
  
 

RESPONSES OF MAIZE ANTIOXIDANT 

ENZYMES TO DROUGHT STRESS 

  

By 

 

Andile Lilelo 

A thesis submitted in partial fulfilment of the requirement for the degree of 

Master of Science in the Department of Biotechnology, University of the 

Western Cape. 

 

Supervisor: Prof. Ndiko Ndomelele Ludidi 

Co-supervisor: Dr Kyle Phillips 

 

February 2019 

http://etd.uwc.ac.za/



i 
 

KEY WORDS 
 

Maize 

Drought 

Reactive oxygen species (ROS) 

Oxidative stress  

Antioxidant enzymes  

Superoxide dismutase (SOD) 

Catalase (CAT) 

Ascorbate peroxidase (APX) 

Relative gene expression 

Cell death 

  

 

 

 

 

http://etd.uwc.ac.za/



ii 
 

RESPONSES OF MAIZE ANTIOXIDANT ENZYMES TO DROUGHT STRESS 

Andile Lilelo 

MSc Thesis, Department of Biotechnology, University of the Western Cape 

ABSTRACT 

 

Maize (Zea mays L) was subjected to drought stress for 28 days. The effects of the drought 

stress on growth, H2O2 content and lipid peroxidation were investigated and the activities of 

antioxidant enzymes [superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase 

(CAT)], were measured. Reverse transcription quantitative PCR (RT-qPCR) was used to 

measure relative expression of APX and CAT genes in response to drought stress.  Maize 

biomass was significantly reduced and cell death was higher in drought-stressed plants. 

Similarly, the activities of antioxidant enzymes (SOD, APX and CAT) increased in drought-

stressed plants. Lipid peroxidation (measured as malondialdehyde content) and hydrogen 

peroxide content increased in drought-stressed plants. The expression of APX genes in 

drought-stressed (water-deprived) leaves was significantly higher than the well-watered 

control. CAT gene expression showed differential response between the leaves and roots.      
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xv 
 

AIMS AND OBJECTIVES 
 

The aim of the study was to determine the effect of drought on the antioxidant activities 

of maize in respect of the activity of selected enzymes involved in the scavenging of 

reactive oxygen species. This is achieved by addressing the following objectives: 

1) To determine the impact of drought stress on the growth of maize by measuring 

biomass and cell viability. 

 

2) To determine the impact of drought stress by measuring the levels of hydrogen 

peroxide (H2O2) and malondialdehyde (MDA). 

 

3)  To determine the responses of antioxidant enzymes, namely superoxide dismutase 

(SOD), ascorbate peroxidase (APX) and catalase (CAT) to drought stress by in-gel native 

PAGE activity analysis and spectrophotometry. 

 

4) To analyse APX and CAT gene expression levels in response to drought stress by RT-

qPCR. 
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CHAPTER 1 

Literature Review 

 

1.1 Introduction  

 

In nature, plants are constantly faced with environmental stress factors such as drought, 

salinity and extreme temperatures.  These stresses have a negative effect on growth and 

development of plants. This becomes a serious concern for agriculture and food security where 

crop plants, such as maize, a staple food in the developing world, is involved where production 

and yield are negatively affected by these stress factors. This is so because maize provides for 

at least 30% of the food calories of over 4.5 billion people in 94 developing countries (Shiferaw 

et al., 2011).  Maize is easy to grow in different environments, easy to harvest and store. This 

makes it the most widely distributed crop in the world, with America leading in its production, 

followed by Brazil, China, Mexico and India respectively (Chaudhary et al., 2014). Maize can be 

used for multiple purposes but, in the developing world, it is mainly grown for consumption 

directly as a food source for both humans and animals. Nutritionally, maize is rich in starch, 

proteins to some limited extent and contains some phosphorus, riboflavin and edible oil 

(Chaudhary et al., 2014).  

However, as mentioned above, environmental stresses are the biggest threat to crop growth 

and yield worldwide. Fifty to seventy percent in crop yield reduction due to the combination of 

drought, salinity and extreme temperatures have been recorded in the past (Mittler, 2006). Of 

these stress factors (figure 1), drought is a major growth limiting factor, resulting in reduction 

in crop productivity worldwide (Aksoy, 2008; Mahajan and Tuteja, 2005; Ghannoum, 2008; 

Shao et al., 2009). It is predicted that drought will increase in severity and frequency, 
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drastically affecting global agricultural systems (Cutforth et al., 2007; IPCC, 2007 and 2008; 

Mittler and Blumwald, 2010). 

 

Figure 1.1: The effects of abiotic stress on crop production (Blum et al., 1996).  

It has been estimated that over 24 million tonnes of annual maize yield has been lost due to 

drought stress (Maiti et al., 1996; Heisey and Edmeades, 1999). Drought stress negatively 

affects plant growth and development by inducing morphological, biochemical and 

physiological changes resulting in decreased transpiration and photosynthetic rate and leaf 

senescence (Manavalan et al., 2009, Chaves et al., 2003). As a result of exposure to drought 

stress, (including other abiotic and biotic stress), plants excessively produce reactive oxygen 

species (ROS) such as hydrogen peroxide (H2O2), superoxide (O2˙-), singlet oxygen (1O2) and the 

hydroxyl radical (˙OH). Reactive oxygen species are produced, under normal cellular 

metabolism as by-products in mitochondria, chloroplast and perixomes (Ahmad et al., 2008). 

Under these non-stressful growth conditions, ROS are thought to be of benefit to the plant by 

acting as signal molecules for modulation of processes such as growth and development, 

stomatal closure, regulation of gene expression and in stress defence pathways against 

pathogens (Sunkar and Zhu, 2004; Mittler, 2002; Kwak et al., 2003; Overmyer et al., 2003). To 

keep ROS production at low levels that are not harmful to the plant cell, ROS are continuously 
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removed to maintain the balance between production and removal (Gupta et al., 2015). While 

ROS can play a beneficial role to the plant, their overproduction due to stress factors can lead 

to oxidative stress damage, resulting in lipid peroxidation, protein oxidation, DNA damage and 

finally plant death (Mittler, 2002; Mahajan and Tuteja, 2005; Gill and Tuteja, 2010; Sharma et 

al., 2012). To counteract the oxidative stress imposed by excessive ROS, plants have developed 

antioxidative defence strategies that include enzymatic and no-enzymatic mechanisms (Tang et 

al., 2006). The enzymatic defence system is comprised of superoxide dismutase (SOD), 

ascorbate peroxidase (APX), catalase (CAT), glutathione peroxidase (GPX), including enzymes of 

the glutathione-ascorbate cycle such as glutathione reductase (GR), dehydroascorbate 

reductase (DHAR) and monodehydroascorbate reductase (MDHAR) (Bowler et al., 1992; 

Willekens et al., 1997; Noctor and Foyer, 1998; Smirnoff, 2005). Defence against the excessive 

production of ROS during drought requires that plants utilise these diverse and complicated 

antioxidant defence mechanisms as a way to escape, avoid or tolerate drought stress-induced 

oxidative stress (Avramova et al., 2017). Considering that drought is predicted to pose a major 

challenge due to near-future global climate conditions (IPCC, 2014; Lobell et al., 2011; Burke et 

al., 2009), it is important for plant biotechnologists and breeders to improve maize tolerance to 

drought and thereby sustain production and yield. For this to happen, the complex 

mechanisms of drought tolerance, avoidance and escape in maize must be elucidated in order 

to construct drought tolerant maize. To this end, this study sought to analyse how selected 

antioxidant enzymes behave in response to drought stress in maize. In addition, indicators of 

oxidative stress, such as malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentration 

levels were measured, together with biomass and cell death. The analysis utilised biochemical 

assays such as H2O2 content, MDA measurement as a marker for lipid peroxidation together 

with spectrophotometric and native PAGE in-gel activity measurements of SOD, APX and CAT 

isoforms. 
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1.2 The agro-economic importance of maize 

 

Maize (Zea mays, L), otherwise known as corn, originated in Mexico some 7000 years ago as a 

wild grass (Ranum et al., 2014). However, the Native Americans managed to convert it to a 

nutritional food. Maize is considered to be one of the first crops to be cultivated by farmers 

7000 to 10000 years ago (Smith, 2001; Piperno and Flannery, 2001; FAO, 2000; the 

International Plant Genetic Resources Institute, 2002).  Maize is among the most efficient 

plants for capturing the energy of the sun and converts it to food. It is versatile and can adapt 

to various conditions of humidity, sunlight and altitude (OECD, 2003). Owing to its versatility, 

ease of growth, harvest and storage, maize is produced across the world (figure 1. 2) in 

different climatic conditions such as tropical, sub-tropical, temperate and semi-arid zones 

(Paliwal, 2000a; Farnham et al., 2003). It has the highest yield per hector amongst all major 

grain crops worldwide (Du Plessis, 2003). Maize is relatively low in price when compared to 

other major staple crops (DAFF, 2017). 

 

Figure1. 2: Rank of maize by area sown worldwide (Source: FAOSTAT, 2010). 
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Nutritionally, maize contains about 72% starch, 10% protein and 4% fat with an energy of 365 

Kcal/100 g, making it a reliable staple food source (FAO, 2009). It has more riboflavin (vitamin 

B3) than wheat or rice and is rich in phosphorus (Okoruwa and Kling, 1996). It contains vitamin 

B-complexes such as B1 (thiamine), B2 (niacin), B5 (pantothenic acid) and B6.  Maize contains 

some vitamin C, K and A, and significant quantities of beta-carotene for yellow maize. Vitamin 

B-complex is crucial for healthy hair and skin, proper functioning of the brain, heart and 

digestive system (Kumar and Jhariya, 2013). It also contains selenium that is beneficial to 

human immune system (Kumar and Jhariya, 2013). It is a poor source of calcium, folate and 

iron (Ranum et al., 2014). According to CIMMYT, maize makes up close to two-thirds of the 

world’s food energy intake and contributing fifty to seventy percent (50-70 %) of the total 

calories in the diets of people living in developing countries (Ekpa et al., 2018). Maize is equally 

an economically valuable crop. It is multifunctional with many applications in food (for animals 

and humans) and biofuel production. These products include starch, ethanol, oil, beverages 

and sweeteners. Starch from maize is further processed, through enzymatic mechanisms, to 

produce products such as glue, fireworks, paint, syrup, shoe polish, cosmetics, aspirin, beer, ice 

cream and batteries (Ranum et al., 2014). Maize can also be used as filler in products such as 

plastic, cigarette papers, adhesives, paper and insulation. Its use can also be found in the 

production of synthetic rubber, dyes, nylon and explosives (Nuss and Tanumihardjo, 2010). 

However, maize utilisation and application varies between the developing and the developed 

countries. In sub-Saharan Africa, Latin America, China and India (figure 1.3), maize is the staple 

food for the majority of the population and a major feed grain for livestock (Morris, 1998; 

DAFF, 2013 and 2016). Over 300 million people in Africa alone depend on maize as their main 

staple food. Seventy-seven percent (77%) of maize produced in Sub-Saharan Africa is used as 

food and only twelve percent (12%) as animal feed (TIAPD, 2005; Shiferaw et al., 2011). 
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Figure 1.3: Rank of maize as a food crop worldwide (FAOSTAT, 2010). 

 Maize is processed to produce food such as porridges, bread and alcoholic beverages (Table 

1). By contrast, in Asia, 70% of the total maize produced is used for animal feed purposes, 23% 

as food and 7% for other uses (Prasanna, 2011). 
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Table1: Staple food that is prepared from maize in different countries in Africa. (Ranum et al., 
2014). 

FOOD COUNTRY 

Porridges, thin fermented:  

Ogi Nigeria 

Uji East Africa 

Mahewu South Africa 

Porridges, thick:  

To, tuwo, asido, akoume West Africa, North Africa, Horn of Africa 

Ugali Kenya, Tanzania 

Steamed food: 
Couscous, cuzcuz 

 
Africa 

Bread, unfermented: 
Corn bread 
Bread, fermented:  
Injani 

 
Africa 
 
Ethiopia 

Fermented Dough 
Kenkey, ablo 

 
Ghana, Benin, Togo 

Alcoholic beverages: 
Urawga, mwenge 
Chibuko 
Pito 
Tella 
Busas 
Opaque beer 
Munkoyo 

 
Kenya, Uganda 
South Africa 
Nigeria 
Ethiopia 
Kenya 
Zambia 
Zambia 

 

However, in developed countries, approximately seventy percent (70%) of maize is used for 

animal feed and only three percent (3%) is consumed by humans. The remaining portion is 

used for biofuel production, seeds and industrial products (TIAPD, 2005). It is processed mainly 

to produce products such as glue, fuel ethanol and industrial ethanol (Ranum et al., 2014).  

Maize is grown in over 170 million hectares the world over, with a yearly production of 

approximately 790 million tons (Chulze, 2010). It is a major source of income for many farmers 
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and the second most important staple crop in the world (FAO, 2008). As such, an increase in 

maize productivity correlates positively with an increase in employment, resulting in increase 

in household incomes (Jayne et al., 2006). In Southern Africa, maize production depends 

heavily on rainfall, thus it is affected by changes in climate conditions such as flooding and 

drought.  These changing climate conditions and rainfall patterns may, in any particular season, 

determine the length of the growing season and planting period. In turn, this affects 

production and yield.  

