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ABSTRACT 

The Sable Field constitutes a Basin Floor Channel (BFC) complex (E-BD reservoir) and a 

Basin Floor Fan (BFF) complex (E-CE reservoir). The reservoir sands were deposited during 

early-drift sedimentation in the Bredasdorp Basin. Paleo-current flows from the west, filling 

the basin with sediments that are eroded off the continental shelf (Agulhus Arch) and 

deposited on the base of the continental slope and basin floor. Turbidite flows off the 

Agulhus arch have deposited the Sable Fields reservoirs, where the larger channelized 

reservoir body takes an 80° bend off the continental slope and flows onto the basin floor. This 

3-D reservoir highlights the reservoirs internal heterogeneity and complexity at the well bore 

and away from the well bore. Well tops tie wells to the 3-D seismic cube for; reservoir 

location and delineation, velocity modelling and subsequent conversion of the mapped 

surfaces from time to depth. Core and petro-physical analysis were used to outline the 

depositional facies within the investigated wells namely: E-BD5, E-BD2, E-BD1 and E-CE1.  

Correlation of depositional facies at the well bore with their corresponding seismic facies, 

allows for extrapolation of facies away from the well bore.     The internal heterogeneity of 

the reservoir is outlined using an integrated methodology, which is based on log scale 

depositional features (channels, sheets, lobes) that are extrapolated to field scale (sand rich 

complex) using corresponding top and base reservoir seismic responses. The investigated 

thick region of sediment accumulation on: the continental slope, the base of the continental 

slope and basin floor is deposited on the 13AT1 early drift unconformity. The reservoir is 

outlined from the up-dip to the down-dip reaches of the field. Well E–BD5 has tapped into 

the proximal region (up-dip), with reservoir comprising of amalgamated channel sands that 

are deposited by laterally switching and stacking channelized sand bodies. Channel meander 

facies are seen in the upper portion of the reservoir, with massive channel fill in the lower 

parts. The channel fill constitutes a high net to gross with little to no lateral facies variations. 

This confined environment is dominated by amalgamated massive sands (on-axis) that are 

thinner bedded towards the banks of the channels (off-axis).  A high degree of channel 

amalgamation has been interpreted in both up-dip wells E-BD5 and E-BD2. This channelized 

reservoir is at least 2km wide and 6km long, before the larger channel makes a rapid 80° 

change in paleo-current direction. This is possibly the result of basin floor topography and the 

stacking of previously deposited sand complexes which alter local sea floor topography. The 

vertical and lateral continuity of the channelised reservoir is generally excellent due to the 

high degree of channel amalgamation. The stacked channel complex constitutes a gross 

thickness of 76.2m (68.5m Net sand) in well E-BD5, and a gross thickness 25m (23m Net 

sand) in well E-BD2. Channel sands in well E-BD5 have an average porosity of 15% while 

the average porosity of channel sands in well E-BD2 (further down-dip) is 17%. This up-dip 

channelised region results in high amplitude reflections due to hydrocarbon charged sand 

juxtaposed against hemipelagic muds and silty levee facies. Well E-BD1 has tapped into a 

relatively confined sand complex deposited at the base of the continental slope. The 

amalgamated lobe and sheet sand complex is entirely encased in hemi pelagic mud. These 

reservoir sands are interpreted to be deposited in the Channel Lobe Transition Zone (CLTZ), 

thus the reservoir sands are interpreted to have a transitional depositional style (generally 

channelized sheets). The CLTZ region is thus dominated by both channel complex and lobe 
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complex elements. The E-BD1 reservoir constitutes a number of amalgamated elements that 

result in a reservoir zone with an average porosity of 16.4%. These include: amalgamated 

thick bedded sheet sand (lobe axis) associated with deep depositional feeder channels; thin 

bedded sheet sands (off lobe axis), broad thin amalgamated lobe elements, layered thick 

bedded sand sheets and deep broad depositional channels. The low sinuosity broad 

depositional-channels and elongate lobe elements are expressed as lobate amalgamated sheets 

of sand which is up to 2-3km wide, 5km long and 30m thick (29.7m nett sand) at the well 

bore. Well E-CE1 has intersected 50m thick reservoir sand (50m nett sand) which constitutes 

the axis of a lobe complex where the reservoir zone has an average porosity of 14%. The sand 

rich complex is deposited on the unconfined basin floor. This reservoir complex constitutes 

amalgamated thick bedded lobe architectural elements which are massive in nature. The 

laterally continuous hydrocarbon charged lobe elements result in bright parallel seismic 

reflections. The amalgamated lobe complex is more than 5km wide. Sub-parallel horizons are 

attributed to the thin bedded off axis portion of the lobe complex where the net to gross is 

considerably less than the highly amalgamated axis of the lobe complex. The lobe complex 

has a moderate to good net to gross of 40-60%. The high aspect ratio of the lobe complex 

severely impacts the reservoirs vertical permeability, however horizontal permeability is 

quite good due to the extensive lateral continuity of good quality sheet sands. Based on the 

nature deep water architectural elements observed in this study, the internal heterogeneity of 

the Basin floor Fan and Basin floor channel complex’s may constitute an entire sand rich 

reservoir zone. All the sands may be in hydraulic communication if they are genetically 

related. These sands and stretch from the up-dip (wells E-BD5 & E-BD2) through to the 

transitional (E-BD2) and pinching out in the distal regions (E-CE1) on the basin floor. The 

seal constitutes a prominent shale horizon T13PW3 (8-10m thick) which is draped over the 

entire reservoir complex. This top seal is extrapolated from all the wells and correlated with 

seismic facies, thus outlining the lateral continuity and thickness variations of the top seal. 

This draped shale horizon exposes the thick axial portion of the amalgamated channel 

complex and amalgamated lobe complex.  
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CHAPTER 1: INTRODUCTION  

In this chapter the researcher discusses the background setting of the research which 

constitutes 3-D reservoir characterisation and its benefits in the industry. The Bredasdorp 

Basin and the Sable field’s reservoir under investigation are highlighted with respect to the 

general role the Sable Oil and Gas field plays in South Africa. The research topic is 

introduced and the benefits and rationale of this type of research highlighted. The research 

question and corresponding aims and objectives as well as the methodology used to 

investigate and analyse the subsurface at field scale is outlined in this chapter.  

 

1.1 BACKGROUND 

Deepwater depositional processes are the consequence of sand rich sedimentary deposit, such 

as Channels, levees, lobes, slumps, pelagic mud. The deep water environment constitutes 

complex distribution patterns of depositional facies. The geometry of these depositional 

facies, their retained sediments, and their physical properties significantly impact the 

reservoir quality, connectivity and flow deliverability of hydrocarbons (Jiajie, 2012). 

Accurately describing stratigraphic complexity such as the architecture of sand rich deep 

water sediments, is a major issue facing the geoscience community tackling reservoir 

characterization and modelling.  

 

Sandstones deposited in deeper waters along the continental margin have become important 

oil and gas reservoirs throughout the world. Once the technology became available for deep 

water hydrocarbon exploration and production, valuable deep water reservoirs have been 

found throughout the world from offshore Brazil and the Gulf of Mexico to West Africa 

(Hauge et al., 2003). The sands are deposited in deep waters, below the wave base (turbidites 

and debrites), often beyond the shelf break, either on the slope apron or further on the base of 

the slope apron (Kirk, 2010a). These clean sands are transported from the shallow waters of 

the continental shelf into the deep-water depositional environments by turbidity currents. 

 

The local flow direction of these gravity driven, sediment loaded mass flows is strongly 

controlled by the local topographic variations on the sea floor. With respect to the structural 

control on sedimentation, the geometry and orientation of turbidite sand bodies closely reflect 

paleo topographic features (Hauge et al., 2003). This topographic structural control on 

reservoir geometry is a dominant characteristic of clastic turbidite sand reservoirs. Many of 

South Africa’s producing reservoirs constitute turbidite sand bodies such as the Sable Fields 

reservoir under investigation.   

 

3-D reservoir characterisation is a critical step towards developing a 3-D conceptual 

geological model. Reservoir characterisation has many inherent floors and uncertainties when 

wireline log or seismic data are interpreted independently. The research undertaken 

incorporates and integrates wireline logs, 3-D seismic data, well tops and cores, in order to 

characterise the sable fields reservoir in 3-D. This integrated approach in adopted in order to 

avoid uncertainties associated with the reservoir geometry such as internal heterogeneity. A 

3D platform allows inherent subsurface properties to be treated in a realistic manner 

(MacDonald, 2008; Spilsbury-Shakel, 2006). 
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Figure 5. Major sedimentary basins of South Africa (Petroleum Agency SA, 2012). 

The Sable Field is located in the Bredasdorp sub-basin which forms part of the present day 

shelf offshore the Southern Coast of South Africa. This sub-basin is the westernmost of the 

five Mesozoic sub-basins which constitute the larger Outeniqua Basin. The Outeniqua Basin 

dominates the Southern South African margin which is a non-volcanic sheared margin. This 

continental margin originated due to the lithospheric stretching and breakup of 

Gondwanaland when South America rifted away from Africa along the Agulhas–Falkland 

Fracture Zone (Sonibare, 2014). Block 9 in the Bredasdorp basin hosts South Africa’s major 

hydrocarbon deposits including the Sable Field which was South Africa’s first oil producing 

field. The Block is operated by PetroSA, with the oil and Gas being transported and refined at 

the Mossel Bay plant.  

 

 

Reservoir characterisation needs to consult a number of geological analogues in order to 

mitigate uncertainties associated with description of the reservoir under investigation. The 

deep water environment is reasonably understood with many outcrop analogies available 

globally. These analogues are consulted in order to direct the 3-D interpretation and 

characterisation of the Sable reservoir. The analogue assists in recognizing, examining and 

understanding the internal architecture as well as the distribution of the various deep water 

depositional elements such as channels, levees and lobes (MacDonald, 2008; Kirk, 2010a). 

These depositional elements can be associated on a local and fan-wide scale. The analogue 
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also assists with the recognition and examination of the hierarchical stacking patterns of these 

depositional elements with respect to channelized and non-channelized deposits. 

When using 3-D seismic data, geological bodies which represent depositional elements such 

as channels and lobes can be extracted (Kirk, 2010b). These geobodies need to correspond to 

the analogue of deep water deposits. Geobody extraction methods are undertaken in order 

differentiate between channelized (confined) and non-channelized (unconfined) depositional 

bodies in the field.  

 

1.2 PREVIOUS WORK DONE ON THE BASIN 

South Africa hosts a number of minor Oil and Gas deposits predominantly situated offshore 

the southern coast. The state oil company now PetroSA (previously Soekor) which was 

founded in 1965, developed a stratigraphic nomenclature to characterise the sedimentary 

successions encountered offshore (Petroleum Agency SA, 2012, USGS, 2012)). Various 

offshore structural elements such as major faults, basins, sub-basins and structural highs were 

identified and named during the early stages of exploration.  

South African oil and gas E & P activities are regulated by the Petroleum Agency SA who 

have been involved in many of the projects undertaken off the coast of southern Africa. 30 

years of widespread exploration has indicated that South Africa’s southern coast contains a 

number of small oil and gas fields, most of which are operated by PetroSA. The countries 

onshore region has no proven hydrocarbon reserves to date (Sullivan, 2012). Extensive 

drilling done since 1965 had resulted in the discovery of numerous syn-rift and post rift 

petroleum plays; including the ones made in block 9 where the Sable Field study is based. 

 

1.3 SOUTH AFRICA AS AN OIL AND GAS PRODUCER  

 

Sable is South Africa’s first oil producing Field, however two more major fields Oribi and 

Oryx which were discovered later, are also oil producing fields. Due to the minimal amounts 

of oil and natural gas South Africa relies heavily on the production of its abundant coal 

deposits for the country’s energy requirements (South Africa Energy Data, 2008). The 

country has an exceedingly developed synthetic fuels industry run by SASOL, which is 

mainly derived from coal. South Africa's energy sector contributes about 15 percent of the 

country's gross domestic product (GDP) thus domestic energy resources are critical to the 

economy (Country Analysis Brief, 2008). 

Domestic sources of hydrocarbons and the available synthetic fuel substitutes cannot satisfy 

the country’s current demand on their own. Thus South Africa relies heavily on imported 

crude oil, which accounts for over 90% of South Africa’s fuel requirements (Nkomo, 2009; 

Country Analysis Brief, 2008). Due to this high level of dependence on imported crude oil, 

the country’s economy is exposed to potential disturbances. Theses global scale events which 

cause the disturbances, could either interrupt supplies or lead to higher oil prices, in turn 

undermining economic growth and national development (Nkomo, 2009). In order to 

strengthen energy security South Africa needs to widen its diversity of supply, maintaining 
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Figure 6. Pie chart of comparative 

sizes of South Africa’s major basins 

(Petroleum Agency SA, 2012) 

strategic inventories and demand-side measures. There is however a positive aspect to South 

Africa’s energy sector as it has the second largest oil refinery system in Africa (South Africa 

Energy Data, 2008). 

 

As of January 2008 the Oil and Gas Journal (OGJ) stated that South Africa had proven oil 

reserves of 15 million barrels. All of the countries proven reserves are situated in the 

Bredasdorp basin offshore southern South Africa, with minor occurrences found off the west 

coast near the Namibian border . South Africa  produced  199,000  barrels  of oil per  day  

(bbl/d)  in 2007, with 160,000  bbl/d being from synthetic  liquids  which are processed  from  

coal  and  natural  gas with 16,000  bbl/d  being natural crude. South Africa imports about 

66% of its total crude oil consumption. The country consumed 505,000 bbl/d of oil in 2007, 

306,000 bbl/d of which was imported (South Africa Info, 2015). The South African 

Petroleum Industries Association (SAPIA) states, the majority of the countries crude oil 

imports, refined in South Africa, is supplied by the Middle East. Iran and Saudi Arabia are 

the country’s main suppliers, while other exporters such as Nigeria and Angola, among others 

also contribute to South Africas imports (South Africa Energy Data, 2008; South Africa Info, 

2015). 

 

South Africa produces minor amounts of natural gas which is mostly used in the production 

of synthetic fuel. Cedigaz states that of January 2008 South Africa had 318 billion cubic feet 

(Bcf) of proven natural gas reserves. The country produced 

102 Bcf in 2008 and consumed 109 Bcf, 7 Bcf of the 

consumed amount being from imported Liquids Natural 

Gas (LNG). A large quantity of South Africa’s natural gas 

is produced synthetically from coal. South Africa has 

developed natural gas supply agreements with neighboring 

country’s Mozambique and Namibia, in order to 

compensate for the countries deficit in large natural gas 

reserves (South Africa Info, 2015). South Africa has four 

major basins namely the; East Coast basin, Outeniqua 

Basin, West Coast Basin and the Karoo Basin (Petroleum 

Agency SA, 2012). The former three basins are onshore 

basins while the later basin is an onshore basin which has 

recently been investigated as a potential shale gas plays.   

  

 

1.4 PRODUCTION HISTORY OF THE E-BD/E-CE  SABLE FIELD 

The Sable Field is located in Bredasdorp Basin. This sub Basin is situated offshore the 

southern coast of South Africa, 150km Southwest of Mossel Bay. The field has a water depth 

of 100m and comprises of two reservoirs (E-BD and E-CE), which have recoverable oil 

reserves estimated at approximately 20 to 25 million barrels. The Sable field utilises 

the nearby Glas Dowr FPSO (Wood, 1995). The FPSO vessel is supplied and operated by 

Bluewater.  

In 2003 the upgrade of the FPSO was conducted by SA Five Engineering in order to 

accommodate for the additional expected hydrocarbon coming from the Sable Field. 

Production of the Sable Field started in 2003, with production ceasing in 2008, possibly due 

to the intensive drop in the 2008 oil price. The first well drilled in the Sable Field, E-BD 1, 

had a high initial flow rate of 8,500 b/d of 38 gravity crude. Although this flow rate dropped 

 

 

 

 

http://www.southafrica.info/
http://www.southafrica.info/
http://www.southafrica.info/
http://abarrelfull.wikidot.com/glas-dowr-fpso
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during testing there was sufficient encouragement to appraise the vicinity. A further four 

boreholes were drilled after E-BD1 (Soekor Ltd, nd; Wood, 1995). One of these well were 

dry while the other three wells intersected Oil and Gas reservoirs.   

The E-BD2 borehole, drilled in December 1990, intersected a 25 m water bearing sandstone 

at a depth of 2552m below mean sea level. Borehole E-CE1, drilled in April 1991 in a 102m 

water column, intersected a  51 m thick massive amalgamated channel sandstone. This 

reservoir was intersected at a depth of 263m below mean sea level and it constituted a 31 m 

gas cap overlying a 20 m oil column. 

