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Abstract
Y-STR profiling of four South African populations using the Universitthe Western Cape

10 locus set

Kebareng Jacobeth Tsiana

MSc thesis, Department of Biotechnolodgniversity of the Western Cape

In this study the 10 Yspecific loci of the University of the Western Cape (DYS710, DYS518
385a/b, DYS644, DYS612, DYS626, DYS504, DYS447, DYS447, and DYS481) were
analysed in 492 individuals from South African population groups. Four different populations
namely;Zulu, Coloured, Afrikaner and Asian Indiavere sampledA total of 488haplotypes

were observed412 of which were uniqueHaplotype diversity was 0.998Gene Diversity
values ranged from 0.8075 for D¥&/ to 0.92090r DYS710.The discriminatory capatyi

was 0.9106 which is high.

The study showed that the University of the Western Cape 10 locus is a powerful
discrimination tool for routine forensic applications and could be used in genealogical
investigations as compared to other commercial kits whesd won the South African
populations (Zulu, Coloed, Afrikaner and Asian Indian) considering its high discriminatory
capacity.This data will be used for the establishmenaodf-STR DNA databases for South
African population which would aid law enforcenmteauthoritiesin the investigation and

resolution of crimes.

AMOVA computed using haplotype frequencsg®wed that whemale haplotypefom the
four different populations were compar@®22% of the total genetic variation was due to the
variability anong populationgnd 99.78 % of the total variation is fouwdhin populations.

However AMOVA computed using distance matrix showed that 5.97 #te total variation



was due to variability among populations and 94.07 % of the total variation is found with
populations. Genetic substructure was found among the four studied South African

population groups.

All the six populationpairwise comparisongsing AMOVA were significant. Therefore ¥
STRs are very useful in comparing closely related populatiostolild be noted that their
utility for evolutionary purposes, they need to be combined more stabA’markers such

as single nucleotide polymorphisSNPS).

Factorial Correspondencénalysis (FCA)showed that the Coloured population has large
genetic ontribution from Afrikaner population and lesser contribution from the Zulu and

Asian Indian populatiogroups.
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Chapter 1 - Literature review

Introduction

Research ilDNA technologies has helpdaw enforcement agencies such as the police in the
investigation of crimes such as murder, attempted murder, physical assault, and sexual
assault. Sexual assault such as rape is one of the most violent crimes and is arset@us p
which is faced by many countries and South Africa is no exception. According to the crime
statistics from the South African Police Servicdsetween April 2014 and March 2015,
(www.saps.gov.zal/resourcestdtisticgcrimestat®20159crime _stats) 114 270 cases of crime

had been reported} 6910f suchcases were of sexual assault.

In a sexual assault case, investigators collect different types of evidence when possible, such
as victim testimony; physical evidence, such as items from the crime sceghéjological
evidence California State Auditor Repqr2014 p. 7). Identification of spermatozoa from the
sexual assault victims is the main biological evidence looked fanuvestigatingsexual

assault crimes. However this method is leditto semermrontaining samplesAs a result it

cannot be ugkon sample mixtures involvingi)vasetomized or azoospermic meandthe

(2) presence of other botfjuid mixtures (forexample salivieskin, skiri sweat) from victims

and suspects of differeaéx(Reddetal., 2002; HansoandBallantyne 2007).

Short tandem repeats on the Y chromosome have proven to be valuable DNA markers
particularly for resolvingsuchsexual assaults cases where the spermatozoa could be absent
(Mc Donaldetal., 2015; Purpet al.,2015). Therefore targeting maspecific polymorphism

of the Y chromosome is particularly helpful as it enables the sensitive detection of the

presence of male DNA despite the absence of spermatozoa



1.1 DNA markers used in forensic testing

Tandemly repeatd DNA sequences are widely used in forensic DNA testing due tdtbhbi

rate of mutation (Dieringer and Schi6tterey 2003 Ellegren 2004) as compared biallelic
markers such as single nucleotide polymorpBis(BNPs). Tademly repeated DNA
sequences havaultiple alleles while biallelic markers hawaly two kinds of alleles.

The two groups of tandemly repeated DNA sequenoamely; ninisatellites and

microsatellitesdiffer according to the size of the repeat unit and theativlangth of the

repeat array.

1.1.1DNA fingerprinting methods
Minisatelites (VNTRS) consisbf repeated sequences that can vary in unit length from 6 to

100 basesrepeat. VNTRs were the first polymorphism to be used in Di¥Ased
identification (Jeffreyset al, 1988) VNTRs play an important role in fonsics because of
their high polymorphism, which is a result of very high levels of allele length variability
(TamakiandJeffreys 2005) VNTRs are detected by a technique caltedtriction fragment
length polymorphism (RFLPYvhich involves the use of a restriction enzygrte aut the
regions of DNA suounding the polymorphic regio@effreys et al, 1985) The resulting
DNA fragments are then detected by gel electrophoresis using radioataivelled DNA
probes where a pattern of bands distinctive tartdevidual will be produced. Thimethod is
highly suitable for the detection of alleles in high molecular weight DNA such as in the case
in the analysis of DNA from fresh blood sangple a mternity testing senario or in some
sexual assauttvidence such as sem@himeraandDyer, 1992)

However in forensiccase work samples, DNA may be collected from environmentally
stressed samples or from old samples, windstly consisof degraded DNA or low copy
DNA which is insufficient for VNTR analysis due to the size of VNTR genetic markers

(Chimeraand Dyer, 1992) The other disadvantage is the low resolution of gels used for



determning the size of the DNA restriction fragmen®ecorte and Cassiman 1993)
resulting inability to determine the alleles discretéljne multilocus VNTRs were mer

difficult thanthe unilocus VNTRs for interpretation.

The introduction of the Polymerase Chain Reaction (PCR) providad significant
methodlogical improvement, in terms of specificity asdnsitivity (Mullis et al, 1986).
Despite all this VNTR analysis was not amenable to PCR based techniques due to the large
size of the amplicons. Shorter alleles were found tprieérablyamplified as corpared to

longer allelegJeffreyset al, 1988;Decorteet al, 1990) Because of all these limitations their
utility i n forensics genetics has now beeplaced by STRs

1 .1.2 Short tandem repeats (STRs

Short tandem repeats are repeated in tandems7obase pair§Goodwinet al,2007;Butler,

2007) They are usually repeated up3@ times(TamakiandJeffreys 2005) STRs are found

on both types of chromosomes: autosomal and the sex chromosomeYX Hnely exist as
dinucleotide, trnucleotide, tetranucleotde, pentanucleotide and hexaucleotide All these
different kinds of STR can be utilized for forensic DNA testiftpwever, ducleotides and

some trinucleotides are no longer used becausy torm stutter artefacts during PCR
(DecorteandCassiman 1993) As a result pentaand tetranucleotides repeats are generally
ideal in forensic investigation because they are less susceptible to the formation of these
additional products.

STRs are presently the most analysed polymorphism in forensic genetics. This is due to the
fact that most of thenicrosatellite loci can be efficiently amplified by standard PCR since the
repeats regions are shorter thard@0 base pair¢Tamakiand Jeffreys 2005) Their small

size is specifically suitable for the analysis of degraded DNA and limited amount of DNA

which is common in forensic casework. The polymorphic information cordkrihese



markers is lower compared to VNTR regiofl&maki and Jeffreys 2005; Decorte and
Cassimanl1993) But because of their high abundance in the genome and their amenability to
PCR based techniqudgbe same level of information can be obtained by looking slightly
increased numbeof markers which is attainable thugh multiplex PCR(Decorte and

Cassimanl1993)

Initially the research, on the use of STRs for forensic purposasdd only on characterising

and evaluating autosomal markéurquhartet al, 1994; Kimpton et al, 1993; Hammondet

al, 1994) The reason for this was because autosomal markers can be used to identify
individuals from both sexes with a high level of discriminatory capdKayseret al, 1997)

It was also suggested that it wWascause STRs in Y chromosome occur at a lesser ratio as
compared to autosomékutz et al, 1992).The difficulty of autosomal genetic markers in
resolving biological evidence in sexual assault cases, such as rape, led to interest in research
of Y chromosore polymorphisms for application in forensic casework. As a result the use of

Y chromosome specific STRvercame this limitation.

1.1.3Detection of STRs
Historically STR loci were detected using silver polyacrylamide @igfs et al, 1996) The

limitation of this sytem was low resolution. The number of loci to be included in the
multiplex was restricted because locilwaverlapping size ranges couldt i@ ceamplified
(Goodwin et al, 2007) The Forasic community has now shifted to using a fluorescent
detection method which at first used gel electrophorgagerdlowet al 1991) and then
capillary electrophoresigBuel et al, 1998 Butler et al, 2004) Capillary electrophoresis
employs capillay filled with polymer instead of polyacrylamid€apillary electrophoresis
systems are far superionan gels electrophoresis system as theyeasy to use, data

collection is automated and there is less lal§Butler,2011)



The advantage of fluorescent detection over other methods is that many loci with overlapping
sizes can be detected hbyaahing different fluorescent dyes to their primers, thus increasing

the level of resolutioiKimpton et al, 1993)

1.1.4 Challenge®f typing DNA with STRs

1.1.41 Degraded DNA
Detection of degraded DNA using STRs is a challenge. The size of the amplicon has an effect

on the typing of degraded DNfSengeet d, 2011) When the DNA is degraded there is a
greater chance of amplifying amplicons shorter than the size ranges found in commercial kits
because there is a high chance thagér repeats are fragment@hunget al, 2004) As a

result there will be no intact template DNA.

1.1.4.1.1Approaches to successfully type degraded DNA
1.1.4.1.1 (aMini-STRs

Commercial STR kits amplify fragments in the size ranges of4Bl0base pair@Mulero et

al, 2006 Thompson, 2012) Profiles of such degraded samples may have artefacts such as
allele drop outand allele drop i{Schneideret al, 2004; Dixon et al, 2006) Allele dropout
creates a false homozygote.

To successfully amplify such samples, the size of the amplicons has been reduced by
redesigning the primersa&lose as possible to the repeat regwregandandKleiber, 2001
Tsukadeet al, 2002) This approach has shown to imprdkie chances of successfully typing
degraded DNA Butler, 2007 Abrahams an@enjeddou 2017).

However, the regions close to the polymorphic region are susceptible to muiRitinet al,

2011) The presence of polymorgm within the primer binding site could result in the
occurrence of a null allele as the primers will mismatch the target or the priming site.

Therefore concordance studies are very necessary with any newly developed miniSTRs.



1.1.4.1.1 (h SNPs

Single nucleotide polymorphisms (SNPs) are another type of marker which have been
analysed for applicability in resolving degraded DNA samffiesbrinoet al, 2005 Inagaki

et al 2004) They are more ideal than miniSTRs, since they produce amplicons much smaller
than miniSTRs. But due to their low levef polymorphismlarge numberof SNPsare
required in ordr to obtain the same discrimination power as the STRs. Approximately twice
as many SNP markers were needed to provide the same information as STRs (Feetandez1l

al, 2013).

1.1.4.2Stutters
Another problem associated with typing STRs is artefacts cstilétirs. These products have

been reported to be caused by the slippage oT #igegDNA polymerase enzym@.evinson
andGutman 1987 KlintscharandWiegand 2003) High concentrations of magnesium have
been found to have an effect the fidelity of TagpolymerasdEckertandKunkel, 1990) An
increasein magnesium concentration has been directly correlated with the incredag in
polymerase slippagehich results in the formation of artefacts called stutter békidgero

et al, 2006 Vigueraet al, 2001) Because these addition@aCR products are mostly one
repeat unit smaller than the expected main allele ;peaian be difficult to distinguish an
allele belonging to a minor contributor from a stutter product of an allele of the major

contributor

1.2Polymerase Chain Reactio{fPCR)
Since its first description in 198%he Polymerase Chain ReactiofiPCR) has gained

popularity in the field of molecular biology and has significantly aided molecular biology by
enabling fast and sensitive analysis of DNA informatihullis et al, 1986). This technique

enables the amount of DNA to be increased to a level whieeecan manipulated with ease.



PCR is based on the principle of DNA complementarity which was discovered by Watson
and Crick (Watsonand Crick, 1953) It is anin-vitro enzymatic process is similar to the
replication process used by the cells to copy their own P@E&odwinet al, 2007) During

each cycle the amount of target DNA is duplicated. In each PCR cycle, the two DNA strands
are separated by heat in the denaturation step and are incubated with DNA polymerase,
deoxyribonucleotide triphosphat@NTPs) and primersin the next step annealing, the
primers bind to the target DNA specifically at the complementary sequence on the DNA. The
DNA polymerase catalyses the synthesis of the complementary strand in the extension step.
The newly synthesised DNeéommonly referred as the PCR product or amplicon will act as

the template DNA sequence in subsequent cycles.

Initially when PCR was developed the Klenow fragmenE @li was used for the extension
step(Saiki et al, 1988) Due to the thermo sensitivity dfis enzymeijt meant fresh enzyme
had to beadded at théeginning of every elongatiaetension step due to the loss in activity

of the enzyméSaikiet al, 1988).

