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PREJFACE

In chapter O we give the notation used, pertinent definitions and concepts used

throughout, and state fundamental results.

Chapter 1 is a historical overview of the development of the variances of purity.
Here we state the concept, the originator of the concept and approximate date when
the concept was first introduced by means of a paper. We then state the motivation

tor the new concept if it is apparent in the literature.

From chapter 2 onwards, we limit our discussion to variances of purity applicable

only to torsion-free abelian groups.

In chapter 2 we compare variances of purity. We show which definition imply
others and show examples where possible,‘of a subgroup which satisfies a weaker
but not a stronger definition and thus providing the weaker definition with a raison

d’étre.

Chapter 3 is a collection of theorems which deal with groups with special
conditions. These conditions are interesting in that when a group has these

conditions, a certain class of subgroup is guaranteed to have stronger properties.

iii
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We have included appendices A.1 and A.2 since certain concepts discussed in this
dissertation, can only be fully understood once these sections have been perused.
However, despite its importance, we felt that these explanations interrupted the
tlow of the main document. To this end, A.1 discusses the concepts of primitivity,
valuated coproduct, *-valuated coproducts and *-pure subgroups; A.2 discusses

the concept of k-groups.

iv
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ABSTRACT

In 1921, Priifer introduced the concept of a pure subgroup of an abelian group.
This concept, which is applicable only to abelian groups, proved to be a very
useful one. Subsequently, this concept has sparked off numerous definitions of
subgroups of abelian groups which are either generalizations or refinements of the

pure subgroup.

We look firstly, at how these ideas have developed since Priifer’s time. This
picture has been gleaned by the perusal of the Mathematical Reviews to see which
papers have been published regarding this topic and then, where available, by

studying these papers to try to understand the rationale of the author.

Secondly, we group certain concepts which are comparable and then study the

interrelation between these concepts.

In chapter 3.1, it is shown that, for a torsion-free abelian groupG, the following
conditions are equivalent:

(1) G is a finite rank completely decomposable group,

(i1) all pure subgroups of G are summands,

(iii) all pure subgroups of G are balanced in G.

http://etd.uwc.ac.za/



One of the interesting results of section 3.2 is the theorem that states that a
subgroup of a finite rank completely decomposable group is *-purely generated if
and only if it is strongly regular pure and that of 3.3 is that any finite rank *-pure

subgroup of a separable group is a completely decomposable summand.

Section 3.4 uses for a basis, the theorem proved by P. Hill and C. Megibben which
states that a X-pure subgroup of a k-group is itself a k-group. What is so
interesting about this theorem is that one of its corollaries states that a X-pure

subgroup of a separable group is also strongly pure.
The last section of the dissertation discusses the relationship between knice
subgroups and balanced subgroups. A pure subgroup is knice if and only if it is

balanced and its quotient group is a k-group. This result looks as though it could

be helpful when trying to look at alternative definitions of balancedness.

vi
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CHAPTER 0 - PRELIMINARTES

Throughout this dissertation the word group, unless
otherwise stated, refers to an additively written abelian

group.

The standard references are [Ful]l and [Fu2] and in this
chapter, we introduce the notation, definitions, basic
concepts and preliminary results frequently used in this

dissertation.

§ 0.1 NOTATION

the set of integers.

the set of non-negative integers.

the set of rational numbers.

0 2 N

the set of prime numbers.

R or w : the first infinite ordinal.

R, or w;, : the second infinite ordinal, etc.

€, € : is contained, properly contained in.

(s), (8). : the subgroup, pure subgroup generated by S.
T(G): the torsion subgroup of G.

G/H : the quotient group G modulo H.

A\B : the elements of A which are not in B.

A+B, LA, : the subgroup generated by A and B, the A.

& : the empty set.

> : mapping between sets.

=
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1, : the identity map of A.

a|, : the restriction of a to A.

ker o : the kernel of the homomorphism «.

Im @« : the image of the homomorphism «.

@, D, ®: the internal, external, and (where there is

no ambiguity) the direct sum of...

hS(x), h,(x) : the p-height (p prime) of x in G, and
(where there is no ambiguity) the
p-height of x.

Xg(X), x(x) : the height seguence of x in the torsion
free group G, and (where there is no
ambiguity) the height sequence of x.

typeg(x), type(x) : the type of x in the torsion free

group G, and (where there is no

ambiguity) the type of x.

T(G) : the typeset of the torsion free group G.
Z(G) : The critical typeset of the torsion free group
G.
€ : The set of characteristic sequences.
T : The set of types.
2

http://etd.uwc.ac.za/



§ 0.2 DEFINITIONS AND BASIC CONCEPTS

We start by mentioning concepts fundamental in the study

of arbitrary abelian groups.

0.2.1 Internal direct sums

Let A and B be

subgroups of G. We say that G 1is the

sum of A and B (written G = A & B) if

internal direct

G =A+ B (i.e.

sum of elements

every element of G can be written as a

in A and B) and An B = { 0 }. We say

that A is a direct summand of G if G = A & B for some B

a subgroup of G.

This notion can be generalized to an

arbitrary collection of subgroups in G viz. (A, : 1€ I}.

We say that G =

satisfied

@ A, if the following two conditions are

a) G=3Y A;, and

iel

b) a; N X a;

jeT
%1

= {0}, forall i€ I.

Each A, is a direct summand of G.

An abelian group is called indecomposable if it has only

trivial direct

indecomposable.

summands. Q is known to be

|w
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0.2.2 Direct Products and External direct sums.

Let (A, : 1 € I) be a family of groups indexed by I.

The direct product, G = II A,

leI

is defined as follows:

f ¢ G if £ is a function with domain I and range U A
iel

and £(i) € A, for every i € I.

f + g: I »>UARA is defined to be (f+g) (i) = £(i) + g(i)
iel

and thus (f + g) (i) e A, It can be shown that G becomes
an abelian group under the binary operation defined

above.

For every i ¢ I, define
(a) m : G- A by m(f) = £(i) and call this the i-th

proijection;

(b) p; : Ay > I B3 as follows:

jer
for any x e A, p;(x) = pix
] x, 1f i=3
where p; ,(Jj) = |

0, if i#j.

For every £ € G, we define
supp(f) = { i ¢ I : £(i) # 0 } and call this subset of I

the support of £ . If we put

F={f € G : supp(f) is finite }, then since
supp (f+g) < supp(f) U supp(g) for every f, g € G, it is

4
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easy to see that F is a subgroup of G = Il A. F is
ieI

called the external direct sum of the A's and is denoted

by @gA;. It can be shown that

(1) &g, = Bp; () and that

(2) for any fe®ga,, f= Y p,m;f.
ier 1esupp(f)
0.2.3: Free and divisible abelian Groups

An abelian group F is free on a set X if there exists a

function 1 : X » F such that for any function

f : X-> G, G an abelian group, there exists a group
homomorphism # : F - G such that i = £. It can be shown
that for any non-empty set X there exists a free abelian
group F satisfying the definition above. This implies
that every abelian group is an epimorphic image of a free
abelian group (see [Ful: p.74)]) 1i.e. for every abelian
group G, there exists a free abelian group F, and an
epimorphism 6 : F » G. The free group F together with

0, is called a free resolution of G.

An abelian group P is said to be projective if, for any
abelian groups A and B, if « : A » B and 8 : P » B are
homomorphisms with o onto, there exists a homomorphism

§ : P > A such that af = (.

An abelian group D is

jon

http://etd.uwc.ac.za/



a) divigible if for every non-zero integer n and x ¢ D,
there exists y € D such that ny = x.

b) injective if, for any abelian groups A and B, if
@ : A»>B and 8 : A » D are homomorphisms with o monic,

there exists a homomorphism 6 : B - D such that fa = 8.

0.2.4 Linear independence and rank

A subset L = {x; : 1 ¢ I} of an arbitrary abelian group,
G, is called Z-independent (or just independent if there
is no ambiguity) if for any finite sum Inx; = 0, with
n, ¢ Z, then nx, = 0 for all i. It can be shown [Ful:p.85]
that a system L is independent if and only if the
subgroup generated by L is the direct sum of cyclic
groups (x;), 1 € I. An element g of G depends on L if
there exist integers n, n;, n,, ..., n. such that
0 #ng = X, + X, + ... + nX with x € L. An
independent system L is maximal if there is no
independent system in G containing L properly. By
Zorn's lemma, every independent system in G can be
extended to a maximal one and, if the initial independent
system contained only elements of infinite or prime power
orders, then the same can be assumed of the maximal one.
The rank of G, denoted r(G) is the cardinal number of a
maximal independent system in G. It can be shown that
r(G) depends only on G see [Ful: Theorem 16.3, p.85].

Note that if r(G) = 1, then any two elements in G depend

[
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on each other.

0.2.5 Height/characteristic sequences and tvpes

We now introduce the concepts of height, height sequence
and type which will play a fundamental role throughout
this dissertation.

A sequence s = (s p € P) is called a characteristic

p
sequence if s, is either a non-negative integer or the
symbol . (The reason that we index the sequence by P

will be apparent later on.)

We define a relation ~ on the set € of characteristic
sequences, as follows:
s ~t if (i) s, = » if and only if t,= « and

(ii) {p : s, # t,} is finite.

It can be shown that this defines an equivalence relation
on € and an equivalence class with respect to this

relation is called a type.

We can also define an order relation < on € by
s = t if and only if s, s t, for all p in P. If neither
& s t nor t s s then s and t are said to be incomparable

and we write : s H t.

I~3
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With respect to this order relation, € forms a complete
distributive lattice with mwmeet and join operations
defined by:

(s A t), = min{ s

oty } and (s V t), = max{ s, ¢t,}

respectively.

Let n=]] p™ € N, where r, ¢ N, and let s be any
DEP

characteristic sequence. (Note that r, = 0 if and only if
(n,p) = 1 in this product. We find it convenient to
define the "product" of s and n to be the characteristic

sequence ns = (t,) where t, = s, + T

-
The order relation and meet and join operations defined
on € induce corresponding notions on the set T of types
as follows:

for 7, and 7, in T,

a) 7, s 7, if and only if there exist s; € 7, , where
i =1, 2 such that s, = s;;

b) T = 1, A7, 1if and only if 7 contains s; A s, with
s; € T, where 1 = 1,2; 7, V T, is defined in a

similar manner.
If neither 7, < 7, nor 7, s 7, then 7, and 7, are
incomparable (written 7, | 7,). For convenience, if

T, s T, but 7, # 7,, then we say that 7, < 7,.

Let G be a torsion free group and p a fixed prime. We

loo
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obtain the following sequence of subgroups of G:

G = p°%G 2 pG =2 p?G =2...2 p?G a... n e N,

If x € G, the p-height of x in G, denoted by h{(x), is
defined to be n if x ¢ p"G\p"*!G, otherwise it is =.

The characteristic sequence ( hg(x) : peP ) is called the
height sequence of x in G and will be denoted by xg(x).
The equivalence class containing the height sequence of

X in G will be called the type of x in G and will be

denoted by typeg(x) . The typeset of the group G, T(G),

is the set of types of all the non-zero elements in G.
Note that for any n € Z, xg(x) ~ X¢(nx) and thus
typeg (x) = typeg(nx) . L2 Sk el g il (i.e. all the
elements in G have the same type) then G is said to be

homogeneous.

Every height sequence s ¢ € determines a fully invariant
subgroup G(s) = {x € G: Xz(x) = s } of G which contains
the fully invariant subgroups G(s’) and G(s’,p), where

G(s") is generated by all the x’'s in G(s) with xg(x) not

equivalent with s, while G(s",p) = G(s") + pG(s). Note
that
(a) if s < t, then G(t) € G(s), G(t’) € G(s), and

G(t",p) € G(s',p); and
(b) if t = ns, then G(t) = nG(s), G(t") = nG(s"), and

G(t",p) = nG(s",p).

o
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For every type 7 we also have the following fully

invariant subgroups of G:

G(7) = L G(s) = U G(s) and G(7") = L G(s") = U G(s’).
SET SeT SeT SeT

Remark: The subgroup G(7) of G is simply the collection
of all elements x of G such that typeg(x) = 7 and is, in
general, a pure subgroup of G. However, the collection
of elements in G(s) with height sequences not equivalent
to s and the collection of elements of type > 7 do not
necessarily form a group. Hence we have to define G(s’)
and G(7") as the subgroups generated by these respective

elements in G.

Clearly G(7") € G(7) for every type, 7, and if
G(7") C G(7) then 7 ¢ T is said to be a critical type of
G. The set of critical types in T(G) is called the

critical typeset of G and will be denoted by &(G).

0.2.6 Completely decomposable and separable torsion free

roups

A torsion-free group is said to be completely

decomposable if it is a direct sum of rank 1 groups and

is called almost completely decomposable if it contains

a completely decomposable subgroup of finite index. If
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every finite subset of a torsion-free group G can be
embedded in a completely decomposable finite rank direct
summand of G, then G is said to be separable. Trivially,
every completely decomposable group is separable but
there are examples of separable groups that are not

completely decomposable.

§ 0.3 SOME PRELIMINARY RESULTS

0.3.1: Let F be a free group and H a subgroup of F.
Then
a) F is a direct sum of infinite cyclic groups;

b) H is also free;

c) 1if rank(F) = n, a positive integer, then there exists
a basis {x,%,,....,x,} of F and integers r, k;, k;, ..., k,
where 1 = r = n and klky.; ,i=1,2,...,r-1 such that
{k;%x;, ..., kx,} is a basis of H. (Stacked Basis Theorem

for finite rank free groups).

