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Abstract

Neutral hydrogen intensity mapping on small scales using MeerKAT

M-J Townsend

M.Sc. Thesis

Department of Physics & Astronomy
The University of the Western Cape

In the post-reionisation universe, intensity mapping (IM) with the 21 cm line of
neutral hydrogen (HI) provides a potential means of probing the large-scale struc-
ture of the universe. With such a probe, a wide variety of interesting phenomena
such as the Baryon Acoustic Oscillations (BAO) and Redshift Space Distortions
(RSD) can be studied. The MeerKAT telescope has the potential to make full use
of this technique, especially in the single-dish mode, which will probe the scales rel-
evant to BAO and RSD. A useful complementary of this is HI IM with MeerKAT in
interferometer-mode, which will enable the extraction of cosmological information
on semi-linear and small scales. In this study, full end-to-end simulations of inter-
ferometric observations with MeerKAT for HI IM were developed. With this, the
power spectrum extraction was analysed using the foreground avoidance technique.
This took into account the foreground wedge from point source contamination ex-
tracted from real MIGHTEE COSMOS data, as well as RFI flagging. The errors on
the power spectrum estimator were then calculated through a Monte Carlo process
using 1000s of realisations of both the thermal noise and HI signal. In doing so,
precision constraints on the HI power spectrum are found at z = 0.27 on scales
0.4 < k < 10 Mpc-1 for mock visibility data sets which contain the HI signal con-
taminated by noise, mimicking the MIGHTEE COSMOS field for total observation
times & 20 hours. These results illustrate the potential of doing precision cosmology
with MeerKAT’s MIGHTEE survey and interferometer-mode HI IM.

Keywords: Cosmology; MeerKAT; Interferometer; Intensity Mapping
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1 Introduction

The last century has seen a significant growth in our understanding of the Universe,
from the Cosmic Microwave Background (CMB) released during Recombination
400,000 years after the Big Bang up until the large-scale structure and accelerated
expansion of the Universe due to dark energy in the late Universe. Despite this
progress, we are yet to observe most of the volume of the Universe which is ob-
servable. The sheer abundance of hydrogen in the Universe is a useful means of
filling out this observable volume. Its ubiquity, coupled with its 21 cm line allows
us to probe the Universe from the period when the first structures started forming
(Pritchard & Loeb, 2012). Along with this epoch, this spin-flip transition of hy-
drogen can be used to study the matter content of the late Universe and to probe
important properties of the Universe such as its ionisation state and temperature
(Liu & Shaw, 2020).

1.1 21 cm cosmology

The 21 cm spectral line enables the mapping of the Universe in three dimensions,
with redshift providing line-of-sight distance information. In particular, the 21 cm
line gives access to much higher redshift resolution than most other probes of cosmol-
ogy due to the ease of obtaining higher spectral resolution using radio interferometers
(Liu & Shaw, 2020).

Despite the relative infancy of 21 cm cosmology, there have already been exciting and
promising results. These include the reported measurement at z ∼ 17 which might
be explained by 21 cm absorption (Bowman et al., 2018). This was an important
and unexpected result, especially given the high redshift of the measurement as
well as the unexpected depth of the absorption profile. In addition, low-frequency
interferometers have placed ever tighter upper limits on the 21 cm power spectrum
at redshifts in and around the Epoch of Reionisation (EoR). These include reported
results from observations with the Murchison Widefield Array (MWA) (a recent
example, Trott et al., 2020, at z ∼ 6.5 - 8.7), Donald C. Backer Precision Array for
Probing the Epoch of Reionisation (PAPER) (for example, Jacobs et al., 2014, in
the range 7.5 < z < 10.5), and the LOw Frequency Array (LOFAR) (for example,
on Cosmic Dawn, Gehlot et al., 2019, at redshift z = 19.8 − 25.2), as well as an
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interesting result at z ∼ 18 from the Owens Valley Long Wavelength Array (OVRO-
LWA) (Eastwood et al., 2019).

While much of the research in 21 cm cosmology is focused on the study of the dark
ages and epoch of reionisation (EoR), the post-reionisation era has seen many devel-
opments and exciting results. Using the Green Bank Telescope (GBT), a detection
of fluctuations in the 21 cm signal was made through cross-correlations of 21 cm
intensity maps and the DEEP2 optical galaxy survey in the redshift range z ∼ 0.53
- 1.12 (Chang et al., 2010) and WiggleZ at z ∼ 0.8 (Masui et al., 2013). Additional
results include upper limits on the 21 cm auto-power spectrum and the use of the
combination of auto- and cross-correlation results to constrain ΩHIbHI (Switzer et al.,
2013). In a similar manner, the Parkes Radio Telescope has been used to measure
21 cm fluctuations in cross-correlation with the 2dF galaxy survey at 0.057 < z <

0.098 (Anderson et al., 2018). While the post-reionisation results discussed here are
from 21 cm intensity mapping with single-dish radio experiments, a possible com-
plementary approach can be taken using radio interferometers such as MeerKAT.
In doing so, the inherent Fourier properties of interferometric measurements can be
taken advantage of and used to study the neutral hydrogen (HI) content, and there-
fore the distribution of matter, in the late Universe. It has the added complement
to single-dish experiments in that it probes smaller scales due to better angular
resolution and thus is a novel way of making a statistical detection of HI at small
(non-linear to fully linear) cosmological scales.

1.1.1 21 cm line fundamentals

Predicted in 1942 by Hendrik C. van de Hulst (van de Hulst, 1945) and first detected
by Ewen and Purcell in 1951 (Ewen & Purcell, 1951), the hyperfine splitting of the
ground state of hydrogen occurs due to an interaction of the magnetic moments of
the proton and electron. The parallel alignment of spin states in the hydrogen atom
has a higher energy than the anti-parallel alignment, resulting in the emission (or
absorption) of a photon with an energy, ∆E = 5.9× 10-6 eV. This energy corresponds
to a frequency of 1420 MHz and wavelength of 21.1 cm, for which it is commonly
referred to as the 21 cm line. This spin-flip transition is shown schematically in
Figure 1.1, demonstrating the transition of the electron from spin-up to spin-down
and the subsequent emission of a photon at a wavelength of 21 cm.
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Figure 1.1: Schematic demonstrating the spin-flip transition of neutral hydrogen. As
the electron transitions from spin-up to spin-down, a photon is emitted at a wavelength
of 21 cm. Alternatively, the absorption of a photon could instead occur, resulting in the
transition from spin-down to spin-up. Schematic taken from Wikipedia.

The 21 cm line can in principle be observed over a range of epochs, spanning from
the Dark Ages (the period following recombination - when the CMB was released)
and Cosmic Dawn (the epoch postulated as the phase of the Universe when the first
stars and galaxies started forming) up until the Epoch of Reionization (EoR). How-
ever, the focus of this study is on the HI content of the Universe after reionisation,
when most of the neutral hydrogen is contained in damped Lyα systems (Pritchard
& Loeb, 2012). This is shown schematically along with the other epochs of the
Universe’s history which can be studied with the 21 cm line in Figure 1.2. At the
end of reionisation, the mean signal is relatively low, but has a residual in emission
which comes from the damped Lyα systems (usually HI galaxies). This is shown
qualitatively at the right-hand end of Figure 1.3.

In order to study the 21 cm line, a quantity known as the spin temperature (and
often referred to as the excitation temperature of the 21 cm line), TS, which describes

3
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Figure 1.2: Schematic showcasing the different phases of the 21 cm signal. It is analogous
to Figure 1.3 in that it shows the physical changes which occur in the signal from before the
first stars and galaxies start forming up until the end of reionisation and post-reionisation
epochs. Of particular importance in this study is the residual signal sources by neutral
hydrogen in galaxies (the so-called damped Lyα systems). Schematic taken from Pritchard
& Loeb (2012).

the number density of hydrogen atoms in the two spin states, is used. Following the
prescription presented in Liu & Shaw (2020), the spin temperature can be defined
as (Furlanetto et al., 2006; Pritchard & Loeb, 2012)

n1

n0

= 3 exp

(
−T?
TS

)
= 3 exp

(
− hν21

kBTS

)
, (1.1)

where the factor of 3 arises from the relative degeneracy of the states, n1 and n0

denote the number of atoms in the excited and ground hyperfine states, respectively,
h denotes Planck’s constant, kB Boltzmann’s constant and ν21 = 1420 MHz being
the rest frequency of the 21 cm line.

The physics underlying the 21 cm signal depends on the radiative transfer through
gas along the line-of-sight. Hence, it is important to note that the brightness tem-
perature of the 21 cm line is observed through the contrast of a radiation background
(usually the CMB) and the spin temperature of neutral hydrogen. We therefore see
the 21 cm line in absorption when the spin temperature is lower than the CMB
temperature, and in emission for the opposite. These two scenarios result in the
observation of a deficit compared to what we expect.

After reionisation, the neutral fraction of hydrogen is relatively low at about xHI ≈

4



Figure 1.3: The early Universe evolution of the 21 cm signal. The top panel shows the
time evolution of the 21 cm brightness fluctuations from shortly before the first luminous
objects started forming in the Universe, up until when the reionisation epoch is over. The
panel below shows the expected evolution of the global 21 cm signal corresponding to the
fluctuations shown in the panel above. One can clearly see that the signal becomes small
after the end of reionisation as most of the neutral hydrogen content is located in damped
Lyα systems in the post-reionisation epoch. Figure taken from Pritchard & Loeb (2012).

0.02 (Villaescusa-Navarro et al., 2018). The remaining neutral content is contained
in dense systems that have managed to shield against the ionising background which
ionised most of the neutral hydrogen during the EoR. These dense systems are
usually galaxies which contain neutral HI gas. This HI is either part of the cold
(T . 100 K) or warm (T & 5000 K) neutral medium (Liu & Shaw, 2020). In either
case, the temperature of the gas is warmer than the CMB temperature and thus the
21 cm signal is seen in emission.

To model the physics that describes the 21 cm line in the post-reionisation epoch,
the methodology discussed in the appendices of (Bull et al., 2015) is employed for
the full description, since it considers the nature of the signal in the post-reionisation
era from a phenomenological as well as observational standpoint.

Considering a clump of HI with number density nHI = n0+n1 and assuming TS � T?,
Equation 1.1 becomes

n1 ' 3n0 =
3

4
nHI. (1.2)
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The emissivity of the clump can be expressed as

j1 =
A10hν21

4π
n1φ(ν), (1.3)

where A10 ' 2.85 × 10−15 s-1 (Pritchard & Loeb, 2012; Liu & Shaw, 2020) is the
spontaneous emission Einstein coefficient and φ(ν) is the line profile, assumed to be
very narrow with a width of dν. The luminosity of the clump can then be expressed
as

dL =
3

4
A10hν21nHIφ(ν)dνdAdr, (1.4)

where dA dr is the volume of the clump, dr being specifically along the line-of-
sight, ν evaluated in the clump’s rest frame, all on condition that nHI denotes the
comoving number density of the clump. As mentioned earlier, the 21 cm line is seen
in emission since the gas (and therefore spin) temperatures are well above the CMB
temperature. Thus, absorption can be ignored and it follows that the total 21 cm
intensity follows directly from Equation 1.4. The total flux against the background
radiation (CMB) from an object at redshift z is then given as

dF =
3hν21A10

16π (1 + z)2 r2(z)
nHIφ(ν)dνdAdr, (1.5)

with

(1 + z) =
ν21

ν
, (1.6)

denoting the Doppler relation between frequency and redshift. The brightness, I, of
the clump can be defined via the total flux, dF , as

dF ≡ IdΩdνo. (1.7)

It is common practice to express the intensity in terms of the brightness temperature
(Pritchard & Loeb, 2012). Using the Rayleigh-Jeans relation, I = 2kBTbν

2
21/c

2, and
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combining equations 1.6 and 1.7, we have

3hν21A10

16π (1 + z)2 r2(z)
nHIφ(ν)dνdAdr =

2kBTν
2

c2
dΩdνo, (1.8)

which then finally becomes an expression for the brightness temperature:

Tb =
3hc3A10

32πkBν2
21

(1 + z)2

H(z)
nHI. (1.9)

To get to Equation 1.9, the line width dν
1+z

is assumed to be much smaller than the
observed frequency interval dνo and that dA = r2dΩ, and dr = λ21(1 + z)/H(z)dνo.
It is further assumed that the line profile can be approximated as φ ' 1

dν
. The

comoving number density is given by

nHI = ΩHI
ρc,0
mp

(1 + δHI) , (1.10)

where mp is the mass of a proton, ΩHI the comoving HI fraction, δHI the HI density
contrast, and ρc,0 = 3H2

0/8πG is the critical density of the Universe today (i.e. at
z = 0).

It is important to understand the brightness temperature’s evolution in redshift,
and by extension the redshift evolution of the quantities on which it depends such
as the HI density, ΩHI and bias, bHI. Assuming the HI luminosity in a given volume
(with solid angle ∆Ω and frequency interval ∆ν) is proportional to the HI mass in
the volume, MHI. The spin temperature will be much greater than the background
temperature if all the HI in the volume contributes to the 21 cm signal, resulting in
a brightness temperature from the volume:

Tb(ν) =
3.23× 10−4

∆Ω∆ν

MHI

(1 + z)2D2
A(z)

, (1.11)

with proper volume given by

V = ∆Ω∆ν
(c/ν)D2

A

H + dv/ds
, (1.12)
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where DA is the angular diameter distance, H denotes the usual Hubble parameter
and dv/ds the proper gradient of the peculiar velocity along the line-of-sight.

Since neutral hydrogen is primarily found inside of galaxies after reionisation, shield-
ing it from ionising radiation, it is accurate to relate the HI mass to the underlying
halo mass, and therefore, to relate the HI signal to the underlying matter density
field, so that the HI emission acts as a tracer of not only the distribution of HI,
but also as a biased tracer of the matter distribution. To do this, the assumption
is made that a dark matter halo of mass M contains galaxies (at least one) with a
total HI mass, MHI. Further it is assumed that this HI mass is only a function of
the halo mass and redshift, i.e. MHI = MHI(M, z). Despite some expected level of
fluctuation in the relation between the HI and halo mass, this deterministic relation
is a good fit for 21 cm intensity mapping experiments, which will have low resolution
pixels, and therefore a reasonable amount of HI galaxies per pixel. This would be
able to average out any fluctuations and therefore enable the use of this determin-
istic relation (Santos et al., 2015; Bull et al., 2015). Further, Santos et al. (2015);
Bull et al. (2015) highlight that the position-independence of the HI mass function
can be accounted for by the averaging over many halos at the scales of interest in
21 cm intensity mapping experiments.