Table 2: Plantings, production and yields of commercial maize in South Africa from 2011/12 to 
2015/16. (Source: DAFF, 2016). 

  

 

Clearly, the drought condition of the 2015/16 period resulted in a decline in maize yield (Table 

2). In the last five planting seasons, maize was the largest contributor (48%) towards the gross 

value of agricultural production (quantity produced and prices received by producers) of field 

crop compared to other crops in South Africa (DAFF, 2016).  

In October 2016, the United States Foreign Agricultural Services reported that the maize world 

production for 2016/17 was estimated to be 2014 million tons while South Africa, the major 

producer of maize in Africa produced 14 million tons of maize (FAO, 2016). This decline has 

been attributed to rising global temperatures that results in drought. 

A major challenge in the production of maize worldwide is drought. Of the seventy percent 

(70%) fresh water that is used in agriculture worldwide, developing countries account for 86% 

(Edmeades, 2013). Water constitutes about 80 – 95 % mass of growing plant tissues, making it 
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the most vital requirement for plant growth and development. Losses of approximately 

twenty-four million tons in yield were reported annually due to drought stress in maize (Maiti 

et al., 1996; Heisey and Edmeades, 1999).  

1.3  The broad agro-economic impact of drought  

 

Drought can be described as a period of below average precipitation in a given region at a 

given time, causing long shortages of water supply, whether atmospheric, surface water or 

ground water. It occurs when soil moisture level and relative humidity in the air are low while 

atmospheric temperature is high. It may last for months or even years. Thus, the natural 

evaporation cycle between the earth and atmosphere that contributes to rainfall is affected. 

Drought is considered to be amongst the most destructive natural disasters all over the world 

with devastating socio-economic impact. Areas of the world that are most vulnerable to 

drought are those that have annual rainfall below 500 mm. South Africa, being a country with a 

semi-arid to arid and highly variable weather pattern, is highly prone to drought conditions. 

Drought, which has recently devastated crop planting areas of the country, is a recurrent 

characteristic feature of the country's highly variable climate and weather extremes. 

South Africa's annual average rainfall is approximately 450 mm and this makes the country 

prone to recurrent droughts (WRC, 2015). South Africa’s climate is characterised by periods of 

wet spells also called La Nina (years receiving above-normal rainfall) and dry spells also called 

El Niño (years receiving below-normal rainfall). Between 1991 and 1992 Southern Africa 

experienced what was regarded as the worst drought of the 20th century (WRC, 2015). This 

drought was driven by a powerful El Niño event that was associated with below normal rainfall. 

The agricultural sector was the first to feel the effects of the drought through decreased water 

quality and quantity, crop destruction and huge agricultural losses. Groundwater reservoirs 
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were depleted, fresh water availability was reduced, resulting in the use of unsafe water 

(Ujenza and Abiodun, 2015). Across the Southern African region, the drought resulted in food 

insecurity forcing about 30 million people to the brink of famine (Holloway, 2000; Kandji et al., 

2006).  Maize production was at its lowest with a 40% reduction (Glantz et al., 1997, Unganai 

and Kogan, 1998; UNISDR, 2002). In excess of five million metric tons of cereal had to be 

imported to compensate for the deficit. It is estimated that over 49 000 jobs in the agricultural 

sector were lost. However, the 1991-1992 drought was surpassed by the recent 2015/16 

drought phenomenon (FAO, 2015). All nine South African provinces were affected and the five 

major maize crop producing regions (figure 4) were declared disaster areas (BFAP, 2016). The 

South African Weather Services recorded 2015 as the driest year in South Africa dating back to 

1904. The average yearly rainfall between 1904 and 2015 was 608 mm across South Africa, 

whereas in 2015 alone an average of 406 mm was reported. By contrast, 1945 was the year 

with the lowest recorded rainfall of 437mm (AgriSA, 2016). 

 

Figure 1.4: Standard Precipitation Index (SPI) and drought, 2015. Major maize production areas 
that were affected by extreme drought in 2015 (BFAP, 2016). 
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The negative impact of drought can be on everything from the environment, employment, 

economy, human health and agriculture (Kang et al., 2009). The year 2016 has already 

recorded reduced harvest due to the on-going drought. To this day, the Western Cape 

government is still implementing water restrictions to businesses and communities.  The on-

going drought has resulted in high unemployment rates, less consumer purchasing power and 

a rise in debt servicing costs for the farmers (AgriSA, 2016). Figure 5 provide the links that exist 

between interdependent economic sectors that rely on agriculture and the impact that 

drought may have on them. For example, the Sundays River Citrus Company (SRCC), just 

outside Port Elizabeth in the Eastern Cape Province of South Africa has reportedly lost between 

R1 billion to R1.5 billion in revenue because of the 2017/18 drought (Matavire, 2018). The 

SRCC is the largest grower, packer and exporter of South African Citrus. It supplies retailers and 

wholesalers across South Africa and exports internationally. As a consequence of drought, the 

company’s exports and employee numbers were reduced by 30% and 20% or more, 

respectively (Matavire, 2018). Farmers and grazing land were also directly affected by the 

drought. Out of 967 farmers, 10% were commercial farmers, 58 % small scale farmers and 32 % 

were subsistence farmers (Matavire, 2018). Since South Africa is a major producer and net 

exporter of crops in Southern Africa, Southern African countries such as Zimbabwe, eSwatini, 

Lesotho, Namibia and Botswana, have been negatively affected by the low levels of food 

production in South Africa consequent to drought. This has pushed food prices up, resulting in 

food insecurity in those countries (UNOCHA, 2016).  
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Figure 1.5: The broader economic impact of drought (AgriSA, 2016). 

 

1.4  The impact of drought on maize 
 

As all maize farmers around the world would know, especially in rain-fed farms, that any lack of 

water would greatly affect maize production and yield. This is because maize is a drought 

sensitive crop and, consequently, drought stress affects its growth and development, from 

seedling emergence until grain maturity (figure 1.6). Maize growth and development steps 

refer to parameters such as height, biomass, fresh weight, leaf area, root length and stem 

diameter. All of these parameters are negatively affected during drought (Khan et al., 2001; 
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Zhao et al., 2006).  Any amount of yield loss due to drought depends on the severity of the 

drought and maize growth stage (Heinigre, 2000). For example, closer to pollination, drought 

stress can result in significant yield losses than when drought stress occurs before or after this 

stage (Lee, 2018). However, severe drought stress at the early vegetative stage may lead to 

complete crop failure because the maize plant may not even reach the reproductive stage 

(Aslam et al., 2015). Maize growth and development can be divided into two main stages: the 

vegetative and reproductive stages. These stages can be further divided into sub-stages like 

emergence, tassel and silk development. As it is with most other crop plants, there are certain 

growth stages in maize that are more sensitive to drought stress than others. At early growth 

stages, water requirement is low but it increases when maize growth reaches reproductive 

stages but decreases again during terminal growth stages (Aslam et al., 2015). For example, at 

specific physiological stages such as wilting just before tasselling, moderate drought can reduce 

maize yield by 10 – 25 percent (Lauer, 2003). Maize yield is severely affected when drought 

stress sets in during flowering and pollination, followed by grain-filling (kernel development) 

and during vegetative growth stages (Lauer, 2003). The growth and development stages at 

which drought stress has a significant negative impact on maize productivity and yield are 

briefly introduced below. 

1.4.1 The Impact of drought on maize during vegetative growth stages 

 

The vegetative stage is made up of different stages collectively referred to as crop stand 

establishment. Crop stand establishment include seed germination, emergence and 

establishment until tasselling. At this stage of development, drought can lead to poor maize 

stand and may further lead to total failure of seedling establishment (Jaleel et al., 2007). 

Growth, development and maize crop survival depends heavily on seedling establishment 

efficacy (Hadas, 2004). Seed germination requires water in order to activate metabolism for 
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the breakdown of seed dormancy and mobilization of nutrient reserves (Aslam, 2015). 

However, drought stress hinders this process and thereby reducing seed viability.  During plant 

growth from the emergence stage, drought stress can reduce plant and leaf size, resulting in 

reduced maize height and leaf area. Furthermore, plumule and radicle growth are reduced 

following seed germination as a result of drought stress, resulting in abnormal seedling growth 

(Gharoobi et al., 2012).                 

 

Figure 1.6: Maize vegetative and reproductive growth stages that are negatively affected by 
drought (Aslam et al., 2015). 

 

 1.4.2 The impact of drought on maize during reproductive growth stages 

 

The reproductive growth phase is comprised of stages such as tassel and silk development, 

pollination, fertilization, embryo, endosperm and kernel development and is the most sensitive 

to drought stress (Aslam et al., 2015). Drought stress has the greatest impact during tasselling 

and pollination resulting in significant yield reduction of about 3-8% on each day of drought 

stress (Lee, 2015). The development of the embryo after pollination is also severely delayed by 
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drought.  Furthermore, during kernel development, drought stress can reduce yield by up to 

2.5 to 5.8 % with each day of stress (Lauer, 2003).  During this stage, drought stress may also 

lead to an increase in leaf death rate, low kernel weight and a shorter period of grain-filling. 

1.5 The effects of drought-induced stress on plants 
 

When the water supply to the roots of a plant becomes limiting or the transpiration rate 

becomes intense, plants will experience water stress. Therefore, water stress is mainly caused 

by water deficit (Lisar et al., 2012). Water stress also changes the physical environment for 

plant growth and physiology (Kramer, 1980). Every chemical process in the growing period of a 

plant requires water, directly or indirectly. Water shortage has profound effects on plant 

growth and development. Even plants with an optimum water supply experience transient 

water shortage periods, where water absorption cannot compensate for water loss by 

transpiration (Simonneau and Habib, 1994). Without water, seeds will not germinate. In fact, a 

total of approximately 250 litres of water is used by the maize plant during its growth and 

development until maturity (Du Plessis, 2003).  In response to drought stress, plants have 

developed many stress tolerance and adaptation mechanisms (Gockay, 2012). These response 

mechanisms are regulated by the period, intensity, the progression rate of the imposed 

drought (Pinheiro and Chavez, 2011) and inherent genetics of the plant species (Mattos and 

Moretti, 2015). The different levels of drought and the corresponding effects and responses 

are summarised in figure 1.7. At the morpho-anatomical and physiological level, mild drought 

stress is characterised by a decrease in cell extension and growth, closure of stomata, 

reduction of water content and turgor loss, while severe drought stress on the other hand, 

results in the disturbance of metabolism, damage to photosynthetic processes and finally to 

plant death (Jaleel et al., 2009). Various physiological and biochemical processes, such as 

nutrient metabolism, ion uptake, carbohydrate content and protein synthesis are altered by 
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drought stress (Farooq et al., 2008). Thus, the chemical and physical composition of plant 

tissues may also be modified, leading to changes in plant quality such as the taste of the fruits 

(Akinci and Losel, 2012).  

 

Figure 1.7: Flow diagram detailing the effects of drought and how plants are affected at 
morphological, physiological and molecular level. (Obidiegwu et al., 2015).  

 

At the molecular and cellular levels, severe drought induces oxidative stress damage in plant 

cells, which can be detected by the accumulation of lipid peroxides (due to peroxidation of 

unsaturated fatty acids in membranes), oxidized proteins (denatured proteins) or modified 
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DNA. Oxidative stress occurs when there is excessive production of reactive oxygen species 

(ROS) such as O2
-, 1O2

-, H2O2 and OH- (Cruz de Carvalho, 2008; Fridovich, 1995; Bolwell et al., 

2002) in plants that are experiencing severe drought, resulting in the disturbance of a balance 

between ROS production and antioxidant defences. However, in order to protect themselves 

against oxidative stress damage, plants have evolved enzymatic and non-enzymatic antioxidant 

systems in order to control the production levels of ROS. The enzymatic antioxidant systems 

include enzymes such as catalases (CAT), superoxide dismutase (SOD), ascorbate peroxidases 

(APX) and other components of the ascorbate-glutathione cycle; whereas the non-enzymatic 

antioxidant system include ascorbic acid, carotenoids, osmolytes and polyphenols (Apel and 

Hirt, 2004; Xiong and Zhu, 2002, Rodrigues, 2002). Superoxide dismutase (SOD) is a class of 

metalloenzymes that catalyse the detoxification of superoxide (O2
-) to hydrogen peroxide 

(H2O2) and oxygen (O2) and are considered as the first line of defence against ROS. Superoxide 

is a precursor of the highly oxidizing hydroxyl radical that gets formed when O2
- reacts with 

H2O2 and therefore SOD is a critical defence enzyme against oxidative stress in plants. 

