Library Portal | UWC Portal | National ETDs | Global ETDs
    • Login
    Contact Us | About Us | FAQs | Login
    View Item 
    •   ETD Home
    • Faculty of Natural Science
    • Department of Statistics & Population Studies
    • Magister Scientiae - MSc (Statistics and Population Studies)
    • View Item
    •   ETD Home
    • Faculty of Natural Science
    • Department of Statistics & Population Studies
    • Magister Scientiae - MSc (Statistics and Population Studies)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parametric deconvolution for a common heteroscedastic case

    Thumbnail
    View/Open
    Thesis (6.863Mb)
    Date
    2016
    Author
    Rutikanga, Justin Ushize
    Metadata
    Show full item record
    Abstract
    There exists an extensive statistics literature dealing with non-parametric deconvolution, the estimation of the underlying population probability density when sample values are subject to measurement errors. In parametric deconvolution, on the other hand, the data are known to be from a specific distribution. In this case the parameters of the distribution can be estimated by e.g. maximum likelihood. In realistic cases the measurement errors may be heteroscedastic and there may be unknown parameters associated with the distribution. The specific realistic case is investigated in which the measurement error standard deviation is proportional to the true sample values. In this case it is shown that the method of moment’s estimation is particularly simple. Estimation by maximum likelihood is computationally very expensive, since numerical integration needs to be performed for each data point, for each evaluation of the likelihood function. Method of moment’s estimation sometimes fails to give physically meaningful estimates. The origin of this problem lies in the large sampling variations of the third moment. Possible remedies are considered. Due to the fact that a convolution integral needed to be calculated for each data point, and that this has to be repeated for each iteration towards the solution, maximum likelihood computing cost is very high. New preliminary work suggests that saddle point approximations could sometimes be used for the convolution integrals. This allows much larger datasets to be dealt with. Application of the theory is illustrated with simulation and real data.
    URI
    http://hdl.handle.net/11394/5185
    Collections
    • Magister Scientiae - MSc (Statistics and Population Studies)

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    DSpace 6.3 | Ubuntu | Copyright © University of the Western Cape
    Contact Us | Send Feedback
    Theme by 
    @mire NV