The signal can now be related to the underlying dark matter field using the mass
function, MHI. The number of halos of mass M in an observed volume element is
given by [1 + b(M, z)δM(z)] dn

dM
dM V , where δM denotes the underlying dark matter

fluctuation at redshift z, b denotes the halo bias and dn
dM

denotes the proper halo
mass function. The observed brightness temperature is then obtained by integrating
over all possible masses, which yields

Tb(ν) =
α

(1 + z)

ρHI(z) [1 + bHIδM(z)]

(H + dv/ds) (1− v/c)
, (1.13)

where α = 2.21× 10−27 (Bull et al., 2015). Further, the halo mass function and HI
mass inside the halo can be used to calculate the proper HI density, ρHI, and HI
bias:

ρHI(z) =

∫ Mmax

Mmin

dM
dn

dM
MHI(M, z) (1.14)
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and

bHI(z) = ρ−1
HI

∫ Mmax

Mmin

dM
dn

dM
MHI(M, z)b(M, z). (1.15)

Assuming that the peculiar velocity gradient as well as the v/c term are small for
the large pixels considered as well as rewriting in terms of the fractional density,

ΩHI(z) ≡ (1 + z)−3 ρHI(z)

ρc,0
, (1.16)

we get the expressions for the full and mean brightness temperatures of the 21 cm
signal, respectively (Bull et al., 2015; Santos et al., 2015, 2017):

Tb(ν,∆Ω) ≈ T b(z)

[
1 + bHI(z)δM(z)− 1

H(z)

dv

ds

]
(1.17)

T b(z) ≈ 566h

(
H0

H(z)

)(
ΩHI(z)

0.003

)
(1 + z)2 µK. (1.18)

While there are many well described and parameterised fits for the HI mass function
(see, for instance in, Villaescusa-Navarro et al., 2018; Padmanabhan et al., 2015,
2017; Camera & Padmanabhan, 2020, where this is discussed in detail), here a
straightforward approach is taken which assumes that MHI is related to the halo
mass via a proportionality factor which can be fitted to data (Bull et al., 2015;
Santos et al., 2015). Not all halos will contain galaxies with HI mass and therefore
have to be accounted for. To do this, the assumption is made that only halos with
circular velocities, 30 6 vc 6 200 kms-1 are able to host neutral hydrogen. The halo
mass is then found through the relation to the circular velocity

vc = 30
√

1 + z

(
M

1010M�

)1/3

kms−1. (1.19)

This relation fails to fit well at high redshifts; a more accurate relation would be to
take the proportionality of the mass as a function of redshift and then relate this
to the HI mass (Bull et al., 2015). In this study, however, a power-law independent
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of redshift was chosen for the mass relation (motivated by, for instance, Bull et al.,
2015; Santos et al., 2015, 2017):

MHI = AMα. (1.20)

As was shown in Santos et al. (2015); Bull et al. (2015) and then used in Santos
et al. (2017), α ' 0.6 and A ∼ 220 are the values chosen as motivated by constaints
at z = 0.8 from Switzer et al. (2013). With all the relevant quantities describing
the distribution of HI in the post-reionisation epoch discussed above, the theoretical
framework of the HI power spectrum can now be delineated.

1.1.2 The HI power spectrum

Having described the halo model in relation to the distribution of HI in the post-
reionisation Universe, the next step would be to describe the power spectrum of
the 21 cm intensity fluctuations. This is especially important when it comes to
understanding what can be learnt from intensity mapping surveys. In addition,
since this study employs an approach using interferometry, it allows access to small
scales which are semi- to fully non-linear. The power spectrum is then modelled
using the halo model described above as well as some non-linear considerations.
In order to do this, one requires knowledge of the linear matter power spectrum,
PM(k, z), the halo mass function, dn

dM
, and bias, b(M, z), as well as the HI mass

function, MHI, and the associated quantities such as the HI bias and density profile
described above (Villaescusa-Navarro et al., 2018).

With these constituents, the full non-linear HI power spectrum can be written as the
sum of the 1-halo and 2-halo terms (this is discussed thoroughly in Padmanabhan
et al., 2015, 2017; Villaescusa-Navarro et al., 2018, where the halo model is also
employed):

PHI(k, z) = PHI,1h(k, z) + PHI,2h(k, z). (1.21)
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The terms are defined as (see Villaescusa-Navarro et al., 2018)

PHI,1h(k, z) =
1

(ρc,0ΩHI(z))2

∫ ∞
0

dM
dn

dM
M2

HI(M, z)|uHI(k|M, z)|2 (1.22)

and

PHI,2h(k, z) =
PM(k, z)

(ρc,0ΩHI(z))2

×
[∫ ∞

0

dM
dn

dM
b(M, z)MHI(M, z)|uHI(k|M, z)|

]2

,

(1.23)

where PM(k, z) is the linear matter power spectrum and uHI(k|M, z) = ρ̃HI(k|M,z)
MHI(M,z)

is the normalised HI density profile in Fourier space, where the HI density pro-
file, ρ̃HI(k|M, z), forms an integral part of the description of the structure of the
HI distribution and is distinct from the proper HI density given in Equation 1.14.
Equation 1.21 essentially describes the power spectrum of neutral hydrogen at the
scales which are relevant to understanding its distribution in galaxies and thus con-
tains both cosmological and astrophysical information (Camera & Padmanabhan,
2020).

While this expression for the HI power spectrum is accurate and comprehensive, no
analysis processes, such as running hydrodynamical simulations, are performed to
model it. Instead, a model of the HI power spectrum taking the form (Pourtsidou,
2016):

PHI(k, z) = T
2

b(z)b2
HIPM(k, z), (1.24)

with T b, given by Equation 1.17, and bHI, given by Equation 1.15, is used in this
study. The specific model of the matter power spectrum, PM(k, z), was generated
in the CAMB software package (Lewis et al., 2000). In addition, all non-linear
information which would have been incorporated through the 1-halo and 2-halo
terms are included in this matter power spectrum model from CAMB. While the
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model discussed here is reasonable for dealing with dark matter non-linearity in real
space, the non-linearity in redshift space is not adequately modelled by it. To do
this, one has to consider the contribution from non-linear redshift space distortions
(known as the ’Fingers-of-God’ effect) which will introduce modifications to the
theoretical HI signal (refer to Sarkar & Bharadwaj (2018) and Sarkar & Bharadwaj
(2019) for detailed discussions on this). This contribution has, however, been left to
future work to limit the focus of the discussion at hand.

Lastly, an important quantity for any cosmological survey is the shot noise. It is
linked to the discrete nature of the observation (Spinelli et al., 2020), and in this
case, arises due to Poisson fluctuations in halo number (Bull et al., 2015). It is crucial
to have a good understanding of the shot noise as its amplitude sets the maximum
scale at which cosmological information can be extracted, and also provides insights
into the galaxies that contain HI (Villaescusa-Navarro et al., 2018). Here, the model
for the shot noise power spectrum is chosen as (Bull et al., 2015)

P shot
HI (z) =

(
T b(z)

ρHI(z)

)2 ∫ Mmax

Mmin

dM
dn

dM
M2

HI(z). (1.25)

In this case, the HI mass within a halo, MHI, takes the functional form (Castorina
& Villaescusa-Navarro, 2017):

MHI(M, z) = C (1− Yp)
Ωb

ΩM

exp

(
−Mmin

M

)
Mα, (1.26)

where Yp = 0.24 is the Helium fraction, α is a free parameter which regulates how
rapidly HI is accreted onto haloes, and C denotes the normalisation constant, which
is fixed using Equation 1.16 (Castorina & Villaescusa-Navarro, 2017). Further,Mmin

denotes the halo mass limit, below which the HI abundance in haloes is suppressed
exponentially.

1.1.3 Neutral hydrogen intensity mapping

Neutral hydrogen intensity mapping (HI IM) is a novel technique which measures
the fluctuations in the HI signal and can thus be used for a diverse range of studies
in cosmology (Bharadwaj & Sethi, 2001; Bharadwaj et al., 2001; Battye et al., 2004;
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McQuinn et al., 2006; Chang et al., 2008; Wyithe & Loeb, 2009; Bull et al., 2015;
Santos et al., 2015). As described in sections 1.1.1 and 1.1.2, in the post-reionisation
epoch, most of the neutral hydrogen is contained inside of galaxies (damped Lyα sys-
tems). With IM, the 21 cm signal can be probed with low angular resolution surveys
(Villaescusa-Navarro et al., 2018; Liu & Shaw, 2020) in which the flux (including
from sources that would otherwise be unresolved) is measured over large areas of
the sky at various frequencies. This is demonstrated schematically in Figure 1.4,
which shows the distribution of galaxies on the sky and the equivalent intensity
map. Despite being at a lower resolution, the intensity map contains all the relevant
information related to the distribution of HI. This is especially crucial as the HI
contained in galaxies traces the underlying matter density field and therefore the
large scale structure of the Universe, making it ideal for cosmological studies.

Figure 1.4: A region of space containing many galaxies alongside the intensity map of
this galaxy field. With intensity mapping, the 21 cm signal is integrated in large angular
pixels of the sky, foregoing the need to resolve the individual structures. This is especially
beneficial as it would pick up traces of the signal from sources that are too faint to be
resolved individually. Credit: Francisco Villaescusa-Navarro.

There are several advantages to intensity mapping over conventional approaches.
Due to the well understood nature of the 21 cm line, HI IM is spectroscopic in
nature, as it provides superlative redshift information. It is also more efficient, as it
allows larger cosmological volumes to be surveyed as compared to, say, large galaxy
surveys such as the Sloan Digital Sky Survey (SDSS) (York et al., 2000). Since the
amplitude of the signal only depends on the amplitude and clustering of neutral
hydrogen, the HI can be traced over a wide range of redshifts (Villaescusa-Navarro

13

https://franciscovillaescusa.github.io/im.html


et al., 2018).

Results obtained in cross-correlation (Chang et al., 2010; Masui et al., 2013) and
auto-correlation (Switzer et al., 2013) have been able to provide excellent constraints
on neutral hydrogen fluctuations (discussed above) and as such have motivated fur-
ther IM surveys to be undertaken (an example is discussed with the MeerKLASS
survey in Santos et al., 2017). While most of the key results obtained so far have
been with single-dish IM experiments, the focus here is on a complementary ap-
proach with the use of interferometers. Doing this will allow higher angular res-
olutions to be probed with IM as well as to help mitigate the arduous problems
encountered with systematics in measuring the auto-correlation HI power spectrum
(such as those encountered by Switzer et al., 2013). In addition, the complementary
nature of using interferometers for IM means that an interesting range of important
cosmological quantities can be probed alongside the BAO (and therefore enabling
constraints on dark energy) which the single-dish method is sensitive to. There
are exceptions to this, such as the HIRAX (Newburgh et al., 2016), CHIME (New-
burgh et al., 2014) and Tianlai (Xu et al., 2015) interferometers, which are also
designed with sensitivity to BAO scales in mind (see Section 1.4 for details on these
experiments). Of the many cosmological insights which can be gained through this
complementary approach, some are placing constraints on non-linear redshift space
distortions (RSD), the spectral index of primordial fluctuations, ns, as well as the
distribution and content of HI in the late Universe.

1.1.4 Cosmological constraints with HI Intensity Mapping

As mentioned, two key probes of cosmology using HI intensity mapping are Baryonic
Acoustic Oscillations (BAO) and Redshift Space Distortions (RSD). The BAO arises
from the coupling of baryons and photons during the radiation era, in which this
photon-baryon plasma undergoes acoustic oscillations. The radiation pressure and
gravitation compete and thus sets up these oscillations. Indeed, the baryons oscillate
in phase with the radiation due to the coupling of electrons, photons and baryons
through Compton scattering. The whole plasma thus oscillates due to these sound
waves. These waves are related to the characteristic scale that corresponds to the
sound horizon and their imprint can be found on the CMB and the power spectrum
of galaxies (Peebles, 1980).
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Additionally, the BAO is a powerful probe of the angular diameter distance and
Hubble rate as a function of redshift, and measurements of these can be used to
constrain dark energy and the curvature of the Universe (Bull et al., 2015; Bacon
et al., 2018), which can be achieved through surveys of the large-scale structure of
the Universe through intensity mapping (Santos et al., 2015).

Redshift Space Distortions occur due to the motion of galaxies which host HI as
well as the motion of this HI gas within the galaxies themselves. This affects the 21
cm intensity mapping signal and thus can be constrained in an intensity mapping
survey Sarkar & Bharadwaj (2019). In particular, RSD is useful for measuring the
growth rate, which is integral in constraining models of modified gravity (among
others) (Bacon et al., 2018) and so is a crucial probe of cosmology using intensity
mapping.

1.2 Astrophysical foregrounds

Astrophysical foregrounds are some of the most prominent contaminants hindering
a measurement of the 21 cm signal. They consist of all radio emission within an
observational band besides the 21 cm signal. As such, these foregrounds need to
be mitigated in order to make a measurement of the 21 cm signal. This is due to
how much brighter the foregrounds are compared to the signal itself. Experiments
aiming to make a detection of the 21 cm signal, expect it to be of the order of ∼ 0.1

mK, while the foregrounds themselves measure in the 10s to 100s of Kelvin. Hence,
the foreground-to-signal ratio is around 105, which presents a formidable challenge
(Liu & Shaw, 2020).

1.2.1 Types of astrophysical foregrounds

There are four main types of foregrounds that affect the measurement of the 21 cm
signal (Alonso et al., 2015; Cunnington et al., 2019). This is due to them emitting
radiation in the same frequency region as the redshifted HI signal, as well as being
dominant over the HI which is inherently weak. They are:

(i) Galactic synchrotron emission, which occurs when high-energy electrons are
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accelerated through a magnetic field. Typically, these electrons are from rela-
tivistic cosmic rays which are accelerated by the galactic magnetic field.

(ii) Extragalactic point sources from beyond the Milky Way galaxy, including
sources such as active galactic nuclei (AGN), which emit radiation at simi-
lar frequencies as the redshifted HI signal.

(iii) Galactic and extragalactic free-free emission (better known as Bremsstrahlung),
caused by free electrons which scatter off ions without being captured. This
interaction produces photons which have wavelengths which can be similar to
that of the redshifted 21 cm line. These interactions occur within and outside
the Milky Way galaxy.

Figure 1.5: Simulated, full sky temperature maps of the four types of foregrounds dis-
cussed, at a frequency ν = 1136 MHz, which corresponds to a redshift of z = 0.25. Each
map has temperature given in mK, with the synchrotron map showing the logarithm of
the temperature. Figure taken from Cunnington et al. (2019).

Figure 1.5 shows simulated, full sky temperature maps at ν = 1136 MHz (z = 0.25)
for each of the foregrounds discussed (Cunnington et al., 2019). It demonstrates that
the synchrotron emission dominates over all the other foregrounds. Additionally, the
point sources and galactic free-free temperatures are also much brighter than the
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expected 21 cm signal temperature, albeit fainter than the synchrotron radiation.
The extragalactic free-free temperature is relatively low by comparison to the other
foregrounds. However, for a precise measurement of the HI signal, it is crucial that
all sources of foreground contamination be modelled accurately and removed.

1.2.2 Mitigation strategies

For HI intensity mapping, the observations are not aimed at observing galaxies. In
other words, the entire signal at a given frequency is assumed to be HI. Hence, one
needs to find a way to remove the foregrounds. The difference in spectral structure
between the HI signal and foregrounds provides a means of doing this. The HI sig-
nal fluctuates in frequency, as each frequency corresponds to a given redshift, and
therefore to different regions along the line-of-sight, thus they decorrelate (Alonso
et al., 2015; Chapman et al., 2016). In contrast to this, the foregrounds are spec-
trally smooth. This has led to the development of numerous foreground cleaning
techniques.

Parameterised fits are one such technique, which assume the spectral smoothness
implicitly by fitting polynomials to data and then performing a subtraction to re-
move the foregrounds from said data (Santos et al., 2005; McQuinn et al., 2006). A
caveat in this technique is that one needs to assume a specific model that describes
the foregrounds, and thus requires a level of precision in the understanding of the
foregrounds that is not currently possible. This is due to the fact that there is a lack
of data for the foregrounds at the relevant frequencies (Chapman et al., 2016; Cun-
nington et al., 2019). Additionally, instrumental effects on observed foregrounds,
such as polarization leakage, are unlikely to be smooth, which is at odds with one of
the primary assumptions for parametric fits. These reasons have seen an increased
focus on non-parametric or ’blind’ foreground subtraction techniques, which avoid
assuming specific foreground models in addition to making fewer assumptions on
the form of the foregrounds. These properties of non-parametric techniques thus
provide a better means of modelling non-smooth foreground components, offering a
better means of removing them from data (Chapman et al., 2016).