Ascorbate peroxidases (APX) use reduced ascorbate to detoxify H2O2 into O2 and water and are 

thus crucial antioxidant enzymes towards prevention of oxidative stress in plants. The reduced 

ascorbate used by APX is regenerated by dehydroascorbate reductase (DHAR) and 

monodehydroascorbate reductase using glutathione, which is regenerated by glutathione 

reductase (GR). This system of enzymes and non-enzymatic antioxidants contributes to the 

redox state of the plant and is thus crucial for the regulation of the level of reactive oxygen 

species (ROS, such as O2
- and H2O2) in plant cells.  Some of the effects of drought stress on 

various chemical processes, molecules and morpho-physiological growth of plants are 

discussed below. 
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1.5.1 Physiological effects of drought stress on plants 
 

1.5.1.1 The effect of drought-induced stress on root signalling  

 

Roots are a very important integral part of plants without which plants would not survive. In 

addition to anchoring the plant in the soil, a plants’ extensive root system extracts water from 

deep in the soil (Boyer, 1996). Studies on water uptake in lettuce (Johnson et al., 2000) and rice 

(Yadav et al., 1997) have shown that the depth of roots is positively correlated with the ability 

of plants to extract water from deep within the soil. During water deficit stress, roots begin a 

signal cascade to the shoots through the xylem resulting in physiological changes that 

determine the level of tolerance to water stress. One of the most important signals involves 

abscisic acid (ABA) as a root to shoot stress chemical signal in plants that are exposed to 

drought (Hey et al., 2010; Obidiegwu et al., 2015). ABA is a plant stress hormone that plays an 

important role in response to abiotic stress factors including regulation of stomatal closure, 

optimization of transpiration and by inducing the activation of many stress-related genes 

(Cutler et al., 2010; Lindemose et al., 2013). The levels of ABA increase dramatically in response 

to drought stress, leading to activation of the expression of a number of drought response 

genes (Chaves et al., 2003). A substantial increase of ABA has also been documented in the 

xylem saps during drought, and this leads to an increase in the amount of ABA in different 

areas of the leaf (Lisar et al., 2016), resulting in the reduction of transpiration and growth 

(Schachman and Goodger, 2008). It is well-established that high amounts of ABA near guard 

cells causes the stomata to close in order to conserve water. Other chemical signals that act in 

conjunction with ABA to control drought-induced stomatal closure include jasmonic acid 

(Mahouachi et al., 2007; Du et al., 2013; Lee et al., 2013), ethylene and gibberellic acid (Skirycz 

et al.,2010; Verelst et al., 2010).  
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1.5.1.2 The effect of drought-induced stress on photosynthesis 

 

Photosynthesis can be defined as a process by which green plants use sunlight as a sole source 

of energy to produce nutrients and oxygen from carbon dioxide and water. Without 

photosynthesis, life on Earth would be impossible. There would be no food to support life and 

the Earth’s atmosphere would lose its oxygen. Thus, any lack of adequate water supply to the 

plants results in reduced photosynthesis as a result of decreased leaf area, premature leaf 

senescence and impaired photosynthetic machinery (Farooq et al., 2009). Essentially all the 

important components of photosynthesis, including the carbon reduction cycle, thylakoid 

electron transport and the stomatal regulation of CO2 supply are disturbed during water deficit 

(Anjum, et al., 2011). Stomatal closure is one of the first responses to drought stress which 

results in reduced rate of photosynthesis. Stomata are the entry points of water loss and CO2. 

Plants that have been exposed to drought conditions tend to have lower stomatal conductance 

which results in water conservation, thus maintaining an adequate leaf water status (Chaves et 

al., 2002). However, when the stomata are closed, the leaves are deprived of CO2, leading to a 

decreased photosynthetic carbon assimilation in favour of photorespiration (Anjum et al., 

2011). With regards to electron transport, the limited supply of CO2 to the leaf mesophyll 

causes a reduction in the regeneration of NADP+ in the Calvin cycle (Cruz de Carvalho, 2008), 

resulting in the generation of ROS. 

1.5.1.3 The effect of drought-induced stress on leaf morphology 

 

Leaves make up one of the most important parts of the plant shoot. Through the process of 

photosynthesis, leaves capture the light energy and convert it to chemical energy which is 

required by the plant for growth and development. In addition to photosynthesis, leaves are 

sites of transpiration, guttation, water and nutrient storage. It is therefore not surprising that 
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the initial signs of drought stress are usually seen on the leaves. Drought stress can have a 

negatively impact leaf characteristics such as leaf area, leaf mass, leaf size, turgor, leaf bud 

emergence and chlorophyll content (Hussain and Ali, 2015). Leaf area is an index of stress, 

plant growth and productivity.   

1.5.1.4 The effect of drought-induced stress on root morphology  

 

Roots are responsible for anchoring the plant in the soil and for water and nutrient up-take 

(Brunner and Godbold, 2007). Most importantly, they sense drought stress and send signals to 

the shoots (Hamanishi and Campbell, 2011; Spollen and Sharp, 1991). During drought stress, 

the growth of lateral roots decreases significantly, while that of primary roots is not affected 

(Deak and Malamy, 2005). The reduction in lateral root formation during drought stress 

correlated positively with enhanced drought tolerance in Arabidopsis (Seo and Park, 2009). The 

reduction in lateral roots formation is also accompanied by small branching roots in order to 

increase the surface area for water absorption (Basu et al., 2016), a strategy considered to be 

an adaptive mechanism for drought tolerance. In another study carried out by Sengupta and 

Reddy (2011) the expression of xyloglucan endotransglucosylase, an enzyme related to root 

morphology was induced in response to drought stress while other structural proteins were 

down-regulated. The authors also found that the alteration in the expression of the proteins 

under drought stress correlated positively with lateral root development that in turn affects 

photosynthesis.  

1.5.1.5 The effect of drought-induced stress on chlorophyll content 

  

Chlorophyll is a green pigment found in plant cells, algae cells and cyanobacteria. The primary 

function of chlorophyll molecules is the absorption of energy from light, which provides energy 

that is essential for photosynthesis (Wright et al., 1994). There are three main functions of 
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chlorophyll in plants, namely to absorb light, to transfer that light energy by resonance energy 

transfer to a specific chlorophyll pair in the reaction centre of photosystems and finally, charge 

separation leading to biosynthesis (Farooq et al., 2009). The quantity of chlorophyll in the 

leaves is one of the major factors that affects a plants’ photosynthetic ability (Arjenaki et al., 

2012; Nageswara et al., 2001; Wright et al., 1994). This is so because the amount of leaf 

chlorophyll in a plant is influenced by environmental stresses such as drought, salinity, heat 

and cold (Farooq et al., 2009). Drought stress inhibits Chl a/b synthesis and decreases the 

content of Chlorophyll a/b binding proteins, leading to reduction of the light-harvesting 

pigment proteins associated with photosystem II (Sayed, 2003). Several other studies on 

different crops have also reported a reduction in leaf chlorophyll contents due to severe 

drought stress (IturbeOrmaetxe et al., 1998; Ommen et al., 1999; Manivannan et al., 2007a). 

The reduction in chlorophyll content as a result of exposure to drought stress is mainly the 

result of damage to chloroplasts caused by ROS (Smirnoff, 1995). 

 1.6 The effects of drought stress on cellular structures and macromolecules 

1.6.1 Reactive Oxygen Species (ROS) 

 

Reactive oxygen species play an important signalling role in plants; controlling processes such 

as development, growth, response to biotic and abiotic environmental stress and programmed 

cell death (Bailey-Serres and Mittler, 2006). During normal plant growth, ROS production and 

removal is under the control of different antioxidative defence mechanisms comprising of non-

enzymatic as well as enzymatic, so that plants are protected from the harmful effects of the 

active oxygen molecules (GÖKÇAY, 2012; Noctor and Foyer, 1998). However, when plants are 

subjected to stressful conditions such as drought, salinity, chilling, metal toxicity, UV-B 

radiation as well as pathogen attack, ROS are produced at higher levels than normal (Sharma et 
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al., 2012). When ROS levels exceeds the defence mechanisms, a cell is said to be in a state of 

oxidative stress, and this may cause lipid peroxidation, protein oxidation, damage to DNA, 

inhibition of enzymes and activation of programmed cell death (Shar et al., 2001; Mishra et al., 

2011; Meriga et al., 2004). Thus, ROS can be both beneficial and harmful (see figure 1.8 for the 

targets of ROS) depending on their concentration. 

 

 

Figure 1.8: The different targets of ROS (Das and Roychoudhury, 2014).  
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1.6.2 Protein oxidation  

Oxidative stress in plants leads to protein oxidation. Consequently, different types of 

modifications occur. These include direct modifications such as carboxylation, nitrosylation, 

glutathionylation and disulphide bond formation. Indirect modification of proteins can also 

occur by interaction with the products of lipid peroxidation (Yamauchi et al., 2008). High levels 

of modified proteins have been reported in plants undergoing oxidative stress (Sharma and 

Dubey, 2005; Maheshwari and Dubey, 2009; Tanou et al., 2009) including protein carboxylation 

which is often used as a marker of protein oxidation (Moller et al., 2007; Moller and Kristensen, 

2004). Overproduction of ROS can also lead to site-specific modification of amino acids like Trp, 

Pro, Lys, Arg and Thr and aggregation of protease resistant cross-linked reaction products 

(Barlett and Stadtman 1997), fragmentation of the peptide chain, altered electric charge and 

increased susceptability to proteolytic degradation (Moller et al., 2007). The degree of 

susceptibility of amino acids to ROS attack depends on side group composition of an amino 

acid. The amino acids that contain sulphur and thiol groups are the most susceptible to ROS 

attack (Rinalduci et al., 2008). Proteolytic digestion is highly increased in oxidized peptides 

(Cabiscol and Piulats, 2000). The depletion of protein bound thiol groups in the presence of 

metals such as Cd, Hg and Pb have been reported (Stohs and Bagchi, 1995). 1O2 and OH- are 

well-known for oxidizing methionine and cysteine residues in proteins (Das and Roychoudhury, 

2014). A number of reports have shown that oxidised methionine or sulfhydryl groups of 

proteins leads to degradation, conformational changes and protein unfolding (Lyras et al., 

1997; Keck, 1996; Davies, 1987). The presence of metals such as iron on or near enzyme active 

sites leads to an irreversible inactivation of the enzyme on oxidation by O2
- (Fucci et al., 1983). 
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1.6.3 Lipid peroxidation (LP)  

 

Lipid peroxidation is the oxidative degradation of lipids. During oxidative stress, ROS such as O2
-

, H2O2 and OH- radicals can attack the membrane lipid bilayer and induce lipid peroxidation 

resulting in cell damage (Girotti, 1985; Mittler, 2002; Halliwell, 2006). The primary target for 

ROS is often the polyunsaturated fatty acids (PUFA) that possess multiple double bonds 

between two carbon atoms that contain reactive hydrogen atoms and ester linkages. One of 

the final products of lipid peroxidation is malondialdehyde (MDA). Malondialdehyde 

accumulation in the cell causes damage to the cell membrane, resulting in changes to 

membrane fluidity, ion transport, protein cross-linking and enzyme inactivity, ultimately 

resulting in cell death (Sharma et al., 2012; Han et al., 2009; Tanou et al., 2009; Mishra et al., 

2011). There are three main mechanisms by which lipid peroxidation takes place: initiation, 

progression and termination (Smirnoff, 1995). In the initiation phase, a fatty acid radical is 

produced through a reaction of O2
- , H2O2 or OH˙ with PUFA methylene groups, resulting in the 

formation of hydroperoxides and lipid peroxyl radicals. Highly reactive peroxyl radicals undergo 

a series of chain reactions leading to propagation of the oxidation of PUFA.  

1.6.4 Damage to DNA   

 

ROS oxidatively damage all types of DNA including nuclear, chloroplastic and mitochondrial 

DNA. These damages are characterised by strand breakage, deoxyribose oxidation, nucleotide 

removal and modifications that further result in mismatches during replication (Sharma et al., 

2012; Dizdaroglu, 1993). The damage on the DNA bases occurs via the reaction of OH- with the 

double bonds in purine and pyrimidine bases. The removal of hydrogen from the deoxyribose 

causes sugar damage (Dizdaroglu, 1993). In the process, 1O2 reacts with the guanine base while 
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O2 – and H2O2 do not react with any bases (Gill and Tuteja, 2010; Dizdaroğlu, 1993; Halliwell 

and Aruoma, 1991).  

1.7 Plant defence and tolerance strategies in response to ROS 

overproduction due to drought stress 
 

The antioxidant defence system in plants is made up of both enzymatic and non-enzymatic 

mechanisms. There are generally three ways by which plants respond to drought: (1) drought 

escape (e.g., short life cycle), (2) drought avoidance (i.e., maintenance of favourable water 

status during drought using different mechanisms such as stomatal closure and senescence of 

older leaves), and (3) drought tolerance (i.e., plant’s ability to function at low water potential, 

including the ability to recover after stress) as a result of osmotic adjustment (OA), rigid cell 

walls, small cells and reactive oxygen species scavenging (Barnabas et al., 2008). 

 

 1.7.1 Enzymatic defence mechanisms 
 

1.7.1.1 Superoxide dismutase (SOD)  

 

The first line of defence against ROS is superoxide dismutases (SOD), a family of 

metaloenzymes that catalyses the dismutation of O2ˉ to toxic H2O2 and molecular oxygen. 