Later the replacement with the thermostable DNA polymerase from the hot $pengus
Aquaticus for its Klenow fragment became thmost significant development in PCR
technology(Saiki et al, 1988) The thermostability of the enzyme meant that it did not have
to be addeckvery timeafter every cycle. This feature of the enzyme greatly enabled easy

automation of the temperature cycliognditions(ReynoldsandSensabaugi991).

The use of the PCR for human DNA profiling is one of the most important developments in
forensics(Reynoldsand Sensabaughl991) The limitations associated with typing of DNA
in forensic such as low copy number DNA and degraded DNA were solved through the use

of PCR. Furthermore DNA bed typing is highly sensitive and are féi3ecorteet al, 1990)



However the sensitivity of the PCR raises major concerns about contamination of the DNA
samples or th®CR reactions since even minute DNA contamination will be amplified
leading false positive resul{®ecorteand Cassiman1993. This could lead to incorrect
conclusions and in extreme cases might exclude or include suspects from being included in

the crime(DecorteandCassiman1993)

1.2.1Multiplex PCR
Multiplex PCRis the mostommonly usedype of PCR in forensicultiplex PCRinvolves

the amplifcation of more than on&arget by incorporating more than one primer pair

sequence in the reaction tube.

1.2.1.1Advantages of multiplex PCR
Multiplex PCR has emerged as a crucial assay as it is cheaper than singleplex since there is a

reduction in the c&t of analysis and labour from assaying multiple markers simultaneously
(Butler et al, 2001) The expense of reagents is far less in multiplex PCR than any other type
of PCR where several tubésr singleplex are usef(Edwardsand Gibbs 1994) Time and

effort in the laboratory is sad as the amount of knowledge obtained per unit time in the
laboratory is increase(Elnifro et al, 2000) Lasty in instances where the tesvidence
sample volume is inadequate, mpikixing enables information to be obtained from
inadequate sample8ijtler et al, 200]) without compromising the test utilitfElnifro et al,

2000)

1.2.1.2Importance of multiplex PCR in forensic testing
Multiplex PCR in forensic testing has enabled more information to be obtained from a test

sample with limited availability whicls usually the common case in forensic case work.
High degree of discrimination between individue®btainablen a relatively short period of
time. The amplification of multiple STR loci in the same tube is achieved through the use of

oligonucleotide gmers that bind to various regions of the genoriviltiplex PCR analysis



has greatly increased the power of discrimination with the ability to analyse multiple regions
of DNA at the same time. Multiple markers from the individual are analysed in order to
deter mine the peThehgmbmumbBrNd#arkers analysédethe greater

chances of obtaining a unique profile STR profile which is the goal of forensic testing.

1.2.1.3Challenges of multiplex PCR
PCR primer design and optimization of a nplix PCR is a greater challenge than for

singleplex PCPRbecause the annealing of multiple primers needs to take place under the same
annealing conditions without the primers interfering adversely with each(&tieoskeet al,

2003) Hence the success of multiplex PCR is dependent on the compatibyiiyners to be
included in the multiplexExtensive optimization is normally required to obtairg@od
balance between amplicons of the various loci being ampliBater et al, 2001, Henegariu

et al, 1997) These assays can be laborious and -tovesuming to establish, requiring
lengthy optimization proceduresttv the adjustment of a number of variables such as primer

concentrationgButler et al, 2001 Schoskeet al, 2003 Henegariwet al, 1997)

Several challenges are associated with multiplexing include poor sensitivity and specificity,
and/or preferential amplification of certain specific |d&olz and Cavanaugh 1998
Markoulatoset al, 2002) Having more than one primer pair in a PCR increases the chances

of obtaining spurious amplification productsainly due to the formation of primer dimers
(Brownieet al, 1997) These nonspecific products may be amplified more efficiently than the
desired target, cooming reaction components and generating impaired rates of annealing
and extensiofElnifro et al, 2000)

Primers in multiplex are labelled with a fluorescent dye whichtiached tohte 56 ( non
reactive) end of a primer that is incorporated through NBi8rs and amine linkages

(Schoskeet al, 2003 Butler et al, 2004) These primers use fluorescence energy transfer to



increase the absorption and emission properties of the bgk(Ja et al, 1995) Each of the
primers hasits own unique strong excitation wavelength and fluorescence emission

maximum(Juet al, 1995 Schoskeet al, 2003)

1.3Features of a forensic testing system
Any DNA marker system to be considered for forensic testing dhbwalve certain

characteristics.Firstly it should berobust; enabling the effective recovery of DNA
information from biological samples collected from a crime sc€he system should enable
the DNA profiles to be detected from a wide range of environmentadlijeciyed samples
which could be encountered forensic caseworkThis enableghe systemto be easily
employed by differentdrensic laboratories worldwidgledman 2011) The system should
have high discriminatory capacity in order to distinguish DNA profiles from different
individuals with high statistical confidenckastly the tesng system shoul@xhibit a fairly
even distribution of diversity within and among different populatigtesdman 2011) This

will enable the same marker system to be used in different countries and populations
(Hedman 2011) This allowsfor the universal standardization of the system which will
facilitate comparison of data between differémtensic laboratories worldwidéHedman

2011)

Commercial companies have developed DNA testkitg for both autosomal and Y
chromosome. These kits & been optimized and validated for a variety of forensic
casework. STR multiplex kits are developed in such a way that they eobbktanalysis of

markers investigated

1.4Y chromosome

1.4.1Structure of Y chromosome
The Y chromosomevhich is consideed to beone of the smallesthuman chromosome

consistsof distinctive segmentsthe pseudo autosomatgions(PARS which is about 3% of

10



the chromosome and the noetombining portion (NRY) which is about 9% of the
chromosomaes reviewed by Gusmacet al, 1999 The pseudo autosomaggion consists of

two portions; PAR1 and PAR2. PARL1 is situated at the extreme end of the short arm while
the PAR2 issituated at the end of the long aft@uintanaMurci and Fellous 2001). The
pseudo autasmal regionis similar to the X chnmosome andindergoes meiosisDuring
meiosis, one of the@seudo autosomalegions, especially the PAR2 exchanges genetic
material with thepseudo autosomaégion of the X chromosom@oblingand Tyler-Smith,

2003) As a esult genes found within the PAR region passed on to the next generation

the samavay as the autosomal gen@uintanaMurci andFellous 2001)

NRY doesnot exchange geneti c imigintentadialts dur i n
intact form. It consi¢s of two major regions the elaramatin which is about 23 megabases
(Mb) ard the hypervariabldheterochromatinSkaletskyet al, 2003 Willard, 2003) The
length of theeuchromatinis constant among the males contrary to heterochromatich

could beundetectedn some maleas reviewed bysusméacet al, 1999

The ewhromatin consistmostly ofgenes whicharetranscriptionally activencluding genes

for male sex cell developmerhe sex determiningregion Y SRY) (QuintanaMurci and
Fellous 2001)The SRY gene causes the foeiudecome a male through the development of
the testis in early ages of embryogenesidoblinget al, 1997) Lastly the heterochromatin
which includes the distal long arm is composed mostly ofttigbly variablerepetitiveDNA
sequencesndis commonly seen as ndanctional (Gusméoet al, 1999 Willard, 2003),
becaise it is regarded as naranscriptabléQuintanaMurci andFellous 2001) It consistof
sequence families DYZ1 and DYZ2, containing about 5000 and 2000 copies of each
respetively (QuintanaMurci and Fellous 2001) Polymorphic regionsin the
heterochromatiftave been foundh severalmale populationgQuintanaMurci and Fellous

2001, lida andKishi, 2005) Polymorphismfound in this region includghort tandem repeats

11



(STRs) and single nucleotidpolymorphisns (SNPs). Hencé&STRs which are suitable for
forensic applications areotind in this part of the genom&his feature has enabled the
application of Y chromosome polymorphigmhuman poplation and evolutionary studies
(Jobling et al, 1997). NRY contains many blockahich are homologougo the X
chromosome(Jobling and Tyler-smith, 2000) and thereforenasto be excludeddr male

specific identificatio.

PAR1-26Mb c —

Euchromatin -
~30Mb

Region exempt

from

recombination - Jl
Heterochromatin -

polymorphic in length

PAR2-0.32Mb

i

Figure 1.1. Schematic diagram of theuman Y chromosome(Joblinget al 1997)

1.4.2Forensicapplicationsof Y -STRs

1.4.2.1Forensic caseworkon sexual assaulevidence
Y chromosome markergreatly aid inresolving the majority of violent crimes which are

mostly commited by males. The male specificitgf the Y chromosome has enabléw
discrete detection of the male profile from the crime scemmaple whe typed with Y
specific markergJoblinget al, 1997)

Autosomal DNA tests often fail to provide conclusive results when used in gender testing or

in sexual assaults cases. The autosomal kits includemietogenin locus which is a gender
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determining markerThe problem is that thamelogenin test is not rable as it is prone to
errors.Some males are wrongly detected as females because they have a deletion in the AZF
gene(KayserandSchneider2009) In some population groups the deletion ocair®w rate
(Steinlechneret al, 2002) while in others it occurs at high ra€hangarajet al, 2002)

Therefore autosomal testing is not reliable for gender testing.

Y-STR analyses are highly valuable for investigations of sexual assault cases in which the
minor male proportion in DNA mixtures frequidy remains undetected in standard analyses
(Purpset al, 2015. Sexual assault evidence in vaginal swabs typically contains a larger
proportion of female contributio relative to male contribution (Roewer, 2008CR for
determining the autosomal DNA gile of male DNA for help identify the perpetrator is
often not successfyHanson and Ballantyne, 200 due to the preferential amplification of

the major component of female ce{Roewe, 2009) Therefore thause of ¥XSTR markers
targetsonly the male DNA fraction of the sample.

The other advantage of usingspecific markers is that they give conclusive results in cases
where spermatozoa are undetectableabsentin the biological ewdence.Reasons for
undetectable or absent spermatoaonelude azoospermic or vasectomized perpetratiarsk

of ejaculation (Kayser, 2007). The biological evidewescontainadmixture of body fluids

other than semen, such as galiva/saliva mixtures,adiva/vaginal secretion mixtures, or
fingernail scrapings comprising cells from the (female) victim et from the perpetrator
(Hanson and Ballantyne, 2007h the above mentioned casésSTR analyses enables the
male DNA profile from the perpetrator twe obtained Y-STR testing is also beneficial in
resolving gang rape cases as it enables the determination of number of DNA profiles in the
mixture (Hall andBallantyne 2003)as the conventional autosomal method cannot be used in

sample involving more than one male semen donor (Redt2002).
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1.4.2.2Paternity testing
The inheritance of the Y chromosome rajo the male lineages enables-SYR

polymorphisms to be used in paternity testing especially in deficiency cases where the father
is not available for DNA testing. Inferences are made available in reference to the male
relative, who either is a brother or a cougftall andBallantyne 2003) For this reasott is

possible todetermine theeomplete Y chromosome information of the absent father through

the use of the DNA from any paternal male relative.

A classic example is a paternity testing that linked the third US president Thomasodetiber

the child of one of his slaves, Sally Hemin@®steret al 1998) However, itshould be
considered that a result based only on the Y chromosome does not exclude as the father, any
male relative in the same patrilin@agndthuswhenever possible autosomal markers should

be used to avoid or reduce this possihility

1423Humanremai ns i dentification in mass disaste
investigations
Mass disasters can be classified into major categories namely natural and manmade. Natural

disasters include floods, earthquakes, tsunami, volcanic eruptions, and droughts while man
made include transportation disasters such as road accidents, rail, air and mardsteesdis
construetion disasters, fires and wafsZ i n t ket aé 2012 Al of these realt in the loss

of many lives.

In both mass disasters and missing person casssthe responsibility of law enforcement
agencesto try and identify the human remains of the vidiso they can be brought to the
victimsd families. I denti fication of wvicti mg
purposes such as alming a deatltertificate which can be used by thevii més r el at i\
claim mong from insurance companig¢Butler, 2011, Caenazzeaet al, 2013) Secondly it

brings closure to t hebunyihariovethenéspropgenyi | i es and
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The conventional methods used in mass disasters rely on physical characteristics to aid in the
identification of human remainaenazzcet al, 2013 Brennerand Weir, 2003) Often in

mass disasters the remains are extremely defragmented, decomposed and tiseofetimai
victims are mixed ug Zi nt ket a R0124) As a result conventional methods become
limited in their use as they can only identify an intact body. Using physical characteristics for
identification is also not reliable aketre is great risk of ambiguityhere a person caoe

wrongly identified(BrennerandWeir ,2003)

DNA profiling has become a superior method in the identification of human remains not only
because it helps in the identification of extremely decomposed remains which are beyond
recognition, but also helga the association of fragmented remaj@aenazzceet al. 2013

Budowleet al. 2005)

Y-STR haplotyping has proved to be useful in tracing paternal relationships in mass disaster
identification( Go j aandS u t |, 8007; Ma r j a etaal 2009) and it helps in the
identification of missing persons (Davisenal, 2008).Due to its lack of recombination most

of the Y chromosome is paternally inherited as a block of linked haplotype markers from one
generation to the nexTherefore males in the same lineage will have the identi€all R

hapl otype allowing for the determination of

male relativegHansonandBallantyne 2007)

DNA profiles from the victinis remains are compared WiDNA profiles from direct
reference samples belonging to the victim such as tooth brush or unwashed clothing. This
provide the simplest way to olaa match thus identificatio(Butler, 2011) In instances

where direct reference samples isuaav | abl e r el atives of t he vi
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compared to the victims for indirect identification using kinship analysis such as Y

chromosomal testing.