There are several blind foreground removal techniques, some of which make use of
what is known as mode projection. With mode projection, the data is expressed
in some basis. The signal contribution from selected basis components that are
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foreground-dominated are then removed, which would in principle leave behind only
the contribution from the HI signal (Liu & Shaw, 2020). Examples of techniques
which make use of this (and which are widely utilised in the literature) include
Principal Component Analysis (PCA; Liu et al., 2012), Independent Component
Analysis (ICA; Chapman et al., 2012) and Generalized Morphological Component
Analysis (GMCA; Chapman et al., 2013, 2016). Refer to Alonso et al. (2015) for a
thorough outline of the differences between the PCA and ICA techniques, as well
as to Bobin et al. (2008) for an extensive discussion of the GMCA technique.

An alternative to foreground removal is to avoid them. Foregrounds will in principle
be spread across all the angular Fourier modes, but confined to the lowest line-of-
sight modes, since the line-of-sight direction corresponds to the frequency (Morales
& Hewitt, 2004; Morales, 2005). Since this will make the foregrounds compact in
Fourier space, foreground avoidance simply implies ignoring those regions in Fourier
space which are dominated by foregrounds. This technique has been used in many
intensity mapping studies focused on the EoR and Cosmic Dawn (for example,
Parsons et al., 2012a,b; Thyagarajan et al., 2013) and was specifically chosen as
the means of overcoming the effects of foregrounds in this study. The method of
foreground avoidance and how it is employed is discussed in broader detail in Section
2.2.

1.3 Radio Interferometry

1.3.1 Background

For almost the entire period of human civilisation, the only means of making ob-
servations of the Universe was restricted to measurements of visible light, i.e. that
section of the electromagnetic spectrum which the human eye is sensitive to. With
the discovery of extraterrestrial radiation emitted by an object that was not the sun
by Jansky in 1931, the landscape of observational astronomy changed dramatically.
Further observations were made over the course of the 20th century which eventually
led to the development of radio telescopes dedicated to astronomical observations
(Wilson et al., 2012).

The development of radio interferometry allowed finer angular resolutions to be
resolved and thus allowed astronomers to not only study the Universe in the radio

18



part of the spectrum, but also probe finer details. Additionally, radio interferometry
allowed cross-matching work to be done between the optical and radio domains
(Thompson et al., 2017).

With the advent of the 21st century, the development of radio interferometers which
would allow measurements of cosmic hydrogen over large ranges of redshift, span-
ning from the Dark Ages, reionisation epoch and beyond, have taken centre stage
in cosmology (Morales & Hewitt, 2004; Morales, 2005). The development of the
intensity mapping technique for cosmological studies will allow researchers to take
full advantage of the instruments at their disposal (see Section 1.4). In this study,
the use of radio interferometry for intensity mapping of the 21 cm line is the key
focus. Section 1.3.2 discusses the fundamentals of radio interferometry, which forms
the basis of the analysis techniques used to develop the simulations and extract
cosmological information as described in Section 2.

1.3.2 Fundamentals

At the fundamental level, the radio interferometer is a collection of dishes or dipoles.
While a single dish or dipole element would generally measure the sky and map it
out a single pixel at a time, the interferometer spreads out the collecting area into
multiple receivers. In this way, electric field signals are received by pairs of antennas
and then multiplied together and averaged over a short time interval. In the simplest
case, this amounts to the two-element interferometer, shown in Figure 1.6. For this
setup, assume that the interferometer consists of two antennas, A1 and A2, separated
by the distance ~b, known as the baseline, with its direction from A2 to A1. This
baseline quantity can be defined as

b =
λ

θ
, (1.27)

where λ denotes the wavelength at which the interferometer is making an observa-
tion and θ its angular resolution. Further, assume that both of these antennas are
only sensitive to radiation of the same polarisation state. Following the derivation
outlined in Wilson et al. (2012), let V1 be a voltage induced at the output of antenna
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A1 through an electromagnetic wave of amplitude E from a distant source,

V1 ∝ Eejωt, (1.28)

and at A2, we have

V2 ∝ Eejω(t−τg), (1.29)

where τg is known as the geometrical delay which is caused by the orientation of the
baseline ~b relative to the direction in which the electromagnetic wave is propagating,
and the imaginary number defined as j ≡

√
−1. The outputs from the two antennas

will be correlated, due to the electromagnetic signals being inputted to a multiplying
device, followed by an integrator, resulting in an output

R(τg) ∝
E2

T

∫ T

0

ejωte−jω(t−τg)dt. (1.30)

If T � 2π
ω
, then the average over a time T will differ little from a the average over

a full period, resulting in

R(τg) ∝
ω

2π
E2

∫ 2π/ω

o

ejωτgdt

∝ ω

2π
E2ejωτg

∫ 2π/ω

o

dt,

(1.31)

which yields

R(τg) ∝
1

2
E2ejωτg . (1.32)

Now, the output of the correlator followed by the integrator varies periodically with
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Figure 1.6: Schematic showing the two-element interferometer, with all the relevant
components such as the amplifier, multiplier and integrator. Further, τg and τi denote the
geometrical and instrumental delays. Additionally, while the figure uses the symbol "B"
to denote the baseline, this has been replaced with "b" in the text. Schematic taken from
Wilson et al. (2012).

τg, the geometrical delay, given as (Figure 1.6),

τg =
~b · ~s
c
, (1.33)

where ~s denotes the directional vector of the electromagnetic radiation from the
source. If the relative orientation of ~b and ~s remain unchanged, then τg and R(τg)

remain constant. In reality, ~s varies slowly due to the earth’s rotation, causing
variation in τg and therefore resulting in the measurement of interference fringes as
a function of time.

If we have some radio brightness distribution, Iν(~s), the power per bandwidth, dν,
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and source element, dΩ, will be

WP(~s)Iν(~s)dΩdν, (1.34)

where WP(~s) denotes the effective collecting area in the direction ~s. The correlator
output is then

r12 = WP(~s)Iν(~s)e
jωτdΩdν, (1.35)

where τ denotes the difference between the geometrical and instrumental delays
(shown in Figure 1.6)

τ = τg − τi =
~b · ~s
c
− τi. (1.36)

The total response is then given in terms of the baseline vector ~b

R(~b) =

∫∫
Ω

WP(~s)Iν(~s) exp

[
j2πν

(
~b · ~s
c
− τi

)]
dΩdν. (1.37)

Equation 1.37 is known as the Visibility Equation (Wilson et al., 2012). To derive
the complex visibility, a more appropriate coordinate system must be chosen for ~b
and ~s. This can be done by choosing a unit vector ~s pointing towards the center of
the direction in which the antennas are pointed (as shown in Figure 1.6)

~s = ~s0 + ~σ, |~σ| = 1, (1.38)

where ~s0 is a position chosen close to the center of the observed region. Substituting
into Equation 1.37 yields

R(~b) = exp

[
jω

(
~b · ~s0

c
− τi

)]
dν

∫∫
S

WP(~σ)I(~σ) exp
[
j
ω

c

(
~b · ~σ

)]
d~σ. (1.39)
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Figure 1.7: Schematic showing the end-to-end observation processes of an interferometer,
emphasising the various coordinate systems relevant for the geometrical formulation of the
interferometer equation and aperture synthesis. As mentioned in Figure 1.6, the baseline
here denoted by "B" has been replaced with "b" in the text. Schematic taken from Wilson
et al. (2012).

The exponential factor extracted from the integral in Equation 1.39 defines the phase
of R(~b), while the integral over the intensity distribution gives what is known as the
visibility

V (~b) =

∫∫
S

WP(~σ)I(~σ) exp
[
j
ω

c

(
~b · ~σ

)]
d~σ. (1.40)

If one chooses coordinates of the form

ω

2πc
~b = {u, v, w}, ω ±∆ω

2πc
=
ν

c

(
1± ∆ν

ν

)
, (1.41)

where {u, v, w} are measured in units of wavelength, λ = 2πc
ω
, and further chooses

the vector ~σ = {x, y, z}, such that x and y are direction cosines with respect to the
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u and v axes, then the visibility becomes

V (u, v, w) =

∫ ∞
−∞

∫ ∞
−∞

WP(x, y)I(x, y)

× exp
[
j2π

(
ux+ vy + w

√
1− x2 − y2

)] dxdy√
1− x2 − y2

.
(1.42)

From Figure 1.7, it should be noted that the xy tangent plane is a projection of
the celestial sphere with the tangent point at position ~s0. Moreover, the u axis is
directed towards local east, while the v axis has its direction toward local north. The
limits of integration in Equation 1.42 are such that they demand that WP(x, y) = 0

for x2 + y2 > l2, where l denotes the full width of the telescope primary beams. If
only a small patch of the sky is observed, then

√
1− x2 − y2 ∼= 1, and Equation

1.42 becomes

V (u, v, w = 0) ∼= V (u, v, w)e−j2πw =

∫ ∞
−∞

∫ ∞
−∞

WP(x, y)I(x, y)

× ej2π(ux+vy)dxdy.

(1.43)

The exponential, e−j2πw is the conversion factor that would approximately change
the observed phase of the visibility to that which would be measured in the uv
plane. In reality, an interferometer would make observations of the sky over a range
of frequencies that form its bandwidth. Hence, Equation 1.43 can be expressed with
its frequency dependence explicitly given as

V (u, v, ν) =

∫ ∞
−∞

∫ ∞
−∞

WP(x, y, ν)I(x, y, ν)ej2π(ux+vy)dxdy. (1.44)

To further simplify the expression of the visibility, one can make the notational
change ~θ = {θx, θy} = {x, y} such that d2θ = dxdy. A baseline is generated by the
distance between pairs of antennas and thus forms a vector, ~uν , defined as

~uν = {u, v} =
~b

λ
. (1.45)
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The brightness temperature of the sky can be defined in terms of the flat-sky coordi-
nates ~θ = {θx, θy} introduced above. The Fourier pair for the brightness temperature
can then be expressed as (Liu & Shaw, 2020)

T̃ (u, v, ν) ≡
∫ ∞
−∞

T (θx, θy, ν)e−j2π~uν ·
~θd2θ (1.46)

and

T (θx, θy, ν) ≡
∫ ∞
−∞

T̃ (u, v, ν)ej2π~uν ·
~θd2uν , (1.47)

where T (θx, θy, ν) is the brightness temperature of the sky and T̃ (u, v, ν) its Fourier
conjugate. Using the Rayleigh-Jeans relation, one can replace the intensity distri-
bution in Equation 1.44 with the brightness temperature. Doing so, as well as using
the introduced coordinates, the visibility, V , can be written as (Liu & Shaw, 2020)

V (u, v, ν) =

∫ ∞
−∞

∫ ∞
−∞

T (θx, θy, ν)WP(θx, θy, ν)e−j2π~uν ·
~θd2θ, (1.48)

where WP(θx, θy, ν) denotes the primary beam which accounts for the fact that the
antennas making up the interferometer do not have equal sensitivity at all areas
of the sky (Liu & Shaw, 2020). The visibility essentially forms the fundamental
observable of an interferometer. The geometrical aspects involved in Equation 1.48
are shown in Figure 1.7, which together with Figure 1.6 shows the setup used in
the derivation of the visibility. Here, a region of the sky plane is observed via its
brightness temperature by the two antennas making up a baseline. The signals
captured are then correlated which generate the visibility.

In an interferometric observation, each baseline probes a particular Fourier mode.
With information from each baseline in an array, multiple Fourier modes are probed.
These modes can then be Fourier transformed to obtain an image of the observed
sky. This is the basic principle behind synthesis imaging with an interferometer.
Appendix A gives a brief discussion on the basic properties of the Fourier Transform
as employed in the above derivation as well as in later sections.

Another thing to note is that with the more unique modes available, the closer
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the image will be to the true sky, with the two being related by what is known
as the synthesised beam. This beam is formed via the Fourier transform of the
uv plane, which is a map of all the uv points generated during the interferometric
observation. Another phenomena which plays a role in the generation of uv points
is the Earth’s rotation. As the Earth rotates, the baseline vectors rotate relative to
this and therefore rotate through the uv plane. This is known as rotation synthesis
as is shown in Figure 1.8.

Figure 1.8: A schematic showcasing the principle of rotation synthesis. In particular,
it shows the movement of baselines through the uv plane over the course of a day of
observation with an array of 6 antennas. Here each sampled (u, v) point is accompanied
by its corresponding (−u,−v) point. Schematic taken from Liu & Shaw (2020)

In general, there are two distinct classes of interferometric observation modes. These
are known as the tracking and drift-scan modes. With tracking, individual antennas
are steered and thus track particular fields in the sky, while the drift-scan mode
fixes the antennas, resulting in the observation of those regions of the sky which
are observable from the Earth as it rotates with the telescope. While some radio
telescopes have been build specifically for drift-scan observations, it is generally true
that most can observe in either mode.
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Further, with radio telescopes, there are two observation modes. These are the
single-dish and interferometric modes and instruments are usually purposely built
for one or the other. Naturally, the interferometric instruments are considered more
ideal when considering angular resolution, but are hindered by gaps in the synthe-
sised beams generated by observations which is a problem not faced by single-dish
observations. Generally, the mode of observation depends on the type of science
being done. An advantage, then, is that for cosmological studies, particularly HI
IM, both modes are suitable, as has already been shown by the vast amount of
effort put into the study of the plausibility of using interferometers for this purpose
(for example Morales & Hewitt, 2004; Morales, 2005; Parsons et al., 2010, 2012a, as
well as many others) as well as results from single-dish efforts (as noted above in
studies such as Chang et al., 2010; Masui et al., 2013). For comprehensive reviews
of the principles of interferometry, refer to books such as Wilson et al. (2012) and
Thompson et al. (2017), as well as papers such as Liu & Shaw (2020), which deals
with interferometry in the context of the data analysis techniques employed for 21
cm cosmology.

1.4 21 cm experiments

In the design and construction of experiments aimed at 21 cm cosmology there are a
number of general considerations. These include high sensitivity due to the faintness
of the 21 cm signal across all redshifts of relevance. Additionally, these experiments
have to be sensitive to a broad range of scales relevant to doing cosmology with the
21 cm line. An important example would be the BAO scales. Stability is another
aspect of key importance as the influence of contaminants and systematics can easily
hinder the science conducted on data sets collected with these experiments. Lastly,
these experiments need to be broadband as a goal of the science done with them
is to map the Universe in three dimensions. Thus, efficiency over a broad range of
frequencies is crucial.

Recently, a number of instruments have been planned for the purpose of 21 cm
cosmology. In particular, intensity mapping measurements in the post-reionisation
epoch have already been made with a number of single-dish experiments (shown
in Figure 1.9) that were not necessarily designed specifically for 21 cm cosmology.
These include:

27



• The Green Bank Telescope (GBT), which is a 100 m single-dish telescope
located in West Virginia with an observational frequency range from 110 MHz
to 115 GHz (Prestage et al., 2009).

• The Parkes Radio Telescope, which is a 64 m single-dish telescope located in
Australia and which is able to observe over the frequency range 1230 MHz 6
ν 6 1530 MHz (Staveley-Smith et al., 1996).

Figure 1.9: The Green Bank Telescope (left) and the Parkes Radio Telescope (right).
Photo credits are linked in each experiments name.

