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ABSTRACT: 

Transition metal oxides magneli phases present crystallographic shear structure which 

is of great interest in multiple applications because of their wide range of valence, 

which is exhibited by the transition metals. The latter affect chemical and physical 

properties of the oxides. Amongst them we have nanostructures VO2 system of V and O 

components which are studied including chemical and physical reactions based on non-

equilibrium thermodynamics. Due to their structural classes of corundum, rocksalt, 

wurtzite, spinel, perovskite, rutile, and layer structure, these oxides are generally used 

as catalytic materials which are prepared by common methods under mild conditions 

presenting distortion or defects in the case of VO2. Existence of an intermediate phase is 

proved using an x-ray thermodiffraction experiment providing structural information 

as the nanoparticles are heated. Potential application as gas sensing device has been the 

first time obtained due to the high surface to volume ratio, and good crystallinity, 

purity of the material and presence of suitable nucleating defects sites due to its n-type 

semiconductor behavior.  In addition, annealing effect on nanostructures VO2 nanobelts 

shows a preferential gas reductant of Ar comparing to the N2 gas. Also, the hysteresis 

loop shows that there is strong size dependence to annealing treatment on our samples. 

This is of great interest in the need of obtaining high stable and durable material for 

Mott insulator transistor and Gas sensor device at room temperature. 
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CHAPTER ONE: 

INTRODUCTION, PROBLEM STATEMENT & OBJECTIVES  

1.1 Introduction 

Most of the properties of solids, which present basic results in Physics and Chemistry of 

solids, depend on the overall structure i.e. chemical composition, arrangement of the 

atoms and size of the solids in one, two or three dimensions. Hence the synthesis of 

materials and/or devices with new properties by manipulation control of their 

structure on the atomic level has become an emerging interdisciplinary field based on 

solid state physics, chemistry, biology and materials science [1]. The development of 

new types of ultrafast switches operating in the RF microwave and sensors is based on 

the use of a class of materials undergoing fast, reversible phase transformation from 

semi conducting state to metallic one. An example of such a material is vanadium 

dioxide VO2 whose energy band gap varies relatively slightly under the influence of 

external pressure or magnetic field. This may serve the purpose of tuning into the 

resonance of one-phonon interband transition [2]. Numerous kinds of gases are emitted 

from various sources into our living space or outdoors. Many of them are hazardous to 

human beings and the environment (air pollutant). They are present at very low 

concentration requiring extremely good sensing characteristics for their monitoring [3]. 

Solving challenges for hydrogen carrier is highly demanded. Technological difficulties 

of hydrogen production, distribution, storage and provision of the necessary 

infrastructure, at a competitive cost, require a major concerted even global effort. Apart 

from pure technological development, the introduction of new technologies to the 

market necessitates an appreciation of the non-technical barriers which, if not fully 

addressed, may hinder or delay the market deployment of the new technologies. These 

issues refer to:  

• Overcoming the regulatory barriers to widespread hydrogen use   
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• Understanding the different safety issues associated with hydrogen compared 

to today’s fuels and developing strategies for managing these 

• Understanding and analyzing societal issues. 

Hydrogen opens up access to a broad range of primary energy sources, including fossil 

fuels, nuclear energy and, increasingly, renewable energy sources (e.g. wind, solar, 

ocean, and biomass), thus enhancing energy security through increased diversity. 

Hydrogen and electricity also allow interoperability and flexibility in balancing 

centralized and decentralized power, based on managed, intelligent grids, and power 

for remote locations (e.g. island and mountain sites), air quality and health 

improvement for Greenhouse gas reduction. Hydrogen can be produced from carbon-

free or carbon-neutral energy sources or from fossil fuels with carbon dioxide capture 

and storage (sequestration). Thus, the use of hydrogen could eventually eliminate 

greenhouse gas emissions from the energy sector. Regarding the economical 

competiveness, the development and sales of energy systems are major components of 

wealth creation, from automobiles to complete power stations, creating substantial 

employment and export opportunities, especially for the industrialized nations.  

 

1.2 Statement of the Problem  

Hydrogen has been widely used in many industrial applications, and in the public 

domain as would be expected for an energy carrier. Normally, in these commercial and 

industrial environments, only well-trained personnel come into contact with hydrogen. 

Due to the continuous increase of hydrogen uses as an energy carrier, contact with 

laypersons demands different fail-safe routines and technologies. Introduction of 

hydrogen as an energy carrier therefore requires research efforts in the field of safety. 

Only a small number of hydrogen and fuel cell systems and components required for 

the hydrogen economy are in operation today. Consequently, only limited data is 

available on the operational and safety aspects of these new technologies and research 

are required to understand hydrogen’s behavior as a fuel for both vehicles and 

stationary applications, and to support the development of technologies for the 
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detection and safe management of unscheduled hydrogen releases or incidents 

involving hydrogen systems. VO2 based solid state gas sensors represent a novel 

powerful detection with high exquisite selectivity of hydrogen, fast response, recovery, 

and potential for integration of addressable arrays on a massive scale [4]. The great 

interest of industrial and scientific world on solid state gas sensors come from their 

numerous advantages like small sizes, possibility of on-line operation due to bench 

production, low cost. We believe that the high efficiency of our sensor needs prior 

understanding of the interplay between Metal-insulator transition and multiferroic 

domains. In contrast to 2D crystalline nanobeams, 1D geometric materials result in 

emergence of several possible families of ferroelastic domains in nanoplates, allowing 

strain controlled transitions in the presence of geometrical frustration [5]. The 

nanoplatelets possess planar surface which is required for most applications such as 

sensors, optical modulation, and electromechanics. In the case of lower temperature M1 

phase, large surface breaks into orientational domains. This latter arise due to the 

presence of multiple energy equivalent orientations which reduce symmetry on cooling 

through the transition point and only one way is realized at each point in the sample 

volume. 

 

1.3 Objectives and outline of the thesis  

One of the objectives of this research was to successfully synthesize nanoparticles VO2 

(M) directly through a soft chemistry process where we used metal alkoxide V2O5 as 

starting precursor. This latter follows hydrolysis and condensation steps which depend 

on the electronegativity of the metal atom and allow no breaking of weak bonds such as 

Wan Der Waals, hydrogen and hydrophobic interactions with low temperature 

processing.  Secondly, we successfully reproduce nanobelts shape–VO2, which are very 

promising for sensors applications due to their faces exposed to the gas environment in 

a likely manner and their size which is to produce a complete depletion of carriers 

inside the belt.  Additionally, we quantify the coexistence of differents phases present in 

our sample as we follow the metal-insulator transition by applying x-ray 
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thermodiffraction synchrotron radiation. In accordance to our finding, a more 

pronounced mixture phase M2 was obtained revealing a further strengthening of V-V 

bonds with a direct opening effect of the band gap structure describing VO2 as a band 

insulator. Tselev et al. [5] showed that M2 phase can coexist in the M1 stable low-

temperature phase which can be stabilized by application of an external stress along 

<110>R direction. This suggests that in pure unconstrained VO2 under ambient pressure, 

the M2 phase correspond to a local minimum or to a saddle point of the free energy and 

become an absolute minimum due to a perturbation. The displacements of the atoms 

which are associated with the breaking of the symmetry were described through the 

Ginzburg-Landau theory expansion of the free energy. The simplest example of a 

structural phase transition occurs when the distortions may be described by a single 

normal mode; the amplitude of the distortion is then given by the order parameter. The 

M2 phase according to Pouget et al. [6] was interpreted as alternative phase of pure VO2 

whose free energy is slightly higher than the one of M1 phase. This observation was 

observed in our nanoplatelet VO2 (M). Additionally we explore the strong size effect 

function of the external temperature stress inducing a decrease into the hysteresis loop 

upon heating and cycling through Differential Scanning Calorimetry. This latter 

technique was mostly used due to the accurate information obtained concerning 

crystallization time and temperature, percent of crystallinity of our nanoplatelet, heat of 

fusion and reactions and purity of our material. Also, we present X-Ray Diffraction and 

Raman characterizations techniques respectively to have coherent reflected intensities 

which give the random direction of distribution of the crystallite and phase 

identification of the sample and Stokes vibration frequencies characteristic of existing 

elements presents in the material. Here, we propose a new thermodynamic model 

depending on the length and size of the nanobelts showing that the size of the particles 

have strong correlation effect on the phase transition which would be a significant 

contribution to nanoscale materials physics. One of the direct applications of this 

technology was found to be gas sensor device High hydrogen gas sensing capabilities 

within ppm level which was demonstrated for the first time to be highly selective 
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comparing to other gases such as: CO and CO2, reproducible even at 50 deg. C which 

confirms the good operation of our device in dry air at room temperature where the 

conduction response is mainly associated with the electronic surface interaction with H2 

molecules. The adsorption of the H2 molecules is well described via the power law of 

the gas concentration        
   [7]. Possible mechanism can be present during sensor 

mechanism [8] reduction or oxidation of the sample, anion exchange by a gaseous 

species either bonding to the bare surface or bonding to a previously adsorbed species. 

This latter is due to the presence of defects which are possible sites for surface atoms. In 

our case the open junction grain can be considered in that regard. Lastly, we probed the 

transport properties of the VO2 thick films by measuring the I-V characteristics in the 

voltage interval -1V to 1V which average over 15 times of I-V scans in each spot and 

grid measureament. The I-V behavior observed, originate from the soliton tunneling 

conductivity of the material. The metal insulator transition in VO2 nanocrystals is 

described through the existence of a negative coefficient temperature at high current 

level. This mechanism prevents the device from thermal runaway and breakdown. Non 

stoichiometry defects present in VO2 such as oxygen vacancies serve as localized traps 

required for the I-V behavior of VO2. The decrease of the band gap with increase of free 

carrier concentration become significant just below the transition temperature Tc 

according to the quadratic equation: Eg(T)∼ E0 – A (kBT)2. 

An overview of the literature is given in chapter 2 as well as a more details regarding 

the physical properties of VO2 such as electronic, electrical, optical and magnetic 

properties and its chemical properties are highlighted. Chapter 3 focus on the methods 

of growth of VO2 followed by a decription of hydrothermal process synthesis used to 

obtain high quality VO2 with no impurities under optimal conditions of pressure P~20 

MPa and T~240 º C for two days using Stainless steel Teflon autoclave 3.5cm   5.5 cm 

sizes. Chapter 4 presents an overview of gas sensing background and current literature 

on vanadium oxides gas sensing properties. Chapter 5 discussed all the experimental 

results obtained in 5 subsections 4.1, 4.2, 4.3, 4.4, and 4.5. Chapter 6 contains a summary 
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of the work presented in this thesis as well as the outlook for future work. Finally we 

present some characterizations techniques used in the framework of our experiment as 

an Appendix. 
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CHAPTER TWO: 

 VO2, PHYSICAL-CHEMICAL PROPERTIES 

2.1    Overview 

2.1.1 Introduction 

Transition elements are formed by the electron filling of the 3d, 4d and 5d shells with a 

position between the s-block and the p block elements in the periodic table. Their 

properties are transitional between reactive metallic elements of the s-block forming 

ionic compound and elements of the p-block that are largely covalent [1]. The addition 

of the electrons to the penultimate shell expanding it from 8 to 18 electrons normally 

characterizes these d-elements which give rise to many physical and chemical 

properties. They present good conductivity of electricity and heat with a metallic lustre, 

hardness, strength and ductility and they are able to form alloys with other metals such 

as element in transportation (automotive, aviation and aerospace where aviation and 

space flight are considered). Amongst transition elements, Vanadium (chemical symbol 

V) is a relatively rare metal that occurs naturally in about 65 different minerals and 

fossil fuel deposits.  It is typically produced in limited quantities either from steel 

smelter slag, from the flue dusts of heavy oil or as a byproduct of uranium mining. 

Roughly 60,000 tons of contained vanadium was produced globally in 2011 and 97% of 

that production came from South Africa. Vanadium is usually introduced as a metal 

capable of beautiful color changes when it passes through its various oxidation states 

due to the d-d electronic transition, charge transfer spectra and from defects in the solid 

[2]. Vanadium has an unparalleled tendency to form coordination compounds with 

Lewis bases i.e (groups that`s able to donate an electron pair. Those groups are called 

ligands.). The ability to form complexes is in contrast to the s-block and p-block 

elements. This is due to the fact that they have small, highly charged ions and have 

vacant low energy orbitals to accept lone pairs of electrons donated by other groups or 

ligands. See table 2.1. 
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Table 2.1: Electronic structure of Vanadium [1] 

 

Element                                  Electronic structure                       Oxidation states* 

Vanadium V              [Ar]3d34s2         (-I)(O)(I)(II)III IV V 

        (-I)(O)(I)(II)III (IV) V 

        (-I)(O)(I)(II)III (IV) V 

Nobium Nb            [Kr]4d35s2 

Tantalum  Ta            [Xe]4f145d36s2 

 

*The most important oxidation states (generally the most abundant and stable) are shown in bold. Other well-

characterized but less important states are shown in normal type. Oxidation states that are unstable (or in doubt) 

are given in parentheses. The tendency to form single ionic compounds decreases as the oxidation state increases. 

The oxidation state (+IV) is the most stable and exist in a wide range of compounds both as solid and in solution. * 

The V3+ ion has a d2 configuration occupying the t2g orbitals i.edxy, dxz and dyz.  

 

2.1.2    Vanadium Oxides 

Several Magneli phases exhibit a metal insulator transition phase (VnO2n-1) among 

which VO2 (340K) and V2O3 (150 K) are the most studied. The reduction process is 

observed as: V2O5→V3O4→ V4O9→V6O13→VO2 [3]. It was observed that in the 

vanadium oxides, the superimposed electrical and magnetic properties changes are 

accompanied by a latent heat and also by a reduction in crystal symmetry with 

discontinuous volume expansion on cooling through the transition temperature. The 

magnitude of semiconductor–metal transition is sensitive to the crystallinity and 

stoichiometry and presents a complexity of the phase diagram. The V2O5 compound is 

amphoteric but mainly acidic and it is generally used as metal alkoxide precursor to 

produce VO2. It dissolves slightly in water giving a pale yellow acidic solution and 

readily in NaOH forming colourless solutions with a wide range of vanadate ions. The 

ions formed depend on the pH: various isopolyvanadates at intermediate pH and 

orthovanadate at high pH. Some reactions of V2O5 can be detailed as follows: 
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                                   V2O5 +NaOH --------------various vanadates                                  Eq.2.1 

                                      V2O5 +H2O2 --------------peroxovanadates                              Eq.2.2 

                                                  V2O5 +Cl2 -------------VOCl3                                                                   Eq.2.3 

                                        V2O5 +SO2 --------------VO2+SO3                                                                         Eq.2.4 

                                                 V2O5 +H2 --------------VO2+V2O3                                          Eq.2.5 

V2O5 consists of distorted trigonalbipyramids of VO5 units sharing edges with other 

units to form zigzag double chains which derived by crystallographic shear translations 

with high degrees of distortion leading to the formation of layered crystal structure.  

See figure 2.1. The ability to reversibly lose or gain oxygen when heated is of great 

interest as a catalytic activity. 

 

Figure 2.1: Crystal structure of V2O5 with the polyhedra (VO5 square pyramid units), V 

is shown as orange and O as red spheres [4] 

 

2.1.3 Ionic bonding and elastic properties  

The information of stability of given vanadium oxide phase is described by the energy 

of formation per atom Ef with respect to the elements as: 

                                                   
 (    )         

 
        

   
                                           

Hence the total energies of bcc vanadium and O can be calculated.  See table 2.2 
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Table 2.2: vanadium valency oxygen content and energy of formation Ef for each phase 

as well as volume per atom V [4]. 

                                                          VO        V2O3      VO2       V6O13    V4O9     V3O7    V2O5 

Valency 

Oxygen content 

Ef (eV/atom) 

V (Ǻ3/atom) 

2 

0.5 

-1.778 
 
9.169 

3 

0.6 

-2.636 
 
9.687 

4 

0.667 

-2.770 
 
9.897 

4.333 

0.684 

-2.794 
 
11.545 

4.5 

0.692 
 
-2.766 
 
11.858 

4.667 

0.7 
 
-2.773 
 
11.838 

5 

0.714 
 
-2.733 
 
13.051 

B (GPa) 

C44 (GPa)             (i) 

B/C44 

243.6 

-88.6 

253.8 

165.2 

1.54 

248.5 

155.1 

1.60 

208.1 

74.7 

2.79 

197.3 

78.6 

2.51 

202.3 

75.5 

2.68 

173.5 

40.2 

4.32 

B (GPa) 

C44 (GPa)             (ii) 

B/C44 

243.6 221.7 226.6 166.7 103.7 158.0 86.6 

-88.6 153.3 127.8 75.9 66.3 63.2 25.3 

 1.45 1.77 2.20 1.57 2.50 3.42 

 

V represents the volume of the vanadium oxide, B is the bulk modulus and C44 is the 

elastic constant. B/C44 is function of vanadium valency and is used to measure the 

plasticity of the material. The large ratios value obtained show that vanadium oxides 

have lubricating properties. The elastic properties and decohesion energies are 

generally based on the electronic structure. In general vanadium oxides are 

characterized by ionic bonding due to the charge transfer from vanadium to oxygen. In 

VO2 (P4mnm High symmetry), small regions are present with low electron density 

between the ions or rather between the   V-O polyhedral. This implies relatively strong 

bonding.  See figure 2.2. 
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Figure 2.2: Ionic bonding due to charge transfer ions between Vanadium and Oxygen 

[4] 

2.1.4 Vanadium Dioxide 

VO2 has attracted tremendous interest over almost half a century and is a benchmark 

problem of solid state chemistry because of its near room temperature metal 

semiconductor phase transition [5]. It presents a d1 configuration in an oxidized form of 

the metal vanadium [6] where oxygen reacts with vanadium to form VO2. The atoms 

form crystals that look like long rectangular boxes. The crystallography structure 

consists of vanadium atoms that line up along the four edges of the box in regularly 

spaced rows. A single crystal of VO2 can have many of these boxes which line up side 

by side, and the crystals conduct electricity like a wire as long as they are kept warm. 

While other materials exhibit a similar electronic property, VO2 is unique in that the 

change occurs at a relatively fast speed in less than a trillionth of a second. In recent 

years, scientists have put these quirky properties to work. VO2 is a nonmagnetic, 

strongly correlated material which undergoes a reversible phase transition between a 

monoclinic insulator and a rutile metal, at a critical temperature Tc of 340K [7-9]. The 
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structure can be explained by pure Mott phase transition with Peierls electron-lattice 

distortion giving ultrafast transformation of the semiconducting monoclinic VO2 to 

metallic rutile structure. Daniel P et al. [7] observed a corrobative existence for the two 

phase combination in VO2 by using RMC simulation (See figure 2.3). This shows that 

the two dimensional histogram with the most probable positions of Vanadium cations 

in the a-c plane where V are spherical for T>340K and dramatic splitting are observed at 

T<340K. At 340 K, there is an intermediate shape distinct from the two regimes at either 

side.  

 

 

Figure 2.3: Probability of Vanadium atoms observed at T<,>, = 340K [7] 

Generally electrons experience strong Coulombic repulsion because of their spatial 

confinement in the orbitals. The interplay of the d electrons internal degree of freedom, 

spin, charge and orbital moment make the material very sensitive to the small changes 

in external parameters such as temperature, pressure or doping. VO2 has a blue-black 

colour metal oxide with high melting point of 1967 °C and a density of 4340 kg m-3. It 

possesses a formula weight of 82.94 with a percentage of 38.58 in Oxygen and 61.42 in 
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Vanadium [10]. See table 2.3 below presenting crystal structures for some transitions 

metal oxide. 

Table 2.3:  Crystal Structural Classes of Some Common Transition Metal Oxides [11] 

Sc2O3c

s 

TiO r* 

Ti2O3 

cr 

TiO2 

t,a,b 

VO r 

V2O3cr 

VO2 t* 

V2O5 or 

Cr2O3

cr 

CrO2 

t 

CrO3 

or 

MnO r 

Mn3O4sp* 

Mn2O3cs* 

MnO2 t* 

and 

others 

FeO r 

Fe2O3cs,

sp 

Fe3O4sp 

CoO r 

Co3O4s

p 

NiO 

r 

CuO 

s 

Cu2

Oc 

ZnO 

w 

Y2O3cs ZrO r 

ZrO2m,

tet 

NbO2 

t* 

Nb2O5

mt 

MoO2 

m (t*) 

MoO3 

l(or) 

TcO2 m, 

(t) 

Tc2O7 or 

RuO2 t Rh2O3c

r* 

RhO2 t 

Pd

O s 

Ag2

O c 

CdO 

r 

La2O3

mt 

HfO2 m TaO2 t 

Ta2O5 

or 

WO2 

(m,t*) 

WO3 

m 

ReO2 m, 

(t) 

ReO3 cub 

(perosvkit

e), Re2O7 

or  

OsO2 t 

OsO4 m 

IrO2 t Pt3

O4 

cub 

PtO

2 t 

 HgO 

or 

and 

othe

rs 

r=rocksalt, c=interpenetrating cristobalite, l=layer, mt=multiple modifications, s=PtS 

structure, w=wurtzite, f=fluoride, tet=tetragonal, *= distorted or defective, t=rutile, cr= 

corundum, m= monoclinic, or=orthorhombic, a= anatase, sp= spinel, cub=cubic, 

b=brookite, cs=C structure 

2.1.5 Solid state structure: crystallography, Lattice parameters. 

VO2 structure consists generally of six metals vanadium atoms coordinate and three 

oxygen atoms coordinate where all the bonds lengths are the same and all the oxygen 
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angles around the metal, u=0.293 and c/a=2u [11] (u is the coordinate of the metal with 

the oxygen at the origin.) are 90 ˚C in the rutile. The tetragonal lattice P4mnm presents 

regular VO6 octahedron with slight elongation along its 4-fold axis with four (two) 

distances dv-o = 1.90 Å (1.95 Å) and a closed packed hexagonal lattice giving vanadium 

atom into close distance. Each vanadium atoms are located on (000) and (1/2 1/2 1/2) 

and is surrounded by 6 atoms of O (oxygen octahedron). Spacing in the tetragonal 

phase above the transition temperature suggests metal-metal bonding, and the 

conditions for a transition from cation clustering to the formation of narrow cation sub-

latticed bands were argued and shown to be satisfied by VO2 [12-13]. The Low-

temperature VO2 has the monoclinic (P21/c) structure. See Fig. 2.4. A striking feature of 

this monoclinic phase is the presence of cation-cation pairs along the am = 2cr, axis with 

alternation of V-V separations which are 2.65 and 3.12 Å in place of the regular 2.87 Å. 

The oxygen are located at ± (u, u, 0) and ± (1/2+u, 1/2 –u, 1/2) [13]. Three distances are 

present for dv-o each in the range 1.76 - 1.87 Å and 2.01 - 2.05 Å, respectively and angles 

(   ̂) vary between 78° and 99° [14]. Heckingbottom and Linett [15] were the first to 

emphasize the second significant feature of the low-temperature structure which 

represents the antiferroelectric distortion, coinciding with the displacement of cation 

from the center of its interstice toward one or more anions characteristic of a 

ferroelectric type distortion, giving one shortest vanadium oxygen (V-O) separation R= 

1.76 Å perpendicular to the c axis. The two bridging oxygens O between paired 

vanadium ions have R= 1.86, and 1.87 Å. The other three cation-anion distances are       

R = 2.01, 2.03, and 2.05Å.  
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Figure 2.4: Geometry of vanadium: Prototypical Structure VO2 [16] 

 

 

Figure 2.5: LDA density of states of vanadium atoms V 3d and O 2p doses [17] 
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Belozerov et al. [17] calculated the electronic structure of VO2 showing that the states 

crossing the Fermi level are of vanadium t2g symmetry spreading from -0.5 to 2 eV and 

they are separated by a gap of 1.4 eV from occupied bonding states of O 2p and V   
  

character. The DOSes for vanadium atoms presented at the bottom panel of figure 2.5 

shows that the a1g state is more narrow than π one and has one dimensional like shape. 

The electron belonging to a1g state presents jumping to the same orbital on the nearest 

neighbor atom with largest hopping and smaller probability of the electron to hop to 

another chains. The hoppings are described through energy splittings between peaks 

and the remaining structure gives the asymmetry of density of states and its broadening 

while the structure of the π hoppings is uniform with 3 dimensional shape of density of 

states. 

According to Nihoul et al. [18], all the VO2 structures are based on a bcc oxygen lattice 

with some vacancies for the A and B structures. The stoichiometry VO2 is obtained by 

only the filling of 1/6 of the sites by vanadium atoms and the association of the three 

octahedral sublattices is obtained by the translations of the oxygen lattice vectors: 

[1/2,0,0]x, [0,1/2,0]y, [0,0,1/2]z. The vanadium atoms were obtained through the 

ordering model of Static Concentration Waves (SCW) which calculates the occupancy 

probabilities of each site as Fourier series on the reciprocal space vectors [19]. The 

possible structures correspond to the negativity of the configuration energy variation. 

In the case of vanadium atoms, two sublattices can be occupied while the other one is 

completely vacant or one is occupied while the two others are vacant. In the case of VO2 

R where nx=ny ≠ 0, and nz = 0, we have two successive orderings introducing wave 

vectors k=½, ½, 0 and k =1/2, - 1/2, 0 giving a site of occupation of: 
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X and y are the oxygen coordinates of an atom. In the case of (001) plane of rutile, all x 

and y are integers and for nx= 0, x+y is odd while ny= 0 for all x and y. The rutile 

structure is obtained for three successive orderings described as:(        ) 
, 

(        ) 
,      O where   stands for a vacancy. It corresponds to a large decrease 

in energy. In the case of the second possibility, nx= ny= 0, and nz ≠ 0, the dominant wave 

vector according to Leroux [20] is given as: k = 1/3 [1,-1, 2] which leads to a decrease in 

energy and a site occupation of: 

                                                                                                           

                                              
 

 
 
 

 
[
             

 
]                                                             

Which means that the vacancies are located on every third (1,-1, 2) plane when               

x-y+2z=3p, p is an integer. The minimization of energy for other VO2 is given for a 

wave vector such that k=H/n, where H is the reciprocal lattice vector and n = 2, 3 or 4. 

The minimization obtained is k = 1/3 [1, 1, 2] which restores a tetragonal symmetry 

giving:         , i.e       and VO2(A) where one oxygen is not stable. Here VO2 (A) is 

also (        )(        ) different from VO2 (B). Both structures present a decrease in 

energy smaller than for VO2 (R). Another wave vector which generates other ordering is 

given by: k’= 1/9 [219] where one oxygen atom is not stable. Hence a vacancy will be 

created at that site resulting in VO2 (B). Hiroyuki Horiuchi et al [21] describe the 

interatomic distances of the oxygen atoms on the shared faces and edges of VO6 

octahedra which are generally smaller than those of the oxygen atoms at the shared 

corners while the V-O distances of oxygen atoms on the shared corners are smaller than 

those of the oxygen atoms on the shared faces and edges. These interatomic distances 

are clear for V7O13. The O-V-O angles of oxygen atoms on the shared faces and edges of 

VO6 octahedra are generally smaller than those of oxygen atoms at the shared corners. 

The mean V-O and O-O distances for VO6 octahedra of VnO2n-1 are listed in the table 2.4.  
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Table 2.4: Interatomic distances and angles of the mean V-O and O-O distances [21] 

  V2O3 V3O5 V4O7 V5O9 V6O11 V7O13 IVO2 II VO2 

Mean 

of V-O 

(Ǻ) 

OCT1 

OCT2 

OCT3 

OCT4 

2.010 1.999 

2.018 

1.9777 

1.974 

1.969 

1.969 
1.951 

1.964 

1.967 
1.955 

1.964 

1.959 
1.942 
 
1.947 

  

        1.937 1.925 

Mean 

of O-O 

OCT1 

OCT2 

OCT3 

OCT4 

2.832 2.794 

2.849 

2.765 

2.786 

2.752 

2.776 

2.762 

2.743 

2.774 

2.762 

2.744 

2.757 

2.743 

2.753 

  

        2.728 2.721 

Svo OCT1 

OCT2 

OCT3 

OCT4 

2.2 5.6 

2.1 

5.8 

3.2 

6.2 

4.2 

1.0 

6.9 

4.5 

2.2 

6.9 

5.0 

2.5 

1.2 

  

        5.9 0.3 

Soo OCT1 

OCT2 

OCT3 

OCT4 

3.9 5.9 

4.1 

5.4 

3.4 

5.2 

3.5 

2.9 

5.4 

3.8 

2.8 

5.1 

3.5 

2.8 

2.8 

  

        3.0 3.1 

Sovo OCT1 

OCT2 

OCT3 

OCT3 

OCT4 

6.6 11.7 

5.2 

11.5 

5.4 

11.4 

6.7 

3.5 

11.7 

6.6 
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4.3 

3.5 
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The mean values for the pairs of the octahedra are classified under OCT1 for V1and V2, 

OCT2 for V3 and V4, OCT3 for V5 and V6, and OCT4 for V7 and V8. The mean values 

V-O and O-O distances are much smaller in VO2 than any other phases. It was noted 

that the arrangements of oxygen atoms for VO2 are denser comparing to V2O3. This can 

be explained as the size of the octahedra is affected by the strong V-V interactions 

across the shared faces and edges especially in OCT1 and OCT2 which affect also the 

octahedral configuration of oxygen atom around vanadium atoms. This effect is 

expressed by soo, svo and sovo by the following equations: 
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Where Ai, Bi and Ci are the O-O, V-O, distances and O-V-O angles in each octahedra, Ā 

and  ̅ are the mean values and the summations in the equations are calculated for all 

combinations. soo (distortion from regular oxygen octahedra), svo and sovo (consider 

distortion and displacement of vanadium atoms form the centers of the oxygen 

octahedra) represent the standard deviations of the distances of O-O and V-O and 

angles O-V-O for each octahedron. The change of soo becomes slightly smaller and those 

of svo and sovo become greater for the phase with larger n values. Smaller expansion and 

distortion of oxygen octahedra with great displacement of vanadium atoms from the 

center of octahedra are observed for wide structure V6O11 or V7O13. But we observed 

greater expansion and distortion for narrow structure V3O5 or V4O7 with smaller 

displacement of vanadium atoms. The displacement of vanadium is small for high 

temperature VO2. However low temperature VO2 presents great displacement of 

vanadium atoms though the distortion of vanadium of octahedra is small. Alder and 
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Brooks [22] show that the absence of electron correlation accounts for a first order 

transition giving a quantitative relationship between the Tt and the energy gap. See 

figure 2.6. 

 

                                                                           ⁄                                                                             

 

Figure 2.6: Conductivity versus temperature 

 

However this is too large relative to Tt= 341K eliminating cation clustering as driven 

mechanism responsible of the transition. Several theories have been used to predict the 

conductivity dependence temperature. Here we plotted σ~1/Tn with 1<n<5. We can see 

that the curves display the same data between 100 and 800K. Only n1 cannot be fitted 

with any straight line. Hence no single activation energy is present. The curves T-1/2,    

100 200 300 400 500 600 700 800

0.000

0.002

0.004

0.006

0.008

0.010

c
o

n
d

u
c
ti

v
it

y


 c
m

-1
 

Temperature K

 n=1

 n=2

 n=3

 n=4

 n=5

 

 

 

 



22 
 

T-1/3, T-1/4give good fit to straight lines with two segments.  Temperature dependence 

on narrow band gap semi-conductor factors are thermal expansion and interactions of 

phonon-electron which can be calculated by the EPP (Empirical Pseudopotential 

Parameters) using Varshni`s equation:  

                                               
   

   
                                                                 

α, β are fitting parameters constants, characteristic of a given material which predicts 

quadratic temperature dependence at low temperature. However the phonon 

contribution to the energy shift coincides with  the equation: 

                                                          [  
 

   (  ⁄ )   
]                                                   

Where           are constants and   describes the average phonon frequency and the 

energy threshold decreases linearly by a term proportional to an average Bose Eistein 

statistical factor for phonon emission and absorption. KP O`Donnell et al. [23] advocate 

a new equation as a direct replacement of Varshni equation using the vibronic model of 

Huang and Rhys to derive expressions for the thermodynamics functions as: 

                                              〈  〉 [    (
〈  〉

   
)   ]                                                     

S is a dimensionless coupling constant, 〈  〉 phonon energy,        is the band gap at 

zero temperature. The entropy and enthalpy of formation electron hole pairs can be 

obtained considering that the standard Gibbs energy is identified to the band gap 

energy [24-25] giving: 
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For high temperature:  
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                                                                 →               -2Sk                                              Eq.2.21 

 (Si: Eg=1.17 eV), S =1.49,〈  〉       Mev. The temperature dependent electron-

phonon interactions determine effectively semiconductor band gaps for the band gap 

reflect the bond energy. An increase in temperature induces changes in chemical 

bonding as electrons are promoted from valence band to conduction band. The lattice 

phonons are generally small energies and are excited in large numbers at moderated 

temperature. The lattice contribution expression is given as: 

                                                                            [
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Which is the mean thermal energy of the sample depending on the bulk modulus B, and 

lattice volume V0 and      . For a single effective mode, the mean thermal energy is 

given by: 

                                                                        ̅                                                               

(Lattice dependence temperature) 

The high temperature tetragonal rutile structure presentsO-2with three coplanar bear 

neighbor cations and the anion pπorbitals are directed perpendicular to the plane. The 

electrostatic Madelung energy EM for the effective charge ions is observed to stabilize 

the O2- : 2p orbitals relative to V4+: 3d orbitals even after ionization of the cation and 

electron affinity of the anion which reduce the stabilization energy. Figure 2.8 a) 

presents energy levels for ionic V4+ and O2- with crystal field splittings of the 3d band 

and 2p levels. The 3d1 energies of V4+ are split into two less stable twofold degenerate 

states of eg symmetry and more stable threefold degenerate states of t2g symmetry. The 

two eg orbitals are split into two dσ orbitals and the three t2g orbitals into dπ orbital 

which mix with the anion pπ and d// orbital parallel along the cr axis. 3d electrons in 
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oxides are generally itinerant, or localized, depending on the strength of the interaction 

which is the transfer energy, giving by: 

                                                 (      )   (     )                                                                           

Where   is the perturbation of the potential at Rj due to the presence of a near neighbor 

cation at Ri and ε is the electron energy.  

