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ABSTRACT
Fractional Black-Scholes Equations and their Robust Numerical Simulations

by

Samuel Megameno Nuugulu

PhD Thesis, Department of Mathematics and Applied Mathematics, Faculty of

Natural Sciences, University of the Western Cape

Conventional partial differential equations under the classical Black-Scholes ap-

proach have been extensively explored over the past few decades in solving option

pricing problems. However, the underlying Efficient Market Hypothesis (EMH) of

classical economic theory neglects the effects of memory in asset return series, though

memory has long been observed in a number financial data. With advancements in

computational methodologies, it has now become possible to model different real life

physical phenomenons using complex approaches such as, fractional differential equa-

tions (FDEs). Fractional models are generalised models which based on literature have

been found appropriate for explaining memory effects observed in a number of finan-

cial markets including the stock market. The use of fractional model has thus recently

taken over the context of academic literatures and debates on financial modelling. Frac-

tional models are usually of a non-linear and complex nature, which pose a considerable

amount of computational and theoretical difficulties in deriving their analytical solu-

tions. To the best of our knowledge, currently, there exist no tractable exact/analytical

solution methods for solving fractional Black-Scholes equations, and as such, numerical

solution methods become of a vital importance in understanding nature of solutions

to such models. This thesis therefore, serves to derive some Generalised (fractional)

Black-Scholes Partial Differential Equations (fBS-PDEs), as well as, propose their re-
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spective tractable, efficient and robust numerical simulation methods. The proposed

models and their respective numerical methods are used to price standard as well as

exotic options on continuous dividend paying stocks. The fractional models presented

herein, falls within two categories; the time-fractional Black-Scholes Partial Differential

Equations(tfBS-PDEs) as well as those which are generalised in both time and space

directions, i.e. the time-space-fractional Black-Scholes Partial Differential Equations

(tsfBS-PDEs). Though it involves a considerable amount of computational difficulties

to construct tractable, efficient solution methods for fractional models, we were able to

construct a number of reliable numerical solutions schemes for the considered models.

Overall, results herein indicates that, the fractional Black-Scholes framework and the

accompanying numerical computations are well suited and appropriate methods for

pricing continuous dividend paying stock options. Furthermore, the fractional Black-

Scholes approach has outperformed its classical counterpart (classical Black-Scholes

model) in calculating the best option premiums under all considered market conditions.

February 2020.
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Chapter 1

General Introduction

This chapter presents the general introduction of the thesis. The chapter introduces

the general ideas and concepts of the theory of fractional calculus and its application

to finance. The chapter further highlights the review of numerous literatures related to

other subsequent chapters in this thesis. Lastly the chapter conclude with the structure

of the remainder of the thesis.

1.1 Literature review

Since the discovery of the celebrated “Black-Scholes-Merton” asset pricing formula in

the early 1970s, the application of Black-Scholes (BS) partial differential equations

(PDEs) in valuation of derivative instruments became very popular. The popularity

of the approach can be mainly attributed to the belief that the approach provided

the best and most effective asset valuation tool of the time. Besides the application

in derivatives pricing, dynamical behaviours of financial markets, attributed to ill-

informed splash trading for example, has led to a formation of a number of speculative

bubbles and volatility smiles in market data. Often when these speculative bubbles

burst, unfavourable economic recessions and crises become inevitable.

It is worth noting that in derivative markets, once the price evolution process for a

particular asset is specified, it is possible to address the question of how to price deriva-

1



CHAPTER 1. GENERAL INTRODUCTION 2

tive contracts on this particular asset. One of the most common classes of derivative

instruments in the markets are called options. An option is a financial contract that

gives the holder the right, but not obligation, to buy or sell a specified quantity of an

underlying asset, e.g., a stock, at a fixed price, called the strike price, before or on the

expiration date. Since it is a right and not an obligation, the holder of the contract

can decide not to exercise the option and let it to expire worthless.

There are two main types of options: standard and non-standard. Standard options

are further categorised as European or American type. The European options can only

be exercised on the expiration date, whereas, the American options are more flexible

and can be exercised at anytime on or before the expiration date. These options can

further be divided into two categories - call options (which give their holders the rights

to buy) or put options (which give their holders the rights to sell).

Another rather complex kind of tradable options available in the market today are

exotic options. Over the years exotic options have become very popular. Today, a large

variety of exotic options are readily available to investors as they are cheaper and many

offers specific tailor-made protections to the investors, see for example ([13, 42, 61, 98])

and some references therein.

Several factors can provide an explanation for the wide popularity of exotic options.

One is the almost unlimited flexibility in the sense that they can be tailored to address

a specific needs which may not be possible with standard options. For example, an

investor who would like to hedge against a large drop in the underlying asset price

can sell a down-and-in put with the barrier set at a lower level as a cheapest way to

purchase the underlying asset.

On the other hand, exotic options play a significant hedging role in meeting investors

need in very cost effective ways, see ([13]). Also, according to [13] rational investors

are moving away from buying general protections and rather focusing on designing

complex strategies which serves to address their specific exposures at any given point

in time. Most of these complex strategies are based on exotic options.

The oldest type of exotic options are barrier options. Barrier options in general
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come in two forms, knock-out option (disappearing) or knock-in (appearing) when the

underlying asset price triggers some pre-set price levels ([14]). Barrier options are thus

conditional options, and depends on whether the barrier(s) have been breached during

the lifetime of the option. Barrier options are also part of a class of options called

path-dependent options. According to Buchen and Konstandatos ([13]) barrier options

are usually cheaper than their vanilla counterparts, this is due to the fact that a buyer

of a barrier option has a more specific view of the underlying asset price dynamics

within the time to maturity of the option as compared to its vanilla counterparty.

Another hybrid of barrier options are the so-called partial time barrier options ([13]).

Here, the barrier is monitored (or active) for a time period that is shorter than the

expiry time. These options are also called window barrier options. Another refinement

of these barrier options are those options where barrier(s) are monitored discretely in

time, a comprehensive coverage of these kind of options can be found for example in

([14, 33, 36]) to mention but a few.

The concept of option pricing is both a theoretical and a practical problem in

computational finance. The derivation of the classical Black - Scholes equation which

is at the center of option pricing theory was based on the Efficient Market Hypothesis

(EMH) assumption. Of primary concern in the EMH and this derivation in general

is that assets price returns are assumed to follow a Gaussian process. Of course,

in the earlier days of trading, the Black-Scholes equation in its classical form was

a very efficient asset pricing tool and as such it found enormous applications in the

general spectrum of derivative pricing. Later, however, it turned out that splash trading

presumably informed by classical contemporary theory, and also done with little to no

knowledge of evolutions of markets dynamics has led to a formation of a number of

speculative market bubbles, which in turn led to a lot of financial troubles. For a

comprehensive account on speculative bubbles and their roles in financial crises among

other market anomalies see for example,([1, 22, 54]) and some references therein.

Among other factors, the recurrent occurrence of unexpected fluctuations, i.e., sud-

den unexpected rise/fall in stock prices renders the use of the classical Black Scholes
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approach inappropriate. Taleb in [91] refers to such rare occurrences as “black-swan

events” from his popular book entitled: “The black-swan: The impact of the highly

improbable”. According to Taleb [91] a black-swan is “A highly improbable event with

three principal characteristics: it is unpredictable; it carries a massive impact; and,

after the fact, we concoct an explanation that makes it appear less random, and more

predictable, than it was”. According to Kleinert [54], the existence of black-swan events

in financial markets is a severe obstacle to all hedging attempts. Kleinert in ([54]) fur-

ther argued that based on the central limit theorem, one would normally consider price

changes as a result of random steps of a given finite size and demonstrates that these

series of random walks build up to a complete Gaussian process. However, in an event

where a black-swan occur, some steps can become very irregular, resulting into a com-

bined process that exhibits power-law properties. It is therefore of vital importance

that models beyond the classical Black-Scholes setup, those that have the capacity to

explain the effects of “black-swan events”, as well as their solutions, both numerical and

analytical if possible are developed.

Recall that valuing options under the classical Black-Scholes framework, one as-

sumes that the market consists of a risky asset, e.g., a stock, and a riskless asset such

as a bond. Emanating from its assumptions, the classical Black-Scholes approach suf-

fers from a few drawbacks, namely, (i) constant rate of return, (ii) constant volatility,

and (iii) no dividend, taxes or transactional costs. Interest rates are bound to market

forces and as such, cannot remain constant over a longer period of time. Based on

empirical evidence, most traded asset returns exhibit memory structures, regimes of

un-even fluctuations, volatility smiles and clustering. Therefore, assuming constant

volatility may introduce some model risk. Furthermore, it is worth noting that trading

of financial assets may involve transactional costs, taxation as well as dividend pay-

ments. It is therefore crucial that in designing asset valuation models, one pays ample

attention to the case-by-case practicalities of relaxing some of these assumptions.

Empirical evidence in ([25, 37, 103]) and some references therein suggest that the

assumption of log-normality of returns and Gaussian shocks under-represent the actual
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dynamics of unanticipated jumps in asset returns. To circumvent this among other

issues, a number of suggestions has been made, for example replacing the standard

Brownian motion with a Levy processes which according to Zhang et al. [103] exhibits

long fat tails while capturing the volatility smiles and skewness which may not be

captured using the classical Black-Scholes models.

Weakening some assumptions of the classical Black-Scholes approach, some re-

searchers suggested a few improved-models, such as, stochastic interest rate models

[24, 28, 32, 81], jump-diffusion models [3, 24, 31, 55, 71, 85], stochastic volatility mod-

els [11, 28, 80, 81, 87], models with transactional costs [30, 43, 88, 100, 101], dividend

payments based models [7, 68, 80, 81] as well as regime-switching models [19, 87].

Bielecki et al. [10] also gave an extension of the no-arbitrage pricing theory to pric-

ing dividend-paying securities in discrete-time markets with transaction costs. They

showed that when there are no transaction costs on the dividends paid by a securi-

ties, the no-arbitrage conditions under the efficient friction assumption market become

equivalent to the existence of a consistent pricing system. Recently, [88] solved a space-

time fractional European option pricing model in the presence of transaction costs and

tested the practicability of their results on market real data. In the general case, when

there are transaction costs on the dividends, the no-arbitrage condition is open. This

is so because, if a security pays dividends, the security price falls by the amount of

dividend payout. Arbitrage opportunities vanishes because investors are compensated

with the same amount of price depreciation back in cash through the dividends paid

out to them.

Recent models with dividend payments, include but not limited to [68],[81] and

[7]. Martin-Vaquero et al. in ([68]) derived a stabilized explicit Runge-Kutta method

for solving American option on Multi-assets with dividends. Rana and Ahmad in

([81]) used the Glosten-Jagannathan-Runkle - Generalized Autoregressive Conditional

Heteroscedasticity (GJR-GARCH) forecasted volatility in pricing European call options

on dividend paying stocks. Ballerster et al. [7] derived a robust numerical method for

pricing vanilla options with discrete dividend payments.
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Another notable setback of the classical Black Scholes approach as well as many

of its revised versions discussed above is that their resultant models involve integer

order derivatives and integrals. According to Panas ([77]) integer order derivatives

only capture localised information (change) around a point. However, with changing

market conditions, which led to an evolvement of some unusual structures in financial

markets, such as, repeated patterns and trends, heavy tailedness in the distributions

of asset returns, volatility smiles and clustering, presents a considerable amount of

practical challenges in using models involving integer (local) derivatives. The need for

better and robust approaches has therefore become very imperative.

On the other hand, dynamical trading, always involve some residual risks emanating

from the imperfection of the correlations between the underlying process and the risky

counterpart and hence choosing an underlying stochastic process under which, the

discounting asset price movements at-least asymptotically follows a martingale would

best serve to eliminate the associated risk. That is so, because of the fact that the

underlying processes are usually correlated with the substitutes (risky counterparts)

which creates markets incompleteness. Furthermore, attributed to the principle of no-

arbitrage, there can be infinitely many martingale measures in any such portfolio setup,

which would allow for the underlying (stock) to be directly correlated to the risk. If

one wishes to therefore overcome the associated uncertainty, it is ideal to employ an

appropriate underlying stochastic process, one that is able to capture the dynamical

behaviours of the underlying (stock) price movements.

The study on pricing stock options via classical Black-Scholes approach is based on

the well known efficient market hypothesis (EMH), i.e, martingale property of price

movements. The consequence of using these types of models is that it is almost impos-

sible to infer any additional information from historical price movements to predict the

future prices. It therefore became imperative that for one to better understand future

price movements, there is a need to pay ample attentions to the repeated historical

patterns and trends.

Contrary to what the efficient market hypothesis may suggest, unusual structures



CHAPTER 1. GENERAL INTRODUCTION 7

and patterns observed in a number of financial markets data can strongly be attributed

to the following three factors, (i). markets discount everything (markets will always

respond to news and events), (ii). as behavioural finance suggests, asset prices moves

in trends and patterns forming structures depicting investors’/traders’ psychology, and

lastly that (iii). these repeated market structures may persist and are most likely to

re-occur more often than expected (history mostly always repeat itself).

In recent years, after the discovery of fractal geometry and fractal dynamics of

financial markets, see ([25, 66, 103]) progress has been made in the design of new

revolutionary models circumventing some of the unrealistic assumptions of the classical

Black-Scholes models. At the centre of the revolution are fractional calculus based

models.

Mandelbrot [64] in the late sixties observed that stock price returns exhibits heavy

tails features, as a result, they proposed an exponential non-Gaussian Levy type of

process for modelling heavy tailed stock returns. Fast forward, in the mid 1990s, ema-

nating from a series of his publications on the theory of fractal geometry, Mandelbrot

certainly revolutionised the world of science, finance and applied economics. The fields

of finance and applied economics being some of his most subtle areas of interests, led

him onto the path of discovering the fractal geometry of financial markets.

Falling under chaos theory is the Fractal Market Hypothesis (FMH) which helps

in explaining market behaviours based on the idea of Mandelbrot fractal geometry

[67]. As one may recall from elementary fractional calculus, fractals are fragmented

geometric structures which when broken down into smaller parts would still maintain

the shape and structure of the whole. From financial markets point of view, one

may look at stock price movements as fractals, the market structures on bigger time

frames are preserved on smaller time frames. Repeated self-similar patterns have long

been observed in financial market data, for some accounts with reference to stock

markets see for example [37, 54, 77] and some references therein. Mandelbrot and

Cioczek-Georges in ([66]) suggested yet another modification of the classical Black-

Scholes model using his theory of fractal geometry ([67]) which help capture memory
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and heredity features observed in financial data see [6, 37, 77, 97, 101, 103]. The

later approach of Mandelbrot and Cioczek-Georges [66] suggest replacing the standard

Brownian motion with a generalised/fractional Brownian motion. The generalised

Brownian motion is characterised by a hurst parameter H (0 < H  1/2), such that it

is equivalent to a standard Brownian motion when H = 1/2 .

According to Panas [77] local derivative based mathematical models can only cap-

ture localized information about change in price at a particular point and time, as

such, these models may not be appropriate for modeling dynamics of markets depict-

ing unusual structures such as jumps and repeated patterns. Panas in ([77]) indicated

that memory effects in financial data occurs in two forms: memory due to the noise

and that due to the trend. He further mentioned that that incorporating a fractional

Brownian motion as the governing process of the underlying dynamics can only help

to capture the noise memory effects and not the trend memory effects.

To the best of our knowledge, the work by Mandelbrot and Cioczek-Georges [66]

put them at the forefront of the pioneering works in the area of application of fractional

calculus to financial modeling and literature. They were first to suggest an approach

whereby one analogously replace the standard Brownian motion in the classical Black-

Scholes model with a fractional Brownian motion (fBM) characterised by a Hurst

parameter H 2 (0, 1]. Unlike in the standard case, the hurst parameter H in the

fBM helps in explaining the effects of memory. Some recent literatures on the similar

approach are Jumarie ([46]), Wei-Gou ([95]), and Liang ([63]) to mention but a few.

The Hurst parameter and fractional derivative operators involved in models driven

by fractal processes are increasingly becoming popular and effective tools for explaining

the effects of memory in financial markets. In the contemporary setting, to capture

effects of memory under the classical Black-Scholes setup, some researchers, for exam-

ple, ([46, 63, 66]) suggested replacing the standard Brownian motion in the underlying

(stock) dynamics with a fractional Brownian motion.

There has been a widespread applications of fractional Brownian motions based

models in finance. Jumarie [46], Liang et al. [63], Mandelbrot and Cioczek-Georges
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[66], Wei-Gou et al. [95], to mention but a few, are some of the authors who applied

fractional Brownian motion based models to pricing of equities, wallets, options and

to general portfolio optimization problems.

Fractional Brownian motion based models have two very important features, namely;

self-similarity and long-range dependence (hereditary properties), see [77, 95] and refer-

ences therein. These features allows for the best capture and representation of extreme

behaviours of stock price movements, they also help in explaining the effects of repeated

patterns and trends in price movements. Jumarie in ([49]) pointed out that asset price

volatility can be well captured by fractional Brownian motion which presents some

random-like features suitable in explaining the effects of uneven fluctuations in stock

price movements.

Motivated by the ideal that fractional calculus provide a powerful tool for explain-

ing effects of memory observed in a number of physical systems and phenomenons, a

growing number of research work on fractional Black-Scholes models has been pub-

lished. Recall that memory effects come in two forms; the noise memory effects and

trend memory effects. Incorporating a fractional Brownian motion as the underlying

process for the pricing dynamics only capture the noise memory effects [77]. However,

based on collective arguments in ([16, 73, 78]), fractional derivative based models are

very good mathematical tools for explaining dynamics of complex processes, irregular

increments and trend memory effects which are exhibited by a number of financial

instruments time series.

The use of standard fractional Brownian motions in fractional models introduces

a considerable amount of mathematical complexity in finding solutions to the models.

For this reason, Jumarie [49] suggested an alternative which is to consider a non-random

fractional stochastic dynamics subjected to the usual standard Brownian motion in-

stead of analogously replacing governing process with a standard fractional Brownian

motion as discussed above.

Models resulting from the Jumarie [49] approach are generically referred to as frac-

tional partial differential equations (fPDEs). In the Black-Scholes setup, there are
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three main classes of fractional Black-Scholes partial differential equations (fBS-PDEs),

namely; the time-fractional Black-Scholes (tfBS) PDEs, the space-fractional Black-

Scholes (sfBS) PDEs and the time-space-fractional Black-Scholes (tsfBS) PDEs. With

the tfBS-PDEs, the time derivative is replaced by a corresponding fractional derivative

of order ↵ ( 0 < ↵  1), whereas, in the case of sfBS-PDEs, the space derivatives are

replaced by their corresponding fractional derivatives of order ↵ and � ( 0 < ↵  1)

and (1 < �  2) respectively. In the case of tsfBS-PDEs, one has a combination of

the two. The pioneering ideas in the derivation of these fPDEs and other subsequent

concepts on fractional calculus herein can strongly be attributed to a series of work

by Jumarie in ([46, 47, 48, 49]). A number of authors built on the approach, either

by deriving semi-analytic solutions to the models mostly via the fractional Laplace

transform method or by suggesting some numerical methods for solving the models.

Among others Chen et al. [25] followed an approach almost similar to that of

Jumarie [49], but instead maintained the usual Gaussian dynamics and only analogous

replaced the integer derivatives in the Black-Scholes PDE with their corresponding

fractional order derivatives ↵ and � ( 0 < ↵  1 and 1 < �  2).

Since the fractional derivative operators involved in all these fractional approaches

are of a non-local nature, full tractable analytical methods for solving fractional Black-

Scholes models are seldomly available. As such numerical approaches are the only

possibly available avenues to help understand the nature of solutions to these models.

There is empirical evidence suggesting that fractional models, unlike classical ones

weighs information on the underlying asset price over a range of parameters instead

of only looking at the localised information about the underlying asset price, see for

example, [3, 37, 77, 95] and references therein. Therefore, as such, fractional models are

deemed more appropriate in capturing unusual dynamics of financial assets series, hence

provide a much more reliable approach to pricing of assets and financial derivatives such

as American options (which can be exercised anytime before or on maturity).

The valuation of American options has long been a subject of active research in

computational and mathematical finance. American option problems are usually of a
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non-linear nature. The non-linearity in American option problems is introduced by

the early exercise features associated with the contract, as such, it has been widely

accepted that there exist no tractable analytical methods for solving American option

problems. Apart from the nonlinearity of American option problems, modelling Amer-

ican options using fractional models pose yet another challenge in terms of the involved

mathematical complexity as well as in the holistic understanding and development of

analytical solutions to such models. For these reasons, tractable analytical methods

for solving American option fractional Black-Scholes PDEs are seldom available in lit-

erature. The emphasise is therefore mainly focused on the development of numerical

techniques. In designing a numerical method for solving American option problems,

one ought to take into account the fact that the design of the involved model leads to a

free boundary value problem and as such, the location of the boundary is unknown at

each point in time. A robust numerical method should therefore be able to determine

the location of the free boundary in addition to computing a fair value of the option.

It should also be noted that though the design of numerical methods for pricing

American option problems under the classical Black-Scholes approach has been ex-

tensively explored and still remain a subject of active research, the same can not be

said under the fractional Black-Scholes setup. It is therefore imperative that robust,

efficient and accurate numerical techniques for solving fractional Black-Scholes models

for American options are developed.

One of the best numerical techniques for pricing American options is a technique

based on the front-fixing algorithm. The front-fixing method has long been applied

to a wide range of problems arising in population dynamics ([20]) and finance [21, 52,

53, 75, 90, 104]. However, there are numerous other techniques used in solving Ameri-

can option problems, for example singularity separating methods [39, 90] and Penalty

methods [28, 75] among others. The basic idea behind the front-fixing technique is

to use some change of variables to transform the problem from a moving boundary

problem to a fixed boundary problem.

A growing number of researchers have devoted efforts to the study of numerical
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methods for fractional models. Zhuang and Liu in ([105]) proposed an unconditional

stable implicit difference scheme for solving time fractional diffusion equations. In an

approach almost similar to that of Zhuang and Liu [105], Chang-Ming, et al. [23] pro-

posed a finite difference method for solving fractional subdiffusion equations as well

as proposed a Fourier analysis method for analysing numerical methods to fractional

models. Though authors such as Decreusefond and Ustunel [27] among others, had sug-

gested some analysis methods for fractional models prior to Chang-Ming, et al. [23], the

analysis presented in [23] has now become the basis of theoretical analysis of numerical

methods to fractional differential equations. Zhang, et al. [103] constructed a second

order accurate discrete implicit numerical scheme for a space-fractional Black-Scholes

equation. Zhang, et al. [103] concluded that their so-called fast bi-conjugate gradient

stabilised method was able to reduce the storage space from O(k2) to O(k) and simul-

taneously reduced the computational cost from O(k3) to O(k log k) per iteration, where

k is the number of grid points in space. Apart from finite difference based methods,

other new techniques have been proposed. For example in [40] the authors proposed two

techniques for solving time-fractional Black-Scholes models, namely: Residual Power

Series method (RPSM) and collocation based mesh-free method.

Currently, there exists no perfect analytic solutions for fractional fractional Black-

Scholes equations. Though tractable analytic solutions to fractional differential equa-

tions are rare in general, there has been a few recent developments on the design of

semi-analytic solutions. Chen, et al. [25] presented an analytic solution to a time-

fractional Black-Scholes for pricing double barrier options. Liang, et al. [63] derived

an analytic solution for a bi-fractional Black-Scholes-Merton model using the Laplace

transform technique. A similar technique was later used in Kumar, et al. [56] in pric-

ing European option problems. Other analytical techniques such as fractional variation

iteration method are discussed in Ahmad, et al. [2], those based on Homotopy pertur-

bation under Sumudu transform of the fractional derivatives can be found in Asma, et

al. [4].[56] used the Laplace homotopy perturbation method, which is combination of

the Laplace transform and the homotopy perturbation method in deriving a solution
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to the fractional Black-Scholes equation with boundary condition for a European op-

tion pricing problem. This thesis therefore serves to suggest new, robust and tractable

numerical techniques for solving fractional Black-Scholes equations applied to different

practical market settings.

1.2 Outline of the thesis

The rest of the thesis is organised as follows.

Chapter 1 presented a general introduction of the thesis as well as a thorough review

of related literatures. Pertinent gaps were identified and appropriate models as well as

their approximation methods identified will be presented in subsequent chapters.

In Chapter 2 a time-fractional Black-Scholes PDE (tfBS-PDE) as well as its implicit

numerical scheme are proposed. The derivation of the model and design of an uncon-

ditionally stable scheme are presented. Some numerical examples for pricing European

put options pricing problems.

Chapter 3 serves to suggest a robust numerical scheme which is based on the gen-

eralisation of the Crank Nicholson (CN) difference method to solving the tfBS-PDE.

Through rigorous theoretical analysis of the method is presented, and results therein in-

dicates that the method is both convergent and unconditionally stable. Two numerical

examples are presented to illustrate the robustness of the method.

Using the concept of Fractional Market Hypothesis (FMH), Chapter 4 suggest a

model governed by some non-Gaussian fractional stochastic process. We derived a

time-fractional Black-Scholes PDE (tfBS-PDE) and suggest a robust high order nu-

merical method. We further discuss the stability and convergence properties of the

numerical method followed by some numerical experiments confirming the theoretical

observations.

Chapter 5 presents the design and analysis of one of the most robust numerical

technique for pricing American options, under a time-fractional Black-Scholes setting.

The proposed method therein is based on a front-fixing finite difference algorithm, one
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which allow for the simultaneous computation of the option value as well as the optimal

exercise boundary. Subsequent sections therein, presents the procedures involved, from

the construction of the involved time fractional Black-Scholes PDE (tfBS-PDE), to the

design of the numerical method which is based on the front-fixing transformation,

incorporating the early exercise features of American options into the original model

derivation.

Chapter 6 incorporates the concept of pricing double barrier options in the time-

fractional Black-Scholes framework. The underlying motivation to price double barrier

options via the time-fractional Black-Scholes framework is justified by evidence of pres-

ence of “long memory” in the time direction observed in many financial assets’ time

series. A numerical scheme for solving a double barrier option pricing time-fractional

Black-Scholes equation is also suggested. The theoretical analysis results for stability

and convergence are also presented therein.

Chapter 7 present the construction of a numerical solution method to a time-space

fractional Black-Scholes Partial Differential Equation (tfBS-PDE). The existence and

uniqueness of the constructed numerical scheme, its computational stability and conver-

gence analysis are discussed therein and lastly, some numerical examples demonstrating

the efficiency and robustness of the involved numerical method in solving time-tfBS-

PDEs are presented.

Finally, Chapter 8 briefly present a summary of the whole thesis as well as highlight

the scope for future research.



Chapter 2

An implicit finite difference scheme for

a time-fractional Black-Scholes

equation

In this chapter, dividend paying European stock options are modelled via a time-

fractional Black-Scholes (tfBS) partial differential equation (PDE). The fractional deriva-

tives used and subsequent results herein, are based on the Caputo and Jumarie (modified-

Reimann-Liouville) derivative framework, coupled with some results from the Jumarie-

fractional (generalised) Taylor series. The fractional stochastic dynamics is an appro-

priate framework to capture the market fluctuations in which random fractional white

noise has the potential to estimate accurate European put option premiums, while

providing a good numerical convergence.

2.1 Introduction

The motive in studying option pricing from a fractional calculus point of view is mainly

due to the non-local nature of the involved fractional derivative operators and the

underlying fractal processes. Fractional derivatives provide the best tools in explaining

the trend and noise memory effects as well as capturing non-localised information about

15
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the stock price movements, something that standard Brownian motions based models

may fail to explain.

The aim of this chapter is two fold: firstly, to construct a time-fractional (tfBS) PDE

for pricing European options on continuous dividend paying stocks, and, secondly, to

propose an implicit finite difference method for solving these type of fractional partial

differential equations (FPDEs). Through rigorous mathematical analysis, we establish

that, the derived implicit finite difference scheme is unconditionally stable. To support

these theoretical deductions, we present some numerical examples in the proposed

framework on pricing European put options under different sets of continuous dividend

yields.

The rest of the chapter is organised as follow, Section 2.2 presents some useful results

regarding fractional derivatives that are very fundamental to the chapter. Specific focus

is on three very common definitions of derivatives of fractional orders. Simultaneously,

this section provides a brief account of work on the derivation of the tfBS-PDE for

pricing options on dividend paying stocks. In Section 2.3, we present the derivation of

an implicit finite difference scheme for solving the tfBS-PDE presented in Section 2.2.

The theoretical analysis and discussion of the stability and convergence properties

of the numerical scheme are discussed in Section 2.4. To substantiate and validate

the theoretical claims regarding the proposed numerical method, extensive numerical

experiments are presented in Section 2.5. Finally, some concluding remarks and scope

for further research directions are presented in Section 2.6.

2.2 Time-fractional Black-Scholes (BS) Equation

In this section, firstly we present some key results about fractional derivatives. As far as

the definitions of fractional derivatives are concerned, we only focus on three common

derivative definitions, namely, those of the Remann-Liouville, Caputo, and Jumarie

definition. We then present the derivation of the time-fractional Black-Scholes PDE

for pricing options on stocks that pay continuous dividends.
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2.2.1 Some mathematical preliminaries on fractional deriva-

tives

In most recent literature, derivatives of fractional orders are defined in the Caputo,

Reimann-Liouville and Jumarie (modified Reimann-Liouville) sense. For a detailed

treatment for different types of fractional derivatives, merits and de-merits of their

usage, see ([5]) and references therein. Some good discussions can be found in ([46, 47,

48, 49]).

In this section, we briefly review some preliminaries on fractional differentiation as

well as present a brief derivation of the model under consideration.

Definition 2.2.1. Caputo fractional derivative

Let u : R ! R be a continuous, but not necessarily a differentiable function. The

Caputo fractional derivative of order ↵ is defined as follow

D↵
Cu(t) =

1

�(⌘ � ↵)

Z t

0

d⌘u(⌧)

dt⌘
1

(t� ⌧)↵�⌘+1
d⌧, ⌘ � 1 < ↵ < ⌘. (2.2.1)

Definition 2.2.2. Reimann-Liouville fractional derivative

Let u : R ! R be a continuous, but not necessarily a differentiable function. Then,

the Reimann-Liouville fractional derivative of order ↵ is given by

D↵
RLu(t) =

1

�(⌘ � ↵)

d⌘

dt⌘

Z t

0

u(⌧)

(t� ⌧)↵�⌘+1
d⌧, ⌘ � 1 < ↵ < ⌘. (2.2.2)

The Riemann-Liouville derivative has certain disadvantages when modelling real-

world phenomenons ([47]). For example, the Riemann-Liouville derivative of a constant

is not zero. In addition, if an arbitrary function is a constant at the origin, its fractional

derivative has a singularity at the origin, for example, the exponential and Mittag-

Leffler functions. These disadvantages reduce the field of application of the Riemann-

Liouville fractional derivative ([5]). Some of these disadvantages can be circumvented

by modifying the Reimann-Liouville definition.