Superoxide dismutase exists in three isoforms, namely Fe-SOD, Cu/Zn-SOD and Mn-SOD. Most 

of the SOD isoforms have been found in most of the plant cell compartments (Gomez et al., 

2004; Veljovic-jovanovic et al., 2006). Of all the isoforms, CuZn-SOD is the most abundant and 

is found in chloroplast, peroxisome, cytosol and apoplast. Mn-SOD is found in mitochondria 

and in peroxisomes. Fe-SOD is located in chloroplasts. O2ˉ is constantly produced in the cell 

where electron transport chain reactions are present and the phospholipid bilayer is 
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impermeable to charged O2ˉ molecules (Takashani and Asada, 1983). Thus, SODs is important 

for the scavenging of O2ˉ in the cell where O2ˉ radicals are produced. Superoxide dismutase 

activity increases under stressful conditions and this high activity has been used as a marker for 

resistance to stress (Zaefyzadeh et al., 2009). The product of O2ˉ dismutation, H2O2, may also 

react with ferric and cupric metal ions, leading to the production of hydroxyl radicals such as 

hydroxyl. The hydroxyl radical will eventually react with cellular molecules leading to lipid 

peroxidation, DNA mutations and protein denaturation, ultimately having detrimental effects 

on the plant (Bowler et al., 1991; Salin, 1988). However, H2O2 can be scavenged by ascorbate 

peroxidase (APX, EC 1.11.1.1) or catalase (Alsher et al., 2002). 

 

Figure 1.9: Reactive oxygen species and the antioxidant defence mechanism (Gill and Tuteja, 
2010). 

 

1.7.1.2 Ascorbate peroxidase (APX) 

 

Ascorbate peroxidase is a class 1 heme peroxidase and a major part of the Ascorbate 

Glutathione (ASC-GSH) cycle. Using ascorbic acid (AA) as a reducing agent, APX catalyses the 
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reduction of H2O2 to water and two molecules of monodehydroascorbate (MDHA) from two 

molecules of ascorbate. The MDHA radical is further converted to ascorbate via 

onodehydroascorbate reductase (MDHAR) enzyme by using NADPH as an electron donor 

(Sakihama et al., 2002). Ascorbate peroxidase can be found in the stroma, mitochondria, 

thylakoid, perixomes and cytosol of plant cells. It exists in five isoforms based on the amino 

acid sequences (Jimenez et al., 1997; Madhusudhan et al., 2003; Sharma and Dubey, 2004; 

Nakano and Asada, 2004). Ascorbate peroxidase isoforms have been shown to possess high 

affinity for H2O2 than CAT (Wang et al., 1999) and that APX is the most widely distributed 

antioxidant enzyme in plant cells (Sharma and Dubey, 2004). This fact renders APX as an 

important scavenger of H2O2 during stressful conditions in plants.  

1.7.1.3 Catalase (CAT) 

 

Catalase is among the earliest antioxidant enzymes to be discovered and characterised. It is a 

ubiquitous tetrameric heme-containing enzyme with high specificity for H2O2 (Sharma and 

Dubey, 2004). It catalyses the dismutation of two molecules of H2O2 into water and oxygen. 

Catalase is located in peroxisomes, which are major organelles of H2O2 production. CAT 

removes the H2O2 generated during photorespiratory oxidation, B-oxidation of fatty acids and 

other enzyme sytems such as xanthine oxidase (XOD) coupled to SOD (De Rio et al., 2006; 

Scandalios et al., 1997; Corpas et al., 2008).  

1.7.2 Non-enzymatic antioxidants  

1.7.2.1 Ascorbic acid (AsA) 

 

The most abundant non-enzymatic antioxidant in plants is ascorbate (ascorbic acid; AsA). 

Although it can be found in cellular compartments such as chloroplast and apoplast, it is 

produced mainly in the mitochondria (Desikan et al., 2003). On account of its ability to donate 
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electrons to both enzymatic and non-enzymatic reactions, ascorbate is regarded as a powerful 

antioxidant (Sharma et al., 2012). In the chloroplast, AsA is found in a reduced state under 

normal physiological conditions and is a cofactor of violaxanthin de-epoxidase (Smirnoff, 2000). 

It removes H2O2 via the ascorbate-glutathione cycle by reacting directly with H2O2 (Zaefyadeh 

et al., 2009; Foyer et al., 1997; Pinto et al., 2003). The oxidation of ascorbate follows two steps 

– during the first step, MDHA is produced by the utilization of two molecules of ascorbate by 

APX to reduce H2O2 to water. In the second step, owing to its short life time, MDHA can 

spontaneously dismutate to DHA and AsA. (Sharma et al., 2012). The levels of AsA change in 

response to different environmental stresses (Sharma and Dubey, 2005; Maheshwari and 

Dubey, 2009; Mishra et al., 2011; Srivastava and Dubey, 2011; Hernande et al., 2001; Radyuk et 

al., 2009). 

1.7.2.2 Carotenoids 

 

Carotenoids are lipophilic antioxidants which remove, neutralize and scavenge different types 

of ROS (Elstner, 1991). In plants, they are found in both photosynthetic and non-

photosynthetic plastids where they protect the photosynthetic machinery by (1) reacting with 

lipid peroxidation products to terminate the peroxidation chain reactions, (2)   preventing the 

formation of 1O2 where they react with excited chlorophyll, and (3) scavenging 1O2 where it is 

formed (Das and Roychoudhury, 2014). 

1.7.2.3 Osmolytes 

  

Osmolytes (also known as compatible solutes) are highly soluble, low molecular weight organic 

compounds that are produced by plants experiencing environmental stress such as drought. 

They include polyols, glycine betaine, alanine betaine, proline and sucrose. During oxidative 

stress, plants decrease their osmotic potential by overproducing or accumulating osmolytes 
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(Ashraf and Foolad, 2007). These osmolytes help detoxify ROS, maintain membrane integrity 

and protein/enzyme stabilization and cell turgor or osmotic balance (Serraj and Sinclair, 2002). 

Cell turgor has been shown to contribute to maintaining physiological processes such as 

photosynthesis, stomatal opening and expansion growth (Serraj and Sinclair, 2002). One of the 

highly studied osmolytes is proline. It plays a highly beneficial role to plants that are 

experiencing oxidative stress.  

 

1.7.2.3.1 Proline 

 

Proline is considered to be a powerful antioxidant. Proline is synthesized from glutamic acid via 

a pyroline 5-carboxylate synthetase intermediate and pyroline-5-carboxylate reductase 

enzyme (Ashraf and Foolad, 2007). Its accumulation during drought stress is increased not only 

by the activation of proline synthesis but also by the deactivation of proline degradation. It 

plays three important roles during drought-induced oxidative stress – it acts as a metal 

chelator, a signaling molecule and an antioxidative defense molecule (Hayat et al., 2012). 

During drought stress, proline concentration increases in the cytosol where it provides osmotic 

adjustment (Caballero, 2005; Oliveira-Neto et al., 2009). Free proline levels increase 

significantly in maize seedling in response to drought-induced stress (Garcia et al., 1987). 

Similar results have been reported in wheat (Naidoo et al., 1990) and cotton cultivars (Ronde et 

al., 2000). Proline also prevents the harmful effects of lipid peroxidation by stabilizing proteins 

and membranes (Bartels and Souer, 2004; Smirnoff, 1998) and can efficiently remove OH- and 

1O2 (Verbruggen and Hermans, 2008).  
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CHAPTER 2 

 

          MATERIALS AND METHODS 
 

2.1 Plant Growth  

 

Maize (Zea mays L.) cv Kalahari Early Pearl seeds (Capstone Seeds, South Africa) were surface 

sterilized in 0.35% (v/v) sodium hypochlorite (bleach) for 10 minutes and then rinsed five times 

with sterile distilled water. The seeds were imbibed in 10 mM calcium sulphate (CaSO4) 

solution for 16 hours at room temperature with good aeration. Once again, the seeds were 

washed five times with sterile distilled water. The seeds were then germinated on petri dishes 

(9 cm diameter) with five seeds per petri dish - the Petri dishes contained a sheet of paper 

towel pre-soaked in sterile distilled water on which the seeds were placed. The seeds were 

then over-laid with another sheet of paper towel pre-soaked in sterile distilled water and then 

covered with the petri dish lead. Dishes with seeds were incubated at room temperature for 5 

days with regular monitoring for radicle development. The paper towel was kept moist by 

watering with sterile distilled water during the germination period. After five days of 

germination, germinated seeds (defined as seeds with radicle measuring 3 mm or more in 

length) were selected and sown (8-10 seeds per pot) in 20 cm diameter plastic pots containing 

a 2:1 mixture of Landscapers Choice compost soil and potting soil (Checkers® Brackenfell, 

South Africa), that was pre-soaked with sterile distilled water, under regulated environmental 

conditions (25/19°C day/night temperature cycle under a 16/8 h light/dark cycle) in a 

greenhouse. Plant growth was maintained by regularly watering with 250 ml sterile dH2O until 

V1 stage (when the collar of the first true leaf is visible). 
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2.1.1 Plant treatment 

 

Plant watering continued until V2 stage, at which point all plants that were of good health and 

similar height (at equal developmental stage) were selected for use in control (12 plants) and 

treatment (12 plants) experiments. For control plants (well-watered), 250 ml of sterile distilled 

water was supplied every third day for 28 days while the treatment (water-deprived) plants 

received no water for the same period. At 28 days of drought treatment, plants were harvested 

from the soil.  

2.1.2 Plant storage 

 

The plants were immediately used for fresh weight measurements and cell viability assay, or 

frozen in liquid nitrogen, leaves and roots grounded into fine powder and kept at -80 C for all 

other experiments.   

2.2 Measurement of biomass (fresh weight) 
 

Fresh weight analysis was performed by weighing 8 well-watered and 8 water-deprived maize 

shoots immediately after harvesting at day 28 of treatment. 

2.3 Protein Isolation  
 

Total soluble protein was isolated from leaves and roots of maize tissue (from four different 

plants for each of well-watered or water-deprived plants) by homogenising 500 mg of frozen 

plant tissue in 1ml of cold (4 C) extraction buffer [40 mM K2HPO4 at pH 7.4; 1 mM EDTA and 

5% (w/v) Polyvinylpolypyrrolidone (PVPP)]. After separating insoluble material by 

centrifugation at 13 000 X g for 1 minute at 4°C, the protein-containing supernatant was 

carefully removed and quantified or stored at -20˚C.  
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2.4 Quantification of protein by Bradford assay 
 

The concentration of protein was determined according to Bradford (1976) by using the BioRad 

(BioRad, Hercules, USA) protein assay with bovine serum albumin as a standard. All protein 

standards and samples were prepared in triplicates and the determination of the protein 

concentration was obtained on the basis of the standard curve. Each protein standard was 

diluted with distilled water accordingly from a stock concentration of 1 mg/ml to give a final 

volume of 10 µl. The protein sample was diluted similarly. The 10 µl of the diluted standard or 

sample protein was mixed with 190 µl of 1X BioRad dye in a 96-well plate. Following incubation 

at room temperature for 10 minutes, the absorbance was read at 595 nm using the Floustar 

Omega UV-visible spectrophotometer (BMG LabTech GmbH, Ortenberg, Germany). 

2.5 Estimation of hydrogen peroxide (H2O2) content  

  
In order to establish if drought stress induces the production of high levels of H2O2, H2O2 

content was measured in leaves and roots of maize treatments (from four different plants for 

each of well-watered and water-deprived plants frozen above) by a modified method of 

Velikova et al. (2000). Ground leaf and root tissue (100 mg each) was homogenized in 400 µl of 

cold 6% (w/v) TCA. The homogenates were centrifuged at 13 200 X g for 30 minutes at 4°C. The 

resulting supernatant (containing H2O2) was used (50 µl) to start a reaction. The reaction 

mixture (total volume of 200 µl) contained 50 µl leaf or root extracts, 5 mM dipotassium 

phosphate (K2HPO4), pH 5.0 and 0.5 M potassium iodide (KI). Samples were incubated at 25°C 

for 20 minutes and the absorbance measured for each sample at 390 nm. H2O2 content was 

calculated based on a standard curve constructed from the absorbance (390 nm) of H2O2 

standards and a H2O2 extinction coefficient of 39.4 mM-1 cm-1.  
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2.6 Measurement of malondialdehyde (MDA) content  
 

The level of lipid peroxidation in the leaves and roots was measured in terms of 

malondialdehyde content (a product of lipid peroxidation), using the thiobarbituric acid (TBA) 

method as previously described by Dhindsa and Matowe, 1981. The same extract as used in 

the H2O2 assay above was used for MDA measurement. Aliquots (200 µl) of the extract were 

mixed vigorously with 400 µl of 0.5% thiobarbituric acid (prepared in 20% TCA). The mixture 

was then heated at 95°C for 30 minutes and quickly placed on ice. The mixture was further 

centrifuged at 13000 x g for 5 minutes at 4°C. The absorbance of the supernatants (200 µl) was 

measured in triplicates at 532 nm and 600 nm wavelengths. Following the subtraction of the 

non-specific absorbance values (at 600 nm) from the 532 nm absorbance values, the 

concentration of MDA was determined using an extinction coefficient of 155 Mm-1cm-1 and 

expressed as nmol.g-1 of fresh weight. 