On testing the E-CE1 well, the oil zone flowed 6,000 b/d of 40 gravity crude and the 

overlying gas zone flowed 10 MMscfd with a GOR of 7,000 scf/st-tk bbl (Soekor Ltd, nd; 

Wood, 1995).. The later drilled boreholes E-CE2 and E-CE3, delineated both the geological 

model and the extent of the two fields. These two reservoirs, E-BD and E-CE,  are not in 

hydraulic communication.       

2D seismic data from 1990 and 1991 and a 3D seismic survey acquired in late 1992, 

constitute the seismic coverage over the E-BD and E-CE fields. In order to assist in the 

delineation of these reservoirs, selected 2D seismic lines were inverted and Geostack (AVO) 

processed. Interpretations were made of the top and base of both reservoirs (Wood, 1995). 

These seismic interpretations were coupled with the geophysical modelling of amplitude 

variations associated with both the conventional and inverted data. The results were used to 

produce a series of reservoir property maps.  

 

Figure 7. Location Map of the Sable Oil and Gas Field. Modified after Soekor Ltd, nd. 
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1.5 RESEARCH QUESTION  

 

The Sable Field constitutes a highly complex Basin Floor Fan reservoir system which is well 

understood with regards to field and outcrop analogues. The Sable Field does however depict 

a unique reservoir configuration due to the geometry of the Bredasdorp Basin at the time of 

deposition. The primary research question is narrowed down to characterisation of the Sable 

Fields reservoir. In order to complete a thorough investigation of the reservoir it needs to be 

investigated in the third dimension.  

 

WHAT IS THE 3-D DIMENTIONAL CONFIGURATION OF THE SABLE FIELDS 

RESERVOIR?  

 

This primary research question is answered by combining the results obtained from 

answering a number of minor questions which are: 

 

 What is the nature of the tectonic and depositional systems which have resulted in the spatial 

distribution of the reservoir? 

 

 What is the nature of the reservoir at the individual well bores? 

 

 What is the 3-D extent of the Sable fields E-BD reservoir and its vertical and lateral 

configuration away from the well bore? 

 

 What is the spatial distribution of depositional elements which constitute the reservoir, there 

internal heterogeneity and the hierarchical stacking pattern of these depositional elements? 

 

 

1.6 AIMS AND OBJECTIVES  

 

The aim of the research is to characterise the Sable Fields reservoir in 3-D using an integrated 

approach in order to extract and define a geobody.     

 

The objectives of the research are to integrate a seismic analysis and a petro-physical analysis 

(wireline log and core) of the data set under investigation; and correlate this analysis with 

field and outcrop analogues. The objective of the seismic analysis is to map out geological 

surfaces which influence the geometry of the reservoir. The seismic analysis is also used to 

extract the 3-D geobody that represents the Basin Floor Channel (BFC) and Basin Floor Fan 

(BFF) regions of the reservoir. The objective of the petro-physical analysis is to; outline 

reservoir zones at the well bore; extrapolate these reservoir zones away from the well bore by 

correlation with seismic; and to populate the geobody with reservoir properties.   

 

Seismic and petro-physical interpretations have been correlated with field and outcrop 

analogues studies in order to guide the geobody extraction process. The geobody represents 

the reservoir zones thus is should only constitute the extraction of sand rich zones of the 

Basin Floor Channel (BFC) and Basin Floor Fan (BFF) complexes.    
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1.7 ESSENTIAL DATA  

 

The data used in the research comprises of a 3D seismic cube and a number of wells. The 

Cube is cut from the original E-CC tract which constitutes a 3-D seismic survey. This 3-D 

seismic cube has been provided by PetroSA who are currently operating the Sable Oil and 

Gas field.  

 

The wells used for the research namely; E-BD1, E-BD2, E-BD 5 and E-CE1 have been 

provided by The Petroleum Agency of South Africa (PASA). Stratigraphic well top data, well 

completion reports, velocity data (check shots) and core description reports have also been 

provided for each of the wells used in the research.  

 

 

1.8 METHODOLOGY OVERVIEW  

 

The general methodology of the research follows a workflow which is commonly used in the 

geoscience community when a similar data set is available i.e. 3-D seismic, core description 

and wireline log data. The interpretation and characterisation of the reservoir will be based on 

a method which integrates the seismic, core and wireline log analysis. This integrated method 

of reservoir characterisation is undertaken in order to better understand the spatial distribution 

of deep water depositional elements and the distribution of properties such as sediment type, 

porosity and permeability. Using both wireline and seismic data allows for more accurate 

reservoir characterisation away from the well bore (Jiajie, 2012). This integrated method also 

assists in understanding and delineating the reservoirs vertical and lateral depositional 

compartments.     

 

Depositional elements will be outlined using the petrel software which allows for the 

delineation of stratigraphic horizons, geo-bodies as well as analysis of wireline logs. The 

interpreted architectural components of this submarine environment serve as the building 

blocks for the 3-D characterisation of the reservoir. The true depth of the reservoir is 

investigated via velocity modelling and time to depth conversion. The well is tied to the 

seismic data with respect well top data and seismic horizons which are captured in both time 

and true depth.  

 

1.9 HYPOTHESIS  

The up-dip channel deposit constitutes massive amalgamated depositional channel sands. The 

down-dip reservoir comprises of a lobe complex situated in the base of slope and basin floor 

regions of the Basin Floor Fan system. The up-dip channel complex and the down dip lobe 

complex may be hydraulic communication if the sands of the lobe and channel complexes are 

genetically related (Gordon, 2014; Wickens, 2014; Grobbler, nd and Jiajie, 2012). The E-CE 

reservoir is however separated from the upper E-BD reservoir due to stratigraphic pinching of 

the E-BD reservoir.   

The channel sand is quite complex especially in the up-dip section of the channel geobody. 

The smaller depositional channel elements meander in the larger erosional channel body. 

This region constitutes the confined area at the base of the continental slope, which is 

dominated by depositional channels and channelsied sheet sands. The channelised sheets 
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arise from less confined turbidite pulses depositing sands in the larger channel (Gordon, 

2014; Wickens, 2014; Grobbler, nd and Jiajie, 2012). This amalgamation of architectural 

elements results in a reservoir with a complex internal heterogeneity.  

The down-dip lobe complex has a complex stacking and lateral swithching pattern of 

deposition which is further complicated by stratigraphic pinching of individual lobe elements. 

lobes pinch out, switch and stack at various scales even though appearing to be one continues 

amalgamated sand package at the well bore. This amalgamated sand package constitute 

stacked lobes deposited on the basin floor in the distal regions of the Basin Floor Fan System.  

 

1.10 SUMMARY   

The research has consulted literature, integrating seismic interpretation, wireline log analysis 

and core description. An overview of the adopted methodology has been presented. The 

research question being solved and the corresponding aims and objectives of the research 

have been outlined. The reservoir is interpreted to constitute a number of vertically restricted 

and laterally continuous, good quality reservoir sands, which form part of a complex Sub-

marine Basin Floor Fan depositional system. The following chapter illustrates the literature 

review undertaken on the regional and local geological setting of the Sable Field as well as 

the depositional model analogue developed for this study.       
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CHAPTER 2: GEOLOGY  

In this chapter the researcher outlines the Geology of the major Outeniqua Basin including 

the, basement architecture and tectonic setting which dominate this regional basin. The 

localized Bredasdorp Basin which hosts the oil and gas field under investigation is also 

defined. This local analysis of Bredasdorp Basin is outlined with respect to its local tectonic 

setting and resultant depositional systems, which are directly associated with the reservoir 

architecture of the Sable field.   

 

2.1 REGIONAL GEOLOGY – THE OUTENIQUA BASIN  

 

The Outeniqua Basin is Located offshore Southern Africa. Spanning approximately 500km, it 

is situated between the Southern African coast and the Agulhas-Falkland Fracture Zone (Ref. 

Fig. 4 below). The Outeniqua Basin constitutes six sub-basins, namely the shallow 

Bredasdorp, Infanta, Pletmos, Gamtoos, Algoa and the deep Southern Outeniqua Basin 

(Parsiegla, 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The southern South African continental margin constitutes a complex margin system which 

has been subjected to continental rifting and transforms processes that result in a number of 

complex sub-basins. Research primarily focuses on the proximal section of the Mesozoic 

aged Bredasdorp sub-basin which constitutes the westernmost of the Outeniqua Basins five 

offshore sub-basins (Sonibare, 2014, Macdonald, 2012).  

 

Figure 8. Location map of the Outeniqua Basin (Parsiegla, 2008) 
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a) Initial onset of spreading - Rift stage,  

b) Young oceanic crust slides past old continental crust during early drift 

stage,  

c) The Continental margin becomes inactive during the - late drift stage,   

A passive continental margin develops.  

The Deep Crustal Structure and crustal stretching processes associated with the Outeniqua 

Basin are generally poorly understood due to the inherent complex nature for transform 

boundaries (Sonibare, 2014; Parsiegla, 2008). Shear motion between the African and South 

American plates, took place along the Agulhas-Falkland Transform Fault during the Early 

Cretaceous break-up of Gondwana. This tectonic event gave rise to the south and south-

eastern African continental margin.  Formation of the South Atlantic is also associated with 

the Agulhas-Falkland Fracture Zone (AFFZ) tectonic event.   

The Outeniqua Basin constitutes a stike-slip (transform) basin that developed due to this early 

cretaceous rifting. Right-lateral strike-slip motion resulted in the separation of the African 

and South American continents along this transform, with a maximum ridgeridge offset of 

1200 km (e.g. Barker, 1979; Ben Avraham, et al., 1997 cited in Parsiegla, 2008).  

 

2.1.1 EVOLUTION OF THE TRANSFORM PLATE BOUNDARY  

 

The Outeniqua Basin is regarded as a transform continental margin, where the basin 

constitutes the Southern continental margin of South Africa. This continental boundary 

subsequently developed into a passive margin after the tectonic displacement of South 

America and Africa. The Outeniqua basin is characterised as a continental margin with a 

significantly long-offset transform (AFFZ), which has experienced compressional 

(transpressional) and extensional (transtentional) forces superimposed to the shear forces 

(Parsiegla, 2008, Macdonald, 2012). As a result the Outeniqua’s basin formation processes 

are much more complex than in rifted margin basins. Long-offset transforms often represent 

long lasting deep seated features where fracture zones may be re-activated. 

 

Strike-slip tectonic settings constitute a significantly smaller continent-ocean transition zone 

(~50 km) compared to other passive margins. As a result of this smaller continent-ocean 

transition zone the distinct material and temperature differences between continental and 

oceanic crust occur within a short distance (ref. to fig. 5 below). This significantly impacts 

the basin formation processes and its overall structure at the continental margin (Macdonald, 

2012). The Outeniqua basins is characterised by features common of sheared margins such 

as, marginal ridges, large-scale fracture zones and deep sedimentary basins. 

 

 

 

 

 

 

 

 
Figure 5. A diagrammatical representation of a sheared continental margin. Modified after Lorenzo, 1997 

cited in Macdonald, 2012). The Red arrows indicate the plate motion, while black arrows show thermal 

uplift. FZ = fracture zone, TF = transform fault. 

 

 

 

 

 



 

11 
 

In relation to fig. 5 above, the transform margin which formed the Outeniqua basin had a 

complex evolution. 

(a) Basin formation began with a Rift stage in the Early Cretaceous (Ref. to Appendix A - 

Geological Time scale). Major tectonic processes during this period include Right lateral 

displacement along Agulhas-Falkland transform fault and rifting. It has not yet been 

established whether the AAFZ transform formed entirely in the Cretaceous or exploited a 

pre-existing zone of weakness (Macdonald, 2012, Parsiegla, 2008).  

 

(b) The Outeniqua Basin was subsequently subjected to the formation of young, hot oceanic 

crust. This oceanic crust formed south of the African continental plate, where it slides past 

the cold and older African continental-crust.  The transform margin south of the Ivory Coast 

can be used as an analogue.It indicates that temperature difference along shear margins are 

likely to cause thermal uplift (Lorenzo, 1997 cited in Parsiegla, 2008). The Diaz marginal 

ridge is evidence of this thermal uplift (ref. to fig. 4 above). The southern-most extent of the 

Outeniqua Basin is bounded by the Agulhas-Falkland Fracture Zone and Diaz Marginal 

Ridge, while the Agulhas Bank constitutes the western margin of the basin. 

 

(c) Post shear processes commenced once the spreading ridge passed the African continent. The 

Outeniqua basin and the development of the Diaz Marginal Ridge are evidence for a complex 

two phase opening history of the basin. An interpretation made of the sea floor in the eastern 

part of the Diaz Ridge segment hosts evidence for a renewal of tectonic activity during the 

Quaternary. The underlying cause for the initial development of such a long offset transform 

boundary is poorly understood (Macdonald, 2012, Parsiegla 1, 2008).  

 

 

2.2 LOCAL  GEOLOGY – THE BREDASDORP BASIN    

The Bredasdorp basin is situated off the south-coast of the Republic of South Africa, 

southeast of Cape Town and south-west of Port Elizabeth and Mossel Bay (ref to fig. 6 

below). The basin covers an 18,000 sq km region which is generally characterised by a water 

depth of 200m and less (USGS, 2012).  

The Bredasdorp basin constitutes a complex pre-rift geological framework which 

subsequently developed into a two phase tectonic framework that includes:  

 

1. A syn-rift phase which originated during the Jurassic. This tectonic event continued into the 

Lower Cre-taceous, resulting in the formation of grabens and half-grabens.   

 

2. A transform-drift-passive margin phase that was initiated in the late Albian, continuing to the 

present day (Davies, 1997; USGS, 2012). The Mesozoic to Cenozoic stratigraphic section has 

a total thickness of more than 5,000 meters (m) on the outer regions of the continental shelf. 
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Figure 6. Location map of the Bredasdorp Basin with cross section (A-A’) through the basin (USGS, 2012).  

 

2.2.1 HYDROCARBON POTENTIAL OF THE BREDASDORP BASIN  

 

The Bredasdorp basin is amongst the largest hydrocarbon (mainly gas) producing basins in 

Southern Africa. Block 9, operated mainly by PetroSA is a particularly hydrocarbon rich 

portion of the Basin (Petroleum Agency SA, 2012). At the time of the USGS assessment of 

The Bredasdorp Basin in 2012, 183 exploration wells had been drilled since 1969. These 

exploration wells have resulted in the discovery of 7 oil and 17 gas accumulations which 

exceed the minimum size of 5 million barrels (USGS, 2012). 
 

The Mesozoic−Cenozoic Reservoirs found in the South African Coastal Province along the 

South African coast, were recently investigated as part of the U.S. Geological Survey’s 

(USGS) World Oil and Gas Assessment of undiscovered, technically recoverable oil, natural 

gas, and natural gas liquids resources. The USGS used a geology-based assessment 

methodology. They derived estimated mean volumes of 2.13 billion barrels of oil, 35.96 trillion 

cubic feet of natural gas, and 1,115 million barrels of natural gas liquids (USGS, 2012). The estimated 

mean size of the largest expected oil field, to be discovered is 340 MMBO, while the estimated mean size of the 

expected largest gas field is 2,937 BCFG.  

 
 

2.2.2 PRE-RIFT BASIN ARCHITECTURE AND FILL   

The Pre rift geology of the Bredasdorp basin generally constitute the Cape fold belt and 

Karoo Basin sedimentary and volcanic sequences (Davies, 1997). After the formation of the 

Cape fold Belt and Karoo Basin a long period of erosion and peneplation took place (Ref. to 

fig. 7 below). This episode was subsequently followed by widespread volcanism in the Early 

to Middle Jurassic in southern Africa, the Falklands and Antarctica. This widespread 

volcanism provides the first evidence of the impending breakup of Gondwana. At the time of 

rift onset the Falkland Islands lay off the south or southeast coast of South Africa. The AFFZ 

developed as a result of this breakup of Gondwana, where South America and Africa split 

apart.     
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The south coasts rift phase ended in the Lower Valanginian which corresponds to the drift-

onset unconformity, 1At1 (ref. to fig 6). Initial rifting was shortly followed by at least three 

phases of inversion associated with continued dextral shearing. Inversion tectonic 

displacement ended in the mid-Albian which corresponds to the 14At1 unconformity, which 

represents the Falkland Plateau completely separated from Africa (Sonibare et al, 2014, 

USGS, 2012).  