2.1.6 Theoretical models for correlated metals and Mott insulators in d-electrons 

systems  

The transition metal ion constructed via atomic orbitals is presented as eigenstates 

under spherical potential. When the solid is formed, the atomic orbital forms bands due 

to the periodic potential of atoms. The bandwidth is basically determined from the 

overlap of two d orbitals on two adjacent transition metals each and the overlap comes 

from the tunneling of two adjacent so-called virtual bound states of d orbitals. Due to 

the small radius of the wave function, compared to the lattice constant in crystals, d-

electron systems have in general smaller overlap and hence smaller bandwidths than 

alkaline metals. The overlap is often determined by indirect transfer between d orbitals 

through ligand p orbitals. This means that the bandwidth is determined by the 

hybridization of the d wave function at a transition metal atom and the p wave function 

at the adjacent ligand atom if the ligand atoms make bridges between two transition-

metal atoms. Because of this indirect transfer through ligand atomic orbitals, the d 

bandwidth becomes in general even narrower. Another origin of the relatively narrow 

bandwidth in transition-metal compounds is that 4s and 4p bands are pushed well 

above the d band, where screening effects by 4s and 4pelectrons do not work well. This 

makes the interaction relatively larger than the bandwidth. In any case, because of the 

narrow bandwidth, the tight-binding models constructed from atomic Wannier orbitals 

provide a good starting point. The fivefold degeneracy of the 3d orbital (L=2: Lz =2, 1, 0, 

1, 2) with a total of tenfold degeneracy including spins, is lifted by the anisotropic 

crystal field. In transition-metal compounds, a transition-metal atom is surrounded by 

ligand atoms to help in the formation of a solid through the increase in cohesive energy 
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by covalent bonds of the two species. Because the ligand atoms have a strong tendency 

towards negative valence, the crystal field of electrons in the direction of the ligand 

atom is higher than in other directions. When a transition-metal atom is surrounded by 

ligand atoms with an octahedron configuration, the eg orbital has anisotropy with larger 

amplitude in the direction of the principle axes, namely, toward neighboring ligand 

atoms. The basis of these orbitals may be expanded by dx2-y2 and d3z2-r2 orbitals. See 

figure 2.7 b). On the other hand, the t2g orbital has anisotropy with larger amplitude of 

the wave function toward the other directions and it is represented by the dxy, dyz, and 

dzx orbitals. For tetrahedral surroundings of ligand ions, eg orbitals lie lower than t2g 

which is in contrast to cubic symmetry or octahedron structure. Only a few bands 

(formed from 3d orbitals from compounds such as Ti, V, and Cr) are occupied by 

electrons per atom. Therefore the t2g orbital (more precisely, the t2g band under the 

periodic potential) is the relevant band for low-energy excitations in the case of the 

above mentioned octahedron structure because the Fermi level crosses bands mainly 

formed by t2g orbitals. By contrast, in transition-metal compounds with heavy transition 

metal elements such as Cu and Ni, the t2g band is fully occupied far below the Fermi 

level, and low-energy excitations are expressed within the eg band, which is formed 

mainly from eg atomic orbitals. In the case where t2g or eg orbitals are filled partially, this 

generally leads again to degeneracy of the ground state, which frequently induces the 

Jahn-Teller effect to lift the degeneracy [26]. The interaction of dxz and dyz orbitals with 

the pz orbitals of oxygen ions leads to the formation of coordination (donor–acceptor) 

πbands, hence, the formation of π and π* bands by bonding and antibonding molecular 

orbitals in the macroscopic crystal. The π* band formed by antibonding π* orbitals is 

almost empty inthe monoclinic phase (at room temperature), being separated from the 

nearest filled band by a gap of 0.7 eV. The orbital of the vanadium ion is in the plane of 

the oxygen octahedron’s base and does not form bonds with oxygen ion orbitals due to 

the zero overlap integral with them [14]. However, due to the overlap of this orbital 

with a similar orbital of the vanadium atom at the center of the neighboring 

octahedron’s base, an additional 3d|| band split in the low temperature (monoclinic) 
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phase into two subbands appears in the vanadium dioxide energy spectrum. The 

bottom subband is almost completely occupied by electrons; the upper subband 

separated from the bottom one by a gap of 2.5 eV is almost empty and it is also well 

above (~2.3 eV) the Fermi level. [27] 

 

 

Figure 2.7 Crystal field splitting of VO2 a) and atomic orbitals of VO2 b) [26] 

In the R phase, the t2g levels in the octahedral crystal field are further split into d// and 

П* levels in the R phase, comprising the electronic states near the Fermi level of the 

metallic state. Here, the d// orbitals are rather nonbonding, while the П* orbitals are 

strongly hybridized with the O 2p, state and hence lie higher than the d//level. In the 

insulating M1 phase, the pairing of the V atoms along the cR axis promotes the 3d-2p 

hybridization and upshifts the П* band off the Fermi level, as well as causing bonding-

antibonding splitting of the d// band as shown in the right panel of figure 2.8.  

a) 

b) 
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Figure 2.8: Electron band structure for tetragonal and monoclinic VO2 [27] 

 

Figure 2.9: T-x phase diagram for V1-xCrxO2 according to Marezio [28] 

The T-x phase diagram for V1-xCrxO2 is presented in Fig. 2.9. Two other distinct phases 

emerge, the insulating monoclinic M2 and the triclinic T phase, in addition to the 

aforementioned metallic R and insulating (nonmagnetic) M1 phases. Uniaxial pressure 

also gives rise to the M2 and T phases and leads to a similar phase diagram [29]. The 

exact mechanism by which the T and M2 can stabilize, was possible more directly by 

 

 

 

 



28 
 

applying a uniaxial stress in the (110) R direction. They observed that the M2 and M3 

phases are alternative phases which under a critical stress Sc ~100-300 bars appear small 

that the free energy  are extremely close to M1 at temperatures below the metallic rutile 

phase in pure VO2. The M2 phase represents two kinds of V. Thus it is clear that these V 

chains in M2 are Mott-Hubbard insulators. 

2.1.7 Metal-Insulator transition (MIT) 

2.1.7.1 MIT Models 

Oxides of the 3d transition series can be classified as they are metallic at all 

temperatures (TiO), semiconducting at all temperatures (NiO) or undergoing 

semiconductor ↔metal phase transition on heating through a critical temperature [30]. 

Further, it seems probable owing to the smallness of the splitting effected by the lower 

symmetry components of the anion field that two or more partially overlapping             

d-subbands are involved in the conduction for T >Tt. 

Metal-semiconductor phase transition can be described through different models:  

 Antiferromagnetic  state on cooling where the antiferromagnetic state of the material 

becomes metallic according to band theory where the exchange field associated with 

the long range magnetic order splits the half-filled band into a filled and empty 

subband separated by a gap providing Tt to be TN due to the vanishing of the 

intercationic exchange splitting. 

 Reduction in crystal symmetry where Goodenough attributed the non-metallic 

nature of the oxides is due to the existence of homopolar bonds between d-electrons 

on neighbouring cation pairs where the cations are displaced from their positions 

they occupied at T>Tt. The transition was classified as cooperative. This is 

interpreted as an increase in number of the cations per primitive cell on entering the 

displaced lower symmetry phase where the partially filled band is split into two 

subbands separated by a gap: the lower regarded as the bonding band and the 

upper band the antibonding band. The transformation of the structure through a 
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finite temperature with concomitant collapse of the bonding–antibonding gap shows 

that the low temperature phase is regarded as distorted for the high temperature. 

The stability of the distorted structure requires a decrease in electronic energy on 

entering this phase to dominate the strain energy which is in quadratic form in the 

distorsion. 

 Coulomb correlations between carriers are used to describe the nonmetallic ground 

states of metal-insulator transition. Frölich [31] demonstrated that the coulomb 

correlations were responsible of the establishment of Mott insulating ground state 

which turns the thermal ionization of the localized electrons into delocalized band 

states which leads to a cooperative process. For through screening effects, the 

ionization energy 2I become dependent on the existing degree of ionization the gap 

between the localized many electron states and the conductive continuum of band 

states decreases with excitation across it. As T→Tt, the gap decreases avalanches 

until at T = Tt and the screening provided by the already ionized electrons reduces 

the potential energy associated with the intracationic Coulomb repulsion U to a 

value comparable with the magnitude of the one- electron bandwidth W. I vanish 

(or becomes exceedingly small) and the population of the band states increases 

catastrophically, leading to a first-order phase transition into the metallic state. The 

second type of coulomb correlations can be explained as the establishment of the 

excitonic phase which involves the creation of a charge density wave coupling to the 

lattice causing therein instability and a resulting divergence in the static dielectric 

constant. These ideas conceived originally by Knox and Kohn [32-33] and developed 

by Jerome et al. [34] who demonstrate, in particular, the much less drastic 

(continuous) quenching of the electrical conductivity which is associated with this 

second-order phase transition. The excitonic phase is characterized either by an anti- 

ferromagnetic order or, in the case of strong carrier-phonon coupling by a lattice 

distortion; the realization of this latter possibility can change the order of the 

transition from second to first [35-36].  
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2.1.7.2 Density Functional Theory  

Various microscopic properties of solids have been calculated using the Density 

Functional Theory (DFT) allowing the computation of the total energy giving in terms 

of the functional of the density as: 

                ∫            
      ∫

         

|    |
                                 

The kinetic energy of the non-interacting system represents the first term, the potential 

energy of the crystal plus the Hartree contribution to the Coulomb interaction between 

the charges is the second term and the rest is the exchange and correlation energy term. 

The minimization of the Kohn-Sham equations which has the form of the one particle 

Schrödinger equations with a potential is given as:              

                                                     ∫
     

|    |
       

    
  

                                        

The static mean field of the electrons serving as a reference system yielding the correct 

ground state density is described where: 

                                                        ∑     |     |
  

 

                                                                 

Where       is the Fermi function. However, the DFT is only applicable in non-

interacting single particle systems for many body interacting system. Neville Mott 

presented a real space picture of the strongly correlated materials at low temperature as 

a collection of localized electrons bound to atoms with open shells. The excited 

configurations are scattered via internal degree of freedom (orbital angular momentum 

and spin) which propagate through a crystal incoherently and broaden to form bands 

called lower and upper Hubbard bands [37]. According to the band theory, if the 

density of states vanishes then the system should have even number of electrons per 

unit cell and thus have completely filled bands. On the other hand, an odd number of 

electrons per unit cell give partially filled bands and thus a metal. Three subgroups 
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describe the insulator behavior (which is understood as interaction of single electrons 

with the electrostatic field of the ions in the crystal).  Its interaction with the ions and 

the electron can be defined by an effective single particle Hamiltonian in the periodic 

potential of the ion: Bloch-Wilson insulator; For Pearls insulator, the electron-ion inter-

action produces lattice distortion that changes the periodicity of the crystal which in 

turn affects the electron transport. Anderson insulators are those in which the insulating 

behavior is produced by the interaction of independent electron with random lattice 

defects. The other main type of an insulator is the Mott insulator in which band theory 

and hence independent electron assumption fails. Mott insulators are characterized by 

correlated many-electron phenomenon and Coulomb interaction between the charge 

carriers. Mott insulators are generally classified as Mott-Hubbard, Charge Transfer (CT) 

and Mott-Heisenberg insulators. Strongly correlated materials, described by a simple 

Hamiltonian approach take into account few relevant degrees of freedom typically the 

valence electron orbitals near the Fermi level. The Hubbard Hamiltonian model is 

required to describe the electrons with spin directions σ ↑or ↓ moving with between 

localized states at lattices sites i and j. The kinetic energy and interaction energy are 

characterized by the hopping term tij and the local Coulomb energy U of repulsion. 

These terms compete due to the mobility of the electrons or the repulsion of the 

electrons each other localized on atomic different sites. The properties of a strongly 

correlated material describe by Hubbard model are function of the ratio U/W where W 

represents the bandwidth determined by the hopping tij.  

                                                    ∑      
      ∑   

 

                 
    

                                                

Where the density of the electrons at site i with spin σ is given by:   

                                                                 =    
                                                                                         

The quantum spin liquids (without breaking of symmetries) are generally observed in 

Mott insulators with ground state not smoothly connected to the band insulator. The 
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excitations of spins are fractional (spinons) with superconductivity in Mott insulators 

and non-Fermi liquid phenomena in correlated d electrons metals. The Anderson 

impurity model yielding the exact local Green function for local one-electron 

photoemission spectrum in DMFT is given by: 

                            ∑  
      

   

     
         ∑      

     
           

   

                       

Which describe the lattice`s site atomic degrees of freedom (first term), the remaining 

degrees of freedom are treated as a medium of electrons with energy levels  
      . 

Electrons hope in and out of the atomic site with the hybridization   energy of atomic 

c0,σ and the medium electron     
       . The hybridization function      capturing the 

ability of an electron to enter or leave an atom on a time scale 1/ω is given by: 

                                                            ∑
|  |

 

    
      

 

                                                               

Hence by introducing the local Green function of the correlated orbital, the DMFT 

provides an explicit approximation for   .  

                   

 ∫            
      ∫

         

|    |
                                      

Where T [ρ,G] is the kinetic energy of a system with given density ρ (r) and local Green 

function G which gives the probability amplitude required to create an electron with 

spin up and down at site i at a time τ` and destroy it at the same time τ is given by: 

                                                                     〈         
     〉                                                    

The Density of States (DOS) of electrons is generally given according to the local 

Coulomb interaction between them. When the electrons are entirely independent the 

DOS describe a free electron model having the form of a half ellipse with the level of 

Fermi located in the middle of the band. See figure 2.10 a). The weak correlated regime 
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presents weak potential U where electrons are considered as quasiparticles but the 

density of States still behaves as free electrons. See figure 2.10 b). 

 

 

 

 

 

 

Figure 2.10: Free electron model a) and weak correlated regime b) [37]. 

In strongly correlated metals, the spectrum exhibits a characteristic three peaks 

structure : the Hubbards bands originating from local atomic excitations, and 

broadening by hopping electrons away the atom and quasi particle peak near the Fermi 

level. See figure 2.11. 

 

 

 

 

 

 

Figure 2.11: Strongly correlated material [37]. 
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Figure 2.12:  Mott insulator states [37]. 

The fourth state figure 2.12 describes the Mott-insulator transition when the electron 

interactions are sufficiently strong to cause the quasi particles peak to vanish as the 

spectral weight of the low frequency peak is transferred to the high frequency Hubbard 

bands. Phase change in correlated electron system is utilized in Mott field-effect 

transistor (Mott FET). Mott phase transition present in correlated electron materials can 

be triggered under applied field electric or by photo and thermal excitations for 

potential optical switches. It has been explored for the first time in cuprate oxide 

channel materials and VO2 who attracted much attention recently due to the sharp 

transition metal-insulator with approximately five orders in single crystals. 

Experimental challenges with correlated electron oxide Mott FETs include fundamental 

understanding of gate oxide-functional oxide interfaces and local band structure 

changes in the presence of electric fields [38]. Understanding the electronic arrest 

mechanisms while de-coupling from structural Peierls distortions is of interest. A 

schematic phase diagram of a Mott insulator diagram is obtained. See figure 2.13. 
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Figure 2.13: Mott insulator phase diagram [38]. 

At low temperature the material has long range order according to the solution of the 

DMFT. The type of ordering is material and model dependent. The presence of 

hysteresis is due to the two distinct paramagnetic solutions bounded by the lines Uc1 

and Uc2. In equilibrium, a first transition order phase presents the cross of the two 

paramagnetic solutions. This first order transition terminates at a second order critical 

point where the material behaves with different crossover regimes which indicate the 

change in the material properties. The first regime presents the change from a Fermi 

liquid to a bad metal where the resistivity is anomalously large, while the second 

regime presents the properties of a bad insulator where the resistivity decreases as 

temperature increases. 
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2.1.7.3 Case of VO2  

The reduction of symmetry in VO2 was described as a non collinear pairing up of 

cations which are equally spaced in the metallic phase along the c axis. It appears as an 

ideal candidate of distorted material with a paramagnetic susceptibility at low 

temperature. According to Frohlich model, Coulomb correlations cause a localization of 

d electrons on the body centered tetragonal lattice; the lowering in energy is achieved 

by electrons on successive c-axis cations which adopt antiparallel spins–pair wise 

antiferromagnetic order; the distortion of the lattice resulting in the formation of cation 

pairs is due to the cation valency and to the reduction in screening of the cation-anion 

interaction upon localization; the increase in overlap of the wave functions of the 

localized electron result from the displacement leading to pair wise delocalization of d-

electrons into a homopolar bond. It was hence concluded that the transition in VO2 is an 

excitonic phase change of first order according to the strong electron-lattice interaction 

[39]. This latter was described through the local density approximation across the 

metal-insulator transition describing the monoclinic structure as a distorted ground 

state and an almost open gap to charge excitations which doubles the cell size through 

V-V pairing and brings the number of structural degrees of freedom to 13. The metal –

insulator transition in VO2 was accounted to the strengthening of the vanadium d-d 

bonds which reorganize their state near the Fermi level hence denoting VO2 as a band 

insulator. However the strong relation of VO2 with the Mott insulator V2O3 with 

consideration of the spin excitations below the charge excitation gap of 0.6eV similar to 

singlet to triplet on vanadium dimers or deeply bound triplet excitons described VO2 

states according to Mott-Hubbard model. Grinolds et al. [40] used a four dimensional 

ultrafast electron microscopy of phase transitions describing through the imaging and 

diffraction the metal-insulator phase transition of VO2 which is described as a 

correlation assisted Peierls transition or a renormalized Peierls insulator at low energies 

and a Mott-Hubbard insulator at high energy. They observed that the transition occurs 
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as a result of nonthermal excitation and that both the electron and optical pulses must 

be coincident.  

2.1.7.4 Phase Transition Thermodynamic 

We consider a binary system V-O which can exchange energy and matter with the 

environment. Considering the pressure is kept fixed, we denote the specific enthalpy ζ 

and the energy flux ῶ. The principle of conservation of the energy gives:  

                                                    
  

  
    ̅                                                                                   

Q represents the space confinement. For each component with concentration ci and flux 

density   ̅ (i=1, 2). The conservation of mass without chemical reactions is given as: 

                                                          
   
  
    ̅    ̅                                                                                       

Let denote the S the specific entropy, T the absolute temperature and μ1, μ2 the 

chemicals potentials reactions of the two components of the system. The non-

equilibrium thermodynamic system assumes the validity of Gibbs formula defines as: 

                                              
  

 
 
  

 
    

  

 
                                                Eq. 2.37 

Hence :         
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The entropy balance equation is given by: 
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Where the entropy flux is given by:  

                                                           ̅̅ ̅   
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And the entropy production rate is: 
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The second principle of thermodynamic is generally described by the Clausius-Duhem 

inequality where the irreversible process is satisfied for σ>0 and for a reversible process 

σ = 0. These equations are valid for a homogeneous system (solid, liquid or gaseous). 

                                                                      ∑  ̅

 

   

  ̅                                                                              

This equation describes a typical thermodynamic non-equilibrium system with two 

states of variables  
 

 
     

 

 
 . By introducing the Onsager reciprocity relations, through 

a symmetrical L (u) positive tensor, we have: 
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For heterogeneous systems let take as an example α and β, we consider two 

neighboring zones separating by a curve I. A first order phase transition takes place 

with the discontinuity of ζ and c across the surface with the jump conditions satisfied 

by: 

                                                                         ̅̅ ̅̅   ̅̅ ̅                                                                        

                                                                      ̅    ̅̅ ̅                                                                        

The above equations are available on the interphase between the two phases denotes S 

where  ̅                                             According to the free Gibbs 

formula, S=S (ζ, c), we denote his conjugate function S* (       ), we have: 

                                                 
 

 
   

 

 
                                                                              

On the physical interphase,  
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                                                     S dS*=0                                                                               Eq.2.48 
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Remark that 
 

 
                             . The transition temperature can be 

obtained between the transition temperatures of the pure components. In the case of 

VO2 the presence of an intermediate temperature denotes eutectic point or tricritical 

point with the competition of two solid phases with distinct crystal structures. See 

figure 2.14. 

 

Figure 2.14:   Competition between two solid phases [33]. 

Considering the contribution of electrons and lattices during the phase transition near 

the metal to insulator transition for Fermi statistics, the entropy is given as: 
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This is valid over all electron states. At low temperature, in the case of semisonductor,  
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N and P represent the number of electron and holes per mole. In the case of metallic 

state, N= nV = 3.38 10-17electrons /mole.  In this section the value of entropy is 

negligible compared to the latent heat = 1kcal/mole. 

The contribution of lattice thermodynamic is approximated through bose statistics such 

that: 

                                   ∫       [    (  
 

 
)          ]

 

 

                                           

It was showed that a 20% change in the lattice entropy would account for the entire 

latent heat while the electronic entropy contribution (460 cal/mol) is less than half of 

the latent heat (1020 cal/mol) which is not enough to cover the whole transition phase 

of the semiconductor VO2 [41]. 

 

2.1.8 Vanadium Dioxide phases 

The lattice symmetry is the driven force of the competition between several phases 

where the metallic phase lattice of vanadium oxide can 'fold' in different ways while 

cooling, so what people observed was different types of its folding [42]. Amongst the 

different phases of vanadium oxides, we have VO2 (B) which is a metastable monoclinic 

form of vanadium dioxide with a space group C2/m and a crystal structure isotopic 

with Na0.20TiO2. It can be used as active materials into the aqueous Lithium Ion Batteries 

with high energy density of the nanostructures 74.9 mAhg-1and better cycling behavior 

in mild aqueous electrolyte [43-44].VO2 (B) represents the more promising candidate 

anode material for aqueous Li-ion battery on the basis of proper electrode potential and 

tunnel structure with intercalation and deintercalation in reversible Li-ion battery. 

Depending of its morphology, it is possible to make an ideal host for small molecules or 

ions which allow the realization of region-dependent surface reactivity. Also the strong 

mechanical structure can sustain water soakage for a long period of time in the cycling 

process. VO2 (A) is the metastable tetragonal structure which can be transformed to 

rutile structure in an irreversible manner via annealing process [13, 45]. The self-

assembly of nanostructures gives properties as coupling effect and synergistic effect. 
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The growth direction is generally determined by relative stocking rate at various crystal 

faces. The longest bond (V-O) generally gives a short crystallinity with slowest growth 

direction while the shortest bond along [010] gives high crystallinity with a faster 

growth direction. A striking feature of the monoclinic phase VO2 (M) is the presence of 

cation-cation pairs along the am = 2cr axis which alternate with V-V separations being 

2.65 and 3.12 Å in place of the regular 2.87 Å spacing in the tetragonal phase just above 

the tricritical temperature. The different polymorphic structures of VO2 with lattice 

parameters are given in the table 2.5. 

Table 2.5 Polymorphic structures of VO2 [45] 

 

2.1.9 Phase Diagram of VO2 

V-O system equilibrium solid phase at 0.1 MPa hydrostatic pressures is given below 

presenting the different atomic percentage of vanadium and oxygen. It is a binary two-

component system which summarizes the effect of temperature on the binary phase 

vanadium and oxygen. VO2 presents tetragonal β and monoclinic α phases above and 

below 67 deg C with a melting temperature of 1542 deg C with 61.42 at% of vanadium 

and 38.58 at% of oxygen. The crystals structure and lattices parameters are listed in the 

table below showing the lattice parameters, phases and atomic percentage of oxygen for 

Polymorphic 

structures / 

space group 

A B C β ° 

VO2(M) / P21/c 0.576 0.542 0.538 122.6 

VO2(B)/ C2/m 1.203 0.369 0.642 106.6 

VO2(R)/ 

P42/mnm 

0.455 0.455 0.288  

VO2(A)/ 

P42/nmc 

0.844 0.844 0.768  
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different vanadium phases. According to Gibbs phase diagram rule, the degrees of 

freedom are given by:  

                                                                                                                                                    

Where C is the number of components and P is the number of phases. For P fixe: 

                                                                                                                                                    

For F = 0, at most three coexisting phases for one single eutectic or peritectic 

temperature. The Hume-Rothery Rules for substitutional solution which describes the 

crystal structures of the two components are the same to form a continuous series of 

solids solutions. The internal free Gibbs energy of formation of the oxide VO2 can be 

described by the reaction: [46]  

            V+O2 (g, 1atm)                                                                             VO2                                 Eq. 2.55 

Where the relative partial free energies of oxygen is given by: 

                                            
       

  

 
∫        
 

 

                                                                          

Here R is the gas constant; PO2 is the oxygen and vanadium function of C and T which 

represents the equilibrium pressure over the oxide. The description of the oxygen in 

equilibrium with metals, where extensive dissolution of oxygen takes place, is given by 

a more generalized Sieverts equation as below: 

                                                                       
    

 
                                                        

Where f(C) and g(C) result from the thermal and configurationally entropy; h(C) is the 

relative partial enthalpy of the gas dissolution and g (C) is generally given by: 
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Where ε is correlated to the stoichiometry. For a bcc structure, ε=3 rather 1 for a fcc 

structure. the best combination of determining the α phase and the α+β are best 

described in the light of the integral constraint and pressure continuity at the phase 

boundary α and α+β. Vasil`eva and Seregin [47] report in polynomial form the 

isotherms of the relative free Gibbs energies: 

                                                       
 

  
   

 
         

 
                                                  

Where p is in atmosphere, C is the O/V ratio,   

   
 is the O/V ratio at the phase 

boundary and T is in K. The equilibrium pressures over the two phases α+β can be 

extracted: 

                                                            
         

 
                                                              

The composition temperature relationships of the phase boundaries can be expressed 

as: 

                                                             
                                                                                   

The p-C-T relationship has been studied in many V-O systems V4O, VO and V. The VO2 

system can be deduced describing the thermodynamic of the oxide [46]. 

The dissolution of the oxygen in the vanadium metal is given through the Sieverts law: 

                   ½ O2(gas)                                                                         O diss ( V)                Eq. 2.62 

The evaluation of the    
 (VO2) can be deduce from the one of    

 (VO) knowing that 

the only difference will be the factor ½ bacause the vanadium dioxide requires one 

atom of O2 to be formed rather ½ to form vanadium monoxide.  
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Figure 2.15: V-O Phase Diagram at 0.1 MPa [46, 48] 

The high temperature heat capacity and enthalpy of phases in the V-O system as shown 

in figure 2.15, is given corresponding to V2O4 [49]. 
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2.1.10    Doping effects 

VO2 semiconductor transition n-type is too high for many practical applications and so 

doping lower the transition temperature to make the material suitable for many 

important applications. For example the substitution of V atoms by W large induces 

distortion of the structure with breaking of the homopolar bond V4+-V4+ to form V3+-

W6+and V3+-V4+and promotion of transition [50] is not the first time physicists have 

lowered the transition temperature of VO2 by adding other materials a technique 

known as "doping. But Natelson said hydrogen doping is unique in that it is completely 

reversible [51]. To remove the hydrogen, the material simply has to be baked in an oven 

at moderate temperature. On the applied side, there may be a number of applications 

for this, like ultrasensitive hydrogen sensors. But the more immediate payoff will likely 

be in helping us to better understand the physics involved in the VO2 phase transition. 

Additionally, Andreev et al [52] studied the temperature dependence of the electrical 

conductivity of HxVO2 thin films showing that the electrical conductivity increase with 

the increase in hydrogen content x and a decrease in the temperature according to the 

equation: 

                                                                    
 

 
                                                                                        

And they assume that the electrical conduction in heavily doped vanadium dioxide is 

provided by hoping of small radius polarons. This is in accordance with Redfield`s 

results [53] showing that the Cr doped Vanadium dioxide presents a rutile structure at 

high temperature while at low temperature it is orthorhombic with monoclinic 

symmetry. This is in accordance with Marezio et al [28]. The transition temperature 

takes place in a lower temperature due to the exact ionization state of Cr ions in the 

crystal (Cr+3). The effect of high ionicity was demonstrated to reduce the number of 

carriers for example in V-Cr-V or V-Ti-V bands and to reduce the extension of the 

overlap of the a1g wave functions along the vanadium atom chains. Contrarily the effect 

of doping can be opposite according to the concentration of the dopant. It has been 

observed in TiO2 doped VO2 that the transition region is broaden showing a mechanical 

 

 

 

 



46 
 

effect due to the coexistence of both phases. Hence TiO2 inhibits the distortion of VO2 

phase which has an effect of hydrostatic pressure causing the increase of the transition 

temperature. Permanent erasable holographic storage on VO2 thin films utilizes change 

in optical properties of the material when it passes through the transition. This 

application relies on the coexistence of both phases at a single temperature which is due 

to mechanical strains. Another application relying on the transient temperature profile 

is electron beam recording medium. Some materials present large temperature effects 

on VO2: Tungsten dopant W, followed by Molybdenum Mo, then Ta and Niobium. 

According to [54], the dynamics range changes quickly for a low doping level and the 

transition temperature Tt moves slightly while for x~ 0.02 it is possible to get Tt at           

-30 º C giving the best range for passive solar building applications. 

Table 2.6: Transition Temperature vs composition for doped VO2 [12]. 

M    
  

 
 

  
      

x for Tt= 310K σ/σ0 at Tt 

Ta -5 to -10   

Nb ~ -8 0.04 < 10 

Mo -12 0.025 100+ 

W -21 

~-28 

~0.014 

~0.010 

100 

 

 

2.2  Physical Properties of vanadium dioxide 

2.2.1 Electronic properties  

Current technological revolution influenced by the semi-conductors, present enormous 

advances in electronics and computer science via the best understanding of the 

properties of semi-conductor. They have great impact on the electronic structure of the 

solids. The identity of constituents’ atoms gives explanation and prediction of the 

properties of the semi-conductor. VO2 are materials which belong to the family of smart 

materials that react to temperature variations, electric or magnetics field and or pressure 

with narrow electron bands. Their ability to be electrons strongly correlated systems 
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allows the fabrication of microelectronics systems showing that the phase transition is 

size dependent. Phase transitions are often associated with large changes in the 

electrical, optical and magnetic properties [55]. The Metal Insulator Transition is 

generally affected by the grain size, the defects, the minor stoichiometry inclusions and 

the substrate temperature. Competition among phases is generally obtained through 

light illuminations which initiate the phase transition at moderate intensity or drive 

large optical nonlinearities. It was pointed out that lower vanadium oxides and 

titanium behave like metals. Transition metals at the Neel temperature were reported 

for Ti2O3, VO, V2O3 and VO2 showing the electrical conductivity measurement due to 

the existence of a conduction band of t2g orbitals. Typical conductivity curve shown in 

figure 2.16 presents transition temperatures from conductivity measurements spread 

out over a range of temperature. Above the temperature transition, the metallic state 

shows positive temperature coefficient of resistance typical of metal. TiO was found to 

be a metal over the whole temperature range while for V2O3 and VO; the transitions 

were very abrupt with no measureable time and temperature dependence. In the case of 

TiO and VO which are rock salt structures, the connection between each cation and its 

twelve nearest neighbor is due to the overlapping of the t2gorbitals which are partially 

filled bands in the metallic state. The band is split into two set of bands: one set spin up 

and one set for spin down. In the case of VO each set of bands contain three lower states 

per atom which are full and three higher states per atom which are empty. Hence VO is 

an insulator below transition temperature. In TiO the lower bands are only two thirds 

filled so TiO shows no transition to an insulator but VO2 is much more complicated for 

reasons of the structure and because the transition in conductivity occurs even though 

the t2g orbitals are partially filled. A more general point of view has been suggested by 

Anderson and is based on the observation that antiferromagnets which involve indirect 

exchange are insulators. Two processes in competition are suggested: the correlation 

effect which tends to localize the d electrons and which is aided by setting the cation 

spins in an antiferromagnetic alignment and the tendency of electrons to delocalize 

themselves by spreading into a band and thereby gaining kinetic energy. These two 
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processes are fairly energetic which are indicated by the conductivity change of a factor 

106 in VO and V2O3 at the phase transition. VO2 oxide`s electrical transition is 

accompanied only by a crystallographic distortion from body-centred tetragonal (T > 

Tt) to monoclinic (T < Tt) symmetry; the reduction in symmetry derives from a 

noncolinear pairing up of cations which for T >Tt, are equally spaced along the 

tetragonal c axis. It is paramagnetic for T >Tt, exhibiting for T <Tt, a temperature- 

independent susceptibility which increases at T, to a temperature-dependent value 

deriving from itinerant (conduction) electrons of low mobility candidate for the 

distortion model provided the existence of a paramagnetic susceptibility . In this 

connection there are two possibilities, namely Van Vleck (high frequency) 

paramagnetism deriving from (a) the component of electronic angular momentum 

perpendicular to the axis of the cation pairs, and (b) a departure in spherical symmetry 

of the anions due to possible covalency effects or to polarization by the cation field. The 

magnitudes of these contributions must, of course, be sufficient to dominate the 

diamagnetism of the system.  

 

Figure 2.16: Conductivity change of vanadium dioxide and titanium function of 

reciprocal temperature [55]. 
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2.2.2 Optical Properties 

Optical methods are emerging as primary probe of correlations [56]. The infrared 

properties in the VO2 films are consistent with a 0.5 eV gap in the insulating phase and 

a Drude like feature in the metallic regime. During the metal-semiconductor transition, 

the gaps filled gradually taking strength from various high energy electronic excitations 

and present an isosbestic point in the optical conductivity. See figure 2.17. The isosbestic 

point at a frequency of 11,500±125cm-1is defined as the location of equal conductivity 

for all spectra obtained at different temperatures [58].  

 

Figure 2.17: (a) Optical conductivity of VO2 as a function of frequency for various 

temperatures. (b) Images of near-field scanning amplitude over a 4 mm area showing 
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the insulating and metallic domain structure and how it develops through the transition 

regime. (c) Optical conductivity of the metallic domains extracted from a modified 

effective medium analysis. (d, e) The relaxation rate and effective mass vs. temperature 

[57]. 

The importance of electron correlation is shown with the divergence of the effective 

carrier mass and a pseudo-gap like structure in the relaxation rate which is a signature 

of the Mott transition. The changes in optical constants during phase transition was 

described through the Maxwell`s electromagnetic theory through the expression: 

                                                                        
     

    

   
 
 
  

 
                                                            

Where M is the molecular weight,    is the density,   is the polarizability, n is the 

refractive index N and    are the Avogadro`s number and vaccum permittivity 

respectively. This formula show that the refractive index increases with ion 

accumulation density and ion polarisability. The polarization occurs when d V-Ois less 

than the sum of the radii V4+ ion and O2-. However, in the case of VO2at high 

temperature above Tt, [VO6] becomes tetragonal in structure and dv-o equals 0.194nm, 

very close to R v-o. Therefore, the polarizability of monoclinic VO2 is larger than that of 

tetragonal rutile VO2. As the ion accumulation density is similar for these two different 

structures, the refractive index of VO2 decreases when VO2 changes from monoclinic 

structure at low temperature to tetragonal rutile structure at high temperature due to 

the thermally induced phase transition [59]. Nanoparticles present a strong surface–

plasmon resonance which dominated the optical response that is absent in the bulk. The 

resonance is due to collective oscillation of the electron plasma which can directly 

couple to light in a dielectrically confined geometry. The large absorption coefficient at 

the surface plasmon frequency can be calculated from the classical Mie theory formula 

for the polarisability of a spherical particle for particles sizes much smaller than 

wavelength of light. In the absence of damping the polarisability diverges when the real 

part of the dielectric constant equals -2εm where εm is the dielectric constant of the 
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surrounding medium. This singularity which relaxed in the presence of damping can be 

observed only when the nanoparticles are in the metallic phase in which the real part of 

the dielectric constant is negative. In that regard, Nano-photonics Au-VO2 obtained onto 

Corning glass substrates with an average films thickness of 160 ± 3 nm was synthesized 

by the Off-axis XeCl pulsed laser ablation configuration [60-61]. A nonlinear optical 

phenomenon observed experimentally in noble metal nanocomposites was successfully 

elucidated by percolation phenomena, power law or universal critical exponents and 

renormalization theory which is strongly induced by the local electric field within the 

metallic nanoparticles. The nano-gold surface plasmon wavelength approximately 648 

nm below Tc presents a shift to 603 nm above Tc towards the blue region. This confirms 

the tunability of the surface plasmon frequency via an external temperature stimulus. 