0.3.2: A group is free if and only 1if it has the

projective property.

0.3.3: A group is divisible if and only if it has the

injective property.

0.3.4: A divisible subgroup D of an abelian group, G, is

a direct summand of G and we can write G = D © C where C

11
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contains no divisible subgroups other than 0. C 1is

called a reduced group.

0.3.5: If s and t are height sequences, then s ~ t if
and only if there exist n,m € Z such that ns = mt. Thus

if G is a rank 1 group, then G is homogeneous.

0.3.6 If G = ® G, then:
G(s) = ® G(s) and G(s") = & G;(s");
G(1) =® G(7) and G(7") = & G(77)

1

0.3.7: If G is completely decomposable, then 7 ¢ &(G) if
and only if there is at least one summand G, of G such
that T(G,) = {7}. Let G, be the direct sum of all rank

one summands of G of type 7 then G =@ (G, : 7 ¢ &(G).

0.3.8: If G =H® K then &H) S &(G).
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CHAPTER 1 - HISTORICAL OVERVIEW

In this chapter the various notions of purity that
appear 1in the research papers reviewed in Mathematical
Reviews vol 21 to vol 92g will be introduced. As far as
possible, the names of the people who first introduced
the different concepts of purity, as well as the
approximate date that the idea was introduced, will be
given. We will also endeavour, where possible, to supply

the observations that led to some of these definitions.

In 1921, Priufer [Pr] introduced the notion of a "pure
subgroup" which has turned out to be one of the most
useful and powerful concepts in the study of abelian
groups. A subgroup H of an arbitrary abelian group, G,

is said to be pure in G i1if nH = nG n H for any n ¢ Z.

Note that, in general, nH S nG n H for all integers n
and, in order to check whether a subgroup is pure or not,

we need only verify the other containment.

The notion of pure subgroups is intermediate between
subgroups and direct summands and it reflects a way in
which a subgroup is embedded in the whole group.
Specifically, it can easily be shown that all direct
summands are pure subgroups. However, since a subgroup
H is pure in a group G whenever G/H is torsion-free, 1if

we take a free resolution of the group of rationals Q,

i3
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the kernel 1is pure but not a summand otherwise its
complement would be isomorphic to Q. On the o£her hand,
2Z is a subgroup of Z which is not pure. Thus, being a
direct summand is stronger than being pure, which in

turn, is stronger than being an ordinary subgroup.

One can appreciate the significant role played by pure
subgroups when one considers, for example, basic
subgroups. These play a crucial part in the study of

p-groups and are, by definition, pure.

It is also a well-known fact [Ful: p.106] that every
abelian group can be embedded as a subgroup of a

divisible group - called the divisible hull of the group.

The structure of divisible groups is described completely
by Theorem 23.1 [Ful: p.104] and, thus, one of the
approaches to describing the structure of all abelian
groups is to study how a subgroup is embedded in its
divisible hull. We can also be interested in when
certain properties of the larger group are inherited by
a particular class of its subgroups. It can be easily
demonstrated that pure subgroups of divisible groups
inherit the property of being divisible. Thus, a group
which is not divisible cannot be a pure subgroup of its
divisible hull. Hence one way of getting closer to
understanding the structure of abelian groups, is to
study subgroups with properties that are weaker than

being pure.

http://etd.uwc.ac.za/



According to the famous Baer-Kaplansky-Kulikov Theorem

(see [Fu2: p.114]), direct summands of completely
decomposable groups are themselves completely
decomposable. Bican [Bi2] gave an example of a pure

subgroup of a completely decomposable group which is not
completely decomposable. The question can thus be asked
whether a variance of purity (stronger than ordinary
purity, yet weaker than being a summand) exists so that
this class of subgroups of a completely decomposable
group is guaranteed to be completely decomposable. To
date, there are no examples in literature which give a
negative or affirmative answer to this, except in
restricted cases (e.g. homogeneous pure subgroups of
completely decomposable group G are completely

decomposable provided that &(G) is countable) [No3].

Since the introduction of the concept of purity, many
variances of purity were introduced and studied. The
question posed in the previous paragraph shows that the
pursuit of finding new variances of purity is still an
interesting and worthwhile activity. What follows in
this chapter is a collection of the definitions of the

variances of purity that exist in literature.

The torsion part of an abelian group is a direct sum of
its p-components and thus the study of the torsion part
can be reduced to the study of p-groups. The observation

that every p-subgroup H of a group G has the property

15
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that 'H = H N "G for all n ¢ N, g ¢ Pand g #.p leads to
the definition of p-purity. A subgroup H of a group G
is p-pure in G if p'™H = H n p"G for any n ¢ N. From the
remark above, a p-subgroup H of G is g-pure for all g # p
and H will therefore be pure in G if and only if it is p-

pure in G.

If, in the definition of purity, we restrict the integers
to be only prime numbers, then we get the definition of
neatness as introduced by K. Honda [Ho]. 1In other words,
H is neat in G if pH = H n pG for all p € P. A pure
subgroup is trivially neat and in torsion-free groups,

neatness and purity coincide.

If pH = H N pG for a fixed prime p € P, then H is said to
be p-neat in G. For any prime p, a p-pure subgroup of G

is necessarily p-neat.

A pure subgroup H of a group G has the property that if
0 # ng € H, where g € G, then there is an element h ¢ H
such that nh = ng. In torsion-free groups this implies
that g € H. In mixed or torsion groups, however, this is
not necessarily the case, for if ng € H, there might
exist an element h € H, distinct from g, with the
property that ng = nh. A. Abian and D. Rinehart [AR], in
1963, called a subgroup H of an arbitrary group G honest
if, for any n € N, 0 # ng ¢ H implies that g ¢ H. Thus

an honest subgroup will necessarily be a pure subgroup

16
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and, if G is torsion-free, then H would be honest in G if
and only if H is pure in G. It is proved in [AR] that
if H is honest in G, then either H C T(G) or T(G) & H,

where T(G) is the torsion subgroup of G.

Suppose that H 1is a proper subgroup of the torsion

subgroup of G. Then H is honest in G if and only if the

following three conditions are satisfied

(1) T(G) is a p-group for some prime p;

(ii) H is a direct sum of cyclic subgroups of
order p; and

(iii) H is a direct summand of G.

On the other hand, if T(G) € H, then H is honest if and

only if G/H is torsion-free.

It can be seen, in view of condition (iii) above, that
for torsion and mixed groups where H 1is properly
contained in T(G), honesty 1is stronger than being a

direct summand.

In 1964 K. M. Rangaswamy defined H to be absorbing in G
if, whenever nx ¢ H for some non-zero integer n, then
x € H [Ral]. This definition is stronger than A. Abian
and D. Rinehart’s definition of honesty in that absorbing
subgroups are necessarily honest. As Rangaswamy did not
specify that nx be non-zero, absorbing subgroups contain
all elements in G of finite order whereas this is not the

case with honest subgroups. In fact, an honest subgroup
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H of G is absorbing if and only if T(G) & H. Rangaswamy,
in the same paper, defined a subgroup H of an arbitrary
abelian group G to be full in G if G[p] € H where p is a
fixed prime number. By the remark above, every absorbing
subgroup is full. Rangaswamy proved that every full and

neat subgroup is absorbing.

For every non-negative integer n, put G, = p"G and recall
that we can get a decreasing chain of subgroups

G =G 26 =262=2... 2G, 2 ... Weextend the definition
of G, to G, = p*G where a is any ordinal as follows:

G, = D°G = Bﬂ Gy . if o is a limit ordinal;
{x

G, = pP*G = DpG,.., if « is a successor ordinal.

In the same way we extend the definition of p-heights as

follows : an element g in G is said to have generalized

p-height in G of a (i.e. hg,(g) = @) if g € G, but
g & G,,,- Note that in torsion-free groups, p°G = p“G for
any ordinal o > w. Thus, 1in torsion-free groups, the

generalized p-height is the same as the p-height.

In 1952, Kulikov [Ku] generalized the definition of p-
purity as follows: a subgroup H of a p-group G is isotype
in G if p"H = p°G N H for every ordinal a. An isotype
subgroup is necessarily pure. If G is torsion-free, then
G is isotype if and only if G is pure and, if G is a p-

group containing no elements of infinite height, a
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subgroup H of G is isotype if and only if it is pure in

G.

Let G be a group, B and H subgroups of G. The subgroup
H is said to be B-high in G if H n B = {0} and if
H C H' € G implies that H' n B # {0}. It was shown by

Irwin and Walker (see [Fu2: Theorem 80.1, p.76]) that,
for any ordinal o, any p®G-high subgroup of a p-group G is
isotype. This result gives a simple way of constructing
non-trivial isotype subgroups of a p-group that contains

elements of infinite p-height.

In a paper published in 1966 [deR], E. de Robert
introduced the concepts of p*-pure and a-pure. If «a is
any ordinal and H is a subgroup of an arbitrary abelian
group G, then H is said to be pS-pure in G if
p’G n H = pH for all ordinals 0 = 8 s «. H is said to be
a-pure in G if H is p*-pure for all primes p. If G is a
p-group, then a subgroup H is o-pure in G if and only if
H is p*-pure in G. A subgroup is p“-pure if and only if

it is p-pure and w-purity coincides with ordinary purity.

Let S € P and define a subgroup H of a group G to be
S-pure if H is p-pure in G for all p in S. This notion
was first introduced by J.M. Maranda in 1960 (([Ma]). If
S = P, then S-purity coincides with ordinary purity and,

if s = {p}, p a prime number, then S-purity becomes
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p-purity.

This concept was generalized by T.J. van Dyk, ([vD] in
1979 as follows: instead of restricting S to be a subset
of the set of prime numbers, let S be a non-empty subset
of integers with the property that whenever 0 # n e S,
then every positive divisor of n is also in S . Clearly,
the following sets of integers satisfy the property
stated above:

a) Z;

b) PU {1};

c) the union of {1} with any subset of primes;

d) s® = {p* : p is fixed and k = 0, 1, 2, ...}, and
e) S(a) = {pP : p prime and 0 = B s a}.

Thus H is

i) Z-pure in G if and only if it is pure in G;

ii) (P U {1})-pure if and only if it is neat in G;
iii) S®-pure if and only if it is p-pure in G; and

iv) S{(a)-pure if and only if H is p%-pure in G.

Let G be an abelian group and H a subgroup of G. The
natural epimorphism ¢ : G - G/H need not preserve the
properties of elements of G. For example, 1f G is
torsion-free and rank(G) = rank(H), then Y maps elements
of infinite order into elements of finite order. However,
by [Ful: Theorem 28.1)], H is pure in G if and only if v
preserves the order of at least one element in every

coset of G modulo H. Also, Y need not preserve the
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(generalised) p-heights of elements of G (e.g. in the
free resolution of Q, elements of finite p-height are

mapped to elements of infinite p-height for every prime

p) .

An element x in G\H is said to be (p-)proper with respect

to H if the generalized p-height of x in G equals the
generalized p-height of the coset x + H in G/H (i.e. ¥

preserves the generalised p-height of x).

A close analysis of the Kaplansky-Mackey proof of Ulm’'s
Theorem led P Hill to the discovery of a significant type
of subgroup which embodies the properties of finite
subgroups relevant to the proof ([Fu2: paragraph 77]).
He called a subgroup, N of a p-group G, nice (see [Fu2:
paragraph 79]) 1if every non-zero coset of G mod N
contains an element which is p-proper with respect to N.
A subgroup B of a p-group is balanced if it is both nice
and isotype. This idea was introduced by L. Fuchs in

[Fu2: p77].

This concept can easily be extended to torsion-free
abelian groups as follows: if H is a pure subgroup of a
torsion free group G, then G/H is torsion free and vice
versa; a pure subgroup H is said to be balanced in G if
the natural epimorphism preserves the height sequence of

at least one element in every coset of G modulo H.

http://etd.uwc.ac.za/



The definitions of balancedness given above apply only to
p-groups (or only to torsion-free groups) . Thé extension
of this concept to abelian groups in general (i.e. mixed
groups), which yields the above definitions for p-groups
and torsion free groups, was carried through by Hunter
([Hul) in 1976. In order to introduce this concept, we

need to define the height matrices.

Let an extended characterigtic segquence, (sﬂ be a

sequence of ordinals and symbols o. Let (s,) and (t,) be
two extended characteristic sequences. We say that

(8;) 5 (L} el sty Q2o o O e ..

A height matrix, M is defined to be an w x w matrix [aﬂ]
where p ¢ P and k € N and whose entries, O, are ordinals
and symbols . Given a height matrix, M = [ou]l, p a
prime, we define pM to be the matrix with p-th row

(o Op+---) (i.e. drop o, and shift all other entries

pl/
one place to the left) and all other rows are identical
to the corresponding rows in M. Multiplication of height
matrices by a power of a prime p and therefore by an
arbitrary integer is defined in the obvious way. Note
that for arbitrary positive integers n and

k, (nk)M = n(kM) and the definitions here give a scalar

multiplication of height matrices by positive integers.

Two height matrices M and N are said to be equivalent if
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there are positive integers m and n such that mM = nN.

As in the case for torsion-free abelian groups, this
obviously defines an equivalence relation on the set of
height matrices, but we have been unable to find in
literature, an investigation of this equivalence relation

parallel to the one for torsion free groups.