Both of these single-dish experiments have already made measurements relevant to
21 cm cosmology in cross-correlation using the intensity mapping technique, despite
both being general purpose radio telescopes. Experiments that were specifically
designed for the purpose of intensity mapping in the post-reionisation Universe, and
that are yet to make measurements or which are still relatively new or being built
include:

• The Canadian Hydrogen Intensity Mapping Experiment (CHIME), located in
British Columbia, Canada, is an instrument comprised of four large cylindrical
reflectors (the full experiment is planned to have five), each with dimensions
20 m × 100 m. It operates as a drift-scan telescope over a frequency ranging
spanning 400 to 800 MHz (Newburgh et al., 2014). It has been designed with
the goal of BAO detection over the redshift range, z = 0.8− 2.5, but can also
be used for other scientific endeavours such as the study of pulsars and Fast
Radio Bursts (FRBs).

• The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) is lo-
cated in South Africa and shares the same scientific goals as CHIME. At
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completion, HIRAX will comprise of a square 32 × 32 grid of 1024 dishes
operating between 400 and 800 MHz (Newburgh et al., 2016). HIRAX differs
from CHIME in that its dishes can be manually repointed.

• The Tianlai experiment is located in the Xinjiang Autonomous Region of
China. It is an 21 cm intensity mapping experiment with a frequency range
of 400 to 1420 MHz, with similar science goals as CHIME and HIRAX (Xu
et al., 2015). Its final design is yet to be decided on, but there are already two
pathfinder experiments, with one being a set of three cylindrical reflectors and
the other a set of 16 dishes.

• The BAO from Integrated Neutral Gas Observations (BINGO) experiment
is located in South America and will aim to make detections over a fre-
quency range spanning 960 to 1260 MHz (Battye et al., 2013). It complements
CHIME, HIRAX and Tianlai due to this frequency range (which sets it at a
different redshift range) as well as the fact that it will be a (proposed 40 m)
single-dish experiment operating in drift-scan mode.

While the list discussed above is not exhaustive, it gives a general picture of the
planned experiments focused on 21 cm cosmology science goals. All four instruments
are shown in Figure 1.10.

1.4.1 The MeerKAT interferometer

The MeerKAT radio telescope is a 64-dish precursor to the Square Kilometer Ar-
ray mid-frequency telescope (SKA1-MID). It is located in the Karoo region of
South Africa (shown in Figure 1.11). Currently, it is the most sensitive decimetre-
wavelength radio interferometer in the world (Jonas, 2016). As a precursor, MeerKAT
will be incorporated into the full array towards the end of the construction of SKA1-
MID. MeerKAT is able to operate in both single-dish and interferometer mode and
operates over two frequency bands, namely, the L-band which spans a frequency
range of 900MHz < ν < 1420MHz, corresponding to a redshift range 0 < z < 0.58,
as well as the UHF-band with ranges 580MHz < ν < 1000MHz and 0.4 < z < 1.45.

There are a number of large survey projects (LSPs) underway with MeerKAT. These
include LADUMA (Baker et al., 2018), MHONGOOSE (de Blok et al., 2016), Thun-
derKAT (Fender et al., 2016), MALS (Gupta et al., 2016), the MeerKAT Fornax
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Figure 1.10: The CHIME (top-left), HIRAX (top-right), Tianlai (bottom-left) and
BINGO (bottom-right) instruments. While CHIME and HIRAX already have sites and
set instrument types, Tianlai is still being tested via pathfinders, while BINGO is in the
concepting phase of its construction. Photo credits are linked in each experiments name.

Survey (Serra et al., 2016), MeerTime (Bailes et al., 2016), TRAPUM, MeerTRAP
(Sanidas et al., 2018), and specifically important for this study, MIGHTEE (Jarvis
et al., 2016). Whereas these surveys all have various scientific goals related to
the distribution, dynamics, and evolution of HI in the Universe (MHONGOOSE,
LADUMA, MALS and the MeerKAT Fornax Survey), transient and pulsar science
(ThunderKAT, MeerTime, TRAPUM and MeerTRAP), and many other astrophys-
ical and extra-galactic prospects, the possibility of utilising the MeerKAT interfer-
ometer for 21 cm intensity mapping has been considered as well (as discussed in
Santos et al., 2017; Pourtsidou, 2016).

In particular, Santos et al. (2017) notes that with an single-dish mode HI inten-
sity mapping survey in one of the two frequency bands available over a period of
five months of observation and an observed area of around 4000 deg2 precise mea-
surements of the HI can be made through the cross-correlation of MeerKAT data
and optical galaxy surveys, as well as with the auto-correlation approach. Further,
they note the complementary and synergistic nature of using these two approaches.
Lastly, since such a survey will also generate interferometric data, it will allow the
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Figure 1.11: The MeerKAT interferometer, located at the Karoo site of the eventual
Square Kilometer Array (SKA) telescope, for which it is a precursor experiment. Image
credit: SARAO.

consideration of various other science cases such as galaxy evolution and polarisa-
tion.

This wide area survey with the MeerKAT telescope known as the MeerKAT Large
Area Synoptic Survey (MeerKLASS) (Santos et al., 2017) would cover the observa-
tion time and area mentioned above and provide a potential detection of the BAO
feature, besides other interesting science goals it could well achieve. Due to this,
it would play a crucial role in laying the groundwork towards cosmology with the
eventual SKA1-MID.

1.4.2 The MIGHTEE survey

While MeerKLASS has been proposed for cosmology, the MeerKAT International
GHz Tiered Extragalactic Exploration (MIGHTEE) survey (Jarvis et al., 2016),
one of the large surveys currently being undertaken by MeerKAT could potentially
provide a means of doing pioneering studies of, and providing a complementary
approach with, interferometric data for the purpose of HI intensity mapping.

In practice, it is an extra-galactic continuum survey over four of the most well studied
regions in the southern hemisphere with the aim of investigating the evolution of
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AGN, star-forming galaxies and galaxy clusters over a wide range of redshifts and
observational fields. These fields are the COSMOS, XMM-LSS, ECDFS and ELAIS-
S1 regions. The observational strategy with its various pointings are shown in Figure
1.12, which showcases the abundance of observational fields as well as the large area
that will be observed in the full survey (about 20 deg2).

Figure 1.12: The pointing strategies of the MIGHTEE survey for three of the four regions
it will observe through its full duration. In particular, it shows XMM-LSS (left), ECDFS
(middle), as well as ELAIS-S1 (right), which together will cover approximately 17 deg2.
Not shown is the COSMOS field, which will contribute to bringing the full observational
area to around 20 deg2. Figure taken from Jarvis et al. (2016).

Despite the MIGHTEE survey’s primary goals, the data available could provide a
means of testing 21 cm intensity mapping in interferometer mode and is used as
a motivation in the development of the simulation pipeline designed to mimic the
MIGHTEE observations. The specifications of the survey are further used to test
the plausibility of measuring the power spectrum from the interferometric data sets
that MIGHTEE will produce.

1.5 Thesis outline

In this study, a purpose-built, visibility-based pipeline that emulates an interfero-
metric observation with the MeerKAT instrument and MIGHTEE survey is utilised
to study effects such as thermal noise and foreground contamination and the impact
they have on calculating the power spectrum from simulated observations of the HI
signal. Various cases are considered to not only estimate the HI power spectrum,
but also test the simulation code in general.

The remainder of the thesis is structured as follows: Section 2 details the theoretical
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aspects of the delay spectrum method used to estimate the HI power spectrum and
describes the simulation codes developed for this purpose. Section 3 discusses the
simulation outputs and power spectrum estimates. Finally, the conclusions and out-
look to future research prospects are presented in Section 4. Throughout this thesis,
cosmological parameters from the Planck 2018 results are used for a flat, ΛCDM
universe (Planck Collaboration et al., 2018). In particular, {ΩM ,Ωb, h, ns, σ8} =

{0.311, 0.049, 0.677, 0.967, 0.8102}.
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2 HI power spectrum estimates: Simulations

2.1 Motivation

In this study, a purpose-built simulation pipeline was utilised to investigate the use
of MIGHTEE data for the purpose of HI intensity mapping and constraining the
HI power spectrum. In particular, the uv distributions, survey parameters and sky
models produced from MIGHTEE COSMOS observations were used as input to help
understand various effects that would hinder a detection of the HI power spectrum
using HI intensity mapping in interferometry mode (for more details see: Paul et al.,
2020, on which the author of this thesis is a co-author). While intensity mapping
has been extensively studied using interferometers (for example: Morales & Hewitt,
2004; Morales, 2005; Parsons et al., 2012a,b; Thyagarajan et al., 2013), these studies
were restricted to low frequency and high redshift with the purpose of studying the
spatial information of the Epoch of Reionization. In this study, a similar analysis
is performed, but with the focus being on the late Universe i.e., high frequency
and low redshifts. An example of such a study is Bull et al. (2015), which focuses
on developing a framework for forecasting cosmological constraints for HI intensity
mapping experiments at low and intermediate redshifts. For thorough reviews of the
use of intensity mapping with interferometers for post-EoR science, refer to Kovetz
et al. (2017) and Liu & Shaw (2020).

Two sets of simulations are discussed here, with the first focused on studying the
foregrounds individually (Section 2.3) and the second being an end-to-end purpose-
built observation and power spectrum calculation pipeline developed with the goal of
testing the effectiveness of applying a delay spectrum framework to high frequency
interferometric data products (Section 2.4), such as those produced by the MIGH-
TEE survey. To narrow things down, both simulations study the COSMOS field,
which is well studied in the literature (as with the VLA COSMOS project, including
the 1.4 GHz and 3 GHz Large projects with Schinnerer et al., 2004, 2007; Smolcic
et al., 2017) and acts as a first test field for running the simulations. This was done
by using both a uv distribution as well as sky model from an actual MIGHTEE
COSMOS dataset.

The compact core of MeerKAT allows for the probing of non-linear scales in inter-
ferometry mode. The techniques employed here are complementary to single dish
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intensity mapping which focuses on much larger scales. These particular scales are
useful for studying, for example, Baryonic Acoustic Oscillations (BAO) (see Eisen-
stein et al., 2005, for the first detection of this phenomenon). These two complemen-
tary regions of interest for each type of experimental setup is shown in Figure 2.1,
where different scales that can be probed by either the single-dish or interferometer
setup are shown on the HI power spectrum. In particular, the single-dish range is
bounded by the survey area on the left and the primary beam of the telescope on
the right, while the interferometer range is bounded by the minimum and maximum
baselines.

Figure 2.1: The scales of interest on the HI power spectrum for single-dish and interfer-
ometer setups at z = 0.27. In particular, the figure highlights the sensitivity of single-dish
experiments to larger scales, which are relevant to studies of the BAO and RSD, while also
showing the smaller scales which the interferometric setup could potentially probe.

A 2D analogue to Figure 2.1 is shown in Figure 2.2. It also shows the regions of
Fourier space which the single-dish and interferometric experiments are sensitive
to. Specifically, it highlights some important boundaries along the line-of-sight such
as bandwidth- (kBW), foreground- (kFG) and frequency channel- (kchannel) and non-
linearity-limited (kNL) Fourier modes, while also highlighting key angular boundaries
such as those related to area (karea), the field-of-view (kFOV) and the longest baseline
(kDmax).
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While being sensitive to the same line-of-sight (k‖) scales, the two are complemen-
tary in terms of angular sensitivity (k⊥). It is for this reason that interferometric
experiments have the capability of probing smaller (non-linear) scales compared to
their single dish counterparts. This distinction is due to interferometers being able
to probe larger k⊥ through their higher angular resolution.

Figure 2.2: A schematic highlighting the regions in k space which are sensitive to both
single dish and interferometric experiments. As seen in the schematic, the two types of
experiment are subject to the same spectral constraints (along k‖), while being comple-
mentary in terms of angular sensitivity (k⊥). This schematic was taken from Bull et al.
(2015).

Overall, the goal of the simulations are to emulate MIGHTEE observations as well
as test effects that might arise in the data analysis and compare this to the actual
MIGHTEE data. In this study, however, the effects were restricted to thermal noise
contamination, foregrounds, as well as instrumental effects that might arise in the
region of Fourier space, which is assumed to be relatively clean of contamination
and thus enabling a detection of the HI power spectrum, known as the HI window.
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2.2 Delay spectrum methodology

The principle of the delay spectrum approximation is to use an estimator for the HI
power spectrum that is very close to the raw data without the need to go to imaging
space. This is shown schematically in Figure 2.3, where the visibilities can either
be Fourier transformed along uv to obtain the image cube or alternatively Fourier
transformed along the frequency axis to obtain the Fourier representation, or the
representation of the raw data in delay space. Further, Figure 2.4 shows the structure
of both the HI signal and foregrounds in delay space. In this Fourier representation,
the HI signal is spherically symmetric, while the foregrounds show strong separable-
axial symmetry. This symmetry difference allows one to use foreground avoidance,
since the foregrounds are localised well in delay space. While one could potentially
utilising foreground cleaning techniques in the delay space directly, the choice of
foreground avoidance over cleaning avoids possible signal loss.

Figure 2.3: Schematic showing the relationship between the image cube, measured vis-
ibilities and the Fourier representation. The measured visibilities or visibility-frequency
cube is the fundamental observable of an interferometer and can either be Fourier trans-
formed along the spatial coordinates to yield an image cube or Fourier transformed along
frequency to show the spatial structure in the visibilities in a full Fourier representation.
The diagram was taken from Morales & Hewitt (2004).

Figure 2.5 shows the practical distinction between the two methods which can be
employed to estimate the HI power spectrum from interferometric data, namely
the delay-style (measured) and imaging-style (reconstructed) methods. Particularly
emphasised are the ways in which the Fourier transforms are taken to produce the
two types of power spectra as well as the way flat spectrum foregrounds create
oscillatory structures in visibilities. The left-hand diagram of Figure 2.5 shows
the real and imaginary components of the emission from a flat-spectrum source as
corrugated shading, while the diagonal black lines show the baseline separations
at which visibilities are measured from the emission. These diagonal lines also
demonstrate how the foreground source creates oscillatory visibilities and how these
oscillations get faster for longer baselines. In the right-hand diagram, the oscillations
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Figure 2.4: The spatial structure of the HI signal (left) and a single residual foreground
source (right). While the HI signal shows spherical symmetry in Fourier space, the fore-
ground source shows strong separable-axial symmetry. The symmetry observed for the
foreground is due to its assumed spectral smoothness, hence leading to almost all the
power being concentrated at small values of η (or τ) and therefore k‖. This symmetry dif-
ference helps one separate the HI signal and foregrounds in Fourier space. The schematic
was taken from Morales & Hewitt (2004).

are shown for the baselines in the left-hand diagram, while also showcasing how the
Fourier transform is taken for the reconstructed (the thick dashed vertical line along
a fixed angular scale) and measured (thin dash-dot line along the direction of the
baselines) power spectrum estimators (Morales et al., 2012).

The imaging-style or reconstructed sky power spectrum estimator is essentially a
3D Fourier transform and square of the reconstructed or imaged sky mapped to
cosmological coordinates. If this reconstructed sky was equivalent to the true sky,
then the foreground power would be confined to the lowest line-of-sight Fourier
modes. However, due to errors in this reconstruction, power is leaked to higher
modes creating a wedge-like structure (which is explored below). In the delay-style
estimator, the visibilities are Fourier transformed along frequency and squared to
form the power spectrum. Hence, no reconstruction (or imaging) of the sky is
attempted. For short baselines, the Fourier transform is almost parallel to the line-
of-sight, but not entirely. From the right-hand diagram of Figure 2.5, it is clear that
the estimator is along kτ instead of k‖. It is for this reason that the delay spectrum
method has its name. Despite this discrepancy in the way the Fourier transform
is taken, here it is assumed that this transform is done parallel to the line-of-sight,
i.e. kτ ≈ k‖, since the discrepancy has a negligible effect on the cosmological power
spectrum (Morales et al., 2012).