Hans W. Verleur et al. [62] studied the jump in the resistivity versus temperature in VO2 

crystals. They show that the optical properties occur with few degrees of the transition 

temperature and that the optical properties are relatively insensitive to temperature 

well above or well below. Recently,  Maaza et al. [63] reports on the ultrafast optical 

limiting in the IR regime of pulse laser deposited VO2 nanostructures more specifically 

at 1.064 μm. They described that the reversible optical transition would be translated as 

a significant reversible modulation in the refractive index dielectric constants where the 

temperature dependence of the standard real and imaginary parts can be expressed as:  

                                                                                   

                                             
     

       ⁄                                                     

                        ∑[
[     

 ]

[   
         ]

⁄ ]

 

   

                                                       

                                          
                                                                                 

While ε∞+ε1(ω,T)+ε2(ω,T) is the Lorenz component describing the semiconducting state, 

ε3(ω,T) is the Drude part; the driving component of the metallic state. The temperature, 

T, and frequency ω dependence of the real part of the refractive index, n(ω,T), is 
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determined by the dominant physical processes. The limit dielectric constants ε(0) and 

ε(∞) for bulk VO2 are 43 and 10.0 in the dielectricregime, respectively, and 18.3 and 9.0 

in the metallic regime. In the near infrared, ε(ω) has values of approximately 8.64 and 

5.7 inthe dielectric and metallic states respectively. By considering not only the 

dominant physical processes but also higher order processes, impurities and defects, 

the temperature dependance of refractive index was giving according to Lorentz-

Lorenz formula:  

                        [
             

           
⁄ ]            

       

      
                                        

ρ =N/V represents the number density of oscillators per unit volume,    is the 

polarisability. The refractive index derivative was described with the contribution of 

two factors such as the thermal expansion with changes in volume and another factor is 

the temperature change versus polarisability. The negative value of dn/dT in the VIS 

and IR spectral regions shows that volume expansion is the dominant factor of optical 

phase change.  

                                                                           

Figure 2.18:   Thermal modulation of the real part of the refractive index n(ω,T) of the 

pulsed laser deposited ~400 nm coating of VO2 onto quartz glass substrate deduced 
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fromellipsometry investigations at 5 different temperatures; T=30, 60, 65, 70, 73, 75 and 

85 °C. The inset figure shows a typical atomic force microscopy surface topography of 

the thickest film i.e. 1204±1 nm.[63] 

The very large modulation of the refractive index with temperature see figure 2.18, 

shows that VO2 allows a natural optical limiting response. This was confirmed with the 

log-log variation of the optical transmission versus the laser input energy where the 

optical emission of VO2 coating efficiency was shown to be thickness dependence with 

1204 nm which presents the most operational size within the standard laser damage 

protection regulations. See figure 2.19. In addition to the solid state aspect of VO2, the 

unique broad spectral modulation of VO2 over all NIR to the FIR spectrum makes VO2 a 

good optical limiter material. 

 

Figure 2.19: Log-log optical transmission /laser input energy of 4 different pulsed laser 

deposited VO2 nanocoatings onto quartz-substrate with different thicknesses.[63] 
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Cavalleri et al. [64] demonstrate that the photon-induced phase transition can with 

analogy to chemical substitution favor relaxation of the system into a competing state. 

They used time resolved spectroscopy probing new physical pathways of VO2 phase 

transition and they observed  a prompt drop in the transmission of the sample 

immediately after laser excitation which was interpreted as the effects of holes created 

in the valence band of d symmetry of vanadium while electrons are promoted to the 

conduction band, formed by orbitals of mixed p-d character and therefore less evident 

at the V L edges. These V L edges are more sensitive  to the holes of purely d symmetry  

than to electrons in the conduction band. According to Lysenko et al. [65], the alteration 

of the material induced by light was as fast as the  laser pulse duration ~100 fs 

depending on the pump power. The observed phase transition was associated with the 

optical interband transition with a competitive process between thermal and pure light 

induced intermediate exciton state possible in insulator phase. Ultrafast optical 

spectroscopy is of particular interest to interrogate a metastable phase wich may only 

exist for a few ns before thermal fluctuations drive the system back toward the true 

groundstate.  

 
Table 2.7: Basic properties of VO2 [66] 

 

 Valence 
3d 
electron 
(number) 

crystal 
structure  

Tc 
(K) 

Transport 
T<Tc 

Magnetic T<Tc Optical 
Band 
gap 

V2O5 V5+(3d0) Orthorhombic 
layered 

 n-type   ~2eV 

V6O13 2V5+ + 
4V4+ 
(3d0.66) 

Monoclinic 
layered 

145 p-type Antiferromagnetic 
TN=55K 

? 

VO2 V4+ (3d1) TiO2 T>Tc 
Monoclinic 

340 n-type Non magnetic ~0.7eV 

V2O3 V3+(3d2) Al2O3 T>Tc  
Hexagonal 

168 n-type Antiferromagnetic 
TN= 168 K 

~0.2eV 
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Litao Kang et al. observed that the finite size effects play a very important role in the 

energy band structure and subsequent shift of absorption edges [66]. Additionally the 

morphology of the grains affects the optical properties which were observed through a 

dependence of the increase of porosity with decrease of absorption coefficient, 

refractive index and extinction coefficient. P J Hood et al. [67] studied the dielectric 

mixture phenomena in VO2 in the high temperature phase at millimeter–wave 

frequencies through phase transition. The Bruggeman mixture relationship was used to 

relate the dielectric properties of the insulating matrix, the grains in the conductive 

state, and the volume fraction of the film in the conductive state to the dielectric 

properties of the mixture. It was expressed as:  

                                                              ⁄  
   ⁄                                                          

  is the volume fraction of the conductive phase,  ,      are complex dielectric 

constants of the matrix, conductive phase, and mixture respectively.They observed 

strong resonance of the matrix permittivity at very high volume fractions of the 

conductive phase; the sensitivity of the matrix permittivity at the resonance to small 

increase in the matrix conductivity and the insensitivity of the conductivity to increase 

in the matrix conductivity. The dependence of the permittivity on film thickness was 

attributed to the increase in grain boundary width with decrease in conductivity width. 

The effect of dielectric properties on device performance is dependent upon the device 

design and function which is strongly correlated to the film stoichiometry, 

microstructure, crystalline orientation and stress. The optimal performance in most 

microwave devices is obtained with materials having the greatest change in resistivity 

between two states. 

2.2.3       Magnetic properties  

VO2 phase transition was discovered to be based upon a free energy expression 

function of the amplitude of the lattice distortion and the magnetic local moment. The 

localized magnetic moments are understood as a consequence of electron-electron 

correlations with existence of well-developed local moments in low temperature, 
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exhibiting a Curie-like susceptibility [68]. VO2 metallic phase is paramagnetic with 

Pauli-like susceptibility decreasing with increasing temperature while the insulating 

phase presents vanishing of the susceptibility. This is in accordance with Junfeng Liu et 

al. [69] who measured the magnetization of the as-prepared VO2(B) with a 

superconducting quantum interference device magnetometer and they showed that the 

materials are paramagnetic nanobelts. In the other hand, the electronic–lattice 

mechanism would imply a normal Pauli susceptibility in the metallic phase a 

diamagnetic behavior in the insulating one. The susceptibility calculation has been 

performed for both the d// and π* bands yielding χtotal= χ// + χ* where numerically 

they obtained for VO2: 

                                   Χtotal(340K) =4.30 *10-4 emu/mole                                               Eq.2.76 

                                   Χtotal(900K) =3.74 *10-4 emu/mole                                               Eq.2.77 

They accounted qualitatively the discontinuous increase of χ at the transition and for its 

temperature dependence while  
   

   
 was accounting for the mutual electrostatic 

interaction.  
   

   
 was given as the variability of total free energy for a statistical 

distribution including thermal fluctuations such that:  

                                                                          
   

   
   

  

   
                                                     

2. 3 Applications of VO2 

The phase transformation detector using VO2as sensitive material has been shown to 

have high sensitivity coupled with good responsivity, speed of response and highly 

flexible performances parameters. It shows to operate in a quasi-photoconductive mode 

and to be thermally self-regulating which require a constant current bias supply. It 

relies in the conversion of temperature change in the detector material to an electrical 

signal. The VO2-device proposed was entirely isothermal in operation, and makes use of 
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the change in resistivity which occurs at a metal-semiconductor phase transition. While 

several transition metal oxides exists which exhibit such a phase transition, the material 

appearing to have the best chance of making a practical detector at the present time was 

demonstrated to be VO2 [70]. Electric field-induced transitions are typically explored 

with Mott FET; additionally nanoscale thermal switches with Mott materials could also 

be of substantial interest. Possible sub-ns switching speeds in ultra-thin device elements 

in the vicinity of room temperature is obtained with nanoscale two terminal 

VO2switches and is of great interest to Mott memory. Such correlated materials can be 

seen as ‘threshold materials’ wherein the conducting state can be rapidly switched by a 

slight external perturbation leading to potential applications in electron devices [38]. 

Nanoscale data storage, switching and photonics technologies rely on switchable 

modification of the electrical and optical properties. Because they are scale down, a 

deeper understanding of entangled structural and vibrational properties are essential to 

tailor the functionality of phase changing materials, of particular interest are surfaces 

swing to their pronounced contribution at the nanoscale. Also the effects of strained 

VO2 in specific orientations grains favor the nucleation of the grains and change 

structure to monoclinic. In the nanoparticles prompt formation of the metallic state 

results in the appearance of surface plasmon. Narrow band gap semi-conductor are 

most sensitive detectors for the mid-infrared range (3-20 μm) representing the most 

sensitive detectors for the near-IR range (750-2500) nm [71]. They possess broad spectral 

sensitivity up to the cutoff wavelength with high quantum efficiency which are 

generally use in IR light generation and detection with the tenability of the band gap 

structure using the temperature. This latter is dependent of individual energy bands 

and interbands electronic transition yielding information about electron-phonon 

interactions. Thermally decoupled electric field in VO2 has great applications for 

integration in nanoscale electronic devices such as Mott field transistors [72].VO2 

belongs to the family of smart materials that react to temperature variations, electric or 

magnetic field and/or pressure variations. That property of smart material is due to its 

first order transition phase at around 340 K [54, 73-74]. Additionally practical 
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applications in technology can be obtained: switching devices, thermal relays and 

energy management, sensors and actuators, electrochromic and photochromic 

memories, high speed solid state displays, modulation, polarization, and control 

functions, plasmonic response in the near infrared communications wavelengths, 

ferroelasticity. Dielectric confinement and particle shape affect the change in optical 

properties across the room temperature. Ultrafast transition first-order characterized by 

several orders of magnitude change in optical transmittance and conductivity. These 

effects induce attractive materials from Mott field effect transistors to thermochromic 

coatings and optical waveguides.  Ivan P. Parkin et al. [75] proposed vanadium dioxide 

thin films coated on glass for use as an intelligent window coating that can change one 

or more of its properties in response to some external stimulus. Here the optical 

properties are changed with temperature and the intelligent thermochromic window 

become more reflective at infrared wavelengths at elevated temperature. This behavior 

is highly applicable to climates where there are extreme changes in temperature over 

the year for example central and northern Europe, Japan, United States and Canada 

which present hot summer and cold winter. Valmalette et al. [76] proposed for the first 

time VO2 composites imbedded in a transparent polymer and study its artificial solar 

radiation using a Beer Lambert model. It was observed that the efficiency of 

thermochromic behavior depends on the anisotropic space distribution of the pigments 

and their mean size. The most recent and successful thermochromic composites VO2 

polymer was obtained by Litao Kang et al. [66] who provide an effective process to 

control the thermochromsim through polymer degradation rate with variation of the 

annealing conditions and they confirmed that the state of the grain boundaries 

influences the semi- conductor transition. VO2 has been employed as a bolometer in the 

non-hysteretic part of the resistance temperature characteristics [77]. The bolometer 

sensor performance was theoretically evaluated using a valid mathematical model 

required to fully describe the major and minor hysteresis loops. The Preisach model 

was widely accepted as a suitable tool to describe hysteresis phenomena. Considering 

VO2 material composed of microcrystals which individually exhibit sharp hysteretic 
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transition, the classical model described the Preisach model as a sum of simple relay 

operators weighted by a statistical distribution function          giving the resistance 

of the material as: 

                                          ∬ ̂          (     )                                                                

The distribution function is equal to zero for the insulator and equal to 1 for 

semiconductor. 

 

Figure 2.20: Preisach triangle adapted for VO2 thermal hysteresis [77]. 

The Preisach model generally rely on the wiping out and congruency properties 

represented by a set of piecewise monotonic excitations. See figure 2.20. Jing Du et al. 

[78] used the compatibility difference of inorganic salts with polyvinylpyrrolidone 

(PVP) to introduce phase separation and obtain films with large microroughness. The 

obtained films were simply prepared and exhibited excellent optical performance. 

Doping was also applied in this deposition process. By tungsten doping, they 

successfully lowered down the SMT temperature down to 25.4 1ºC. Moreover, 

emissivity of films is lowered 0.20 for monoclinic and 0.33 for rutile phase for a VO2-
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based film with Zn/V=0.1 and W/V=0.01. The sample shows the SMT temperature of 

43.4 1C, Tlum of 30.0%, and ΔT sol of 8.82%. 
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CHAPTER THREE: 

SOL-GEL METHOD –HYDROTHERMOLYSIS 

3.1 Experimental Procedure VO2 growth techniques     

The differents types of process for making nanoclusters, nanolayers, and nanofilms, as 

well as methods for nanoprofiling to make nanoscale features can be summarized as 

seen in figure 3.1.  

 

Figure 3.1: Possible synthesis methods used for bulk nanostructures materials [1]. 
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VO2 nanostructures can be prepared by several methods: Ion implantation in a silica 

matrix; Sputtering; Chemical vapor Deposition; Pulsed Laser Deposition; Sol gel 

method /hydrothermolysis. The level of control achieved over the dimensions and 

stoichiometry of VO2 nanostructures is due to the challenge to stabilize and maintain 

the right oxidation state for several energetic minima with high or lower oxidation 

states which are easily accessible.  

3.1.1 PLD (Pulsed Laser Deposition) 

Pulsed Laser Deposition gained great attention in depositing materials with complex 

stoichiometry. It is a comparatively recent entry into the world of thin film coating and 

is especially suited for oxide growth. It was developed as a deposition technique for 

oxide superconductor in the late 1980s and was first used for VO2 deposition by Singh 

in 1993 with the ablation of a metallic vanadium target in ultrahigh vacuum deposition 

chamber with Ar and O2 (10:1) atmosphere of 100 mTorr. [2-3]. 

 

 

Figure 3.2: PLD deposition process [2]. 
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The absorption energy of the laser by the target is converted to electronic excitation and 

thermal, chemical and mechanical energy resulting in evaporation, ablation, plasma 

formation and exfoliation.  PLD synthesis is generally manipulated in ultra-high 

vacuum or in the background of a gas such as oxygen or argon which are preferred for 

the obtention of metal-oxide. See figure 3.2. Generally PLD relies on a photon 

interaction which creates an ejected plume of material from any target whose distance 

from the substrate is placed in a short distance. It is considered that the ejection of the 

material occur due to the rapid explosion with superheating. The principle of pulsed 

laser deposition is a very complex physical phenomenon which do not involve the 

physical process of the laser ablation in the impact of the high power pulsed radiation, 

but also the plasma plume with high energetic species and transfer of the ablated 

material through the plasma plume unto the heated substrate surface. PLD consist in 

four processes:  

1) laser radiation and interaction with the target  

2) Dynamic of the ablation materials 

3) Deposition of the ablation materials with the substrate  

4) Nucleation and growth of a thin film on the substrate surface 

Nucleation-and-growth of crystalline films depends on many factors such as the 

density, energy, ionization degree, and the type of the condensing material, as well as 

the temperature and the physico-chemical properties of the substrate. The two main 

thermodynamic parameters for the growth mechanism are the substrate temperature T 

and the supersaturation Dm. They can be related by the following equation: 

                                                                   (
 
  
⁄ )                                                       Eq. 3.1 

Where k is the Boltzmann constant, R is the actual deposition rate, and Re is the 

equilibrium value at the temperature T. The nucleation is dependent on the interfacial 

energies between the three phases present: substrate, the condensing material and the 

vapor. The deposition rate and the substrate temperature influence the critical size of 
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the nucleus. The crystalline film growth depends on the surface mobility of the adatom 

(vapour atoms). Normally, the adatom will diffuse through several atomic distances 

before sticking to a stable position within the newly formed film. The surface 

temperature of the substrate determines the adatom's surface diffusion ability. Hence, 

high temperature favours rapid and defect free crystal growth, whereas low 

temperature or large supersaturation crystal growth may be overwhelmed by energetic 

particle impingement, resulting in disordered or even amorphous structures. Metev and 

Veiko [4] that N, the mean thickness at which the growing, thin and discontinuous film 

reaches continuity is given by the formula:  

                                                             
 (
 

 
) 

 
   (   ⁄ )                                                                 Eq.3.2 

Where R is the deposition rate (supersaturation related) and T is the temperature of the 

substrate and A is a constant related to the materials. 

3.1.2        CVD (Chemical Vapor Deposition) 

The Chemical Vapor Deposition (CVD) consists to bring into contacts a reactant gas 

mixture with the surfaces to be coated. Several authors have used this method to grow 

desired VO2 on a particular substrate [5]. The main advantages of this process are [6]:   

1) Scaling up of production to industrial level; and (2) Appreciable control over growth 

of desired (diameter, length and position) which is more important for electronic 

applications. The CVD can be categorized depending on the energy sources: plasma-

enhanced CVD (PECVD), thermal CVD, etc. The wafer is exposed to one or more 

volatile precursors which react and or decompose on the substrate and make the 

desired deposit. The precursors are heated in UHV in a crucible to sufficient high 

temperature and the molecules evaporate and leave the surface to condense on a 

substrate as a thin film. Generally the temperature is used as a source of atoms or 

molecular beam and the source is a solid which is heated or fluids (for instance in a 

Knudsen cell) where the atoms possess thermal energies which correspond to 0.1eV. See 
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figure 3.3. The first deposition technique used for VO2 thin films appears to have been 

CVD and after half a century it is still used extensively. 

 

Figure 3.3: Chemical vapor deposition CVD. Reaction of gases in the chamber causing 

deposition of the reaction product as a layer that can be of nano thickness [1]. 

Koide and Takei had grown for the first time in 1966 single crystals of VO2 by CVD [7]. 

One year later they introduced fumes of vanadium oxychloride carried by N2 into the 

growth chamber which was then hydrolysed on the surface of rutile substrates to give 

epitaxial VO2 films. In 1968 MacChesney et al. [8] used CO2 transporting VOCl3, and 

then applied annealing treatment between 500 º C and 550 º C under appropriate 

oxygen pressure. These researchers were the first to elucidate the phase diagram for the 

O-V system. Additionally, the electric field can be associated to the CVD to assist the 

deposition. See figure 3.4. 
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Figure 3.4: Diagram illustrating the set-up of electric field assisted chemical vapor 

deposition [7]. 

3.1.3 Sputtering Radio frequency 

Physical technique based on the atoms /ions that hit on a target, with high enough 

energy, where transfer of energy and impulse towards the target atoms take place. Ions 

are implanted into the material and partially resputtered. Particles at the surface leave 

the surface as soon as the binding energy of the target is overcome. There are three 

common dioxide sputtering arrangements utilizing DC discharge, Capacitative RF 

discharge or Capacitative RF discharge plus planar magnetron. RF operates at lower 

pressure and lower sputtering gas pressure producing higher deposition rates and 

sputtering of an insulated target becomes possible while the RF discharge plus a planar 

magnetron feature a magnetically assisted argon-ion discharge in which a permanent 

magnet defines lines of magnetic flux perpendicular to the applied electric field from 

the RF source. The magnetic field concentrates the plasma and intensifies it in the space 

above the target by trapping electrons near the target surface. RF reactive inverted 

cylindrical magnetron sputtering (ICMS) was reported for the first time by J.B Kana 

Kana et al. [9-10] giving polycrystalline structure of single phase monoclinic VO2 
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without the presence of any vanadium oxide phases. See figure 3.5.  Annealing effect on 

VO2 thin films deposited by RF ICMS were also studied in detail by J B Kana Kana 

(2010) [11] towards higher temperature with tunability of the transition temperature at 

higher substrate temperature and a sizeable variation of ~10 ºC with increasing 

substrate temperature. It was shown that for VO2 films thickness less or equal to 50 nm, 

the semiconductor phase exhibits lower visible transmittance than its metallic phase. 

The higher the substrate temperature, the lower the transmittance in the visible light 

region with approximately 35% at λ=700 nm for 600 º C while the ones at 450 º C, 500 ºC 

and 550 ºC present a transmittance of 45%. 

 

Figure 3.5:  RF ICMS sputter gun, the cylindrical ring vanadium metal target with the 

circular magnet enclosed behind the target. The anode and cathode are perpendicular to 

each other and the substrates lie perpendicular to the target. [11] 

This was explained by the fact that the high temperature influences the sticking factor 

of the sputtered particles to the substrate surface, implying a slight increase of the 
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deposition rate. By considering the low energy model, the sputtering yield Y(E) is given 

as: 

                                                            
   

       
 (
 

  
)
  
   
                                                      

Where Mi and M are atomic masses of incident of the incident ion and target atom 

respectively;  (
 

  
) is a function varying from 0.5 to 1.5, E0 is the energy of the ion and 

U0 is the surface binding energy of the target atom. [12]. 

3.1.4    Dual ion Beam Sputtering 

The deposition consists to tune independently the deposition parameter such as: 

pressure, ion current and energy. Here there is no plasma contamination on the films 

due to the fact that the plasma generation zone and substrate zone are far apart.  It 

consists of two ion Radio Frequencies ion sources where the first impinges on the target 

and the second directly against the substrate to make assisted depositions [13].  

 

Figure 3.6: Dual Ion Beam Sputtering scheme [13]. 

 

 

 

 



74 
 

The deposition gun is at 45 º oriented with respect to the target and the target is 45 º 

with respect to the substrate. See figure 3.6. The film uniformity is improved by rotating 

the substrate around its normal axis. In both the ion guns, neutral or reactive gases are 

used. Zintu et al. [14] synthesized microbolometric VO2 with DIBS technique presenting 

the possibility to tune independently each deposition parameter such as: deposition 

pressure, ion current, and energy. They found that all the vanadium oxides can be 

obtained by DIBS from a vanadium pentoxide target, but the one desirable to produce 

microbolometer device is VO2 which presents a sensitive behavior with a thermal 

capacity resistivity of -3.0% K-1with 1 Ωcm resistivity, having the desirable sheet 

resistance with a thickness of about 2000 Ǻ and a detectivity up to 108 cm HZ1/2/W, and 

a response time of few milliseconds.   

3.1.5 Spray pyrolysis 

The spray pyrolysis technique is a deposition technique where the reactants for the film 

are deposited unto a target substrate under heating forming the desired film on the 

surface. See figure 3.7. 

 

Figure 3.7: Spray pyrolysis deposition technique film [15].  
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Typical spray pyrolysis equipment consists of an atomizer, precursor solution, substrate 

heater and temperature controller. The first patents concerning spray pyrolysis date 

back from 1950s where the solution is atomized to droplets which are passed by means 

of a carrier gas flow through diffusion dryer then the thermolysis reactor, and finally a 

calcination furnace. Droplets impact on the substrate surface spread into a disk shaped 

structure and undergo thermal decomposition. The shape and size of the disk depends 

on the momentum and volume of the droplet, as well as the substrate temperature. 

Consequently, the film is usually composed of overlapping disks of metal salt being 

converted to oxide on the heated substrate [16]. Various applications of spray pyrolysis 

involve solar cell applications, metal-oxide sensors, metal oxide coatings, oxide fuel 

cells. The first synthesis of vanadium dioxide obtained by spray pyrolysis was done by 

Mwakikunga et al. [17]. They used vanadium trichloride in an aqueous solution of 0.085 

M ammonium meta-vanadate under an argon carrier gas of 11 ml mn-1 and a function 

temperature above 600 º C with a system pressure of 4-10 Ncm-2. They observed that the 

change of the oxygen to vanadium ratio sensitively affects the transition temperature of 

vanadium dioxide in the vicinity of 1.93 or 2.05, bringing the transition temperature to 

room temperature. Hence impregnating VO2 with dopants is not the only route to 

reduce the transition temperature which apparently comes at the expense of the 

switching quality and transmittance or reflectance contrast. 

3.1.6 Spray drying process  

Earliest descriptions date from 1860 with the first patented design recorded in 1872. The 

basic idea of spray drying is the production of highly dispersed powders from a fluid 

feed by evaporating the solvent. This is achieved by mixing a heated gas with an 

atomized (sprayed) fluid of high surface-to-mass ratio droplets, ideally of equal size, 

within a vessel (drying chamber), causing the solvent to evaporate uniformly and 

quickly through direct contact [18].The dry particles are continuously discharged from 

the drying chamber and recovered from the drying media using a cyclone. See figure 

3.8. 
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Figure 3.8: Spray drying system consisting of a dryer and cyclone for product recovery 

[18] 

The spray drying process relies on the atomization which include centrifugal, nozzle, 

pneumatic and sonic process. The droplet size is dependent of a given energy spent for 

breaking down the liquid into fragments that is increasing the overall surface of the 

liquid. The spray drying process is energy intensive. It follows that optimization of the 

setup efficiency is required to reduce the energy consumption per kilogram dry 

material. The efficiency of the drying process is then given as:  

                                                                                                                                     ⁄  

Where Tin is the inlet air temperature, Tout is the outlet air temperature and Tambis the 

ambient air temperature. The higher the air temperature the lower the outlet 

temperature, the better the efficiency [19]. He et al. [20] recently fabricated 

thermochromic VO2/mica pigments using spray-drying process with a rotating 

sprinkler at the top of a spray-dryer vessel and subsequent annealing at high 

temperature for 90min under static atmosphere of argon.  Several others methods have 

been used to synthesize VO2 such as high flux electron beam radiation [21], polymer 

assisted deposition [22] and ozone based atomic layer deposition [23-24].To obtain VO2, 

one of the most unstable oxides, controlled conditions are required. In the following 
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chapter we present an easy method of synthesis with low cost at low temperature of 

fabrication with optimized conditions: sol-gel method synthesis that we used to design 

our materials at the nanoscale dimension. 

3.2 Sol-gel chemistry background 

The use of soft chemistry processes in solid state chemistry has increased dramatically 

during the past decade. These processes include intercalation, deintercalation, ion 

exchange, and mild thermal decomposition, among others [25]. More recently there has 

been a desire to build structures with open crystalline lattices or expandable layer 

structures that can undergo redox reactions and therefore be used in electrochemical 

devices such as batteries, displays and sensors. Such structures are unlikely to be 

thermally stable under traditional high temperature solid state conditions, so new low-

temperature approaches need to be found. One of these is mild hydrothermal synthesis, 

defined as reactions occurring between 100 and 200°C under autogenous pressure. A 

number of conditions are critical in determining what solid phases, if any, are formed. 

These include the pH of the reaction medium, its temperature (and therefore the 

pressure), and the cations in solution.  

VO2 nanobelts hydrothermally synthesized formed the backbone of this dissertation. 

Hence we review salient features of sol-gel hydrothermolysis in this section.                              

Generally they are prepared from a solution containing appropriate precursor 

compounds. They allow non-breaking of weak bonds as Wan Der Waals, hydrogen, 

hydrophobic, hydrophilic interactions. Sol-gel chemistry plays an important role during 

growth of molecules [26]. The sol-gel process is generally used at low temperature 

presenting various advantages for the powderless processing of ceramics, advanced 

materials design or synthesis of organic-inorganic compounds.  

3.2.1 Hydrothermal synthesis genesis-importance and key parameters 

The term hydrothermal is from a purely geological origin which was used for the first 

time by the British geologist, Sir Roderick Murchison (1792–1871), to describe the action 

of water at elevated temperature and pressure in bringing about changes in the earth’s 
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crust, and leading to the formation of various rocks and minerals [27]. Hydrothermal 

research had its origin in Europe, and later spread its activity to North America during 

the early 20th century. The hydrothermal research in Asia began in the 1920s in Japan. 

Today, Japan has emerged as a leader in this field of research with the USA. However, 

the hydrothermal research is becoming quite popular in several other countries, 

particularly in the last three decades. The countries engaged in hydrothermal research 

are listed below in alphabetical order: Australia, Belgium, Brazil, Bulgaria, Chile, China, 

Canada, Denmark, France, Germany, Holland, Italy, India, Japan, Korea, Norway, 

Poland, Russia, Switzerland, Spain, Sweden, Taiwan, UK, Ukraine, and USA. Amongst 

these countries, over 50% of the hydrothermal research is going on in Japan, USA, and 

China. Figure 3.9 shows the countries actively engaged in hydrothermal research and 

figure 3.10 presents the world`s largest autoclave used in Japan. 

 

Figure 3.9: Number of papers published in hydrothermal synthesis statistics [27]. 
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Figure 3.10: Growth of quartz crystals in the world`s largest autoclave Japan with >50% 

production in the world. [27] 

In the last decade, the hydrothermal technique has offered several new advantages like 

homogeneous precipitation using metal chelates under hydrothermal conditions, 

decomposition of hazardous and/or refractory chemical substances, monomerization of 

high polymers like polyethylene terephthalate, and a host of other environmental 

engineering and chemical engineering issues dealing with recycling of rubbers and 

plastics (instead of burning). Similarly, it is used to remove caffeine and other food-

related compounds selectively. It offers several advantages such as: obtention of 

difficult compounds possible through the closed system method, obtention of low 

temperature phases materials for example α-quart and synthesis of metastable 

compounds. Additionally it has been discovered that hydrothermal technique produces 

homogeneous precipitation, facilitates the decomposition of hazardous and /or 

refractory systems, monomerization of high polymer. The period from the late 1930s to 

1940s is referred to as the “golden period” in the hydrothermal research, not only 

because of the enhanced research activity, but also because of the many new discoveries 
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with reference to autoclave designs and other important technological materials. The 

cheapest and safest solvent used for hydrothermal experiment is water. It can act as a 

mineralizer or catalyst under high pressure-temperature conditions.  

 

3.2.2 Experimental procedure 

The sol-gel method is a wet chemical process generally used for the fabrication of 

materials typically metal oxide starting of a chemical solution which contains colloidal 

precursors such as metal alkoxides and metal chlorides. The metal-oxide is formed 

through the connection of metals centers with oxo or hydroxo bridges which generate 

metal oxo or hydroxo polymers in solution: M-O-M or M-OH-M. The sol-gel process 

allows the fine control of the products and chemical composition. The metal Insulator-

phase transition obtained through the hydrothermal synthesis is due to the 

hydrothermal reduction and the exfoliation of bulk layered V2O5 by aliphatic alcohols 

and ketones into the VO2 (M) structures. In general, the sol-gel process consists of: 

i) Preparation of a homogeneous solution either by dissolution of metal-organic 

precursors in an organic solvent that is miscible with water, or bydissolution of 

inorganic salts in water; ii) conversion of the homogeneoussolution into a sol 

bytreatment with a suitable reagent (generally water with or without any acid/base); 

iii) aging; iv) shaping; v) and thermal treatment/sintering. The first step in a sol-gel 

reaction leads to the formation of an inorganic polymer by hydrolysis and condensation 

reactions: the transformation of the molecular precursor into a highly crosslinked solid.  

Hydrolysis leads to a sol, a dispersion of colloidal particles in a liquid, and 

furthercondensation results in a gel, an interconnected, rigid and porous 

inorganicnetwork enclosing a continuous liquid phase. This transformation is called 

thesol-gel transition. There are two possibilities to dry the gels. Upon removal ofthe 

pore liquid under hypercritical conditions, the network does not collapseand aerogels 

are produced. When the gel is dried under ambient conditions, shrinkage of the pores 

occurs, yielding a xerogel. Contrarily to others system of synthesis, the highly attractive 

features of the sol-gel process is the possibility to shape the material into any desired 
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shapes. See figure 3.11. The morphology and size depend on the reaction time and the 

concentration of the added structure directing agent. 

 

 

 

 

 

 

 

 

 

  

 

 

 

  

 

 

Figure 3.11: Various steps in the sol-gel process to control the final morphology [28]. 

 

During the sol gel conversion of metal alkoxides, two main reactions take place: [28-29]: 

Hydrolysis and condensation (See scheme below). During hydrolysis, the alkoxide 

groups (-OR) are replaced via the nucleophilic attack of the oxygen atom of a water 

molecule under release of alcohol and the formation of a metal hydroxide. 

Condensation reactions between two hydroxylated metal species leads to M-O-M bonds 

under release of water (oxolation), whereas the reaction between a hydroxide and an 

alkoxide leads to M-O-M bonds under release of an alcohol (alkoxolation). 
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- Hydrolysis where the water is split into two parts: OH- and H+ 

                                              Eq. 3.5 

- Condensation – Polymerization (oxolation and alkoxolation) 

                                                  Eq. 3.6 

 

                                                                                       Eq. 3.7 

 

The chemical reactivity of metal alkoxides towards hydrolysis and condensation 

depends mainly on the electronegativity of the metal atom, its ability to increase the 

coordination number, the steric hindrance of the alkoxy group, and on the molecular 

structure of the metal alkoxides (monomeric or oligomeric). The amount of added water 

in the hydrolysis step and how the water is added, determines, whether the alkoxides 

are completely hydrolyzed or not and which oligomeric intermediate species are 

formed. Additional parameters are the polarity, the dipole moment, and the acidity of 

the solvent. The oxygen for the formation of the oxidic compound is supplied by the 

water molecules. 

 

 

 

 

 

 

 

Figure 3.12: Experimental setup and reaction scheme for the hot injection process [30]. 