Identification of human remaing& mass disasters is problematic as compared to paternity
testingbecause many comparisons have to be made depending on the number of victims
(Butler, 2011) The recovery of DNA information from the recovered remains could be
limited depending of the type of the disaster and as a result partial or mixeeésuowiild

resultafter typirg thesekinds of samplegButler, 2011)

1.4.3Importance of Y-STRs in human evolutionary studies
Since the beginning of time humankind have always lseaserned about their originThe

Out of Africa theory was hypoéisised to explain the origin afiankird (Cannet al, 1987,
Joblingand Tyler-smith, 1995 . According to thetheory therewasone genesis for modern
humars in Africa which occurred less tha200 0® years ago(Jobling and Tyler-smith,
1995) Menand womermoved out of Africa to the rest of the world when climate conditions
were unfavourable(Jobling and Tyler-Smith, 2003) The theory has received suppéam
different discipines such s history, archaeology, paleontobiology as well as linguistics
(Stringer and Andrews 1988) However because ohconsistent evidencsuppoting the

theory itwas there scepticism around it.

The improvements of molecular technologies inlthat e 8 06 s t enabtechtbe e ar |
invention of moleculaDNA approaches taddressome of the question surrounding human
evolution DNA can aid in explaining origindzause it is inherited; transmitted frame
generatiorto the next and imaintains mutation/hich took placealongthe way.Although

DNA is unique for eachindividual expect monozygotic twins, thisiniguenessor

polymorphismshows arecord ofindividual relatedness and genetic histdidobling and
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Tyler-smith, 1995) The Y chromosomein particular can be used to reconstrpeternal
humanhistory and provide information on paternal migratidistribution dueto its unique

features; nofrecanbination and male specificifyVang and Li, 2015Nayaket al, 2014)

The NRY region of the Y chromosome is pasdenin fatherto son unaltexd provided no
mutaton occurs. Once a mutatiooccuss, modern Y chromosome holds acoed of all
mutations that happened in tpast. This basicallymeansinformation on ancient YDNA,
which is the origin oimankind, carbe known or inferred by using the information or data
collected from moderrY chromosome using DNA polymorphism(Gusméoet al, 1999;

Joblinget al, 1997 UnderhillandKivisild, 2007)

Binary markerssuch as SNPs have a slower rate of mutatsion t he order of 3.0
mutationshucleotide/generatiofXue et al, 2009, asto thecomparedo thefaster

multiallelic markersSTRs.The mutation rates of STRs are about 4 to 5 orders of magnitude

higher than SNPs (Waregg al, 2010).SNP markers are us@uconstructing a phylogeny tree
connectingall the Y chromosome lineagesoim world populations{ Chromosome

Consortium 2002; Karafeet al, 2008;van Oweret al, 2013).

STRs on the other haresidedeing used in forensic identification, it used in the estimation
of population diversity (Wangt al, 2013). Y-STR has also bearsed in time=stimations for
SNP lineage$Wang and Li, 2013).

The combination of data from binary markers namely; haplogroups and data from STRs
namely haplotypes, called lineages, is used to construct phylogenetigJneleshill and

Kivisild, 2007) The phylogenetic tree consists of main branches, nodes and leaves. The
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haplogroups which are theam branches are defined by SNPs; the nodes represent the
common ancestors and haplotypes which are individual profiles are the leaves

The latest human Y chromosome tree constructed by van éver2013 confirns the

origin of the modern man in Africarém the phylogenetic trees information about the level
of population structure, pattern and time of population evolution can be dgdiraserhill &

Kivisild, 2007 Karafetet a,2008 Shiet al,2010).

Studiessuch as the one done at the University of Cambridge confilneg®ut Of Af r i c a
hypothesis thaall modern humans stem from a single group of Homo sapiens who emigrated
from Africa 2,000 generations ago and spread throughout Eurasia over thousands of years .
DNA in particular -STRs and other markers suchnaisochondriaDNA were analysed and

the dcata was compared with various DNA patterns associated with early h{&ceisce

Daily, 2007).

1.4.4Limitations of Y -STR typing

The haploid and patrilineal inheritance nature of the Y chromosome makes it difficult to
interpret Y-STR data, because maldateses of several generations will have the same Y
STR profile(Roewer 2009) These two features makes the discriminatory capacity ®TK
markers much lower when compared with the autosomal STS§.R6 usuallydifferentiate
unrelaed Yichromosome (i.e. paternal lineages) while autosomal STRs can discriminate
between any individuals with high statistical confidefReddet al 2002) When a crime
sample matches the-STR profile of a suspecthe patrilineal relative of the suspect cannot
be excluded as being the contributor of the biological evidence, more espéaaltye runs

in the famil (Joblinget al, 1997 Roewer 2009. In spiteof this, Y-STR markers provide a

valuable additiontthef or ensi ¢ DNl t est er 6s
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However,Ballantyneet al, 2010 discovered 13 rapidly mutating (RM)}STR from a library

of 186 Y-STRSand they aranticipated to change-¥hromosore application from paternal
lineage differentiation to male individualisatigkayserandde Knijff, 2011) According to
pedigree studies, conventionally uses ofY-STRs scgh as Y¥filer, have a lower mutation
rate of about 1x I®per generatiomvhile the RMSTRs have a higher mutation rate 1 ¥10
per generatioiiBallantyneet al, 2012) It has been shown that the RBTRs can distinguish
over 70 % of relatives in comparison with conventionalil®r Y-STRswhich canonly
distinguish 136 of relatives(Ballantyneet al, 2010) Because of their high mutation rate
thesemarkers are expected to be useful in cases where the current systems have failed to be
informative. Firstly they can be used to resolve cases such as gang rape irthetacare
several suspects involve(Ballantyne et al 2010, Ballantyne et al 2012) Another
application of RM ¥STRs could be insteces where conventionaltS$TRs was used but did
not provide concluse results about whether a man los relatives are the stain dosor
(Ballantyneet al, 2010;Ballantyneet al 2012)

According to Kayser and de Knijff (2011) despite all their superiority over the current
systems, RMSTRs are unlikely to replace the currerSYR in human identity testing, even
if they are commercialised. It is because the curreiTRs are useful in other forensic
applications such akinship testing or disaster victim identification, which involve testing
relatives using the current-8TRs which have lower mutation rate to reconstruct family
lineages(Kayserandde Knijff, 2011) RM i STRs have been alysed usinglata from111
worldwide populations which was generated by 13 cented, have shown exceptional

value in differentiating paternal lineagda(lantayneet al,2014).

1.4.5Y-STR testingkits
Several kits are currently available, which camtadditional ¥STR loci tosupplementhe

Scientific Working Group on DNA Analysis MethodSWGDAM) set The SWGDAM set
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include core loci whichare DYS19, DYS385a/b, DYS389I, DYS389Il, DYS390, DYS391,
DYS392, DYS393, DYS438 and DYS439. Fheelong tothe basic set of markers which
have been selected for use in resolving forensic casefMargseret al, 1997) It has been
shown that analysis withthis core set of ¥STRs can discriminate most of the male

individuals in various populations around the wdKayser et al, 2002).

The PowerPlex® Y System has beerswigveloped to type these same 11 core loci plus the
DYS437 locus(Promega (Krenkeet al, 2005) The AmMpHSTR® Yfiler® system(Applied
Biosystemyincludes the loci of the PowerPlex® Y System and the highlynpotphic loci

DYS448, DYS456DYS458,Y GATA H4 and DYS635Muleroetal, 2006)

PowerPlex®Y23 SysterPromega)includes all of the loci from PowerPlex® Y as well as
AmpHSTR® Yfiler® as well as six YSTR loci that are not in any other commercially
available kit. Thesix additional Y-STR loci are DYS481, DYS533, DYS549 DYS570,

DYS576 and DYS643YS576 and DYS57@re rapidly mutating.

Yfiler® Plus Kit (Thermo Fisher Scientifids based on a multiplex that amplifies 27SYR
loci in a single PCR amplification reactioh includes the loci of the AmpSETR® Yfiler®
plus 10 highly polymorphic markers namelyDYS576, DYS627, DYS46Q DYS518,
DYS570, DYS449DYS481 DYF387S1aDYS387S1b an®YS533 Of theselO0 markers,
7 are rapidly mutatingl{YS576, DYS627, DYS518, DYS570, DYS44BYF387Sh and

DYF387Sh).

The numbers of polyorphic markers included in the commercial Kitss beenncreasng
over the years, so as to increase their ability to differentiate paternal linagestudiesof
genetic diversity at nenore Y-STRson the local populationsavealso been increasinger

the years tsearchfor loci with high forensic significance local populationgCloeteet al,
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201Q D 6 Aanal 2G10Q D 6 Aana 2009. A more recent study was undertaken to
analyses 36 ¥STRIoci, which included all the loci found in the comercial kits (Westen et

al, 2015).

1.4.6ReferenceY-STR databass
Reference databases which consist of anonymous DNA profiles from specific or different

populations were established for the sole purpose of facilitating accurate estimation of
haplotype frgquencies(Kayser et al, 2001; Kayser et al, 2002) Y chromosomal Short
Tandem Repeat Haplotype ReferencedbabasdYHRD) is the largest and the most publicly
accessed STR database. Itonsists of the maléspecific DNA profiles of the loci which
constitutes the YSTR commercial kits(Willuweit and Roewer 2007) This database
currently stores YSTR profiles from917 sampling loations in 128 countrieg/hich have

been submitted by more thab0 institutionsand laboratories (WilluwedndRoewer 2015)

Haplotype frequency valuenables the rate of coincidental matches between the samples that
do not originate from the same peardo be determined. This value provides a measure of the
discriminaton ability of any forensic testing systenfForemanand Evett 2001)Without
referencedatabases, it not possible tassesshe evidentialveight of the crime and as such

the evidenceannot stanth court. This helps in the exclusiondaelimination of suspects.

However, the best criterion on hotw bestuse frequency atabase for estimation of
statisticalweight of Y-STR haplotype match, is yet to be decidedhown (de Knijff, 2003
Brenner 2010). According toKayserandde Knijff (2011)insufficient empirical data from
the frequency databases makes it difficultdegermine the reliability of ¥STR haplotype
frequenciesfrom thecurrent YX-STR database®ecause they contaimrelated malesThey

suggested theroblem could be overcome through the establishment-8TK haplotype
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frequency reference databases which contains DNA profiles from related and unrelated male.

Il n that way the amount of regoatoeld be ceflectddat i on o s

The information from rerence databases catso be used in human evolutionary and
population studies of specific or different populatidtayser et al 2002; Willuweit and

Roewer 2015).

