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Abstract

Efficient variable mesh techniques to solve interior layer problems

Charles K. Mbayi

PhD thesis, Department of Mathematics and Applied Mathematics, University of the

Western Cape.

Singularly perturbed problems have been studied extensively over the past

few years from different perspectives. The recent research has focussed on the

problems whose solutions possess interior layers. These interior layers appear

in the interior of the domain, location of which is difficult to determine a-priori

and hence making it difficult to investigate these problems analytically. This

explains the need for approximation methods to gain some insight into the be-

haviour of the solution of such problems. Keeping this in mind, in this thesis

we would like to explore a special class of numerical methods, namely, fitted

finite difference methods to determine reliable solutions. As far as the fitted

finite difference methods are concerned, they are grouped into two categories:

fitted mesh finite difference methods (FMFDMs) and the fitted operator fi-

nite difference methods (FOFDMs). The aim of this thesis is to focus on the

former. To this end, we note that FMFDMs have extensively been used for

singularly perturbed two-point boundary value problems (TPBVPs) whose

solutions possess boundary layers. However, they are not fully explored for

problems whose solutions have interior layers. Hence, in this thesis, we intend
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firstly to design robust FMFDMs for singularly perturbed TPBVPs whose so-

lutions possess interior layers and to improve accuracy of these approximation

methods via methods like Richardson extrapolation. Then we extend these

two ideas to solve such singularly perturbed TPBVPs with variable diffusion

coefficients. The overall approach is further extended to parabolic singularly

perturbed problems having constant as well as variable diffusion coefficients.
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Chapter 1

General Introduction

This chapter gives a general overview of the work presented in this thesis. In particular, we

provide some background information, review on literature relevant to this work followed

by the outline of the rest of the thesis.

1.1 Introduction

There have been several studies on analytical and numerical aspects of singularly per-

turbed problems. It was noticed that the singular perturbation problems (SPPs) became

popular after the Heildeberg conference at the begining of previous century where Prandtl

[60] presented his remarkable work. The original ideas in the area on fluid dynamics were

subsequently spread over many other areas of science and engineering including

geophysical fluid dynamics, ocean and atmospheric circulation, chemical reactions and

optimal control [19, 50]. There have been numerous survey articles covering applications

of such SPPs in life sciences and engineering.

The SPPs are characterised by a small positive parameter called the singular pertur-

bation parameter, often denoted by ε, known as the diffusion coefficient. This parameter

multiplies the highest order derivative term of the differential equation of the underlying

problem. When this parameter approaches zero, the solution to the problem displays

1
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Chapter 1: General Introduction

rapid variation(s) in narrow regions of the domain referred to as boundary or interior

layer(s). The smaller the ε, the more difficult the problem becomes, whether one wishes

to analyse this qualitatively or quantitatively. The studies over the past three decades

have shown that the analytical methods are unable to capture the overall dynamics of

the solutions of such problems [25, 26, 28, 69]. This motivated researchers to look for

possible numerical approximations for the solutions of these types of problems. To this

end, several numerical techniques have been proposed by numerous researchers. The most

popular ones are the fitted methods.

As far as the above mentioned fitted methods, in particular, the finite difference ana-

logues, are concerned, there are two categories of these: fitted mesh finite difference

methods (FMFDMs) and the fitted operator finite difference methods (FOFDMs). The

aim of this thesis is to focus on the former. To this end, we note that FMFDMs have

extensively been used for singularly perturbed two-point boundary value problems (TP-

BVPs) whose solutions possess boundary layers [18, 24, 58]. However, they are not fully

explored for problems whose solutions have interior layers. Hence, in this thesis, we intend

to do the following: (i) design robust FMFDMs for singularly perturbed TPBVPs whose

solutions possess interior layers; (ii) improve accuracy of these approximation methods

via methods like Richardson extrapolation; and (iii) extend the ideas presented in (i)

and (ii) to TPBVPs with variable diffusion coefficients. The second major contribution

is to collectively explore the ideas discussed in (i)-(iii) for parabolic singularly perturbed

problems having constant as well as variable diffusion coefficients.

To obtain a better picture of what has transpired over the past few years, we now discuss

some approximation methods used for solving singularly perturbed turning point prob-

lems. There are various types of numerical methods discussed in the literature which

can broadly be classified as Finite Difference Methods, Finite Element Methods, Spline

Approximation Methods, and so on [19, 27, 42, 43, 70]. Since we are focusing on a special

class of finite difference methods, in what follows, we will only provide details on methods

2
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Chapter 1: General Introduction

falling under this major category.

1.2 Fitted Numerical methods to solve singularly per-

turbed problems

The standard finite difference method is not suitable to solve SPPs especially when the

perturbation parameter ε is very small unless the mesh is very fine, which unfortunately,

increases the round-off error. It is to circumvent this drawback that FMFDMs and

FOFDMs were developed. These methods allow one to utilise a reasonable number of

mesh points and still achieve reliable accuracy. Moreover, these methods are ε-uniform

convergent in the sense of the following definition [42]:

Definition 1.2.1. Consider a family of mathematical problems parameterized by a singu-

lar perturbation parameter ε, where ε, lies in the semi-open interval 0 < ε ≤ 1. Assume

that each problem in the family has a unique solution denoted by Uε, and that each uε is

approximated by a sequence of numerical solutions {(Uε, Ω̃N)}∞N=1, where Uε is defined on

the mesh Ω̃N and N is a discretization parameter. Then, the numerical solutions Uε is

said to converge ε-uniformly to the exact solution uε, if there exists a positive integer N0,

and positive numbers C and p, where N0, C and p are all independent of N and ε, such

that, for all N ≥ N0,

sup
0<ε≤1

||Uε − uε||Ω̃N ≤ CN−p.

Here p is called the ε-uniform rate of convergence and C is called the ε-uniform error

constant.

Below we describe these two categories of methods in more details.

1.2.1 Fitted Operator Finite Difference Methods (FOFDMs)

These methods are divided in two categories, namely: Exponentially Fitted Methods and

Non-Standard Fitted Finite Difference Methods. The FOFDMs consist of replacing the

3
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Chapter 1: General Introduction

standard finite difference operator with a finite difference operator which reflects the sin-

gularly perturbed nature of the differential operator [42, 62]. In other words, modifying

the difference scheme coefficients in such a way that the scheme becomes more suitable

in order to achieve ε-uniform convergent behaviour.

Mickens [41] was the first to introduce the concept denominator function. The prin-

ciple idea of constructing this FOFDMs is to substitute the denominator functions of

the classical derivatives with positive functions derived in order to capture some notable

properties of the governing differential equations [8]. Many researchers have been ded-

icated to construction of FOFDMs for singularly perturbed differential equations (see

e.g.,[34, 48, 55, 56]).

1.2.2 Fitted Mesh Finite Difference Methods (FMFDMs)

The FMFDMs involve the use of a mesh that is adapted to the layer regions. They require

transforming the continuous problem into a discrete one on a non-uniform mesh which is

adapted to the singularly perturbed nature of the problem [42, 62].

Layer-adapted meshes have first been proposed by Bakhvalov in the context of reaction-

diffusion problems [3]. In the late 1970s and early 1980s special meshes were investigated

by researchers such as [17, 36, 77] in order to achieve uniform convergence. Further in-

vestigations and discussions led to the introduction of a special piecewise-uniform meshes

by Shishkin [68]. Due to their simple structure, they have attracted attention and are

now widely referred to as Shishkin meshes [35]. Parallel to the piecewise uniform meshes,

there are also other layer-adapted meshes known as the graded meshes that allow one

to achieve uniform convergence We will describe these types of meshes in more detail in

Chapter 4.

4
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Chapter 1: General Introduction

1.2.3 Richardson extrapolation

This is a post-processing technique which combines two numerical solutions calculated

on two embedded meshes to obtain a third and better (in terms of accuracy and rate of

convergence) numerical solution [49]. In this work, we will use Richardson extrapolation

on fitted mesh finite difference methods constructed on Shishkin meshes as well as on

Bakhvalov meshes.

We provide a brief review of works already accomplished on singularly perturbed prob-

lems.

1.3 Literature review on Finite difference methods

for SPPs

This section presents a survey of the works done on singularly perturbed problems.

Geng et al. [19] presented a numerical method for solving singularly perturbed

turning point problems exhibiting an interior layer. Through this paper, many methods

have been discussed, but the interior layer problem is treated by the method of starching

variable and the reproducing kernel method. It is very difficult to extend the application

of reproducing kernel method to singularly perturbed differential equations.

Sharma et al. [64] surveyed those works until 2011. In that paper, these authors re-

viewed existing literature on asymptotic and numerical methods techniques for solving

singularly perturbed turning point and interior layer problems with the aim of reporting

on problems studied, the numerical and asymptotic methods utilised to solve them over

the last forty-one years. In this brief survey, we consider some of the works cited in [64]

but also some of the works published after 2011.

5
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Chapter 1: General Introduction

Existence and asymptotic stability of periodic solutions with an interior layer of reaction-

convection-diffusion equation were considered by Nefedov et al. [52]. The goal of this

paper was to establish the existence of a solution for a problem with an interior layer and

to determine the stability of this solution. They constructed sufficiently precise asymp-

totic lower and upper solutions and applied the results from where they developed an

approach to investigate the asymptotic stability of periodic solutions to singularly per-

turbed reaction-convection-diffusion equations by using the theorem of Krein–Rutman

[51].

An asymptotic numerical method to solve singularly perturbed fourth order ordinary

differential equations with weak interior layer was presented by Shanti and Ramanujam

[63]. The goal for this paper was the construction of a numerical method for a singularly

perturbed two-point boundary value problem of convection-diffusion type for fourth ordi-

nary differential equations with the interior layer. The given fourth-order boundary value

problem was transformed into a system of two weakly coupled second-order ODEs, one

without the parameter and the other with the parameter. In this paper they developed

two approaches: firstly an asymptotic numerical method, which dealt with the equation

without the parameter, and secondly a Shishkin mesh, which dealt with the parameter.

O’Riordan and Shishkin [54] established numerical methods for a singularly perturbed

reaction-diffusion problem with discontinuous source term. In this paper, they used the

standard finite difference operator and the piecewise-uniform mesh. They also showed

that the mesh is fitted to the boundary and interior layers that occur in the solution of

the problem.

Rai and Sharma [66] were concerned with the numerical study of singularly perturbed

boundary value problems for delay differential equations with a turning point. They de-

veloped the fitted mesh technique to generate a piecewise uniform mesh, condensed in

the neighbourhood of the boundary/interior layers. The difference scheme was shown to

6
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Chapter 1: General Introduction

converge to the continuous solution uniformly with respect to the perturbation parameter.

An initial value method for singularly perturbed system of reaction-diffusion type de-

lay differential equations was considered Subburayan and Ramanujam [75]. The aim was

to present a numerical method to solve the singularly perturbed weakly coupled system of

reaction-diffusion type second order ordinary differential with negative shift (delay) terms.

They developed an asymptotic numerical method named which they referred to as initial

value method to solve this problem. In this method, the original problem of solving the

second order system of equations was reduced to solving eight first order singularly per-

turbed differential equations without delay and one system of difference equations. These

singularly perturbed problems were solved by the order hybrid finite difference scheme.

An error estimate for this method was derived by using the supremum norm and it is

almost second order.

Erdogan and Amiraliyey [14] developed a numerical method to solve singularly perturbed

delay differential equations. This paper dealt with a singularly perturbed initial value

problem for a linear second-order delay differential equation. They presented the com-

pletely exponentially fitted scheme on a uniform mesh. The difference scheme was con-

structed by the method of integral identities with the use of exponentially basis functions

and interpolating quadrature rules with weight and remainder terms integral form.

An interior layer in the thermal power-law blown in film model was developed by Bennet

and Shepherd [4]. Film blowing is a highly complex industrial process used to manufac-

ture thin sheets of polymer. This paper investigated the structure of typical solutions

that arise when the polymer is assumed to be described by a power-law fluid operating

under non-isothermal conditions. In this paper, they considered the problem determining

the radial bubble of the film as a singular perturbation problem. Asymptotic analysis was

used to identify an interior layer in this problem, by applying heuristic techniques along

with singular perturbation theory to obtain a closed form approximate expression for the

7
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Chapter 1: General Introduction

film radius, which was subsequently used to iteratively obtain a numerical solution to the

highly nonlinear system determining this radius.

Singularly perturbed parabolic problems with non-smooth data was proposed by O’Riordan

and Shishkin [54]. The aim from this paper was to obtain numerical methods for solving a

class of singularly perturbed parabolic equations with discontinuous data when the pres-

ence of interior layers appears in the solutions. A piecewise-uniform mesh was constructed

for a numerical solution of a class of singularly perturbed parabolic differential equations

whose solutions exhibit interior layers.

Singular perturbed convection-diffusion problems with boundary and weak interior lay-

ers were considered by Farrell et al. [15]. They discussed a two point boundary value

problem for a singularly perturbed convection-diffusion equation with a singular pertur-

bation parameter. Therefore they constructed a piecewise-uniform mesh for solving this

problem. The method was shown to be uniformly convergent with respect to the singular

perturbation parameter.

A uniformly convergent method for a singularly perturbed semilinear reaction-diffusion

problem with discontinuous data was developed by Boglaev and Pack [7]. The purpose

of this paper was to construct a uniform numerical method for solving nonlinear singu-

larly perturbed two point boundary-value problems with discontinuous data of reaction-

diffusion type. Long and a piecewise uniform meshes were constructed to solve this

problem, which generated uniformly convergent numerical approximations to the solu-

tion. They also used a monotone iterative method based on the method of upper and

lower solutions for computing the nonlinear difference scheme.

A global maximum norm parameter-uniform numerical method for a singularly perturbed

convection-diffusion problem with discontinuous convection coefficient was discussed by

Farrell et al. [16]. The aim of this paper was to obtain a numerical method for a sin-
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gularly perturbed convection-diffusion problem, with discontinuous convection-diffusion

coefficient and a singular perturbation parameter. Due to the discontinuity an interior

layer appears in the solution. They developed a finite difference, on a piecewise uniform

mesh, which was fitted to the interior layer, the standard upwind finite difference operator

on this mesh.

Some aspects of adaptive grid technology related to boundary and interior layers were

discussed by Graham et al. [21]. Boundary and interior layers structures in the solution

are a familiar feature of certain classes of applications in engineering and science. In this

paper, they gave a brief overview of the main adaptive grid strategies in the context of

problems with layers. They also explained why numerical approaches must be applied with

due care, indicating why some methods fail and others succeed. In the present context,

they provided insight into the question of constructing successful adaptive mesh strategies.

A class of nonlinear singular perturbed differential systems with time delays was pro-

posed by Xu and Jin [78]. Singular perturbed differential equations are often used as

mathematical models describing processes in biological sciences and physics, such as ge-

netic engineering and the El Nino phenomenon of atmospheric physics. The main purpose

of this paper was to deal with the interior layer for a class of nonlinear singularly per-

turbed differential difference equations and construct its asymptotic expansion formula.

They also proved the existence of the smooth interior layer solution and the uniform va-

lidity of the asymptotic expansion.

Internal layers of a transient convection-diffusion problem by perturbation methods were

considered by Shih and Tung [67]. Understanding pollutant transport mechanisms in wa-

ter bodies, including surface and subsurface flow, is essential for risk assessment, pollutant

clean up, monitoring network design, and various other related activities. The objective

of this study was to propose a reasonable approximate solution to a solute transport pro-

cess using singular perturbation procedures. The accuracy of the approximate solution

9
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was examined and its relative performance can be used to compare with other solution

techniques. Furthermore the proposed solution allows one to investigate the effect of

uncertainties in model parameters, initial and boundary conditions on the pollutant con-

centration level.

Limitation of adaptive mesh refinement techniques for singularly perturbed problems

with interior layer was considered by Shishkin [70]. Numerical analysis of heat and mass

transfer with fixed concentrated sources median characterised by small coefficients heat

conductivity/diffusion often result in diffraction boundary value problems for singularly

perturbed partial differential equations. In this paper they considered an initial value

problem on an axis R for a singularly perturbed parabolic reaction-diffusion equation in

a composed domain with a moving interface boundary between two sub-domains. In the

case of problems with moving transition layers, they developed special numerical methods

whose errors depended rather weakly on the parameter and, in particular were indepen-

dent.

Kadalbajoo-2010 and Patidar [27] introduced a second order numerical method based

on cubic splines on a non-uniform mesh to solve such problems.

Liseikin [37] considered the problem: −(ε+ px)βu′′ + a(x)u+ f(x, ε) = 0,

0 ≤ x ≤ 1, p = 0, 1 , β > 0. Estimates of the solution and its derivatives were expressed in

the form of exponential and polynomial functions both dependent of ε. The same author

in [39] considered the equation: −(ε + x)βu′′ − a(x)u + f(x, ε) = 0, 0 ≤ x ≤ 1 , β > 0.

Bounds on the solution and its derivatives were derived and for β = 1 a numerical method

was presented and its convergence analysed. But in [38], Liseikin treated the boundary

value problem: (ε+ x)u′′+ a(x)u′− c(x)u = f(x), 0 ≤ x ≤ 1. Estimations of the solution

and its derivatives were derived and a numerical scheme was developed and its conver-

gence analysed.

10
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Time-dependent parabolic singularly perturbed problems are well studied in the literature.

While Riordan et al. [72] derived various finite difference schemes using a semi-discrete

Petrov-Galerkin finite element method, Clavero et al. [11] and Gracia and OŔiordan [20]

proposed a upwind finite difference scheme, Kadalbajoo et al. [30] designed a B-spline

collocation method, Kadalbajoo and Ramesh [29] developed an upwind and midpoint up-

wind difference methods to discretize the problem in the spatial direction. All these all

authors used the implicit Euler method for the time discretization.

The problems considered in the above works are non-turning point problems. Turning

point problems are those in which the coefficient of the convection term vanishes inside

the spatial-domain by changing signs. This gives rise to the presence of boundary and/or

interior layers depending on the number of zeros and the signs of the convection term

coefficient. Examples of works where turning points give rise to boundary and/or interior

layers include [6, 19, 33, 47, 65].

As far as time-dependent singularly perturbed parabolic problems are concerned, most

researchers combine the backward Euler method for the time discretization and an ap-

propriate space discretization that suits the features of the particular problem at hand.

For one-dimensional parabolic singularly perturbed reaction-convection-diffusion prob-

lems with parameters affecting the diffusion and the convection terms, Clavero et al. [12]

constructed a classical upwind finite difference scheme on an piecewise defined mesh of

Shishkin type. Dunne and O’Riordan [13] examined singularly perturbed parabolic prob-

lems in which the coefficients were discontinuous in the space variable. They designed

numerical methods which involved piecewise uniform meshes of Shishkin type which were

fitted to both the interior and boundary layers. The methods they proposed differ in

the way they discretized derivatives in the differential equation. In [53], O’Riordan and

Quinn considered time dependent singularly perturbed convection-diffusion problems in

which the convective coefficient contained an interior layer. They constructed a classical

upwind finite difference method on a Shishkin mesh.
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None of the above works considered the discretization of interior layer problems on

Bakhvalov-type and Shishkin-type meshes. These meshes have widely been used in solv-

ing singular perturbation problems. Also none of the works has considered problems with

a variable coefficient as perturbation parameter whose solution exhibits an interior layer

due to the presence of a turning point.

1.4 Outline of the thesis

This thesis deals with the design and analysis of robust fitted finite difference methods

to solve various classes of singularly perturbed problems (SPPs) whose solution displays

an interior layer due to the presence of a turning point. Moreover, in order to increase

the accuracy as well as the order of the convergence of the designed methods, we use the

Richardson extrapolation technique on the proposed method. The outline of this thesis

is as follows.

In Chapter 2, we construct and analyse a FMFDM on a Shishkin mesh to solve a singu-

larly perturbed turning point problem whose solution has an interior layer with a small

positive parameter ε affecting the highest derivative term and we study the performance

of Richardson extrapolation on a FMFDM.

A linear singularly perturbed time-dependent convection-diffusion problem is considered

in Chapter 3. We use the classical implicit Euler method to discretize the time variable

with a constant step-size. Then we construct a FMFDM to solve the resulting system of

two-point boundary problems at each time level. This proposed method used an upwind

scheme on a piecewise uniform mesh, fine in the (interior) layer and coarse elsewhere. We

again consider the effect of Richardson on the fitted mesh finite difference method for this

problem.
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In Chapter 4, we construct and analyse a FMFDM to solve a singularly perturbed prob-

lem with a variable coefficient (ε+ x2) multiplying the second derivative, whose solution

displays an interior layer due the presence of the turning point. This method is applied on

both Bakhvalov and Shishkin-type meshes. By post-processing our results using Richard-

son extrapolation, our overall method is almost second order accurate uniformly with

respect to ε. We also present results obtained via Bakhvalov and Shishkin-type meshes.

After a thorough comparison, we notice that the results obtained by Shishkin-type meshes

before and after extrapolation are little inferior to those obtained by Bakhvalov-type

meshes.

In Chapter 5, we consider a class of time-dependent singularly perturbed convection-

diffusion problems with a variable coefficient (ε+ x2) affecting the second derivative. We

discretize the time variable with a constant step-size by means of the classical implicit

Euler method. This process results in a linear system of equation in space at each time

level which we solve using a FMFDM. Richardson extrapolation is applied on a FMFDM.

A family of two-point boundary value singularly perturbed convection-diffusion problems

in which the diffusion term is expressed as (ε + x) is the subject Chapter. We construct

and analyse a FMFDM to solve a singularly perturbed turning point problem whose so-

lution has an interior layer. This method is applied on an appropriate piecewise uniform

of Shishkin type-mesh. We study the performance of Richardson extrapolation on this

method.

Chapter 7 deals with a class of time-dependent for convection-diffusion problems with

coefficient (ε + x) in the highest derivative. Also we study this problem whose solution

displays an interior layer due to the presence of a turning point. The proposed numerical

scheme comprises the classical Euler method to discretize the time variable. Then we

construct and analyse a FMFDM to solve the system of equations obtained from the time

dicretization. We apply Richardson extrapolation via FMFDM.

13
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Finally, in Chapter 8, we provide some concluding remarks and direction for further

research.
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Chapter 2

A fitted numerical method for

interior layer turning point problems

In this chapter, we consider singularly perturbed convection-diffusion-reaction problems

with a turning point whose solution exhibits an interior layer. After proving bounds on the

solution to these problems and their derivatives, we construct a fitted mesh finite difference

method (FMFDM) applied on a Shishkin type mesh to solve this problem. In order to

improve the accuracy of the proposed FMFDM, we apply Richardson extrapolation.

2.1 Introduction

The research field of singular perturbation problems (SPPs) was born after the Heildeberg

conference on Fluid Dynamics where Prandtl [60] presented his remarkable work. The

original ideas in the area on fluid dynamics were subsequently spread over many other

areas of science and engineering.

Due to the presence of a small parameter ε in the coefficient of the highest derivative

of the model equation of singularly perturbed problems, solutions behave abruptly in

small parts of the domain called layer regions. These layers may be located at

the boundary of the domain or in its interior. In one dimension, a typical SPP consists

15
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of determining the solution u to the equation

Lu :≡ εu′′ + a(x)u′ − b(x)u = f(x), x ∈ Ω = [−1, 1], (2.1.1)

u(−1) = α and u(1) = β, (2.1.2)

where 0 < ε ≤ 1 and α and β are some constants. If the functions a(x), b(x) and f(x) are

sufficiently smooth and a(x) does not change sign throughout the domain, then the solu-

tion to (2.1.1)-(2.1.2) has a boundary layer near −1 or 1. But, if a(x) happens to change

sign, then an interior layer may occur. Interior layers are also present in the solution of

the problem above if the coefficient functions are not smooth or if the data function f(x)

is discontinuous.

The presence of layers renders classical numerical methods unfit to provide acceptable

approximations to the solution of SPPs. Over many decades now, researchers have de-

veloped reliable numerical schemes in the case of smooth coefficient functions (see e.g.,

[25, 26, 28, 45, 46, 56, 57, 69] and the references therein).

All the works listed above are on non-turning point problems. Singularly perturbed turn-

ing point problems received systematic attention from late 1960s [64]. These are problems

in which the coefficient of the convection term vanishes inside the domain by changing

sign. This gives rise to the presence of boundary and/or interior layers depending on the

number of zeros and the signs of the coefficient of the convection term.

While the works accomplished for the case of boundary layers are relatively abundant

in the literature (see e.g., [18, 24, 58]), very few researchers have studied internal layer

problems.

None of the above works considered the discretization of interior layer problems on

Shishkin meshes. These meshes have widely been used in solving singular perturbation

problems. For more on these meshes, interested readers are referred to [42].
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This chapter focusses on studying singularly perturbed problems whose solution exhibits

an interior layer due to the presence of a turning point. Thus, we consider problem

(2.1.1)-(2.1.2), where α and β are given real constants and 0 < ε � 1. In addition, the

coefficients a(x), b(x) and f(x) of (2.1.1) are assumed to be sufficiently smooth so as to

ensure the existence of a unique solution. The point in the domain where a(x) = 0 is

known as a turning point.

The following assumptions guarantee that the solution to problem (2.1.1)-(2.1.2) exhibits

an interior layer at x = 0.

a(0) = 0 a′(0) > 0,

b(x) ≥ b0 > 0, x ∈ [−1, 1]

|a′(x)| ≥ |a′(0)|/2, x ∈ [−1, 1].


(2.1.3)

Further, we assume that −2η ≤ a(x) ≤ 2η, where η is a positive constant and inde-

pendent of ε. Note that interior layers may also occur in the case of singularly perturbed

convection-diffusion-reaction problems where coefficients are discontinuous or non-smooth

(see e.g., [16]). Such problems are discussed elsewhere.

The rest of this chapter is organised as follows. We establish bounds of the solution

and its derivatives in the next section. In Section 3 we develop our novel numerical

method by first designing a fitted mesh of Shishkin type. This mesh is fine around the

turning point (where the interior layer is situated) and coarse away from it. We adopt the

upwinding schemes to discretize equation (2.1.1). Section 4 is devoted to error analysis.

We prove that the method is almost first order, uniformly convergent with respect to the

perturbation parameter ε. In Section 5 we present Richardson extrapolation’s method via

fitted mesh finite difference method (FMFDM). To see how the proposed method works

in practice and to confirm our theoretical results, numerical experiments are presented in

Section 6 for two examples. We conclude the chapter in Section 7.
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Throughout the chapter, C denotes a generic constant which is independent of the per-

turbation parameter ε and of the mesh parameter which will be introduced in Section 3.

2.2 A priori estimates of the solution and its deriva-

tives

In this section, we present some qualitative results on the solution to problem (2.1.1)-

(2.1.2), including its bounds and that on its derivatives.

Under the assumptions (2.1.3), the operator L admits the following continuous minimum

principle.

Lemma 2.2.1. (Minimum principle) Let ξ be a smooth function satisfying ξ(1) ≥ 0,

ξ(−1) ≥ 0 and Lξ(x) ≤ 0, ∀x ∈ Ω = (−1, 1).Then ξ(x) ≥ 0, ∀x ∈ [−1, 1].

Proof. Let x∗ ∈ [−1, 1] such that ξ(x∗) = min
−1≤x≤1

ξ(x) and assume ξ(x∗) < 0. Then,

obviously x∗ /∈ {−1, 1}, ξ′(x∗) = 0 and ξ′′(x∗) ≥ 0 and we have

Lξ(x∗) = εξ′′(x∗) + a(x)ξ′(x∗)− b(x)ξ(x∗) > 0,∀x ∈ [−1, 1],

which is a contradiction. It follows that ξ(x∗) ≥ 0 and thus ξ(x) ≥ 0, ∀x ∈ [−1, 1].

The minimum principle implies the uniqueness and existence of the solution (as for linear

problems, the existence of the solution is implied by its uniqueness). We use this principle

to prove the following result which states that the solution depends continuously on the

data.

Lemma 2.2.2. [5] If u(x) is the solution of (2.1.1)-(2.1.2), then we have

||u(x)|| 6 [max {||α||∞, ||β||∞}] + 1
b0
||f ||∞,∀x ∈ [−1, 1],
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Proof. We consider the comparison functions

Γ±(x) = C ± u(x) ∀x ∈ [−1, 1],

where C = max {||α||∞, ||β||∞}+ 1
b0
||f ||∞.

Applying the minimum principle to the comparison functions, we have

LΓ±(x) = εΓ±(x)]′′ + a(x)[Γ±(x)]′ − b(x)[Γ±(x)]

= ±εu′′(x)± a(x)u′(x)− b(x)[±u(x)]− b(x)C

= ±f(x)− b(x)
[
max {||α||∞, ||β||∞}+ 1

b0
||f ||∞

]
= ±f(x)− b(x)

b0
||f ||∞ − b(x) max {||α||∞, ||β||∞}

= −[||f ||∞ ∓ f(x)]− b(x) max {||α||∞, ||β||∞} 6 0,

implying that

Γ±(x) > 0 , ∀x ∈ [−1, 1],

then we have

C ± u(x) ≥ 0.

It follows immediately that ||u(x)||∞ 6 C, which completes the proof.

Hereinafter we denote the sub-domains as follows: Ωl = [−1,−σ), Ωc = [−σ,+σ] =

[−σ, 0]∪ (0,+σ] and Ωr = (σ, 1], where 0 ≤ σ ≤ 1/2; the left, central and right part of the

domain, respectively. Below we provide the appropriate bounds in the following lemmas.

Lemma 2.2.3. If u(x) is the solution of (2.1.1)-(2.1.2) and a, b and f ∈ Ck(Ω̄), then

there exist positive constants η and C such that

|u(j)(x)| ≤ C, ∀x ∈ Ωl or Ωr.

Proof. The proof is by induction. Following the ideas of Lemma 8.1 of [5]. A bound on

the solution u of the equation (2.1.1)-(2.1.2) is obtained by using the minimum principle

as follows. Consider the function:

ψ±(x) = Cx± u(x),
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where C is a constant chosen sufficiently large such that the following inequality is fulfilled

ψ±(−1) ≥ 0, ψ±(−σ) ≥ 0

and

Lψ±(x) = C(x)− Cxb(x)± f(x) ≥ C a(x)− Cxb0 ± f(x) ≤ 0.

Then the minimum principle for L gives ψ± ≥ 0, and so

|u(j)(x)| ≤ C, ∀x ∈ Ωl or Ωr.

Lemma 2.2.4. Let u(x) is the solution of (2.1.1)-(2.1.2). Then, for 0 ≤ j ≤ 3

|u(j)(x)| ≤ C
[
1 + ε−j exp

(2ηx
ε

)]
, x ∈ [−1, 0]

and

|u(j)(x)| ≤ C
[
1 + ε−j exp

(−2ηx
ε

)]
, x ∈ [0, 1].

Proof. The proof is by induction by using ideas of (Lemma 8.1 of [5]). To obtain the

required estimates of the derivative of u. The first step is to find is the differential equation

satisfied by these derivatives by differentiating (2.1.1) j times. This gives

Lu(j) = fj,

where

f0 = f and 1 ≤ j ≤ 3,

fj = f (j) −
j−1∑
s=0

(
j

s

)
a(j−s)u(s+1) +

j−1∑
s=0

(
j

s

)
b(j−s)u(s).

Thus, the inhomogeneous term fj of the equation satisfied by u depends on the jth and

lower order derivatives of u and of the coefficient a, and on the jth order derivatives of f .

This observation suggests the following argument, which suffices to prove the theorem.

We assume that, for 0 ≤ k ≤ j, the following estimates hold:

|u(j)(x)| ≤ C
[
1 + ε−j exp

(2ηx
ε

)]
, for all x [−1, 0],
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the original equation (2.1.1) Lu = f(x), which gives Lu(j) = fj. From above assumption

it is clear that

Lu(j) = fj,

where

|u(j)(x)| ≤ C
[
1 + ε−j exp

(2ηx
ε

)]
and

|f (j)(x)| ≤ C
[
1 + ε−j exp

(2ηx
ε

)]
.

Let us first determine the following:

|u(j)(−1)| ≤ C
[
1 + ε−j exp

(−2η
ε

)]
≤ C

[
1 + ε−(j−1)

]
and

|u(j)(0)| ≤ C
(
1 + ε−j

)
.

Note that ε−1 exp
(−2η

ε

)
≤ C, we obtain

|u(j)(−1)| ≤ Cε−(j−1)

and

|u(j)(0)| ≤ Cε−j.

Define the new function

θj(x) = ε−1
∫ 0

x
fj exp

[
−(A(x)− A(t))

ε

]
dt (2.2.1)

where

A(x) =
∫ x

−1
a(s) ds (2.2.2)

and

u(j)
p (x) =

∫ x

−1
θj(t) dt, (2.2.3)

which is the solution of the equation

Lu(j) = fj.
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Its general solution is written in the form

u(j) = u(j)
p + u

(j)
h ,

where the homogeneous solution u(j)
h satisfies

Lu(j) = 0, u(j)
h (−1) = u(j)(−1)− u(j)

p (−1), u(j)
h (0) = u(j)(0).

Introduce the function

ϕ(x) =
∫ x
−1 exp

[
−A(t)
ε

]
dt∫ 0

−1 exp
[
−A(t)
ε

]
dt
.

Firstly we need to obtain the value of ϕ′(x) by using the lower bound on the coefficient

a(x). In the present chapter, the value of ϕ′(x) will be obtained in [−1, 0] . Therefore, we

consider

− 2η ≤ a(x). (2.2.4)

Integrating both sides of (2.2.4) from −1 to x and using the expression of (2.2.2), we

obtain

− 2η(x+ 1) 6 A(x). (2.2.5)

Multiplying both sides of (2.2.5) by −1/ε, we obtain

−A(x)
ε

≤ 2η(x+ 1)
ε

. (2.2.6)

The above inequality can also be written as

exp
[
−A(x)
ε

]
≤ exp

[
2η(x+ 1)

ε

]
. (2.2.7)

Integrating both sides of (2.2.7) from −1 to 0,
∫ 0

−1
exp

[
−A(t)
ε

]
dt ≤

∫ 0

−1
exp

[
2η(x+ 1)

ε

]
dt,

we obtain

∫ 0

−1
exp

[
−A(t)
ε

]
dt ≤ ε

2η exp
[4η
ε

]
.
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Arranging the above inequality, therefore we obtain

−
∫ 0

−1
exp

[
−A(t)
ε

]
dt ≥ − ε

2η exp
[4η
ε

]
.

Inverting both sides of the last above inequality, we obtain

1
−
∫ 0
−1 exp

[
−A(t)
ε

]
dt
≤ 1
−ε
2η exp

[
4η
ε

] .
Multiplying both sides of the last above inequalities by exp

[
−A(x)

ε

]
, then gives

exp
[
−A(x)

ε

]
−
∫ 0
−1 exp

[
−A(t)
ε

]
dt
≤

exp
[
−A(x)

ε

]
−ε
2η exp

[
4η
ε

] .
Taking into account (2.2.7), the above inequality leads to

− exp
[
−A(x)

ε

]
∫ 0
−1 exp

[
−A(t)
ε

]
dt
≤
ε−1 exp

[
2η(x+1)

ε

]
−1
2η exp

(
4η
ε

) ≤
ε−1 exp

[
2ηx
ε

]
−1
2η exp

(
2η
ε

) .
Since

ϕ′(x) =
− exp

[
−A(x)

ε

]
∫ 0
−1 exp

[
−A(t)
ε

]
dt
,

then we obtain

ϕ′(x) ≤
ε−1 exp

[
2ηx
ε

]
−1
2η exp

(
2η
ε

) .
Using the upper and lower bounds of a(x), we obtain

|ϕ′(x)| ≤ Cε−1 exp
[2ηx
ε

]
,∀x ∈ [−1, 0]. (2.2.8)

It is clear that Lϕ = 0, ϕ(−1) = 1, ϕ(0) and 0 ≤ ϕ(x) ≤ 1. Then u(j)
h is given by

u
(j)
h (x) = (u(j)(−1)− u(j)

p (−1))ϕ(x) + u(j)(0)(0− ϕ(x)).

The above leads to the following expression for u(j+1) as follows:

u(j+1)(x) = (u(j+1)
p (−1) + u

(j+1)
h (−1)) = θj(−1) + (u(j)(−1)− u(j)

p (−1)− u(j)
ε (0)ϕ′(x),

where

ϕ′(x) ≤ Cε−1 exp
(2ηx
ε

)
, ∀x ∈ [−1, 0].
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The above expressions lead to determine θj(x) from (2.2.1)

θj(x) = ε−1
∫ 0

x
C
[
1 + ε−j exp

(2ηt
ε

)]
exp

[
−2η(t− x)

ε

]
dt.

Arranging the above integral, we obtain

|θj(x)| ≤ ε−1C exp
(2ηx
ε

) ∫ 0

x

[
exp

(−2ηt
ε

)
+ ε−j

]
dt,

evaluating the integral exactly, and estimating the terms in the resulting expression, we

obtain

|θj(x)| ≤ C
[
1− exp

(2ηx
ε

)
− 2ηxε−(j+1) exp

(2ηx
ε

)]
.

Estimating the terms in the resulting above expression, we obtain

|θj(x)| ≤ C
[
1 + ε−(j+1) exp

(2ηx
ε

)]
.

Since

u(j)
p (−1) = −

∫ 0

−1
θj(t) dt = −

∫ 0

−1
C
[
1 + ε−(j+1) exp

(2ηt
ε

)]
dt.

Evaluating the integral exactly, and estimating the terms in the resulting expression, we

obtain u(j)
p (−1) ≤ Cε−j. But

|u(j+1)(x)| ≤ |θj(x)|+ (|(u(j)(−1)|+ |u(j)
p (−1)|+ |u(j)(0)|)ϕ′(x).

Substituting and estimating in the resulting expression, we have

|u(j+1)(x)| ≤ C
[
1 + ε−(j+1) exp

(2ηx
ε

)]
+
(
Cε−(j−1) + Cε−j + Cε−j

)
Cε−1 exp

(2ηx
ε

)
,

|u(j+1)(x)| ≤ C
[
1 + ε−(j+1) exp

(2ηx
ε

)]
+ C

(
ε−1 + ε−j−1

)
exp

(2ηx
ε

)
.

Estimating the terms in the resulting above expression, we obtain

|u(j+1)(x)| ≤ C
[
1 + ε−(j+1) exp

(2ηx
ε

)]
,

which completes the induction required.

Note that the solution of the SPTPP (2.1.1)-(2.1.2) can be decomposed into two parts

namely the smooth component v and the singular component w. Following the ideas of

[47], we establish the following lemma which gives bounds on the solution to (2.1.1)-(2.1.2)

and its derivatives.
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Lemma 2.2.5. We decompose u of the SPTPP (2.1.1)-(2.1.2) into smooth and singular

components as u = v + w, where, for all j, 0 ≤ j ≤ k, and all x ∈ [−1, 1], the smooth

component v satisfies

|v(j)(x)| ≤ C
[
1 + ε−(j−2) exp

(2ηx
ε

)]
, x ∈ [−1, 0],

|v(j)(x)| ≤ C
[
1 + ε−(j−2) exp

(−2ηx
ε

)]
, x ∈ [0, 1],

and the singular components w satisfies

|w(j)(x)| ≤ Cε−j exp
(2ηx
ε

)
, x ∈ [−1, 0],

|w(j)(x)| ≤ Cε−j exp
(−2ηx

ε

)
, x ∈ [0, 1],

for some constants η and C independent of ε.

Proof. The SPTPP (2.1.1)-(2.1.2) can be regarded as concatenation of problems

εu′′ + a(x)u′ − b(x)u = f(x), x ∈ [−1, 0], u(−1) = α, u(0) = A (2.2.9)

and

εu′′ + a(x)u′ − b(x)u = f(x), x ∈ [0, 1], u(0) = A, u(1) = β (2.2.10)

where A is still to be determined.

In the present chapter, we consider the problem (2.2.9), which can be converted to the

convection problem by using the same steps of [42]. We can write the problem (2.2.9) as

− εu′′ − a(x)u′ = g(x), u(−1) = α, u(0) = A (2.2.11)

where

g(x) = −f(x)− b(x)u.

The solution u of the problem (2.2.11) can be written under the following form:

u = v0 + εy1 + w0. (2.2.12)
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Here, v0 satisfies the reduced problem −a(x)v′0 = g(x), v0 = A and y1 satisfies

Ly1 = v′′0 , y1(−1) = −w0(−1)/ε, y1(0) = 0. Moreover, note that w0 is the solution to the

homogeneous problem Lw0 = 0, where w0 = w0(0) exp
(

2η
ε

)
, and w0(0) = A − v0. It is

clear that |w0(−1)|, |w0(0)|, |y1(−1)| and |v′′0 | are all bounded by a constant independent

of ε. It follows that y1 is the solution of a problem similar to (2.1.1)-(2.1.2), thus for

j = 1, 2, 3, 4, · · · , k + 1,

|y(j)
1 (x)| ≤ C

[
1 + ε−j exp

(2ηx
ε

)]
.

Following the approach of [47], we are going to obtain the bounds for the singular com-

ponent w0 and its derivatives on [-1,0]. First define the comparison functions

Ψ±(x) = |w0(0)| exp
(2ηx
ε

)
± w0(x).

Applying the minimum principle to these functions, we see that Ψ±(x) > 0 and conse-

quently,

|w0(x)| ≤ C exp
(2ηx
ε

)
, x ∈ [−1, 0].

Therefore the singular component w0(x) of the solution can be written as follows:

w0(x) = w0(−1)ϕ(x)− w0(0)ϕ(x),

where

ϕ(x) =
∫ 0
x exp

(
−A(t)
ε

)
dt∫ 0

−1 exp
(
−A(t)
ε

)
dt

and A(x) = −
∫ 0
x a(s) ds. Now

w′0(x) = (w0(−1)− w0(0))ϕ′(x),

where ϕ′(x) is given in (2.2.8). Therefore, substituting ϕ′(x) into the equation for w′0, we

obtain

|w′0| ≤ Cε−1 exp
(2ηx
ε

)
.

Since Lw0 = 0, the jth derivatives of w0 can be estimated immediately from the estimates

w0 and w′0, ∀x ∈ [−1, 0],

|w(j)
0 (x)| ≤ Cε−j exp

(2ηx
ε

)
,
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Since u(j) = v
(j)
0 + εy

(j)
1 + w

(j)
0 , we have

|(v(j)
0 + εy

(j)
1 )| ≤ C

[
1 + ε−j exp

(2ηx
ε

)]

and

|w(j)
0 (x)| ≤ Cε−j exp

(2ηx
ε

)
,

for 0 ≤ j ≤ k and all x ∈ [−1, 0]. In particular, this shows that the smooth component

v0 +εy1 and its derivatives are bounded for all values of ε. However, the component y1 can

also be decomposed in the same manner as was u, leading immediately to y1 = v1+εv2+w1

where for 0 ≤ j ≤ k and all x ∈ [−1, 0], we have

|v(j)
1 | ≤ C,

|(v(j)
2 | ≤ C

[
1 + ε−j exp

(2ηx
ε

)]
,

|w(j)
1 | ≤ Cε−j exp

(2ηx
ε

)
.

Combining these two decompositions, we have u = v + w, where v = v0 + εv1 + ε2v2 and

w = w0 + εw1. Since u(j) = v(j) + w(j), and the above estimates hold for 0 ≤ j ≤ k and

all x ∈ [−1, 0], we have

|(v(j)(x)| ≤ C
[
1 + ε−j exp

(2ηx
ε

)]
and |w(j)(x)| ≤ Cε−j exp

(2ηx
ε

)
.

Following the same ideas as above, the solution u of problem (2.2.10) can also be written

in the same form as problem (2.2.9), which u = v + w for 0 6 j 6 k and all x ∈ [0, 1]

where

|(v(j)(x)| ≤ C
[
1 + ε−(j−2) exp

(−2ηx
ε

)]
and |w(j)(x)| 6 Cε−j exp

(−2ηx
ε

)
.

2.3 Construction of the FMFDM

In this section, we develop a difference scheme to solve this problem. We discretize the

problem on a special nonuniform mesh. Since the solution has large gradients in a narrow

region near x = 0, the mesh in this region will be fine and coarse everywhere else. Let
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n be a positive integer such that n = 2m with m ≥ 3. With this in mind, the transition

parameter τ is chosen to be

τ = min
{

1
2 ,
ε

η
ln
(
n

4

)}
, (2.3.1)

where τ is a positive constant. The sub-intervals [−1,−τ ], [−τ, τ ] and [τ, 1] of the domain

[−1, 1] are subdivided uniformly to contain n/4, n/2 and n/4 mesh elements respectively.

Note that x0 = −1, xn/2 = 0, and xn = 1. The mesh spacing hj = xj − xj−1 is given by

hj =

 4(1− τ)/n if j = 1, 2, · · · , n/4, 3n/4 + 1, · · · , n− 1, n,

4τ/n if j = n/4 + 1, n/4 + 2 · · · 3n/4.
(2.3.2)

We denote this mesh by Ωτ
n.

For the rest of the chapter, for any function S(x), we adopt the notation S(xj) = Sj.

We discretize the problem (2.1.1)-(2.1.2) on Ωτ
n in the following manner:

LnUj :=

 εD̃Uj + ajD
−Uj − bjUj = fj if aj < 0,

εD̃Uj + ajD
+Uj − bjUj = fj if aj ≥ 0,

(2.3.3)

U(−1) = α, U(1) = β, (2.3.4)

where

D+Uj = Uj+1 − Uj
hj+1

, D−Uj = Uj − Uj−1

hj
and D̃Uj = 2

hj + hj+1
(D+Uj −D−Uj).

(2.3.3) can be written in the form:

LnUj := r−Uj−1 + rcUj + r+Uj+1 = fj, j = 1, 2, 3 · · · , n− 1, (2.3.5)

where, for j = 1, 2, 3 · · · , n/2− 1, we have

r−j = 2ε
hj(hj + hj+1) −

aj
hj
, rcj = aj

hj
− 2ε
hjhj+1

− bj, r+
j = 2ε

hj+1(hj + hj+1) (2.3.6)

and for j = n/2, n/2 + 1, · · · , n− 1, we have

r−j = 2ε
hj(hj + hj+1) , r

c
j = − aj

hj+1
− 2ε
hjhj+1

− bj, r+
j = 2ε

hj+1(hj + hj+1) + aj
hj+1

. (2.3.7)

The discrete operator Ln satisfies the following minimum principle:
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Lemma 2.3.1. For any mesh function ξj such that Lnξj ≤ 0, ∀j = 1, 2, . . . , n− 1, ξ0 ≥ 0

and ξn ≥ 0, we have ξj ≥ 0, ∀j = 0, 1, · · · , n.

Proof. Let k be such that ξk = min
0≤j≤n

ξj and suppose that ξk < 0. Obviously, k 6= 0 and

k 6= n. Also ξk+1 − ξk ≥ 0, and ξk − ξk−1 ≤ 0. We have

Lnξk =

 εD̃ξk + akD
−ξk − bkξk > 0, for 1 ≤ k ≤ n

2 − 1,

εD̃ξk + akD
+ξk − bkξk > 0, for n

2 ≤ k ≤ n− 1.

Thus Lnξk > 0, 1 ≤ k ≤ n − 1, which is a contradiction. It follows that ξk ≥ 0 and

therefore ξj ≥ 0, 0 ≤ j ≤ n.

Lemma 2.3.2. If Zi is any mesh function such that Z0 = Zn = 0, then

|Zi| ≤
1
η∗

max
1≤j≤n−1

|LnZj| ∀0 ≤ i ≤ n,

where

η∗ =

 −2η if 0 ≤ i ≤ n/2− 1,

2η if n/2 ≤ i ≤ n.