Let M = [o,] and N = [p,] be height matrices. We say
that M s N if o, s p, for all p ¢ Pand k ¢ N. We denote

the pth-row of the height matrix M by M,.

Let x ¢ G. We define the extended height segquence of x,

(written xg(x)), to be (s,) where (s,) is an extended
characteristic sequence with s, = hg,(x). A height
matrix, Hg(x), of an element x in G is defined to be the
height matrix M = [g,] where o0, = hg,(p'%), the

generalized p-height of p*x in G.

For each group G and height matrix M, define

GM) = {g e G : Hg(a) = M} = (] G().

DEP
Now let H be a subgroup of G. An element g in G\H is

H-proper with respect to H if Hg(g) = Hgy(g+H) and H is

H-nice in G if every coset g+H contains an element which
is H-proper with respect to H.

An exact sequence

0 - A - B =B ¢ - 0

is said to be balanced if the induced sequence
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there are positive integers m and n such that mM = nN.

As in the case for torsion-free abelian groups, this
obviously defines an equivalence relation on the set of
height matrices, but we have been unable to find in
literature, an investigation of this equivalence relation

parallel to the one for torsion free groups.

Let M = [oy] and N = [p,] be height matrices. We say
that M < N if o, < p, for all p € P and k ¢ N. We denote

the pth-row of the height matrix M by M,.

Let x € G. We define the extended height seguence of x,

(written xé(x)), to be (sp) where (sﬁ is an extended
characteristic sequence with s, = h, (%) . A height
matrix, Hs(x), of an element x in G is defined to be the
height matrix M = [o,] where o, = hs,(p*x), the

generalized p-height of p*x in G.

For each group G and height matrix M, define

GM) = {g € G : Hg(a) =M} = [ GM).

pEP
Now let H be a subgroup of G. An element g in G\H is H=-

proper with respect to H if H;(g) = Hgyu(g+H) and H is H-
nice in G if every coset g+H contains an element which is

H-proper with respect to H.

An exact sequence

0 - A - B -F Cc -0
is said to be balanced if the induced sequence
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0 - A(M -* B(M B cn - 0

is exact for every height matrix M. A subgroup H of G is

said to be balanced in G if the exact sequence above is

balanced when we replace A, B, C, «a, and § with H, G,
G/H, the inclusion map and the canonical map
respectively. Hunter also proved in [Hu] that if H is a
subgroup of G, then the following are equivalent

(a) H is balanced in G;

(b) H is both isotype and H-nice in G;

(c) to each ¢ in G/H, there is an element g in G such
that y¥(g) = ¢ (where ¢ 1is the canonical map),
H(g) = H(c) and o(g) = of(ec); and

(d) the sequences 0 - H/H(M) -» G/G(M) - C/C(M) - 0

(where C = G/H) is exact for all height matrices M.

Hunter also defined an exact sequence 0 - A » B - C > 0
to be H-Balanced if 0 - A(K) -» B(K) -» C(K) - 0 is exact
for all extended height sequences K. If G is a p-group,
then the rows of the height matrix consist of «»’s except
for a single row and the original definition of balanced

coincides with Hunter’s one ([Fu2: Exercise 6, p.93]).

If G is a torsion-free group, then the first column of
the height matrix of an element is the (ordinary) height
sequence of that element which gives the same amount of
information as the entire height matrix in view of the
fact that for every x € G, p prime and n a non-negative
integer, h,(p"x) = n + h,(x). Thus if the first column of
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the height matrix is s, then x e G(s) if and only if
x € G(H(x)) and by (b) above, if H is balanced in G
according to Hunter, H is balanced in G according to

Fuchs’s definition.

In 1977, C.J.Boshoff [Bo] defined a subgroup H of a p-
group G to be peaked in G if for every non-zero coset g+H
in G/H, there is an h ¢ H such that hS(g+h) = h$®(g+H).
She defined a fine subgroup to be one that is peaked and
pure. Nice subgroups are by definition peaked and thus
a pure subgroup which is also nice would be a fine

subgroup.

Note that if H is a subgroup of a group G, then H is
isotype in G if and only if the height matrix of an

element in H, evaluated in H, is the same as its height

sequence evaluated in G. If G is torsion-free, H 1is
reqular in G if typey(h) = typeg(h) for all h e H.

Let H be a subgroup of an abelian p-group G without
elements of infinite height. It was obéerved by
S. Janakiraman and K. M. Rangaswamy in 1975 [JR] that H
is pure in G if and only if for every a € H, there exists
a homomorphism o : G - H satisfying «f(a) = a. This
observation led to their defininition of strongly pure
subgroups: a subgroup H of a group G is strongly pure if,
for every h € H, there exists a homomorphism o : G » H

such that «o(h) = h. Strongly pure subgroups are pure,
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but the converse is not true as will be shown in Chapter

2.

The definition of a strongly pure subgroup can be
generalised in an obvious manner as follows: H is

strongly reqular in G if there exists, for every h € H,

a homomorphism o : G » H and a non-zero integer n such
that «(h) = nh. This generalisation was undertaken by
L. Nongxa [No2] in 1987; it will be shown in Chapter 2
(Lemma 2.3.4) that for torsion-free groups, strongly

regular subgroups are regular - hence the terminology.

In 1979, Rangaswamy [Ra2] dualised the concept of strong

purity as follows : H is strongly balanced in G if, for

every a € G there exists a homomorphism ¢: G/H > G
such that ¢ (a) = y¢y(a), where

Y : G > G/H 1is the natural epimorphism. Strongly
balanced subgroups are balanced in the sense defined

above (see Lemma 2.3.3).

Recall that a balanced subgroup w.r.t. p-groups 1is a
subgroup that is both isotype and nice. H. Bowman and

K.M.Rangaswamy in [BR] defined a short exact sequence

0 - A - B —'B C - O ------- (**)

to be strongly isotype if, to each a € A, there is a
homomorphism f£: B -» A such that fa(a) = a;

to be strongly nice if, to each ¢ € C, there is a

homomorphism g : C » B s.t. Bg(c) = c; and
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to be strongly balanced if it is both strongly isotype
and strongly nice. In our view, the definition of
strongly isotype <coincides with the definition of
strongly pure and that of strongly nice is equivalent to
strongly balanced. In the paper referred to above,
subgroups which are both strongly isotype and strongly

nice/balanced were not investigated in any detail.

Let m be any cardinal. Rangaswamy [Ra3] called the
short exact sequence (**)

a) strongly m-isgotype if, to each subset X of

cardinality 1less than m 1in A, there exists a
homomorphism £ : B -» A such that fa|y = identity on
X;

b) strongly m-nice i1f, to each subset Y of

cardinality less than m in C, there exists a
homomorphism g : C - B such that bg|y = identity on
Y; and

c) strongly m-balanced if it is both strongly m-

isotype and strongly m-nice.
A subgroup H of G is strongly m-balanced if the short
exact sequence 0 > H-»>G-»> G/H - 0 1is strongly m-

balanced. Strongly w-balanced is strongly balanced.

In their paper [BR], Bowman and Rangaswamy also defined

a *-balanced subgroup to be a balanced subgroup H of a

torsion-free group G such that for each type 7

Hn (Gt ) = (H(T))..
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It is easy to see that the assumption that H be balanced
in G is an unnecessary restriction. This restriction
was lifted in a definition introduced by L.Nongxa in
[No2]. He thus defined a pure subgroup H of a torsion
free group G to be *-pure in G if

(H(1))s = Hn (G(1") ). for every type T.

A torsion-free group G is called a Butler group if G is

a pure subgroup of a finite rank completely decomposable

group. The following were found to be equivalent:

(1) G is a pure subgroup of a finite rank completely

decomposable group;

(2) G is an epimorphic image of a (finite rank)

completely decomposable group;

(3) T(G) is finite and closed under infimums and, for
every 7 € T(G),

(i) G(7) = G, ® (G(7") )., where G, is a homogeneous

(possibly 0) completely decomposable group,

(ii) (c(7") )./G(71") is a finite group; and
(4) G = $ G, where G, is a pure, rank one subgroup of G
i=1

The equivalence of (1), (2) and (3) was established by

M.C.R. Butler in 1965 [Bu]l and the equivalence of (2) and
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(4) was established by L. Bican in 1970 ([Bil].

In 1985, U. Albrecht and P. Hill [AH], defined a decent
subgroup in order to get a characterization of a
particular generalization of Butler groups, to groups
having infinite rank viz. the class of B,-groups. (A

torsion-free group G is called a B,-group if G is the

union of a smooth chain 0 = G, € G, € ... G, & ... of pure
subgroups G, such that, for each «, G,,; = G, + B, where B,
is a Butler group (of finite rank).) They called a

subgroup H of the torsion-free group G decent if for any
finite subset S of G there exists a finite number of

rank 1 pure subgroups A, 1 < i < n, of G such that

H + 2: A, is pure in G and contains S. U. Albrecht and

1<is<n

P. Hill proved that a group G is a B,-group if and only if
G satisfies the third axiom of countability with respect

to decent subgroups.

M. Dugas and K.M. Rangaswamy [DR2] defined a group G to

satisfy the torsion extension property (for short,

T.E.P.) over a pure subgroup H, 1f every homomorphism
f : H- T, where T is any torsion group, extends to a
homomorphism g : G » T. They went on to prove that if G
is a Butler group of rank w and H a pure subgroup, then
H is decent in G if and only if G satisfies the T.E.P.

over H.

If G is a torsion-free group and H a pure subgroup of G,
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it was shown by L.S. Ljapin that, for every x e G\H
Xom(x + H) = sup{xg(x + h) : h e H}.

It can be concluded that the definition of balanced

subgroups implies that there exists h € H such that

Xg(x + h) is the supremum of the set on the right-hand

side.

Generalising this observation, F. Richman in [Ri] defined
a pure subgroup H of a torsion-free group G, to be semi-
balanced in G if for everxry g € G\H there is a finite
subset {(h,, ..., h} € H such that

X o tgait~a=rwsupyieiatavhy) —gdygs—iz=rn }
In the case that n is equal to 1, H is balanced in G.
This concept was studied by L. Fuchs and G. Viljoen 1in

[FV] who called these subgroups prebalanced.

REMARK: Lemma 1 in [FV] asserts that the equation
above is satisfied if and only if

CHYGY. = Eed NN R o . STE R
However, although the former equation implies the latter,
the reviewer of this paper, William J. Wickless noted
that in general the two equations are not equivalent see
[Mathematical Review 91a:20062]. In [FM], L. Fuchs and
C. Metelli redefined a prebalanced subgroup as follows
H is prebalanced in G if and only if for every g € G,
there is a non-zero integer m and a finite subset
{h;,h;,...,h,} of H such that

Xom (mg+H) = sup { xg(mg+h,) : 1 = 1 s n }. Atorsion-free
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group G, is called a locally Butler group if every finite

subset of G can be embedded in a pure subgroup of G which

is a finite rank Butler group.

L. Fuchs and G. Viljoen proved that a pure subgroup H of
a torsion-free group is decent if and only if H 1is

prebalanced in G and G/H is a locally Butler group.

For any type 7, let X, be a rank 1 torsion free group of
type 7. It is easy to see that G(7) is the subgroup of
G generated by {f(X,) : f ¢ Hom(X,,G)}. D. Arnold and

C. Vinsonhaler in [AV] called this subgroup the 1-socle
of G and "dualised" it as follows: the subgroup of G

called the r-radical of G, denoted by G[7], is defined to
be N  ker £, and G [7] = MNGlal. They defined a

feHom (G, X,) o<t

pure subgroup H of G to be co-balanced if

0 » H/H[7] » G/GI[7] is pure exact for every type 7.

A. J. Glovannitti and K. M. Rangaswamy [GR] "dualised"
the notion of a prebalanced subgroup by calling a

subgroup H of G to be precobalanced if for any subgroup

K in H with H/K =R, a rank one group, there are
subgroups K;, K,, K;, ... , K, of G satisfying:
(1) each G/K;, = R;, a rank one group;

(2) K=n{KNnH:1s i s n}; and
(3) for each h € H, xux(h+K) = A Xgux (B + K;) . The

1<i<n

authors showed that exact sequences of Butler groups are

always prebalanced and precobalanced. More generally,
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they proved that 1f the exact sequence
0 » A »> B > C > 0
is a sequence of torsion-free groups, then:
(a) if B is a Butler group and A is precobalanced in B,
then A is prebalanced in B;
(b) 1f C is a Butler group and A is prebalanced, then A

is precobalanced.

In [DHR], M. Dugas, P. Hill and K.M. Rangaswamy defined
a pure subgroup H, of a torsion-free group G, to be
hyperbalanced if for each g € G and each countable
subset C of H there is some h € H with g¢ = hf where af is
defined to be a map from C into the set of all height
sequences by af(x) = xgla+x) for all x € C. They proved
that if H is hyperbalanced in G, then H is also balanced

in G (see Lemma 2.5.20).

P. Hill in [Hi] defined a subgroup H of a torsion-free
group G to be separable if for each g € G there is a

countable subset {h, : n<w} of H satisfying the following

condition: for h € H, there is a corresponding n < w
such that xg(g+h) s xg(g+h,) . (This concept is now called
separative) . If H is balanced in G, then the countable

subset {h,} is a set containing only one element and this
set satisfies the condition above. Thus all balanced
subgroups are necessarily separable. Trivially all
countable subsets of G are also separable. He went on to

define a subgroup to be absolutely separable if it is
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separable in any torsion-free group in which it appears

as a pure subgroup.