1.5Historical background of South Africa

Introduction
South Africa is known for its rich culturaliversity and diverse peopl&@he diversity of

South African peulation is attributedto its dynamics of coloniahistory, historical
governanceand SoutbAfrican situationwith regards tamain trade routes from the fifteenth
to the ninetieth centur§Campbel] 1897 The Ertyclopedia of World History2001)

The population of South Africés estimatedio be 50 586 757 million and islispersed
throughall nine provincegwww.statssa.gov.zpublications/populationstats.gsfhe people
are classified as 79.5 ®lack Africars, 9.0 % Coloureds2.5 % AsiansandIndiarns and %6

White (www.statssa.gov.za/publications/populationstat3.asp
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Figure 1.2. Map of South Africa showing the nine provinces and the approximate historical
location of theBantu linguistic population groups in Soufrica (Warnichetal, 2011)
adaptedrom (Laneet al, 2002)

1.5.1Bantu Speakes/Black Africans/Bantu migration
The Black Africansare the present descendanitshe Bantu speakingeoplewho originated

from North Western @meroon/Southern Nigeria and spreéacbughout SutbaharaAfrica
andthe KhoiSanwho originated from the eastern Afri(BerniellLee et al, 2009;Sirugoet
al, 2008)The Khoisan speakemvere the first inhabitants in Southern Africa about 20 000
years ago while the Bantu speakergyratedto Southern Africa about 1002000 ybp(
Huffman, 2007; Mitchell,2002). Of the eleven official languages spoken in South Africa
nine are BantdanguagegPattersoret al, 2010) The Bantu languages in theder of the
most commonly spoketanguagenamely Zuly Xhosa, Pedi, Tswana, SoutheSothg
Tsonga, Swati, Venda and Ndelele belong to Niger Congo phylum

(http://www.statssa.gov.za/Census2011/Products/Census_2011_Census_in_)rief.fitiie

Niger Congo phylum whichs the largesf the four major language families spoken in
Africa is spoken mainly by agriculturaligtopulatiors across a widgeographic distribution

in Africa (Sirugoet al, 2008)asindicated by the map in figure 4’Phe South African Bantu
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ethnic groups belong to thsouthern branch of the Eastern Bantu speaking group

(http://www.ethnologue.cojn
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Figure 1.3. A map of selected migrations and language family distributions in Africa
(adapted fronReedandrishkoff , 2006) More recent migrations in historical times are
represented bthin arrowsand infered prehistoric migrations are representednggium

arrows (Sirugoet al, 2008)

The Bantu migratioror Bantu expansion ihe most significant and the hightipcumented
migration ever inthe history of humankind(BerniellLee et al 2009 Peires 1986) The
migrationis believedto be influencedy increasan populationsize which was as eesultof
introductionof farming andat a later stage the Iron Ag¥ansina 1995. It occurredin at

leasttwo majorroutes;the western and the eastern raigerniellLeeet al, 2009)
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1.5.2Bantu speaking people and the Khoisan
Upon their arrival irSouthern Africahe Bantupeoplewho were mixed far@rsreaing cattle

and sheep and growirggops settledn the easterpart of the regiorwhich had good soils
andcame acrosthe Khoikhoi who were also pastoralistsd ha settledin the same region
(Steans 2001; Thompson 2002) They also enamtered, the San who were
hunterggatherersvho lived of theon the estern arid parts of &ithern Africa(Thompson
2002; Lewis-Wiiliams, 1986) Overtime many KhoiSan people becamepart of the Bantu
communities eitheas business partners oustomers with the tragg of iron tools and
weapons(Thompson 2002) The Bantu also adoptesbme of thecultures ofthe Khoisan
which is evident by the click sound found in someh& Bantulanguagesfor examplethe
click sound found in the Xhosa (Southern Ng@@lildemann and Stoneking 200§. This
was originally spoken by the KhoiSahhis illustrates dong periodof beingclose to each

other which included intemarriagegfDenoonandNyeko, 1987)

1.5.3Diversification of South African Bantu speakers
As time went bySouth AfricanBantu speakerstartedoranching from each othefwo main

language groups arose, the Ngand the Sothd@swanawith the smaller groups, the Venda
and TsonggSaunderand Bundy, 1992) The Ngunisuch as ZuluXhosa settlechlong the
coast vhile the Sothd'swana settled on theterior (Stearns2001) Those speaking different
Nguni languagescould understand each other but struggled to understand-Bswtna
languagesilt is because the differebinguageselonging to thesamegroup (for example
Xhosa and Zulu or Tswana aied) had similar syntax and sharenost of the vocabulary
(Thompson 2002) Despite their segregation they all led the same way of life sty
practiced agriculture; growing crops and keepingliwéstock (Thompson 2002 Maggs
1986) The Nguni practiced agriculture and pastoralism on a small scale, wial8othce
Tswana relied more on pastoralism than growing c{@enoonand Nyekao 1987) They

alsoformed chiefdoms,with the Sotha Tswana forming bigger kingdoms which expanded
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as far as BotswangStearns 2001) Moreover theyhad homestead systermghich were
related to the chiefdom though paternaéages andlars (Peires 1986) People of the same
clan were related either througla common family, a common set of prais®ngs or a
common totemic animalPeires 1986) How themodern day ethnic grogsuch as Xhosa,
Zulu cameabout is still unknownAccording to Pees (1986 around 1600 certaiNguni
clans began to inrease theipowers andtook over smalle clans, br exampleTshawe
founded the Xhosa kingdom after conquering IbhethersCirha and Jwarha in battle and

integratedhe clans into his clans.

1.5.4Arrival of the Europeans
Between 00 and 30 years laterthe European traders settled in So@fhica. The Dutch

were thefirst Europe@nsto arriveunderthe leadership o¥an Riebeeckl652 They formed

the Dutch East Africaor DutchVerenidge OostindischeeompangnigVOC) which served

as a refreshment statidor traders between Europe and AéBoucher 1986 Terreblanche
2002. The companyhad an economic relationshipith the Khoikhoi wherethey reliedon

the Khoikhoi for meat(Stearns2001) Howeverthis relationship was shiblived because of

two reasonsthe high demand for meat by the growing population was not always met and
the conversion of grazing land by the incoming settlers into cultivateditéederedwith
traditional grazing land rightsf the Khoikhoi(Boucher 1986)

Later the British came at the beginning on the@éntrury bringing slaves alongside them
from Asia and in Eastern Africdladagasar (Campbel] 1897). All thesehistoric events

contributed to the rich genetic and cultural diversity of South Africa.

1.5.5South African ethnic groups

1.5.5.1Zulu
According to history the were threemajor Northern Nguni chiefdoms namely the

Ndwandwe underZwide, the Ngwane under Sobhuaag the Mthwethwainder Dingiswayo

26



(Edgecombg1986 DenoonandNyeka 1987) The Ndwalwe were in the nant the Ngwae
settled in the far north while thdthwethwawere in the soutiSaunderandBundy, 1992)
Under Mthwethwa chiefdom was a smallerchiefdom Zulu, under the leadership
Senzangakhonayho fathereda child Shakaout of wedlock in about 1787(Denoonand
Nyeko, 1987) Of this three majoleaders,Zwide wasknown for cruelty among his enemies
unlike Dingiswayo whancorporatedhe conquered peopl@ato his chiefdomZwidetook the
livestock and scattered people all over plgeggecombgel986) Towards the end of his rule
in 1818,Dingiswayohad effectively changed his chiefdom into a faldgge multichiefdom
alliance that expanded from MfoloRiver in the North to the Tukela in the Soutbenoon

andNyeko, 1987)

After sometimethey were wars between thorthern Ngunichiefdoms due to disputes over
land ownershipdue to theenlargementf the settlement. As the chiefdoms expanded, their
territories adjoined Saundersand Bundy, 1992) The first clash was between Zwide and
SobhuzaThis was won by Zwide and Sobhuza was forced to flee inland and settled in the
present daySwaziland (Saundersand Bundy, 1992) After the death ofthe Zulu chief
Senzangakhon@n 1816, aconspiracy atDingiswayo court resulted in the dismissal of
Sigujana, the legitimate heir to the Zulu throne, and the imposition of Shaka as the new chief
ofthe ZulySiguj ana wa s-br&hedDermodnandNyekd, 1987 Thompson2002)

A war brokebetween Zwide and Dingiswayehich leal to defeatingof the Mthwethwaand

the death of DingiswaydEdgecombge 1986) Following his death Shaka incorporated
Mthethwa to the Zulu chiefdom assult increasing hishiefdom(DenoonandNyekao, 1987)

Shaka later conqueredhe Ndwedwes His conquestof Ndwandwe wasone of themost
remarkableeventsin Zulu history. According to Edgercoml{@986 by 1819 Shakahas

defeated all hignemies andhtegrated theninto hiskingdom making oneunitedkingdom
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By 182006s S h a knsostpowaedful kingdenairt Southi gast Africa(Edgecombe

1986)

The rise of the powerful Zulkingdomunder Sh&ka is believedto be the causef Mfecane
wars. The period was characterised by waves of migratipaegpdic raiding, series of wars
andfrequent period of migratio for people in Southern AfriceEdgecombg1986) It was

felt more by the Sou#rn Sotho who had settled of the west of the Drakensberg
(Terreblanche 2002)

The impactof Mfecanewas felt over most part of Africafrom the southern, cemnal and
easern regions ofAfrica (Edgecombge 1986 Saundersand Bundy, 1992) It led to the
establishmendf newkingdoms as far as north as presgay Malawi, Zambia and Tanzania
(Thompson 2002) Shaka died in 1828 after he was assainated by his broffatay the

Zulu is one of the largest ethngroupsin South Africa.

1.5.5.2Afrikaner
The Afrikaners are the descendant of the small number of Dutch immigrants who isettled

the Cape in the@L.Centrury They had their distinct language knowsAdgkaans which was
derived from the DutcliSmith, 1%2, Thompson2002. Towards the end dhe 18 Centrury
and atthe start of the 1€entrury British settlerarrived in the CapéThompson2002) The
arrival of the Britishcontributednegativelyon the independence and the culture of Afrikaner
the people.Theyalsodisrupted the dture of theindigenous peoplesuch aghe Khoisarand

the BantuTerreblanchg2002; Thompson2002)

Between 1834 and 184(he Afrikanersleft the Eastern &pe and settled into the interior.
The immigration of which approximately 15 000 farmers left with their families is known as

the Great Trek. Many reasons were proposed for what drove thosedamaetheir families
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into the interior. Lack of adequate land for grazing and they were disstath the British

governancgSaunderandBundy, 1992 du Bruyn 1986)

In the Eastern @pe both the Xhosa and tAé&ikanerswere relying for the survivalon the
grazing land As the population grew the land becasearseand they were ompelled to
move interior northwardsand southwards to looks rfdéeter pastureqCarruthers 2007,
SaunderandBundy, 1992) The Boers in the Eastern colony were subjected to constant San
raids fromthe northern part of thEastern CapéDenoonandNyekao, 1987) They were also
subjected tdrontier wars ofthe Xhosaattacks(du Bruyn 1986 Thompson 2002 Denoon
and Nyeko 1987) The Boers feltunhappy andwere insecureghat even though thBritish
werein powertheyhad faiked to protect them from all thea#tacks.

The idea of moving away from tle®lonial limits will give themthe freedom of running their
own affairs without interference fromelBritish governance, however tBeertrek could be
seen as of expansion of colonisatidenoon and Nyeko, 1987) Afrikaners and their
families or Voortrekkers aghey werecalled left the Cape Colony ilarge groupsunder
different trek leadergDenoonandNyekao, 1987) The great Trek was not a single combined
movement, rather a series of movement by dbffe groups under various tré&aders. The
leaders weréAndries Hendrik Potgieter, Gert MaritPjet Retié and Piet UygThompson
2002) Potgieter finallysettled in the north of VaaRiver and established Potchefstroom
(Carruthers 2007) Retief and othersmovel to Natal because of its gowodinfall and its
prospectiveharbour in the hope thétey getland from the Zulu kg Dingaan(Thompson

2002)

Today Afrikeners are spread inland in places sucidsvane(formerly Pretora), Limpopo

(formerly Northern Transvaal), Mpumalange&dgstern Transvaal(Hall et al 2002)
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Afrikaners are often regarded as a homogeneous white population of Dgh(Grieeff
2007) This could be attributed to their geographical isolation, which is further influenced by
language difference and religioa§iliation (Hall et al, 2002) Afrikaner population exhibit
high frequency of number of disgagenes, due to founder effédnking 1990) The arrival

of the British settlers did not have any significampacton the redction ofthesedisease

associategenessince thee was littleintegrationwith British settlers(Jenking 1990)

1.1.1.3 Asian Indian
South AfricanAsian Indiansare the descendants of Indian slaves who came to South African

during the end of the nineteentientury to work in the sugar cane plantaton Natal
(Motalaet al, 1993) They belong to the two ethnic groups which Argans and Dravidians
from northern and southern India, respectiviMistry, 1965) Most of the Indians reside in
the Durban areOmaret al, 1994)

In 1845 Natal was annexed by the British colonig@rsrreblanche 2002) The British
commercial farmerén Natal owned sugar plantation$hey experienced shortage of cheap
labour (Saundersaand Bundy, 1992) At first they hadexpected the Zulu people to work in
the sugar plantations, butt wa s n 0 (Saunddérsand Buady, 4992) Unlike in the
Eastern Capean Natal the Africans had easy access to Mhath made ipossible for nedy

all Africans to become peasant farmgiBerreblanche2002) To combat this problem of
shortage of labour they decided to import indentured Indians labours to work on the sugar

plantationg Terreblanchg2002)

Naturally Indans are homogenous, as there is small amount of gendrfiowAfrican has
been found in thenSoodyall and Jenkins, 1992)his phenomenors likely to be as a result
of strict religious practice which usually did not permmarriageoutsidethe Asian Inéan

ethnic grougWarnichet al, 2011)
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1.1.1.4 Coloured
The South Afican Coloured (SAC) is an admixed population mostly reside in the Western

Cape Province. This selfientified population grougppegun atCape of Good Hoparea
present Cape Town after the Dutch East Ii@enpany setip a refreshment station 652.

History showsthat over generations that the KhoiSan, the Bantu speakers, European settlers,
and slaves originating from Indidava, Madagascand Mozambique have contributed to the
emergence of this groufPattersoret al, 2010) Autosomal DNA studies have revealed that

the Coloured populatiois a result of integration of divergeople from Africa, Europe and

Asia (QuintanaMurci et al, 2010) Most of the Coloura people are Afrikaans speakers.