The injection of the precursor induces high degree of supersaturation which results in a 

short burst of nucleation. This latter signifies that the concentration of the precursor 
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decreases abruptly in the solution. The drop in temperature due to the injection of cold 

reactants and low concentration of unreacted remaining precursor prevent any further 

nucleation events. Hence the temperature is applied for the next step characterized by 

the slow growth of the nuclei to larger nanoparticles as shown in figure 3.12.Vanadium 

oxides can also be obtained via the hydrolysis and condensation of vanadium alkoxides 

VO(OR)3. When hydrolyzed with an excess of water, these alkoxides give fully 

hydroxylated precursors VO (OH)3 and condensation leads toV2O5.nH2O gels similar to 

those formed from aqueous solutions. This is no more the case when hydrolysis is 

performed with a small amount of water (h=H2O/V~1), amorphous oxopolymers 

[VO(OH)x(OR)3-x]n rather than layered oxides gels are formed [31].  

3.2.3   Why Nanobelts?  

Since the discovery of semiconducting oxide nanobelts in 2001 [32],  nanobelts (NBs) 

have been demonstrated as the fundamental building blocks for fabricating various 

nanosized devices such as field-effect transistors [33-34], ultrasensitive gas sensors [35]. 

Additionally to our current study, various nanobelts materials have been prepared for 

specific purposes [36]. Guodong Wei et al. reported 3C-SiC ultrathin nanobelts which 

can be used as field emitting materials with low turn on field of 3.2 V/µm. it has been 

shown that the optical response is strongly correlated to the quatum confinement of the 

nanobelt due to the closest thickness of the nanobelt to the atomic Bohr radius of the 

bulk. When the nanobelt thickness approaches the effective Bohr radius, the 

electronholepair gets spatially confined, namely electron-hole confinement. The 

calculation has been constructed in one dimensional thickness model according to a 

rectangular infinite well potential:  
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h is the constant of Planck, m*=0.195 me is the reduced mass of the exciton. 
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SnO2 nanobelt have been reported as field effect transistor and intrinsic response to 

hydrogen sensor [37] which is due to the unicity of the belt nanostructures presenting 

high surface to volume ratio with intrinsic surface chemistry and tunable composition. 

It has been shown that the quasi 1D nanomaterials present high sensitivity due to their 

large active surface and their lateral dimension is comparable to the width of the surface 

space charge region [38]. Cheng et al. demonstrated that the nanobelts materials have 

hydrogen sensing capabilities with a significantly enhanced reaction time and high 

sensitivity at room temperature. Nanocrystals of semi-conducting oxide materials can 

be applied for short wavelength optical devices and exitonic devices operating at room 

temperature. They generally contribute to the confinement of the excitons [39].The 

nanobelts (ultralongbeltlike or ribbonlike) nanostructures could be an ideal system for 

fully understanding dimensionally confined transport phenomena in functional oxides 

and building functional devices along individual nanobelts [32]. Lingzhi et al. [40] 

synthesized Cl doped-CdSe nanobelts which were constructed as nano-FETs, and 

Schottky Diodes which can also be used as photodetectors with fast response speed. 

Zakharova et al.[41] prepared V3O7.H2O nanobelts through hydrothermal process 

which works as growing seed for V2O5 nanobelt upon annealing temperature up to      

350 º C in air. Their potential application was shown to be correlated to the high specific 

energy density, high working voltage and long life cycles. Nanobelts are very 

promising for sensors due to the fact that their faces exposed to the gas environment are 

always the same and the size is likely to produce a complete depletion of carriers inside 

the belt [42]. The sol gel method is proved to be efficient for the synthesis of VO2 micro-

nanostructures and is proved to be efficient economically and easy to scale up in 

industrial production with the absence of reductant and vacuum conditions. Liu et al. 

[43] prepared VO2 (B) nanobelts starting from V2O5 involving hydrothermal process at 

180 deg C for 24h which were transfer into a 50 ml stainless steel autoclave. While 1 D 

structures generally allow formation of domain walls perpendicular to the longitudinal 

axis which thus can be completely strain-relaxed or under uniform strain, the 2D nature 

of the platelets generates multiple domain variants and hence geometric frustration 
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between different domain orientations additionally 2D systems domain structures are 

easily accessible for local microscopic observations. The preservation of the nanobelt 

structure and lateral size at high temperature and upon cooling back to room 

temperature force the material to break into ferroelastic domains along length spanning 

the whole width to accommodate the change of the lattice geometry. The domains are 

self-organized into quasi periodic structures minimizing the elastic energy of the 

nanoplatelet [44]. 

 

3.2.4     Sol-gel method Approach 

The preparation of 1D nanomaterial can be prepared by bottom-up approach or top-

down approach. Comparatively to the top down approach which use fully developed 

semiconductor industry technology, with long preparation time and elevated costs, the 

bottom–up approach consists to assemble building block at molecular level which gives 

better crystallinity and purity with smaller diameter, lowering production cost. Sol-gel 

method techniques are generally applied in different ways: spray coating where the 

colloidal dispersion is sprayed unto the substrate using a spray gun which is generally 

moved across the substrate; drop coating technique which is used by depositing the 

colloidal dispersion on the surface substrate by using the microinjector or the 

micropipette; finally another way of depositing sol-gel precursor is by spin coating of 

the pre-processed metal-oxide onto the substrate whereby the thickness of the 

deposited gel layer can be controlled by varying the revolution rate. 
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Figure 3.13: Schematic representation of vapor-liquid-solid growth and solution-liquid-

solid growth mechanism [45]. 

 

The solution based-growth relies on two methods: template assisted (sol-gel) and 

template-free methods. Regarding the template assisted method; hydrothermal growth 

is well known for material synthesis. It has been proposed since 1970s [20] for the 

production of nanocrystalline materials. See figure 3.13. In our case, we use it as 

template assisted method where the crystallization happens at high temperature 240º C 

in aqueous solutions at high vapor pressures (>1atm). The crystal growth is habitually 

performed in an apparatus consisting of a steel pressure vessel (autoclave) in which an 

aqueous mixture of soluble metal salt of the precursor material is supplied. Several 

oxides have been synthesized using wet chemical hydrothermal approach [46-49]. The 

Common method for sol-gel synthesis is described below. See figure 3.14. 
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Figure 3.14: Common methods for the preparation of mixed oxides [50]. 

3.3 Polarity of the water versus dielectric constant and density  

The solubility of non-polar species increases while ionic and non-polar compounds 

decrease. This result in a drop of polarity of the water with increase of molecular 

mobility due to the decrease in solvent viscosity η. See table 3.1. Drastic changes in 

hydration come from the decrease in dielectric constant ε and density ρ. See figure 3.15, 
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figure 3.16 and figure 3.17. The ambient values are ρa= 0.997g.cm-3, εa= 78.3, η = 

0.890mPa s. The saturation pressure vapor is low for temperature below 150-200 º C and 

rise sharply above 200 º C according to figure 3.15. This is due to hydrogen bonding. 

Table 3.1: Values of. εr, ρ (g.cm-3) and η (mPa s) of water at high temperatures and high 

Pressures [51]. 

p/MPa Parameter 200 250 300 350 400 450 

10 r 

ρ 

η 

35.1 

0.871 

0.136 

27.4 

0.806 

0.108 

20.4 

0.715 

0.087 

1.2 

0.045 

0.022 

1.2 

0.038 

0.025 

1.1 

0.034 

0.027 

20 35.3 

0.878 

0.139 

28.0 

0.816 

0.110 

21.2 

0.733 

0.091 

14.1 

0.600 

0.070 

1.6 

0.101 

0.026 

1.4 

0.079 

0.028 

30 35.9 

0.885 

0.141 

28.4 

0.826 

0.113 

22.0 

0.751 

0.094 

15.7 

0.646 

0.076 

5.9 

0.357 

0.044 

2.1 

0.148 

0.031 

40 36.3 

0.891 

0.114 

28.9 

0.835 

0.115 

22.6 

0.765 

0.097 

16.7 

0.672 

0.080 

10.5 

0.523 

0.062 

3.8 

0.271 

0.039 

50 36.6 

0.897 

0.146 

29.3 

0.843 

0.118 

23.1 

0.777 

0.099 

17.6 

0.693 

0.083 

12.2 

0.278 

0.068 

6.6 

0.402 

0.051 

60 37.0 

0.903 

0.148 

29.7 

0.850 

0.120 

23.6 

0.788 

0.101 

18.2 

0.711 

0.086 

13.3 

0.612 

0.073 

8.5 

0.480 

0.059 

70 37.3 

0.909 

0.150 

30.0 

0.857 

0.122 

24.0 

0.798 

0.104 

18.8 

0.726 

0.089 

14.2 

0.638 

0.077 

9.9 

0.528 

0.065 
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Figure 3.15: Temperature dependence of saturation vapor pressure 

 

Figure 3.16: Temperature dependence of dielectric constant 
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Figure 3.17: Temperature dependence of density of water 

 

Figure 3.18: Temperature dependence of water viscosity 
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In our case we use a temperature of 230-240 ºC which gives an approximate pressure of 

20 MPa. Hence the behavior of the dielectric, viscosity and density of water in those 

conditions are expressed as seen in figure 3.18, figure 3.19 and figure 3.20. 

 

Figure 3.19: Temperature dependence of density and viscosity at 20Mpa. 

 

 

Figure 3.20: Temperature dependence dielectric constant at 20 MPa. 
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Solvothermal processes were used to speed chemical reactions that were performed in a 

closed reaction vessel at temperatures higher than the boiling point of the solvent 

employed (240ºC). Solvothermal processes are mainly defined by chemical parameters 

such as the nature of the reagents and of the solvents, and by thermodynamical factors, 

in particular temperature and/or pressure. For higher temperatures above boiling 

points, we use autoclaves, a kind of Teflon cups containers which provide protection 

against corrosion. The use of Teflon in a closed reactor has the advantage of improving 

the reproducibility by excluding the influence of the surrounding environment. The 

Teflon cups were used not only for solvothermal conditions or for high reactions 

temperatures but also to prevent the evaporation of low-boiling organic compounds 

that need to be present in the reaction vessel to drive the nanoparticle formation to 

completion.The hydrothermal conditions generally for an aqueous medium correspond 

to temperatures and pressures higher than 100 º C and 1 bar respectively. Such 

conditions allow modification of the chemistry of cations in solution, favoring the 

formation of metastable structures, more complex, of lower symmetry involving smaller 

enthalpy and entropy changes [52]. Hydrothermal solutions are known for their low 

dielectric constants, and electrolytes completely dissociated under normal conditions 

forming ion pairs or complexes of small electrostatic charge; then the increase of 

temperature decreases the viscosity of the water leading to an increased mobility of 

dissolved species compared with normal conditions; finally the advantage of 

hydrothermal process is the ionicity product of the water which increases strongly with 

the temperature as: 

                                                            (
    

 
)                                                                        

3.4 Thermodynamic kinetics of Vanadium dioxide precipitation synthesized by 

hydrothermal synthesis 

The formation of VO2 (precipitation) can be explained by using the kinetics aspect of the 

condensation mechanisms which present four steps:  
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 Formation of the zero charge precursors able to condense and form a solid phase. 

It can take place through the addition of a base, thermohydrolysis or the thermal 

decomposition of a base. 

 Creation of nuclei through condensation of zero-charge precursor which is 

function of the precursor concentration. Beyond a critical concentration Cmin, the 

concentration rate increases abruptly and polynuclear entities are formed in an 

explosive manner. The nucleation process is a rapid kinetic phenomenon because 

the order of reaction is higher than the precursor concentration. The free 

enthalpy of nucleation is given by: 

                                                     
 

        
 

                                         Eq.3.10 

                                                              
       

         
                                                                 

This is given by: 

                                                                             
     

  
                                                            

S = cL/cS is the supersaturation ratio of the solution with cL is the concentration of the 

precursor in solution and cS is the solubility of the solid phase.   is the surface tension 

which is usually positive for a supersaturated solution.   is the molecular volume of the 

n precursors. See figure 3.21.  

 The growth of nuclei which follow the chemical mechanism as nucleation is of 

first and second order. Generally the number and particle size of the particles are 

linked to the relative nucleation and growth rates. Particles of homogeneous size 

obtained require a greater nucleation rate than the rate at which the precursor is 

generated. Hence the nucleation rate is very brief and decoupled from the 

growth phase whereas in a low rate nucleation, the nucleation and growth are 

simultaneous giving large particle size distribution. See figure 3.22. 

 Finally we have the aging of particles in suspension which lead to various 

possible modifications of the primary particles after their growth where we 
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observe  Otswald ripening and possible aggregation. Aging take place over a 

very large time scale (hours, days and months) which allow the system to tend 

towards or to reach stability. See figure 3.23. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21: Variation in the free enthalpy of formation of nuclei as function of number 

of precursor’s molecules n. a is for a solution that is non -supersaturated S<1, and b and 

c are for supersaturated solution Sc>Sb. [52]. 

 

 

 

 

 

 

Figure 3.22: Number and size of particles formed in solution a) [52] 
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The condensation rate is zero for C<Cmin and infinite for C ≥ Cmax, Cs is the solubility 

of the solid phase [52].  

 

 

 

 

 

 

 

 

 

 

Figure 3.23:   Number and size of particles formed in the solution C during precipitation 

b) [52]. 
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CHAPTER FOUR: 

GAS SENSING 

4.1 Application as 1-D Nanobelts Room Temperature for High Hydrogen Gas 

Sensing.  

4.1.1 Introduction 

Metal oxide semiconductors based chemical sensors attract significant attention due to 

their simplicity, low cost, small size ability to be integrated in electronic devices. They 

can be defined as a device which can selectively respond to certain properties of the 

environment as temperature, pressure, magnetic field, and can transfer this response 

into the electrical/the optical signal by responding to concentrations of chemical species 

in the liquid or gas phases [1].They are currently several companies that market metal-

oxide-based gas sensors such as Figaro [2], FIS [3], Microchemical Systems, MICS [4], 

City Technology [5], Applied Sensor [6], Umwelt sensortechnik GmbH, UST and 

Paragon [7]. Applications of metal oxides semiconductor are found in many areas such 

as coating technology, catalysts, gas sensors, photovoltaics, batteries, electronics, and 

cosmetics. See figure 4.1. 

 

 

  

 

 

 

 

Figure 4.1: Potential applications of metal oxide sensors [2-7]. 
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They can be used in industry, environment, home safety, monitor regulation, 

biomedicine, automotive, and security. However continuous improvements are 

required for sensors devices for implementation in constantly more demanding 

applications especially better sensitivity, selectivity, faster response with lower power 

consumption. A nanocrystalline semiconductor oxide gas sensor has shown 

outstanding sensing properties especially at low operating temperatures (200–300°C). 

Thus, an emerging field of research lies in the development of new scientific processes 

to produce nanocrystalline materials in the form of powders and thin films for gas-

sensing applications. 

4.1.2 Metal Sensor Device Principle 

There are generally based on electrical transport properties of the metal oxide 

semiconductor of the sensing layer which is modified upon contact with reducing or 

oxidizing gases. What is important to note here is that the performance of the sensor 

material rely to the nature and the structure of the sensing material and to the nanoscale 

morphology of the layer and the grain size of the metal oxide where the overall 

conductivity is determined by nanocrystalline materials sensing. It has been 

demonstrated that the n-type materials sensors are the most extensively investigated 

due to their oxygen deficiency acting as electron donors [8]. In particular, many 

interesting results have been achieved and intensive efforts are still in progress in order 

to develop new materials and synthesis approaches. Nanocrystalline semiconductor 

oxide gas sensor show outstanding sensing properties at high temperature (200 ºC-300º 

C)[9]. In brief, the response of an n-type metal oxide semiconductor (in our case 

Vanadium Dioxide) to the presence of an analyte gas relies on the surface reactions 

which occur between adsorbed oxygen species and the probed gas. Oxygen adsorbed 

on the surface traps free electrons because of its high electron affinity, forming a 

potential barrier at the grain boundaries. Comparatively to the p-type oxide, they are 

relatively unstable to the exchange of lattice oxygen with air. This potential barrier 

restricts the flow of electrons, causing the electric resistance to increase. This is true for 
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oxidizing gas such as CO2, NO2. In fact the gas sensing responses depend on many 

factors such as chemical (catalytic, acid-base properties of the surface) and 

microstructural (particle size, crystal structure) factors. See figure 4.2 and electronic 

transport properties. Additionally the morphology of the layer and the grain size of the 

metal oxides affect the conduction mechanism. Most modern gas sensors devices 

operate where the overall conductivity is determined by the nanocrystalline sensing 

materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Cross section contact with energies barriers at the interface junction          

VO2-VO2 [9]. 

4.1.3 Experimental Setup 

Gas sensing devices having sensing layers made of vanadium dioxide metal oxide 

semiconductor nanobelts have been pressed unto the glass substrate and then equipped 
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with a BeCu electric contact on the front and a heater on the back. The resistive sensing 

layer is thermally treated at constant environment room temperature. 

 

 

 

 

 

 

b) 

  

Figure 4.3:  Sensing setup experiment with resistive sensing layer BeCu a) and PC for 

data recording b) Photograph of powdered samples placed between the AlCo contacts 

[10-11]. 

The resistance from the digital multimeter (DMM) is an analog-to-digital conversion 

ready to be processed by the computer via standard data logger software. Labeled on 

the schematics are as follows: (1) Al–Co electrodes (2) Al foil (3) sample under test (4) 

insulating support such as glass c) The overall measurements were carried out in a 

testing chamber using a monitoring flow controller. The N2 gas was used for the 
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removal of oxygen species present in the chamber facilitating the dryness and the purity 

of the chamber and the resistance changes were obtained through the monitoring of the 

gas flow of hydrogen at different concentrations, recording the data on a PC computer 

as seen figure 4.3) and b).The resistance of the sample was measured using a digital 

multimeter that was interfaced to a standard desktop PC via the universal line interface 

with a RS232 cable. The data logger software, named BsB-x421100, was used to record 

and store the resistance–time data. For all materials investigated in the present trial, all 

H2 gas flow rates were fixed to 200 ml/min in 5 l/min of N2 gas [10]. According to [12], 

the effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors 

present higher sensor performance signals and sensitivity responses as the grain size 

decreases. This is due to the enlarged active surface area of the sensing layer as the 

consequence of better surface to volume ratio so that the relative interactive surface area 

is larger and the density of charge carriers per volume is higher. The homostructures 

nanobelts VO2 are presented as cross section contact with energies barriers at the 

interface junction VO2-VO2. See figure 4.2. The development for the first time of a metal 

oxide semiconductor chemiresistive sensor VO2 highly selective of Hydrogen gas at 

room temperature, without addition of catalyst has been developped at iThemba LABS 

Cape Town.  

4.1.4 Sensing mechanism 

In general molecules gas and oxide layer interact in different ways:  

 Molecular adsorption where the interaction is by σ donation and or п bonding 

interaction. This kind of interaction takes place on a single surface unsaturated ion. 

 Dissociation into charge species of the molecule upon adsorption which require an 

anion-cation unsaturated pair site. 

 Abstractive absorption where the absorbate abstracts a species from the surface 

which is a proton and the absorbate becomes cationic, it becomes held to the surface 

by electrostatic forces. 
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 In last reductive adsorption where an adsorbed molecule is oxidized while the 

surface is reduced. It is commonly observed on transition metal oxides which 

present cations with accessible multiple oxidation states. In this case the reduction of 

the vanadium dioxide by the molecules gas is accomplished by removal of lattice 

oxygen which is common to all oxides/ or dissolution of the reductant into the 

lattice. In the case of hydrogen molecules, the thermodynamic driving force is the 

formation of water which results in a hydrogenated surface or reduced oxide. The 

rates of reduction depend strongly on the presence of surfaces defects and bulk 

grain boundaries, orientation of the exposed surfaces planes, presence of hydroxyl 

groups, and the presence of other metals. The reduction process can be qualified as 

autocatalytic depending on the method of growth of the reduced portion of the 

oxide. 

 

4.1.5 Surface Physics Description 

The chemical composition and atomic arrangement at the surface of the solids and the 

theory and observations of their mechanical, electronic and chemical properties can be 

described by the surface physics. The ultimate objective is the establishment of 

understanding of the relationships between the properties, the composition and the 

structure.  The surface material is generally determined as top 100 nm of the solid. For a 

minimum disturbance where the surface is decribed as a bulk exposed plane see figure 

4.4 a, the formation of the surface inducing the loss of the periodicity in one dimension 

change the electronic state near and at the surface properties. The lacks of nearest 

neighbors on one side of the surface atoms make available dangling chemical bonds 

available for chemical reactions. The bonding cause by terminating the solid in a surface 

due to absence of nearest atoms on one side will cause a new equilibrium positions 

giving a relaxation illustrated in figure 4.4 b drawing the deviation in the bulk solid in 

decreasing magnitude. The surface region where the deviation from the bulk spacing 

operates is called the selvedge. A more extreme disturbance where the surface atoms 
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rearrange themselves in another symmetry altogether different from the bulk solid is 

called the reconstruction see figure 4.4 c) modifying the symmetry near the surface 

affecting structure sensitive properties–atomic vibrations, chemical optical and 

electronic behavior.  

 Surface  
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Figure 4.4:  Rearrangements of atomic positions at a solid surface, Hexagonal close-

packed atom. a) Bulk exposed plane, b) relaxation of the surface plane outwards, c) 

reconstruction of the outer four atomic planes. [13] 
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Processes occurring at the surface atoms can be listed in six ways: 

 Thermionic emission important in many electronic devices as oscilloscopes 

tubes and electron microscope  consist to impart sufficient energy at the top to 

the electrons in the conduction bands for them to be ejected from the surface to 

the vacuum 

 Crystal growth : the process of crystal growth generally involves deposition of 

atoms upon single crystals surfaces where the arriving atoms can diffuse and 

build up three dimensional periodic array 

 Chemical reactions involving interactions between different kinds of atoms 

across a surface or interface 

 Catalysis the presence of surface atoms of a particular metal marked increase in 

the speed of the reaction  

 Colloids : particles of a solid suspended in a  liquid suspension 

 Semiconductor interfaces involving the junction p-type and n-type material, a 

junction between metal oxide and a semiconductor  with formation of a surface 

 Brittle fracture due to the migration of impurity atoms to the grain boundaries 

in a solid which become weak regions under impact  

The rise to the current level in surface physics is generally explained by three factors: 

the theory of the electronic structure and the chemical bonding in simple bulk solids 

explored in two directions [13]: properties of complicated ionic and molecular bulk 

solids and the properties of defects in solid-technological pressures –UHV in which the 

impingement upon the surface of molecules from the ambient atmosphere in the 

vaccum chamber is negligible in time with required for the observation. Here the kinetic 

theory of gases is given by:      

                                   N=2.89 ×1022 p (MT)-1/2 molecules cm-2 s-1                                 Eq.4.1 

N=2.24 ×1024 p (MT)-1/2 molecules m-2 s-1 with p in N\m2, T in K       Eq.4.2 

 

 

 

 



108 
 

4.1.6: Thermodynamics of reduction 

The reduction between metal oxide and hydrogen (reducing gas) can be represented by 

the equation:  

                                                                                                            Eq. 4.3  

We define the free Gibbs energy change as: 

                                                             (
    

   
⁄ )                                                            

The stoichiometric ratio of the reaction above shows that the change of gas phase 

change molecules number between reactants and products is inexistent. Hence the 

entropy    is very small.  In general the nanosensor based vanadium dioxide exposed 

to hydrogen atmosphere undergo an adsorption –desorption sensing mechanism that 

we qualified as reversible gas chemisorption on surface on the VO2. The electrons 

released to the conduction band follow the different reactions: 

                                        
 

 
  
            

                                                  Eq.4.5 

                                           
            

                                                   Eq.4.6 

In this present work we are interested of chemisorption at low temperature. The 

hydrogen molecules react with adsorbed oxygen ions producing water molecules. The 

width of depletion region is hence reduced contributing to the increase of the current to 

the entire nanoplatelet. More effective interaction between H2 and nanomaterial and 

high gas sensing response will be obtained from the high concentration of   
 ions on 

the surface. Additionally the presence of defects on the nanomaterial quantified 

through the lattice interspacing distance due to oxygen vacancies can act as adsorption 

sites for gas species which influence the electronic /chemical properties, adsorption 

behavior of metal-oxide surface and reversibility of sensor characteristics. The 

interaction of Hydrogen with surface defects can be modeled as [14]: 
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                                                                   ̇        
                                                          Eq.4.7 

                                                                  ̇   
        

                                                      Eq.4.8 

Where   
 neutral oxygen in an oxygen site is,  ̇ is a positive charged vacancy, e’ is a 

negatively charged electron according to Kröger-Vink notation. This shows that the 

hydrogen molecules are strongly correlated to the oxygen vacancies of the nanosensor 

material. According to V N Andreev et al [15], the Kröger Vink notation describing the 

reaction between hydrogen molecules and Vanadium Dioxide thin films is written in 

the form:  

                                                               
    

       
    

                                                    Eq.4.9 

Showing that the hydrogen radicals are donor to vanadium where the compound form 

as a direct hydrogenation of VO2 with hydrogen at room temperature can be described 

by the formula: 

                                                                                                                                                    Eq.4.10 

They observed a noticeable decrease of transition temperature dependence of the 

electrical conductivity relative to the amount of hydrogen inserted in the polycrystalline 

thin films. Which lead to the distortion of the lattice considering as the source of 

internal pressure that produce increase of the lattice strains responsible of the decrease 

of the transition temperature of the phase equilibrium Tc. Related to Vanadium Dioxide 

material, the phase transition is a martensitic transformation which is very sensitive to 

the elastic strains applied from the outside inducing misfit between the lattice 

parameters of the tetragonal and monoclinic phases. As we describe in the earlier 

subsection, we show the strong correlation between structural transition and strain-

driven phase transition. In accordance with our first time VO2 applicable as gas sensor 

at room temperature, the embedance of hydrogen onto VO2 thin films in dry air with N2 

background is explained of the fact that hydrogen is a donor of electrons. They also 

suggested that the decrease in the electrical conductivity is associated to the decrease in 
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the gain of free energy of the crystal related to change in the electronic subsystem. 

During the transition from metallic state to less metallic or metastable to stable metallic 

state, σ bond are formed for every two neighboring vanadium ions approaching each 

other; splitting the d//conduction band in two identical bands: the lower turning into 

filled valence band while the upper band remains empty. The displacement of the V+4 

atoms form the center leads to an increase in overlap   orbitals of vanadium and 

oxygen and accordingly an increase in the   band which determine the conduction 

band. Due to the insertion of the hydrogen atoms, the electrons of H land in the d// 

conduction band, which contribute to the decrease of the energetically possibility to be 

splitted because extra electrons migrate into the   band. Hence the complete phase 

transition is suppressed and the metallic state is stable over the whole working 

temperature. They show that the hydrogenation of polycrystalline vanadium dioxide 

lead to significant increase in the electrical conductivity. See figure 4.5. 

 

Figure 4.5: Temperature dependences of the electrical conductivity of HxVO2 thin films: 

(1) x=0, (2) ~0.012,and (3) x~0.02 [15]. 
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4.1.7: Mathematical description 

The reduction kinetics for metal oxides nanoparticles can be described with two models: 

the nucleation model and the contracting sphere model. Here we neglect all effect due 

to the support, impurities or anisotropy. In the nucleation model, the oxygen surface 

ions are removed from the lattice leaving behind an anion vacancy. When the 

concentrations of vacancies reach a critical value, they become annihilated by 

rearrangement of lattice with formation of smallest oxide grains with reduced metals 

ions and outward diffusion of the oxygen ions. These grains grow to the extent that 

their boundaries overlap which result in a particle of an oxide core with a shell reduced 

oxide. The time dependence of the degree of reduction   by the isothermal reduction in 

the nucleation model is given as:  

                                                   
    

             
      

                                                         

                                     (
              

    
)

 
     

                                         

      is the final volume of the grain of the reduced oxide,     Pare constants time 

dependent related to the volume of  a grain,      are constants time dependent related 

to the number of the grains. 

 

 

 

 

 

Figure 4.6: Initial stage of reduction of metal oxide by nucleation model a) and 

contracting sphere model b) [16]. 

Metal oxide 

Nucleus of metal or reduced 

metal oxide 

a) 

Reduced oxide  

Oxide core 

b) 

 

 

 

 



112 
 

These results shows that the interfacial grain areas increases with the size of the grain 

and the grain of the reduced oxide activates the reductant more than the fully oxide. 

When the grains of reduced oxide coalesce, the reduction follows the contracting sphere 

model and the rate of reduction decreases with time presenting a sigmoidal shape. The 

contracting sphere model is an extreme case of nucleation model where the number of 

reduced oxide grains formed on the surface of the sphere is so large that the boundaries 

of the grain overlap when the diameter of the grain is still small versus the radius of the 

sphere. See figure 4.6. This is accurately modeled as a rapid formation of a uniform 

layer of reduced oxide grains or metal formed on the sphere. The thickness of the layer 

grows uniformly resulting in a spherical core of oxide that shrinks with time. The 

distance of this interface and oxide increases with time and the rate of reduction 

decreases with time. The time dependence of isothermal reduction in the contracting 

sphere model is given as: 

              
  

    
(      )  [       

   ]  
    

  
[
 

 
 
 

 
         ]                               

   is the rate constant of reduction per unit area at the oxide reduced oxide interface,    

is the diffusivity of the reductant through the reduced layer,    is the radius of the entire 

sphere and        are the reductant concentration at the outer surface of the sphere  and 

equilibrium concentration. The chemical reaction is described as a first order chemical 

reaction. In the case between nucleation model and sphere model, small grains are first 

formed on the surface oxide, and the grains of reduced oxide are less active in 

activating the reductant molecules than the fully oxidized oxide. Hence they facilitate 

inhibition of the rate of reduction due to the decrease of the area exposed of the fully 

oxidized oxide. The grains grows as reduction continues, covering up the oxide particle. 

In this case the rate of reduction decreases continually with increase time. This process 

is accelerated in nanoparticles metal oxide. The kinetic model is generally divided in 

three groups: diffusion control group, boundary control group, random nucleation and 

subsequent growth of nuclei models. 
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The general method developed by the curve analysis give the rate laws for solid state 

reactions derived from the expressions:  

                                                      +ln (n)                                                 Eq.4.14 

If the slope m is <1, the reaction is in favor of the diffusion; for 1<m<2, the phase 

boundary process is dominant. Table 4.1 gives some reactions mechanism with an 

explicit form of the kinetic rate reduction according to the dimension of the material. 

Table 4.1: Reaction mechanisms and the algebraic expressions [16]. 

 

Chwieroth et al. [14] developped an Integrated Reaction Conduction (IRC) model which 

integrates gas surface reactions with electrical conduction process in a weekly sintered 

porous metal oxide. They employ the effective medium approximation theory relating 

the mesoscopic structure and the carrier depletion at the granular surface to 

macroscopic electrical conduction. According to Bruggeman unsymmetrical effective 

medium theory, for a three dimensional system, the effective conductivity can be 

calculated as:   
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        are conductivities of the insulating and conducting components.     is the 

volume fraction of high conductivity interior of the grain (non-depleted regions). See 

figure 4.7. The surface area to volume ratio considered in the IRC predicts a strong grain 

size dependence on the sensitivity. Depletion regions in nanocrystaline n-type materials 

extent throughout the entire composite in the presence of reducing gas. The total 

number of intrinsic electron Ni is given by: 2ρxVgwhere ρ is the number of molecular 

grain units per unit volume, and x is the intrinsic non stoichiometric. The number of 

surface ions Nd is proportional to the product of the surface grain area and the ion 

adsorption grain concentration. Hence the ratio Nd/Ni scales as a0/xrg, rg is the grain 

radius and a0 is the lattice. Nanocrystalline sensors have their depletion regions 

removed by the reducing gas and hence the density of electrons Nlib liberated by the 

oxidation reaction which return to the grain is proportional to the product Ag [So] 

where Ag represents the surface area of the grain and [So] is the concentration of O-ion 

adsorption sites on the ceramic grain giving for ultrafine grains atoms Nlib/Ni scaling as 

ao/xrg. As a result the volume fraction of the grain is the total volume fraction non pore 

fnp where the depletion layer is completely replenished in ultra-fine grained composites, 

unlike their coarsened counterparts. The response of a nanocrystalline sensor is thus 

characterized by a dramatically increased sensitivity enhancing response in 

nanocrystalline non-stoichiometric n-type ceramics, compared to the corresponding 

coarsened materials. The reduction by H2 or CO present same low activation energy (20-

100 kj/mol) due to the fact that they behave as reducing agent and so they are 

thermodynamically predominant for the reduction [17]. By analogy to CO reduction 

mechanism, H2 reactions mechanisms can be similarly describe considering that 

ambient oxygen adsorbs on the surface of the grains  and form negative oxygen ions 

with combination of intrinsic electrons from the n-type semiconductor. See figure 4.8. 

This give a dipole layer associated with charged surface and depletion region inside the 

surface of the grain which give highly resistive intergranular contact. The reaction 

energy model can be illustrated as below: 

H2(g) +
 

 
      
  H2 ads. 

 

 
      
  H2       
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Where kads,f , kads,r, kox,f, kox,r are the reaction rates adsorption and oxidation for the 

forward and reverse reactions. According to the sensing mechanism reaction rates, the 

changing reactant concentration due to the exposure of the oxide to the reducing gas is 

expressed as: 
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The ratio of forward and reverse reactions rates are given as:   

                                                              
  

  
 
         

         
                                                                      

E denotes the activation energy between the reactions. The functions ratio denotes the 

cubic power of the Debye wavelength for the corresponding analyte gas reductant, and 

unity of the oxidation reaction.   

 

 

 

 

Figure 4.7: Physical sensing process between metal oxide and Hydrogen gas. The 

depletion layer has small conductivity σi compared to the large conductivity σc of the 

bulk interior region, volume fraction fc [16]. 
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Figure 4.8: Sensor response characteristically more sensitive for smaller grain sizes 

(lower continuous grid) versus coarsened grains (upper continuous grid) with a ten 

times greater radius [17]. 

Barsan et al. [18] develop a general model applicable for real world gas sensor and on 

tin oxide in particular. They classified a sensor element as comprising sensitive layer 

deposited, substrate used and electrodes for the electrical measurements. Here the 

conductance is monitored as a function of the concentration of the target gas. It 

considered compact layers and porous layers geometry. The former can be completely 

or partly depleted depending on the ratio between layer thickness and Debye length     

See figure 4.9 and figure 4.10. For a partly depletion layer, the conduction takes place in 

parallel to the surface while in the case of completely depleted layers, the conduction 

takes place due to the injection of additional free charge carriers. 
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Figure 4.9:  Compact sensing layer with geometry and energy band representations; z0 
is the thickness of the depleted surface layer; zgis the layer thickness and qVs the band 
bending. a) Represents a partly depleted compact layer (“thicker”), b) represents a 
completely depleted layer (“thinner”)[18]. 
 