 

A true passive margin subsequently developed after this transitional rift-drift phase. The 

south coasts Lower Valanginian drift-onset unconformity (1At1) is contemporaneous with the 

generation of the earliest oceanic crust in the South Atlantic (Petroleum Agency SA, 2012, 

(Macdonald, 2012). The Bredasdorp Basins Lower Valanginian drift-onset unconformity is 

associated with the Hauterivian (6At1) drift-onset unconformity of the Orange Basin. A rift-

drift transitional phase which correseponds to both Outeniqua and Orange basin occurred 

until the Early Aptian (13At1). The Sable Fields reservoir overlies this Early Aptian 13At1 

unconformity. This reservoir which is under investigation, constitute a marine passive margin 

setting. Passive margin (drift) sedimentation took place in the later Cretaceous and Tertiary 

(Petroleum Agency SA, 2012, Sonibare et al, 2014,). 

 
The southern margin of South Africa generally presents a persistent history of dextral (right-

lateral) shear movements which developed from mid-late Jurassic to early Cretaceous times, 

when South America rifted from Southern Africa along the AAFZ (Sonibare et al, 2014). In 

the early to Mid-Cretaceous a complex series of microplates which include the Falkland 

Plateau steadily moved west southwest-wards past the southern coast of Africa, resulting in 

the initiation of important dextral shearing of the South African margin. (Petroleum Agency 

SA, 2012  

Figure 7. Pre-Rift Geology. Evolution of the Cape Fold Belt and 

Great Karoo Basin. Gondwana in the Late Paleozoic to Early 

Mesozoic (modified atfer Wit and Ransome, 1992 cited in 

Parsiegla, 2008). 
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This separation allowed for the subsequent development of the opening of the greater South 

Atlantic Margin. (Dingle et al., 1983; van der Merwe & Fouche, 1992; Ben-Avraham et al., 

1997; McMillan et al., 1997; Thomson, 1998; Broadet al., 2006 Cited in Sonibare  et al, 

2014). Initial breakup and rifting started on the eastern margin of Africa, where Madagascar 

and Antarctica moved away in the Middle Jurassic. This early rifting initiated the formation 

of the Durban and Zululand basins. (Petroleum Agency SA, 2012). 

The AFFZ is an important component of the numerous lithospheric stretching and breakup 

events which constitute the separation of Gondwanaland into an Eastern portion (Antarctica-

Australia-India) and Western portion (South America-Africa) during the early Mezosoic. 

(Sonibare et al, 2014). 

Dextral shearing along the AFFZ created the Outeniqua sub-basins as a series of oblique rift 

half-grabens that can be regarded as failed rifts with the oldest in the east and youngest in the 

west.  The rift phase on the south coasts Outeniqua Basin and Bredasdorp sub-basin ended in 

the Lower Valanginian (drift-onset unconformity, 1At1). The Outeniqua Basin and its sub-

basins (Bredasdorp, Infanta Embayment, Pletmos, Gamtoos, Algoa and deep water Southern 

Outeniqua Basin) have undergone multiple stages of deformation. A number of subsequent 

events took place in order to produce the five generally easterly trending sub-basins 

(Petroleum Agency SA, 2012). These events constitute a series of lithospheric stretching 

episodes during dextral (right-lateral) shear movements, subsequent thermal relaxation and 

Tectonic realignment. 

 

These en echlon sub-basins are underlain by possible pre-rift deposits which constitute the 

Cape Supergroup (Dingle et al., 1983; Davies, 1997a) (Sonibare, 2014). These sub basins are 

characterised by a series of oblique normal faults which become more listric towards the east.   

Basement arches which constitute pre-rift Ordovician to Devonian Cape Supergroup meta-

sediments, separate the Outeniqua depocentres (sub-basins) from one another. (McMillan et 

al., 1997; Thomson, 1998; Broadet al., 2006). The Diaz Marginal Ridge (Ben-Avrahamet al., 

1993) bounds the sub-basins southward and separates them from the AFFZ lineament 

(Sonibare, 2014). 

 

The spatial distribution of these sub-basins decreases systematically from west to east. The 

strike direction of each basins bounding faults gradually changes orientation from a 

dominantly east-west trend in the western sub-basins to north-south trend in the easternmost 

sub-basins. This variation in spatial distribution and strike orientation of each sub-basin 

depicts a more complex paleo-kinematics as the AFFZ is approached. The variability in 

tectonic and structural imprints associated with these sub-basin is accompanied by the 

development of both regionally extensive and localised unconformities (Brown et al., 1995; 

McMillanet al., 1997; Davies, 1997a,b; Broad et al., 2006 cited in Sonibare et al, 2014). 

These unconformities play a significant role in the the stratigraphic and the petroleum system 

evolution of the bredasdorp basin. 
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2.2.3 SYN RIFT BASIN ARCHITECTURE AND FILL 

With respect to tectonic stages, Basin fill of the Bredasdorp Basin is sub-divided into isolated 

fault-bounded syn-rift sedimentary sequences. These syn-rift sediments have been overlain 

by variable thicknesses of post-rift sediments (Sonibare et al., 2014). The syn-rift successions 

in the Bredasdorp sub-basin comprise mainly fluvio-lacustrine and shallow marine sediments.  

Microplate movement along the southern African margin during the Mesozoic, remains 

largely controversial. Valuable plate reconstruction studies of from limited seismic data do 

however define syn-rift sequences as ‘Syn-Rift 1’ and ‘Syn-Rift 2’ (van der Merwe & 

Fouche, 1992; Ben-Avrahamet et al., 1993, 1997; McMillan et al., 1997; Thomson, 1998; 

Broad et al., 2006 cited Sonibare et al., 2014). Syn-rift 1 comprises of a block-faulted 

sedimentary package which were initiated by rifting. Extensional reactivation of the Cape 

Fold Belt took place during Oxfordian and Kimmeridgian times. The contrasting syn-rift 2 

episode is considered to be a renewed phase of rift tectonics which followed Valanginian 

transform processes along the AFFZ in the western sub-basins (Bredasdorp, Infanta 

Embayment and Pletmos). 

Syn-rift reservoirs which generally originated in the Jurassic and Lower Cretaceous, are 

associated with the grabens and half grabens situated in the deeper offshore regions. Seals 

found in the Bredasdorp Basin are primarily Cretaceous and Paleogene marine mudstones 

and shales (USGS, 2012).   

 

2.2.4 TOTAL PETROLEUM SYSTEM  

Source rock can be considered as the most important depositional factor in a basins evolution 

because a successful petroleum system firstly requires a rich source rock. Regionally 

developed, basin wide, good quality Aptian source rocks prove to be a critical component of 

a petroleum system defined in the Bredasdorp Basin (Davies, 1997). Upper Palaeozoic; 

Mesozoic and Tertiary reservoirs are found in the basin. Barrimian to Aptian Reservoirs 

dominate exploration and production activities in the region.  

Davies (1997) conducted the first comprehensive petroleum geochemistry study of the 

Outeniqua Basins, namely; the Bredasdorp and Southern Outeniqua Sub-basins. These 

studies have documented a substantial number of hydrocarbon shows and regionally 

distinctive marine source rocks. A detailed analysis and correlation of reservoir hydrocarbons 

with corresponding source rock bitumens, indicate two regionally extensive source rocks 

have expelled oil in commercial quantities. The other two source rocks have expelled 

commercial quantities of wet gas/condensate. 

The Aptial source rocks have been intersected by a number of exploration and scientific 

research boereholes throughout the sub basins of the Outeniqua Basin and off the West Coast. 

Studies indicate that cretaceous sands of producing fields such as Oribi, Oryx and Sable Oil 

Fields, have been charged by oil from Aptian Source rocks.  

 

The Bredasdorp Basins Early Aptian source rock has been delineated well. An organic rich 

shale (200m thick) extends across a large area of the basin. The organic material is largely 

Type I and II kerogen which is generally oil and wet gas prone. Burial history studies indicate 

that Aptian sediments are in the oil window, mainly in large areas west of the basin 

depocentre (Davies, 1997; Petroleum Agency SA, 2012).  
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The geologic elements of a total petroleum system (TPS) concept include:  

 

(1) Hydrocarbon source rocks where the source rock has maturated and hydrocarbons have 

been generated and migrated;  

(2) Reservoir rocks with good quality and distribution.  

(3) Traps mechanism for hydrocarbon accumulation.  

 

Based on the TPS concept, the USGS has defined the Bredasdorp Basins Mesozoic TPS. The 

Bredasdorp Basins TPS constitutes Middle to Upper Jurassic lacustrine source rocks which 

contain 1.0 to 3.7 weight percent total organic carbon (TOC). A Cretaceous marine source 

rock constitutes Aptian strata which contain Type II kerogen ranging from 2.0 to 4.3 weight 

percent TOC (USGS, 2012). Cretaceous marine source rock also include Cenomanian 

Turonian strata containing Type II kerogen ranging from 1.0 to 3.0 weight percent TOC.  

 

A number of Mesozoic–Cenozoic Reservoirs have been outlined in the basin. The 

Bredasdorp Basins Mesozoic–Cenozoic Reservoirs constitute Cretaceous and lower 

Paleogene clastic reservoirs. Various types of hydrocarbon traps play a role in the basin. 

These traps are mostly associated with geological factors such as; growth fault-related 

structures and rotated fault blocks within the continental shelf. A number of stratigraphic 

traps play a role, such as: deep water fans and fan complexes, turbidite channels and slope 

sandstones which are truncations adjacent to the present-day shelf and paleo-shelf edge 

(USGS, 2012). Cretaceous and Paleogene stratigraphic pinch-outs can be found along the 

southern margin of the basin.  

 

 

2.2.5 POST-RIFT ACHITECTURE - SABLE FIELD GEOLOGICAL BACKGROUND  

Located in the Western Bredasdorp Basin the Sable field constitutes a submarine, structurally 

confined, Basin Floor Fan (BFF) system. Wood, 1995 has proposed a general depositional 

model for the early drift sand rich sediments of the Bredasdorp Basin. The model constitutes 

basin floor fans which are confined by a fault controlled erosional valleys. The Basin floor 

fan system of the Sable Field is characterized by stacked deep-marine channel deposits and 

less confined lobes. Trap combinations originate due to stratigraphic pinch outs and localized 

inversion tectonics.   

A number of Barremian (9A) to Aptian (13B) aged reservoir sequences are well developed in 

the Bredasdrop Basin. These reservoirs are mainly deep marine Basin Floor Channel (BFC) 

and Basin Floor Fan (BFF) Complex’s’. The Sable field constitutes both BFC and BFF 

complex’s that are encased in a dominant volume of Hemi-Pelagic mud. These organic rich 

muds comprise both source rock and seal of the Sable Fields reservoir (Petroleum Agency 

SA, 2012; Grobbler, nd). These sand rich depositional complexes contain hydrocarbon 

bearing sand which are both structurally and stratigraphically trapped. These sands are 

interpreted to be deposited by tubidite processes and they constitute moderate to good 

reservoir properties (Grobbler, nd).  

The Sable Oil and Gas Fields Basin Floor Channel (BFC) and Basin Floor Fan (BFF) 

Complex reservoirs, are located in the upper region of this Barremian (9A) to Aptian (13B) 
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early drift turbidite system. Sable constitutes a structurally confined, distributive submarine 

fan complex which is dominated by the submarine channel-lobe transition zone (CLTZ) 

(Gordon, 2014). The seismic cube cropped for the research mainly depicts CLTZ of the Sable 

Field.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

During this early-drift tectonic and stratigraphic drift episode, the basin progressively 

enlarged to a scale where the basin flooded and integrated a number of initial post-rift 

embayment’s, that had connections to the proto Indian Ocean. 

Figure 8. Location map and cross section of the Bredasdorp Basin indicating Sable Field. Modified after (Petroleum 

Agency SA, 2012; USGS, 2012). 
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Well defined sequence boundaries have been deposited, as well as a number of type 1 

erosional unconformities. Episodes of both thermal subsidence along the basin axis and fault 

reactivation, are associated with the third-order (onlap-fill) sequences. Thermal subsidence 

causes sediment influx into the basin when post rift slopes change angle. This phenomenon 

results in an increased in accommodation space that coincides with an increase of sediment 

influx into the basin (Grobbler, nd). The Sable Fields reservoir is situated above the 13AT1 

type 1 erosional unconformity as seen in fig. 9 above.  

The Sable Field comprises of two major reservoir zones (ref. to fig. 10 below). The Upper E-

BD oil reservoir constitutes a submarine Basin Floor Channel (BFC) complex. The lower E-

CE oil and gas reservoir constitutes a slope fan and Basin Floor Fan (BFF) complex (Soekor 

Ltd, nd; Grobbler, nd). The E-BD reservoir hosts average porosity and permeability values of 

18% and 380 md, respectively. Average porosity and permeability values of The E-CE 

reservoir are 18% and 410 md, respectively. The STOOIP for both E-BD and E-CE reservoirs 

of the Sable field was estimated by wood (1995) to be within the range of 43-90million st-tk 

bbl.   

 

 

 

 

 

 

 

 

 

Generalised facies distributions for the region has been developed by core data, log patterns 

and maximum grain size data. These data sets have assisted in the generation of geological 

model for the portion of the Bredasdorp Basin where the Sable Field is situated. The poorer 

reservoirs in the basin such as channel overbank and sheet sand (distal) deposits are below 

seismic resolution thus unresolvable. The geological model consulted for this research, takes 

this into account in order to include these ‘invisible’ volumes of hydrocarbon (Grobbler, nd). 

The general depositional model for BFF systems ideally presents a radial pattern. The 

Bredasdorp basins topography has resulted in a BFF system with a predominantly elongated 

geometry due to its steep topography which also affects the geometry of the Sable Field.  

A number of sandstones in the Basin have a provenance which constitutes Table Mountain 

quartzite and Cape granites, sourced from the mainland and Agulhas Arch. The Basin 

maintained its predominantly northwest-southwest elongation throughout its evolution. This 

Figure 9. Map and cross section view of the Sable Field (Soekor Ltd, nd). 
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basin configuration is inherited from the syn-rift sub basin geometry. The syn-rift Bredasdorp 

Basin was subjected to relatively free marine circulation in the southeast region where the 

basin meets the Southern Outeniqua Basin and Indian Ocean (Soekor, Ltd; Grobbler, nd). 

This marine influx is also related to the deposition of extensive marine source rocks. The 

influx of sediment into the Bredasdorp Basin, predominantly constitute a main input from the 

west. 

The Western Bredasdorp Basin is mainly filled with marine Aptian to Maastrichian deposits. 

These post rift sediments were deposited on pre-existing Late Jurassic to Early Cretaceous 

fluvial and shallow marine syn-rift sequences (Grobbler, nd). This western region of the basin 

also hosts a number of shallow marine Valaginian shallow marine Berriasian fluvial 

reservoirs. The remaining reservoirs in the basin are Barremian and Aptian aged and 

characterised as deep marine channel and associated deposits. These sand rich deposits are 

difficult to model due to sandstone beds and stratigraphic structures being below seismic 

resolution. 

 

2.3 DEPOSITIONAL MODEL ANALOGUE FOR THE SABLE FIELD BFF SYSTEM 

A number of field analogues have been consulted in order to guide the 3-D reservoir 

characterisation of the Sable Field. These analogues provide examples of the BFF 

depositional environment with respect to seismic and wireline log response. Outcrop 

analogues have also been consulted in order to betrer understand the internal heterogeneity of 

BFF complex reservoirs.    

 

2.3.1 THE ANALOGUES PURPOSE IN THE INTERPRETATION PROCESS 

The analogue facilitates recognizing, examining and understanding the sedimentary facies 

and facies associations of the BFF depositional environment. The analogue outlines the 

distribution of the fine grained slope to basin floor distributive turbidites and relates the field 

and outcrop analogues to the Sable Field.  

The field analogues consulted, serves to outline the internal architecture as well as the 

distribution of the various deep water depositional elements such as channels, levees and 

lobes. The depositional elements can be associated on a local and fan-wide scale (Wickens, 

2014; Jiajie, 2012). Recognizing and examining the hierarchical stacking pattern of channels, 

levees and lobes, is a crucial component of reservoir characterisation. These elements are 

characterized with respect to being channelized and/or non-channelized deposits. The 

stratigraphic evolution and growth pattern of fine grained fan systems will be evaluated with 

respect to confined and/or confined settings (Wickens, 2014) 

Reservoir characterisation is heavily dependent on field and outcrop analogues. They play an 

important role in the development of a perception for scale. The scale and aspect ratio of the 

depositional features as well as their relationship with their counterparts such as seismic 
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reflection data, cores and logs are justified with the analysis of analogue. Reservoir 

characterisation and possibly a subsequent 3-D static reservoir model, will assist in 

understanding the internal heterogeneity and propose reasons for reservoir behaviour. The 

analogue also assists with understanding the influence that structural control or basin floor 

and slope topography have on the sediment gravity flows. The structural configuration of the 

basin floor and slope topography significantly controls the distribution of depostional 

elements. 