P. Hill and C. Megibben [HM1l] introduced the notion of
kniceness which they claimed generalized niceness to
torsion-free groups. To define knice subgroups however,
requires the definitions of primitive elements, valuated
coproducts, *-valuated coproducts, and free *-valuated
subgroups. These concepts will be dealt with in great
detail in the Appendix A.1. A subgroup N of the torsion-
free group G, is said to be a knice subgroup if for each
finite subset S of G, there are primitive elements y,, Vi,

., Ya Such that N’ = N® (y;) ® (y,) & ... & (y,) with N’

a *-valuated coproduct and with (S,N’)/N’ finite.

In [HM1], P. Hill and C. Megibben also defined a pure

subgroup H of G to be *-pure in G if H n G(s’) = H(s") and
H N G(s",p) = H(s",p). Direct summands and rank one pure
subgroups generated by primitive elements, are
necessarily *-pure. The ascending union of *-pure

subgroups is also *-pure and the *-valuated coproduct
(see A.1.3 in the appendix) H = @H, is a *-pure subgroup
if each H; is *-pure. In this paper Hill and Megibben
also proved that pure and knice subgroups are necessarily
*-pure. This definition was published about the same
time as, and independent of L. Nongxa’s definition of a
*-pure subgroup. The relationship between these two

different types of *-pure subgroups will be demonstrated
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in Chapter 2.

In 1987 P. Hill and C. Megibben [HM2] defined a subgroup
H of an arbitrary abelian group G to be EI-pure in G 1if,
whenever h = g, + g, + ... + g, with h ¢ H and g; ¢ G(s)),
then h = h + h, + ... + h, where h; ¢ H(s;). Hill and
Megibben showed in [HM2] that pure knice subgroups are
necessarily L-pure and that IX-pure subgroups are
necessarily *-pure. This variance of purity will also be
discussed in greater detail in Chapter 2. The discovery
of Z-pure subgroups led Hill and Megibben to answer - in
the negative - the question posed by L. Nongxa in [Nol]:
"Are all strongly pure subgroups  of completely

decomposable groups also completely decomposable?"
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CHAPTER 2

Note that from henceforth, the word "group", unless
otherwise stated, will mean a "torsion-free abelian

group".

§ 2.1 Introduction: In this chapter we compare the
relative strengths of some of the notions of purity
restricted to torsion-free abelian groups which appear in
Chapter 1. In particular, we will compare the concepts
of, "being a direct summand", ordinary purity, strong
purity, *-purity, EI-purity, s*-purity, t*-purity (to be
introduced in this chapter), regularity, strong (pure)
regularity, kniceness, balancedness, *-balancedness,
strong balancedness, Z-strong Dbalancedness (to be
introduced in this chapter), semibalancedness, pre-

balancedness, decency, and hyperbalancedness.

§ 2.2 Strong purity, direct summands and purity:

Recall that a subgroup H of G is said to be strongly pure
if, for every h € H, there exists a homomorphism

Y : G » H such that ¢y (h) = h.
If G is any abelian group, and H a summand of G, then the

projection m : G » H satisfies w(h) = h for all h e H.

Thus:
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2.2.1 Remark: Any summand is a strongly pure subgroup of

G (thus "being a summand" implies strong purity).

In order to show that the implication sign above is not

reversible, we need the following three remarks:

2.2.2 Remark: Let F = @ (x;,) be any finite rank free
i=1
group and let H be a pure subgroup of F. By the Stacked

Basis Theorem, there exist k, m, ..., m such that

H = é (mx;). As H is pure in F, H = é (%;) which is
i1 .

i=1

a summand of G. Thus each pure subgroup of a finite rank

free group is a summand.

2.2.3 Remark: Any pure subgroup of a free group is

strongly pure.

Proof: Let F = @ (x,) be a free group and let H be a
el
pure subgroup of F. For any h € H, h = Y rx;, where I,
€I,
is a finite subset of I. Thus he @ (x) which is a
€I,
finite rank (free) summand of F. Now (h). € H and
(h)., € & (x). By 2.2.2, (h), is a summand of & (x;)
ier, €1,

and thus also a summand of F. The projection from F to
(h). is a map from F to H which fixes h implying that H

is strongly pure. L

2.2.4 Remark: The converse of 2.2.1 does not necessarily
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hold; for, if we take a free resolution of Q, then the
kernel, which is pure, is, by 2.2.3, also strongly pure
but is not a summand, otherwise, its complement, which is

free would be isomorphic to Q, a contradiction.

Suppose H is strongly pure in G and let x ¢ H n p‘G for
some p € P and some k ¢ N. Then x = p‘g for some g € G
and there exists ¢ : G - H such that
x = ¢(x) = ¢(p¥g) = p¢(g) € p*'H and this implies that H

is pure in G. Hence:

2.2.5 Remark [JR] : Strongly pure subgroups are

necessarily pure.

In order to show that the converse of Remark 2.2.5 is not
necessarily true, we require the following result,
obtained by S. Janakiraman and K. Rangaswamy in [JR] and

its corollary.

2.2.6 Lemma [JR] : If H is strongly pure in G, then for

any finite subset S = {h;, h,, ... h,} of H, there exists

¢ : G » H such that ¢(x) = x for all x € S.

Proof: This is by induction on n and the statement is
true for n=1 by definition of strong purity.

Assume this is true for n-1 and let ,, : G » H be such
that ¢, (h) = h, for all i =1, 2, ... , n-1 . Since

h-y,,(h,) € H, there is ¥, :G » H such that
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Vo (-, () = hy - Y, (hy). . (*)
Let ¢ = ¥, + ¥, - ¥¥o;- Then, for 1 = i = n-1,
¢(h) = ¢o(h) + Yo () - ¥ (¥ (b))
= ¥.(h) + h; - ¢,(h) = h;, and
¢ (hy) = (Yo + Yoy - Yu¥uy) ()
= Yo (hy) + Yo (hy) - Y (hy)
h, - ¢¥,,(h) + ¢, (h) by (*)

=hn
Thus ¢: G » H fixes the whole of S. N
2.2.7 Corollary [JR] : Finite rank strongly pure

subgroups of torsion-free abelian groups are summands.

Proof: Let G be torsion-free and H a finite rank
strongly pure subgroup of G, then H = (S). where
S = {h;,h,,...,h,} is finite. Let ¢ : G > H be such that

¢ fixes the whole of S. If x ¢ (S)., then nx = £ nh;, for

some n, n;, € Z which implies that ¢(nx) = n¢(x) = X n; ¢ (h)
= L nh, = nx and, by torsion-freeness, ¢(x) = Xx. This
implies that ¢ is a projection and thus H = (S). is a
summand of G. L

Let G be any indecomposable torsion-free group of finite
rank (see for example [Fu2: Example 5, p.125]), and let
S be a proper non-zero pure subgroup of G. Then S cannot
be strongly pure otherwise S would have to be a summand
of G by Corollary 2.2.7, contradicting the assumption

that G is indecomposable. Thus pure subgroups need not
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be strongly pure.

§ 2.3 Reqularity, strong regqularity

Note that if H is a pure subgroup of G, then xg(h) = xyx(h)
for any h ¢ H. Recall that a subgroup H of a torsion-
free group G is said to be regular in G if, for every h

e H, typeg(h) = typeg(h).

2.3.1 Remark: Since, from the definition of purity, the
p-height of an element in a pure subgroup is the same as
its p-height in the main group, pure subgroups are
regular. However, 2Z is not pure in Z but the type of
any element in 2Z is the same as its type in Z since both
groups are cyclic. Hence 2Z is regular in Z but not pure

in Z.

Recall that a subgroup H of G is said to be strongly
regular in G if for every. h € H, there exists a
homomorphism ¢ : G -» H such that ¢ (h) = n,.h for some
n, € Z. As pointed out in Chapter 1, this is an obvious

generalisation of the definition of strong purity thus:

2.3.2 Remark: Strongly pure subgroups are strongly

regular.

The group of even integers, 2Z, 1is in fact strongly

regular in Z since multiplication by 2 gives a
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homomorphism satisfying the definition of strong
regularity. We therefore also conclude that strongly
regular subgroups need not be pure and therefore not

necessarily strongly pure.
An analogue of the observation made by S. Janakiraman and
K. Rangaswamy (Lemma 2.2.6) also holds for strongly

regular subgroups, namely:

2.3.3 Lemma : If H is a strongly regular subgroup of

G then, for any finite subset S of H, there exist an

integer m and a homomorphism ¢ : G - H such that
¢p(x) = mx for all x € S.
Proof: Let S = {x,, X3, ..... , X,} be any finite subset

of H. The proof will be by induction on n and the case
n = 1 follows immediately from the definition of strong
regularity. |
Suppose that there exist an integer r and a homomorphism
¥, : G - H such that y¥,(x) = rx,
1 s i s n-1 . Then there exist an integer s and a
homomorphism ¢, : G - H such that
Valrx, - ¥i(x,) = s(rx, - ¥(x,))

= rsx, - sy,(x,)
If we define ¢ : G - H by:

¢ = sy + vy, - Yy, then, for 1 s i = n-1 we have
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(x) = sy (x) + rip(x) - Yy (x)

= rsx; + ry,(x) - ry,(x)

rsx; and
¢ (x,) = sY,(x)) + Th(x) - ¥y (%)
sy, (x,) + ¥, (rx, - ¥, (x,))

sy, (x,) + srx, - sy,(x,) = srx, thus m = rs. [

The name given to this concept was motivated by the

simple observation that:

2.3.4 lemma: Strongly regular subgroups are regular.

Proof: Suppose H is strongly regular in G. Let h € H.
Then there exists ¥ : G » H a homomorphism and n, € Z such
that ¥ (h) = nh. Thus
typey(h) = typeg(h) s typeg(¥(h)) = typey(mh)

= type x(h) and thus typey(h) = typeg(h) and H

is regular in G. L
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§ 2.4 g*-purity, t*-purity, *-purity, *-purely

generated and Y-purity.

Recall that, in [No2], a pure subgroup H of a torsion-
free group is called *-pure if
(H(7"). = H n {G(7") ). for every type 7.

In [HM1]), a pure subgroup H of a torsion-free group G is
also called *-pure if H n G(s") = H(s") and

H N G(s",p) = H(s",p) for all height sequences s and all
primes p. These two definitions were introduced almost
simultaneously and independent of each other. It will
be shown that they are not equivalent and, the names
possibly coincided since in the one case use is made of
the fully invariant subgroup G(7) and in the other, use
is made of G(s"). We will attempt to resolve this

situation as follows:

2.4.1 Definition: Let H be a pure subgroup of a

torsion-free group G; then H is:

a) *-pure in G if it satisfies the definition of
P.Hill and C. Megibben;

b) g’-pure in G if H(s") = H n G(s") for all height

sequences s;

c) t'-pure in G if H(7") = H n G(7") for all types 7; and
d) *-purely generated in G if it satisfies the

definition of L. Nongxa.

2.4.2 Remark: It follows immediately from the
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definition that *-purity implies s*-purity. However,
the converse is not true as we see 1in the following

example.

2.4.3 FExample: Let G = G, ® G,, where G, is infinite
cyclic and G, = {m/2* : m and k integers}. Let us choose
any prime p # 2, x; in G, whose height sequence is (0,0,
..., 0), x, in G, of height sequence
(o0, 0,0, ...., 0). Let X = px, + X, and H = (x).. Then
H is s -pure in G since, for all height sequences s,
H(s") = {0} = H n G, and G(s") = G,. However,
x & pH(s"') = H(s",p) whereas x € G(s",p) n H. Thus H is
not *-pure in G.

2.4.4 R;mark: From the observation that, for every type

7, and any torsion-free group g, G(7°) = U G(s") we
SET

can deduce that every s'-pure subgroup is t’'-pure since

HNG(7) =HN (UG(s")) = U (Hn G(s) = U H(s)
SET SET SET
= H(7") .
2.4.5 Remark: It can also be seen that the notion of

t*-purity introduced above implies *-purely generated,
since, if H(7") = H n G(7") for any type 7, with H pure in
G, then (H(7) ). €S H n (G(7) ).. Also, if

h € Hn (G(7") )«, then nh ¢ G(s") for some nonzero integer

n and s € 7. This implies that
nh ¢ H n G(s") = H(s") € H(7") € (H(7) ). and therefore
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h e (H(7)).. However, the converse is not true as can

be illustrated by the following example:

2.4.6 Example: Let G =G, ® G, ® G, be a torsion-free

group where G; is of rank one, T(G;) = 7, G is reduced for
1 s<1is3, 7 " 7,, and 7, = max{7,, 7,}. Let p be a prime
for which G; - and thus G, and G, - is not p-divisible and
let g; € G; with hg(g-,) = 0. Let H = (g;+pg;, 93+pJ;).. H is
*-purely generated as (H(7)). = {0} = HN G = H n G(7})
for i = 1,2 and H = (H(7)))s = H N G = H n G(75) but

H(ty) = H(7,) ® H(7,) # H as by Lemma 1 in [Bi2}, H is not

completely decomposable. Hence H is not t'-pure in G.

2.4.7 lemma : If H is a pure, strongly regular subgroup

of G, then H is *-purely generated.

Proof: Let H be a pure, strongly regular subset of G and
let 7 be any type. For any h € H n (G(7))., h in H
implies that there exists a homomorphism ¢ : G -» H so
that ¥ (h) = n,.h; and h in (G(7") ). implies that there is
an integer m, such that my.h € G(77). Thus m.h = Lg; such
that type(g;) > 7, where g; € G.