1.6 Aim of the study
Theaim ofthis studyis to furthertest the level of polymorphism die University ofthe

Western Cape (UWC) 10 locsgst or UWC 10 plexn four South African populations
namely;Zulu, Coloured Afrikanerand Asian IndianThe UWC 10 plexvasdesignedrom

45 loci found onlie Y chromosomé D 6 A netat 2011) The UWC 10 plex consists of the
markers DYS710, DYSEB, DYS385a/b, DYS644, DYS612, DYS626, DYS504, DYS447,
DYS449, and DYS481. Of the 10 markers, 4 lo@nely;DYS612, DYS626, DY S49,

DYS518 are rapidly mutating.

The selection of the UWC 10 plex was encouragestingies of minimal haplotype loci

which shaved low level of polymorphism and poor resolution in the local populations (Leat
etal2 00 7 ; Ded 2A 20@8).As a resulthe search for loci with highdorensic
significance was carried o(tD 6 A netaat 2010).The selection criterionf 10 plexloci

was based on high discriminatory capacity, and the amenability to analysis when multiplexed.

TheY 1 STR system was tested in three local South African popauRnhamely; Xhosa,
Asian Indian, and English Caucasiarparallel with other commercial kt s . (&8 Amat o

2011). The system showed higher power of discriminatory capacity as compared to other
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commercially used kit namelowerPlex® System Promegd and Amp#STR® Yfiler™

(Applied Biosystemsat the time othedesign of this multiplexThe superiority of the UWC

plex in terms of the resolution as compared to other commercially available kit is attributed to
the inclusion of RM YSTRs which yield highresolution paternal lineage differentiation
(Ballantyneet al, 201Q 2012; 2014

It isimportant to understand the genetic diversity of the UWC 10 plex in varioutagopu

groups in South Africal'his work forms part of the project which involves the establishment

of DNA referencalatabases for various ethnic population groups in SouttaAffhe

information from these databases will bawany applications for example; it wilsedto

fight crime, especially in sexual assault cases, as well as in disease association studies.
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Chapter 2 - Materials and Methods

2.1 DNA extraction

DNA extraction was previously doneD'Amato et al, 2008 Leatet al, 2007) Of the DNA
previously extracted41l were Zulu, 79 were Asian Indian, 108 were Coloureds and 100 were
Afrikaner. More DNA samples wereollected from malesf the above population groups
living in the Western Caplrovince Theywere collected as buccal swalifiese swias were

stored in envelopes &0 ° Cuntil the time of use.

The DNA was extracted using salting out technigaapted fron{Medranoet d, 1990 as
indicated in the AppendixThe techniqueemploys high salt concentratioto precipitate
proteirs from the DNA. The cell membraneavas disrupted using detergents in order to
recover nuclei The proteinwas then precipitated from the nuclei using a high salt

concentration. The DNA was recovered using ethprexipitation

Of the DNA extracted; 54 were Zulu4lwere Asian Indian, 95 were Coloured and 1 was
Afrikaner. A total of 492 samples were analysaltogether(Zulu; 95, Asian Indian; 93,

Afrikaner, 101 and Coloured; 203 samples).

2.2 PCR amplification

During the initial study in which theti for the UWC10-locus set werselected somef the
primers were redesignéa order to reduce the amplicon si@YS449, DYS481,DYS612)

and avoiding tracts homologous teckromosoméDY S644, DYS710) to accommodate all
markers according to sizeplour (DYS504) and Tnn a single multiplex reactioh D6 Amat o
et al2011).The followingApplied Biosysterfluorescent gles were used for the-8TR 10

plex:6 FAM (DYS71Q0 DYS51§, VIC (DYS385a/b, DYS644), NED (DYS612, DYS626
DY504) and PETDYS481 DYS447 DYS449) as indicad in table 2.1
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The reactions wereptimized in a final volume o0 pul, using 2 ng male DNA2 mM
deoxynucleoside triphosphates (dNTPs: dATP, dCTPs, dGTP, dTR&th¢, 4 mg/ml
bovine serum albuminAEC Amershai 5 U/0.5 Super Therm Gold Taq polymeras
(Southern Cross Biotechnologwith 10 X reaction buffer (with MgG). Primer sequences

the final concentratioat which each primewas usedavebeenis indicated in table 2.1.

PCR amplification was conducted using a GeneAmp 2700 thermocigipligd Biosysten)s
as follows:10 min at94 °C, (2) 2 cycles 94 °Cfor 30 s, 66 °Cfor 1 min, 72°C for 1 min,
(3) 2 cycles65.5°C (4) 2 cycles 6%C, (5) 2 cycles 64.8C, (6) 2 cycles 62C, (7) 24
cycles 62°C (8) final extension 68C for 75 minsand a holding temperature of 4 °C if the
PCR products were to remain in the thermal cycler or if using Arktik thermodyotgba
Biotech) ,5U/0.1 5 SuperTherm Gold Taq polymeras&d@uthern CrosBiotechnologywas

used(D'Amatoet al, 2011).

Table 21

The 10 Y:specific loci of the University of the Western Cdpener Sequences, dye labels

and final concentrations of primesmswhich each primer wassed in the multiplex reaction

Locus Primer sequences PCR
conc.(uM)
DYS710 F ACTTTTCTGAATCCTGGACAAGTG 0.3
R FAMTTCCTCATACTCTCTCCCTCCC 0.3
DYS518 F FAM-CACAAGTGAAACTGCTTCTCG 0.192
R CATCTTCAGCTCTTACCATGG 0.192
DYS385at F VIGAGCATGGGTGACAGAGCTA 0.24
R GCCAATTACATAGTCCTCCTTTC 0.24
DYS644 F GGAAGAAGCTGATTTCAATCTCC 0.145
R VIGCAGGAGACTGAGGCAGAAAGTC 0.145
DYS612 F GAAGTTTCACACAGGTTCAGAGG 0.102
R -AAAAAGGGAACTGAGGGAAGG 0.102
DYS626 F GCAAGACCCCATAGCAAAAG 0.228

34



R -AAGAAGAATTTTGGGACATGTTT 0.228

DYS504 F -CTAAGCTGCAAGAAAAAGTCC 0.168
R GAATCACTTGAACCCAAGATG 0.168
DYS481 F GAATGTGGCTAACGCTGTTC 0.3
R PETTCACCAGAAGGTTGCAAGAC 0.3
DYS447 F GGGCTTGCTTTGCGTTATCTCT 0.72
R PETGGTCACAGCATGGCTTGGTT 0.72
DYS449 F PETGAATATTTTCCCTTAACTTGTGTG 0.72
R CACTCTAGGTTGGACAACAAGAG 0.72

2.3 Detectionof PCR products
The separation and detection of the PCR product was performedausergtic Analyser

3500 Applied Biosystemsusing the G5 matrix filter set to determine the five dyes,

6FAM™(blue), VIC" (green), NED' (yellow), PET(red), and LIZ" (orange)available

from AppliedBiosystems

Samples were prepared for electOopghorodsil 0 alh
mi xXtur e. The | oading mixture AppledBiosystesmsof 0.
and 8 .-di FornbaldelydeApplied BiosystemsThe solution was denatured at 95°C for

5 minutes on a GeneAmp thermocyclépplied Biosystemsand then immediately snap

cooled on ice slurry for about -8 minutes. Virtual filteri set G5 was used to analyse the

fragmerts. In house sequenced allelic ladder was usegenotype the samples.

2.4 Analysis

2.4.1 Summary statistics
Statistical parameters such as allelic frequencies and gene diwetsieswere calculated

usingthe software Gen@p softwareversion 4.2 (Rousset2008)

Relative allele frequencidsr each population and the overall populatiegre calculated by
dividing the numbenf occurrence for each aleeby the sample population sizEhe allele
frequency of the multicopy locus DYS385a/b was analysed as combination of both Alleles
single primer pair of DYS385a/b locus amplifies more than one region in the genome and

hencethey are analysed as a haplotypkese regions cannot be @iféntiated using the any
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of the primers andmethods describetiere and henceare analysedas a phenotype. For
example, if aparticular male DNA sample has two alleles with dnd 13repeats forthe
DYS38%/b it is genotyped as either-13 or 1312 asit is not known which region has
respective length variation as the prim@gyettwo regions of the chromosomeéherefore

that particular sample is analysed as phenotype and is given alleleatiesigri 1213,

Gene diversity, of each locus was computed using the formuland=l) (1- E %)i (Nei,
1987) wheren is the sample size and xi is the relative allele freque@®ne diversity
among populations occurs if there are differences in allelquéncies between those

populations.

Haplotype frequencies were computed ughmgsoftware Arlequirsoftwareversion 3.51.3
(Excoffier and Lischer, 2010. Haplotypediversty (HD) was calculatedising the same
equation as calculating gene diversity using haplotype frequenostead of allele

frequencies

Discriminatory capacity (DC) was determined by dividing the number of different haplotypes

observed in a givengpulation by the total number of sampled individugighat population.

2.4.2Genetic relationships between populations
The level of genetic relationship among the populations was tested using descriptive statistics
parameters namely; Analysis of mol&wariance (AMOVA),Popuhtion pairwise genetic

distancgFst) and FactoridCorrespondencanalysis (FCA) were computed

2.4.2.1 Analysis of molecular variance (AMOVA) using non hierarchic analysis
The analysis of molecular variance (AMOVA) developadgenetic analysis was conducted
in order to look into mutational differences between the loci in different populafions.

comparison of allele frequensiéasin the case of computingopulation pakwise genetic

36



distance Fg) test below) does noake into account the structural relationships between
haplotypes and thus does not allow one to infer evolutionary relatedness between populations
hence AMOVA is usedRoeweret al, 2006).

AMOVA estimated the level fogenetic differences among tle¢hnic populationsapplying
conventional Fst statistics withnd without haplotype frequencieasing distance matrix
between haplotypeas implemented iArlequin version 3.3.3 (Excoffier and Lischer,
2010)

Non hierarchical AMOVA analysis was used to evaluate genetic differences (1) among
population and (2) within populatisi{Excoffier and Lischer, 201@gased on ethnicity.
Unlike its counterpart hierarchical AMOVA is usixd testing the homogeneity among
groups composed of different populations. These eatelfined according to language

geographidocation or any other criteria to be tested.

2.4.2.2 Population pairwise genetic distance (Fst)
Pairwise genetic distandse an analogue of the commonly used Fst thatsonres the

evolutionary distancegiween individual haplotypes .Fst (Wrigh®51) which is derived

from population genetic theory describes the present state of population structure, and it is
drivenby pastevolutionary processes such as mutation or natural selection (Holaimer

Weir, 2009;MeirmansandHedrick 2011).Population differentiation is also driven by

genetic drift and levels of gene flow.

Fst and associated probability values (P values) wadoeilated using analysis of molecular
variance (AMOVA) as found in Arlequin version 3153 (ExcoffierandLischer, 2010)

Number of permutations were set at 1 000 levthie significant level was set at P<0.05.

The DYS385a/b marker was excluded in the population comparemause two alleles were

not assigned to the individual locus (ie, DYS385a or DYS385b).
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2.4.2 3 Factorial CorrespondenceAnalysis (FCA)
The level ¢ genetic relationship was further tested using Fact@uatespondencanalysis

(FCA) as implemented in Genetix version. 4.05.2 (Belkhir, 1999). i&Amethods
discussed before is also used to infer population genetic structure from the geneliecsdata
based on establishing the relationship between the different populéty®raploying axes,
called principal components in 3 dimensiomsing discrete variables (loci) which could have

different states (allelegJombartet al, 2009).

The methodummarizes multivariate genetic information into a few synthetic variables
whilst at the same timéescribing as much of thariability between individuals or
populations as possible (Jombatrial, 2009 Jombartt al, 2010.The analysed populations

or individuals appear as dots in a hyperspabe. distance between the individuals or
populations along the factorial axis gives are indication of the degree of the genetic
differentiation.The FCA method has an added/adtageas they areomputationakfficient

and can be clearly applied to huge daté Rattersoret al, 2006)unlike Bayesian clustering
andcan clearly differenti at épopuatonsneatimied e n

groups (Odongt al, 2013).
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Chapter 3 - Results
3.1 Summary statistics

3.1.1 Alleleand haplotype frequencies
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Table 3.1

Allele and haplotypérequencie®f 10 Y-STR lociamongZulu males (=95).

