organic matter.

Fig. 4-27. Cross plot of C_{29}αββ/($\alpha$$\beta$$\beta$ + $\alpha$$\alpha$$\alpha$) vs C_{29}ααα/$($S+R) steranes, the arrow indicating increasing thermal maturity (Seifert and Moldowan, 1986).
Chapter Five

5.0 Conclusions and Recommendations

An integrated approach was adopted in this study to investigate some elements of petroleum system of the Orange Basin, South Africa, with a particular emphasis on reservoir rocks and source rocks.

The seismic reflection (2D) comprising – inlines and crosslines were utilized in structural (faults) identification, depositional sequence delineation, as well as recognition of the constituent systems tracts. Growth fault that are listric and normal were found localized in the basin. The faults are flank faults, crestal faults as well as antithetic faults. The wireline logs provided were used for lithostratigraphic studies and identification of sequences and systems tracts. 8 depositional cycles were identified from the wireline logs, from which the sandstone and shale samples were collected.

The EDS results show the presence of sulphur and titanium that suggests evidence of two provenance of the sandstone samples investigated; volcanic and granitic, respectively. The presence of glauconite and frameboidal pyrite across the stratigraphic sequences is an indication of deposition of sediments in continental shelf marine environment.

This study revealed a complex diagenetic history of sandstones of the Orange Basin in which compaction, cementation/micritization, dissolution, silicification/overgrowth of quartz and fracturing were observed. The cements precipitation occurs in different environments. The LST has micritic cement which is an evidence of marine diagenesis. The TST and HST have micritic and poikilitopic calcite cements and evidence of different conditions of precipitation. The micritic morphology and coarse crystalline nature of the cementing materials strongly suggest autochthonous and allochthonous origin of the cementing materials, respectively. 50 % of the LST
samples show possibility of mixture of detrital quartz grains based on the oxygen isotope data. The detrital quartz mixture decreases from LST to TST and HST.

The Eh-pH conditions in the basin show that the authigenic minerals were precipitated in slightly alkaline conditions, in which the TST is slightly more alkaline than HST, thereby causing more authigenic clay precipitation in the TST. This alkaline condition also supports clay conversion in the basin under a low relative temperature condition as a result of thermal subsidence in the basin between Aptian and Cenomanian in which some of these samples were deposited.

The sandstones across the basin have pseudomatrix rich in authigenic chlorite, montmorillonite, quartz and calcite. These minerals cemented the pores thereby reducing porosity. The continued burial compaction disrupted the depositional texture which in turn impaired secondary porosity development.

The organic geochemical characterisation of the shale intervals within the stratigraphic settings of the Orange Basin indicates marginal gas generation potential.

Marginally organic rich rocks with a very few organic rich rocks were identified in the LST setting, with variable kerogen types ranging from Type II to Type IV. Four samples from wells A_F1 and O_A1 show indications of good petroleum potential but are not mature sufficiently for petroleum generation, while a few samples that are thermally mature have low organic matter quality.

Only one organic rich rock and a few marginally organic rich rocks were identified in the TST setting, the rest of the samples in this setting are organic lean. Most of the samples have poor petroleum generation potential with only one sample showing indications of petroleum generation potential. The results showed that the samples are mainly Type III kerogen with a few Type IV kerogen. Most of the samples are thermally immature; the few thermally mature samples have low organic matter quality.
The shale samples in the HST setting are mainly marginally organic rich with predominance of Type III and presence of very few mixed Type II/III kerogen. Most of the samples in this setting are thermally immature to marginally mature with a few mature samples that are in the oil window. The results show prevalent of allochthonous organic matter with subordinate autochthonous organic matter.

Generally, LST setting has the best petroleum prospect followed by HST and TST setting has the least petroleum generation potential. The results of this study reveal that a very limited petroleum source rock exists in the basin. The limited potential source rocks present are further limited by low levels of thermal maturity.

Source rock samples ranging from Early Aptian to Campanian age and gathered from the 7 different locations along the southwest African continental margin in the Orange Basin were analyzed to characterize the source organic matter, depositional environment, level of geothermal maturity and hydrocarbon potential.