Proof. Let us define

|M±
i | =

1
η∗

max
1≤j≤n−1

|LnZj|.

Introduce the two mesh functions Y ±i defined by

Y ±i = M±xi ± Zi.

Clearly Y ±0 ≥ 0, Y ±n ≥ 0 and LnY ± = M±(ai − bixi)± LnZi ≤ 0,

since η∗ ≥ −2η > 0, ∀xi < 0, 1 ≤ i ≤ n/2, and η∗ ≤ −2η < 0,∀xi > 0,

n/2 + 1 ≤ i ≤ n− 1.

The discrete minimum principle 2.2.1 then implies that Yi ≥ 0, for 0 ≤ i ≤ n.

With the above continuous and discrete results, we are in a position to provide the ε-

uniform convergence result in the following section.
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2.4 Convergence analysis

In this section, the convergence of the scheme analyzed on a Shishikin mesh, is proved in

the previous section.

Lemma 2.4.1. . Let u be the solution of the continuous problem (2.1.1)-(2.1.2), and U

the solution of the corresponding discrete problem (2.3.3) and (2.3.4). Then, for suffi-

ciently large n, we have the following estimate:

sup
0<ε≤1

max
0≤j≤n

|uj − Uj| ≤ Cn−1
[
ln
(
n

4

)]2
. (2.4.1)

Proof. We prove the lemma on the interval [-1,0]. The proof on [0,1] follows similar steps.

The solution U of the discrete problem (2.3.3) and (2.3.4) is decomposed in regular part

V and singular part W . Thus

U = V +W,

where V is the solution of the inhomogeneous problem

LnV = f, V (−1) = v(−1), V (−1) = v(−1),

and W is the solution of the homogenous problem given by

LnW = 0,W (−1) = w(−1),W (−1) = w(−1).

The error can be written in the form:

U − u = (V − v) + (W − w), (2.4.2)

so the error in the regular and singular components of the solution can be estimated

separately. The estimate of the smooth component is obtained using the following stability

and consistency argument. From the differential and difference equations, we have

Ln(V − v) = f − Lnv.
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Therefore the local truncation is given by

Ln(V − v) = ε

(
d2

dx2 − D̃
)
v + a

(
d

dx
−D−

)
v.

Then, by local truncation error estimates (Lemma 4.1 [42]), we obtain

|Ln(Vj − vj)| ≤
ε

3(xj+1 − xj−1)|v′′′j |+
aj
2 (xj − xj−1)|v′′j | for 1 ≤ j ≤ n

2 − 1. (2.4.3)

Note that hj = xj − xj−1 ≤ 4n−1 for any j, therefore using Lemma 2.2.5 in conjunction

with Lemma 7 of [48], we have

|Ln(Vj − vj)(xj)| ≤ Cn−1.

Now, applying Lemma 2.3.2 to mesh function (V − v)(xj), we obtain

|(Vj − vj)(xj)| ≤ Cn−1 for 1 ≤ j ≤ n

2 − 1. (2.4.4)

To estimate the local truncation error of the singular component Ln(W−w), the argument

depends on whether τ = 1/2 or τ = (ε/η) ln(n/4). The mesh is uniform in the first case

1/2 ≤ (ε/η) ln(n/4). The local truncation error is bounded in the same manner as done

above.

|Ln(Wj − wj)| ≤
ε

3(xj+1 − xj−1)|w′′′j |+
aj
2 (xj − xj−1)|w′′j | for 1 ≤ j ≤ n

2 − 1. (2.4.5)

Since hj = xj−xj−1 ≤ 4n−1 for any j, applying Lemma 2.2.5 in conjunction with Lemma

7 of [48], we obtain

|Ln(Wj − wj)(xj)| ≤ Cε−2n−1.

But the present case, ε−1 ≤ (2/η) ln(n/4), we obtain

|Ln(Wj − wj)(xj)| ≤ Cn−1
[
ln
(
n

4

)]2
.

Now, applying Lemma 2.3.2 to the mesh function (W − w)(xj), we obtain

|(Wj − wj)(xj)| ≤ Cn−1
[
ln
(
n

4

)]2
for 1 ≤ j ≤ n

2 − 1. (2.4.6)

In the second case (namely τ = (ε/η) ln(n/4), the mesh is piecewise uniform. A different

argument is used to bound |W − w| in each subintervals [−1,−τ ] and [−τ, 0]. There
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is no interior layer in the subinterval [−1,−τ ], both W and w are small, and because

|W −w| ≤ |W |+ |w|, it suffices to bound W and w separately. Note first that w can also

be decomposed as w = w0 + εw1. The expression for w0 can be written in the form

w0(x) = w0(−1)ϕ(x) + w0(0)(0− ϕ(x))

and w′0(x) is given by

w′0(x) = (w0(−1)− w0(0))ϕ′(x)

where

|ϕ′(x)| ≤ Cε−1 exp
(−ηx

ε

)
,∀x ∈ [−1, 0],

and w0(−1) = w0(0) exp (−τ/ε). It follows that

w′0(x)
w0(0) = −

[
1− exp

(−η
ε

)]
ϕ′(x) > 0

and
w0(−1)
w0(0) = exp

(−η
ε

)
.

Thus w0(−1)/w0(0) is positive and increasing in the interval [−1, 0]. It follows that

∀x ∈ [−1,−τ ], we have

0 ≤ w0(−1)
w0(0) ≤

w0(−τ)
w0(0)

and so

|w0(x)| ≤ |w0(−τ)|.

It is also true for w1(x) and since w(x) = w0(x)+εw1(x), it follows that |w(x)| ≤ |w(−τ)|,

∀x ∈ [−1,−τ ].

Using the estimate for w0(−τ) and w1(−τ), we obtain w(−τ) ≤ C exp(−η/ε). The fact

that τ = (ε/η) ln(n/4), finally we obtain

|w(xj)| ≤ Cn−1 for 1 ≤ j ≤ n

2 − 1. (2.4.7)
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To obtain a similar bound on W, an auxiliary mesh function W̃ is defined analogous to W

except that the coefficient of a(x) in the difference operator Ln is replaced by −η. Then,

from (Lemma 7.5 of [42]),

|Wj| ≤ |W̃ |, for 0 6 j 6 n.

Furthermore, using Lemma 2.2.5 leads us immediately to conclude that

|w(xj)| ≤ Cn−1 for 1 ≤ j ≤ n

4 − 1. (2.4.8)

By using the estimated obtained by (2.4.7) and (2.4.8), we obtain

|(W − w)(xj)| ≤ Cn−1 for 1 ≤ j ≤ n

4 − 1. (2.4.9)

In the subinterval [−τ, 0], the classical analogue to (2.4.5) leads to

|Ln(Wj − wj)| = Cε−2|xj+1 − xj−1| = 8Cε−2n−1τ for n4 ≤ j ≤ n

2 − 1.

Also, |(W (−1) − w(−1)| = 0 and |(W (n/4) − w(n/4)| ≤ |(W (n/4)| + |w(n/4)| ≤ Cn−1

from (2.4.8). We introduce the new function, which is called the barrier function. The

barrier function in the subinterval [−τ, 0] is given by

Φj = (xj + τ)C1ε
−2τn−1 + C2n

−1,

it follows that for a suitable choice of C1 and C2 the mesh functions

Ψ±j = Φj ± (Wj − wj)

satisfy the inequalities

Ψn
4
≥ 0, Ψn

2
= 0

and

LnΨj ≤ 0, n

4 + 1 ≤ j ≤ n

2 − 1.

By applying Lemma 2.2.1 on [−τ, 0] to the function Ψ±j , we obtain

Ψj ≥ 0, n

4 + 1 ≤ j ≤ n

2 − 1.
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Therefore, we obtain

|Wj − wj| ≤ Φj ≤ C1ε
−2τ 2n−1 + C2n

−1.

Since τ = (ε/η) ln(n/4), we have

|Wj − wj| ≤ Cn−1
[
ln
(
n

4

)]2
. (2.4.10)

Combining (2.4.9) and (2.4.10), we obtain the following estimate on the singular compo-

nent of the error over interval [−1, 0] as follows

|Wj − wj| ≤ Cn−1
[
ln
(
n

4

)]2
,
n

4 + 1 ≤ j ≤ n

2 − 1. (2.4.11)

Given the estimates (2.4.4) and (2.4.11) along with the inequality (2.4.2), we obtain

|Uj − uj| ≤ Cn−1
[
ln
(
n

4

)]2
, 1 ≤ j ≤ n

2 − 1. (2.4.12)

Similarly for the subinterval [0, 1], we obtain

|Uj − uj| ≤ Cn−1
[
ln
(
n

4

)]2
,
n

2 ≤ j ≤ n. (2.4.13)

Combining (2.4.12) and (2.4.13) then gives the required result.

2.5 Richardson extrapolation on the FMFDM

In this section, we use Richardson extrapolation to improve the accuracy of the proposed

method. Richardson extrapolation is procedure where a linear combination of two ap-

proximations of a some quantity gives a better approximation of the quantity [49].

We focus our attention on the interval [−1, 0] as before. Results on the interval [0, 1]

can be obtained in a similar way. Keeping in mind that there is a transition point at

x = −τ , we consider the subintervals [−1;−τ ] ∪ (−τ, 0] separately.

With reference to (2.3.2), to simplify the analysis, for xj ∈ Ωτ
n, hj = xj − xj−1, we
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denote H = hj for j = 1, 2, · · · , n/4 and h = hj for j = n/4 + 1, · · · , n/2.

We consider the mesh Ωτ
2n where τ is given by (2.3.1) where we bisect each mesh sub-

interval. It is clear that Ωτ
n ⊂ Ωτ

2n = {x̃j} and x̃j − x̃j−1 = h̃j = hj/2. We denote the

numerical solution on the mesh Ωτ
2n by Ũj. The estimate (2.4.12) can be written as

Uj − uj = C1n
−1
[
ln
(
n

4

)]2
+Rn(xj), ∀xj ∈ Ωτ

n (2.5.1)

and

Ũj − uj = C2(2n)−1
[
ln
(
n

4

)]2
+R2n(x̃j), ∀x̃j ∈ Ωτ

2n, (2.5.2)

where C1 and C2 are some constants and the remainders term Rn(xj) and R2n(x̃j) are

O
[
n−1

(
ln
(
n
4

))2
]
. Note that we have used the same transition parameter τ when com-

puting both Uj and Ũj. This is seen from the factor ln(n/4).

A combination of the two equations above gives

uj − (2Ũj − Uj) = Rn(xj)− 2R2n(xj) = O
[
n−1

(
ln
(
n

4

))2
]
, ∀xj ∈ Ωτ

n. (2.5.3)

We set

U ext
j = 2Ũj − Uj, ∀xj ∈ Ωτ

n, (2.5.4)

as the new approximation of uj obtained after applying Richardson extrapolation. The

error after extrapolation U ext
j can also be decomposed as in (2.4.2),

U ext
j − uj = (V ext

j − vj) + (W ext
j − wj), (2.5.5)

where V ext
j andW ext

j are the regular and singular components of U ext
j . The local truncation

error of the scheme (2.3.3)-(2.3.5) after extrapolation is given by

Ln(U ext
j − uj) = 2Ln(Ũj − uj)− Ln(Uj − uj), (2.5.6)

where

Ln(Uj − uj) = r−uj−1 + rcuj + r+uj+1 − εu′′j − aju′j + bju, (2.5.7)

35https://etd.uwc.ac.za



Chapter 2: A robust fitted numerical method for singularly perturbed
turning point problems whose solution exhibits an interior

and

Ln(Ũj − uj) = r̃−uj−1 + r̃cuj + r̃+uj+1 − εu′′j − aju′j + bju. (2.5.8)

The quantities of r−, rc and r+ are given in (2.3.6), but r̃−, r̃c and r̃+ are obtained by

substituting hj by h̃j and hj+1 by h̃j+1 in the expressions of r−, rc and r+ respectively.

Taking the Taylor series expansion of uj around xj, we obtain the following approximations

for uj−1 and uj+1:

uj−1 = uj − hju′j +
h2
j

2 u
2
j −

h3
j

6 u
3
j +

h4
j

24u
4(ξ1, j), (2.5.9)

uj+1 = uj + hj+1u
′
j +

h2
j+1

2 u2
j +

h3
j+1

6 u3
j +

h4
j+1

24 u4(ξ2, j), (2.5.10)

uj−1 = uj − h̃ju′j +
h̃2
j

2 u
2
j −

h̃3
j

6 u
3
j +

h̃4
j

24u
4(ξ̃1, j), (2.5.11)

uj+1 = uj + h̃j+1u
′
j +

h̃2
j+1

2 u2
j +

h̃3
j+1

6 u3
j +

h̃4
j+1

24 u4(ξ̃2, j), (2.5.12)

where

ξ1, j ∈ (xj−1, xj), ξ2, j ∈ (xj, xj+1), ξ̃1 ∈ (xj−1 + xj
2 , xj) and ξ̃2 ∈ (xj,

xj + xj+1

2 ).

Substituting (2.5.9) and (2.5.10) into (2.5.7), (2.5.11) and (2.5.12) into (2.5.8), we obtain

the following expressions:

Ln(Uj − uj) = k1uj + k2u
′
j + k3u

2
j + k4u

3
j + k5,1u

4(ξ1, j) + k5,2u
4(ξ2, j) (2.5.13)

and

Ln(Ũj − uj) = k̃1uj + k̃2u
′
j + k̃3u

2
j + k̃4u

3
j + k̃4u

4
j + k̃5,1u

4(ξ̃1, j) + k̃5,2u
4(ξ̃2, j). (2.5.14)

The coefficients in (2.5.13) are

k1=
2ε

hj(hj+hj+1)−
2ε

hjhj+1
+ 2ε
hj+1(hj+hj+1) , k2=0, k3=

εhj
hj+hj+1

− ajhj
2 + εhj+1

hj+hj+1
− ε,
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k4 =
−εh2

j

3(hj+hj+1) +
ajh

2
j

6 +
εh2

j+1

3(hj+hj+1) , k5,1 =
εh3

j

12(hj+hj+1) −
ajh

3
j

24 , k5,2 =
εh3

j+1

12(hj+hj+1) .

The quantities for k̃1, k̃2, k̃3, k̃4, k̃5,1 and k̃5,2 can be obtained by substituting hj by

h̃j and hj+1 by h̃j+1.

Substituting (2.5.13) and (2.5.14) into (2.5.6), we obtain

Ln(U ext
j − uj) = T1uj + T2u

′′
j + +T3u

′′′
j + +T4,1u

(4)(ξ1, j) + T4,2u
(4)(ξ2, j), (2.5.15)

where

T1 = 14ε
hj(hj + hj+1) −

14ε
hjhj+1

+ 14ε
hj+1(hj + hj+1) ,

T2 = εhj
hj + hj+1

− ε+ εhj+1

hj + hj+1
, T3 = −

ajh
2
j

12 ,

T4,1 = −
εh3

j

24(hj + hj+1
+
ajh

3
j

32 and T4,2 = −
εh3

j+1

24 .

Using the fact that, for ∀j = 1, . . . , n/4, H = hj 6 4n−1 into (2.5.15) in the subin-

terval [−1,−τ ], we obtain

Ln(V ext
j − vj) = −ajH

2

12 v′′′j +
[
εH2

48 + ajH
3

32

]
v(4)(ξ1, j)−

εH3

24 v(4)(ξ2, j). (2.5.16)

Now applying the triangle inequality, Lemma 2.2.5 in conjunction with Lemma 7 of [48]

to (2.5.16), we obtain

|Ln(V ext
j − vj)| ≤ Cn−2. (2.5.17)
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To estimate Ln(W ext
j −wj), the argument depends on whether τ = 1/2 or τ = (ε/η) ln(n/4).

In the first case the mesh is uniform and (ε/η) ln(n/4) ≥ 1/2. The estimate of singu-

lar component of the local truncation error is obtained as follows:

Ln(W ext
j − wj) = −ajh

2

12 w′′′j +
[
εh2

48 + ajh
3

32

]
w(4)(ξ1, j)−

εh3

24 w
(4)(ξ2, j). (2.5.18)

Now, applying the triangle inequality, Lemma 2.2.5 and using Lemma 7 of [48], we obtain

|Ln(W ext
j − wj)| ≤ Cn−2ε−3 exp (2xjη/ε) . (2.5.19)

Note that ε−1 exp (2xjη/ε) ≤ C and ε−1 6 (2/η) ln(n/4), we obtain

|Ln(W ext
j − wj)| ≤ Cn−2 [ln(n/4)]2 . (2.5.20)

In the second case (viz τ = (ε/η) ln(n/4)), the mesh is piecewise uniform with the mesh

spacing h = hj = 4τn−1 for ∀ j = n/4 + 1, . . . , n/2 in the subinterval [−τ ; 0]. Applying

the triangle inequality, Lemma 2.2.5 along with Lemma 7 of [48] to (2.5.18), we obtain

|Ln(W ext
j − wj)| ≤ C1n

−2τ 2ε−2. (2.5.21)

Since τ = (ε/η) ln(n/4), this gives

|Ln(W ext
j − wj)| ≤ Cn−2 [ln(n/4)]2 . (2.5.22)

On application of Lemma 2.3.2 in (2.5.17), (2.5.20) and (2.5.22) and combining the re-

sulting inequalities, we obtain the following theorem.

Theorem 2.5.1. (Error after extrapolation). Let a(x), b(x) and f(x) be sufficiently

smooth and u(x) be the solution of (2.1.1). If U ext is the approximation of u obtained

using (2.3.1)-(2.3.5) with u(−1) = U(−1), u(1) = U(1), then there is a positive constant

C independent of ε and the mesh spacing such that

sup
0<ε≤1

max
0≤j≤n

|(U ext − u)j| ≤ Cn−2
[
ln
(
n

4

)]2
. (2.5.23)
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2.6 Numerical examples

In this section, we present two test examples for which numerical results are computed

to illustrate the effectiveness of the present method. The maximum errors and order of

convergence are calculated by using the exact solution. The solution in the examples has

a turning point at x = 0 and x = 0.5, respectively, which gives rise to an interior layer.

Example 2.6.1. Consider the following singularly perturbed turning point problem:

εu′′ + xu′ − u = −(1 + επ2) cosπx− πx sin πx, x ∈ [−1, 1],

u(−1) = −1, u(1) = 1.

The exact solution is

u(x) = cos πx+ x+
xerf(x/

√
2ε) +

√
2ε/π exp(−x2/2ε)

erf(1/
√

2ε) +
√

2ε/π exp(−1/2ε)
.

This example was solved numerically in [22] using the Exponentially Fitted Weighted-

Residual (EFWR) and classical Galerkin (GAL) methods. In this work, the error was not

computed inside the turning-point region. Moreover, the author indicates that EFWRs

do not yield ε-uniform convergence results for problems with a turning point.

We will calculate the error of the method we propose throughout the entire domain

(including in the layer region). Moreover, our numerical results (see tables 2.1 and 2.3)

will confirm the theoretical estimates regarding ε-uniform convergence.

Example 2.6.2. Consider the following singular perturbed turning point problem:

εu′′ + 2(x− 0.5)u′ − 2u = f(x), x ∈ [0, 1],

where

f(x) = 3ε(x− 0.5) exp((x− 0.5)2/ε)− (επ2 + 2) cosπ(x− 0.5)− 2(x− 0.5)π sin π(x− 0.5)

u(0) = ε

4 exp(−1/4ε), u(1) = −ε4 exp(−1/4ε).
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The exact solution is

u(x) = −ε2(x− 0.5) exp
[
−(x− 0.5)2/ε

]
+ cos π(x− 0.5).

While the maximum errors before extrapolation at all mesh points are evaluated using

the formula

En,ε = max
0≤j≤n

|uj − Uj|,

these errors after extrapolation are given by

Eext
n,ε = max

0≤j≤n
|uj − U ext

j |.

The numerical rate of convergence are found by using the formula

rε,k = log2(Ẽnk
/Ẽ2nk

),

where Ẽ stands for E or Eext.
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Table 2.1: Results for Example 2.6.1 Maximum errors before extrapolation
ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

10−5 2.94E-01 1.09E-01 8.06E-02 4.69E-02 2.48E-02 1.24E-02 5.94E-03

10−6 2.93E-01 1.10E-01 8.13E-02 4.75E-02 2.53E-02 1.30E-02 6.46E-03

10−8 2.93E-01 1.10E-01 8.15E-02 4.77E-02 2.56E-02 1.32E-02 6.69E-03

10−10 2.93E-01 1.10E-01 8.16E-02 4.78E-02 2.56E-02 1.32E-02 6.72E-03
...

...
...

...
...

...
...

...

10−15 2.93E-01 1.10E-01 8.16E-02 4.78E-02 2.56E-02 1.32E-02 6.72E-03

Table 2.2: Results for Example 2.6.1 Maximum errors after extrapolation
ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

10−5 2.66E-01 7.40E-02 1.89E-02 4.73E-03 2.68E-03 2.54E-03 2.51E-03

10−6 2.67E-01 7.42E-02 1.90E-02 4.78E-03 1.19E-03 8.47E-04 8.10E-04

10−8 2.67E-01 7.43E-02 1.91E-02 4.81E-03 1.20E-03 3.01E-04 9.55E-05

10−10 2.67E-01 7.43E-02 1.91E-02 4.81E-03 1.20E-03 3.01E-04 7.53E-05
...

...
...

...
...

...
...

...

10−15 2.67E-01 7.43E-02 1.91E-02 4.81E-03 1.20E-03 3.01E-04 7.53E-05

Table 2.3: Results for Example 2.6.1 Rates of convergence before extrapolation
ε r1 r2 r3 r4 r5 r6

10−5 1.42 0.44 0.78 0.92 1.00 1.06

10−6 1.41 0.44 0.78 0.91 0.97 1.00

10−8 1.41 0.44 0.77 0.90 0.95 0.98

1010 1.41 0.44 0.77 0.90 0.95 0.98
...

...
...

...
...

...
...

10−15 1.41 0.44 0.77 0.90 0.95 0.98

Table 2.4: Results for Example 2.6.1 Rates of convergence after extrapolation
ε r1 r2 r3 r4 r5 r6

10−5 1.85 1.97 2.00 0.82 0.08 0.02

10−6 1.85 1.96 1.99 2.00 0.50 0.06

10−8 1.84 1.96 1.99 2.00 2.00 1.67

10−10 1.84 1.96 1.99 2.00 2.00 2.00
...

...
...

...
...

...
...

10−15 1.84 1.96 1.99 2.00 2.00 2.00
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Table 2.5: Results for Example 2.6.2 Maximum errors before extrapolation
ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

10−5 3.83E-01 1.95E-01 9.80E-02 4.90E-02 2.45E-02 1.22E-02 6.10E-03

10−6 3.83E-01 1.95E-01 9.80E-02 4.91E-02 2.45E-02 1.23E-02 6.13E-03

10−7 3.83E-01 1.95E-01 9.80E-02 4.91E-02 2.45E-02 1.23E-02 6.14E-03

10−8 3.83E-01 1.95E-01 9.80E-02 4.91E-02 2.45E-02 1.23E-02 6.14E-03
...

...
...

...
...

...
...

...

10−15 3.83E-01 1.95E-01 9.80E-02 4.91E-02 2.45E-02 1.23E-02 6.14E-03

Table 2.6: Results for Example 2.6.2 Maximum errors after extrapolation
ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

10−5 3.76E-02 1.07E-02 2.88E-03 7.70E-04 2.19E-04 7.83E-05 4.27E-05

10−6 3.76E-02 1.07E-02 2.86E-03 7.43E-04 1.91E-04 5.06E-05 1.50E-05

10−7 3.76E-02 1.07E-02 2.86E-03 7.40E-04 1.89E-04 4.78E-05 1.22E-05

10−8 3.76E-02 1.07E-02 2.86E-03 7.40E-04 1.88E-04 4.75E-05 1.20E-05
...

...
...

...
...

...
...

...

10−15 3.76E-02 1.07E-02 2.86E-03 7.40E-04 1.88E-04 4.75E-05 1.19E-05

Table 2.7: Results for Example 2.6.2 Rates of convergence before extrapolation
ε r1 r2 r3 r4 r5 r6

10−5 0.97 1.00 1.00 1.00 1.00 1.00

10−6 0.97 1.00 1.00 1.00 1.00 1.00

10−7 0.97 1.00 1.00 1.00 1.00 1.00

10−8 0.97 1.00 1.00 1.00 1.00 1.00
...

...
...

...
...

...
...

10−15 0.97 0.99 1.00 1.00 1.00 1.00

Table 2.8: Results for Example 2.6.2 Rates of convergence after extrapolation
ε r1 r2 r3 r4 r5 r6

10−5 1.82 1.89 1.90 1.81 1.48 0.88

10−6 1.82 1.90 1.94 1.96 1.92 1.74

10−7 1.82 1.90 1.95 1.97 1.98 1.97

10−8 1.82 1.90 1.95 1.97 1.99 1.99
...

...
...

...
...

...
...

10−15 1.82 1.90 1.95 1.97 1.99 1.99
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2.7 Discussion

In this chapter, we proposed a finite mesh finite difference method (FMFDM) for the

class of two-point boundary value singularly perturbed problems whose solution exhibits

an interior layer. First, we derived bounds on the solution and its derivatives. Then we

constructed a mesh, of Shishkin type, prone to handle the rapid change of the solution

near the turning point. On this mesh, a discrete upwind scheme was designed in accor-

dance with the sign of the convection coefficient. Using bounds on the solution and its

derivatives, we proved that the developed method was uniformly convergent of order one

with respect to the perturbation parameter and the step size.

Further we investigated the effect of Richardson extrapolation on the FMFDM and no-

ticed that it improved the accuracy of the computed solution. In particular, the rate of

convergence increased from 1 to 2.

To support the above conclusions based on theoretical analysis, we solved two

examples to confirm the findings. Numerical results are displayed in tables 2.1-2.8.
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Chapter 3

A numerical method for a stationary

interior layer convection-diffusion

problems

The aim of this chapter is to construct and analyse a fitted mesh finite difference method

(FMFDM) for a class of time-dependent singularly perturbed convection-diffusion-reaction

problems with a turning point whose solution exhibits an interior layer. We establish

bounds on the solution to these problems and their derivatives. Then we use the classi-

cal implicit Euler method to discretize the time variable with a constant step-size. We

construct a FMFDM to solve the resulting system of two-point boundary value problems.

To improve the accuracy of the proposed method, we apply Richardson extrapolation.

3.1 Introduction

Numerous numerical schemes for singularly problems are available in the literature. These

problems are characterised by a small parameter affecting the highest derivative in the

differential equations underlying the problem. In this chapter, we examine the linear

singularly perturbed time-dependent convection-diffusion problem

Lu :≡ ε
∂2u(x, t)
∂x2 + a(x, t) ∂u(x, t)

∂x
− b(x, t)u(x, t)− d(x, t) ∂u(x, t)

∂t
= f(x, t), (3.1.1)
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(x, t) ∈ Q ≡ Ω× (0, T ] ≡ (−1, 1)× (0, T ], (3.1.2)

subject to the initial and boundary conditions

u(x, 0) = u0(x), −1 ≤ x ≤ 1, u(−1, t) = α1(t) , u(1, t) = α2(t), t ∈ (0, T ], (3.1.3)

where ε is the diffusion parameter satisfying 0 < ε ≤ 1. Further, we assume that the

functions a(x, t), b(x, t), d(x, t), f(x, t) and u0(x) are sufficiently smooth with

b(x, t) ≥ β > 0 and d(x, t) ≥ δ > 0 in Q̄ along with the conditions

a(0, t) = 0 ax(0, t) > 0, t ∈ [0;T ]

b(x, t) ≥ b(0, t) > 0, x ∈ [−1, 1], t ∈ [0;T ]

|ax(x, t)| ≥ |ax(0, t)|/2, x ∈ [−1, 1], t ∈ [0;T ],


(3.1.4)

which guarantee that the solution of problem (3.1.1)-(3.1.3) has a unique solution which

possesses an interior layer at x = 0 [19]. Also, we impose the compatibility conditions

u0(−1) = α1(0) and u0(1) = α2(0),

so that the data match at the two corners (−1, 0) and (1, 0) of the domain Q̄. These

conditions guarantee that there exists a constant C independent of ε such that [72]

|u(x, t)− α1(t)| ≤ C(1 + x), |u(x, t)− α2(t)| ≤ C(1− x), ∀(x, t) ∈ Q̄

and

|u(x, t)− u0(x)| ≤ Ct, ∀(x, t) ∈ Q̄.

In general if the coefficient of the convection term a(x, t) does not change sign throughout

the spatial domain, then the solution possesses a boundary layer near −1 or 1. But if

a(x, t) does change sign, then an interior layer may occur. Note that the interior layers

are also present in the solution of the problem above if the coefficient functions are not

smooth or if the data function f(x, t) is discontinuous (see e.g., [13]).
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The presence of layers renders classical methods unfit to provide acceptable approxi-

mations to the solution for a class of time-dependent singularly perturbed convection-

diffusion problems.

Little attention has been given to the study of time-dependent singularly perturbed

convection-diffusion problems whose solution exhibits an interior layer.

In this chapter we aim to study the time-dependent problem (3.1.1)-(3.1.3) whose so-

lution exhibits an interior layer due to the presence of a turning point. We propose and

analyse a fitted mesh finite difference method (FMFDM). We establish that the method

is first order parameter uniform convergent of order one, up to a logarithmic factor.

The rest of this chapter is organised as follows. We establish bounds on the solution

u(x, t) and its derivatives in Section 2. In Section 3, We adopt an upwind scheme on

the mesh to obtain our FMFDM. In Section 4, we conduct a rigourous error analysis.

We prove that the scheme is almost first order uniformly convergent with respect to the

perturbation parameter in time and space. To improve the accuracy of the proposed

FMFDM, we apply Richardson extrapolation in Section 5 and obtain an almost second

order uniform convergence in space. To see how the proposed method works in practice

and to confirm our theoretical results, we present numerical experiments in Section 6. In

Section 7, we present some concluding remarks.

In the rest of this chapter, C denotes a generic constant which may assume different

values in different inequalities but will always be independent of ε, of the space and time

discretization parameters.
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3.2 A priori estimates of the solution and its deriva-

tives

This section presents the bounds for the solution of problem (3.1.1)-(3.1.3) and its deriva-

tives. We shall denote the subintervals of [−1, 1] as Ωl = [−1,−τ ],

Ωc = [−τ,+τ ] = [−τ, 0) ∪ [0,+τ) and Ωr = [τ, 1], where 0 ≤ τ ≤ 1/2.

In the following, we first prove that the operator L as defined in (3.1.1) admits the

following continuous minimum principle and then we state stability estimate for the so-

lution of problem (3.1.1)-(3.1.3).

Lemma 3.2.1. (Minimum principle). Let ξ(x, t) be a smooth function satisfying

ξ(±1, t) ≥ 0 and Lξ(x, t) ≤ 0, ∀(x, t) ∈ Q. Then ξ(x, t) ≥ 0, ∀(x, t) ∈ Q̄.

Proof. The proof is by contradiction. Let (x∗, t∗) ∈ Q̄ such that ξ(x∗, t∗) = min
Q̄
ξ(x, t)

and assume that ξ(x∗, t∗) < 0. Clearly (x∗, t∗) /∈ Q, therefore ξx(x∗, t∗) = 0, ξt(x∗, t∗) = 0

and ξxx(x∗, t∗) ≥ 0 and we have

Lξ(x∗, t∗) = εξxx(x∗, t∗) + a(x∗, t∗)ξx(x∗, t∗)− b(x∗, t∗)ξ(x∗, t∗)− d(x∗, t∗)ξt(x∗, t∗) > 0,

which is a contradiction. It is proved that ξ(x∗, t∗) ≥ 0 and thus ξ(x, t) ≥ 0, ∀(x, t) ∈ Q̄.

The minimum principle implies the existence and uniqueness of the solution (as for linear

problems, the existence of the solution is implied by its uniqueness). We use this principle

to prove the following results which state that the solution depends continuously on the

data.

Lemma 3.2.2. (Stability estimate). The solution u(x, t) of problem (3.1.1)-(3.1.3) satisfies:

||u(x, t|| 6 [max {||α1||∞, ||α2||∞}] + 1
β
||f ||∞,∀(x, t) ∈ Q̄.

Proof. We consider the comparison functions

Γ±(x, t) = C ± u(x, t) ∀(x, t) ∈ Q̄,
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where C = max {||α1||∞, ||α2||∞}+ 1
β
||f ||∞.

Applying the minimum principle to the comparison functions, we have

LΓ±(x, t) = ε[Γ±xx(x, t)] + a(x, t)[Γ±x (x, t)]− b(x, t)[Γ±(x, t)]− d(x, t)[Γ±t (x, t)]

= ±εuxx(x, t)± a(x, t)ux(x, t)− b(x, t)[±u(x, t)]− d(x, t)[±ut(x, t)]− b(x, t)C

= ±f(x, t)− b(x, t)
[
max {||α1||∞, ||α2||∞}+ 1

β
||f ||∞

]

= ±f(x, t)− b(x, t)
β
||f ||∞ − b(x, t) max {||α1||∞, ||α2||∞}

= −[||f ||∞ ∓ f(x, t)]− b(x, t) max {||α1||∞, ||α2||∞} 6 0,

implying that

Γ±(x, t) > 0 , ∀(x, t) ∈ Q̄,

then we have

C ± u(x, t) ≥ 0.

It follows immediately that ||u(x, t)||∞ 6 C, which completes the proof.

Lemma 3.2.3. The bound on the solution u(x, t) of (3.1.1)-(3.1.3) is given by∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ 6 C, (x, t) ∈ Ω̄.

Proof. See [11].

Lemma 3.2.4. The bound on the derivative ut(x, t) of (3.1.1)-(3.1.3) is given by

|ut(x, t)| ≤ C, (x, t) ∈ Q̄.

Proof. For the proof of the lemma, readers are referred to [72].

Lemma 3.2.5. (Continuous results). Let u(x, t) be the solution of (3.1.1)-(3.1.3). There exists

a positive constants η and C, such that∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ ≤ C
[
1 + ε−j exp

(
ηx

ε

)]
, x ∈ [−τ, 0), t ∈ [0, T ]

and ∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ ≤ C
[
1 + ε−j exp

(−ηx
ε

)]
, x ∈ [0, τ ], t ∈ [0, T ],

where j = 0, 1, 2, 3.
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Proof. We prove this Lemma on [−τ, 0). The proof on [0, τ ] will follow the same lines.

(3.1.1) can be written as follows

Lxu− d(x, t) ∂u(x, t)
∂t

= f(x, t), x ∈ [−τ, 0), t ∈ [0, T ], (3.2.1)

where

Lxu = ε
∂2u(x, t)
∂x2 + a(x, t) ∂u(x, t)

∂x
− b(x, t)u(x, t).

We obtain from (3.2.1) as follows

Lxu = d(x, t) ∂u(x, t)
∂t

+ f(x, t) = k(x, t). (3.2.2)

As we assume u0 = u(x, 0), d(x, t) and f(x, t) to be smooth functions and then k(x, t) is

continous and ε-uniformly bounded. By using the technique provided in [32] and (3.2.2)

one obtains ∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ ≤ C
[
1 + ε−j exp

(
ηx

ε

)]
, x ∈ [−τ, 0), j = 0, 1. (3.2.3)

Differentiating (3.2.2) with respect to x, we can deduce the similar bound for higher values

of j and considering p(x, t) = ∂u(x, t)/∂x, it follows that

Lxp− d(x, t) ∂p(x, t)
∂t

= s(x, t) = ∂f(x, t)
∂x

− ax
∂u(x, t)
∂x

+ bxu(x, t) + dx
∂u(x, t)
∂x

,

p(−1, t) = ∂u(−1, t)
∂x

= β1(t), p(1, t) = ∂u(1, t)
∂x

= β2(t), p(x, 0) = ∂u(x, 0)
∂x

= p0(x).

Here again, we assume that s(x, t) is smooth function and using the same technique above,

we obtain the second bound∣∣∣∣∣∂p(x, t)∂x

∣∣∣∣∣ 6 C
[
1 + ε−1 exp

(
ηx

ε

)]
, x ∈ [−τ, 0), t ∈ [0, T ],

which complete the prove.

The third condition of (3.1.4) guarantees that a(x, t) < 0 for −1 6 x < 0 and a(x, t) > 0

for 0 < x 6 1. Therefore, the solution of the problem (3.1.1)-(3.1.3) may be considered

as a concatenation of two solutions: One on −1 6 x < 0 presenting a layer near x = 0
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(right end of the interval) and the other one on 0 < x 6 1 exhibiting a layer near x = 0

(left end of the interval) as well. This consideration will be useful firstly in seeking an

in-depth understanding of the behaviour of the solution and its derivatives and secondly,

in the design of the numerical method in Section 3.3.

In order to prove ε-uniform convergence of the numerical method to be designed in sub-

sequent sections, we need to know the behaviour of the exact solution u(x, t) of (3.1.1)-

(3.1.3). This solution can be decomposed in two parts, namely the smooth component

v(x, t) and the singular component w(x, t) ([42], pp 47) such that

u(x, t) = v(x, t) + w(x, t),

where v(x, t) is the solution of the inhomogeneous problem

Lv(x, t) = f(x, t), (x, t) ∈ Ω1 = (−1, 0)× (0, T ], (3.2.4)

v(x, 0) = u(x, 0) = u0, −1 6 x 6 0, (3.2.5)

v(−1, t) = u(−1, t), 0 6 t 6 T, (3.2.6)

and w(x, t) is the solution of the homogeneous problem

Lw(x, t) = 0, (x, t) ∈ Ω1, (3.2.7)

w(x, 0) = 0, −1 6 x 6 0, (3.2.8)

w(−1, t) = 0, 0 6 t 6 T, (3.2.9)

w(0, t) = u(0, t)− v(0, t), 0 6 t 6 T. (3.2.10)

We establish the following lemma which gives bounds on the solution to (3.1.1)-(3.1.3)

and its derivatives.
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Lemma 3.2.6. The smooth and singular components of u(x, t) of problem (3.1.1)-(3.1.3),

for 0 ≤ j ≤ 3, and 0 6 t 6 T, satisfy∣∣∣∣∣∂jv(x, t)
∂xj

∣∣∣∣∣ 6 C, (x, t) ∈ Q̄

and ∣∣∣∣∣∂jw(x, t)
∂xj

∣∣∣∣∣ ≤ Cε−j exp
(
ηx

ε

)
, x ∈ [−1, 0],∣∣∣∣∣∂jw(x, t)

∂xj

∣∣∣∣∣ ≤ Cε−j exp
(−ηx

ε

)
, x ∈ [0, 1].

for some constants η and C independent of ε.

Proof. We prove this lemma on Ω1 = [−1, 0]. The proof on [0, 1] follows similar steps.

We obtain the reduced problem (ε = 0) from (3.1.1) as follows:

a(x, t)v0
x(x, t)− b(x, t)v0(x, t)− d(x, t)v0

t (x, t) = f(x, t), (x, t) ∈ Ω1 (3.2.11)

v0(x, 0) = v0
0(x), −1 6 x 6 0, (3.2.12)

v0(−1, t) = α1(t), t ∈ (0, T ]. (3.2.13)

The smooth component v(x, t) is further split into the sum

v(x, t) = v0(x, t) + εv1(x, t), (x, t) ∈ Ω̄, (3.2.14)

where v0 is the solution of the reduced problem in (3.2.11), which is independent of ε,

then, for 0 6 j 6 3, we have ∣∣∣∣∣
∣∣∣∣∣∂jv0(x, t)

∂xj

∣∣∣∣∣
∣∣∣∣∣
Ω1

6 C (3.2.15)

and v1 is the solution of (3.1.1), which Lemma 3.2.5 applied. It follows that∣∣∣∣∣
∣∣∣∣∣∂jv1(x, t)

∂xj

∣∣∣∣∣
∣∣∣∣∣
Ω1

6 C, 0 6 j 6 3. (3.2.16)

Now, applying the triangle inequality and using the estimates (3.2.15) and (3.2.16) into

(3.2.14), we have ∣∣∣∣∣
∣∣∣∣∣∂jv(x, t)

∂xj

∣∣∣∣∣
∣∣∣∣∣
Ω1

6

∣∣∣∣∣
∣∣∣∣∣∂jv0(x, t)

∂xj

∣∣∣∣∣
∣∣∣∣∣
Ω1

+ ε

∣∣∣∣∣
∣∣∣∣∣∂jv1(x, t)

∂xj

∣∣∣∣∣
∣∣∣∣∣
Ω1

6 C + Cε

6 C(1 + ε)

6 C.
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Now, let us prove the regular component w(x, t).We define the barrier functions as follows

[31].

Ψ±(x, t) = C exp(ηx/ε)et ± w(x, t), (x, t) ∈ Ω̄1.

Let us find the values of Ψ±(x, t) at boundaries:

Ψ±(−1, t) = C exp(−η/ε)et ± w(−1, t), 0 6 t 6 T,

= C exp(−η/ε)et, using (3.2.9),

> 0, 0 6 t 6 T,

Ψ±(0, t) = Cet ± w(0, t), 0 6 t 6 T,

= Cet ± (u(0, t)− v(0, t)), using (3.2.10),

> 0, for a suitable choice of C, 0 6 t 6 T,

Ψ±(x, 0) = C exp(ηx/ε)± w(x, 0), −1 6 x 6 0,

= C exp(ηx/ε), using (3.2.8),

> 0, −1 6 x 6 0.

From the above estimates, we notice that Ψ > 0, (x, t) ∈ Ω2 = Ω̄1\Ω1 therefore, we have

LΨ±(x, t) = εΨ±xx(x, t) + a(x, t)Ψ±x (x, t)− b(x, t)Ψ±(x, t)− d(x, t)Ψ±t (x, t)

= C exp(ηx/ε)et
[
η2

ε
+ ηa(x, t)

ε
− b(x, t)− d(x, t)

]
± Lw(x, t)

= C exp(ηx/ε)et
[
η2

ε
+ ηa(x, t)

ε
− b(x, t)− d(x, t)

]
, using (3.2.7)

6 0, (x, t) ∈ Ω1.

Now, by applying Lemma 3.2.1 to the barrier functions, we obtain Ψ±(x, t) > 0, (x, t) ∈

Ω2. Then we have

C exp(ηx/ε)et ± w(x, t) > 0.
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It follows that

w(x, t) 6 C exp(ηx/ε)et, (x, t) ∈ Ω1

6 C exp(ηx/ε)eT since et 6 eT

6 C exp(ηx/ε) (x, t) ∈ Ω1.

Since Lw(x, t) = 0, the jth derivative of w(x, t) can be estimated immediately from the

estimate of w(x, t), ∣∣∣∣∣∂jw(x, t)
∂xj

∣∣∣∣∣ ≤ Cε−j exp
(
ηx

ε

)
, 0 6 j 6 3.

This completes the proof.

We construct a fitted mesh finite difference method to solve time-dependent convection-

diffusion problems (3.1.1)-(3.1.3).

3.3 Construction of the FMFDM

Time dicretization

We present the Euler implicit method to discretize problem (3.1.1)-(3.1.3) with uniform

step-size ∆t = T/K. The time [0, T ] is therefore partitioned as

w̄K = {tk = k∆t, 0 6 k 6 K}. (3.3.1)

We discretize problem (3.1.1)-(3.1.3) on w̄K as follows

εzxx(x, tk) + a(x, tk)zx(x, tk)− b(x, tk)z(x, tk)− d(x, tk)
z(x, tk)− z(x, tk−1)

∆t = f(x, tk),

(3.3.2)

subject to

z(x, 0) = z0(x), −1 ≤ x ≤ 1, z(−1, tk) = α1(t), z(1, tk) = α2(t). (3.3.3)

Now, (3.3.2) can be written as

Lz(x, tk) = f(x, tk)− d(x, t)z(x, tk−1)
∆t . (3.3.4)
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subject to

z(x, 0) = z0(x), −1 ≤ x ≤ 1, z(−1, tk) = α1(t), z(1, tk) = α2(t), (3.3.5)

where

Lz(x, tk) = εzxx(x, tk) + a(x, tk)zx(x, tk)−
[
b(x, tk) + d(x, tk)

∆t

]
z(x, tk−1).

The local truncation error denoted by ek at each time level to tk is given by

ek = u(x, tk)− z(x, tk), where z(x, tk) is the solution of (3.3.4)-(3.3.5).

The local error in the temporal direction is given by [11] as follows

‖ek‖∞ ≤ C(∆t)2, 1 ≤ k ≤ K. (3.3.6)

The global error is given by [11] as follows

‖Ek‖∞ ≤ C∆t, 1 ≤ k ≤ K. (3.3.7)

Space discretization

Let N and K be two positive integers. We consider the following partition in interval

[−1, 1] which we denote Ω̄N : x0 = −1, xN/2 = 0, xN = 1 and let Q̄N,K = Ω̄N × w̄K be

the grid for the (x, t)-variables, and QN,K = Q̄N,K ∩Q. Due to the presence of an interior

layer at the point xN/2 = 0, the transition parameter τ is chosen to be

τ = min
{

1
2 ,
ε

η
ln
(
N

4

)}
, (3.3.8)

where τ is a positive constant. The space domain is discretized using a piecewise uniform

mesh which splits the space domain [−1, 1] into the following subintervals [−1,−τ ], [−τ, τ ]

and [τ, 1]. These subintervals are subdivided uniformly to contain N/4, N/2 and N/4 mesh

elements respectively. Note that the mesh spacing is given by

hj =

 4(1− τ)/N if j = 1, 2, · · · , N/4, 3N/4 + 1, · · · , N − 1, N,

4τ/N if j = N/4 + 1, N/4 + 2 · · · 3N/4.
(3.3.9)
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For the rest of the chapter, we adopt the notation S(xj, tk) := Skj for any mesh function

S(xj, tk). We discretize the problem (3.1.1)-(3.1.3) in the following manner:

LN,KUk
j :=

εD̃xU
k
j +ãkjD−x Uk

j −(b̃kj + dk
j

∆t)U
k
j = f̃kj −

dk
jU

k−1
j

∆t for j = 0, 1, · · · , N2 − 1,

εD̃xU
k
j +ãkjD+

x U
k
j −(b̃kj + dk

j

∆t)U
k
j = f̃kj −

dk
jU

k−1
j

∆t for j = N
2 ,

N
2 + 1, · · · , N − 1,

(3.3.10)

with the discrete initial and boundary conditions

U0
j = u0

j , j = 0, 1, · · · , N, (3.3.11)

Uk
0 = αk1 ≡ α1(tk), Uk

N = αk2 ≡ α2(tk), 1 ≤ k ≤ K, (3.3.12)

where  ãkj = ak
j−1+ak

j

2 for j = 0, 1, · · · , N2 − 1,

ãkj = ak
j +ak

j+1
2 for j = N

2 ,
N
2 + 1, · · · , N − 1,

b̃kj =
bkj−1 + bkj + bkj+1

3 , f̃kj =
fkj−1 + fkj + fkj+1

3 for j = 1, 2, 3, · · · , N − 1,

D+
x U

k
j =

Uk
j+1 − Uk

j

hj+1
, D−x U

k
j =

Uk
j − Uk

j−1

hj
, D̃xU

k
j = 2

hj + hj+1
(D+

x U
k
j −D−x Uk

j )

and

D−t U
k
j =

Uk
j − Uk−1

j

∆t .