 

 
Figure 4.10:  Different conduction mechanisms and changes upon O2 and CO exposure 
to a sensing layer in overview: This survey shows geometries, electronic band pictures 
and equivalent circuits. EC minimum of the conduction band, EV maximum of the 
valence band, EF Fermi level, and λD Debye length [18]. 
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At low temperature the molecular formed dominates and the ionosorbed oxygen 

induces a depletion layer of the material. The oxygen chemisorption is generally written 

as: 

                                                 
 

 
  
   
    +S ↔     

                                                                     

S denotes the unoccupied oxygen site and vacancies oxygen or defects of the surface, 

  1/2 for single or doubly ionized forms species; Β is 1 for atomic or 2 for molecular 

species. The surface coverage θ with chemisorbed oxygen is given by:  

                                                           
     

  

      
                                                                                   

Ct represents the total concentration available on surface site for oxygen adsorption 

occupied or unoccupied. Using the conservation of surface sites and the mass action law 

we obtain: 

                                                               
     

   
                                                                  

Where    represents [e-]. This equation describes the surface coverage in connection 

with the concentration of electrons hopping from one grain to another controlling the 

electrical conduction in the layer. According to the limiting aspect of size thickness, 

where d<λD, the conduction is assume to take place in cylindrical filaments radius R by 

sintering of small grains. The combination of the equation of Poisson in cylindrical 

coordinate gives:  
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The boundary conditions are expressed as: 
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And the Debye length in the Schottky approximation is given by: 

                                                                   √
      

    
                                                                            

                                                                                         
 

   
                                                              

In the case of small grains reacting with reducing gas H2, the surface coverage is given 

as: 

                                                                         
    

       
(  

  
  
)                                                         

For large concentration or very sensitive reactors, we have:   

                                                                                 

 

                                                                          Eq.4.30 

This model is analog to [19] who study the capacitance response of a sensitive layer 

under CO exposure showing that the resistance curve is function of the CO 

concentration with a power law such as:  

                                                                                
                                                                           

The decrease of resistance was explained as the decrease of surface dipole concentration 

which is dominant for low CO concentration. The same decrease was observed in our 

experiment confirming the sensing response with consumption forming H2O. The 

power law dependence is due to the transduction dominated by Schottky barriers with 

the existence of depleted or undepleted grains. 

4.1.8 Physical Property Approach 

The surface composition is generally given by anion to cation ratios which depend on 

the stoichiometry of the oxide and orientation of exposed crystal plane. Generally we 

faced several factors that cause a distorsion in the solid compound such as: surface  
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N
o
 Vanadium 

Oxides 

Synthesis 

Method 

Grain shape Temperature 

range 

Gas tested Best 

sensitivity 

References 

 

 

 

1 V2O5 coated 

with SnO2, 

TiO2 and FeO3 

Mild hydrothermal 

reaction  

 

Nanobelts 

180˚ C for 

24hrs 

 

100˚ C for 

12hrs 

-Air used as 

reference  

- ethanol at 

different 

concentrations 

  
  
  

 

Limit of 

detection =5 

ppm 

20 

2 VO2 single 

crystal  

Vapor solid method 

grown on SiO2/Si 

substrate 

Nanowires and 

mesoscopic 

ribbons 

1000˚ C at 13 

Torr and 3 

sccm flux of 

Ar 

 Hydrogen 

helium, air,  Ar 

:  1.5-560 Torr  

S~10
-3 

V/pa 21 

3 V2O5.nH2O 

+meso 3-and 4-

pyridyl 

porphyrin 

cobalt (III) 

coordinated to 

four 

[Ru(bipy)2Cl]
+
 

complexes 

Sol gel method 

with cation 

exchange 

Thin film 

prepared by 

drop coating on 

platinum 

electrode  

Room 

temperature 

(25˚ C) 

Nitrogen gas 

used as 

reference 

+ethanol /water  

vapor ( 0.1 

L/min)  

A good 

sensitivity was 

found up to 

10% 

Of water : 

limiting 

concentration 

above which 

the resistance 

remains more 

or less 

constantwith a 

good 

sensitivity of 

Co3VXG 

sensor 

22 

4 Pd- 

nanoparticules 

decorated VO2 

single 

nanowires 

Atmospheric 

pressure and 

physical vapor 

deposition to 

produce VO2 + e
-
 

beam evaporation 

at a base pressure 

of 2.0×10
-6

 Torr 

VO2 nanowire 

single particle 

coated over by 

Pd well-spaced 

nanoparticles 

650˚ C 

synthesis 

 

200˚ C sensing 

H2 gas and air 

gas  

H2 exposure at 

45-55˚C 

increase of 

1000 fold-

after 10 min or 

less 5 min 

when 

temperature 

60˚ C 

23 

5 VO2 Hydrothermal and 

heat transformation 

process 

Nanoflowers  Room 

temperature  

Relative 

humidity 

 24 

 

6 V2O5 Sol-gel  Nanofibers onto 

silicon 

Room 

temperature 

1-butylamine 

Ammonia 

10ppm 

10 

 25 
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substrates 1-propanol 

Toluene 

in 40% rh 

1000 

1000 

7 V2O5+addition 

of  less 

electronegative 

cation (Ce,Zr, 

Mg) and 

electronegative 

cation (Al, Fe, 

Ni)  

Precipitation 

method 

Thick film 500 NH3, NO, CO, 

H2 

 26 

8 Fe2O3 

nanoparticules 

activated V2O5 

nanotubes 

Hydrolysis method Fe2O3 

nanoparticules 

of 15 nm 

dispersed on the 

surface of 

V2O5nanotubes 

230˚ C Ethanol 10ppm 27 

9 VO2 RF reactive 

sputtering 

VO2 nanowires 

thin film 

35 H2  28 

10 VO2(B) and 

VO2(M) 

Hydrothermal 

method 

Flowerlike and 

nanostructures  

25 High and low 

humidity 

detection 

 29 

11 VOx/CNFs Atomic layer 

deposition  

Commercial 

tubular carbon 

nanofibers 

uniformly 

coated with a 5 

nm thick 

vanadium oxide 

layer  

50-250 NO2 in air 80% 30 

12 VSn Co-precipitation 

method 

Nanopowders 175 CO in air (50-

500ppm) 

50-500ppm 31 

13 TiTaV Screen printing 

technology 

Thick film  380 CO 

Benzene  

Mixture of the 

two gases in 

dry air 

100ppm 

10ppm 

32 

14 Vanadium 

oxides: V2O5, 

V3O7, V4O9, 

VO2 

Reactive RF 

sputtering 

Thin film  200-250 NO2 100ppm 33 

 

15 Vanadium 

oxides  

RF reactive 

sputtering 

Thin film 280-300 C2H5OH and 

NO2 

300ppm 

100ppm 

34 

16 V2O5-

WO3/TiO2 on 

Al2O3 substrate 

Screen printing Thick film 500 NH3 80ppm 35 

17 V2O5 coating 

of WO3  

Sputtering of V2O5 

on WO3 thin film 

Thin film 250 NO2 6ppm 36 

18 VPO 

Al-VPO 

Wetness 

impregnation 

method 

Nanopowders 200 Methanol and 

formaldehyde 

100% 

selectivity 

37 

19 V-SnO2 Co-precipitation Nanopowders 175 CO in air and 50ppm 38 
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method nitrogen 

20  

FeVSn 

Hydrolysis and 

coprecipitation 

method 

Nanopowders 

4.7 nm  

200 CO 50-500ppm 39 

21 Vanadium 

oxide nanotubes 

loaded with 

Fe2O3  

Hydrothermolysis 

method  

VONTs with 

Fe2O3 

nanoparticules 

230 

270 

330 

Ethanol  330 at 1000 

ppm  

C2H5OH 

40 

22 V2O5 Extrusion through a 

syringe within a 

PVA solution 

rotation beaker  

Macroscopic 

fibers and 

hybrid PANI-

V2O5   

16-40 ᵒ C ethanol 0.1ppm  

 

12J.g-1 

41 

 

23 SnO2 with 

various 

promoters as 

V2O5, MoO3, 

Sb2O3, Al2O3, 

CeO2, MgO2 

Precipitation 

method with 

calcinations  in a 

furnance at 600ᵒ C 

for 1h 

Thick films 300 

350 

450 

SO2 gas 44% at 1 ppm 42 

24 TiV1 and TiV2  Sol gel routes Thick film 

samples 

fabricated by 

screen-printing 

fired for 1h at 

650 and 850˚C  

300 to 450 CO 

C6H6 

C3H6 

100ppm 

10ppm 

100ppm 

43 

25 V2O5/WO3 

mixed oxide 

Ion exchange 

method by sol-gel 

Membranes 

deposited on 

glassy carbones  

substrates 

 H+gas 68 mVpH-1 44 

26 VO2 thin films 

coated on a 

Fe2O3 sub-

layer  

Thermal pyrolysis 

at 1700ᵒ C 

Thin film on a 

mica substrate 

18 to 60 ᵒ C Light protective 

container 

 45 

27 V8C7  MWCNTs  

produced by the 

arc-discharge 

method in a helium 

atmosphere  

V2O5 was dissolved 

in the prepared 

KOH solutions.  

Activation was 

conducted at 750◦C 

for 1 h in an argon 

atmosphere. 

Multi-walled 

carbon 

nanotubes with 

appended 

vanadium 

30ᵒ C  Hydrogen gas Hydrogen 

storage of a 

capacity of 

2.26wt% 

46 

28 V2O5-Sb2O3-

TeO2 

Melt in air in a 

porcelain crucible 

in an electric 

furnace at 750°C 

for 1h and pellet of 

1mm thick square 

plate of glass of 

area 4cm
2
 

N type  

semiconducting 

glass 

303K-473K O2 and Ar gas 

with air 

S=1.2 at 473K 

in O2 gas 

47 
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tension or surface Gibbs energy where the lower energy tends to be segregated to the 

surface; the bulk strain of the solid solution due to the mismatch of the ionic sizes or the 

coordination symmetry; the nature of the adsorbate and formation of the surface 

compound of a certain stoichiometry. The direct implication of the ionicity of metal 

oxide reaction with the molecules reductant is explained as the existence of a strong 

electric field pointing outward from the oxide surface. The separation of charges into 

cations and anions give strongly modulated electronic potential on the oxide surface. In 

the case of hydrogen, atoms are dissociatively adsorbed in opposite charges which 

represent differents reactivities. The ionic character increases the sticking probability of 

polar molecules. Their dipolar moments interact with the electric field at the surface 

which orients the molecule and enhance the probability of an attractive bonding 

interaction. The coulombic interaction is a long range process and the surface 

interaction is not only dependent on the cation /anion at the vicinity of the surface, but 

also on the ionicity of the matrix oxide of the solid solution which affects the activity 

energy of catalytic reactions where the rate involves the electron charge transfer 

between the oxide and surface intermediate.  

4.1.9 Overview Gas sensors devices  

There are four methods for monitoring gas material interactions which can be classified 

as electrochemical, optical, thermal and mass sensing techniques. In our case we used 

an electrochemical sensor relying on physical parameters which include potentiometric 

sensor, amperometric devices for current measurement over a potential and 

conductometric sensor for conductivity measurement at a fixed potential [48]. Several 

metal oxides semi-conductor had been investigated showing good sensing 

functionalities. Cheng et al. [49] developed SnO2 nanobelt field effect transistor with 

low resistance, four ohmic terminal contacts and they applied them as gas sensor at 

room temperature and they correlated the channel conduction states with the level of 

oxygen deficiency or stoichiometry of the nanobelts [50]. This was possible with the 

corresponding threshold voltages and transconductance of the nanobelt FET device.  
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The behavior with a reducing gas is similar to sample where the hydrogen atoms 

release electrons to the conduction band by reacting with negatively oxygen charge ion 

on the surface according to the equations: 

                                                           
                                                                 Eq. 4.32 

Table 4.2 (above) gives an overview of vanadium gas sensors with their synthesis 

method and their gas sensitivity. It can be seen that there is no report regarding the 

obtention of nanobelts with direct application of low power hydrogen sensing.  

                  
                                        Eq. 4.33 

They attributed the fast response of the nanobelt to the large surface area to bulk 

volume ratio of the nanobelt [51] and to the small lateral dimensions and single 

crystalline morphology without grain boundary. Additionally, commercial hydrogen 

semiconductors sensors need substantial electric power to heat the working body of the 

sensor. Hence the decrease of operation temperature makes possible the decrease of 

Power consumption and possible to use the sensor device as portable battery supply. 

However sensor working at high temperature induces grain growth by coalescence and 

degradation of the materials. In a range of concentration from 1 to 50,000ppm, which 

were undertaken by applying a fixed bias voltage and monitoring the current over a 

period of time. It was observed that the material used very high concentrations of CO 

and CH4 with no measurable effect even after prolonged periods of exposure. And also 

the device is not reversible when exposed to NOx gas. Adsorption and desorption of 

most of gas molecules on the surface of the metal oxide are generally thermally 

activated. However the need of room temperature gas sensors is highly demanded to 

obtained High Hydrogen gas sensing capabilities within the ppm level, simple system 

configuration, reduced explosion hazards and longer device lifetime [52]. It has been 

observed that the addition of catalysts as Pd on the metal oxide surface activate the 

processus of desorption and adsorption and reduce the working temperature of the 
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device. This is the case of WO3 added to Pd at 10% gives a high sensitivity of 2.5 104at 

room temperature [53]. 

Table 4.3: Summary of the effect of different gases on a spin–coated polyaniline 

chemiresistor at room temperature [48]. 

Gas  Concentration 

in N2 (ppm) 

Delay 

time τD 

(s) 

Exposure 

time 

(min) 

Recovery 

time 

τR(min) 

Minimum 

detection 

level 

(ppm) 

Normalised 

change per 

ppm 
  

 
+gas 

concentration 

in ppm 

NOx 10 48 36 100 4 -0.026 

(10ppm) 

H2S 10 36 4 56 3 -0.033 

(10ppm) 

SO2 10 12 6 100 2 -0.036 

(10ppm) 

CO 10000 No 

observed 

effect 

25 N/A N/A N/A 

CH4 50000 No effect 25 N/A N/A N/A 
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CHAPTER FIVE: 

EXPERIMENTAL RESULTS AND DISCUSSIONS 

5.1 Annealing Effect on Nanostructures VO2 nanobelts 

VO2 (A) nanobelts were subjected to an annealing treatment in argon and nitrogen gas 

ambience at 500˚ C for 3hours giving an irreversible transition to VO2 (M). This was 

done to study the effect of heat catalyst on the atomic structure and vibrational modes 

of the material. The composition and nanostructure were analysed using Raman 

spectroscopy. The differential scanning calorimetry analysis showed that the 

crystallization temperature of the annealed samples shifted to approximately 67 ˚C 

transition temperature of VO2 (M) in proportion to the VO2 grain size. The reduction of 

the sharpness and width of the hysteresis curve was found to be parallel to the 

nucleation, growth and aggregation of the VO2 nanoplatelets.  

 

5.1.1 Material Synthesis 

VO2 (A) nanobelts were synthesized using a hydrothermal procedure. The starting 

precursor V2O5 (2.25 g Alfa Aesar) was used as the source of vanadium and was 

completely hydrolysed and condensed upon addition of 50 ml of distilled water. Upon 

heating at 95 ºC and stirring thoroughly, 3.75 ml of sulphuric acid (H2SO4) was added 

into the aqueous suspension as an acid catalyst in order to convert the metalalkoxide 

V2O5 from the general dehydrating agent in its concentrated form. Then 1.25 ml of 98% 

of hydrazine hydrate (N2H4·2H2O) was added to the solution, as a foaming agent for 

the creation of a three dimensional network polymer with enhancement of the stability 

of the colloidal by its decomposition at high temperature. The surfactant not only 

allows the reduction of vanadium valence from +5 to +4 but also adsorbs in a reversibly 

manner to the surfaces of the growing nanoparticles providing a dynamic organic 

capping layer stabilizing the nanoparticles in solution and mediates their growth with 

selectivity towards specific crystal faces, and they are excellent control over crystal size, 

size distribution and morphology. Finally, we precipitated the nanoparticles by 
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addition of a strong chemical base Sodium Hydroxide NaOH diluted (5g/25 ml) and 

the nanoparticles were collected by filtration and washing with distilled water and 

ethanol. The final product was redispersed in suitable apolar solvent (water) forming 

stable colloidal suspensions. The hydrothermal synthesis was carried out in a Teflon-

lined autoclave at ~230 ˚C for about 48h. Then the content was air-cooled to room 

temperature followed by a filtration step of the formed precipitates. The final black 

chemical product was washed extensively with water and ethanol and dried at about 60 

˚C for 12 h and the supernatant liquid was discarded. To confirm the VO2 (A) 

crystallographic nature of the synthesized nano-powder, High Resolution Electron 

Microscopy (HRTEM), X-Rays Diffraction (XRD) as well as transport (Resistance-

Temperature) measurements were conducted. We can summarize our chemical 

reactions in the different process as shown below: 

                                         
 

 
         (orange colour)                          Eq.5.1 

                                                                          Eq.5.2 

                                                                                        Eq.5.3 

                                    
 

 
                                          

                                                                                                                                        Eq.5.4 

5.1.2 Morphological study and elemental analysis. 

The morphology of the synthesized crystals was observed by A Tecnai G2 F20X-Twin 

MAT field emission high resolution transmission electron microscope (HRTEM) 

operated at 200 KV Field emission used to investigate the atomic structure and the 

presence of different oxidation state of the nanocrystals equipped with an elemental 

EDAX system.  As typically reported on figure 5.1 a), the surface morphology of the 

samples exhibit one dimensional nanoplatelet structure. This was found to be correlated 

to the V2O5 initial concentration and the high surface-energy liable with chemical 
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reactions of the medium and becauseV2O5 crystallizes in an orthorhombic structure 

comprising   layers of [VO5] square pyramids sharing edges and corners with a 

structure only weakly bound along the crystallographic b axis, which enables the facile 

intercalation of different molecular species within the interlayer sites [1]. The dimension 

of the crystallites is in the range of 20 nm to 150 nm for the as-prepared material and 

around 50-500 nm for the annealed sample. That means that annealing temperature 

induces significant grain growth promoting twin formation in larger grains. According 

to Razavi et al [2] surface topography of the films showed that for increase temperature, 

surface roughness, film porosity, and grain size increases. The increase grain size at 

higher deposition temperature is strongly correlated with the stoichiometry, grain 

development and stress. The elemental composition of the material acquired from the 

X-rays emitted as shown in figure 5.b) shows that the elemental composition is only 

constitute of vanadium atoms and oxygen with high intensity showing the nucleation of 

grains and crystallization of the particles. It was demonstrated that high temperature 

can stimulate the migration of grain boundaries and cause the coalescence of more 

grains during the annealing process. Additionally the grain growth can be explained as 

diffusion and occupation of the correct site in the crystal lattice where grains with low 

surface energies grow larger, which contributes to increase of the surface roughness and 

larger microcracks [3]. 

5.1.3 DSC analysis and structural study of as-synthesized material 

The metal insulator phase transformation has been studied via DSC on cooling and on 

heating. See figure 5.2. The isotherms that occur during the thermal cycling explain the 

kinetics of the phase transformation of the system. In both samples (as-synthesized and 

annealed), two peaks were detected during the experiment from room temperature to 

110°C at 10 °C/min with the presence of a flowing of nitrogen gas at 5 ml/min. The as 

prepared presents a big hysteresis in order of 9 °C comparing to the one anneal with 6.7 

°C. This is due to the particle size of the material and the presence of strain in the 

material with grain boundaries. The as synthesized material peaks transition is due to 
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the presence of slightly metallic atoms inserted in the tetragonal metastable domains for 

the VO2 (A). The insulator to metallic transition in the annealed sample occurs at 67.1°C 

with an enthalpy of -3.596 W/g related to the exothermic peak where the crystallization 

of the material occur and the metallic to insulator transition occurs at 60.4°C with an 

enthalpy of 3.1W/g transition, only 85.28 % recovery of the monoclinic phase. Changes 

in enthalpies of transformation are attributed to elastic stored energy and to some 

untransformed rutile phase [4-5] that we determine as percolative phenomena. 

Additionally, Lopez et al. [6] showed that there is a clear dependence between the 

transition temperature and the particle size where the decrease of the size produces 

higher transition temperature on heating and lower temperature on cooling leading to 

increasingly wider hysteresis loops as the particles become smaller. This is in 

accordance with our present work regarding the DSC results and structural 

morphology. Also Dai et al. [7] demonstrated that DSC indicates that the MST of VO2 

changes concurrently with size of the nanoparticles at different growth stages. We can 

hence correlate our results in the frame of classical nucleation theory. The change in free 

energy for spherical particles due to their formation consists of two terms such as: 

                                                    
        

 
       (3D)                                          Eq.5.5 

R represents the radius of the nucleus. In the case of 1D nucleus with diameter d and 

length L, the free energy is given as [8]: 

                                                 
         

 
                                                                         

                                                                                                                                   

 

Where      is proportional to |    | with proportionality constant determined by the 

entropy difference between the parent and the product phase.   is the surface free 

energy increase per unit area which we assume to be 20mJ/m2, r is the radius of the 

nanoplate. See figure 5.4.  

 

 

 

 

 

 



134 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.a) High magnification Transmission electron microscopy images of VO2. 

 

 

Figure 5.1.b):  EDS spectra of VO2 nanobelts as-synthesized and annealed. 
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The kinetics phenomena occur at different times. The well crystallized material after 

annealing present the transition temperature from VO2(M) to VO2 (R) taking place after 

10 min and stop after 18 min while in the as-synthesized sample only few metallic 

domain transit to VO2 (R) just for 2 min approximately. Hence the ultrafast of the metal 

to insulator transition is proportional to the density of atoms intending to nucleate upon 

annealing temperature. Multiple physical phases or domains with dimensions of 

nanometres to micrometres can coexist in these materials at temperatures where a pure 

phase is expected. Due to the fact that the growth of the product is extremely fast, less 

than 500 fs, the control of transformation was proved to rely on thermal nucleation 

process rather than phase transformation as in the classical picture. The VO2 

semiconductor regarding as an n-type heterogeneous nucleation implies the existence of 

suitable nucleating defects sites in the sample space considered. The nature of these 

nucleation sites can range from simple vacancies, wall dislocations, untransformed 

embryonic regions, or electronic defects given all possible states valence of vanadium. R 

Lopez et al. described the nature of nucleation sites as extrinsic defects with high 

densities expected to be present during high temperature annealing and persistent in 

the whole process given the quenching process applied to the samples. The probability 

of a small volume ρdV to have a defect site can be expressed as:  

 

                                                                         
                                                            

Making use of the properties of correlated electron materials in device applications will 

require the ability to control domain structures and phase transitions in these materials 

[9]. Measures of the temperatures and heat flows associated with transitions in the 

material as a function of time and temperature in a controlled atmosphere (N2) were 

obtained via Differential Scanning Calorimetry (DSC). The grain structure measured 

with the Software Image J presented in figure 5.3 shows that the grain size is smaller for 

high interspacing lattice for as-synthesized material approximately 0.400-0.600 nm 

([110]) while for annealed sample the grain junction is shrinked and the interspacing 
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become smaller 0.300 nm reducing residual stresses and optimization of the uniformity 

of the sample. 

 

5.1.4 X-Ray diffraction description 

The determination of the material phase and crystallinity was done using XRD 

crystallography. The majority of the peaks are indexed as VO2 (A) according to a JCPDS 

card 00-042-0876 at room temperature. The lattice parameters a and c are 8.45000 Å and 

7.68600 Å respectively and Z=16. The space group is P42/nmc. Figure 5.5 reveals sharp 

peaks and intense diffraction with a preferential orientation along (110) which 

demonstrates that the sample is well crystallized without impurities and we note also 

the presence of some peaks belonging to VO2 (M) with a weak intensity. It has been 

demonstrated that the distortion of the VO6 octahedra in the low temperature VO2 (A) 

phase is similar to the monoclinic VO2 (M) phase [10]. After annealing at 500 °C, the 

(110) peak decreases in intensity when the material has been annealed under Nitrogen 

while it is completely vanished under Argon. The structure is monoclinic lattice with  

a= 5.75290 Ǻ, b= 4.5263 Ǻ, and c = 5.38250 Ǻ with β= 122.60 showing a shrinkage of 

bond length and presence of two types of V-O with distorsion of the lattice. It has been 

shown that the strong anisotropy of the thermal expansion and the symmetrical 

orientation with respect to the lattice are related to structural changes with temperature 

where bond length distorsion and bond angle distorsion occured at high temperature 

[11]. The nanostructures exhibit two crystallographic structures: stable monoclinic and 

metastable tetragonal. Generally two main processes determined the phase 

transformation in annealing process: annealing temperature and time and interfacial 

stress. Here we see that the complete phase transformation is only possible with an 

annealing under Argon gas which is inert and act as gas purifier to prevent oxidation 

from the vanadium oxide, comparatively to the one under Nitrogen which interacts 

with the material and delays the metal insulator phase transition. The surface region 

appears as an imperfect region due to the presence of high surface region to volume 

ratio meaning that the number of atoms on the surface is comparable to the one inside 
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the particles where atoms relax inside the normal lattices sites. The surface structure of 

nanoplatelet as synthesized and annealed respectively presents highly surface active 

atoms with high surface energy where transition begins upon thermal treatment. We 

can see that the (110) of VO2 (A) is the preferential orientation contrary to VO2 (M) 

which presents a (011) preferential orientation. The trend in tetragonal peaks decrease 

while monoclinic peaks increase hence the application of heating temperature favours 

the structure achievement of monoclinic phase. This annealing effect was also similar to 

Wang et al. [12] who observed an irreversible transformation from VO2 (B) to VO2 (M) 

under vaccum annealing and suggested that the new birth structure is possible with 

diffusion of atoms and sufficient reaction at high annealing temperature of atoms of 

vanadium and oxygen. In another hand there is a recombination of VO2 molecules that 

are taking place with increase thermal stress resulting in larger particles size and looser 

structure as the annealing time and temperature were prolonged. 
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Figure 5.2 DSC curve showing the reversible phase transformation in the material 

during the thermal cycling in as synthesized material VO2 (A) a) and VO2 (M) b). 

 

We observe a net increase of particles size with free energy until a critical point 

nucleation where ΔGc is approximately 12000 eV and then a sudden decrease of free 

energy occurs where the particles stabilize at around 60 nm and then aggregates with 

loss of energy up to -33805 eV. This was described as a heterogeneous nucleation 

fashion. 
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As-synthesized                                        N2 annealing                               Argon treatment 

 

 

Figure 5.3 Grains structure observed at different annealing gas.  
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Figure 5.4: Free energy as function of the nucleating particle nanoplatelet during the 

phase transition at T=341K a) and function of the particle length L b). 
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In opposite with Suh et al., [13], they observed that as the grain grows in size with 

annealing time, the hysteresis gets wider. This can be described on the model of 

martensitic transformation in which the density of heterogeneous nucleation centers 

such as structural defects or oxygen vacancies. S.A Pauli et al. [14] studied the x-ray 

diffraction studies on the growth of vanadium dioxide nanoparticles and observed that 

the well below shift in the Bragg diffraction peak comparing to the resolution was 

explained as the fact that the highest oxidation state of vanadium V2O5 is formed under 

annealing treatment with monotonically way in intensity indicating that they form 

rapidly large in plane domains with associated diffraction widths that are narrower. 

They speculated the presence of a remainder of a reservoir of the amorphous material 

that was initially deposited at room temperature and has not been fully depleted before 

the V2O5 phase begins to form. Hence annealing results in small reduction in thickness 

although the layer still remains which may be due to the kinetic hindering of island 

ripening with increasing depletion. The VO2 semi-conductor to metal phase transition 

proceeds in a heterogeneous fashion which rely on structural defects as source of 

nucleation sites. In accordance to this finding, Klimov et al. [15] showed that the 

hysteresis loop decreases with increasing particle size and is inversely proportional to 

the square root of grain size. This strong size dependence with heat flow hysteresis 

loops observed on our samples has been successfully modelled through the statistical 

nature of the activation sites. John Rozen et al. [16] showed an offset between the 

electrical and optical hysteresis measurements of the SMT of VO2 in a two dimensional 

nanostructures. This is due to the relative fraction of nanoparticles in the 

semiconducting state (optical hysteresis) while in the electrical response the result is 

governed by the evolution of  a continuous percolation path showing the current 

percolation through a network of nanometer scale grains of different sizes which 

undergo a SMT at distinct temperatures. 
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Figure 5.5: Typical room temperature indexed X-rays diffraction of the as-synthesized 

a) and annealed under Argon b). 
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Figure 5.6: Heating flow versus time for as-synthesized and anneal samples. 

 

5.1.5. Raman Spectroscopy  

Nanoparticles have appreciable fraction of their atom at the surface as the data.  A 

number of properties of materials composed of nanometer sized grains depend strongly 

on the surface area. The specific surface area of a catalyst is customarily reported in the 

units of the square meter per gram.  ρ is the density expressed in g/cm3, d is the 

diameter and V the volume. A cylinder of diameter d and length L has a Volume πd2L⁄ 4 

and A=2 πrL. Hence the surface area is given by:                           

                                                               ⁄   ( 
 

 ⁄ )  
     

  ⁄                          Eq.5.8 

This relation is justified for nanowires, nanosheet or nanoplate and is assumed in our 

free energy calculation. Figure 5.7 presents Raman response of VO2 (M) annealed under 
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N2 at room temperature giving structural information of the material, obtained by 

excitation of continuous wave laser light with a 514.5 nm line from argon ion. It is 

possible to identify the in situ molecule and to determine the amount of the  

 

Figure 5.7:   Raman spectra collected for nanobelts VO2 annealed at different output 

power 25mW, 50mW and 100mW. 

molecule present in the sample. Most molecules at rest prior to interaction with the laser 

and at room temperature are likely to be in the ground vibrational state. 

Therefore the majority of Raman scattering will be Stokes Raman scattering. The ratio of 

the intensities of the Stokes and anti-Stokes scattering is dependent on the number of 

molecules in the ground and excited vibrational levels. We notice that the output power 
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at 50 mW was the best choice providing the best spectral resolution of the full width at 

half maximum. The spectrum presents some raman lines of V2O5 which are very close 

to the lines of VO2: 144cm-1, 199 cm-1, 306 cm-1, 406 cm-1. We note that the change of the 

surface stoichiometry oxidation induced by a local heating at 100 mW (lowering of the 

vibration modes) may be responsible for the change of Raman line position. Hence 

nanoscale interactions occur at the surface which present small amount of 

V2O5.Structural changes based on the ultrashort time scale was proposed [17] where the 

initiating pulse electron packet on the ultrashort time scale induces, by momentum 

conservation, a transient stress in the nanometer scale sample and as such leads to a 

nonequilibrium structure compatible with the insulator phase in its electronic 

configuration. The stress effects can be kinematical, by expansion, or possibly by Jan-

Teller distortion. It is also possible that some stress be of acoustic wave generation by 

the photon.  

5.1.6 Conclusion 

In summary, nanoplatelets VO2 (A) nano-crystals was well synthesized by 

hydrothermal process with a percentage of crystallinity of 89%, presenting high surface 

to volume ratio due to the smallest size of the particles. The annealing treatment under 

N2 gas and Ar gas gives good insight of internal transformation taking place in the 

material. The annealing under Argon gas appears preferable due to the optimum 

crystallization and purity of the material comparatively to the one under Nitrogen 

which interacts with the material and delays the metal insulator phase transition. 

Additionally, the as-synthesized material was discovered for the first time to be 

applicable as gas sensing device at room temperature under H2. See next section. As 

future work the optimization of the nanoscale structure of the material is required and 

the testing of the annealing sample under same conditions and operating at different 

temperatures to follow the effect of annealing time and annealing temperature on the 

electronically properties are highly demanded for the development of the 

semiconductor electronic device. It was also noted that the distribution of crystallite 
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sizes plays an important role, especially for thermal phase induced transition due to the 

fact that some crystallites completed the transition when others had not. This transition 

was qualified as latent heat transition and the equilibrium with the surroundings is not 

instantaneous. 
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5.2 First order solid-solid phase transition, Strain-thermal dependence on 

nanostructures VO2 Monoclinic 

In situ X-ray thermodiffraction of nanoplatelets VO2 (M) was studied to characterize the 

dynamics of structural phase transition on (-211) Bragg peak monoclinic. The transition 

induced and controlled by using Peltier thermocouple shows intermediate phaseM2 

due to the solid-solid phase transition with predominance of metallic domains rutile 

comparing to the M1 structure at around 61deg.Cdue to small perturbations and the 

percolative transition metal-insulator. The nucleation is referring to the kinetic 

processes that initiate the first-order phase transitions in the non-equilibrium VO2. The 

present phonon study clearly demonstrates that the Coulomb correlation in M1-R at 

65deg.Cfacilitates the Peierls-type structural transition. Hence the M1-R transition and 

the structural transition are facilitated by the mutual cooperation Coulomb correlation 

effect and the Peierls distortion. 

Properties of Transition metal oxides (TmOx) can be engineered by the application of 

lattice strain as an external stimulus causing non-disruptive effects with profound 

influence on the structural properties through intrinsic coupling between charge, spin 

and orbital wave function of electrons. As a strongly correlated electron material TmOx, 

vanadium dioxide (VO2) has been a model system of research for the Metal Insulator 

Transition (MIT). Applications such as thermo electrochromics, Mott transistors, strain 

sensors and thermal actuators have been proposed or realized by exploiting the MIT in 

VO2 [18]. The MIT occurs with a dramatic change in resistivity accompanied by a 

ferroelastic, structural phase transition with an infrared reflecting state to a relative 

transparent state change [19]. Here, Vanadium dioxide (VO2) hydrothermally 

synthesized at low temperature exhibits an insulator-to-metal transition (IMT) at 65 

deg. C with abrupt changes in structural and mechanical properties and coupled to a 

structural phase transition (SPT) from monoclinic to tetragonal tracking the nucleation 

to stabilization of an intermediate new phase. We have successfully measured 

independently the IMT and SPT nanoplatelets VO2 structures by in-situ x-ray 
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diffraction, and shown that both phenomena are congruent. Strained structure of the 

VO2 could be a mechanism for the formation of such intermediate phase [20] known as 

monoclinic M2 phase which represent the nucleation reaction based on temperature 

fluctuations. Considering previous reports on intermediate monoclinic phase which is 

caused by stress, we discuss the mechanism of the intermediate phase formation in our 

powders. The existence of M2 intermediate crystalline phase with room temperature 

insulator phase and high temperature metallic phase across MIT in VO2 nanostructures 

could be of relevance to understand structural contributions to the phase transition 

dynamics [21]. The insulating, monoclinic M1 phase, which is the stable phase for 

undoped, strain-free VO2 at room temperature, turns into the metallic, rutile R phase at 

approximately 65 º C that can be further complicated by factors such as doping and 

strain, resulting in another insulating, monoclinic phase, M2, which is metastable phase 

for VO2. In practice, although the M1 phase is always the energetically favorable phase 

in freestanding VO2 samples, small domains of M2 phase ratio 2:1 can exist when the 

sample is strained by the temperature which results in an insulator (M1)insulator (M2) 

phase transition before the MIT (M2 to R). As a result, the intermediate phase M2 

transitional phase between the M1 and the R phase may play a critical role in the 

physics phenomena of the thermodynamics in our nanosystems [18]. Figure 5.8 shows 

the M2 structure where one-half of the V chains of the R phase pairs but does not twist 

and the other half twists but does not pair and the M1 phase of VO2 can be viewed as a 

simple superposition of two lattice distortions of the M2 type (Mott-Hubbard insulator) 

which present V chains Heisenberg with s=1/2 [22-23].  
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Figure 5.8: Comparison of V-V pairing in the three phases (R, M1, and M2). In M1, 

(open circles) all the vanadium atoms both pair and twist from the rutile positions. In 

M2 (filled circles) one-half of the vanadium atoms pairs but does not twist and the other 

half forms unpaired zigzag chains. (The distortions are exaggerated by a factor of 2 for 

clarity. [24] 

For XRD measurements we followed the change of (-211) m diffraction in XRD against 

temperature for the VO2 sample. The sample was insitu heated from 323 to over 343 K. 