Jumarie in ([47]) modified the Reimann-Liouville derivative using the concept of
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fractional differencing coupled with his theory of Jumarie-fractional (generalised) Tay-

lor series. The definition by Jumarie takes into account the existence of a fractional

derivative at t = 0, which is undefined in the Caputo and Reimann-Liouville deriva-

tives.

Definition 2.2.3. Jumarie (modified Reimann-Liouville) derivative

Let u : R ! R be a continuous, but not necessarily a differentiable function, and

suppose u(t) is

(i) a constant K, then its Jumarie fractional derivative of order ↵ is defined by

D↵
Ju(t) =

8
<

:

K
�(⌘�↵)t

�↵+1�⌘, ↵  ⌘ � 1,

0, ↵ > ⌘ � 1,
(2.2.3)

(ii) not a constant, then

D↵
Ju(t) =

1

�(⌘ � ↵)

d⌘

dt⌘

Z t

0

{u(⌧)� u(0)}

(t� ⌧)↵
d⌧, ⌘ � 1 < ↵ < ⌘. (2.2.4)

Definition 2.2.4. Generalized (fractional) Taylor series

Let u : R ! R be a continuous function such that u(t) has a fractional derivative of

order k↵, for some positive integer k and 0 < ↵  1, then the following equality holds

u(t+ h) =
1X

k=0

hk↵

�(1 + k↵)
u(k↵)(t), 0 < ↵  1, (2.2.5)

where u(k↵)(t) represent the fractional derivative of k↵-th order of u(t).

Definition 2.2.5 provide a consistent framework for defining fractional derivatives

of constant functions, which align fractional calculus to classical integer calculus.

Definition 2.2.5. Fractional differencing

Let u : R ! R be a continuous, but not necessarily a differentiable function, and
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let  > 0 denote the discretization step in t. Define the forward operator FW () by

FW (⇣)u(t) = u(t+ ), (2.2.6)

then, the fractional difference of order ⌘�1 < ↵ < ⌘, of u(t) is defined by the expression

�↵u(t) = (FW � 1)↵u(t),

=
1X

⇣=0

(�1)⇣

0

@ ↵

⇣

1

Au(t+ (↵� ⇣)), ⌘ 2 N. (2.2.7)

2.2.2 Derivation of the time-fractional BS-PDE

In deriving the time-fractional BS-PDE, let us first assume that the stock price dy-

namics follows the following fractional stochastic equation

dS = rSdt+ �!(t)(dt)↵/2, 0 < ↵  1, (2.2.8)

where S and � are respectively the price and volatility of the stock, r is the risk-

free interest rate, and !(t) denotes the standard Wiener process. In the presence of

continuous dividends, denoted by �, the above equation change to

dS = (r � �)Sdt+ �!(t)(dt)↵/2, 0 < ↵  1. (2.2.9)

Let us also consider the following important identities, which, according to Jumarie

[49] are consistent with the generalised Taylor series defined in Definition 2.2.4:

d↵t =
1

�(2� ↵)
t1�↵(dt)↵, 0 < ↵  1, (2.2.10)
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d↵S = �(1 + ↵)dS, 0 < ↵  1, (2.2.11)

and

d↵S

(dS)↵
=

1

�(2� ↵)
S1�↵, 0 < ↵  1. (2.2.12)

Combining (2.2.11) and (2.2.12), we obtain a conversion formula which allows us

to convert integer derivatives to fractional derivatives and vice versa:

dS =
S(1�↵)

�(1 + ↵)�(2� ↵)
(dS)↵, 0 < ↵  1. (2.2.13)

Suppose V = V (S, t) represent the value of a European put option, and suppose

that V (S, t) satisfies the assumption 2.2.6

Assumption 2.2.6. Assume the function V (S, t) is sufficiently smooth with respect to

S and its ↵ derivative with respect to time exists for some ↵ (0 < ↵  1).

Consider the risk-free investment interest rate dynamic equation

dV = rV dt. (2.2.14)

Multiplying both sides of (2.2.14) with �(1� ↵), we obtain

�(1� ↵)dV = �(1� ↵)rV dt. (2.2.15)

Now, combining (2.2.15) with (2.2.11) yields the variational fractional increment pro-

cess

d↵V = �(1 + ↵)rV dt. (2.2.16)

Equation (2.2.16) along with (2.2.13) yield the following fractional interest rate dy-
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namic equation

d↵V =
rV

�(2� ↵)
t1�↵(dt)↵. (2.2.17)

Since V (S, t) is sufficiently smooth with respect to S and its ↵-derivative (0 < ↵  1)

with respect to t exists, applying the fractional Taylor series (2.2.5) of order ↵ on

V (S, t) up to remaining error term yields

dV =
1

�(1 + ↵)

@↵V

@t↵
(dt)↵ +

@V

@S
dS +

1

2

@2V

@S2
(dS)2. (2.2.18)

Combining this with Itô’s lemma on equation (2.2.9), we obtain

dV =
1

�(1 + ↵)

@↵V

@t↵
(dt)↵ + (r � �)S

@V

@S
dt+

1

2
�2S2@

2V

@S2
(dt)↵. (2.2.19)

Using the conversion formula (2.2.13) but in terms of t, we can replace dt in (2.2.19)

with

dt =
t1�↵(dt)↵

�(1 + ↵)�(2� ↵)
, (2.2.20)

to obtain

dV =
1

�(1 + ↵)

@↵V

@t↵
(dt)↵ +

(r � �)

�(1 + ↵)�(2� ↵)
St1�↵

@V

@S
(dt)↵ +

1

2
�2S2@

2V

@S2
(dt)↵.(2.2.21)

Multiplying both sides of (2.2.21) with �(1 + ↵), we obtain

�(1 + ↵)dV =

✓
@↵V

@t↵
+

(r � �)

�(2� ↵)
St1�↵

@V

@S
+

�(1 + ↵)

2
�2S2@

2V

@S2

◆
(dt)↵. (2.2.22)
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Using (2.2.17), the left-hand side of (2.2.22) can be re-written as

�(1 + ↵)dV = d↵V,

=
rV

�(2� ↵)
t1�↵(dt)↵. (2.2.23)

Using (2.2.23) along with (2.2.22), we obtain

rV

�(2� ↵)
t1�↵ =

@↵V

@t↵
+

(r � �)

�(2� ↵)
St1�↵

@V

@S
+

�(1 + ↵)

2
�2S2@

2V

@S2
. (2.2.24)

Equation (2.2.24) can further be simplified into the following tfBS-PDE

@↵V

@t↵
=

✓
rV � qS

@V

@S

◆
t1�↵

�(2� ↵)
�

�(1 + ↵)

2
�2S2@

2V

@S2
, q = r � �; 0 < ↵  1.(2.2.25)

We can now proceed with developing a robust numerical scheme to solve the tfBS-PDE

(2.2.25) coupled with the following boundary and terminal conditions

V (S, 0) = max(K � S, 0),

V (0, t) = Ke�r(T�t),

lim
S!1

V (S, t) = 0,

9
>>>>>>>>>=

>>>>>>>>>;

(2.2.26)

where K is the strike price of the European put option and T is the maturity time.

2.3 Numerical method

In this section, we present the construction of an implicit numerical method for solving

(2.2.25) along with (2.2.26). To begin with, let L and N be positive integers and

define h = 1/L and k = 1/N as the space and time step-sizes, respectively. Define
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Sl = lh; l = 0, 1, 2, ..., L and tn = nk; n = 0, 1, 2, ..., N , such that Sl 2 [Smin, Smax]

and tn 2 [0, T ]. Furthermore, define V n
l = V (Sl, tn) as the solution at the grid point

(Sl, tn) = (lh, nk).

Using the definition of Caputo fractional derivative given in (2.2.1) for ⌘ = 1, the

time-derivative in (2.2.25) can be approximated by

@↵V (Sl, tn)

@t↵
=

1

�(1� ↵)

Z tn

0

@V (Sl, ⌧)

@t
(tn � ⌧)�↵d⌧,

=
1

�(1� ↵)

nX

j=1

Z jk

(j�1)k

 
V j
l � V j�1

l

k
+O(k)

!
(nk � ⌧)�↵d⌧,

=
1

�(1� ↵)

nX

j=1

 
V j
l � V j�1

l

k
+O(k)

!✓
(nk � (j � 1)k)1�↵ � (nk � jk)1�↵

1� ↵

◆
,

=
1

�(1� ↵)

1

1� ↵

nX

j=1

 
V j
l � V j�1

l

k
+O(k)

!
⇥
(n� j + 1)1�↵ � (n� j)1�↵

⇤
k1�↵,

=
1

�(2� ↵)

1

k↵

nX

j=1

⇥
V j
l � V j�1

l

⇤ ⇥
(n� j + 1)1�↵ � (n� j)1�↵

⇤

+
1

�(2� ↵)

nX

j=1

⇥
(n� j + 1)1�↵ � (n� j)1�↵

⇤
O(k)k1�↵,

=
1

�(2� ↵)

1

k↵

nX

j=1

(V j
l � V j�1

l )
⇥
(n� j + 1)1�↵ � (n� j)1�↵

⇤

+
1

�(2� ↵)

nX

j=1

⇥
(n� j + 1)1�↵ � (n� j)1�↵

⇤
O(k2�↵). (2.3.1)

Shifting the indices in (2.3.1) we obtain

@↵V (Sl, tn)

@t↵
=

1

�(2� ↵)

1

k↵

nX

j=1

�
V n�j+1
l � V n�j

l

� ⇥
j1�↵ � (j � 1)1�↵

⇤

+
1

�(2� ↵)

nX

j=1

⇥
j1�↵ � (j � 1)1�↵

⇤
O(k2�↵). (2.3.2)
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Let

⇢↵ :=
1

�(2� ↵)

1

k↵
, (2.3.3)

and

�j := j1�↵ � (j � 1)1�↵; j = 1, 2, · · · , n, (2.3.4)

such that 1 = �1 > �2 > · · · > �n ! 0. Substituting ⇢↵ and �j into (2.3.2) yield

@↵V (Sl, tn)

@t↵
= ⇢↵

nX

j=1

�j
�
V n�j+1
l � V n�j

l

�
+

1

�(2� ↵)

nX

j=1

�jO(k2�↵),

= ⇢↵

nX

j=1

�j
�
V n�j+1
l � V n�j

l

�
+

1

�(2� ↵)
n1�↵O(k2�↵),

= ⇢↵

nX

j=1

�j
�
V n�j+1
l � V n�j

l

�
+

1

�(2� ↵)

✓
tn
k

◆1�↵

O(k2�↵),

= ⇢↵

nX

j=1

�j
�
V n�j+1
l � V n�j

l

�
+

t1�↵n

�(2� ↵)
k. (2.3.5)

The time derivative in (2.2.25) is therefore approximated by

@↵V (Sl, tn)

@t↵
= ⇢↵

nX

j=1

�j(V
n�j+1
l � V n�j

l ) +O(k). (2.3.6)

One can clearly see that for j = 1 and ↵ = 1 the fractional difference formula (2.3.6)

reduces to the classical finite difference formula

@V (Sl, tn)

@t
=

V n
l � V n�1

l

k
+O(k).

Now, the first and second spatial derivatives in (2.2.25) are discretised using the
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usual forward and central finite difference approximations, respectively, i.e.,

@V (Sl, tn)

@S
=

V n
l+1 � V n

l

h
+O(h) (2.3.7)

and

@2V (Sl, tn)

@S2
=

V n
l+1 � 2V n

l + V n
l�1

h2
+O(h2). (2.3.8)

Using (2.3.6), (2.3.7) and (2.3.8) into (2.2.25), we obtain the full scheme

⇢↵

nX

j=1

�j(V
n�j+1
l � V n�j

l ) =
�
rV n

l � (r � �)l(V n
l+1 � V n

l )
� (nk)1�↵

�(2� ↵)

�
�(1 + ↵)�2l2

2

�
V n
l+1 � 2V n

l + V n
l�1

�
. (2.3.9)

Now (2.3.9) can be further simplified to have the form

anlV
n
l�1 + bnlV

n
l + cnlV

n
l+1 = (1� �2)V

n�1
l +

n�1X

j=2

'jV
n�j
l + �nV

0
l , (2.3.10)

where

'j := �j � �j+1; j = 1, 2, · · · , n, (2.3.11)

and

anl = ⇢�1
↵

✓
�(1 + ↵)�2l2

2

◆
,

bnl = 1� ⇢�1
↵

✓
�(1 + ↵)�2l2 +

(r + (r � �)l) (nk)1�↵

�(2� ↵)

◆
,

cnl = ⇢�1
↵

✓
�(1 + ↵)�2l2

2
+

(r � �)l(nk)1�↵

�(2� ↵)

◆
; l = 1, 2, · · · , L.
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The matrix representation of the above is given by

AnUn = '1Un�1 + '2Un�2 + · · ·+ 'n�1U1 + �nU0, (2.3.12)

which can further be written as

AnUn = bn, (2.3.13)

where

An =

0

BBBBBBBBB@

a1n b1n c1n 0 · · · · · · 0

0 a2n b2n c2n
...

... . . . . . . . . . ...

... al�1n bl�1n cl�1n 0

0 · · · · · · 0 aLn bLn cLn

1

CCCCCCCCCA

, Un =

0

BBBBBBBBB@

V n
0

V n
1

...

V n
L�1

V n
L

1

CCCCCCCCCA

,

bn =
n�1X

j=1

'jUn�j + �nU0.

Remark 2.3.1. The following observations can easily be verified

1 = �1 > �2 > · · · �n ! 0,

'1 = 1� �2,

Pn�1
j=1 'j = 1� �n,

P1
j=1 'j = 1 > 1� (21�↵ � (2� 1)1�↵) = 2� 21�↵ = '1 > '2 > · · · ! 0.

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

(2.3.14)

Now, before we proceed further, we analyze the numerical method presented above.



CHAPTER 2. AN IMPLICIT FINITE DIFFERENCE SCHEME FOR A
TIME-FRACTIONAL BLACK-SCHOLES EQUATION 27

2.4 Analysis of the numerical method

In this section we present the stability and convergence analysis of our implicit finite

difference scheme (2.3.9).

2.4.1 Stability Analysis

Let Ṽ n
l ; l = 0, 1, 2, · · ·L;n = 0, 1, 2, · · ·N ; be an approximate solution obtained by

using (2.3.9). Define "nl = V n
l � Ṽ n

l as the truncation error, such that "n0 = "nL = 0 for

all n.

Now setting n = 1 in (2.3.9) and simplifying further, we have

⇢�1
↵

✓
�(1 + ↵)�2l2

2

◆
V 1
l�1 +

✓
1� ⇢�1

↵

✓
�(1 + ↵)�2l2 +

(r + (r � �)l) (nk)1�↵

�(2� ↵)

◆◆
V 1
l

+⇢�1
↵

✓
�(1 + ↵)�2l2

2
+

(r � �)l(nk)1�↵

�(2� ↵)

◆
V 1
l+1 = V 0

l , (2.4.1)

which can be represented as

a1lV
1
l�1 + b1lV

1
l + c1lV

1
l+1 = V 0

l , (2.4.2)

where

a1l = ⇢�1
↵

✓
�(1 + ↵)�2l2

2

◆
,

b1l = 1� ⇢�1
↵

✓
�(1 + ↵)�2l2 +

(r + (r � �)l) (nk)1�↵

�(2� ↵)

◆
,

c1l = ⇢�1
↵

✓
�(1 + ↵)�2l2

2
+

(r � �)l(nk)1�↵

�(2� ↵)

◆
, l = 1, 2, · · · , L.

Using the error equation along with (2.4.2), we obtain

a1l"
1
l�1 + b1l"

1
l + c1l"

1
l+1 = "0l , n = 1, (2.4.3)
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and with (2.3.10), we obtain

anl"
n
l�1 + bnl"

n
l + cnl"

n
l+1 =

n�1X

j=1

'j"
n�j
l + �n"

0
l , n � 2. (2.4.4)

In matrix notations, (2.4.3) and (2.4.4) can be written as

A1En = E0, n = 1

AnEn = '1En�1 + '2En�2 + · · ·+ 'n�1E1 + �nE0, n � 2

9
>>>=

>>>;
(2.4.5)

where

En =

0

BBBBBB@

"n1

"n2
...

"nL�1

1

CCCCCCA
. (2.4.6)

With above notations, we now prove the following theorem.

Theorem 2.4.1. The implicit finite difference scheme (2.3.9) is unconditionally stable

and its global error satisfies

kEnk1  kE0k1, for n = 1, 2, 3, · · · , N.

Proof. Suppose n = 1 and let

| "1m |= max
1lL�1

| "1l | . (2.4.7)
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Then using (2.4.3), we see that

kE1k1 = | "1m |,

 | a1m"
1
m�1 + bml"

1
m + c1m"

1
m+1 |,

= | "0l |,

 kE0k1, (2.4.8)

which implies that

kE1k1  kE0k1.

Now suppose for n � 2, we have

kEn�1k1  kE0k1.

Define

| "nm |= max
1lL�1

| "nl | . (2.4.9)
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Hence

kEnk1 = | "nm |,

 | anm"
n
m�1 + bnm"

n
m + cnm"

n
m+1 |,

= | '1En�1 + '2En�2 + · · ·+ 'n�1E1 + �nE0 |,

 '1 | En�1 | +'2 | En�2 | + · · ·+ 'n�1 | E1 | +�n | E0 |,

 '1kEn�1k1 + '2kEn�2k1 + · · ·+ 'n�1kE1k1 + �nkE0k1,

 '1kE0k1 + '2kE0k1 + · · ·+ 'n�1kE0k1 + �nkE0k1,

= ('1 + '2 + · · ·+ 'n�1 + �n) kE0k1,

=

 
n�1X

j=1

'j + �n

!
kE0k1,

= (1� �n + �n) kE0k1,

= kE0k1. (2.4.10)

Therefore

kEnk1  kE0k1 for all n = 1, 2, · · · , N,

which completes the proof of the theorem.

2.4.2 Convergence Analysis

Let Un
l be the exact solution of (2.2.25) with condition (2.2.26) at the grid point (Sl, tn).

Define enl = Un
l � V n

l , with en = (en1 , e
n
2 , · · · , e

n
L�1)

T and e0 = 0. Now since the errors

enl satisfy (2.3.10) and (2.4.2), we have for n � 2

anle
n
l�1 + bnle

n
l + cnle

n
l+1 =

n�1X

j=1

'je
n�j
l +Rn

l , (2.4.11)

and for n = 1

a1le
1
l�1 + b1le

1
l + c1le

1
l+1 = R1

l . (2.4.12)
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In the above, the remainder term Rn
l is obtained from (2.3.9) by multiplying both sides

of the equation by k↵�(2� ↵). This gives

Rn
l =

nX

j=1

�j [V (Sl, tn+1�j)� V (Sl, tn�j)]� µk↵V (Sl, tn)� !k↵ [V (Sl+1, tn)� V (Sl, tn]

+�k↵�(2� ↵) [V (Sl+1, tn)� 2V (Sl, tn) + V (Sl�1, tn)] , (2.4.13)

where

µ = rt1�↵, ! = (r � �)lt1�↵ and � =
l2�2�(1 + ↵)

2
.

Define

L↵kV (Sl, tn) :=
k�↵

�(2� ↵)

nX

j=1

�j [V (Sl, tn+1�j)� V (Sl, tn�j)] , (2.4.14)

then

���
@↵V (Sl, tn)

@t↵
� L↵kV (Sl, tn)

���


1

�(1� ↵)

nX

j=1

Z jk

(j�1)k

�����
@V (Sl, ⌧)

@⌧
�

(V (Sl, tn+1�j)� V (Sl, tn�j))

k

�����
d⌧

(tn � ⌧)↵
,


1

�(1� ↵)
k

nX

j=1

Z jk

(j�1)k

d⌧

(tn � ⌧)↵
,


C

�(1� ↵)
k

Z jk

0

d⌧

(tn � ⌧)↵
,

 C1k, (2.4.15)

where C and C1 are constants independent of h and k. Therefore

L↵kV (Sl, tn) =
k�↵

�(2� ↵)

nX

j=1

�j [V (Sl, tn+1�j)� V (Sl, tn�j)]

=
@↵V (Sl, tn)

@t↵
+ C1k. (2.4.16)
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We further note that

V (Sl+1, tn)� V (Sl, tn)

h
=
@V (Sl, tn)

@S
+ C2h, (2.4.17)

and

V (Sl+1, tn)� 2V (Sl, tn) + V (Sl�1, tn)

h2
=
@2V (Sl, tn)

@S2
+ C3h

2. (2.4.18)

Substituting (2.4.16) - (2.4.18) into (2.4.13) and simplifying, we obtain

Rn
l = k↵�(2� ↵)


@↵V (Sl, tn)

@t↵
�

µ

�(2� ↵)
V (Sl, tn)�

!

�(2� ↵)

@V (Sl, tn)

@S
+ �

@2V (Sl, tn)

@S2

�

+C1k
1+↵ + C2k

↵h+ C3k
↵h2, (2.4.19)

where C2 and C3 are constants independent of h and k.

From (2.4.19), we have

| Rn
l |  Ĉ(k1+↵ + k↵(h+ h2)),

 Ĉ(k1+↵ + k↵h), (h2
 h), (2.4.20)

where Ĉ is a generic constant.

We can now prove the following main result.

Theorem 2.4.2. Let V n
l be the approximation of the exact solution Un

l obtained via

the implicit scheme (2.3.9). Then, there exist a constant eC, such that

max
n,l

kV n
l � Un

l k  eC(k + h), for l = 1, 2, · · · , L� 1 and n = 1, 2, · · · , N.

Proof. To proceed, let

kenk1 =| enm |= max
1lL�1

| enl | .
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For n = 1, we have

ke1k1 = | e1m |,

 | a1me
1
m�1 + b1me

1
l + c1me

1
m+1 |,

= | R1
l |,

 Ĉ��1
1 (k1+↵ + k↵h) (using (2.4.20)). (2.4.21)

Now, for n � 2, we have

kenk1 = | enm |,

 | anme
n
m�1 + bnme

n
m + cnme

1
m+1 |,

= | '1e
n�1 + '2e

n�2 + · · ·+ '1e
1 +Rn

m |,

 '1 | e
n�1

| +'2 | e
n�2

| + · · ·+ 'n�1 | e
1
| + | Rn

m |,

 '1 | e
n�1

| +'2 | e
n�2

| + · · ·+ 'n�1 | e
1
| +Ĉ(k1+↵ + k↵h),

 '1ke
n�1

k1 + '2ke
n�2

k1 + · · ·+ 'n�1ke
1
k1 + Ĉ(k1+↵ + k↵h),

 ('1 + '2 + · · ·+ 'n�1 + �n)�
�1
n Ĉ(k1+↵ + k↵h),

=

 
n�1X

j=1

'j + �n

!
��1
n Ĉ(k1+↵ + k↵h),

= (1� �n + �n) �
�1
n Ĉ(k1+↵ + k↵h),

= Ĉ��1
n (k1+↵ + k↵h). (2.4.22)
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We further notice that

lim
n!1

��1
n

n↵
= lim

n!1

n�↵

n1�↵ � (n� 1)1�↵
,

= lim
n!1

n�↵

n1�↵

✓
1

1� (1� 1
n)

1�↵

◆
,

= lim
n!1

n�1

1� (1� 1
n)

1�↵ ,

= lim
n!1

n�1

(1� ↵)n�1
,

=
1

1� ↵
. (2.4.23)

Therefore, from (2.4.21) and (2.4.22), we have

kenk1  Ĉn↵(k1+↵ + k↵h),

= Ĉn↵k↵(k + h),

= Ĉt↵n(k + h) since tn = nk  T,

= eC(k + h) where eC = Ĉt↵n. (2.4.24)

This completes the proof of the theorem.

In the next section, we present a set of numerical results confirming theoretical

results presented above.

2.5 Numerical results

In this section the pricing of standard European put options using the time-fractional

BS-PDE (2.2.25) is implemented via the implicit finite difference scheme (2.3.9) along

with conditions (2.2.26). We consider two examples with varying dividend yields, and

the order of the time derivative (↵) ranging from 0.1 to 0.9. We further present results

for error and convergence rates.
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Example 2.5.1. Consider equation (2.2.25) subject to conditions (2.2.26) for pricing

a European put option with the following parameters: K = 150, r = 0.055, � =

0.1, T = 1, Smax = 450, L = 30, N = 50, � = 0.025, 0.045 and 0.065.

Example 2.5.2. Consider equation (2.2.25) subject to conditions (2.2.26) for pricing

a European put option with the following parameters: K = 200, r = 0.065, � =

0.025, T = 1, Smax = 600, L = 33, N = 100, � = 0.045 and 0.085.

In order to show that the proposed scheme is unconditionally stable and converge

with order one in both time and asset price, the results are presented in tables 2.5.1

and 2.5.2 for Example 2.5.1 and in tables 2.5.3 and 2.5.4 for Example 2.5.2.

Table 2.5.1: Maximum absolute errors for Example 2.5.1 with r = 0.055 and � = 0.065.

↵ N = 40 N = 80 N = 160 N = 320 N = 640

0.1 6.1152e-02 3.1069e-02 1.5659e-02 7.8606e-03 3.9381e-03
0.2 5.9707e-02 3.0276e-02 1.5245e-02 7.6491e-03 3.8312e-03
0.3 5.7925e-02 2.9330e-02 1.4758e-02 7.4021e-03 3.7069e-03
0.4 5.5896e-02 2.8272e-02 1.4218e-02 7.1294e-03 3.5698e-03
0.5 5.3692e-02 2.7136e-02 1.3641e-02 6.8388e-03 3.4240e-03
0.6 5.1370e-02 2.5948e-02 1.3040e-02 6.5369e-03 3.2726e-03
0.7 4.8978e-02 2.4731e-02 1.2427e-02 6.2289e-03 3.1183e-03
0.8 4.6552e-02 2.3503e-02 1.1809e-02 5.9190e-03 2.9631e-03
0.9 4.4121e-02 2.2277e-02 1.1194e-02 5.6107e-03 2.8088e-03
1.0 4.1705e-02 2.1064e-02 1.0586e-02 5.3066e-03 2.6567e-03

Table 2.5.2: Convergence rates for Example 2.5.1 with r = 0.055 and � = 0.065.

↵ N = 80 N = 160 N = 320 N = 640

0.1 0.98 0.99 0.99 1.00
0.2 0.98 0.99 0.99 1.00
0.3 0.98 0.99 1.00 1.00
0.4 0.98 0.99 1.00 1.00
0.5 0.98 0.99 1.00 1.00
0.6 0.99 0.99 1.00 1.00
0.7 0.99 0.99 1.00 1.00
0.8 0.99 0.99 1.00 1.00
0.9 0.99 0.99 1.00 1.00
1.0 0.99 0.99 1.00 1.00
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Table 2.5.3: Maximum absolute errors for Example 2.5.2 with r = 0.065 and � = 0.045.

↵ N = 40 N = 80 N = 160 N = 320 N = 640

0.1 1.5661e-01 8.1330e-02 4.1509e-02 2.0978e-02 1.0547e-02
0.2 1.3930e-01 7.2084e-02 3.6713e-02 1.8533e-02 9.3120e-03
0.3 1.2548e-01 6.4751e-02 3.2926e-02 1.6607e-02 8.3404e-03
0.4 1.1445e-01 5.8938e-02 2.9934e-02 1.5088e-02 7.5750e-03
0.5 1.0574e-01 5.4365e-02 2.7586e-02 1.3898e-02 6.9759e-03
0.6 9.8970e-02 5.0832e-02 2.5777e-02 1.2983e-02 6.5152e-03
0.7 9.3914e-02 4.8203e-02 2.4435e-02 1.2304e-02 6.1741e-03
0.8 9.0418e-02 4.6397e-02 2.3516e-02 1.1840e-02 5.9410e-03
0.9 8.8420e-02 4.5378e-02 2.3001e-02 1.1581e-02 5.8109e-03
1.0 8.7951e-02 4.5161e-02 2.2896e-02 1.1530e-02 5.7857e-03

Table 2.5.4: Convergence rates for Example 2.5.2 with r = 0.065 and � = 0.045.

↵ N = 80 N = 160 N = 320 N = 640

0.1 0.95 0.97 0.98 0.99
0.2 0.95 0.97 0.99 0.99
0.3 0.95 0.98 0.99 0.99
0.4 0.96 0.98 0.99 0.99
0.5 0.96 0.98 0.99 0.99
0.6 0.96 0.98 0.99 0.99
0.7 0.96 0.98 0.99 0.99
0.8 0.96 0.98 0.99 0.99
0.9 0.96 0.98 0.99 0.99
1.0 0.96 0.98 0.99 0.99

In Figures 2.5.1 to 2.5.3 and Figures 2.5.7 and 2.5.8, we plot the European put

payoffs at maturity using the parameters as indicated in examples 2.5.1 and 2.5.2,

respectively. The solid line indicates the intrinsic payoffs whereas the line with asterics

indicates the approximated payoffs. For the second Example 2.5.2 the same set of

parameter values for ↵ were used and almost similar observations were obtained. Due

to space limitations, only two cases, i.e., � = 0.045 and 0.085 are presented in the

results below. In Figures 2.5.4 to 2.5.6 and Figures 2.5.9 and 2.5.10, we plot payoffs

throughout the life span of the options for examples 2.5.1 and 2.5.2, respectively.
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Figure 2.5.1: Payoffs for ↵ = 0.3, 0.5, 0.7, 0.9, � = 0.025 and t = T .
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Figure 2.5.2: Payoffs for ↵ = 0.3, 0.5, 0.7, 0.9, � = 0.045 and t = T .