Allele DYS710 DYS518 DYS644 DYS612 DYS626 DYS504 DYS447 DYS449 DYS481 Haplotype DYS385a/b
12 0.137 11_11 0.053
13 0.632 1515 0.011
14 0.011 0.232 11 16 0.011
15 1516 0.147
16 16-16 0.063
17 1517 0.063
18 16-17 0.116
19 17-17 0.074
20 14-18 0.011

20.4 16-18 0.074
21 0.168 17-18 0.032
21.4 0.305 1519 0.021
22 0.042 16-19 0.042
22.4 0.347 17-19 0.042
23 0.211 0.074 1919 0.011
23.4 0.126 14-20 0.042
24 0.021 0.032 0.095 1520 0.053
24.4 0.042 16-20 0.095
25 0.011 0.2 0.316 0.0105 0.252 17-20 0.021
25.4 0.147 14-21 0.011
26 0.021 0.326 0.284 0.273 17-21 0.011
26.4 0.021
27 0.232 0.189 0.158 0.158 0.232
28 0.189 0.147 0.389 0.063
28.2
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29
29.2
30
30.2
31
31.2
32
32.2
33
33.2
34
34.2
35
35.2
36
36.2
37
37.2
38
38.2
39
39.2
40
40.2
41
41.2
42
42.2
43

0.032
0.011

0.095
0.053
0.095
0.421

0.053
0.021
0.074
0.116
0.011
0.011

0.011

0.011

0.011

0.032

0.168

0.137

0.295

0.137

0.053

0.053

0.053

0.032

0.021

0.126

0.137

0.011

0.053

0.011

0.1

0.01

0.074

0.063

0.063

0.116

0.074

0.011

0.042

0.011
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43.3
44

Gene 0.7868 0.8452 0.7541 0.8511 0.7926 0.5344 0.7572 0.7975 0.7975 0.8185
diversity

*Table shows allele frequencies for eactiSYR locus except DYS385a/b for which genotype frequencies are reported. The genotype

frequencies for D'%385a/b were calculated for tbembination of two alleles.

Table 3.2

Allele and haplotypdérequencies of 10 ¥STR loci amongColoured malesnE203)

Allele DYS710 DYS518 DYS644 DYS612 DYS626 DYS504 DYS447 DYS449 DYS481 Haplotype DYS385a/b
12 0.005 0.044 10 11 0.005
13 0.015 0.167 11 11 0.01
14 0.089 0.143 12 12 0.015
15 0.128 0.158 11 13 0.03
16 0.207 0.187 12 13 0.015
17 0.241 0.271 13 13 0.005
18 0.015 0.03 08_14 0.005
19 0.01 10_14 0.015
20 11_14 0.207

20.4 0.005 12 14 0.015
21 0.025 0.02 0.054 13 14 0.02
21.4 0.079 14 14 0.02
22 0.01  0.044 0.005 0.281 10_15 0.005
22.4 0.069 0.02 11_15 0.039
23 0.01 0.108 0.148 12_15 0.044
23.4 0.039 0.005 13_15 0.015
24 0.01 0.02 0.153  0.01  0.094 14 15 0.034
24.4 0.064 15_15 0.025
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25
25.4
26
26.4
27
28
28.2
29
29.2
30
30.2
31
31.2
32
32.2
33
33.2
34
34.2
35
35.2
36
36.2
37
37.2
38
38.2
39
39.2

0.005

0.005
0.005
0.02
0.015
0.02
0.074
0.049
0.059
0.049
0.069
0.133
0.118
0.054
0.118
0.0245
0.069
0.0245
0.025
0.02
0.015
0.005
0.005
0.005

0.005

0.01

0.025

0.044

0.143

0.167

0.207

0.163

0.113

0.069

0.02

0.015

0.02

0.01

0.054
0.069

0.108

0.222

0.212

0.167

0.099

0.015

0.079

0.291

0.227
0.167

0.108

0.034

0.015

0.005

0.35

0.202

0.094
0.034

0.01

0.01

0.025

0.133
0.123

0.2

0.167

0.158

0.089

0.054

0.025

0.005

0.005

0.138

0.099

0.084
0.069

0.01

0.015

0.01

11_16
13 16
14 16
15_16
16_16
12 17
13 17
14 17
15_17
16_17
17 17
12 18
13 18
14 18
16_18
17 18
13 19
14 19
15_19
16_19
17 19
19 19
12_20
13 20
14 20
15_20
16_20
15 21
12 22

0.015
0.02
0.02

0.044

0.039

0.005
0.02
0.02

0.025

0.059

0.015

0.005
0.01
0.01

0.015
0.03

0.005

0.015

0.015
0.01

0.015

0.005

0.005

0.005

0.005
0.03
0.01

0.005

0.005
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40
40.2
41
41.2
42
42.2
43
43.3
44

Gene
diversity

0.001

0.005

0.929

0.03

0.005

0.865

0.8611

0.8519

0.8183

0.8194

0.7949

0.8674

0.8509 0.8721

*Table shows allele frequencies for eactiSYR locus except DYS385a/b for which genotype frequencies are reported. The genotype
frequencies for D'%385a/b werealculated for theombination of two alleles.

Table 3.3

Allele and haplotype frequencie$ 10 Y-STR lociamong Arikaner malesri=101).

Allele

DYS710 DYS518 DYS644 DYS612 DYS626 DYS504 DYS447 DYS449 DYS481 Haplotype DYS385a/b

12
13
14
15
16
17
18
19
20
20.4
21

0.06
0.1
0.069
0.416
0.257
0.01

0.01

0.05
0.178
0.1
0.149
0.475
0.05

11 11
11 12
11 13
13 13
10_14
11 14
12 14
13 14
14 14
11_15
0.069 12 15

0.01
0.01
0.02
0.02
0.01
0.347
0.01
0.079
0.02
0.129
0.01
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21.4
22
22.4
23
23.4
24
24.4
25
25.4
26
26.4
27
28
28.2
29
29.2
30
30.2
31
31.2
32
32.2
33
33.2
34
34.2
35
35.2
36

0.01
0.02
0.01

0.059
0.04
0.1
0.05
0.03
0.109
0.089
0.1
0.089
0.119
0.059
0.079

0.01

0.04

0.218

0.218

0.208

0.01

0.01
0.02

0.089

0.366

0.248

0.158

0.069

0.23

0.059

0.02

0.03

0.059

0.267

0.2
0.139

0.158

0.03

0.01

0.01

0.01

0.02

0.228

0.178

0.356

0.188

0.03

0.02

0.05
0.208

0.188

0.228

0.118

0.1

0.04

0.02

0.03

0.436

0.1

0.079

0.119

0.08

0.08
0.04

13_15
14 _15
15_15
9 16
12_16
13 16
14_16
15_16
16_16
11 17
15_17
13 18
16_18
18 18
16_19

0.01
0.119
0.03
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.01
0.04
0.01
0.02
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Gene

36.2
37
37.2
38
38.2
39
39.2
40
40.2
41
41.2
42
42.2
43
43.3
44

diversity

0.02
0.01 0.129

0.01 0.04

0.02

0.9283 0.8358 0.7459

0.7729

0.8438

0.7127

0.7602

0.8483

0.7687

0.792

*Table shows allele frequencies for eactSYR locus except DYS385a/b for which genotype frequencies are reported. The genotype
frequencies for D'%385a/b were calculated for tbembination of two alleles.

Table 3.4

Allele and haplotypdrequencies of the 10-8TR loci amongsian Indian malesnE93).

Allele

DYS710 DYS518 DYS644 DYS612 DYS626 DYS504 DYS447 DYS449 DYS481 Haplotype DYS385a/b

12
13
14
15

0.043
0.344
0.226

0.011
0.075
0.452

11_13 0.022
13 13 0.011
14 13 0.011
11_14 0.151
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16
17
18
19
20
20.4
21
21.4
22
22.4
23
23.4
24
24.4
25
25.4
26
26.4
27
28
28.2
29
29.2
30
30.2
31
31.2
32
32.2

0.011
0.032
0.032
0.054

0.11
0.097
0.086

0.011

0.065

0.215
0.086
0.032
0.032

0.022

0.022
0.086

0.151

0.258

0.247

0.172

0.032

0.043

0.065

0.237
0.108

0.269

0.14

0.086

0.022

0.312
0.14
0.011

0.022
0.011

0.011
0.032
0.161

0.14
0.043
0.161
0.172
0.183

0.043
0.011

0.011

0.011

0.011

0.054

0.1
0.032

0.086

0.14

0.11

0.258

0.043

0.108

0.473

0.204

0.086

0.032

0.043
0.011

12_14
14 14
7 15

11_15
13_15
14 15
15_15
7 16

9 16

13_16
14 16
15_16
16_16
12 17
13 17
14 17
15_17
16_17
17 17
13 18
14 18
15_18
16_18
17 18
13 19
14 19
17 19
13 20
14 20

0.011
0.022
0.011
0.032
0.022
0.022
0.011
0.011
0.011
0.022
0.011
0.032
0.043
0.011
0.075
0.086

0.1
0.032
0.011
0.054
0.043
0.011
0.011
0.011
0.043
0.011
0.011
0.032
0.011

47



33 0.054 0.118 0.054 0.118

33.2 0.151

34 0.043 0.172 0.011 0.032

34.2 0.054

35 0.075 0.097 0.043

35.2 0.022

36 0.011 0.226 0.011

36.2 0.075

37 0.022 0.215

37.2 0.054

38 0.032

38.2 0.011

A 39 0.054

39.2

40 0.011

40.2

41

41.2

42

42.2

43

43.3

44
Gene 0.9308 0.8506 0.781 0.8179 0.8347 0.6807 0.8691 0.8738 0.7183 0.871
diversity

*Table shows allele frequencies for eactiSYR locus except DYS385a/b for which genotype frequencies are reported. Thgegeno
frequencies for D'$385a/b were calculated for tbembination of two alleles.



Table 3.5

Allele and haplotypdérequencies and gene diversity valoésheoverallpopulation (= 492)

Allele

DYS710 DYS518 DYS644 DYS612 DYS626 DYS504 DYS447 DYS449 DYS481

Haplotype DYS385a/b

12
13
14
15
16
17
18
19
20
20.4
21
21.4
22
22.4
23
23.4
24
24.4
25
25.4
26
26.4
27
28
28.2

0.002

0.004

0.002

0.002
0.026
0.124

0.11
0.211
0.169
0.014

0.01
0.002
0.091
0.108
0.045
0.041
0.035

0.012

0.043

0.012

0.004

0.002

0.01

0.073
0.085

0.002

0.03

0.008

0.024

0.091

0.25

0.215
0.146

0.045
0.203
0.154
0.171
0.167
0.236
0.024

0.004
0.002

0.01
0.012
0.039
0.159

0.01
0.136
0.311
0.211

0.083
0.016

0.002

0.006

0.008

0.024

0.114
0.175

0.045

0.226

0.185

0.111

0.146

0.116

0.104
0.051

10 11
11 11
11 12
12 12
11 13
12 13
13 13
8 14

10_14
11 14
12_14
13 14
14 14
7 15

10_15
11_15
12_15
13 15
14_15
15_15
7 16

9 16

11_16
12_16
13 16

0.002
0.016
0.002
0.006

0.02
0.006
0.008
0.002

0.01
0.185

0.01
0.024
0.016
0.002
0.002
0.049

0.02
0.012

0.04
0.052
0.002
0.006
0.008
0.002
0.014
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29 0.006 0.116 0.148 0.006 0.15 0.006 14_16 0.012
29.2 0.012 15_16 0.055
30 0.012 0.006 0.242 0.049 0.154 0.006 16_16 0.039
30.2 0.032 11 17 0.002
31 0.051 0.014 0.187 0.024 0.122 12_17 0.004
31.2 0.061 13_17 0.022
32 0.071 0.04 0.144 0.008 0.126 0.004 14_17 0.024
32.2 0.053 15_17 0.045
33 0.079 0.132 0.067 0.002 0.067 16_17 0.053
33.2 0.183 17_17 0.022
34 0.077 0.179 0.014 0.02 12_18 0.002
34.2 0.061 13_18 0.016
35 0.091 0.172 0.018 14 18 0.014
35.2 0.041 15_18 0.002
36 0.069 0.191 0.012 16_18 0.03
36.2 0.03 17_18 0.02
37 0.018 0.14 18 18 0.002
37.2 0.018 13_19 0.01
38 0.01 0.053 14 19 0.008
38.2 0.004 15_19 0.01
39 0.002 0.028 16_19 0.016
39.2 0.002 17_19 0.016
40 0.004 0.028 19 19 0.004
40.2 12_20 0.002
41 0.002 0.008 13_20 0.008
41.2 0.002 14_20 0.012
42 0.004 15_20 0.022
42.2 16D 0.022
43 17-20 0.004
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43.3 14 21 0.002
44 15 21 0.002
17 21 0.002
12 22 0.002
Gene 0.9203 0.8599 0.8752 0.8546 0.8363 0.8214 0.8075 0.8749 0.8539 0.8713
diversity

*Table shows allele frequenaidor each ¥YSTR locus except DYS385a/b for which genotype frequencies are reported. The genotype

frequencies for D%385a/b were calculated for tbembination of two alleles.
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3.1.2 Haplotypes sharedy more than one male in different population groups

Table 3.6

Haplotypes shared by more than one Zulu mad®?5).