The thermodynamics mechanism studied in this paper is an important key to control 

and manipulate the MIT in our system. 

Figure 5.9.a) reveals sharp peaks and intense diffraction which demonstrate that the 

sample is well crystallized with strong constructive interference. All peaks are indexed 

as VO2 (M) according to a JCPDS card 00-043-1051 with the lattice constants a, b and c 

are of 5.75170 Å, 4.53780 Å and 5.38250 Å respectively, β=122.64˚C. XRD analysis shows 

that VO2 (M) with a space group of P21/c has a strong preferential reflection along 
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(011). The other peaks are indexed as (200) the 2ndmain Bragg peak series, (002), (012), 

(210), (-302), (102), (211) the 3rd main Bragg peak series. But as the reflection Bragg angle 

becomes high the probability to obtain constructive interference is weak. See figure 5.9 

a) and 5.9 b). 

 

 

Figure 5.9:  X-rays diffraction pattern of the snow-flake like synthesized nano-

crystalsVO2 (M) b) fitting of the x-Ray Bragg diffraction with MAUD software analysis 

showing good concordance of experiment and theory. 
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The elemental composition of the material acquired from the X-rays emitted is shown in 

figure 5.10. The snow-flake crystals consist of 35.24 and 63.40 wt% of oxygen and 

vanadium respectively demonstrating that the stoichiometry of the compound is almost 

VO2. See table 5.1. 

 

Figure 5.10: Elemental composition of VO2 

Table 5.1:            Elemental composition of VO2 
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The metal insulator phase transformation has been also studied via DSC on cooling and 

on heating. See figure 5.11c) and d). The isotherms that occur during the thermal cycling 

explain the kinetics of the phase transformation of the system. Two exothermic peaks 

were detected during the experiment from room temperature to 110°C at 10 °C/min 

with the presence of a flowing of nitrogen gas at 5 ml/min to maintain appropriate 

pressures quotients. The reversible process has been observed after cooling back to 

room temperature due to the slightly change of the crystallographic structure of VO2 (R) 

to VO2 (M). The insulator to metallic transition occurs at 65.3°C with an enthalpy of -

6.796 J/g related to the exothermic peak where the crystallization of the material occur 

with an intermediate weak transition at around 61° C and the metallic to insulator 

transition occurs at 57.5°C with an enthalpy of -5.33 J/g transition, only 88.05 % 

recovery of the monoclinic phase with a giving hysteresis of almost 8 °C in peaks 

temperature between heating and cooling which can be assigned to the stress in the 

sample. According to J. Cao et al [9] multiple physical phases or domains with 

dimensions of nanometres to micrometres can coexist in these materials at temperatures 

where a pure phase is expected. Making use of the properties of correlated electron 

materials in device applications will require the ability to control domain structures and 

phase transitions in these materials. The High Resolution Transmission Microscopy 

shows that the material consists of two phases at room temperature that we can 

differentiate through the colour of the image. Information about the surface structure 

see figure 5.11 composition, chemistry, topology, and possible surface reconstructions is 

a prerequisite to understand recent findings that quasicrystalline surfaces and coatings 

exhibit low surface friction and high oxidation resistance, properties important to many 

technological applications [25]. The layer with more dense atoms is dark in high 

resolution while the less dense M2 is light. See figure 5.12 a). This is in accordance with 

our in situ thermodiffraction result. The electron diffraction on a single crystal of VO2 

presents constructive interference of regular array of scattered intensities which carry 

information about the position of the atoms in the crystal figure 5.12 b). The indexation 

of planes in the low symmetry structure is obtained. The diffraction pattern of a single 
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crystal exhibits a quasi P21/c symmetry. Surface sensitive measurements as low energy 

electron diffraction have become possible through advances of the metallurgy the 

growth of very sizable, high quality, single grain samples structure of quasicrystals, 

determining their surface structure presents new and important challenges. 

 

 

 

 

Figure 5.11:  Surface profile of nanocrystals VO2 
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Figure 5.12:   HRTEM for a single nanoplate and identification of two phases probably 

M1 and M2 low temperature a)Electron diffraction pattern in VO2(M) with a zone of 

reflecting planes of    ̅  . b)DSC curves ofVO2 monoclinic nanomaterials versus time c) 

and temperature d) 

The mechanical strength and ductility of structural materials is controlled by defects 

that determine dislocation migration.  
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Figure 5.13: Possible geometries for VO2 domains and interfaces during phase 

coexistence of metal and insulating M2 phases a) Bamboo morphology b) triangular 

domains with interface perpendicular to the surface, c) triangular domains with 

interface planes tilted at an oblique angle. [27] 

Advances semiconductors devices enhance their carrier mobility through nanoscale 

strain gradients. In strongly electrons system such as VO2, local phase coexistence and 

competition give rise to exotic macroscopic electronic properties such as colossal 

magnetoresistance, or multiferroic domains. Budai et al [26] shows that for the common 

materials, inhomogenous local interactions give fundamental intriguing and 

technologically useful physical phenomena. Hence high resolution material 

characterization tools are increasingly needed to explore and understand issues related 

to synthesis and processing, structure property relations and testing theoretical models 

a) 

b) 

c) 
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for nanoscale and nanostructured materials. Figure 5.13 present different types of 

morphology of VO2 that we can found in the literature but the most abundant was 

found to be the bamboo morphology with the interface boundaries perpendicular to the 

c-axis of the material and presents the highest mismatch between atomic planes which 

is opposite in triangular shapes associated with the lattice strain energy. It was 

hypothesized that nanowires with small cross section present minimal interfacial 

energy by small area interfaces perpendicular to the nanowire axis. Also the large 

sample cross section favor the bamboo structure R//M1 or M2 which is consistent with 

a preference for stable interfaces with small lattice distortions as well a preference for 

minimum boundary area. By Hu et al. [27], the coexistence of M1, M2 and R while 

heating is the result of minimizing the system energy when subjected to external strain.  

Table 5.2 Enthalpy of crystallization and fusion for VO2 calculated by determining the 

area under Gauss fitting plot. 

 Area Enthalpy J/g Peak 

Positions  

Width Height 

Cooldown -82.59391 82.59=1636cal/mol 57.60343 -5.77087 5.46528 

Heating up -104.31404 104.31= 2066 cal/mol 65.19992 4.83106 -6.81642 

 

Considerable challenges exist in engineering the MIT of VO2 bulk or thin films for 

different applications. It was demonstrated quantitatively that the strain stabilize the 

coexistence of both structures due to small perturbation  which is the local minimum for 

VO2 whose free energy is slightly higher than that of M1 at room temperature and 

pressure. Lattice strain, if tuned continuously, would be a sensitive means to shed light 

on the origin of the phase inhomogeneity. In contrast to conventional materials, where 

elastic deformation causes continuous, minor variations in material properties, lattice 

strain has profound influence on the electrical, optical, and magnetic properties of 

correlated electron materials (CEMs) through coupling between the charge, spin, and 
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orbital degrees of freedom of electrons. If phase inhomogeneity is absent in strain-free, 

single-crystal specimens, but can be introduced and modulated by external strain, it 

would then be possible to eliminate or strain engineer the inhomogeneity and domains 

in CEMs for nanoscale device applications. Fitting the experimental data we obtain the 

stress and plot the limit boundaries separating the monoclinic and insulator phase in 

the  -Tc phase diagram through the equation. In the stress–temperature phase diagram, 

the rate at which the transition temperature TC is modified by the uniaxial stress can be 

given by the Clausius–Clapeyron equation as: 

 

                                                                           
   
   

 
    

 

  
                                                                         

 

Where the new transformation temperature     under uniaxial stress is given by:  

 

                                                                     
 (  

   
  
)                                                                     

 

Where       the latent heat of transition                                               
  

corresponds to the transition temperature of the sample (  
   341K.) the latent heat has 

been determined as 2000 cal/mol and 1600 cal/mol upon heating and cooling 

respectively which is consistent with the literature data obtained 1025cal/mol-1200 

cal/mol. If we consider the minimum strain to induce the M2 phase is 0.01GPa [19] 

where the elastic energy of internal stresses arises in the formation of a macroscopic 

equilibrium inclusion. The necessary condition for the transformation from one phase to 

another with coherent phases with presence of external field is generally given by:  

                                                                         ̂   ̂   ̂   ̂                                                             

 

Where    the Gibbs is free energy of phases 1 and 2 and   ̂  ̂is the compliances of the 

initial and product phases respectively. The phase transformation temperature of the 

high-temperature phase lies below the phase equilibrium temperature; while that of the 
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low-temperature phase lies above it [28]. In reality the transformation from one phase to 

another usually proceeds in reaching some deviation from the phase equilibrium. This 

deviation determines a line of onset of transformation, or a transformation line which 

corresponds to the limit of stability of the initial phase with respect to the formation of 

the first fraction of the product phase. For each phase the latent heat transformation is 

different. Assuming the latent heat of transformation R →M1 is different with the one R 

→M2 and M2→M1 and the different stress value obtained according to Aizu are given. 

See figure 5.14 a) and 5.14 b).  

                                               e11= - 0.00543= e22;                                                       Eq.5.12 

                                                         e33= 0.0019.                                                                Eq.5 .13 
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Figure 5.14:  x3 uniaxial stress versus transformation temperature in VO2 single 

crystal.a) and b). 

 

For a large range of applied stresses, from            the first order line transition 

phase separates the Rutile phase from the M1 phase with disappearance of the M2 

phase. For  = 0.01 down to 0, a first order line separates M1 phase to M2 phase. The 

phase diagram is easily interpreted as a competition between natural ordering along 

[110]. For     the stress is too small to compete and only perturbs the normal ordering 

slightly. For     the stress wins over the natural ordering.The point   = 0 terminates 

the line of continuous phase transition and is known as a tricritical point. Rice at al. [24] 

presented the origin of M2 phase as due to the symmetry-breaking uniaxial stress 

applied in the [110]R direction. Zhang S et al. further showed that the M2 phase was 

observed competing with M1 in the VO2 nanobeams as part of the heterophase domain 
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structure [29]. This phenomenon was ascribed to the surface stress effects. This is in 

accordance with our finding. In a ferroelectric transformation the S1 and S2 states can 

be seen as a small distortion caused by slight displacements of the atoms of the parent 

phase. The spontaneous strain characterizes the distortion of each orientation state 

relative to the prototype structure. The second rank strain tensor for monoclinic 

symmetry for a single orientation state (S1) is given by: 

 

                                                                           (
       
       
     

)                                       Eq.5.13 

eijS(2)is related to eijS(1)byeijS(2)by eijS(2) = ReijS(1) RT, where R and RT are the 

90°rotation matrix around the b axis of the monoclinic structure and its transpose. 

Following Schlenker [30] the strain components can be calculated as follows according 

to the basis Bi, i = 0, 1 before and after the deformation:  
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The transition from the high-temperature space group P4/mmm to the low-symmetry 

subgroup P2/c involves no loss of translational symmetry and is due solely to the 

critical behavior of phonons associated with the centre (Γpoint) of the Brillouin zone. 

The spontaneous strain tensor can be expressed with no effect of shear compression we 

have [31]. 

 

                                                                    √    |          |                                              Eq.5.20 

 

X-ray diffraction peaks are broadened by small grain-size and by lattice distortions 

caused by lattice defects. Some typical lattice defects are: i) dislocations, ii) unrelaxed 

misfits between coherent phases, iii) severely distorted grain boundaries in 

nanocrystalline materials, iv) strains between coherent sheets, especially in strained 

layer structures, v) point defects, vi) second phase particles or inclusions, vii) 

concentration gradients in non-equilibrium multiphase materials or viii) stacking faults, 

etc. Stacking faults are a peculiar kind of lattice defect acting as boundaries in certain 

crystallographic directions, thus creating smaller ‘particle size’ in these directions. This 

part of these defects, if separable at all, causes ‘size broadening’ without ‘strain 

broadening’. The bounding partial dislocations, especially if they are in the interior of 

the crystallite, however, correspond to the first class of defects causing ‘strain 

broadening [32]. We can see that strained regions are present.  During heating heat 

monoclinic, domains started to nucleate where the stress was most compressive. These 

domains continue to grow and expand with increasing temperature.  Uniaxial external 

stress was used to engineer MIT domains along nanoplatelets of VO2, and to observe 

the Mott MIT at room temperature. The ability to engineer phase inhomogeneity and 

phase transitions with strain opens opportunities for designing and controlling 

functional domains of VO2 for device and sensor applications. The latent heat obtained 

via DSC experiment on cooling and heating cycle allows us to deduce that the phase 

transition is of first order according to the equation: 

                                                                                                                                               Eq.5.21 
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The interfacial effect was explored through the oxygen vacancies in nucleating the 

observed phase transformation by performing the first principles density functional 

calculations by Kannatassen et al. [33]. He presented the origin of phase transition of 

nanoparticles VO2 as the nucleation of specific point defects of oxygen vacancy present 

at grain boundaries. This is in accordance with our material where the metallic domains 

nucleate at specific points defects of the insulator material. The in situ temperature 

controlled XRD measurements on VO2 nanoparticules prepared by hydrothermolysis 

method were studied. Appearance of an intermediate insulator phase was observed 

across MIT. Considering previous reports on monoclinic M2 phase which is caused by 

stress, we discuss the mechanism of the intermediate phase formation in our material. 

The existence of an intermediate crystalline phase with room temperature insulator 

phase and high temperature metallic phase across MIT in VO2 could be of relevance to 

understand structural contributions to the phase transition dynamics. We observe that 

all VO2 crystals are stabilized in either the M1 or M2 insulating phase at around 65 deg 

C which appears to be a consequence of different strain related to variations in growth 

conditions. Insulating domains in crystals initially in the M1 phase at room temperature 

are found to convert to the M2 phase during the MIT prior to the formation of the fully 

metallic state. Crystals initially in the M2 phase convert directly via the formation and 

growth of periodic R domains in a similar fashion but at slightly higher temperatures 

compared to the M1 case. See figure 5.13. Budai et al. [26] shows that epitaxial VO2 films 

incorporate a wide range of inhomogeneous domain sizes and strain distributions that 

give rise to broad transitions where the material consist of complex mixture of distorted 

rutile, M1 and M2 domains and twins with a variety of orientations. Confirmed by 

Qazilbash et al. [34], nanoscale metallic puddles are local rutile domains created by 

strain interactions with surrounding distorted monoclinic domains. At the MIT the 

rutile lattice instability leads to distortions associated to zone boundary rutile point in 

the primitive tetragonal Brillouin zone. Short and long wavelength distortions reduce 

the point symmetry of the lattice and at the Brillouin zone center respectively. The 

strong coupling between zone center and zone boundary distortions are restricted by 
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external stresses which influence how exactly the transformation will occur at the zone-

boundary and the resulting value of the zone parameter. Zhao et al. [35] consider that 

the material VO2 during the θ-2θ scan of the sample for two closest Bragg peaks 

presents twinning domains formation in the sample. This latter is expected if a structure 

phase transition take place from a space group to another less symmetric space group. 

This was explained as the removal of the degeneracy between the equivalent directions 

in tetragonal by the monoclinic structure. 

 

Figure 5.15: Evolution of monoclinic Bragg peak (-211) versus temperature in the range 

of 50˚ C to 75˚ C with presence of nucleation, coexistence phases and complete structure 

apparition at high temperature. 

It is known that the M2 phase, which in the unstrained material has a free energy very 

close to that of M1, can be stabilized by doping or compressive uniaxial stress. The 

relationship between the crystal lattices of the different phases of VO2 can be 

understood in terms of the displacement and pairing of two interpenetrating 

 

 

 

 



165 
 

sublattices, each composed of chains of V atoms oriented along the crystallographic. 

High resolution X-ray diffraction experiments have shown that peak profiles 

corresponding to plane surfaces either perpendicular or parallel to the tensile or 

compressive axis of plastically deformed metals or alloys reveal characteristically 

asymmetric shapes. In the case of tensile deformation the intensity of the diffraction 

peaks decreases at a slower or faster rate on the smaller or larger diffraction angle side 

of profiles corresponding to surfaces perpendicular (axial case) or parallel (side case) to 

the tensile direction, respectively. Two alternative interpretations have been suggested 

such as heterogeneous dislocation distributions and dislocation manifold that can have 

a net dipole polarization. 
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Figure 5.16: Changes in XRD monoclinic (200) pattern of the VO2 monoclinic platelet 

from 50deg C towards 70 deg C a) and b). 

 

The heating of the samples during the x-ray measurement were performed using a 

Peltier thermoelectric heat pump with a regulation module of 0.1°C. The ability to 

automate the scattering intensity and particle size trend measurements is a major 

advantage in many applications in this set up. Processes as aggregation, solubilisation, 

sedimentation and change in molecular conformation can be followed by the scattering 

of the intensity of the samples as a function of temperature. Figure 5.15 a) depicts the 

evolution of the major Bragg peaks versus temperature. Monoclinic Bragg peaks (D, H) 

convertto tetragonal (L) through the intermediate phase (J). See figure 5.15 b). More 

accurately, and in the range of 50 °C to 75 °C , the intensity of two different diffraction 
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peaks at 36.89 ° corresponding to (-211) monoclinic and his equivalent at ≈ 37.06° (101) 

were followed. The X-ray spectrum shows the shifting of the entire transition 

monoclinic-tetragonal with temperature. The evolution is continuous at the operational 

time scale. While there is net decrease of the monoclinic Bragg peak intensity (situated 

at about 36.89deg) with a steady increase of the intensity of the Bragg peak 

corresponding to the tetragonal peak located at about 37.06 deg. This trend concurs 

with Joyeeta et al’s predictions [36]. The area under the monoclinic peak decreases as 

the tetragonal fraction grows. Both phases coexist in quasi equal fractions at around 

65°C as substantiated by Figure 5.16. The VO2 (M) nano-crystals are entirely tetragonal 

at 70°C. Naturally, the Bragg peak shift during the transition is attributed to thermal 

expansion and VO2 lattice. It was observed that the shortening of one of the lattice 

parameter in the monoclinic phase bm indicates in-plane tensile strain for keeping unit 

cell volume constant [37]. Hence the lattice transformation started before the rapid 

decrease in resistance. This was attributed to the inhomogeneity of the material due to 

the presence of both non crystalline and non-stoichiometric phases in addition to the 

grain boundaries between VO2 crystal grains confirmed with [38] who proves the 

nature of metallic phase transition by performing optical experiments with 15fs 

resolution and report an evidence of a limiting structural time scale for the formation of 

the metallic phase. Hence the evidence for a structurally mediated transition is 

suggestive of important band insulating character of monoclinic of VO2 despite much 

faster hole doping into the correlated band. This suggests that VO2 is more bandlike 

character. A Tselev et al. [39] show that the competition of two monoclinic phases M1 

and M2 is purely lattice symmetry driven where M1 is due to pairing of vanadium 

atoms which contribute to the formation of band gap through a Peierls mechanism and 

M2 phase is a pure Mott insulator structure.  
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Figure 5.17:  Gaussian fit plot at different temperature of the evolution of different 

reflections Bragg peaks angles it is clearly shown that the coexistence phase is 

maximized at 65 deg C. (J) 

According to Tsung-Han et al. [40] the monoclinic to tetragonal phase transformation is 

a diffusionless first-order phase transformation where it is assumed that the nucleation 

rather than the propagation controls the overall kinetics of phase transformation control 

by grain boundary nucleation effect. The grain boundary energy is function of the 
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misorientation between the grains which are nucleation sites due to their high energy 

related to the grain boundary angle. We labeled three curves S1, S2 and S3 

corresponding for each phase M1, M2 and R respectively at 36.64 º C, 36.74 º C and 

36.85 ºC. In addition, the Gaussian curve fittings performed here indicates the presence 

of an intermediate phase different from M1 and R phases across MIT. S3 increased 

rapidly from room temperature and became dominant at a temperature of 340 K, while 

S1 decreased gradually until 340K, with rapid decrease in the range 336K-340K. At 

temperature of 343 K, S1 disappeared and S2 remains constant. On the other hand, S3 

revealed apparent increase from 334 K and became dominant after 340 K, where 

metallic phase appears to be dominant than insulating phase and is more dominant 

comparatively to the intermediate phase M2.The changes in the phase ratio of S1 and S3 

show validity of assignments of them as insulating monoclinic M1phase and metallic 

rutile phase R, respectively. Since the intermediate S2 is dominant phase in the 

temperature range from 334–340 K with insulator property, we speculate that this phase 

can be assigned to monoclinic M2 phase shown in Figure 5.18 which has insulating 

property basically. 
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Figure 5.18: Composition ratios of S1, S2, and S3 against temperature. Each ratio is 

calculated by Gaussian curve area.  

It is noted that M2 remained even at temperature higher than 340K. Recently, the 

intermediate phase has been noted by authors in relation with discussion on the MIT of 

VO2 films. HuaGuo et al.[18] studied in situ VO2 nanowires by push-to-pull 

microelectromechanical device to realize quantitative tensile analysis in a transmission 

electron microscope and a synchrotron X-ray microdiffraction beamline. They observed 

single pinning and depinning events of M1-M2 domain walls in the superelastic regime, 

allowing for evaluation of the domain wall pinning potential energy. Also Jones et al. 

[41] studied the MIT and associated nanodomain formation in individual VO2 

microcrystals subject to substrate stress. They deduce that the MIT is influenced by the 

competition between the R, M1, and M2 crystal phases with their different lattice 

constants subjected to the external substrate-induced stress. They employ symmetry-

selective polarization Raman spectroscopy to identify crystals that are strain-stabilized 
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in either the monoclinic M1 or M2 insulating phase at room-temperature. But in their 

case the percolative model did not exist. In accordance with Sooran Kim et al, they 

explore the driving mechanisms of the metal-insulator transition (MIT) and the 

structural transition in VO2 and investigated phonon dispersions of rutile VO2 (R-VO2) 

in the DFT and the DFT+U (U: Coulomb correlation) band calculations and found that 

Coulomb correlation effect plays an essential role of assisting the Peierls transition in R-

VO2 predicting a new phase Mx monoclinic structure but with metallic nature [42]. Fan 

and al. [43] measure the force displacement of the VO2nanobeams showing nonlinearity 

that signifies activation and expansion of domains of a new phase out of the old one 

describing the first-order phase transition. X-ray microdiffraction measurements from 

individual VO2 microcrystals reveal a strong link between external strain and local 

phase stability, domain orientations and interfaces. Recently Bongjin et al. [44] shows 

that the MIT in a macroscopic VO2 crystal occurs due to the Joule heating effect with 

self-switching effect cause by large asymmetry in heating power just before and after 

the MIT maintaining the crystal temperature at MIT temperature. They assume that the 

heat obtained in the overall VO2 crystals is mainly due to the balance between resistive 

Joule heat and heat loss from the crystals to the environment via heat conduction 

expressed as a simple heat conduction as: 

                                                                       
  

  
 
   
  

                                                              

Where the crystal temperature Tc is expressed as: 

                                                                               
   
   

                                                                   

And they demonstrate that the conducting path for electrons is dominated by the bulk 

material while there is a coexistence of insulator and metallic phases with a partially 

insulating surface skin layer and they attributed the shift of the phase boundary as 

evidence of thermal fluctuations between surface skin layer and bulk layer.  
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5.2.1 Theory of Landau 

The displacements of the atoms which are associated with the breaking of the symmetry 

are characteristic of the distorted phase, and, furthermore, at a continuous phase 

transition decrease continuously to zero as the high-symmetry phase are approached. In 

a single domain of the distorted phase, the displacements in any one unit cell have a 

definite relationship to those occurring in any other unit cell [45]. The simplest example 

of a structural phase transition occurs when the distortions may be described by a 

single normal mode; the amplitude of the distortion is then given by the order 

parameter: 

                                                      
 

 〈      〉                                                          Eq.5.24 

Where (   ) is the particular normal mode which describes the atomic displacementsin 

the distorted phase, and the factor of   
 

  is introduced so that Q0 is independent of the 

crystal size. If the phase transition is continuous, the order parameter will approach 

zero as T~Tc and is assumed to be given by a power law: 

                                               Q0 ~ (Tc - T) β                                                                                                            Eq.5.25 

Where β is known as the critical exponent for the order parameter. In classical theories 

of phase transitions, such as those discussed and the exponent β=0.5, while in practice it 

varies between 0.25 and 0.5. Evidence in the tricritical behavior of the material is shown 

by the linearity temperature dependence of integrated intensities of elastic scattering. 

See figure 4.19. Landau assumes that the free energy of one unit cell of the crystal may 

be expanded in a power series in the order parameter:  

                                       
 

 
                                                                          Eq.5.26 

Where the coefficients may be function of the temperature.  The continuous phase 

transition and first order transitions are mainly described by the equation: 

                                                   
 

 
                                                          

   describes the free energy for the disordered state. A second order phase transition is 

obtained for temperature below    this is due to a non- zero equilibrium value of the 

order parameter that minimizes the free energy. The free energy of the ordered phase 
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decreases below that of the disordered phase. The Landau theory describes also the first 

order transition at temperature    where the order parameter appears discontinuous 

describing the association of a latent heat with the phase transition. This is due to the 

quartic of the parameter. These results are in agreement with the DSC experiment and 

diagram phase of the material obtained. The landau expansion at this point is obtained 

so that the order parameter is given by: 

                                                               
   

 

  
                                                                                

The possible atomic displacements are generally expressed in terms of linear 

combinations of n normal modes coordinates where n represents the number of 

components of the order parameter (order parameter dimensionality). In the high 

symmetry phase all the normal modes have the same frequency while in the distorted 

phase, the order parameter is expressed as: 

 

                                                      Qi      , Where ∑   
                                              Eq.5.29 
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Figure 5.19: a) Temperature variation of the square of the intensity of elastic scattering 

of the (-211) reflection, tetragonal and monoclinic Bragg evolution b) and c) order 

parameter versus temperature. 
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Low temperature of M1 and M2 with predominance of M1 phase can also be explored 

via Raman spectroscopy. Structural information of the material was obtained by 

excitation of continuous wave laser light with a 514.5 nm line from argon ion. It is 

possible to identify the in situ molecule and to determine the amount of the molecule 

present in the sample. Most molecules at rest prior to interaction with the laser and at 

room temperature are likely to be in the ground vibrational state (lowest energy). Since 

the virtual states are not real states of the molecule but are created when the laser 

interacts with the electrons and causes polarization, the energy of these states is 

determined by the frequency of the light source used. The Rayleigh process will be the 

most intense process since most photons scatter this way. It does not involve any energy 

change and consequently the light returns to the same energy state. The Raman 

scattering process from the ground vibrational state m leads to absorption of energy by 

the molecule and its promotion to a higher energy excited vibrational state (n). This 

called Stokes vibration. The power of the laser was about 100mW. The T64000 was 

operated in single spectrograph mode with the 1800 lines/mm grating and a 100x 

objective on the microscope. VO2(M) raman results has prominent phonons peaks at 144 

cm-1, 194 cm-1, 225 cm-1, 387cm-1 and 617 cm-1. Our nanoplateletsVO2 (M) isolated in KBr 

present two prominent phonons peaks at around 196 cm-1 and                                   

617cm-1 characteristics of M1 phase. We can see that the intermediate phase is 

completely diminished with the presence of KBr which has been used as host materials 

for infrared emission due to its lower maximum phonon energy 168 cm-1 favoring the 

suppression of nonradioactive losses improving the luminescence of optically active 

dopants by making the sample homogenous. In addition, KBr has been considered as a 

potential material for infrared emission due to its unique properties, which include 

being easy to crystallize, wide IR transparency and high refractive indexes [46]. 
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Figure 5.20: Raman spectra collected for VO2 as synthesized a) and dispersed in KBr b). 
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Also, we notice that due to some inhomogeneities of the nanostructure, which remain 

strong, there is some presence of vanadium pentoxide(V2O5) raman line shown in the 

figure 4.20 a) with specific peaks at 991cm-1 [47-48] 690 cm-1,527 cm-1, 409 cm-1 and 294 

cm-1. Although the stoichiometry was found to be pure VO2 (M), high resolution 

transmission electron microscopy and ED shows that it possess a metastable monoclinic 

structure that we assigned the two pronounced peaks at 873 and 162 cm-1. The 144cm-1 

and 194cm-1 are assigned to the bending vibration modes of (V2O2) chains. They arise 

from the deformation of the bond between different molecular units in the layer planes 

and strongly associated with the oxide layered structure. The peaks located at 293cm-1 

and at 411cm-1 are due to the bending vibrations of the V=O bonds and those located at 

306 cm-1 and 487cm-1are bending modes of the triply coordinated oxygen bonds and 

bridging V-O-V respectively peculiar to VO2. The 529cm-1-531cm-1 is the stretching 

modes of the triply coordinated oxygen involve in the O edge share atoms in common 

to three pyramids. The 693 cm-1 originated in the stretching vibration of the doubly 

coordinated oxygen involve in corner share atom to two pyramids. The 993 cm-1-997 

cm-1 is the stretching mode of the terminal unshared oxygen V=O. Recent experiments 

have shown that the Raman spectrum of an oxide material can be greatly affected by 

deviations in oxygen stoichiometry. It is evident that the results presented here and 

those of Parker [49] are substantially different from the results of Chase and Srivastava. 

See table 5.3 and perhaps the differences may be attributed to an oxygen deficiency in 

the VO2crystals which favour the presence of M2 phase coexisting with M1 insulator 

phase. The x-ray and raman measurements performed on our VO2 single crystals 

indicate that the samples are stoichiometric VO2 with presence of M2 domains. 

Therefore, we can conclude that the spectrum obtained in this work would be the 

identifiable spectrum of stoichiometric VO2 and M2 structure. Significant intensity 

variations for the high energy sharp peaks at different output power laser are obtained. 

The peaks are prominent for the highest power 100mW while it is very weak at 25mW 

and 50mW. The sample measured at low power excitation is very feeble (25mW and 

50mW).  This shows that strong resonance effects are taking place at 100mW excitation. 
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Table 5.3: Comparison of Raman peak positions measured in this work and the results 

of previous studies. The data in the columns labelled present work and other peaks 

V2O5 positions are determined from Figure 5.20 b) [49]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

High-resolution XPS measurements were performed with a PHI 5000 Versaprobe – 

Scanning ESCA Microprobe spectrometer employing 100 µm 25 W 15 kV Al 

monochromatic x-ray beam. The resolution of this instrument has been determined to 

be 0.1eV after 30 cycles. The specimens were nanostructures VO2 single crystals sputter 

for 2 min under Ar ion gun in the spectrometer vacuum of 10-7 Torr. It is well known 

that under typical XPS measuring conditions insulating and semiconducting samples 

become charged and the resulting peaks are shifted and broadened. Two phenomena 

can be observed during the experiment: absolute peaks positions and peak splitting. 

Charging effects broadened the spectra to such an extent that no direct evidence of 

Raman 

modes of 

VO2. 

Assignment 

Raman 

frequency cm-1 

Present work Srivastava 

and Chase 

Aronov 

et al. VO2 Other 

peaks 

cm-1 

V2O5 

 

¯ 142 144 158-162*  142 

Ag 191 194 291-293 208 191 

Ag 

 

221 225 409-411 236 222 

Ag 258  529-531  259 

Ag 308  692-693  308 

Ag 335  871-873*  335 

Ag 392 387 923-925  389 

Ag 497  993-997 450 497 

Bg 594   655  

Ag 612 617  850  611 
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multiplet splitting could be obtained. The 2P1/2 and 2P3/2 peaks are separated by 3/2 ξ2p 

where ξ2p is the spin-orbit coupling constant given by: 

                                             ξ2p 
  

     
 

 

  

  
                                                              Eq.5.30 

The anomalous behavior of (2p) for the transition-series metals is very obvious for 

compounds which have been explained as exchange coupling between the unpaired 3d 

spin S and the 2P3/2 and 2P1/2 holes, with the highest-spin state in each case being 

pushed to the extremes of the multiplet pattern [50]. XPS binding energy difference, E 

(2P1/2) —E (2P3/2) = ΔE (2P) can be plotted against Z (atomic number) as:  

 

                                                     
     

  
      (

      

 
)                                                  

The sample under study is subjected to irradiation by a high energy X-ray source. The 

X-rays penetrate only 5 – 20 Å into the sample [51] allowing for surface analysis. As an 

atom absorbs the X-rays, the energy of the X-ray will cause a K-shell electron to be 

ejected. The ejected electron has a kinetic energy (KE) that is related to the energy of the 

incident beam (hν), the electron binding energy (BE), and the work function of the 

spectrometer (φ). The binding energy is calculated as:  

                                                                                                                                            

   is the electron binding  energy. KE is the electron kinetic energy and фspec is the 

spectrometer work function. It was observed according to [52-53] that the material is 

composed of vanadium valence V+4 and V+5 states respectively at 515.15 eV (2p 3/2), 

522.64 (2p 1/2) and 516.74 (2p 3/2), 524.92 (2p 1/2). See figure 5.21 and 5.22. 
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Figure 5.21: Wide scan spectra of VO2 nanocrystals 
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Figure 5.22: XPS measurements on VO2 nanoparticles. 

5.2.2   Conclusion 

Taking advantage of the spontaneous strain associated with the structural change of the 

phase transition, a colossal thermal mechanical actuation in VO2 nanoplatelet was 

reported, making them suitable for thermal sensors, energy transducers and actuators 

with unprecedented sensitivities.VO2nanoplatelets`Structural Phase Transition was 

investigated by temperature-controlled XRD across MIT. We observed coexistence of an 

intermediate crystalline phase with room temperature insulator phase and high 

temperature metallic phase in nanostructures VO2platelets. Gaussian curve fittings for 

measured XRD patterns revealed a significant contribution of the intermediate phase 
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covering wide temperature across MIT around 65deg C. Strained–thermal effect was 

suggested to be responsible for the formation of a monoclinic M2 phase which was 

assigned and belongs to a monoclinic phase remaining at higher temperature with weak 

proportion. Hence the study of the coexistence of M2 phase with R will be of great 

interest to investigate and fabricate the ultrasensitive transition edge-sensors, and fast 

optical shutters. The transition between M1 and M2 insulator can be used in developing 

fast and reproducible strain sensors or logic switches. 
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5.3 VO2 Nanostructures based chemiresistors for High Hydrogen Gas Sensing 

capabilities within ppm level. 