 

 

2.3.2 DEPOSITIONAL MODEL ANALOGUE  

 

The extensive turbidites outcrops of the Tankwa Karoo in South Africa and a number of other 

turbidite reservoirs and outcrops, serve as an analogue for the sable fields’ deep water 

submarine reservoir. The Tankwa turbidites are extensively understood and globally 

recognized by the petroleum industry as an outcrop analogue for sand rich deep water 

deposits. These types of depositional environments are extremely difficult to study at present 

day due to their deep submarine nature (Slatt, 2006; Wickens, 2014).  

 

A number of structurally confined and ponded turbidite systems constitute prolific 

hydrocarbon reservoirs. These turbidite systems serve as important records of relative sea-

level fluctuations. They also record tectonic episodes and sediment transfer from shallow-

marine environments into the deeper offshore regions. Outcrop studies of Turbidite 

depositional systems indicate that they yield sedimentological and stratigraphic detail which 

is sub-seismic resolution (Slatt, 2006;Wickens, 2014).  

 

Analogue outcrop exposures such as the Guaso I turbidite system (Lutetian) in the Ainsa 

basin, north-eastern Spain, reveal a ponded, distributive submarine fan which is confined at 

the distal end of the basin by a syn-depositionally active anticline, for example (Gordon, 

2014). Other analogues of deep water turbidite sand rich deposits indicate that there stacking 

pattern of lobe and channel systems has an inherent structural confining ablility. For example, 

according to the architectural framework of these deposits, the channelized portion of lobe 

will be structurally confined by its neighbouring lobes (Wickens, 2014; Gordon, 2014). 

 

Turbidite deposit analogues indicate lobes can be overlain by a variable association of 

channels, lobes, and mass-transport deposit. These depositional elements constitute wider 

variance in paleo-current values which Indicates that the system gradually became more 

distributive through time (Gordon, 2014). These observations also reveal an increase in 

architectural diversity and the compensational stacking of elements as time progressed. 

 

The variation in depositional elements as the bowl-shaped basin filled, is attributed to an 

increase in depositional area, and a decrease in accommodation relative to sediment supply 

(A:S).  Isopach mapping indicates a prominent sediment thick, which generally coincides 

with the Turbidite channel flows depositional axis. In the proximal region of the fan, this 

thick constitutes a mass transport system, channel mudstone sheets as well as rip up clasts on 

the base of the channel amongst sands. In the more distal regions of the fan on the basin floor, 

the thick generally originates as a result of a significant succession of high-reservoir-quality 
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sandstone. The depositional system analogue built for this study, presents a geometric model 

which relates reservoir connectivity and compensational stacking to effective area of 

deposition (Gordon, 2014). 

The deposition of sand and mud rich sediments on the basin floor alters the short term local 

topography of the sea floor. The channelized component of a turbidite longitudinally evolves 

into less confined lobes on the interpreted basin floor, such as the 13 AT1 unconformtiy 

which can represent a period of deposition on a new sea floor. Confined turbidite systems 

basically constitute deep-water clastic depositional systems whose depositional elements and 

resultant architectures have developed due to topographic features of the basin floor and/or 

basin margin (definition modified from Lomas and Joseph, 2004; cited in Gordon, 2014). 

Basin-margin topographic features that interact with turbidite mass transport sediment flows 

can include geological features such anticlinal seafloor highs, salt diapirs, and fault scarps. 

 

The depositional patterns and stratigraphic architectures that are produced from the 

interaction of turbidity currents with these features can differ from those where basin-margin 

topographic features are not present, such as in unconfined basin-floor settings (Mutti and 

Normark, 1987; Mutti and Normark, 1991; Lomas and Joseph, 2004; Amy et al., 2007; 

Covault and Romans, 2009; Mutti et al., 2009; Callec et al., 2010; Mayall et al., 2010 cited in 

Gordon, 2014). 

 

 

 

 

 

 

 

 

 

 

 

The regions outlined in fig. 11 above, namely; the channel margin, channel/lobe axis and off 

axis areas of the BFF system. These core sample need to be related to these 3-d 

diagrammatical representation of a BFF system below. The BFF system is present with 

respect to its three main regions including:  

1. The up-dip proximal channel environment which is relatively confined. 

2. Channel Lobe Transition Zone (CLTZ) Transitional from Proximal to medial fan  

3. Distal-medial fan outer 

Figure 10. Diagram relating the Bouma sequence to core that originates from 

various areas of the BFF system (Jiajie, 2012). 
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Figure 11. Diagramatical representation of turbidite deposits and general depositional model of 

deep submarine environments Modified after ((Posamentier and Kolla, 2003; Wickens, 2014). 

GRAPHICAL OUTLINE OF THE 

TURBIDITE DEPOSITIONAL SYSTEMS  

A. PROXIMAL FAN 
C. DISTAL-

MEDIAL FAN  

B. TRANSITION 

FROM PROXIMAL 

TO MEDIAL FAN  
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2.3.3 DEPOSITIONAL ELEMENTS AND PROCESSES OF BFF ENVIRONMENTS 

A number of rock facies associated with submarine fan complexes have been identified and 

noted in Jiajie, 2012). 

 

The major facies categories include: 

Structure-less - slightly altered sandstone lobe center facies 

laminated sandstone lobe margin and transitional 

bedded/graded mudstone in situ deep water  shale 

turbidite tail flows; and  pelagic mudstone 
Table 1. The major facies categories of the Basin Floor Fan system.    

The vertical facies successions generally result in vertical compartmentalization of reservoirs. 

Thus, facies recognition using a 3-D conceptual geological model, sheds light on the vertical 

separation of reservoir compartments. An investigation of depositional elements which 

includes, object modelling, scale comparison and aspect ratio: width, length, and thickness 

charscterisation is needed to understand the compartmentalisation of the Sable Field. Facies 

assist in outlining Progradational versus retro-gradational succession as well as reservoir 

property distribution (Jiajie, 2012).  

The developed analogue consults studies of the stratigraphy, paleogeography, and 

depositional controls of the submarine fan depositional system (Gordon, 2014). Outcrop 

analogues of the Sable Fields depositional system, indicates examples where this deep-water 

depositional system flows through a fault-controlled longitudinal transect. The turbidite flows 

progress from proximal structural terraces, through a submarine canyon which eventually 

progresses towards the basin floor and basin margin. The analogue and the investigation of 

the Sable Field study area is divided into three regions based on geographic location, 

interpreted paleogeographic environment and stratigraphic character.  

Region A -Feeder System,  

Region B - Proximal Basin Floor, and  

Region C - Medial-Distal Basin Floor. 

 

In some cases,  

Region A. Feeder systems contains syn-depositionally active normal faults near the proximal 

basin margin. These faults are generally associated with abrupt changes in paleo-bathymetry, 

depositional environments, lithofacies associations, and stratigraphic thickness. The proximal 

submarine canyon constitutes a region of bypass, with low net-sandstone content. Isopach 

maps indicate gross thickness is generally greatest near the canyon mouth.  

 

Region B constitutes a proximal-basin-floor fairway which is located immediately basinward 

(down-dip) of the canyon. In some cases proximal basin-floor region can contains the highest 

sandstone content in the basin.  

 

Region C constitutes the Medial-Distal Basin Floor region which is associated with gradual 

changes in proportions of lithofacies associations. Isopach mapping indicate these changes 

originate due to subtle variations in the gradient of the basin floor near the distal basin 

margin.  
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The proximal channel complexes constitute structure-less, amalgamated sandstone that 

overlies thin-to-medium bedded “dirty” sandstones which are deposited at the lobe fringe. 

These upward architectural pattern are generally interpreted to result from an outwardly 

expanding depo-center through time (Wickens, 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E. Deposition of mud from the tail of the turbidity current, hemipelagic or pelagic settling  

 

D. Segregation of mud flocs and silt into discrete bands by shear 

 

C. Ripple migration in the lower part of lower flow regime, possibly with high rate of fall out 

from suspension and water escape deformation. Dune field not represented  (Wickens, 2014). 

 

B. Upper flow regime plane bed transport with primary current lineation on bedding surfaces 

 

A. Progressive settling from suspension, high grain concentrations at the depositional 

boundary layer inhibit the formation of tractional laminae, grains deposited via a transient 

grain flow (collision) condition Turbulent erosion by the frontal, head portion of the turbidity 

current (Wickens, 2014). 

 

 

Figure 12. Diagramatical representation of the Bouma Sequece (Wickens, 2014).   
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The analogue developed for this study presents a four-stage sequential model that defines the 

stratigraphic architecture and evolution of a channel-lobe element. These elements can be 

seen in log form in figure 13 Below.   
The model includes: 

1. proximal erosive channels,  
2. sand filled channels,  
3. the CLTZ and the distal lobe region.  

Correct delineation of the depositional model has important implications for reservoir and 

fluid-flow modeling of distributive channel-lobe systems (Gordon, 2014).  

  

Figure 13. A generalised Analogue example of the Diana Field which correlates: Gamma Ray, Resistivity, 

core, lithofacies and depositional environments for the BFF complex (Jiajie, 2012). 
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2.3.4 SUMMARY  

 

In this chapter the researcher outlined the geological aspects of the regional Outeniqua Basin, 

with respect to the basement architecture and tectonic setting. The localized tectonic setting 

and resultant depositional systems of the Bredasdorp Basin has been outlined with respect to 

the Sable Oil and Gas field. The following chapter outlines the methodology adopted for the 

3-D investigation and characterisation of the Sable Field.   
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CHAPTER 3: METHODOLOGY 

In this chapter the researcher outlines the various workflows undertaken such as, Geological 

background and reservoir analogue literature review; quality assurance of the data; sesimic 

workflow prior to interpretation; Seismic interpretation workflow, Petro-physical work flow 

and the 3D Reservoir Characterisation and delineation of the reservoir. These various 

interpretation methods have been integrated for this study. The methods used have been 

adopted from common industry procedures and recent publications. 

 

3.1       LITERATURE REVIEW  

A literature review was undertaken with the purpose of assisting the researcher in outlining 

the general background of the study, general petroleum exploration and production 

environment of South Africa and the geological setting of the Field and regional basin.    

 

 

 

 

 

 

 

 

 

 

  

 Project Background 

 Previous work done in the Basin and Sable Field (Davies, 1997 and USGS, 

2012). 

 South Africa’s and the Sable Fields production history. 

 Literature review for the development of a research question and associated 

aims and objectives (Wickens, 2014 and Jiajie, 2012) 
 

 Literature Review for analogue studies 

 Depositional Model Analogue background  

 Purpose of the analogue 

 Depositional processes of Turbidite environments 

 Depositional elements of Turbidite environments 

 Outline of Proximal, Transitional and distal basin 

floor fan regions, using outcrop, wireline log and 

seismic response analogues (Wickens, 2014 and 

Jiajie, 2012). 
 

 Geology 

 Regional tectonic and sedimentary 

framework of the Outeniqua Basin  

 Local tectonic and sedimentary 

framework of the Bredasdrop Basin 

(Davies, 1997 and Sonibare, 2014)  
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3.2 WORKFLOW FOR QC/QA AND EXPORT OF WELL DATA 

The wireline log data needed to be extensively cleaned using the IP (Interactive Petro-physics 

software before petro physical analysis could be undertaken. The data also had to be cleaned 

and converted in order to export it to the software used for the integrated well and seismic 

analysis of the field. 

 

 

 

 

 

 

 

 

 

 

  

 QC/QA OF WELL DATA 

 Using Interactive Petrophysics (IP) 

 4 wells were used. Wells include: E-BD 5, E-BD 2, E-BD 1 and E-CE 1.  

 Well E-BD 5 does not intersect the seismic cube by a very small distance; 

however well E-BD 5’s wireline log data is still cleaned and used for a petro physical 

investigation of the reservoir zone. 

 

 

 

 IP workflow 

Interactive Petrophysics software was used to 

clean and convert data from D.lis to LAS 

format. 

 Input D. Lis files 

 Select required wireline logs for each well 

From D.Lis files: 

 GAMMA RAY (GR) 

 BULK DENSITY (RHOB) 

 NEUTRON (NPHI) 

 SONIC (DT)  

 DRHO (DENSITY) 

 RESISTIVITY (LLD, MSFL, LLS) 

 Deselect unwanted logging data as well as 

duplicate value and values which are corrupted.  

 Las write each well 

 Export Las files for each well to hard drive and 

Petrel project.  
 

 Logging Data points with 

incorrect depths such as 

11000m, have been deleted  

 Correct logging Data points 

are sufficiently continuous 

for a thorough evaluation of 

the wells.  
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3.3 SESIMIC WORKFLOW PRIOR TO SEISMIC INTERPRETATION   

Before seismic interpretation commences, well and seismic data needs to correlate without 

any impediments. The 3-D characterisation of the reservoir relies extensively on the correct 

correlation of well and seismic data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Inputting the correct geographical co-ordinates 

and checking if all the wells intersect the 

seismic cube. Only well E-BD5 is slightly 

outside the cube due to the cropping of the 

cube. 

 Load Well Top Data and create 

well tops 

 Check well top time on excel 

spreadsheet with time of 

intersecting seismic horizon. 

 Correlate this seismic horizon 

well top from well to well.  

 Well to seismic tie 

 Using sonic and density logs to generate a 

synthetic seismic trace 

 Match trace amplitude with corresponding 

seismic horizon 

 Check that all wells correlated with 

seismic data 

QC/QA of Seismic Data 

 

 

 Loading 3-D seismic data cube into 

Petrel software (segy format) 

 Well top/checkshot  

 

 Loading wireline log data into Petrel software 

 Wireline Log Data in LAS format (Exported 

from interactive Petrophysics (IP) software 

 Realising 3-D seismic cube 

 Seismic cube thus exhibits Xlines; 

INlines and time slices (z axis) 

 Time slice are used to identify the 

channelized depositional environment 

 

 

 Well top  correlations (onajite, 

2014) 

 Miss tie analysis 

 

 

 

 

Creation of data base 
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3.4 SEISMIC INTERPRETATION WORKFLOW  

The seismic interpretation workflow (using Petrel software) is conducted with the purpose of 

investigating the geometry of the basin floor fan system which constitutes the Sable Fields 

reservoir. Seismic interpretation is correlated with well data in order to characterise the 

reservoir by delineating the spatial distribution of the reservoir at and away from the well 

bore. Seismic interpretation workflow also takes the setback of seismic resolution into 

account. Reservoir characterisation thus infers internal heterogeneity from the wells and 

extrapolates the reservoirs internal heterogeneity away from the well bore (Onajite, 2014).       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Manual, 2-D and 3-D guided auto tracking Seismic interpretation 

 Seismic interpretation is conducted on both inline and xlines 

 Xlines and inlines are displayed simultaneously in a 3-D window in order to tie the 

interpretation  

 Inline and xline interpretation is also tied to tie slices in order to track the complex 

channelized deposition environment  from a birds eye view (Onajite, 2014)   

 Make Stratigraphic Surfaces 
 
 

 Surfaces for 11 well tops from all wells 

 Syn-rift Horizon 

 Drift unconformity 

 Top of early Drift sedimentary bulge 

 Base reservoir horizon 

 Top reservoir seal 

 
 

 Paleo current flow according to time slices indicate the 

Channelized region of the BFF takes a roughly 90 degree turn.  

 The bend in the channel is interpreted to take place at the base 

of slope region as channel flow off the continental slope.    

 

 Before the bend 

 Xlines - transect as strike 

sections of the channel 

 Inlines - transect as paleo-

current parallel 

intersections of the channel  
 
 

 After the bend 

 Xlines - transect as paleo-

current parallel intersections 

of the channel  

 Inlines - transect as strike 

sections of the channel 

 
 

Evaluate structural 

controls on 

sedimentation 
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SEISMIC FACIES  

 

Seismic Facies infer (away from well bore) = 

Depositional Environment + Rock Type + 

Properties (Jiajie, 2012) 

 Six basin types 

 Parallel 

 Sub-Parallel 

 Divergent 

 Chaotic 

 Prograding 

 Reflection free 

 

 Match interpretation of seismic 

facies and wireline log facies with 

with outcrop and subsurface 

analogues 
 

 Match reflection of facies in 

well logs with corresponding 

seismic zones 

 Seismic zones are separated by 

well tops 

 Match facies found in core with 

wireline log responses  

 Detailed facies analysis from core 

description, wireline log responses 

and seismic facies  
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FAULT INTERPRETATION  

Fault interpretation has been minimal as the reservoir is associated with post rift 

sedimentation of the Bredasdorp Basin and unaffected by faulting. The faults are also poorly 

defined due to the highly deformed pre-rift geology and the small size of the 3-D seismic 

cube under investigation. 