Now (3.3.10) can be written in the form

LN,KUk
j := r−Uk

j−1 + rcUk
j + r+Uk

j+1 = Fj, j = 1, 2, 3 · · · , N − 1, (3.3.13)

where for j = 1, 2, 3 · · · , N2 − 1, we have

r−j = 2ε
hj(hj + hj+1) −

ãkj
hj
, rcj =

ãkj
hj
− 2ε
hjhj+1

− b̃kj −
dkj
∆t , r

+
j = 2ε

hj+1(hj + hj+1) , (3.3.14)

for j = N
2 ,

N
2 + 1, · · · , N − 1, we have

r−j = 2ε
hj(hj + hj+1) , r

c
j = −

ãkj
hj+1

− 2ε
hjhj+1

− b̃kj −
dkj
∆t , r

+
j = 2ε

hj+1(hj + hj+1) +
ãkj
hj+1
(3.3.15)

and

Fj = f̃kj −
dkjU

k−1
j

∆t . (3.3.16)

The analysis of the scheme developed above requires the following Lemmas.
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Lemma 3.3.1. (Discrete minimum principle) For any mesh function ξkj such that LN,Kξkj ≤

0, in QN,K , ξ0
j ≥ 0, 1 ≤ j ≤ N , ξk0 ≥ 0, and ξkN ≥ 0, 1 ≤ k ≤ K, we have ξkj ≥ 0 in Q̄N,K .

Proof. Let (p, s) be indices such that ξsp = min
(j,k)

ξkj , ξkj in Q̄N,K and suppose that ξsp < 0.

It is clear that (p, s) ∈ {1, 2 · · · , N − 1} ×{1, 2 · · · , K} otherwise ξsp ≥ 0. We observe

that ξsp+1 − ξsp ≥ 0 and ξsp − ξsp−1 ≤ 0.

For p = 1, 2, . . . , N2 − 1, we have

LN,Kξsp = εD̃xξ
s
p + aspD

−
x ξ

s
p − (bsp +

dsp
∆t)ξ

s
p. (3.3.17)

Substituting D−x ξsp and D̃xξ
s
p into (3.3.17), we obtain

LN,Kξsp = 2ε
hp + hp+1

(
ξsp+1 − ξsp
hp+1

−
ξsp − ξsp−1

hp

)
+ asp

(
ξsp − ξsp−1

hp

)
− (bsp +

dsp
∆t)ξ

s
p > 0.

For p = N
2 , we have

LN,Kξsp = −(bsp +
dsp
∆t)ξ

s
p > 0. (3.3.18)

For p = N
2 + 1, · · · , N + 1, we have

LN,Kξsp = εD̃xξ
s
p + aspD

+
x ξ

s
p − (bsp +

dsp
∆t)ξ

s
p. (3.3.19)

Substituting D+
x ξ

s
p and D̃xξ

s
p into (3.3.19), we obtain

LN,Kξsp = 2ε
hp + hp+1

(
ξsp+1 − ξsp
hp+1

−
ξsp − ξsp−1

hp

)
+ asp

(
ξsp+1 − ξsp
hp+1

)
− (bsp +

dsp
∆t)ξ

s
p > 0.

Thus LN,Kξsp > 0, 1 ≤ p ≤ N − 1, which is a contradiction. It follows that ξsp ≥ 0 and

therefore ξkj ≥ 0, 0 ≤ j ≤ N.

Lemma 3.3.2. (Uniform stability estimate). At time level tk, if Zk
j is any mesh function

such that Zk
0 = Zk

N = 0, then

|Zk
i | ≤

1
β

max
1≤j≤N−1

|LN,KZk
j | ∀ 0 ≤ i ≤ N.

Proof. Let us define

M = 1
β

max
1≤j≤N−1

|LN,KZk
j |
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and introduce the two mesh functions (Υ±)ki defined by

(Υ±)ki = M ± Zk
i .

It is clear that (Υ±)k0 ≥ 0 and (Υ±)kN ≥ 0, for 1 ≤ i ≤ N − 1. We observe that

LN,K(Υ±)ki = −Mbki ± LK,NZk
i ≤ 0

for 1 ≤ i ≤ N − 1, because bki ≥ β > 0. By the discrete minimum principle Lemma 3.3.1,

we conclude that

(Υ±)ki ≥ 0, for 0 ≤ i ≤ N and ∀t ∈ [0, T ].

With the above continuous and discrete results, we are in a position to provide the

ε-uniform convergence result in the next section.

3.4 Convergence analysis

In this section, the convergence of the scheme will be analyzed on a Shishikin mesh.

Theorem 3.4.1. . Let Uk
j be the numerical solution of problem (3.3.10)-(3.3.12) and

denote the solution z(xj, tk) of problem (3.3.4)-(3.3.5) at the time level tk by zkj = z(xj, tk).

Then, we have

max
0≤j≤N

|Uk
j − zkj | 6 CN−1

[
ln
(
N

4

)]2
. (3.4.1)

Proof. We prove this Lemma on the interval [−1, 0]. The proof on [0, 1] follows similar

steps. The solution Uk
j of the discrete problem (3.3.10)-(3.3.12) can be decomposed into

a regular part and a singular part as

Uk
j = V k

j +W k
j ,

where V k
j is the solution of the inhomogeneous problem

LN,KV k
j = fkj −

dkj × V k−1
j

∆t , V 0
j = v0

j , V
k

0 = vk0
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and W k
j is the solution of the homogeneous problem

LN,KW k
j = 0, W 0

j = w0
j , W

k
0 = wk0 , W

k
N/2 = Uk

N/2 − V k
N/2.

The estimate of the smooth component is obtained using the following stability and

consistency argument. From the differential equation, we obtain

LN,K(V k
j − vkj ) = fkj −

dkj × V k−1
j

∆t − LN,Kvkj

= ε

(
d2

dx2 − D̃x

)
vkj + akj

(
d

dx
−D−x

)
vkj .

Then, by local truncation error estimates (Lemma 4.1 [42]) at each point (xj, tk), we

obtain

|LN,K(V k
j − vkj )| ≤ ε

3(xj+1 − xj−1)
wwwww∂3vj
∂x3

wwwww+
akj
2 (xj − xj−1)

wwwww∂2vj
∂x2

wwwww for 1 ≤ j 6 N/2− 1.

(3.4.2)

Since hj = xj − xj−1 ≤ 4N−1 and using the estimates of the derivatives of vkj in Lemma

3.2.6 in conjunction with Lemma 7 of [48], we have

|LN,K(V k
j − vkj )| ≤ CN−1.

Now, applying Lemma 3.3.2 to the mesh function (V k
j − vkj ), we obtain

|(V k
j − vkj )| ≤ CN−1 for 1 6 j 6 N/2− 1. (3.4.3)

Now, let us estimate the local truncation error of the singular component LN,K(W k
j −wkj ).

In this case the argument depends on whether τ = 1/2 or τ = (ε/η) ln(N/4).

The mesh is uniform in the first case τ = 1/2 ≤ (ε/η) ln(N/4). The local truncation

error is bounded in the same manner as done above.

|LN,K(W k
j −wkj )| ≤

ε

3(xj+1−xj−1)
wwwww∂3wj
∂x3

wwwww+
akj
2 (xj−xj−1)

wwwww∂2wj
∂x2

wwwww for 1 ≤ j 6 N/2−1.

(3.4.4)
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Since hj = xj − xj−1 ≤ 4N−1 and applying Lemma 3.2.6 in conjunction with Lemma 7 of

[48], we obtain

|LN,K(W k
j − wkj )| ≤ Cε−2N−1.

We know that in the uniform mesh case, ε−1 ≤ (2/η) ln(N/4), we obtain

|LN,K(W k
j − wkj )| ≤ CN−1 [ln(N/4)]2 .

Now, applying Lemma 3.3.2 to the mesh function (W k
j − wkj ), we obtain

|(W k
j − wkj )| ≤ CN−1 [ln(N/4)]2 for 1 ≤ j 6 N/2− 1. (3.4.5)

In the second case τ = (ε/η) ln(N/4) ≤ 1/2, the mesh is piecewise uniform. In this case

we have two subintervals, namely [−1,−τ ] and [−τ, 0]. Firstly, we compute the error for

the singular component in the mesh region [−1,−τ ], i.e., for all −1 ≤ xj ≤ −τ . Using

the triangle inequality, we get

|W k
j − wkj | ≤ |W k

j |+ |wkj | (3.4.6)

With the help of Lemma 3.2.6, we obtain

|wkj | ≤ C exp(ηxj/ε) ≤ C exp(−ητ/ε) ≤ CN−1 for 1 ≤ j 6 N/2− 1. (3.4.7)

To obtain a similar bound on W k
j an auxiliary mesh function W̃ k

j is defined analogous to

W k
j except that the coefficient of a(x, t) in the difference operator LN,K is replaced by the

lower bound of a(x, t) ([42] pp 72). Then, from (Lemma 7.5 of [42]),

|W k
j | ≤ |W̃ k

j | for 0 ≤ j ≤ N.

Furthermore, by using Lemma 3.2.6 which leads us immediately to conclude that

|wkj | ≤ CN−1 for 1 ≤ j 6 N/4− 1. (3.4.8)

By using the estimated obtained by (3.4.7) and (3.4.8), we obtain

|W k
j − wkj | 6 CN−1 for 1 ≤ j 6 N/4− 1. (3.4.9)
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Now, in the subinterval [−τ, 0], (3.4.4) leads to

|LN,K(W k
j − wkj )| = Cε−2|xj+1 − xj−1| = 4Cε−2N−1τ for N/4 6 j 6 N/2− 1.

Also, |(W k
0 − wk0 | = 0 and |W k

N/4 − wkN/4| 6 |W k
N/4|+ |wkN/4| 6 CN−1 from (3.4.8). Let us

introduce the barrier function on [−τ, 0] as follows

Φk
j = (xj + τ)C1ε

−2τN−1 + C2N
−1.

For a suitable choice of C1 and C2, the mesh functions

(Ψ±)kj = Φk
j ± (W k

j − wkj )

satisfy the inequalities

Ψk
N/4 ≥ 0, Ψk

N/2 = 0

and

LN,KΨk
j ≤ 0, N/4 + 1 6 j 6 N/2− 1.

By applying Lemma 3.3.1 on [−τ, 0] to the function (Ψ±)kj , we obtain

Ψk
j > 0, N/4 + 1 6 j 6 N/2− 1.

Therefore, we obtain

|W k
j − wkj | ≤ Φk

j ≤ C1ε
−2τ 2N−1 + C2N

−1.

Since τ = (ε/η) ln(N/4), we have

|W k
j − wkj | ≤ CN−1 [ln(N/4)]2 . (3.4.10)

Combining (3.4.9) and (3.4.10), we obtain the following estimate on the singular compo-

nent of the error over interval [−1, 0]

|W k
j − wkj | ≤ CN−1 [ln(N/4)]2 , N/4 + 1 6 j 6 N/2− 1. (3.4.11)

Noting that

Uk
j − zkj = (V k

j − vkj ) + (W k
j − wkj ) (3.4.12)
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and using the estimates (3.4.3) and (3.4.11), we obtain

|Uk
j − zkj | ≤ CN−1 [ln(N/4)]2 , 1 6 j 6 N/2− 1. (3.4.13)

A similar analysis on the subinterval [0, 1] yields

|Uk
j − zkj | ≤ CN−1 [ln(N/4)]2 , N/2 6 j 6 N. (3.4.14)

Combining (3.4.13) and (3.4.14) then gives the required result.

The next theorem provides the main result of this chapter.

Theorem 3.4.2. . Let u be the exact solution of problem (3.1.1)-(3.1.2) and U be its

numerical solution obtained via the difference equations (3.3.10)-(3.3.12). Then, there

exists a constant C independent of the perturbation parameter ε, and of the discretization

parameters hj and ∆t such that

max
0≤j≤N ;1≤k≤K

‖Uk
j − ukj‖ ≤ C

[
∆t+N−1

[
ln
(
N

4

)]2]
. (3.4.15)

Proof. The result follows from the triangle inequality

‖Uk
j − ukj‖ ≤ ‖Uk

j − zkj ‖+ ‖zkj − ukj‖,

and the combination of (3.3.7) and Theorem 3.4.1.

To improve the accuracy and the rate of convergence of the proposed numerical method,

we apply Richardson extrapolation in the next section.

3.5 Richardson extrapolation on the FMFDM

In this section, we use Richardson extrapolation to improve the accuracy of the proposed

method. Richardson extrapolation is a procedure where a linear combination of two ap-

proximations of a some quantity gives a better approximation of the quantity [49].
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We focus our attention on the interval [−1, 0] as before. Results on the interval [0, 1]

can be obtained in a similar way. Keeping in mind that there is a transition point at

x = −τ , we consider the subintervals [−1,−τ ] ∪ [−τ, 0] separately.

With reference to (3.3.9), to simplify the analysis, for xj ∈ Ωτ
N , hj = xj − xj−1 we

denote H = hj for j = 1, 2, · · · , N/4 and h = hj for j = N/4 + 1, · · · , N/2− 1.

We consider the mesh Ωτ
2N where τ is given by (3.3.8) where we bisect each mesh subin-

terval. It is clear that Ωτ
N ⊂ Ωτ

2N = {x̃j} and x̃j − x̃j−1 = h̃j = hj/2. We denote the

numerical solution on the mesh Ωτ
2N by Ũk

j . The estimate (3.4.13) can be written as

Uk
j − zkj = C1N

−1 ln(N/4)2 +RN(xj), ∀xj ∈ Ωτ
N (3.5.1)

and

Ũk
j − zkj = C2(2N)−1 ln(N/4)2 +R2N(x̃j), ∀x̃j ∈ Ωτ

2N , (3.5.2)

where C1 and C2 are some constants and the remainders

RN(xj) and R2N(x̃j) are O[N−1(ln(N/4))2].

Note that we have used the same transition parameter τ when computing both Uk
j and

Ũk
j . This is seen from the factor ln(N/4).

A combination of the two equations above gives

zkj − (2Ũk
j − Uk

j ) = RN(xj)− 2R2N(xj) = O[N−1(ln(N/4))2], ∀xj ∈ Ωτ
n. (3.5.3)

We set

U ext,k
j = 2Ũk

j − Uk
j , ∀xj ∈ Ωτ

N , (3.5.4)

as the new approximation of zkj obtained after applying Richardson extrapolation. The

error after extrapolation U ext,k
j can also be decomposed as in (3.4.12),

(U ext − z)kj = (V ext − v)kj + (W ext − w)kj , (3.5.5)
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where V ext,k
j and W ext,k

j are the regular and singular components of U ext,k
j . The local

truncation error of the scheme (3.3.10)-(3.3.13) after extrapolation is given by

LN,K(U ext − z)kj = 2LN,K(Ũk
j − zkj )− LN,K(Uk

j − zkj ), (3.5.6)

where

LN,K(Uk
j − zkj ) = r−zkj−1 + rczkj + r+zkj+1 − εz′′j − ãkj z′j + b̃kj z

k
j +

dkj z
k
j

∆t (3.5.7)

and

LN,K(Ũk
j − zkj ) = r̃−zkj−1 + r̃czkj + r̃+zkj+1 − εz′′j − ãkj z′j + b̃kj z

k
j +

dkj z
k
j

∆t . (3.5.8)

The quantities of r−, rc and r+ are given in (3.3.14), (3.3.15) and (3.3.16) respectively, but

r̃−, r̃c and r̃+ are obtained by substituting hj by h̃j and hj+1 by h̃j+1, in the expressions

of r−, rc and r+ respectively. Taking the Taylor series expansion of zkj around xj, we

obtain the following approximations for zkj−1 and zkj+1:

zkj−1 = zj − hjz′j +
h2
j

2 z
2
j −

h3
j

6 z
3
j +

h4
j

24z
4(ξ1, j), (3.5.9)

zkj+1 = zj + hj+1z
′
j +

h2
j+1

2 z2
j +

h3
j+1

6 z3
j +

h4
j+1

24 z4(ξ2, j), (3.5.10)

zkj−1 = zj − h̃jz′j +
h̃2
j

2 z
2
j −

h̃3
j

6 z
3
j +

h̃4
j

24z
4(ξ̃1, j), (3.5.11)

zkj+1 = zj + h̃j+1z
′
j +

h̃2
j+1

2 z2
j +

h̃3
j+1

6 z3
j +

h̃4
j+1

24 z4(ξ̃2, j), (3.5.12)

where

ξ1, j ∈ (xj−1, xj), ξ2, j ∈ (xj, xj+1), ξ̃1 ∈ (xj−1 + xj
2 , xj) and ξ̃2 ∈ (xj,

xj + xj+1

2 ).

Substituting (3.5.9) and (3.5.10) into (3.5.7), (3.5.11) and (3.5.12) into (3.5.8), we obtain

the following expressions:

LN,K(Uk
j − zkj ) = k1zj + k2z

′
j + k3z

2
j + k4z

3
j + k5,1z

4(ξ1, j) + k5,2z
4(ξ2, j) (3.5.13)
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and

LN,K(Ũk
j − zkj ) = k̃1zj + k̃2z

′
j + k̃3z

2
j + k̃4z

3
j + k̃4z

4
j + k̃5,1z

4(ξ̃1, j) + k̃5,2z
4(ξ̃2, j). (3.5.14)

The coefficients (3.5.13) are

k1=
2ε

hj(hj+hj+1)−
2ε

hjhj+1
+ 2ε
hj+1(hj+hj+1) , k2=0, k3=

εhj
hj+hj+1

−
ãkjhj

2 + εhj+1

hj+hj+1
− ε,

k4 =
−εh2

j

3(hj+hj+1) +
ãkjh

2
j

6 +
εh2

j+1

3(hj+hj+1) , k5,1 =
εh3

j

12(hj+hj+1) −
ãkjh

3
j

24 , k5,2 =
εh3

j+1

12(hj+hj+1) .

The quantities for k̃1, k̃2, k̃3, k̃4, k̃5,1 and k̃5,2 can be obtained by substituting hj by h̃j
and hj+1 by h̃j+1.

Substituting (3.5.13) and (3.5.14) into (3.5.6), we obtain

LN,K(U ext − z)kj = T1zj + T2z
′′
j + T3z

′′′
j + +T4,1z

(4)(ξ1, j) + T4,2z
(4)(ξ2, j), (3.5.15)

where

T1 = 14ε
hj(hj + hj+1) −

14ε
hjhj+1

+ 14ε
hj+1(hj + hj+1) ,

T2 = εhj
hj + hj+1

− ε+ εhj+1

hj + hj+1
, T3 = −

ãkjh
2
j

12 ,

T4,1 = −
εh3

j

24(hj + hj+1) +
ãjh

3
j

32 and T4,2 = −
εh3

j+1

24 .

Using the fact that, for all j = 1, . . . , N/4, H = hj 6 4N−1 substituting into (3.5.15) in

the subinterval [−1,−τ ], we obtain:

LN,K(V ext − v)kj = −
ãkjH

2

12 v′′′j +
[
εH2

48 +
ãkjH

3

32

]
v(4)(ξ1, j)−

εH3

24 v(4)(ξ2, j). (3.5.16)
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Now applying the triangle inequality, Lemma 3.2.6 in conjunction with Lemma 7 of [48]

to (3.5.16), we obtain:

|LN,K(V ext − v)kj | ≤ CN−2. (3.5.17)

To estimate LN,K(W ext − w)kj , the argument depends on whether τ = 1/2 or

τ = (ε/η) ln(N/4).

In the first case the mesh is uniform and (ε/η) ln(N/4) ≥ 1/2. The estimate of singular

component of the local truncation error is obtained as follows:

LN,K(W ext − w)kj = −
ãkjh

2

12 w′′′j +
[
εh2

48 +
ãkjh

3

32

]
w(4)(ξ1, j)−

εh3

24 w
(4)(ξ2, j). (3.5.18)

Now, applying the triangle inequality, Lemma 3.2.6 and using Lemma 7 of [48], we obtain

|LN,K(W ext − w)kj | ≤ CN−2ε−3 exp (2xjη/ε) . (3.5.19)

Note that ε−1 exp (2xjη/ε) ≤ C and ε−1 6 (2/η) ln(N/4), we obtain

|LN,K(W ext − w)kj | 6 CN−2 [ln(N/4)]2 . (3.5.20)

In the second case (viz τ = (ε/η) ln(N/4)), the mesh is piecewise uniform with the mesh

spacing h = hj = 4τN−1 for ∀ j = N/4 + 1, . . . , N/2 in the subinterval (−τ, 0]. Applying

the triangle inequality, Lemma 3.2.6 along with Lemma 7 of [48] to (3.5.18), we obtain

|LN,K(W ext − w)kj | ≤ C1N
−2τ 2ε−2. (3.5.21)

Since τ = (ε/η) ln(N/4), this gives

|LN,K(W ext − w)kj | 6 CN−2 [ln(N/4)]2 . (3.5.22)

A similar analysis can be performed for j = N/2 + 1, · · · , N − 1.

Using Lemma 3.3.2 in (3.5.17), (3.5.20) and (3.5.22) along with (3.5.5), we obtain the

following result:
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Theorem 3.5.1. Let z and U be the solution of (3.3.4)-(3.3.5) and (3.3.10)-(3.3.12),

respectively. Then, there exists a constant C, independent of the perturbation parameter

ε and the space discretization parameters hj such that

max
0≤j≤N

|(U ext − z)kj | 6 CN−2
[
ln
(
N

4

)]2
. (3.5.23)

Once more, using the triangle inequality and combining (3.3.7) and Theorem 3.5.1,

we obtain the error after extrapolation which we state in the following theorem.

Theorem 3.5.2. (Error after extrapolation). Let u be the exact solution of (3.1.1)-(3.1.2)

and U its numerical approximation obtained via the scheme (3.3.10)-(3.3.12). Then, there

exists a constant C, independent of the perturbation parameter ε, the time discretization

∆t and the space discretization parameters hj such that

max
0≤j≤N ;1≤k≤K

|(U ext − u)kj | 6 C

[
∆t+N−2

[
ln
(
N

4

)]2]
. (3.5.24)

3.6 Numerical examples

This section presents numerical results obtained for test problems. In both examples, we

start with N = 16 and ∆t = 0.1 and we multiply N by two and divide ∆t also by two.

The maximum errors and order of convergence are calculated by the exact solution. The

solution in the examples has a turning point at x = 0 and x = 0.5 , which gives rise to

an interior layer.

Example 3.6.1. We consider problem (3.1.1)-(3.1.2) for

a(x, t) = 2x(1 + t2), b(x, t) = (3 + xt), d(x, t) = (1 + xt), T = 1

and the functions f(x, t) and u0(x) are such that the exact solution is given by

u(x, t) = εe−t/ε
[
erf
(
x√
ε

)
+ 2x e

x2/ε

√
επ

]
− ε3/2e−xt.

Example 3.6.2. Here we consider the following problem (3.1.1) and 0 ≤ x ≤ 1 for

a(x, t) = (2x− 1)(1 + t), b(x, t) = (1 + xt), d(x, t) = e−xt, T = 1
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and the functions f(x, t) and u0(x) are such that the exact solution is given by

u(x, t) = εe−t/ε tanh
(0.5− x

ε

)
− ε3/2e−(1−2x)t.

Maximum errors at all mesh points are determined by using the formula

Eε,N,K = max
0≤j≤N ;0≤k≤K

|uε,N,Kj,k − U ε,N,K
j,k |, and we compute Eε,N,K = max

0≤ε≤1
Eε,N,K ,

where uε,N,Kj,k denotes the exact solution, and U ε,N,K
j,k denotes the numerical solution which

is obtained by a constant time step ∆t using N mesh intervals in the entire domain

Ω = [−1, 1] or Ω = [0, 1]. In addition, the numerical rate of uniform is computed as

rl ≡ rε,l = log2

(
Eε,Nl,Kl/Eε,2Nl,2Kl

)
.

After extrapolation the maximum errors at all mesh points and the numerical rates of

convergence are calculated as follows:

Eext
ε,N,K = max

0≤j≤N ;0≤k≤K
|U ext

j,k − u
ε,N,K
j,k |, and RN,K ≡ Rε,N,K ≡ log2(Eext

ε,Nl,Kl
/Eext

ε,2Nl,2Kl
).
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Table 3.1: Results for Example 3.6.1 Maximum errors before extrapolation
ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

K = 10 K = 20 K = 40 K = 80 K = 160 K = 320

10−4 7.55E-02 4.35E-02 2.33E-02 1.20E-02 6.59E-03 3.63E-03

10−5 7.55E-02 4.35E-02 2.33E-02 1.20E-02 6.13E-03 3.11E-03

10−6 7.55E-02 4.35E-02 2.33E-02 1.20E-02 6.13E-03 3.10E-03
...

...
...

...
...

...
...

10−14 7.55E-02 4.35E-02 2.33E-02 1.20E-02 6.13E-03 3.10E-03

Table 3.2: Results for Example 3.6.1 Maximum errors after extrapolation
ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

K = 10 K = 40 K = 160 K = 640 K = 2560 K = 10240

10−4 8.61E-02 2.58E-02 6.80E-03 3.60E-03 3.60E-03 3.60E-03

10−5 8.61E-02 2.59E-02 6.81E-03 1.73E-03 7.88E-04 7.88E-04

10−6 8.62E-02 2.59E-02 6.82E-03 1.73E-03 4.33E-04 1.71E-04

10−7 8.62E-02 2.59E-02 6.82E-03 1.73E-03 4.34E-04 1.08E-04
...

...
...

...
...

...
...

10−14 8.62E-02 2.59E-02 6.82E-03 1.73E-03 4.34E-04 1.08E-04

Table 3.3: Results for Example 3.6.1 Rates of convergence before extrapolation
ε r1 r2 r3 r4 r5

10−4 0.80 0.90 0.95 0.87 0.86

10−5 0.80 0.90 0.95 0.97 0.98

10−6 0.80 0.90 0.95 0.97 0.99
...

...
...

...
...

...

10−14 0.80 0.90 0.95 0.97 0.99

Table 3.4: Results for Example 3.6.1 Rates of convergence after extrapolation
ε r1 r2 r3 r4 r5

10−5 1.74 1.92 1.98 1.13 -0.00

10−6 1.74 1.92 1.98 2.00 1.34

10−7 1.74 1.92 1.98 2.00 2.00

10−8 1.74 1.92 1.98 2.00 2.00
...

...
...

...
...

...

10−14 1.74 1.92 1.98 2.00 2.00
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Table 3.5: Results for Example 3.6.2 Maximum errors before extrapolation
ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

K = 10 K = 20 K = 40 K = 80 K = 160 K = 320

10−4 8.85E-02 4.76E-02 2.44E-02 1.23E-02 6.21E-03 3.12E-03

10−5 8.85E-02 4.76E-02 2.44E-02 1.23E-02 6.21E-03 3.12E-03

10−6 8.85E-02 4.76E-02 2.44E-02 1.23E-02 6.21E-03 3.12E-03
...

...
...

...
...

...
...

10−14 8.85E-02 4.76E-02 2.44E-02 1.23E-02 6.21E-03 3.12E-03

Table 3.6: Results for Example 3.6.2 Maximum errors after extrapolation
ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

K = 10 K = 40 K = 160 K = 640 K = 2560 K = 10240

10−4 1.07E-01 2.79E-02 8.45E-03 5.76E-03 5.76E-03 5.76E-03

10−5 1.06E-01 2.62E-02 6.78E-03 2.08E-03 1.25E-03 1.25E-03

10−6 1.05E-01 2.58E-02 6.42E-03 1.72E-03 5.08E-04 2.71E-04

10−7 1.05E-01 2.58E-02 6.34E-03 1.64E-03 4.31E-04 1.25E-04

10−8 1.05E-01 2.58E-02 6.32E-03 1.62E-03 4.09E-04 1.03E-04
...

...
...

...
...

...
...

10−14 1.05E-01 2.57E-02 6.32E-03 1.62E-03 4.09E-04 1.03E-04

Table 3.7: Results for Example 3.6.2 Rates of convergence before extrapolation
ε r1 r2 r3 r4 r5

10−4 0.88 0.96 0.98 0.99 0.67

10−5 0.89 0.96 0.98 0.99 1.00

10−6 0.89 0.96 0.98 0.99 1.00
...

...
...

...
...

...

10−14 0.89 0.97 0.98 0.99 1.00

Table 3.8: Results for Example 3.6.2 Rates of convergence after extrapolation
ε r1 r2 r3 r4 r5

10−5 2.01 1.95 1.70 0.73 -0.00

10−6 2.03 2.01 1.90 1.75 0.91

10−7 2.03 2.02 1.95 1.93 1.79

10−8 2.03 2.03 1.96 1.97 1.94
...

...
...

...
...

...

10−14 2.03 2.03 1.97 1.98 1.99
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3.7 Discussion

In this chapter, we proposed a fitted mesh finite difference method (FMFDM) for a class

of time-dependent singularly perturbed problems whose solution exhibits an interior layer.

After establishing bounds on the solution and its derivatives, we applied the classical Euler

method to discretize the time variable. This results in a system of interior layer boundary

value problems (one at each time level). We constructed a Fitted Mesh Finite Difference

Method (FMFDM) to solve the system above. The FMFDM uses an upwind scheme on

a piecewise uniform mesh, fine in the (interior) layer and coarse elsewhere. Using bounds

on the solution and its derivatives, we proved that the method is uniformly convergent

relative to the perturbation parameter ε and the step-size.

In order to support the above conclusions based on a theoretical analysis, we performed

numerical investigations on two examples. In each example, we computed the maximum

pointwise errors and the corresponding rates of convergence for various values of N and

K. The results shown in tables 3.1, 3.3, 3.5 and 3.7,confirmed that the method was uni-

formly convergent.

Furthermore, we investigated the effect of Richardson extrapolation on the FMFDM in

order to improve both its accuracy and order of convergence. Numerical results are dis-

played in tables 3.2, 3.4, 3.6 and 3.8 for the same values of N and K considered above for

comparison purposes.
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Chapter 4

Time dependent power interior layer

convection-diffusion problems

In this chapter, we consider a class of two-point boundary value singularly perturbed

convection-diffusion problems whose solution has an interior layer due to the presence of

a turning point. The perturbation parameter is embedded in a quadratic function. We

first derive bounds on the solution and its derivatives. Then we design a fitted mesh

finite difference method (FMFDM) applied on both Bakhvalov and Shishkin-type meshes

for the solution of problem which is ε−uniform convergent of order one. In order to

improve the accuracy and the rate of convergence for both methods, we apply Richardson

extrapolation.

4.1 Introduction

In one dimension, a typical singularly perturbed problem consists of determining the

solution y to the equation

εy′′ + a(x)y′ − b(x)y = f(x), x ∈ [θ1, θ2], (4.1.1)

subject to

y(θ1) = y1 and y(θ2) = y2, (4.1.2)
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where ε is a small parameter lying in (0, 1], a(x), b(x) and f(x) are sufficiently smooth

functions, y1 and y2 are given constants, and also that a(x) > η > 0, b(x) > b0 > 0,

x ∈ [θ1, θ2]. Such problems often arise in chemistry, biology, continuum mechanics, aero-

dynamics, semi-conductor theory, electromagnetic fields, financial mathematics, reaction-

diffusion processes [19, 50, 73].

The perturbation parameter ε << 1 in (4.1.1) dictates large gradients of the solution

in small parts of the domain called layer regions. These layers may be situated at the

boundary of the domain or in its interior depending upon the nature of the coefficient of

the convection and the reaction terms. The solution presents a boundary layer at the right

end or the left end of the domain if a(x) < 0 or a(x) > 0, for all x ∈ [θ1, θ2] respectively.

With such coefficient functions a(x), problems (4.1.1)-(4.1.2) are said to be an non-turning

point problems. In recent years, many researchers have successfully developed numerical

schemes for such problems [25, 26, 28, 35, 45, 46, 57, 69].

The zeros of a(x), if they exist and with a(θ1)a(θ2) 6= 0, are called the turning points

of the problem. Turning points may give rise to boundary and/or interior layers. For

more information about the type of layers, interested readers may refer to [5]. Numerous

numerical schemes for turning point singularly perturbed problems are available in the

literature. Examples of works where turning points give rise to boundary and/or interior

layers include [9, 12, 18, 19, 24, 27, 33, 50, 58, 64, 74]. Note that interior layers are also

present in the solution to problems (4.1.1)-(4.1.2) if the coefficients are not smooth or if

the data function f(x) is discontinuous [16].

The literature presented above proves that problem (4.1.1)-(4.1.2) is well-studied. Paral-

lel to a constant perturbation parameter ε, it is important to study problems when the

perturbation parameter is a function of ε and x. Such problems arise in a modelling

process with variable viscosity [38].
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In this chapter we study the problem in which l(x, ε) = ε + x2. More precisely, we

seek to determine the solution to the problem whose reduced equation (ε = 0) has the

same order

Lu :≡ (ε+ x2)u′′ + a(x)u′ − b(x)u = f(x), x ∈ Ω = (−1, 1), (4.1.3)

u(−1) = α, u(1) = β, (4.1.4)

where α and β are given real constants. We assume that the functions a(x), b(x) and f(x)

of (4.1.3) are sufficiently smooth with b(x) ≥ b0 > 0 in Ω̄ along with the conditions

(i) a(0) = 0 a′(0) > 0,

(ii) b(x) ≥ b0 > 0 x ∈ [−1, 1],

(iii) |a′(x)| ≥ a′(0)/2, x ∈ [−1, 1].


(4.1.5)

The above hypotheses guarantee that the solution of problem (4.1.3)-(4.1.4) possesses a

unique solution exhibiting an interior layer at the point x = 0 [19]. In fact, condition

(i) guarantees the existence of the turning point, condition (ii) ensures that the problem

satisfies a minimum principle and condition (iii) implies that zero is the only turning

point in [−1, 1].

In Mbayi et al.[40], proposed a numerical method to problem (4.1.1)-(4.1.2) with a turning

point whose solution exhibits an interior layer. They used a fitted mesh finite difference

method (FMFDM).

In the present chapter, we propose and analyse a fitted mesh finite mesh difference

method (FMFDM) to problem (4.1.3)-(4.1.4) as applied on two different meshes, namely

Bakhvalov-type and Shishkin-type meshes. The method we propose is an extension of our

recent work [40].

The rest of the chapter is organised as follows. In Section 2, we present a set of bounds on

the solution u(x) and its derivatives . In Section 3, we design a FMFDM applied on two
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different meshes, namely a piecewise mesh (Shishkin-type) and graded mesh (Bakhvalov-

type). Section 4 is dedicated to the analysis of the scheme. We prove that the scheme

is almost first order, uniformly convergent with respect to the perturbation parameter

ε for Shishkin-type and Bakhvalov-type meshes. To improve the accuracy of the pro-

posed (FMFDM), we apply Richardson extrapolation in Section 5 to obtain a second

order method, uniformly convergent with respect to the perturbation parameter ε, con-

vergence up to a logarithmic factor for a Shishkin-type mesh and also second order for a

Bakhvalov-type mesh. To see how the proposed method works in practice and to confirm

our theoretical results, we present numerical experiments in Section 6. We conclude this

chapter in Section 7.

In the rest of this chapter, C denotes a generic constant which may assume different

values in different inequalities but will always be independent of ε and of the mesh pa-

rameter.

4.2 Bounds on the solution and its derivatives

Bounds for the solution to problem (4.1.3)-(4.1.4) and its derivatives are given in this

section. We shall note the sub-intervals of [−1, 1] as Ωl = [−1,−τ ], Ωc = [−τ, τ ] and

Ωr = [τ, 1], where 0 < τ ≤ 1/2.

We first prove that the operator L as defined in (4.1.3) admits the following continu-

ous minimum principle and then we state a stability estimate for the solution of problem

(4.1.3)-(4.1.4).

Lemma 4.2.1. (Minimum principle). Assume that ξ is any sufficiently smooth function

satisfying ξ(±1) ≥ 0 and Lξ(x) ≤ 0, ∀x ∈ Ω, implies that ξ(x) ≥ 0, ∀x ∈ Ω̄.

Proof. The proof is by contradiction. Let x∗ be such that ξ(x∗) = min
−1≤x≤1

ξ(x) and assume
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that ξ(x∗) < 0. Clearly, x∗ /∈ Ω and therefore ξ′(x∗) = 0 and ξ′′(x∗) ≥ 0. Consequently,

Lξ(x∗) := (ε+ x∗2)ξ′′(x∗) + a(x∗)ξ′(x∗)− b(x∗)ξ(x∗) > 0,

which is a contradiction. It follows that ξ(x∗) ≥ 0 and thus ξ(x) ≥ 0, ∀x ∈ Ω̄.

The minimum principle implies the existence and uniqueness of the solution. We use

this principle to prove the next results which state that the solution depends continuously

on the data.

Lemma 4.2.2. (Stability estimate). If u(x) is the solution of (4.1.3)-(4.1.4), then we have

||u(x)|| 6 [max {||α||∞, ||β||∞}] + 1
b0
||f ||∞, ∀x ∈ Ω̄.

Proof. See Lemma 2.2.2 in Chapter 2.

Lemma 4.2.3. [5]. If u(x) is the solution of (4.1.3)-(4.1.4) and a(x), b(x) and

f(x) ∈ Ck(Ω̄), then there exists a positive constant C such that

|u(j)(x)| ≤ C, ∀x ∈ Ωl or Ωr, j = 1, 2, · · · , k,

for sufficient small 0 < τ ≤ 1/2.

Proof. See theorem 2.4 of [5].

Lemma 4.2.4. [39] (Inverse monotonicity.) Let d(x) = x2 and

q(x) = f(x)− a(x)u′(x) + b(x)u(x) be continuous in [−1, 1] and [−1, 1]×<2, respectively.

Then the operator

T = (L,Γ) for the functions from C2(−1, 1) ∪ C[−1, 1] is inverse-monotone if one of the

following conditions imposed of q(x) is satisfied:

• q(x, u, u′) is strictly increasing in u, i.e. q(x, u1, z) < q(x, u2, z) if u1 < u2;

• q(x, u, u′) is weakly increasing in u, and there exists a constant C > 0 such that

|q(x, u, z1)− q(x, u, z2)| 6 C|z1 − z2|.
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Proof. For the proof of the Lemma, readers may refer to ([39], pp 47).

We adapt the next according to [39]. As we know that the solution to problem (4.1.3)-

(4.1.4) exhibits an interior layer at the point xN/2 = 0. Therefore, the derivatives of u(x)

are estimated in the vicinity xN/2 = 0 by polynomial functions according to the sign of

the coefficient convection term at the point x?0. Then, we have two cases

a =

 a(x?0) 6 0, x?0 ∈ [−τ, 0] and

a(x?0) > 0, x?0 ∈ (0, τ ].
(4.2.1)

Lemma 4.2.5. Let u(x) be the solution of (4.1.3)-(4.1.4). Then assuming that

a = a(x?0) > 0, for 0 < x 6 τ and j = 1, 2, 3, 4, we have the following bounds

|u(j)(x)| 6 C


1 + (ε+ x2)1−a−j, 0 < a < 1,

1 + (ε+ x2)−j, a = 1,

1 + εa−1(ε+ x2)1−a−j, a > 1,

(4.2.2)

and a = a(x?0) 6 0, for −τ 6 x 6 0. Let p be an integer such that a + p = 0 and

a+ p− 1 < 0, then for j = 1, 2, 3, 4, we have the following bounds

|u(j)(x)| 6 C


1, a < 0, j 6 p,

1 + (ε+ x2)1−j−p arctan(x/
√
ε), a+ p = 0, j > p,

1 + (ε+ x2)−a−j, a+ p > 0, j > p.

(4.2.3)

Proof. We prove this Lemma by following the ideas of ([39], from pp. 107-110). Appli-

cation of the inverse-monotone pair T = (L,Γ) (see pp 49) implies that

|u(x)| 6 C, −1 6 x 6 −1. (4.2.4)

Combining (4.1.3)-(4.1.4) and (4.2.4), we obtain

|u(j)(x)| 6 C



1, −τ < x0 6 x 6 0,

ε−j, −τ 6 x 6 x0, j = 1, 2, 3, 4,

1, 0 < x0 6 x 6 τ,

ε−j, 0 6 x 6 x0, j = 1, 2, 3, 4,

(4.2.5)
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for arbitrary x0 > 0, independent of ε and x.

case 1 : a > 0 for 0 < x 6 τ. In this case, the derivatives of u(x) are estimated ac-

cording to the value of a : 0 < a < 1, a = 1 and a > 1. Solving (4.1.3) for u′′(x), we

obtain

u′′(x) = f(x) + b(x)u(x)
(ε+ x2) − a(x)u′(x)

(ε+ x2) . (4.2.6)

One can determine u′(x) from (4.2.6) as follows

u′(x) =
∫ x

0

f(s) + b(s)u(s)
ε+ s2 ds−

∫ x

0

a(s)
ε+ s2u

′(s) ds. (4.2.7)

u′(x) can be expressed as follows

u′(x) = u′(0)
[

ε

ε+ x2

]a
exp[−g1(x)] + g2(x), (4.2.8)

where

g1(x) =
∫ x

0

a(s)
ε+ s2 ds = a(x)√

ε
arctan(x/

√
ε)−

∫ x

0

a′(x)√
ε

arctan(s/
√
ε) ds, (4.2.9)

with a(0) = 0, and

g2(x) = (ε+ x2)−a
∫ x

0
[f(s) + b(s)u(s)](ε+ s2)a−1 exp[g1(s)− g1(x)] ds. (4.2.10)

We have |g1(x)| 6 C from (4.2.4), therefore we obtain

|g2(x)| 6 C(ε+ x2)−a
∫ x

0
(ε+ s2)a−1 ds 6 C.

Applying the triangle inequality in (4.2.8) we obtain

|u′(x)| 6 C
[
1 + |u′(0)|(ε/(ε+ x2))a

]
. (4.2.11)

Considering 0 < a < 1, there is a point x0 in the interval (0, τ) such that |u′(x0)| 6 C.

Thus we have

|u′(0)|
(

ε

ε+ x2
0

)a
6 C.
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This inequality gives

|u′(0)| 6 C

(
ε+ x2

0
ε

)a
6 C(ε+ x2

0)aε−a 6 Cε−a.

Using the value of |u′(0)| into (4.2.11), we obtain

|u′(x)| 6 C
[
1 + (ε+ x2)−a

]
, 0 < a < 1.

Before getting u′′(x) let us make first a(x)u′(x)/(ε + x2) the subject of the formula from

(4.2.6), then we have

a(x)u′(x)
ε+ x2 = f(x) + b(x)u(x)

(ε+ x2) − u′′(x). (4.2.12)

Differentiating (4.1.3), solving the resulting equation for u′′′(x) and taking into account

(4.2.12), we obtain

u′′′(x) = f ′(x) + b′(x)u(x) + b(x)u′(x)− a′(x)u′(x)
(ε+ x2) − a′(x) + 2s

(ε+ x2) u′′(x). (4.2.13)

From the above equation, we obtain u′′(x)

u′′(x) =
∫ x

0

f ′(s) + b′(s)u(s) + b(s)u′(s)− a′(s)u′(s)
ε+ s2 ds−

∫ x

0

a(s) + 2s
ε+ s2 u′′(s) ds.

(4.2.14)

Below is the second derivative of u(x) proposed by [37]

u′′(x) = u′′(0)
[

ε

ε+ x2

]a+1
exp[−g3(x)] + g4(x), (4.2.15)

where

g3(x) =
∫ x

0

a(s) + 2s
ε+ s2 ds = a(x) + 2s√

ε
arctan(x/

√
ε)−

∫ x

0

a′(s) + 2√
ε

arctan(s/
√
ε) ds,

(4.2.16)

with a(0) = 0, and

g4(x) = (ε+x2)−a−1
∫ x

0
[f ′(s)+b′(s)u(s)+[b(s)−a′(s)]u′(s)](ε+s2)a exp[g3(s)−g3(x)] ds.

(4.2.17)

Since |g3(x)| 6 C and |u(x)| 6 C, we find that

|g4(x)| 6 C(ε+ x2)−a−1
∫ x

0
[1 + u′(s)](ε+ s2)a ds 6 C[1 + (ε+ x2)−a]. (4.2.18)
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In addition, from (4.1.3) we obtain

u′′(0) 6 Cε−1[1 + u′(0)] 6 Cε−a−1.

Using the estimate of u′′(0) and g4(x) into (4.2.15), we obtain

u′′(x) 6 Cε−1−aεa+1(ε+ x2)−a−1 + C
[
1 + (ε+ x2)−a

]
.

This inequality gives

|u′′(x)| 6 C
[
1 + (ε+ x2)−a−1

]
.

Differentiating equations (4.1.3)-(4.1.4) and taking into account (4.2.4), we obtain the

following result

|u(j)(x)| 6 C
[
1 + (ε+ x2)−a+1−j

]
, 0 < a < 1.

Let us now consider the case when a = 1. On integrating (4.2.8) from 0 to τ , we obtain

u(τ)− u(0) = u′(0)ε1/2{arctan(τ/
√
ε) exp(−g1(τ))

+
∫ τ

0
a(x)(ε+ x2)−1 arctan(x/

√
ε) exp(−g1(x)) dx}+

∫ τ

0
g2(x) dx. (4.2.19)

Further

| arctan(τ/
√
ε) exp[−g1(τ)] +

∫ τ

0
a(x)(ε+ x2)−1 exp[−g1(x)] arctan(x/

√
ε) dx| 6 C.

Using the triangle inequality in (4.2.19) and taking account the above inequality, we

obtain

|u′(0)| ε1/2 6 C.

This inequality yields |u′(0)| 6 Cε−1/2. Then from (4.2.11) we obtain

|u′(x)| 6 C[1 + ε1/2(ε+ x2)−1] 6 C[1 + (ε+ x2)−1].

Now consider u′′(x) for a = 1. In this case (4.2.15) gives

u′′(x) = u′′(0)
[

ε

ε+ x2

]2
exp[−g3(x)] + g4(x). (4.2.20)

79https://etd.uwc.ac.za



Chapter 4: A numerical method for convection-diffusion problems with a
power interior layer and variable coefficient diffusion term

From (4.2.18), g4(x) is defined as follows

|g4(x)| 6 C(ε+ x)−2
∫ x

0
[1 + u′(s)](ε+ s2) ds 6 C[1 + ε1/2(ε+ x2)−1]. (4.2.21)

Further, by (4.1.3) we obtain

u′′(0) 6 Cε−1[1 + u′(0)] 6 Cε−3/2.

Using the estimate of u′′(0) and g4(x) into (4.2.20), we obtain

u′′(x) 6 C[1 + ε1/2(ε+ x2)−2] 6 C[1 + (ε+ x2)−2].

By differentiating (4.1.3) and with the help of (4.2.5), we come to the following result

|u(j)(x)| 6 C[1 + (ε+ x2)−j], a = 1.

The case when a > 1 is easily proved by using u′(0) 6 Cε−1 obtained from (4.2.5) for

0 6 x 6 x0. Substituting into (4.2.11), leads to

|u′(x)| 6 C[1 + εa−1(ε+ x2)−a], 0 < x 6 τ.

Now consider u′′(x) for a > 1. Substituting u′′(0) 6 Cε−2 obtained from (4.2.5) for

0 6 x 6 x0 and (4.2.18) into (4.2.15), we obtain

|u′′(x)| 6 C[1 + εa−1(ε+ x2)−a−1], 0 < x 6 τ.

Differentiating (4.1.3) and taking into account (4.2.5), we easily obtain

|u(j)(x)| 6 C[1 + εa−1(ε+ x2)1−a−j].

This completes the proof of the estimate (4.2.2) for 0 < x 6 τ.

case 2 : a 6 0 for −τ 6 x 6 0. In this case, u′(x) is expressed by the following for-

mula

u′(x) = u′(x0) exp[ψ(x0, x)] +
∫ x

x0

f(s) + b(s)u(s)
ε+ s2 exp[ψ(x0, x)] ds, (4.2.22)
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where

ψ(s, x) = −
∫ x

s

a(κ)
ε+ κ2 dκ.