 

In relation to the hydrogen economy in general and hydrogen gas sensing in particular, 

an extensive set of 1-D nano-scaled oxide materials such as nanowires, nanotubes, 

nanorods, and nanobelts based systems, in addition to standard nano-powders/thin 

films structures are being investigated as ideal candidates for potential gas sensing 

applications. This is correlated to their set of singular surface characteristics; shape 

anisotropy and readiness for integrated devicesMott-type VO2 oxide nanobelts are 

demonstrated to be effective hydrogen gas sensors at room temperature. These 

nanobelts synthesized by hydrothermal process and exhibiting the VO2(A) 

crystallographic phase in our work, display sound room temperature H2 sensitivity as 

low as 0.17 ppm. 

Whilst many aspects of hydrogen are well known, knowledge gaps have existed for 

several decades, as conditions for ignition, flame acceleration, detonation of 

heterogeneous mixtures, structural protection and other mitigation strategies such as 

ventilation. Therefore, it is necessary to build trust by demonstrating safety not only in 

the large demonstration projects but also by the way in which this vital topic is 

addressed. Understanding hydrogen and hydrogen system safety needs is critical for 

local government officials, fire officers, and the general public. Emergency personnel 

must be informed of the special properties of hydrogen and trained in the methods 

used to respond to accidents involving its use. Public perception and confidence in 

hydrogen relies on credibility, transparency and individual [54]. A comparative safety 

relevant property of four gases is given below. Serious considerations in South Africa 

are considered to develop hydrogen economy such as safety, cleaning and reliable 

alternative energy source to fossil fuels to produce electricity. Another driving force 

behind this technology is the prevalence of platinum reserves found in South Africa. 

Platinum materials used in most fuel cells, and with more than 75% of the world’s 
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known platinum reserves found within South African borders, there is great potential 

for socio-economic benefits to be obtained from these natural resources. Although 

hydrogen and fuel cell technology falls squarely under the energy security grand 

challenge, it also has implications for global-change science with the potential to help 

mitigate the effects of climate change through reduced emissions and improved 

adaptation through use of cleaner energy technologies. The safe handling and use of 

hydrogen requires an appreciation of its physical properties in each of the forms in 

which its use as a fuel is considered (gas, liquid, adsorbed to another material, etc.). The 

properties of hydrogen are different from those of today’s conventional fuels such as 

methane or gasoline. Hydrogen generally exhibits wider limits of flammability, a high 

detonation sensitivity, and relative low ignition energy if mixed stoichiometrically with 

air, in comparison to conventional fuels. See figure 5.23. 

 
 

Figure 5.23: Hydrogen properties [54]. 
 

 

 

 

 



185 
 

However, hydrogen may be responsible for stronger pressure effects if released and 

ignited in a confined space. To be a successful energy carrier, hydrogen must be 

economically competitive, and the individual technological components must be 

connected via an infrastructure that provides a safe and environmentally acceptable 

energy system throughout the whole production, distribution and end-use chain. The 

Sensor Performance Testing Facility Hydrogen leaks can be a serious hazard if not 

detected reliably and rapidly. Appropriate detection systems need to be tested, and 

their performance validated so that they can be deployed in hydrogen applications to 

ensure high safety of hydrogen-powered vehicles, stationary fuel cells for power 

generation, hydrogen filling stations, hydrogen pipelines, etc. The Sensor Performance 

Testing Facility, SenTeF, at the JRC’s Institute for Energy, (JRC-IE) located in Petten, the 

Netherlands, has been designed and built for this purpose. The accuracy of a hydrogen 

sensor, the rapidity of its response, the reproducibility of its signal upon changes of 

temperature, humidity and altitude, the ability to ignore interfering gases and prevent 

false alarms are some of the elements that make a system reliable. At JRC-IE, a 

sophisticated gas-handling and temperature control system allows all these parameters 

to be controlled, simulating real ambient conditions, and submitting the sensors to a 

severe test. In collaboration with other European partners, such as Hysafe and StorHy, 

the JRC-IE will use SenTeF in experimental programmes aimed at the preparation of 

guidelines for testing the reliability of hydrogen detectors, both for automotive and 

stationary applications. See figure 5.24. 
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Figure 5.24: Gas handling and temperature control system at JRC-IE [54]. 

In relation to the hydrogen economy in general and hydrogen gas sensing in particular, 

an extensive set of 1-D nano-scaled oxide materials such as nanowires, nanotubes, 

nanorods, and nanobelts based systems, in addition to standard nano-powders/thin 

films structures are being investigated as ideal candidates for potential gas sensing 

applications. This is correlated to their set of singular surface characteristics, shape 

anisotropy and readiness for integrated devices [55-59]. Their shape anisotropy at the 

sub-micron scale induces their large surface/volume ratio, and hence a significant 

increase in surface chemical active sites [60-61]. The nanostructures of well-established 

gas sensing materials such as SnO2 [62-66], In2O3 [67-68], and WO3 [69-70] have shown 

higher sensitivity and selectivity, quicker response and faster time recovery, as well as 

an enhanced capability to detect gases at low concentrations compared with the 

corresponding thin film materials [70-71]. While the overall sensing characteristics of 

these so called 1-D nanomaterials are optimal, they are efficient at high temperature; 

generally above 200 ◦C, resulting in significant power consumption, in addition to 
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complexities in device integration, which limits their technological applications. 

Consequentially, there is still space and need to develop 1-D nanomaterials for gas 

sensors that have very good sensing performance but at room-temperature. 

Unfortunately, for room temperature applications, there is a necessity to dope the above 

mentioned nano-scaled oxides with non-cost effective noble metals such as Pt, Pd, Au, 

and Ru. Indeed, as demonstrated by Tien et al. and Wang et al. [72-73], ZnO nanorod 

sensors showed higher H2 sensitivity and quicker response at room temperature for 

ZnO nanorods surface-modified by sputter-deposited clusters of Pd or Pt when 

compared with the undoped and corresponding thin film sensors. Ramgir et al. [74] 

reported that 0.48 wt% Ru-doped SnO2 nanowires exhibited the highest sensitivity 

towards NO2 gas at room temperature while Neri et al. [75] reported that Pt-doped 

In2O3 nanopowders showed better gas sensing performances to oxygen at room 

temperature compared with the undoped samples. To single out the reported 

experimental large room-temperature H2 gas sensing of the specific phase of VO2 (A) 

nanobelts, one should position this work relatively to the reported studies on an 

ensemble of vanadium oxides nano-systems. Oxide systems of vanadium present a 

wide range of ordered and disordered structures due to the presence of multivalent 

vanadium ion from V2O5 to VO2 whose structures and stoichiometry satisfy the general 

formula VnO2n+1 (3<n<8). Raible et al. [76] showed high sensitivity and selectivity in 

nanofibers of V2O5 based sensors capable of detecting organic amines at room 

temperature. Baik et al. [77] produced Pd nanoparticles-decorated single VO2 nanowires 

and studied the sensitivity under H2 close to the metal insulator transition temperature 

which is about 70 ᵒC.  They showed that the material undergoes a large downward shift 

in the insulator to metal transition temperature >10 ᵒC following the adsorption and 

incorporation of atomic hydrogen produced by the dissociative chemisorption of H2 on 

Pd in VO2.  Manno et al. [78] investigated the influence of the NO2 gas on the 

conductance of vanadium oxides films sputtered at different concentrations of O2. They 

realized that pure stoichiometric VO2 and V2O5 have lowest response between 200 to 300 

ᵒC while V3O7 and V4O9 had the best sensitivity to 100 ppm NO2. Hence the 
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crystallographic phases play an important if not a critical role in gas sensing at least in 

such a system. Strelcov et al. [79] studied VO2 nanowires thermistor based gas sensor 

with variation of the temperature close to the transition temperature edge which can be 

lowered to room temperature by appropriate doping or by axial stress. Recently Yin et 

al. [80] studied the sensitivity of VO2 (B) and VO2 (M) in moisture environment 

demonstrating that they exhibit good stability, fast response and good recovery 

detection in low relative humidity (11.5% RH) and high relative humidity (97.2% RH) 

respectively. However, and to the best of our knowledge, no report has been published 

on room temperature sensitivity to H2 gas of synthesized VO2 (A) nanostructures in 

general and their nanobelt form especially. VO2 (A) phase is a singular V-O system 

oxide. More accurately, it is based on an oxygen bcc lattice with vanadium in the 

octahedral where the oxygen atoms are mainly aligned along one direction [81] (Figure 

5.25). It possesses a tetragonal structure with space group P42/nmc and can be directly 

transformed to VO2 (M/R) under annealing treatment. VO2 (A) shows a thermal 

stability at 162 ˚C with a reversible change from tetragonal VO2 (A) to body-center 

tetragonal VO2 (AH) (Figure 5.25).  It has been shown that, according to the density 

functional theory (DFT) and crystallographic topology analysis, VO2(A) is the 

thermodynamically stable phase compared with VO2 (B) and is much more stable than 

VO2 (R) based on calculations principles using the hybrid function as highlighted in 

Table 5.4. Due to such stability, Li et al [82] studied the field emission and electric 

properties of such a metastable phase VO2 (A) in their ultra-long nanobelt form. This 

latter set of VO2(A) nanobelts were found to exhibit a colossal field performance factor 

of about 1739 in the field emission measurement and a significant time stability of the 

current density, indicating the potentiality of VO2 (A) to be applied as an electron 

emission nano-material. As mentioned previously, this paper reports for the first time 

the H2 gas sensing properties at room temperature of VO2 (A) nanobelts. The exhibited 

large H2 sensitivity at room temperature of the synthesized VO2 (A) nanobelts can 

easily reach values smaller than 0.17 ppm concentration. 
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TABLE 5.4:     Specific parameters of some phases of VO2 [83]. 

 

Phases  Density (g/cm3)        Band gap (eV) Formation energy (eV) 

VO2 (R)               4.67   Metal    -6.93 

VO2 (M)                4.67   0.84    -7.18 

VO2 (B)    4.031   0.65    -6.66 

VO2 (A)    4.035   0.21    -7.14 

VO2 (AH)              4.035   Metal    -6.97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.25: Tetragonal structure of VO2 (A) [83]. 
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synthesis, 0.75ml of sulphuric acid H2SO4 followed by N2H4·2H2O was added into an 

aqueous suspension of V2O5. After stirring thoroughly, the solution’s color changed 

from yellow (V5+ valence state) to blue, characteristic of the presence of V+4 ions in the 

solution. Following an optimization study, it was found that the concentration of NaOH 

determines the shape of the final product. The hydrothermal synthesis was carried out 

in a Teflon-lined autoclave at ~230˚C for about 48h. Then the content was air-cooled to 

room temperature followed by a filtration step of the formed precipitates. The final 

black chemical product was washed extensively with water and ethanol and dried at 

about 60 ˚C for 12h. To confirm the VO2 (A) crystallographic nature of the synthesized 

nano-powder, High Resolution Electron Microscopy (HRTEM), X-Ray Diffraction 

(XRD) as well as transport (Resistance-Temperature) measurements were conducted. 

The HRTEM and the XRD measurements were carried out on a TECNAI G2-F20 and a 

Bruker unit in a θ-2θ mode with CuKa 1(AXS Bruker, λ=1.54056Å) respectively while 

the resistance-temperature cycling R(T) were measured with a standard two probe 

system. Figure 5.26 shows a typical electron transmission micrograph of the filtered 

synthesized powder. The nano-particles exhibit crystal-clear shape anisotropy: a 

nanobelt-like morphology. Statistical imaging studies show that they have an average 

size of 20-150 nm in the transverse direction and a length ≥ 20 µm with a thickness less 

than 10 nm. The high resolution electron microscopy analysis of the bulk of individual 

nanobelts indicates a significant crystallinity of the VO2 (A) with an interspacing d(hkl) ~ 

0.600 nm corresponding to the (011) reticular plane orientation. To find out if the 

surface of the nanobelts is different from the bulk in terms of elemental distribution, 

Energy Dispersion Analysis (EDAX) investigations were carried out on the same high 

resolution electron microscopy unit. The 200 KeV accelerated beam was set to impinge 

the nanobelts surface at an inclination angle of 15.02 º C. The corrected V/O ratio was 

found to be identical (about 0.48) both at the interface and the volume part of the 

nanobelts indicating therefore the identical degree of chemical homogeneity within the 

nanobelts at least from chemical point of view.  
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Figure 5.26: Electron transmission micrograph of synthesized powder. 

From a crystallographic point of view as well established, VO2 has several kinds of 

crystalline structures [83-87]. One is the tetragonal rutile-type VO2 with lattice constants 

of a ~ 0.455 nm and c ~ 0.285 nm and that shows metallic feature. A second is 

monoclinic VO2 with a ~ 0.5753 nm, b ~ 0.4526 nm and c ~ 0.5383 nm, which has an 
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insulator behavior at room temperature. It is widely accepted that the formation of an 

electron pair in the monoclinic crystalline structure results in the insulator phase. This 

monoclinic VO2 can inversely transit to tetragonal rutile and conducting VO2 phase. A 

third structure is also monoclinic VO2, but with a ~ 1.209 nm, b ~ 0.3702 nm and c ~ 

0.6433 nm. This type of VO2, however, does not show the highly attractive Metal-

Insulator Transition (MIT) characteristic. The 3 phases mentioned previously are known 

as VO2 (T) for the tetragonal type, VO2 (M) for the monoclinic type with the phase 

transition, and VO2 (M-II) for the non-transition monoclinic type. In addition to this set 

of stable phases, VO2 (A) phase shows a thermal stability at 162 ˚C with a reversible 

change from tetragonal VO2 (A) to body-center tetragonal VO2 (AH) as highlighted in 

Figure 5.25. Figure 5.27 reports a typical room temperature X-ray diffraction of the 

filtered powder.  The majority of the peaks are indexed as VO2(A) according to the 

JCPDS card referenced as 00-042-0876 with a preferential orientation along (110) yet 

there is a slight angular shift of many Bragg peaks. The derived lattice parameters via a 

Rietveld treatment gives the average values of <a> and <c> of 8.451 Å and 7.697 Å 

respectively and a space group of P42/nmc. The lattice values are slightly different 

from the bulk parameters: <a>= 8.450 Å and <c>= 7.686 Å of the VO2(A) phase 

suggesting that there is a slight inter-plane strain (∆<c>/<c> ~ 1.5%. Likewise, one 

could observe the presence of little low intensity Bragg peaks belonging to VO2(M) 

phase. Such bi-phase coexistence could be due to stress-strain phenomena at the 

crystallites’ interface. Indeed, it has been demonstrated that the distortion of the VO6 

octahedra in the low temperature VO2 (A) phase is similar to the monoclinic VO2 (M) 

phase. Hence monoclinic domains could be found in the low temperature VO2 (A) 

nanostructures. As confirmed by the preceding high resolution electron microscopy as 

well as the X-rays diffraction investigations, the VO2(A) phase has been substantiated 

by additional transport measurements via resistance-temperature (R(T)) profiles within 

the temperature range of  25-100 °C. Before presenting the R(T) experimental results, it 

is worth describing the characteristics of the VO2(A) phase specifically and VO2 in 

general which is gaining momentum in interest within the global scientific community 
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[88-92]. VO2 exhibits an ultrafast femtosecond 1st order metal–insulator/semiconductor 

(MIT) Mott’s type phase transition at around ~ 67.8 °C with large orders of change in 

the electrical resistivity due to its strong electrons correlation [93-95]. More precisely, 

above the transition temperature Tc~ 67.8 °C, VO2 is metallic and adopts the tetragonal 

rutile (P42/mnm) structure with chains of edge-sharing VO6 octahedra along the c-axis; 

the V-V distances along the chain are 0.2851 nm. Below Tc, i.e. in the 

semiconducting/insulator monoclinic (P21/c) crystal structure, the dimerized 

vanadium atoms have alternate V-V distances of 0.2619 and 0.312 nm. Such an ability to 

undergo a reversible structural distortion as a function of temperature is accompanied 

by a reversible semiconductor/insulator-to-metal transition. From theoretical point of 

view, this phase transition has been, initially, interpreted in terms of Mott-Hubbard like 

transition [96] or electron trapping in a homopolar bond. The very recent ultrafast 

spectroscopy investigations shed-lighted, on how fast is such a phase transition as well 

as on the electronic band structure changes. Indeed, using a femtosecond laser 

excitation, the relaxation processes in VO2 were studied by optical pump-probe 

spectroscopy highlighting that the light-induced phase transition was as fast as the laser 

pulse duration of 100 fs itself [97-99]. As a consequence of such a femtosecond and 

reversible electric phase transition, the optical dielectric constant and thus the refractive 

index of VO2 exhibit a temperature modulation which translates in a large reversible 

optical modulation in the infrared spectral region. This singular property of VO2 make 

it an optical coating candidate of choice for smart windows applications [100], thermal 

sensors [101], optical switching devices [102], field effect transistors and electro-optical 

gates [103] as well as ultrafast tunable nano-plasmonics among others [104-105]. Figure 

5.27 b) presents the diffraction pattern observed on the screen as a series of aperiodic 

sequence of diffraction spots which is produced by nano-size dimension of the 

nanobelts in combination with double diffraction due to twinning. The nanometric size 

of the nanobelt along its cross section produces the enlargement of reciprocal spots 

[106]. Hence the combination of spots obtained is both the zero order Laue zone and 
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first order Laue zone. For a [001] beam direction, the reciprocal lattice point contributes 

to the diffraction pattern if it satisfies:  

                                                         [001]. (uvw) = 0                                                      Eq. 5.33 

The smallest vectors satisfying this equation and that also satisfying the condition that 

all of the indices are even or all of them are odd are (200) and (020). So the diffraction 

pattern will consist of all the integer combinations of these vectors such as: (010), (100), 

(110), (200), and (020).  
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Figure 5.27: Crystallographic structure of VO2 a) and diffraction pattern of VO2 b). 

Figure 5.28 reports the variation of the electrical resistance/cm2 versus temperature of a 

typical cold pressed pellet of the VO2 (A) nanobelts. The measurements were conducted 

within the temperature range of 25-100°C both in the cooling and heating cyclings. As 

one could notice, the electrical variation within the 55-72°C is approximately over 4 

decades with a hysteresis type evolution upon heating/cooling, characteristic of                 

VO2 (A). The average value of the electric resistance is 108 Ω and 104 Ω at 50 and 72°C 

respectively. Though the variation of the electrical resistance is of the order of 4 

magnitudes, its value above the bulk critical temperature of 68°C is still high. This 

could be caused by the porosity of the pressed VO2 (A) nanobelts powder and could be 

explained in terms of percolation phenomena. Taking into account both the values of 

the average hysteresis as well as the change in the magnitude of the electrical 

resistance/cm2, the average transition temperature, Tc can be estimated to ~62°C. 

Relative to the bulk Tc, this smaller value could be due to a strain-stress phenomenon as 
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suggested in the case of previous electron transmission and X-ray diffraction 

experiments. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.28: electrical resistance measurement of VO2 (A). 

 

For the H2 gas sensing experiments, a standard in-situ 2 point probe system was used. 

The cold pressed VO2 (A) nanobelt pellet was squeezed between two Al electrodes and 

a Si substrate wafer while the whole was interfaced to a heating stage (25 ºC– 300°C). 

The isothermal responses of the resistance of the pressed VO2 (A) nanobelts powder at 

different concentrations of H2 fluxes were measured upon injection of H2 N2 mixture as 

a carrier gas and refluxing with pure N2. The reproducible experiments were conducted 

with different H2 partial pressures equivalent to 140, 90, 50, 14 and 0.17 ppm of H2 

carried by N2. Before any H2 sensing experiment, the chamber was refluxed to minimize 

any contamination effect. Figure 5.29 at room temperature and close to 50 deg. C reports 

a typical variation of the conductometric sensing signal for the above H2 concentrations 

55 60 65 70

4

5

6

7

8

Lo
g 

Re
si

st
an

ce
 (

M


)

Temperature (
o
C)

 Heating

 Cooling

 

 

 

 



197 
 

i.e. 140, 90, 50, 14 and 0.17 ppm of H2. The initial electrical resistance which is about       

1.2× 107 Ω decreases to 0.18×10 7 Ω upon initial refluxing. Upon injection of 140 ppm H2, 

it increases to reach a plateau-like steady-state. As in the case of effective sensing oxide 

based nano-systems, the electrical resistance decreases once H2 gas flow is cut off. To 

estimate the H2 detection limit, the room temperature conductometric measurements 

were performed at the various H2 flow concentrations of 90, 50, 14 and 0.17ppm as 

reported in figures 5.29 a) and figure 5.29 b). It can be observed that, the resistance 

variation, which is reproducible with a small bar error, is still sensitive up to 0.17ppm 

H2. See figure 5.30 a) and b). Compared to the various oxides studied earlier, as well as 

the 1-D reported nanosystems, this detection limit at room temperature is, indeed, 

significant if not unique. 
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Figure 5.29: Conductometric sensing signal of powder VO2 at room temperature and 

close to the transition temperature. 

 

The gas sensing properties of VO2 nano-platelets has been investigated at room 

temperature and 50 ºC in N2 dry air at different pressures of H2 gas using the 

conductometric sensor signal. The decrease in the resistivity is due to the injection of the 

H2 gas describing the charge transfer with the material and because the low 

temperature favors the adsorption of negatively-charged hydroxyl species. Intrinsic 

oxygen atoms trap the electron in the n-type VO2 (A) metal reducing the charge carrier 

density in a depletion region close to the surface due to the band bending at the surface 

[107]. Depletion regions occur between grains giving higher resistance. A wide variety 
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of events occur when a molecule impinges upon a surface. It may be reflected with no 

loss of energy or it may suffer a redistribution of momentum and be diffracted by the 

surface again with no loss of energy.  In the case where the hydrogen molecules lose 

sufficient quantity of energy they become effectively bound to the surface with strength 

depending on the kinds of atoms involved. The resistance underwent a drastic drop 

when the gas is open exhibiting n-type semiconductor characteristic of VO2 (A). This 

whole process responsive behavior has been qualified as conduction type inversion n-

to-p of the sensing material whose conduction is surface trap limited owing to the high 

surface to volume ratio of this material [108]. Therefore, this detection limit is low 

enough for potential commercialization if the recovery and response times would be 

optimal. Concerning the response and the recovery time, the VO2(A) nanobelts exhibit 

comparable values relatively to standard doped sensing nano-scaled oxides at room 

temperature and comparable H2 concentration. More precisely, the average response 

times are ~840, ~890, ~1080, ~1020, and ~1050 seconds for 140, 90, 50, 14 and 0.17 ppm 

of H2 respectively. Likewise, the corresponding average recovery times are: ~455, ~870, 

~1020, ~1037, and ~2080 seconds for 140, 90, 50, 14and 0.17 ppm of H2 respectively. In 

comparison, the H2 sensing of the equivalent oxide system i.e. ZnO nanorods [108-109], 

records at room temperature response times in the order of 600 seconds for 500ppm H2. 

In addition to such a substantial characteristic, and as reported in Figure 5.31 a), the 

sensitivity of the nanobelts S (S= (RH2-R0)/R0, RH2 and R0 are the sample resistance with 

and without H2 gas respectively) is in the range of the values exhibited by standard 1-D 

oxides [62, 110]. In this case, the VO2 (A) nanobelts seem to present a better H2 sensing 

sensitivity in the range of 90 ppm H2 at room temperature. 
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Figure 5.30: Detection limit H2 sensing at 14 ppm a) and 0.17 ppm b) 
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Figure 5.31: Nanobelts sensitivity a) and selectivity b) comparing to CO and CO2. 
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Finally, to shed light on the sensing selectivity of the VO2 (A) nanobelts, further 

experiments were carried with other standard gases such as CO and CO2. As their 

corresponding sensing characteristics seemed to be very weak at room temperature 

under identical sensing conditions, threshold type experiments were conducted. Figure 

5.31 b) shows one cycle conductometric sensor signal for CO and CO2 gases. At it can be 

noticed, the sensing signal is at the background level yet at a temperature of 170 °C and 

concentrations of 200 ppm CO and CO2.  Consequentially, it could be deduced that the 

VO2 (A) nanobelts seem to exhibit a noteworthy gas sensing selectivity towards H2. 

 

5.3.1 Conclusion 

This research section reported, for the first time, unexpected room temperature 

enhanced hydrogen sensing properties of a specific phase of vanadium dioxide 

(VO2:phase A) in their nanobelt form. The relatively large H2 room temperature sensing 

in this Mott type specific oxide seems to have a limit below 0.17 ppm H2. If this 

contribution demonstrated the H2 sensing efficiency of VO2 (A) nanobelts at room 

temperature relative to corresponding 1-D oxides in general, various issues are still to 

be addressed amongst which, one should mention the following: 

(i) Sensitivity to humidity which is well known for semiconducting gas sensors should 

be addressed through the selection of a high operating temperature which is naturally 

smaller than Tc and (ii) The sensor’s selectivity for H2S, NH3, and C2H5OH gases should 

be investigated and enhanced. Follow up investigations would address all these issues 

by combining selected laser spectroscopy and synchrotron surface-interface 

characterization techniques. 
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5.4 Transport Measurement on a Single Nanograin  

Being a Mott type oxide, at a temperature of TC~ 340.8K and ambient pressure, 

stoichiometric VO2 undergoes a reversible 1st order semiconductor-metal transition, 

which is accompanied by a reversible abrupt change in the band gap opening. The 

variation of the bandgap Eg versus the external thermal stimulus on a single VO2 

nanoparticle is reported for the first time using scanning tunneling spectroscopy in the 

temperature range of 293.5-361.0 K. 

Carriers of electrical current in semiconductor are much more dilute than in metals and 

they are thermally activated out of filled band, or injected by light, charged particles or 

through tunnel barriers or produced by intentional doping [111]. Generally the main 

differences from the metals are the strong correlation between theory and devices 

applications; metal-insulator phase transition at low temperature and alternate 

mechanism to band transport due to the hopping process. Regarding the electrical 

transport, the tunneling effect is generally studied due to the quantum confinement of 

the electrons. This plays an important role in many semiconductor devices. Esaki 

discovered in 1958 [112] the diode tunneling through a forward biased heavily doped 

junction in germanium. This diode exhibits negative differential resistance (NDR) 

which makes possible the semi-conductor to be used as high frequency oscillator 

(microwave).The tunnel current is expressed as [113]: 

                                                                                                                                                    

                                                        

  ∫ {         } {             }  
   

   

  ∫ {         } {             }                                                        
   

   

 

Where W represents the quantum mechanical transition probability, C(E) and V (E) are 

the density of states in conduction and valence bands,       and       are the 

occupations functions. In the case of temperature not very low, 
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Hence 

                                                              
 

 
 
    

  
                                                                     

For parabolic bands:  

                                                                
 
                   

 
                                       

This gives:                                                       
  

  
(       )

 
                                            

Junction field effect transistor was first time analysed by Shockley in 1952 which 

basically consists to a voltage controlled resistor involving predominantly one kind of 

carrier which is qualified as unipolar transistor [114]. Field effects transistors present 

many attractive features for applications in analog switching, high input impedance 

amplifiers, and integrated circuits. At high current level, the device presents a negative 

coefficient temperature. Hence the current decreases as the temperature increases. This 

property leads to a uniform distribution temperature over the device area and prevents 

the device from thermal runaway and breakdown. The FETS do not suffer from 

minority carrier storage effects and consequently present high switching speed and 

higher cutoff frequencies. VO2 exhibits an ultrafast femtosecond 1st order 

metal/semiconductor (MS) Mott’s type phase transition at about TC~ 340.8K with a 

consequential change in the electrical resistivity (larger than 104 in bulk) due to its 

strong electrons correlation structure [115] and a bandgap Eg about ∼0.70 eV far below 

TC.  
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VO2 possesses several kinds of crystalline stable structures [116]; one is the tetragonal 

rutile-type VO2 with lattice constants of a~ 0.455 nm and c~ 0.285 nm exhibiting a 

metallic feature above TC. A second, at a lower value, is monoclinic VO2 with a~0.5753 

nm, b~ 0.4526 nm and c~ 0.5383 nm, has an insulator behavior at room temperature. It 

is widely accepted that the formation of an electron pair in the monoclinic crystalline 

structure results in the insulator phase. This monoclinic VO2 can inversely and 

reversibly transit to the tetragonal rutile conducting VO2 phase. A third monoclinic VO2 

structure does exist too, but with a~ 1.209 nm, b~ 0.3702 nm and c~ 0.6433 nm. 

However, this later VO2 phase, however, does not show the so attractive MS transition 

characteristics. The 3 phases mentioned above are known as VO2 (T) for the tetragonal 

type, VO2 (M1) for the monoclinic type with the Mott phase transition, and VO2 (M2) 

for the non transiting monoclinic type. More precisely, above the transition temperature 

TC~ 340.8K, VO2 adopts the tetragonal rutile (P42 /mnm) structure with chains of edge-

shared VO6 octahedral along the c-axis; the V– V distances along the chain are 0.2851 

nm. Below TC, i.e. in the semiconducting monoclinic (P21/c) crystal structure, the 

dimerized vanadium atoms have alternate V–V distances of  0.2619 and 0.312 nm. While 

extensive studies were conducted on VO2 in terms of synthesis and investigations of its 

physical properties as well as its potential optoelectronic technological applications, a 

limited set of studies were carried out on the variation of its electronic bandgap Eg(T) in 

its nanostructured form [117] yet an extensive experimental and theoretical research 

were performed on its bulk. Relatively to the bulk, and due to the 3-D symmetry 

breaking and coordination effects in addition to strain surface effects, the nano-

structured form should exhibit a different behavior than bulk. For our best knowledge, 

relatively to published literature and the recent work of Yin et al [118], this contribution 

reports the first experimental results of the thermal variation of the Eg(T) on a unique 

and single VO2 nanocrystal. Hence, The I-V and transport measurements on VO2 

nanoparticles which will be carried out in view of investigating the targeted 

temperature bandgap dependence Eg(T) in this paper, will be performed on this 

discontinuous film mainly as it is below the percolation threshold. Nonetheless, probing 
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the transport properties of the thick VO2 films by scanning tunnelling spectroscopy 

(STS) is worth to check the phase transition process below and above TC of ~340.8K. For 

the STS experiments, the transport I-V measurements versus temperature were 

conducted on the various films with the F: SnO2 coating onto the glass substrates and 

the STM tip as the electrodes. See figure 5.32 a). The advanced Brucker scanning 

tunneling spectroscopy unit was equipped with an in-situ heating stage allowing a 

heating/cooling temperature range of 298.5-573.5K with a step temperature increase of 

0.1K. Figure 5.32a) illustrates representative STS 1μm x1μm scans just at the vicinity and 

far above TC for the thickest VO2 film (~1218±5 nm); more precisely at 338.7K and 

361.0K respectively. The transformation of the VO2 surface can already be observed in 

the STS surface topography images. As in the case of Yin et al work on thick VO2 films 

[119], the thermal drift during the heating of the sample was corrected regularly in 

order to image the same group of nanocrystals repeatedly. The surface density of states 

and their spatial distribution was studied by measuring the I-V characteristics in the 

voltage interval from -1 to 1 V by single point STS averaging over ~15 times of I-V scans 

in each spot and grid measurements. See figure 5.32 b). The grid measurement consisted 

of a matrix of 445 x 445 pixels and I-V curves were taken at each pixel. This time 

consuming STS measurements illustrated in Figure 4.33 with a pixel size of 1.5x1.5 nm2 

were required to have, indirectly, more accurate bandgap maps. The images were 

recorded with a bias voltage of ~0.207 V and the electronic states close to the Fermi 

energy dominate the tunneling current. The metallic regions of the surface, where the 

local density of states (LDOS) close to the Fermi energy, EF, dominate, appear darker 

(brownish) in the STS topography images, and the progression from a predominantly 

insulating to a metallic surface is clearly seen in the evolution of the images of Figure 

5.32.a). The changes in the STS topography images, as see in figure 5.33 which were 

recorded as a function of temperature with a bias voltage of 1.1 V are significant yet the 

small differences in LDOS between metallic and insulating regions deeper in the band. 

These voltage dependent surface electronic topography images gave the first 

impression of the insulator-metal transition at the surface as observed and reported by 
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Qazilbash et al [34]. The white areas correspond to the insulating/ semiconducting 

phases while the brown regions match up with metallic VO2 phases. As it can be 

observed, the cover surface of the brown regions is somehow equivalent to the white 

ones at 338.7K indicating that the Mott phase transition, yet incomplete, takes place at 

slightly lower temperatures than the bulk value of TC ~341.5K. Above TC i.e. 361K, 

while almost the entire scanned surface is conducting (brownish area), one could notice 

that there is, notwithstanding, insulating/semiconducting domains (white regions). 

This difference could be due, either to the amorphous nature of the surface layer 

surrounding the investigated VO2 nano-particle, its oxygen sub-stoichiometry or to the 

strain/stress on the corresponding nanocrystals. In all three cases, this surface layer 

would act as a resistive component and hence would affect the value of the bandgap 

Eg(T) of the single VO2 nanocrystals. In view of the recent converging studies on VO2, 

the surface strain hypothesis should be favored. Indeed, as it was evidenced by Wei et 

al [46], the surface strain phenomenon affects significantly the metal-semiconductor 

phase transition of VO2 nanobeams. This was sustained theoretically by Tselev et al. [4] 

while investigating the origin of ferroelastic domains in free-standing single crystal 

ferroelectric films.  However, at room temperature only two oxide phases, VO2 and VOX 

(x~1), are insulating. All other oxide phases have already undergone the phase 

transition and are metallic. In terms of the bandgap Eg of single VO2 (M1) nanocrystals 

and their temperature dependence, which is the cornerstone of this research paper, 

more quantitative assessments by STS are required via I-V single point measurements 

in the discontinuous thinnest VO2 film. Indeed the bandgap Eg is determined from the 

extension of the flat section at the center of the dI/dV STS characteristics, while the 

spatial distribution of bandgaps can be visualized by setting a threshold tunneling 

current at a set voltage in the dI/dV curves from the grid measurement. As well 

established and reported by Yin et al [118], Eg values determined from the flat section 

are less prone to measurement errors in noisy data sets but are also systematically 

smaller by 0.1–0.3 eV than if one uses the inflection point method. The tunneling 

threshold current at a set voltage is uniquely linked to Eg, which has been confirmed in 
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a large number of I-V characteristics. Above TC and as depicted by the curve at 358.5K, 

the I-V variation is nearly fully linear of an ohmic i.e. metallic type. At temperatures 

lower than TC, the behavior is an obvious semiconductor type with a typical quasi-flat 

step I-V profiles. By correlating our result with the one of Kuchibhatla et al [117] who 

measures the conductivity of iodine doped polyaniline  nanofibers, we observed a room 

temperature dependence temperature with enhancement of the current at negative gate 

voltage and suppressed at positive gate voltage. This is taken as a proof of charge 

carrier being the hole in the vanadium dioxide. The nonlinear trends in the I-V curve 

see figure 5.32 b), obtained is originated from the soliton tunneling conductivity in the 

material, which was found to be exponentially dependent on the potential barrier 

width. These step voltages are temperature dependent; hence confirming the expected 

variation of the bandgap of the single VO2 nanocrystal with temperature Eg (T). Eg(T) 

which is approximately half of the flat step-voltage and is very large at lower 

temperature while decreasing rapidly at the vicinity of 343.5K. This temperature 

variation of the bandgap Eg(T), derived from the standard derivative dI/dV for various 

temperatures, is distinctly illustrated in figure 5.34. The junction field effect transistor 

consists of a conductive channel provided with two ohmic contacts one acting the 

source and the other one as the drain. When a positive voltage is applied to drain with 

respect to the source, the current flow from source to drain. The third electrode forms a 

rectifying junction with channel. The differences between the 25 ºC and 50 ºC curves, 

which present a distinct region of NDR, and the one at 65 ºC is slightly different because 

the magnitude of peak to valley current ratio is determined by the scattering of the 

tunneling electrons within the well by phonons, interface roughness and other defects. 