Now mynh = ¢(mh) = I, ¥(g;) € H(7) and this implies that
h e (H(79)). . Since H(7) €S H N G(r"), purity of H in
G implies that (H(7") ). € H n (G(7") ). and hence we have

equality. |

Recall that in [HM2] a subgroup H of a torsion-free group
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G is EK-pure if, for any finite set of height sequences

{Sl’ S2, « s o g Sn}, EiH(Si) = H N EIG(SI) .

2.4.8 Propcosition [HM2

Strongly pure = L-pure = *-pure = pure.

Proof:

1. Strongly pure implies I-pure.

Let H be a strongly pure subgroup of G and suppose that
g, + ... + g, =h e H, with g; € G(s)). There 1is a
homomorphism, ¢,:G » H that leaves h fixed. Thus h = Lh
where h; = ¢,(g;) € H, and

Xu(h) = xgl(dylgy)) =2 xg(g)) =2 s for 1 s i = n. Thus

h ¢ LH(s,) which implies that H is K-pure in G.

2. L-pure implies pure.
Suppose H is Z-pure in G. Let h = ng ¢ H n nG and put
s = Xg(g). Then h e€ H N G(ns) = H(ns) =nH(s). Thus

h

I

nh’ where h’ € H(s) and torsion-freeness implies that

g = h’ and h e nH.

3. ZC-pure implies *-pure.

Suppose H is EZ-pure in G. By 2, H is pure in G and thus

for any h € H, xg(h) = xy(h). Let h e Hn G(s"). Then

h=g, + ... + g, with g; € G(s) and xg(g;) + s. By Z-

purity, h = h; + ... + h, with each h; € H(xs(g;)) and thus

for each i =1, 2, ..., n, xy(h) + s which means that

h ¢ H(s"). Let h e Hn G(s",p) for any p € P. Then
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h =g + + g, + g where g € G(ps) and .for each
i=1,2,...,n, g; € G(s) and xg(g;) + s. By X-purity,
h="h + ... + hy + h’ where h' € H(xg(g)) & H(ps) and for
each i=1,2,...,n, h € H{xg(g;)) and thus xyz(h;) = s and

xg(h;) 4 s. Thus h € H(s",p) and H is *-pure in G.

4. By definition, *-purity implies purity. [

2.4.9 Remark: 2.4.3 is an example of a pure subgroup
which is not *-pure. 3.4.7 in Chapter 3 is an example of
a *-pure set which is not I-pure and 2.6.5 is an example
of a E-pure subgroup which is not strongly pure. Thus we
see that none of the implications of proposition 2.4.8 is

reversible.

§2.5 VARIANCES OF BALANCEDNESS

In this section we compare balancedness with being a
direct summand, strongly balanced, *-balanced, semi-
balanced, prebalanced, hyperbalanced and 2Z-strongly
balanced (a concept which will be introduced in this

section) .

We quote the following result which is especially useful

when we quote examples.
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2.5.0 Lemma (See [Fu2])

For any abelian group G, there exist a completely
decomposabale group A and an epimorphism y : A - G such
that ker vy is balanced in G. ¥ : A - G is called the

balanced resolution of G.

2.5.1 Remark: All direct summands of a group G are also

balanced in G. This follows from the fact that if H @& K
is a decomposition of G and g = h + k is an arbitrary
element of G then xg(h+k) = xg(h) A xg(k) = x(k) for any

h ¢ H and k € K and hence xgu(g+H) = Xgulk+H) = xg(k).

2.5.2 Remark: Recall that a *-balanced subgroup H of G

is a subgroup that is balanced and which satisfies
(H(1) ). = Hn (G(7")).. Thus by definition, *-balanced

subgroups are necessarily balanced.

Recall that a subgroup H of G is said to be strongly
balanced in G if given any coset g+H, there 1is a

homomorphism ¢:G/H -» G such that g+H is fixed by ¢

where ¢ is the canonical map from G to G/H. The
motivation for the name ’‘strongly balanced’ 1is not
apparent from the definition. However, H strongly

balanced in G implies that H is balanced in G as is

proved in the following lemma.

2.5.3 Lemma: All strongly balanced subgroups are

balanced.
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Proof: Suppose H is strongly balanced in G. Then for

any g + H ¢ G/H, there is g:G/H » G such that

voy(g) = ¥(g). If we put g’ = o(g + H), then
Y(g) = g+H = Yo (¥(g)) = ¢¥(g’) = g'+H. Now

Xc(9') s Xgu(g’'+H) = xgu(g+H) = xg(o(g+H)) = xc(g’). Thus
g’ = o(g+H) is proper in g+H. [ ]

Examples of strongly balanced subgroups can be found

easily in the light of the following result.

2.5.4 Theorem: Suppose H is balanced in G and G/H is

separable then H is strongly balanced in G.

Proof: If g e G\H then 0 # g+H ¢ G/H and by
separability, there exists some C/H € G/H such that C/H
is a finite rank completely decomposable summand of G/H
containing g+H. As completely decomposable groups are
balanced projective, we have the following commutative
diagram:
C/H
0 v m 1bi
o - H - G ~¥ G/H - 0
where i is the inclusion map, ¥ is the canonical map, 7
is the projection map, and 6 is the induced map so that

Yy = 1. Now O7:G/H -» G with

vy (g) = Y (g+H)
= Y0 (g+H) (as g+H € C/H)
= g+H (as ¥6 = 1)
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= ¥(g).

Thus H is strongly balanced in G. B

2.5.5 Remark: Strongly pure and strongly regular

subgroups of G are defined in terms of a single element
in G. However, if we have a finite subset S in G, we can
find a homomorphism from G to H which fixes S (see Lemma
2.2.6 in the case where H is strongly pure) or multiplies
the elements in S by integers (see Lemma 2.3.3 in the
case that H is strongly regular). In exactly the same
way, if S is a finite set 1in G/H and H is strongly
balanced in G, we can find a homomorphism 6§ from G/H to
G so that Y0 fixes all the elements of S (where ¥ is the

canonical homomorphism from G to G/H).

2.5.6 Theorem [Ra3]: Suppose H is strongly balanced in

G where G/H is countable, then H is a direct summand of

G.
Proof: Let G/H = {g+H, g+H, gy+H, ...}. For each
n=1,2,3,... let G/H = (g,+H, g,+H, ..., g,+H). By 2.5.5,

for each i = 1, we can find £;:G/H -» G such that yf;
restricted to G/H is the identity (here again, V¥ is the
canonical epimorphism from G to G/H) . As
g +H - V£ (g;,+H) € G/H, there is a homomorphism v:G/H » G
such that ¢y fixes ((g;+H) - ¥£f(g;,,+H)). Now define
f.,=v + £ - v¥£f, and note that £,,:G/H » G, £l

restricted to G/H is f;,, and y¥f,,, restricted to G;,/H is
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the identity map. Now define f:G/H > G by

. f(x+H) = £ (x+H) if n is the least positive integer such
that x+H € G,/H. Thus ker £ = H is a summand of G. ||
2.5.7 Remark: Let G be a countable indecomposable

group and let A - G be a balanced resolution of G. This
means that A 1is completely decomposable, vy 1is an
epimorphism and ker ¥ is balanced in G. Thus we have
that G = A/ker y. If ker y were strongly balanced in G,
then by 2.5.6 ker ¥ would be a direct summand of A and
thus by the Baer-Kaplansky-Kulikov Theorem, A/ker vy is
completely decomposable, argr-contyadiesdon . Hence

balancedness does not imply strongly balancedness.

We introduce now a dual of the concept of strongly

regular.

2.5.8 Definition: A pure subgroup H of G is said to be
Z-strongly balanced if for every g € G there is a

homomorphism ¢:G/H - G and an integer n, such that

Yoy (g) = ny(g) .

The name Z-strongly balanced was chosen as this notion is
related to being strongly balanced. However, we have not
investigated the properties of Z-strongly balanced
subgroups and we have not ascertained whether such groups

are in fact balanced.
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Subgroups of this nature occur naturally as will be

demonstrated in the next result.

2.5.9 Theorem: Suppose H is balanced in G and G/H is
almost completely decomposable, then H 1s 2Z-strongly

balanced in G.

Proof: As G/H is almost completely decomposable there is
a completely decomposable subgroup C/H of G/H such that
| (Gg/H)/(C/H)| = n, say and thus, for any g € G,
n(g+H) € C/H. Hence define the homomorphism »:G/H » C/H
by v(g+H) = ng+H. As C/H is completely decomposable and
hence balanced projective, there is a #:C/H - G such that
the following is a commutative diagram:
C/H

(s v 111
0 - H - G =¥ G/H - 0

where 1 is the inclusion map, ¥ is the canonical map.

The homomorphism v:G/H » G satisfies

vorvy (g) = Y0y (g+H)
= Y0 (ng+H)
= ng+H (as 0y = 1)
= n(Y(g)).
Thus H is Z-strongly balanced in G. |

2.5.10 Remark It is clear that all strongly balanced
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subgroups are Z-strongly balanced for in this case, n, = 1

for all g in G.

Recall that a pure subgroup H of G is said to be semi-
balanced if for every g € G, there exists

{h,, hy, ..., hy & H such that

Xou (g+H) = xg(g+h;) V xg(g+h,) V ... V xg(g+h,). Recall
also that a pure subgroup H of G 1is said to be

prebalanced in G if for every g € G, there exist

h,, h,, Ce . tiyy in H such that

(H,g). = H + (g+h;). + (g+h,). + ... + {(g+h,)..

2.5.11 Remark: All balanced subgroups are semi-balanced

for then n would just be 1.

2.5.12 Lemma : Let G be a torsion-free group whose

typeset 1is a chain. A pure subgroup of G is semi-

balanced if and only if it is balanced.

Proof: By 2.5.11, we need only show that if H is semi-

balanced in G, then H is balanced in G. Let g € G\H and

n
let {h;, h,, ... , h,} be such that xgu(g+H) = V xg(g+h) .
i=1
Since the typeset of G is a chain, we can assume that
be]
typegnu (g+H) = V typeg(g+h) = typeg(g+h,). The coset
i=1

g+H contains an element of the same type as the coset and
by Baer’'s Lemma [Fu2: Theorem 86.4] g+H contains an

element of the same height sequence as the height
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sequence of the coset. As g+H was an arbitrary coset, H

is balanced in G. |

2.5.13 Lemma [FV] : Semi-balanced subgroups are

necessarily prebalanced.

Proof: Let g be any element in G. By our assumption,
Xou(g+H) = xg(g+h;) V xg(g+h,) V ... V xg(g+h,) where h; € H,
1 < 1 = n. Since for all the i’s, h; € H, we obviously
have that
H + (g+h). + {(g+h)). + ... + (g+h ). & (H,g)..
Now let x € (H,g).. There are integers n and m such that
nx = m(h+g) for some h ¢ H and, as G is torsion-free, we
can assume that (n,m)=1. For any prime p and integer k
satisfying p* | n, we have that p* | m which implies that
p* | (h+g). Let n, and g, be such that n = p‘n, and
h+g = p“g. Since p* | (h+g), p* | g+H which by our
assumption, implies that p* | g+h; for at least one 1i.
Thus let g; be SUCHT® «~ LAt d+#h, = p‘g;. Now
P*gy - P'g; = g+h - (g+h) = h - h, € H. The torsionl-
freeness of G and the purity of H means that g, - g; € H.
Thus g, € H + (g+h,). and
nx = mg, € H + (g+h;)..

Repeating this process with all the prime power factors

of n, we conclude that x ¢ H + )3 (g+h;) . [

i=1
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We have the following characterization of a prebalanced

subgroup.

2.5.14 Iemma [FV] : H is prebalanced in G if and only
if any rank one pure subgroup K/H of G/H is the sum of
the images of pure, rank one subgroups X;, X,, ... , X, of

n

G under the canonical map.

Proof: Suppose H is prebalanced in G. Let K/H be a rank

one subgroup of G/H which means that K/H = (g+H). for some

g € G. By our assumption, there exist h;, h,, ..., h, all
i n H S u O h - h a t
(d,g)s = H + (g+h;)s + {g+hy)» + ... + (g+h,).. Let ¥ be the
canonical map . Vv((H,g).) = (g+H). and thus

(g+H). = Z¥ ({(g+h;).) .

Conversely, suppose the rank one, pure subgroup,
(g+H). = K/H = (H,g)./H = ZyY(X;) where the X;'s are all
rank one pure subgroups in G. This implies that

(H,g). = H + I, X,. For 1 =i s n, let X = (x)).. We now
have that x; ¢ (H,g). and thus there are integers n, m with
(n,m)=1 such that nx, = mg + h; for some h; in H which in
turn implies that v(h, + mg) = ¢¥(nx). Hence

(x;)» + H = (g+h;). + H and we have found the desired set of

h's. u
2.5.15 Theorem [FV] : Let H be a pure subgroup of G
where G is of finite rank. G is a Butler group if and
only if
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(1) both H and G/H are Butler groups; and

(2) H is prebalanced in G.

Proof: Suppose G is a Butler group. Since G/H 1is an
epimorphic image of G and H is pure in G, G/H and H are
also Butler groups. Let g € G\H and H' = (H,g).. H’' is
pure in G and thus H’ is also a Butler group. Thus
H =G + G, + ... +G, =H+ G +G + ... + G

where each G, is of rank 1 and is pure in G. By Lemma
2.5.14, H is prebalanced in G.