The delay spectrum methodology was primarily developed in Morales & Hewitt
(2004) and Morales (2005) and subsequently improved and altered to accommodate
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Figure 2.5: The diagram on the left shows how flat spectrum foreground sources generate
oscillatory visibilities and shows how these oscillations become faster for longer baselines.
The diagram on the right then shows the oscillations for different baselines. In the re-
constructed power spectrum case, the Fourier transform is taken along frequency for fixed
angular scale (baseline) and is shown as the thick dashed line, while the measured sky
power spectrum case takes the Fourier transform along baselines, shown as the thin dash-
dot line. This is one of the key distinctions between the reconstructed (imaging-style)
and measured (delay-style) power spectrum estimators. Both schematics are from Morales
et al. (2019).

its usage for the data or simulation analyses conducted for specific experiments. Pri-
mary examples are in the case of PAPER as was done in Parsons et al. (2012a,b) and
Pober et al. (2013) as well as for the MWA in Vedantham et al. (2012); Thyagarajan
et al. (2013); Paul et al. (2016). Following the formalism presented in Thyagarajan
et al. (2013), the observed visibilities are assumed to take the form:

V obs(u, v, ν) =
{ [
V HI(u, v, ν) + V FG(u, v, ν)

]
⊗WP(u, v, ν)

+ V TN(u, v, ν)
}
S(u, v, ν),

(2.1)
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where V HI denotes the HI signal visibilities and V FG the foreground visibilities
which are then convolved with the spatial frequency response of the power pattern,
WP(u, v, ν). WP(u, v, ν) forms a Fourier pair with WP(θx, θy, ν), which denotes the
primary beam power pattern. These visibilities are then further contaminated by
thermal noise, given in the form of their contribution to the observed visibilities as
V TN and are sampled accordingly at baselines in the interferometric array given by
a sampling function, S. While the effects of this sampling function are not insignif-
icant, it was accounted for in the simulation pipeline described below by various
gridding and averaging processes which are performed to factor in the structure of
the uv distribution used. Further, one can Fourier transform these observed visibil-
ities along frequency to obtain (Thyagarajan et al., 2015)

V obs(u, v, τ) =

∫
V obs(u, v, ν)WB

ν (ν)e−j2πτνdν, (2.2)

where τ denotes the delay and WB
ν (ν) is a spectral weighting window function.

Equation 2.2 then represents the observable in Fourier space and thus contains the
spatial information of the sky that was observed (Morales & Hewitt, 2004). Now,
in the case of small bandwidths and uv coverage, τ ≈ η, where η is the Fourier
conjugate of the frequency, ν, or more specifically, the line-of-sight. Hence, the
delay, τ , has units of seconds, but physically represents the spatial structure and
therefore should be thought of as an inverse distance. This is due to the fact that
the frequency of the redshifted 21 cm line maps to the line-of-sight distance of the
source (Hogg, 1999), i.e.

D(z) =

∫ z

0

cdz̃

H(z̃)
, (2.3)

with z = ν21
νo
− 1, H(z̃) denotes the Hubble parameter at redshift z̃ and ν21 ≈ 1420

MHz is the rest frame frequency of the 21 cm spin-flip transition of Hydrogen.
Further, the interferometric coordinates (u, v, τ) can be related to the cosmological
coordinates (kx, ky, kz) (spatial wave vectors) by (Morales & Hewitt, 2004; Morales,
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2005)

~u = {u, v}

= {kxD(z)

2π
,
kyD(z)

2π
}

=
~k⊥D(z)

2π

(2.4)

and

τ ≈ c(1 + z)2

2πH0ν21E(z)
k‖, (2.5)

where H0, the value of the Hubble parameter today, and

E(z) =
[
ΩM (1 + z)3 + ΩΛ

]1/2
(2.6)

are standard cosmological terms in a flat ΛCDM universe while D(z) is given by
Equation 2.3. Note that here the convention was chosen such that {kx, ky} = ~k⊥

and kz ≡ k‖, with ~k = {~k⊥, k‖} and the magnitudes are given by

k⊥ = |~k⊥| =
(
k2
x + k2

y

)1/2 and k = |~k| =
(
k2
⊥ + k2

‖
)1/2

. (2.7)

The pair of relations in Equation 2.7 gives the cylindrical and spherical averaging
of k space.

Figure 2.3 summarises the relationship between the observed visibilities (essentially
given by Equation 2.1) and the possible Fourier transforms. Equation 2.2 corre-
sponds to going from the middle cube in Figure 2.3 to the cube on the right, showing
the Fourier representation. As discussed above, Figure 2.4 shows the spatial struc-
ture of the two primary quantities of interest in the observed visibilities. Due to the
different symmetries of each, they can effectively be separated in Fourier space, with
the foregrounds being isolated at low τ (and therefore low k‖) due to their spectral
smoothness and the HI signal spread over the entire Fourier space.
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However, the assumption that spectral smoothness should isolate foreground power
at low k‖ does not hold entirely. Due to the inherent chromaticity of an interferom-
eter, foreground contamination spreads to higher values of k‖, effectively forming a
wedge-like structure in Fourier space (as was shown to be the case in, for example,
Datta et al., 2010; Morales et al., 2012; Parsons et al., 2012a,b; Thyagarajan et al.,
2013, 2015).

Figure 2.6: Diagram showing the separate regions in k space, including the three-
dimensional (left) and two-dimensional (right) cases. In both, the regions that are dom-
inated by foregrounds and dominated by the HI signal are clearly shown. In particular,
the shaded region in the left panel is collapsed into the foreground wedge shown on the
right. The region known as the HI window above this is believed to be relatively free of
contamination and is a candidate region for making an estimate of the HI power spectrum.
The transition from three to two dimensions is done by collapsing kx and ky into k⊥. Also
shown are the regions in k space at which instrumental and systematic effects play a role,
such as the bandwidth and baselines. The diagram is from Thyagarajan et al. (2013).

In particular, the geometric representation of k space in Figure 2.6 shows the wedge
region in both three and two dimensions. The shaded region shown is dominated
by foreground sources as well as their sidelobes due to the frequency dependence of
the interferometric instrument and is therefore referred to as the foreground wedge.
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Since most of the studies that focus on this sort of separation techniques are directed
at studying the Epoch of Reionization, the region where the HI signal is dominant
is commonly referred to as the EoR window. For the purposes of this study, this
region will be referred to as the HI window.

Also shown in Figure 2.6 and further emphasised in Figure 2.7 are the various
boundaries of the HI window in the cylindrical k space. The k⊥ boundaries are as a
result of the thermal noise increasing where there are sparser amounts of baselines
(Chapman et al., 2016).

Figure 2.7: Qualitative diagram showing the two-dimensional regions of k space. The
regions shown are specific to radio interferometers, highlighting key things such as the an-
gular k modes that are limited by the extent of the survey area and the array configuration
as well as the limits on the highest line-of-sight k modes due to the spectral resolution. For
k‖, the lowest modes are also limited by cosmic variance, the bandwidth and foregrounds,
all highlighted in the diagram. Additionally, the inherent chromaticity of interferometers
cause foreground leakage at higher k‖ modes for increasing k⊥ modes, leading to the struc-
ture known as the foreground wedge, also shown in Figure 2.6. This diagram was taken
from Liu & Shaw (2020).

At low k⊥, the HI window is bounded by the shortest baseline, bmin. At higher k⊥,
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this boundary depends on the array configuration and coincides with the angular
resolution of the instrument which is effectively given by the longest baseline, bmax.
Further, the k‖ boundaries are frequency dependent, where the lower boundary
depends on the chosen bandwidth (this can be smaller than the total observational
bandwidth) while the higher boundary depends on the frequency resolution of said
observation, given by B and ∆ν, respectively. Mathematically, these boundaries
can be expressed as (Vedantham et al., 2012; Chapman et al., 2016)

k⊥,max =
2πbmaxν21

c (1 + z)D(z)
; k⊥,min =

2πbminν21

c (1 + z)D(z)
(2.8)

and

k‖,max =
2πH0ν21E(z)

c (1 + z)2 ∆ν
; k‖,min =

2πH0ν21E(z)

c (1 + z)2B
. (2.9)

The foreground wedge itself is thought to extend no further than the boundary
known as the horizon limit (Parsons et al., 2012b; Thyagarajan et al., 2013):

k‖ =
H0E(z)D(z)

c (1 + z)
k⊥. (2.10)

To understand the power spectrum from a statistical standpoint, the three-dimensional
Fourier transform of the sky temperature is defined as (distinct from the represen-
tation in Section 1.3.2 in that this represents a means of computing the fluctuations
in the sky temperature in k space)

T̃ (~k) =

∫ ∞
−∞

T (~r)e−j
~k·~rd3r, (2.11)

where ~r = {θx, θy, D(z)} is the comoving position vector. The inverse is then given
as

T (~r) =
1

(2π)3

∫ ∞
−∞

T̃ (~k)ej
~k·~rd3k. (2.12)
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The power spectrum is then defined through the relation:

〈T̃ (~k)T̃ (~k′)∗〉 ≡ (2π)3 δD(~k − ~k′)P (~k), (2.13)

where the power spectrum P (~k) is essentially the quantity we seek in using the delay
spectrum method. The delay-space power spectrum itself can then be calculated
from the correlation of the visibilities since the visibilities are themselves Fourier
transforms of the three-dimensional brightness temperature and therefore contain
information about the power spectrum in their correlation given by (Morales &
Hewitt, 2004; Parsons et al., 2012a; Thyagarajan et al., 2013)

Pd(~u) =
〈
V obs(~ui)

∗V obs(~uj)
〉
δij

=
〈∣∣V obs(~u)

∣∣2〉, (2.14)

where ~u = {u, v, τ}. The delay power spectrum in k space is then obtained by
performing a coordinate transform (u, v, τ) −→ (kx, ky, kz) via a Jacobian matrix
which gives (Thyagarajan et al., 2013, 2015)

Pd(~k) = Pd(~u)|J(~u)|

= Pd(~u)

∣∣∣∣∣∣∣∣
∂kx
∂u

∂kx
∂v

∂kx
∂τ

∂ky
∂u

∂ky
∂v

∂ky
∂τ

∂kz
∂u

∂kz
∂v

∂kz
∂τ

∣∣∣∣∣∣∣∣
=
〈∣∣V obs(~u)

∣∣2〉( Ae
λ2B

)(
D2∆D

B

)(
λ2

2kB

)2

,

(2.15)

where the visibilities given in Equation 2.14 have been substituted into Equation
2.15. Ae and λ denote the effective antenna area and wavelength corresponding to
the central frequency of the observational band, respectively and kB denotes the
Boltzmann constant. D ≡ D(z) here denotes the transverse comoving distance,
given in Equation 2.3, while ∆D is the comoving depth along the line-of-sight corre-
sponding to the bandwidth, B (Thyagarajan et al., 2015), given by (Parsons et al.,
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2012a) as

∆D(z) =
c (1 + z)2

H0E(z)ν21

(2.16)

where it is denoted by Y and given indirectly through the relation, Y kz = 2πτ .
The Jacobian transformation acts to convert the units of the power spectrum from
the Jy2, obtained by squaring the visibilities, to the cosmological units of power,
mK2Mpc3, in addition to normalising the k space power spectrum. Importantly, it
should be noted that the delay power spectrum is an approximation to the cosmo-
logical HI power spectrum, due to it being the convolution of the HI power spectrum
with the window functions (for a full expression of this relation, see (Thyagarajan
et al., 2015; Paul et al., 2016)). Due to this, the delay spectrum is the quantity used
to estimate the input HI power spectrum (given in Section 1.1.2 as Equation 1.24)
from the simulations.

The discussed theoretical framework forms the basis of the simulations detailed in the
sections that follow (particularly Equation 2.15 and the related quantities). Section
2.3 discusses the foreground simulations that use the delay spectrum methods to
study the nature of foregrounds in delay space, while Section 2.4 then details out a
full simulation pipeline that aims to mimic the observational and power spectrum
estimation processes while including the key components - the HI signal, thermal
noise and foregrounds - as they are given in Equation 2.1. Also discussed are the
power spectrum estimation techniques employed to test the pipeline as well as the
various cases considered.

2.3 Foreground simulations

Analysing the nature and structure of foregrounds underpins many of the key cos-
mological probes such as the statistical detection of the HI signal. The delay spec-
trum method allows one to probe modes that are not contaminated by foregrounds
through avoidance. Despite this, it is useful to study foregrounds to understand
how they behave beyond the foreground wedge, which is thought to be the limit
of foreground contamination in Fourier space (as discussed in, for example: Vedan-
tham et al., 2012; Pober et al., 2013; Chapman et al., 2016). The objective of the
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foreground simulations were then to use an input model of the sky and calculate
power spectra from said models as well as the relevant k modes corresponding to
the spectral and angular properties of the simulated interferometer.

Figure 2.8: The sky model produced from the VLA COSMOS Large project (Schinnerer
et al., 2007). The area of the model spans 2 deg2 and contains 2417 sources. The primary
beam overlaid on the sky model is a normalised Gaussian.

The specific mathematical model representing the sky chosen for the foreground
simulations can be expressed as (Paul et al., 2016)

~Tsky(~θ, ν) =
∑
i

Sν,i δ
2
D(~θ − ~θi), (2.17)

where ν specifies the frequency corresponding to the flux, Sν,i, and the position
of each source is specified by the 2D Dirac delta function, δ2

D(~θ − ~θi). Note that
this represents a sky with only a discrete set of extragalactic point sources. For
this study, a catalogue of sources from the VLA COSMOS 1.4 GHz Large Project
(Schinnerer et al., 2007), with 2417 of the original total of 3643 sources over an
area of sky spanning 2 deg2 was chosen as the sky model as the focus of the full
simulation pipeline is also on the COSMOS field. The simulated bandwidth for
the model was chosen to be 75 MHz. Further, the central frequency for the VLA
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COSMOS sky model was scaled down from 1.4 GHz to 1 GHz using a spectral
index of α = -0.78 (Ishwara-Chandra et al., 2010), on the assumption that the
sources in the catalogue were all extragalactic point sources. This central frequency
corresponds to a wavelength of λ = 30 cm and well as a redshift of z = 0.42 for the
VLA COSMOS sky model, and therefore, for the overall simulated observation. This
was chosen to test how foregrounds would behave in the L-band of the MeerKAT
interferometer, which spans 900 - 1670 MHz (Booth et al., 2009) and thus enable
the investigation of foregrounds in the MIGHTEE survey, for which observations
are being made in this band.

The sky model for the VLA COSMOS catalogue is shown in Figure 2.8. It has been
centred on zero and also shows the response of a normalised Gaussian primary beam
on the field of view. In addition to the sky model, a model for the uv distribution
was chosen as input to the foreground simulations. In particular, an actual uv dis-
tribution generated for about 11.2 hours of observation time on the COSMOS field
with the MeerKAT interferometer as part of the MIGHTEE survey was chosen for
this purpose. This distribution is shown in Figure 2.9 and shows the tracks gen-
erated over time as the uv points map out uv space. This particular figure shows
the distribution at 1115.14 MHz (which is the central frequency for the simulation
pipeline described in Section 2.4). In the foreground simulations, the same uv dis-
tribution was used, but set at a frequency of 1 GHz (the central frequency of the
simulated observation).