Haplotype n Frequency
DYS710, DYS518, DYS644, DYS612, DYS626,

DYS504, DYS447, DYS449, DYS481,DYS385a)
33.234-22.428-26-13-25-28-26-(15/15) 2 0.02
36-40-25.421-25-14-23-28 25-(16/20) 2 0.02
32-37- 23.430-29-12-26-36- 25-(11/11) 2 0.02
3335 21.429-26-13-27-29-26-(15/16) 2 0.02
33.236-22.428-26-13-26-28-28-(16/17) 2 0.02
36-39-25.421-2514-23-28 25(16/19) 2 0.02
35.238-25.4 21-25-14-23-27-27(14/20) 2 0.02
33.235-22.427-26-13-25-28-26-(15/16) 2 0.02
33.236-23.427-27-13-25-30-27-(16/17) 2 0.02
33.236-21.430-28-13-26-33-23-(17/19) 3 0.03
33.234-22.427-26-13-25-28-26-(15/16) 5 0.05

*Haplotypes from duplicated locus DYS385 are presented in parenthesis.



Table 3.7

Haplotypes shared by more than one Coloured ma{20Q3)

Haplotype n Frequency
DYS710, DYS518, DYS644, DYS612, DYS626,

DYS504, DYS447, DYS449, DYS481,DYS385a)
30.236-16-32-26-120-25-29-27-(15/16) 2 0.01
35-37-16-30- 27-17- 2529 21-(12/15) 2 0.01
35-33-17-31-26-16-25-30-22-(11/14) 2 0.01
31-34-16-30-27-15-26-27-27-(14/16) 2 0.01
33-34-21.431-31-13- 26-31- 25(17/19) 2 0.01
31.233-17-30-28-17-23-32-25-(14/15) 2 0.01
34-37-17-28-26-14-23-34-28-(13/17) 2 0.01
31.236-26.422-2514-23-27-25-(14/19) 2 0.01
33.235-22.427-26-13-25-27-27-(14/17) 2 0.01
35-33-16-30-27-16-24-29-22-(12/15) 2 0.01
33.235-17-30-28-17- 23-27- 25-(14/14) 2 0.01
40-38-19-29-27-15-25-27-24-(15/17) 2 0.01
29.2-36-24.431-29-16-24-25-260-(12/15) 2 0.01
35-33-17-33-26-17-24-28-22-(11/14) 3 0.015

*Haplotypes from duplicated locus DYS385 are presented in parenthesis



Table 3. 8

Haplotypes shared by more than dxigkaner male =101).

Haplotype n Frequency
DYS710, DYS518, DYS644, DYS612, DYS626,

DYS504, DYS447, DYS449, DY&B1,DYS385a/b
32-34-16-33-26-14-25-28-27-(14/15) 2 0.02
34.233-16-31-29-18 25-30- 22-(11/14) 2 0.02
31.237-14-31-29-15 24-31- 24-(11/14) 2 0.02
34.234-16-30-26-170-26-28-25-(11/13) 2 0.02
33-37-13-30-28-14-24-32-23-(11/14) 2 0.02
31.2-33-16-30-29-17-23-30- 27-(14/15) 3 0.03

*Haplotypes from duplicated locus DYS385 are presented in parenthesis

Table 3.9
Haplotypes shared by more than dxsan Indian malen=93).

Haplotype n Frequency

DYS710, DYS518, DYS644, DYS612, DYS626,
DYS504, DYS447, D$449, DYS481,DYS385a/ll

33.233-15-31-28-16- 22.432-25-(15/17) 2 0.02
30-33-15-32-27-16-26-27-23-(13/17) 2 0.02
32-39-16-31-29-16-22-32-23-(14/17) 2 0.02
36.236-15-32-29-17- 22.432-24-(15/17) 2 0.02

*Haplotypes from duplicated locus [3885 are presented in parenthesis
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3.1.3 Population comparisons
In this section the allele frequency distributions are shown for each population, while the

gene diversity is shown for each population group and the overall population.
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Figure 3.1 Allele frequency distribution dDYS710within ead population groupThe
observed allele frequency is indicated on thaxis, allelic designation (in number of

repeats) for each locus indicated on th&-axis
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Figure 3.2 Allele frequency distribution dDYS518within each population groufhe

observed allele frequency is indicated on thaX¥s, allelic designation (in number of

repeats) for each locuis indicated on th&-axis
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Figure 3.3 Allele frequency distribution of DY S64within eachpopulation groupThe

observed allele frequency is indicated on thaxis, allelic designation (in number of

repeats) for each locus indicated on th&-axis
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DYS612
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Figure 3.4 Allele frequency distribution dDYS612within eachpopulation groupThe
observed allele frequency is indicated on thaX¥s, allelic designation (in number of

repeats) for each locus indicated on th&-axis
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Figure 3.5 Allele frequency distributiof DY S626within each population groufhe
observed allele frequency is indicated on thax¥s, allelic designation (in number of

repeats) for each locus indicated on th&-axis
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Figure 3.6. Allele frequency distribution of DY S504ithin each population grouphe
observed allele frequency is indicated on thaxis, allelic designation (in number of

repeats) for each locus indicated on th&-axis
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Figure 3.7. Allele frequency distribution of DY S44within eachpopulation groupThe
observed allele frequency is indicated on thaxis, allelic designation (in number of

repeats) for each locus indicated on th&-axis
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Figure 3.8 Allele frequency distribution of DY S44@ithin each population group. The

observed allele frequency is indicated on thaxis, allelic designation (in number of

repeats) for each locus is indicated onXhaxis.
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Figure 3.9. Allele frequency distribution of DY&1within each population grouffhe

observed allele frequency is indicated on thaxis, allelic designation (in number of

repeats) for each locus indicated on th&-axis



Gene diversity values (GD) across
different populations

E Zulu

W Coloured

Gene diversity

W Afrikaner

B Asian Indian

Figure 3.1Q Gene divergy valuesfor each 10 ¥YSTR loci, within each pagation group
All Y -axesindicatethe gene diversityalues All X -axes indicatéenY-STR lociwithin each

population group.
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Figure 3.11 Gene divergy valuesamong al492male individuals combined\l Y -axes

indicatethe gene diversity values. All-Xxesindicate ten ¥YSTR within the four South

African populationgroups

3.1.4 Forensic parameters

Table 3.10

Forensicpamameters of thdour South AfricarpopulationsN = sample sizaj haplotypes =

number of different haplotypes in the sampl®, = Haplotype DiversityDC =

Discrimination Capacity

Zulu | Coloured | Afrikaner Asian Overall
Indian
N 95 203 101 93 492
n 80 187 94 89 448
haplotypes
HD 0.9943 0.999 0.9982 0.9981 0.9981
DC 0.8421 0.9212 0.9307 0.9106 0.9106
Unigue 86% 92% 94% 96% 92%
haplotypes
Shared 14% 8% 6% 4% 8%
haplotypes
Table 3:11
Haplotype sharing information
Population Zulu Coloured Afrikaner Asian Indian
n=95 n= 203 n=101 n= 93
Zulu 11 none none none
Coloured none 14 none 1
Afrikaner none none 6 none
Asian Indian none 1 none 4
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3.2Genetic relationship between groups

3.2.1 AMOVA results: Nor+hierarchical analyses

Table 3.12

AMOVA resultscomputedusing haplotyperéquenciesbased on ¥-STR loci (locus

DYS385a/b was excluded in the analysis)

Source of df Sum of Variance Percentage of
variation squares components variation
Among 3 1.884 0.00110 va 0.22
populations

Within 488 | 243.494 0.49896 Vb 99.78
populations

Total 491 | 245.378 0.50006

Fixation index FST0.00220

Significance tests (1023 permutations)

Va and FST: P (rand. value > obs. value) = 0.0000

P (rand. Value= obs. Value) = 0.0000

P-value = 0.0000+- 0.00000



Table 3.13

AMOVA results computed usingistance matrixbased on 9 3SSTR loci (locus DYS385a/b

was excluded in the analysis)

Source of df Sum of Variance Percentage of
variation squares components variation
Among 3 93.292 0.23390 Va 5.97
populations

Within 488 |1798.253 | 3.68494 Vb 94.03
populations

Total 491 | 1891.545 3.91885

Fixation index FST: 0.05969

Significance tests (1023 permutations)

Va andFST:P (rand. value > obs. valje 0.00000

P (rand. value = obs. Wae) = 0.00000

P-value= 0.00006--0.00000
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3.2.2 Populations pairwisé genetic distance (Fst)

Table 3.14

YZSTR haplotype pairwise Fst values for four South African populations (locus DY 3885 a/

was excluded in the analgsAll pairwisecomparisons are significant.

Zulu Coloured Afrikaner Asian Indian

(Significance of Fst)

Zulu 0.00000 - - -

Coloured 0.00353 0.00000 - -

Afrikaner 0.00405 0.00118 0.00000 -
Asian Indian 0.00373 0.00080 0.001% 0.00000

(Fst)

3.2.3Factorial CorrespondenceAnalysis (FCA)

e

w -
Asian lndiaﬂ

[

| 553271 it : . Coloured

" Afrikaner
sl

Figure 3.12 FactorialCorrespondencefalysisof the UWC 10 locus data set for the

different samples in four South African populations.
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Chapter 4 - Discussion

4.1 Population parameters allele and haplotype frequencies
The allelic frequencyefines the frequency of a given variant at a locus where more than one

allele has been detectékthe allelicfrequencies of any particular locus depict gle@e
diversity value of such loci idifferent populationsLoci with high gene diversitgre highly
polymorphic.Therefore inforensic testing allelic frequency used to evaluate tievel of
polymorphism of the loci

In contrarythe haplotype frequency of -STRs is essential in the calculatiohmatch
probability in forensic caseéccording toForeman and Ever2001 aice a match has been
found between the DNA profile ofggerpetratorx say, and that of a crime scene sample, it is
now standard practice to report the weight of the DNA evidentsrms of a match
probability. Given thak is not the source of the crime stain, this represents the probability
that another individual in the relevant population would share the matching progle.
probability of obtaining a match between two distiand unrelated individuals (PM)

provides a measure of the discriminating power of the profdysgem.

4.1.1 Allele and haplotype frequencies for Zulu males
Gene diversity values for th&ulu males ranges from 0.5344 for DYS504 to 0.8511 for
DYS612asshown in table 3.The gene diversity values are high indicating that all the loci

are highly polymorphic; as a result they can be useful in forensic casework in this population.

4.1.2Allele and haplotype frequencies for Coloured males
Gene diversity vales for the Coloured males ranges from 0.7949 for DYS447 to 0.929 for
DYS710 as shown in table 3.2. The gene diversity values are high indicating that all the loci

are highly polymorphic; as a result they can be used in forensic casework in this population
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4.1.3Allele and haplotype frequencies for Afrikaner males
Gene diversity values for the Afrikaner males ranges from 0.7127 for DYS504 to 0.9283 for
DYS710 as shown in table 3Bigh gene diversity value implies thalt the loci are highly

polymorphic;hencethey carbe used in forensic casework in this potiola

4.1.4Allele and haplotype frequencies for Asian Indian males
Gene diversity values for thesfanindian malesanges from 0.6807 for DYS504 to 0.9308
for DYS710 as shown in tabB4.High gene diversity value implies that all the loci are

highly polymorphic; hence they can be used in forensic casework in this population

4.1.5Allele and haplotype frequencies for the overall population

According to figure 3.10 theeme diversity valueger lacusfor the overall populationange

from 0.8075 for DYS447 to 0.9203 for DYS7IXhe gene diversity values indicate that all

the markers are highlyolymorphic;therefore they are suitable for forensic case work in

South African populatioriThese findingsre consistent with thene of thenitial study

whereall the 10 plex loci displayed high level of polymorphism, not only for each population
group but for the oetalr2@Gll)l popul ation (DO6Amat
The most informative marker is DYS710.This is atitéd to its high allelic ranges, hence

higher gene diversity value. It watsothe most informative marker in each South African

population studied and in the overall populatioprD 6 A reat 2017).

The UWC 10 plex consists bio unique locwhich have intermediate alleleBYS447 and
DYS644. Intermediate alleles of locus DYS447 were most frequently found in Indian Asian
population. On the other hand the intermediate alleles of locus DY S644 were more common
in Zulu and Coloured populations. They &es common in Afrikaner and Asian Indian

groups. Though intermediate allelescur in low frequencies, thgiresence could be

valuable for better understandifay better understanding of diversity within the Y
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chromosome gene po@yreset al, 2007) The occurrence of intermediate alleles also

increase the discrimination power forensic DNA evidegiSminet al, 2011)

4.2 Population comparisons

Figure 3.1 to figure 3.Qre graphical repsentations of allele frequendigtributions among
the populations studied for each locus infthe populatiors.

All the populatim have high number of alleli@ngesnearly in all loci. High allelic ranges
results in high gene diversity value which has beenrebdeacross all the population groups

and in the overall populatiorss indicated ifigure 3.10 and 3.1.