 

 

 

 

 

 

 

DEPTH CONVERSION  

Seismic data has been gathered and interpreted in the time domain. The depth conversion 

process has thus been undertaken in order to convert the interpreted surfaces and geobodies to 

their correct depth below sea level.  

 

 

 

 

 

 

 

 

 

 

 

 

  

 FAULT INTERPRETATION  

 Fault cleaning 

 Manual 2-D and 3-D fault interpretation  

DEPTH CONVERSION 

Create new velocity model 

Input seismic horizons which 

were created for well tops into 

velocity modelling process 

Well tops have depth and time 

values thus Petrel software makes 

straight forward velocity model 

using average values between 

well tops 

 

Domain convert surfaces and 

faults from TWT to depth by 

active velocity model 
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3.5 PETROPHYSICS WORK FLOW 

A Petro-physical analysis was undertaken on the 4 wells Namely E-BD5, E-BD2, E-BD1 and 

E-CE1. Well E-BD 5 is used for a petro-physical analysis even though it doesn’t intersect the 

seismic cube by approximately 350m. The petro-physical evaluation of the reservoir is 

conducted via the interactive Petro-physics software.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Gamma Ray (GR) 

 Spontaneous potential (SP) 

 Bulk Density (RHOB) 

 Neutron (NPHI) 

 Sonic (DT)  

 Drho (DENSITY) 

 Resistivity (LLD, MSFL, LLS) 

 

Wireline logs for petro-physical analysis  

 

flow capacity 

Zones with invalid log data are identified 

and depth correction was applied (Q.C) 

PETROPHYSICAL ANALYSIS 

Porosity  
GENERATE FOR RES. 

ZONE IN EACH WELL: 

Volume of clay 

Lithology type 

 Estimate Permeability 

Water Saturation  

Fluid Contacts 

Reservoir Depth 

Pay and non-pay sand 

 Correlation of reservoirs and seal horizon– All four wells included  
 

Well Tops  

 OWC  

 GOC  

 Oil Water Contact 

Calculated by 

Logs & RFT Plots 

(Brown et al., 1990) 

In Agreement with Core Data  

Net to Gross 

Water Saturation  

Indonesia Equation 

(Brown et al., 1990)  
Waxman-smits Equations 

(Brown et al., 1990) 

Calculated by 
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Characterise Depositional Facies 

Delineation of Reservoir 

Input Wireline logs 

Geological Framework 

Seismic to well tie 

Seismic Facies 

Mapping of Horizons 

Seismic Framework 

Calibration of Seismic Facies 

with depositional Facies 

Data Set 

3.6 3-D RESERVOIR CHARACTERISATION AND DELINIATION   

The Basin Floor Fan System (BFF) reservoir under investigation is characterised in the third 

dimension by the integration of well and seismic data. The reservoir zone is characterised at 

the well bore and extrapolated away from the well bore with assistance of seismic data.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Outline depositional regions of Basin floor fan system   

Extrapolate depositional 

facies away from well bore 

using seismic facies 

Channel Lobe Transition Zone 

TRANSITIONAL 

Well E-BD1 

PROXIMAL 

Wels E-BD5 + E-BD2 

Confined depositional channels 

DISTAL 

Unconfined lobes 

Well E-CE1 
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Base of a channelled BBF reservoir (red pick) and 

unconfined lobe complex reservoir 
 

GEOBODY EXTRACTION  

 

Geobody representative of 

entire Basin Floor Fan  

Geobody Outlines 

complex Paleo-current 

flow direction 

Paleo-current flow direction assists in 

characterisation of reservoir based on 

unique depositional model 

Geobody interpreted and 

extracted as: 

Base of channel and lobe 

geobody is situated directly 

Above 13AT1 unconformity  

Paleo-current and geometry of Geobody 

Depositional Facies (from log and core) 

Seismic Facies away from well bore 

in lobes, levees channels 

vertical and horizontal 

permeability and porosity 

and Net to Gross  

Correlation of sand rich 

zones from well to well 

Correlation of up-dip 

channels with down dip 

Lobes 

Outcrop and field analogue consulted 

to development of conceptual 

depositional model to characterise 

geometry of Geobody 
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CHAPTER 4: RESEARCH INTERPRETATION AND DISCUSSION 

In this chapter the researcher outlines the integrated reservoir characterisation of the Sable 

field. The interpretation is made by integrating both 3-D seismic and wireline log data of the 

four wells under investigation. This integrated methodology which yields more reliable 

results, is undertaken in order to define the 3-D spatial characteristics of the Sable fields 

reservoir. The various literature consulted to construct a depositional model analogue 

(Chapter 2.3), are used as a guideline for the interpretation made in this chapter. A significant 

portion of the interpretation will be presented with respect to the depositional model that is 

broken up into 3 sections which include: The proximal channelized Basin floor fan region, 

the Channel Lobe Transition Zone and the distal regions of the Basin Floor Fan. 

 

4.1 GENERAL PALEO-CURRENT FLOW OF THE SABLE FIELDS RESERVOIR  

The Sable Field constitutes a channelized BFF reservoir which has a complex flow regime 

towards the local down-dip Bredasdorp depo-centre. The flow regime is outlined by the green 

and geobodies in figure 14 below. The flow pattern of these sand rich deposits is 

predominantly governed by the basin architecture at the time of deposition. The entire early-

drift sedimentary succession which includes the Sable Field, has been governed by the 

topography of the Bredasdorp Basin sea bed. The flow pattern of sediments can be best 

described with respect to a prominent lower post rift horizon (early Drift unconformity). This 

unconformity generally represents the onset of the drift phase of basin development and 

sedimentation which includes deposition of the Sable Fields reservoir sands (ref. to fig.14 

below).     

 

 

 

 

 

 

 

 

 

 

 

 
Figure. 14. 3-D image of the Sable Field. The green and white geobodies indicate general Paleo-current flow 

direction of the BFF complex. The Structural control on sedimentation is defined by the Drift unconformity 

displayed.  
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The drift unconformity is interpreted as the Late Hauterivian unconformity (6At1 at ca. 130 

Ma). Seismic horizon mapping of this drift unconformity has outlined a NW-SW Orientated 

rise which constitutes the Agulhus Arch. This structural high is situated in the western to 

south western region of the seismic cube. Sediment flows off the Agulhus Arch prominent 

lower post rift horizon (early Drift unconformity). 

The 6At1 unconformity corresponds to an erosional period, found on the Agulhus Arch, 

where sediment was removed from the Agulhus Arch and deposited in the Bredasdorp Basin. 

This early drift influx of sediment into the basin has resulted in the BFF system of the Sable 

Field. Turbidite currents flow off the Agulus Bank structural high, thus sediment supply into 

the Bredasdorp Basin is predominantly from the west. Deposition of the Sable reservoir 

followed this early drift pattern of sedimentation.  

The green and white geobody in fig. above serves to outline the paleo-current flow pattern of 

sedimentation off the Agulhus Arch. Since the geobody is extracted from one seismic horizon 

(red pick) it has been interpreted to represent the base of a sand filled confined channel (green 

geobody) and a less confined sand filled deposit which constitutes an elongated lobe. The 

channelized reservoir has a paleo-current which is generally WNW-ESW trending in the up-

dip regions of the of the BFF system. The sand bodies which represent lobe elements are 

generally elongated instead of cylindrical. These elongated depositional patterns are an 

example of structural control over the deposition of sediments. The steep topography of the 

basin floor results in the elongated lobe elements.  

In addition to the prominent rise which represents the Agulhus Arch, there is an elevated 

region in the South-Western section of the surface indicated in figure below. The rise depicts 

a depocentre that hosts a bulge of turbidite sediment which have been eroded off the Agulhus 

Arch. The Sable Fields channelized reservoir lies in the upper portion of these early drift 

sediments flowing off the Agulhus Arch, into the depocentre (Bredasdorp Basin) situated in 

the NE section of the 3-D seismic cube (ref. to fig.).  

Eroded sand rich sediments flows Off the coastal shelf –Agulhus Arch region, parallel to the 

WNW-ESW Agulus Arch, into the major depo-centre. The confined channel then turns off 

the Agulus Arch and flows in a NW direction, down-dip into the major depocentre. This 

sediment, including the Sable Field reservoirs, forms a low stance systems tract (LST) above 

the 6At1 unconformity. These sediments could be part of the larger continental rise which 

comprises of sediment deposited at the base of the Agulhus Archs continental slope.  

 

Isopach mapping of the Drift unconformity and the LST sediments eroded off the Agulhus 

Arch indicate a prominent thick which corresponds to the depositional axis of the BFF 

complexes deposited in the basin. Proximal regions of the BFF system comprises of mass-

transport complexes, erosive channels, sand filled channels and mudstone sheets. The 

prominent thick on the basin floor is predominantly caused by a significant succession of  

high-reservoir-quality sandstone. 
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4.2 SEISMIC HORIZON MAPPING 

The seismic horizons have been interpreted with the aid of well top data for the three wells 

under investigation. Even though the well tops are not present in all the wells, these horizons 

could be correlated from well to well using the 3-D seismic cube. The well tops have been 

interpreted as prominent bright reflectors which represent significant unconformities and 

sediment horizons. With respect to relevant literature the dominant regional unconformities 

associated with the Sable Field include amongst others:     

 Valanginian break-up unconformity (1At1 at ca. 136 Ma) 

 Late Hauterivian unconformity (6At1 at ca. 130 Ma) 

 Early Aptian unconformity (13At1 at ca. 120 Ma) 

 Upper Cenomanian unconformity (15At1 at ca.93 Ma) 

 Campanian unconformity (17At1 at ca. 80 Ma) 

 The Upper Maastrichtian unconformity (22At1 at ca. 67 Ma)  (Sonibare, 2014).   
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Figure 15. Seismic Horizon Mapping of Bredasdorp Basin, indicating major unconformities. Modified after 

Sonibare, 2014.  
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4.3 SYN-RIFT BASIN ARCHITECTURE  

The Bredasdorp Basin is characterised to have two syn-rift episodes that overly the pre-rift 

geology of the Basin. The Valanginian break-up unconformity (1At1 at ca. 136 Ma) is 

associated with this breakup of this pre rift geology. With respect to this study there is no 

well top data available for the 1At breakup unconformity.  

  

The breakup phase of the Sable Fields geology has however been interpreted on a field scale 

using a bright horizon which represents both a steep normal  fault as well as a pre-rift 

horizon. The surface depicted below outlines a complex haust and grabben configuration 

which is associated with transpressional tectonic forces. The exact position of the extensional 

faults could not be precisely outlined due to broad damage zone and poor seismic resolution 

in the deeper parts of the seismic cube. Guided 3-D auto tracking has been used to interpret 

the horizon in fig. below.   

The syn rift surface has been interpreted from a prominent blue horizon which is 

representative of a bright early syn-rift horizon. The dominant normal faults constitute a 

complex horst and graben structural configuration which is the result of regional 

transtentional tectonic forces.  Small sections of the surface have also been interpreted from 

part of this blue horizon which represents the shallow dipping sections of the faults.    

  

Figure 16. 3-D image of the mapped syn-rift horizon.  
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The Syn Rift phase of tectonic and sedimentary activity associated with Strike slip (wrench) 

system basins result in sub-vertical faults. These Extensional faults (normal) constitute pull 

apart basins with fault jogs that are caused by transpressional force. Rapid sediment supply in 

a relatively small basin, during the syn-rift sedimentation has resulted in rapid subsidence and 

high heat flow. Wrench basin commonly constitute lacustrine source rocks which are 

however globally characterised as a small play (Underhill, 2014). The Brerdasdorp Basin and 

the other embayment’s of the Outeniqua Basin however experienced periods of flooding from 

the Paleo-Indian Ocean, thus syn-rift source rocks are predominantly marine in nature.   

With respect to Syn-Rift deformation of the Basin, the controlling normal faults generally 

determine the syn-rift structure of the basin. These normal faults have varied styles of 

deformation and this structural control impacts sediment influx into the basin. In relation to 

the small scale seismic cube under investigation, the large controlling normal faults are 

predominantly syn-thetic in nature with minor anti-thetic normal faults.  

The seismic line in figure 18 below represents a region of the seismic cube where syn-rift 

activity can be observed clearly. Fault controlled subsidence dominates syn-rift activity 

where deformation if both brittle and ductile in nature.  

The footwall predominantly undergoes deformation in a brittle fashion. A number of 

transverse faults transect the footwall. Throughout the study area these minor transverse 

faults in the footwall can be interpreted as short normal faults with low displacement maxima 

(Underhill, 2014). Maximum displacement of these minor syn-thetic faults occurs at their 

branch point with the main controlling fault. Deformation and subsidence in the footwall wall 

is linked with the expansion of sedimentary layers which is associated with the footwall 

faults.   

Deformation in the hanging wall predominantly occurs in a ductile manor. Deformation and 

subsidence in the hanging wall is mostly associated with open wavelength folds. These folds 

originate due to syn-depositional faulting. Sediment is eroded off the footwall fault scarp and 

deposited in the basin (ref. fig. 18).   

  

Figure 17. Diagrammatical representation of deep marine syn-rift sedimentation and basin 

fill when growth faults dominate subsidence (Underhill, 2014). 
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The controlling normal fault has a cut-off point which is interpreted as the drift unconformity 

that represents the end of fault controlled subsidence. Post rift sedimentation overlying the 

drift unconformity follows a sedimentation pattern which is governed by the underlying 

structural control set by syn- rift deformation of the basin.        

  

.   

Figure 18. Xline 327. Seismic line indicating 

fault zone (yellow lines) and a prominent 

syn-rift horizon (blue pick). The faulted zone 

and syn-rift horizon merge into one bright 

seismic horizon in most areas. This is due to 

the shallow fault angle at lower sections of 

the lystric fault and shale smear in the major 

fault, where shale could originate from the 

syn-rift horizon.   
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4.4 EARLY DRIFT BASIN FLOOR ARCHITECTURE AND SEDMIENT INFLUX    

 

The early drift phase of sedimentation takes place after the stage of fault controlled 

subsidence in a basins evolution. Thermal subsidence and other factors contributing to 

accommodation space such as sea level fluctuations are the dominant factors in drift 

sedimentation.  

 

The early drift/breakup unconformity outlined below has been interpreted from a prominent 

seismic horizon. The widespread on lapping nature of the overlying horizons are evidence for 

the regional extent of this interpreted unconformity, regardless of the size of the seismic cube.      

 

As seen in the seismic line and 3-D image below (figure 19) the mapped surface indicates a 

depo-centre towards the North Eastern section of the seismic cube. Sediment flows from the 

west off the rise which overlies the Agulhus Arch, into this depo-centre. The depo-centre 

hosts a prominent thick of sediment which is represented by parallel and sub-parallel 

horizons. These horizons have characteristics common of deep water sedimentary 

environments.         

 

Sediment influx from the west has resulted in possible sand rich lobe and fan elements and 

complexs, interbedded with clay and silt rich deposits in the proximal regions of the deep 

water environment. These alternations of sand and shale lithologies constitute bright parallel 

seismic reflectors. The more distal region of these deep water submarine fan system is 

dominated by dimmer sub-parallel seismic reflections which are the result of mud and silt 

rich sediments.       

  

E-BD2  

Figure 19. 3-D image of the mapped early drift-unconformity and geobody geometry.     
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Figure 20.  Xline 357 indicating the dip direction geometry of the 

early drift-unconformity and the Top of the 6AT1 sand package. A 

sediment bulge is mapped on the basin floor (right hand side of 

the xline image) 
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The seismic horizons which represent the low stand system track sediment influx into the 

basin are brighter and more parallel above the Agulhus Arch. These horizons progressively 

become dimmer and increasing sub-parallel basin-ward. This change in seimic amplitude can 

be attributed to the fact that the shelf and slope region host a great influx of sand rich 

sediment, thus the alternation of sand and shale in this region results in bright parallel seismic 

reflections. The basinward region is dominated by hemi-pelagic muds with minor pulses of 

sand which reach this far onto the basin floor. Thus this region is dominated by sub-paralell 

dim horizons which are chaotic.  
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The regional sequence stratigraphic framework cannot be outlined due to the limited nature 

of the seismic cube. However the investigated early drift sedimentation can however be 

characterised to constitute a Low Stand Systems Tract. The LST encompasses a set of 

progradationally stacked parasequences. These parasequences progressively build basinwards 

and form a net shallowing-upward succession. The lowstand systems tract is underlain by a 

sequence boundary (unconformity) and overlain by the transgressive surface (ts), the first 

major flooding surface of the sequence. The LST is deposited during a slow relative rise in 

sea immediately following a relative fall in sea level (Underhill, 2014). 