Generally, the foreground simulations consist of performing a Fourier transform
of the sky model multiplied by the primary beam, WP(θx, θy, ν), along the spatial
axes to obtain the visibilities, V FG(u, v, ν). Since these simulations only consider the
foreground component, they represent a special case of Equation 2.1, in which V obs =

V FG. Specifically, a foreground visibility is generated via the Fourier transform of
Equation 2.17, given as (Paul et al., 2016)

V FG(u, v, ν) =
∑
i

WP(~θi, ν)Sν,i exp(−j2π~u · ~θi). (2.18)

Using Equation 2.18, the visibilities are generated per baseline instead of a uv grid,
over the entire frequency range corresponding to the selected sky model. In addition,
the frequency channel width can also be set by choosing the number of frequency
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Figure 2.9: The uv distribution of an observation of the COSMOS field for a period
of 11.2 hours with the MeerKAT interferometer as part of the MIGHTEE survey, at a
frequency of 1115.14 MHz.

channels over the selected bandwidth for the VLA COSMOS sky model. Although
this simulation mimics an interferometric observation, no flagging or effects related
to the flagging of channels were included, since the focus was on analysing an ideal
case where all the visibilities are uncontaminated and only contain information about
the foregrounds in the sky model so as to investigate whether or not the foreground
wedge would be generated.

The model used for the primary beam power pattern was specifically set to a nor-
malised Gaussian in the foreground simulation. This was done primarily for sim-
plicity, since modelling the Fourier response of the primary beam of a real interfer-
ometer can become exceedingly challenging (Paul et al., 2016). However, since the
primary beam, WP(θx, θy, ν) is Gaussian, its Fourier transform, WP(u, v, ν), is also
Gaussian, thus reducing the complication considerably. The intricate effects of the
primary beam were not studied extensively, and so are just included as a standard
in the interferometric calculations.

The visibilities, V FG, were then Fourier transformed along the frequency axis and
multiplied by a spectral weighting window function,WB

ν , to obtain its representation
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in delay space, V FG(u, v, τ). This can be expressed mathematically as

V FG(u, v, τ) =
∑
k

V (u, v, νk) exp(−j2πνkτ)WB
ν (νk). (2.19)

The inclusion of a window function serves the purpose of minimising foreground
spillover to regions beyond the foreground wedge. While any tapering function
could in principle be used for this purpose, two specific functions were chosen:

(i) Case where WB
ν = 1 ∀ n, i.e. the Tophat or Boxcar window function

(ii) Case where WB
ν is given by the Blackman-Harris window function (Harris,

1978)

The Blackman-Harris window function is given by,

w(n) = a0 − a1 cos

(
2π

N
n

)
+ a2 cos

(
2π

N
2n

)
− a3 cos

(
2π

N
3n

)
,

where n = 0, 1, ..., N − 1.

(2.20)

In particular, the window function presented here is the four-term Blackman-Harris
with sidelobes at a -92 dB level, corresponding to a0 = 0.35875, a1 = 0.48829,
a2 = 0.14128 and a3 = 0.01168. The Boxcar window function is only defined for
completeness, as it is assumed to always be applied in the Fourier transform along
the frequency where no other window function is applied. Figure 2.10 shows both
windows normalised to unity alongside their Fourier responses, which clearly show
the main lobe and sidelobes of both window functions.

The choice of the Blackman-Harris window was made due to it having a high level
performance in signal analysis, even when compared to functions such as the Kaiser-
Bessel, Dolph-Chebyshev and Barcilon-Temes windows, for instance (Harris, 1978).
Lastly, it should also be noted that the definitions of the two chosen window functions
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are discrete in nature, as they are assumed to be applied to data sets which are
discrete in nature (which is always the case in realistic scenarios).

In addition to the transformation of the visibilities to delay space, the τ values were
sampled from the frequency range with the minimum value of τ corresponding to
the reciprocal of the bandwidth, 1

B
, while the maximum value was set to correspond

to the Nyquist limit, 1
2∆ν

, where ∆ν denotes the frequency channel width.

Figure 2.10: The Blackman-Harris and Boxcar/Tophat window functions (left) alongside
their Fourier transforms (right). Here, one clearly sees the loss of signal that results in
using the Blackman-Harris window function. While this window function does reduce
spillover from the foreground wedge into the HI window, it also suppresses the signal and
has to be accounted for in the simulations in order to recover the full cosmological signal.
As is clear from the frequency response plot, the sidelobe level of the Blackman-Harris
window function is at -92 dB. The channel number (in the left-hand plot) and delay range
(right-hand plot) are specific to the full simulation pipeline, while the y-axes of both plots
show the general ranges associated with both windows.

The power spectrum was then calculated by taking the square of the visibility set in
delay space and multiplying by the relevant normalisation factors, using Equation
2.15. This yields the simulated power spectrum in cosmological units. However, it
should be noted that no structural information would be lost if the normalisation
factor were to be neglected in Equation 2.15, since it only acts to change the units
and alter the amplitude of the power spectrum by said factor.

The power spectrum calculated here is three-dimensional and can be cylindrically
averaged to obtain a 2D power spectrum, P (k⊥, k‖), by collapsing the kx and ky

axes to form k⊥, as demonstrated in Figure 2.6 and using Equation 2.7. In addition,
a spherically averaged power spectrum, P (k), can be obtained by averaging the 3D
power spectrum in spherical shells and again using Equation 2.7 to obtain the rele-
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vant k modes. For the purpose of studying the foregrounds, only the cylindrically
averaged power spectrum, P (k⊥, k‖), was calculated in the foreground power spec-
trum simulations since the primary objective here was to investigate the structure
and location of the foregrounds in delay space with the purpose of its avoidance
in eventual estimations of the HI power spectrum from an input model (as is de-
scribed in Section 3.2.1 after delineating the processes of the full simulation pipeline
in Section 2.4).

The k⊥ modes were sampled from the uv distribution using Equation 2.4 with a bin
size of ∆k⊥ = 0.45. One thing to note here is that the wavelength used to perform
this sampling corresponds to the central frequency of the selected bandwidth, since
the delay spectrum approximation is being utilised. Likewise, the k‖ modes were
sampled from the non-negative τ values using Equation 2.5. Additionally, the central
wavelength (frequency) of the selected frequency range corresponds to a redshift that
was used to calculate all the cosmological parameters, such as the comoving distance
and Hubble parameter, which were used to sample the (k⊥, k‖) modes. Together,
these quantities form the primary outputs of the foreground simulations. Table 2.1
essentially summarises the key parameters used in the foreground simulations as
well as in the calculations carried out to eventually produce power spectra.

Simulation parameter Value
Sky model VLA COSMOS
Bandwidth 75 MHz

νc 1 GHz
λc 30 cm
zc 0.42

Source count 2417
uv distribution MeerKAT (11.2 hours)
Window function Blackman-Harris

Primary beam model Gaussian

Table 2.1: Table summarising the key parameters used in the foreground simulations on
the VLA COSMOS sky model. Particularly, it highlights the key input components such
as the window function used, source count in the sky model, and bandwidth.

Using the foreground simulations with the methodology and specific parameters
described, the objective was then to see if the output 2D power spectrum would
showcase the delay style analysis signature (Morales et al., 2019). The result of this
is shown in Figure 2.11.
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Figure 2.11: The 2D foreground power spectrum for the VLA COSMOS source model and
MeerKAT uv distribution over 11.2 hours of observation, generated using the foreground
specific simulations. Here, the Blackman-Harris window function was again applied to
reduce spillover. In addition, this power spectrum is normalised to cosmological units
[mK2 Mpc3]. Further, the minimum k⊥ mode sampled in the simulation is k⊥ ∼ 0.43
Mpc-1, thus motivating a choice to set the transverse k mode bin size to ∆k⊥ = 0.45
Mpc-1.

Specifically, Figure 2.11 shows the power contribution from foregrounds situated in
the expected lower k‖ modes. Most of the power occupies the region below the
foreground wedge (defined by Equation 2.10), indicating that the processes applied
in the foreground simulations are accurate. Besides some spillover of power above the
wedge, there are no structures present in the power spectrum above the foreground
dominated region, which is expected since the simulated observations contained no
information other than that from foregrounds. Lastly, a point worth noting is that
the foreground contribution is solely from point sources in the catalogue and so this
2D power spectrum represents the expected power for a sky containing only point
sources.

This result demonstrates the advantage of the delay style (Morales et al., 2019)
power spectrum analysis, which is essentially isolating the foregrounds to a wedge-
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like structure in Fourier space which comes about due to mode mixing as well as the
smooth frequency structure of the foregrounds. The objective was to check if one is
able to utilise foreground avoidance to extract an estimate of the HI power spectrum
from an observation which contains the HI signal, while being contaminated by
thermal noise, thus motivating the investigation of foregrounds in their own right.
For a diagrammatic outline of the foreground simulations discussed here, refer to
Appendix B.

2.4 Simulation Pipeline: Power spectrum from MIGHTEE

Whereas the previous section discussed simulations focused solely on generating
power spectra on foreground models, the full simulation pipeline takes into account
every component in Equation 2.1. It therefore includes HI signal, foreground and
thermal noise information in the observed visibilities. The simulation pipeline es-
sentially generates visibilities for each baseline, and therefore each point on the
uv distribution generated by the interferometer during an observation. Hence, the
simulated visibilities take the form,

V (ui, vi, ν) = V TN(ui, vi, ν)

+
[
V HI(ui, vi, ν) + V FG(ui, vi, ν)

]
⊗WP(ui, vi, ν),

(2.21)

added to the full visibility set in the pipeline. As mentioned, the observation by
the interferometer itself was simulated by the input uv distribution. As the full
simulations aimed to mimic an observation from the MIGHTEE survey, the uv
distribution used was therefore from the MIGHTEE COSMOS field for 11.2 hours
(Figure 2.9).

Further, the subset frequency band used in this work has a central frequency value
of 1115.14 MHz and spans a bandwidth of ∼ 46 MHz. Additionally, the time reso-
lution, ∆t, is 8 seconds with a frequency channel width, ∆ν, of 0.208984 MHz over
220 frequency channels. The fixed central frequency corresponds to a redshift of
approximately 0.27, therefore setting all outputted power spectra at this particular
redshift. Other important input parameters are listed in Table 2.2. Together these
parameters form the basic inputs to the pipeline from a measurement set generated
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Parameter Value
∆u 60 λ
∆v 60 λ

Ngridpoints 1500
Nchan 220

∆t 8 s
∆ν 0.208984 MHz
∆B 45.97648 MHz
νc 1115.14 MHz
λc 26.9 cm
z ∼ 0.27
Ae
Tsys

6.22 m2/K
tobs 11.2 hours
∆k⊥ 0.35 Mpc-1

∆k‖ 0.031 Mpc-1

∆k 0.45 Mpc-1

Table 2.2: Table summarising the key parameters used in the full simulation pipeline.
The parameters included in the table are those that were fixed for all the science cases
considered in this study. The observation time, tobs is the primary parameter altered in the
science cases considered, as the objective was to see how well the input HI power spectrum
model can be recovered from the simulation pipeline, in which the rest of the parameters
mimic those of an actual MIGHTEE COSMOS observation.

from a MIGHTEE COSMOS observation and were used to calculate all relevant
quantities used in the pipeline such as the power spectrum normalisation factor
(such as those given in Equation 2.15).

2.4.1 Simulation processes

Below, the step-by-step processes involved in the simulation pipeline are outlined in
detail:

(i) Each baseline corresponds to a (u, v) coordinate which changes after every
integration interval over the duration of the tracking. The uv coordinates
are extracted from the measurement set of the MIGHTEE COSMOS obser-
vation over a time period of 11.2 hours. These uv points are calculated from
the baseline distribution at the central frequency of the chosen bandwidth
(1115.14 MHz), so that for a given time the baseline gives the same uv point
at all frequencies. The contributions from the thermal noise, HI signal and
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foregrounds (as in Equation 2.21) are then calculated at each (u, v) point, and
therefore per baseline.

(ii) To model the foregrounds, data from a single pointing of the COSMOS field
over an on-source integration time of 11.2 hours is processed. The data is put
through flagging and calibration using the processMeerKAT pipeline and then
split into a sub-band spanning 950 - 1150 MHz. This data was then further
processed for continuum imaging using deconvolution and self-calibration. The
total intensity image generated from this is shown in Figure 2.12. Further,
the CLEAN components obtained in this data processing are then used as
the foreground model in the simulation pipeline. These components form the
model visibilities from the measurement set. Due to no beam corrections being
applied, the foreground visibilities will include some beam effects (hence the
beam’s inclusion in Equation 2.21). Due to this measurement set being part of
a MIGHTEE COSMOS observation, there is minimal contribution from diffuse
emission (Paul et al., 2020). Therefore, one can make the assumption that the
only significant contribution to the foreground model comes from extragalactic
point sources. For more details on the data processing and modelling of the
foreground contribution, refer to Paul et al. (2020).

(iii) Each visibility generated from the input uv distribution has a contribution
from thermal noise. Now, in order to simulate this contribution to the visibil-
ities, at each (u, v) point (or baseline) in the dataset, the real and imaginary
components of V TN were randomly sampled from a Gaussian distribution with
a mean of zero and standard deviation given by (Morales, 2005)

σTN =
2kBTsys

Ae
√

∆ν∆t
, (2.22)

where kB denotes Boltzmann’s constant, while Tsys gives the system tempera-
ture of the interferometer (MeerKAT in this case). Ae then gives the effective
area of an individual antenna of said interferometer with ∆t and ∆ν denoting
the time and frequency resolution, respectively. The thermal noise contribu-
tion is approximately constant across the frequency channel, and only vary
across uv space since the thermal noise level will depend on the density of
baselines in the uv distribution (Paul et al., 2020).

(iv) A visibility-frequency cube was generated with uniform uv bin spacing, ∆u =
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∆v = 60λ and the frequency axis consisting of 220 channels with the spacing
given by the frequency resolution, ∆ν. The λ value given for the bin size is
specifically fixed to the wavelength corresponding to the central observational
frequency. Moreover, the bin size was motivated by the size of the primary
beam in Fourier space (Paul et al., 2020). Now, due to the presence of ra-
dio frequency interference (RFI) in the calibrated visibilites from which the
foreground model and uv distribution are taken, a criterion was set such that
only those baselines for which the visibility measurements have 80% of their
channels unflagged were considered. To further reduce the contamination,
the remaining flagged channels were filled out with the foreground visibilities
from the nearest neighbour unflagged channel. These measures were taken to
minimize the spillover of foreground power to higher k‖ modes in the calcu-
lated power spectrum, with the latter also specifically ensuring that there are
no zero-valued frequency channels in the delay transformation done along the
frequency axis.

(v) The foreground and thermal noise visibilities within a uv pixel are then aver-
aged using the assumption that the sky signal is the same across every baseline
contributing to that particular grid point. After the thermal noise and fore-
ground contributions have been added and averaged on the grid, the HI signal
visibility contribution, V HI, was added. To model the HI signal visibilities,
the input model HI power spectrum given by Equation 1.24 was used as the
variance of a Gaussian distribution with a mean of zero (µHI = 0). Mathemat-
ically, the variance can be expressed as

σ2
HI =

PHI(k)(
Ae
λ2B

) (
D2∆D
B

) (
λ2

2kB

)2 , (2.23)

so that it is actually the normalised input model HI power spectrum. From this
distribution, the real and imaginary parts of each HI visibility were randomly
sampled at each (u, v) point. However, before these visibilities were added to
the grid, they were in the coordinates, V HI(u, v, τ), due to the fact that the
real and imaginary components were sampled from a distribution which had
a Fourier space variance, i.e., the input HI power spectrum, and so had to be
inverse fast Fourier transformed (IFFT) along frequency for the representation
in the standard coordinates, V HI(u, v, ν). Mathematically, this inverse Fourier

57



transform is given by

V HI(u, v, ν) =

∫
V HI(u, v, τ)ej2πτνdτ. (2.24)

This quantity, V HI(u, v, ν), was then added to the averaged visibility per grid
point. To do this, two crucial assumptions were made. Firstly, that the HI
signal is the same for all points in each uv pixel, which is true if the eventual
uvτ bins after delay transforming the uvν cube are small enough. Secondly,
that the values in different pixels are uncorrelated, which is only true if a uvτ
bin is large enough compared to the primary beam and bandwidth. Hence,
there is a tension in the choice of the eventual uvτ bin size, or equivalently, ∆k⊥

and ∆k‖, since ∆k⊥ should be set by the telescope primary beam, and ∆k‖ by
the bandwidth used. The only alternative would be to include the correlation
between Fourier modes using Equations 2.1 and 2.2 (since Equation 2.15 is an
approximation).