If a(0) = 0 then ψ(s, x) 6 C, −τ 6 s, x 6 0. Using the triangle inequality in (4.2.22)

and choosing a point x0 ∈ [−τ/2, 0] such that u′(x0) 6 C, we obtain

|u′(x)| 6 C[1 + ε−1/2 arctan(x/
√
ε)] 6 C[1 + arctan(x/

√
ε)], a(0) = 0, j = 1 since p = 0.

Now determine u′′(x) with p = 0 for j = 2. On differentiating (4.1.3) and solving the

resulting equation for u′′(x), we obtain

u′′(x) = u′′(x0) exp[ψ(x0, x)] + (ε+x2)−p−1
∫ x

x0

F (s)
ε+ s2 (ε+ s2)p+1 exp[ψ(s, x)] ds, (4.2.23)

where

ψ(s, x) = −
∫ x

s

a(κ)
ε+ κ2 dκ

and

F (s) = f(s) + b′(s)u(s) + [b(s)− a′(s)]u′(s).

Substituting ψ(s, x) 6 C and u′′(x0) 6 C into (4.2.23), we obtain

|u′′(x)| 6 C+C(ε+x2)−p−1
∫ x

x0
[1 +u′(s)](ε+ s2)p ds 6 C[1 + (ε+x2)−p−1 arctan(x/

√
ε)].

From (4.1.3)-(4.1.4) with p = 0, for j > 1, we obtain

|u(j)(x)| 6 C[1 + (ε+ x2)−1−j−p arctan(x/
√
ε)], a+ p = 0, j > p.

Let a(0) < 0. In this case p > 1. Then there exists a constant x0 > 0 such that

a(x) < 0 for − τ 6 x 6 x0. Therefore, we have

ψ(s, x) 6 −x0 ln[(ε+ s2)/(ε+ x2)], −τ 6 x 6 s 6 x0.

Taking exponentials on both sides of the above inequality, we obtain

exp(ψ(s, x)) 6 [(ε+ x2)/(ε+ s2)]−x0 , −τ 6 x 6 s 6 x0.
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Substituting this estimate in (4.2.22) with x = s and taking into account (4.2.5), we

obtain

|u′(x)| 6 C, −τ 6 x 6 x0, a(0) < 0.

Differentiating (4.1.3) and taking into account (4.2.5), we obtain

|u(j)(x)| 6 C, −τ 6 x 6 0, a < 0, k 6 p.

Consider the case when j > p, a + p > 0 and a 6 0. We define u′(x) from (4.2.8) as

follows:

u′(x) = u′(0)
[

ε

ε+ x2

]a+1
exp[−g1(x)] + g2(x), −τ 6 x 6 0. (4.2.24)

Analogous to the case 0 < a < 1, we obtain

|u′(x)| 6 C[1 + (ε+ x2)−a−1], a 6 0.

We estimate u′′(x) from (4.2.15), and we obtain

u′′(x) = u′′(0)
[

ε

ε+ x2

]a+2
exp[−g3(x)] + g4(x). (4.2.25)

Analogous to the case for 0 < a < 1, we obtain

|u′′(x)| 6 C[1 + (ε+ x2)−a−2], a 6 0.

Differentiating (4.1.3) and taking into account (4.2.5), we obtain

|u(j)(x)| 6 C[1 + (ε+ x2)−a−j], −τ 6 x 6 0, a 6 0, j > p.

This completes the proof of the estimate 4.2.3 for −τ < x 6 0.

By (4.2.2) and (4.2.3), the derivatives of (4.1.3)-(4.1.4) may be estimated by a power

function with argument ε + x2. Therefore (4.1.3)-(4.1.4) are referred to as an equation

with power interior layer [38].
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The singularly perturbed turning point problem (4.1.3)-(4.1.4) may be regarded as a

concatenation of two problems: One on the interval [−1, 0) and the other on the interval

(0, 1]. Therefore, the solution of the problem (4.1.3)-(4.1.4) may present a layer near x = 0

on [−1, 0) and a layer near x = 0 on (0, 1]. This consideration allows us to understand

the behaviour of the solution and its derivatives. The solution can be decomposed into

two parts, namely the smooth component v(x) and the singular component w(x) ([42],

pp 47) such that

u(x) = v(x) + w(x),

where v(x) is the solution of the inhomogeneous problem

Lv(x) = f(x), x ∈ Ω1 = (0, 1], (4.2.26)

v(0) = 0, v(1) = u(1) = β, (4.2.27)

and w(x) is the solution of the homogeneous problem

Lw(x) = 0, x ∈ Ω1, (4.2.28)

w(0) = u(0)− v(0), w(1) = 0. (4.2.29)

The next lemma gives the bounds on the solution to (4.1.3)-(4.1.4) and its derivatives.

Lemma 4.2.6. The smooth and singular components of u(x) of problem (4.1.3)-(4.1.4),

for 0 ≤ j 6 4, satisfy

|v(j)(x)| 6 C



1 + (ε+ x2)3−j arctan(x/
√
ε), x ∈ [−1, 0],

1 + (ε+ x2)3−a−j, a < 1, x ∈ [0, 1],

1 + (ε+ x2)2−j, a = 1, x ∈ [0, 1],

1 + εa−1(ε+ x2)3−a−j, a > 1 x ∈ [0, 1],

(4.2.30)

and

|w(j)(x)| 6 C



(ε+ x2)1−j arctan(x/
√
ε), x ∈ [−1, 0],

(ε+ x2)1−a−j, a < 1, x ∈ [0, 1],

(ε+ x2)−j, a = 1, x ∈ [0, 1],

εa−1(ε+ x2)1−a−j, a > 1, x ∈ [0, 1],

(4.2.31)

83https://etd.uwc.ac.za



Chapter 4: A numerical method for convection-diffusion problems with a
power interior layer and variable coefficient diffusion term

where C is constant and independent of ε.

Proof. We prove this lemma on Ω1 = [0, 1]. The proof on [−1, 0] follows similarly. We

obtain the reduced problem (ε = 0) from (4.1.3) as follows:

x2v′′0 + a(x)v′0 − b(x)v0 = f(x), x ∈ Ω1 (4.2.32)

v0(0) = 0, v0(1) = u(1) = β. (4.2.33)

The smooth component v(x) is further split into the sum ([42], pp 68)

v(x) = v0(x) + (ε+ x2)v1(x) + (ε+ x2)2v2(x), x ∈ Ω̄1, (4.2.34)

where v0 is the solution of the reduced problem in (4.2.32), which is independent of ε, and

having smooth coefficients a(x), b(x) and f(x). From these assumptions, for 0 6 j 6 4,

we have

|v(j)
0 (x)| 6 C, for all x ∈ Ω̄1. (4.2.35)

v1 and v2 are the solutions of (4.1.3), where Lemma 4.2.5 is applied.

Now, applying the triangle inequality, using the estimates of v0 from (4.2.35), v1 and v2

from (4.2.2) into (4.2.34), for 0 6 j 6 4, we obtain the following results

|v(j)(x)| 6 C


1 + (ε+ x2)3−a−j, a < 1,

1 + (ε+ x2)2−j, a = 1,

1 + εa−1(ε+ x2)3−a−j, a > 1.

(4.2.36)

Now, let us prove the regular component w(x).We consider the barrier functions as follows

[31].

Ψ±(x) = C exp(−ηx/ε)± w(x), x ∈ Ω̄1.
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Let us calculate the values of Ψ±(x) at the boundaries:

Ψ±(0) = C ± w(0),

= C ± [u(0)− v(0)], using (4.2.29),

> 0, for a suitable choice of C,

Ψ±(1) = C exp(−η/ε)± w(1),

= C exp(−η/ε), using (4.2.29),

> 0.

From the above estimates, we notice that Ψ(x) > 0, x ∈ Ω2 = Ω̄1\Ω1. Therefore we have

LΨ±(x) = (ε+ x2)[Ψ±(x)]′′ + a(x)[Ψ±(x)]′ − b(x)Ψ±(x), x ∈ Ω1

= C exp(−ηx/ε)
[
η2(ε+ x2)

ε2 − ηa(x)
ε
− b(x)

]
± Lw(x)

= C exp(−ηx/ε)
[
η2(ε+ x2)

ε2 − ηa(x)
ε
− b(x)

]
, using (4.2.28)

6 0, since (x/ε)2 6 b(x), x ∈ Ω1.

Now, by applying Lemma 4.2.1 to the barrier functions, we obtain Ψ±(x) > 0, x ∈ Ω̄1.

Then we have

C exp(−ηx/ε)± w(x) > 0.

It follows that

w(x) 6 C exp(−ηx/ε), x ∈ Ω1.

Using the inequality relation, the above inequality can written as follows:

|w(x)| 6 C exp(−ηx/ε) 6 C


(ε+ x2)1−a, a < 1,

(ε+ x2)−1, a = 1,

εa−1(ε+ x2)1−a, a > 1.

(4.2.37)

Since Lw(x) = 0, the jth derivative of w(x) can be estimated immediately from the
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estimate of w(x). The following estimates hold for 0 6 j 6 4,

|w(j)(x)| 6 C


(ε+ x2)1−a−j, a < 1,

(ε+ x2)−j, a = 1,

εa−1(ε+ x2)1−a−j, a > 1.

(4.2.38)

This completes the proof.

4.3 Construction of the FMFDM

This section develops two fitted fitted diference scheme to solve (4.1.3)-(4.1.4). First, we

discretize this problem on Bakhvalov-type and then on Shishkin-type meshes.

Method 1: FMFDM on a Bakhvalov mesh

The idea of a layer-adapted mesh is to construct the mesh generating function. A mesh

generating function is a strictly monotone function ϕ :→ [0, 1] that maps a uniform mesh

in ϕ onto a layer-adapted mesh in x by x = ϕ(ξ) [35].

Bakhvalov meshes are non-uniform which can be constructed in order to overcome the

difficulties encountered by using uniform meshes to solve singularly perturbed problems

[76]. Bakhvalov’s idea is to use an equidistant ξ near x = 0, then to map this grid back

onto the x− axis by means of the (scaled) boundary layer function. That is, grid points

xi near x = 0 are defined by [35].

q
[
1− exp

(−ηxi
σε

)]
= ξi = i

N
for i = 0, 1, 2, 3, · · · , (4.3.1)

where the scaling parameters q lying in (0, 1] and σ > 0 are user chosen: q is the ratio of

mesh points used to resolve the layer, while σ determines the grading of the mesh inside

the layer. Away from the layer a uniform mesh x is used with the transition point τ such
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that the resulting generating function is C1[0, 1], i.e.,

xi = ϕ(ξ) =

 χ(ξ) := −σε
η

ln
(
1− ξi

q

)
for ξi = i/N, i = N/2, · · · , 3N/4,

π(ξ) := χ(τ) + χ′(τ)(ξ − τ) for ξi = i/N, i = 3N/4 + 1, · · · , N,
(4.3.2)

where the point τ verifies

χ(τ) + χ′(τ)(1− τ) = 1. (4.3.3)

Geometrically this means that (τ, χ(τ)) is the contact point of the tangent π to x = χ(ξ)

that passes through the point (1, 1). The nonlinear differential equation(4.3.3) can be

solved by iteration. Therefore the mesh transition points in the ξ and x coordinates are

given by

τ1 = q − σε

β
and χ(τ1) = σε

β
ln βq
σε
. (4.3.4)

Method 2: FMFDM on a Shishkin type-meshes

We describe this mesh for problem (4.1.3)-(4.1.4) on [0, 1]. Let q ∈ (0, 1) and σ > 0. The

mesh transition point τ is chosen to be

τ = min
{
q,
σε

η
lnN

}
. (4.3.5)

The following sub-intervals [0, τ ] and [τ, 1] are divided into Nq and (1− q)/N equidistant

subintervals (assuming that qN is an integer). This mesh may be generated by the mesh

generating function

xi = ϕ(ξ) =


σε
η
ϕ̃(ξ) with ϕ̃(ξ) = ξ

q
lnN for ξi = i/N, i = N/2, · · · , 3N/4,

1−
(
1− σε

η
lnN

)
1−ξ
1−q for ξi = i/N, i = 3N/4 + 1, · · · , N,

(4.3.6)

if q > τ. The parameter q is defined as the number of mesh points used to resolve the

layer. The mesh transition point τ has been chosen such that the layer term exp(−ηx/ε)

is smaller that Nσ on [τ, 1]. Typically σ will be chosen equal to the formal order of the

method or sufficiently large to accommodate the error analysis.
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Note that unlike the Bakhvalov mesh ( and Vulanovics modification of it) the under-

lying mesh generating function is only on C1[0, 1] and depends on N , the number of mesh

points. For simplicity’s sake, it is assumed that q > τ as otherwise N is exponentially

large compared to 1/ε and a uniform mesh is sufficient to cope with the problem.

Although the structure of Shishkin meshes is simple to manipulate and numerical methods

using them are easier to analyse than Bakhvalov’s method, they give numerical results

that are inferior to those obtained by Bakhvalov-type meshes.

The Shishkin-type mesh is piecewise uniform, finer which finer near the layer(s) and

coarser elsewhere [42]. Due to the presence of an interior layer at point xN/2 = 0, we

divide [0, 1] into two sub-intervals [0, τ ] and [τ, 1] which are each then divided into N/4

equal mesh elements. Assume N = 2m,m > 2. We choose 0 < τ 6 1/2, the transition

parameter τ is given by

τ = min
{

1
2 ,
σε

η
lnN

}
. (4.3.7)

The mesh said to be uniform when ε lnN > 1/2 for N sufficiently large.

The grid points xi on the interval [−1, 0] are obtained by replacing xj by −xj for both

cases.

Let the mesh be generated by (4.3.6) with a monotone ϕ̃(t) satisfying

ϕ̃(0) = 0 and ϕ̃(1/2) = lnN.

Define the new function ψ(t) by

ϕ̃(t) = − lnψ(t). (4.3.8)

This function is monotonically decreasing with ψ(0) = 1 and ψ(1/2) = N−1. One of the

examples for the mesh characterizing function

Shishkin-type mesh

ψ(t) = exp(−2t lnN) with max|ψ′| = 2 lnN , h ≤ CN−1, for t ∈ [0, τ ]. (4.3.9)
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Two further properties of the mesh generating function that will be assumed later when

analysing numerical schemes are

max
0≤t≤1/2

ϕ̃′(t) 6 CN (4.3.10)

and ∫ 1/2

0
ϕ̃′(t)2 dt 6 CN. (4.3.11)

The Gauchy-Schwarz inequality yields

N/2∑
k=1

(
ηhk
ε

)2

= σ2N−1
∫ 1/2

0
ϕ̃′(t)2 dt 6 C. (4.3.12)

We adopt the notation K(xj) = Kj. Also let

D+Uj = Uj+1 − Uj
hj+1

, D−Uj = Uj − Uj−1

hj
and D̃Uj = 2

hj + hj+1
(D+Uj −D−Uj),

where D+Uj, D
−Uj and D̃Uj are first and second order finite differences respectively.

Using the upwind scheme, our problem is discretized in the following way:

LNUj :=

 (ε+ x2
j)D̃Uj + ãjD

−Uj − b̃jUj = f̃j for j = 0, 1, · · · , N/2− 1,

(ε+ x2
j)D̃Uj + ãjD

+Uj − b̃(x)Uj = f̃j for j = N/2, N/2 + 1, · · · , N − 1,
(4.3.13)

U(−1) = α, U(1) = β, (4.3.14)

where  ãj = aj−1+aj

2 for j = 0, 1, · · · , N/2− 1,

ãj = aj+aj+1
2 for j = N/2, N/2 + 1, · · · , N − 1, b̃j = bj−1+bj+bj+1

3 for j = 1, 2, 3, · · · , N − 1,

f̃j = fj−1+fj+fj+1
3 for j = 1, 2, 3, · · · , N − 1.

Now (4.3.13) can be written in the form:

LNUj := r−Uj−1 + rcUj + r+Uj+1 = fj, j = 1, 2, 3 · · · , N − 1, (4.3.15)
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where for j = 1, 2, 3 · · · , N/2− 1, we have

r−j =
2(ε+ x2

j)
hj(hj + hj+1) −

ãj
hj
, rcj = ãj

hj
−

2(ε+ x2
j)

hjhj+1
− b̃j and r+

j =
2(ε+ x2

j)
hj+1(hj + hj+1) (4.3.16)

and for j = N/2, N/2 + 1, · · · , N − 1, we have

r−j =
2(ε+ x2

j)
hj(hj + hj+1) , rcj = − ãj

hj+1
−

2(ε+ x2
j)

hjhj+1
− b̃j and r+

j =
2(ε+ x2

j)
hj+1(hj + hj+1) + ãj

hj+1
.

(4.3.17)

We denote hi = xi− xi−1 for i = 1, 2, · · · , N the local mesh sizes. For the uniform mesh,

we have hi 6 4N−1 and the maximal mesh sizes h 6 CN−1.

In view of the analysis developed above, we need to prove the following lemma which

states that problem (4.3.13)-(4.3.14) satisfies Lemma 4.2.1.

Lemma 4.3.1. For any mesh function ξj such that LNξj ≤ 0, ∀j = 1, 2, . . . , N−1, ξ0 ≥ 0

and ξn ≥ 0, we have ξj ≥ 0, ∀j = 0, 1, · · · , N.

Proof. Let k be such that ξk = min
0≤j≤N

ξj and suppose that ξk < 0. Obviously, k 6= 0 and

k 6= N . Also ξk+1 − ξk ≥ 0 and ξk − ξk−1 ≤ 0. For k = 1, 2, . . . , N/2− 1 and ak < 0, we

have

LNξk := (ε+ ξ2
k)D̃ξk + akD

−ξk − bkξk, (4.3.18)

Substituting D−εk and D̃εk into (4.3.18), we obtain

LNξk = 2(ε+ ξ2
k)

hk + hk+1

(
εk+1 − εk
hk+1

− εk − εk−1

hk

)
+ ak

(
εk − εk−1

hk

)
− bkξk > 0.

For k = N/2 and ak = 0, we have

LNξk := −bkξk > 0. (4.3.19)

For k = N/2 + 1, . . . , N + 1 and ak > 0, we have

LNξk := (ε+ ξ2
k)D̃ξk + akD

+ξk − bkξk. (4.3.20)

Substituting D+εk and D̃εk into (4.3.20), we obtain

LNξk = 2(ε+ ξ2
k)

hk + hk+1

(
εk+1 − εk
hk+1

− εk − εk−1

hk

)
+ ak

(
εk+1 − εk
hk+1

)
− bkξk > 0.
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Thus LNξk > 0, 1 ≤ k ≤ N − 1, which is a contradiction. It follows that ξk ≥ 0 and

consequently ξj ≥ 0, 0 ≤ j ≤ N.

The next lemma will be proved by means of Lemma 4.3.1.

Lemma 4.3.2. If Zi is any mesh function such that Z0 = ZN = 0, then

|Zi| ≤
1
b0

max
1≤j≤N−1

|LNZj|, ∀0 ≤ i ≤ N.

Proof. Define

|M±
i | =

1
b0

max
1≤j≤N−1

|LNZj|.

Introduce the two mesh functions Y ±i defined by

Y ±i = M± ± Zi.

It follows that Y ±0 = Y ±N = M ≥ 0 and, for 1 ≤ i 6 N − 1. We observe that

LNY ± = −M±bi ± LNZi ≤ 0

for 1 ≤ i ≤ N − 1, because bi ≥ b0 > 0. By the discrete minimum principle Lemma 4.3.1,

we conclude that Yi ≥ 0, for 0 6 i 6 N.

Based on the above results, now we are in a position to provide the ε-uniform convergence

result in the next section.

4.4 Convergence analysis

In this section, the convergence of the scheme will be analyzed on both method.

An error estimate for method 1

Theorem 4.4.1. Let Ωτ
N be a B-type mesh with σ > 2. Then the error of the upwinding

scheme (4.3.13)-(4.3.14) applied to (4.1.3)-(4.1.4) verifies

max
06j6N

|uj − Uj| 6 CN−1. (4.4.1)
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Proof. We prove the Lemma on the interval [0, 1]. The proof on [−1, 0] follows in a

similarly way. Let u be the solution of (4.1.3)-(4.1.4). The solution U of the discrete

problems (4.3.13)-(4.3.14) can be decomposed into a regular and a singular parts as

U = V +W,

where V is the solution of the inhomogeneous problem

LNV = fj, for j = N/2, · · · , N, V (0) = v(0), V (1) = v(1),

and W is the solution of the homogeneous problem

LNWj = 0, for j = N/2, · · · , N, W (0) = U(0)− V (0),W (1) = w(1).

Now, the error in the regular and singular components of the solution can be computed

separately

U − u = (V − v) + (W − w). (4.4.2)

Combining (4.1.3) and (4.3.13), we obtain the error for the regular component as follows

LN(V − v) = f − LNv

= (L− LN)v

= (ε+x2
j)
(
d2

dx2 − D̃
)
v + ãj

(
d

dx
−D−

)
v.

Applying Lemma 4.1 pp 24 of [42] to the above result, the local truncation error estimates

can be written as

|LN(Vj−vj)|≤
(ε+x2

j)
3 (xj+1−xj−1)|v′′′j |+

ãj
2 (xj − xj−1)|v′′j | for N/26j6N. (4.4.3)

Since h 6 CN−1 for any j and using Lemma 4.2.6 for different cases of a, we obtain the

same result as follows

|LN(Vj − vj)| 6 CN−1.

Application of Lemma 4.3.2 for the mesh function Vj − vj, we obtain

|Vj − vj| 6 CN−1 for N/2 6 j 6 N. (4.4.4)
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The estimate of the error for the singular component in the interval [τ, 1] can be estimated

by using the M-matrix property of LN [35]. Then one can show that

|Wi| ≤ W̃i :=
3N/4∏
k=1

(
1 + ηhk

2ε

)−1

for 3N/4 6 j 6 N. (4.4.5)

For t > 0, we have ln(1 + t) > t− t2/2. (4.4.5) can be written as follows

ln
3N/4∏
k=1

(
1 + ηhk

2ε

)
>

3N/4∑
k=1

ηhk
2ε −

1
2

(
ηhk
2ε

)2
 >

3N/4∑
k=1

ηhk
2ε −

1
2

3N/4∑
k=1

(
ηhk
2ε

)2

. (4.4.6)

In this case hk = τ = τ1 = (1/2− 2ε/η) from (4.3.4). Then we have

ηhk
2ε = η

2ε ×
(

1
2 −

2ε
η

)
= η

4ε − 1.

Substituting this expression into (4.4.6), we obtain

ln
N/4∏
k=1

(
1 + ηhk

2ε

)
>

η

4ε − 1− 1
2

N/4∑
k=1

(
ηhk
2ε

)2

.

Multiplying by a negative sign on both sides and taking the exponential on both sides in

the above inequality, we obtain

N/4∏
k=1

(
1 + ηhk

2ε

)−1

6 exp
(

1− η

4ε

)
exp

1
2

N/4∑
k=1

(
ηhk
2ε

)2
 6 C.

Then we have

|Wi| 6 C, for 3N/4 6 j 6 N. (4.4.7)

Consequently, we obtain

|wi −Wi| 6 |wi|+ |Wi| 6 C, for 3N/4 6 j 6 N, (4.4.8)

where we have used the bounds of the derivatives of w from Lemma 4.2.6.

The truncation error for the singular component w in the interval [0, τ ] is similar to

that of the regular component.

|LN(Wj−wj)| 6
(ε+x2

j)
3 (xj+1−xj−1)|w′′′j |+

ãj
2 (xj−xj−1)|w′′j | for N/2 6 j 6 3N/4−1. (4.4.9)
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Applying the bounds of the derivatives of wj of Lemma 4.2.6 for each case of a in (4.4.9),

we obtain

|LN(Wj−wj)| 6 Ch


(ε+ x2)−a−1, a < 1,

(ε+ x2)−2, a = 1,

εa−1(ε+ x2)−a−1, a > 1.

(4.4.10)

Using the inequality relation, the above inequalities lead to

|LN(Wj−wj)| 6 Chε−2x2
j . (4.4.11)

Substituting h 6 CN−1 and xj = (−σε/η) ln(1− τ1/q) into (4.4.11), we obtain

∣∣∣LN(Wj−wj)
∣∣∣6CN−1. (4.4.12)

On application of Lemma 4.3.2 to (4.4.12), we obtain

|Wj−wj|6CN−1 for N/2 6 j 6 3N/4. (4.4.13)

Combining (4.4.4), (4.4.8) and (4.4.13), we obtain the following result

|uj − Uj| 6 CN−1 for N/2 6 j 6 N. (4.4.14)

A similar analysis can be obtained in the interval [−1, 0],

|uj − Uj| ≤ CN−1 for 1 6 j 6 N/2− 1. (4.4.15)

Collecting (4.4.14) and (4.4.15), we obtain the main result.

An error estimate for method 2

Theorem 4.4.2. Let Ωτ
N be an S-type mesh with σ > 2. Assume that the function ϕ̃(t) is

piecewise differentiable and verifies (4.3.10)-(4.3.11). Then the error of the simple scheme

on the given interval satisfies
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max
0≤j≤N

|uj − Uj| ≤ CN−1 ln2N. (4.4.16)

Proof. The proof for S-type meshes will follow the same idea as that for B-type meshes.

Recall that

U − u = (V − v) + (W − w),

by (4.4.2).

The truncation error for the regular part v is defined as given in (4.4.3) and noting

that hj = xj−xj−1 6 4N−1 then we obtain the same result for the different cases of a as

follows

|Vj − vj| 6 CN−1 for N/2 6 j 6 N. (4.4.17)

The truncation error for the singular part W in the interval [τ, 1] can be obtained from

(4.4.5) where hk = τ. Substituting this expression

ηhk
2ε = η

2ε ×
2ε lnN
η

= lnN

into (4.4.6), we obtainln
3N/4∏
k=1

(
1 + ηhk

2ε

) > lnN − 1
2

3N/4∑
k=1

(
ηhk
2ε

)2

.

Multiplying by a negative sign on both sides and taking the exponential on both sides in

the above inequality, we obtain

3N/4∏
k=1

(
1 + ηhk

2ε

)−1

6 N−1 exp
1

2

3N/4∑
k=1

(
ηhk
2ε

)2
 . (4.4.18)

Using (4.3.12), then (4.4.18) becomes

3N/4∏
k=1

(
1 + ηhk

2ε

)−1

6 CN−1.

Then we obtain

|Wi| 6 CN−1 for 3N/4 6 j 6 N. (4.4.19)
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Therefore, we obtain

|wi −Wi| 6 |wi|+ |Wi| 6 CN−1 for 3N/4 6 j 6 N, (4.4.20)

where we have used the bounds of the derivatives of w from Lemma 4.2.6.

Substituting x = (2ε/η)ϕ̃(t) with ϕ̃(t = q) = lnN and h 6 CN−1 into (4.4.11), we

obtain the truncation error for the singular part w on [0, τ ]:

|LN(Wj−wj)| 6 CN−1 ln2N.

With application of Lemma 4.3.2 for the mesh function |LN(Wj−wj)|, we obtain

|Wj−wj| 6 CN−1 ln2N for N/2 6 j 6 3N/4. (4.4.21)

Collecting (4.4.17), (4.4.20) and (4.4.21), we obtain the following result in [0, 1]

|uj − Uj| ≤ CN−1 ln2N for N/2 6 j 6 N. (4.4.22)

Similarly, for the sub-interval [−1, 0], we obtain

|uj − Uj| ≤ CN−1 ln2N for 1 6 j 6 N/2− 1. (4.4.23)

Combining (4.4.22) and (4.4.23) then gives the required result.

We apply the Richardson extrapolation technique in the next section to improve the

accuracy and the rate of convergence of the scheme.

4.5 Richardson extrapolation on the FMFDM

Richardson extrapolation on layer-adapted meshes was first analysed by Natividad and

Stynes [49]. We apply this procedure for the proposed scheme. They studied a simple

upwind scheme on a Shishkin mesh and proved that Richardson extrapolation improves

the accuracy to almost second order by combining discrete solutions calculated on different

meshes.
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An error estimate for method 1

Theorem 4.5.1. (Error after extrapolation). Let a(x), b(x), and f(x) be sufficiently

smooth and u(x) be the solution of (4.1.3)-(4.1.4). If U ext is the approximation of u(x)

obtained using (4.3.13)-(4.3.14) with u(−1) = U(−1), u(1) = U(1), there exists a positive

constant C independent of ε and the mesh spacing such that

max
0≤j6N

|U ext
j − uj| 6 CN−2. (4.5.1)

Proof. We prove this theorem on the interval [0, 1] as before. Results on the interval

[−1, 0] can be obtained in a similar way. We consider the mesh Ωτ
2N by bisecting each

subinterval of Ωτ
N . It is clear that ΩN

τ ⊂ Ωτ
2N and x̃j − x̃j−1 = h̃j = hj/2. We denote the

numerical solution on the mesh Ωτ
2N by Ũj.

From (4.4.14), we have

Uj − uj = C1N
−1 +Rn(xj) ∀xj ∈ Ωτ

N (4.5.2)

and

Ũj − uj = C2(2N)−1 +R2N(x̃j) ∀x̃j ∈ Ωτ
2N , (4.5.3)

where C1 and C2 are some fixed constants and the remainder terms

RN(xj) and R2N(x̃j) are O
[
N−1

]
.

Note that we have used the same transition parameter τ1 which is given by (4.3.4) when

computing both Uj and Ũj.

Multiplying (4.5.3) by a factor 2 gives

2
[
Ũj − uj

]
= C1(N)−1 + 2R2N(x̃j) ∀xj ∈ ΩN

τ . (4.5.4)

Then the difference of (4.5.4) and (4.5.2) suggests that

uj − (2Ũj − Uj) = RN(xj)− 2R2N(xj) = O
[
N−1

]
∀xj ∈ Ωτ

N (4.5.5)
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and therefore we shall use

U ext
j = 2Ũj − Uj ∀xj ∈ Ωτ

N , (4.5.6)

as the new approximation of uj at the point xj ∈ Ωτ
N obtaining from Richardson

extrapolation.

Recalling the decomposition (4.4.2) of U − u, we split the error after extrapolation U ext
j

in a similar manner:

U ext
j − uj = (V ext

j − vj) + (W ext
j − wj), (4.5.7)

where V ext
j and W ext

j are the regular and singular components of U ext
j , respectively. The

local truncation error of the scheme (4.3.13)-(4.3.15) after extrapolation is given by

∣∣∣LNU ext
j −(Lv)j

∣∣∣= 2
(
LN Ũj−(Lu)j

)
−
(
LNUj−(Lu)j

)
, (4.5.8)

where

LNUj−(Lu)j = r−uj−1 + rcuj + r+uj+1 − (ε+ x2
j)u′′j − aju′j + bju (4.5.9)

and

LN Ũj−(Lu)j = r̃−uj−1 + r̃cuj + r̃+uj+1 − (ε+ x2
j)u′′j − aju′j + bju. (4.5.10)

The quantities r−, rc and r+ are given in (4.3.16) while the expressions r̃−, r̃c and r̃+

are obtained by substituting hj by h̃j and hj+1 by h̃j+1 in the expressions r−, rc and r+,

respectively.

Taking the Taylor series expansion of uj about xj, we obtain the following approxi-

mations for uj−1 and uj+1.

uj−1 = uj − hju′j +
h2
j

2 u
2
j −

h3
j

6 u
3
j +

h4
j

24u
4(ξ1, j), (4.5.11)

uj+1 = uj + hj+1u
′
j +

h2
j+1

2 u2
j +

h3
j+1

6 u3
j +

h4
j+1

24 u4(ξ2, j), (4.5.12)

where

(ξ1, j) ∈ (xj−1, xj), (ξ2, j) ∈ (xj, xj+1).
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Expansions to be used in (4.5.10):

uj−1 = uj − h̃ju′j +
h̃2
j

2 u
2
j −

h̃3
j

6 u
3
j +

h̃4
j

24u
4(ξ̃1, j), (4.5.13)

uj+1 = uj + h̃j+1u
′
j +

h̃2
j+1

2 u2
j +

h̃3
j+1

6 u3
j +

h̃4
j+1

24 u4(ξ̃2, j), (4.5.14)

where

ξ̃1 ∈ (xj−1 + xj
2 , xj) and ξ̃2 ∈ (xj,

xj + xj+1

2 ).

Substituting (4.5.11) and (4.5.12) into (4.5.9) and (4.5.13) and (4.5.14) into (4.5.10),

(4.5.9) and (4.5.10), respectively become

LNUj−(Lu)j = k1uj + k2u
′
j + k3u

2
j + k4u

3
j + k5,1u

4(ξ1, j) + k5,2u
4(ξ2, j) (4.5.15)

and

LN Ũj−(Lu)j = k̃1uj + k̃2u
′
j + k̃3u

2
j + k̃4u

3
j + k̃4u

4
j + k̃5,1u

4(ξ̃1, j) + k̃5,2u
4(ξ̃2, j). (4.5.16)

The coefficients of (4.5.15) are

k1=
2(ε+ x2

j)
hj(hj+hj+1)−

2(ε+ x2
j)

hjhj+1
+

2(ε+ x2
j)

hj+1(hj+hj+1) , k2=0,

k3=
(ε+ x2

j)hj
hj+hj+1

− ajhj
2 +

(ε+ x2
j)hj+1

hj+hj+1
− (ε+ x2

j),

k4 =
−(ε+ x2

j)h2
j

3(hj+hj+1) +
ajh

2
j

6 +
(ε+ x2

j)h2
j+1

3(hj+hj+1) , k5,1 =
(ε+ x2

j)h3
j

12(hj+hj+1) −
ajh

3
j

24 , k5,2 =
(ε+ x2

j)h3
j+1

12(hj+hj+1) .

The quantities for k̃1, k̃2, k̃3, k̃4, k̃5,1 and k̃5,2 in (4.5.16) can be similarly obtained as in

(4.5.15) by substituting hj with h̃j with hj+1 by h̃j+1.

Substituting (4.5.15) and (4.5.16) into (4.5.8), then (4.5.8) becomes

LNU ext
j −(Lu)j = T1uj + T2u

′′
j + T3u

′′′
j + +T4,1u

(4)(ξ1, j) + T4,2u
(4)(ξ2, j). (4.5.17)

In the above,

T1 =
14(ε+ x2

j)
hj(hj + hj+1) −

14(ε+ x2
j)

hjhj+1
+

14(ε+ x2
j)

hj+1(hj + hj+1) ,
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T2 =
(ε+ x2

j)hj
hj + hj+1

− (ε+ x2
j) +

(ε+ x2
j)hj+1

hj + hj+1
, T3 = −

ajh
2
j

12 ,

T4,1 = −
(ε+ x2

j)h3
j

24(hj + hj+1) +
ajh

3
j

32 and T4,2 = −
(ε+ x2

j)h3
j+1

24 .

For the sake of simplicity, we use the notation

hj =

 H if j = 3N/4 + 1, 3N/4 + 2, · · · , N,

h if j = N/2, · · · 3N/4.
(4.5.18)

Using the fact that, for ∀j = 3N/4 + 1, , . . . , N , H = hj 6 CN−1 in (4.5.17) on the

subinterval [τ, 1], we obtain

LNV ext
j −(Lv)j =

[
−aj12v

′′′
j +

(ε+ x2
j)

48 v(4)(ξ1, j)
]
H2+

[
aj
32v

(4)(ξ1, j)−
(ε+ x2

j)
24 v(4)(ξ2, j)

]
H3.

(4.5.19)

Applying the triangle inequality and Lemma 4.2.6 for different cases of a in (4.5.19), we

obtain the same result

LN(V ext
j −vj)6 CH2 6 CN−2. (4.5.20)

Applying Lemma 4.3.2 to (4.5.20), we obtain

|V ext
j − vj| 6 CN−2. (4.5.21)

For the truncation error for the singular part W ext in the interval [τ, 1], we proceed in the

same as we did for V ext. Using (4.5.19) and with the help of Lemma 4.2.6 by considering

each case of a, we obtain the same result:

LNW ext
j −(Lw)j6 Cε−2x2

jH
2. (4.5.22)

Using the fact that H 6 CN−1 and xj = 1/2− (σε)/β, (4.5.22) becomes

LNW ext
j −(Lw)j6 CN−2. (4.5.23)

Finally we obtain the following result by application of Lemma 4.3.2

|W ext
j − wj| 6 CN−2. (4.5.24)
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The truncation error for the singular component W ext on [0, τ ] can be obtained in the

same way as we did in the previous case. Noting that h 6 CN−1 and with the help of

Lemma 4.2.6, we obtain from (4.5.19):

LN(W ext
j −wj)6 CN−2ε−2x2

j . (4.5.25)

Using the value xj = (−σε/η) ln(1 − τ1/q) and application of Lemma 4.3.2 in (4.5.25)

yields

|W ext
j − wj| 6 CN−2. (4.5.26)

Combining (4.5.21), (4.5.24) and (4.5.26), we obtain the result in the interval [0, 1]

|U ext
j − uj| 6 CN−2. (4.5.27)

A similar analysis performed in the interval [−1, 0], yields

|U ext
j − uj| 6 CN−2. (4.5.28)

Putting together (4.5.27) and (4.5.28), then gives the required result.

An error estimate for method 2

Theorem 4.5.2. (Error after extrapolation). Suppose that the piecewise differentiable

generating function ϕ(t) satisfies (4.3.9) and let U ext be the approximate solution to

(4.1.3)-(4.1.4) obtained by Richardson extrapolation applied to the simple upwind scheme

(4.3.13)-(4.3.14). Then

max
0≤j6N

|U ext
j − uj| 6 CN−2 ln2N. (4.5.29)

Proof. The S-type mesh after extrapolation will follow the same lines as the B-type mesh

after extrapolation. Recall that

U ext
j − uj = (V ext

j − vj) + (W ext
j − wj),

101https://etd.uwc.ac.za



Chapter 4: A numerical method for convection-diffusion problems with a
power interior layer and variable coefficient diffusion term

by (4.5.7).

From (4.5.20) and noting that H = hj 6 CN−1 and using Lemma 4.3.2, we obtain

|V ext
j − vj| 6 CN−2, for N/2 6 j 6 N. (4.5.30)

Using the value xj = (2ε/η) lnN and H = hj 6 CN−1 in (4.5.22), we obtain the trunca-

tion error for the singular component W ext on [τ, 1]

LN(W ext
j −wj)6 CN−2 ln2N. (4.5.31)

On application of Lemma 4.3.2 for the above mesh, we obtain

|W ext
j − wj| 6 CN−2 ln2N. (4.5.32)

The truncation error for the singular component W ext on [0, τ ] can be computed by

substituting x = (2ε/η)ϕ̃(t) with ϕ̃(t = q) = lnN and h 6 CN−1 into (4.5.22)

LNW ext
j −(Lw)j6 CN−2 ln2N. (4.5.33)

Application of 4.3.2 to the mesh LNW ext
j −(Lw)j gives

|W ext
j − wj| 6 CN−2 ln2N. (4.5.34)

Combining (4.5.30), (4.5.32) and (4.5.34), we obtain

max
N/2≤j≤N

|U ext
j − uj| 6 CN−2 ln2N. (4.5.35)

A similar analysis performed for 1 6 j 6 N/2, gives

max
0≤j≤N/2−1

|U ext
j − uj| 6 CN−2 ln2N. (4.5.36)

Collecting (4.5.35) and (4.5.36), then gives the main result.
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4.6 Numerical results

This section presents the numerical results before and after extrapolation obtained in

the integration of some problems of type (4.1.3). The maximum errors and order of

convergence are estimated by using the exact solution. The solution in both examples

has a turning point at x = 0, which gives rise to an interior layer.

Example 4.6.1. Consider the following singularly perturbed turning point problem:

(ε+ x2)u′′ + xu′ − u = 1 + x2, x ∈ [−1, 1],

u(−1) = 1, u(1) = 1

This problem has an interior layer of width O(ε). The exact solution is

u(x) = −1
3
√
x2 + ε× 2ε− 5√

ε+ 1
+ 1

3x
2 − 1 + 2ε

3 .

Example 4.6.2. Consider the following singularly perturbed turning point problem:

(ε+ x2)u′′ + 2xu′ − 2u = x2, x ∈ [−1, 1],

u(−1) = 1, u(1) = 1

This problem has an interior layer of width O(ε). The exact solution is

u(x) = −1
4

[√
ε arctan

(
x√
ε

)
x+ ε

]
(−3 + ε)

√
ε arctan

(
1√
ε

)
+ ε

+ x2

4 + ε

4 .

While the maximum errors before extrapolation at all mesh points are evaluated using

the formula

En,ε = max
0≤j≤n

|uj − Uj|,

these errors after extrapolation are given by

Eext
n,ε = max

0≤j≤n
|uj − U ext

j |.

The numerical rates of convergence before and after extrapolation are obtained by using

the formula

rε,k = log2(Ẽnk
/Ẽ2nk

),

where Ẽ represents E or Eext.
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Table 4.1: Results for Example 4.6.1: Maximum errors before extrapolation: B-mesh

ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 7.54E-02 4.22E-02 2.21E-02 1.12E-02 5.65E-03 2.83E-03 1.42E-03

10−3 8.21E-02 4.61E-02 2.47E-02 1.27E-02 6.35E-03 3.17E-03 1.59E-03

10−4 8.28E-02 4.70E-02 2.49E-02 1.29E-02 6.58E-03 3.29E-03 1.64E-03

10−13 8.80E-02 4.80E-02 2.51E-02 1.28E-02 6.50E-03 3.27E-03 1.64E-03
...

...
...

...
...

...
...

...

10−30 8.80E-02 4.80E-02 2.51E-02 1.28E-02 6.50E-03 3.27E-03 1.64E-03

Table 4.2: Results for Example 4.6.1: Maximum errors after extrapolation: B-mesh
ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 1.21E-02 2.56E-03 3.17E-04 3.09E-05 7.77E-06 2.39E-06 6.85E-07

10−3 5.15E-03 5.46E-03 2.37E-03 2.76E-04 5.77E-05 1.94E-05 5.47E-06

10−4 7.36E-03 4.76E-03 6.30E-04 1.49E-03 3.90E-04 4.34E-05 1.68E-05

10−13 4.06E-03 1.22E-03 3.37E-04 8.82E-05 2.25E-05 5.67E-06 1.42E-06
...

...
...

...
...

...
...

...

10−30 4.06E-03 1.22E-03 3.37E-04 8.82E-05 2.25E-05 5.67E-06 1.42E-06

Table 4.3: Results for Example 4.6.1: Rates of convergence before extrapolation: B-mesh
ε r1 r2 r3 r4 r5 r6

10−2 0.84 0.94 0.97 0.99 1.00 1.00

10−3 0.83 0.90 0.96 1.00 1.00 1.00

10−4 0.82 0.92 0.94 0.98 1.00 1.01

10−16 0.87 0.94 0.97 0.98 0.99 1.00
...

...
...

...
...

...
...

10−30 0.87 0.94 0.97 0.98 0.99 1.00

Table 4.4: Results for Example 4.6.1: Rates of convergence after extrapolation: B-mesh
ε r1 r2 r3 r4 r5 r6

10−2 2.24 3.02 3.36 1.99 1.70 1.80

10−3 -0.08 1.21 3.10 2.26 1.58 1.82

10−4 0.63 2.92 -1.25 1.94 3.16 1.37

10−16 1.73 1.86 1.93 1.97 1.99 1.99
...

...
...

...
...

...
...

10−30 1.73 1.86 1.93 1.97 1.99 1.99
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Table 4.5: Results for Example 4.6.1: Maximum errors before extrapolation: S-mesh

ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 8.37E-02 4.47E-02 2.27E-02 1.14E-02 5.69E-03 2.84E-03 1.42E-03

10−3 9.05E-02 4.88E-02 2.55E-02 1.29E-02 6.40E-03 3.19E-03 1.59E-03

10−4 9.12E-02 4.97E-02 2.56E-02 1.31E-02 6.64E-03 3.31E-03 1.64E-03

10−13 9.81E-02 5.09E-02 2.58E-02 1.30E-02 6.55E-03 3.28E-03 1.64E-03
...

...
...

...
...

...
...

...

10−30 9.81E-02 5.09E-02 2.58E-02 1.30E-02 6.55E-03 3.28E-03 1.64E-03

Table 4.6: Results for Example 4.6.1: Maximum errors after extrapolation: S-mesh
ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 1.47E-02 3.12E-03 3.82E-04 3.80E-05 7.68E-06 1.87E-06 4.66E-07

10−3 6.15E-03 5.36E-03 2.54E-03 3.00E-04 5.71E-05 1.91E-05 5.39E-06

10−4 7.22E-03 5.17E-03 6.52E-04 1.51E-03 4.00E-04 4.34E-05 1.68E-05

10−13 5.09E-03 1.38E-03 3.58E-04 9.09E-05 2.28E-05 5.72E-06 1.43E-06
...

...
...

...
...

...
...

...

10−30 5.09E-03 1.38E-03 3.58E-04 9.09E-05 2.28E-05 5.72E-06 1.43E-06

Table 4.7: Results for Example 4.6.1: Rates of convergence before extrapolation: S-mesh
ε r1 r2 r3 r4 r5 r6

10−2 0.91 0.98 1.00 1.00 1.00 1.00

10−3 0.89 0.94 0.99 1.01 1.01 1.00

10−4 0.88 0.96 0.96 0.99 1.01 1.01

10−13 0.95 0.98 0.99 0.99 1.00 1.00
...

...
...

...
...

...
...

10−30 0.95 0.98 0.99 0.99 1.00 1.00

Table 4.8: Results for Example 4.6.1: Rates of convergence after extrapolation: S-mesh
ε r1 r2 r3 r4 r5 r6

10−2 2.24 3.03 3.33 2.31 2.04 2.01

10−3 0.20 1.07 3.08 2.39 1.58 1.83

10−4 0.48 2.99 -1.21 1.92 3.21 1.37

10−13 1.88 1.94 1.98 1.99 2.00 2.00
...

...
...

...
...

...
...

10−30 1.88 1.94 1.98 1.99 2.00 2.00
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Table 4.9: Results for Example 4.6.2: Maximum errors before extrapolation: B-mesh

ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 4.18E-02 2.33E-02 1.23E-02 6.27E-03 3.17E-03 1.59E-03 7.97E-04

10−3 4.23E-02 2.35E-02 1.24E-02 6.39E-03 3.23E-03 1.62E-03 8.14E-04

10−8 4.19E-02 2.32E-02 1.22E-02 6.30E-03 3.19E-03 1.61E-03 8.07E-04

10−18 4.19E-02 2.32E-02 1.22E-02 6.30E-03 3.19E-03 1.61E-03 8.07E-04
...

...
...

...
...

...
...

...

10−30 4.19E-02 2.32E-02 1.22E-02 6.30E-03 3.19E-03 1.61E-03 8.07E-04

Table 4.10: Results for Example 4.6.2: Maximum errors after extrapolation: B-mesh
ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 5.14E-03 1.58E-03 2.10E-04 3.45E-05 8.67E-06 2.17E-06 5.58E-0

10−3 2.29E-03 9.59E-04 1.12E-03 2.21E-04 2.31E-05 9.69E-06 3.02E-06

10−8 2.17E-03 6.37E-04 1.73E-04 6.54E-05 5.37E-05 4.65E-05 4.05E-05

10−18 2.17E-03 6.37E-04 1.73E-04 4.49E-05 1.14E-05 2.89E-06 9.40E-07
...

...
...

...
...