Conversely, suppose (1) and (2) hold. As G/H is Butler,

G/H =C, + C, + ... + C, where each C, is rank one and pure

in G/H. As H is prebalanced in G, each G = ¥ (D;) where

D, =H + H; + Hy +... + H,, and each H; is rank one. Hence
n

G=H+ Y, (Hy+H,*+ .. Hpuoy) Since H is itself a
i=1

Butler group, G is Butler. |

2.5.16 Corollary [FV] : A group of finite rank is a

Butler group if and only if all of its pure subgroups are

prebalanced.

Proof: Let G have finite rank. If G is a Butler group,
then the result follows from Theorem 2.5.15. Conversely,
suppose all pure subgroups H of G are prebalanced. Let
{9y, 92, ---. 9a} be a maximal independent set in G and
define G = (g;, ..., g;)+«. As each G is pure in G, G; is
prebalanced in G. G, and each G;/G;; are rank 1 and thus
Butler. Thus by induction and theorem 2.5.15, each G; is
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Butler. Thus G = G, is Butler. [

2.5.17 Example: Let G = G, @ G,, where G, is infinite

cyclic and G, = {m/2¥ : m and k are integers}. Let p be
any prime not equal to 2, x; € G, whose height sequence 1is
(0,0,...,0,...), X, € G, whose height sequence is
(0,0, ...,0,...), X = pX; + %X and H = (x).. Let
{r,} = T(G)) and {7,} = T(G,) and note that 7, < 7, and thus
the typeset of G is a chain. By 2.5.16, H is
prebalanced. Suppose H is semi-balanced. Then by
2.5.12, H is balanced in G. Now G/H is rank one and thus

is balanced projective, making H a direct summand of G.

Now if x, has non-zero component in H, then typeg(x,) = 7,
thus 1 = hS(px,) = hS(px;+x,-x;) = hS(px;+x,) A hi(x) = 0,
which gives a contradiction. Thus a semi-balanced

subgroup 1is necessarily prebalanced but prebalancedness

does not necessarily imply semi-balancedness.

We now compare decent, balanced and prebalanced.

2.5.18 Lemma_ [FV] : If a pure subgroup H of G 1is

decent, then it is prebalanced.

Proof: Let g ¢ G\H and let H be decent in G. There are
pure rank one subgroups, G, G,, ... , G, such that
g e H+ CwhereC =G, + G + ... + Giand H + C is pure in
G and thus (H,g). S H + C. By the modular law we have

that (H,g). = (H,g)en (H+ C) =H + (Cn (H,g).). Cis
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a Butler group and thus C n (H,g)., which is a pure
subgroup of C, is a Butler group which in turn implies

that (H,g). = H + IC, where each C, is rank one and pure in

G. ||

2.5.19 Example: Let A be a finite rank homogeneous,

indecomposable group and let G »' A be a Dbalanced
resolution of A. G is completely decomposable and as

H = ker v is balanced in G, H is prebalanced. Suppose H

is decent. Let T = {a;, a, ..., &} be a maximal
independent set in A and let S = {g,, 93, ..., 9.} be such
that y(g;) = a, for each 1 =1, 2, ..., n. As H ié decent,
SE&EG =H+G +G, + ... + G,, where each G, is a pure,

rank one subgroup of G, and G’ is also pure in G. The
Butler group, G’/H is pure in G/H = A and G’ /H contains
the whole of T and thus G’'/H = A. Thus A 1is a
homogeneous, finite rank Butler group and M. C. R. Butler
proved in [Bu] that homogeneous, finite rank Butler
groups are completely decomposable providing the
contradiction. Thus a prebalanced subgroup of G is

necessarily decent in G, but the converse is not true.

We will now look at the relationship between balanced and

hyperbalanced.

2.5.20 Lemma [DHR] : Any hyperbalanced subgroup H of G

is also balanced in G.
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Proof Suppose H 1is hyperbalanced in G i.g. for any
g € G and any countable set C in H, there is some h € H
with g% = hf where k%:C » the set of height sequences, k
any element in G, is defined as kf(x) = x(k+x) for all
x € C. Assume that H is not balanced in G. Then there
is at least one coset, g+H, say without proper element.

Let g, be any element in g+H and then suppose that g, has

been defined for all ¥ < o where o < w,. Note that
C={g,-9:v<a} is countable. Since H is
hyperbalanced, there is some h, ¢ H with
X (g+(g,-9)) = x¢(h+g,-9) for all o<, O . Thus
Xe{g-h;) = xg(g,) for each 7. As g+H has no proper

element, there is some h, ¢ H with xg(g-h;) < xg{g-h;).
Now define C’ = C U {-h;; h,} which is still a countable
set in H. Thus there is h; € H with

Xg(g+(g,-9)) = xg(h;+g,-g). As above, xg(g-h;) = xg(g,) .,
Xg(g-h;) = xg(h,), and x;(g-h;) = xg(h;). Note that for all
Y < o, xG(gy) < Xg(g-h;) for else

Xe(g+hy) = Xg(g+hy) = Xxg(g,) s Xxg(g-h)) < Xg{g-hy)

which is a contradiction. Set g, = g+h;. We have now
constructed an uncountable sequence of elements in g+H in
such a way that the height sequences of the elements of
the sequence are strictly increasing. This contradicts
the fact that each sequence of strictly increasing height

sequences can have only countable many elements. ||
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§2.6 KNICE SUBGROUPS

The concept of knice subgroups requires the introduction
of primitive elements, valuated coproducts, *-valuated
coproducts and free *-valuated subgroups as introduced by
P. Hill and C. Meggiben in [HM1]. We have omitted a
discussion of these concepts in this chapter and left it
to appendix A.l1 in order not to interrupt our exposition

of the different notions of purity.

2.6.1 Definition: A subgroup N of the torsion-free
group G, is said to be a knice subgroup if for each
finite subset S of G, there are primitive elements Yy,
Var -+ -1 Yn Such that N’ = N ® (y;) ® (y;) ® ... & (y,) with

N’ a *-valuated coproduct with (S,N’)/N’ finite.

2.6.2 Lemma [HM1] : If N is both pure and knice in G,

then the y,'s can be chosen so that S & N’.

Proof:
Suppose S = {x} and suppose that
N' = N® (y)® ... ® (y,), then as (N’ + (x))/N' 1is

finite, there is a k ¢ N so that kx € N'. Thus

n
kx = n + Y 1,y; where 1; ¢ Z for each 1. If s = x(x),
=1

then kx € G(ks). However, N’ is a *-valuated coproduct
and thus ly; € G(ks) = kG(s). Thus, for each i, there
exists (y’); € G(s) such that ly;, = k(y’);. Now
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n n / -
n=kx - ky = k(x - . ) and thus, b urity of
121 ;yl Y P Y

1
L / L /
N,x—z_yl,eNandxeN+ Zyl.
1=1 i=1
Furthermore, as the vy,s and the (y’);,'s are linearly
dependent, the (y’),’s generate their own direct sum,
1 /
N® D <yi> is a *-valuated coproduct and
i=1
7 /
N" =N® & <y ;> is such that (N" + S)/N" is finite.
i=1
Thus N" satisfies the required conditions. Now suppose
that S = {x;; %X,}. In the same way as above, we can find
k,, k,, 1, m; integers and y’;, and y"; such that

n n
klxl = nl + E liy.l h k2X2 = n2 + Z mlyi ;
i=1 1i=1

n n
/ " ,
X, + 1‘2=:1 y; €N and x + Y ¥y . e N. For each i,

mk,y’; = lk,y"; and thus x(y’;) ~ x(y";y). Thus

A= {p : h(y") # h(y") < o} is finite. Construct each

z;, as follows: for each p € A, h,(z)f= 0 and for each
p € A, h,(z) = h(y") = h?(y"i)' and at the same time,
n, = g-EIA (hy(y’;) V hy(y")] 1is such that hz is both a
multiple of y’, and y",. Thenx; ¢ N® (z) & ... & (z,) for

each 1. Continuing in this way, we can show that if

|S| = an arbitrary m, say, then we can find suitable y;’'s

so that S is completely contained in

N® (y;) @ ... ® (vi)- u

2.6.3 Proposition [HM1] : If N’ = N® (%) ® .... & (x,)
60
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is a *-valuated coproduct in G with N a knice subgroup of

G and each x; primitive in G, then N’ is a knice subgroup

of G.

Proof: By induction, it suffices to consider case n=1.
Assume then that N’ = N ® (x) is a *-valuated coproduct
in G with N knice and x primitive. Let S be a finite
subset of G. Let S’ = S U {x}. Since N is knice, there
is a *-valuated coproduct F = N @ (y,) ® (y,) ® ... ® (va),

where the y,s are primitive and (S’,F)/F is finite. Thus
there is a multiple of x, say x’, such that x’ ¢ F. Thus
X' =2 + tyy + ... + ty,, where t, ¢ N. Since N® (x’')
is a *-valuated coproduct, if all the ty;'s had type
greater than the type of x’, the primitivity of x’ would
be contradicted. Then x’ = z + ¥ + g where the primitive

element y is the sum of the ty;’s having the same type as

x’. n

2.6.4 Proposition [HM2] : A subgroup which is pure and

knice is I-pure.

Proof: Suppose h = g, + g, + ... + g,, where h ¢ H and
each g; is in G(s;) and let S = {g;,, 93, ... ., g,} then, by
kniceness, there is a *-valuated coproduct H @& A in G
which contains s. Writing g; = h; + a;,, a € A and h; ¢ H,
we see that x(g;) s x(h). Thus h, ¢ H(s;) for all the i’s
and, as

h - () +h + ... +h) =a + ... +a, and is thus in
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HnAaA={0}. Thush="h +h, + ... + h, and H is I-pure

in G. B

The following example shows that the above implication is
not reversible.

2.6.5 Example: Let G = (6,z, 2I[)Z). All countable sets
in G are free and thus every non-zero element in G is
primitive in G and if F = (x,) @ (x,) ® ... ® (x,) is pure
in G, then F 1is a *-valuated subgroup of G. Let
x = (2,2,...,2,...) then x is not contained in any finite
rank summand of G but (x). is pure and knice in G. By
2.6.4, (x). is Z-pure in G. However, as (x). fails to be
a summand of G, (x). is not strongly pure in G and thus,
by 2.4.8, (x). is not knice. Thus a subgroup of G which
is knice and pure is necessarily I-pure but (x). above is

pure and E-pure but not knice in G.

2.6.6 Proposition [HM1] : A pure and knice subgroup H

of G is balanced in G.

Proof: Let H be pure and knice in G. Let x ¢ G\H. Then
there are yh Yo, ceey Y such that
x e H® (y,) ® ... ® (y,) which is a *-valuated coproduct
in G. Thus there exist z ¢ H and integers m;, m,, ..., m,
such that x =z + my; + My, + ... + mMYy,. By A.1.1.6,
each my; is primitive and H® (my,) ® ... ® (my,) is a
valuated coproduct. y = my; + ... + my, is such that

H ® (y) is also a valuated coproduct and x = z + y. For
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any h € H,

x (x+h) = x(z+h) min x(y) = x(y). Thus x(y) is an upper
bound for {x(x+h) : h € H}. However, x(x-z) = x(y) and
thus x(y) = sup{x(x+h) : h € H} = xgu(x+H) and H is
balanced in G. [

We represent the above schematically by the following:

N N
=3 .
.
Q ~ c,_ﬁ
= - o
<, E% @)
S 5
- = ~
> W <
z = L
o - &
T > o
-, ?% E? g; [3
S > %
= i =
: e
S 5
P
. 2, :
-
s
N
o =
o
> 2 s
P
Z < 5
5 &
)
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DECENT

&

PREBALANCED <= SEMI-BALANCED

i

KNICE + PURE = BALANCED

U

DIRECT SUMMAND => STRONGLY PURE => I-PURE® *-PURE = PURE

PURE + STRONGLY REGULAR

U

*-PURE = s*-PURE =  t*-PURE =  *.PURELY GENERATED
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CHAPTER 3

In this chapter we will see under which conditions, if
any, the different kinds of purity discussed in Chapter

2, coincide.

§3.1 In this section we will prove that all pure
subgroups of a group G are direct summands of G if and
only if G is a homogeneous, finite rank, separable group.
We will also prove that all pure subgroups are balanced
in G if and only if G is a homogeneous, finite rank,
separable group. Furthermore we show that pure subgroups
are strongly pure if and only if G is homogeneous and

separable.
The following theorem was initially proved by Baer in
[Bal] but the proof given is an alternate one given by

Hill and Megibben in [HM1l] on page 741.

3.1.1 Theorem : Any finite rank pure subgroup of a

homogeneous separable group is a direct summand.