(vi) With the observed visibilities generated by the pipeline on a three-dimensional
uvν cube, the next step is to proceed with calculating the power spectrum us-
ing the delay space methodology. Firstly, the grid is multiplied along the fre-
quency axis by a Blackman-Harris spectral weighting window function (given
by Equation 2.20). As discussed in the section on foreground simulations, this
is done to minimise foreground leakage into the region of Fourier space dom-
inated by the HI signal and thermal noise (everything above the foreground
wedge). The product of the grid and window function is then fast Fourier
transformed (FFT) along the frequency axis. This is essentially given by Equa-
tion 2.2. The delay power spectrum is then calculated using Equation 2.15,
with the normalisation factors calculated from the input parameters. From
this three-dimensional power spectrum, Pd(kx, ky, kz) = Pd(~k⊥, k‖), the cylin-
drically (2D) and spherically averaged (1D) power spectra can be calculated.
These are denoted by P (k⊥, k‖) and P (k), respectively.

(vii) To obtain these 2D and 1D power spectra, an inverse noise weighting is applied
to the 3D delay power spectrum during the averaging processes involved (Paul
et al., 2020). In order to calculate the 1D power spectrum, the k modes which
lie in the foreground dominated region were excluded using the boundary given
by Equation 2.10. A polynomial relating k‖ to k⊥ was used to approximate this
theoretical expression. This was then used as a criterion for calculating the
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1D power spectrum by averaging and weighting above the foreground region
(Paul et al., 2020). Due to foreground avoidance, the modes which were known
to be contaminated by foregrounds were then excluded from the process of
calculating the 1D power spectrum.

(viii) The centre of each bin in the 3D power spectrum was chosen as the (u, v)

values from which the k⊥ modes were calculated. A bin size, ∆k⊥ = 0.35

Mpc-1, which is approximately the same as the lowest mode, k⊥,min ∼ 0.33

Mpc-1, was chosen to perform this calculation. Additionally, the k‖ modes
were calculated on the sampled τ values, with a bin size of ∆k‖ = 0.031

Mpc-1. To perform both these samplings, Equation 2.7 was used. Since the
1D power spectrum is represented in k space, these modes were calculated
using logarithmic bins in k, ∆k, which increase as (~k⊥, k‖) increases in 3D k

space. The smallest bin, ∆k, as well as the k⊥ and k‖ bin sizes are shown in
Table 2.2.

Figure 2.12: The total intensity image of the COSMOS field at 1115.14 MHz, generated
from 11.2 hours of data from the MIGHTEE survey. The continuum model generated
in the imaging process is utilised in the simulation pipeline to generate the foregrounds.
Figure taken from Paul et al. (2020).
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Overall, the 1D and 2D power spectra, along with the sampled k modes make up
the main outputs from the pipeline, with the 1D power spectra being the main
simulation product utilised in the estimator analysis discussed in the next section.
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3 Results

In this section, the output power spectra from the simulation pipeline are presented.
These include both the 1D and 2D power spectra of the thermal noise, foregrounds
and HI signal, as well as the power spectrum from a simulated observation containing
information from each of these components. Additionally, estimates of the HI power
spectrum are presented with their errors. These results were generated through a
statistical analysis employing Monte Carlo processes to calculate the final errors.
Further, this estimator analysis was performed for various observation time cases,
as well as for the case of the auto- and cross-correlation of visibilities in the pipeline.

3.1 Simulation pipeline

Since the simulation pipeline allows one to include each of the key components in
different combinations (HI signal, thermal noise, foregrounds), it also allows one
to generate the power spectra of these combinations and therefore of each indi-
vidual component. To do this, the simulation generates visibilities, V (u, v, ν), for
a given component, then delay transforms them along the frequency axis to ob-
tain V (u, v, τ). These delay space visibilities are then squared and multiplied by a
normalisation factor (Equation 2.15) before being used to generate power spectra
through cylindrical (2D, P (k⊥, k‖)) and spherical (1D, P (k)) averaging, as described
in Section 2.4.

This is shown in the case of the HI signal power spectrum in both 2D and 1D
in Figure 3.1. Here, only the contribution of the HI signal was included in the
simulated visibilities which were then used to generate the power spectra. The 2D
power spectrum demonstrates the spherical symmetry inherent in the HI signal in
frequency space with the power producing almost constant contours along annuli
in k space. The 1D power spectrum shows the mean values over 1000 realisations
produced by the simulation pipeline plotted alongside the input model HI power
spectrum as a continuous curve and points averaged to correspond to the same k
modes as those sampled by the simulation pipeline.

As the simulation pipeline used this input model to produce the HI visibilities in the
pipeline, one expects the realisations to match this input model to some degree. In
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Figure 3.1: 2D (top) and 1D (bottom) HI signal power spectrum outputted from the
simulation pipeline for one pointing of the COSMOS field with an area of about 1 deg2. In
the 2D power spectrum, the spherical symmetry of the HI signal is clearly visible through
the constant contours of power along k. In the 1D case, the input HI power spectrum is
shown as both a curve and points at the k values sampled by the simulation pipeline along
with 1000 realisations of the HI power spectrum outputted from the simulation pipeline.
Also shown is the average over the 1000 realisations at each of the sampled k modes.
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particular, the average over the realisations returns the input model quite well, with
some deviations observed at low k due to cosmic variance. This comes from the fact
that the visibilities generated in the pipeline to calculate the power spectrum are
sampled from a Gaussian distribution with the number of points in the average at
low k being small. At higher k, there is also a deviation observed between the input
and output power spectra, but which is observed to be consistent with the scatter
seen over multiple realisations and is noted to be unbiased on average.

Figure 3.2 shows the thermal noise component of the power spectrum in both 1D and
2D. It should be noted that the thermal noise does not change along frequency, since
it is assumed that the system temperature, Tsys, remains constant in the simulation.
This results in the noise RMS being constant in frequency (the noise itself is a
random Gaussian). This particular effect can be seen in the 2D power spectrum of
the thermal noise shown in Figure 3.2, where the power would eventually converge
to a constant along k‖ for each value of k⊥ after averaging multiple realisations of
the thermal noise power spectrum. In addition to this, the thermal noise increases
along k⊥ in the 2D power spectrum due to the number of uv points becoming sparser
at longer baselines. This is also seen in the 1D power spectrum as it increases for
increasing k. Due to this effect, the higher k modes sampled and outputted by the
simulation pipeline will be noise dominated. Hence, when extracting an estimate
of the HI power spectrum from the simulations, the k modes of interest will be
restricted to k 6 10Mpc−1 (refer to the 1D power spectrum plot in Paul et al.
(2020) for information on how shot noise also factors into this).

Figure 3.3 essentially shows the foreground power spectrum produced from an input
model of radio sources from a MIGHTEE COSMOS field observation of 11.2 hours
(total intensity image of this shown in Figure 2.12). In this power spectrum, the
wedge is shown prominently, separating the region of interest from the rest of the
simulated k space. In this analysis, the foreground component of the simulation
pipeline has simply been used to fit a function separating the foreground wedge from
the HI and thermal noise dominated regions. This curve is an approximation of the
theoretical horizon limit given in Equation 2.10. It is situated well above the wedge
to reduce any possible spillover affecting the resulting estimates of the HI power
spectrum. While this does significantly reduce the risk of foreground contamination
in the estimate of the HI power spectrum extracted from the simulations, it also
leads to the loss of some of the lower k modes. This is important to note as the
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Figure 3.2: 2D (top) and 1D (bottom) thermal noise power spectra outputted from the
simulation pipeline. In both the 2D and 1D cases, an increase is the noise power is observed
for increasing k, despite the 2D noise power spectrum being constant along k‖ due to the
assumption that the noise RMS is frequency independent.
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lower k modes contain information on larger physical scales, which is then lost in
the process of forming the estimator.

Figure 3.3: The 2D foreground power spectrum outputted by the simulation pipeline
with the horizon limit curve fitted to the edge of the foreground wedge. This curve is
an approximation to Equation 2.10. In the analysis, the foregrounds were excluded from
the simulated visibilities. However, due to foreground contamination in real data sets, the
region below the wedge was removed entirely. This would restrict the extracted power
spectra to only those k modes in the HI and thermal noise dominated regions of k space.
Hence, the methods employed here rely on foreground avoidance instead of foreground
cleaning, limiting the number of k modes the analysis technique is sensitive to.

Lastly, shown in Figure 3.4 is the full 2D power spectrum generated by the sim-
ulation pipeline, containing the contributions from the foregrounds, thermal noise
and HI signal. This power spectrum would be closest to that calculated on real
interferometric data, as it contains the contributions from all the key components.
While the power is clearly dominated by the foregrounds, there are structures above
the wedge that show the presence of the HI signal and thermal noise (albeit very
faintly compared to the foregrounds).

Although the foregrounds are not included in the main estimator analysis (due to
foreground avoidance), it is useful to understand which components dominate which
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regions in the 2D power spectrum. From Figure 3.4, it is clear that there is a clear
distinction between the region which is foreground dominated and that which is
dominated by the thermal noise and signal, providing further motivation for the
foreground avoidance technique, despite the loss of some of the lower k modes.

Figure 3.4: The full simulation 2D power spectrum, containing the contributions from
the foregrounds, noise and HI signal. While the wedge is dominated by the foregrounds,
it is clear that the HI window is noise and signal dominated, leaving a region in k space
which allows one to employ foreground avoidance to estimate the power spectrum.

3.2 HI power spectrum estimation

3.2.1 Auto-correlation of visibilities

The estimator analysis was performed with the goal of extracting an estimate of
the HI power spectrum, which was used as the input model of the HI signal in the
simulation pipeline. In order to do this, the observed power spectrum, Po(k), was
assumed to contain information about the signal with contamination from thermal
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noise. Mathematically,

Po(k) = PHI+TN(k). (3.1)

To then extract an estimate of the input HI power spectrum, a model thermal noise
power spectrum is subtracted from the observed power spectrum. However, due to
the random processes involved in generating the thermal noise visibilities, a single
realisation of the thermal noise power spectrum would be an inadequate model and
would not represent the contamination in the observed power spectrum very well.
To compensate for this, an average over N realisations of the thermal noise power
spectrum is chosen to represent this model, i.e.,

PTN(k) =

N∑
i

P i
TN(k)

N
, (3.2)

where i specifies the ith realisation of the thermal noise power spectrum generated
in the pipeline. Therefore, the estimator takes the form,

P̃ (k) = Po(k)− PTN(k), (3.3)

which is over a single realisation of the observed power spectrum, Po(k). To improve
the statistics of the estimator, N realisations of the observed power spectrum were
generated as well and therefore N estimator values were likewise generated for each
k when one subtracts the same thermal noise power model from each observed power
spectrum realisation,

P̃ i(k) = P i
o(k)− PTN(k). (3.4)

At each k mode sampled by the simulation pipeline, the input HI power spectrum
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is then estimated by the mean over the N calculated estimator values,

P̃ (k) =

N∑
i

P̃ i(k)

N
, (3.5)

along with the standard deviation of the sample of N estimator values, σP̃ (k), which
can be expressed mathematically as

σP̃ (k) =

√√√√√ N∑
i

[
P̃ i(k)− P̃ (k)

]2

N

=

√√√√√ N∑
i

[
P i

o(k)− PTN(k)− P̃ (k)
]2

N
.

(3.6)

The estimation is then compared to the input HI power spectrum to test how well
the pipeline is able to recover the HI signal from the simulated observations.

The uv distribution used in the pipeline is extracted from a measurement set of fixed
observation time. However, it is possible to improve the sensitivity by integrating
data from multiple observations coherently. This is advantageous as it results in no
loss of signal. To model this, scenarios in which the observation time is increased
are considered. In particular, observations on the same field as the existing data and
under uniform observational conditions are assumed. In particular, cases of 2 and
5 times the fiducial observation time (11.2 hours) are considered in the estimator
analysis.

Using the two above mentioned observation times, the simulation pipeline was run
for the auto-correlation of visibilities. Hence, the same simulated visibility set was
essentially multiplied with its complex conjugate to obtain the power spectrum as
opposed to having two separately generated visibility sets and multiplying one with
the complex conjugate of the other as in the case of a cross-correlation.

The noise model was generated by running N = 1000 realisations of the simulation
pipeline in the case where the visibilities only contain thermal noise. These reali-
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sations were then all averaged at each of the sampled k modes in the case of the
1D power spectrum. This mean noise power spectrum as well as the 1000 realisa-
tions are shown for both observation time cases in Figure 3.6. Figure 3.5 shows the
histogram of the noise power spectrum realisations at each k mode.

As expected, in both Figure 3.6 and Figure 3.5, we see that the noise level for the
5 × 11.2 hours case is consistently lower than that of the 2 × 11.2 hours case.
Unfortunately, the observed power spectrum at k modes higher than 10 Mpc-1 will
still be noise dominated and so is unreliable for the purpose of estimating the HI
power spectrum. Due to this, the estimator results are only shown for the sampled
k modes lower than 10 Mpc-1.

Figure 3.7 shows the histogram of the estimator values calculated for both obser-
vation time cases as well as the value of the input HI power spectrum as a dark
vertical line for the first six k modes sampled in the pipeline. Since both the ob-
served power spectrum and thermal noise model were run for 1000 realisations, there
are effectively 1000 estimator values at each value of k.

The histogram of the estimator values for both cases lie almost centered on the HI
power spectrum value, with the differences between the two distributions being their
spread, thus making the estimator unbiased. This difference is due to the variation
in the noise levels of each, with the longer observation time expectantly producing
a lower error. Further, the variance in the histograms also include cosmic variance,
making the difference between the two observation time cases smaller at low k, due
to the power spectrum estimates at these low modes being volume-limited. Figure
3.8 shows the mean values of the estimator sample for each k 6 10 Mpc-1, as well
as the errors on each mean value.

In both cases, the means of the estimator results are shown to coincide quite well
with the input HI power spectrum at each given k, with the clear difference being
the error on each. This error includes both noise and cosmic variance. While the 5
× 11.2 hours case is more reliable due to the lower error, both cases seem to perform
quite well in getting back the input HI power spectrum. Hence, in the presence of
noise, one is able to recover the HI power spectrum from an observation of at least
5 × 11.2 hours.
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Figure 3.5: Histograms of the noise power spectra realisations for the observation time
cases, 2 × 11.2 hours and 5 × 11.2 hours, at each of the sampled k modes. As k increases,
the distributions move further away from each other, due to the noise power spectrum
being higher for the lower observation time case. This is further demonstrated graphically
in Figure 3.6. 70



Figure 3.6: Model thermal noise power spectra generated for 2 × 11.2 hours and 5 ×
11.2 hours over 1000 realisations each. The plot shows each set of 1000 realisations as well
as the mean of the total number of realisations in each case. One thing to note is that with
increasing observation time, the noise level drops by a factor of 1√

Nmultiple
, where Nmultiple

denotes the constant multiple used to achieve higher observation times from the fiducial
11.2 hours set in the simulation pipeline.