 

The depositional pattern of this LST is associated with an increase in depositional area as the 

bowl-shaped basin filled. This increase in basin area is accompanied by a decrease in 

accommodation space relative to sediment supply (A:S).    

 

 

 

 4.5 BASE OF CHANNEL COMPLEX RESERVOIR 

The Sable reservoir is associated with early post-rift (drift) sedimentation. The interpreted 

drift unconformity (fig. above) is the base of a sedimentation period which includes the Sable 

reservoir.  

The surface outlined below is interpreted as the 13AT1 unconformity. This reservoir base has 

similar characteristics to the drift unconformity. The topographical characteristics of the 

underlying drift unconformity predominantly dictate the sedimentation pattern of all the 

overlying early drift sediments. The early drift 13AT1 unconformity (base of Sable 

Figure 21. Image depicting the top of the 6AT1 sand rich package, 

the geometry of the extracted geobody and the intersecting wells.   
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Reservoir) has similar paleo topographical characteristics as the underlying early-drift 

unconformity. The south-western section of the unconformity has a dominant high ground 

which mimics the underlying structural control of the Agulhus Arch.  

Sediment flows from the west off the high which overlies the Agulhus Arch, thus this 

structural high is associated with the proximal region of the investigated BFF system. The 

green geobody is representative of this proximal region while the white geobody is 

representative of a less confined depositional region. The Sable field constitutes the 

Submarine Channel-Lobe Transition Zone (CLTZ) of the basin floor fan system.  

This transitional depositional region commonly results in sand filled channels deposited at the 

base of the continental slope where the basin floor topography progresses basinward to a dip 

angle of approximately 2°. The Sable reservoir is a perfect example of this sand deposition at 

the base of slope in a confined depositional environment.   

 

 

 

 

 

 

 

 

 

 

 

  

Figure 22. Image depicting the base of the Sable BFF system. This mapped surface corresponds to the 13AT1 well top.  
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Figure 23. A seismic line through the up-dip (proximal) channelized region of the 

BFF system. The Geobody geometry represents the individual channel elements 

deposited the larger channelized seafloor. The geometry of the sea floor is 

represented by the mapped base of the channel surface. The red squares indicate 

the banks of the larger erosional channel base.  

4.6 RESERVOIR GEOMETRY   

This section of the research splits the interpretation into a proximal, transitional and distal 

regions of the Basin Floor Fan system.  

4.6.1 PROXIMAL BASIN FLOOR FAN REGION  

The proximal region of the Sable field’s basin floor fan reservoir is characterised by unique 

seismic and well log responses. The Base of the channel complex is observed to have two 

flanks which confine sediment transport and deposition. A number of elongated sand bodies 

can be observed which are interpreted as lateral switching and stacking channelized and 

amalgamated sand lenses.  

The extracted geobody depicts the elongated nature of sand bodies which have been 

interpreted from a seismic horizon that represents the base of one of the channelized deposit. 

The surface which represents the base of the channel can be characterised as an unconformity 

due to a number of onlapping horizons and erosive channel bases which dominate the 

channelized proximal regions of this deep water depositional environment.  

 

 

Paleo current flow direction in relation to the geobody is out of 

the page. Discontinuous bright reflectors and the elongated 

geometry of the channelized geobody provide evidence for the 

Excellent vertical and low lateral continuity of the sand bodies 

in the proximal regions of the fields reservoir (Wickens, 2014). 
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The geometry of these sand bodies results due to the steep nature of the channels base in the 

proximal region. This up-dip region is generally associated with erosive channels however 

this period of net erosion is followed by periods of net deposition where channels become 

sand filled. These large scale channel is filled with smaller scale sand filled channels which 

constitute amalgamated sand bodies that are laterally switching and stacking in nature.  

Outcrop and analogue studies indicated the proximal regions of BFF may constitute Single 

incised straight channels that are up to 40 m deep with levees up to 3 m high. Reservoir sands 

generally have a low aspect ratio (width vs thickness) which is predominantly caused by 

deposition of fine grained deep water sands in a channelized and confined environment.  

These channels have a highly erosive base which isn’t clearly seen in seismic, however 

gamma ray responses of electro facies indicate Erosional contacts at the base of the 

amalgamated channels.  

The proximal region hosts a number of depositional facies. Theses facies can be interpreted 

and inferred from seismic responses, however one must keep in mind the seismic resolution 

is poor and the internal heterogeneity of the reservoir can be better understood with well log 

analysis.  

 

 

Figure 24. Diagrammatical representation and outcrop photograph of the proximal region of the BFF system. The 

diagram depicts the various depositional elements which arise in this confined depositional environment (Wickens, 

2014). 
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With respect to the well log data for well E-BD5, the reservoir is characterized to have a high 

reservoir quality net to gross of approximately 90%.  

Gamma Ray log responses indicate alternating layers of large sand bodies separated by shale 

horizons. The total reservoir constitutes an 85 metre thick sand and shale succession. The 

thickest sand package in the reservoir is 34 metres and separated from the sand packages 

above and below thin shale layers.  

These sand packages are interpreted to be proximal channels fill sands where the shale 

horizons arise due to the meandering nature of the channelized environment.  

The high gamma ray response between clean channel sands could also be due to the erosive 

nature of each channels base. The sand package in contact with the channels base may 

contain mud clast conglomerates. Mud rip up clasts have been eroded by the shale horizons 

further up-dip as well as from the banks of the channels complex.  

The sand packages may however be in hydraulic communication further up dip or down dip 

of the well. This is an inherent depositional characteristic of the proximal channel 

environment. Sand packages may be relatively continuous and cut by large channels which 

then cause communication between various sands or pinch out to cause communication 

between sands.  

Well E-BD 5 appears to be situated at the erosive entry point of feeder channels into the 

basin. These feeder channels wind and meander lightly in a larger channelized base. This 

base of the channel is governed by the topography of the basin, where the steeper regions 

overlying the Agulhus Arch, constitute channelized turbidite sedimentary environments. 

This up dip region is associated with channelized sand rich bodies which are encased in a 

predominantly mud rich deep water environment. The E-BD5 well sheds light on this 

sedimentary characteristic of turbidites, where massive hemipelagic muds have been eroded 

by turbidite flows to form channelized depressions on the basin floor which have been filled 

by well sorted fine grained sands that constitute good quality reservoirs.    

The channel sand reservoirs found in the E-B5 well have been overlain by several metres of 

hemi-pelagic mud which constitute a top seal which is draped over the entire channel deposit.  

Sand influx into the basin by turbidite flows, takes place in times of lower sea level where 

sediments are eroded off the shelf and deposited on the basin floor. These sand rich channels 

on the base of the continental slope have been tapped by wells E-BD5 and E-BD2. Well E-

BD5 is situated up-dip of E-BD2 in the more proximal confined region BFF Complex. E-BD 

5 thus constitutes a more channelized and compartmentalised reservoir which extends up –dip 

and down-dip of the well bore, instead of extending laterally towards the flanks of the 

extensively confined channel complex.      
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Well E-BD 2 has tapped into a reservoir which constitutes a combination of channel fill sand 

as well as weakly confined channel sands are interpreted to be elongated lobe like structures. 

 

Facies in well E-BD5 from core #1 and #2  

 

Three Litho-facies have been identified: sandstone, siltstone and shale. They occur with four 

distinct unit types:  

A: Flaser-bedded lenses and pods of cross-bedded light coloured siltstone. 

Dark grey shale pinch and swell structures are also found. 

B: Massive, fine grained sandstone with occasional low-angle 

carbonaceous lamination, argillaceous clasts and numerous amalgamated 

clasts. 

The sandstones intersected are generally well sorted although fine 

carbonaceous detritus is disseminated throughout. These sandstones have 

sharp contacts and occasional planar bedding. Floating shale clasts appear 

in some regions of the core. ( 

C: Carbonaceous claystone which is finely laminated with dark grey 

siltstone. 

D: Clay clasts conglomerate. This constitutes a chaotic mixture of shale 

rip-up clasts that have varied shapes and sizes (rounded to elongate and 

irregular). These clasts are supported in fine-grained sandstone. 

 

Interbedded laminated units have been characterised as meander facies which can also be 

found in other boreholes. This facies type is a transitional facies between Facies B and Facies 

D. It is generally associated with the upper parts of the channel fill sequence. This type of 

facies is regarded as having a uniform thickness for great lateral distances (Howell, 1982 

cited in McAloon, 2000). The Bouma sequence doesn’t generally apply however sections of 

cross laminated divisions could represent low-density turbidity currents which could be 

equivalent to Tc Bouma divisions.   

The sandstones found in well E-BD5 are quartz arenites. They are slightly feldspathic and 

lithic (volcaniclastics and metasiltones) with varied amounts of mica and heavy minerals  
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Figure 25. Well log analysis of well E-BD5. The image constitutes well log display on 

Interactive Petro physics. Electro facies are adopted from core, modified after McAloon, 2000.  
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Table of comparative petro-physical reservoir characteristics  

Table 2. Comparative reservoir characteristics of wells E-BD5, E-BD2 and E-BD1.  

E-BD1 has exceptional net sand as it constitutes a channelized and amalgamated sheet sand 

deposit at the base of the continental slope.  

E-BD2 situated on the up-dip end of the bend in the channel. This well thus taps into 

amalgamated channels and confined sheet sands. the reservoir has an exceptional net sand 

value which are associated with amalgamated depositional channels, situated just up-dip of 

the base of slope basin floor region. E-BD5 exhibits a thick succession of amalgamated 

channel sands, with meandering channel facies in the upper section of the reservoir.  

The well has tapped into the channel deposit in a position where the paleo current flow 

direction changes and the channel takes a left turn as it flows out of the channelized region 

onto the unconfined basin floor.  Well E-BD 1 situated at the down-dip end of the bend, has 

tapped into a sand accumulation which is less confined and channelized than the sand found 

in well E-BD2.   

 COMPARITIVE RESERVOIR CHARACTERISTICS  

Petro-physical 

properties  

E-BD5 (proximal 

channel) 

E-BD2 (proximal 

channel) 

E-BD1 (Base of 

slope) 

E-CE1 

Gross thickness 

(m) 

76.2m 25m 30m 50m  

Nett Sandstone 

(m) 

68.5m 23m 29.7m 50m 

Nett average 

porosity (%) 

15% 17% 16.4% 14% 

XLINE INLINE 
E-BD2 E-BD1 

Figure  26. 3-D image representing the geometry of the channel body at the bend of the channel. Wells E-

BD2 and E-BD1 are situated before and after the bend respectively.  
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Inline 1489 above outlines a cross Sectional view of the channel at E-BD2. The cross section 

is cut in such a way that it indicates geometry of the up-dip and down dip portions of the 

channel. The left side of the yellow square on xline 1489 above indicates the up-dip portion 

of the channel where the seismic horizon in thinner due to angle which the cross section cuts 

the channel as well as a more channelized and irregular depositional elements.  

The righ hand side of the square indicates thicker horizons which represent the outer cut bank 

of the channel where it takes the left bend and continues into the page relative to the cross 

sectional view. 

RESERVOIR 

Figure 27. Inline 1489 is intersected by well E-BD2. The well tapped 

intoconstitutes channel fill sands and confined sheet sands.  
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RESERVOIR 

Amalgamated 

- channel fill 

sands and 

confined 

sheet sands 

The outer cut bank appears to host a thicker accumulation of sand filled into the section of the 

channel which experiences the most erosion when a channel takes a bend, thus provides the 

most local accommodation space for sand to back fill the channel. The banks of the channel 

are interpreted as hemipelagic mud and silt lithologies which are outlined by sub-parallel 

seismic horizons. The top of the E-BD2 reservoir is marked by a bright continuous horizon.  

This horizon marks an end to channel fill sand deposition and the possible onset of sea level 

rise which resulted in the deposition of hemi-pelagic muds that seal the reservoir.           

 

 

 

 

Figure 28. Xline 471 represents a cross section that cuts 

perpendicularly through the channel at well –ED2. 
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As seen in Xline 417 which cuts perpendicularly through the channel at well –ED2, the 

channel is highly confined. Its geometry is outlined in this proximal region by bright 

reflectors that define base and top reservoir surfaces. The axis of the channel is associated 

with a thickening of reflectors. The axis of the cannel is thicker than the off axis margins due 

to being sand rich, thus less compressible. The silt and mud sediments are draped alongside 

and over the thick sand accumulation in the axis of the channel. Some regions off the channel 

axis are associated with bright reflectors which could be interpreted as sand rich sediment 

which has flooded over the channel banks onto hemipelagic muds and subsequently sealed by 

hemeipelagic mud along witht the rest of the channel complex.  

These channel over bank sands appear to have good communication with channel axis sands, 

a relationship marked by continuous but dimming and pinching of horizons between channel 

sands and overbank sands.       

Well E-BD2 host sediments which exhibit various electro facies in the reservoir zone as well 

as the zones above and below the reservoir. The reservoirs base is dominated by 15m of 

irregular thin beds of alternating sand and silts (channel levee deposits). This 15m lower 

reservoir zone can be traced along a seismic horizon which is interpreted to be off axis 

channel deposits hosted on the over bank regions of the channel.  

An overlying 25m thick clean sand accumulation exhibits a cylindrical electro facies pattern. 

This sand accumulation is associated with a seismic horizon that thickens due on axis channel 

fill sands deposited in a confined channel environment, before the channel take the left turn 

onto the basin floor.  

The cylindrical gamma ray signal of the reservoir zone in well E-BD2 and the corresponding 

top and base seismic horizons, indicate a thick channel fil sand element that has been 

deposited in the confined environment of the erosive channel. This sand stone interval has 

predominantly been intersected by the well in the lobe axis, however sheet like sandstone 

from the off axis region off less confined sand rich deposits have also been tapped by well E-

BD2. These sheet sands are found above and below the reservoir which is bounded at the top 

and base by prominent shale horizons. The reservoir zone itself also hosts sheet sand at its 

base which appear to be connect to the major lobe sand.  

The presence of both massive and amalgamated channel fill sands is common when the 

feeder channels meander within the larger channelized region of the basin floor. Thus the 

reservoir in well E-BD2 hosts both amalgamated channel fill sands from the axial region of a 

deposit and the sheet sands from the off axis region of other feeder channels.   
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Figure 29. Well log analysis of well E-BD 2 using Interactive Petro physics.   
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4.6.2 BASIN FLOOR FAN CHANNEL-LOBE TRANSITION ZONE (CLTZ) 

A significant sand rich zone of the Sable Fields reservoir is interpreted to arise in the channel-

lobe transition zone (CLTZ) of the larger Basin Floor Fan system. This reservoir sandstone 

has been tapped by well E-BD1. Analysis of this reservoir zone is based on a collaboration of 

the 3-D seismic cube and well data in order to delineate the 3-D configuration of the 

reservoir. The seismic horizon in figure below represents the top of this sand rich reservoir 

zone. The accumulation of sand under investigation is outlined by the black ellipse. The 

ellipse encompasses a sand rich  lobe which is interpreted to have been deposited at the base 

of the continental slope in a relatively confined channelized environment.   

  

 Figure 30. The Conceptual Depositional Model of a Basin Floor Fan systemis related to the Top 

surface for a sand package deposited at the base of the continental slope. Modified from 

Groenenberg et al., 2010 cited in Jiajie, 2012.  
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The sandstone reservoir tapped by well E-BD1 is interpreted to constitute a depositional 

environment which is referred to as the submarine channel-lobe transition zone (CLTZ). This 

region of the submarine basin floor fan marks the crossing point between up-dip channels and 

down-dip lobes. With respect to this study the CLTZ region is interpreted to be the base of 

slope region where sand has accumulated. The CLTZ functions as the connection between 

locally confined and unconfined conditions of sediment gravity flows. These gravity flows 

serve as the submarine fans building blocks (Jiajie, 2012; Gordon, 2014). 

Sand was deposited in this region where the channelized slope environment progressed to a 

slightly less confined channel area close to the basin floor environment. This thick sandstone 

accumulation could have been deposited by back filling of sand in the larger channelized 

region of the basin. The sand rich lobe is elongated due to the steep topography of the 

Bredasdorp Basin as well as the confining nature of the channel base.    