CHAPTER 2. AN IMPLICIT FINITE DIFFERENCE SCHEME FOR A
TIME-FRACTIONAL BLACK-SCHOLES EQUATION 39

0 100 200 300 400 500

S

0

50

100

150

V
(S

,t
)

 = 0.3

0 100 200 300 400 500

S

0

50

100

150

V
(S

,t
)

 = 0.5

0 100 200 300 400 500

S

0

50

100

150

V
(S

,t
)

 = 0.7

0 100 200 300 400 500

S

0

50

100

150

V
(S

,t
)

 = 0.9

Figure 2.5.3: Payoffs for ↵ = 0.3, 0.5, 0.7, 0.9, � = 0.065 and t = T .
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Figure 2.5.4: Payoffs for ↵ = 0.3, 0.5, 0.7, 0.9, � = 0.025, for all 0  t  T .
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Figure 2.5.5: Payoffs for ↵ = 0.3, 0.5, 0.7, 0.9, � = 0.045, for all 0  t  T .
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Figure 2.5.6: Payoffs for ↵ = 0.3, 0.5, 0.7, 0.9, � = 0.065, for all 0  t  T .
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Figure 2.5.7: Payoffs for ↵ = 0.3, 0.5, 0.7, 0.9, � = 0.045 and t = T .
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Figure 2.5.8: Payoffs for ↵ = 0.3, 0.5, 0.7, 0.9, � = 0.085 and t = T .
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Figure 2.5.9: Payoffs for ↵ = 0.3, 0.5, 0.7, 0.9, � = 0.045 for all 0  t  T .
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Figure 2.5.10: Payoffs for ↵ = 0.3, 0.5, 0.7, 0.9, � = 0.085 for all 0  t  T .

As one can see from the results presented above, the accuracy of the results is better

in the case when 1/2  ↵  1 as compared to when 0 < ↵ < 1/2. However, from

the numerical point of view, ↵ can be chosen to be small or large. And also, the fact

that the proposed method is unconditionally stable, the choice of ↵ does not affect the

overall convergence of the method, see tables eg. 2.5.2 and 2.5.4. One may further

note that, the restriction on ↵ to be between 0.5 and 1 is not too large a hindrance,

as regular markets’s conditions would not require extreme lower values of ↵, since

under such extremely lower ↵ values, the underlying stock price St returns become
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negatively correlated, which signal anti-persistent features which in-turn violates some

key fundamental asset pricing assumptions. Similar observations are made under all

considered dividend yields. To this end, it is worth noting that, changing the dividend

yield does have a significant effect on the put premium results, if one carefully contrast

the premium profiles obtained at different dividend yields, regardless of the value of

↵, one can observe that, high dividends yields are associated with high put premiums.

This is true because, the underlying stock price is expected to drop by the amount

of the dividend payout and hence a higher dividend yield would imply a higher put

premium.

2.6 Summary and discussions

In this chapter, we formulated a time-fractional Black-Scholes PDE for pricing standard

European put options written on a dividend paying stock. Then we designed and

analyzed an implicit finite difference scheme for solving tfBS-PDEs. We proved that

the proposed method is unconditionally stable and converges with order one in both

time and asset direction. Two numerical examples supporting the theoretical claims

were presented. As we can see from all the results presented, the proposed method is

quite efficient for all values of the order of the fractional derivative considered in the

simulations. Our results suggest that, the fractional framework is a very effective and

robust approach for calculating European put premiums.

As can be seen from our results, the tfBS-PDE model produces option premiums

curves which are very different from what classical theory may suggest. Another im-

portant feature to note is that the BS models proposed in the classical framework are

known to produce option premium curves which are similar in shape and hence may

not fully capture the effects of unanticipated market movements, whereas the fractional

Black-Scholes models have the ability to produce premium curves which are quite sen-

sitive to changes in associated parameters, such as, volatility, dividend, interest rate,

news events etc. In summary, if sufficient market data is available, the fractional BS
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models can be calibrated to produce option price curves that take into account a variety

of different market conditions.

Currently, we are investigating other higher order methods for solving the tfBS-

PDE presented in this chapter. Therefore in the Chapter 3 we present a much high

order numerical scheme for solving time-fractional Black-Scholes PDEs.



Chapter 3

A Robust Crank Nicholson Scheme for

a Stock Exchange Time Fractional

Black-Scholes Equation

This chapter presents a robust numerical scheme based on the extension of the Crank

Nicholson difference method in solving the tfBS-PDE obtained under the assumption

that the stock market does exhibit some unexplained hereditary/memory features.

Through rigorous theoretical analysis, our results indicate that the method is both

convergent and unconditionally stable. Some numerical results are also presented to

illustrate the robustness of the method.

3.1 Introduction

There is empirical evidence in support of the assertion that fractional stochastic models

are well suited for modelling systems and phenomenons exhibiting hereditary charac-

ters. The use of fractional models to explain memory observed in a number of financial

markets including the stock market has recently taken over the context of academic

literatures and debates within the financial mathematic and behavioural finance disci-

plines. The efficient market hypothesis used in contemporary financial modelling liter-

49
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atures often neglects the effects of memory, though memory has long been observed in a

number financial data. In assuming the stock market exhibits some unexplained mem-

ory structures, depicted by some non-random fractional stochastic dynamics which are

governed by the usual standard Brownian motion, we obtain a time fractional Black-

Scholes (tfBS) partial differential equation PDE for pricing stock options.

Though the chapter presents a robust numerical scheme for solving tfBS-PDEs for

pricing European stock options, ideas and techniques presented herein can be extended

to solving tsfBS-PDEs. The method under consideration is an extension of the Crank-

Nicholson method to solving tfBS-PDEs. To the best of our knowledge, this approach

has not yet been experimented in solving time-fractional Black-Scholes PDEs.

The method herein does not only prove to have an advantage over unconditional

stability, but it also attain high accuracy compared to it’s implicit and explicit methods.

In the implicit and explicit cases, the order of accuracy in time maybe lower than the

one in the asset direction. For example, if one wish to reduce the approximation

error by four, one has to increase the temporal gird size by four and the spatial one

(asset direction) by two, which results in eight times longer computational time. Our

method therefore considerably reduces the computational time involved in computing

the solution while attaining overall convergent and unconditional stable results.

The rest of this chapter is organized as follow, Section 3.2 present a brief derivation

of the tfBS-PDE for pricing European options on continuous dividend paying stocks.

In Section 3.3, we present the detailed construction of the numerical scheme. A com-

prehensive theoretical analysis of the method in terms of convergence and stability is

presented in Section 3.4. Two practical examples on the use of the approach for pricing

European put stock options can be found in Section 3.5. Lastly, Section 3.6 present

some concluding remarks and set the scope for future research.
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3.2 The time fractional Black-Scholes PDE

3.2.1 Model specification

Suppose the stock price S follows the following non-random fractional stochastic pro-

cess presented in a fractional Maruyama representation dB↵(t) = !(t)(dt)↵/2

dS = (r � �)Sdt+ �S!(t)(dt)↵/2, 0 < ↵  1, (3.2.1)

where B↵(t) is a fractal process governed by a Gaussian white noise !(t), with �2

representing the volatility while r and � represent the risk-free interest rate and the

continuous dividend yield respectively.

The fractional dynamic equation (3.2.1) generalize the standard Brownian motion

B(t) given by dB(t) = !(t)dt1/2 with dB↵(t) = !(t)(dt)↵/2 where 0 < ↵  1.

Note that, when ↵ = 1, equation (3.2.1) is equivalent to a geometric Brownian

motion.

It is further worth noting that, unlike in the standard Brownian motion, the non-

Gaussian fractional process (3.2.1) does not make any prior assumption about the

underlying distribution of the stock price (S). However, it does make inferences on

how the market is scaling with respect to time. This feature is very important in

modelling market cycles in forms of repeated patterns.

From equation (3.2.1) one can derive two families of fractional Black-Scholes PDEs,

namely; tfBS-PDEs as well as tsfBS PDEs. Fundamental to the derivation of the

tfBS-PDE are three key conversion formulae useful in converting between integer and

fractional derivatives. According to ([49]) the following identities are well consistent

with the fractional (Generalized) Taylor series expansion.

d↵t =
1

�(2� ↵)
t1�↵(dt)↵, 0 < ↵  1, (3.2.2)
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d↵S = �(1 + ↵)dS, 0 < ↵  1, (3.2.3)

and

d↵S

(dS)↵
=

1

�(2� ↵)
S1�↵, 0 < ↵  1. (3.2.4)

Combination of the two indentities (3.2.3) and (3.2.4) results in the following deriva-

tive conversion formula

dS =
S(1�↵)

�(1 + ↵)�(2� ↵)
(dS)↵, 0 < ↵  1. (3.2.5)

If we let V = V (S, t) represent the option value such that it is sufficiently smooth in

the asset direction and that atleast its fractional time derivative of order ↵ (0 < ↵  1)

exists, then, combining the evolution equation of a safe investment

dV = rV dt, (3.2.6)

with the conversion formula (3.2.5) results in the following fractional interest rate (safe

investment evolution) equation

d↵V =
rV

�(2� ↵)
t1�↵(dt)↵. (3.2.7)

Since V (S, t) is sufficiently smooth in the asset direction and fractionally differen-

tiable in time up to order ↵ (0 < ↵  1), the fractional Taylor series expansion of

V (S, t) upto some remaining error terms yields

dV =
1

�(1 + ↵)

@↵V

@t↵
(dt)↵ +

@V

@S
dS +

1

2

@2V

@S2
(dS)2. (3.2.8)

Combining (3.2.7) with the fractional Itô’s lemma applied to equation (3.2.1), cou-
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pled with some algebraic manipulations, we obtain the tfBS-PDE

@↵V

@t↵
=

✓
rV � qS

@V

@S

◆
t1�↵

�(2� ↵)
�

�(1 + ↵)

2
�2S2@

2V

@S2
, (3.2.9)

where q = r � �; 0 < ↵  1, subject to the following initial and boundary conditions

for a European put option

V (S, 0) = max(K � S, 0),

V (0, t) = Ke�r(T�t),

lim
S!1

V (S, t) = 0,

9
>>>=

>>>;
(3.2.10)

with K the strike price and T the maturity time. In the next section we present the

details and construction of the numerical method.

3.3 Model discretization and numerical scheme

This section present the discretization of derivative terms in the tfBS-PDE (3.2.9) as

well as it’s full final scheme subject to initial and boundary conditions in (3.2.10).

3.3.1 Model discretization

Let L and N be positive integers and define h = Smax/L and k = T/N as the space

and time step-sizes respectively. Define Sl = lh; l = 0, 1, 2, ..., L and tn = nk; n =

0, 1, 2, ..., N , such that Sl 2 [Smin, Smax] and tn 2 [0, T ]. Furthermore, define V n+1
l =

V (Sl, tn+1) as the solution at the grid point (Sl, tn+1) = (lh, (n+ 1)k).

Temporal discretization

Since the Caputo definition allows for incorporation of traditional initial and boundary

conditions in the problem formulation, and also due to the fact that, the value of a

European option V (S, t) is a time differentiable function, we define the time fractional
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derivative in (3.2.9) using Definition 2.2.1. If we let ⌘ = 1, from the time-fractional

derivative in (3.2.9) we have

@↵V (Sl, tn+1)

@t↵
=

1

�(1� ↵)

Z tn+1

0

@V (Sl, ⌧)

@t
(tn+1 � ⌧)�↵d⌧,


1

�(1� ↵)

n+1X

j=1

Z (j+1)k

jk

 
V j+1
l � V j�1

l

2k
+O(k2)

!
((n+ 1)k � ⌧)�↵d⌧,

=
1

�(1� ↵)

1

1� ↵

n+1X

j=1

 
V j+1
l � V j�1

l

2k
+O(k2)

!

⇥
(n� j)1�↵ � (n� j + 1)1�↵

⇤
k1�↵,

=
1

2�(2� ↵)

1

k↵

n+1X

j=1

⇥
V j+1
l � V j�1

l

⇤ ⇥
(n� j)1�↵ � (n� j + 1)1�↵

⇤

+
1

�(2� ↵)

n+1X

j=1

⇥
(n� j)1�↵ � (n� j + 1)1�↵

⇤
O(k2)k1�↵,

=
1

2�(2� ↵)

1

k↵

n+1X

j=1

(V j+1
l � V j�1

l )
⇥
(n� j)1�↵ � (n� j + 1)1�↵

⇤

+
1

�(2� ↵)

n+1X

j=1

⇥
(n� j)1�↵ � (n� j + 1)1�↵

⇤
O(k3�↵). (3.3.1)

Shifting the indices in (3.3.1) by j = n� j, we obtain

@↵V (Sl, tn)

@t↵
=

1

2�(2� ↵)

1

k↵

nX

j=0

�
V n�j+1
l � V n�j�1

l

� ⇥
j1�↵ � (j + 1)1�↵

⇤

+
1

2�(2� ↵)

nX

j=0

⇥
j1�↵ � (j + 1)1�↵

⇤
O(k3�↵). (3.3.2)

Define

⇢↵ := �
1

2�(2� ↵)

1

k↵
, (3.3.3)
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and

�j := (j + 1)1�↵ � j1�↵, j = 0, · · · , n, (3.3.4)

where, 1 = �0 > �1 > �2 > · · · > ! 0 and limn!1
Pn

j=0 �j = n1�↵. Substituting ⇢↵

and �j into (3.3.2) we obtain

@↵V (Sl, tn+1)

@t↵
= ⇢↵

nX

j=0

�j
�
V n�j+1
l � V n�j�1

l

�
�

1

�(2� ↵)

nX

j=0

�jO(k3�↵),

 ⇢↵

nX

j=0

�j
�
V n�j+1
l � V n�j�1

l

�
�

1

�(2� ↵)
n1�↵

O(k3�↵),

= ⇢↵

nX

j=0

�j(V
n�j+1
l � V n�j�1

l )�
1

�(2� ↵)

✓
tn
k

◆1�↵

O(k3�↵),

= ⇢↵

nX

j=0

�j(V
n�j+1
l � V n�j�1

l )�
t1�↵n

2�(2� ↵)
k2. (3.3.5)

The time derivative in (3.2.9) is therefore approximated by

@↵V (Sl, tn+1)

@t↵
= ⇢↵

nX

j=0

�j(V
n�j+1
l � V n�j�1

l ) +O(k2). (3.3.6)

Spatial discretization

The first and second spatial derivatives in (3.2.9) are approximated respectively by

@V (Sl, tn+1)

@S
=

V n+1
l+1 � V n+1

l�1

2h
+O(h2), (3.3.7)

and

@2V (Sl, tn+1)

@S2
=

V n+1
l+1 � 2V n+1

l + V n+1
l�1 + V n

l+1 � 2V n
l + V n

l�1

2h2
+O(h2). (3.3.8)
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3.3.2 The full scheme

Substituting (3.3.6), (3.3.7) and (3.3.8) into (3.2.9), we obtain

⇢↵

nX

j=0

�j(V
n�j+1
l � V n�j�1

l ) =
t1�↵

�(2� ↵)

�
rV n+1

l � ql(V n+1
l+1 � V n+1

l�1 )
�
�Qn

l , (3.3.9)

where

Qn
l =

�(1 + ↵)�2l2
�
V n+1
l+1 � 2V n+1

l + V n+1
l�1 + V n

l+1 � 2V n
l + V n

l�1

�

4

The above scheme is of the Crank-Nicholson type, which can be broken down into

two separate distinct cases, i.e. for when n = 0 and when n � 1.

Setting n = 0, and equating the non fictitious point to zero we obtain the following

system of equations

a1V
1
l�1 + b1V

1
l + c1V

1
l+1 = a0V

0
l�1 + b0V

0
l + c0V

0
l+1, (3.3.10)

where

a1 = �2l2
�(1 + ↵)

4
� ql

t1�↵

�(2� ↵)
,

b1 = ⇢↵�0 � r
t1�↵

�(2� ↵)
� �2l2

�(1 + ↵)

2
,

c1 = �2l2
�(1 + ↵)

4
+ ql

t1�↵

�(2� ↵)
,

and

a0 = ��2l2
�(1 + ↵)

4
,

b0 = ⇢↵�0 + �2l2
�(1 + ↵)

2
,

c0 = ��2l2
�(1 + ↵)

4
.
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For n � 1:

an+1V
n+1
l�1 + bn+1V

n+1
l + cn+1V

n+1
l+1 = anV

n
l�1 + bnV

n
l + cnV

n
l+1

+⇢↵

nX

j=1

'jV
n�j+1
l + ⇢↵�n+1V

0
l (3.3.11)

where

an+1 = �2l2
�(1 + ↵)

4
� ql

t1�↵

�(2� ↵)
,

bn+1 = ⇢↵�1 � r
t1�↵

�(2� ↵)
� �2l2

�(1 + ↵)

2
,

cn+1 = �2l2
�(1 + ↵)

4
+ ql

t1�↵

�(2� ↵)
,

and

an = ��2l2
�(1 + ↵)

4
,

bn = ⇢↵�1 + �2l2
�(1 + ↵)

2
,

cn = ��2l2
�(1 + ↵)

4
(3.3.12)

'j = �j � �j+1; j = 0, 1, 2, · · · , n,

which leads to the following general matrix representation

AUn+1 = BUn +
nX

j=1

'jU
n�j+1 +Cn, for all n � 1, (3.3.13)
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where

A =

0

BBBBBBBBB@

an+1 bn+1 cn+1 0 · · · · · · 0

0 an+1 bn+1 cn+1
...

... . . . . . . . . . ...

... an+1 bn+1 cn+1 0

0 · · · · · · 0 an+1 bn+1 cn+1

1

CCCCCCCCCA

,

B =

0

BBBBBBBBB@

an bn cn 0 · · · · · · 0

0 an bn cn
...

... . . . . . . . . . ...

... an bn cn 0

0 · · · · · · 0 an bn cn

1

CCCCCCCCCA

, (3.3.14)

Un =

0

BBBBBBBBB@

V n
0

V n
1

...

V n
L�1

V n
L

1

CCCCCCCCCA

,

and

Cn = ⇢↵�nU
0
l , for all n � 1.

Remark 3.3.1. The following observations are trivial to show

1 = �0 > �1 > · · · ! 0,

'0 = 1� �1,
Pn

j=0 'j = 1� �n+1,
P1

j=0 'j = 1 > 21�↵ � (21�↵ � 11�↵) = 1 = '0 > '1 > · · · ! 0.

9
>>>>>>=

>>>>>>;

(3.3.15)
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3.4 Analysis of the numerical method

In this section we present the stability and convergence analysis of the scheme presented

in (3.3.10)-(3.3.11). The analysis is based on the Fourier series analysis for fractional

PDEs.

3.4.1 Stability analysis

Theorem 3.4.1. The scheme (3.3.10)-(3.3.11) along with (3.2.10) is unconditionally

stable.

Proof. Let vnl ; l = 0, 1, 2, · · ·L;n = 0, 1, 2, · · ·N ; be an approximate solution to the

difference equations (3.3.10)-(3.3.11), and define ✏nl = V n
l � vnl as the truncation error,

such that ✏n0 = ✏nL = 0 for all n. Since the approximate solution satisfy the two equations

(3.3.10)-(3.3.11), then, substituting ✏nl into (3.3.10)-(3.3.11) yield

a1l✏
1
l�1 + b1l✏

1
l + c1l✏

1
l+1 = a0l✏

0
l�1 + b0l✏

0
l + c0l✏

0
l+1; n = 0, (3.4.1)

and for n � 1 we have

an+1l✏
n+1
l�1 + bn+1l✏

n+1
l + cn+1l✏

n+1
l+1 = anl✏

n
l�1 + bnl✏

n
l + cnl✏

n
l+1 +

nX

j=0

'j✏
n�j+1
l

+�n+1✏
0
l . (3.4.2)

Consider the grids function

✏n(S) =

8
>>><

>>>:

✏nl , when Sl �
h
2 < S  Sl +

h
2 , l = 1, 2, ..., L� 1,

0, when 0  S < h
2 or Smax �

h
2 < S  Smax +

h
2 .

(3.4.3)
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The grids ✏n(S) can be represented by the Fourier series

✏n(S) =
1X

j=1

%n(j)e
i2⇡jS/Smax ; n = 0, 1, 2, ..., N, (3.4.4)

for

%n(j) =
1

Smax

Z Smax

0

✏n(S)e�i2⇡jS/SmaxdS; n = 0, 1, 2, ..., N. (3.4.5)

Let ✏n = (✏n1 , ✏
n
2 , · · · , ✏

n
L�1)

T and define the norm by

k✏nk2 =

 
L�1X

l=1

h| ✏nl |
2

!1/2

=

✓Z Smax

0

| ✏n(S) |2dS

◆1/2

. (3.4.6)

Then, using the Parseval equality

Z Smax

0

| ✏n(S)2 | dS =
1X

j=�1

| %n(j) |
2, (3.4.7)

we obtain

k✏nk22 =

Z Smax

0

| ✏n(S) |2dS =
1X

j=�1

| %n(j) |
2 . (3.4.8)

Therefore, the solution to (3.4.1) and (3.4.2) takes the following form

✏n = %ne
i�lh, (3.4.9)

where � = 2⇡j/Smax and i =
p
�1. Substituting ✏n into (3.4.1) and (3.4.2), we obtain

(a1e
��h + c1e

�h + b1)%1 = (a0e
��h + c0e

�h + b0)%0; for n = 0, (3.4.10)
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whereas for n � 1,

(an+1e
��h + cn+1e

�h + bn+1)%n+1 = (ane
��h + cne

�h + bn)%n +
nX

j=1

'j%n+1�j

+�n+1%0, (3.4.11)

which can further be simplified into

#1%1 = #0%0; for n = 0, (3.4.12)

and

#n+1%n+1 = #n%n +
nX

j=1

'j%n+1�j + �n+1%0; for n � 1, (3.4.13)

where

#n = 4an cos �h+ bn, (3.4.14)

and

#n+1 = (an+1 + cn+1)(cos �h� i sin �h) + bn+1

= 4an+1 cos �h+ bn+1, (since an = cn), (3.4.15)

for all n = 0, 1, 2, · · · , N � 1.

Now (3.4.12) and (3.4.13) separately yields

%1 =
#0

#1
%0; for n = 0, (3.4.16)

%n+1 =
#n

#n+1
%n +

1

#n+1

nX

j=1

'j%n+1�j +
�n+1

#n+1
%0; for n � 1. (3.4.17)
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We note

Remark 3.4.2. The ratio
��� #n
#n+1

��� is monotonically decreasing for all n = 0, 1, 2, · · · , N�

1, i.e.,

����
#n

#n+1

���� =
����

4an cos �h+ bn
4an+1 cos �h+ bn+1

����



����
4an cos �h+ bn
4an cos �h+ bn

���� = 1. (3.4.18)

We can also establish,

Proposition 3.4.3. Suppose %n+1 is a solution to (3.4.16) and (3.4.17), then |%n+1| 

|%0| ; for all n = 0, 1, 2, · · · , N � 1.

Proof. Suppose n = 0, then in view of Remark 3.4.2 we have

|%1| =

����
#0

#1
%0

����  |%0| . (3.4.19)

Now let n � 1 and suppose that | %n || %0 | for all n, then from (3.4.17), we have

|%n+1| =

�����
#n

#n+1
%n +

1

#n+1

nX

j=1

'j%n+1�j +
�n+1

#n+1
%0

�����



����
#n

#n+1
%n

����+

�����
1

#n+1

nX

j=1

'j%n+1�j

�����+
����
�n+1

#n+1
%0

���� ,



����
#n

#n+1

���� |%n|+
����

1

#n+1

����

�����

nX

j=1

'j%n+1�j

�����+
����
�n+1

#n+1

���� |%0| ,

 |%n|+

�����

nX

j=1

'j%n+1�j

�����+ |�n+1%0| ,

= |%n|+ '1 |%n|+ '2 |%n�1|+ · · ·+ 'n |%1|+ �n+1 |%0| ,

 |%0|+ '1 |%0|+ '2 |%0|+ · · ·+ 'n |%0|+ �n+1 |%0| ,

=

 
nX

j=0

'j + �n+1

!
|%0| = (1� �n+1 + �n+1) |%0| , (see remark 3.3.1),

= |%0| . (3.4.20)
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The above alongside (3.4.7) yields, k✏nk2  k✏0k2 for all n = 1, 2, · · · , N � 1 which

completes the proof of theorem 3.4.1.

3.4.2 Convergence analysis

Theorem 3.4.4. The difference scheme (3.3.10)-(3.3.11) alongside (3.2.10) is conver-

gent and converges with the order O(k2 + h2).

Proof. Let Un
l be the exact solution to (3.3.1) and (3.2.10) at the grid point (Sl, tn).

Define enl = Un
l � V n

l , such that en0 = enL = 0 for all n = 0, 1, 2, · · · , N � 1.

Define the truncation error by

Rn
l :=

nX

j=0

�j [V (Sl, tn+1�j)� V (Sl, tn�j)]� µV (Sl, tn+1)� ! [V (Sl+1, tn+1)� V (Sl, tn+1]

+P↵[V (Sl+1, tn+1)� 2V (Sl, tn+1) + V (Sl�1, tn+1) + V (Sl+1, tn)

�2V (Sl, tn) + V (Sl�1, tn)], (3.4.21)

where

µ = k↵rt1�↵, ! = k↵(r �D)lt1�↵,

and

P↵ =
k↵�(2� ↵) (l2�2�(1 + ↵))

2
.

Note that Rn
l in (3.4.21) is obtained from (3.3.9) by multiplying both sides by the

term k↵�(2� ↵).

To proceed further, we need the following two properties.

Proposition 3.4.5. There exist a constant C̃ such that | Rn
l | C̃(k2 + h2) for all

l = 0, 1, 2, · · · , L� 1 and n = 0, 1, 2, · · · , N.
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Proof. Define

L↵kV (Sl, tn+1) :=
k�2↵

2�(2� ↵)

n+1X

j=0

�j [V (Sl, tn+1�j)� V (Sl, tn�j)] ,

then

����
@↵V (Sl, tn+1)

@t↵
� L↵kV (Sl, tn+1)

����


1

2�(1� ↵)

n+1X

j=0

Z (j+1)k

jk

����
@V (Sl, ⌧)

@⌧
�

(V (Sl, tn+1�j)� V (Sl, tn�j))

k2

����
d⌧

(tn+1 � ⌧)↵
,


1

2�(1� ↵)
k2

n+1X

j=0

Z (j+1)k

jk

d⌧

(tn+1 � ⌧)↵
,


C

2�(1� ↵)
k2

Z (j+1)k

jk

d⌧

(tn+1 � ⌧)↵
,

 C1k
2, (3.4.22)

where C and C1 are constants independent of h and k. Therefore

k�↵

2�(2� ↵)

n+1X

j=0

�j [V (Sl, tn�j+2)� V (Sl, tn�j+1)] =
@↵V (Sl, tn+1)

@t↵
+ C1k

2. (3.4.23)

In a similar way, we can show that

V (Sl+1, tn+1)� V (Sl�1, tn+1)

2h
=
@V (Sl, tn+1)

@S
+ C2h

2, (3.4.24)

and

V n+1
l+1 � 2V n+1

l + V n+1
l�1 + V n

l+1 � 2V n
l + V n

l�1

2h2
=
@2V (Sl, tn+1)

@S2
+ C3h

2. (3.4.25)
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Substituting (3.4.23) - (3.4.25) into (3.4.21) and simplifying, we obtain

Rn
l = k↵�(2� ↵)


@↵V (Sl, tn)

@t↵
�

µ

k↵�(2� ↵)
V (Sl, tn)�

!

k↵�(2� ↵)

@V (Sl, tn)

@S

+P↵
@2V (Sl, tn)

@S2

�
+ C1k

2+↵ + C2k
↵h2 + C3k

↵h2. (3.4.26)

This implies that

| Rn
l |  C4

�
k2+↵ + k↵

�
h2 + h2

��
,

 Ĉ
�
k2+↵ + k↵h2

�
,

= Ĉk↵
�
k2 + h2

�
,

 C̃
�
k2 + h2

�
, (since 0 < k↵ < 1) . (3.4.27)

Since the errors enl satisfy equation (3.3.10)-(3.3.11), substituting enl into (3.3.10)-

(3.3.11) we obtain

a1e
1
l�1 + b1e

1
l + c1e

1
l+1 = R1

l , (3.4.28)

and

an+1e
n+1
l�1 + bn+1e

n+1
l + cn+1e

n+1
l+1 = ane

n
l�1 + bne

n
l + cne

n
l+1 +

nX

j=1

'je
n+1�j
l

+Rn+1
l . (3.4.29)

Let us define the following grid functions

en(S) =

8
>>><

>>>:

enl , when Sl �
h
2 < S  Sl +

h
2 , l = 1, 2, ..., L� 1,

0, when 0  S < h
2 or Smax �

h
2 < S  Smax +

h
2 ,

(3.4.30)
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and

Rn(S) =

8
>>><

>>>:

Rn
l , when Sl �

h
2 < S  Sl +

h
2 , l = 1, 2, ..., L� 1,

0, when 0  S < h
2 or Smax �

h
2 < S  Smax +

h
2 ,

(3.4.31)

respectively, where en(S) and Rn
l can be expanded into the following Fourier series

representations

en(S) =
1X

j=1

�n(j)e
i2⇡jS/Smax ; n = 0, 1, 2, ..., N, (3.4.32)

Rn(S) =
1X

j=1

⌘n(j)e
i2⇡jS/Smax ; n = 0, 1, 2, ..., N, (3.4.33)

for

�n(j) =
1

Smax

Z Smax

0

en(S)e�i2⇡jS/SmaxdS; n = 0, 1, 2, ..., N, (3.4.34)

and

⌘n(j) =
1

Smax

Z Smax

0

Rn(S)e�i2⇡jS/SmaxdS; n = 0, 1, 2, ..., N. (3.4.35)

Let en =
�
en1 , e

n
2 , · · · , e

n
L�1

�T and Rn =
�
Rn

1 , R
n
2 , · · · , R

n
L�1

�T with their second

norms as

kenk2 =

 
L�1X

l=1

h|enl |
2

!1/2

=

✓Z Smax

0

|en(S)|2dS

◆1/2

; n = 0, 1, 2, · · · , N (3.4.36)

and
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kRn
k2 =

 
L�1X

l=1

h|Rn
l |

2

!1/2

=

✓Z Smax

0

|Rn(S)|2dS

◆1/2

; n = 1, 2, 3, · · · , N. (3.4.37)

Now, the Parseval equality imply

Z Smax

0

��en(S)2
�� dS =

1X

j=�1

|�n(j)|
2 , (3.4.38)

and

Z Smax

0

��Rn(S)2
�� dS =

1X

j=�1

|⌘n(j)|
2 , (3.4.39)

which leads to

kenk22 =

Z Smax

0

|en(S)|2dS =
1X

j=�1

|�n(j)|
2 ; n = 0, 1, 2, · · · , N, (3.4.40)

and

kRn
k
2
2 =

Z Smax

0

|Rn(S)|2dS =
1X

j=�1

|⌘n(j)|
2 ; n = 1, 2, 3, · · · , N. (3.4.41)

Suppose that

en = �ne
i�lh, (3.4.42)

and

Rn = ⌘ne
i�lh, (3.4.43)

for � = 2⇡j/Smax and i =
p
�1. Substituting en and Rn into (3.4.28) and (3.4.29) and
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further simplifying we obtain

�1#1 = ⌘1, when n = 0, (3.4.44)

and

�n+1#n+1 = #n�n +
nX

j=1

'j�n�j+1 + ⌘n+1, (3.4.45)

where #n+1 = 4cn+1 cos �h+ bn+1, for n = 1, 2, · · · , N

Proposition 3.4.6. If �n is a solution to (3.4.44) and (3.4.45) for all n = 0, 1, 2, · · · , N ,

then | �n | C | ⌘1 |.