...
...

...

10−30 2.17E-03 6.37E-04 1.73E-04 4.49E-05 1.14E-05 2.89E-06 9.40E-07

Table 4.11: Results for Example 4.6.2: Rates of convergence before extrapolation: B-mesh
ε r1 r2 r3 r4 r5 r6

10−2 0.84 0.93 0.97 0.99 0.99 1.00

10−3 0.85 0.91 0.96 0.98 0.99 1.00

10−5 0.85 0.92 0.96 0.98 0.99 0.99

10−18 0.85 0.92 0.96 0.98 0.99 0.99
...

...
...

...
...

...
...

10−25 0.85 0.92 0.96 0.98 0.99 0.99

Table 4.12: Results for Example 4.6.2: Rates of convergence after extrapolation: B-mesh
ε r1 r2 r3 r4 r5 r6

10−2 1.70 2.91 2.61 1.99 2.00 1.96

10−3 1.26 -0.22 2.34 3.26 1.25 1.68

10−5 0.90 0.20 0.79 3.15 -0.98 1.66

10−18 1.77 1.88 1.94 1.97 1.99 1.62
...

...
...

...
...

...
...

10−25 1.77 1.88 1.94 1.97 1.99 1.62
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Table 4.13: Results for Example 4.6.2: Maximum errors before extrapolation: S-mesh
ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 4.65E-02 2.47E-02 1.26E-02 6.36E-03 3.19E-03 1.60E-03 7.98E-04

10−3 4.68E-02 2.49E-02 1.28E-02 6.49E-03 3.26E-03 1.63E-03 8.16E-04

10−8 4.65E-02 2.45E-02 1.26E-02 6.39E-03 3.22E-03 1.61E-03 8.09E-04

10−18 4.65E-02 2.45E-02 1.26E-02 6.39E-03 3.22E-03 1.61E-03 8.09E-04
...

...
...

...
...

...
...

...

10−30 4.65E-02 2.45E-02 1.26E-02 6.39E-03 3.22E-03 1.61E-03 8.09E-04

Table 4.14: Results for Example 4.6.2: Maximum errors after extrapolation: S-mesh
ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

10−2 5.60E-03 1.85E-03 2.51E-04 3.58E-05 8.86E-06 2.21E-06 5.52E-07

10−3 2.94E-03 7.67E-04 1.17E-03 2.35E-04 2.25E-05 9.50E-06 2.95E-06

10−8 2.69E-03 7.19E-04 1.84E-04 6.57E-05 5.38E-05 4.65E-05 4.06E-05

10−18 2.69E-03 7.19E-04 1.84E-04 4.64E-05 1.16E-05 2.91E-06 9.43E-07
...

...
...

...
...

...
...

...

10−30 2.69E-03 7.19E-04 1.84E-04 4.64E-05 1.16E-05 2.91E-06 9.43E-07

Table 4.15: Results for Example 4.6.2: Rates of convergence before extrapolation: S-mesh
ε r1 r2 r3 r4 r5 r6

10−2 0.91 0.97 0.99 1.00 1.00 1.00

10−3 0.91 0.95 0.98 0.99 1.00 1.00

10−5 0.92 0.96 0.98 0.99 1.00 1.00

10−18 0.92 0.96 0.98 0.99 1.00 1.00
...

...
...

...
...

...
...

10−30 0.92 0.96 0.98 0.99 1.00 1.00

Table 4.16: Results for Example 4.6.2: Rates of convergence after extrapolation: S-mesh
ε r1 r2 r3 r4 r5 r6

10−2 1.59 2.89 2.81 2.01 2.00 2.00

10−3 1.94 -0.60 2.31 3.39 1.24 1.69

10−5 1.22 0.17 0.78 3.07 -0.88 1.65

10−18 1.91 1.97 1.99 2.00 2.00 1.63
...

...
...

...
...

...
...

10−30 1.91 1.97 1.99 2.00 2.00 1.63
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Remark 4.6.1. Tables of numerical results with Richardson extrapolation show that the

computed rate of convergence deviates notably from the theoretical rate of convergence

with Richardson extrapolation which is two. This is not surprising as performance of

Richardson extrapolation may be hindered by the fact that, for non-uniform (such as the

Shishkin and Bakhvalov type) meshes, nodes are offset by the fact that the transition

point depends on the number of nodes used in computations. This observation

corroborates assertions in the literature regarding issues with implementation of Richard-

son extrapolation (see e.g. [10, 61, 71])

4.7 Discussion

In this chapter, we proposed a FMFDM for singularly perturbed a class of two-point

boundary value problems with a variable coefficient multiplying the second derivative,

whose solution exhibits an interior layer due the presence of a turning point. After

establishing a set of bounds on the derivatives of the solution, we constructed a mesh

of Bakhvalov and Shishkin type on which we designed a discrete upwind scheme. We

proved that the proposed method is uniformly convergent of order one for both methods.

We used Richardson extrapolation to increase the accuracy of the scheme. The theoretical

results were supported by numerical investigations that we carried out on two examples.

For each example, we computed the maximum point-wise errors and the corresponding

rates of convergence for various values of the step-sizes. We observed that the numerical

results based on the FMFDM before and after extrapolation on a B-type mesh were found

to be a little inferior as compared to those obtained on the S-type mesh as illustrated

in tables 4.1, 4.2, 4.5 and 4.6 for example 4.6.1 and tables 4.9, 4.10, 4.13 and 4.14 for

example 4.6.2. Furthermore, we investigated the effect of Richardson extrapolation on

the FMFDM for both methods and have observed that it improved the accuracy of the

computed solution. In particular, the rate of convergence increased from 1 to 2 as shown

in tables 4.3, 4.4, 4.7, 4.8, 4.11, 4.12, 4.15 and 4.16.
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Time-dependent convection-diffusion

problems with a power interior layer

and variable coefficient diffusion

term

This chapter deals with singularly perturbed parabolic problems whose solution displays

an interior layer due to the presence of a turning point. The diffusion term is embedded

in a quadratic function. After providing appropriate bounds on the solution to these

problems and their derivatives, we discretize the time variable with a constant step-size

using the implicit Euler method. This process results in a linear system of equations at

each time level which is solved using a fitted mesh finite difference method (FMFDM).

We also discuss the extrapolation technique to improve the order of convergence on the

proposed method.
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5.1 Introduction

We examine the following problem

Lu :≡ (ε+ x2) ∂
2u(x, t)
∂x2 + a(x, t) ∂u(x, t)

∂x
− b(x, t)u(x, t)− d(x, t) ∂u(x, t)

∂t
= f(x, t),

(5.1.1)

(x, t) ∈ Q ≡ Ω× (0, T ] ≡ (−1, 1)× (0, T ], (5.1.2)

subject to the initial and boundary conditions

u(x, 0) = u0(x), −1 ≤ x ≤ 1, u(−1, t) = α1(t) , u(1, t) = α2(t), t ∈ (0, T ], (5.1.3)

where 0 < ε � 1 is a perturbation parameter. We assume that the functions a(x, t),

b(x, t), d(x, t),f(x, t) and initial conditions u0(x) are sufficiently smooth and

d(x, t) ≥ δ > 0 in Q̄. Furthermore, (i) a(0, t) = 0 and ax(0, t) > 0 ∀t ∈ [0, T ] guarantees

the existence of the turning point, (ii) b(x, t) ≥ β > 0 ∀(x, t) ∈ Q̄, which ensures that the

problem satisfies a minimum principle and (iii) |ax(x, t)| ≥ |ax(0, t)|/2 ∀(x, t) ∈ Q̄ implies

that the turning point occurs at (0, t), ∀t ∈ [0, T ]. Under the assumptions (i)− (iii), the

turning point problem (5.1.1)-(5.1.3) possesses a unique solution exhibiting an interior

layer at the point x = 0 [19]. Also, we impose the compatibility conditions

u0(−1) = α1(0) and u0(1) = α2(0),

so that the data match at the two corners (−1, 0) and (1, 0) of the domain Q̄.

In [72], it was proved that there exists a constant C independent of ε such that

|u(x, t)− α1(t)| ≤ C(1 + x), |u(x, t)− α2(t)| ≤ C(1− x), ∀(x, t) ∈ Q̄

and

|u(x, t)− u0(x)| ≤ Ct, ∀(x, t) ∈ Q̄.
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Time-dependent singularly perturbed problems are widely studied in the literature. Such

problems arise in several fields of engineering and applied mathematics, including convection-

dominated flows in fluid mechanics, heat and mass transfer in chemical and nuclear engi-

neering, electromagnetic theory [11, 23, 30, 44, 59].

A number of authors studied a class of time-dependent singularly perturbed problems

with non turning points [11, 30, 72]. Turning point problems are those where the co-

efficient of the convective term vanishes inside the spatial-domain by changing signs.

Examples of works where turning points give rise to boundary and/or interior layers may

be found [5, 12, 13, 16, 19, 40, 44, 47, 53, 58, 64].

All the works listed above are characterised by a small parameter ε in front of the high-

est derivative. Parallel to a constant perturbation parameter ε, it is important to study

problems with diffusion terms are functions of x and ε.

However [37] and [39] studied the problem (5.1.1)-(5.1.3) in the space variable only.

In [37], Liseikin derived bounds on the solution and its derivatives for the problem

−(ε + px)βu′′ + a(x)u + f(x, ε) = 0, 0 ≤ x ≤ 1, p = 0, 1 , β ≥ 1. While in [39], Li-

seikin considered the equation −(ε + x)βu′′ − a(x)u + f(x, ε) = 0, 0 ≤ x ≤ 1 , β > 0.

Bounds on the solution and its derivatives were established (see p. 160-111) while on p.

256-262, for β = 1 a numerical method was presented and its convergence analysed.

In this chapter, we focus on studying the time-dependent problem (5.1.1)-(5.1.3) where

the coefficients of the differential equations depend on both space and time, and are

smooth. We propose and analyse a fitted mesh finite difference method (FMFDM). It

turns out from convergence analysis that the proposed method is uniformly convergent of

order one, up to a logarithmic factor with respect to ε.

The rest of this chapter is organised as follows. We establish bounds on the solution
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u(x, t) and its derivatives in Section 2. Section 3 is devoted to constructing a FMFDM

applied on a Shishkin mesh. We show that the proposed method satisfies a minimum

principle. We use this fact to establish a stability result. In Section 4, we conduct a

rigourous error analysis. We prove that the proposed numerical method is almost first

order uniformly convergent with respect to the perturbation parameter in time and space,

up to a logarithmic factor with respect to ε. In order to enhance the accuracy and order

of convergence of the proposed FMFDM, we apply Richardson extrapolation in Section 5

to obtain almost second order uniform convergence in space. Numerical experiments are

presented in Section 6 for two examples to confirm our theoretical results. Finally, some

conclusions are drawn in the last Section.

In the rest of this chapter, we use C as a generic positive constant which may assume

different values in different inequalities but will always be independent of ε, the spatial

and time discretization parameters.

5.2 A priori estimates of the solution and its deriva-

tives

Bounds on the solution to problem (5.1.1)-(5.1.3) and its derivatives are the subject of

this section.

The interval [−1, 1] which we denote Ω̄ is divided as follows Ωl = [−1,−τ ],Ωc = [−τ, τ ] and

Ωr = [τ, 1], where 0 < τ ≤ 1/2.

The linear operator L as defined in (5.1.1) satisfies the following minimum principle and

then we state a stability estimate for the solution of (5.1.1)-(5.1.3).

Lemma 5.2.1. (Minimum principle). Suppose ξ(x, t) is a smooth function satisfying

ξ(±1, t) ≥ 0 and Lξ(x, t) ≤ 0, ∀x ∈ Ω. Then ξ(x, t) ≥ 0, ∀x ∈ Ω̄.

Proof. Let (x∗, t∗) ∈ Q̄ such that ξ(x∗, t∗) = min
x∈[−1,1]

ξ(x, t) and assume that ξ(x∗, t∗) < 0.
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It follows that (x∗, t∗) /∈ Q, therefore ξx(x∗, t∗) = 0, ξt(x∗, t∗) = 0 and ξxx(x∗, t∗) ≥ 0.

Then, we obtain

Lξ(x∗, t∗) = (ε+x∗2)ξxx(x∗, t∗)+a(x∗, t∗)ξx(x∗, t∗)−b(x∗, t∗)ξ(x∗, t∗)−d(x∗, t∗)ξt(x∗, t∗) > 0,

which is a contradiction. It follows that ξ(x∗, t∗) ≥ 0 and thus ξ(x, t) ≥ 0, ∀x ∈ Q̄.

We apply this minimum principle to prove the next results which state that the solu-

tion depends continuously on the data.

Lemma 5.2.2. (Stability estimate). If u(x, t) is the solution of (5.1.1)-(5.1.3), then we

have

||u(x, t|| 6 [max {||α1||∞, ||α2||∞}] + 1
β
||f ||∞,∀(x, t) ∈ Q̄.

Proof. See Lemma 3.2.2 in Chapter 3.

The next Lemma provide estimates of u and its derivatives in the interval [−1,−τ ] and

[τ, 1].

Lemma 5.2.3. The bound on the solution u(x, t) of (5.1.1) is given by

|u(x, t)| ≤ C, (x, t) ∈ Q̄.

Proof. See [30].

Lemma 5.2.4. Let u(x, t) be the solution to (5.1.1)-(5.1.3) and a(x, t), b(x, t) and f(x, t)

sufficiently smooth function in Q̄. Then, there exists a positive constant C independent

of ε, such that ∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ ≤ C, ∀x ∈ Ωl or Ωr and (x, t) ∈ Q̄, 0 ≤ j ≤ 2.

Proof. See [11].

Lemma 5.2.5. Under the assumption of Lemmas 5.2.1 and 5.2.4, the bound on the

derivative of u with respect to t is |ut(x, t)| ≤ C, (x, t) ∈ Q̄.
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Proof. See [30].

Lemma 5.2.6. |uxt(x, t)| 6 C, (x, t) ∈ Q̄.

Proof. See [31].

Based on the ideas of [39], we will be able to establish the next lemma. Note that the

solution of (5.1.1)-(5.1.3) has an interior layer at the point xN/2 = 0. Then, the derivatives

of u(x, t) are estimated in the vicinity xN/2 = 0 by polynomial functions according to the

sign of the coefficient of the convection term a(x, t) at the point x?0. Therefore, we present

two different cases

a =

 a(x?0, t) 6 0, x?0 ∈ [−τ, 0], t ∈ [0, T ],

a(x?0, t) > 0, x?0 ∈ (0, τ ], t ∈ [0, T ].
(5.2.1)

Lemma 5.2.7. Let u(x, t) be the solution of (5.1.1)-(5.1.3). Then assuming that

a = a(x?0, t) > 0, for 0 < x 6 τ, ∀t ∈ [0, T ], we have

∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ 6 C


1 + (ε+ x2)1−a−j, 0 < a < 1, j = 1, 2, 3, 4,

1 + (ε+ x2)−j, a = 1, j = 1, 2, 3, 4,

1 + εa−1(ε+ x2)1−a−j, a > 1, j = 1, 2, 3, 4,

(5.2.2)

and a = a(x?0, t) 6 0, for −τ 6 x 6 0, and let p be a whole number such that a+ p = 0

and a+ p− 1 < 0, ∀t ∈ [0, T ], then we have the following bounds

∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ 6 C


1, a < 0, j 6 p, j = 1, 2, 3, 4,

1 + (ε+ x2)1−j−p arctan(x/
√
ε), a+ p = 0, j > p, j = 1, 2, 3, 4,

1 + (ε+ x2)−a−j, a+ p > 0, j > p, j = 1, 2, 3, 4.
(5.2.3)

Proof. This Lemma will be proved by following the ideas of ([39], from pp. 107-110).

Application of the inverse-monotone pair T = (L,Γ) (see pp 49) implies that

|u(x, t)| 6 C, (x, t) ∈ Q̄. (5.2.4)
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From (5.1.1)-(5.1.3) and (5.2.4) and ∀t ∈ [0, T ], we obtain

∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ 6 C



1, −τ < x0 6 x 6 0,

ε−j, −τ 6 x 6 x0, j = 1, 2, 3, 4,

1, 0 < x0 6 x 6 τ,

ε−j, 0 6 x 6 x0, j = 1, 2, 3, 4,

(5.2.5)

and arbitrary x0 > 0, independent of ε and x.

case 1 : a > 0 for 0 < x 6 1, ∀t ∈ [0, T ]. In this case, the derivatives of u(x, t)

are estimated according to the value of a : 0 < a < 1, a = 1 and a > 1. Solving (5.1.1)

for uxx(x, t), we obtain∣∣∣∣∣∂2u(x, t)
∂x2

∣∣∣∣∣ = uxx(x, t) = f(x, t) + b(x, t)u(x, t) + d(x, t)ut(x, t)
(ε+ x2) − a(x, t)ux(x, t)

(ε+ x2) . (5.2.6)

Integrating (5.2.6) on both sides from 0 to x, we obtain

ux(x, t) =
∫ x

0

f(s, t) + b(s, t)u(s, t) + d(s, t)ut(s, t)
ε+ s2 ds−

∫ x

0

a(s, t)ux(s, t)
ε+ s2 ds. (5.2.7)

ux(x, t) can be expressed as follows

ux(x, t) = ux(0, t)
[

ε

ε+ x2

]a
exp[−g1(x, t)] + g2(x, t), (5.2.8)

where

g1(x, t) =
∫ x

0

a(s, t)
ε+ s2 ds = a(x, t)√

ε
arctan(x/

√
ε)−

∫ x

0

as(s, t)√
ε

arctan(s/
√
ε) ds, (5.2.9)

with a(0, t) = 0, and

g2(x, t) = (ε+ x2)−a
∫ x

0
[f(s, t) + b(s, t)u(s, t)+

d(s, t)ut(s, t)](ε+ s2)a−1 exp[g1(s, t)− g1(x, t)] ds. (5.2.10)

Since |g1(x, t)| 6 C from (5.2.4), we find that

|g2(x, t)| 6 C(ε+ x2)−a
∫ x

0
(ε+ s2)a−1 ds 6 C.
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Applying the triangle inequality in (5.2.8) and taking into account the estimates of g1(x, t)

and g2(x, t), we obtain∣∣∣∣∣∂u(x, t)
∂x

∣∣∣∣∣ = |ux(x, t)| 6 C
[
1 + |ux(0, t)|(ε/(ε+ x2))a

]
. (5.2.11)

Considering 0 < a < 1, there is a point x0 in the interval (0, τ) such that |ux(x0, t)| 6 C,

so that

|ux(0, t)|
(

ε

ε+ x2
0

)a
6 C.

This inequality yields

|ux(0, t)| 6 C

(
ε+ x2

0
ε

)a
6 C(ε+ x2

0)aε−a 6 Cε−a.

Using the estimates obtained for |ux(0, t)| in (5.2.11), we obtain∣∣∣∣∣∂u(x, t)
∂x

∣∣∣∣∣ = |ux(x, t)| 6 C
[
1 + (ε+ x2)−a

]
, 0 < a < 1.

Differentiating (5.1.1) with respect to x, solving the resulting equation for uxxx(x, t), we

obtain

uxxx(x, t) = b(x, t)− ax(x, t)
ε+ x2 ux(x, t)−

ax(x, t) + 2s
(ε+ x2) uxx(x, t)+

fx(x, t) + bx(x, t)u(x, t) + dx(x, t)ut(x, t)− d(x, t)utx(x, t)
(ε+ x2) . (5.2.12)

Below is the expression of ∂2u(x, t)/∂x2

∂2u(x, t)
∂x2 = uxx(x, t) = uxx(0, t)

[
ε

ε+ x2

]a+1
exp[−g3(x, t)] + g4(x, t), (5.2.13)

where

g3(x, t) =
∫ x

0

a(s, t) + 2s
ε+ s2 ds = a(x, t) + 2x√

ε
arctan(x/

√
ε)−∫ x

0

as(s, t) + 2√
ε

arctan(s/
√
ε)) ds, (5.2.14)

with a(0, t) = 0, and

g4(x, t) = (ε+ x2)−a−1
∫ x

0
[fs(s, t) + bs(s, t)u(s, t) + ds(s, t)ut(s, t)− d(s, t)uts(s, t)+

(b(s, t)− as(s, t)us(s, t)](ε+ s2)a exp[g3(s, t)− g3(x, t)] ds. (5.2.15)

116https://etd.uwc.ac.za



Chapter 5: Time-dependent for convection-diffusion problems with a power
interior layer and variable coefficient diffusion term

Noting that |g3(x, t)| 6 C, |ut(x, t)| 6 C, |utx(x, t)| 6 C, and |u(x, t)| 6 C, we find that

|g4(x, t)| 6 C(ε+ x2)−a−1
∫ x

0
[1 + us(s, t)](ε+ s2)a ds 6 C[1 + (ε+ x2)−a]. (5.2.16)

We obtain from (5.1.1)

uxx(0, t) 6 Cε−1[1 + ux(0, t)] 6 Cε−a−1.

Substituting the estimate of uxx(0, t) and g4(x, t) into (5.2.13), we obtain∣∣∣∣∣∂2u(x, t)
∂x2

∣∣∣∣∣ = uxx(x, t) 6 Cε−1−aεa+1(ε+x2)−a−1+C
[
1 + (ε+ x2)−a

]
6 C

[
1 + (ε+ x2)−a−1

]
.

Differentiating equation (5.1.1)-(5.1.3) and taking into account (5.2.4), we obtain the

following result ∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ 6 C
[
1 + (ε+ x2)−a+1−j

]
.

Consider the case when a = 1. On integrating (5.2.8) from 0 to τ , we obtain

u(τ, t)− u(0, t) = ux(0, t)ε1/2{arctan(τ/
√
ε) exp[−g1(τ, t)]

+
∫ τ

0
a(x, t)(ε+ x2)−1 arctan(x/

√
ε) exp[−g1(x, t)] dx}+

∫ τ

0
g2(x, t) dx. (5.2.17)

Since

| arctan(τ/
√
ε) exp[−g1(τ, t)] +

∫ τ

0
a(x, t)(ε+ x2)−1 exp[−g1(x, t)] arctan(x/

√
ε) dx| 6 C,

using the triangle inequality in (5.2.17) and taking into account the inequality above, we

obtain

|ux(0, t)| ε1/2 6 C.

This inequality yields |ux(0, t)| 6 Cε−1/2. From (5.2.11), we obtain∣∣∣∣∣∂u(x, t)
∂x

∣∣∣∣∣ = |ux(x, t)| 6 C[1 + ε1/2(ε+ x2)−1] 6 C[1 + (ε+ x2)−1].

Consider uxx(x, t) for a = 1. In this case (5.2.13) gives

∂2u(x, t)
∂x2 = uxx(x, t) = uxx(0, t)

[
ε

ε+ x2

]2
exp[−g3(x, t)] + g4(x, t). (5.2.18)
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From (5.2.16), g4(x, t) is defined as follows

|g4(x, t)| 6 C(ε+ x)−2
∫ x

0
[1 + u′(s)](ε+ s2) ds 6 C[1 + ε1/2(ε+ x2)−1]. (5.2.19)

Moreover, by (5.1.1) we have

uxx(0, t) 6 Cε−1[1 + ux(0, t)] 6 Cε−3/2.

From (5.2.18) we obtain using the estimates of uxx(0, t) and g4(x, t) :∣∣∣∣∣∂2u(x, t)
∂x2

∣∣∣∣∣ = uxx(x, t) 6 C[1 + ε1/2(ε+ x2)−2] 6 C[1 + (ε+ x2)−2].

By differentiating (5.1.1) and with the help of (5.2.5), we arrive at the following result∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ 6 C[1 + (ε+ x2)−j], a = 1, 0 6 x 6 τ, j = 1, 2, 3, 4.

This completes the proof of the estimate 5.2.2 for 0 < x 6 τ.

case 2 : a 6 0 for −τ 6 x 6 0. In this case, ux(x, t) is given as follows [39]

ux(x, t) = ux(x0, t) exp[ψ(x0, x, t)]+∫ x

x0

f(s, t) + b(s, t)u(s, t) + d(s, t)ut(s, t)
ε+ s2 exp[ψ(x0, x, t)] ds, (5.2.20)

where

ψ(s, x, t) = −
∫ x

s

a(κ, t)
ε+ κ2 dκ.

If a(0, t) = 0 then ψ(s, x, t) 6 C, −τ 6 s, x 6 0. Using the triangle inequality in (5.2.20)

and choosing a point x0 ∈ [−τ/2, 0] such that u′(x0, t) 6 C, we obtain

ux(x, t)| 6 C[1+ε−1/2 arctan(x/
√
ε)] 6 C[1+arctan(x/

√
ε)], a(0) = 0, j = 1 since p = 0.

We wish to determine uxx(x, t) with p = 0 for j = 2. On differentiating (5.1.1) and solving

the resulting equation for uxx(x, t), we obtain

∂2u(x, t)
∂x2 = uxx(x0, t) exp[ψ(x0, x, t)]+(ε+x2)−p−1

∫ x

x0

F (s, t)
ε+ s2 (ε+s2)p+1 exp[ψ(s, x, t)] ds,

(5.2.21)
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where

ψ(s, x, t) = −
∫ x

s

a(κ, t)
ε+ κ2 dκ

and

F (s, t) = f(s, t) + bs(s, t)u(s, t) + ds(s, t)ut(s, t) + [b(s, t)− as(s, t)]us(s, t).

Substituting ψ(s, x, t) 6 C and uxx(x0, t) 6 C into (5.2.21), we obtain∣∣∣∣∣∂2u(x, t)
∂x2

∣∣∣∣∣ 6 C+C(ε+x2)−p−1
∫ x

x0
[1+us(s, t)](ε+s2)p ds 6 C[1+(ε+x2)−p−1 arctan(x/

√
ε)].

From (5.1.1)-(5.1.3) with p = 0, for j > 1, we obtain∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ 6 C[1 + (ε+ x2)−1−j−p arctan(x/
√
ε)], a+ p = 0, j > p.

Let a(0, t) < 0. In this case p > 1. Then there exists a constant x0 > 0 such that

a(x, t) < 0 for − τ 6 x 6 x0. Therefore, we have

ψ(s, x, t) 6 −x0 ln[(ε+ s2)/(ε+ x2)], −τ 6 x 6 s 6 x0.

Taking exponentials on both sides of the above inequality, we obtain

exp(ψ(s, x, t)) 6 [(ε+ x2)/(ε+ s2)]−x0 , −τ 6 x 6 s 6 x0.

Substituting this estimate into (5.2.20) with x = s and taking into account (5.2.5), we

obtain

|ux(x, t)| =
∣∣∣∣∣∂u(x, t)

∂x

∣∣∣∣∣ 6 C, −τ 6 x 6 x0, a(0, t) < 0.

Differentiating (5.1.1) and taking into account (5.2.5), we obtain∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ 6 C, −τ 6 x 6 0, a < 0, k 6 p, j = 1, 2, 3, 4.

Consider the case when j > p, a+p > 0 and a 6 0.We will estimate ux(x, t) and uxx(x, t)

by following the same steps as we did for 0 < a < 1. We define ux(x, t) from (5.2.8) as

follows:

ux(x, t) = ux(0, t)
[

ε

ε+ x2

]a+1
exp[−g1(x, t)] + g2(x, t), −τ 6 x 6 0. (5.2.22)
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Following the same steps as we did for 0 < a < 1, we obtain∣∣∣∣∣∂u(x, t)
∂x

∣∣∣∣∣ = |ux(x, t)| 6 C[1 + (ε+ x2)−a−1], a 6 0.

We estimate uxx(x, t) from (5.2.13) as follows

uxx(x, t) = uxx(0, t)
[

ε

ε+ x2

]a+2
exp[−g3(x, t)] + g4(x, t), −τ 6 x 6 0. (5.2.23)

Following the same steps as we did for 0 < a < 1, we obtain∣∣∣∣∣∂2u(x, t)
∂x2

∣∣∣∣∣ = |uxx(x, t)| 6 C[1 + (ε+ x2)−a−2], a 6 0.

Differentiating (5.1.1) and taking into account (5.2.5), we obtain∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ 6 C[1 + (ε+ x2)−a−j], −τ 6 x 6 0, a 6 0, j > p.

This complete the proof of the estimate 5.2.3 for −τ < x 6 0.

According to the sign of the coefficient of the convection term a(x, t), the singularly

perturbed turning point problem (5.1.1)-(5.1.3) may be regarded as a concatenation of

two problems: One side a(x, t) < 0 for −1 6 x < 0 and the other side a(x, t) > 0 for

0 < x 6 1. Therefore the solution of the problem (5.1.1)-(5.1.3) may display a layer near

x = 0 on [−1, 0) and a layer near x = 0 on (0, 1]. This consideration will be useful firstly

in seeking an in-depth understanding of the behaviour of the solution and its derivatives

and secondly, in the design of the numerical method in Section 5.4. The solution can

be decomposed into two parts, namely the smooth component v(x, t) and the singular

component w(x, t) ([42], pp 47) such that

u(x, t) = v(x, t) + w(x, t),

where v(x, t) is the solution of the inhomogeneous problem

Lv(x, t) = f(x, t), (x, t) ∈ Ω1 = (−1, 0)× (0, T ], (5.2.24)

v(x, 0) = u(x, 0) = u0, −1 6 x 6 0, (5.2.25)
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v(−1, t) = u(−1, t), 0 6 t 6 T, (5.2.26)

and w(x, t) is the solution of the homogeneous problem

Lw(x, t) = 0, (x, t) ∈ Ω1, (5.2.27)

w(x, 0) = 0, −1 6 x 6 0, (5.2.28)

w(−1, t) = 0, 0 6 t 6 T, (5.2.29)

w(0, t) = u(0, t)− v(0, t), 0 6 t 6 T. (5.2.30)

We establish the following lemma which gives bounds on the solution to (5.1.1)-(5.1.3)

and its derivatives.

Lemma 5.2.8. The smooth and singular components of u(x, t) of problem (5.1.1)-(5.1.3),

for 0 ≤ j ≤ 4, and 0 6 t 6 T, satisfy

∣∣∣∣∣∂jv(x, t)
∂xj

∣∣∣∣∣ 6 C



1 + (ε+ x2)3−j arctan(x/
√
ε), x ∈ [−1, 0],

1 + (ε+ x2)3−a−j, a < 1, x ∈ [0, 1],

1 + (ε+ x2)2−j, a = 1, x ∈ [0, 1],

1 + εa−1(ε+ x2)3−a−j, a > 1, x ∈ [0, 1],

(5.2.31)

and

∣∣∣∣∣∂jw(x, t)
∂xj

∣∣∣∣∣ 6 C



(ε+ x2)1−j arctan(x/
√
ε), x ∈ [−1, 0],

(ε+ x2)1−a−j, a < 1, x ∈ [0, 1],

(ε+ x2)−j, a = 1, x ∈ [0, 1],

εa−1(ε+ x2)1−a−j, a > 1, x ∈ [0, 1],

(5.2.32)

where C is a constant and independent of ε.

Proof. We prove this lemma on Ω1 = [−1, 0]. The proof on [0, 1] follows similar steps.

We obtain the reduced problem (ε = 0) from (5.1.1) as follows

x2v0
xx + a(x, t)v0

x(x, t)− b(x, t)v0(x, t)− d(x, t)v0
t (x, t) = f(x, t), (x, t) ∈ Ω1 (5.2.33)

v0(x, 0) = v0
0(x), −1 6 x 6 0, (5.2.34)
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v0(−1, t) = α1(t), t ∈ (0, T ]. (5.2.35)

Further, we decompose the smooth component v(x, t) ([42], pp 68) as follows

v(x, t) = v0(x, t) + (ε+ x2)v1(x, t) + (ε+ x2)2v2(x, t), (x, t) ∈ Ω̄, (5.2.36)

where v0 is the solution of the reduced problem in (5.2.33), which is independent of ε,

and having smooth coefficients a(x, t), b(x, t) and f(x, t). From these assumptions, for

0 6 j 6 4, we have ∣∣∣∣∣∂jv0(x, t)
∂xj

∣∣∣∣∣ 6 C, for all x ∈ Ω̄1. (5.2.37)

v1 and v2 are the solutions of (5.1.1). By using Lemma 5.2.7 for −1 6 x 6 0, we have the

following bounds

∣∣∣∣∣∂jv1(x, t)
∂xj

∣∣∣∣∣ 6 C[1 + (ε+ x2)1−j arctan(x/
√
ε)], for 0 6 j 6 4 (5.2.38)

and ∣∣∣∣∣∂jv2(x, t)
∂xj

∣∣∣∣∣ 6 C[1 + (ε+ x2)1−j arctan(x/
√
ε)], for 0 6 j 6 4. (5.2.39)

Now, applying the triangle inequality and substituting these above three estimates into

(5.2.36), for 0 6 j 6 4, we obtain

∣∣∣∣∣∂jv(x, t)
∂xj

∣∣∣∣∣ 6

∣∣∣∣∣∂jv0(x, t)
∂xj

∣∣∣∣∣+ (ε+ x2)
∣∣∣∣∣∂jv1(x, t)

∂xj

∣∣∣∣∣+ +(ε+ x2)2
∣∣∣∣∣∂jv2(x, t)

∂xj

∣∣∣∣∣
6 C[1 + (ε+ x2)3−j arctan(x/

√
ε)].

To prove the regular component w(x, t), let us define the barrier functions as follows [31].

Ψ±(x, t) = C exp(ηx/ε)et ± w(x, t), (x, t) ∈ Ω̄1.
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Compute the values of Ψ±(x, t) at the boundaries:

Ψ±(−1, t) = C exp(−η/ε)et ± w(−1, t), 0 6 t 6 T,

= C exp(−η/ε)et, using (5.2.29),

> 0, 0 6 t 6 T,

Ψ±(0, t) = Cet ± w(0, t), 0 6 t 6 T,

= Cet ± [u(0, t)− v(0, t)], using (5.2.30),

> 0, for a suitable choice of C, 0 6 t 6 T,

Ψ±(x, 0) = C exp(ηx/ε)± w(x, 0), −1 6 x 6 0,

= C exp(ηx/ε), using (5.2.28),

> 0, −1 6 x 6 0.

From the above estimates, we notice that Ψ(x, t) > 0, (x, t) ∈ Ω2 = Ω̄1\Ω1. Therefore

we have

LΨ±(x, t) = (ε+ x2)Ψ±xx(x, t) + a(x, t)Ψ±x (x, t)− b(x, t)Ψ±(x, t)− d(x, t)Ψ±t (x, t)

= C exp(ηx/ε)et
[
η2

ε
+ ηa(x, t)

ε
− b(x, t)− d(x, t)

]
± Lw(x, t)

= C exp(ηx/ε)et
[
η2(ε+ x2)

ε2 + ηa(x, t)
ε

− b(x, t)− d(x, t)
]
, using (5.2.27)

6 0, since (x/ε)2 6 b(x, t) (x, t) ∈ Ω1.

Now applying Lemma 5.2.1 to the barrier functions, we obtain Ψ±(x, t) > 0, (x, t) ∈ Ω̄1.

Then we have

C exp(ηx/ε)et ± w(x, t) > 0.

It follows that

w(x, t) 6 C exp(ηx/ε)et, (x, t) ∈ Ω1

6 C exp(ηx/ε)eT since et 6 eT

6 C exp(ηx/ε) (x, t) ∈ Ω1.
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By using the inequality relation, the above inequality can expressed as follows

|w(x, t)| 6 C(ε+ x2)0 exp(ηx/ε) 6 C(ε+ x2)1 arctan(x/ε) (x, t) ∈ Ω1.

Since Lw(x, t) = 0, the jth derivative of w(x, t) can be estimated immediately from the

estimate of w(x, t),∣∣∣∣∣∂jw(x, t)
∂xj

∣∣∣∣∣ 6 C(ε+ x2)1−j arctan(x/ε), 0 6 j 6 4.

This completes the proof.

We design a FMFDM to solve time-dependent convection-diffusion problems (5.1.1)-

(5.1.3) in the next section.

5.3 Construction of the FMFDM

Time discretization

We use the Euler implicit method to discretize problem (5.1.1)-(5.1.3) with uniform step-

size ∆t = T/K. The time [0, T ] is therefore partitioned as

w̄K = {tk = k∆t, 0 6 k 6 K}. (5.3.1)

We discretize problem (5.1.1)-(5.1.3) on w̄K as follows

(ε+x2)zxx(x, tk)+a(x, tk)zx(x, tk)−b(x, tk)z(x, tk)−d(x, tk)
z(x, tk)− z(x, tk−1)

∆t = f(x, tk),

(5.3.2)

subject to

z(x, 0) = z0(x), −1 ≤ x ≤ 1, z(−1, tk) = α1(t), z(1, tk) = α2(t). (5.3.3)

Now, (5.3.2) can be written as

Lz(x, tk) = f(x, tk)− d(x, t)z(x, tk−1)
∆t . (5.3.4)
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subject to

z(x, 0) = z0(x), −1 ≤ x ≤ 1, z(−1, tk) = α1(t), z(1, tk) = α2(t), (5.3.5)

where

Lz(x, tk) = (ε+ x2)zxx(x, tk) + a(x, tk)zx(x, tk)−
[
b(x, tk) + d(x, tk)

∆t

]
z(x, tk−1).

The local truncation error ek at each time level to tk, is given by

ek = u(x, tk)− z(x, tk),

where z(x, tk) is the solution of (5.3.4)-(5.3.5).

The local error estimate of the time discretization

‖ek‖∞ ≤ C(∆t)2, 1 ≤ k ≤ K. (5.3.6)

The global error estimate of the time discretization :

‖Ek‖∞ ≤ C∆t, 1 ≤ k ≤ K. (5.3.7)

Spatial discretization

We develop a difference scheme to solve the problem (5.1.1)-(5.1.3). We consider the

following partition of the interval [−1, 1] which we denote Ω̄N : x0 = −1, xN/2 = 0, xN = 1

and let Q̄K,N = w̄K × Ω̄N be the grid for the (x, t)-variables, and QK,N = Q̄K,N ∩Q. Due

to the presence of an interior layer at the point xN/2 = 0, the transition parameter τ is

given by

τ = min
{

1
2 ,
ε

η
ln
(
N

4

)}
, (5.3.8)

where τ is a positive constant. The spatial domain is discretized using a piecewise uniform

mesh which splits the space domain [−1, 1] into three sub-intervals [−1,−τ ], [−τ, τ ] and

[τ, 1]. These sub-intervals are subdivided uniformly to contain N/4, N/2 and N/4 mesh

elements respectively. Note that the mesh spacing is given by

hj =

 4(1− τ)/N if j = 1, 2, · · · , N/4, 3N/4 + 1, · · · , N − 1, N,

4τ/N if j = N/4 + 1, N/4 + 2 · · · 3N/4.
(5.3.9)
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For the rest of the chapter, we adopt the notation B(xj, tk) := Bk
j for ease of exposition.

Also, let

D+
x U

k
j =

Uk
j+1 − Uk

j

hkj+1
, D−x U

k
j =

Uk
j − Uk

j−1

hkj
, D̃xU

k
j = 2

hkj + hkj+1
(D+

x U
k
j −D−x Uk

j )

and

D−t U
k
j =

Uk
j − Uk−1

j

∆t ,

where D+
x U

k
j , D

−
x U

k
j , D

−
t U

k
j and D̃xU

k
j are first and second order finite differences respec-

tively. Using the upwind scheme both in time and space above, we discretize the problem

(5.1.1)-(5.1.3) in the following manner:

LK,NUk
j :=

 (ε+ x2
j)D̃xU

k
j + ãkjD

−
x U

k
j − (b̃kj + dk

j

∆t)U
k
j = f̃kj −

dk
jU

k−1
j

∆t for j = 0, · · · , N/2− 1,

(ε+ x2
j)D̃xU

k
j + ãkjD

+
x U

k
j − (b̃kj + dk

j

∆t)U
k
j = f̃kj −

dk
jU

k−1
j

∆t for j = N/2, · · · , N − 1,
(5.3.10)

subject to the discrete initial and boundary conditions

Uk
j = u0

j , j = 0, 1, · · · , N, (5.3.11)

Uk
0 ≡ αk1 = α1(tk), Uk

N ≡ αk2 = α2(tk), 1 6 k ≤ K, (5.3.12)

where  ãkj = ak
j−1+ak

j

2 for j = 0, 1, · · · , N/2− 1,

ãkj = ak
j +ak

j+1
2 for j = N/2, N/2 + 1, · · · , N − 1, b̃kj = bk

j−1+bk
j +bk

j+1
3 for j = 1, 2, 3, · · · , N − 1,

f̃kj = fk
j−1+fk

j +fk
j+1

3 for j = 1, 2, 3, · · · , N − 1.

Now, (5.3.10) can be written in the form:

LN,Kx,ε U
k
j := r−Uk

j−1 + rcUk
j + r+Uk

j+1 = Fj, j = 1, 2, 3 · · · , N − 1, (5.3.13)

where for j = 1, 2, 3 · · · , N/2− 1, we have

r−j =
2(ε+ x2

j)
hj(hj + hj+1)−

ãkj
hj
, rcj =

ãkj
hj
−

2(ε+ x2
j)

hjhj+1
− b̃kj −

dkj
∆t , r

+
j =

2(ε+ x2
j)

hj+1(hj + hj+1) , (5.3.14)
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for j = N/2, N/2 + 1, · · · , N − 1, we have

r−j =
2(ε+ x2

j)
hj(hj + hj+1) , r

c
j = −

ãkj
hj+1

−
2(ε+ x2

j)
hjhkj+1

− b̃kj −
dkj
∆t , r

+
j =

2(ε+ x2
j)

hj+1(hj + hj+1) +
ãkj
hj+1

(5.3.15)

and

Fj = f̃kj −
dkjU

k−1
j

∆t . (5.3.16)

The results of the analysis of the scheme (5.3.10)-(5.3.12) depend on the following mini-

mum principle.

Lemma 5.3.1. (Discrete minimum principle). For any mesh function ξkj such that

LN,Kξkj ≤ 0 in QN,K , ξ0
j ≥ 0, 1 ≤ j ≤ N , ξk0 ≥ 0, and ξkN ≥ 0, 1 ≤ k ≤ K, we have

ξkj ≥ 0 in Q̄N,K .

Proof. See Lemma 3.3.1 in Chapter 3.

Lemma 5.3.2. (Uniform stability estimate). At any time level tk, if Zk
j is any mesh

function such that Zk
0 = Zk

N = 0, then

|Zk
i | ≤

1
β

max
1≤j≤N−1

|LK,NZk
j | ∀ 0 ≤ i ≤ N.

Proof. See Lemma 3.3.2 in Chapter 3.

Based on the above continuous (Lemma 5.2.7) and discrete (Lemma 5.3.1) results, we

are able to analyse the proposed method for convergence in the next section.

5.4 Convergence analysis

The convergence of the scheme will be analysed on a Shishikin mesh, which was proved

in section 5.3.

Theorem 5.4.1. Let Uk
j be the numerical solution of (5.3.10)-(5.3.12) and denote the

solution z(xj, tk) of problem (5.3.4)-(5.3.5) at the level tk by zkj = z(xj, tk). Then, we have
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max
0≤j≤N

|Uk
j − zkj | 6 CN−1

[
ln
(
N

4

)]2
. (5.4.1)

Proof. We prove this above Lemma on the interval [0, 1]. The proof of [−1, 0] follows in

a similar way. From (5.3.10)-(5.3.12), the solution Uk
j can be decomposed into a regular

part and a singular part as follows

Uk
j = V k

j +W k
j ,

where V k
j is the solution of the inhomogeneous problem

LN,KV k
j = fkj −

dkj × V k−1
j

∆t , V 0
j = v0

j , V
k

0 = vk0 ,

and W k
j is the solution of the homogeneous problem

LN,KW k
j = 0, W 0

j = w0
j , W

k
N/2 = Uk

N2 − V k
N/2.

Using (5.1.1) and (5.3.10), we obtain the error of the smooth component

LN,K(V k
j − vkj ) = fkj −

dkj × V k−1
j

∆t − LN,Kvkj

= (ε+ x2
j)
(
d2

dx2 − D̃x

)
vkj + akj

(
d

dx
−D−x

)
vkj .

Applying the two estimates in Lemma 4.1 [42] at each point (xj, tk) for the above result,

we obtain

|LN,K(V k
j −vkj )| ≤

(ε+ x2
j)

3 (xj+1−xj−1)
wwwww∂3vj
∂x3

wwwww+
akj
2 (xj−xj−1)

wwwww∂2vj
∂x2

wwwww for 1 ≤ j 6 N/2−1.

(5.4.2)

Noting that hj = xj − xj−1 ≤ 4N−1 for any j, therefore using the bounds of vj of Lemma

5.2.8 in inequality (5.4.2), we obtain

LN,K(V k
j − vkj ) 6 Ch[1 + (ε+ x2) + 2(ε+ x2) arctan(x/ε)]

6 Ch

6 CN−1.

Hence, by Lemma 5.3.2 we obtain

|(V k
j − vkj )| ≤ CN−1 for 1 6 j 6 N/2− 1. (5.4.3)
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The estimate of the error of the singular component depends on whether τ = 1/2 or

τ = (ε/η) ln(N/4).

• The mesh is uniform: τ = 1/2 ≤ (ε/η) ln(N/4). The local truncation error

LN,K(W k − wk) is given by

|LN,K(W k
j −wkj )| 6

(ε+ x2
j)

3 (xj+1−xj−1)
wwwww∂3wj
∂x3

wwwww+
akj
2 (xj−xj−1)

wwwww∂2wj
∂x2

wwwww for 1 ≤ j ≤ N/2−1.

(5.4.4)

Using Lemma 5.2.8 and hj = xj − xj−1 ≤ 4N−1 in (5.4.4), we obtain

|LN,K(W k
j − wkj )| 6 Ch(ε+ x2)−1 arctan(x/ε) 6 chε−2.

Since ε−1 ≤ (1/η) ln(N/4), we obtain

|LN,K(W k
j − wkj )| 6 C [ln(N/4)]2.

With the help of Lemma 5.3.2, the above inequality gives

|(W k
j − wkj )| 6 C[ln(N/4)]2 for 1 6 j 6 N/2− 1. (5.4.5)

• Piecewise uniform: τ = (ε/η) ln(N/4) ≤ 1/2. In this case we have two subintervals,

namely [−1,−τ ] and [−τ, 0]. We give separate error estimates in the coarse and fine mesh

subintervals. Firstly, we compute the error for the singular component in the mesh region

−1 6 xj 6 −τ. Using the triangle inequality, we obtain

|(W k
j − wkj )| ≤ |W k

j |+ |wkj |. (5.4.6)

Then by Lemma 5.2.8, we have

|wkj | 6 C(ε+ x2) arctan(x/ε)]

6 Cε−2x2
j

6 C[ln(N/4)]2, since xj = τ = (ε/η) ln(N/4).

To establish a similar bound on W k
j the interested reader may refer to Lemma 7.3 (p.58)

and Lemma 7.5 (p.60) of [42], which leads immediately to

|W k
j | 6 C[ln(N/4)]2 for 1 ≤ j 6 N/4− 1. (5.4.7)
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Combining these above estimates into (5.4.6), we obtain

|W k
j − wkj | 6 C[ln(N/4)]2 for 1 6 j 6 N/4− 1. (5.4.8)

If −τ < x 6 0, then the estimate of the truncation error is obtained from (5.4.4) as

|LN,K(W k
j − wkj )| 6 C(xj+1 − xj−1)(ε+ x2)−1 arctan(x/ε)

6 C(xj+1 − xj−1)ε−2

= CN−1ε−2τ, since xj+1 − xj−1 = h = 4τ/N.