The CLTZ region tapped by well E-BD 1, governs sandstone connectivity between the 

channelized sandstone reservoirs (Tapped by wells E-BD5 and E-BD2) and the down dip 

lobes tapped by well E-CE1. This hydraulic communication only refers to a channel and lobe 

at the scale of an individual architectural element. The reservoir zone tapped by well E-CE1 

however constitutes a different sand rich architectural element to well E-BD1. The lobes 

tapped by well E-CE1 are situated in a lower basin floor fan than the channelized lobe found 

in well E-BD1.    

A turbidite system of the Ainsa basin in Spain serves as a good analogue example for the 

characteristics of the CLTZ which governs the reservoir found in well E-BD1. This turbidite 

analogue constitutes a ~4-km-long, paleocurrent-parallel transect which is continuous 

through a channel-lobe element. The base of slope sand deposit outlined in figure above by 

ellipse, has a width of about 2km at the channelized lobe, and a length of approximately 4-6 

km along the paleocurrent-parallel transect through the channel-lobe element. There are a 

number of fundamental longitudinal changes which take place across the CLTZ in this 

depositional system (Wickens, 2014; Gordon, 2014). These changes are observed in the 

spatial distribution of the sandstone reservoir under investigation. 

 

The spatial changes in the distribution of sand tapped by well E-BD1 is outlined using the 

seismic horizon interpreted in figure above as well as the transecting xline 457 and inline 

1249 outlined below in figure … and … respectively. 

 

The lobe elements and the lobe at large thicken in a down-current direction. This depositional 

phenomenon can be observed on inline 1249 below. The reservoir zone is delineated by the 

yellow window, where sand is transported and deposited from the left (up-dip) towards the 

right (down-dip) side of the window in figure below. The thickening of top and base horizons 

in a down dip direction is also the result of older proximal lobe bed-sets thinning and 

pinching out completely onto the erosive lower contact in an up-current direction (Wickens, 

2014; Gordon, 2014). Based upon stratigraphic thickness measurements discussed in 

analogue studies, the CTLZ region of the BBF system is attributed to a base-of-slope 

depositional angle of approximately 2°. 

  

The seismic horizons interpreted as the top and base of the reservoir correspond well with the 

reservoir zone outline in well E-BD2. The blue horizon pick is interpreted as the top of the 

reservoir. The upper part of the reservoir which constitutes a gas charged sandstone is 
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overlain by a 4 metre thick sealing shale. This rapid change in lithology and fluid content of 

the sediment has resulted in this bright blue seismic response. The seismic pic itself thickens 

in a down dip direction. This blue top reservoir horizon is however continuous both up dip 

and down dip.  

 

The underlying red seismic pic is interpreted as the base of the reservoir. This horizon 

corresponds well with the base of the reservoir and it has the characteristics of deposition on 

an erosive channel base.  This base reservoir horizon (red) is much thicker than the top 

reservoir horizon (blue). It also depicts considerably greater internal heterogeneity. This 

internal heterogeneity is outlined by thickening and thinning as well as brightening and 

dimming of the red horizon. This red horizon also indicates a highly confined environment 

due to its sharply discontinuous nature. The variation of brightness and continuity of this base 

reservoir horizon can be attributed to the nature of architectural elements within the 

channelized lobe structure.  

 

 

 

Figure 31. Xline 485 cuts parallel to the paleo current flow direction of the channel near well E-BD1. The well has 

intersected a reservoir zone which constitutes a thick amalgamated lobe complex deposited at the Base of the 

Continental slope in a relatively confined CLTZ.  
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The CTLZ reservoir zone tapped by well E-BD 1 and its geometry away from the well bore 

has been interpreted with respect to the various analogues consulted for this study. 

Architectural elements within this sand rich zone constitute a transitional depositional style 

which increases the internal heterogeneity of the reservoir.   

 

Since the CTLZ host a transitional depositional style, the nature of gamma ray responses at 

the well bore and seismic responses away from the well bore indicate a complex reservoir 

zone. This transitional style of deposition results in a reservoir zone which constitutes both 

channelized and lobe like architectural elements. The seismic response away from the well 

bore provides evidence for the presence of these architectural elements. Due to poor seismic 

resolution, the complex internal heterogeneity has not been fully captured.  

 

The reservoirs internal heterogeneity has however been captured by well log response and 

core analysis. The gamma ray log response indicates that the reservoir zone is deposited on a 

relatively sharp erosive base, where architectural elements generally constitute constructional 

features such as: thick bedded sand sheets; thin bedded sand sheets; Amalgamated thick and 

thin bedded sand sheets as well as depositional feeder channels.  

    

The amount of erosion at the base of the confined lobe like element tapped into by well E-

BD1 generally decreases basin-ward. The sediment package also thickens basin-ward, where 

analogue studies have indicated that there is a basin-ward decrease in intra-element erosion 

and amalgamation surfaces. This can be observed within the base reservoir horizon which 

becomes brighter and less chaotic in a down dip direction. This can be attributed to less 

internal heterogeneity with the reservoir zone down-dip. 

 

The base and top reservoir horizons as well as the thickness of the reservoir zone indicates 

that clean sandstone is extensively laterally continuous. There is thus Continuity of sandstone 

from the up-dip channel to the down-dip lobe. The CLTZ region of the basin floor fan system 

where well E-BD1 has tapped into provides a sand rich environment which could provide 

hydraulic communication between up-dip channels and down-dip lobes. This communication 

of various up-dip and down-dip sand rich depositional elements agrees with the analogues 

consulted for this study (Gordon, 2014).  

 

With respect to the upper yellow window in figure… above, seismic and well data can be 

correlated to illustrate that the sub parallel horizons represent a massive succession of hemi 

pelagic mud which encases the sand rich reservoir. This hemi pelagic mud is found below 

and along the sides of the sand rich reservoir zone thus the entire spatial configuration of the 

sand rich BFF complex is trapped in hemi-pelagic mud. 
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Well E-BD 1 has tapped into the CTLZ region of the BBF system 

resulting in an extensively sand rich reservoir. This clean sand is 

attributed to the positioning of the well, which has intersected sands in the axial region of the 

larger basin floor fan system. This elongated lobe has been deposited at the base of the 

channelized slope, on the basin floor which is less confined than the channelized region of the 

BFF.  

Figure 32. Inline 1429 represents a cross section that cuts perpendicularly 

through the elongated lobe intersected by well E-BD1. The lobe element and 

lobe complex diagram can be observed in seismic (yellow square). Modified 

from Groenenberg et al., 2010 cited in Jiajie, 2012.  
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Figure 32 above outlines a perpendicular transect through the channel which depicts the 

confining nature of the depositional environment. The horizons interpreted as the top and 

base reservoir surfaces are thicker in the axis of the channel and pinch out towards the 

channel banks and outer medial fringes of the elongated lobe structure. As seismic resolution 

at depth of 2000m is roughly 20metres, the internal heterogeneity of individual lobe 

structures cannot be seen. The overall lobe complex can however be identified by the 

thickening of horizons in the lobe axis which host more amalgamated lobes element than the 

adjacent lobe fringes. 

 

 

The axial region of the channelized sand sheet is associated with amalgamated thick bedded 

sheets as well as depositional channels. This axial region exhibits a prominent thick with the 

drapping of horizons towards the banks of the channel and the outer fringes. Outer fringes are 

dominated by pulses of overbank sand which are in possible hydraulic communication with 

the main channelized sands. The off axis region of the channelized lobe predominantly 

constitutes sheet sands which are inter-bedded with silt and discontinuous shale horizons.    

Figure 33. A diagram and photograph of the Channel Lobe Transition zone (CLTZ) of the Basin Floor Fan 

system (BFF). This region marks the transition from proximal (confined) to medial (unconfined) fan. 
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The axial portion of the channelized sheet predominantly hosts constructive features with 

minor erosional confinement at the base of some sand pulses do arise. This erosional 

confinement constitutes the axis of the channel which host amalgamated thick sand sheet 

deposits, while the off axis region host channelized thin bedded sheet sands.    

 

The CLTZ region of the BFF system constitutes   branching sand-filled shallow channels 

which are generally < 2 m deep. There is however cases where the axial portion of 

channelized sheets exceed 2m in depth, which is the case with the CTLZ region tapped by E-

BD1.  

 

The red pic seismic horizon which represents the base of the channel exhibits a seismic 

response of laterally switching and stacking of the axial portion of the amalgamated 

channelized sheets. The axis of the sheet constitutes brighter and thicker sections of seismic 

horizons which pinch out rapidly towards the fringes of the axial region. The fringes most 

likely constitute thin bedded sheets sands which are not sufficiently captured due to seismic 

resolution.  

 

This transitional environment commonly hosts channel levees which are generally less than a 

meter in high, if present at all. Theses levees are associated with sandy overbanks deposited 

in the inter-channel area. 

 

With respect to the perpendicular transect through the channel outlined in figure…. Above, a 

number of reservoir characteristics can be observed. Seismic responses outline characteristics 

away from the well bore, however with poor resolution. Seismic responses correlated with 

gamma ray log responses at the well bore depict spatial reservoir characteristics which shed 

light on reservoir behaviour near and far from the well bore.  

 

The medial fan of this study which is tapped by well E-BD1, exhibits a reservoir with an 

extensively high aspect ratio (width vs thickness). The reservoir zone constitutes an 

uninterrupted 30m thick sand rich zone. Seismic responses away from the well bore indicate 

that this sand rich reservoir zone is extensively laterally continuous. There is however a rapid 

change in sand rich architectural elements the axis of the channelsed sheets elements to the 

marginal off axis sand deposits.  

 

Analogue studies of the medial fan region exhibit a moderate net to gross of approximately 

65-80% (Wickens, 2014). Well E-BD 1 has intersected the axis of the channelized sheet 

complex thus the net to gross of the reservoir zone is above 90%. No shale sediment exist in 

the reservoir zone, however minor silt sheets exist between amalgamated thick bedded sheet 

sands. 

 

The reservoir zone hosts no erosive contact and it is bounded above and below by prominent 

massive shale beds which are uninterrupted by pulses of sandy sediments. The reservoir 

exhibits moderate vertical continuity, with minor silty breaks between amalgamated sheets 

which add to the internal heterogeneity of the reservoir zone. The reservoir has high            

lateral continuity (Wickens, 2014). This lateral continuity can be observed as top and base 

reservoir horizons which constitute. brightness and thickness changes. These geophysical 

changes are due to internal heterogeneity that arises when architectural elements progress 

from the axis to margins of the channelized sheet sands.  
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RESERVOIR  

Figure 34. Wireline Log analysis of well E-BD 1 using the Interactive Petro-

physics software. The reservoir zone constitutes a massive amalgamated lobe 

and channel sand complex (30m thick), deposited at the base of the continental 

slope.  

Grain-size analyses and point counting reveals that the CLTZ (tapped by well E-BD1) and 

lobe sandstones (tapped by E-CE1) are generally better sorted and finer-grained than channel 

sandstones. This change in the quality of reservoir sandstone is the result of different 

combinations of depositional processes which operate in the locally confined (channel) 

domain and the unconfined (CLTZ and lobe) domain (Gordon, 2014).  

These depositional processes produce various architectural elements which contribute to the 

reservoirs internal heterogeneity. As in seen in figure… below, well E-BD1’s reservoir 

constitutes a combination of architectural elements which include, amalgamated thick bedded 

sand sheets and depositional channels. These depositional processes have taken place in the 

base of slope region which constitutes a relatively steep confined environment. This 

relatively confined region of the Basin floor has been the depo-centre for the 30m thick sand 

succession.     
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4.6.3 DISTAL FAN REGION   

Well E-CE 1 has tapped into a sand rich zone which constitutes the lobe region of the sub-

marine BFF system. The extensively unconfined region is situated on the basin floor, 

approximate 3km away from the channelized sheet sand tapped by the up-dip well E-BD1.  

Gamma ray logging of well E-BD1’s reservoir zone exhibits cylindrical log responses. These 

GR patterns are interpreted as clean sheet sands which constitute laterally extensive lobe. The 

lobe structures constitute amalgamated thick and thin bedded sheet sands. There is an 

extensive feeder channel system associated with the sheet sands. These feeder channels are 

observed on seismic to reach the edge of the amalgamated lobe.    

The lobes comprise of amalgamated thin and thick bedded sheet sands and depositional 

feeder channels which constitute a 50 metre thick reservoir interval. The reservoir hosts a 

sharp base which is not erosive. A rapid change in lithology is the result of a rapid sand pulse 

influx into the basin, which overlies hemi-pelagic muds. The influx of clean sand is the result 

of turbidity flows where sand flowed of the rise which overlies the Agulhus Bank. The onset 

of sand influx is associated with the low stand system tract that originates due to sea level 

transgression. The reservoir zone is bounded above and below by prominent hemi-pelagic 

shale successions which indicate sea level fluctuated considerably.  Low sea level resulted in 

the deposition of clean BFF system sands which are eroded off the continental shelf. A 

subsequent rise in sea level resulted in the deposition of sealing hemi-pelagic muds which 

also constitute a possible good quality source rock.    

With respect to seismic interpretation, the geometry of the lobe elements are relatively unique 

compared to analogue studies. Architectural elements which construct the amalgamated lobes 

are elongated instead of cylindrical. This is due to the steep topography of the bredasdorp 

basin at the time of deposition. This steep topography is also the cause of considerably deep 

feeder channels reaching to the edge of the amalgamated lobes. These feeder channels 

observed on seismic are quite large due to the fact that they are visible with respect to seismic 

resolution. The feeder channels are also prominent because the seismic cube constitutes the 

up-dip portion of the elongated lobe complex tapped by well E-CE 1. Feeder channels are 

broad. They exhibit a laterally switching and stacking depositional pattern.  

Seismic interpretation has consulted well log responses thus the 50metre reservoir zone is 

observed on seismic as extensively laterally continuous lobes. The top reservoir is 

represented by two horizons (blue pick) which constitute gas charged lobe elements. These 

horizons represent two amalgamated lobes which are laterally continuous; however they do 

pinch out towards the fringes of the lobe complex. The well has intersect perfectly in the axis 

of the lobe where amalgamated thick bedded sheets and depositional feeder channel sand 

dominate. The reservoir is thus entirely fabricated of clean sand which exhibit cylindrical GR 

log responses.    
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The sheet complex tapped by well E-BD1 constitutes broad layered sand sheets which have a 

highly amalgamated axis (Wickens, 2014). This amalgamated axis has a relatively basic 

internal heterogeneity which is observed in well E-CE1. Seismic indicates that the reservoirs 

internal heterogeneity becomes more complex away toward the marginal of axis regions of 

the lobe.  

The lobe which constitutes the lower portion of the reservoir has a thickness of 30m. This 

lower lobe can be clearly observed on seismic as a bright blue horizon (top of lobe) and a 

bright red horizon (base reservoir). This lobe is however not extensively continuous. The 

bright thick horizons pinch out rapidly as one moves away from the axis of the lobe. The axis 

is thus interpreted to be highly amalgamated thick bedded sheet sands and amalgamated 

depositional feeder channels. The off axis regions of this lower lobe are interpreted to be 

amalgamated thin bedded sheet sand sands. These sediments are represented by 

discontinuous seismic horizons which are less parallel than the amalgamated axis of the lobe 

complex.  

  

 

RESERVOIR  

Figure 35. Well E-CE1 has intersected an amalgamated lobe complex (50m thick), deposited in the deeper waters 

on the basin floor.  Amalgamated sheet sands and feeder channels are within the confines of seismic resolution 

thus these channel bodies are at least 15-20m thick. Unconfined massive lobe elements are spread out on the basin 

floor. These lobes elements are laterally continuous. Individual lobe elements are stacked together to form intricate 

lobe and feeder channel complex’s resulting in laterally continuous zones of very good reservoir sand (4-5km 

wide).  
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The upper portion of the reservoir zone constitutes two amalgamated lobes which are 12 and 

8 metres thick. These two lobes are represented by extensively continuous horizons. These 

upper lobes are far more continuous than the lower lobes. They are thus interpreted as less 

confined architectural elements than the lower lobe, however they exhibit the same clean 

sand represented by cylindrical log responses. The horizons which correlate with the upper 

lobes are however less parallel and dimmer which could be associated with amalgamated 

beds which are slightly thinner than the lower reservoir.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 12m thick lobe structure has a perfectly vertically continuous log response which could 

be attributed to an amalgamated massive sandstone deposited in a single pulse of sand influx 

onto the basin floor. This portion of the reservoir could also be a depositional feeder channel 

where its geometry is not entirely captured away from the well bore due to seismic resolution.  