All Y -STR loci show a unimodal distriboti with one frequent allele andth less frequent
adjacent alleles, differing by one repeat unit from the most frequent dlledéeefore,the
distribution of chromosome Y STR alleles appears to be in accadaith the often
proposed stevise mutation model whereby new alleles of a Sd¢us descend from the

ancestral allele by deletions or expansions of one repeatdeKnijff et al, 1997)

Similar unimodaMistribution wadoundin other studieg¢de Knijff et al, 1997;Kayseret al,
2001). Across the regions, the most frequent allele differs for nearlga@llFor example
DYS710, allele 33.2 is the most frequenekdlin all the four populatioresxcept in Afrikaner

In Zulu allele 33.2 is found in 42 % of the population, in Coloured allele 33.2 is found in 13
% of thepopulation,and inAsian Indian itin 15 % of the populatiorAllele 35 ismost

frequently allelen Afrikaner population found in 12 % of the population.

4.3 Forensic parameters

The levels of genetic diversity for the haplotypes and the Discrimination Capacity per
population group and the overall population and other forensic parameters are indicated i
table 3.10. As expected, the most diverse population is Coloured (0.999), followed by

Afrikaner (0.9982), Asian Indian (0.9981) and Zulu (0.9943). The highest genetic diversity
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of the Coloured population is due to its complex history of admixtureCbleured came

about as a result of enslavement by European settlers at the Cape. According to Ratterson
al, 2010, the settlers were mostly Dutch, with some French and German. Major ethnic
contributions to the Cape slaves were made from East Africa (hwmgae), Madagascar

(and surrounding islands), India (a variety of populations including Coromandel, Malabar,
Bengal and Ceylon, now Sri Lanka) and substantial numbers from Indonesia (more
specifically Java, Batak, Bali and Bugis and Makassar from thé&sleTogether with the
Khoisan they contbiuted to the Coloured gene pool making hence making the population to

be the most diverse human population in South Africa.

Haplotype diversity and discrimination capacity for the studied overall populatiorfousre

to be 0.999128 and 0.95588 respectively, which imply that theSITR loci studied in the

South African population are highly polymorphic. The high level polymorphism has also

been found in each population group studied. The results of this styatyrstie forensic

case work utility of these loci in South African population groups. Previously the

performance in DC of the UWC 10 plex was carried out in comparison with other
commerciallyused¥STR typing systems on Soudtél, Afri can
2011). It was tested on the Xhosa, European Caucasian and Asian Indians. The UWC 10 plex
outperformed the other typing system, as it showed the highest DC not oe&cfor

population group bualso for the overall population.

In comparison to otr Y-STR genotyping systems, the discriminatory capacity of 10 plex

were higher than those reported for AMPFR® Yfiler® for in the Xhosa populations in

South Africa( D 6 A netaat 2011) However the discriminatory capacity of the UWC 10
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plex in comparison with AmdBTR® Yfiler® is lowe than those reportdad Botswana

(unpublished data).

The advantage of 10 plex over othelSYR typing system is that sufficiedegree of
informativeness can be achieved using less number of loci which is cheaper. UWC 10 plex
consists of 10 loci which is a much lesser number of loci as compared to currently used
commercially ¥STRs typing system such &diler® Plus Kit whichhas27 loci and the

PowerPla Y23 System which has 23 loci.

4.4 Genetic relationships between populations
Genetic relationship between the populations was tested by AM@dfAulationpairwise Fst

and Factorial Coespondencénalysis.

4.4.1 AMOVA analysis: Non-hierarchical analyses

4.4.1.1AMOVA computed from haplotype frequencies
According to the AMOVAcomputedesults using haplotype frequencies as indicated in table

3.12approximately 0.22 % of the total genetic variation between the four populatsns w
due to the variability among populations, with the highest variability of approximately 99.78
% within populationsThis is an indication that genetic most variation is contained within

populations.

The non significanpercentages of variance of (0.22 &nong groups indicatbat all the

four tested South African population are similar. This similarity is probably as a result of
haplotypes that are shared by different populations. However the sharing of haplotypes
between different populations occurmealy between the Coloured and the Zulu as indicated
in table 3.11; which is a sign of gene flow. There is a lot of admixture in between the

coloured population and other groups. This is in good according with historical documents
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Genetic studies have alsbown that the coloured population group has genetic contributions
from different groups such as Xhogdoisan,European and Asians (Jenkahal, 1990: De

wetet al, 2010) hence shared haplotgpéth other population groups

This result is only true fothe coloured populationas the rest of other populatigroups

hadno shared haplotypes amatigmdue to restricted gene flow. This is an indication that
AMOVA using haplotype frequencies is not sensitive enough detect levels of differences
among thepopulation groups. Considering the high haplotype diversity of the overall
population, it can be argued that each sample contains nearly all single, non repeated
elements, AMOVA using haplotype frequencies reads extremely high level of variation hence

it fails to detect such levels of variation.

The corresponding value of this variation was evaluated by the coancestory coefficient, Fst

which measures the amount of differentiation of two or more populations which originate

from the common ancestor as a réstiigenetic drift. As indicated in tab812,the Fst

(0.00220) is significant indicating that there is genetic differentiatior &TRs among the

studied South African population groups; hence there is restricted gene flow. The estimated

Fst results @& accordance with one of the earlier findings, using the markers of the minimal

hapl otypes on various popul adtdl o 0gr80 ugi sD 6cAfmas
al, 2008 used similar populations as the ones in this study; however Xhosa wasstessdl i

of Zulu which is the case in this study.

4.4.1.2 AMOVA computed using distance matrix
According to the AMOVAresultscomputedusing distance matrix as indicated in tabl#3,
approximately 5.97 % of the total genetic variation between the foulgiams was due to

the variability among populations, while 94.03 % of is variability is within populations.
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This shows significant differencégtweernpopulations. The differences among populations
detected by AMOVA analysis using distance matrix is blsiag supported by population
pairwise results. Genetic differentiation among South African populations is supported by the
limited level of admixture (gene flow) between therhis could benost probably due to
differences in social, cultural and ethribackgroundsFor example Asian Indians practice
strictreligion which does not permit marriage outside this ethnic group. The Zulu is also
genetically different from Asian Indian, despite that they both residesiKivaZulu Natal

Province;therewas restricted gene flow between the two populations.

The coancestory coeffant, Fst (0.05969) indicatgenetic differentiation. The Fst
computed using distance matfx 05969 is more sensitive in terms differentiation detection
as compared with Fst compdtasing haplotype frequencié@00220. In spite of that they

both show genetic differentiation among populations, though in varying magnitude.

From the findings of AMOVA it has been found that AMOVA works differently if use

distance matrix. This is due the fact that when you jugse haplotypérequenciesnearly

every single element is different from the other, while when you use distance matrix, it picks
up elements which are closer to each other, and see whether the distance between elements

within a sample is different from the distance between them and any other sample

4.4.2 Population pairwise genetic distance (Fst)
The0.22 % of the total genetic variation among populations found in AM@M{#

explained further by pairwise Fst values as showabte3.14 All the pairwise comparisons
are significant, implying that theopulatiors are different from each othérhe highest
genetic differentiation isound between Zulu and Afrikansrales, followed by Zulu and
Asian Indian malesThis could be eglained by restricted level of gene flow between the

populations.
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The observation in population pairwise genetic distance has also been observed in AMOVA
using distance matrix, as well as in coancestoeffment andFst computed using both

kinds AMOVA; haplotype frequencies and distant matrix

4.4.3 Factorial CorrespondenceAnalysis(FCA)

The scatter plot of FCA of the-8TR genotypes by population groupdigure 3.12 showed
that thecoloured population group in theintermediate position of the FCAhe Zulu is
located on the extreme left of the FCA plot, while the Asian Indian is on the extreme top
right. The intermediat@osition ofthe Coloured population indicatdgey are admixed
Historical documents have shown that the Coloured population alouw as a result from
contribution fromdifferentpopulation groups such as tKkbhoiSan Boonzaaieetal ,1996),
Bantu, Indian, Malay, Malagasnd Dutch Petersoret al, 2013 QuintanaMurci et al,

2010)

The intermediate positioof the Coloured pagation in the scatter plot of FCA has also been
observed by 6 A mat@ald®008 using the markers of the minimal haplotyfiee trend in
thescatter plot of FCA results has also been observed in other studies using different kinds of
markers such as mtDN&nd SNPs respective{QuintanaMurci et al, 2010; Pattersoret al,

2010)

The Afrikaner population group is close to the Coloured populatitime scatter plot of

FCA. This is ingood accord with historical recatiecause the Afrikaner originates from
Dutch settlers who were colonisers at the Cape of Good Hope, now CapgSrmiiilo94).

The Afrikaner population is also more closely related to the Asian Indian populationdéecaus

of theircommonindoeuropeamncestryChanget al, 2015).

Zulus are distant from the rest of otlpexpulation groupsThey are no shared haplotypes

between this population group and all the other tested groups. There is only one shared
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haplotype betwen the Coloured and Asian Indian population groups. The shared haplotype is
expected between these two population groups because of the admixture nature of the

Coloured population group.

FCA is in accord with Fst, AMOVA and historicadcords.
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Chapter 5 - Conclusion

The study showed that the University of the Western Cape 10 locus is a powerful
discrimination tool for routine forensic applications and could be usedenealogical
investigations as compared to other commercial kits when used on the Soigdin Af
populatiors (Zulu, Coloured, Afrikaner and Asian Indian). This confirms the previously
published results on other South African populations such as the Xhosa and English
Caucasiaf D 6 A nehal, 2011) The data from thistady will be used to establish aSTR

referenceDNA database hosted at the University of the Western Cape (UWC).

This study is part of the project whichds-goingto optimiseand valida¢ UWC 107 plex by
using new dyes other than tigplied Biosystemsneswhich were used in theriginal
version of the 10 plex.

Genetic substructure has been found in the studied population gftepsiore closely

related are Coloured and the all othestéd groups due to their admixed nature, having
genetic components form all the other tested groups. Asian Indian is more closely related to

Afrikaner due to their common indoeuropean ancestry.

Thoughthis study and the one done byD 6 A neat 2011)reflects virtually the genetic
population substructure of South Africa further studies are needed to determine the genetic
substructure of other South African BaiiSpeakers such as the Seff@wvana, the Venda

and the Tsonga. In that manner the data can be used for forensic applications as well as for
evolutionary studies. This will enable a clearer understanding of some of the key events in the
demography and histy of South Africa. It would be of be valuable in future to further

analyse these population groups through identifying tiapMogroups using SNPs.
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Appendix

1. DNA extraction, quantification and working solution
1.1. Extraction of DNA from buccal swabs
For collection of samples buccal swabs were rubbed along cheeks on the inselenotith

for approximately 30 seconds to collect cheek cells. This can be done by the collector or by
the individual being sampled himself. The following salting out DNA extraction protocol was
then performed for each sample.

1.1.1Reagents

a) Lysis buffer Stock solution
400 mM NacCl 2M

10mM Tris-CIH P" =8 1M

2 Mm EDTA 0.5M

1% SDS MW=288.4

b) Proteinase K stock is kept2 °C and working solution should be at final concentration
0.1mg/ml.
c¢) Alcohol: Ethanol 99% or isopropanol-20 ° C and ethanol 70 % -&0 °C

d) 5 M NaCl

Preparation of the lysis buffer

All ingredients were added in 80 % of their final volume in distilled water. SDS was added
and the solution was left in theven at 60 °C until fully dissolved. The volume was
transferred to a volumetric flask, and the necessary SABAX water was added to get the

desired volume.
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Procedure for DNA extraction

1. The surface of the swab was cut with a clean sapgéry blade on a clean surface
(sterile petri dish or small plastic bag) on top of a tray.

2 . 3 ¢l of proteinase K (20 mg/ml) and 600

tube Eppendorf tube.

3. Little pieces of excised swab were transfd to the Eppendorf tube and vortexed for 30

seconds. The swabs were incubated overnight at 56 °C overnight.

4. The volume was transferred to a clean tube.

5. In order to recover the lysis solution with biological material which is still trapped betwee
pieces of swab, the experiment was preceded as follows; the end of a 0.5 ml tube was
perforated with a needle (22 gauge).

6. The perforated tube was placed inside of a 1.5 ml Eppendorf tube and spun for 1 min in a
microcentrifudge. The collected vohe was added to the previously separated lysis material.

7. Precipitation was done by adding 1/3 volume of 5 M NaCl and the tube(s) was shaken
vigorously for 15 seconds.

8. The sample from the above step was centrifuged for 15 minutes at 5000rpm and the
supernatant with DNA was transferred to another tube.

9 Equal volume of cold isopropanol was added to the supernatant with DNA and left for 15
minutes at150 °C.

10. The DNA was pelleted by centrifugation at 14,000 rpm for 30 minutes.

11. The pelletms washed with 100 el of 70 % ethanol
14,000 rpm for 15 minutes.

12. The pellet was dried shortly in Speedy Vac or at 65 °© C. Precaution was taken in order to

prevent thdDNA from becoming too dry since it will harddissolve.
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13. The DNA was then dissolvea° A n 30 el SABA
1.2.Quantification

1. lel of the extracted DNA from each sampl
ND 1000 spectrophotometer.

2. The DNA concentration was @emined from the nanodrop readings.

3. Wor ki ng st ock dmadeudr allahe BNAcdmpléBoth the otidinalwe r e

stock and working stock solutions were storee2@t°C.
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