2.7 Measurement of cell death   
 

Cell viability measurement was carried out on well-watered and water-deprived maize leaves 

from 3 separate plants (from the second youngest leaf) using a modified method of Sanevas 

and Sza, 2007. The assay was conducted separately for well-watered and water-deprived 

leaves. A 1 cm2 section of the 2nd youngest leaf was cut out and placed in a 15 ml conical tube 

(covered with foil) containing 0.25% (w/v) Evans blue dye and the mixture was incubated for 20 

minutes at room temperature. The leaves were then rinsed with distilled water in order to 

remove excess dye. The leaves were suspended in 1% (w/v) SDS and incubated at 55°C for 1 

hour. Following centrifugation at 2000 X g for 5 minutes, absorbance of the supernatants (200 

µl) was measured in triplicate at 600 nm wavelength using a FLUOstar Omega UV-visible 
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spectrophotometer (BMG LabTech GmbH, Ortenberg, Germany) in order to determine the 

level of Evans blue taken up by the dead cells.  

2.8 Ascorbate peroxidase enzymatic activity assays  
 

2.8.1 Native PAGE In-gel activity assay 

 

The detection of APX activity in well-watered and water-deprived leaves and roots of maize 

followed a procedure previously described by Seckin et al., (2010) on frozen material from four 

different plants for each of well-watered or water-deprived treatments. Before protein 

electrophoresis, non-denaturing PAGE gels were prepared and equilibrated with a running 

buffer containing 2 mM ascorbate for 30 minutes at 4°C. Thereafter, 40 µg of leaves and roots 

treatments were loaded onto the gels and electrophoresed at 4°C in 12% polyacrylamide mini 

gels in an electrophoresis buffer (192 mM Glycine, 25 mM Tris pH 7 and 2 mM ascorbate). After 

the electrophoresis, gels were incubated in 50 mM potassium phosphate buffer (pH 7.0) 

containing 2 mM ascorbate for 20 min and then transferred to solutions containing 50 mM 

potassium phosphate buffer (pH 7.8), 4 mM ascorbate and 2 mM H2O2 for 20 min. The gels were 

then submerged in a solution of 50 mM potassium phosphate buffer (pH 7.8) containing 28 mM 

N,N,N′, N′-tetra methyl ethylene diamine (TEMED) and 2.5 mM nitroblue tetrazolium (NBT) for 

10–20 min with gentle agitation in the presence of light. On visualization of the protein bands, 

the staining reaction was stopped by discarding the stain and suspending the gels in distilled 

water. Four independent gels were produced in this manner. The gel images were captured and 

analyzed by densitometry using AlphaEase FC imaging software (Alpha Innotech Corporation).  
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2.8.2 Spectrophotometric ascorbate peroxidase activity assay 

 

For determination of ascorbate peroxidase (APX) activity in leaves and roots of well-watered 

and water-deprived maize, 50 µg of protein extracts was homogenized in 50 mM K2HPO4, pH 

7.0; 0.1 mM EDTA; 2 mM ascorbate. The reaction was initiated by the addition of 10 mM H2O2 

to a final reaction volume of 200 μl. APX activity was calculated using the extinction coefficient 

of 2.8 mM-1 cm-1 by following the change in absorbance at 290 nm as previously described by 

Nakano and Asada (1981). APX activity was expressed as μmol.min-1.mg-1 protein oxidized.   

2.9 Catalase enzymatic activity assays 
 

2.9.1 Native PAGE In-gel activity assay 

 

Catalase in-gel activity detection was achieved by separation of leaves and roots (well-watered 

and water-deprived) proteins in a 12% native PAGE gel (1.5 M Tris-HCl pH 8.8) with 5% stacking 

gel (1 M Tris pH 6.8) at 4°C, 90 V for 7 hours. The activity staining followed the procedure 

previously described by Gara et al., (1997) with minor changes. After electrophoresis, the gel 

was washed three times with distilled water, followed by soaking in 0.003% (v/v) H2O2 for 10 

minutes. Hydrogen peroxide was discarded and the gel again washed twice with distilled water. 

For staining, in the presence of light, the gel was soaked in 2% (w/v) of both ferric chloride 

(FeCl3) and potassium ferricyanide (K3[Fe(CN)6] for 5-10 minutes. On visualisation of achromatic 

bands, the stains were discarded and the gel washed thoroughly with distilled water and 

photographed. This was done for four independent gels, which were subsequently analyzed by 

densitometry using AlphaEase FC imaging software (Alpha Innotech Corporation). 
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2.9.2 Spectrophotometric catalase activity assay 

 

For quantitative catalase (CAT) activity assay, a spectrophotometric approach was used based 

on the method previously reported by Luck (1965), by measuring the rate of decrease in H2O2 

absorbance at 240 nm at room temperature. Protein extracts (50 µg each) from well-watered 

and water-deprived leaves and roots (from four separate plants for each of well-watered or 

water-deprived plants) were mixed separately with 50 mM potassium phosphate buffer pH 8.0, 

1.5 mM EDTA and 1mM H2O2.  The rate of H2O2 decomposition by catalase was then calculated 

from the change in absorbance measured at 240 nm. The final units for the CAT activity assay 

were expressed as µmol H2O2 decomposed min-1. mg-1 protein.  The extinction coefficient was ε 

= 39.4 mM-1 cm-1 and the unit was defined as the amount of enzyme that liberates half the 

peroxide in 100 seconds at 25°C. 

3. Superoxide Dismutase (SOD) enzymatic activity assays 
 

3.1 Native PAGE In-gel activity assay  

 

For the in-gel detection of SOD activity in leaves and roots of maize in response to drought 

stress, 200 μg of protein (from extracts described in 2.3 above) per treatment was loaded on 

native PAGE and electrophoresed at 90 V for 7 hours at 4°C in 12% polyacrylamide mini gel. 

Following electrophoresis, SOD activity was detected by staining. Firstly, this was done by 

soaking the gel in 50 mM potassium phosphate buffer pH 7.8, containing 2.5 mM nitro blue 

tetrazolium (NBT) for 15 minutes in the dark. The stain was then discarded and, in the presence 

of light, the gel was soaked in a solution of 50 mM potassium phosphate buffer pH 7.8, 28 mM 

riboflavin and 28 µl N,N,N,N-tetramethylethylenediamine (TEMED) until SOD isoforms were 

visible. For the identification of SOD isoforms based on their metallo-cofactors, selective 

inhibition with KCN and H2O2 was performed before staining for the activity bands. The gels 
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were soaked in 5 mM H2O2 (to inhibit both Cu/ZnSOD and FeSOD), or 3 mM KCN (to inhibit only 

Cu/ZnSOD) as previously described by Archibald and Fridovich, 1982. MnSOD is resistant to both 

inhibitors. The SOD activity staining procedure was previously described by Beauchamp and 

Fridovich, 1971. This was done for four independent gels, which were subsequently analyzed by 

densitometry using AlphaEase FC imaging software (Alpha Innotech Corporation). 

3.2 Spetrophotometric activity assay 

 

Superoxide dismutase (SOD) activity was assayed in extracts described in 2.3 above by following 

the inhibition of the photochemical reduction of nitro blue tetrazolium (NBT) based on the 

procedure previously described by Beauchamp and Fridovich (1971). The reaction mixture 

contained 50 mM potassium phosphate buffer (pH 7.8), 0.1 mM EDTA, 13 mM L-methionine, 2 

μM riboflavin and 75 μM nitro blue tetrazolium (NBT) and 50 µg protein extracts from well-

watered and water-deprived leaves and roots of maize. Blank assays were also prepared but 

without protein extracts. Riboflavin was added last and the reaction was initiated by exposing 

the solution to light for 10 minutes. The increase in absorbance at 560 nm was carefully 

monitored to follow the production of blue formazan. The unit of SOD activity was defined as 

the amount of enzyme that inhibits the nitro blue tetrazolium photo-reduction by 50%. SOD 

activity was expressed in units per mg of protein. 

4. Densitometric analysis 
 

Densitometric analysis was used to compare enzymatic activities for each isoform identified. For 

densitometric analysis of SOD, CAT and APX activities, four gels from four independent 

experiments of each enzyme were analysed. The gel images were photographed, uploaded on a 

computer and analysed by using AlphaEase FC imaging software (Alpha Innotech Corporation, 

USA). 

http://etd.uwc.ac.za/



38 
 

5. Statistical analysis 

  

All quantitative data were analysed using the one-way analysis of variance (ANOVA) and tested 

for significance by the Tukey-Kramer test at 5% level of significance.   

6. Quantitative real-time PCR analysis of APX and CAT transcript   accumulation 

in response to drought stress 
 

6.1 Total RNA Extraction 

 

Total RNA was extracted from leaves and roots (from three independent experiments) of well-

watered and water-deprived maize plants (50 mg each) by using Direct-zol™ RNA Mini-prep kit 

(Zymo Research, USA) as described in the manufacturer’s manual. To digest and remove any 

contaminating DNA from the RNA, the extracted RNA was treated with RNase-free DNase I 

(Zymo Research, USA) by following the manufacturer’s instructions. Furthermore, RiboLock® 

RNase Inhibitor (Thermo Scientific, USA) was used according to manufacturer’s instructions to 

inhibit RNase-mediated degradation of the extracted RNA.  

6.2 Synthesis of the first strand cDNA  

 

Total RNA (500 ng each) from leaves and roots of both well-watered and water-deprived maize 

plants was used to synthesize cDNA. The reaction was carried out by using the RevertAid 

Reverse Transcriptase kit (Thermo Scientific, USA), with the use of an Oligo (dT)18 primer 

(Thermo Scientific, USA) as specified by the manufacturer’s instructions. The reaction was 

incubated at 42°C for 60 minutes followed by reaction termination at 70°C for 10 minutes.  
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6.3 Identification of maize ascorbate peroxidase (APX) and catalase (CAT) genes for RT-qPCR 

Ascorbate peroxidase encoding genes were identified from Phytozome 

(http://phytozome.jgi.doe.gov/pz/portal) on the basis of data on maize APX genes and the 

homology of their corresponding encoded proteins to arabidobsis APX proteins that have been 

previously characterized. For catalase gene identification, a search on Phytozome maize 

database using the keyword ‘catalase’ was carried out. Unique (non-conserved) regions not 

exceeding 250 bp were selected for RT–qPCR.  

6.4 Quantitative RT-PCR (RT-qPCR) analysis of ZmAPX and ZmCAT genes expression      in 

response to drought stress 

Variation of the expression of APX1 – 4 and CAT1 & 2 genes in treated (water deprived) and 

untreated maize (well-watered), both normalized to internal control maize genes elongation 

factor 1α, Actin2 and β-tubulin, in response to water deficit was measured independently using 

RT-qPCR. The experiments for well-watered and water-deprived maize leaves and roots were 

performed in triplicates, each in a total reaction volume of 10 μl by following manufacturer’s 

recommendations (Thermo Scientific). Two microliters (2 μl) of first strand cDNA template was 

mixed with 1X Luminaris Colour HiGreenTM LowROXqPCR master mix and 0.3 μM gene-specific 

forward and reverse primers (Table 2). The primers for both ZmAPX 1-4, ZmCAT1 & 2 and 

internal controls genes for the qPCR were designed using the Primer 3 software (Untergasser et 

al., 2012). For the APX genes, the RT-qPCRs were carried out using a three-step cycling protocol. 

An initial denaturation step at 95°C for 10 min was followed by 40 cycles of denaturation at 95°C 

for 15 seconds, annealing at 56°C for 30 seconds and extension at 72°C for 30 sec. Data 

acquisition was set to occur during extension periods. A melting curve step was included after 

the PCR steps to verify primer specificity and identify the PCR products. For CAT1 & 2 genes’ RT-

qPCR, conditions similar to the above were applied except that the annealing temperature was 

at 52.6°C. Similarly, RT-qPCR reactions were set up for three internal control maize genes: 
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elongation factor 1α, Actin2 and β-tubulin (primers sequences are provided in the table 2 

below). Transcript accumulation levels are expressed relative to the untreated control, based on 

2-ΔΔT method (Livak and Schmittgen, 2001).  Both well-watered and water-deprived 

experiments were normalized to the average levels of expression of the three internal control 

genes (Actin2, elongation factor1α & β-tubulin). The delta-delta method requires the use of 

internal control which is uniformly expressed in all samples. Thus in this study, Elongation factor 

1α, Actin2 and β-tubulin were used because their expression does not change in response to a 

variety of treatment conditions (Nicot et al., 2005). Statistical validity of all the data was tested 

by means of a one-way analysis of variance (ANOVA) and the Tukey-Kramer test at 5% level of 

significance was completed to compare the means using GraphPad Prism 6.01 software.  

6.5 Primer efficiency determination 

 

Primer efficiency was calculated using the following formula: 

(X g/µl DNA/[gene size in base pairs x 660]) x 6.022 x 1023 = Y molecules/µl 
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Table 2: Primer sequences used in RT-qPCR for gene expression analysis. 