Proof: Let H be a non-zero finite rank, pure subgroup of

a homogeneous separable group, G. Let T(G) = {7}, say

and hence G(s’) = 0 for any s in 7. Thus each element in

G is primitive in G. Let {y,, Y2, --- , Y.} be a maximal

independent set in H and let N = (y,) ® (v;) ® ... & (v.).
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As G is separable, {y;: 1 =1, ..., n} € é G; ‘where each
j=1

G; is a rank one subgroup and é G; is a summand of G.
j=1

(N =nas N >n would lead to a contradiction to the

independence of the y;’s and N < n would lead to a

contradiction of the fact that {y;: i =1, ..., n} is a
n

maximal independent set.) Each vy; = Z g; where each
=1

g; € G. As G is a rank one group, (gy, ..., 9y) = (%)

for some x; € G. Thus NS F = (x) ® ... ® (x,). We show

that N is a *-valuated subgroup by invoking A.1.3.9 as
follows:

F is a *-valuated coproduct and G is homogeneous and thus

by A.1.3.9, we can find 2z,, 23, ..., 2, in F such that
F, = (y) ® (z,) ® ... ® (z,) is a *-valuated coproduct
and F/F, is finite. Now (zp) ® ... ® (z,) is also a

*-valuated coproduct ensuring that there exist 2z,, 2,
., 2y, in F such that

F, = (vi) @ (v, ) ® (23) & ... ® (z5) 1s a *-valuated

coproduct with F/F, finite. We continue like this until

weget N =F, = {y;) ® ... ® (y,) is a *-valuated coproduct

with F/N finite. By A.1.3.13, the pure closure of N

(which is H) is a summand of G. [ |

L. Fuchs, A. Kertesz and T Szele in [FKS] proved that the
converse of this theorem is also true. We state the
theorem in its strongest £form but prove only its

converse.
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3.1.2 Theorem [FKS]: Every pure subgroup of a group G

is a summand if and only if G is separable, of finite

rank and homogeneous.

Proof: Suppose G = {g, : @ < u} is such that every pure
subgroup of G is a direct summand. Define
Gy = ({gg : B < a}).. By our assumption, G, is a summand

o a

of G and thus also of G,,,. Let C, = G,,,;/G, then for each

o, C, is either =zero or of rank 1. It follows that

G = & c, is completely decomposable. If 7, and 1, are
asp

distinct elements in &(G), then G has a summand

C =¢C ® C, with each C, of rank 1 and type(C) = 7;, i=1,2.

If 71“72, then let 0 # g; ¢ C, 1i=1,2 and observe that
H= (g, + ¢,)- is a summand of G which is impossible. If
Ty < T,, say then, as without loss of generality we can
assume that G is reduced, let p be a prime such that
pG # G. Choose 0 # g, € C, such that h§(g,) = 0. For any
0# g, e C h(pg, + g,) = 0and H = (pg; + g;)« cannot be a
summand of G otherwise, as all the elements in H would be
of type 7,, C =H® C, and

1 = hS(pgy)) = hi(pg; + g2) A hj(-g;) = 0 which is a
contradiction and G 1is homogeneous. If rank(G) 1is
infinite, then let K be any finite rank indecomposable
homogeneous group of the same type as G. Observe that
there is an epimorphism 6:G -» K. As kerf is pure in G,
by our initial assumption, kerf is a summand of G. By
the Baer - Kaplansky - Kulikov Theorem, G/kerf = K is
completely decomposable which provides the desired
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contradiction. We conclude thus that G is completely

decomposable, homogeneous and of finite rank. |

3.1.3 Theorem: All pure subgroups of a group G are

balanced if and only if G is a homogeneous, finite rank,

separable group.

Proof: Suppose G 1is homogeneous, finite rank, and
separable. Then by 3.1.2, every pure subgroup is a

direct summand and is thus balanced, by 2.5.1.

Conversely, suppose G = {g, : @ < u} is such that every

pure subgroup of G is balanced. Define

Gy = ({gs : B < a}). and observe that G = U G, and
a<p

G, € G,,; provided a+l < u. Since G, is balanced in G, it

is balanced in G,,; and G,.,/G, is either zero or rank one

and hence balanced projective. Thus G,., = G, © C, and

G = f?p C, and is thus completely decomposable. If 7, and
7, are distinct elements in &(G), then G has a summand
C =C ® ¢ with each C, of rank 1 and type(C) = 7, i=1,2.
If 71"7’2, then let 0#£g, ¢ C, 1=1,2. By assumption
H= (g, + g;)» is balanced in G and thus in C.
C/H = C;/H ® C,/H and is thus completely decomposable and
hence balanced projective. Thus H is a summand of C
which is impossible as T(H) = {7, A 7,}. If 7, < 7,, say,
then, as without loss of generality we can assume that G

is reduced, let p be a prime such that pG # G. Choose

0 # g, ¢ ¢ such that hS(g,) = 0. For any 0 # g; € C_
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h$(pg, + 9,) = 0 and H = (pg; + g;). cannot be balanced in
G for eise it would be a summand of G and as in 3.1.2, we
would get a contradiction. We conclude that G is
homogeneous. Let rank(G) be infinite and let K be a rank
one group of the same type as G. Note that as K is rank
one it is also balanced projective. Since K and G are of
the same type, we can find an epimorphism 6 : G -» K.
Ker § is pure in G and thus by our assumption, ker 6 is
balanced in G. G/ker 8 = K and thus ker 0 is a summand
of G. By the Baer-Kaplansky-Kulikov Theorem, K = G/ker #
is completely decomposable which provides the desired
contradiction. We conclude thus that G is completely

decomposable, homogeneous and of finite rank. |

3.1.4 Theorem: All pure subgroups H of G are strongly

pure if and only if G is homogeneous and separable.

Proof: Suppose G is homogeneous and separable. Let H be
pure in G. For any 0 # h ¢ H, (h). is a summand of G by
3.1.1. Thus the projection 8 : G » (h). followed by the
inclusion map i : (h). » H is a homomorphism from G to H
which fixes h and H is strongly pure in G. Conversely
suppose every pure subgroup is strongly pure in G. Let
S = {x4, ..., x,} be a finite set in G. As (S). is
strongly pure, there is a homomorphism # which takes G to
H and which fixes the whole of S and thus the whole of
(S).. Thus 6* = 0 and is a projection from G to (S). which

means that (S). is a summand of G. Every pure subgroup in
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<S>. is strongly pure and therefore a summand. By 3.1.2,

<S>« 1s completely decomposable and homogeneous. We
conclude that G is separable and homogeneous. n
3.1.5 Remark: Every element of a free group F can be

embedded in a finite rank free summand of F. The Stacked
Basis Theorem implies that every pure subgroup of F is a

summand of F.

§3.2 In this section we prove that a pure subgroup of a
finite rank completely decomposable group G is *-purely
generated if and only if it i1s strongly regular pure.

Throughout this section, G will denote a completely

decomposable group . Recall that
&G = {1t e T(G) : (G(17) ). C G(7)} and &(G) is called the
critical typeset of G. Note that in completely

decomposable groups, a type would be an element of the
critical typeset if and only if the group has a rank one
summand of that type. Thus we let G = ® (G, : 7 ¢ &(G)}

be a homogeneous decomposition of G (i.e. G, = G(7)/G(7))

and 7,:G -» G, is the projection such that kerw, = ® G,

/2t

for every 7 € &(G).
3.2.1 Lemma: Let H be *-purely generated in G. For

every T € &(H), H(r) =H & (H(7)). where H, 1is a

homogeneous completely decomposable group.
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Proof: H(7)/(H(7)). = (H n G(7))/(H n G(7)

= (Hn G(7))/(H N G(1) n G(1))

= (H n G(7), G(7))/G(7)

s G(7)/G(T)
which is a homogeneous completely decomposable group by
[Fu2: Theorem 86.6]. By Baer’'s Lemma, [Fu2: Theorem
86.4]1, (H(7") ). is balanced in H(r) and since completely
decomposable groups are balanced projective, (H(7")). is
a summand of H(7) with complement H,, and as 7 ¢ &(H), H,

is non-zero. [ |

3.2.2 Lemma: Let H and G be as above. Then &(H) € &(G).

Proof: Let 7 € &H)\&G). Then G(7°) = G(7) which
implies that (H(7) )« = H N G(7) = Hn G(7) = H(T)
contradicting the notion of a critical type set. |
3.2.3 Lemma: Let G, H and H, be as above. For every

T ¢ H) and 0 # h ¢ H, w(h) # 0 where w 1is the
projection from G to the homogeneous summand of G of type
T.

Proof: Let g = ®{G, : 7 ¢ &(G)} be a decomposition of G

into maximal homogeneous components and for every

T ¢ &), let m, : G » G, be the corresponding projection.

If 0 # h € Hy, where H(7) = H, & <H(7T")>., then

h = E{n,(h) : ¢ is an element of a finite subset I of

ZG)} and 7 = inf{o : 0 ¢ I} = ¢ for every o € I. If

T &I or if T € I but m.(h) = 0, then
71
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h e G(t) nHNH =<H(7)> nH =0, a contradiction.

Thus w.(h) # 0. [

3.2.4 Proposition: Let G, H and H, be as above. H, is

strongly regular in G.

Proof: Let 7 ¢ &H) and let 0 # h € H,. (m,(h) ). is a
summand of G, = 7,(G) as G, is homogeneous and completely
decomposable group. Let 6§ be the projection from G to
(m.(h)).. Let A = {p,, P3, -+., Py} be the set of primes

such that
hS(h) = R () < A(m (h)) i=1,2,...,k.

k
Let n = [[pf" where n(i) = hS(n.(h)) - By (h), and thus
i=1

n | m(h) in (= (h)).. Let m(h) = ng’. For any p € A,
h¥(h) = hS( (h)) = hS(g’)

and for any p € A, h$(g’) = hy(h). Thus xg(g') = xg(h)

and there is an isomorphism ¥’':(g’). > (h). with

¥’ (g’) = h. We then have

Y'0r,.(h) = Y'0(ng’) = nyY’(g’) = nh and ¢ = ¢’'0n, is the
desired homomorphism. .
3.2.5 Theorem [No2]: A subgroup H of finite rank

completely decomposable group G is *-purely generated if

and only if it is strongly regular pure.

Proof: By 2.4.7, strongly regular pure implies *-purely
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generated. By the proposition above, H, is strongly
regular for every 7 in &(H). By [No2], the H,’s generate

their direct sum. Let 0 # h e ® {(H, : 7 ¢ &G)} 1i.e.

n
h = Ehi where each h; € H,, and each 7; ¢ &(H) . For each

i=1

i=1,2,...,n, there is a ¥;:G » H, and an integer n; such
that ¥;(h;) = nh;. Thus ¢,;(h) = Zn: y;(h;) and as each
F=i,3»1

¥i(hy) e H, , Lyi(h) € H, . As H  is rank one which
contains h;, H, = (h;)s. This implies that there are
integers k; and 1; such that kh; = 1Xy;(h) . Let Ik; = k and
IL.k; = ki. Then Y;(1h) = 1nh + LIy (k)

- 1nh + kb

= (1n; + k) h;.
Let r; = 1ln+k; and let r = ILr; and r{ = IL,r;. Then
rh = rL(h) = Lrirh = Lriy(l1h) = Lriy,(h). Thus

@ (H, : 7 ¢ &£QG)} is strongly regular in G. By [No2],
@ {H, : 7 ¢ &G)} has finite index in H. Thus for every
g € H there is an integer n, such that

ng € ® {H 7 ¢ &G)} and thus rn,g = Lriyn,(g). |

§3.3 In this section we will study under which

conditions *-pure subgroups are summands.

3.3.1 TLemma [DR1] : vy € G is primitive if and only if

the pure subgroup (y). is *-pure in G.

Proof : Suppose H = (y). is *-pure in G. If s ~ x(y) and

p € P such that s, # ® and s, = hg’(y) but y € G(s',p),

3
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n+l

then, by our assumption, y € H(s",p). Thus.y = E:IH
=

with h,,, € H(ps) and for each i=1,...,n, h; € G(s) but
x(h;) 4 s. As h, depends on vy, x(y) ~ x(h) ~ s and thus
for each i=1,...,n, h, = 0. We thus have that y ¢ G(ps)

which is a contradiction to the choice of p and y is

primitive. Conversely, suppose y 1s primitive. Let
x € H= (y).. Then there are n,m, such that (n,m) = 1 and
nx = my. But my, and hence nx and x are primitive by

A.1.1.6. Let x ¢ Hn G(s',p). By A.1.1.3, either x(x) +
s or x ¢ HNn G(ps). This implies that either x e H(s") or
x € H(ps) (as H is pure in G) which in turn implies that

x € H(s",p). Therefore H n G(s",p) € H(s ,p)

and H n G(s”,p) = H(s",p)
H N G(s") = H(s") as H is pure in
G. Thus H is *-pure in G. |

The following lemma is useful when proving 3.3.3.

3.3.2 Lemma: Let y be primitive in G and let

n
y = y; where each y; is also primitive in G. There
i=1

exists at least one Yir 1 <3Js=sn such that

typeg(y) = tYPeG(Yj) .

Proof: Let s = xg(y) and let 7 = typegl(y). If all the
yv;’s are such that typeg(y;) > 7, then y € G(s",p) for any

p € P which contradicts the primitivity of y in G. [
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3.3.3 Theorem [DR1 : If G is separable, then any
finite rank *-pure subgroup H 1is a completely

decomposable summand.

Proof: The proof is by induction on n, the rank of H.
Let n = 1. Then H = (y). and as G is separable, H E K, a
completely decomposable summand of G. Thus

K= (y):® (v;)+: ® ... ® (yn)+- There exist k, 1;, 1, ...,
1. such that ky = Zly,. But {(ly). = (vi). and (ky). = (y)..
So without loss of generality, we may assume that y = Ly;.

x(y) = 2& x{yy) = x(y,) for each i. By our assumption, H
is *-pure in G and thus by Lemma 3.3.1, y is primitive in
G. By A.1.1.9, each y, is primitive and Lemma 3.3.2
implies that at least one of the y;’s is of the same type
as y and rearranging the vy;’s 1f necessary, write
vy =y’ + bwherey’ =y, + ... + y,with type(y) = type(yi
for each i=1,2,...,k and b = V44, + ... + Va- ({y’). which
is pure in the homogeneous completely decomposable group
(y)«® ... ® (y,)« is, by 3.1.1, a summand of K and thus
of G and thus G = (y’). ® N, say with b ¢ N. We thus
conclude that G = (y). @ N.