Moreover, |(W k
0 − wk0)| = 0 and |(W k

N/4 − wkN/4)| 6 |W k
N/4| + |wkN/4| 6 C[ln(N/4)]2 from

(5.4.7). Consider the barrier function (p.72) of [42] on [−τ, 0]

Φk
j = (xj − (−τ))C1ε

−2τN−1 + C2N
−1 = (xj + τ)C1ε

−2τN−1 + C2N
−1,

it follows that for an appropriate choice of C1 and C2, the mesh functions

(Ψ±)kj = Φk
j ± (W k

j − wkj )

satisfy the inequalities

Ψk
N/4 ≥ 0, Ψk

N/2 = 0 and LN,KΨk
j ≤ 0, N/4 + 1 6 j 6 N/2− 1.

By applying Lemma 5.3.1 on [−τ, 0] to (Ψ±)kj , we obtain

Ψk
j ≥ 0, N/4 + 1 6 j 6 N/2− 1.

Therefore, we obtain

|W k
j − wkj | ≤ Φk

j ≤ C1ε
−2τ 2N−1 + C2N

−1.

Using the value of τ = (ε/η) ln(N/4) in the above inequality, we obtain

|W k
j − wkj | 6 CN−1[ln(N/4)]2. (5.4.9)

Combining (5.4.8) and (5.4.9), we obtain the following estimate on the singular component

of the error over interval [−1, 0]

|W k
j − wkj | ≤ CN−1[ln(N/4]2, N/4 + 1 ≤ j 6 N/2− 1. (5.4.10)
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Note that

Uk
j − zkj = (V k

j − vkj ) + (W k
j − wkj ), (5.4.11)

using (5.4.3) and (5.4.10), we obtain

|Uk
j − zkj | ≤ CN−1[ln(N/4)]2, 1 6 j 6 N/2− 1. (5.4.12)

Results on the subinterval [0, 1] can be obtained in the same way as we did on the interval

[−1, 0], then we have

|Uk
j − zkj | ≤ CN−1[ln

(
N

4

)
]2, N/2 6 j 6 N. (5.4.13)

Combining (5.4.12) and (5.4.13), leads to the required result.

The following theorem provides the main result.

Theorem 5.4.2. . Let u be the exact solution of (5.1.1)-(5.1.2) and U be its numerical

solution obtained via the difference equations (5.3.10)-(5.3.12). Then, there exists constant

C independent of the perturbation parameter ε, and of the discretization parameters hj
and ∆t such that

max
0≤j≤N ;1≤k≤K

‖Uk
j − ukj‖ ≤ C

[
∆t+N−1

[
ln
(
N

4

)]2]
. (5.4.14)

Proof. The result follows from the triangle inequality

||Uk
j − ukj || = ||Uk

j − zkj ||+ ||zkj − ukj ||

and the combination of the time discretization(5.3.7) and the result of Theorem 5.4.1.

The above theorem shows that the scheme we propose is first order convergent in time

and almost first order convergent in space, uniformly with respect to the perturbation

parameter ε. In order to improve the accuracy and the rate of convergence of the scheme,

we apply Richardson extrapolation in the next section.
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5.5 Richardson extrapolation on the FMFDM

Richardson extrapolation is a procedure where a linear combination of two approxima-

tions of some quantity gives a third and better approximation of the quantity [49]. We

employ this procedure for the proposed scheme.

Let Ωτ
2N be the mesh obtained by bisecting each mesh interval in Ωτ

N . It is easy to

understand that Ωτ
N ⊂ Ωτ

2N = {x̃j} and x̃j − x̃j−1 = h̃j = hj/2.

Theorem 5.5.1. Let U ext,k
j be the numerical solution approximation obtained using (5.3.10)-

(5.3.12) and zkj be the solution of (5.3.2)-(5.3.3) at the time level tk. Then, we have

max
0≤j≤N

|(U ext − z)kj | ≤ CN−2
[
ln
(
N

4

)]2
. (5.5.1)

Proof. Let Uk
j and Ũk

j be the numerical solution of (5.3.10)-(5.3.12) on the mesh Ωτ
N and

Ωτ
2N respectively. The estimate (5.4.12) can be written as

Uk
j − zkj = C1N

−1 ln(N/4)2 +RN(xj), ∀xj ∈ Ωτ
N (5.5.2)

and

Ũk
j − zkj = C2(2N)−1 ln(N/4)2 +R2N(x̃j), ∀x̃j ∈ Ωτ

2N , (5.5.3)

where C1 and C2 are some constants and the remainder terms

RN(xj) and R2N(x̃j) are O[N−1(ln(N/4))2].

The transition parameter τ remains the same as in (5.3.8) when calculating both Uk
j and

Ũk
j .

Combining (5.5.2) and (5.5.3), we obtain

zkj − (2Ũk
j − Uk

j ) = RN(xj)− 2R2N(xj) = O[N−1(ln(N/4))2], ∀xj ∈ Ωτ
n. (5.5.4)

Therefore we set

U ext,k
j = 2Ũk

j − Uk
j , ∀xj ∈ Ωτ

N , (5.5.5)
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as the new approximation of zkj at the point xj ∈ Ωτ
N resulting from Richardson extrapo-

lation.

The error after extrapolation U ext,k
j can written as in (5.4.11),

(U ext − z)kj = (V ext − v)kj + (W ext − w)kj , (5.5.6)

where V ext,k
j and W ext,k

j are the regular and singular components of U ext,k
j , respectively.

The local truncation error of the scheme (5.3.10)-(5.3.13) after extrapolation is given by

LN,K(U ext − z)kj = 2LN,K(Ũk
j − zj)− LN,K(Uk

j − zj), (5.5.7)

where

LN,K(Uk
j − zkj ) = r−zj−1 + rczj + r+zj+1 − (ε+ x2

j)z′′j − ãkj z′j + b̃kj z
k
j +

dkj z
k
j

∆t (5.5.8)

and

LN,K(Ũk
j − zkj ) = r̃−zj−1 + r̃czj + r̃+zj+1 − (ε+ x2

j)z′′j − ãjz′j + b̃kj z
k
j +

dkju
k
j

∆t . (5.5.9)

The expressions for r−, rc and r+ are given in (5.3.14), (5.3.15) and (5.3.16) respectively

while the quantities r̃−, r̃c and r̃+ are obtained by substituting hj with h̃j and hj+1 with

h̃j+1 in the quantities of r−, rc and r+ respectively. Taking the Taylor series expansion of

zkj−1 and zkj+1 about xj yields

zkj−1 = zj − hjz′j +
h2
j

2 z
2
j −

h3
j

6 z
3
j +

h4
j

24z
4(ξ1, j), (5.5.10)

zkj+1 = zj + hj+1z
′
j +

h2
j+1

2 z2
j +

h3
j+1

6 z3
j +

h4
j+1

24 z4(ξ2, j), (5.5.11)

zkj−1 = zj − h̃jz′j +
h̃2
j

2 z
2
j −

h̃3
j

6 z
3
j +

h̃4
j

24z
4(ξ̃1, j), (5.5.12)

zkj+1 = zj + h̃j+1z
′
j +

h̃2
j+1

2 z2
j +

h̃3
j+1

6 z3
j +

h̃4
j+1

24 z4(ξ̃2, j), (5.5.13)

where

(ξ1, j) ∈ (xj−1, xj), (ξ2, j) ∈ (xj, xj+1), ξ̃1 ∈ (xj−1 + xj
2 , xj) and ξ̃2 ∈ (xj,

xj + xj+1

2 ).
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Substituting (5.5.10) and (5.5.11) into (5.5.8), (5.5.12) and (5.5.13) into (5.5.9), we obtain

LN,K(Uk
j − zkj ) = k1zj + k2z

′
j + k3z

2
j + k4z

3
j + k5,1z

4(ξ1, j) + k5,2z
4(ξ2, j) (5.5.14)

and

LN,K(Ũk
j − zkj ) = k̃1zj + k̃2z

′
j + k̃3z

2
j + k̃4z

3
j + k̃4z

4
j + k̃5,1z

4(ξ̃1, j) + k̃5,2z
4(ξ̃2, j). (5.5.15)

The coefficients in (5.5.14) are

k1=
2(ε+ x2

j)
hj(hj+hj+1)−

2(ε+ x2
j)

hjhj+1
+

2(ε+ x2
j)

hj+1(hj+hj+1) , k2=0,

k3=
(ε+ x2

j)hj
hj+hj+1

−
ãkjhj

2 +
(ε+ x2

j)hj+1

hj+hj+1
− (ε+ x2

j),

k4 =
−(ε+ x2

j)h2
j

3(hj+hj+1) +
ãkjh

2
j

6 +
(ε+ x2

j)h2
j+1

3(hj+hj+1) , k5,1 =
(ε+ x2

j)h3
j

12(hj+hj+1) −
ãkjh

3
j

24 , k5,2 =
(ε+ x2

j)h3
j+1

12(hj+hj+1) .

The quantities for k̃1, k̃2, k̃3, k̃4, k̃5,1 and k̃5,2 can be obtained by substituting hj with

h̃j and hj+1 with h̃j+1.

Substituting (5.5.14) and (5.5.15) into (5.5.7), we obtain

LN,K(U ext − z)kj = T1zj + T2z
′′
j + +T3z

′′′
j + +T4,1z

(4)(ξ1, j) + T4,2z
(4)(ξ2, j), (5.5.16)

where

T1 =
14(ε+ x2

j)
hj(hj + hj+1) −

14(ε+ x2
j)

hjhj+1
+

14(ε+ x2
j)

hj+1(hj + hj+1) ,

T2 =
(ε+ x2

j)hj
hj + hj+1

− (ε+ x2
j) +

(ε+ x2
j)hj+1

hj + hj+1
, T3 = −

ãkjh
2
j

12 ,

T4,1 = −
(ε+ x2

j)h3
j

24(hj + hj+1) +
ãkjh

3
j

32 and T4,2 = −
(ε+ x2

j)h3
j+1

24 .

Given (5.3.9) and for the sake of simplicity, we use the notation

hj =

 H if j = 1, 2, · · · , N/4,

h if j = N/4 + 1, · · ·N/2.
(5.5.17)

134https://etd.uwc.ac.za



Chapter 5: Time-dependent for convection-diffusion problems with a power
interior layer and variable coefficient diffusion term

Using the fact that ∀j = 1, . . . , N/4, H = hj 6 4N−1 substituted into (5.5.16) in the

subinterval [−1,−τ ], we obtain

LN,K(V ext − v)kj = −
ãkjH

2

12 v′′′j +
[

(ε+ x2
j)H2

48 +
ãkjH

3

32

]
v(4)(ξ1, j)−

(ε+ x2
j)H3

24 v(4)(ξ2, j).

(5.5.18)

Applying the triangle inequality in the above inequality, we obtain

LN,K(V ext − v)kj 6 −
ãkjH

2

12 v′′′j +
[

(ε+ x2
j)H2

48 +
ãkjH

3

32

]
v(4)(ξ1, j)−

(ε+ x2
j)H3

24 v(4)(ξ2, j).

By Lemma 5.2.8, the above inequality gives

|LN,K(V ext − v)kj | 6 CN−2. (5.5.19)

The estimate on LN,K(W ext − w)kj depends on whether τ = 1/2 or τ = (ε/η) ln(N/4).

• In the first case the mesh is uniform and (ε/η) ln(N/4) > 1/2. The estimate of the

singular component of the local truncation error is given by

LN,K(W ext − w)kj 6 −
ãkjh

2

12 w′′′j +
[

(ε+ x2
j)h2

48 +
ãkjh

3

32

]
w(4)(ξ1, j)−

(ε+ x2
j)h3

24 w(4)(ξ2, j).

(5.5.20)

With the help of Lemma 5.2.8, we obtain

|LN,K(W ext − w)kj | 6 CN−2(ε+ x2
j)−2 arctan(x/ε) 6 CN−2ε−2. (5.5.21)

Using this inequality ε−1 6 (2/η) ln(N/4) in (5.5.21), we get

|LN,K(W ext − w)kj | ≤ CN−2[ln(N/4)]2. (5.5.22)

• In the second case (viz τ = (ε/η) ln(N/4), the mesh is piecewise uniform with the mesh

spacing h = hj = 4τN−1 for ∀ j = N/4 + 1, . . . , N/2 in the subinterval [−τ, 0].

On application of Lemma 5.2.8, (5.5.20) gives

|LN,K(W ext − w)kj | ≤ C1N
−2τ 2ε−2. (5.5.23)

Using the value of τ = (ε/η) ln(N/4) in (5.5.23), then gives

|LN,K(W ext − w)kj | ≤ CN−2[ln(N/4)]2. (5.5.24)
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A similar analysis can also be done for N/2 + 1 6 j 6 N − 1.

Using Lemma 5.3.2 in (5.5.19), (5.5.22) and (5.5.24) along with the inequality (5.5.6),

we obtain the required result.

Once again, using the triangle inequality and combining (5.3.7) and Theorem 5.5.1, we

obtain the error after extrapolation which is stated in the following theorem.

Theorem 5.5.2. (Error after extrapolation). If U ext,k
j is the approximation of ukj obtained

by using (5.3.10)-(5.3.12) and ukj be the exact solution of (5.1.1)-(5.1.2), then, there exists

a constant C, independent of the perturbation parameter ε, the time discretization ∆t and

the space discretization parameters hj such that

max
06j6N ;1≤k6K

‖Uk
j − ukj‖ 6 C

[
∆t+N−2

[
ln
(
N

4

)]2]
. (5.5.25)

We propose two examples to test the proposed method in the following section.

5.6 Numerical examples

In this section we present the numerical results obtained for the difference scheme that

has previously been discussed. In both examples, we start with N = 16 and ∆t = 1
16

and we multiply N by two and divide ∆t also by two. The maximum errors and order

of convergence are calculated by the exact solution. The solution in both examples has a

turning point at point x = 0, which yields an interior layer.

Example 5.6.1. We consider the problem (5.1.1)-(5.1.2) for

a(x, t) = 2x(1 + t2), b(x, t) = 1 + x2 + cos πxt, d(x, t) = 3 + xt, T = 1

and the functions f(x, t) and u0(x) are such that the exact solution is given by

u(x, t) = ε e−t/ε arctan
(
x√
ε

)
− ε2/3e−xt.
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This problem has an interior layer of width O(ε).

Example 5.6.2. Here, we consider problem (5.1.1)-(5.1.2) for

a(x, t) = 2x(1 + t2), b(x, t) = 1 + x2 + cos πxt, d(x, t) = 3 + xt, T = 1

and the functions f(x, t) and u0(x) are such that the exact solution is given by

u(x, t) = ε e−t/εearctan(x2/
√
ε).

This problem has an interior layer of width O(ε).

Maximum errors at all mesh points are determined

Eε,N,K = max
0≤j≤N ;0≤k≤K

|uε,N,Kj,k − U ε,N,K
j,k |.

where uε,N,Kj,k denotes the exact solution, and U ε,N,K
j,k represents the numerical solution

which is obtained by a constant time step ∆t using N mesh intervals in the entire domain

Ω = [−1, 1]. Furthermore, we calculate the numerical rate of uniform convergence as

follows

rl ≡ rε,l = log2(Eε,Nl,Kl/Eε,2Nl,2Kl).

After extrapolation the maximum errors at all mesh points and the numerical rates of

convergence are computed as follows

Eext
ε,N,K = max

0≤j≤N ;0≤k≤K
|U ext

j,k − u
ε,N,K
j,k |, and RN,K ≡ Rε,N,K ≡ log2(Eext

ε,Nl,Kl
/Eext

ε,2Nl,2Kl
).
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Table 5.1: Results for Example 5.6.1: Maximum errors before extrapolation.
ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

K = 16 K = 32 K = 64 K = 128 K = 256 K = 512

10−4 9.09E-02 4.73E-02 2.40E-02 1.21E-02 6.06E-03 3.55E-03

10−5 9.22E-02 4.78E-02 2.42E-02 1.22E-02 6.10E-03 3.05E-03

10−7 9.28E-02 4.80E-02 2.43E-02 1.22E-02 6.12E-03 3.06E-03

10−12 9.28E-02 4.81E-02 2.43E-02 1.22E-02 6.12E-03 3.06E-03
...

...
...

...
...

...
...

10−20 9.28E-02 4.81E-02 2.43E-02 1.22E-02 6.12E-03 3.06E-03

Table 5.2: Results for Example 5.6.1: Maximum errors after extrapolation.
ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

K = 16 K = 64 K = 256 K = 1024 K = 4096 K = 16384

10−4 9.99E-02 2.55E-02 6.23E-03 3.55E-03 3.55E-03 3.55E-03

10−5 1.02E-01 2.63E-02 6.52E-03 1.60E-03 7.82E-04 7.82E-04

10−7 1.03E-01 2.68E-02 6.76E-03 1.69E-03 4.18E-04 1.03E-04

10−12 1.04E-01 2.69E-02 6.79E-03 1.70E-03 4.26E-04 1.07E-04
...

...
...

...
...

...
...

10−20 1.04E-01 2.69E-02 6.79E-03 1.70E-03 4.26E-04 1.07E-04

Table 5.3: Results for Example 5.6.1: Rates of convergence before extrapolation
ε r1 r2 r3 r4 r5

10−4 0.94 0.98 0.99 0.99 0.77

10−5 0.95 0.98 0.99 1.00 1.00

10−9 0.95 0.98 0.99 1.00 1.00
...

...
...

...
...

...

10−20 0.95 0.98 0.99 1.00 1.00

Table 5.4: Results for Example 5.6.1: Rates of convergence after extrapolation
ε r1 r2 r3 r4 r5

10−4 1.97 2.03 0.81 0.00 0.00

10−5 1.96 2.01 2.03 1.03 0.00

10−9 1.94 1.99 2.00 2.00 2.00
...

...
...

...
...

...

10−20 1.94 1.99 2.00 2.00 2.00
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Table 5.5: Results for Example 5.6.2: Maximum errors before extrapolation
ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

K = 16 K = 32 K = 64 K = 128 K = 256 K = 512

10−3 2.50E-01 1.34E-01 6.91E-02 3.52E-02 1.78E-02 8.96E-03

10−4 2.69E-01 1.41E-01 7.23E-02 3.66E-02 1.84E-02 9.24E-03

10−5 2.76E-01 1.45E-01 7.35E-02 3.71E-02 1.86E-02 9.33E-03

10−16 2.85E-01 1.47E-01 7.44E-02 3.74E-02 1.87E-02 9.38E-03
...

...
...

...
...

...
...

10−25 2.85E-01 2.32E-01 7.44E-02 3.74E-02 1.87E-02 9.38E-03

Table 5.6: Results for Example 5.6.2: Maximum errors after extrapolation
ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

K = 16 K = 64 K = 256 K = 1024 K = 4096 K = 16384

10−3 2.57E-01 7.03E-02 1.79E-02 4.66E-03 4.77E-03 4.90E-03

10−4 2.85E-01 7.30E-02 1.84E-02 4.64E-03 1.16E-03 5.09E-04

10−5 2.98E-01 7.47E-02 1.86E-02 4.67E-03 1.17E-03 2.93E-04

10−16 3.11E-01 8.07E-02 2.04E-02 5.11E-03 1.28E-03 3.19E-04
...

...
...

...
...

...
...

10−20 3.11E-01 8.07E-02 2.04E-02 5.11E-03 1.28E-03 3.19E-04

Table 5.7: Results for Example 5.6.2: Rates of convergence before extrapolation
ε r1 r2 r3 r4 r5

10−3 0.91 0.95 0.97 0.98 0.99

10−4 0.93 0.97 0.98 0.99 0.99

10−11 0.95 0.98 0.99 1.00 1.00
...

...
...

...
...

...

10−20 0.95 0.98 0.99 1.00 1.00

Table 5.8: Results for Example 5.6.2: Rates of convergence after extrapolation
ε r1 r2 r3 r4 r5

10−3 1.87 1.97 1.94 -0.03 -0.04

10−4 1.96 1.98 1.99 2.00 1.19

10−11 1.95 1.99 2.00 2.02 2.02
...

...
...

...
...

...

10−20 1.95 1.99 2.00 2.00 2.00
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5.7 Discussion

In this chapter, we treated a class of time-dependent singularly perturbed problems in

which the diffusion term contains the perturbation parameter ε and a quadratic function.

We also studied this problem whose solution exhibits an interior layer due to the pres-

ence of a turning point. After setting bounds on the solution and its derivative, we used

the proposed numerical scheme comprising of the classical Euler method to discretize the

time variable. A resulting system of two-point boundary value problems (one at each time

level) was solved by using a Fitted Mesh Finite Difference Method (FMFDM). Applying

bounds on the solution and its derivative, we showed that the proposed numerical method

was uniformly convergent relative to the perturbation parameter ε and the step-size.

In order to validate the above conclusions based on theoretical analysis, we solved two

examples to support the findings. In each example, we computed the maximum point-

wise errors and the corresponding rates of convergence for different values of N and K.

The results displayed in tables 5.1, 5.3, 5.5 and 5.7, confirmed that the proposed method

was uniformly convergent. We also investigated the effect of Richardson of extrapolation

via FMFDM in order to improve our results. For comparison purposes, we kept the same

values of N and K above and numerical results are shown in tables 5.2, 5.4, 5.6 and 5.8.
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Chapter 6

A numerical method for interior

layer convection-diffusion problems

with a variable coefficient diffusion

term

In this chapter, we consider singularly perturbed convection-diffusion problems whose so-

lution displays an interior layer due to the presence of a turning point. Moreover, the

perturbation parameter ε is embedded in a linear function. After deriving bounds on

the solution to these problems and its derivatives, we construct a fitted mesh difference

method (FMDM) and analyse its convergence. We investigate the Richardson extrapola-

tion method via FMFDM in order to increase its accuracy and order of convergence.

6.1 Introduction

In recent years, many researchers have studied a class of two-point boundary value sin-

gularly perturbed convection-diffusion problems (2.1.1)-(2.1.2).

Due to the presence of a small parameter ε in (2.1.1), the solution to this problem pos-
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sesses large gradients in narrow regions of the domain referred to as boundary or interior

layers depending upon the nature of the coefficient of the convection term a(x). The so-

lution presents a boundary layer at the right end or the left end of the domain if a(x) < 0

or a(x) >, 0 for x ∈ [−1, 1] respectively. These problems are called non-turning pint

problems. Many authors have developed successful numerical schemes for such problems

[25, 26, 28, 45, 46, 56, 57, 69].

But if a(x) = 0 with a(−1)a(1) 6= 0, these are called turning points of the problem.

Turning points may give rise to boundary and/or interior layers.

Several authors have suggested numerous numerical schemes for such problems [18, 19,

24, 27, 40, 58, 64]. It is also to be noted that interior layers may occur in the solution

to problems (2.1.1)-(2.1.2) if the coefficients are not smooth or if the data function f(x)

is discontinuous [16]. However little attention has been given to the study of problems

having a variable coefficient affecting the second derivative. Such problems often arise in

fluid and geo-dynamics [37, 39].

Liseikin [37] considered the equation:

−(ε + px)βu′′ + a(x)u + f(x, ε) = 0, x ∈ [0, 1], p = 0, 1 , β > 0. Estimates of the solu-

tion and its derivatives are provided. The same author in [39] considered the problem:

−(ε + x)βu′′ − a(x)u + f(x, u) = 0, x ∈ [0, 1], β > 0. The solution to this problem can

exhibit only a single layer in the vicinity of x = 0. It turns out that for β = 1 the bounds

on the derivatives of u(x) in the boundary layer are estimated by three singular power

functions according to the value of a = a(0), while for β = 2 they are estimated by layer-

type exponential functions (see [39] pp 106-111). A numerical scheme was developed and

its convergence was analysed (see [39] pp 256-262) for β = 1.

In this chapter, we consider the problem for an equation of the second order with a
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small ε whose reduced equation (ε = 0) has the same order

Lu :≡ (ε+ x)u′′ + a(x)u′ − b(x)u = f(x), x ∈ Ω = (0, 1), (6.1.1)

subject to the boundary conditions

u(0) = α1, u(1) = α2, (6.1.2)

where 0 < ε ≤ 1 and α1 and α2 are given real constants.

In the rest of this chapter, we assume the following hypotheses

• a(0.5) = 0 and a′(0.5) > 0, thus the solution to problem (6.1.1)-(6.1.2) guarantees

the existence of the turning point,

• b(x) ≥ b0 > 0 for 0 ≤ x ≤ 1 which ensures that the solution to (6.1.1)-(6.1.2)

satisfies a minimum principle and

• |a′(x)| ≥ |a′(0.5)|/2 for 0 6 x 6 1 guarantees the uniqueness of the turning point

in the interval [0, 1] [19].

In this chapter, our aim is to propose and analyse a fitted mesh finite difference method

(FMFDM) to problem (6.1.1)-(6.1.2) as applied on a Shishkin mesh.

The rest of this chapter is structured as follows. In Section 2, we establish bounds on the

solution and its derivatives u(x), which will be used in the analysis of the uniform conver-

gence of the numerical scheme. In Section 3, we develop our numerical method by first

designing a piecewise uniform mesh of Shishkin type. We then discretize (6.1.1)-(6.1.2)

on the mesh using an upwind scheme. Section 4 is devoted to the convergence analysis

of the method. We prove that the proposed numerical method is uniformly convergent

almost of order one with respect to the perturbation parameter ε. In order to improve

our results of the proposed (FMFDM), we employ the Richardson extrapolation method

in Section 5. Section 6 provides detailed numerical results. In Section 7, we present some

concluding remarks and scope for future research.
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Throughout this chapter, C denotes a positive constant independent of the singular per-

turbation parameter ε and the discretization parameter N of the discrete problem.

6.2 Bounds on the solution and its derivatives

Here we study the qualitative behaviour of the solution to problem (6.1.1)-(6.1.2) and its

derivatives which will be used in the convergence analysis of the numerical method. We

denote the sub-intervals of [0, 1] as Ωl = [0, 1/2− τ),

Ωc = [1/2 − τ, 1/2 + τ ] = [1/2 − τ, 1/2] ∪ (1/2, 1/2 + τ ] and Ωr = (1/2 + τ, 1], where

τ ∈ (0, 1/4].

Under the requirements mentioned above, the differential operator L as defined in (6.1.1)

admits the following continuous minimum principle.

Lemma 6.2.1. (Minimum principle). Suppose that ξ is a smooth function satisfying

ξ(0) ≥ 0, ξ(1) ≥ 0 and Lξ(x) ≤ 0, ∀x ∈ Ω. Then ξ(x) ≥ 0, ∀x ∈ Ω̄.

Proof. Let x∗ ∈ Ω̄ such that ξ(x∗) = min
0≤x≤1

ξ(x) and assume ξ(x∗) < 0. It follows that

x∗ /∈ Ω, therefore ξ′(x∗) = 0 and ξ′′(x∗) ≥ 0, which implies

Lξ(x∗) := (ε+ x∗)ξ′′(x∗) + a(x∗)ξ′(x∗)− b(x∗)ξ(x∗) > 0,

which is a contradiction to our assumption. Hence ξ(x∗) ≥ 0 and ξ(x) ≥ 0, for all x ∈ Ω̄.

We apply Lemma 6.2.1 to prove the next results which state that the solution depends

continuously on the data.

Lemma 6.2.2. (Stability estimate). If u(x) is the solution of (6.1.1)-(6.1.2), then we have

||u(x)|| 6 [max {||α||∞, ||β||∞}] + 1
b0
||f ||∞, ∀x ∈ Ω̄.

Proof. See Lemma 2.2.2 in Chapter 2.
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Lemma 6.2.3. Let u(x) be the solution of (6.1.1)-(6.1.2) and a(x), b(x) and

f(x) ∈ Ck(Ω̄), then there exists a positive constant C such that

|u(j)(x)| ≤ C, ∀x ∈ Ωl or Ωr , j = 1, 2, 3 · · · , k,

for sufficiently small τ ∈ (0, 1/4].

Proof. See theorem 2.4 of [5].

Lemma 6.2.4. [39] (Inverse monotonicity.) Let d(x) = x and

g(x) = f(x) − a(x)u′(x) + b(x)u(x) be continuous in [0, 1] and [0, 1] × <2, respectively.

Then the operator T = (L,Γ) for the functions from C2(0, 1)∪C[0, 1] is inverse-monotone

if one of the following conditions imposed of g is satisfied:

• g(x, u, u′) is strictly increasing in u, i.e. g(x, u1, z) < g(x, u2, z) if u1 < u2;

• g(x, u, u′) is weakly increasing in u, and there exists a constant C > 0 such that

|g(x, u, z1)− g(x, u, z2)| 6 C|z1 − z2|.

Proof. For the proof of the Lemma, readers may refer to [39], pp 47.

We adapt the following Lemma according to [39]. Note that the solution of problem

(6.1.1)-(6.1.2) displays an interior layer at the point xN/2 = 1/2. Therefore, the deriva-

tives of u(x) are estimated in the layer region by polynomial functions according to the

sign of the coefficient of the convection term at the point x?0. Then, we have two cases

a =

 a(x?0) 6 0, x?0 ∈ [1/2− τ, 1/2] and

a(x?0) > 0, x?0 ∈ (1/2, τ + 1/2].
(6.2.1)

Lemma 6.2.5. Let u(x) be the solution of problem (6.1.1)-(6.1.2). Then assuming that

(i) a = a(x?0) > 0, for 1/2 < x 6 1/2 + τ and j = 1, 2, 3, 4, we have the following bounds

|u(j)(x)| 6 C


1 + (ε+ x)1−a−j, 0 < a < 1,

1 + (ε+ x)−j| ln−1(ε+ 1/2)−1|, a = 1,

1 + εa−1(ε+ x)1−a−j a > 1,

(6.2.2)
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(ii) a(x?0) = a 6 0, for 1/2− τ 6 x 6 1/2, and j = 1, 2, 3, 4, and let p be an integer such

that a+ p = 0 and a+ p− 1 < 0, then we have the following bounds

|u(j)(x)| 6 C


1, a < 0, j 6 p,

1 + (ε+ x)1−j−p| ln(ε+ x)|, a+ p = 0, j > p,

1 + (ε+ x)−a−j, a+ p > 0, j > p.

(6.2.3)

Proof. The proof of this Lemma will follow the same ideas provided by ([39], pp. 107-

110). Application of the inverse-monotone pair T = (L,Γ) (see pp 49) implies that

|u(x)| 6 C, 0 6 x 6 1. (6.2.4)

Combining (6.1.1)-(6.1.2) and (6.2.4), we obtain

|u(j)(x)| 6 C



1, 1/2− τ < x0 6 x 6 1/2,

ε−j, 1/2− τ 6 x 6 x0,

1, 1/2 < x0 6 x 6 τ + 1/2,

ε−j, 1/2 6 x 6 x0,

(6.2.5)

for j = 1, 2, 3, 4 and arbitrary x0 > 0.

case 1 : a > 0 for 1/2 < x 6 τ + 1/2. The derivatives of u(x) are estimated accord-

ing to the value of a: 0 < a < 1, a = 1 and a > 1. Solving (6.1.1) for u′′(x), we

obtain

u′′(x) = f(x) + b(x)u(x)
(ε+ x) − a(x)u′(x)

(ε+ x) . (6.2.6)

One can determine u′(x) from (6.2.6) as follows

u′(x) =
∫ x

1/2

f(s) + b(s)u(s)
ε+ s

ds−
∫ x

1/2

a(s)
ε+ s

u′(s) ds. (6.2.7)

By [39], u′(x) is given as follows

u′(x) = u′(1/2)
[

ε

ε+ x

]a
exp[−g1(x)] + g2(x) (6.2.8)

where

g1(x) =
∫ x

1/2

a(s)
ε+ s

ds = a(x) ln(ε+ x)−
∫ x

1/2
a′(s) ln(ε+ s) ds (6.2.9)
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with a(1/2) = 0, and

g2(x) = (ε+ x)−a
∫ x

1/2
[f(s) + b(s)u(s)](ε+ s)a−1 exp[g1(s)− g1(x)] ds. (6.2.10)

Note that |g1(x)| 6 C from (6.2.4), then g2(x) becomes

|g2(x)| 6 C(ε+ x)−a
∫ x

1/2
(ε+ s)a−1 ds 6 C.

Applying the triangle inequality in (6.2.8) we obtain

|u′(x)| 6 C [1 + |u′(1/2)|(ε/(ε+ x))a] . (6.2.11)

Considering 0 < a < 1, there exists a point x0 in the interval (1/2, τ + 1/2) such that

|u′(x0)| 6 C, we have

|u′(1/2)|
(

ε

ε+ x0

)a
6 C.

This inequality gives

|u′(1/2)| 6 C
(
ε+ x0

ε

)a
6 Cε−a.

Substituting the estimate obtained for |u′(1/2)| into (6.2.11), we obtain

|u′(x)| 6 C
[
1 + (ε+ x)−a

]
, 0 < a < 1.

To obtain u′′(x), let us make first make a(x)u′(x)/(ε + x) the subject of the formula in

(6.2.6), then we have

a(x)u′(x)
ε+ x

= f(x) + b(x)u(x)
(ε+ x) − u′′(x). (6.2.12)

Differentiating (6.1.1), solving the resulting equation for u′′′(x) and taking into account

(6.2.12), we obtain

u′′′(x) = f ′(x) + b′(x)u(x) + b(x)u′(x)− a′(x)u′(x)
(ε+ x) − a′(x) + 1

(ε+ x) u′′(x). (6.2.13)

From the above equation, we obtain u′′(x) as follows

u′′(x) =
∫ x

1/2

f ′(s) + b′(s)u(s) + b(s)u′(s)− a′(s)u′(s)
ε+ s

ds−
∫ x

1/2

a′(s) + 1
ε+ s

u′′(s) ds.

(6.2.14)
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According to [37], u′′(x) is given as

u′′(x) = u′′(1/2)
[

ε

ε+ x

]a+1
exp[−g3(x)] + g4(x) (6.2.15)

where

g3(x) =
∫ x

1/2

a′(s) + 1
ε+ s

ds = [a(x) + 1] ln(ε+ x)− ln(ε+ 1/2)−
∫ x

1/2
a′(s) ln(ε+ s) ds,

(6.2.16)

with a(1/2) = 0, and

g4(x) = (ε+x)−a−1
∫ x

1/2
[f ′(s) + b′(s)u(s) + [b(s)−a′(s)]u′(s)](ε+s)a exp[g3(s)−g3(x)] ds.

(6.2.17)

Since |g3(x)| 6 C and |u(x)| 6 C, we obtain

|g4(x)| 6 C(ε+ x)−a−1
∫ x

1/2
[1 + u′(s)](ε+ s)a ds 6 C[1 + (ε+ x)−a]. (6.2.18)

From (6.1.1), we obtain

u′′(1/2) 6 C(ε+ 1/2)−1[1 + u′(1/2)] 6 C[1 + (ε+ 1/2)−a−1].

Using the estimate of u′′(1/2) and g4(x) into (6.2.15), we obtain

u′′(x) 6 C
[
1 + (ε+ 1/2)−a−1

] [ ε

ε+ x

]a+1
+ C

[
1 + (ε+ x)−a

]
Using (ε+ 1/2)−a−1 6 (ε)−a−1 in the above inequality gives

|u′′(x)| 6 C
[
1 + (ε+ x)−a−1

]
, for 0 < a < 1.

Differentiating (6.1.1) and taking into account (6.2.5), we obtain the following result

|u(j)(x)| 6 C
[
1 + (ε+ x)−a+1−j

]
, 0 < a < 1.

Let us now prove the case when a = 1. Equation (6.2.8) can be written in integral form

1/2 to 1/2 + τ as follows
∫ 1/2+τ

1/2
u′(x) dx =

∫ 1/2+τ

1/2
u′(1/2)

[
ε

ε+ x

]
exp[−g1(x)] dx+

∫ 1/2+τ

1/2
g2(x) dx. (6.2.19)
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Evaluating this integral by parts on the right hand we obtain

u(1/2+τ)−u(1/2) = u′(1/2)ε[ln(ε+1/2+τ) exp(−g1(1/2+τ))−ln(ε+1/2) exp(−g1(1/2))

+
∫ 1/2+τ

1/2
ln(ε+ x)g′1(x) exp(−g1(x)) dx] +

∫ 1/2+τ

1/2
g2(x) dx, (6.2.20)

where g′1 = a(x)(ε + x)−1 and g1(1/2) = 0 are obtained from (6.2.9). Substituting these

equations into (6.2.20), we obtain

u(1/2+τ)−u(1/2) = u′(1/2)ε[ln(ε+1/2+τ) exp(−g1(1/2+τ))−ln(ε+1/2) exp(−g1(1/2))

−
∫ 1/2+τ

1/2
a(x)(ε+ x)−1 ln(ε+ x) exp(−g1(x)) dx] +

∫ 1/2+τ

1/2
g2(x) dx, (6.2.21)

Using the triangle inequality in (6.2.21) and taking into account the inequality

| ln(ε+ 1/2 + τ) exp(−g1(1/2 + τ))−
∫ 1/2+τ

1/2
a(x)(ε+ x)−1 exp(−g1(x)) dx| 6 C,

we obtain

C 6 |u′(1/2)|[ε− ε ln(ε+ 1/2)]|.

For sufficiently small ε 6 x0, x0 > 0, we have ε− ε ln(ε+ 1/2) > ε ln(ε+ 1/2). It follows

that

C > |u′(1/2)|[ε− ε ln(ε+ 1/2)]| 6 |u′(1/2)|[ε ln(ε+ 1/2)−1].

Solving this inequality, we obtain

|u′(1/2)| 6 Cε−1 ln−1(ε+ 1/2)−1.

Substituting this estimate into (6.2.11), we obtain

|u′(x)| 6 C[1 + (ε+ x)−1 ln−1(ε+ 1/2)−1].

To determine u′′(x) for a = 1, (6.2.15) becomes

u′′(x) = u′′(1/2)
[

ε

ε+ x

]2
exp[−g3(x)] + g4(x). (6.2.22)

From (6.2.18), g4(x) is defined as follows

|g4(x)| 6 C(ε+x)−2
∫ x

1/2
[1 +u′(s)](ε+ s) ds 6 C[1 + (ε+x)−1 ln−1(ε+ 1/2)−1]. (6.2.23)
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From (6.1.1), we obtain

u′′(1/2) 6 C(ε+ 1/2)−1[1 + u′(1/2)] 6 C(ε+ 1/2)−2 ln−1(ε+ 1/2)−1.

From (6.2.22) using the estimate of u′′(1/2) and g4(x), and taking into account

the inequality (ε+ 1/2)−2 6 ε−2, we obtain

u′′(x) 6 C[1 + (ε+ x)−2 ln−1(ε+ 1/2)−1].

By differentiating (6.1.1) and with the help of (6.2.5), we obtain the following result

|u(j)(x)| 6 C[1 + (ε+ x)−j ln−1(ε+ 1/2)−1], a = 1.

We easily prove the case when a > 1 by using u′(1/2) 6 Cε−1 obtained from (6.2.5) for

1/2 6 x 6 x0 which substituted into (6.2.11), leads to

|u′(x)| 6 C[1 + εa−1(ε+ x)−a].

To obtain u′′(x) for a > 1. Using u′′(1/2) 6 Cε−2 obtained from (6.2.5) for 1/2 6 x 6 x0

and |g4(x)| 6 C[1 + εa−1(ε+ x)−a] substituted into (6.2.15), we obtain

|u′′(x)| 6 C[1 + εa−1(ε+ x)−a−1].

Differentiating (6.1.1) and taking into account (6.2.5), we easily obtain

|u(j)(x)| 6 C[1 + εa−1(ε+ x)1−a−j].

This concludes the proof of the estimate (6.2.2) for 1/2 < x 6 1/2 + τ.

case 2 : a 6 0 for 1/2− τ 6 x 6 1/2. In this case, u′(x) is expressed as follows:

u′(x) = u′(x0) exp[ψ(x0, x)] +
∫ x

x0

f(s) + b(s)u(s)
ε+ s

exp[ψ(x0, x)] ds, (6.2.24)

where

ψ(s, x) = −
∫ x

s

a(κ)
ε+ κ

dκ.
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If a(1/2) = 0 then ψ(s, x) 6 C, 1/2 − τ 6 s, x 6 1/2. Using the triangle inequality in

(6.2.24) and choosing a point x0 ∈ [(1− τ)/2, 1/2] such that u′(x0) 6 C, we obtain

|u′(x)| 6 C[1 + | ln(ε+ x)|], 1/2− τ 6 x 6 1/2, a(1/2) = 0, j = 1 since p = 0.

Let determine u′′(x) with p = 0 for j = 2. On differentiating (6.1.1) and solving the

resulting equation for u′′(x), we obtain

u′′(x) = u′′(x0) exp[ψ(x0, x)] + (ε+ x)−p−1
∫ x

x0

F (s)
ε+ s

(ε+ s)p+1 exp[ψ(s, x)] ds (6.2.25)

where

ψ(s, x) = −
∫ x

s

a(κ)
ε+ κ

dκ,

and

F (s) = f(s) + b′(s)u(s) + [b(s)− a′(s)]u′(s).

Substituting ψ(s, x) 6 C and u′′(x0) 6 C into (6.2.25), we obtain

|u′′(x)| 6 C + C(ε+ x)−p−1
∫ x

x0
[1 + u′(s)](ε+ s)p ds 6 C[1 + (ε+ x)−p−1 ln(ε+ x)].

Differentiating (6.1.1) and taking into account (6.2.5), we obtain

|u(j)(x)| 6 C[1 + (ε+ x)1−j−p| ln(ε+ x)|], a+ p = 0; j > p, j = 1, 2, 3, 4.

Let a(1/2) < 0. In this case p > 1. Then there exists a constant x0 > 0 such that

a(x) < 0 for 1/2− τ 6 x 6 x0. Therefore, we have

ψ(s, x) 6 −x0 ln[(ε+ s)/(ε+ x)], 1/2− τ 6 x 6 s 6 x0.

Taking exponentials on both sides of inequality, we obtain

exp(ψ(s, x)) 6 [(ε+ x)/(ε+ s)]x0 , 1/2− τ 6 x 6 s 6 x0.

Substituting this estimate in (6.2.24) with x = s and taking into account (6.2.5), we

obtain

|u′(x)| 6 C, 1/2− τ 6 x 6 x0, a(1/2) < 0.
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Differentiating (6.1.1) and taking into account (6.2.5), we obtain

|u(j)(x)| 6 C, 1/2− τ 6 x 6 1/2, a < 0, k 6 p, j = 1, 2, 3, 4.

Consider the case when j > p, a+ p > 0 and a 6 0. The expression for u′(x) is

u′(x) = u′(1/2)
[

ε

ε+ x

]a+1
exp[−g1(x)] + g2(x), 1/2− τ 6 x 6 1/2. (6.2.26)

Following the same steps as for 0 < a < 1, we obtain

|u′(x)| 6 C[1 + (ε+ x)−a−1], a 6 0.

u′′(x) is given by

u′′(x) = u′′(1/2)
[

ε

ε+ x

]a+2
exp[−g3(x)] + g4(x), 1/2− τ 6 x 6 1/2. (6.2.27)

We obtain u′′(x) by following the same steps as for 0 < a < 1:

|u′′(x)| 6 C[1 + (ε+ x)−a−2], a 6 0.

Differentiating (6.1.1) and taking into account (6.2.5), we obtain

|u(j)(x)| 6 C[1 + (ε+ x)−a−j], 1/2− τ 6 x 6 1/2, a 6 0, j > p, j = 1, 2, 3, 4.

By (6.2.2) and (6.2.3), the derivatives in (6.1.1)-(6.1.2) may be estimated by a power

function with argument ε + x, so that (6.1.1)-(6.1.2) is an equation with power interior

function [38].

The singularly perturbed turning point problem (6.1.1)-(6.1.2) may be regarded as a

concatenation of two problems: One defined on the interval [0, 1/2) and the other one

on the interval (1/2, 1]. Therefore, the solution of the problem (6.1.1)-(6.1.2) may dis-

play a layer near x = 1/2 on [0, 1/2) and a layer x = 1/2 on (1/2, 1]. This consideration

allows us to understand the behaviour of the solution and its derivatives. The solution

can be decomposed into two parts, namely the smooth component v(x) and the singular

component w(x) ([42], pp 47) such that

u(x) = v(x) + w(x),
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where v(x) is the solution of the inhomogeneous problem

Lv(x) = f(x), x ∈ Ω1 = (1/2, 1], (6.2.28)

v(1/2) = 0, v(1) = u(1) = α2, (6.2.29)

and w(x) is the solution of the homogeneous problem

Lw(x) = 0, x ∈ Ω1, (6.2.30)

w(1/2) = u(1/2)− v(1/2), w(1) = 0. (6.2.31)

The following lemma gives the bounds on the solution to (6.1.1)-(6.1.2) and its derivatives.

Lemma 6.2.6. The smooth and singular components of u(x) of problem (6.1.1)-(6.1.2),

for 0 6 j 6 4 satisfies

|v(j)(x)| 6 C



1 + (ε+ x)2−j| ln(ε+ x)|, x ∈ [0, 1/2],

1 + (ε+ x)3−a−j, a < 1, x ∈ [1/2, 1],

1 + (ε+ x)2−j| ln−1(ε+ 1/2)−1|, a = 1, x ∈ [1/2, 1],

1 + εa−1(ε+ x)3−a−j, a > 1, x ∈ [1/2, 1],

(6.2.32)

and

|w(j)(x)| 6 C



(ε+ x)1−j| ln(ε+ x)|, x ∈ [0, 1/2],

(ε+ x)1−a−j, a < 1, x ∈ [1/2, 1],

(ε+ x)−j| ln−1(ε+ 1/2)−1|, a = 1, x ∈ [1/2, 1],

εa−1(ε+ x)1−a−j a > 1, x ∈ [1/2, 1],

(6.2.33)

where C is constant and independent of ε.

Proof. We prove this lemma on Ω1 = [1/2, 1]. The proof on [0, 1/2] follows similar steps.

The reduced problem (ε = 0), corresponding to problem (6.1.1) has the same order

x2v′′0 + a(x)v′0 − b(x)v0 = f(x), x ∈ Ω1 (6.2.34)

v(1/2) = 0, v0(1) = u(1) = β. (6.2.35)
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The smooth component v(x) is further decomposed into the sum ([42], pp 68)

v(x) = v0(x) + (ε+ x)v1(x) + (ε+ x)2v2(x), x ∈ Ω̄1, (6.2.36)

where v0 is the solution of the reduced problem in (6.2.34), which is independent of ε, and

having smooth coefficients a(x), b(x) and f(x). From these assumptions, for 0 6 j 6 4,

we have

|v(j)
0 (x)| 6 C, for all x ∈ Ω̄1 (6.2.37)

and, v1 and v2 are the solutions of (6.1.1), where Lemma 6.2.5 used. Now, applying the

triangle inequality, using (6.2.37) and the estimates of v1 and v2 from (6.2.2) substituted

into (6.2.36), which complete the proof.

To prove the regular part w(x), construct the barrier functions as follows [31].

Ψ±(x) = C exp(−ηx/ε)± w(x), x ∈ Ω̄1.

The values of Ψ±(x) at the boundaries are

Ψ±(1/2) = C exp(−η/2ε)± w(1/2),

= C exp(−η/2ε)± (u(1/2)− v(1/2)), using (6.2.31),

> 0, C is a constant chosen sufficiently large,

Ψ±(1) = C exp(−η/ε)± w(1),

= C exp(−η/ε), using (6.2.31),

> 0.