Gene name       (Locus 

name)  

Forward primer 

(5' – 3') 

Reverse primer 

(5' – 3') 

Transcript 

length (bp) 

ZmAPX1 

(GRMZM2G120517)  

  

 

GGCAAGCAGATGGGTTTGA CTCCACAAGAGGGCGGAAGA 211 

ZmAPX2 

(GRMZM2G137839) 
GAAACTTCCTGATGCTGGCCCAAGT TTCAACTGTCCATGATTGCCCACCA 216 

ZmAPX3 

(GRMZM2G004211) 
GAAGCACCCCAAGATCACAT CTCTTCTAGCATCCGGCAAG 216 

ZmAPX4 

(GRMZM2G054300) 
TGGCAAGCAGATGGGTTTGA CTCCACAAGAGGGCGGAAGA 231 

ZmCAT1 

(GRMZM2G088212) 
TCAAGCCGAATCCAAAGACCA TCGAGCAAGCATTTCACACCA 238 

ZmCAT2 

(GRMZM2G090568) 
GCACACGTACACGCTCGTCAG GTCTTCCATCTCGGGGTCCAT 220 

Actin 2 CTGAGGTTCTATTCCAGCCATCC CCACCACTGAGGACAACATTACC 133 

β-tubulin CTACCTCACGGCATCTGCTATGT GTCACACACACTCGACTTCACG 139 

Elongation Factor 1α TGGGCCTACTGGTCTTACTACTGA ACATACCCACGCTTCAGATCCT 135 
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CHAPTER 3 

   RESULTS 
 

3.1 Drought causes biomass reduction in maize   

 

Drought responses in plants are characterised by turgor loss, reduced water potential and 

decreased cell expansion and/or growth. During drought stress plant growth and development 

is reduced due to negative effects on many different biochemical and physiological processes 

such as respiration, growth promoters, photosynthesis, nutrient metabolism, carbohydrates 

metabolism, ion uptake and translocation of biomolecules (Jaleel et al., 2008; Farooq et al., 

2008). Thus, plant biomass can be used as a marker to evaluate the response of plants to 

drought stress. The results of which can further be used to select or create new crop varieties 

with improved tolerance to drought-induced stress, resulting in better productivity. Thus, the 

impact of drought induced stress on the biomass of maize plants was determined after 28 days 

of exposure to drought. Water deprived maize showed a significant reduction in fresh weight 

(approximately 50%) when compared to the well-watered plants (figure 3.1).  
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Figure 3.1: Effect of drought on maize shoot biomass.  Immediately after 28 days of growth, the fresh weights of 

well-watered and water-deprived maize plants were measured. Data represent the mean (±SE) of 8 (n = 8) plants 

per treatment. The different letters (a and b) above the error bars indicates a significant difference between means 

(P< 0.05).   

3.2 Drought stress increases hydrogen peroxide content in leaves and roots of maize  

 

Hydrogen peroxide (H2O2) is one of the reactive oxygen species (ROS) that are produced as a 

secondary metabolic by-product under normal plant growth. During normal growth, where its 

concentrations are low, it is unable to cause damage as long as it is scavenged by different 

antioxidant mechanisms. However, when a plant is exposed to environmental stress such as 

drought, hydrogen peroxide levels can increase significantly and become toxic to the plant 

because of its high cellular concentration; resulting in damage to DNA, proteins and lipids which 

in turn negatively affects normal cellular function.  The measurement of H2O2 content can 

therefore be used to evaluate the extent of damage to plant tissue due to drought-induced 

stress. In this study, hydrogen peroxide content was measured in leaves and roots of maize 
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(well-watered and water-deprived) after 28 days of treatment. Water-deprived leaves and roots 

contained more (60% and 25% increase, respectively) H2O2 when compared to well- watered 

plants (figure 3.2)   
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Figure 3.2: Hydrogen peroxide content measurement in leaves and roots of maize subjected to drought-induced 

stress for 28 days.  The data represents the means ± standard error (SE) from four independent experiments 

measured in triplicate.  The different letters (a and b) above the error bars indicate a significant difference between 

means (P< 0.05).    
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3.3 Lipid peroxidation as a biochemical marker for oxidative stress during drought stress in 

maize 

 

Lipid peroxidation is the oxidative degradation of lipids in which ROS remove electrons from the 

lipids cell membrane. It occurs when a plant experiences stress, when ROS levels will far exceed 

the plant’s ability to scavenge. One of the final products of lipid peroxidation is 

malondialdehyde and it causes detrimental changes to cell membrane such as ion transport, 

membrane fluidity, protein cross linking and loss of enzyme activity, leading to cell death. As a 

measure of drought-induced oxidative stress damage in maize, MDA content was measured in 

leaves and roots of maize (well-watered and water-deprived) after 28 days of treatment. The 

water-deprived leaves and roots contained higher levels of MDA (approximately 70% and 64% 

increase, respectively) when compared to the well-watered plants (figure 3.3). 
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Figure 3.3: Lipid peroxidation (MDA) in leaves and roots of maize after 28 days of treatment. The bars represent 

the means ± standard error (SE) from four independent experiments measured in triplicate (n = 3). The different 

letters above the error bars indicates a significant difference between means (P < 0.05).   
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3.4 The effect of drought-induced stress on cell viability in maize leaves 

 

When plants are subjected to abiotic stress such as drought, ROS are produced at higher levels 

and become toxic to the plant, leading to cell death. An increase in ROS, such as H2O2, induces 

lipid peroxidation causing the cellular membrane to rupture and leak. Therefore, to further 

evaluate the extent of the impact of drought-induced stress in maize, cell viability was measured 

in the leaves of well-watered and water-deprived maize. The assay is based on the ability of 

dead cells to take up Evans Blue stain while viable cells, with intact cell membranes, cannot. The 

results showed that water-deprived plants had significantly higher extent (± 60%) of dead cells 

when compared to well-watered plants (figure. 3.4).  
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Fig. 3.4: Cell viability measurements in the leaves of well-watered and water-deprived maize, 28 days after 

treatment. The error bars are representative of the mean (±SE) of three independent experiments from 3 plants 

per treatment (n = 3). Means with different letters are significantly different from each other (P < 0.05).  

 

 

 

http://etd.uwc.ac.za/



47 
 

3.5 The effects of drought-induced stress on APX activity in leaves and roots of maize 

 

Ascorbate peroxidase is a major enzyme in the process of hydrogen peroxide detoxification in 

plant chloroplasts. This process occurs via an ascorbate-glutathione cycle where APX uses AsA as 

a specific electron donor for the reduction of H2O2 to water.  Thus, APX activity of leaves and 

roots in response to drought stress was measured.  Non-denaturing native PAGE was used for 

activity detection of each APX isoform and a spectrophotometric assay was used to measure 

total APX activity in all four treatments. Comparative analysis of individual isoforms activities 

that were detected in all four treatments was also determined by measuring their relative pixel 

intensity ratios. Seven active isoforms (ZmAPX 1 – 7) of APX were detected on the native PAGE, 

with the highest number of isoforms appearing in water-deprived roots (figure 3.5A). The 

contribution of individual isoforms to total activity correlated positively with the native PAGE 

activity results as shown by the significantly high total activity in water-deprived leaves and 

roots in comparison to well-watered treatments (figure 3.5B). The activity of isoforms 4 and 7 

was detected in roots and leaves and revealed significantly high activity in water-deprived 

treatments when compared to well-watered treatments (figure. 3.5 D and G).  Isoforms 3 and 6 

were also detected in roots with pixel intensity ratios showing a high level of activity in water-

deprived treatments in comparison to well-watered treatments (figure 3.5 C & F). It was 

interesting to note that isoform 6 activity (albeit very low) was also detected in water-deprived 

leaves but not in well-watered leaves (figure 3.5 A). Isoform 5 was also detected in well-watered 

and water-deprived roots and in water-deprived leaves but not in well-watered leaves. Isoform 

5 activity (as a measure of pixel intensity) was much higher in water-deprived roots in 

comparison to well-watered roots (figure 3.5 E).  
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Figure 3.5: Ascorbate peroxidase activity in leaves and roots of maize plant after 28 days of treatment. In-gel 

native page activity assay (A), Spectrophotometric assay for APX total activity (B), Relative pixel intensity ratios of 

maize APX isoforms 3, 4, 5, 6 and 7 (C – G). The data represent the means ± standard error (SE) from four 

independent experiments measured in quadruple (n = 4). Means with different letters are significantly different 

from each other (P < 0.05). WWL = well-watered leaves, WWR = well-watered roots, WDL= water-deprived leaves 

and WDR = water-deprived roots. 

 

3.6 Drought stress induces changes in catalase activity in maize 

 

Catalase is an antioxidant enzyme that is found in all aerobic organisms and is responsible for 

catalysing the conversion of H2O2 into water and oxygen under stressful conditions. The activity 

of catalase in response to drought stress was therefore investigated using in-gel native PAGE, 

spectrophotometric assaying and pixel intensity analysis. The in-gel activity assay revealed five 

catalase isoforms with the highest activity displayed by isoform 4 in response to drought stress 

in the leaves (figure 3.6 A and D).  

 

A     B    C 
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 Figure. 3.6: Effects of drought treatment on catalase activity in maize leaves and roots, measured 28 days after 

treatment. After qualitative in-gel activity assay with native PAGE and staining, 5 catalase isoforms were detected 

(A). Total catalase activity in each treatment was quantified spectrophotometrically by measuring the rate of 

decrease in H2O2 absorbance at 240 nm at room temperature (B). Densitometric analysis of catalase activity in well-

watered and water-deprived leaves (C). Error bars represent the means (±SE) of four densitometric values (n = 4). 

Error bars with different letters indicate mean values that are significantly different at (P < 0.05). 

Total activity analysis results correlated positively with the in-gel activity assay in that CAT 

activity was significantly increased in response to drought stress, both in leaves and roots (figure 

3.6 B).  Isoforms 1 and 4 activity analysis (as a measure of pixel intensity) revealed a significant 

increase in activity in response to drought stress when compared to well-watered plants (figure 

3.6 C and D).  
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3.7 Drought stress differentially alters SOD activity in maize 

 

In order to prevent the oxidative damage that may be caused by these excessive ROS, SOD 

catalyses the decomposition of O2
·− to H2O2. Therefore, it may be deduced that an increase in 

SOD activity is an indication of high levels of these ROS due to drought stress. Thus, SOD activity 

during drought stress was investigated and, as expected, its activity was enhanced in response 

to drought stress. The isoforms were identified and characterized by selective inhibition with 

KCN or H2O2. FeSODs were sensitive to H2O2 but resistant to KCN. CuZnSODs were sensitive to 

both KCN and H2O2. MnSODs were resistant to both inhibitors (data not shown). In total, one 

MnSOD, three CuZnSODs and one FeSOD were identified (figure 3.7 A). Spectrophotometric SOD 

total activity assay quantified the contribution of all isoforms to total activity in each treatment 

(figure 3.7 B). FeSOD isoform was detected in all four treatments and its activity measurement 

(as pixel intensity ratio) revealed the highest activity in water-deprived leaves. 
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Figure 3.7: SOD isoform identification and activity measurements in leaves and roots of maize measured after 28 

of treatment. Qualitative determination the responses of SOD isoforms after native PAGE on 12% (w/v) acrylamide 

gel from crude extracts was based on their response to inhibitors, H2O2 and KCN (figure.3.7 A). Quantitative total 

SOD activity (no inhibitors) was also measured spectrophotometrically from crude extracts of leaves and roots 

(figure 3.7 B). Relative pixel intensity ratio (as a measure of activity) of FeSOD was measured (figure 3.7 C). One unit 

of SOD activity was defined as the amount of enzyme required to cause 50% inhibition of the rate of NBT reduction 

at 560nm wavelength. Data presented are means (±SE) of four independent experiments (n=4). Different letters 

above error bars denote mean values that are significantly different at (P < 0.05). 
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3.8 The effect of drought stress on the expression of ascorbate peroxidase (APX) and catalase 

(CAT) genes 

Relative gene expression/transcript accumulation measurement, i.e. increase or decrease in 

transcript levels of APX 1 – 4 and CAT 1 & 2 in treated (water-deficient) versus untreated (well-

watered) maize, both normalized to the average expression of internal control maize genes 

elongation factor 1α, Actin 2 and β-tubulin, was carried out using quantitative RT-qPCR. 

Relative gene expression results for APX are displayed in figure 3.8.1 and 3.8.2 while those of 

CAT are presented in figure 3.8.3. For ZmAPX1 gene expression, an increase of 1.9 fold in 

response to drought was observed in the leaves (figure 3.8.1 A) while an increase of 5.1 fold in 

response to drought was recorded in the roots (figure 3.8.1 B).  Figure 3.8 C and D represent 

APX2 relative gene expression results in the leaves and roots, respectively. A 5.1 fold increase in 

APX2 gene expression relative to the untreated control (WWL) is observed in the leaves (figure 

3.8.1 C). There was no detectable expression of the APX2 gene in well-watered roots but, a 

significant increase in expression in response to water deficit was observed (figure 3.8.1 D).  
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Figure 3.8.1: Expression of maize ascorbate peroxidase (APX) genes ZmAPX1 (A & B), ZmAPX2 (C & D) in leaves 

and roots respectfully, in response to water deficit. Transcript accumulation levels are expressed relative to the 

untreated control. Both well-watered and water-deprived experiments were normalised to the average levels of 

expression of the three internal control genes ( Actin2, elongation factor1α & β-tubulin). Error bars represent the 

means (± SE; n= 3) of three independent experiments. The different letters indicate the difference between means 

at P < 0.05. WWL (well-watered leaves); WDL (water deprived leaves); WWR (well-watered roots) WDR (water-

deprived roots). 