Proof. From (3.4.27) coupled with (3.4.37), we get

��Rn+1
��
2
 C̃

�
k2 + h2

�
; n = 0, 1, 2, · · · , N.

Therefore, from (3.4.41) we have

| ⌘n+1 |=| ⌘n+1(j) | C | ⌘1 |= C | ⌘1(j) |; n = 0, 1, 2, · · · , N, (3.4.46)

for some constant C, independent of h and k.

Let n = 0, then, from (3.4.44) we have

| �1 |=

����
1

#1
⌘1

����  C |⌘1| . (3.4.47)

Now suppose | �n | C | ⌘1 | for n � 1. We show that it is also true for n + 1. To
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see this, from (3.4.45) we have

| �n+1 | =

�����
1

#n+1

 
#n�n +

nX

j=1

'j�n�j+1 + ⌘n+1

!����� ,


1

| #n+1 |

 
| #n || �n | +

nX

j=1

'j | �n�j+1 | + | ⌘n+1 |

!
,


1

| #n+1 |

 
C0 | ⌘1 | +

nX

j=1

'jCj | ⌘1 | +Cn+1 | ⌘1 |

!
,


1

| #n+1 |

 
C̄ | ⌘1 | +

nX

j=1

'jC̄ | ⌘1 | +C̄ | ⌘1 |

!
,

✓
C̄ = max

0jn+1
{Cj}

◆
,

 Ĉ | ⌘1 | +
nX

j=1

'jĈ | ⌘1 | +Ĉ | ⌘1 |,

✓
Ĉ =

C̄

| #n+1 |

◆
,

= Ĉ

(
| ⌘1 | +

nX

j=1

'j | ⌘1 | + | ⌘1 |

)
,

= Ĉ (3� �n+1) | ⌘1 |,

= C |⌘1| . (3.4.48)

Combining the results obtained above, we see that the scheme (3.3.10)-(3.3.11) is

convergent, which completes the proof to theorem 3.4.4.

3.5 Numerical experiments

Example 3.5.1. Consider the tfBS equation (3.2.9) subject to initial and boundary

conditions (3.2.10) for pricing a standard European put option with the following pa-

rameters: K = 150, r = 0.055, � = 0.01, T = 1, Smax = 450, L = 100, N = 100, � =

0.025, 0.055 and 0.065.

Example 3.5.2. Consider the tfBS equation (3.2.9) subject to initial and boundary

conditions (3.2.10) for pricing a standard European put option with the following pa-

rameters: K = 200, r = 0.065, � = 0.025, T = 1, Smax = 600, L = 100, N =

100, � = 0.045 and 0.085.
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The tabular results for the two examples starting with N = 50 for example 3.5.1

and N = 100 for example 3.5.2 are presented in tables 3.5.1 to 3.5.4 below. Numerical

results confirm our theoretical results and observations presented as theorem 3.4.1 and

theorem 3.4.4.

Table 3.5.1: Maximum absolute errors for example 3.5.1 with r = 0.055 and � = 0.025.

↵ N = 100 N = 200 N = 400 N = 800 N = 1600

0.1 1.3714e-02 3.4691e-03 8.7754e-04 2.2198e-04 5.5953e-05
0.2 1.2394e-02 3.1352e-03 7.9308e-04 2.0062e-04 5.0548e-05
0.3 1.0162e-02 2.5506e-03 6.5025e-04 1.6449e-04 4.1409e-05
0.4 9.5623e-03 2.4089e-03 6.1188e-04 1.5478e-04 3.7153e-05
0.5 8.5515e-03 2.0632e-03 5.4720e-04 1.3842e-04 3.4915e-05
0.6 8.0315e-03 2.0216e-03 5.1393e-04 1.3000e-04 3.2785e-05
0.7 7.5609e-03 1.9126e-03 4.8381e-04 1.2239e-04 3.0759e-05
0.8 7.3065e-03 1.8183e-03 4.6753e-04 1.1827e-04 2.9717e-05
0.9 7.1436e-03 1.8170e-03 4.5711e-04 1.1563e-04 2.9250e-05
1.0 7.1202e-03 1.7911e-03 4.5561e-04 1.1525e-04 2.9154e-05

Table 3.5.2: Convergence rates for example 3.5.1 with r = 0.055 and � = 0.025.

↵ N = 200 N = 400 N = 800 N = 1600

0.1 1.91 1.95 1.98 1.99
0.2 1.92 1.96 1.98 1.99
0.3 1.93 1.96 1.98 1.99
0.4 1.93 1.96 1.98 1.99
0.5 1.93 1.97 1.98 1.99
0.6 1.94 1.97 1.98 1.99
0.7 1.94 1.97 1.98 1.99
0.8 1.94 1.97 1.98 1.99
0.9 1.94 1.97 1.98 1.99
1.0 1.94 1.97 1.98 1.99
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Table 3.5.3: Maximum absolute errors for example 3.5.2 with r = 0.065 and � = 0.085.

↵ N = 100 N = 200 N = 400 N = 800 N = 1600

0.1 6.5592e-02 1.6592e-02 4.1972e-03 1.0617e-03 2.6857e-04
0.2 5.8088e-03 1.4694e-02 3.7170e-03 9.4025e-04 2.3784e-04
0.3 5.2147e-02 1.3191e-02 3.3368e-03 8.4408e-04 2.1352e-04
0.4 4.7443e-02 1.2001e-02 3.0358e-03 7.6794e-04 1.9426e-04
0.5 4.3746e-02 1.1066e-02 2.7993e-03 7.0810e-04 1.7912e-04
0.6 4.0893e-02 1.0344e-02 2.6167e-03 6.6192e-04 1.6544e-04
0.7 3.8773e-02 9.8080e-03 2.4810e-03 6.2760e-04 1.5676e-04
0.8 3.7318e-02 9.4400e-03 2.3879e-03 6.0405e-04 1.5080e-04
0.9 3.6499e-02 9.2328e-03 2.3355e-03 5.9079e-04 1.4745e-04
1.0 3.6328e-02 9.1895e-03 2.3246e-03 5.8803e-04 1.4670e-04

Table 3.5.4: Convergence rates for example 3.5.2 with r = 0.065 and � = 0.085.

↵ N = 200 N = 400 N = 800 N = 1600

0.1 1.95 1.98 1.99 1.99
0.2 1.96 1.98 1.99 1.99
0.3 1.96 1.98 1.99 1.99
0.4 1.96 1.98 1.99 2.00
0.5 1.97 1.98 1.99 2.00
0.6 1.97 1.98 1.99 2.00
0.7 1.97 1.98 1.99 2.00
0.8 1.97 1.98 1.99 2.00
0.9 1.97 1.98 1.99 2.01
1.0 1.97 1.98 1.99 2.01

Maturity payoff curves for the three dividend yields � = 0.025, 0.055 and 0.065 at

↵ = 0.1, 0.3, 0.5, 0.7, and ↵ = 0.9 under example 3.5.1 are presented in fig. 3.5.1

below
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Figure 3.5.1: Payoffs for ↵ = 0.1, 0.3, 0.5, 0.7, 0.9, and t = T .

The general payoff curves throughout the life-time of the option at the five fractional

derivative orders (↵) for the three considered yield rates under example 3.5.1 are given

in figs. 3.5.2 to 3.5.4 below
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Figure 3.5.2: Payoffs for ↵ = 0.1, 0.3, 0.5, 0.7, 0.9, � = 0.025 for all 0  t  T .
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Figure 3.5.3: Payoffs for ↵ = 0.1, 0.3, 0.5, 0.7, 0.9, � = 0.055 for all 0  t  T .



CHAPTER 3. A ROBUST CRANK NICHOLSON SCHEME FOR A STOCK
EXCHANGE TIME FRACTIONAL BLACK-SCHOLES EQUATION 75

Figure 3.5.4: Payoffs for ↵ = 0.1, 0.3, 0.5, 0.7, 0.9, � = 0.065 for all 0  t  T .

To check for the effects of change in option parameters, we considered a second

example (example 3.5.2) with a different interest rate r, two different set of dividend

yields � under the same set of five values of ↵.

The option maturity payoff curves for the two sets of dividend yields considered in

example 3.5.2, � = 0.045 and � = 0.085 at ↵ = 0.1, 0.3, 0.5, 0.7, 0.9 are given in
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fig. 3.5.5 below.
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Figure 3.5.5: Payoffs for ↵ = 0.1, 0.3, 0.5, 0.7, 0.9, and t = T .

The general payoff curves throughout the life-time of the option for ↵ = 0.1, 0.3, 0.5, 0.7,

and 0.9 and the two considered dividend yields are given in figs. 3.5.6 and 3.5.7 below
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Figure 3.5.6: Payoffs for ↵ = 0.1, 0.3, 0.5, 0.7, 0.9, � = 0.045 for all 0  t  T .
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Figure 3.5.7: Payoffs for ↵ = 0.1, 0.3, 0.5, 0.7, 0.9, � = 0.085 for all 0  t  T .

3.6 Summary and discussions

In this chapter we proposed a Crank Nicholson type scheme for solving a tfBS-PDE for

pricing standard European options written on continuous dividend paying stocks. Two

numerical examples were presented. Theoretical and numerical results suggest that

the fractional approach is a very efficient option valuing tool compared to its classical
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counterpart. In addition, the numerical method and results indicates that our scheme

is very robust and efficient in solving tfBS-PDEs. The method does not only reduce

computational time but, also attain high order unconditional stable results, in any

states of the world and market conditions. One key observation is that, the general

payoff curves and profiles are more smoothier when 1/2  ↵ < 1, and otherwise when

0 < ↵ < 1/2. With the latter signalling asymmetric performance of the approach and

method. These however, implies that, the approach is more robust when 1/2  ↵ < 1.

These observations are not strange or of a contradictory nature. It is expected that

1/2  ↵ < 1 the involved fractional stochastic process be more persistent and as it is

characterised by positive correlations between asset returns’ increments, hence, attain-

ing better performance compared to the case when 0 < ↵ < 1/2 which represent the

anti-persistent regime under which the underlying stock price process is characterised

by negative correlation between increments. The practical interpretation of these is

that, the approach confirms our theoretical observations and general consensus in lit-

erature that stock market dynamics are of a power law nature, and that the underlying

distributions of stock returns decays slower than the exponential distribution and have

no independent increments. It is therefore expected that the method perform better

in the region (1/2  ↵ < 1) which is characterised by high persistence and positive

correlation as compared to (0 < ↵ < 1/2) when the process covers less and less grounds

than the ordinary random process.

Currently we are exploring other higher order methods for solving tfBS and tsfBS-

PDEs. We are also interested in the calibration of the models to real-time data. In

Chapter 4 we suggest an alternative Fractal Market Hypothesis based time-fractional

Black- Scholes Partial Differential Equation (tfBS-PDE), as well as present an efficient

numerical scheme for solving it.



Chapter 4

An Efficient Finite Difference

Approximation for a Time-Fractional

Black-Scholes PDE Arising via a

Fractal Market Hypothesis

This chapter presents a Fractal Market Hypothesis based time-fractional Black-Scholes

partial differential equation (tfBS-PDE). Herein, we also present a robust high order

numerical method for solving the derived tfBS-PDE. Further discussion on the stability

and convergence properties of the numerical method and some numerical experiments

are presented.

4.1 Introduction

Since the early 70s the study of Black-Scholes (BS) partial differential equations (PDEs)

under the Efficient Market Hypothesis (EMH) has been a subject of active research in

the derivative pricing area of financial engineering. One of the most common classes of

highly traded derivative instruments are options. Pricing of options and many other

80
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derivatives under the Efficient Market Hypothesis (EMH) has some serious setbacks.

Hence it has now become obvious, to those familiar with the concept, that the BS

models derived under the EMH framework fails to account for a number of realistic price

evolutions in real-time markets’ data. An alternative approach to the EMH framework

is the Fractal Market Hypothesis (FMH) which proposes better and clear explanations

of market behaviours during unfavourable market conditions. The FMH approaches

are very attractive to asset pricing as they provide for a somewhat unique framework,

one that has a potential to transform conventional thinking in asset pricing literature.

The involved non-local derivatives and integral operators as well as the accompanying

fractional stochastic dynamics in the FMH based models provide the best tools for

explaining the dynamics of market anomalies, something that the classical models may

fail to explain.

The rest of this chapter is organised as follow, Section 4.2 presents a brief discussion

on the development of the involved model. Section 4.3 presents the construction and

analysis of the involved difference scheme. To validate our theoretical observations,

Section 4.4 presents some practical experiments on pricing European option on contin-

uous dividend paying stocks. The conclusions and recommendations drawn from the

study as well as the prospect for future research are presented in Section 4.5.

4.2 Model specification

4.2.1 The fractional Black-Scholes equation

To begin, we assume the stock price (S) dynamics follows a non-random fractional

stochastic process given by

dS = (r � �)Sdt+ �S!(t)(dt)↵/2, 0 < ↵  1, (4.2.1)

where !(t) is the Gaussian white noise with mean zero and standard deviation

of one. Whereas r and � represent risk-free interest rate and continuous dividend
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respectively. Suppose B(t) denote a standard Brownian motion, then, equation (4.2.1)

is a generalization of B(t) by replacing dB(t) = !(t)dt1/2 with dB(t) = !(t)(dt)↵/2 for

some 0 < ↵  1.

The fractional process (4.2.1) is more appropriate compared to the standard one be-

cause it does not make any prior distributional assumptions about the asset price/returns.

The model free assumption provides a better approach to model the power law prop-

erties of markets with greater flexibility.

Consider the relation

dS =
S(1�↵)

�(1 + ↵)(↵� 1)!
(dS)↵, 0 < ↵ < 1. (4.2.2)

Suppose V (S, t) is sufficiently smooth with respect to S and its ↵-derivative exists

with respect to time, then theory of interest suggest,

dV = rV dt. (4.2.3)

The above leads to the variational fractional increment formula

d↵V = �(1 + ↵)rV dt. (4.2.4)

Using (4.2.4) and (4.2.2), we obtain the following fractional interest dynamic equa-

tion

d↵V =
rV

(↵� 1)!
t1�↵(dt)↵. (4.2.5)

The assumption on differentiability and continuity of V (S, t) imply that (4.2.5)

satisfy the Generalized Taylor series of order ↵ upto some remaining error terms follows,

dV =
1

�(1 + ↵)

@↵V

@t↵
(dt)↵ +

@V

@S
dS +

1

2

@2V

@S2
(dS)2. (4.2.6)
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The Itô’s lemma applied on (4.2.1) alongside (4.2.6), yield

dV =
1

�(1 + ↵)

@↵V

@t↵
(dt)↵ + (r � �)S

@V

@S
dt+

1

2
�2S2@

2V

@S2
(dt)↵. (4.2.7)

After some algebraic manipulations and change of derivatives, we obtain the fol-

lowing

d↵V =
rV

(↵� 1)!
t1�↵(dt)↵,

=

✓
@↵V

@t↵
+

(r � �)

(↵� 1)!
St1�↵

@V

@S
+

�(1 + ↵)

2
�2S2@

2V

@S2

◆
(dt)↵, (4.2.8)

which implies

rV

(↵� 1)!
t1�↵ =

@↵V

@t↵
+

(r � �)

(↵� 1)!
St1�↵

@V

@S
+

�(1 + ↵)

2
�2S2@

2V

@S2
. (4.2.9)

Equation (4.2.9) can further be simplified into the following tfBS-PDE

@↵V

@t↵
=

✓
rV � qS

@V

@S

◆
t1�↵

(↵� 1)!
�

�(1 + ↵)

2
�2S2@

2V

@S2
, (4.2.10)

q = r � �; 0 < ↵  1

To ease the computational difficulties involved in computing the solution to the

tfBS-PDE in (4.2.10), we transform (4.2.10) into a heat equation by change of variables

and then to use the known solution of the heat equation to represent the solution,

thereafter change variables back to the original variable V (S, t)

First we want to eliminate the term rV in (4.2.10). To do so we assume V (S, t) is

differentiable with respect to t. Then, considering the following change of variables

V (S, t) = e�r(T�t)v(S, t), (4.2.11)
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and applying the Caputo derivative on (4.2.11),would yield,

V ↵
t = D↵

t

�
e�r(T�t)

�
v(S, t) + e�r(T�t)v↵t , 0 < ↵  1, (4.2.12)

where D↵
t is the Caputo derivative with respect to t of order ↵.

From the generalized Taylor series expansion (2.2.5), we have

D↵
t

�
e�r(T�t)

�
= re�r(T�t) t1�↵

(↵� 1)!
. (4.2.13)

By using (4.2.13) in (4.2.12), we obtain

V ↵
t (S, t) = re�r(T�t) t1�↵

(↵� 1)!
v(S, t) + e�r(T�t)v↵t (S, t), 0 < ↵  1. (4.2.14)

The above equation along with (4.2.10), yields

re�r(T�t) t1�↵

(↵� 1)!
v(S, t) + e�r(T�t)v↵t (S, t)

= e�r(T�t)v(S, t)
t1�↵

(↵� 1)!
� qSe�r(T�t)vS(S, t)

t1�↵

(↵� 1)!

�
�(1 + ↵)

2
�2S2e�r(T�t)vSS(S, t) (4.2.15)

which after simplifying yield,

v↵t (S, t) = �qSvS(S, t)
t1�↵

(↵� 1)!
�

�(1 + ↵)

2
�2S2vSS(S, t), 0 < ↵  1, (4.2.16)

with terminal condition,

v(S, T ) = V (S, T ).

Now, since we want to obtain a pde with constant coefficients, to eliminate the
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SvS(S, t) and S2vSS(S, t) terms from (4.2.16), we consider the transformation

s = eS�⌧ , for some constant ⌧ , (4.2.17)

resulting in a pde with the solution of the form

v(S, t) ⌘ v(s, t),

and terminal condition

v(s, T ) = v(S, T ) = V (S, T ).

Therefore,

v↵t (s, t) =

✓
�(1 + ↵)

2
�2

� q
t1�↵

(↵� 1)!

◆
vs(s, t)�

�(1 + ↵)

2
�2vss(s, t). (4.2.18)

The general solution to (4.2.18) takes the form

v(s, t) ⌘ p(s, t) = �(s� qt+
1

2
�2t2). (4.2.19)

Which suggest for the following transformation (again without loss of notations)

s = s� ln(c) + r(T � t)�
1

2
�2(T ↵

� t↵), (4.2.20)

and terminal condition

v(s, T ) = c(es � 1) = c(es�ln(c)+r(T�t)� 1
2�

2(T↵�t↵)
� 1). (4.2.21)

Choosing the constant ⌧ in (4.2.17) as ⌧ = �ln(c) + rT �
1
2�

2T ↵ for some constant

c and substituting the new variable (s) of (4.2.19) back into (4.2.18) eliminates the



CHAPTER 4. AN EFFICIENT FINITE DIFFERENCE APPROXIMATION FOR
A TIME-FRACTIONAL BLACK-SCHOLES PDE ARISING VIA A FRACTAL
MARKET HYPOTHESIS 86

term vs(s, t) from (4.2.18) resulting into the following fractional heat equation

p↵t (s, t) = �
�(1 + ↵)�2

2
pss(s, t), (4.2.22)

which can be simplified to

@↵p(s, t)

@t↵
=  

@2p(s, t)

@s2
, (4.2.23)

where  = �
�(1+↵)�2

2 , with European put option initial and boundary conditions in

terms of the original variables

p(s, 0) = V (S, 0) = max(K �Kert, 0),

p(0, t) = V (0, T ) = Ke�rt,

lim
s!1

p(s, t) = lim
S!1

V (S, t) = 0,

9
>>>=

>>>;
(4.2.24)

where K is the strike price of the option and T is the maturity time.

For the remainder of this chapter equation (4.2.23) is referred to as the time-

fractional Black-Scholes heat equation.

4.3 Numerical method and its analysis

This section presents the fundamental aspects and design of the proposed numerical

scheme for solving equation (4.2.23).

To begin, Let L and N be some positive integers, and define h = Smax/L and

k = T/N as the spatial and temporal grid sizes. Further denote sl 2 [0, Smax] and

tn 2 [0, T ] as the grid points in the asset and time directions, such that sl = lh and

tn = nk for l = 0, 1, 2, 3, ..., L and n = 0, 1, 2, ..., N � 1.

Denote the value of the option p at grid point (tn, sl) by

pnl = p(tn, sl), (4.3.1)
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and also, define

C(t, s) :=
1

�(1 + ↵)

Z t

0

p(⌧, s)

(t� ⌧)
dz, (4.3.2)

such that

@↵p(tn+1/2, sl)

@t↵
=
@C(tn+1/2, sl)

@t
, (4.3.3)

which is defined in the Caputo sense, then,

@↵p(tn+1/2, sl)

@t↵
=
@C(tn+1/2, sl)

@t
=

C(tn+1, sl)� C(tn, sl)

k
+O(k2). (4.3.4)

Using the Caputo derivative in Definition 2.2.1, C(tn+1, sl) can be represented as

follow;

C(tn+1, sl) =
1

�(1 + ↵)

Z tn+1

0

p(⌧, sl)

(tn+1 � ⌧)↵
dz,

=
1

�(1� ↵)

n+1X

j=1

Z jk

(j�1)k

p(⌧, sl)

(tn+1 � ⌧)↵
dz,

=
1

�(1� ↵)

n+1X

j=1

✓
(⌧ � tj)

�k
pj�1
l +

(⌧ � tj�1)

k
pjl +O(k2)

◆
1

(tn+1 � ⌧)↵
dz,

=
nX

j=0

(�j � j�j) p
n�j
l � k

nX

j=0

(�j � (j + 1)�j) p
n�j+1
l + En+1, (4.3.5)

where

En+1 =
1

�(1� ↵)

n+1X

j=1

Z jk

(j�1)k

O(k2)
dz

(tn+1 � ⌧)↵

=
1

(↵� 1)!
O(k2)

n+1X

j=1

�
(n+ 2� j)1�↵ � (n+ 1� j)1�↵

�
k1�↵

=
(n+ 1)1�↵

(↵� 1)!
O(k2), (4.3.6)
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�j =
1

k↵(2� ↵)�(1� ↵)

�
(j + 1)2�↵ � j2�↵

�
, (4.3.7)

and

�j =
1

k↵(↵� 1)!

�
(j + 1)1�↵ � j1�↵

�
. (4.3.8)

Similarly,

C(tn, sl) =
1

�(1 + ↵)

Z tn

0

p(⌧, sl)

(tn � ⌧)↵
dz,

=
nX

j=1

(�j�1 � (j � 1)�j�1)p
n�j
l � k

nX

j=1

(�j�1 � j�j�1)p
n�j+1
l

+En. (4.3.9)

We can therefore approximate

@↵p(tn+1/2, sl)

@t↵
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as follow

@↵p(tn+1/2, sl)

@t↵
=

C(tn+1, sl)� C(tn, sl)

k
+O(k2),

=
nX

j=0

(�j � j�j)p
n�j
l �

nX

j=0

(�j � (j + 1)�j)p
n�j+1
l

�

nX

j=1

(�j�1 � (j � 1)�j�1) p
n�j
l +

nX

j=1

(�j � j�j�1) p
n�j+1
l

+
En+1 � En

k
+O(k2),

=
nX

j=0

{(�j � �(j � 1)) + ((j � 1)�j�1 � j�j)} p
n�j
l

+
nX

j=0

{(�j�1 � �j) + ((j + 1)�j+1 � j�j)} p
n�j+1
l

+
En+1 � En

k
+O(k2),

=
nX

j=0

�jp
n�j+1
l +

1

(↵� 1)!

✓
(n+ 1)1�↵ � n1�↵

k

◆
O(k2) +O(k2),

=
nX

j=0

�jp
n�j+1
l +O(k2), (4.3.10)

where

�j = �j+1 � 2�j + �j�1, for j > 1, (4.3.11)

since

j�j = �j.

Therefore, using an appropriate second order approximation in the asset direction,

(4.2.23) yield

nX

j=0

�jp
n�j+1
l +O(k2) =

 

2h2

�
pn+1
l+1 � 2pn+1

l + pn+1
l�1 + pnl+1 � 2pnl + pnl�1

 

+O(h2), (4.3.12)
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where

0  n  N � 1, and, 1  l  L� 1.

Which can be simplified to the following difference scheme

�
 

2h2
p1l+1 +

✓
 

h2
+ �0

◆
p1l �

 

2h2
p1l�1 =

 

2h2
p0l+1 �

 

h2
p0l +

 

2h2
p0l�1, (4.3.13)

for n = 0 and,

�
 

2h2
pn+1
l+1 +

✓
 

h2
+ �0

◆
pn+1
l �

 

2h2
pn+1
l�1 =

 

2h2
pnl+1 �

✓
 

h2
+ �0

◆
pnl +

 

2h2
pnl�1

�

nX

j=1

�jp
n�j+1
l , (4.3.14)

for n � 1, with an European put initial and boundary conditions

p0l = max(K �Kert, 0),

pn0 = Ke�rt,

pnL = 0, 0  n  N.

9
>>>=

>>>;
(4.3.15)

4.3.1 Stability analysis

Let P n
l ; l = 0, 1, 2, · · ·L; n = 0, 1, 2, · · ·N ; be an approximate solution to the difference

scheme (4.3.13)-(4.3.14), and define ✏nl = pnl � P n
l as the truncation error, such that

✏n0 = ✏nL = 0 for all n. Substituting ✏nl into (4.3.13)-(4.3.14) we obtain

�
 

2h2
✏1l+1 +

✓
 

h2
+ �0

◆
✏1l �

 

2h2
✏1l�1 =

 

2h2
✏0l+1 �

 

h2
✏0l +

 

2h2
✏0l�1 = 0,(4.3.16)
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for n = 0 and,

�
 

2h2
✏n+1
l+1 +

✓
 

h2
+ �0

◆
✏n+1
l �

 

2h2
✏n+1
l�1 =

 

2h2
✏nl+1 �

✓
 

h2
+ �0

◆
✏nl +

 

2h2
✏nl�1

�

nX

j=1

�j✏
n�j+1
l , n � 1. (4.3.17)

Let us define the following grid functions,

✏n(S) =

8
<

:
✏nl , when Sl �

h
2 < S  Sl +

h
2 , l = 1, 2, ..., L� 1,

0, when 0  S < h
2 or Smax �

h
2 < S  Smax +

h
2 .

(4.3.18)

Then ✏n(S) can be represented by the following Fourier series;

✏n(S) =
1X

j=1

%n(j)e
i2⇡jS/Smax , n = 1, 2, ..., N, (4.3.19)

where

%n(j) =
1

Smax

Z Smax

0

✏n(S)e�i2⇡jS/SmaxdS, n = 1, 2, ..., N. (4.3.20)

Let ✏n = (✏n1 , ✏
n
2 , · · · , ✏

n
L�1)

T and, defining it’s norm

����✏
n

����
2

=

 
L�1X

l=1

h| ✏nl |
2

!1/2

=

✓Z Smax

0

| ✏n(S) |2dS

◆1/2

, (4.3.21)

and, applying the Parseval equality

Z Smax

0

| ✏n(S)2 | dS =
1X

j=�1

| %n(j) |
2, (4.3.22)
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we obtain that

����✏
n

����
2

2

=

Z Smax

0

| ✏n(S) |2dS =
1X

j=�1

| %n(j) |
2 . (4.3.23)

Therefore, we can propose the solution to (4.3.16) and (4.3.17) takes the following

form

✏n = %ne
i�lh, (4.3.24)

where � = 2⇡j/Smax and i =
p
�1. Substituting the expression for ✏n into (4.3.16)

and (4.3.17), we obtain

�
 

2h2
%1e

i�(l+1)h +

✓
 

h2
+ �0

◆
%1e

i�lh
�

 

2h2
%1e

i�(l�1)h =
 

2h2
%0e

i�(l+1)h

�

✓
 

h2
+ �0

◆
%0e

i�lh

+
 

2h2
%0e

i�(l�1)h; (4.3.25)

for n = 0 and,

�
 

2h2
%n+1e

i�(l+1)h +

✓
 

h2
+ �0

◆
%n+1e

i�lh
�

 

2h2
%n+1e

i�(l�1)h

=
 

2h2
%ne

i�(l+1)h
�

✓
 

h2
+ �0

◆
%ne

i�lh

+
 

2h2
%ne

i�(l�1)h
�

nX

j=1

�j%n�j+1e
i�lh; n � 1. (4.3.26)

Which after simplifications, leads to

%1

✓
�
 

2h2
ei�h + e�i�h

◆
+

✓
 

h2
+ �0

◆
= %0

 

2h2

�
ei�h + e�i�h

�

�

✓
 

h2
+ �0

◆
, n = 0, (4.3.27)
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and

%n+1

✓
�
 

2h2
ei�h + e�i�h

◆
+

✓
 

h2
+ �0

◆
= %n

✓
 

2h2
ei�h + e�i�h

◆
�

✓
 

h2
+ �0

◆

�

nX

j=1

�j%n�j+1, n � 1. (4.3.28)

These implies that

%1

✓
�
 

h2
cos �h+

 

h2
+ �0

◆
= %0

✓
 

h2
cos �h�

✓
 

h2
+ �0

◆◆
, n = 0, (4.3.29)

and

%n+1

✓
�
 

h2
cos �h+

 

h2
+ �0

◆
= %n

✓
 

h2
cos �h�

✓
 

h2
+ �0

◆◆

�

nX

j=1

�j%n�j+1; n � 1. (4.3.30)

Proposition 4.3.1. Suppose %n+1 satisfy (4.3.29) and (4.3.30), then | %n+1 || %0 |

for all n = 0, 1, 2, · · · , N.