From the above estimates, it is clear that Ψ(x) > 0, x ∈ Ω2 = Ω̄1\Ω1. Therefore we have

LΨ±(x) = (ε+ x)[Ψ±(x)]′′ + a(x)[Ψ±(x)]′ − b(x)Ψ±(x), x ∈ Ω1

= C exp(−ηx/ε)
[
η2(ε+ x)

ε2 − ηa(x)
ε
− b(x)

]
± Lw(x)

= C exp(−ηx/ε)
[
η2(ε+ x)

ε2 − ηa(x)
ε
− b(x)

]
, using (6.2.30)

6 0, since (x/ε2) 6 b(x), x ∈ Ω1.
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Hence, by Lemma 6.2.1, we obtain Ψ±(x) > 0, x ∈ Ω̄1. Then we have

C exp(−ηx/ε)± w(x) > 0.

Then, we obtain

w(x) 6 C exp(−ηx/ε), x ∈ Ω1.

Using the inequality relation, the above inequality can expressed as follows

|w(x)| 6 C exp(−ηx/ε) 6 C


(ε+ x)1−a, a < 1,

(ε+ x)−1| ln−1(ε+ 1/2)−1|, a = 1,

εa−1(ε+ x)1−a, a > 1.

(6.2.38)

Since Lw(x) = 0, the jth derivative of w(x) can be estimated immediately from the

estimate of w(x). The following estimates hold for 0 6 j 6 4,

|w(j)(x)| 6 C


(ε+ x)1−a−j, a < 1,

(ε+ x)−j| ln−1(ε+ 1/2)−1|, a = 1,

εa−1(ε+ x)1−a−j, a > 1,

(6.2.39)

which completes the proof.

6.3 Construction of the FMFDM

We develop a difference scheme to determine the solution of problem (6.1.1)-(6.1.2). It is

assumed that there is an interior layer at point xN/2 = 1/2 with adapted Shishkin mesh

Ωτ
N , where N is a multiple of 4. The interval [0, 1] is divided into three subintervals

[0, 1] =: [0, 1/2− τ ], [1/2− τ, 1/2 + τ ] and [1/2 + τ, 1].

Each of the intervals [0, 1/2−τ ] and [1/2+τ, 1] is divided uniformly into N/4 sub-intervals

whist the interval [1/2 − τ, 1/2 + τ ] is divided into N/2 sub-intervals. In this case, we

define τ as

τ = min
{

1
4 ,
ε

η
ln (N/4)

}
. (6.3.1)
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The mesh size in each of the three sub-intervals is given by

xj − xj−1 =

 hj = 4(0.5− τ)/N if j = 1, 2, · · · , N/4 , 3N/4 + 1, · · · , N − 1, N,

hj = 4τ/N if j = N/4 + 1 , N/4 + 2 · · · 3N/4.
(6.3.2)

For the rest of chapter, we use the notation D(xj) = Dj. We discretize (6.1.1)-(6.1.2)

using the upwind scheme on Ωτ
N in the following manner:

LNUj :=

 (ε+ xj)D̃Uj + ãjD
−Uj − b̃jUj = f̃j for j = 0, 1, · · · , N/2− 1,

(ε+ xj)D̃Uj + ãjD
+Uj − b̃(x)Uj = f̃j for j = N/2, N/2 + 1, · · · , N − 1,

(6.3.3)

U(0) = α1, U(1) = α2, (6.3.4)

where  ãj = aj−1+aj

2 for j = 0, 1, · · · , N/2− 1,

ãj = aj+aj+1
2 for j = N/2, N/2 + 1, · · · , N − 1, b̃j = bj−1+bj+bj+1

3 for j = 1, 2, 3, · · · , N − 1,

f̃j = fj−1+fj+fj+1
3 for j = 1, 2, 3, · · · , N − 1.

D+Uj = Uj+1 − Uj
hj+1

, D−Uj = Uj − Uj−1

hj
and D̃Uj = 2

hj + hj+1
(D+Uj −D−Uj).

(6.3.3) can be written in the form:

LNUj := r−Uj−1 + rcUj + r+Uj+1 = fj, j = 1, 2, 3 · · · , N − 1, (6.3.5)

where, for j = 1, 2, 3 · · · , N/2− 1, we have

r−j = 2(ε+ xj)
hj(hj + hj+1) −

ãj
hj
, rcj = ãj

hj
− 2(ε+ xj)

hjhj+1
− b̃j, r+

j = 2(ε+ xj)
hj+1(hj + hj+1) , (6.3.6)

and for j = N/2, N/2 + 1, · · · , N − 1, we have

r−j = 2(ε+ xj)
hj(hj + hj+1) , rcj = − ãj

hj+1
− 2(ε+ xj)

hjhj+1
− b̃j and r+

j = 2(ε+ xj)
hj+1(hj + hj+1) + ãj

hj+1
.

(6.3.7)

Based on the scheme developed above, we need to validate the next lemma which states

that problem (6.3.3)-(6.3.4) satisfies the discrete minimum principle.
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Lemma 6.3.1. Let ξj be any mesh function such that LNξj 6 0, 1 6 j ≤ N − 1, ξ0 ≥ 0

and ξN ≥ 0 implies that ξj ≥ 0, 0 ≤ j 6 N .

Proof. See Lemma 4.3.1 in Chapter 4.

Lemma 6.3.1 is used to prove the following lemma.

Lemma 6.3.2. Suppose that Zi is any mesh function such that Z0 = ZN = 0, then

|Zi| 6
1
b0

max
16j≤N−1

|LNZj|, ∀ 0 ≤ i ≤ N.

Proof. See Lemma 4.3.2 in Chapter 4.

With the above results, we are ready to provide the ε-uniform convergence in the next

section.

6.4 Convergence analysis

In this section we prove that the proposed method FMFDM is uniformly convergent of

order one, up to a logarithmic factor.

Theorem 6.4.1. Let u(x) be the solution of the continuous problem (6.1.1)-(6.1.2) and

U(x) is the numerical solution of problem (6.3.3) and (6.3.4). Then, for sufficiently large

N , we have the following result

max
0≤j≤N

|uj − Uj| 6 CN−1
[
ln
(
N

4

)]2
. (6.4.1)

Proof. We prove the theorem on [1/2, 1] by considering each case of a. The proof on

[0, 1/2] follows in a similar way. We decompose the solution U of the discrete problem

(6.3.3) and (6.3.4) into a regular and a singular parts as

U = V +W, (6.4.2)
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where V is the solution of the inhomogeneous problem

LNV = fj, for j = N/2, · · · , N , V (1/2) = v(1/2), V (1) = v(1),

and W is the solution of the homogenous problem

LNWj = 0, for j = N/2, · · · , N, W (1/2) = U(1/2)− V (1/2),W (1) = w(1).

Equation (6.4.2) can be expressed as follows:

U − u = (V − v) + (W − w) (6.4.3)

and the components of the solution can be estimated separately. A combination of (6.1.1)

and (6.3.3) gives the error for the regular component as follows

LN(V − v) = f − LNv

= (L− LN)v

= (ε+xj)
(
d2

dx2 − D̃
)
v + ãj

(
d

dx
−D−

)
v.

Applying the two estimates in Lemma 4.1 pp 24 of [42], we obtain

|LN(Vj−vj)|≤
(ε+xj)

3 (xj+1−xj−1)|v′′′j |+
ãj
2 (xj − xj−1)|v′′j | for 1≤j6 N/2− 1. (6.4.4)

Using the estimates of the derivatives of vj in Lemma 6.2.6 and hj = xj−xj−1 ≤ 4N−1 in

(6.4.4), we obtain

|LN(Vj−vj)| 6 CN−1


1 + (ε+ x) + (ε+ x)1−a, a < 1,

1 + (ε+ x) + ln−1(ε+ 1/2)−1, a = 1,

1 + (ε+ x) + εa−1(ε+ x)1−a, a > 1.

(6.4.5)

Using the inequality relation, the inequalities in (6.4.5) lead to the following result

|LN(Vj − vj)(xj)| ≤ CN−1.

Hence, by Lemma 6.3.2, we obtain

|(Vj − vj)(xj)| 6 CN−1 for N/2 6 j 6 N. (6.4.6)
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The estimates on LN(Wj−wj) depends on the value of τ , whether τ = 1/4 or

τ = (ε/η) ln(N/4).

If τ = 1/4, the mesh is uniform, i.e., τ = 1/4 ≤ (ε/η) ln(N/4). The estimation of the

singular component is similar to the equation (6.4.4), then gives

|LN(Wj−wj)| ≤
(ε+xj)

3 (xj+1−xj−1)|w′′′j |+
ãj
2 (xj − xj−1)|w′′j | for 1 ≤ j 6 N/2−1. (6.4.7)

Noting that xj−xj−1 ≤ 4N−1 and taking into account the bounds on wj in Lemma 6.2.6,

we obtain

|LN(Wj−wj)| 6 CN−1


(ε+ x)−a−1, a < 1,

(ε+ x)−2| ln−1(ε+ 1/2)−1|, a = 1,

εa−1(ε+ x)−a−2, a > 1.

(6.4.8)

The above inequalities lead to

|LN(Wj−wj)(xj)| 6 CN−1ε−2. (6.4.9)

Since ε−1 6 (4/η) ln(N/4), we obtain the following inequality

|LN(Wj − wj)(xj)| 6 CN−1 ln2(N/4).

Using Lemma 6.3.2 then we obtain

|(Wj−wj)(xj)| 6 CN−1 ln2(N/4) for N/2 6 j 6 N−1. (6.4.10)

If τ = (ε/η) ln(N/4), the mesh is piecewise uniform. In this case we have two subintervals

namely [1/2, τ + 1/2] and [τ + 1/2, 1]. A different argument is used to bound W − w

in each subinterval. Firstly, compute the error for the singular component in the coarse

mesh region [τ + 1/2, 1], i.e., for all τ + 1/2 6 xj 6 1. Using the triangle inequality, we

have

|Wj − wj| ≤ |Wj|+|wj|. (6.4.11)

Application of Lemma 6.2.6 in (6.4.11), we obtain

|w(xj)| 6 Cε−1xj 6 Cε−1τ.
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Substituting the value of τ into the above expression, we obtain

|w(xj)| 6 C ln(N/4) 6 C for 3N/4 6 j 6 N. (6.4.12)

Now to obtain a similar bound on W, the interested readers can obtain the following

inequalities with the help of Lemma 7.3 (p.58) and Lemma 7.5 (p.60) of [42] which lead

to

|W (xj)| 6 C ln(N/4) 6 C for 3N/4 6 j 6 N. (6.4.13)

Combining the estimated obtained by (6.4.12) and (6.4.13), we obtain

|(W − w)(xj)| 6 C ln(N/4) 6 C for 3N/4 6 j 6 N. (6.4.14)

Now the bounds in the interior region, [1/2, τ+1/2] can be obtained from (6.4.7) by using

the bounds of wj in Lemma 6.2.6 and keeping in mind that h = 4τ/N, we obtain

|LN(Wj − wj)| ≤ Chε−2 6 Cτε−2N−1.

From (6.4.14), we have

|(W (1/2)− w(1/2)| = 0

and

|(W (3N/4)− w(3N/4)| ≤ |(W (3N/4)|+ |w(3N/4)| 6 C ln(N/4) 6 C.

Now, introduce the barrier function Φj in [1/2, τ + 1/2] defined by

Φj = (x+ τ)C1ε
−2τN−1+ C2N

−1,

where C1 and C2 are arbitrary constants.

Now, consider comparison functions Ψ defined by

Ψ±j = (xj + τ)C1ε
−2τN−1+C2N

−1 ± (Wj − wj). (6.4.15)

For an appropriate choice of C1 and C2, (6.4.15) satisfies the following

Ψ3N/4 ≥ 0 and ΨN/2 = 0.
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Note that

LNΨj 6 0, N/2 + 1 6 j 6 3N/4− 1.

Application of Lemma 6.3.1 on [1/2, τ + 1/2] for the function Ψ±j , we obtain

Ψj > 0, N/2 + 1 6 j 6 3N/4− 1.

Consequently,

|Wj − wj| ≤ Φj ≤ C1ε
−2τ 2N−1 + C2N

−1.

Substituting the value of τ into the above inequality, we obtain

|Wj − wj| ≤ CN−1 ln2 (N/4) . (6.4.16)

Using estimates (6.4.14) and (6.4.16), we obtain the estimate of the singular component

of the error on [1/2, τ + 1/2]

|Wj − wj| ≤ CN−1 ln2 (N/4) , N/2 + 1 6 j 6 3N/4− 1. (6.4.17)

Combining estimates (6.4.6) and (6.4.17) along with (6.4.3), we obtain

|Uj − uj| 6 CN−1
[
ln
(
N

4

)]2
, N/2− 1 6 j 6 N. (6.4.18)

A similar analysis on the subinterval [0, 1/2] gives

|Uj − uj| 6 CN−1
[
ln
(
N

4

)]2
, 1 6 j 6 N/2. (6.4.19)

Combining inequalities (6.4.19) and (6.4.18), we obtain the required result.

To increase the accuracy as well as the rate of convergence of the scheme, we use Richard-

son extrapolation in the next section.

6.5 Richardson extrapolation on the FMFDM

It is a post-processing procedure where a linear combination of two computed solutions

approximating a particular quantity results a third and better approximation [49]. We
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apply this method for the proposed scheme.

We consider a second mesh Ωτ
2N , which has the same transition parameter τ given by

(6.3.1), and is obtained by bisecting each sub-interval of Ωτ
N defined in (6.3.2). Thus,

Ωτ
N = xj ⊂ Ωτ

2N = x̃j

and

x̃j − x̃j−1 = h̃j = hj/2.

Theorem 6.5.1. (Error after extrapolation). Let a(x), b(x) and f(x) be sufficiently

smooth and u(x) be the solution of (6.1.1). If U ext be the approximation solution of u

obtained using (6.3.3)-(6.3.4) with u(0) = U(0), u(1) = U(1), then there exists a positive

constant C independent of ε and the mesh spacing such that

max
0≤j≤N

|(U ext
j − uj)| 6 CN−2

[
ln
(
N

4

)]2
. (6.5.1)

Proof. As mentioned in the previous section, Theorem 6.5.1 will be proved only on the

interval [1/2, 1]. Let Uj, Ũj be the numerical solution of the discrete problem (6.3.3)-(6.3.4)

on the mesh Ωτ
N and Ωτ

2n respectively. Then the inequality (6.4.19) can be written as

Uj − uj = C1N
−1 ln2 (N/4) +RN(xj) ∀xj ∈ ΩN

τ (6.5.2)

and

Ũj − uj = C2(2N)−1 ln2 (N/4) +R2N(x̃j) ∀x̃j ∈ Ωτ
2n, (6.5.3)

where C1 and C2 are some fixed constants and where the remainder terms

RN(xj) and R2N(x̃j) are O[N−1 ln2 (N/4)].

A combination of two equations (6.5.2) and (6.5.3) leads

uj − (2Ũj − Uj) = RN(xj)− 2R2N(xj) = O[N−1 ln2 (N/4)] ∀xj ∈ Ωτ
N , (6.5.4)

therefore we set

U ext
j = 2Ũj − Uj ∀xj ∈ Ωτ

N , (6.5.5)
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as the new numerical approximation of uj at the grid point xj ∈ Ωτ
n computed after using

the extrapolation process.

The decomposition of the error after extrapolation can be also expressed as in (6.4.3),

which gives

U ext
j − uj = (V ext

j − vj) + (W ext
j − wj), (6.5.6)

where V ext
j and W ext

j are the regular and singular component of U ext
j .

The local truncation error of the scheme (6.3.3)-(6.3.5) after extrapolation is given by

LN(U ext
j − uj) = 2LN(Ũj − uj)− LN(Uj − uj) (6.5.7)

where

LN(Uj − uj) = r−uj−1 + rcuj + r+uj+1 − (ε+ xj)u′′j − aju′j + bju, (6.5.8)

and

LN(Ũj − uj) = r̃−uj−1 + r̃cuj + r̃+uj+1 − (ε+ xj)u′′j − aju′j + bju. (6.5.9)

The quantities r−, rc and r+ are given in (6.3.6) while the quantities r̃−, r̃c and r̃+ are

obtained by replacing hj with h̃j and hj+1 with h̃j+1 in the expressions of r−, rc and r+

respectively. Taking the Taylor series expansion of uj around xj, we obtain the following

approximations for uj−1 and uj+1:

uj−1 = uj − hju′j +
h2
j

2 u
2
j −

h3
j

6 u
3
j +

h4
j

24u
4(ξ1, j), (6.5.10)

uj+1 = uj + hj+1u
′
j +

h2
j+1

2 u2
j +

h3
j+1

6 u3
j +

h4
j+1

24 u4(ξ2, j), (6.5.11)

uj−1 = uj − h̃ju′j +
h̃2
j

2 u
2
j −

h̃3
j

6 u
3
j +

h̃4
j

24u
4(ξ̃1, j), (6.5.12)

uj+1 = uj + h̃j+1u
′
j +

h̃2
j+1

2 u2
j +

h̃3
j+1

6 u3
j +

h̃4
j+1

24 u4(ξ̃2, j), (6.5.13)

where

(ξ1, j) ∈ (xj−1, xj), (ξ2, j) ∈ (xj, xj+1), ξ̃1 ∈ (xj−1 + xj
2 , xj) and ξ̃2 ∈ (xj,

xj + xj+1

2 ).
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Substituting (6.5.10) and (6.5.11) into (6.5.8), (6.5.12) and (6.5.13) into (6.5.9), we obtain

the following expressions

LN(Uj − uj) = k1uj + k2u
′
j + k3u

2
j + k4u

3
j + k5,1u

4(ξ1, j) + k5,2u
4(ξ2, j) (6.5.14)

and

LN(Ũj − uj) = k̃1uj + k̃2u
′
j + k̃3u

2
j + k̃4u

3
j + k̃4u

4
j + k̃5,1u

4(ξ̃1, j) + k̃5,2u
4(ξ̃2, j). (6.5.15)

The coefficients in (6.5.14)

k1=
2(ε+ xj)

hj(hj+hj+1)−
2(ε+ xj)
hjhj+1

+ 2(ε+ xj)
hj+1(hj+hj+1) , k2=0,

k3=
(ε+ xj)hj
hj+hj+1

− ajhj
2 + (ε+ xj)hj+1

hj+hj+1
− (ε+ xj),

k4 =
−(ε+ xj)h2

j

3(hj+hj+1) +
ajh

2
j

6 +
(ε+ xj)h2

j+1

3(hj+hj+1) , k5,1 =
(ε+ xj)h3

j

12(hj+hj+1) −
ajh

3
j

24 , k5,2 =
(ε+ xj)h3

j+1

12(hj+hj+1) .

The quantities k̃1, k̃2, k̃3, k̃4, k̃5,1 and k̃5,2 can be determined by replacing hj by h̃j and

hj+1 by h̃j+1.

Substituting (6.5.14) and (6.5.15) into (6.5.7), we obtain

LN(U ext
j − uj) = T1uj + T2u

′′
j + +T3u

′′′
j + +T4,1u

(4)(ξ1, j) + T4,2u
(4)(ξ2, j), (6.5.16)

where

T1 = 14(ε+ xj)
hj(hj + hj+1) −

14(ε+ xj)
hjhj+1

+ 14(ε+ xj)
hj+1(hj + hj+1) ,

T2 = (ε+ xj)hj
hj + hj+1

− (ε+ xj) + (ε+ xj)hj+1

hj + hj+1
, T3 = −

ajh
2
j

12 ,

T4,1 = −
(ε+ xj)h3

j

24(hj + hj+1) +
ajh

3
j

32 and T4,2 = −
(ε+ xj)h3

j+1

24 .

Given (6.3.2) and for the sake of simplicity, we shall use the following notation

hj = H if j = 3N/4, 3N/4 + 1, · · · , N, (6.5.17)

hj = h if j = N/2, N/2 + 1, · · · 3N/4. (6.5.18)
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Using the fact that, for ∀j = 3N/4, . . . , N , H = hj 6 4N−1 substituted into (6.5.16) on

[τ + 1/2, 1], we obtain:

LN(V ext
j −vj) =

[
−aj12v

′′′
j + (ε+ xj)

48 v(4)(ξ1, j)
]
H2+

[
aj
32v

(4)(ξ1, j)−
(ε+ xj)

24 v(4)(ξ2, j)
]
H3.

(6.5.19)

Applying the triangle inequality and Lemma 6.2.3 to (6.5.19), we obtain:

|LN(Vj−vj)| 6 CN−2


1 + (ε+ x)−a, a < 1,

1 + (ε+ x)−1| ln−1(ε+ 1/2)−1|, a = 1,

1 + εa−1(ε+ x)−a, a > 1.

(6.5.20)

The above inequalities lead to

|LN(V ext
j − vj)| 6 CN−2.

Hence, by Lemma 6.3.2, we obtain

|(V ext
j − vj)| 6 CN−2. (6.5.21)

The estimation of the nodal error of the singular component depends on whether τ = 1/4

or τ = (ε/η) ln(N/4).

In the first case, the mesh is uniform and (ε/η) ln(N/4) ≥ 1/4. The estimate of the

singular component is given by

LN(W ext
j −wj) =

[
−aj12w

′′′
j + (ε+ xj)

48 w(4)(ξ1, j)
]
h2+

[
aj
32w

(4)(ξ1, j)−
(ε+ xj)

24 w(4)(ξ2, j)
]
h3.

(6.5.22)

Using the triangle inequality in (6.5.22), we obtain

LN(W ext
j −wj) 6

[
−aj12w

′′′
j + (ε+ xj)

48 w(4)(ξ1, j)
]
h2+

[
aj
32w

(4)(ξ1, j)−
(ε+ xj)

24 w(4)(ξ2, j)
]
h3.

By Lemma 6.2.6 and the fact that hj = xj − xj−1 6 4N−1, the above inequality gives

|LN(Wj−wj)| 6 Ch−2


(ε+ x)−a−2, a < 1,

(ε+ x)−3| ln−1(ε+ 1/2)−1|, a = 1,

εa−1(ε+ x)−a−2, a > 1.

(6.5.23)
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The above inequalities lead to

|LN(Wj−wj)(xj)| 6 Ch−2ε−2 6 CN−2ε−2. (6.5.24)

Using ε−1 6 (2/η) ln(N/4) in (6.5.24), we obtain

|LN(W ext
j − wj)| 6 CN−2 ln2 (N/4) .

Applying Lemma 6.3.2 to the above inequality, we obtain

|(W ext
j − wj)| 6 CN−2 ln2 (N/4) . (6.5.25)

In the latter case, the mesh is piecewise uniform with the mesh spacing h = hj 6 4τN−1

for ∀j = N/2, . . . , 3N/4 on [1/2, τ + 1/2]. We obtain (6.5.24)

|LN(W ext
j − wj)| ≤ C1N

−2τ 2ε−2. (6.5.26)

Using the value of τ = (ε/η) ln(N/4) and applying Lemma 6.3.2 to the above inequality,

we obtain

|(W ext
j − wj)| 6 CN−2 ln2 (N/4) . (6.5.27)

A similar analysis can be performed on [0, 1/2].

Combining of (6.5.21), (6.5.25) and (6.5.27), we obtain the required error after extrapo-

lation.

6.6 Numerical results

Two numerical examples are presented in this section to confirm the theoretical results

of problems of the type (6.1.1). The numerical results are displayed in the tables. The

maximum errors and order of convergence are estimated by using the exact solution. The

solution in both examples has a turning point at point x = 0 (or x = 0.5 ), which results

an interior layer.
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Example 6.6.1. Consider the following singularly perturbed turning point problem:

(ε+ x)u′′ + xu′ − u = f(x), x ∈ [−1, 1], (6.6.1)

u(−1) = −1, and u(1) = 1. (6.6.2)

The exact solution is

u(x) = cos πx+ x+
xerf(x/

√
2ε) +

√
2ε/π exp(−x2/2ε)

erf(1/
√

2ε) +
√

2ε/π exp(−1/2ε)
.

The expression for f(x) is obtained after substituting u(x) and its derivatives into

(6.6.1).

Example 6.6.2. Consider the following singularly perturbed turning point problem:

(ε+ x)u′′ + 2(x− 0.5)u′ − u = f(x), x ∈ [0, 1], (6.6.3)

u(0) = −(ε− 1)2 and u(1) = −(ε+ 1)2. (6.6.4)

The exact solution is

u(x) = (2x− 1 + ε)2 cos[π(2x− 1)].

The expression for f(x) is obtained after substituting u(x) and its derivatives into

(6.6.3).

The maximum errors before extrapolation at all mesh points are evaluated using

En,ε = max
0≤j≤n

|uj − Uj|,

and these errors after extrapolation are given by

Eext
n,ε = max

06j6n
|uj − U ext

j |.

The numerical rates of convergence before and after extrapolation are obtained by using

rε,k = log2(Ẽnk
/Ẽ2nk

),

where Ẽ represents E or Eext.
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Table 6.1: Results for Example 6.6.1: Maximum errors before extrapolation
ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

10−3 2.84E-01 4.11E-02 1.36E-02 1.13E-02 1.99E-02 1.43E-02 2.29E-02

10−4 2.89E-01 3.54E-02 4.38E-02 3.14E-02 4.89E-03 1.56E-02 7.03E-03

10−5 2.91E-01 2.79E-02 2.53E-02 2.90E-02 2.70E-02 6.67E-03 2.12E-03

10−18 2.93E-01 3.13E-02 8.81E-03 4.62E-03 2.35E-03 1.18E-03 5.95E-04
...

...
...

...
...

...
...

...

10−25 2.93E-01 3.13E-02 8.81E-03 4.62E-03 2.35E-03 1.18E-03 5.95E-04

Table 6.2: Results for Example 6.6.1: Maximum errors after extrapolation
ε N = 16 n = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

10−3 2.49E-01 5.19E-02 2.00E-02 2.91E-02 2.07E-02 3.76E-02 3.18E-02

10−4 2.49E-01 5.27E-02 1.86E-02 3.93E-02 2.74E-02 9.35E-03 1.02E-02

10−5 2.37E-01 3.22E-02 3.26E-02 2.50E-02 1.37E-02 1.06E-02 2.91E-03

10−18 2.30E-01 1.63E-02 1.93E-03 3.65E-04 8.34E-05 2.03E-05 5.02E-06
...

...
...

...
...

...
...

...

10−25 2.30E-01 1.63E-02 1.93E-03 3.65E-04 8.34E-05 2.03E-05 5.02E-06

Table 6.3: Results for Example 6.6.1: Rates of convergence before extrapolation
ε r1 r2 r3 r4 r5 r6

10−3 2.79 1.59 0.27 -0.81 0.48 -0.68

10−4 3.03 -0.31 0.48 2.68 -1.67 1.15

10−5 3.39 0.14 -0.20 0.10 2.02 1.66

10−18 3.22 1.83 0.93 0.98 0.99 1.00
...

...
...

...
...

...
...

10−25 3.22 1.83 0.93 0.98 0.99 1.00

Table 6.4: Results for Example 6.6.1: Rates of convergence after extrapolation
ε r1 r2 r3 r4 r5 r6

10−3 2.26 1.38 -0.54 0.49 -0.86 0.24

10−4 2.24 1.50 -1.08 0.52 1.55 -0.13

10−5 2.88 -0.02 0.38 0.87 0.38 1.86

10−18 3.82 3.07 2.41 2.13 2.04 2.01
...

...
...

...
...

...
...

10−25 3.82 3.07 2.41 2.13 2.04 2.01
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Table 6.5: Results for Example 6.6.2: Maximum errors before extrapolation
ε N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048

10−1 6.46E-03 3.43E-03 1.77E-03 8.97E-04 4.52E-04 2.27E-04

10−2 1.38E-02 7.03E-03 3.57E-03 1.78E-03 8.86E-04 4.38E-04

10−4 1.35E-02 7.08E-03 3.65E-03 1.85E-03 9.35E-04 4.69E-04

10−28 8.87E-03 4.83E-03 2.52E-03 1.29E-03 6.50E-04 3.27E-04
...

...
...

...
...

...
...

10−35 8.87E-03 4.83E-03 2.52E-03 1.29E-03 6.50E-04 3.27E-04

Table 6.6: Results for Example 6.6.2: Maximum errors after extrapolation
ε N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048

10−2 2.02E-02 1.95E-02 1.96E-02 1.98E-02 2.01E-02 2.05E-02

10−3 3.54E-03 2.23E-03 1.88E-03 1.79E-03 1.77E-03 1.76E-03

10−4 2.04E-03 6.80E-04 3.04E-04 2.07E-04 1.82E-04 1.76E-04

10−28 2.48E-03 6.10E-04 1.52E-04 3.81E-05 9.54E-06 2.39E-06
...

...
...

...
...

...
...

10−35 2.48E-03 6.10E-04 1.52E-04 3.81E-05 9.54E-06 2.39E-06

Table 6.7: Results for Example 6.6.2: Rates of convergence before extrapolation
ε r1 r2 r3 r4 r5

10−2 0.98 0.98 1.00 1.01 1.02

10−3 0.93 0.96 0.98 0.99 1.00

10−4 0.93 0.96 0.98 0.99 0.99

10−29 0.88 0.94 0.97 0.98 0.99
...

...
...

...
...

...

10−35 0.88 0.94 0.97 0.98 0.99

Table 6.8: Results for Example 6.6.2: Rates of convergence after extrapolation
ε r1 r2 r3 r4 r5

10−2 0.05 -0.00 -0.02 -0.02 -0.02

10−3 0.66 0.25 0.07 0.02 0.00

10−4 1.59 1.16 0.56 0.18 0.05

10−29 2.03 2.00 2.00 2.00 2.00
...

...
...

...
...

...

10−35 2.33 2.00 2.00 2.00 2.00
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Remark 6.6.1. Tables of numerical results with Richardson extrapolation show that the

computed rate of convergence deviate notably from the theoretical rate of convergence

with Richardson extrapolation which is two. This is not surprising as performance of

Richardson extrapolation may be hindered by the fact that, for non-uniform (such as the

Shishkin type) meshes, nodes are offset by the fact that the transition point depends on

the number of nodes used in computations. This observation corroborates assertions in

the literature regarding issues with implementation of Richardson extrapolation (see e.g.

[10, 61, 71])

6.7 Discussion

In this chapter, we constructed a Fitted Mesh Finite Difference Method (FMFDM) for a

family of two-point singularly perturbed boundary value problems with diffusion term of

the form l(ε + x). Furthermore, the solution to these problems has an interior layer due

to the presence of a turning point. We first provided a set of bounds on the derivatives

of the solution. Then we constructed a mesh, of Shishkin type. Depending on the sign

of the coefficient of the convection term, a discrete upwind scheme was designed on this

mesh. Using bounds on the solution and its derivatives, we showed that the proposed nu-

merical method is uniformly convergent of order one, up to a logarithmic factor. We used

Richardson extrapolation via FMFDM in order to improve the accuracy of the scheme.

In order to confirm the above conclusions based on the theoretical analysis, we carried out

numerical investigations on two examples. In each example, we calculated the maximum

point-wise errors and the corresponding rates of convergence for various values of N . We

noticed that the numerical method was uniformly convergent (see tables 6.1, 6.3, 6.5 and

6.7). We provided computed point-wise maximum errors after extrapolation in tables 6.2,

6.4, 6.6 and 6.8, which improved the accuracy.

170https://etd.uwc.ac.za



Chapter 7

Time-dependent for interior layer

convection-diffusion problems with a

variable coefficient diffusion term

In this chapter, we consider a class of time-dependent singularly perturbed convection-

diffusion problems whose solution presents an interior layer due to the presence of a

turning point. In addition, the diffusion term is a function of ε and x. After establishing

bounds on the solution and their derivatives, we discretize the time variable by means

of the classical implicit Euler method with a constant step-size. This process results in

a system of two-point boundary problem at each time level which will be solved using a

fitted mesh finite difference method (FMFDM). We apply the Richardson extrapolation

technique in order to increase the accuracy as well as the order of convergence.

7.1 Introduction

Numerous numerical schemes for a class of time-dependent singular problems are avail-

able in the literature. These problems are characterised by a small parameter affecting

the highest derivative in the differential equations underlying the problem (see chapter 2).
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In this chapter, we seek to determine the solution of the linear singularly perturbed

problem

Lu :≡ (ε+ x) ∂
2u(x, t)
∂x2 + a(x, t) ∂u(x, t)

∂x
− b(x, t)u(x, t)− d(x, t) ∂u(x, t)

∂t
= f(x, t),

(7.1.1)

(x, t) ∈ Q ≡ Ω× (0, T ] ≡ (0, 1)× (0, T ], (7.1.2)

subject to the initial and boundary conditions

u(x, 0) = u0(x), 0 ≤ x ≤ 1, u(0, t) = α1(t) , u(1, t) = α2(t), t ∈ (0, T ]. (7.1.3)

In the rest of this chapter, we assume that

• a(0.5, t) = 0 and ax(0.5, t) > 0, for 0 6 t 6 T, ensuring that the solution to problem

(7.1.1)-(7.1.3) guarantees the existence of a turning point;

• b(x, t) ≥ β > 0, ∀(x, t) ∈ Q̄, which ensures that the problem verifies a minimum

principle;

• |ax(x, t)| > |ax(0.5, t)/2|, ∀(x, t) ∈ Q̄, implies that the turning point appears at point

(05, t), ∀t ∈ [0, T ].

The above conditions guarantee that the solution of problem (7.1.1)-(7.1.3) has a unique

solution which possesses an interior layer at x = 0 [19].

In order to have compatibility between the boundary and initial conditions, we also as-

sume that

u0(0) = α1(0) and u0(1) = α2(0),

so that the data match at the two corners (0, 0) and (1, 0) of the domain Q̄. These

conditions guarantee that there exists a constant C independent of ε such that [72]

|u(x, t)− α1(t)| ≤ Cx, |u(x, t)− α2(t)| ≤ C(1− x), ∀(x, t) ∈ Q̄

and

|u(x, t)− u0(x)| ≤ Ct, ∀(x, t) ∈ Q̄.

In this chapter, we propose and analyse a fitted mesh finite difference method (FMFDM)

to solve a class of time-dependent problem (7.1.1)-(7.1.3) where the coefficients of the
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differential equations depend on both space and time, are smooth.

The rest of this chapter is structured as follows. We provide bounds of the solution

u(x, t) of (7.1.1) and its derivatives in Section 2. In Section 3 we design a FMFDM for

solving our problem. We prove that the proposed method satisfies a minimum principle.

We use this fact to establish a stability result. In Section 4 we conduct a rigorous error

analysis. We prove that the proposed numerical method is uniformly convergent of first

order with respect to the perturbation parameter in time and space, up to a logarithmic

factor. In order to improve the accuracy as well as the order of convergence of the pro-

posed FMFDM, we apply the Richardson extrapolation method in Section 5. In Section

6 we present one example to see how the proposed method works and confirm our theo-

retical results. Finally, some conclusions are drawn in the Section 7.

In the rest of this chapter, C denotes a generic constant which may assume different

values in different inequalities but will always be independent of ε, as well as the spatial

and time discretization parameters.

7.2 A priori estimates of the solution and its deriva-

tives

In this section, we derive appropriate bounds on the solution of problem (7.1.1)-(7.1.3)

and its derivatives. The interval [0, 1] which we denote by Ω̄ is partitioned as

Ωl = [0, 1/2− τ ], Ωc = [1/2− τ, 1/2 + τ ] and Ωr = [1/2 + τ, 1], where 0 < τ ≤ 1/4.

The linear operator L as defined in (7.1.1) verifies the following minimum principle and

then we a state stability estimate for the solution of (7.1.1)-(7.1.3).

Lemma 7.2.1. (Minimum principle.) Assume that ξ(x, t) is a smooth function satisfying

ξ(0, t) ≥ 0, ξ(1, t) ≥ 0 and Lξ(x, t) ≤ 0, ∀x ∈ Ω. Then ξ(x, t) ≥ 0, ∀x ∈ Ω̄.
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Proof. Suppose that there exists a point (x∗, t∗) ∈ Q̄ such that ξ(x∗, t∗) = min
0≤x≤1

ξ(x, t)

and assume that ξ(x∗, t∗) < 0. Clearly (x∗, t∗) /∈ Q. It follows that

ξx(x∗, t∗) = 0, ξt(x∗, t∗) = 0 and ξxx(x∗, t∗) ≥ 0. This implies

Lξ(x∗, t∗) = (ε+x∗)ξxx(x∗, t∗)+a(x∗, t∗)ξx(x∗, t∗)−b(x∗, t∗)ξ(x∗, t∗)−d(x∗, t∗)ξt(x∗, t∗) > 0,

which is a contradiction. It follows that ξ(x∗, t∗) ≥ 0 and thus ξ(x, t) ≥ 0, ∀(x, t) ∈ Q̄.

We employ the minimum principle above to prove the next result which states that the

solution depends continuously on the data.

Lemma 7.2.2. (Stability estimate). The solution u(x, t) of problem (7.1.1)-(7.1.3) satisfies:

||u(x, t|| 6 [max {||α1||∞, ||α2||∞}] + 1
β
||f ||∞,∀(x, t) ∈ Q̄.

Proof. See Lemma 3.2.2 in Chapter 3.

Estimates of u and its derivatives in the interval [0, 1/2− τ ] and [1/2 + τ, 1] are given in

the next lemmas.

Lemma 7.2.3. The bound on the solution u(x, t) of (7.1.1) is |u(x, t)| ≤ C, (x, t) ∈ Q̄.

Proof. We refer to [30] for the proof.

Lemma 7.2.4. Let u(x, t) be the solution to (7.1.1)-(7.1.3) and a(x, t), b(x, t) and f(x, t)

sufficiently smooth function in Q̄. Then, there exists C independent of ε, such that∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ ≤ C, ∀x ∈ Ωl or Ωr and (x, t) ∈ Q̄, 0 ≤ j ≤ 2.

Proof. See [11].

Lemma 7.2.5. Under the assumption of Lemmas 7.2.1 and 7.2.4, the bound on the

derivative of u with respect to t is |ut(x, t)| ≤ C, (x, t) ∈ Q̄.

Proof. See [30].
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Lemma 7.2.6. |uxt(x, t)| 6 C, (x, t) ∈ Q̄.

Proof. See [31].

Based on the ideas of [39], we are in position to establish the following lemma. Due

to the presence of an interior layer at point at xN/2 = 1/2, the solution of the prob-

lem (7.1.1)-(7.1.3) may be considered as a concatenation of two solutions: One side on

0 6 x < 1/2 displaying an interior layer near xN/2 = 1/2 (right hand of the interval) and

the other side on 1/2 < x 6 1 presenting an interior layer near xN/2 = 1/2 (left hand of

the interval) as well. Consequently, the derivatives of u(x, t) in the interior layer are esti-

mated by three types of singular, power functions according to the sign of the coefficient

of the convection term a(x, t) at the point x?0. Then, we have two different cases

a =

 a(x?0, t) 6 0, x?0 ∈ [τ − 1/2, 1/2], t ∈ [0, T ] and

a(x?0, t) > 0, x?0 ∈ (1/2, τ + 1/2], t ∈ [0, T ].
(7.2.1)

Lemma 7.2.7. Let u(x, t) be the solution of (7.1.1)-(7.1.3). Then assuming that

a = a(x?0, t) > 0, for 1/2 < x 6 τ + 1/2, ∀t ∈ [0, T ], and j = 1, 2, 3, 4, we have

∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ 6 C


1 + (ε+ x)1−a−j, 0 < a < 1,

1 + (ε+ x)−j| ln−1(ε+ 1/2)−1|, a = 1,

1 + εa−1(ε+ x)1−a−j, a > 1.

(7.2.2)

When a = a(x?0, t) 6 0, for 1/2− τ 6 x 6 1/2, let p be an integer such that a + p = 0

and a+ p− 1 < 0, ∀t ∈ [0, T ] and j = 1, 2, 3, 4, then we have the following bounds

∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ 6 C


1, a < 0, j 6 p,

1 + (ε+ x)1−j−p| ln(ε+ x)|, a+ p = 0, j > p,

1 + (ε+ x)1−a−j, a+ p > 0, j > p.

(7.2.3)

Proof. We prove this lemma by following the steps provided by ([39], pp. 107-110).

Application of the inverse-monotone pair T = (L,Γ) (see pp 49) implies that

|u(x, t)| 6 C, (x, t) ∈ Q̄. (7.2.4)
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From (7.1.1)-(7.1.3) and(7.2.4) and ∀t ∈ [0, T ], we obtain

∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ 6 C



1, 1/2− τ < x0 6 x 6 1/2,

ε−j, 1/2− τ 6 x 6 x0, j = 1, 2, 3, 4,

1, 1/2 < x0 6 x 6 τ + 1/2,

ε−j, 1/2 6 x 6 x0, j = 1, 2, 3, 4,

(7.2.5)

and arbitrary x0 > 0, independent of ε and x.

case 1 : a > 0 for 0 < x 6 1/2, ∀t ∈ [0, T ]. The derivatives of u(x, t) are estimated

according to the value of a : 0 < a < 1, a = 1 and a > 1. Solving (7.1.1) for uxx(x, t), we

obtain∣∣∣∣∣∂2u(x, t)
∂x2

∣∣∣∣∣ = uxx(x, t) = f(x, t) + b(x, t)u(x, t) + d(x, t)ut(x, t)
(ε+ x) − a(x, t)ux(x, t)

(ε+ x) . (7.2.6)

Integrating (7.2.6) on both sides from 1/2 to x, we obtain

ux(x, t) =
∫ x

1/2

f(s, t) + b(s, t)u(s, t) + d(s, t)ut(s, t)
ε+ s

ds−
∫ x

1/2

a(s, t)ux(s, t)
ε+ s

ds. (7.2.7)

By [39], ux(x, t) is given by

ux(x, t) = ux(1/2, t)
[

ε

ε+ x

]a
exp[−g1(x, t)] + g2(x, t) (7.2.8)

where

g1(x, t) =
∫ x

1/2

a(s, t)
ε+ s

ds = a(x, t) ln(ε+ x)−
∫ x

1/2
as(s, t) ln(ε+ s) ds (7.2.9)

with a(1/2, t) = 0, and

g2(x, t) = (ε+ x)−a
∫ x

1/2
[f(s, t) + b(s, t)u(s, t)+

d(s, t)ut(s, t)](ε+ s)a−1 exp[g1(s, t)− g1(x, t)] ds. (7.2.10)

Noting that |g1(x, t)| 6 C from (7.2.4), we find that

|g2(x, t)| 6 C(ε+ x)−a
∫ x

0
(ε+ s)a−1 ds 6 C.
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Using the triangle inequality in (7.2.8) and taking into account the estimates of g1(x, t)

and g2(x, t), we obtain∣∣∣∣∣∂u(x, t)
∂x

∣∣∣∣∣ = |ux(x, t)| 6 C [1 + |ux(1/2, t)|(ε/(ε+ x))a] . (7.2.11)

Considering 0 < a < 1, there exists a point x0 in the interval (1/2, τ + 1/2) such that

|ux(x0, t)| 6 C. Thus we have

|ux(1/2, t)|
(

ε

ε+ x0

)a
6 C.

This inequality yields

|ux(1/2, t)| 6 C
(
ε+ x0

ε

)a
6 C(ε+ x0)aε−a 6 Cε−a.

Using the value of |ux(1/2, t)| in (7.2.11), we obtain∣∣∣∣∣∂u(x, t)
∂x

∣∣∣∣∣ = |ux(x, t)| 6 C
[
1 + (ε+ x)−a

]
, 0 < a < 1.

Differentiating (7.1.1) with respect to x, solving the resulting equation for uxxx(x, t), we

obtain

uxxx(x, t) = b(x, t)− ax(x, t)
ε+ x

ux(x, t)−
ax(x, t) + 1

(ε+ x) uxx(x, t)+

fx(x, t) + bx(x, t)u(x, t) + dx(x, t)ut(x, t)− d(x, t)utx(x, t)
(ε+ x) . (7.2.12)

∂2u(x, t)/∂x2 is given by

∂2u(x, t)
∂x2 = uxx(x, t) = uxx(1/2, t)

[
ε

ε+ x

]a+1
exp[−g3(x, t)] + g4(x, t) (7.2.13)

where

g3(x, t) =
∫ x

1/2

a(s, t) + 1
ε+ s

ds = [a(x, t)+1] ln(ε+x)−ln(ε+1/2)−
∫ x

1/2
as(s, t) ln(ε+x) ds,

(7.2.14)

with a(1/2, t) = 0 and

g4(x, t) = (ε+ x)−a−1
∫ x

1/2
[fs(s, t) + bs(s, t)u(s, t) + ds(s, t)ut(s, t)− d(s, t)uts(s, t)+

(b(s, t)− as(s, t)us(s, t)](ε+ s)a exp[g3(s, t)− g3(x, t)] ds. (7.2.15)
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Since |g3(x, t)| 6 C, |ut(x, t)| 6 C, |utx(x, t)| 6 C, and |u(x, t)| 6 C, we find that

|g4(x, t)| 6 C(ε+ x)−a−1
∫ x

1/2
[1 + us(s, t)](ε+ s)a ds 6 C[1 + (ε+ x)−a]. (7.2.16)

We obtain from (7.1.1)

uxx(1/2, t) 6 C(ε+ 1/2)−1[1 + ux(1/2, t)] 6 C[1 + (ε+ 1/2)−a−1].

Substituting the estimates of uxx(1/2, t) and g4(x, t) into (7.2.13), we obtain∣∣∣∣∣∂2u(x, t)
∂x2

∣∣∣∣∣ = uxx(x, t) 6 C
[
1 + (ε+ 1/2)−a−1

] [ ε

ε+ x

]a+1
+ C

[
1 + (ε+ x)−a

]
.

Using (ε+ 1/2)−a−1 6 (ε)−a−1 in the above inequality, we obtain∣∣∣∣∣∂2u(x, t)
∂x2

∣∣∣∣∣ = |uxx(x, t)| 6 C
[
1 + (ε+ x)−a−1

]
, for 0 < a < 1.

Differentiating (7.1.1)-(7.1.3) and taking into account (7.2.4), we get the following result∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ 6 C
[
1 + (ε+ x)1−a−j

]
.

Consider the case when a = 1. On integrating (7.2.8) from 1/2 to τ + 1/2, we obtain

u(1/2 + τ, t)− u(1/2, t) = ux(1/2, t)ε[ln(ε+ 1/2 + τ) exp(−g1(1/2 + τ, t))−

ln(ε+ 1/2) exp[−g1(1/2, t)] +
∫ 1/2+τ

1/2
ln(ε+ x)∂g1(x, t)

∂x
exp[−g1(x, t)] dx]+∫ 1/2+τ

1/2
g2(x, t) dx, (7.2.17)

where
∂g1(x, t)
∂x

= a(x, t)(ε+ x)−1 and g1(1/2, t) = 0

are obtained from (7.2.9). Substituting these equations into (7.2.17), we obtain

u(1/2 + τ, t)− u(1/2, t) = ux(1/2, t)ε[ln(ε+ 1/2 + τ) exp(−g1(1/2 + τ, t))

− ln(ε+ 1/2) exp[−g1(1/2, t)]−
∫ 1/2+τ

1/2
a(x, t)(ε+ x)−1 ln(ε+ x) exp[−g1(x, t)] dx]+∫ 1/2+τ

1/2
g2(x, t) dx. (7.2.18)
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Using the triangle inequality in (7.2.18) and we obtain

| ln(ε+ 1/2 + τ) exp[−g1(1/2 + τ, t)]−
∫ 1/2+τ

1/2
a(x, t)(ε+ x)−1 exp[−g1(x, t)] dx| 6 C,

we obtain

C 6 |u′(1/2, t)[ε− ε ln(ε+ 1/2)]|.