3.2.2 Cross-correlation of visibilities

As an alternative approach to the auto-correlation of visibilities, this work also
considers the cross-correlation. This cross-correlation is simply the average of one
visibility set (VA), multiplied by the conjugate of another (VB), i.e.,

PA,B(~u) =
〈
VA(~ui)VB(~uj)

∗
〉
δij, (3.7)

in a similar manner shown in Equation 2.14, with the difference being the correlation
of two different sets of visibilities, instead of one with itself. Doing so carries some
inherent advantages, such as the removal of the noise bias, as well as the possible
mitigation of systematics. It is worth considering the cross-correlation for these
reasons as these effects are known to hinder the calculation of the power spectrum
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Figure 3.7: Histograms of the estimator values for the auto-correlation case and obser-
vation times, 2 × 11.2 hours and 5 × 11.2 hours. Only the histograms for the first six
k modes are shown as these were the estimator values of interest. Further, the input HI
power spectrum values at each of the six k modes is plotted as a solid vertical line.
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Figure 3.8: The result of taking the mean of the estimator samples for both the 2 ×
11.2 hours and 5 × 11.2 hours observation time cases. Also shown is the error on these
values, which was taken as the standard deviations of the samples at each k. It should be
noted that this error includes both noise and cosmic variance. Further, the input HI power
spectrum is plotted as points for comparison with the estimator results.

in auto-correlation.

In the case of cross-correlation, two sets of visibilities were simulated with different
realisations of the thermal noise. Hence, the thermal noise visibilities will be uncor-
related and will effectively make the thermal noise power spectrum consistent with
zero for all values of k sampled.

Due to this, the simple difference estimator used in the case of auto-correlation
will not be needed, as the model thermal noise power spectrum in this case will
essentially be zero as shown in Figure 3.9. This figure shows the mean calculated
over 1000 realisations of the thermal noise cross power spectrum, which averages out
to zero. The small fluctuations present in the realisations are due to the thermal
noise visibility components being randomly sampled from a Gaussian distribution.
This is further demonstrated in Figure 3.10, which shows the histogram of the
thermal noise power spectrum values at each k, where there is a spread around zero.
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Figure 3.9: The 1D thermal noise cross-power spectrum for the case of cross-correlation.
Here, the average over 1000 realisations is shown to be consistent with zero at most k
modes probed, with slight oscillations about zero. This result is expected, as the two
visibility sets used to generate the noise cross-power spectra, which is then used to obtain
the average, are uncorrelated and should converge to zero as the number of realisations
increase.

The estimator in this case is equivalent to the observed power spectrum since the
thermal noise will be zero, on average, due to there being no noise bias, in the
eventual power spectrum after performing a cross-correlation. In this case, a 1000
realisations of the observed power spectrum were run for an observation time of 11.2
hours so as to compare this result with that obtained via auto-correlation.

The two sets of 1000 realisations generated here effectively equals the auto-correlation
set of realisations that were generated with an observation time of 2 × 11.2 hours,
since this is equivalent to splitting this data set and cross-correlating. Figure 3.12
shows the histograms of the auto-correlation estimator values as well as the cross-
correlation observed power spectrum values for k 6 10 Mpc-1. Also shown is the
input HI power spectrum value at each of the k modes sampled.

While the distributions are quite similar, the cross-correlation case has a wider
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Figure 3.10: Histograms of the thermal noise cross-power spectrum at the sampled k

modes for the cross-correlation case. Here, it is clear that each of the histograms are
centered on zero, as observed in graphically in Figure 3.9. The spread around zero is due
to the random nature of the sampling of noise visibilities, but as shown in Figure 3.9, this
is averaged to zero over the 1000 realisation sample.
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Figure 3.11: The estimator of the power spectrum in the case of auto-correlation and
cross-correlation for observation time, 2 × 11.2 hours. Also shown is the input HI power
spectrum for comparison with these estimator results. In the case of cross-correlation, the
thermal noise is assumed to be consistent with zero (on average) and therefore does not
contribute to the observed power spectrum. Hence, the estimator in the case of cross-
correlation is simply the observed power spectrum generated by the simulation pipeline,
which is then averaged and plotted here with its error at each k 6 10 Mpc-1.

spread than that of the auto-correlation case. This is observed in the error on both
estimators in Figure 3.11, which demonstrates that for the same observation time,
the case of one visibility set (or observation) performs better in constraining the
power spectrum than the case of two visibility sets (observations), each observed at
half the full observation time, 2 × 11.2 hours. This would similarly be true for the
observation time case of 5 × 11.2 hours, as the only marked difference between the
two is the thermal noise level in the case of auto-correlation. This is simply a result
of having half the observation time in the noise for the cross-correlation case.

In summary, table 3.1 shows the average thermal noise power spectrum values along-
side the corresponding k value at which it was calculated from the 1000 realisations
generated by the simulation pipeline in the auto-correlation case. The thermal noise
values for the cross-correlation case are not shown as they are consistent with zero
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Figure 3.12: Comparison of the histograms of the estimator values from the cross- and
auto-correlation for the first six k modes sampled in the simulation pipeline. The vertical
straight line in each histogram plot shows the input HI power spectrum at the specific value
of k. While the histograms of both cases lie centered on the input HI power spectrum value,
the spread in the cross-correlation case is wider, analogous to the error observed in Figure
3.11.
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k [Mpc-1] PTN(k) [mK2 Mpc3]

2 × 11.2 hours 5 × 11.2 hours
0.493 56.384 22.861
0.875 54.436 21.771
1.545 63.213 25.338
2.739 60.693 24.281
4.746 68.101 27.247
8.445 118.442 47.384
14.901 287.474 114.999
26.041 626.453 250.551
46.753 1499.872 599.943
73.810 2086.446 834.653

Table 3.1: Table showing average thermal noise power spectrum values at each k mode
sampled by the simulation pipeline for both auto-correlation cases considered. The average
thermal noise power spectrum values for the cross-correlation case are not shown. This is
done, since, on average, the thermal noise cross-power spectrum is consistent with zero at
each value of k.

k [Mpc-1] P i
HI(k) [mK2 Mpc3] P̃ (k) [mK2 Mpc3]

Auto-correlation Cross-correlation
2 × 11.2 hours 5 × 11.2 hours 11.2 hours

0.493 12.67 13.283 ± 19.857 12.827 ± 10.144 13.588 ± 24.209
0.875 6.8 6.445 ± 6.163 6.803 ± 2.879 6.925 ± 8.275
1.545 3.37 3.486 ± 2.351 3.339 ± 1.088 3.357 ± 3.364
2.739 1.37 1.348 ± 0.878 1.351 ± 0.366 1.401 ± 1.213
4.746 0.503 0.499 ± 0.484 0.503 ± 0.202 0.535 ± 0.703
8.445 0.162 0.205 ± 0.484 0.178 ± 0.204 0.175 ± 0.699

Table 3.2: Table summarising the estimator mean and error results for all auto- and cross-correlation
cases considered. Also shown are the relevant k modes as well as the input model HI power spectrum
value at each k.
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to some degree. Although the average over 1000 realisations did not result in all
of the values being zero, an increase in realisations would show this to be the case.
As discussed earlier, the thermal noise power spectrum increases rapidly after k =

10 Mpc-1, which is shown to be the case for both observation times. After k =

8.445 Mpc-1, the power more than doubles for both observation time cases and then
increases rapidly for higher k. This is the reason the k modes of interest for the esti-
mator results are restricted to k 6 10 Mpc-1 for both the auto- and cross-correlation
cases.

Table 3.2 shows the results from the estimator analysis for both the auto-correlation
and cross-correlation cases. Alongside the mean values are the error on each. Also
shown are the relevant k modes as well as the input model HI power spectrum
at each value of k for comparison with the estimator results. Clearly, the auto-
correlation for an observation time of 5 × 11.2 hours is the closest to the input HI
power spectrum. By comparison, the 2 × 11.2 hours case in auto-correlation has an
error on each estimator value that is almost consistently double that found for the
5 × 11.2 hours case. Despite this, the auto-correlation case for 2 × 11.2 hours does
perform better than its counterpart in cross-correlation.
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4 Conclusions

In this thesis, the potential use of the MIGHTEE survey for the purpose of HI inten-
sity mapping was explored. With the interferometric data, cosmological information
could be extracted to constrain parameters at small (non-linear) scales due to the
dense core of the MeerKAT interferometer, providing a complementary approach to
the single-dish experiments which generally probe larger scales such as those rele-
vant for BAO studies. As such, the objective was to investigate what can be done
with MIGHTEE in terms of cosmology with intensity mapping and the novel delay-
spectrum techniques commonly employed in interferometric data analysis cases for
the EoR (such as in the case of Parsons et al., 2012a; Thyagarajan et al., 2013).

In order to do this, a purpose-built, visibility-based, simulation pipeline which not
only mimics the MIGHTEE observations, but also calculates the observed power
spectrum, was analysed. Additionally, to test how well the simulation outputs were
able to mimic real interferometric data sets, cosmological information was extracted
from the simulation outputs using a power spectrum estimator for various test cases
relevant to the MIGHTEE survey.

In the presence of noise contaminants, the test was to see how well the HI power
spectrum could be constrained. In order to do this, two test observation time cases
were considered: tobs = {2×11.2, 5×11.2} hours. These cases were from a standard
data set from an actual MIGHTEE COSMOS observation with total observed time
of 11.2 hours, which was artificially increased in the pipeline. Further, foreground
contamination was taken into consideration by utilising the foreground avoidance
technique to exclude the k modes in the regions of Fourier space that were foreground
dominated. The effects of RFI were also taken into consideration by setting a
criterion in which only those baselines which have 80% of their frequency channels
unflagged are used for the eventual power spectrum estimation.

For each observation time case, 1000 realisations of the power spectrum from obser-
vations containing thermal noise and the HI signal, in addition to 1000 realisations
of the thermal noise for the model noise power spectrum, were generated. These
realisations were then used to produce final power spectrum estimates as well as
their associated errors.

The results for the power spectrum estimates are promising. At z = 0.27, and
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both observation time cases, the estimators are able to recover the input HI power
spectrum quite well in auto-correlations of visibilities over the range 0.493 6 k 6

8.445 Mpc-1. The same was seen for the case of cross-correlation of different sets of
visibilities, despite the auto-correlation cases outperforming it, even for comparable
observation times. Overall, the results seem to favour a deep integration over a
single field and using this data to estimate the HI power spectrum. Additionally,
the fact that MIGHTEE will observe multiple fields over the course of the full survey
provides a means of reducing the cosmic variance (Paul et al., 2020). Both these
insights provide a hopeful picture for the prospect of using MIGHTEE data to study
the universe at low redshifts via the HI signal, as the full survey will be over four
well studied extra-galactic fields over a total observation time of around 1000 hours.

Despite these positive results, there are limitations which need to be accounted for.
Firstly, due to the relative simplicity of the power spectra generated in the simulation
pipeline, the results obtained are for the best scenario in which the noise is the
primary contaminant, since foreground avoidance excludes the modes contaminated
by said foregrounds. In this case, it is a relatively simple matter to model and
account for it. In reality, there are various other contaminants which need to be
taken into account, such as systematics. In future, an aim would be to factor in
systematic effects which would enable their effects on the eventual power spectrum
estimates to be studied in more detail.

Further improvements would include modelling of the primary beam, which has
largely been ignored in this study. This could be added via a more complex fore-
ground model which includes instrumental effects such as the primary beam in order
to study how this affects the foreground wedge. Despite the analysis relying on fore-
ground avoidance, it remains crucial to accurately model and account for foregrounds
when trying to make precision measurements of the HI signal, especially if one wants
to recover modes usually lost in this process (Chapman et al., 2016). In that case,
another possible extension to the analysis could include comparing the method of
foreground avoidance to foreground cleaning.

Moreover, the use of sophisticated simulations (such as hydrodynamical or N-body
simulations) could also potentially be used to better model the input HI signal and
thus allow a more accurate study of the power spectrum to be performed. This is
especially important on the non-linear scales which the MIGHTEE survey probes
due to the need to accurately model the structures at these scales. Interesting studies
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in which this was done can be found in Villaescusa-Navarro et al. (2018) and Spinelli
et al. (2020), where quantities important in 21 cm intensity mapping such as the
HI mass function and density were investigated using sophisticated simulations. An
interesting expansion on this would be to test how accurately one would be able to
measure several parameters, such as the standard ΛCDM cosmological parameters,
as well as the HI mass function parameters. In terms of the pipeline and results
obtained at present, possible extensions would include running test cases with higher
observation times (such as the full MIGHTEE observation time of 1000 hours) and
looking at the power spectrum estimates from this.

Overall, as the MIGHTEE survey continues making observations, continuous im-
provements to the simulations and the integration of more sophisticated models of
all phenomena involved in the observations and power spectrum estimation work will
be undertaken. All the insights attained through this process would aid in the goal
of eventually making an actual measurement of the HI signal through interferometric
HI intensity mapping.
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Appendix A: Fourier Transforms

The Fourier transform is a mathematical transform which decomposes a function
into its constituent frequencies. Formally, it can be viewed as a mapping from the
real numbers to the complex numbers, f : R→ C. It can be defined as

F (s) =

∫ ∞
−∞

f(x)e−j2πsxdx, (A1)

with its inverse given by

f(x) =

∫ ∞
−∞

F (s)ej2πxsds. (A2)

f(x) and F (s) then form a Fourier pair and can be written symbolically as

f(x)↔ F (s). (A3)

The pair of variables x and s are known as the conjugates of each other. For example,
if x represents frequency in Hz, then its conjugate, s, would represent its inverse,
i.e. s would then denote time in seconds. An important result in Fourier theory is
the Convolution Theorem, given mathematically as

f(y)⊗ g(y)↔ F (s)×G(s), (A4)

which essentially says that the convolution of two functions is equivalent to the
product of their Fourier transforms. Further, the convolution of the two functions,
f(x) and g(x), is defined as

h(y) =

∫ ∞
−∞

f(x)g(y − x)dx = f(y)⊗ g(y). (A5)

These results essentially sum up the most important properties of the Fourier trans-
form used in this thesis. For a more thorough discussion of Fourier transforms, refer
to the appendices in Wilson et al. (2012); Thompson et al. (2017), or the general
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text of Bracewell (1965).

Appendix B: Foreground simulation processes

Figure B1: Flow chart showing the code scripts and notebooks in which the processes
involved in generating the foreground power spectrum of the VLA COSMOS point source
catalogue were performed. Scripts for data importing, the functions used as well as the
various cosmological and observational parameters are called in a notebook to run the
processes such as FFT’s and output the 2D foreground power spectrum with the relevant
k⊥ and k‖ modes.
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Figure B1 shows a flow diagram summarising the processes involved in the calcu-
lation of the 2D foreground power spectrum of the VLA COSMOS data set, as
described in Section 2.3. It gives a simple outline of the processes which one would
need to follow in order to go from generating visibilities on a sky model to calcu-
lating the power spectrum and the associated k modes from these visibilities. It
includes the scripts used for each task that forms part of the calculation process
(the importing of the uv distribution and point source catalogue, the primary beam
and other relevant functions, and the setting of parameters such as the cosmological
parameters, bandwidth, number of frequency channels, etc.) as well as the notebook
in which the final calculation of the power spectrum was performed.
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