The Elongate lobes are generally composed of interbedded sand and mud. Well E-CE1 has 

however tapped into the highly amalgamated axis of the lobe, thus no mud lenses are visible 

Figure 36. A diagram and photograph of the sheet like lobe elements and lobe complex’s with respect to on axis and 

off axis sand deposits. Theses sheet are deposited on the unconfined basin floor.   
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figure 37. Inline 1236 represents amalgamated laterally switching and stacking sandstone lobe elements in the axis of 

the lobe complex. These sand rich gas charged lobe elements are situated in the axis of channel complex (right yellow 

block), with flanking finer grained sheet sands, laminated shale and siltstone (yellow block on the left) found in the off 

axis region of the complex.   

in the reservoir zone found in the well. These mud rich sediments arise as one moves further 

away from the axis of the lobe. Thus the reservoir net to gross of a single well varies 

considerably depending on where the well is placed in the larger lobe complex.  

The axis is the best position to position a production well because it hosts the best quality 

clean sands. Its vertical and horizontal permeability is great due to the amalgamation of 

massive sandstone lobes. The axis is also the best place to link and tap into all extensively 

laterally continuous lobes with a single well. If good to moderate permeability is as extensive 

as the lobe complex itself the well will be able to drain a region as far as the off axis fringes 

of the lobes.  

A number of shallow relic channels extend to near limit of fan, however observation is 

limited due to the extent of the seismic cube which doesn’t expose the entire distal edge of 

the lobe complex. These channels flow this far onto the basin floor regardless of the fact that 

this depositional environment constitutes very low relief and gentle gradient. The 

depositional feeder channels and lobe elements do however exhibit a lateral switching and 

stacking pattern which is due to the structural control of lobe elements which were deposited 

prior to the subsequent lobes. This is an inherent structural control of the lobe complex 

environment. The lateral switching and stacking of lobe element can be observed in figure… 

below. The lower lobe tapped by well E-CE1 exhibits far greater stacking complexity of than 

the lobe which constitutes the upper portion of the reservoir.   
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RESERVOIR  

Figure 38. Wireline log analysis of well E-CE1 using the Interactive petrophysics 

software. The wells reservoir zone constitutes amalgamated laterally switching 

and stacking sandstone lobe elements in the axis of the lobe complex. The 

amalgamated, massive pure sand lobes have a thickness of 50m.   

The reservoir zone as an entire amalgamated lobe complex has an extensively high aspect 

ratio. The lobe complex is more than 5km wide however the complex is no thicker than 50m 

at its axis.  

Sub-parallel horizons are attributed to the thin bedded off axis portion of the lobe complex 

where the net to gross is considerably less than the highly amalgamated axis of the lobe 

complex. With respect to analogue studies the lobe complex has a moderate to good net to 

gross of 40-60%. The high aspect ratio of the lobe complex severely impacts the reservoirs 

vertical permeability, however horizontal permeability is quite good to the extensive lateral 

continuity of good quality sheet sands.  

The highly amalgamated axis of the lobe has very good vertical permeability as well as 

horizontal permeability, to an extent that the lobe sand may be in hydraulic communication 

with channelized sheet sands situated up-dip.  
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T13PW3 TOP SEAL 

4.7 TOP SEAL ARCHITECTURE   

The T13PW3 well top represents a perfect seal horizon. Moving from the reservoir zone 

upward, this top seal horizon represents the start of massive shale succession which seals the 

reservoir. With respect to figure 39 below this sealing horizon (red pick) is represented by the 

green line (seismic interpretation). This seismic horizon is extensively continuous and can be 

correlated in all the wells investigated in this study. This prominent shale horizon seals the 

up-dip proximal channelized reservoirs, the CLTZ reservoirs and the distal lobe reservoir of 

the BFF system.    

The down-dip lobe reservoir tapped by well E-CE1 is not genetically related to the 

channelized sheet reservoir and proximal channel reservoir tapped by wells E-BD1, E-BD2 

and E-BD5 situated up dip. These two individual BFF systems are probably not in hydraulic 

communication as the upper E-BD reservoir overrides the lower E-CE1 reservoir. This is 

observed by reservoir representing seismic horizons which pinch out.      

This sealing shale does however seal both E-BD and E-CE reservoirs. 

This seal is equally think and prominent in all the wells. It is 

especially thick in well E-BD1 thus this well is used to illustrate 

this seal in figure 39. The seal does not comprise one massive 

200m shale succession, instead it constitute layered sheet shales 

which are extensively laterally continuous. These layered sheet shales 

are however individually 5 to 10m thick. They can thus be characterised 

as massive layered shales which are hemi-pelagic in nature.  

This type of hemi-pelagic shales also underlie the reservoir zone, 

however these underling shales are far more massive in nature. This 

indicates that the succession progressively becomes more thinly bedded 

after the sand pulse which constitutes the reservoir zone. This could be 

attributed to greater fluctuation in sea level rise and sediment influx into 

the basin.  

  

The T13PW3 horizon constitutes the mapped surface in figure 39 below. This top seal can be 

observed to drape over the axis of the BFF. The axis of the BFF system constitutes a sand 

rich zone which forms a prominent thick. This sand rick thick can be observed along the axis 

all the way from the up-dip channelized region to the down-dip lobe complex. The seal is 

also draped over the high which overlies the Agulhus Arch. This extensive lateral continuity 

of this hemi-pelagic shale can be attributed to a rapid rise in sea level or an increase in 

accommodation space associated with other factors such as tectonic activity and thermal 

sagging. The increase in accommodation space is also due to sediment load which has a great 

impact on post rift basin geometry and sediment influx.      

Figure 39. Top seal 

depicted in well E-BD 1 
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Figure 40. Xline 457 serves as a cross section that cuts parallel to the paleo-current flow direction of the 

channel. The mapped surface represents the top seal of the reservoir zone which is draped over the sand thick 

found in the on-axis sections of the BFF system. The seal is draped over the confined channel complex and 

base of slope sand package. It is also draped over the unconfined lobe complex in the down dip basin floor 

regions.      

E-BD2 E-BD1 
E-CE1 

Xline 457 
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CHAPTER 5: RESEARCH CONCLUSION AND RECOMMENDATION  

The Sable Fields reservoir has been deposited during the early post rift (Aptian) sedimentary 

fill of the Bredasdorp Basin. This Cretaceous reservoir zone overlies the 13AT1 early-drift 

unconformity. 3-D seismic mapping and surface generation, of Early-Drift sedimentation 

(figure 19. below) indicate a depo-centre towards the North Eastern section of the seismic 

cube. Sediment flows from the west as it is eroded off the shelf. This rise which overlies the 

Agulhus Arch constitutes high ground where the early-drift submarine channels transport 

sediment via turbidite flows, into the deeper waters depo-centre.   

The depo-centre hosts a prominent thick of sediment, represented by parallel and sub-parallel 

horizons. These early drift sediments constitute reservoir sandstones. These deep water 

reservoir sands were deposited by turbidite flows during Aptian and Albian low-stands. 

These sand rich complexes host several small oil and gas fields with development potential. 

 

3-D Seismic data from field analogues such as basin-floor settings offshore Indonesia, 

Nigeria, the Gulf of Mexico and outcrop analogues such as the the Tankwa Karoo outcrop 

reveal the extensive presence of gravity-flow depositional elements. Each depositional 

element constitutes a unique morphology thus they display different seismic expression. 

These depositional elements constitute a unique contribution to reservoir architecture. This 

contribution to reservoir architecture is a function of the interaction between three 

components namely:  

 

(i) sedimentary process;  

(ii) sea-floor morphology;  

(iii)and sediment grain-size distribution 

The wells investigated, namely: E-BD5, E-BD2, E-BD2, E-CE1; have tapped into these deep 

water sediments which are mainly subdivided into three depositional environments, namely:  

i. Channel complex reservoir sands that are back filled and into the large confined channel 

environment.  E-BD5 and E-BD2.  

ii. Basin Floor Channel (BFC) –E-BD1.  

iii. Basin Floor Fan (BFF) complex E-CE1.  

 

i. E-BD5 and E-BD2  

 

These wells have tapped into amalgamated depositional channel sands with a number of 

erosive channels.  The channels meander in a larger confined environment in the lower 

regions of the continental slope, before the channel takes an 80° bend and flows onto the 

basin floor. The individual channels generally meanders down-dip, however this large 

channel systems makes a rapid change in paleo-current direction due to basin floor 

topography. 

 

The amalgamated channels sands are deposited by laterally switching and stacking channel. 

The highly confined channels sands are deposited amongst massive channel fill sands that are 
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deposited in broader less confined channels. Sinuosity of these meandering channels ranges 

from moderate to high. 

 

Turbidity-flows deposit fine grained good sands in meandering leveed channels. These sands 

constitute excellent lateral continuity and good vertical continuity which results in good 

quality reservoirs situated in the up-dip regions of the field. This channelized reservoir is at 

least 2km wide and 6km long. The stacked channel complex tapped by two wells, constitute a 

gross thickness of 76.2m (68.5m Net sand) in well E-BD5., and a gross thickness 25m (23m 

Net sand) in well E-BD2. Channel sands in well E-BD5 have an average porosity of 15% 

while the average porosity of channel sands in well E-BD2 (further down-dip) is 17%.  

 

This channel fill constitutes a high net to gross with little to no lateral facies variations. This 

environment is dominated by amalgamated massive sands (on-axis) that are thinner bedded 

towards the banks of the channels (off-axis). A high degree of channel amalgamation has 

been interpreted in both wells, and extrapolated away from the wellbore by correlating top 

and base reservoir seismic horizons. The vertical and lateral continuity of the reservoir is 

generally excellent due to this high degree of channel amalgamation.      

 

Channel-overbank sediments are associated with high-sinuosity channel elements. These 

sediments have been deposited in the proximal overbank levee setting. They are especially 

associated with the outer channel bends. These channel overbank sediments are found in the 

Sable Field over the outer bank of the major bend in the channel.  

 

This up-dip channelised region of the Basin Floor Fan system results in high amplitude 

reflections. This common characteristic suggests that these features are sand filled 

depositional channels which are hydrocarbon charged. Bright sub-parallel horizons indicate 

confined channel architectural elements that are amalgamated and encased in hemipelagic 

muds (extrapolated from wells). These individual channel elements are at least 15-20m thick 

with respect to seismic resolution. 

 

ii. E-BD1  

 

The well has tapped in relatively confined sands that are massive in nature and considerably 

thick. These amalagamated thick and thin bedded sheet sands have been deposited at the base 

of slope region.  

 

The amalgamated sheet sand complex is entirely encased in hemipelagic mud. The reservoir 

sands tapped by this well are interpreted to be deposited in the Channel Lobe Transition Zone 

(CLTZ). This region is thus dominated by both channel complex and lobe complex elements. 

The reservoir sands are interpreted to have a transitional depositional style (generally 

channelized sheets). The reservoir constitutes a number of amalgamated elements such as; 

amalgamated thick and thin bedded sheet sands, broad thin amalgamated lobe elements, 

layered thick bedded sand sheets and deep broad depositional channels.  
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The amalgamated thick bedded sheet like lobes are found in the axis of the sand rich 

complex, where deep depositional feeder channels are abundant. The off-axis regions of the 

base of slope sand rich complex, is dominated by amalgamated thin bedded sand sheets. 

These deposited are associated with much shallower depositional feeder channel sands. The 

channel-margin levee constitutes a thickness which decreases systematically down-system. 

 

The frontal splay and low-sinuosity distributary-channel complexes are found in the region 

where levee thickness is below seismic. The up-dip high-sinuosity channels feed the low-

sinuosity distributary-channel complexes situated further down-dip in the base-of slope 

region. These low sinuosity distributary-channels and elongate lobe elements are expressed as 

lobate amalgamated sheets of sand which is up to 2-3km wide and 5km long and 30m thick 

(29.7m Net sand) at the well bore. These amalgamated thick bedded sand sheets, thin bedded 

sands and depositional channels constitute a reservoir zone which has an average porosity of 

16.4%.  

 

iii. E-CE1  

Well E-CE1 has tapped into a Basin Floor Fan complex that is built primarily with lobe 

elements. The Bredasdorp Basin has a steep topography thus these lobe elements and the 

larger lobe complex is elongated in shape.  

Analogues of deep water turbidite sand rich deposits indicate that there stacking pattern of 

lobe and channel systems has an inherent structural confining ability. For example, according 

to the architectural framework of these deposits, the channelized portion of lobe will be 

structurally confined by its two neighbouring lobes. The Lobe complex of the Sable Field has 

also been affected by structurally confining factors such as basin floor topography and 

neighbouring lobe complexes.  

The well has intersected a 50m thick reservoir (50m Net sand) which constitutes 

amalgamated thick bedded lobes which are massive in nature. The Axis of the lobe complex 

constitutes thick massive lobe elements. This laterally continuous hydrocarbon charged lobe 

elements result in bright seismic reflections where shale overlies reservoir sands. The 

reservoir zone has an average porosity of 14%.      

The reservoir zone as an entire amalgamated lobe complex has an extensively high aspect 

ratio. The lobe complex is more than 5km wide however the complex is no thicker than 50m 

at its axis. Sub-parallel horizons are attributed to the thin bedded off axis portion of the lobe 

complex where the net to gross is considerably less than the highly amalgamated axis of the 

lobe complex. With respect to analogue studies the lobe complex has a moderate to good net 

to gross of 40-60%. The high aspect ratio of the lobe complex severely impacts the reservoirs 

vertical permeability, however horizontal permeability is quite good to the extensive lateral 

continuity of good quality sheet sands.  
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The highly amalgamated axis of the lobe has very good vertical permeability as well as 

horizontal permeability, to an extent that the lobe sand may be in hydraulic communication 

with channelized sheet sands situated up-dip.  

 Debris-flow deposits are found towards the distal edge of the Basin Floor Fan system. They 

comprise low-sinuosity channel fill sands, narrow elongate lobes and sheets sands. These 

distal sediments are characterized seismically by contorted and chaotic reflection pattern 

which have low amplitudes. Shale and silt constitute most of the distal regions and off axis 

region of the lobe complex. These sand rich sediments are ultimately overlain and draped by 

condensed-section deposits. These condensed hemi-pelagic mud-rich deposits constitute the 

top seal. 

 

These distal deposits are characterised by transparent and chaotic seismic reflections which 

suggest that these deposits are silt and mud-rich. The outer edges of the lobe complex tapped 

by well E-CE1, constitutes debris flow deposits. 

 

This succession of deep water Basin Floor Fan sediments can be attributed to a cycle of 

relative sea-level change. These sea level changes are associated with events at the 

corresponding shelf edge.  Low sea level results in shelf sand being eroded and transported 

by turbidite currents to the deep water basin floor region. The deposition of a deep-water 

sequence is generally initiated with the onset of a drop in relative sea-level which is 

subsequently followed by a rapid relative sea-level rise which results in the hemi-pelagic mud 

rich seal  

The seal constitutes a prominent shale horizon T13PW3 (8-10m thick) which is drapped over 

the entire reservoir complex. This top seal is extrapolated from the well and correlated with 

seismic facies in order to study the lateral continuity and thicknesss variations of the top seal. 

This shale horizon is draped over the axial portion of the BFF system which constitutes a 

thick amalagamated channelized complex and amalgamated lobe complex.  

Post rift deposits that over lie the Sable Fields reservoir, plays a major role in the maturation 

of the source rock shales which encase the sand rich complexes. Tertiary post-rift events have 

been significantly influenced by the uplift of Southern Africa. They also have significant 

implications for the subsequent removal of a substantial amount of sediments from the 

Bredasdorp Basin during the tertiary. 

 

The total lateral extent of the Basin Floor Fan complex could not be studied. Future studies of 

the Sable Field could investigate a larger seismic cube. The seismic cube should include 

regions further up-dip in order to study the geometry of the reservoir on the continental slope. 

The cube should also include the basin-ward region of the BFF complex which could 

facilitate outlining the total lateral extent of the lobe complex deposited on the basin floor 

where sand are entirely encased in hemi-pelagic muds. This sand rich lobe complex pinches 

out onto the basin floor in a dominant volume of shale.  
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APPENDIX C: DRIFT UNCONFORMITY MAP    
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APPENDIX E: BASE OF RESERVOIR MAP  
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APPENDIX F: TOP BASE OF SLOPE SAND PACKAGE MAP 
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APPENDIX G: TOP SEAL MAP 
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