Changes in transcript accummulation levels of APX3 are  presented in figure 3.8.2 A leaves) and 

B (roots). In the leaves, a 4.6 fold decrease in expression in response to drought was observed 

(figure 3.8.2 A). A similar (4.6 fold) increase was recorded in the roots in response to drought 

(figure 3.8.2. B). APX3 results displayed an  increase of 4.6 fold expression relative to untreated 

controls in both leaves and roots (figure 3.8.2 A and B, respectively). A significant increase of 

11.3 fold for APX4 gene expression in response to drought was recorded in the leaves (figure 

3.8.2 C). Whilst there was no expression detected in well-watered roots, a significant increase 

in expression in response to drought was observed in water-deprived roots (WDR, figure 3.8.2 

D).   
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Figure 3.8.2: Expression of maize ascorbate peroxidase (APX) genes ZmAPX3(A & B), ZmAPX4 (C & D) in leaves 

and roots respectfully, in response to water deficit. Transcript accumulation levels are expresssed relative to the 

untreated control.  Both well-watered and water-deprived experiments were normalised to the average level of 

expression of the three internal control genes (Actin2, elongation factor1α & β-tubulin). Error bars represent the 

means (± SE; n= 3) of three independent experiments. The different letters indicate the difference between 

means at P < 0.05. WWL (well-watered leaves); WDL (water deprived leaves); WWR (well-watered roots) WDR 

(water-deprived roots).  

Changes in CAT1 gene expression levels in leaves and roots are presented in figure 3.8.3 A and 

B, respectively. A significant 9.8 fold increase in CAT1 gene expression levels was recorded in 

the leaves in response to drought (figure 3.8.3 A). In the roots (figure 3.8.3. B), a 4.3 fold 

increase in CAT1 gene expression levels in response to drought was observed. CAT2 gene 

expression levels recorded a 2.8 fold increase in the leaves in response to drought (figure 3.8.3 

C). Similarly, relative expression levels of CAT2 gene increased 3.9 fold in response to drought 

in the roots (figure 3.8.3 D).  
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Figure 3.8.3: Expression of maize catalase (CAT) genes CAT1 (A & B) and CAT2 (C & D) in leaves and roots 

respectively, in response to water deficit. Transcript accumulation levels are expressed relative to the untreated 

control. Both well-watered and water-deprived experiments were normalized to the average level of expression 

of the three internal control genes (Actin2, elongation factor1α & β-tubulin). Error bars represent the means (± 

SE; n= 3) of three independent experiments. The different letters indicate the difference between means at P < 

0.05. WWL (well-watered leaves); WDL (water deprived leaves); WWR (well-watered roots) and WDR (water-

deprived roots).        
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CHAPTER 4 
 

                                                              DISCUSSION 
 

4.1 Drought stress reduces maize (Zea mays L.) biomass 

 

Without water, plants cannot photosynthesise or maintain full metabolic activity required for 

plant functioning. In crop agriculture, water or scarcity availability can produce high yields or 

total crop failure. It has been reported that when enough water is available, the number of 

cultivated crops is doubled, leading to higher crop yield than when there are water limitations 

(FAO, 2011). In this study, the effects of long-term drought on the growth of maize were 

investigated on the basis of shoot fresh weight. The growth of plants is achieved through cell 

elongation, division and differentiation and can be measured by biomass and height (Aslam et 

al., 2015). The results showed that maize is sensitive to drought stress. A steep reduction in 

shoot biomass was observed in response to drought (figure 3.1), a clear indication of reduced 

growth. These results are not new and unique. Several other studies have also shown that maize 

is sensitive to drought stress (Li-Ping, 2006; Bai, 2006; Takele and Farrant, 2009; Benesova et al., 

2012). The reduction in growth, leading to reduced biomass, can be attributed to physiological 

and biochemical processes that are negatively affected by drought, such as photosynthesis, 

respiration, translocation, ion uptake, carbohydrate metabolism and nutrient metabolisms 

(Jaleel et al., 2009; Farooq et al., 2008; Yang et al., 2015). The negative effect of drought stress 

is further characterized by reduction in water content, diminished water potential, turgor loss, 

impaired mitosis resulting in limited cell division and obstructed cell elongation that results in 

reduced growth (Farooq et al.,2009; Razmjoo et al., 2008). Impaired mitosis, cell elongation and 

expansion result in reduced plant height, leaf area and crop growth under drought conditions 

(Nonami, 1998; Kaya et al., 2006; Hussain et al., 2008). The results of this study showed that 
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drought stress caused morphological and physiological changes on the water-deprived maize 

compared to well-watered ones. Morphological responses to drought stress were characterized 

by visible loss of turgor with wilting and curling symptoms in leaves of drought-treated maize 

seedlings (data not shown). This resulted in growth inhibition and ultimately, biomass reduction. 

4.2 Drought stress increases the concentration of H2O2 in leaves and roots of maize 

 

When a plant is exposed to abiotic stress such as drought, H2O2 concentration is increased to 

toxic levels, resulting in oxidative stress (Yang et al., 2015; Li-ping et al., 2006). For example, this 

occurs when a plant attempts to conserve water by closing the stomata in response to water 

deficit. During stomatal closure, carbon dioxide cannot enter the leaves, resulting in decreased 

CO2 assimilation, but simultaneously causes an increase in photo-respiratory oxygen 

assimilation (Luna et al., 2004). As a result, ROS, including H2O2, increase to levels that are 

harmful to the plant. Other recent studies have found that H2O2, in cross-talk with nitric oxide 

and calcium, can act as a signalling molecule in plant development and abiotic stress (such as 

drought) responses (Li et al., 2015; Zou et al., 2015; Hu et al., 2007; Tan et al., 2013). In this 

study, H2O2 levels increased in leaves and roots that were exposed to drought stress when 

compared to the well-watered leaves and roots of maize plant (figure 3.2). The increase was 

much more pronounced in water-deprived leaves than in water-deprived roots. This may be a 

consequence of increased photorespiration as a result of stomatal closure, possibly resulting 

from accumulation of ABA in the roots and leaves, since drought is known to induce ABA 

accumulation that leads to stomatal closure and an increase in H2O2 levels in plant tissue.  
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4.3 Drought stress differentially increases the production of MDA in leaves and roots of maize 

plant 

 

It is well established that stressful growth conditions such as drought can induce cell membrane 

damage, increase membrane permeability and accumulation of ROS in plants, leading to 

oxidative stress (Ti-da et al., 2006; Li-ping et al., 2006).  Cell membrane damage occurs through 

the peroxidation of lipids in which ROS remove electrons from the cell membrane lipids, leading 

to programmed cell death. A major product of lipid peroxidation is malondialdehyde (MDA) and 

is often used as a marker of lipid peroxidation. In this study, MDA content was significantly 

higher in roots and leaves of water-deprived maize than the roots and leaves of well-watered 

maize (figure 3.3). The results suggest that there was severe ROS damage in the leaves than in 

the roots, implying that the roots had a more efficient ROS scavenging system than the leaves. 

Indeed, APX (figure 3.5b), SOD (figure 3.7 B) and CAT (figure 3.6 B) total activity measurements 

revealed significantly higher activities in water-deprived leaves than in water-deprived roots. 

Furthermore, studies on maize which were conducted in our laboratory produced similar results 

to this study. In agreement with these results, a positive correlation between lipid peroxidation 

with other biochemical and physiological symptoms in response to drought stress have been 

reported in maize (Bai et al., 2006; Ali and Ashraf, 2011; Anjum et al., 2011a, 2011b and 2012).  

4.4 Drought stress induces cell death in maize roots and leaves 

 

 As it has been stated before that MDA, the product of lipid peroxidation during abiotic stress is 

responsible for cell membrane damage, and can result in cell death (Sharma et al., 2012). In this 

study, this correlation between membrane damage and cell death was tested by measuring 

Evans blue uptake in leaves of maize under well-watered and water-deprived conditions. The 

results demonstrated that the leaves of water-deprived maize had less cell viability than the 

well-watered maize leaves (figure. 3.4). These results correlate well with the observed increase 
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in lipid peroxidation (figure 3.3) as a result of increased levels of H2O2 (figure 3.2) that eventually 

led to high levels of cell death. This high level of cell death is indicative of plants suffering from 

oxidative damage. Other similar study results are consistent with the findings of this study. For 

example, in a study conducted by Anjum et al., 2011 to assess the drought–induced oxidative 

damage in terms of ROS accumulation in maize, it was found that, when compared with well-

watered conditions, drought stress caused oxidative stress through excessive production of ROS 

which led to reduced growth and yield, ultimately causing cell death in all maize hybrids (Anjum 

et al., 2011b & 2017). 

4.5 Ascorbate peroxidase activity is differentially induced in response to drought stress in 

maize. 

 

In total, seven APX isoforms activities (herein referred to as ZmAPX 1 – 7) were detected in 

leaves and roots of maize (figure 3.5 A). Native gel analyses showed that ZmAPX4 and ZmAPX7 

represented the majority of the APX isoforms. The activity of these isoforms was highly 

enhanced in response to drought stress in water-deprived leaves and roots, with a highest 

response being displayed by ZmAPX7 in water-deprived leaves. Densitometry analyses of 

ZmAPX7 on both leaves and roots showed the highest activity levels in water-deprived leaves 

when compared to water-deprived roots in response to drought stress (figure 3.5 G). Indeed, 

total APX activity assay (the sum of individual isoforms’ contribution) on both leaves and roots 

revealed that the highest response to drought stress was in the water-deprived leaves (figure 

3.5 B). These results clearly suggest that ZmAPX7 may play a major role in response to drought 

stress in maize leaf tissue. The high activity of ZmAPX7 in response to drought stress correlate 

with the high levels of H2O2 measured in water-deprived leaves (figure 3.2). With high affinity 

for H2O2 than other antioxidant enzymes like CAT, APX breaks down H2O2 efficiently using 

ascorbate as the electron donor and may act as a regulator of ROS/H2O2 levels in cells (Harb et 
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al., 2015; Tan, M. et al., 2011). ZmAPX4 activity was also detected in all four treatments with a 

noticeable increased activity in water-deprived leaves and roots (figure 3.5 A). The increase in 

activity was also correlated with densitometry analyses that produced enhanced activities in 

leaves and roots in response to drought stress (figure 3.5 D). Taken together with ZmAPX7, 

ZmAPX4 activity detection in leaves and roots suggest that APX is a versatile enzyme and ZmAPX 

4 & 7 gene expression is up-regulated during normal growth (in well-watered leaves and roots) 

with direct correlation to increased enzyme activity in response to drought stress (in water-

deprived leaves and roots). Equally interesting results are those of ZmAPX5 activity in the leaves 

and roots. Under normal growth condition in the leaves (WWL), the activity of ZmAPX5 was not 

detected but, in response to drought stress (WDL) the activity was detected showing a very 

strong activity (figure 3.5 A). The absence of ZmAPX5 activity in well-watered leaves implies that 

ZmAPX5 encoding gene is silent or down regulated during growth under favourable conditions. 

However, well-watered roots displayed partial or low activity of ZmAPX5. However, when these 

roots were subjected to drought stress (WDR), ZmAPX5 activity was significantly enhanced 

relative to WWR (figure 3.5 A). The activity of ZmAPX5 in the roots was also analyzed by 

densitometry and the results showed a statistically significant enhanced activity in response to 

drought stress (figure 3.5 E). Similarly, ZmAPX4 and ZmAPX7 activity results indicate that these 

isoforms play a major role in the detoxification of ROS in leaves and roots of maize in response 

to drought stress. Taken collectively, ZmAPX4, ZmAPX5 and ZmAPX7, results showed that these 

isoforms contribute significantly to antioxidant activity in response to drought stress. ZmAPX7 

displayed the highest contribution in the leaves and followed by the roots, respectively (figure 

3.5 B). ZmAPX1 and ZmAPX2 activities were detected only in water-deprived roots while 

ZmAPX3 & 6 activity was significantly increased in water-deprived roots relative to well-watered 

roots (figure 3.5 A & C). The absence of ZmAPX1 & 2 activity in the leaves suggest that these 
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isoforms are localized in the roots only and that their activity is induced by abiotic stress such as 

drought.   