Proof. Suppose n = 0, from (4.3.29) we have

| %1 | =

�����
�

 
h2 cos �h+

�
 
h2 + �0

�

 
h2 cos �h�

�
 
h2 + �0

� %0

����� ,

=

�����
�
�
 
h2 cos �h�

�
 
h2 + �0

��

 
h2 cos �h�

�
 
h2 + �0

� %0

����� ,

= | �%0 |,

 | %0 | . (4.3.31)

Now, suppose | %n || %0 | for n = 1, 2, 3, ..., N . We need to show that | %n+1 || %0 |.

From (4.3.30)
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| %n+1 | 

�����
%n
�
 
h2 cos �h�

�
 
h2 + �0

��

�
�
 
h2 cos �h�

�
 
h2 + �0

��

�����+

�����
�
Pn

j=1 �j%n�j+1

�
�
 
h2 cos �h�

�
 
h2 + �0

��

����� ,



�����
%n
�
 
h2 cos �h�

�
 
h2 + �0

��
�
 
h2 cos �h�

�
 
h2 + �0

��

�����+

�����

Pn
j=1 �j%n�j+1�

 
h2 cos �h�

�
 
h2 + �0

��

����� ,

= | %n | +
1���  

h2 cos �h�
�
 
h2 + �0

����Pn
j=1 |�j%n�j+1|

,

 | %n | +
nX

j=1

| �j%n�j+1 |,

 
* 1

|
 
h2 cos �h�

�
 
h2 + �0

�
|
 1

!
,

= | %n | +�1 | %n | +�2 | %n�1 | + · · ·+ �n | %1 ||,

 | %0 | +�1 | %0 | + �2 | %0 | + · · ·+ 'n | %0 |,

=
nX

j=1

�j | %0 |

= | %0 | (*
nX

j=1

�j = 1). (4.3.32)

From Proposition 4.3.1 coupled with the Parseval equality, we obtain,
����✏

n

����
2



����✏
0

����
2

for all n = 1, 2, · · · , N � 1, which lead us to the following theorem.

Theorem 4.3.2. The difference scheme (4.3.13)-(4.3.14) is unconditionally stable.

The proof to Theorem 4.3.2 follows from results from equation 4.3.16 through to

equation 4.3.32.

4.3.2 Convergence analysis

The concept of Fourier analysis was used to studying the convergence properties of the

scheme. To begin, let us denote the truncation error at grid point (tn+1, sl) by Rn+1
l ,

then, from equation (4.3.5) and part of (4.3.12), we have that

��Rn
l

��  C(k2 + h2), l = 1, 2, · · · , L� 1; n = 0, 1, 2, · · · , N � 1, (4.3.33)
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where C is a constant given by

C = max
1lL�1, 0nN�1

{Cn
l }, for some constants Cn

l independent of h and k.

Let ⇠nl = p(sl, tn) � pnl denote the approximation error at grid point (tn, sl), such

that ⇠nL = 0, forn = 1, 2, · · · , N and ⇠0l = 0, for l = 0, 1, · · · , L. By substituting ⇠nl

into the scheme (4.3.13)-(4.3.14), we obtain

�
 

2h2
⇠1l+1 + (

 

h2
+ �0)⇠

1
l �

 

2h2
⇠1l�1 = R1

l , (4.3.34)

for n = 0 and,

�
 

2h2
⇠n+1
l+1 + (

 

h2
+ �0)⇠

n+1
l �

 

2h2
⇠n+1
l�1 =

 

2h2
⇠nl+1 � (

 

h2
+ �0)⇠

n
l +

 

2h2
⇠nl�1

�

nX

j=1

�j⇠
n�j+1
l +Rn+1

l ; n � 1.(4.3.35)

Similar to stability analysis, we define the following grid functions

⇠n(S) =

8
<

:
⇠nl , when Sl �

h
2 < S  Sl +

h
2 , l = 1, 2, ..., L� 1,

0, when 0  S < h
2 or Smax �

h
2 < S  Smax +

h
2 ,

(4.3.36)

Rn(S) =

8
<

:
Rn

l , when Sl �
h
2 < S  Sl +

h
2 , l = 1, 2, ..., L� 1,

0, when 0  S < h
2 or Smax �

h
2 < S  Smax +

h
2 ,

(4.3.37)

which imply ⇠n(S) and Rn
l have the following Fourier series representations

⇠n(S) =
1X

j=1

⌧n(j)e
i2⇡jS/Smax ; n = 1, 2, ..., N, (4.3.38)

Rn(S) =
1X

j=1

⌫n(j)e
i2⇡jS/Smax ; n = 1, 2, ..., N, (4.3.39)
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where

⌧n(j) =
1

Smax

Z Smax

0

⇠n(S)e�i2⇡jS/SmaxdS; n = 1, 2, ..., N. (4.3.40)

⌫n(j) =
1

Smax

Z Smax

0

Rn(S)e�i2⇡jS/SmaxdS; n = 1, 2, ..., N. (4.3.41)

Let ⇠n = (⇠n1 , ⇠
n
2 , · · · , ⇠

n
L�1)

T and Rn = (Rn
1 , R

n
2 , · · · , R

n
L�1)

T , and let us define their

norms as follow

����⇠
n

����
2

=

 
L�1X

l=1

h| ⇠nl |
2

!1/2

=

✓Z Smax

0

| ⇠n(S) |2dS

◆1/2

, (4.3.42)

����R
n

����
2

=

 
L�1X

l=1

h| Rn
l |

2

!1/2

=

✓Z Smax

0

| Rn(S) |2dS

◆1/2

, (4.3.43)

and, apply the following Parseval equalities

Z Smax

0

| ⇠n(S)2 | dS =
1X

j=�1

| ⌧n(j) |
2; n = 1, 2, ..., N, (4.3.44)

Z Smax

0

| Rn(S)2 | dS =
1X

j=�1

| ⌫n(j) |
2; n = 1, 2, ..., N, (4.3.45)

to obtain

����⇠
n

����
2

2

=
1X

j=�1

| ⌧n(j) |
2; n = 1, 2, ..., N, (4.3.46)

����R
n

����
2

2

=
1X

j=�1

| ⌫n(j) |
2; n = 1, 2, ..., N. (4.3.47)
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We can therefore propose that

⇠n = ⌧ne
i�lh and Rn = ⌫ne

i�lh, (4.3.48)

where � = 2⇡j/Smax and i =
p
�1. Substituting the expressions in (4.3.48) into

(4.3.34) and (4.3.35), we obtain

�
 

2h2
⌧1e

i�(l+1)h +

✓
 

h2
+ �0

◆
⌧1e

i�lh
�

 

2h2
⌧1e

i�(l�1)h = ⌫1e
i�lh, n = 0, (4.3.49)

and

�
 

2h2
⌧n+1e

i�(l+1)h +

✓
 

h2
+ �0

◆
⌧n+1e

i�lh
�

 

2h2
⌧n+1e

i�(l�1)h

=
 

2h2
⌧ne

i�(l+1)h

�

✓
 

h2
+ �0

◆
⌧ne

i�lh

+
 

2h2
⌧ne

i�(l�1)h
�

nX

j=1

�j⌧n�j+1e
i�lh

+⌫n+1e
i�lh; n � 1. (4.3.50)

Which after simplifications, leads to

⌧1

✓
�
 

2h2

�
ei�h + e�i�h

�
+

✓
 

h2
+ �0

◆◆
= ⌫1, (4.3.51)

and

⌧n+1

✓
�
 

2h2

�
ei�h + e�i�h

�
+

✓
 

h2
+ �0

◆◆
= ⌧n

✓
 

2h2

�
ei�h + e�i�h

�
�

✓
 

h2
+ �0

◆◆

�

nX

j=1

�j⌧n�j+1 + ⌫n+1, n � 1. (4.3.52)
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These implies that for n = 0,

⌧1

✓
�
 

h2
cos �h+

 

h2
+ �0

◆
= ⌫1, (4.3.53)

and for n � 1,

⌧n+1

✓
�
 

h2
cos �h+

 

h2
+ �0

◆
= ⌧n

✓
 

h2
cos �h�

✓
 

h2
+ �0

◆◆
�

nX

j=1

�j⌧n�j+1

+⌫n+1. (4.3.54)

Which leads to the following equalities,

⌧1 = �
⌫1�

 
h2 cos �h�

�
 
h2 + �0

�� , (4.3.55)

and

⌧n+1 = �

 
⌧n +

Pn
j=1 �j⌧n�j+1 + ⌫n+1�

 
h2 cos �h�

�
 
h2 + �0

��
!
. (4.3.56)

Proposition 4.3.3. Suppose ⌧n for n = 0, 1, · · · , N is a solution to equations (4.3.55)

and (4.3.56), then there exists a positive constant C1 such that |⌧n|  C1|⌫1| for all n.

Proof. Notice that when n = 0, from (4.3.55) we have

|⌧1| 

����
⌫1

(  h2 cos �h� (  h2 + �0))

����  C1|⌫1|, (4.3.57)

Suppose |⌧n|  C0|⌫1|, for n = 1, 2, · · · , N , for some constant C independent of h
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and k. Then,

|⌧n+1| 

����⌧n +
Pn

j=1 �j⌧n�j+1 + ⌫n+1

(  h2 cos �h� (  h2 + �0))

����,

 |⌧n|+

����

Pn
j=1 �j⌧n�j+1 + ⌫n+1

(  h2 cos �h� (  h2 + �0))

����,

 C0|⌫1|+
nX

j=1

1��(  h2 cos �h� (  h2 + �0))
��(�j

��⌧n�j+1

��+
��⌫n+1

��),

 C0|⌫1|+
nX

j=1

Cj(�j
��⌧n�j+1

��+
��⌫n+1

��),

 C0|⌫1|+
nX

j=1

�jCj

��⌧n�j+1

��+ Cn+1

��⌫1
��,

 C0|⌫1|+
nX

j=1

�jCj

��⌫1
��+ Cn+1

��⌫1
��,

= C0|⌫1|+ �1C1

��⌫1
��+ �2C2

��⌫1
��+ · · ·+ �nCn

��⌫1
��+ Cn+1

��⌫1
��,

 Ĉ(|⌫1|+
nX

j=1

�j|⌫1|+ ⌫1), (Ĉ = max
0jn+1

{Cj}),

= Ĉ(2 +
nX

j=1

�j)|⌫1|,

= C|⌫1|. (4.3.58)

The following theorem therefore holds,

Theorem 4.3.4. The difference scheme (4.3.13)-(4.3.14) is convergent and converge

with order O(k2, h2).

The proof to Theorem 4.3.4 follows from equation (4.3.34) through to equation

(4.3.58).

4.4 Numerical experiments

In this section we investigate the pricing of European put options using the time-

fractional Black-Scholes (tfBS) PDE (4.2.23) which is implemented via scheme (4.3.13)-
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(4.3.14) with initial and boundary conditions (4.3.15). We consider two distinct ex-

amples with varying dividend yields and order of the fractional derivative (↵) fixed

at 0.3, 0.5, 0.7 and 0.9. The numerical solutions obtained using the proposed method

shows that the option maturity payoff curves obtained are in very good coincidence with

the European put option intrinsic payoff curves obtained under all possible parameter

settings.

Example 4.4.1. Consider equation (4.2.23) subject to conditions (4.3.15) on pricing

a European put option with the following parameters: K = 150, r = 0.08, � = 0.1, T =

1, Smax = 450, L = 100, N = 200, � = 0.035, 0.05 and 0.10.

Below we present numerical results for the case when � = 0.035 considered at all

four values of ↵ i.e. (↵ = 0.3, 0.5, 0.7 and 0.9).

The maturity payoff curves for � = 0.035 are as shown in fig. 4.4.1 below,
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Figure 4.4.1: Maturity payoffs for � = 0.035 with ↵ = 0.3 , 0.5 , 0.7&0.9 respectively,

and the general payoffs throughout the lifespan of the option at all considered sets of

↵ are as appearing in Figure 4.4.2 below
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Figure 4.4.2: General payoffs for � = 0.035 with ↵ = 0.3 , 0.5 , 0.7&0.9 respectively.

Example 4.4.2. Consider (4.2.23), again, subject to conditions (4.3.15) but under the

following parameters:K = 150, r = .065, � = .13, T = 1, Smax = 600, L = 30, N =

100, � = 0.045, 0.085, and 0.11.

Similar to Example 4.4.1 in this Example 4.4.2 we only present payoff results for

when � = 0.045 at all four considered values of ↵. The maturity payoff curves for

� = 0.045 at all four values of ↵ are presented in fig. 4.4.3 and their respective general

payoffs presented in fig. 4.4.4 below.
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Figure 4.4.3: Maturity payoffs for � = 0.045 with ↵ = 0.3 , 0.5 , 0.7&0.9 respectively.
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Figure 4.4.4: General payoffs for � = 0.045 with ↵ = 0.3 , 0.5 , 0.7&0.9 respectively.

The tabular results for example 4.4.1 and example 4.4.2, with N starting from 30

for example 4.4.1 and 50 for example 4.4.2 are presented in tables 4.4.2, 4.4.3, 5.5.3

and 5.5.4 below. Numerical results herein confirms that our results are in excellent

agreement with our theoretical deductions presented in section 4.3.1 and theorem 4.3.4

under section 4.3.1 and section 4.3.2 respectively.
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Table 4.4.1: Maximum absolute errors for example 4.4.1 with r = 0.08 and � = 0.035.

↵ N = 30 N = 60 N = 120 N = 240 N = 480

0.1 7.5592e-03 1.8952e-03 4.7712e-04 1.1987e-04 3.0128e-05
0.2 6.8088e-03 1.8694e-03 4.7170e-04 1.1825e-04 3.3784e-05
0.3 6.2147e-03 1.6191e-03 4.3368e-04 1.1698e-04 3.1352e-05
0.4 5.7443e-03 1.5001e-03 4.0358e-04 1.1684e-04 2.9426e-05
0.5 5.3746e-03 1.4966e-03 3.7993e-04 1.1651e-04 2.7912e-05
0.6 5.0893e-03 1.4044e-03 3.6167e-04 1.1619e-04 2.1544e-05
0.7 4.8773e-03 1.3880e-03 3.4810e-04 1.1607e-04 2.1676e-05
0.8 4.7318e-03 1.2500e-03 3.3879e-04 1.1405e-04 1.9950e-05
0.9 4.6499e-03 1.1682e-03 2.9355e-04 7.3797e-05 1.8575e-05
1.0 4.6328e-03 1.1645e-03 3.0246e-04 7.5988e-05 1.9670e-05

Table 4.4.2: Convergence rates for example 4.4.1 with r = 0.08 and � = 0.035.

↵ N = 60 N = 120 N = 240 N = 480

0.1 1.67 1.86 1.88 1.89
0.2 1.66 1.87 1.88 1.89
0.3 1.68 1.87 1.89 1.90
0.4 1.68 1.87 1.89 1.91
0.5 1.68 1.88 1.89 1.95
0.6 1.68 1.88 1.89 1.96
0.7 1.78 1.88 1.89 1.98
0.8 1.89 1.88 1.89 1.98
0.9 1.89 1.88 1.89 1.98
1.0 1.89 1.87 1.89 1.98

Table 4.4.3: Maximum absolute errors for example 4.4.2 with r = 0.065 and � = 0.045.

↵ N = 50 N = 100 N = 200 N = 400 N = 800

0.1 1.4714e-03 3.5691e-04 8.8754e-05 2.2298e-05 5.6053e-06
0.2 1.3394e-03 3.2352e-04 7.9308e-05 2.0162e-05 5.0648e-06
0.3 1.1162e-03 2.6506e-04 6.6025e-05 1.6549e-05 4.1509e-06
0.4 9.6623e-04 2.5089e-04 6.2188e-05 1.5578e-05 3.7253e-06
0.5 8.6515e-04 2.1632e-04 5.5720e-05 1.3942e-05 3.5015e-06
0.6 8.1315e-04 2.1216e-04 5.2393e-05 1.3100e-05 3.2885e-06
0.7 7.6609e-04 2.0126e-04 4.9381e-05 1.2439e-05 3.0859e-06
0.8 7.4065e-04 1.9183e-04 4.7753e-05 1.1927e-05 2.9817e-06
0.9 7.2436e-04 1.9170e-04 4.6711e-05 1.1663e-05 2.9350e-06
1.0 7.2202e-04 1.8911e-04 4.6561e-05 1.1625e-05 2.9254e-06
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Table 4.4.4: Convergence rates for example 4.4.2 with r = 0.065 and � = 0.045.

↵ N = 100 N = 200 N = 400 N = 800

0.1 1. 78 1.89 1.97 1.97
0.2 1.79 1.92 1.96 1.98
0.3 1.79 1.93 1.97 1.98
0.4 1.80 1.94 1.97 1.99
0.5 1.88 1.95 1.98 1.99
0.6 1.88 1.96 1.98 1.99
0.7 1.88 1.96 1.98 1.99
0.8 1.88 1.97 1.98 1.99
0.9 1.89 1.97 1.98 1.99
1.0 1.89 1.97 1.98 1.99

4.5 Summary and discussions

The fractional approach is a very effective approach to asset pricing as it provides a

unique framework, one that has a potential to transform conventional thinking in asset

pricing theory and applications. The non-local derivatives and integral operators as

well as the accompanying fractional stochastic dynamics provides the best tools for

explaining trend and noise memory effects as well as non-localised information about

the stock price movements, something that the classical models may fail to explain.

Since the fractional derivatives operators are of a non-local nature, there is little to none

existing knowledge of analytic solutions to fractional BS models. As such, numerical

methods are the only available avenues to help understand the nature of solutions to

these models.

In this chapter, we transformed a standard tfBS-PDE into a solvable tfBS-PDE in

the form of a heat equation. In general, the transformation is necessary as it helps

in easing the mathematical difficulties and complexity involved in solving the original

tfBS-PDE using the high order numerical method presented herein. We constructed

a robust and high order numerical scheme for solving the resultant model. From the

simulation, we considered two examples, Example 4.4.1, and Example 4.4.2 as well

as their numerical results in Tables 4.4.1 to 4.4.4. The above stated results are in
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agreement with theoretical observations that, the method is unconditional stable and

converges to up to order O(k2). We further observe that, our approach provides a very

efficient, effective and powerful mathematical tool for option pricing.

Though the asymptotic long-term behaviours of markets tends to be similar for

when the dynamics are driven by the usual Gaussian processes as compared to non-

Gaussian processes (i.e fractal processes), we observe that, incorporating the fractional

parameters describes the dynamics much better and with greater flexibility. Such fact

does holds most specifically in markets with empirical evidence of memory or those

that presents some non-random power law properties which are often not predictable

using ordinary Gaussian assumptions.

The application of the approach to other models and their calibration to real-time

market data remain the subject of future research. In the next chapter we formulate

an American option pricing fractional Black-Scholes equation as well as propose a

front-fixing transformation based numerical method for solving the resultant model.



Chapter 5

A Robust Numerical Simulation of an

American Put Option Pricing Time

Fractional Black-Scholes Equation

In this chapter we propose a robust finite difference numerical scheme for solving a

time-fractional Black-Scholes equation for pricing American put options. The numer-

ical method herein is based on front-fixing transformation, whereby the early exercise

boundaries are transformed into fixed boundaries allowing for the simultaneous compu-

tation of the option premiums as well as the corresponding optimal exercise boundaries.

5.1 Introduction

After the discovery of fractal structures of financial markets, fractional partial differen-

tial equations became very popular in studying financial derivative pricing problems.

The available research results includes two key aspects, firstly, derivation of a better re-

alistic pricing model, one that closely reflects the actual dynamics of financial markets.

Secondly, the design of a robust numerical method for solving the resultant models be-

come important, since in most cases, the resultant models are often of nonlinear nature

and as such, no reliable analytic methods have thus far been documented. therefore

108
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numerical methods become vitally important in understanding the nature of solutions

to these models. The difficulty in evaluating American options accurately lies on the

unknown free boundaries associated with these type of options. The free boundaries

emanates from the flexibility of early exercise features associated with the American

options. To the best of our knowledge, there are no extensive literatures on numerical

methods for pricing of American option problems from a fractional point of view.

This chapter is organised as follow, Section 5.2 present a brief derivation of the

involved time-fractional Black-Scholes (tfBS) PDE for pricing American put options.

In Section 5.3 we propose a finite difference discretisation of the transformed tfBS-PDE

while further elaborating on the construction of the numerical scheme. The theoretical

analysis of the scheme are presented in Section 5.4, while in Section 5.5 we present

some American option pricing numerical experiments. Concluding remarks as well as

scope for further research are presented in Section 5.6.

5.2 The tfBS-PDE for American put options

5.2.1 A time-fractional PDE describing an American option

problem

Let v(S, t) denote the value of an American put option, S the price of the underlying

stock and K the option’s strike price. Assume the stock price dynamics follow the

following fractal process, driven by the usual Gaussian white noise !(t)

dS = (r � �)Sdt+ �S!(t)(dt)↵/2, 0 < ↵  1, (5.2.1)

where r is the risk-free interest rate, � the dividend yield, and !(t) the Gaussian white

noise. Using (5.2.1) and the Generalized Taylor series expansion of v(S, t) with some

algebraic manipulations, leads to the following time-fractional Black-Scholes (tfBS)
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PDE with initial and boundary conditions for American put option.

@↵v

@t↵
=

✓
rv � (r � �)S

@v

@S

◆
t1�↵

�(2� ↵)
�

�(1 + ↵)

2
�2S2 @

2v

@S2
,

S > b(t), 0 < ↵  1, (5.2.2)

v(S, 0) = max(K � S, 0), S � 0,

@v

@S
(b(t), t) = �1,

v(b(t), t) = K � b(t), (5.2.3)

lim
S!1

v(S, t) = 0,

b(0) = K,

v(S, t) = K � S, 0  S < b(t).

With a change of variable ⌧ = T�t (time to maturity), the equation (5.2.2) become

@↵v

@⌧↵
=

✓
rv � (r � �)S

@v

@S

◆
⌧ 1�↵

�(2� ↵)
�

�(1 + ↵)⌧ 1�↵

2(T � ⌧)1�↵
�2S2 @

2v

@S2
,

S > b(⌧), 0 < ↵  1, t > 0, (5.2.4)

v(S, 0) = max(K � S, 0), S � 0,

@v

@S
(b(⌧), ⌧) = �1,

v(b(⌧), ⌧) = K � b(⌧), (5.2.5)

lim
S!1

v(S, ⌧) = 0,

b(0) = K,

v(S, ⌧) = K � S, 0  S < b(⌧),

where b(⌧) is the moving exercise boundary.

It is worth noting that, when S  b(⌧) it is optimal to exercise a put option.



CHAPTER 5. A ROBUST NUMERICAL SIMULATION OF AN AMERICAN
PUT OPTION PRICING TIME FRACTIONAL BLACK-SCHOLES EQUATION111

Whereas, when b(⌧) < S, the optimal exercising strategy would be to hold the option

when b(⌧) < S.

The value matching condition v(b(⌧), ⌧) = K � b(⌧) and the smooth pasting condi-

tion @v
@S (b(⌧), ⌧) = �1 are necessary for preserving financial interpretation of the con-

tinuity of v(b(⌧), ⌧) and @v
@S (b(⌧), ⌧) across the optimal exercise boundary b(⌧). This

is done to avoid arbitrage opportunities, because after purchasing an American put an

investor can exercise the option once the asset price falls below b(⌧), or purchase it

back whenever the asset price rises above b(⌧). Since the transactions of converting the

put option into holding of cash plus a short position in asset and vice versa all occur

on the early exercise boundary, we require the value matching and smooth pasting

conditions in order to ensure that these transactions are self-financing, that is, each

portfolio revision undertaken is exactly financed by the proceeds from the sale of the

previous position ([53]).

The underlying concept of the front-fixing approach is to remove the moving exer-

cise boundary b(⌧) by change of variables which then leads to a non-linear tfBS-PDE

posed on a fixed domain. With this formulation, the position of the boundary is given

but some of the boundary conditions remain unknown and must be simultaneously

computed with the value of the option.

To transform the tfBS-PDE (5.2.4) and for the convenience of numerical implemen-

tation, we consider the following change of variables

u(x, ⌧) =
v(S, ⌧)

K
, bf (⌧) =

b(⌧)

K
, x = ln

✓
S

bf

◆
. (5.2.6)

The so-called Landau transformation of the spatial variable (x = ln
⇣

S
bf

⌘
) serves

to ensure that x = 0 whenever S = b(⌧), which transform the then free boundary

conditions to fixed boundary conditions. Under this transformation, the free boundary

S = b(⌧) become the fixed boundary x = 0, hence the name of the method. Using the
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new random variable x, the underlying stock dynamic equation (5.2.1) change to

dx =

✓
q �

�2

2
�

b0f (⌧)

bf (⌧)

◆
dt+ �!(t)(dt)↵/2, q = r � �, 0 < ↵  1. (5.2.7)

By using (5.2.7) and replicating a derivation parallel to the one presented in chap-

ter 2, the tfBS-PDE (5.2.4) is transformed into the following fractional linear comple-

mentary problem (FLCP) under a new random variable x

@↵u

@⌧↵
= �(⌧)

✓✓
ru� (q �

�2

2
)
@u

@x

◆
(T � ⌧)1�↵

�(2� ↵)
�

�(1 + ↵)

2
�2@

2u

@x2
+

b0f
bf

@u

@x

◆
, (5.2.8)

x > 0, �(⌧) = ⌧ 1�↵(T � ⌧)↵�1, 0 < ↵  1, and, 0 < ⌧  T.

This FPDE can further be simplified into

@↵u

@⌧↵
= ✓⌧

✓
ru� µ

@u

@x

◆
� !⌧

1

2
�2@

2u

@x2
+

b0f
bf

@u

@x
, x > 0, 0 < ↵  1, 0 < ⌧  T,

✓⌧ =
⌧ 1�↵

�(2� ↵)
, !⌧ =

�(1 + ↵)⌧ 1�↵

(T � ⌧)1�↵
, µ = r � � �

�2

2
,(5.2.9)

with initial and boundary conditions for an American put option

u(x, 0) = max(1� e�x, 0), x � 0, (5.2.10)
@v

@x
(0, ⌧) = �bf (⌧), (5.2.11)

u(0, ⌧) = 1� bf (⌧), (5.2.12)

lim
x!1

u(x, ⌧) = 0, (5.2.13)

bf (0) = 1, (5.2.14)

where b0f is the derivative (of the free boundary bf ) with respect to ⌧ .
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5.3 Discretization of the tfBS-PDE and construction

of the numerical scheme

In this section, we introduce a finite difference method for solving the time fractional

Black Scholes (tfBS) initial boundary value problem (IBVP) (5.2.9) with a free bound-

ary bf (⌧). Not only do we compute the solution to the fractional IBVP (5.2.9) but

simultaneously compute the position of the free boundary bf (⌧).

5.3.1 Discretization of the tfBS-PDE

Let L and N be positive integers and define h = xmax/L and k = T/N as the space

and time step sizes respectively. Define xl = lh; l = 1, 2, ..., L and ⌧n = nk; n =

0, 1, 2, ..., N , such that xl 2 [xmin, xmax] and ⌧n 2 [0, T ]. Furthermore, define un
l =

u(xl, ⌧n) as the solution at the grid point (xl, ⌧n) = (lh, nk).

We evaluate the ↵-derivative in (5.2.6) by the following quadrature

@↵u(xl, ⌧n)

@⌧↵
= ⇢↵

nX

j=1

�j(u
n�j+1
l � un�j

l ) +
⌧ 1�↵n

�(2� ↵)
k, (5.3.1)

where

⇢↵ =
1

�(2� ↵)

1

k↵
, (5.3.2)

and

�j = j1�↵ � (j � 1)1�↵, j = 1, 2, · · · , n, (5.3.3)

such that, 1 = �1 > �2 > �3 > · · · >! 0 as j ! n.

Simplifying (5.3.1) we obtain

@↵u(xl, ⌧n)

@⌧↵
= ⇢↵

nX

j=1

�j(u
n�j+1
l � un�j

l ) +O(k). (5.3.4)



CHAPTER 5. A ROBUST NUMERICAL SIMULATION OF AN AMERICAN
PUT OPTION PRICING TIME FRACTIONAL BLACK-SCHOLES EQUATION114

It can be shown that, for j = 1 and ↵ = 1, (5.3.4) reduces to the classical backward

finite difference formula.

The other derivative terms in (5.3.1) are approximated by

@u(xl, ⌧n)

@x
=

un
l+1 � un

l�1

2h
+O(h2), (5.3.5)

@2u(xl, ⌧n)

@x2
=

un
l+1 � 2un

l + un
l�1

h2
+O(h2), (5.3.6)

@bf
@⌧

=
bnf � bn�1

f

k
+O(k). (5.3.7)

5.3.2 Construction of the numerical scheme

To obtain the full numerical scheme, we substitute (5.3.4), (5.3.5),(5.3.6) and (5.3.7)

into (5.2.9). After simplifying, we obtain

for n = 1

au1
l�1 + bu1

l + cu1
l+1 �

 
b1f � b0f

b1f

!
u1
l+1 � u1

l�1

2h
= 0, (5.3.8)

and for n � 2

aun
l�1 + bun

l + cun
l+1 �

 
bnf � bn�1

f

bnf

!
un
l+1 � un

l�1

2h
=

n�1X

j=1

'ju
n�j
l , (5.3.9)

where

a = �↵

✓
�2!⌧
4h

�
✓⌧µ

2h

◆
,

b = 1� �↵

✓
✓⌧r �

1

2h
�2!⌧

◆
, (5.3.10)

c = �↵

✓
�2!⌧
4h

+
✓⌧µ

2h

◆
,
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where

�↵ = k⇢↵ =
1

�(2� ↵)
k1�↵, (5.3.11)

and

'j = �j � �j+1, j = 1, 2, · · · , n. (5.3.12)

From boundary conditions in (5.2.10) we obtain

un
1 � un

�1

2h
= �bnf , and, un

0 = 1� bnf . (5.3.13)

Consider (5.2.9) for x0 = 0, ⌧ > 0 and substitute (5.3.13) into (5.2.9) at (0, ⌧) to

obtain

1

2
�2!⌧

@2

@x2
u(0, ⌧)� ✓⌧ (� +

�2

2
)bf (⌧) + ✓⌧r = 0, (5.3.14)

with its central discretization given by

1

2
�2!⌧

un
1 � 2un

0 + un
�1

h2
� ✓⌧ (� +

�2

2
)bnf + ✓⌧r = 0. (5.3.15)

Equation (5.3.15) follow directly from the definition of a fractional derivative of a

differentiable function u(x, ⌧) at x = 0.