The scattering of the phonons become important as the degradation of the peak to 

valley ratio degrade when the temperature increases. This is completely obtained at 85 º 

C where the material is fully metallic. This is what we call resonant tunneling devices. 

The temperature effect is used to distinguish the avalanche mechanism which has a 

positive temperature coefficient and the tunneling effect. Eg(T) temperature evolution 

can be splitted in 3 different regions. In region I, it decreases almost linearly while in 
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region III, its evolution in nearly exponential with temperature reaching zero value 

close to 358.5K. In region II (T range of 330-340K) i.e. in the vicinity of TC, it decreases 

with a sharp decay. This type of temperature variation is certainly correlated to the 

singular 1st order phase transition of VO2. However, one should point out 2 major 

concerns: (i) the value of Eg(T) in the room temperature range and, (ii) the observed 

temperature variation of Eg(T) itself. First, concerning the values of Eg(T) within room 

temperature range, even with the experimental bar-error of ±10%, the experimentally 

derived values of Eg(298.5K) and 323.5K are about ~0.93 and ~0.81 eV. Both are higher 

than the bulk value of ~0.7 eV. This difference could be due to the STS approach itself 

or/and either to other 3 major causes. As it was mentioned previously, the bandgap 

value Eg deduced from the I-V flat section are analytically different by 0.1–0.3 eV than if 

one uses the inflection point method. The tunneling threshold current at a set voltage is 

uniquely linked to the band gap. They correlated the asymmetry of the dI/dV curves to 

the defect doping of the VO2 contributions from a tip induced band bending which can 

be the origin for this asymmetry. They attributed the prevalence of the regions with a 

band gap < 0.4eV to reduced oxides which are formed due to the loss of oxygen from 

the surface and a buildup of a large concentration of oxygen vacancies. They present 

also a variation in the local electronic structure of V2O3 which show that the electronic 

characteristics of a material are not always reflected in surface properties but the local 

defects can play a critical role. It was observed that the driving force of oxygen diffusion 

was linked to the chemical potential due to the coexistence of a wide range of oxide 

phases and also the presence of local strain fields which play a substantial role in phase 

separation. This first source of error has been minimized as the deduced Eg(T) values 

were averaged using in fact both I-V and dI/dV derived values. The 3 additional causes 

are: (i) the amorphous nature of the surface layer surrounding the investigated VO2 

single investigated nanoparticle, (ii) its oxygen substoichiometry due to surface effects 

such as breakdown of the 3-D symmetry and atomic coordination or to (iii) the 

strain/stress on it. In all three cases, this surface layer would act as a resistive 

component and hence would affect the effective value of the bandgap of the single VO2 
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nanoparticle. This surface layer seems to exist in view of the inset zoom of the I-V curve 

at 358.5K. Indeed, this zoom shows clearly that the I-V evolution is not a complete 

ohmic type. The temperature dependance of I-V curve measured on nanograins VO2 

deposited on tin oxide substrate shows that with increasing temperature the MIT 

voltage decreases while the MIT current increases as indicated by the transition line. 

The right panel shows an excitation of holes with increasing temperature, which 

confirms the excitation nature of electrons due to thermal excitations. Near the 

transition temperature, the ohmic behavior is observed without any current jump at 85 º 

C comparatively to 65 º C which presents slightly current jump. This latter explains the 

existence of the nonmetallic phase or insulator with the monoclinic structure. According 

to Hyun-Tak Kim et al. [119] they observed an abrupt current jump without the 

structural phase transition at a given electric field for VO2 films. The abrupt jump 

current was correlated to the abrupt Mott insulator without structural phase transition. 

This was observed by inducing internal holes charges of about 0.018% in the holes 

levels into conduction band with a source drain field or gate field. Yang et al. [120] 

develop vertical VO2 on Ge substrates which have high mobility semiconductor. They 

show that the voltage triggered the MIT phase transition in VO2 with a threshold 

voltage of 2.1V. They observed staircases discontinuity shapes due to grain boundary or 

domain related contributions to MIT with step-like shape emergence with critical 

voltage needed to initiate transition.  Hence the Poole-Frenkel model (Ln I/V versus 

Sqrt V) show metallic behavior at large voltage ~3.1V. At intermediate bias voltage 

below the MIT temperature, the PF mechanism dominates the conduction with a linear 

dependence according to Yang. [120] Ohmic conduction was observed at low bias 

voltage with low temperature. Non stoichiometry defects present in VO2 such as 

oxygen vacancies serve as localized traps required for the PF emission.  K Martens et al 

[121] shows that the magnitude of the transition decreases for higher voltage and for 

thicker insulators VO2 thin films with no abrupt transitions indicating absence of abrupt 

field. They observed a larger transition for a 2 nm 300 ºC ALD HfO2 insulator than the 

200 ºC ALD Al2O3 insulator and pointed transition degradation due to the influence of 
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the used of the insulator deposition on the underlying VO2. The tunneling current 

allowed by the band gap insulator is modified by the MIT in VO2 through a barrier 

which gives rise to a MIT tunnel junction disregarding the electron correlation at 

interface. In addition, in regard of the recent converging studies on VO2, the surface 

strain hypothesis should be considered too. The first order Mott transition then leads to 

the sudden disappearance of the bandgap at 340K. These results are consistent with the 

crystalline distorsion model of Adler [122], which predicts a 4% decrease in zero 

temperature gap by Tc/2, and approximately a ∼20% decrease just below Tc, if the 

bands are extremely narrow. The decrease of the bandgap which begins to become 

important at about 300K, should lead to an increase in the activation energy from the 

intrinsic value of ∼0.39 eV to approximately ∼0.47 eV In view of the slope of the electric 

conductivity lnσ as a function of 1/kBT increases just below Tc. It was pointed out by 

Adler that if the crystalline distorsion model is correct, the decrease of the energy gap 

with increasing free carrier concentration begins to become significant just below Tc. 

Consequentially, the bandgap would be decreasing quadratically with T in the form of 

Eg(T)∼ E0 – A (kBT)2. As reported in figure 5.34, the variation of Eg(T) seems to agree 

with such a temperature quadratic evolution(semi-dashed curve) in region II yet it is 

necessary to carry out more measurements at the vicinity of TC to ensure a better 

statistics.  

 

 

 

 

 

 

Figure 5.32: F: SnO2 coating onto the glass substrates &the STM tip as the electrodes. a) 
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Figure 5.32:  Shockley`s model of the junction field effect transistor b). 
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Figure 5.33: Scanning tunneling spectroscopy of the percolated VO2 film (here the 

thickest film, 1218 nm±2 nm in size: (a) just below TC (338.5K) and (b) above TC (358.5K). 

The energy band gap, contraily to the superconductor which is far smaller and result 

from an attractive force between the electrons in the lattice, is tied to the Brillouin zone. 

For a high field applied to p-n junction, a breakdown junction occurs conducting a very 
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large current. We have basically thermal instability, tunneling effect and avalanche 

multiplication.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.34: Band gap energy of VO2 single nanograin. 

5.4.1 Conclusion  

The I-V behavior obtained in the single nanograin VO2 describes the charge carrier 

originating from the soliton tunneling conductivity of the material with abrupt jump 

current correlated to the abrupt Mott insulator without structural phase transition. This 

was observed by inducing internal holes charges of about 0.018% in the holes levels into 

conduction band with a source drain field or gate field which make possible the semi-

conductor to be used as high frequency oscillator (microwave). 
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CHAPTER SIX: 

GENERAL CONCLUSIONS & OUTLOOK 

The findings obtained within this thesis contribute primarily in the understanding of 

the metal insulator phase mechanism with coexistence of differents crystallographic 

change present in our material which shows the presence of the intermediate phase M2 

coexisting between M1 and R. This was proved through the thermodynamic of stress-

Temperature fitted with the Clausius-Claperyon equation giving the new 

transformation temperature under uniaxial stress. This latter was confirmed with the 

theory of Landau describing structural phase transition as the presence of distortions 

given by a single normal mode order of parameter. The mechanism confirms the 

association of latent heat with the phase transition. Hence the study proves our material 

to be used directly as ultrasensitive transition edge-sensors and fast optical shutters.  

Additionally, the strong size effect dependence was studied which affects the thermal 

calorimetric heating and cooling cycles of the system, that we study with the influence 

of the free energy, the strong correlation between the energy band gap associated to the 

working temperature. It was observed that the Metal Insulator transition phase 

transformation is a diffusionless first-order phase where the nucleation rather than the 

propagation controls the overall kinetics of the phase transformation due to the grain 

boundary angle. Also, we explore the strong size effect on the thermal calorimetry 

cooling and heating cycles with 60.4 ºC comparing to 67.1 ºC which was attributed to 

elastic stored energy and some untransformed metallic phase.  It was observed that 

smaller particles have low probability to contain nucleation site. Hence they need great 

thermal driving force to become activated. This phenomenon was confirmed through 

thermodynamic of nucleation in the case where our material is 2D dimension. Then , by 

means of synthesis techniques, we were able to reproduce nanobelts VO2 with planar 

surface through sol-gel technique method at low working temperature with high 

surface to volume ratio and we discovered the unexpected room temperature enhanced 

hydrogen sensing properties of vanadium dioxide VO2 tetragonal (n type 
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semiconductor) in their nanobelt form. This latter present a relatively limit detection of 

about 0.17ppm, which is good enough for potential commercialization and an optimum 

sensitivity at 90 ppm comparing to 140, 50, 0.17 ppm due to the variation of the 

resistance of our sample and it presents good gas selectivity and sensitivity relatively to 

CO and CO2 gas. Response Times obtained are ~840, ~890, ~1080, ~1020, and ~1050 

seconds for 140, 90, 50, 14 and 0.17 ppm of H2 respectively. Likewise, the corresponding 

average recovery times are: ~455, ~870, ~1020, ~1037, and ~2080 seconds for 140, 90, 50, 

14 and 0.17 ppm of H2 respectively. By comparison, the H2 sensing of the equivalent 

oxide system i.e. ZnO nanorods, these latter possess a room temperature response time 

of the order of 600 seconds for 500 ppm H2. This induces a direct application as gas 

sensor device at High hydrogen gas sensing capabilities within the ppm level for the 

first time. Finally, we studied the energy band gap models associated to the different 

phases of our sample with the electronic transport on single nanocrystals of VO2. The 

abrupt jump current observed was strongly correlated to the internal holes charges in 

the holes level of the conduction band through source drain field. The Mott transition 

associated to the electronical changes is consistent with the crystalline distorsion model 

of Adler which states that the decrease of energy band gap with increasing free carrier 

concentration is significant below the transition temperature Tc. These latter shows that 

it would be possible to make a single nanocrystal as a H2 gas sensing device. It is true 

that the outcome of this research has bring important results if not novelty in the 

nanotechnology field of science regarding our contribution of potential application of 

VO2 (A) as gas sensor and with any exploratory endeavor, the work is not final. Further 

work needs to be done regarding potential new set of size effects giving quantum 

confinement issues and develop different sensors devices with optimization of sensing 

response at low temperature. If this contribution demonstrated the H2 sensing efficiency 

of VO2 (A) nanobelts at room temperature relatively to corresponding 1-D oxides in 

general, various issues are still to be addressed. Among these, one should mention the 

following: 
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(i) The sensing properties below and at the vicinity of the semiconductor-metal 

transition as the VO2(A) is a Mott oxide with a MIT temperature above 69 °C, 

(ii) Sensitivity to humidity which is well known to influence the performance of 

semiconducting gas sensors should be investigated. This would be addressed 

through the selection of a high operating temperature that is naturally smaller 

than Tc and  

(iii) The need to enlarge the sensor’s selectivity for H2S, NH3, and C2H5OH gases.  

Follow up investigations would address all these issues by combining selected laser 

spectroscopy and synchrotron surface-interface characterization techniques. 
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APPENDIX 

In general, characterizations techniques are used to establish a correlation between the 

structure, shape and chemical composition of nanomaterial which have been obtained 

in processing with their properties.  

1) Scanning Electron Microscopy 

Electron microscope uses a beam of highly energetic electron which is produced to 

examine objects on a very fine scale. The electron beam strikes the sample and causes 

both electron and photons to be emitted which for example give topographical, 

composition, electrical information about the sample. Among second electrons which 

are generated some of them escape the surface of the specimen. They are detected by an 

electron detector.  The outgoing signals from the electron detector are proportional to 

the number of detected electron and give the intensity of the electron beam in the 

picture tube and topographic picture of the object. 

 

Figure 1:  Various specimen-beams electrons interactions and schematic diagram of an 

operation of SEM [1]. 

Signals emitted from the sample as result of specimen-primary electron beam 

interaction include backscattered electrons and x-rays. The brightness is proportional to 

the average atomic number Z of a phase [2]. 
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2) Differential Scanning Calorimetry  

DSC is a thermal analysis instrument which determines the temperature and heat flow 

associated with the material transitions as a function of time and temperature in a 

controlled atmosphere giving quantitative and qualitative information about chemical 

and physical changes involving endothermic and exothermic processes or changes in 

heat capacity. The DSC technique presents many types of applications such as 

thermosetting materials, pore size distribution, chemical reactions [3] and production of 

controlled transformation [4]. It gives accurate information concerning the glass 

transitions, melting and boiling points, crystallization time and temperature, percent 

crystallinity, heats of fusion and reactions, Specific heat, oxides and thermal stability, 

rate and degree of cure, reaction kinetics and purity. The difference in heat flow to the 

sample and reference at the same temperature is recorded as function of the 

temperature. 

                                                           
  

  
   

  

  
                                                                               

Where  
  

  
 represents the heat flow measured by the calorimeter, Cp is the specific heat 

capacity, 
  

  
 is the underlying heating rate, f (T,t) is the kinetic response of the sample. 

The crystallization in the material is generally a two steps process: nucleation and 

growth where the onset temperature is the nucleation temperature and the maximum 

peak is the crystallization temperature. The crystallization can be treated using the 

Johnson-Mehl Avrami equation: 

                                                                                                                                           

F is the crystalline fraction after an annealing time t and k is a rate coefficient. N is 

function of the nuclei growing dimension. The percentage of crystallinity is generally 

given:                        

                                                                                                                               ⁄  
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    is the enthalpy of melting for 100% crystalline material. 

 

Figure 2: A) DSC sample stage connected with the water, B) Hermetic pan and C) 

Hermetic pan attached with lead, D) Pans on the sample stage shown on A) one is the 

sample pan and the other is the reference pan E) DSC T zero press which takes sample 

encapsulation to a new level of performance and convenience in crimp and hermetic 

sealing of a wide variety of material [5]. 

3)  X-Ray Photoelectron Spectroscopy 

Probe of the interactions between electrons in atoms, molecules, and solids and as a 

diagnostic way for acquiring information about unpaired spin in chemical systems are 

possible through multiplet splitting of core-level peaks in x-ray photoemission (XPS) 

spectra [6]. XPS is a widely used technique to investigate the chemical composition of 

surfaces and make use of the electronic photoemission. It consists of an adsorption of an 
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X ray photon by the core electron of an atom. With sufficient photon energy, the core 

electron escapes from the atom and emit out of the surface [7-12]. See figure 3. 

 

  

 

  

 

 

 

 

Figure 3: XPS scheme interaction [10]. 

 

In XPS, the sample is irradiated with low-energy (~1.5 keV) X-rays, in order to provoke 

the photoelectric effect. The energy spectrum of the emitted photoelectrons is 

determined by means of a high-resolution electron spectrometer. The sample analysis is 

conducted in a vacuum chamber, under the best vacuum conditions achievable, 

typically ~10-7 torr. This facilitates the transmission of the photoelectrons to the analyzer 

but more importantly minimizes the re-contamination rate of a freshly cleaned sample. 

This is crucial because XPS is very surface-sensitive, with a typical “sampling depth” of 

only a few nanometers. Multiplet splitting is expected to be observed in an XPS 

spectrum if the specimen possesses unpaired electrons in its outer valence shells. The 

splitting arises upon ejection of the core electron which can couple with the open 

valence shell forming multiplet of different energy (possible angular momentum 

configurations) given by Van Vleck's theorem:  

                                                                       
     

     
  (      )                                                          

   is the initial state-spin formed by coupling n`l electrons, G l is the atomic exchange  

integral, the principal quantum numbers can be equal (n and n`).  

Electron 
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However other considerations are required to describe completely the photoemission 

experiment such as intrashell correlation and charge transfer splitting.  Bagus et al. [13] 

introduce intrashell correlation to resolve forth discrepancies in the energy separation 

and intensity ratio of peaks in spin orbit splitting. They focused on the final state 

excitation 3s3dn→3p23dn+1 and 3s3dn→3s3p23dn+2. Charge transfer splitting result from 

the Coulomb interaction between the core hole and ligand. Core electrons refer to 

electron which is tightly bound to the atomic nucleus characterized by the binding 

energy EB. They are sensitive to the atomic species of the chemical environment and give 

an idea to the physical properties of the electronic structure and bonding of the system 

(structural determination) and the effect of disorder broadening of the core spectral 

lines (differences in binding energies due to local environment). Transition metals 

compounds (TMC) have been a subject of study for many years because of their diverse 

physical properties. In spite of their apparently similar electronic structures, having 

unfilled 3d shells, their electrical conductivities vary widely from metallic to insulating 

behavior, and they show besides diverse magnetic properties. According to 

independent electron band theory most of TMCs should be metallic because of their 

unfilled 3d shells. Some of them are indeed metals, but many compounds are insulators 

(CuO, NiF2, NiO, and CrCl3) or subject to metal-to-nonmetal transitions (NiS, V2O3, 

Ti2O3) depending on temperature or pressure.  

 

4) Transmission Electron Microscopy 

The electron beam which is irradiating the sample is manipulated through magnetic 

lenses and solenoids where the electrons travel along the symmetry axis. The circular 

motion of the electrons around the axis and the transversal component of the magnetic 

field are responsible of the pointing force towards the center of the lens. The capacity to 

control the point focus through the electric current represents the key to electron 

microscopy. The objective lens just below the specimen forms an intermediate image 

with 20 to 50 times in its image plane. The rays that leave the specimen are collected in 

the back focal plane of the objective lens. The viewing of the planes can be projected on 
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the screen by a second lens. The diffraction pattern is observed through the projection 

of the back focal plane where the objective aperture is located, allowing single spots for 

image formation. According to the scattering of the electrons, two types of image are 

obtained: bright field image due to the unscattered electrons beam and dark field image 

due to the scattered electrons [14]. Due to the truncation of the Fourier coefficients due 

to the smallest aperture used in DF and BF, high resolution is required HRTEM. This 

latter gives plane spacing on an atomic scale where lattice fringes appear in one or more 

directions. At the nanoscale level, the fringes represent tunnels between column of 

atoms and atoms in the DF and BF respectively. Orientation contrast in a bright field or 

dark field micrographs yields only a qualitative representation of the true grain 

structure. Grains of same orientation have different intensity due to local variations in 

thickness while those of different orientations have same intensity. TEM provide 

dislocation density which measure the stored deformation energy in a grain [15]. 

 

Figure 4: Diagram operation of a TEM [1]. 

In the case of thick sample, bright and dark fields are interchanged. HRTEM images can 

be simulated by the Gauss profiles at positions given by 2D Bravais lattice. In the 
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absence of deficiencies from the microscope, the brightness at a position x/y in the 

micrograph due to the tunnel at a position p/q is therefore given as: 

                                                           (                 )                                                         

5) Fourier Transform Infrared Spectroscopy (FTIR-ATR) 

Infrared spectrum is considered as a fingerprint to identify by the comparison to an 

unknown reference spectra. Infrared spectrum is generally formed due to the 

absorption of electromagnetic radiation at frequencies which correlate to the vibration 

of specific sets of chemical bonds from within the molecule. The sum of the contributing 

energy terms possessed by a molecule at any given moment is: 

                                                                                                               

The vibrational energy component is a higher energy term and corresponds to the 

absorption of energy by a molecule as the components atoms vibrate about the mean 

center of their chemical bonds [16]. The vibrational energy is given on the basis of 

simple harmonic oscillator and its modification to account for anharmonicity which 

suffice to explain the origin of many of characteristic frequencies that are assigned to 

particular combinations of atoms within the molecule. According to Hooke`s law: 

                                                                       
 

   
√
 

 
                                                                                

  is the fumdamental vibration frequency,   force constant and   is the reduced mass. 

All the possible variants of the vibrational motions of the molecule can be reduced to 

the number of normal modes of vibration determined by: 

                                                         for nonlinear molecule                  

                                                                             for linear molecule            

N is the number of components atoms in the molecule. 
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The FT-IR spectrum is an application of Fourier`s integral theorems in which a complex 

wave functions (interferograms) is transformed into an optical spectrum [17]. The most 

commonly used is the Michelson interferometer (see figure 5) which consists of a fixed 

mirror Mf, and a movable mirror Mm. A beam splitter Bs bisects the two mirrors at an 

angle 45 º which ideally transmits half and reflects half of the incoming radiation. The 

two beams are then reflected where the amplitudes are combined and exit from the 

interferometer to the detector. In the case of polychromatic light source is used, the 

output is a cosine function due to the interference caused by all simultaneous 

frequencies.  

                                                                ∫                                                                       
  

  

 

      is the interferogram  function of the mirror displacement x and      is the intensity 

of the source of the spectrum frequency    . 

 

 

Figure 5: Diagram of Michelson interferometer [18]. 
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The composition of the crystal state is given. We have absorption bands of silicon 

crystal with optical and acoustical vibrational modes at 610 cm-1 and 739 cm-1. The 

presence of impurity of carbon and oxygen are present at 1106 cm-1 for Si-O-Si and 604.9 

cm-1 for carbon. Weak absorption bands of vanadium oxides near 400 cm-1 (V-O) bond 

440 cm-1. 690 cm-1 appears for VO2 (M). 717 cm-1 is characteristic of first rutile packing of 

octahedral which is the band of VO2; 490 and 840 cm-1 band correspond to V+5.  The 

complete decomposition of the precursor is identified by the increase of the surface 

V=O bond and decrease of the oxidation state at the surface. Chemical and kinetic 

information related to band absorption for multiple internal reflections have been 

performed by attenuated IR total reflection spectroscopy using a Perkin Elmer 

Spectrum 1000 FTIR-ATR spectrometer. Initially and as a reference, V2O5 powder was 

investigated. Its IR spectrum exhibited the 1000.703 cm-1 and 782.392 cm-1bands, 

characteristic of the intermediate oxidation state V+5 to V+4 of V=O bond. The snow-

flake synthesized nano-crystals exhibited four bands; at 840.65cm-1 describing the 

coupled vibration V=O and V-O-V (figure 6). This concurs with the transition from VO2 

(amorphous) to VO2 (M). The 420 cm-1 band is a weak vibration of the absorption band 

of V-O bond while 544.5cm-1 is assigned to the V-O-V octahedron bending modes. In 

accordance to the previous IR studies of Sorapong et al [19], such a spectrum is a 

characteristic of pure VO2(M) phase. 

 

 

 

 

  

 

Figure 6: Typical room temperature ATR-FTIR of the snow-flake VO2.  
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The reason of the remarkable change of infrared absorption spectra in the tetragonal 

rutile VO2 structure, rv06 belongs to the highly symmetrical O h group. Simplified 

vibration modes of octahedral molecule XY6 of Oh group are given in Figure 7 [20]. In 

this case symmetrical stretching vibration modes Vl(Alg), v2(Eg), v5(F2g ) and v6(F2u) 

would not give rise to a dipole moment change of full octahedron and therefore these 

vibrations are infrared-inactive and have no absorption peaks in the infrared spectrum. 

However, vibration modes v3(Fx9) and v4(Fb) give rise to a dipole moment change and 

have absorption peaks in the infrared spectrum. This is the reason why some absorption 

peaks disappear in the infrared spectra of VO2 powders above Tt. 

 

Figure 7:  Vibration modes of octahedral molecule VO6 of Oh group (O) O and (●) V [20] 

As the oxidation state of the central atom becomes higher, the stretching frequencies 

force increase across the periodic table. Hence the higher the oxidation, the higher the 

frequency. The normal modes of octahedral XY6 molecule in the Oh symmetry are 

given. See table 1. 
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Table 1: Activity of the normal modes of XY6 molecule in the Oh symmetry [20]. 

MODES  SYMMETRY ACTIVITY 

ν1 A1g R(stretching) 

ν2 Eg R (stretching) 

ν3 F1u IR (stretching) 

ν4 F1u IR (bending) 

ν5 F2g R (bending) 

ν6 F2u Inactive 

 

6)  X-ray Diffraction 

Diffraction effects are observed due to the impingement of electromagnetic radiation on 

periodic structures with geometrical variations on the length scale of the wavelength of 

the radiation. The diffraction spectrum consists of a plot of reflected intensities versus 

the detector angle depending on the goniometer configuration [21]. In the case of non-

random distribution of the crystallites the material is referred to as preferred 

orientation. X-ray diffraction is generally used for chemical analysis including phase 

identification, investigation of the high/low temperature phases and cell parameter 

determination. The crystallinity of the material is given through sharp narrow 

diffraction peaks. The condition for constructive interference is given by Bragg`s law 

according to the equation:  

                                                                                                                                                          

d is the interplanar spacing perpendicular to the between the planes [22]. The crystalline 

material diffract the electron beam x-rays strongly through well-defined directions 

dependent on electron wavelength and crystal lattice spacing. There is reinforcement of 
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reflections form successive parallel planes when the angles of incidence and reflection 

satisfy Bragg`s law. See figure 8. X-Ray diffraction investigation is extensively used to 

study grain sizes, crystalline lattice faults, texture and residual stress.  The x-ray 

radiation emitted from a laboratory is of random polarization where the scattering 

through a sample is decomposed in σ and π components. In the case where the intensity 

of σ and π bonds is equal, the polarization factor is given as: 

                                                                          ̅  
        

 
                                                                 

The polarization factor determines the scale of the detector. Additionally the x-rays are 

attenuated during their transit into the matter described via the Lambert-Beer law 

absorption given by: 

                                                                                                                                                             

Where Io is the intensity entering the sample after a path 2l and μ depend of the 

wavelength of the radiation, chemical composition of the sample and its density. See 

figure 9.  

 

Figure 8 Diagram showing the concept of the Bragg`s law [23]. 
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Figure 9: Schematic representation of the absorption effect for a thin film sample in a 

θ/2θ scan [23]. 

7) Raman Spectroscopy 

Raman Spectroscopy was discovered in 1928 and the first Raman microscopes were 

described in 1974 and it has been proved to be a powerful technique to investigate 

vibrational excitations in superlattices. Figure 10 presents the different scattering events 

observed in Raman spectroscopy with the light absorption in Infrared spectroscopy. 

Here an intense monochromatic laser radiation excites a molecule to a virtual state; the 

excited molecule relaxes to a higher vibrational level and the emitted photon has lower 

energy comparing to the excited laser light. This event is called inelastic Stokes Raman 

scattering. The ratio of Stokes and anti-Stokes Raman scattering is dependent of the 

number of molecules in the ground and excited vibrational levels. This is described 

according to the Boltzmann equation: [24] 

                                                       
  
  

 
  
  
   [

        

  
]                                                              

Nn is the number of molecules in the excited vibrational energy levels n. 

 

 

 

 



239 
 

Nm number of molecules in the ground vibrational energy levels m, g is the degeneracy 

of the levels n and m, En-Em is the difference energy between vibrational energy levels                                                   

                                                 K = 1.3807  10-23 JK-1                                                               

 

Figure 10:  Schematic drawing of vibrational energy states and light energies involved 

in Raman and IR spectroscopies.    is frequency of incident light,    vibrational 

frequency, h is Planck `s constant [25]. 

 The intensity of Raman Spectroscopy is generally given by:  

                                                                                (
  

  
)                                                                     

N is the number of scattering molecules per unit of volume, Io is the intensity of the 

incident laser beam, 
  

  
 is the differential scattering cross-section. The Raman spectrum 

of the overall sample relies on a linear superposition. The depth profile resolution is 
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determined by the laser wavelength, the objective and the pinhole size that restricts the 

Raman scattering from out of focus zones. The physical limit is exprimed as: 

                                                                        |
      

       
|                                                                      

n is the refractive index of the sample, λ is the laser wavelength, and NA is the 

numerical aperture of the objective. Raman Spectroscopy is a very good tool to 

characterize and identify elements and molecules for inorganic components, 

chronological establishment of dyes, resins, and pigments; color probes with a great 

advantage to be used as largely nondestructive in situ sampling technique, electronic 

devices applications reflecting the behavior of phonons and the electronic 

characterization where bound and free charges contribute to the Raman scattering 

through collective and single particle excitation processes. 

8)  Electron Diffraction  

Diffraction results in various phenomena associated with the bending of waves when 

they interact with obstacles in their path. De DE Broglie describes the electrons as a 

wave having the wavelength λ given as: 

                                                                                        
 

 
                                                                         

By considering non relativistic electrons, their momentum such that: 

                                                                       
 

√    
                                                                              

Where e is the charge of the electron, V is the electric potential and m is the electron rest 

mass. Since the wavelength is in the order of lattice spacing in crystals, a diffraction 

pattern is expected to appear for electrons in the energy range of few KeV scattered by a 

crystalline lattice. The electron diffraction pattern obtained is dependent of the solid 

matter: single crystals, polycrystals and amorphous materials. Diffraction patterns give 
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information about the type of material, defects presence, cell parameter, symmetry 

specification, atom configuration in the unit cell [26]. The diffraction of fast electrons 

Bragg angles are very small about 1º: 

                                                                                   ⁄                                                                         

Where λ L is the camera constant depend on the magnification of a diffraction pattern; 

R is the measured of diffraction pattern between spot coming from the lattice plane 

diffracting the beam. 

 

Figure 11: Electron diffraction Experiment Diagram [27]. 

The electron gun is made up of heater, cathode and anode. Ejection of the electrons is 

obtained by thermionic emission from the heated piece of metal which is located inside 

the cathode. The emitted electrons are accelerated by two pairs of anode rings under 

acceleration potential V ~2000-4000 V dc giving an electron beam. 
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9) Crystallography 

According to the ab initio calculations the structural data of different phases, formula 

space group lattice parameters and fractional atomic coordinates are given:  

Table 2:  VO cell description [28]. 

 

Table 3: V2O3 cell description with hexagonal axes [28]. 

Formula  V2O3 

Space group R ̅c (hexagonal axes) 

a (Ǻ) 4.925 

C (Ǻ) 13.834 

V(Ǻ3 atoms-1) 9.687 

Z 6 

Atoms V O 

Formula  VO 

Space group Fm ̅m (hexagonal axes) 

a (Ǻ) 4.186 

V(Ǻ3 atoms-1) 9.169 

Z 4 

Atoms V O 

Site 4b 4a 

X 0.0 0.5 

Y 0.0 0.5 

Z 0.0 0.5 
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Site 12c 18e 

X 0.0 0.329 

Y 0.0 0.0 

Z 0.341 0.25 

 

Table 4: VO2 cell description [28]. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: V6O13 cell description [28]. 

Formula  V6O13 

Space group Cmma 

a (Ǻ) 11.935 

b (Ǻ) 19.940 

C (Ǻ) 3.687 

Formula  VO2 

Space group P42/mnm 

a (Ǻ) 4.558 

C (Ǻ) 2.858 

V(Ǻ3 atoms-1) 9.897 

Z 2 

Atoms V O 

Site 2a 4f 

X 0.0 0.300 

Y 0.0 0.300 

Z 0.0 0.0 
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V(Ǻ3 atoms-1) 11.545 

Z 4 

Atoms V V O O O O O 

Site 16o 8n 16o 16o 8n 8m 4g 

X 0.147 0.148 0.174 0.151 0.177 0.0 0.0 

Y 0.069 0.25 0.049 0.153 0.25 0.056 0.25 

Z 0.75 0.75 0.25 0.75 0.25 0.75 0.75 

 

Table 6: V4O9  cell description [28]. 

Formula  V4O9 

Space 

group 

Pnma 

a (Ǻ) 17.910 

b (Ǻ) 3.642 

C (Ǻ) 9.452 

V(Ǻ3 

atoms-1) 

11.858 

Z 4 

atoms Site x Y Z 

V 4c 0.491 0.25 0.274 

V 4c 0.080 0.25 0.543 

V 4c 0.163 0.25 0.205 

V 4c 0.313 0.25 0.449 

O 4c 0.024 0.25 0.727 
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O 4c 0.449 0.25 0.049 

O 4c 0.339 0.25 0.654 

O 4c 0.198 0.25 0.005 

O 4c 0.088 0.25 0.341 

O 4c 0.047 0.25 0.088 

O 4c 0.392 0.25 0.357 

O 4c 0.167 0.25 0.584 

O 4c 0.240 0.25 0.316 

 

Table 7: V3O7 cell description [28]. 

Formula  V3O7 

Space group I4/mmm  

a (Ǻ) 13.986 

C (Ǻ) 3.631 

V(Ǻ3 atoms-1) 11.838 

Z 6 

Atoms V V V O O O O O 

Site 2a 8h 8i 2b 8h 8h 8j 16l 

X 0.0 0.184 0.366 0.0 0.099 0.294 0.094 0.29 

Y 0.0 0.184 0.00 0.00 0.099 0.294 0.5 0.093 

Z 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 
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Table 8: V2O5 cell description [28]. 

Formula  V2O5 

Space group Pmmn 

a (Ǻ) 11.532 

b (Ǻ) 3.600 

C (Ǻ) 4.401 

V(Ǻ3 atoms-1) 13.051 

Z 2 

Atoms V O O O 

Site 4f 4f 4f 2a 

X 0.102 0.106 0.931 0.25 

Y 0.25 0.25 0.25 0.25 

Z 0.890 0.523 0.003 0.004 
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