Hydrogen (HI) and oxygen index (OI) data, the Oleanane/C₃₀-hopane ratio, proportions of C₂₇-, C₂₈- and C₂₉-steranes and the cross plot of Pristane/n-C₁₇-alkane vs. Phytane/n-C₁₈-alkane indicate that the organic matter type across the basin is mainly Typ III indicating predominantly terrestrial organic matter. Some samples of Turonian age are Typ II/III or Typ II indicating an enhanced proportion of marine organic matter.

Pristane/Phytane ratio values higher than 1 in all samples analysed, carbon preference index (CPI) values of close to or above 1 and interpretation from the cross plot of Prt/n-C₁₇ vs. Ph/n-C₁₈ point to suboxic to oxic environmental condition during time of sediment deposition.

In general, the thermal maturity of the selected samples coincides with the sample ages. Samples with the highest maturity are of Aptian, Albian and Cennomanian age as indicated by the n-alkane distribution, CPI and Tmax values, as well as hopane and
sterane maturity parameters. Most samples show a maturity at the initial oil window with some samples being slightly more mature.

S2/S3 ratio as well as OI and HI values assign only a low hydrocarbon generation potential to most of the samples investigated in the current study from Early Aptian to Campanian, exceptions are samples from Turonian and Aptian age

5.1 Main scientific contribution of the dissertation

Information about the petroleum system(s) of Orange Basin is relatively scarce. Where available they remain in the purview of the companies that owns them, which are considered as classified documents.

This dissertation presents a holistically look at the petroleum system of the basin, looking at the depositional sequence, structure, reservoir and source rocks. Results of some of the finding have been presented in international conferences, some already accepted for publications in reputable international journals and some under review. This study has generated data on petroleum system of the basin on a regional scale using integrated approach. The results obtained from each systems tract are identical thereby making the regional outlook possible.

The study also provided information on diagenetic history of the reservoir rock, depositional history and thermal maturity of the organic matter in the Orange Basin. This can be used as a tool for exploration and exploitation activities in the future.

Some of these findings will continue to generate debate in years to come thereby increasing interest in once abandoned basin. The hope for gas generation is higher than oil as concluded by this study because of abundance of Type II/III and Type III organic matters. The demand for gas now is on the increase across the globe and the basin in some years to come might be a player in gas production.
5.2 Recommendation for future work

We strongly recommend that effort should be geared toward exploration in the horizon with age older than the Cretaceous for possible discovery of oil and gas. Klemme and Ulmishek, 1991 reported that Upper Jurassic account for more than 25% of the world recoverable oil and gas. With the LST showing more prospect than other systems tracts, there might be prospect beneath the Cretaceous of Orange Basin, this coupled with production in Jurassic in Southern America basins which happen to be lateral equivalent as a result of Gondwana break up.
References

Broad, D. 2004. South Africa Activities and Opportunities. An Unpublished Power Point Presentation to PetroChina

Gerrard, I., Smith, G.C., 1982. Post-Palaeozoic succession and structure of Southwestern
African Continental Margin In: Watkins, J.S; Drake, C.L. (Eds), Studies in
Continental Margin Geology, American Association of Petroleum Geologists. 49-
76 pp

southwestern Africa: Implications for the controls of landscape development for
B6. 211-228.

Giles, M.R., Stevenson, S., Martin, S.V., 1992. The reservoir properties and diagenesis of the
Brent Group: a regional perspective. In: Morton, A.C; Haszeldine, R.S; Giles, M.R;
Brown, S. (Eds), Geology of the Brent Group. Special Publication of the Geological

Graham, C.M., Valley, J.W., Winter, B.L., 1996. Ion microprobe analysis of $^{18}/^{16}$O in
authigenic and detrital quartz in the St. Peter Sandstone, Michigan Basin and
Wisconsin Arch, USA: contrasting diagenetic histories. Geochimica et Cosmochimica
Acta 60-24, 5101-5116.

Grantham, P. J., 1986. Sterane isomerisation and moretane/hopane ratios in crude oils

in main source rock derived crude oil through geological time. Organic
Geochemistry, vol. 12, no. 1. 61-73 pp

Http://srata.geol.sc.edu/index.html., 2005

Jungslager, E.H.A., 1999 Petroleum habitat of the Atlantic margin of South Africa. In: Cameron, N.R; Bate, R.H; Clure, V.S; (Eds). The oil and gas habitat of South Atlantic. Geological Society of London. 153-168pp