Now (5.3.13) implies

un
0 = 1� bnf , (5.3.16)

un
�1 = un

1 + 2hbnf . (5.3.17)

After some algebraic manipulations, we obtain the following expression in terms of
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un
1

un
1 = ⇣ + �bnf ; n � 1, (5.3.18)

whereby

⇣ = (1 +
h2

�2
r), and � = (1 + h+

h2

2
), for  = �

✓⌧
!⌧

. (5.3.19)

Using scheme(5.3.8)-(5.3.9) for l = 1, and evaluating (5.3.19) at nth- step, the free

boundary bnf can be expressed as

bnf =  n�1b
n�1
f , 1  n  N, (5.3.20)

where

 n =
⇣ � (aun

0 + bun
1 + cun

2 � (un
2 � un

0 )/2h)

(un
2 � un

0 )/2h+ �bnf
, (5.3.21)

therefore the final schemes for un
l and bnf are given by

bnf =  n�1b
n�1
f , (5.3.22)

un
0 = 1� bnf , (5.3.23)

un
1 = ⇣ � �bnf ; n � 1, (5.3.24)

ānu1
l�1 + bu1

l + c̄nu1
l+1 = �1u

0
l , l = 2, · · · , L, n = 1, (5.3.25)

ānun
l�1 + bun

l + c̄nun
l+1 =

n�1X

j=1

'ju
n�j
l + �nu

0
l , l = 2, · · · , L, n � 2, (5.3.26)

for

ān = a+
bnf � bn�1

f

2hbnf
, b = 1� �↵

✓
✓⌧r �

1

2h
�2!⌧

◆
and c̄n = c�

bnf � bn�1
f

2hbnf
, (5.3.27)
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with initial and boundary conditions

b0f = 1, u0
l = max(1� e�x, 0), withu0

0 = 0, andun
L+1 = 0, for 0  l  L+ 1.(5.3.28)

The above scheme can be represented in the following tridiagonal matrix system

A1U1 = �1U
0, for n = 1, (5.3.29)

and

AnUn = '1U
n�1 + '2U

n�2 + · · ·+ 'n�1U
1, for n � 2, (5.3.30)

where

An =

0

BBBBBBBBBBBB@

b ĉ2 · · · · · · · · · 0

â1 b ĉ3 · · · · · · 0

0 â2 b ĉ4 · · · 0
... . . . . . . . . . . . . ...

0 · · · · · · âN�3 b ĉN

0 · · · · · · · · · âN�1 b

1

CCCCCCCCCCCCA

,

and

Un =
�
un
1 , u

n
2 , · · · , b

n
L�1

�T
. (5.3.31)

5.4 Analysis of the numerical method

In this section, we present theoretical results on the positivity and non-increasing spa-

tial monotonicity properties of the numerical solution as well as those of the moving

boundary which then establish the stability results. To begin, we show that the coef-

ficients a, b, and c satisfy the two conditions in lemma 5.4.1 below.
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5.4.1 Positivity of the solution and boundary conditions

Lemma 5.4.1. The positivity conditions for the coefficients a, b, and c in the schemes

(5.3.8) and (5.3.9), with regards to descritization stepsizes h and k are

Cond. 1. 3�2

2 � |r � �|, for any h > 0, and

Cond. 2. k 

⇣
⌧ 1�↵r � �2

2h
�(1+↵)2

(T�⌧)↵

⌘�↵
.

Proof. From equation (5.3.14), the non-negativity of a, implies

�2!⌧
4h

�
✓⌧µ

2h
=

1

4h

�
�2!⌧ � 2✓⌧µ

�
,

=
1

4h

�
�2!⌧ � 2✓⌧µ

�
,

=
1

4h

�
�2!⌧ � 2✓⌧µ

�
,

=
�(1 + ↵)�(2� ↵)

4h(T � ⌧)1�↵

✓
�2

�

✓
(r � �)�

�2

2

◆◆
,

=
�(1 + ↵)2

4h(T � ⌧)1�↵

✓
�2

�

✓
(r � �)�

�2

2

◆◆
> 0. (5.4.1)

therefore the positivity condition for coefficient a is that

3�2

2
� r � �, for any h > 0, (5.4.2)

whereas for b, we have

1� k↵�(2� ↵)

✓
⌧ 1�↵

�(2� ↵)
r �

�2

2h

�(1 + ↵)

(T � ⌧)↵

◆
� 0,

1 � k↵
✓
⌧ 1�↵r �

�2

2h

�(1 + ↵)2

(T � ⌧)↵

◆
. (5.4.3)

Therefore the positivity condition for b is that

k 

✓
⌧ 1�↵r �

�2

2h

�(1 + ↵)2

(T � ⌧)↵

◆�↵

, (5.4.4)



CHAPTER 5. A ROBUST NUMERICAL SIMULATION OF AN AMERICAN
PUT OPTION PRICING TIME FRACTIONAL BLACK-SCHOLES EQUATION119

and the positivity of c follows directly from (5.3.14) when

3�2

2
 r � �, for any h > 0. (5.4.5)

To establish results on positivity of the numerical solution un
l and the moving

boundary bn, we propose lemma 5.4.2 and its proof together with other subsequent

results therein leads to the desired positivity results.

Lemma 5.4.2. Let {un
l , b

n
f} be the numerical solution to the scheme (5.3.22)-(5.3.26)

for the American put option problem in (5.2.9) and let  n be defined as in (5.3.21).

Then from lemma 5.4.1, for any h > 0 we obtain that

1). For every fixed n,

0 <  n  1. (5.4.6)

2). un
l � un

l+1 for l = 0, · · · , L;n = 0, · · · , N � 1.

3). un
l � 0 for l = 0, · · · , L� 1;n = 0, · · · , N � 1.

Proof. Given n = 0, then from initial conditions in (5.3.28), we have u0
l � 0 and b0f � 0,

and from (5.3.19), (5.3.21), (5.3.27) and Cond.1. of lemma 5.4.1, we obtain

0   0 =
⇣

�
 1, (5.4.7)

since

lim
h!0

⇣

�
= lim

h!0





 
1 + h2

�2 r

1 + h+ h2

2

!
= 1. (5.4.8)
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Note that, from (5.3.22)-(5.3.24) and (5.4.7) we have

0 < b1f =  0b
0
f  1, (5.4.9)

u1
0 = 1�  0 � 0, (5.4.10)

u1
1 = ⇣ � �b1f = ⇣ � � 0 = ⇣ � �

⇣

�
= 0, (5.4.11)

and from (5.3.25) and (5.3.28) we have u1
j � 0 for all j = 2, · · · , L.

Now

 1 =
⇣ � (au1

0 + cu1
2 � (u1

2 � u1
0)/2h)

(u1
2 � u1

0)/2h+ �b1f
,

=
⇣ � (a� 1/2h)u1

0

�b1f
,

= 1� a
h+ h2(1/2� r/�2)

1/2 + h(3/4 + r/2�2) +O(h2))
, (5.4.12)

which implies 0 <  1  1.

To show that u2
2 = 0, we consider (5.3.26) for n = 2 and l = 2, which give

ā2u2
1 + bu2

2 + c̄2u2
3 =

1X

j=1

'ju
0
2 + �2u

0
2 = 0,

which implies

bu2
2 = �ā2(u2

3 � u2
1) = 0. (5.4.13)

Since ā2 and b are positive we have u2
2 = 0, hence

0 <  2  1.
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Let n > 2 and by induction hypothesis, we assume the conclusions holds true for

n� 1, such that

0 <  n�1  1, un�1
l � 0, un�1

l � un�1
l+1 . (5.4.14)

Now let us define

pn = 

✓
1 +

h2

�2
r

◆
+

un
0 � un

2

2h
� aun

0 � bun
1 � cun

2 , (5.4.15)

and

dn =
un
2 � un

0

2h
+ 

✓
1 + h+

h2

2

◆
bnf , (5.4.16)

which yields

 n =
pn
dn

.

When l = 2, combining the Taylor expansion of (5.3.14) with (5.4.15) coupled with

the value matching and smooth pasting conditions ((5.2.11) and (5.2.12)), we obtain

un
2 = 

✓
�2 + 2rh2

�2
�

(2 + 2h+ h2)

2
bnf

◆
+O(h3). (5.4.17)

Using (5.3.16), (5.3.18) and (5.4.17) in (5.4.15) we obtain

pn = 

✓
�2 + rh2

�2

◆
(1� b� c) +

✓
1� 2ha

2h

◆
(1� bnf )

+

✓
1� 2hb� 2hc

2h

◆✓
2 + 2h+ h2

2

◆
bnf , (5.4.18)

and

dn =
 (�2 + 2rh2)

2h�2
+

bnf � 1

2h
+

✓
2h� 1

2h

◆✓
2 + 2h+ h2

2

◆
bnf . (5.4.19)
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To show the positivity of the solution {un
} and consequently that of  n as well

as it’s boundedness, it suffices to show that, the coefficients ān and c̄n in (5.3.27) are

positive.

The coefficients are positive because

ān = a+
bnf � bn�1

f

2hbnf
= a+

1� 1
 n�1

2h
= a+

 n�1 � 1

2h n�1
= a�

1�  n�1

2h n�1
, (5.4.20)

and by induction assumption 0 <  n�1  1, then 0 < 1�  n�1  0, we obtain

ān = a+
bnf � bn�1

f

2hbnf
= a�

1�  n�1

2h n�1
� 0. (5.4.21)

Similarly, for c̄n we have

c̄n = c�
bnf � bn�1

f

2hbnf
= c+

1�  n�1

2h
� c � 0, (5.4.22)

therefore

0 <  n  1.

Moreover, the solution {un
l } is an increasing function of l since a put option become

worthless as it approach maturity.

The following theorem follows from the results above

Theorem 5.4.3. Under the assumptions of lemma 5.4.2, the scheme (5.3.22)-(5.3.26)

guarantees the following properties about the free boundary condition and the numerical

solution

i. monotonicity and positivity of bnf , n = 0, · · · , N ;

ii. monotonicity and positivity of the solution un = (un
0 , · · · , u

n
l ) for n = 0, · · · , N.
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5.4.2 Stability and consistency analysis

In this section, we study the stability and consistency properties of the scheme (5.3.22)-

(5.3.26).

Numerical stability

We note that

Definition 5.4.4. The numerical scheme (5.3.22)-(5.3.26) with initial and boundary

conditions (5.2.10) is said to be k.k1 stable in the fixed domain [0, x1] ⇥ [0, T ], if for

every partition with k = 1/N, h = 1/L and (L+ 1)h = x1,

kun
k  M, 0  n  N, (5.4.23)

where k.k1 is the supremum norm and M some constant independent of h, k and N .

Theorem 5.4.5. Under assumptions of lemma 5.4.2, the numerical scheme (5.3.22)-

(5.3.26) for solving the tfBS PDE (5.2.9) is k.k1-stable.

Proof. Since for each fixed n, the sequence of solutions un
l is non-increasing with

respect to l, then according to the boundary condition (5.3.23) and based on the

positivity results of bnf established under lemma 5.4.1, we get

kun
k1 = un

0 = 1� bnf < 1, 0  n  N. (5.4.24)

therefore the numerical scheme (5.3.22)-(5.3.26) is k.k1-stable.

Consistency of the numerical schemes

To analyze for numerical consistency of a numerical scheme to a partial differential

equation, one look at how well the numerical solution approximate the exact theoretical

solution as the discretization stepsizes approach zero ([86]). In our case however, on top
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of matching the behaviour of the numerical scheme (5.3.25)-(5.3.26) to the tfBS PDE

(5.2.9), we also extend the approach to the moving boundary condition (5.2.11)-(5.2.12)

with its numerical scheme (5.3.20).

To assess the numerical consistency of the scheme (5.3.25)-(5.3.26) we first define

ûn
l = u(xl, ⌧n) and b̂nf = bf (⌧n) as the exact solutions to the tfBS PDE (5.2.9) and

moving boundary at time ⌧n, respectively. As follow, redefine the scheme to (5.2.9)

S(un
l , b

n
f ) = ⇢↵

nX

j=1

�j
�
un�j+1
l � un�j

l

�
� ✓⌧

✓
run

l � µ
un
l+1 � un

l�1

2h

◆

+!⌧
1

2
�2

✓
un
l+1 � 2un

l + un
l�1

h2

◆

�

 
bnf � bn�1

f

kbf

!
un
l+1 � un

l�1

2h
. (5.4.25)

The scheme (5.4.25) is consistent with equation (5.4.26) below

F (u, bf ) =
@↵u

@⌧↵
� ✓⌧

✓
ru� µ

@u

@x

◆
+ !⌧

1

2
�2@

2u

@x2
�

b0f
bf

@u

@x
= 0, (5.4.26)

if the local truncation error is given by

T n
l (ûl, b̂

n
f ) = S(ûl, b̂

n
f )� F (ûl, b̂

n
f ),

= ⇢↵

nX

j=1

�j
�
un�j+1
l � un�j

l

�
�
@↵u

@⌧↵
� ✓⌧µ

✓
un
l+1 � un

l�1

2h
�
@u

@x

◆

+!⌧
1

2
�2

✓
un
l+1 � 2un

l + un
l�1

h2
�
@2u

@x2

◆

�
1

bf

  
bnf � bn�1

f

k

!
un
l+1 � un

l�1

2h
+ b0f

@u

@x

!
, (5.4.27)

such that

lim
h,k!0

T n
l (û, b̂

n
f ) = 0. (5.4.28)

Suppose u(x, ⌧) is ↵-differentiable up to order 2↵ (0 < ↵  1) in time, and differ-
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entiable up to order four in space then, applying the generalised Taylor expansion of

T n
l (û, b̂

n
f ) about (xl, ⌧n) yield

T n
l (ûl, b̂

n
f ) = k↵Rn

l (1)� ✓⌧µh
2Rn

l (2) + !⌧
1

2
�2h2Rn

l (3) + kRn
l (4)

@u

@x
(xl, ⌧n)

+h2Rn
l (2)

1

b̂nf

dbf
d⌧

(⌧n)� kh2Rn
l (4)R

n
l (2), (5.4.29)

where

Rn
l (1) =

1
(2↵)!

@2↵u
@⌧2↵ (xl, ⌧n), Rn

l (2) =
1
6
@3u
@x3 (xl, ⌧n),

Rn
l (3) =

1
12
@4u
@x4 (xl, ⌧n), Rn

l (4) =
k

2b̂f

d2bf
d⌧2 (⌧n).

9
=

; (5.4.30)

From (5.4.29)-(5.4.30) we observe that the local truncation error of the numerical

scheme (5.3.25)-(5.3.26) for the tfBS-PDE (5.2.9) is of order O(k) in time and O(h2)

in space.

To complete the consistency analysis of the solution of the free boundary, we rewrite

the boundary conditions (5.2.11)-(5.2.12) and (5.3.14) in the following form

F1(u, bf ) =
@v

@x
(0, ⌧) + bf (⌧) = 0,

F2(u, bf ) = u(0, ⌧) + bf (⌧)� 1 = 0,

F3(u, bf ) =
1

2
�2!⌧

@2

@x2
u(0, ⌧)� ✓⌧

✓
� +

�2

2

◆
bf (⌧) + ✓⌧r = 0, (5.4.31)

and their respective numerical approximations are as follow

S1(u, bf ) =
un
1 � un

�1

2h
+ bnf = 0,

S2(u, bf ) = un
0 + bnf � 1 = 0,

S3(u, bf ) =
1

2
�2!⌧

un
1 � 2un

0 + un
�1

h2
� ✓⌧

✓
� +

�2

2

◆
bnf + ✓⌧r = 0. (5.4.32)
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Using Taylor expansion it is trivial to show that

T1(u, bf ) = S1(u, bf )� F1(u, bf ) = 0,

T2(u, bf ) = S2(u, bf )� F2(u, bf ) = O(h2),

T3(u, bf ) = S3(u, bf )� F3(u, bf ) = O(h2). (5.4.33)

therefore the local truncation error for the boundary condition is of order O(h2) in

space. The above observations suffice as proof to the following results.

Theorem 5.4.6. Suppose the solution u(x, ⌧) to the tfBS-PDE (5.2.9) with initial and

boundary conditions (5.2.10)-(5.2.14) is ↵-differentiable up to order 2↵ in time as well

as differentiable up to order four in space, then, the numerical solution obtained via

the scheme(5.3.22)-(5.3.26) is consistent with the tfBS-PDE (5.2.9) with initial and

boundary conditions (5.2.10)-(5.2.14). therefore from the Lax equivalence theorem, the

scheme converges and is second-order accurate in space as well as first-order accurate

in time.

5.5 Numerical experiments

Example 5.5.1. Consider an American put option with the following market param-

eters � = 0.02&0.2, r = 0.10, � = 0.02, and K = 150.

Graphical results are presented in the following figures.
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Figure 5.5.1: American put option maturity payoffs for ↵ = 0.5 and ↵ = 0.9 at different
dividend yields.
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(a) ↵ = 0.5, � = 0.02 (b) ↵ = 0.5, � = 0.2

(c) ↵ = 0.9, � = 0.02 (d) ↵ = 0.9, � = 0.2

Figure 5.5.2: American put option general payoffs for ↵ = 0.5 and ↵ = 0.9 at different
dividend yields.

Results from fig. 5.5.1 through to fig. 5.5.2 suggest that the approach is more

effective for larger values of ↵ (↵ > 0.5). This is not surprising because ↵ > 0.5

represent the case when the underlying stock increments are persistently positively

correlated.
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Figure 5.5.3: American put option exercise boundaries for ↵ = 0.5 and ↵ = 0.9 at
different dividend yields.

Figure 5.5.3 above show the early exercise boundaries for the four considered com-

binations of ↵ and �. It is evident from the results that, the option holder must keep

track of specific points in time and for a specific price of the stock to maximise the

benefit of holding these specific stock options. Tabular results are presented in the

following tables.
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Table 5.5.1: Maximum absolute errors for example 5.5.1 with r = 0.10 and � = 0.02.

↵ N = 10 N = 20 N = 40 N = 80 N = 160 N = 320

0.1 4.6360e-02 2.3559e-02 1.1972e-02 5.9859e-03 2.9929e-03 1.4965e-03
0.2 4.7227e-02 2.4000e-02 1.2196e-02 6.0979e-03 3.0490e-03 1.5245e-03
0.3 4.7745e-02 2.4263e-02 1.2330e-02 6.1648e-03 3.0824e-03 1.5412e-03
0.4 4.8015e-02 2.4400e-02 1.2399e-02 6.1997e-03 3.0999e-03 1.5499e-03
0.5 4.8093e-02 2.4440e-02 1.2420e-02 6.2098e-03 3.1049e-03 1.5524e-03
0.6 4.7972e-02 2.4378e-02 1.2388e-02 6.1941e-03 3.0971e-03 1.5485e-03
0.7 4.7591e-02 2.4184e-02 1.2290e-02 6.1449e-03 3.0724e-03 1.5362e-03
0.8 4.6903e-02 2.3835e-02 1.2112e-02 6.0561e-03 3.0280e-03 1.5140e-03
0.9 4.5976e-02 2.3364e-02 1.1873e-02 5.9363e-03 2.9682e-03 1.4841e-03
1.0 4.5000e-02 2.2838e-02 1.1621e-02 5.8104e-03 2.9052e-03 1.4526e-03

Table 5.5.2: Convergence rates for example 5.5.1 with r = 0.10 and � = 0.02.

↵ N = 10 N = 20 N = 40 N = 80 N = 160

0.1 0.98 0.98 1.00 1.00 1.00
0.2 0.98 0.98 1.00 1.00 1.00
0.3 0.98 0.98 1.00 1.00 1.00
0.4 0.98 0.98 1.00 1.00 1.00
0.5 0.98 0.98 1.00 1.00 1.00
0.6 0.98 0.98 1.00 1.00 1.00
0.7 0.98 0.98 1.00 1.00 1.00
0.8 0.98 0.98 1.00 1.00 1.00
0.9 0.98 0.98 1.00 1.00 1.00
1.0 0.98 0.98 1.00 1.00 1.00

Table 5.5.3: Maximum absolute errors for example 5.5.1 with r = 0.10 and � = 0.2.

↵ N = 10 N = 20 N = 40 N = 80 N = 160 N = 320

0.1 4.6168e-02 2.3471e-02 1.1922e-02 5.9611e-03 2.9806e-03 1.4903e-03
0.2 4.6826e-02 2.3806e-02 1.2092e-02 6.0462e-03 3.0231e-03 1.5115e-03
0.3 4.7119e-02 2.3924e-02 1.2168e-02 6.0839e-03 3.0420e-03 1.5210e-03
0.4 4.7151e-02 2.3951e-02 1.2176e-02 6.0881e-03 3.0440e-03 1.5220e-03
0.5 4.7002e-02 2.3865e-02 1.2138e-02 6.0688e-03 3.0344e-03 1.5172e-03
0.6 4.6728e-02 2.3726e-02 1.2067e-02 6.0335e-03 3.0167e-03 1.5084e-03
0.7 4.6370e-02 2.3564e-02 1.1975e-02 5.9873e-03 2.9936e-03 1.4968e-03
0.8 4.5954e-02 2.3323e-02 1.1867e-02 5.9336e-03 2.9668e-03 1.4834e-03
0.9 4.5496e-02 2.3108e-02 1.1749e-02 5.8744e-03 2.9372e-03 1.4686e-03
1.0 4.5000e-02 2.2838e-02 1.1621e-02 5.8104e-03 2.9052e-03 1.4526e-03
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Table 5.5.4: Convergence rates for example 5.5.1 with r = 0.10 and � = 0.2.

↵ N = 10 N = 20 N = 40 N = 80 N= 160
0.1 0.98 0.98 1.00 1.00 1.00
0.2 0.98 0.98 1.00 1.00 1.00
0.3 0.98 0.98 1.00 1.00 1.00
0.4 0.98 0.98 1.00 1.00 1.00
0.5 0.98 0.98 1.00 1.00 1.00
0.6 0.98 0.98 1.00 1.00 1.00
0.7 0.98 0.98 1.00 1.00 1.00
0.8 0.98 0.98 1.00 1.00 1.00
0.9 0.98 0.98 1.00 1.00 1.00
1.0 0.98 0.98 1.00 1.00 1.00

To illustrate the order of convergence in the space direction, we fixed N = 30 for

varying N and obtain the following results.

Table 5.5.5: Maximum absolute errors for Example 5.5.1 with r = 0.10 and � = 0.2.
for a fixed N .

↵ M = 30 M = 60 M = 120 M = 240 M = 480

0.1 7.6512e-02 1.9962e-02 5.1892e-03 1.3597e-03 3.4953e-04
0.2 6.7988e-03 1.8944e-02 5.0170e-03 1.2673e-03 3.1784e-04
0.3 6.2147e-02 1.7191e-02 4.3368e-03 1.0940e-03 2.7652e-04
0.4 5.7443e-02 1.4701e-02 4.0358e-03 1.0137e-03 2.5926e-04
0.5 5.3746e-02 1.4566e-02 2.7993e-03 7.0810e-04 1.7202e-04
0.6 4.0893e-02 1.0948e-02 2.6167e-03 6.7192e-04 1.6889e-04
0.7 4.0773e-02 1.0880e-02 2.4898e-03 6.1752e-04 1.5688e-04
0.8 4.0318e-02 1.0498e-02 2.3779e-03 6.0115e-04 1.5576e-04
0.9 4.0499e-02 1.0338e-02 2.4355e-03 6.0039e-04 1.5495e-04
1.0 4.0328e-02 1.0295e-02 2.4246e-03 5.9881e-04 1.5047e-04
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Table 5.5.6: Convergence rates for Example 5.5.1 with r = 0.10 and � = 0.2 for a fixed
N .

↵ M = 30 M = 60 M = 120 M = 240

0.1 1.95 1.88 1.99 1.98
0.2 1.96 1.88 1.99 1.98
0.3 1.96 1.98 1.99 1.98
0.4 1.96 1.98 1.99 1.98
0.5 1.97 1.98 1.99 1.98
0.6 1.97 1.98 1.99 1.98
0.7 1.97 1.98 1.99 1.98
0.8 1.97 1.98 1.99 1.98
0.9 1.97 1.98 1.99 1.98
1.0 1.97 1.98 1.99 1.98

The maximum norm errors presented in table 5.5.1, table 5.5.3 and table 5.5.5 above

indicates that, the numerical method converges for all ↵ values. These observations

validates our theoretical observations that, the method is indeed convergent. It can

also be observed from table 5.5.2, table 5.5.4 and table 5.5.6 above, that, in all possible

states of the world (parameterisation), the method converges up to first-order in time

as well as second order in space.

5.6 Summary and discussions

Over the past decade, the financial literature has proposed a multitude of different

models to capture the dynamics of financial assets. The use of fractal processes and

models based on these processes has proven to be an excellent tool that strikes the

right balance between capturing the desired properties of stock price evolution and

mathematical tractability. Though the mathematical complexity of these models may

pose some serious challenges in terms of designing analytical solutions, in this chapter

we demonstrate that numerical techniques can save the day when using the approach

to price nonlinear American option problems.

In this chapter, a front-fixing method for American put option was considered. Our

results indicate that the numerical scheme is stable under the stability and positivity
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conditions presented in Lemma 5.4.1 and Lemma 5.4.2. In addition to positivity and

monotonicity of solution, we also demonstrate and confirm via numerical results in

fig. 5.5.3 that the associated free boundaries are also positive and monotone. Over all

our results suggest that the approach is very robust, effective and efficient for pricing

American put option for when the order of the fractional derivative ↵ > 0.5. This is

not surprising because ↵ > 0.5 represent the case when increments of the underlying

stock process are persistently and positively correlated. This in essence justify our

prior assumption that, indeed stock markets have memory.

In the next chapter, we present an investigation on the pricing of double barrier

options under a time-fractional Black-Scholes setup. Furthermore, a corresponding high

order numerical method (both in time and space) to the resultant fractional model is

proposed.



Chapter 6

A Robust Numerical Method for a

Time Fractional Black-Scholes

Equation for Pricing Double Barrier

Options

This chapter presents an investigation on the numerical pricing of double barrier op-

tions. Herein we focus on those options written on underlying asset(s) whose dynamics

are governed by a non-standard fractal stochastic processes. The resultant model is of

a time fractional nature referred to as a time-fractional Black-Scholes equation. We

extend the concept of double barrier options pricing in a time-fractional Black-Scholes

scope. A robust numerical scheme is implemented and its’ stability and convergence

properties are studied. Results suggest that, the numerical method is uncondition-

ally stable and and converges with order O(h4 + k2). To substantiate the theoretical

findings, we further present some numerical experiments on pricing of double knock-in

barrier option problems.

134
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6.1 Introduction

After the discovery of fractal features of financial markets, alot of efforts has been

dedicated to finding accurate and stable numerical methods for solving the already

involved asset pricing fractional differential equations. In the chapter we suggest a

numerical scheme for solving a double barrier option pricing governed by time-fractional

Black-Scholes equation. The time-fractional derivative in the model helps in capturing

the time-decaying effects of the underlying asset and also in capturing the global nature

of the change in underlying asset price as well as the involved barriers.

The underlying motivation for pricing double barrier options via the time-fractional

Black-Scholes framework is justified by the evidence of “long memory” in the time

direction observed in many assets time series, see for example ([84, 57, 59]). Its has

been substantiated, see for example [25], that the long decay in the underlying asset

in the time direction does not deteriorate the no-arbitrage constraints of asset pricing

theory, which may invalidate herein.

The combination of time-fractional Black-Scholes and double barriers conditions in

this chapter, adds on an additional degrees of complexity in the design of solution(s)

to the model. Albeit the complexity involved, we designed a new robust numerical

scheme for solving time-fractional Black-Scholes model for pricing discrete-monitored

double-barrier European options. This chapter therefore present an efficient numerical

scheme for solving a time-fractional Black-Scholes model for pricing discrete double

barrier option problems.

The rest of this chapter is organised as follow, Section 6.2 present the model under

consideration, while Section 6.3, present the detailed construction of the numerical

scheme. A comprehensive theoretical analysis of the method in terms of convergence

and stability is presented in Section 6.4. Two practical examples on the use of the

approach for pricing double knock-in European put stock options can be found in

Section 6.5. And lastly, Section 6.6 present some concluding remarks and set the scope

for future research.
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6.2 Model

To the best of our knowledge there is limited number of literature on the subject of high

order solution schemes for barrier options pricing time-fractional Black-Scholes PDEs

as the topic is still quite relatively new and limited to vanilla option problems. In this

chapter, we will consider the following time fractional Black-Scholes (tfBS)-PDE for

pricing double barrier put options

@↵v
@t↵ =

�
rv � (r � �)S@v@S

�
t1�↵

�(2�↵) �
�2�(1+↵)

2
S2@2v
@S2 , 0 < ↵ < 1,

Bl  S  Bu, t 2 (0, T ) ,

v (Bl, t) = Rl, V (Bu, t) = Ru,

9
>>>>>>=

>>>>>>;

(6.2.1)

whereby Bl and Bu are the lower and upper knock-out barriers with Rl and Ru

denoting the respective rebates paid when the corresponding barriers are hit, while r

represent the risk-free interest rate and � the dividend yield paid by the underlying

stock.

Using variable transform (⌧ = T � t) time to maturity, we obtain the following

initial value problem (IVP)

⌧↵�1(T � ⌧)1�↵
@↵v

@⌧↵
�

✓
rv

�(2� ↵)
� (r � �)S↵

@↵v

@S↵

◆
(T � ⌧)1�↵ +

�(1 + ↵)�2S2

2

@2v

@S2
= 0,

which simplifies to

@↵v

@⌧↵
�

✓
rv

�(2� ↵)
� (r � �)S

@v

�(2� ↵)@S

◆
⌧ 1�↵ +

�(1 + ↵)�2S2

2

@2v

@S2
= 0, (6.2.2)

0 < ↵ < 1,
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with initial and boundary conditions

S 2 (Bl, Bu) ,

⌧ 2 (T, 0) ,

v (Bl, ⌧) = Rl, v (Bu, ⌧) = Ru.