4.6 Catalase is differentially expressed in response to drought stress 

 

Catalase can either catalyze the direct dismutation of H2O2 into H2O and O2 (catalytic mode) or it 

can utilize H2O2 to oxidize substrates such as ethanol, methanol, formate or nitrite, 

formaldehyde (peroxidatic mode). In plants, catalase exists in multiple forms (or isoforms) that 

have been shown in maize to be coded for by distinct, unlinked genes (Scandalios, 1965 & 

1968). Maize has a set of four discrete catalase isoforms of which 3 have been intricately 

analysed genetically and biochemically (Schmittgen and Livak, 2008). In this study, five active 

isoforms of CAT were detected (figure 3.6 A). On visualization of native-PAGE and densitometry 

analyses (figure 3.6 D), ZmCAT4 showed significantly enhanced activity in response to drought 

stress (water-deprived leaves) when compared to leaves from well-watered plants. In addition, 

the spectrophotometric total CAT activity assay revealed a significant increase in CAT activity in 

water-deprived leaves with a major contribution coming from ZmCAT4 in water-deprived leaves 

(figure 3.6 B). Densitometry analyses also revealed a statistically significant increase in ZmCAT4 

activity in response to drought stress when compared to well-watered leaves (figure 3.6 D). 

Interestingly, ZmCAT4 activity was not detected in both well-watered and water-deprived roots. 

These results suggest that ZmCAT4 is localized in the leaves of maize but not in the roots. Two 

other active isoforms, ZmCAT2 and ZmCAT5 were detected in water-deprived roots in response 

to drought stress but not in well-watered roots nor leaves. This may suggest that ZmCAT2 and 

ZmCAT5 genes are stress responsive and that they are located in the roots. ZmCAT3 activity was 

detected in well-watered roots only, with no corresponding activity in leaves in response to 

drought. This might be an indication that ZmCAT3 isoform does not play any role in ROS 

scavenging in response to severe stressful conditions and that it is only found in the roots. 
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Alternatively, this may imply that the activity of ZmCAT3 is inhibited by drought stress, at least 

in the roots. Along with ZmCAT4, the activity of ZmCAT1 was significantly enhanced in response 

to drought stress in well-watered leaves in comparison to water-deprived leaves (figure 3.6 A). 

Pixel intensity analyses of ZmCAT1 revealed a statistically significant activity increase in 

response to drought stress (figure 3.6 C). These results reveal a variable response of CAT 

isoforms activity in response to drought stress, particularly in the roots. The presence of distinct 

isoforms in the leaves (ZmCAT1 and ZmCAT4, both expressed in well-watered and water-

deprived leaves only) and in the roots (ZmCAT3, expressed in well-watered roots only; ZmCAT2 

and ZmCAT5 expressed in water-deprived roots only) suggest that different CAT response 

mechanisms to drought stress exists between the leaves and roots of maize. In a similar study, 

distinct CAT isoform responses to severe drought stress in sugarcane were reported (Boaretto et 

al., 2014). In describing the CAT isoform profile in two sugar cane cultivars, the authors found no 

major changes in isoform activity in both control and water restricted treatments, but observed 

two main CAT isoform in the drought sensitive cultivar. The same isoforms were detected in the 

drought tolerant cultivar with only CAT1 being present in the control and only CAT2 was 

detected in the treated plants under mild drought stress conditions. However, when both 

cultivars were subjected to severe drought stress, the drought tolerant cultivar expressed CAT1 

in both treatments. However, the drought sensitive cultivar expressed enhanced CAT2 activity in 

both treatments. Based on these results, the authors suggested that the drought tolerant 

cultivar responded differently to the level of stress. They concluded that this may be due to 

different production levels of H2O2 in different cell organelles leading to different CAT isoforms 

to respond differently (Boaretto et al., 2014). Further supporting evidence can also be found in 

another study by Tan et al., 2011. The authors investigated the effects of mild water stress 

induced by polyethylene glycol (PEG) on the activities of antioxidant enzymes and their 

isoforms, antioxidant content of different subcellular compartments in maize leaves. For the 
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results, the authors found that different kinds of antioxidant isoforms in different subcellular 

organelles had different responses to water stress. With CAT in particular, they found two 

isoforms in peroxisomes with CAT1 showing higher activity than CAT 11, and the priority of CAT1 

increasing with time in response to drought stress. While on the other hand they found one CAT 

isoform in apoplasts in response to water stress. Indeed, depending on the type of stress, its 

intensity and duration, plant species and genotype, environmental stress has been shown to 

result in either elevated or depleted CAT activity (Moussa and Abdel-Aziz, 2008; Sharma and 

Dubey 2005; Devi et al., 2012). Of major interest in these results is the significant contribution 

made by CAT4 isoform in response to drought stress and the accompanying positive correlation 

from total CAT activity results (figure 3.6 A and B respectively). This may be due to apoplasts 

being the major source of H2O2 accumulation in plants’ leaves that have been subjected to 

water stress (Bartoli et al., 2004; Hu et al., 2006; Jubany-Mari et al., 2009), leading to 

upregulation of antioxidant enzymes in maize leaves (Hu et al., 2005 & 2006) and that CAT is 

one of the major H2O2 scavenging enzymes in plants. In general, CAT activity in maize under 

drought stress conditions has been shown to increase (Koralovic et al., 2009; Tekele and Farrant, 

2009; Chugh et al., 2011; Sofalian and Valizadeh, 2016). 

4.7 Drought stress induces differential SOD isoform activity in maize 

 

Different plants produce different numbers of each type of SOD isoforms (Gratao et al., 2005). In 

total, one MnSOD, three CuZnSODs and one FeSOD activity bands were observed (figure. 3.7 A). 

In response to drought induced stress, FeSOD activity was significantly increased in leaves (WDL) 

and roots (WDR), with the highest activity displayed in the leaves (figure 3.7 A & C). This high 

activity of FeSOD implies that FeSOD may play a significant role in protecting maize against 

oxidative stress and may lead to tolerance under drought stress. It is also worth-noting that the 

highest activity of FeSOD, a chloroplast-located enzyme (Kliebenstein, et al., 1998), in response 
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to drought stress in the leaves may suggest that the photosynthetic apparatus, a vital 

component of plant growth and development, may well be protected.  This suggestion is 

supported by a study in which an expression of transgenic Arabidopsis FeSOD in chloroplasts 

showed an improved oxidative stress tolerance in tobacco (Nicotiana tabacum) by protecting 

the plasma membranes and PSII (Van Camp et al., 1996). Indeed, increased FeSOD activity in 

response to drought-induced stress has been reported in maize (Avramova et al., 2015; Van 

Breusegem et al., 1999).  

Three CuZnSOD isoforms were observed in both leaves and roots in response to drought-

induced stress. Their response was more pronounced in WDR and less in WDL (figure 3.7 A.), 

suggesting that these isoforms play a greater role in the roots than in leaves in maize drought 

tolerance. To further support this argument, it is worth noting that these CuZnSOD isoforms 

were not detected in WWL but observed in WWR, albeit poorly expressed (figure 3.7 A). The 

activity of these CuZnSOD isoforms in WWR was detected through total SOD activity 

measurements (figure 3.7 B). In the absence of CuZnSOD isoforms in WWL and its poor 

expression in WWR in figure 3.7 A, it is important to explain that the higher total SOD activity 

observed in WWL, in comparison to a lower activity in WWR in figure 3.7 B, is likely derived from 

the high expression of FeSOD isoform. This is clearly supported by the densitometry analysis of 

FeSOD, where the pixel intensity of FeSOD in WWL is significantly greater to that in WWR (figure 

3.7 C).  The total SOD enzyme activity (figure 3.7 B) correlated positively with in-gel activity 

assay (figure 3.7 A), showing an induction by drought stress and highest activity from the FeSOD 

isoform (WDL & WDR in figure 3.7 B & C). The densitometry analysis of FeSOD (figure 3.7 C, WDL 

and WDR) suggest that FeSOD may play a key role in drought response of maize. Overall, these 

results are consistent with other studies reporting an increase in SOD activity in response to 

drought stress in sunflower (Gunes et al., 2008), poplar (Xiao et al., 2008), cowpea (Manivannan 
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et al., 2007b), liquorice (Pan et al., 2006) and wheat (Bakalova et al., 2004). Besides, SOD 

responses to stressful conditions have been shown to be substrate inducible (Tsang et al., 1991). 

This implies that an increase in the SOD activity is indicative of elevated levels of reactive active 

oxygen species, serving as substrate that lead to increased expression of genes encoding SOD. 

Furthermore, the analysis of individual SOD Isoforms is important, because it can help to 

understand how drought-induced stress may affect the different subcellular compartments in 

maize. 

4.8 Relative expression of ZmAPX and ZmCAT genes is differential in response to 

drought stress in leaves and roots. 

Reverse transcription qPCR (RT-qPCR) was used to investigate changes in the transcript levels of 

APX1-4 and CAT1 & 2 genes in response to drought stress in maize and to establish if there is 

any correlation between the enzyme activity and transcript expression levels. Previous studies 

have shown that genes encoding antioxidant enzymes are frequently important in developing 

plants with enhanced drought tolerance. For example, increased tolerance to drought has been 

observed in Nicotiana tabacum that overexpress APX gene (Badawi et al., 2004).  In transgenic 

rice, OsMT1 gene overexpression indicated a higher level of CAT and APX activity and caused an 

increase in drought resistance (Yang et al., 2009). In this study, when one compares the 

expression of APX genes in leaves versus roots, it is noted that the APX genes (figure 3.8.1 A & B 

and A - D; figure 3.8.1 C & D) shows differential expression relative to untreated controls in 

response to drought stress. Further to the differential expression of APX genes between the 

leaves and roots, a pattern of expression emerges within the leaves and roots – all APX genes 

are significantly up-regulated in the leaves but down-regulated in the leaves and roots in 

response to drought stress. These results suggest that all the APX genes in this study are likely to 

play a major role in the fight against drought stress. Indeed, previous studies (Bian and Jiang, 

2009) reported an increase in APX gene transcript level in roots of P. pratensis in response to 

http://etd.uwc.ac.za/



66 
 

drought but, a significant increase was also observed in the leaves, which is consistent with the 

results of this study for APX genes. Pronounced down-regulation of APX2 & 4 genes expression 

in untreated control was also evident in the roots (figure 3.8.1 D and figure 3.8.2 D, 

respectively), and that the expression of these genes may be induced by the lack of water in the 

roots and that their expression is induced in response to drought stress. Although the APX genes 

that are tested here for relative expression may not necessarily be the complete genes encoding 

for the APX isoforms tested for activity in the leaves (figure 3.5 A), the relative expression of the 

APX genes are consistent with the pattern of APX isoform activity in response to drought stress 

within the leaves (figure 3.5 A). But because of the complex regulatory mechanisms of gene 

expression, gene expression cannot be directly correlated with enzyme activity (Harb et al., 

2015). Indeed, many factors that may account for discrepancies between measured gene 

expression and enzyme activity levels have been reported (Grunberg-manago, 1999). CAT1 gene 

expression was significantly up-regulated in response to drought stress, both in leaves and roots 

(figure 3.8.3 A). CAT2 gene expression was also up-regulated in leaves and roots (figure 3.8.3 B).  

Finally, similar regulation of CAT and APX gene expression could be explained by the fact that 

proteins encoded by these genes are involved in the scavenging of H2O2 produced during 

oxidative stress, thus their gene expression is likely regulated in the same way. 

 4.9 Conclusion  
 

In this study, the effects of drought-induced stress on the activities of antioxidant enzymes; namely SOD, 

APX and CAT; were investigated. Hydrogen peroxide, MDA, cell death and biomass were also explored as 

part of the investigation in order to appreciate the impact at of drought on these biochemical and 

physiological aspects. In conclusion, the results obtained showed that drought stress leads to oxidative 

stress, resulting in oxidative damage in maize, as evident in the increase in H2O2, MDA, cell death and a 

decrease in biomass. High levels of H2O2, and MDA in the leaves than in roots in response to drought 
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suggest that the leaves are more sensitive to drought stress than the roots. Drought stress caused an 

increase in SOD, APX and CAT activities. FeSOD displayed the highest enzymatic activity in leaves 

compared to other SOD isoforms. APX 4 and 5 contributed significantly to APX-dependent antioxidant 

activity, with APX7 displaying the greatest contribution in the leaves than in roots. CAT4 displayed the 

highest contribution to CAT-mediated antioxidant activity and was detected in leaves only, implying that 

it may be located exclusively in the leaves. This may be explained by the fact that most ROS is generated 

(via photorespiration) in the leaves in response to drought stress. In conclusion, this study demonstrated 

that antioxidant enzyme responses are influenced by drought and are determinants of the efficiency 

with which ROS are scavenged in response to drought. It further illustrated that transcriptional 

regulation of antioxidant enzyme genes is not sufficient to explain the responses of antioxidant enzyme 

activities to drought, suggesting that post-transcriptional and post-translational mechanisms may also 

play a role in regulating maize responses to drought. The positive correlation between gene expression 

and enzyme activity seen during drought stress may indicate that the increase in enzyme activity 

response levels were caused by high mRNA levels and were up-regulated at the posttranscriptional level, 

which in part might be enzyme activation or synthetic processes induced by drought. To elucidate these 

mechanisms with reference to response of maize to drought stress, proteomic profiling may be a useful 

tool to adopt as it will identify changes in protein abundance and may provide clues to post-translational 

modifications to the existing protein pools to effect changes in their biological activities. 
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