For sufficiently small ε 6 x0, x0 > 0, we have ε− ε ln(ε+ 1/2) > ε ln(ε+ 1/2). It follows

that

C > |ux(1/2, t)|[ε− ε ln(ε+ 1/2)]| 6 |ux(1/2, t)|[ε ln(ε+ 1/2)−1].

Solving this inequality, we obtain

|ux(1/2, t)| 6 Cε−1 ln−1(ε+ 1/2)−1.

Substituting this estimate into (7.2.11), we obtain∣∣∣∣∣∂g1(x, t)
∂x

∣∣∣∣∣ = |ux(x, t)| 6 C[1 + (ε+ x)−1 ln−1(ε+ 1/2)−1].

Now determine uxx(x, t) for a = 1. Now, (7.2.13) becomes

∂2u(x, t)
∂x2 = uxx(x, t) = uxx(1/2, t)

[
ε

ε+ x

]2
exp[−g3(x, t)] + g4(x, t). (7.2.19)

From (7.2.16), g4(x, t) is defined as follows

|g4(x, t)| 6 C(ε+x)−2
∫ x

1/2
[1+us(s, t)](ε+s) ds 6 C[1+(ε+x)−1 ln−1(ε+1/2)−1]. (7.2.20)

From (7.1.1), we obtain

uxx(1/2, t) 6 C(ε+ 1/2)−1[1 + ux(1/2, t)] 6 C(ε+ 1/2)−2 ln−1(ε+ 1/2)−1.

Using the estimates of uxx(1/2, t) and g4(x) into (7.1.1) and taking into account (ε +

1/2)−2 6 ε−2, we obtain

∂2u(x, t)
∂x2 = uxx(x, t) 6 C[1 + (ε+ x)−2 ln−1(ε+ 1/2)−1].

By differentiating (7.1.1) and with the help of (7.2.5), we arrive at the following result∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ 6 C[1 + (ε+ x)−j ln−1(ε+ 1/2)−1], a = 1.
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We prove the case when a > 1 by using u′(1/2, t) 6 Cε−1 obtained from(7.2.5) for

1/2 6 x 6 x0 substituting into (7.2.11), which then leads to∣∣∣∣∣∂u(x, t)
∂x

∣∣∣∣∣ = |ux(x, t)| 6 C[1 + εa−1(ε+ x)−a].

Now determine uxx(x, t) for a > 1. Using uxx(1/2, t) 6 Cε−2 obtained from(7.2.5) for

1/2 6 x 6 x0 and |g4(x, t)| 6 C[1 + εa−1(ε+ x)−a] substituted into (7.2.13), we obtain∣∣∣∣∣∂2u(x, t)
∂x2

∣∣∣∣∣ 6 C[1 + εa−1(ε+ x)−a−1].

Differentiating (7.1.1) and taking into account (7.2.5), we easily obtain∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ 6 C[1 + εa−1(ε+ x)1−a−j], j = 1, 2, 3, 4.

This concludes the proof of the estimate (7.2.2) for 1/2 < x 6 1/2 + τ.

case 2 : a 6 0 for 1/2− τ 6 x 6 1/2. ux(x, t) is given

ux(x, t) = ux(x0, t) exp[ψ(x0, x, t)]+∫ x

x0

f(s, t) + b(s, t)u(s, t) + d(s, t)ut(s, t)
ε+ s

exp[ψ(x0, x, t)] ds (7.2.21)

where

ψ(s, x, t) = −
∫ x

s

a(κ, t)
ε+ κ

dκ.

If a(1/2, t) = 0 then ψ(s, x, t) 6 C, 1/2 − τ 6 s, x 6 1/2. Using the triangle inequality

in (7.2.21) and choosing a point x0 ∈ [−τ/2, 1/2] such that ux(x0, t) 6 C, we obtain∣∣∣∣∣∂u(x, t)
∂x

∣∣∣∣∣ = |ux(x, t)| 6 C[1+| ln(ε+x)|], 1/2−τ 6 x 6 1/2, a(1/2) = 0, j = 1 since p = 0.

Now we determine uxx(x, t) with p = 0 for j = 2. On differentiating (7.1.1) and solving

the resulting equation for uxx(x, t), we obtain

∂2u(x, t)
∂x2 = uxx(x0, t) exp[ψ(x0, x, t)] + (ε+ x)−p−1

∫ x

x0

F (s, t)
ε+ s

(ε+ s)p+1 exp[ψ(s, x, t)] ds,

(7.2.22)
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where

ψ(s, x, t) = −
∫ x

s

a(κ, t)
ε+ κ

dκ

and

F (s, t) = f(s, t) + bs(s, t)u(s, t) + ds(s, t)ut(s, t) + [b(s, t)− as(s, t)]us(s, t).

Substituting ψ(s, x, t) 6 C and uxx(x0, t) 6 C into (7.2.22), we obtain∣∣∣∣∣∂2u(x, t)
∂x2

∣∣∣∣∣ 6 C +C(ε+ x)−p−1
∫ x

x0
[1 + us(s, t)](ε+ s)p ds 6 C[1 + (ε+ x)−p−1 ln(ε+ x)].

From (7.1.1)-(7.1.3) with p = 0, for j > 1, we obtain∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ 6 C[1 + (ε+ x)1−j−p| ln(ε+ x)|], a+ p = 0, j > p.

Let a(1/2, t) < 0. In this case p > 1. Then there exists a constant x0 > 0 such that

a(x, t) < 0 for 1/2− τ 6 x 6 x0. Therefore, we have

ψ(s, x, t) 6 −x0 ln[(ε+ s)/(ε+ x)], 1/2− τ 6 x 6 s 6 x0.

Taking exponentials on both sides of the above inequality, we obtain

exp(ψ(s, x, t)) 6 [(ε+ x)/(ε+ s)]−x0 , 1/2− τ 6 x 6 s 6 x0.

Substituting this estimate into (7.2.21) with x = s and taking into account (7.2.5), we

obtain ∣∣∣∣∣∂u(x, t)
∂x

∣∣∣∣∣ = |ux(x, t)| 6 C, 1/2− τ 6 x 6 x0, a(0, t) < 0.

Differentiating (7.1.1) and taking into account (7.2.5), we obtain∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ 6 C, 1/2− τ 6 x 6 1/2, a < 0, k 6 p, j = 1, 2, 3, 4.

Consider the case when j > p, a+p > 0 and a 6 0.We will estimate ux(x, t) and uxx(x, t)

by following the same steps as for 0 < a < 1. We define ux(x, t) from (7.2.8) as follows

ux(x, t) = ux(1/2, t)
[

ε

ε+ x

]a+1
exp[−g1(x, t)] + g2(x, t), 1/2− τ 6 x 6 1/2. (7.2.23)

181https://etd.uwc.ac.za



Chapter 7: Time-dependent for interior layer convection-diffusion problems
with a variable coefficient diffusion term

Following the same lines as for 0 < a < 1, we obtain∣∣∣∣∣∂u(x, t)
∂x

∣∣∣∣∣ = |ux(x, t)| 6 C[1 + (ε+ x)−a−1], a 6 0.

We estimate uxx(x, t) from (7.2.13) as follows

uxx(x, t) = uxx(1/2, t)
[

ε

ε+ x

]a+2
exp[−g3(x, t)] + g4(x, t), 1/2− τ 6 x 6 1/2. (7.2.24)

Following the same lines as for 0 < a < 1, we obtain∣∣∣∣∣∂2u(x, t)
∂x2

∣∣∣∣∣ = |uxx(x, t)| 6 C[1 + (ε+ x)−a−2], a 6 0.

Differentiating (7.1.1) and taking into account (7.2.5), we obtain∣∣∣∣∣∂ju(x, t)
∂xj

∣∣∣∣∣ 6 C[1 + (ε+ x)1−a−j], 1/2− τ 6 x 6 1/2, a 6 0, j > p.

This complete the proof of the estimate 7.2.3 for 1/2− τ < x 6 1/2.

The above bounds on the derivatives of the solution are estimated in the layer regions,

which are not sharp enough for the proof of ε convergence in Section 7.4. Therefore

we need to derive stronger bounds, which are obtained on a method originally given by

Shishkin. This can be realised by decomposing the solution of problem (7.1.1)-(7.1.3) into

two parts, namely the smooth component v(x) and the singular component w(x) ([42],

pp 47) such that

u(x, t) = v(x, t) + w(x, t),

where v(x, t) is the solution of the inhomogeneous problem

Lv(x, t) = f(x, t), (x, t) ∈ Ω1 = (1/2, 1)× (0, T ], (7.2.25)

v(x, 0) = u(x, 0) = u0, 1/2 6 x 6 1, (7.2.26)

v(1/2, t) = 0, v(1, t) = u(1, t), (7.2.27)

and w(x, t) is the solution of the homogeneous problem

Lw(x, t) = 0, (x, t) ∈ Ω1 = (1/2, 1)× (0, T ], (7.2.28)
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w(x, 0) = 0, 1/2 6 x 6 1, (7.2.29)

w(1/2, t) = u(1/2, t)− v(1/2, t), 0 6 t 6 T, (7.2.30)

w(1, t) = 0, 0 6 t 6 T. (7.2.31)

The bounds on the solution of (7.1.1)-(7.1.3) are established below.

Lemma 7.2.8. The smooth and singular components of u(x, t) of problem (7.1.1)-(7.1.3),

for 0 6 j 6 4 satisfy

∣∣∣∣∣∂jv(x, t)
∂xj

∣∣∣∣∣ 6 C



1 + (ε+ x)2−j| ln(ε+ x)|, x ∈ [0, 1/2],

1 + (ε+ x)3−a−j, a < 1, x ∈ [1/2, 1],

1 + (ε+ x)2−j| ln−1(ε+ 1/2)−1|, a = 1, x ∈ [1/2, 1],

1 + εa−1(ε+ x)3−a−j, a > 1, x ∈ [1/2, 1],

(7.2.32)

and

∣∣∣∣∣∂jw(x, t)
∂xj

∣∣∣∣∣ 6 C



(ε+ x)1−j| ln(ε+ x)|, x ∈ [0, 1/2],

(ε+ x)1−a−j, a < 1, x ∈ [1/2, 1],

(ε+ x)−j| ln−1(ε+ 1/2)−1|, a = 1, x ∈ [1/2, 1],

εa−1(ε+ x)1−a−j, a > 1, x ∈ [1/2, 1]

(7.2.33)

where C is a constant independent of ε.

Proof. We prove this lemma on Ω1 = [1/2, 1]. The proof on [0, 1/2] follows in a similar

way. The reduced problem (ε = 0), corresponding to problem (7.1.1) is

x2v0
xx + a(x, t)v0

x(x, t)− b(x, t)v0(x, t)− d(x, t)v0
t (x, t) = f(x, t), (x, t) ∈ Ω1, (7.2.34)

v0(x, 0) = v0
0(x), 1/2 6 x 6 1, v0(1, t) = u(1, t) = α1(t), t ∈ (0, T ]. (7.2.35)

Further, we decompose the smooth component v(x, t) ([42], pp 68) as follows

v(x, t) = v0(x, t) + (ε+ x)v1(x, t) + (ε+ x)2v2(x, t), (x, t) ∈ Ω̄, (7.2.36)

where v0 is the solution of the reduced problem in (7.2.34), which is independent of ε,

and having smooth coefficients a(x, t), b(x, t) and f(x, t). From these assumptions, for

0 6 j 6 4, we have ∣∣∣∣∣∂jv0(x, t)
∂xj

∣∣∣∣∣ 6 C, for all x ∈ Ω̄1, (7.2.37)
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v1 and v2 are the solutions of (7.1.1). Applying Lemma 7.2.7 for 1/2 6 x 6 0 and

j = 1, 2, 3, 4, results in the following bounds (for k = 1, 2)

∣∣∣∣∣∂jvk(x, t)∂xj

∣∣∣∣∣ 6 C


1 + (ε+ x)1−a−j, 0 < a < 1,

1 + (ε+ x)−j| ln−1(ε+ 1/2)−1|, a = 1,

1 + εa−1(ε+ x)1−a−j, a > 1.

(7.2.38)

Now, apply the triangle inequality and substitute tha above three estimates into (7.2.36),

for 0 6 j 6 4, we prove the Lemma (7.2.8) for the smooth part.

For the proof of the regular component w(x, t), define the barrier functions as follows

Ψ±(x, t) = C exp(−ηx/ε)et ± w(x, t), (x, t) ∈ Ω̄1.

First, we calculate the values of Ψ±(x, t) at the boundaries:

Ψ±(1/2, t) = C exp(−η/2ε)et ± w(1/2, t), 0 6 t 6 T,

= C exp(−η/2ε)et ± u(1/2, t)− v(1/2, t), using (7.2.30),

> 0, for a suitable choice of C 0 6 t 6 T,

Ψ±(1, t) = C exp(−η/ε)et ± w(1, t), 0 6 t 6 T,

= C exp(−η/ε)et, using (7.2.31),

> 0, 0 6 t 6 T,

Ψ±(x, 0) = C exp(−ηx/ε)± w(x, 0), 1/2 6 x 6 1,

= C exp(−ηx/ε), using (7.2.29),

> 0, 1/2 6 x 6 1.

From the above estimates, we notice that Ψ(x, t) > 0, (x, t) ∈ Ω2 = Ω̄1\Ω1. Therefore

we have

LΨ±(x, t) = (ε+ x)Ψ±xx(x, t) + a(x, t)Ψ±x (x, t)− b(x, t)Ψ±(x, t)− d(x, t)Ψ±t (x, t)

= C exp(−ηx/ε)et
[
η2(ε+ x)

ε
− ηa(x, t)

ε
− b(x, t)− d(x, t)

]
± Lw(x, t)

= C exp(−ηx/ε)et
[
η2(ε+ x)

ε2 − ηa(x, t)
ε

− b(x, t)− d(x, t)
]
, using (7.2.28)

6 0, since (x/ε) 6 [−b(x, t)− d(x, t)], (x, t) ∈ Ω1.
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Now since Lemma 7.2.1 to the barrier functions, we obtain Ψ±(x, t) > 0, (x, t) ∈ Ω̄1.

Since C exp(ηx/ε)et ± w(x, t) > 0, it follows that

w(x, t) 6 C exp(−ηx/ε)et, (x, t) ∈ Ω1

6 C exp(−ηx/ε)eT since et 6 eT

6 C exp(−ηx/ε) (x, t) ∈ Ω1.

By using the inequality relation, the above inequalities can written as

|w(x, t)| 6 C exp(−ηx/ε) 6 C


(ε+ x)1−a, a < 1,

(ε+ x)−1| ln−1(ε+ 1/2)−1|, a = 1,

εa−1(ε+ x)1−a, a > 1.

(7.2.39)

Since Lw(x) = 0, the jth derivative of w(x) can be estimated immediately from the

estimate of w(x). The following estimates hold for 0 6 j 6 4,

∣∣∣∣∣∂jw(x, t)
∂xj

∣∣∣∣∣ 6 C


(ε+ x)1−a−j, a < 1,

(ε+ x)−j| ln−1(ε+ 1/2)−1|, a = 1,

εa−1(ε+ x)1−a−j, a > 1.

(7.2.40)

which completes the proof of Lemma (7.2.8)for the regular parts.

In the following section, we design a FMFDM to solve a time-dependent convection-

diffusion problem (7.1.1)-(7.1.3).

7.3 Construction of the FMFDM

Time discretization

The Euler implicit method is used to discretize problem (7.1.1)-(7.1.3) with uniform step-

size ∆t = T/K. Note the time [0, T ] is therefore partitioned as

w̄K = {tk = k∆t, 0 6 k 6 K}. (7.3.1)
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We discretize problem (7.1.1)-(7.1.3) on w̄K as follows

(ε+x)zxx(x, tk)+a(x, tk)zx(x, tk)−b(x, tk)z(x, tk)−d(x, tk)
z(x, tk)− z(x, tk−1)

∆t = f(x, tk)

(7.3.2)

subject to

z(x, 0) = z0(x), 0 6 x 6 1, z(0, tk) = α1(t), z(1, tk) = α2(t). (7.3.3)

Now, (7.3.2) can be written as

Lz(x, tk) = f(x, tk)− d(x, t)z(x, tk−1)
∆t , (7.3.4)

subject to

z(x, 0) = z0(x), 0 6 x ≤ 1, z(0, tk) = α1(t), z(1, tk) = α2(t), (7.3.5)

where

Lz(x, tk) = (ε+ x)zxx(x, tk) + a(x, tk)zx(x, tk)−
[
b(x, tk) + d(x, tk)

∆t

]
z(x, tk−1).

The local truncation error ek at each time level to tk, is given by

ek = u(x, tk)− z(x, tk), where z(x, tk) is the solution of (7.3.4)-(7.3.5).

The local error estimate is [11]

‖ek‖∞ ≤ C(∆t)2, 1 ≤ k ≤ K. (7.3.6)

The global error estimate is [11]:

‖Ek‖∞ ≤ C∆t, 1 ≤ k ≤ K. (7.3.7)

Spatial discretization

Let Ω̄N denote the following partition in the interval [0, 1] such that: x0 = 0, xN/2 = 1/2,

xN = 1 and let Q̄K,N = w̄K×Ω̄N be the grid for the (x, t)-variables, and QK,N = Q̄K,N∩Q.
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Due to the presence of an interior layer at the point xN/2 = 1/2, the transition parameter

τ is to be chosen as

τ = min
{

1
4 ,
ε

η
ln
(
N

4

)}
, (7.3.8)

where τ is a positive constant. The spatial domain is discretized using a piecewise uniform

mesh which divides the space domain [0, 1] into the following subintervals [0, 1/2 − τ ],

[1/2 + τ, 1/2 + τ ] and [1/2 + τ, 1]. These subintervals are subdivided uniformly to contain

N/4, N/2 and N/4 mesh elements respectively. Note that the mesh spacing is given by

hj =

 4(0.5− τ)/N if j = 1, 2, · · · , N/4, 3N/4 + 1, · · · , N − 1, N,

4τ/N if j = N/4 + 1, N/4 + 2 · · · 3N/4.
(7.3.9)

We adopt the notation S(xj, tk) := Skj .We construct the following scheme to solve (7.1.1)-

(7.1.3) along with appropriate boundary conditions.

LN,KUk
j :=

 (ε+ xj)D̃xU
k
j + ãkjD

−
x U

k
j − (b̃kj + dk

j

∆t)U
k
j = f̃kj −

dk
jU

k−1
j

∆t , j = 0, · · · , N/2− 1,

(ε+ xj)D̃xU
k
j + ãkjD

+
x U

k
j − (b̃kj + dk

j

∆t)U
k
j = f̃kj −

dk
jU

k−1
j

∆t , j = N/2, · · · , N − 1,
(7.3.10)

subject to the discrete initial and boundary conditions

U0
j (x, 0) = u0

j , j = 0, 1, · · · , N, (7.3.11)

Uk
0 = αk1 ≡ α1(k), Uk

N = αk2 ≡ α2(k), 1 ≤ k ≤ K, (7.3.12)

where  ãkj = ak
j−1+ak

j

2 for j = 0, 1, · · · , N/2− 1,

ãkj = ak
j +ak

j+1
2 for j = N/2, N/2 + 1, · · · , N − 1, b̃kj = bk

j−1+bk
j +bk

j+1
3 for j = 1, 2, 3, · · · , N − 1,

f̃kj = fk
j−1+fk

j +fk
j+1

3 for j = 1, 2, 3, · · · , N − 1.

D+
x U

k
j =

Uk
j+1 − Uk

j

hkj+1
, D−x U

k
j =

Uk
j − Uk

j−1

hkj
, D̃xU

k
j = 2

hkj + hkj+1
(D+

x U
k
j −D−x Uk

j )

and

D−t U
k
j =

Uk
j − Uk−1

j

∆t .
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Now, (7.3.10) can be expressed as

LN,Kx,ε U
k
j := r−Uk

j−1 + rcUk
j + r+Uk

j+1 = Fj, j = 1, 2, 3 · · · , N − 1, (7.3.13)

where for j = 1, 2, 3 · · · , N/2− 1, we have

r−j = 2(ε+ xj)
hj(hj + hj+1)−

ãkj
hj
, rcj =

ãkj
hj
− 2(ε+ xj)

hjhj+1
− b̃kj−

dkj
∆t , r+

j = 2(ε+ xj)
hj+1(hj + hj+1) . (7.3.14)

For j = N/2, N/2 + 1, · · · , N − 1, we have

r−j = 2(ε+ xj)
hj(hj + hj+1) ; rcj = −

ãkj
hj+1

− 2(ε+ xj)
hjhkj+1

− b̃kj −
dkj
∆t ; r

+
j = 2(ε+ xj)

hj+1(hj + hj+1) +
ãkj
hj+1

(7.3.15)

and

Fj = f̃kj −
dkjU

k−1
j

∆t . (7.3.16)

The scheme (7.3.10)-(7.3.12) is a fitted mesh finite difference method (FMFDM) to solve

the problem (7.1.1)-(7.1.3).

The results of the analysis of the scheme (7.3.10)-(7.3.12) depend on the following mini-

mum principle.

Lemma 7.3.1. (Discrete minimum principle). Suppose that LN,K is the discrete given

in (7.3.10) and ξkj is any mesh function verifying LN,Kξkj ≤ 0 in QN,K , ξ0
j > 0,

1 6 j 6 N, ξk0 ≥ 0 and ξkN > 0, 1 ≤ k 6 K, then ξkj ≥ 0 in Q̄N,K .

Proof. See Lemma 3.3.1 in Chapter 3.

Lemma 7.3.2. (Uniform stability estimate). At any time level tk, if Zk
j is any mesh

function such that Zk
0 = Zk

N = 0, then

|Zk
i | 6

1
β

max
16j≤N−1

|LN,KZk
j | ∀0 6 i 6 N.

Proof. See Lemma 3.3.2 in Chapter 3.

Based on the above continuous and discrete results, we are now in a position to pro-

vide the ε-uniform convergence
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7.4 Convergence analysis

In this section, we prove that the proposed FMFDM is uniformly convergent of order one,

up to a logarithmic factor.

Theorem 7.4.1. . Let Uk
j be the approximation solution of problem (7.3.10)-(7.3.12) and

denote the solution z(xj, tk) of problem (7.3.4)-(7.3.5) at the time level tk by zkj = z(xj, tk).

Then, we have

max
0≤j≤N

|Uk
j − zkj | 6 CN−1

[
ln
(
N

4

)]2
. (7.4.1)

Proof. We prove this Lemma on the interval [1/2, 1]. The proof on [0, 1/2] follows in a

similar way. In the case of the discrete problem, the solution Uk
j of(7.3.10)-(7.3.12) can

be decomposed into a regular part and a singular part as

Uk
j = V k

j +W k
j ,

where V k
j is the solution of the inhomogeneous problem

LN,KV k
j = fkj −

dkj × V k−1
j

∆t , V 0
j = v0

j , V
k

0 = vk0 ,

and W k
j is the solution of the homogeneous problem

LN,KW k
j = 0, W 0

j = w0
j , W

k
0 = wk0 , W

k
N/2 = Uk

N/2 − V k
N/2.

Using (7.1.1) and (7.3.10) the nodal error of the smooth component is computed as

LN,K(V k
j − vkj ) = fkj −

dkj × V k−1
j

∆t − LN,Kvkj

= (ε+ xj)
(
d2

dx2 − D̃x

)
vkj + akj

(
d

dx
−D−x

)
vkj .

Then, by local truncation error estimates (Lemma 4.1 [42]) at each point (xj, tk), we

obtain

|LN,K(V k
j −vkj )| ≤ (ε+ xj)

3 (xj+1−xj−1)
wwwww∂3vj
∂x3

wwwww+
akj
2 (xj−xj−1)

wwwww∂2vj
∂x2

wwwww for N/2 6 j 6 N−1.

(7.4.2)
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Using the estimates of the derivatives of vj of Lemma 7.2.8 and hj = xj−xj−1 ≤ 4N−1 in

(7.4.2), we obtain

|LN,K(V k
j −vkj )| 6 CN−1


1 + (ε+ x) + (ε+ x)1−a, a < 1,

1 + (ε+ x) + ln−1(ε+ 1/2)−1, a = 1,

1 + (ε+ x) + εa−1(ε+ x)1−a, a > 1.

(7.4.3)

The above inequalities lead to:

|LN,K(V k
j − vkj )| 6 CN−1.

Now, applying Lemma 7.3.2 to the mesh function (V k
j − vkj ), we obtain

|(V k
j − vkj )| ≤ CN−1 for N/2 6 j 6 N − 1. (7.4.4)

The estimation of the nodal error of the singular component depends on whether τ =

1/4 or

τ = (ε/η) ln(N/4). If τ = 1/4, the mesh is uniform, i.e., τ = 1/4 6 (ε/η) ln(N/4). The

estimate of the singular component similar to equation (7.4.2), then gives

|LN,K(W k
j −wkj )| 6

(ε+ xj
3 (xj+1−xj−1)

wwwww∂3wj
∂x3

wwwww+
akj
2 (xj−xj−1)

wwwww∂2wj
∂x2

wwwww for 1 ≤ j 6 N/2−1.

(7.4.5)

Noting that xj−xj−1 ≤ 4N−1 and taking into account the bounds on wj of Lemma 7.2.8

for each case of a, we obtain

|LN,K(W k
j −wkj )| 6 CN−1


(ε+ x)−a−1, a < 1,

(ε+ x)−2| ln−1(ε+ 1/2)−1|, a = 1,

εa−1(ε+ x)−a−2, a > 1.

(7.4.6)

The above inequalities lead to

|LN,K(W k
j −wkj )| 6 CN−1ε−2. (7.4.7)

Since ε−1 6 (4/η) ln(N/4), we obtain the following inequality

|LN,K(W k
j − wkj )| 6 CN−1 ln2(N/4).
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Using Lemma 7.3.2 then we obtain

|(W k
j −wkj )| 6 CN−1 ln2(N/4) for N/2 6 j 6 N−1. (7.4.8)

If τ = (ε/η) ln(N/4), the mesh is piecewise uniform. In this case we have two sub-intervals

namely [τ + 1/2, 1] and [1/2, τ + 1/2]. A different argument is used to bound W − w in

each subinterval. Firstly, we compute the error for the singular component in the coarse

mesh region [τ + 1/2, 1], i.e. for all τ + 1/2 6 xj 6 1. Using the triangle inequality, we

have

|W k
j − wkj | 6 |W k

j |+|wkj |. (7.4.9)

Applying Lemma 7.2.8 to (7.4.9), we obtain

|wkj | 6 Cε−1xj 6 Cε−1τ.

Substituting the value of τ in the above expression, we obtain

|wkj | 6 C ln(N/4) 6 C for 3N/4 6 j 6 N. (7.4.10)

Now to obtain a similar bound on W k
j , the interested readers can obtain the following

inequalities using of Lemma 7.3 (p.58) and Lemma 7.5 (p.60) of [42] which lead to

|W k
j | 6 C ln(N/4) 6 C for 3N/4 6 j 6 N. (7.4.11)

Combining the estimates obtained by (7.4.10) and (7.4.11), we obtain

|(W k
j − wkj | 6 C ln(N/4) 6 C for 3N/4 6 j 6 N. (7.4.12)

Now the bounds in the interior region, [1/2, τ+1/2] can be obtained from (7.4.5) by using

the bounds of wj in Lemma 7.2.8 keeping in mind that h = 4τ/N, we obtain

|LN,K(W k
j − wkj )| 6 Chε−2 6 Cτε−2N−1.

From (7.4.12), we have

|(W k
N/2 − wkN/2)| = 0
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and

|W k
3N/4 − wk3N/4| 6 |W k

3N/4|+ |wk3N/4)| 6 C.

Now, introduce the barrier function Φk
j in [1/2, τ + 1/2] defined by

Φk
j = (x+ τ)C1ε

−2τN−1+ C2N
−1,

where C1 and C2 are arbitrary constants.

Now consider comparison functions [Ψ±]kj defined by

[Ψ±]kj = (xj + τ)C1ε
−2τN−1+C2N

−1 ± (W k
j − wkj ). (7.4.13)

For an appropriate choice of C1 and C2, (7.4.13) satisfies the following inequalities

Ψk
3N/4 > 0 and Ψk

N/2 = 0.

Note that

LN,K [Ψ±]kj 6 0, N/2 + 1 6 j 6 3N/4− 1.

By applying Lemma 7.3.1 on [1/2, τ + 1/2] for the function [Ψ±]kj , we obtain

[Ψ±]kj > 0, N/2 + 1 6 j 6 3N/4− 1.

Consequently,

|W k
j − wkj | 6 Φj ≤ C1ε

−2τ 2N−1 + C2N
−1.

Substituting the value of τ in the above inequality, we obtain

|W k
j − wkj | 6 CN−1 ln2 (N/4) . (7.4.14)

Using estimates (7.4.12) and (7.4.14), we obtain the estimate on the singular component

of the error on [1/2, τ + 1/2]

|W k
j − wkj | 6 CN−1 ln2 (N/4) , N/2 + 1 6 j 6 3N/4− 1. (7.4.15)

Noting that

Uk
j − zkj = (V k

j − vkj ) + (W k
j − wkj ) (7.4.16)
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and using (7.4.4) and (7.4.15), we obtain

|Uk
j − zkj | 6 CN−1 [ln(N/4)]2 , N/2− 1 6 j 6 N. (7.4.17)

A similar analysis on the subinterval [0, 1/2] yields

|Uk
j − zkj | ≤ CN−1 [ln(N/4)]2 , 1 6 j 6 N/2. (7.4.18)

Combining the inequalities (7.4.17) and (7.4.18) then gives the required result.

The next theorem provides the main result of this chapter.

Theorem 7.4.2. . Let u be the exact solution of problem (7.1.1)-(7.1.3) and U be its

numerical solution obtained via the difference equations (7.3.10)-(7.3.12). Then, there

exists a constant C independent of the perturbation parameter ε, and of the discretization

parameters hj and ∆t such that

max
0≤j≤N ;1≤k≤K

‖Uk
j − ukj‖ ≤ C

[
∆t+N−1

[
ln
(
N

4

)]2]
. (7.4.19)

Proof. The result follows from the triangle inequality

‖Uk
j − ukj‖ ≤ ‖Uk

j − zkj ‖+ ‖zkj − ukj‖,

and the combination of (7.3.7) and Theorem 7.4.1.

To increase the accuracy as well as the rate of convergence of the scheme, we use Richard-

son extrapolation in the following section.

7.5 Richardson extrapolation on the FMFDM

In order to improve the accuracy of the proposed method, we apply the Richardson ex-

trapolation method. Richardson extrapolation is a procedure where a linear combination

of two approximations of some quantity results a third and better approximation of the

quantity [49].
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We consider the mesh Ωτ
2N which is obtained by bisecting each sub-interval of Ωτ

N . It

is clear that Ωτ
N ⊂ Ωτ

2N = {x̃j} and x̃j − x̃j−1 = h̃j = hj/2. Let Uk
j and Ũk

j be the nu-

merical solution of (7.3.10)-(7.3.12) on the mesh Ωτ
N and Ωτ

2N respectively. The estimate

(7.4.17) can be written as

Uk
j − zkj = C1N

−1 ln(N/4)2 +RN(xj), ∀xj ∈ Ωτ
N (7.5.1)

and

Ũk
j − zkj = C2(2N)−1 ln(N/4)2 +R2N(x̃j), ∀x̃j ∈ Ωτ

2N , (7.5.2)

where C1 and C2 are some constants and the remainder terms

RN(xj) and R2N(x̃j) are O[N−1(ln(N/4))2].

Bear in mind that the transition parameter τ remains the same as in (7.3.8) when com-

puting both Uk
j and Ũk

j . This is seen from the factor ln(N/4).

Combination of (7.5.1) and (7.5.2) gives

zkj − (2Ũk
j − Uk

j ) = RN(xj)− 2R2N(xj) = O[N−1(ln(N/4))2], ∀xj ∈ Ωτ
n. (7.5.3)

Set

U ext,k
j = 2Ũk

j − Uk
j , ∀xj ∈ Ωτ

N , (7.5.4)

as the new approximation of zkj computed after employing Richardson extrapolation. The

error after extrapolation U ext,k
j can also be decomposed as in (7.4.16),

(U ext − z)kj = (V ext − v)kj + (W ext − w)kj , (7.5.5)

where V ext,k
j and W ext,k

j are the regular and singular components of U ext,k
j . The local

truncation error of the scheme (7.3.10)-(7.3.13) after extrapolation is given by

LN,K(U ext − z)kj = 2LN,K(Ũk
j − zj)− LN,K(Uk

j − zj), (7.5.6)

where

LN,K(Uk
j − zkj ) = r−zj−1 + rczj + r+zj+1 − (ε+ x2

j)z′′j − ãkj z′j + b̃kj z
k
j +

dkj z
k
j

∆t , (7.5.7)
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and

LN,K(Ũk
j − zkj ) = r̃−zj−1 + r̃czj + r̃+zj+1 − (ε+ x2

j)z′′j − ãjz′j + b̃kj z
k
j +

dkju
k
j

∆t . (7.5.8)

The expressions for r−, rc and r+ are given in (7.3.14) (7.3.15) and (7.3.16) respectively

while the quantities r̃−, r̃c and r̃+ are obtained by substituting hj by h̃j and hj+1 by h̃j+1

in the expressions r−, rc and r+ respectively. Taking the Taylor series expansion of zkj−1

and zkj+1 about xj yields

zkj−1 = zj − hjz′j +
h2
j

2 z
2
j −

h3
j

6 z
3
j +

h4
j

24z
4(ξ1, j), (7.5.9)

zkj+1 = zj + hj+1z
′
j +

h2
j+1

2 z2
j +

h3
j+1

6 z3
j +

h4
j+1

24 z4(ξ2, j), (7.5.10)

zkj−1 = zj − h̃jz′j +
h̃2
j

2 z
2
j −

h̃3
j

6 z
3
j +

h̃4
j

24z
4(ξ̃1, j), (7.5.11)

zkj+1 = zj + h̃j+1z
′
j +

h̃2
j+1

2 z2
j +

h̃3
j+1

6 z3
j +

h̃4
j+1

24 z4(ξ̃2, j), (7.5.12)

where

(ξ1, j) ∈ (xj−1, xj), (ξ2, j) ∈ (xj, xj+1), ξ̃1 ∈ (xj−1 + xj
2 , xj) and ξ̃2 ∈ (xj,

xj + xj+1

2 ).

Substituting (7.5.9) and (7.5.10) into (7.5.7), (7.5.11) and (7.5.12) into (7.5.8), we obtain

LN,K(Uk
j − zkj ) = k1zj + k2z

′
j + k3z

2
j + k4z

3
j + k5,1z

4(ξ1, j) + k5,2z
4(ξ2, j) (7.5.13)

and

LN,K(Ũk
j − zkj ) = k̃1zj + k̃2z

′
j + k̃3z

2
j + k̃4z

3
j + k̃4z

4
j + k̃5,1z

4(ξ̃1, j) + k̃5,2z
4(ξ̃2, j). (7.5.14)

The coefficients in (7.5.13) are

k1=
2(ε+ xj)

hj(hj+hj+1)−
2(ε+ xj)
hjhj+1

+ 2(ε+ xj)
hj+1(hj+hj+1) , k2=0,

k3=
(ε+ xj)hj
hj+hj+1

−
ãkjhj

2 +
(ε+ x2

j)hj+1

hj+hj+1
− (ε+ xj),

k4 =
−(ε+ xj)h2

j

3(hj+hj+1) +
ãkjh

2
j

6 +
(ε+ xj)h2

j+1

3(hj+hj+1) , k5,1 =
(ε+ xj)h3

j

12(hj+hj+1) −
ãkjh

3
j

24 , k5,2 =
(ε+ xj)h3

j+1

12(hj+hj+1) .
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The quantities for k̃1, k̃2, k̃3, k̃4, k̃5,1 and k̃5,2 can be obtained by substituting hj by h̃j
and hj+1 by h̃j+1.

Substituting (7.5.13) and (7.5.14) into (7.5.6), we obtain

LN,K(U ext − z)kj = T1zj + T2z
′′
j + +T3z

′′′
j + +T4,1z

(4)(ξ1, j) + T4,2z
(4)(ξ2, j), (7.5.15)

where

T1 = 14(ε+ xj)
hj(hj + hj+1) −

14(ε+ xj)
hjhj+1

+ 14(ε+ xj)
hj+1(hj + hj+1) ,

T2 = (ε+ xj)hj
hj + hj+1

− (ε+ xj) + (ε+ xj)hj+1

hj + hj+1
, T3 = −

ãkjh
2
j

12 ,

T4,1 = −
(ε+ xj)h3

j

24(hj + hj+1) +
ãkjh

3
j

32 and T4,2 = −
(ε+ xj)h3

j+1

24 .

Given (7.3.9) and for the sake of simplicity, we use the notation

hj =

 H if j = 3N/4, 3N/4 + 1, · · · , N,

h if j = N/2, N/2 + 1, · · · 3N/4.
(7.5.16)

Using the fact that, for ∀j = 3N/4, 3N/4 + 1, · · · , N , H = hj 6 4N−1 substituted into

(7.5.15) in the subinterval [τ + 1/2, 1], we obtain

LN,K(V ext − v)kj = −
ãkjH

2

12 v′′′j +
[
εH2

48 +
ãkjH

3

32

]
v(4)(ξ1, j)−

εH3

24 v(4)(ξ2, j). (7.5.17)

Using the triangle inequality and Lemma 7.2.8 substituting into (7.5.17), we obtain:

|LN,K(V ext−v)kj | 6 CN−2


1 + (ε+ x)−a, a < 1,

1 + (ε+ x)−1 ln−1(ε+ 1/2)−1, a = 1,

1 + εa−1(ε+ x)−a, a > 1.

(7.5.18)

The above inequalities lead to

|LN,K(V ext−v)kj | 6 CN−2.

Hence, by Lemma 7.3.2, we obtain

|(V ext − v)kj | 6 CN−2. (7.5.19)
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The estimate of the nodal error of the singular component depends on whether τ = 1/4 or

τ = (ε/η) ln(N/4). Firstly, the mesh is uniform and (ε/η) ln(N/4) ≥ 1/2. The estimate

of the singular part of the local truncation error is obtained as follows

LN,K(W ext − w)kj = −
ãkjh

2

12 w′′′j +
[
εh2

48 +
ãkjh

3

32

]
w(4)(ξ1, j)−

εh3

24 w
(4)(ξ2, j). (7.5.20)

Now, applying the triangle inequality and Lemma 7.2.8 substituted into (7.5.20), we

obtain

LN,K(W ext − w)kj 6 Ch−2


(ε+ x)−a−2, a < 1,

(ε+ x)−3 ln−1(ε+ 1/2)−1, a = 1,

εa−1(ε+ x)−a−2, a > 1.

(7.5.21)

The above inequalities lead to

LN,K(W ext − w)kj 6 Ch−2ε−2 6 CN−2ε−2. (7.5.22)

Since ε−1 6 (2/η) ln(N/4), (7.5.22) becomes

|LN,K(W ext − w)kj | 6 CN−2 ln2 (N/4) .

Hence, by Lemma 7.2.8 we obtain

|(W ext − w)kj | 6 CN−2 ln2 (N/4) . (7.5.23)

Secondly, the mesh is piecewise uniform with the mesh spacing h = hj 6 4τN−1 for

∀j = N/2, . . . , 3N/4 on [1/2, τ + 1/2]. We obtain from (7.5.22)

|LN,K(W ext − w)kj | 6 C1N
−2τ 2ε−2. (7.5.24)

Using τ = (ε/η) ln(N/4) and Lemma 7.2.8 in (7.5.24) we obtain

|(W ext − w)kj | 6 CN−2 ln2 (N/4) . (7.5.25)

A similar analysis can be performed on [0, 1/2].

Combination (7.5.19), (7.5.23) and (7.5.25) along with (7.5.5), gives rise to the following

theorem.
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Theorem 7.5.1. Let z and U be the solution of (7.3.4)-(7.3.5) and (7.3.10)-(7.3.12),

respectively. Then, there exists a constant C, independent of the perturbation parameter

ε and the space discretization parameters hj such that

max
0≤j≤N

|(U ext − z)kj | 6 CN−2
[
ln
(
N

4

)]2
. (7.5.26)

Once more, using the triangle inequality and combining (7.3.7) and Theorem 7.5.1,

we obtain the error after extrapolation which we state in the following theorem.

Theorem 7.5.2. (Error after extrapolation). Let u be the exact solution of (7.1.1)-(7.1.3)

and U its numerical approximation obtained via the scheme (7.3.10)-(7.3.12). Then, there

exists a constant C, independent of the perturbation parameter ε, the time discretization

∆t and the space discretization parameters hj such that

max
0≤j≤N ;1≤k≤K

|(U ext − u)kj | 6 C

[
∆t+N−2

[
ln
(
N

4

)]2]
. (7.5.27)

7.6 Numerical example

In this section, we present the numerical results obtained for the test problem. We begin

with N = 16 and ∆t = 0.1 and then we multiply N by two and divide ∆t also by two.

The maximum errors and order of convergence are calculated by the exact solution. The

solution in the example has a turning point at x = 0.5 , which gives rise to an interior

layer.

Example 7.6.1. Here we consider the following problem (7.1.1)-(7.1.3) for

a(x, t) = (2x− 1)(1 + t), b(x, t) = (1 + xt), d(x, t) = e−xt, T = 1

and the functions f(x, t) and u0(x) are such that the exact solution is given by

u(x, t) = εe−t/ε(2x− 1 + ε)2 cos π(2x− 1).

Maximum errors at all mesh points are determined

Eε,N,K = max
0≤j≤N ;0≤k≤K

|uε,N,Kj,k − U ε,N,K
j,k |, and we compute Eε,N,K = max

0≤ε≤1
Eε,N,K ,
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where uε,N,Kj,k denotes the exact solution, and U ε,N,K
j,k denotes the numerical solution which

is obtained by a constant time step ∆t using N mesh intervals in the entire domain

Ω = [0, 1]. In addition, the numerical rate of uniform convergence is computed as

rl ≡ rε,l = log2

(
Eε,Nl,Kl/Eε,2Nl,2Kl

)
.

After extrapolation the maximum errors at all mesh points and the numerical rates of

convergence are calculated as follows:

Eext
ε,N,K = max

0≤j≤N ;0≤k≤K
|U ext

j,k − u
ε,N,K
j,k |, and RN,K ≡ Rε,N,K ≡ log2(Eext

ε,Nl,Kl
/Eext

ε,2Nl,2Kl
).
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Table 7.1: Results for Example 7.6.1 Maximum errors before extrapolation
ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

K = 16 K = 32 K = 64 K = 128 K = 1256 K = 512

10−2 2.23E-02 1.61E-02 1.08E-02 1.02E-02 1.02E-02 1.02E-02

10−3 2.22E-02 1.60E-02 1.10E-02 6.32E-03 3.47E-03 1.82E-03

10−4 2.22E-02 1.61E-02 1.10E-02 6.33E-03 3.48E-03 1.83E-03

10−11 2.21E-02 1.61E-02 1.11E-02 6.34E-03 3.48E-03 1.83E-03
...

...
...

...
...

...
...

10−25 2.21E-02 1.61E-02 1.11E-02 6.34E-03 3.48E-03 1.83E-03

Table 7.2: Results for Example 7.6.1 Maximum errors after extrapolation
ε N = 16 N = 32 N = 64 N = 128 N = 256 N = 512

K = 16 K = 432 K = 64 K = 128 K = 256 K = 10240

10−2 3.34E-02 1.21E-02 1.02E-02 1.02E-02 1.02E-02 1.02E-02

10−3 3.36E-02 1.24E-02 3.63E-03 1.00E-03 1.01E-03 1.01E-03

10−4 3.36E-02 1.24E-02 3.64E-03 9.60E-04 2.44E-04 1.02E-04

10−11 3.36E-02 1.24E-02 3.64E-03 9.74E-04 2.52E-04 6.40E-05
...

...
...

...
...

...
...

10−25 3.36E-02 1.24E-02 3.64E-03 9.74E-04 2.52E-04 6.40E-05

Table 7.3: Results for Example 7.6.1 Rates of convergence before extrapolation
ε r1 r2 r3 r4 r5

10−4 0.47 0.54 0.80 0.68 0.00

10−5 0.47 0.54 0.80 0.87 0.93

10−7 0.46 0.54 0.80 0.86 0.93
...

...
...

...
...

...

10−25 0.46 0.54 0.80 0.86 0.93

Table 7.4: Results for Example 7.6.1 Rates of convergence after extrapolation
ε r1 r2 r3 r4 r5

10−4 1.43 1.77 1.92 1.98 1.26

10−5 1.43 1.77 1.92 1.99 2.00

10−7 1.43 1.77 1.90 1.95 1.98
...

...
...

...
...

...

10−25 1.43 1.77 1.90 1.95 1.98
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7.7 Discussion

In this chapter, we proposed a Fitted Mesh Finite Difference Method (FMFDM) for a

class of time-dependent singularly perturbed problems in which the diffusion term is a

function ε with x as a linear function. In addition, the solution to this problem displays an

interior layer due to the presence of a turning point. After providing appropriate bounds

on the solution and its derivatives, we used the classical Euler method to discretize the

time variable. This process resulted in a system of interior layer boundary value problems

(one at each time level), which we solved by using a FMFDM. The proposed method

used an upwind scheme on an appropriate non-uniform mesh of Shishkin type, fine in the

(interior) layer and coarse elsewhere. Using bounds on the solution and its derivative,

we showed that numerical method was uniformly convergent relative to the perturbation

parameter ε and the step-size.

Theoretical results were validated through a numerical experiment. We computed the

maximum point-wise errors and the corresponding rates of convergence for different

values of N and K. The results displayed in tables 7.1 and 7.3 that the method was uni-

formly convergent. Furthermore, we investigated the effect of Richardson extrapolation

via FMFDM in order to improve our results. For comparison purposes, we kept the same

values of N and K considered above with numerical results shown in tables 7.2 and 7.4.
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Concluding remarks and scope for

future research

In this thesis, we considered various classes of singularly perturbed two-point boundary

value problems and time-dependent parabolic problems whose solution exhibited an inte-

rior layer due to the presence of a turning point. Cases of constant and variable diffusion

coefficients were investigated. The major objective of this thesis was to construct and

analyse fitted mesh finite difference methods (FMFDMs) on Shishkin meshes and to use

Richardson extrapolation to increase their accuracy and rate of convergence. Noting that

a Shishkin mesh is a piecewise constant mesh, we wanted to investigate how these meth-

ods would perform if the mesh was graded. To this end, in Chapter 4, we designed a

FMFDM on a Bakhvalov mesh.

For each of the problems, we commenced by establishing bounds on the solutions and

their derivatives before embarking on the design of the method. These bounds were in-

strumental in the convergence analyses of the proposed FMFDMs.

Investigations of the two-point boundary value problems indicated that the proposed

methods were ε-uniformly convergent of order one which was improved to order two when

applying Richardson extrapolation. Similarly, methods proposed for the parabolic proved
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to be ε-convergent of order one in the time and space. Richardson extrapolation was

applied in space direction to achieve second order accuracy. These theoretical results

were supported with extensive simulations. Numerical results were tabulated in relevant

chapters.

As far as the scope for further research is concerned, we intend to

• Present a mesh-independent analysis to the problems considered.

• Explore the possibility of extending the proposed approach for elliptic singular per-

turbation problems having a variable diffusion coefficient.

• Construct higher order fitted mesh methods to solve the problems considered.

• Explore the possibility of extending the proposed method to solve fractional order

differential equations.

• Explore problems in applied sciences where solutions change in the interior of the

domain and are sensitive to the change in the diffusion coefficient.
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