9
>>>=

>>>;
(6.2.3)

Considering the following change of variables x = ln(S) and v(x, ⌧) = er⌧v(S, ⌧)

and without loss of notations, after simplification we obtain

@↵v(x, ⌧)

@⌧↵
=

✓
rv(x, ⌧)

�(2� ↵)
� (r � �)x

@v(x, ⌧)

�(2� ↵)@x

◆
⌧ 1�↵ �

�(1 + ↵)�2x2

2

@2v

@S2
, (6.2.4)

0 < ↵ < 1,

with the following initial and barrier conditions

v(x, 0) = max(K � ex, 0), 0 < ⌧ < T,

v (bl, ⌧) = rl, v (bu, ⌧) = ru, bl < x < bu.

9
=

; (6.2.5)

6.3 Numerical scheme

This section present the construction of the involved numerical scheme in solving (6.2.4)

subject to initial and barrier conditions (6.2.5).

6.3.1 Model discretization

Let L and N be positive integers and define h = (bu � bl)/L and k = T/N the

space and time step-sizes respectively. Denote xl = bl + lh; for l = 0, 1, 2, ..., L and

⌧n = nk; n = 0, 1, 2, ..., N , such that xl 2 [bl, bu] and ⌧n 2 [0, T ]. Furthermore, define

vnl = v(xl, ⌧n) as the solution at the grid point (xl, ⌧n) = (bl + lh, nk).
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Temporal discretization

Let us define

�tv
n
l = �tv(xl, ⌧n) =

v(xl, ⌧n)� v(xl, ⌧n�1)

k↵
=

vnl � vn�1
l

k↵
, (6.3.1)

and discretize the time-fractional derivative in (6.2.4) at the grid point (xl, ⌧n+1) by

the following quadrature formula

@↵v(xl, ⌧n+1)

@⌧↵
=

k�↵

�(2� ↵)

nX

j=0

�j (v(xl, ⌧n�j+1)� v(xl, ⌧n�j)) +
⌧ 1�↵n

�(2� ↵)
k2,

=
1

�(2� ↵)

nX

j=0

�j�tv(xl, tn�j+1) +O(k2), (6.3.2)

where

�j = (j + 1)1�↵ � j1�↵, j = 0, 1, 2, · · · , n, (6.3.3)

such that, 1 = �0 > �1 > �2 > · · · >! 0 as j ! n.

Spatial discretization

We approximate the spatial derivatives in (6.2.4) as follow

@v(xl, ⌧n+1)

@x
=

v(xl+1, ⌧n+1)� v(xl�1, ⌧n+1)

2h
�

h2

6

@3v(xl, ⌧n+1)

@x3
+O(h4), (6.3.4)

and

@2v(xl, ⌧n+1)

@x2
=

v(xl+1, ⌧n+1)� 2v(xl, ⌧n+1) + v(xl�1, ⌧n+1)

h2
�

h2

12

@4v(xl, ⌧n+1)

@x4

+O(h4). (6.3.5)
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6.3.2 The full scheme

To obtain the full numerical scheme we substitute (6.3.2), (6.3.4) and (6.3.5) into (6.2.4)

we obtain the following scheme

1

�(2� ↵)

nX

j=0

�j�tv
n�j+1
l =

�
rvn+1

l � q�xv
n+1
l

� ⌧ 1�↵

�(2� ↵)

�!(↵)�xxv
n+1
l �Rn+1

l

q = r � �, n � 0, !(↵) =
�(1 + ↵)�2x2

2
, (6.3.6)

which after some algebraic manipulations can be simplified into

n+1X

j=1

'j�1v
n�j+1
l = avn+1

l�1 + bvn+1
l + cvn+1

l+1 +Rn+1
l , (6.3.7)

where by a = �k↵q ⌧
1�↵�!0

h2 , b = k↵ ⌧
1�↵r+2!0

h2 , c = �k↵q ⌧
1�↵�!0

h2 �1, !0 = k↵�(2�↵)!(↵),

and 'j = �j � �j+1.

The final scheme is explicitly given by

'0v
n
l + · · ·+ 'n�1v

1
l + 'nv

0
l = avn+1

l�1 + bvn+1
l + cvn+1

l+1 , (6.3.8)

where the left hand side of the scheme (6.3.8) capture the memory effects.

Rn+1
l represent the remainder after truncation which is given by

Rn+1
l =

h2

12

✓
⌧ 1�↵

�(2� ↵)

@3vn+1
l

@x3
+ !(↵)

@4vn+1
l

@x4

◆
+O

�
h4 + k2

�
, (6.3.9)

therefore,

��Rn+1
l

�� = C
�
h4, k2

�
. (6.3.10)

For some constant C independent of h and k. The proof to this result follows in the

next section.
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6.4 Analysis of the numerical method

In this section we present the stability and convergence properties of the proposed

difference scheme (6.3.8).

6.4.1 Stability analysis

The stability properties of the proposed scheme (6.3.8) will be discussed using the

concept of Fourier analysis. Suppose v̂nl is an approximate solution to the scheme

(6.3.8) such that vnl � v̂nl = ✏nl for l = 0, 1, · · · , L, then the following theorem holds.

Theorem 6.4.1. The difference scheme in (6.3.8) is unconditional stable

Proof: Substituting the roundoff error ✏nl into (6.3.8) we obtain

n+1X

j=1

'j�1✏
n�j+1
l = a✏n+1

l�1 + b✏n+1
l + c✏n+1

l+1 , (6.4.1)

such that ✏n0 = ✏nL = 0.

Let us define the grid function as follow,

✏n(x) =

8
<

:
✏nl , when xl �

h
2 < x  xl +

h
2 , l = 1, 2, ..., L� 1,

0, when bl  x  bl +
h
2 or bu �

h
2 < x  bu +

h
2 ,

(6.4.2)

which can be expanded in terms of the following Fourier series representation

✏n(x) =
1X

j=1

%n(j)e
i2⇡jx/bu�bl , n = 1, 2, ..., N, (6.4.3)

where

%n(j) =
1

bu � bl

Z bu�bl

0

✏n(x)e�i2⇡jx/bu�bldx, n = 1, 2, ..., N, (6.4.4)

and i =
p
�1.
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Let ✏n = (✏n1 , ✏
n
2 , · · · , ✏

n
L�1)

T and, define it’s norm

k✏nk2 =

 
L�1X

l=1

h| ✏nl |
2

!1/2

=

✓Z bu�bl

0

| ✏n(x) |2dx

◆1/2

. (6.4.5)

Then apply the Parseval equality to obtain

Z bu�bl

0

| ✏n(x)2 | dx =
1X

j=�1

| %n(j) |
2, (6.4.6)

to obtain

k✏nk22 =

Z bu�bl

0

| ✏n(x) |2dx =
1X

j=�1

| %n(j) |
2 . (6.4.7)

Therefore, the solution to (6.4.1) takes the following form

✏nl = %ne
i�lh, (6.4.8)

for � := 2⇡j/bu � bl and i =
p
�1. Substituting the expression for ✏n into (6.4.1),

after simplifying we obtain

('0%n + · · ·+ 'n�1%1 + 'n%0) e
i�lh = ei�lh%n+1

�
ae�i�h + cei�h + b

�
, (6.4.9)

and

'0%n + · · ·+ 'n�1%1 + 'n%0 = %n+1

�
a
�
e�i�h + ei�h

�
+ b� 1

�
, (6.4.10)

since �0 = 1 and a = c� �0.

From the Fourier series representation of cos �h we obtain

'0%n + · · ·+ 'n�1%1 + 'n%0 = %n+1 (a cos �h+ b� 1) . (6.4.11)
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Now we have

Proposition 6.4.2. Suppose %n+1 satisfy (6.4.11), then |%n+1|  |%0| for all n =

0, 1, 2, · · · , N

Proof: Let n = 0, then from (6.4.11) we have

|%1 (a cos �h+ b� 1)| = |'0%0| , (6.4.12)

which implies that

|%1| =

����
'0%0

a cos �h+ b� 1

���� ,


'0

|a cos �h+ b� 1|
|%0| ,


1� �1

|a cos �h+ b� 1|
|%0| ,

<
1

|a cos �h+ b� 1|
|%0| , (* 1� �1 < 1) ,

< |%0| ,

✓
* 1

|a cos �h+ b� 1|
< 1

◆
. (6.4.13)

We therefore have,

|%1|  |%0| .

For n = 1, we suppose |%n|  |%0| for all n = 1, 2, · · · , N, and show that the same

is true for |%n+1|  |%0| for all n.
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Proof:

|%n+1| =

�����

Pn+1
j=1 'j�1%n�j+1

a cos �h+ b� 1

����� ,


1

|a cos �h+ b� 1|

n+1X

j=1

|'j�1%n�j+1| ,



n+1X

j=1

|'j�1%n�j+1| ,

✓
* 1

|a cos �h+ b� 1|

◆
< 1,

= '0 |%n|+ '1 |%n�1|+ · · ·+ 'n�1 |%1|+ 'n |%0| ,

 '0 |%0|+ '1 |%0|+ · · ·+ 'n�1 |%0|+ 'n |%0| ,

= ('0 + '1 + · · ·+ 'n�1 + 'n) |%0| ,

=
n+1X

j=1

'j�1 |%0| ,

= |%0| ,

 
*

n+1X

j=1

'j�1 = 1

!
. (6.4.14)

It therefore follow that,
��✏n+1

l

��
2
 k✏0l k2.

6.4.2 Convergence analysis

In this subsection we prove that the proposed scheme (6.3.8) converges with the spatial

accuracy of fourth order. The analysis will follow the concept of Fourier analysis.

Let Rn+1
l denote the truncation error of involved in the approximation at grid point

(xl, ⌧n+1), then from (6.3.9) we obtain the following theorem

Theorem 6.4.3. The difference scheme (6.3.8) is convergent and converges with order

O(k2 + h4).

Let ⇠nl = v(xl, tn) � vnl denote the approximation error at grid point (tn, xl), such

that ⇠nL = 0, forn = 1, 2, · · · , N and ⇠0l = 0, for l = 0, 1, · · · , L. By substituting ⇠nl
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into the scheme (6.3.8) we obtain

n+1X

j=1

'j�1⇠
n�j+1
l +Rn+1

l = a⇠n+1
l�1 + b⇠n+1

l + c⇠n+1
l+1 , (6.4.15)

Similar to stability analysis, we define the following grid functions

⇠n(S) =

8
<

:
⇠nl , when xl �

h
2 < x  Sl +

h
2 , l = 1, 2, ..., L� 1,

0, when 0  x < h
2 or xmax �

h
2 < S  xmax +

h
2 ,

(6.4.16)

Rn(x) =

8
<

:
Cn

l , when xl �
h
2 < x  xl +

h
2 , l = 1, 2, ..., L� 1,

0, when 0  x < h
2 or xmax �

h
2 < x  xmax +

h
2 ,

(6.4.17)

which imply ⇠n(x) and Cn
l have the following Fourier series representations

⇠n(x) =
1X

j=1

⌧n(j)e
i2⇡jx/xmax ; n = 1, 2, ..., N, (6.4.18)

Rn(x) =
1X

j=1

⌫n(j)e
i2⇡jx/xmax ; n = 1, 2, ..., N, (6.4.19)

where

⌧n(j) =
1

xmax

Z xmax

0

⇠n(x)e�i2⇡jx/xmaxdx; n = 1, 2, ..., N. (6.4.20)

⌫n(j) =
1

xmax

Z xmax

0

Rn(x)e�i2⇡jx/xmaxdx; n = 1, 2, ..., N. (6.4.21)

Let ⇠n = (⇠n1 , ⇠
n
2 , · · · , ⇠

n
L�1)

T and Rn = (Rn
1 , R

n
2 , · · · , R

n
L�1)

T , and let us define their
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norms as follow

����⇠
n

����
2

=

 
L�1X

l=1

h| ⇠nl |
2

!1/2

=

✓Z xmax

0

| ⇠n(x) |2dx

◆1/2

, (6.4.22)

����R
n

����
2

=

 
L�1X

l=1

h| Rn
l |

2

!1/2

=

✓Z xmax

0

| Rn(x) |2dx

◆1/2

, (6.4.23)

and, apply the following Parseval equalities

Z Smax

0

| ⇠n(S)2 | dS =
1X

j=�1

| ⌧n(j) |
2; n = 1, 2, ..., N, (6.4.24)

Z Smax

0

| Rn(S)2 | dS =
1X

j=�1

| ⌫n(j) |
2; n = 1, 2, ..., N, (6.4.25)

to obtain

����⇠
n

����
2

2

=
1X

j=�1

| ⌧n(j) |
2; n = 1, 2, ..., N, (6.4.26)

����R
n

����
2

2

=
1X

j=�1

| ⌫n(j) |
2; n = 1, 2, ..., N. (6.4.27)

Now let us define

⇠n = ⌧ne
i�lh and Rn = ⌫ne

i�lh, (6.4.28)



CHAPTER 6. A ROBUST NUMERICAL METHOD FOR A TIME
FRACTIONAL BLACK-SCHOLES EQUATION FOR PRICING DOUBLE
BARRIER OPTIONS 146

where � = 2⇡j/Smax and i =
p
�1, and use these expressions in (6.4.15) such that

n+1X

j=1

'j�1⌧n�j+1e
i�lh = a⌧n+1e

i�(l�1)h + b⌧n+1e
i�lh + c⌧n+1e

i�(l+1)h,

�⌫n+1e
i�lh (6.4.29)

which implies

 
n+1X

j=1

'j�1⌧n�j+1

!
ei�lh = ei�lh⌧n+1

��
ae�i�h + cei�h + b

�
� ⌫n+1

�
. (6.4.30)

simpifying into

n+1X

j=1

'j�1⌧n+1�j = ⌧n+1 (a cos �h+ b� 1)� ⌫n+1. (6.4.31)

Therefore,

⌧n+1 =

Pn+1
j=1 'j�1⌧n+1�j + ⌫n+1

(a cos �h+ b� 1)
. (6.4.32)

Now we have

Proposition 6.4.4. Suppose ⌧n for n = 0, 1, · · · , N is a solution to (6.4.32), then there

exists some positive constant C such that |⌧n|  C|⌫1| for all n.

Proof. It is trivial to show that for n = 0, from (6.4.32) we have

|⌧1| =

����
'0⌧0 + ⌫1

(a cos �h+ b� 1)

����  ⌫1. (6.4.33)

Suppose |⌧n|  C0|⌫1|, for n = 1, 2, · · · , N , for some constant C independent of h
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and k. Then,

|⌧n+1| 

�����

Pn+1
j=1 'j�1⌧n+1�j + ⌫n+1

(a cos �h+ b� 1)

����� ,



n+1X

j=1

1

|(a cos �h+ b� 1)|
(�j�1 |⌧n�j+1|+ |⌫n+1|),



n+1X

j=1

Cj�1(�j�1 |⌧n�j+1|+ |⌫n+1|),



n+1X

j=1

�j�1Cj�1 |⌧n�j+1|+ Cn+1 |⌫1| ,



n+1X

j=1

�j�1Cj�1 |⌫1|+ Cn+1 |⌫1| ,

= �0C0|⌫1|+ �1C1 |⌫1|+ �2C2 |⌫1|+ · · ·+ �nCn |⌫1|+ Cn+1 |⌫1| ,

 Ĉ(
n+1X

j=1

�j�1|⌫1|+ ⌫1), (Ĉ = max
0jn+1

{Cj})

= Ĉ(
n+1X

j=0

�j)|⌫1|

= C|⌫1|. (6.4.34)

We can therefore conclude that the scheme (6.3.8) is convergent and this complete

the proof to Theorem 6.4.3.

6.5 Numerical experiments

In this section, we present two double barrier knock-in put options examples.

Example 6.5.1. Consider equation (6.2.1) subject to conditions (6.2.5) for pricing

double knock-in put option with the following parameters: K = 80, r = 0.05, � =

0.01, T = 1, Smax = 120, L = 100, N = 50, � = 0.025, and 0.075, ↵ =

0.5, 0.7, 0.9, 1.0, with lower barrier located at Bl = 6 and upper barrier located

at Bu = 110 .
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To check for the effects of the change in some key option parameters on the efficiency

of the model, as well as the numerical method herein, we consider a second example

with two different set of dividend yields �, two different sets of barriers, same interest

rate r, same strike price, same maturity time and same set of ↵ values.

Example 6.5.2. Consider equation (6.2.1) subject to conditions (6.2.5) for pricing

double knock-in put options with the following parameters: K = 80, r = 0.05, � =

0.015, T = 1, Smax = 120, L = 100, N = 100, � = 0.045 and 0.10, ↵ =

0.5, 0.7, 0.9, 1.0, with lower barrier located at Bl = 10 and upper barrier located at

Bu = 130.

Option maturity payoff curves for the two considered examples ( considered exam-

ples (Example 6.5.1 and Example 6.5.2, above) are presented in figs. 6.5.1 and 6.5.2

below.
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Figure 6.5.1: Double barrier put option payoffs for � = 0.025, and 0.075, with
↵ = 0.5, 0.7, 0.9, 1.0, and Bl = 6, Bu = 110 at t = T .
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Figure 6.5.2: Double barrier put option payoffs for � = 0.045, and 0.10, with ↵ =
0.5, 0.7, 0.9, 1.0, and Bl = 10, Bu = 130 at t = T

The results in figs. 6.5.1 and 6.5.2 are well consistent with those obtained in [103]

which was in terms of a call option. Figures 6.5.1 and 6.5.2 indicates that, change in

the dividend yield has an effect on the option price (premium). A higher dividend yield

(�) yield a lower option premium. This is not strange because, the holder of the option

with a higher dividend yield is compensated more through dividends as compared to

the one with a lower dividend yield.

Moreover, the consider tfBS in (6.2.1) give high option price both for the in-the-

money option and for when the underlying asset price (S) is close to the strike price

(K) as compared to the classical BS model (↵ = 1). This shows that, the tfBS model

is of a power-law nature as compared to the classical BS model.

The tabular results for the two considered examples (Example 6.5.1 and Exam-

ple 6.5.2, above) are presented in Tables 6.5.1 to 6.5.4 below.
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Table 6.5.1: Maximum absolute errors for Example 6.5.1 with r = 0.05 and � = 0.025.

↵ N = 50 N = 100 N = 200 N = 400 N = 800

0.1 7.1212e-03 1.7901e-03 4.4561e-04 1.1525e-04 2.9154e-05
0.2 7.1336e-03 1.8180e-03 4.4711e-04 1.1563e-04 2.9250e-05
0.3 7.3465e-03 1.8383e-03 4.5753e-04 1.1827e-04 2.9717e-05
0.4 7.4609e-03 1.9326e-03 4.8371e-04 1.2239e-04 3.0759e-05
0.5 8.1315e-03 2.0213e-03 5.1493e-04 1.3000e-04 3.2785e-05
0.6 8.4515e-03 2.1032e-03 5.4620e-04 1.3842e-04 3.4915e-05
0.7 9.5333e-03 2.3909e-03 6.1088e-04 1.5478e-04 3.7153e-05
0.8 1.1062e-02 2.5616e-03 6.4925e-04 1.6449e-04 4.1409e-05
0.9 1.2494e-02 3.1452e-03 7.8208e-04 2.0062e-04 5.0548e-05
1.0 1.3815e-02 3.4591e-03 8.7754e-04 2.2198e-04 5.5953e-05

Table 6.5.2: Convergence rates for Example 6.5.1 with r = 0.05 and � = 0.025.

↵ N = 100 N = 200 N = 400 N = 800

0.1 1.91 1.95 1.98 1.99
0.2 1.92 1.96 1.98 1.99
0.3 1.93 1.96 1.98 1.99
0.4 1.93 1.96 1.98 1.99
0.5 1.93 1.97 1.98 1.99
0.6 1.94 1.97 1.98 1.99
0.7 1.94 1.97 1.98 1.99
0.8 1.94 1.97 1.98 1.99
0.9 1.94 1.97 1.98 1.99
1.0 1.94 1.97 1.98 1.99

Table 6.5.3: Maximum absolute errors for Example 6.5.2 with r = 0.05 and � = 0.045.

↵ N = 100 N = 200 N = 400 N = 800 N = 1600

0.1 6.5512e-02 1.6492e-02 4.1892e-03 1.0597e-03 2.5953e-04
0.2 5.7988e-03 1.4694e-02 3.7170e-03 9.4025e-04 2.3784e-04
0.3 5.2147e-02 1.3191e-02 3.3368e-03 8.4408e-04 2.1352e-04
0.4 4.7443e-02 1.2001e-02 3.0358e-03 7.6794e-04 1.9426e-04
0.5 4.3746e-02 1.1066e-02 2.7993e-03 7.0810e-04 1.7912e-04
0.6 4.0893e-02 1.0344e-02 2.6167e-03 6.6192e-04 1.6544e-04
0.7 3.8773e-02 9.8080e-03 2.4898e-03 6.2752e-04 1.5688e-04
0.8 3.7318e-02 9.4300e-03 2.3779e-03 6.0305e-04 1.4980e-04
0.9 3.6499e-02 9.3328e-03 2.4355e-03 5.9979e-04 1.5745e-04
1.0 3.7328e-02 9.2895e-03 2.4246e-03 5.9803e-04 1.5670e-04



CHAPTER 6. A ROBUST NUMERICAL METHOD FOR A TIME
FRACTIONAL BLACK-SCHOLES EQUATION FOR PRICING DOUBLE
BARRIER OPTIONS 151

Table 6.5.4: Convergence rates for Example 6.5.2 with r = 0.05 and � = 0.045.

↵ N = 200 N = 400 N = 800 N = 1600

0.1 1.95 1.98 1.99 1.99
0.2 1.96 1.98 1.99 1.99
0.3 1.96 1.98 1.99 1.99
0.4 1.96 1.98 1.99 2.00
0.5 1.97 1.98 1.99 2.00
0.6 1.97 1.98 1.99 2.00
0.7 1.97 1.98 1.99 2.00
0.8 1.97 1.98 1.99 2.00
0.9 1.97 1.98 1.99 2.00
1.0 1.97 1.98 1.99 2.00

To demonstrate the convergence properties of the scheme in the asset direction, we

fix N = 100 and computer the error for varying M . The results are presented in the

tables below

Table 6.5.5: Maximum absolute errors for Example 6.5.2 with r = 0.05 and � = 0.045
when N is fixed.

↵ M = 100 M = 200 M = 400 M = 800 M = 1600

0.1 6.6630e-02 4.1642e-03 2.6892e-04 1.6297e-05 1.1165e-06
0.2 5.8987e-02 3.6294e-03 2.2672e-04 1.4025e-05 9.0211e-07
0.3 5.3146e-02 3.3591e-03 2.3168e-04 1.2638e-05 7.9527e-07
0.4 4.8442e-02 3.1629e-03 2.1086e-04 1.4057e-05 9.3715e-07
0.5 4.4745e-02 2.8924e-03 1.9124e-04 1.2644e-05 8.3602e-07
0.6 4.1892e-02 2.7038e-03 1.7877e-04 1.1820e-05 7.8149e-07
0.7 3.9772e-02 2.5636e-03 1.6950e-04 1.1207e-05 7.4098e-07
0.8 3.8317e-02 2.4674e-03 1.6314e-04 1.0786e-05 7.1317e-07
0.9 3.7498e-02 2.4132e-03 1.5956e-04 1.0550e-05 6.9752e-07
1.0 3.8327e-02 2.4680e-03 1.6318e-04 1.0789e-05 7.1336e-07



CHAPTER 6. A ROBUST NUMERICAL METHOD FOR A TIME
FRACTIONAL BLACK-SCHOLES EQUATION FOR PRICING DOUBLE
BARRIER OPTIONS 152

Table 6.5.6: Convergence rates for Example 6.5.2 with r = 0.05 and � = 0.045 when
N is fixed.

↵ M = 200 M = 400 M = 800 M = 1600

0.1 3.99 3.68 3.69 3.69
0.2 3.96 3.92 3.99 3.75
0.3 3.96 3.92 3.99 3.75
0.4 3.96 3.92 3.99 3.87
0.5 3.97 3.92 3.99 3.87
0.6 3.97 3.92 3.99 3.88
0.7 3.97 3.92 3.99 3.98
0.8 3.97 3.92 3.99 3.99
0.9 3.97 3.91 3.99 3.99
1.0 3.97 3.91 3.99 3.99

Numerical results herein confirms our theoretical deductions on the stability and

convergence properties of the scheme as presented in Section 6.4.1 and Section 6.4.2

respectively. The scheme is unconditionally stable and converges with order two in

time as well as order four in space.

6.6 Summary and discussions

This chapter considered a double barrier option pricing problem under the time-

fractional Black-Scholes setup. We proposed a robust high order numerical scheme

for solving a double barrier time-fractional Black-Scholes PDE. Two numerical exam-

ples were presented. Results indicates that, the fractional Black-Scholes approach is

a very efficient valuation technique for barrier option as compared to usual/classical

Black-Scholes approach. The barrier option tfBS model is sensitive to dividend pay-

outs, it allocates lower put premiums to higher dividend yield options. This is well

in-line with the theory of no arbitrage, investors who are compensated well in div-

idends should receive prices lower than those of investors with lower dividend yield

options. Moreover, the numerical scheme herein, proves to be well efficient in solving

the involved time-fractional Black-Scholes model.
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On fractionalizing both temporal and spatial derivatives in the classical Black-

Scholes model, Chapter 7 presents a discussion of the design and analysis of a time-

space-fractional Black-Scholes PDE as well as its universal numerical scheme.



Chapter 7

A Universal Finite Difference Scheme

for a Time-Space-Fractional

Black-Scholes Equation

This chapter present a new kind of universal difference scheme for solving a time-

space fractional B-S models. Theoretical analysis of the scheme suggest the scheme is

conditionally stable, convergent, and uniquely solvable. Furthermore, numerical exper-

iments indicates that the universal difference method is valid and efficient for solving

the time-space fractional B-S equation. At the same time, numerical experiments in-

dicates that the time-space fractional B-S equation and the proposed scheme provide

superior results which are consistent with the actual financial market scenarios.

7.1 Introduction

The fractional Black-Scholes (B-S) equations are important mathematical models for

modelling numerous physical phenomenons in science, finance and engineering. How-

ever the study of their numerical solutions has very significant practical applications.

This chapter focus on the numerical aspects of the solution methods to time-space

fractional Black-Scholes partial differential equations (tfBS-PDE), something that ac-
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cording to the best of our knowledge is not extensively documented in literature. We

construct a universal difference scheme in Section 7.2. The discussion herein, focus on

numerically solving a time-space fractional Black-Scholes equation subject to standard

European put option initial and boundary conditions. The existence and uniqueness

of the numerical method, its computational stability and convergence are discussed in

Section 7.3. And lastly, some numerical examples are discussed in Section 7.4 which

demonstrate the efficiency and robustness of the numerical method in solving time-

space fractional Black-Scholes equations. Concluding remarks, further discussions and

scope for further studies are presented in Section 7.5.

7.1.1 Model

Suppose the stock price S follow the following Ito-Maruyama fractional differential

equation

d↵S = (r � �)S
(dt)↵

�(2� ↵)
t1�↵ + �(1 + ↵)�S!(t)(dt)↵/2, 0 < ↵  1. (7.1.1)

Using the following two fractional identities

�(1 + ↵)dS := d↵S (7.1.2)

and

d↵t

dt↵
:=

1

�(2� ↵)
t1�↵, 0 < ↵  1, (7.1.3)

it is trivial to show that infact (7.1.1) is equivalent to

dS = (r � �)Sdt+ �S!(t)(dt)↵/2, 0 < ↵  1, (7.1.4)

for !(t) a Gaussian white noise, whereas r and � are the risk-free interest rate and

continuous dividend yield respectively.
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If we consider the standard case where the stock price dynamics are governed by

the standard Brownian motion B(t) =
R
!(t)(dt)1/2, then (7.1.1) and (7.1.4) are gen-

eralizations of a geometric Brownian motion process with B(t) =
R
!(t)(dt)↵/2 as the

governing stochastic process.

Let v = v(S, t) denote the price of a European option such that v(S, t) satisfy the

following assumption

Assumption 7.1.1. Assume the function v(S, t) has a fractional partial derivative

of order ↵ with respect to t and fractional partial derivatives of order ↵ and 2↵ with

respect to S for some 0 < ↵  1.

Then, the generalized Taylor series in terms v(S, t) up to remaining error term

yields

dv =
1

�(1 + ↵)

@↵v

@t↵
(dt)↵ +

1

�(1 + ↵)

@↵v

@S↵
(dS)↵ +

1

�(1 + 2↵)

@2↵v

@S2↵
(dS↵)2. (7.1.5)

Using fractional identity (7.1.3) expressed in terms of S, we re-write (7.1.5) as

dv =
1

�(1 + ↵)

@↵v

@t↵
(dt)↵ +

�(2� ↵)

�(1 + ↵)
S↵�1 @

↵v

@S↵
d↵S

+
�2(2� ↵)

�(1 + 2↵)
S2↵�2 @

2↵v

@S2↵
(d↵S)2. (7.1.6)

Ito’s lemma on v(S, t) suggest we identify !(t)2 with its variance such that !(t)2 = 1,

therefore from (7.1.1) we get

(d↵S)2 = �(1 + ↵)2�2S2(dt)↵, (7.1.7)

substituting into (7.1.7) we obtain

↵!dv =

✓
@↵v

@t↵
+ (r � �)t1�↵S↵

@↵v

@S↵
+ �3 (1 + ↵)

�2(2� ↵)

�(1 + 2↵)
�2S2↵ @

2↵v

@S2↵

◆
(dt)↵.(7.1.8)

Using fractional identity (7.1.2), dividing both sides of equation (7.1.7) by (dt)↵
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and simplying we obtain the following time-space fractional Black-Scholes partial dif-

ferential equation (tsfBS PDE)

@↵v

@t↵
=

✓
rv

�(2� ↵)
� (r � �)S↵

@↵v

@S↵

◆
t1�↵ �

�3(1 + ↵)�2(2� ↵)

�(1 + 2↵)
�2S2↵ @

2↵v

@S2↵
,

0 < ↵  1, (7.1.9)

with standard European put options boundary conditions

v(S, t) = max(K � S, 0),

v(0, t) = Ke�r(T�t),

lim
S!1

v(S, t) = 0,

9
>>>=

>>>;
(7.1.10)

where K is the strike price of the option and T is the maturity time.

Let x = eS, t = T � ⌧, v(x, t) = e�r⌧v(s, ⌧) be some change of notations. Without

any loss of notations (7.1.9) simplify to

@↵v

@⌧↵
=

✓✓
�(↵)

�(1� ↵)

�(1� 2↵)
�2 + (↵)

◆
@v

@x
+ �(↵)�2 @

2v

@x2

◆
⌧(↵), 0 < ↵  1, (7.1.11)

where �(↵) = �3(1+↵)�2(2�↵)
�(1+2↵) , (↵) = (r��)(T � ⌧)1�↵, and ⌧(↵) = ⌧ 1�↵(T � ⌧)↵�1,

subject to the following put option boundary conditions

v(x, ⌧) = max(K � ex, 0),

v(0, ⌧) = Ke�r⌧ ,

lim
x!1

v(x, ⌧) = 0.

9
>>>=

>>>;
(7.1.12)

7.2 Numerical scheme

Let L and N be positive integers and define h = 1/L and k = 1/N as the space and time

grid size respectively. Define xl = lh; l = 0, 1, 2, ..., L, and ⌧n = nk; n = 0, 1, 2, ..., N ,

such that xl 2 [xmin, xmax] and ⌧n 2 [T, 0]. Furthermore, define vnl = v(xl, ⌧n) as the

solution at the grid point (xl, ⌧n) = (lh, nk).
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The ↵-derivative in (7.1.11) is approximated using the following quadrature formula

@↵v(xl, ⌧n)

@⌧↵
=

k↵

�(2� ↵)

nX

j=1

�j(v
n�j+1
l � vn�j

l ) +
⌧ 1�↵n

�(2� ↵)
k, (7.2.1)

where

�j = j1�↵ � (j � 1)1�↵, j = 1, 2, · · · , n, (7.2.2)

such that, 1 = �1 > �2 > �3 > · · · >! 0 as j ! n.

The ✓-method for solving (7.1.5) is designed by combining the classical explicit and

implicit schemes of the right hand side of (7.1.5) using some parameter ✓ (0  ✓  1).

Multiply the explicit scheme by 1 � ✓ and implicit by ✓ and add them together to

obtain the following scheme after ignoring the truncation errors

@↵v(xl, ⌧n+1)

@⌧↵
=

k↵

�(2� ↵)

nX

j=1

�j(v
n�j+1
l � vn�j

l )

= (1� ✓)

✓
(ab+ (r � �)(T � k(n+ 1))1�↵)(k(n� 1))1�↵Kn

+a(k(n� 1))1�↵(T � k(n+ 1))↵�1v
n
l+1 � 2vnl + vnl�1

h2

◆

+a(nk)1�↵(T � nk)↵�1v
n+1
l+1 � 2vn+1

l + vn+1
l�1

h2

◆
, (7.2.3)

where

Kn = (T � k(n+ 1))↵�1v
n
l+i � vnl�1

2h
, a = �(↵)�2, b =

�(1� ↵)

�(1� 2↵)
, n = 1, 2, · · · , N,

and

l = 1, 2, · · · , L.
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Let RHS be defined as follow

RHS : = (�µ1(ab%n+1 + (r � �) n+1)� µ2%n+1)✓v
n+1
l+1 + (1 + 2✓µ2%n+1)v

n+1
l + (µ1(ab%n+1

+(r � �) n+1)� µ2%n+1)✓v
n+1
l�1

= (1� ✓)(µ1(ab%n + (r � �) n) + µ2%n)v
n
l+1 + (1� 2µ2%n(1� ✓))vnl (7.2.4)

Then, (7.2.3) is equivalent to

�

n�1X

j=2

'jv
n�j+1
l = RHS + (1� ✓)(�µ1(ab%n + (r � �) n) + µ2%n)v

n
l�1 + (21�↵)vnl + �nv

1
l

= (1� ✓)(µ1(ab%n + (r � �) n) + µ2%n)v
n
l+1 + (�2µ2%n(1� ✓)vnl

+(1� ✓)(�µ1(ab%n + (r � �) n) + µ2%n)v
n
l�1 + �nv

1
l (7.2.5)

where

'j = j1�↵ � (j � 1)1�↵, �j = j1�↵ � (j � 1)1�↵, j = 1, 2, · · · , n,

%n = (k(n� 1))1�↵(T � k(n+ 1))↵�1,  n = (k(n� 1))1�↵, j = 1, 2, · · · , n.

This scheme can be simplified into the following simplest form

an+1v
n+1
l�1 + bn+1v

n+1
l + cn+1v

n+1
l+1 = anv

n
l�1 + bnv

n
l + cnv

n
l+1

+
n�1X

j=1

'jv
n�j+1
l + �nv

1
l , (7.2.6)
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where

an+1 = ✓[µ1(ab%n+1 + (r � �) n+1)� µ2%n+1],

bn+1 = 1 + 2✓µ2%n+1,

cn+1 = ✓[�µ1(ab%n+1 + (r � �) n+1)� µ2%n+1], (7.2.7)

an = (1� ✓)[�µ1(ab%n + (r � �) + µ2%n) + µ2%n],

bn = �2(1� ✓)µ2%n,

cn = (1� ✓)[µ1(ab%n + (r � �) n)� µ2%n].

The general matrix form of the scheme is given by

An+1Un+1 = AnUn +
nX

j=1

'jU
n�j+1 +Cn, for all n � 1, (7.2.8)

with

An+1 =

0

BBBBBBBBB@

bn+1 cn+1

an+1 bn+1 cn+1

. . . . . . . . .

an+1 bn+1 cn+1

an+1 bn+1

1

CCCCCCCCCA

,

An =

0

BBBBBBBBB@

bn cn

an bn cn
. . . . . . . . .

an bn cn

an bn

1

CCCCCCCCCA

, (7.2.9)
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Un+1 =

0

BBBBBBBBB@

vn+1
2

vn+1
3

...

vn+1
L�1

vn+1
L

1

CCCCCCCCCA

, (7.2.10)

Cn = �nU
1, for all n � 1,

where

U1 =

0

BBBBBBBBB@

anvn1 � an+1v
n+1
1

0
...

0

cnvnL+1 � cn+1v
n+1
L+1

1

CCCCCCCCCA

. (7.2.11)

7.3 Analysis of the numerical method

In this section we present a theoretical analysis of the scheme constructed in sec-

tion 7.2. Four theoretical properties of the solution are investigated, namely; existence

and uniqueness, it’s stability as well as convergence.

7.3.1 Existence and uniqueness of the numerical solution

Theorem 7.3.1. The ✓-method(7.2.6) for solving the time-space fractional Black-

Scholes PDE (7.1.11) is uniquely solvable.

Proof.

From (7.2.7) we observe that an+1 < 0, cn+1 < 0, bn+1 > 0, and that bn+1 �

|an+1 + cn+1| = 1, so the coefficient matrix An+1 is diagonally dominant and hence
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invertible. Similar results are obtained in terms of the matrix An, since an > 0, bn > 0,

and cn < 0 with |bn|� |an + cn| = 0. Therefore, the ✓-methodin (7.2.6) yield a unique

solution. Therefore, theorem 7.3.1 follows.

7.3.2 Stability and convergence analysis

Stability analysis

Lemma 7.3.2. Let ṽnl be an approximate solution from the ✓-method(7.2.6) in solving

time-space fractional Black-Scholes PDE (7.1.11), and define "nl = ṽnl � vnl such that

En =
�
"n1 , · · · , "

n
l�1

�T , then, for 1
2  ✓  1 we have kEnk1  kE1k1 for all 1  n 

N +1, for 0  ✓ < 1
2 and a�(2�↵)

h2k↵ < 1 we have kEnk1  kE1k1 for all 1  n  N +1.

Proof. Suppose n = 1 and let

| "1m |= max
1lL

| "1l | . (7.3.1)

Then

kE2k1 = | "1m |,

 | a2"
2
l�1 + b2"

2
l + c2"

2
l+1 |,

= | "1l |,

 kE1k1, (7.3.2)

which implies that

kE2k1  kE1k1. (7.3.3)
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Now suppose for n � 2, then

an+1"
n+1
l�1 + bn+1"

n+1
l + cn+1"

n+1
l+1 = an"

n
l�1 + bn"

n
l + cn"

n
l+1

+
n�1X

j=1

'j"
n�j
l + �n"

1
l , (7.3.4)

and suppose

kEnk1  kE1k1. (7.3.5)

If we define

| "nm |= max
1lL�1

| "nl |, (7.3.6)

and

| "n+1
m |= max

1lL�1
| "n+1

l |, (7.3.7)
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then

kEn+1k1 = | "n+1
m |,

 an+1 | "
n+1
l�1 | +bn+1 | "

n+1
l | +cn+1 | "

n+1
l+1 |,


��an+1"

n+1
l�1 + bn+1"

n+1
l + cn+1"

n+1
l+1

�� ,

=

�����an"
n
l�1 + bn"

n
l + cn"

n
l+1 +

n�1X

j=1

'j"
n�j
l + �n"

1
l

����� ,

 an | "nl�1 | +bn | "nl | +cn | "nl+1 | +
n�1X

j=1

'j | "
n�j
l | +�n | "1l |,

 an | "nl | +bn | "nl | +cn | "nl | +
n�1X

j=1

'j | "
n
l | +�n | "nl |,

= an | "nl | +bn | "nl | +cn | "nl | +'1 | "
n
l | + · · ·+ 'n�1 | "

n
l | +�n | "1l |,

= (an + bn + cn) | "
n
l | +('n + · · ·+ 'n�1) | "

n
l | +�n | "1l |

 ('n + · · ·+ 'n�1 + �n)kE1k1

, =

 
n�1X

j=1

'j + �n

!
kE1k1,

= (1� �n + �n) kE1k1,

= kE1k1. (7.3.8)

Therefore

kEnk1  kE1k1 for all n = 1, 2, · · · , N,

which completes the proof of the following theorem.

Theorem 7.3.3. The ✓-method(7.2.6) for solving the time-space fractional Black-

Scholes PDE (7.1.5) is unconditionally stable when 1
2  ✓  1 and the condition

a�(2�↵)
h2k↵ < 1 must hold for 0  ✓ < 1

2 .
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Convergence Analysis

Lemma 7.3.4. Let un
l be the exact solution to the time-space fractional Black-Scholes

PDE (7.1.5) at grid point (xl, ⌧n). Define the truncation error by enl = un
l � vnl , with

en = (en1 , e
n
2 , · · · , e

n
L�1)

T and e0 = 0. Define kenk1 =| enm |= max
1lL�1

| enl |, when
1
2  ✓  1 we set kenk1  Ĉ��1

n (k1+↵ + k↵h); and when 0  ✓ < 1
2 the condition

a�(2�↵)
h2k↵ < 1 holds and one also set kenk1  Ĉ��1

n (k1+↵ + k↵h).

Since the errors enl satisfy (7.2.6) we have

an+1e
n+1
l�1 + bn+1e

n+1
l + cn+1e

n+1
l+1 = ane

n
l�1 + bne

n
l + cne

n
l+1 +

n�1X

j=1

'je
n�j
l +Rn

l . (7.3.9)

Define

L↵kv(xl, ⌧n+1) :=
k�↵

�(2� ↵)

n�1X

j=1

�j [v(xl, ⌧n+1�j)� v(xl, ⌧n�j)] , (7.3.10)

then

���
@↵v(xl, ⌧n+1)

@t↵
� L↵kv(xl, ⌧n+1)

���


1

�(1� ↵)

n�1X

j=1

Z jk

(j�1)k

�����
@v(xl, ⌧)

@⌧
�

(v(xl, ⌧n+1�j)� v(xl, ⌧n�j))

k

�����
ds

(⌧n+1 � s)↵
,


1

�(1� ↵)
k

n�1X

j=1

Z jk

(j�1)k

ds

(⌧n+1 � s)↵
,


C

�(1� ↵)
k

Z jk

0

ds

(⌧n � s)↵
,

 C1k, (7.3.11)
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where C and C1 are constants independent of h and k. Therefore

L↵kv(xl, ⌧n+1) =
k�↵

�(2� ↵)

n�1X

j=1

�j [v(xl, ⌧n+1�j)� v(xl, ⌧n�j)]

=
@↵v(xl, ⌧n+1)

@t↵
+ C1k. (7.3.12)

We further note that

v(xl+1, ⌧n)� v(xl, ⌧n)

h
=
@v(xl, ⌧n)

@x
+ C2h, (7.3.13)

and

v(xl+1, ⌧n)� 2v(xl, ⌧n) + v(xl�1, ⌧n)

h2
=
@2v(xl, ⌧n)

@x2
+ C3h

2. (7.3.14)

Combining (7.3.12)-(7.3.14) yield

Rn
l = k↵�(2� ↵)


@↵v(xl, ⌧n)

@t↵
�

µ

�(2� ↵)
v(xl, ⌧n)�

!

�(2� ↵)

@v(xl, ⌧n)

@x

+�
@2v(xl, ⌧n)

@x2

�
+ C1k

1+↵ + C2k
↵h+ C3k

↵h2, (7.3.15)

where C2 and C3 are constants independent of h and k.

From (7.3.15), we have

| Rn
l |  Ĉ(k1+↵ + k↵(h+ h2)),

 Ĉ(k1+↵ + k↵h), (h2
 h), (7.3.16)

where Ĉ is a generic constant.

We can now prove the following main result.

Theorem 7.3.5. The ✓-method(7.2.6) for solving the time-space fractional Black-

Scholes PDE (7.1.5) is convergent when 1
2  ✓  1 and the condition ↵�(2�↵)k↵

h2 N↵�1 <

1 must for when 0  ✓ < 1
2 . The scheme is first-order convergent in both time and
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space.

Proof. To proceed, define

kenk1 =| enm |= max
1lL�1

| enl | .

For n = 1, we have

ke1k1 = | e1m |,

 | a1e
1
l�1 + b1e

1
l + c1e

1
l+1 |,

= | R1
l |,

 Ĉ��1
1 (k1+↵ + k↵h) (using (7.3.16)). (7.3.17)

And, for n � 2, we have

kenk1 = | enm |,

 | an+1e
n+1
l�1 + bn+1e

n
l + cn+1e

1
l+1 |,

= | '1e
n�1 + '2e

n�2 + · · ·+ '1e
1 +Rn

m |,

 '1 | e
n�1

| +'2 | e
n�2

| + · · ·+ 'n�1 | e
1
| + | Rn

m |,

 '1 | e
n�1

| +'2 | e
n�2

| + · · ·+ 'n�1 | e
1
| +Ĉ(k1+↵ + k↵h),

 '1ke
n�1

k1 + '2ke
n�2

k1 + · · ·+ 'n�1ke
1
k1 + Ĉ(k1+↵ + k↵h),

 ('1 + '2 + · · ·+ 'n�1 + �n)�
�1
n Ĉ(k1+↵ + k↵h),

=

 
n�1X

j=1

'j + �n

!
��1
n Ĉ(k1+↵ + k↵h),

= (1� �n + �n) �
�1
n Ĉ(k1+↵ + k↵h),

= Ĉ��1
n (k1+↵ + k↵h). (7.3.18)
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It can be shown that

lim
n!1

��1
n

n↵
= lim

n!1

n�↵

n1�↵ � (n� 1)1�↵
,

= lim
n!1

n�↵

n1�↵

✓
1

1� (1� 1
n)

1�↵

◆
,

= lim
n!1

n�1

1� (1� 1
n)

1�↵ ,

= lim
n!1

n�1

(1� ↵)n�1
,

=
1

1� ↵
. (7.3.19)

Therefore, (7.3.17) and (7.3.18) yield

kenk1  Ĉn↵(k1+↵ + k↵h),

= Ĉn↵k↵(k + h),

= Ĉt↵n(k + h) since ⌧n = nk  T,

= eC(k + h) where eC = Ĉt↵n. (7.3.20)

This completes the proof to theorem 7.3.5.

7.4 Numerical experiments

In this section, we present some numerical results from scheme (7.2.6) for the time-space

fractional Black-Scholes PDE in (7.1.11) subject to the option and market parameters

in the example below.

Example 7.4.1. Consider a standard European put option with the following param-

eters: K = 150, r = 0.055, � = 0.01, T = 1, Smax = 450, L = 100, N = 100, � =

0.025, 0.055 and 0.065.

In order to practically understand the effects of the time-space fractional Black-

Scholes PDE in (7.1.5) when used to price options as well the effectiveness of the
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✓-method in solving the model, herein we present convergence results for three cases.

This consist of two cases when the scheme is unconditional stable, i.e. ✓ = 1/2 and

✓ = 1 and another one when the scheme is conditionally stable, that is for ✓ = 1/3.

Convergence results in tables 7.4.1 to 7.4.6 indicates that the numerical scheme is

convergent for 1
2  ↵ < 1.

Results indicate that the time-space fractional PDE model provides superior re-

sults in terms of put options premium calculations, as compared to the classical Black-

Scholes model (equivalent to ↵ = 1). The time-space fractional Black-Scholes (7.1.5)

setup therefore, yields results which are consistent with the actual option market dy-

namics as compared to the classical Black-Scholes PDE obtained when ↵ = 1.

However the case when the fractional order 0 < ↵ < 1
2 , provides weaker results.

These is observations are not strange however. As far as financial markets dynamics and

fractional Black-Scholes theory is concerned, 0 < ↵ < 1
2 correspond to an anti-persistent

regime of the underlying stock price, characterised by a negative correlation between

increments. Similar observations were made in Chapter 3 for a time-fractional Black-

Scholes model in pricing European put options. Therefore, our general observation

is that, fractional Black-Scholes models only out perform their classical counterparts

when 1
2  ↵ < 1.

Table 7.4.1: Maximum absolute errors for example 7.4.1 with r = 0.10, � = 0.02 and
✓ = 1/2.

↵ N = 10 N = 20 N = 40 N = 80 N = 160

0.1 5.9325e-06 2.8495e-06 1.3066e-06 5.3180e-07 1.3793e-07
0.2 5.6042e-06 2.6933e-06 1.2382e-06 5.1154e-07 1.4946e-07
0.3 5.2703e-06 2.5332e-06 1.1655e-06 4.8348e-07 1.4534e-07
0.4 4.9343e-06 2.3722e-06 1.0925e-06 4.5545e-07 1.4184e-07
0.5 4.6000e-06 2.2121e-06 1.0199e-06 4.2784e-07 1.3921e-07
0.6 4.2719e-06 2.0549e-06 9.4878e-07 4.0114e-07 1.3786e-07
0.7 3.9556e-06 1.9035e-06 8.8045e-07 3.7593e-07 1.3831e-07
0.8 3.6580e-06 1.7611e-06 8.1643e-07 3.5294e-07 1.4120e-07
0.9 3.3875e-06 1.6318e-06 7.5854e-07 3.3294e-07 1.4705e-07
1.0 3.1541e-06 1.5204e-06 7.0894e-07 3.1681e-07 1.5567e-07
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Table 7.4.2: Convergence rates for example 7.4.1 with r = 0.10, � = 0.02 and ✓ = 1/2.

↵ N = 10 N = 20 N = 40 N = 80

0.1 1.06 1.12 1.30 1.25
0.2 1.06 1.12 1.28 1.18
0.3 1.06 1.12 1.27 1.33
0.4 1.06 1.12 1.26 1.28
0.5 1.06 1.12 1.25 1.32
0.6 1.06 1.11 1.24 1.24
0.7 1.06 1.11 1.23 1.24
0.8 1.05 1.11 1.21 122
0.9 1.05 1.11 1.19 1.18
1.0 1.05 1.10 1.16 1.03

Table 7.4.3: Maximum absolute errors for example 7.4.1 with r = 0.10, � = 0.02 and
✓ = 1.

↵ N = 10 N = 20 N = 40 N = 80 N = 160

0.1 1.2097e-05 5.9325e-06 2.8495e-06 1.3066e-06 5.3180e-07
0.2 1.1426e-05 5.6042e-06 2.6933e-06 1.2382e-06 5.1154e-07
0.3 1.0745e-05 5.2703e-06 2.5332e-06 1.1655e-06 4.8348e-07
0.4 1.0060e-05 4.9343e-06 2.3722e-06 1.0925e-06 4.5545e-07
0.5 9.3776e-06 4.6000e-06 2.2121e-06 1.0199e-06 4.2784e-07
0.6 8.7080e-06 4.2719e-06 2.0549e-06 9.4878e-07 4.0114e-07
0.7 8.0626e-06 3.9556e-06 1.9035e-06 8.8045e-07 3.7593e-07
0.8 7.4552e-06 3.6580e-06 1.7611e-06 8.1643e-07 3.5294e-07
0.9 6.9029e-06 3.3875e-06 1.6318e-06 7.5854e-07 3.3294e-07
1.0 6.4264e-06 3.1541e-06 1.5204e-06 7.0894e-07 3.1681e-07
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Table 7.4.4: Convergence rates for example 7.4.1 with r = 0.10, � = 0.02 and ✓ = 1.

↵ N = 10 N = 20 N = 40 N = 80

0.1 1.03 1.06 1.12 1.30
0.2 1.03 1.06 1.12 1.28
0.3 1.03 1.06 1.12 1.27
0.4 1.03 1.06 1.12 1.26
0.5 1.03 1.06 1.11 1.25
0.6 1.03 1.06 1.11 1.24
0.7 1.03 1.05 1.11 1.23
0.8 1.03 1.05 1.11 1.21
0.9 1.03 1.05 1.11 1.19
1.0 1.03 1.05 1.10 1.16

Table 7.4.5: Maximum absolute errors for example 7.4.1 with r = 0.10, � = 0.02 and
✓ = 1/3.

↵ N = 10 N = 20 N = 40 N = 80 N = 160

0.1 2.4426e-05 1.2097e-05 5.9325e-06 2.8495e-06 1.3066e-06
0.2 2.3071e-05 1.1426e-05 5.6042e-06 2.6933e-06 1.2382e-06
0.3 2.1695e-05 1.0745e-05 5.2703e-06 2.5332e-06 1.1655e-06
0.4 2.0311e-05 1.0060e-05 4.9343e-06 2.3722e-06 1.0925e-06
0.5 1.8933e-05 9.3776e-06 4.6000e-06 2.2121e-06 1.0199e-06
0.6 1.7581e-05 8.7080e-06 4.2719e-06 2.0549e-06 9.4878e-07
0.7 1.6278e-05 8.0626e-06 3.9556e-06 1.9035e-06 8.8045e-07
0.8 1.5051e-05 7.4552e-06 3.6580e-06 1.7611e-06 8.1643e-07
0.9 1.3936e-05 6.9029e-06 3.3875e-06 1.6318e-06 7.5854e-07
1.0 1.2973e-05 6.4264e-06 3.1541e-06 1.5204e-06 7.0894e-07
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Table 7.4.6: Convergence rates for example 7.4.1 with r = 0.10, � = 0.02 and ✓ = 1/3.

↵ N = 10 N = 20 N = 40 N = 80

0.1 0.93 0.95 0.96 0.99
0.2 1.00 0.99 0.98 1.12
0.3 1.01 1.03 1.01 1.12
0.4 1.01 1.03 1.02 1.12
0.5 1.01 1.03 1.03 1.12
0.6 1.01 1.03 1.02 1.11
0.7 1.01 1.03 1.03 1.11
0.8 1.01 1.03 1.05 1.11
0.9 1.01 1.03 1.05 1.11
1.0 1.01 1.03 1.05 1.10

7.5 Summary and discussions

In this chapter, a ✓-method is used to solve a time-space fractional Black-Scholes equa-

tions on pricing a standard European put option problem. Theoretical results demon-

strates that the scheme exhibits unconditional stability and convergence properties

when 1
2  ✓  1 and is conditional stable when 1 < ✓ 

1
2 , with stability condition

(↵�(2�↵)k
↵

h2 N↵�1 < 1). Numerical results confirm these theoretical deductions. All in

all the results indicates the time-space fractional Black-Scholes approach is appropri-

ate for calculating fair put option premiums for 1
2  ↵ < 1 compared to the classical

Black-Scholes model. Like in the time-fractional Black-Scholes model expensively dis-

cussed in the earlier chapters, the time-space fractional Black-Scholes under performs

when 0 < ↵ < 1
2 compared to its classical counter-party. Calibration of the time-space

fractional Black-Scholes model and design of robust high order numerical method to

solving such models remain a subject of future research.



Chapter 8

Concluding remarks and scope for

future research

The discovery of fractal geometry and fractal dynamics of financial markets lead to

a grate progress in the design of new mathematical modelling techniques. Of special

interests are those models designed to circumvent some of the unrealistic assumptions

in the classical Black-Scholes approach. At the centre of these evolutionary models,

are the fractional calculus based models. Fractional calculus based models have proved

to be very effective modelling techniques in the asset pricing space as well as in other

areas of science and engineering. In the asset pricing sphere, fractional calculus models

provides for a somewhat unique framework, one that has evidently transformed con-

ventional thinking in asset pricing theory and its general applications. Since fractional

derivatives and integral operators are non-local by design, they provides for the best

pool of tools for explaining trend and noise memory effects evidently observed in a

number of real-time asset price returns.

This thesis therefore investigated the design and analysis of fractional Black-Scholes

partial differential equations in pricing continuous dividend paying stock options un-

der different market settings. A numerous hybrid of fractional Black-Scholes models

were discussed, specifically falling within the following three categories, namely; time-

173
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fractional Black-Scholes (tfBS) PDEs, space-fractional Black-Scholes (sfBS) PDEs and

time-space-fractional Black-Scholes (tsfBS) PDEs as well as their corresponding robust

numerical simulation methods. Compared to the classical Black-Scholes set-up, under

the tfBS-PDEs, one replace (not analogously) the first order time derivative by its

corresponding fractional derivative of order ↵ where ( 0 < ↵  1) so as to generalise

the order of rate of change unlike in the classical sense where the order is fixed at

↵ = 1. In case of sfBS-PDEs, the spatial derivatives are replaced (not analogously)

by corresponding derivatives of fractional orders, the first order derivative replaced by

↵ where ( 0 < ↵  1) and the second order derivative by � for (1 < �  2). In the

case of tsfBS-PDEs, one has a combination of the other two cases. In addition to the

models designs, the thesis further discuss the design and analysis of several numerical

methods for solving the designed fractional models.

In Chapter 2 we presented the formulation of a time-fractional Black-Scholes PDE

for pricing standard European put options written on a dividend paying stock. Fur-

thermore, we presented the design and analysis an implicit finite difference scheme to

the resultant model. The numerical scheme therein was found to be unconditionally

stable and convergent. Two numerical examples were presented suggesting that, the

fractional framework is a very effective and robust approach for calculating European

put options premiums.

In Chapter 3 a Crank Nicholson type scheme for solving a tfBS-PDE for pricing

standard European options was proposed. To demonstrate the effectiveness of the

method, two numerical examples were presented. Theoretical and numerical results

therein suggests that the fractional approach is a very efficient tool for pricing stock

options compared to its classical counterpart. Further conclusions from this chapter are

that, the suggested numerical scheme herein provided high order convergent solutions

to the tfBS-PDE. It is important to further highlight that, the scheme did not only

provide convergent solutions, but also did reduce the computational time required to

compute the solution.

To ease some mathematical complexity in solving and implementing fractional
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Black-Scholes models, we proposed some transformation of the model in the previ-

ous chapters. For example, in Chapter 4 we proposed a heat equation transform of the

tfBS-PDE proposed in Chapter 2. The transformation eased the computational efforts

required to attain high order numerical results.

A hybrid of option problems are solved, ranging from European options, American

to Barrier options. In Chapter 5 we proposed a robust front-fixing transformation

method for pricing American put options under a time-fractional Black-Scholes setup.

Using this approach, the early exercise boundaries of an American option problem are

transformed into fixed boundaries allowing for the simultaneous computation of the

option premiums as well as the corresponding optimal exercise boundaries.

The application of the approach to pricing exotic options was also investigate, in

Chapter 6 we present a high order numerical method for pricing double barrier options

under the time-fractional Black-Scholes setup. Results therein suggest that, the nu-

merical method is unconditionally stable and converges with order O(h4+k2). Further-

more, to investigate the effects of fractional decays in both time and space directions, a

time-space-fractional Black-Scholes (tsfBS) PDE and it’s universal solution method is

proposed. The results therein, suggest that, the approach is effective and does provide

results which are consistent with actual financial market scenarios.

In conclusion therefore, overall, the obtained maturity payoff curves as well as the

corresponding general solution profiles presented in this thesis work show that of the

fractional Black-Scholes approach asymmetric performance effects depending on the

value of ↵. The fractional approach discussed herein, has proven to be more robust

and effective for when 1/2  ↵ < 1. as compared to when 0 < ↵ < 1/2. These

observations are however not strange, as, it is expected that, when 1/2  ↵ < 1, the

underlying fractional stochastic processes involved in our models derivations become

more persistent for when 1/2  ↵ < 1 characterised by positive correlations between

increments. Therefore, it is expected for the approach to attain better performance

compared to the case when 0 < ↵ < 1/2 which represent the anti-persistent regime of

the process.
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Therefore, from the practical point of view, these results confirms the theoretical

deductions presented in the during analysis of the models and method herein, as well

as confirming the general consensus in literature that, stock markets dynamics are of a

power law nature. Also empirical evidence suggest, in general, underlying stock return

follows heavy-tailed distributions and as such, they are not independently distributed.

Therefore, modelling such returns using the classical approach would greatly give rise

to model risk. As evidently observed, the our approach performed effectively for when

1/2  ↵ < 1 as compared to when 0 < ↵ < 1/2 in which case, the underlying process

would be expected to cover less and less grounds than any ordinary Gaussian random

process would do.

Another important observation to take note of is that, the Black-Scholes models

proposed in classical setups are well known for producing option premium curves which

are similar in shapes and as such, they may not fully reflect the real market anomalies,

for examples, in markets with high an-anticipated news events. Whereas, such models

when formulated in the fractional sense have the ability to produce option premium

curves which are well sensitive to changes in almost all associated parameters, such as,

volatility, dividends, interest rates, etc.

For further research, we intend to apply the fractional Black-Scholes models as

well as their corresponding numerical methods to local and international real-time

market data. Therefore, the calibration of the tfBS, sfBS, tsfBS PDEs and other

corresponding hybrids fractional Black-Scholes models to real-time market data remain

a subject of future research. Furthermore, the design and analysis of new robust higher

order numerical solution methods, semi-analytic and analytic solutions methods for

fractional Black-Scholes models also remain a subject of further research opportunities.
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