Now suppose H is of rank n > 1 and the result holds for
*-pure subgroups of rank less than n. Let y € H be an
element of maximal type 7 and let x(y) = s. H(s") = 0 and
for each prime P for which S, = h,(y) # o,
v € H(ps) = H(s",p) = Hn G(s",p). This is true for any
t ¢ 7 and any prime p with t, = hy(y,) and thus y is

primitive in G. By Lemma 3.3.1, (y). is *-pure and thus

s
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by our assumption, (y). is a summand of G and thus of H.
Let G = (y).® K and H = (y). @ L. Let x ¢ L n G(s").
Since H is *-pure in G, x € H(s) and x = Ih; with each
h, € G(s) but x(h) + s. Each h; = k; + 1, with k; ¢ {y). and
1, e L and 1; € G(s) but x(l) + s. Now

x - L1, = Zk; = 0 by properties of direct sums and thus
x = L1, and x € L(s") which implies that L n G(s") = L(s").
Similarly, L n G(s",p) = L(s",p) and hence L is *-pure of

rank n-1 and which by the inductive hypothesis is a

completely decomposable summand of G. |

§3.4 In this section, we use results that are dependent
on the theory of k-groups. A k-group, which is a
generalization of a separable group, was first introduced
by P. Hill and C. Megibben in [HM1] and later studied by
M. Dugas and K.M. Rangaswamy in [DR1]. The definition
and properties of k-groups can be found in the appendix

A.2.
We quote the following result of P. Hill and C. Megibben.

3.4.1 Theorem: [HM2: Theorem 4.1]

A L-pure subgroup of a torsion-free k-group is again a k-

group.

3.4.2 Corollar HM2]: A strongly-pure subgroup of a k-

group is again a k-group.
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Proof: A strongly-pure subgroup \is, by 2.4.8,

necessarily a IZ-pure subgroup. |

3.4.3 Corollar HM1, Fu2l: A direct summand of a k-
group 1is again a k-group and a direct summand of a

separable group is again a separable group.

Proof: This follows directly from 2.2.1 viz. that
direct summands are strongly pure subgroups and thus, by

2.4.8, I-pure subgroups as well. |

3.4.4 Corollax Nol]l: A strongly pure subgroup of a

separable group is again a separable group.

Proof: Let H be a strongly pure subgroup of the
separable. group G. By 3.4.2, H is a k-group. Let
A=(y)® ... ® (y,) be a finite rank, free *-valuated
subgroup of H. As a consequence of 2.2.6, there is a

homomorphism ¢:G - H which fixes the whole of A. Thus
(A). is a summand of G and hence of H as well. By A.2.3,

H is separable. N

3.4.5 Corollar HM1, DR]: A pure knice subgroup of a

k-group is again a k-group.

Proof: From 2.6.4, a pure and knice subgroup is also a
-pure subgroup. Thus the result follows from Theorem
77
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3.4.6 Corollar HM2]: A E-pure subgroup of a separable

group is strongly pure.

Proof: Let G be a separable group and let H be a I-pure
subgroup of G. Let h e H. By 3.4.1, H is a k-group and
thus we can find a finite rank, free *-valuated subgroup,
N, in H such that h ¢ N. By A.2.3, (N). is a summand of
G and thus (N). is a summand of H. Thus the projection

map from G to (N). is a map from G to H which fixes h. B

Recall (2.4.8) that L-pure subgroups are necessarily
*-pure. The following is an example quoted by P. Hill
and C. Megibben that illustrates that *-pure subgroups do

not coincide with L-pure subgroups.

3.4.7 Example: [BM2] lLet F denote the countable

collection of all finite subsets of the set P. Let {F,}.c.
be a sequence such that F, € F and for each F ¢ F, there
are infinitely many n for which F, = F. It is well known
that there exists a sequence {E,},., that satisfies the
following conditions whenever i,j < w:

(1) E € P.

(2) E; is infinite and E; 2 F;.

(3) E N E; is finite when i # j.

(4) E, N E; properly contains E; N E; when i # j and

k > max{i,j}.
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Select the sequence (E,},., which satisfies the conditions
(1) -(4) above. Let s, be the height sequence consisting
of 0’s and »’s such that s, assumes the value of » if and
only if p € E,. Choose a rank one group (g,)- = G, € Q0 so
that the height sequence of g, in G, is precisely s,. Let
G = .G, Let ¢, be the map from G, to Q that maps g, to
1 and let ¢:G » Q be the induced map. Hill and Megibben
proved in [HM2: Theorem 6.2] that ker¢ = H is *-pure in
G but H is not completely decomposable and in fact does
not contain primitive elements. G 1is completely
decomposable and H is countable. If H were ZI-pure in G,
then as G is a k-group, H would be a k-group by 3.4.1.
However, this contradicts A.2.5 which states that all
countable k-groups are completely decomposable. Thus we

have a *-pure subgroup which is not I-pure.

§3.5 In this section, we will look at the connection
between balancedness and kniceness and under which

conditions kniceness implies being a summand.

3.5.1 Lemma [HM1]: If H is balanced in G and s is any
height sequence, then (G/H) (s) = (G(s) + H)/H,
(¢6/H) (s") = (G(s") + H) /H, and
(G/H) (s",p) = (G(s’,p) + H)/H.

Proof: We only look at the last equation as the

verifications of the other two egquations are very

similar. Suppose x+H ¢ (G/H) (s",p) then

2
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x+H = y4+H + ... + y,+H + y+H where each y;+H is such that
x(yi+H) = s but x(y;+H) + s and x(y+H) =2 ps. As H is
balanced, each coset y+H contains an element z; such that

x(z) = x(yi+H) = s and thus x(z) + s and there 1is a

z € y+H such that x(z) = x(y+H).
x+H = z,+H + ... + z,+H + z+H
= (z,+2,+...+42,+2) +H

€ (G(s",p) + H)/H.

Now suppose x+H € (G(s",p) + H)/H. Then x = y + h where

vy € G(s",p) and h € H. Y =¥, + .. + Y+ Y where
x{y’') = ps and x(y)) =z s but x{y;) + s. Thus
x(y’+H) = x(y’) = ps and x(y+H) = x(y;) = s and

x (y;+#H) + s. Now
Xx+H = y+H = y4+H + ... + y,+H + y'+H

which implies that x+H ¢ (G(s",p) + H)/H. |

3.5.2 Theorem [HM1]: A pure subgroup H of G is a knice

subgroup if and only if H is balanced in G and G/H is a

k-group.

Proof: Suppose H is pure and knice in G. By 2.6.6, H is
balanced in G. Let S = {x,+H, x,+H, ..., Xx,+H} be
contained in G/H then, as H is pure and knice in G,
s" = {x, ..., x,} 1s contained in H + N where
N=(y)®(y;) ... ® (yx) and H + N is a *-valuated
coproduct in G and all the y;’s are primitive in G. Let

s, ~

x%H (y;+H) and let p € P be such that h{®(y+H) = (s)),.

If y+H € (G/H) ((s)",p), then y+H € (G((s)",p) + H)/H by
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lemma 3.5.1. Thus yi+h € G((s,)",p) for some h ¢ H. As
H® N is a *-valuated coproduct, y; € G((s;,) ,p). As H is
balanced in G, there is an h ¢ H such that
x¢(yi+h) = x®®(y,+H) and as H ® N is a valuated coproduct,
x (y;) s x(yi+h) ~ s; which contradicts the primitivity of
vi;. Thus each y+H is primitive in G/H. In a similar way
we can show that K = (y;+H) @ ... @ (y+H) is a *-valuated
coproduct in G/H and thus K is the free, *-valuated
subgroup of G/H containing S and G/H is a k-group.
Conversely, suppose H is balanced in G and G/H is a k-
group. Let S = {%x,, %X, ..., X} be in H then S’ = {x;+H,

., x,+H} is a finite set in G/H and thus
S’ in (y,+H) @ (y,+H) ® ... ® (y,+H) which is a *-valuated
coproduct and each y;+H is primitive in G/H. Suppose that
the y,’s have been chosen so that xg(y:) = Xgu(yi+H) then
the primitivity of y,+H guarantees the primitivity of each
Yi- Let x =h + tyy; + &y, + ... + t.y, where h € H.
x+H = ty+H + ... + t y.+Hand (g, y;+H) © ... © (t,y,+H) is

also a valuated coproduct. Now suppose x € G(s) for some

height sequence s. x(x+H) = x(x) = s and thus for each
i, ty+H € (G/H) (s). Since x(ty) = x(tyi+H), tiyy; € G(s).
Thus H® (y;) ® ... ® (y,) is a valuated coproduct. Now
suppose that x € G(s',p). As before, each
ty+H € (G/H) (s',p) but as tjy+H is primitive, either
tiyi+H € (G/H) (ps) or x(ty+H) + s. In either case,
x (tiy) = x(ty+H) implies that tjy; € G(s’,p). =
3.5.3 Corollar HM1]: If H is a pure knice subgroup of
81
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G and if G/H is countable, then H is a summand of G.

Proof: As H is pure and knice, H is balanced and G/H is
a k-group. G/H is countable and thus by A.2.5, G/H is
completely decomposable and is thus balanced projective

which immediately gives that H is a summand of G. B

3.5.4 Corollary [DR1]: G is a k-group if and only if

G = C/B where C is completely decomposable and B 1is

knice in C.

Proof: Let 0 » H » C »! G > 0 be a balanced resolution of
G. Suppose G is a k-group. Then G = C/H where C is
completely decomposable and H is balanced in C. By
3.5.2, H is knice in C. Conversely, suppose H is knice
in C then by 3.5.2, H is balanced and C/H, which is

isomorphic to G, is a k-group. u

3.5.5 Corollary [DR1]: A countable knice subgroup of a

completely decomposable group is a summand.

Proof: Let H be a countable knice subgroup of G, a
completely decomposable group. By 3.5.2, G/H is a k-
group. We can assume that G is countable and thus G/H is
a countable k-group which by A.2.5, 1is completely
decomposable and thus balanced projective. Hence H is a

summand of G. n
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APPENDIX A.1l

§A.1.1 Primitive Elements.

PRIMITIVE ACCORDING TO BAER

A.1.1.1 Definition: Baer, in [Ba)], defined an element

x in G, a torsion-free group, to be primitive of type 7
if x € G(7)\G(7") and x is proper with respect to G(7°)

(i.e. x%(x) = x%(x+g) for all g e G(7)).

PRIMITIVE ACCORDING TO HILL AND MEGIBBEN

A.1.1.2 Definition: P. Hill and C. Meggibben [HM1]
defined primitive elements in a torsion-free group as
follows :- Let X € G and let (p,s), be a pair with p a
prime and s a height sequence equivalent to x(x)
satisfying:

(1) hy(x) #

(ii) s, = h(x).

If x € G(s",p) for all pairs (p,s), as above, then x is

said to be primitive in G.

A.1.1.3 Remark [HM1]: Suppose x is primitive (Hill and

Megibben) in G but x € G(s’,p) for some prime p and some
height sequence s, then either x(x) ~ s or x(x) + s. In

the event that x(x) + s, k%(x) > 8,; while in the event
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that x(x) ~ s either h(x) = o or h,(x) > s,. Thus in
both cases, either

Ler |By(x) - s, = or x e G(ps).

A.1.1.4 Lemma : Primitive according to Baer implies

primitive according to Hill and Megibben.

Proof: Let x € G be primitive (Baer) of type 7 for some
type 7. Then x ¢ G(7)\G(7") which implies that

type(x) = 7 and for any height sequence s ¢ 71,

s ~ x(x). Let p e Pbe such that s, = h(x) # o. Suppose
x € G(s",p) then x = x, + X, where

X, € G(s8") - which implies that x;, = y; + ¥V, + ... + ¥,
where x(y;) 2 s and x(y;)) #+ s - and X, € G(ps). Each

y; € G(7") and thus x, € G(7") which implies that

X - X =% € x+G(7"). Primitivity (Baer) implies that
x(x) = x(x-x%) = x(x;) and recalling that h,(x) = s, and
h,(x,) > s,, we get the desired contradiction. Hence x is

primitive (Hill and Megibben) .

From now on we will refer to primitive (Hill and

Megibben) merely as primitive.

A.1.1.5 Note that if H is *-pure in G then x 1is

primitive in H if and only if x is primitive in G.

A.1.1.6 Lemma [HM1] : Let x € G and suppose n is a non-

zero integer. Then x is primitive in G if and only if nx
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is primitive in G.

Proof: Suppose x is not primitive in G. Then for some
pair (p,s), with (i) s ~ x(x); (ii) h,(x) # o; and (iii)
s, = h(x), x e G(s",p). By (i), ns ~ x(nx); by (ii),
h,(nx) # o; and by (iii), ns, = h,(nx). x € G(s",p)

implies that nx € nG(s’,p) which in turn is equal to
G((ns)",p). Thus nx is not primitive in G.

Conversely, suppose that nx is not primitive. Then there
is a pair (p,s), such that (i) s ~ x(nx);

(ii) h,(nx) # w; (iii) s, = h(nx); and x ¢ G((ns)",p).
Let k be such that (n/p*,p") = 1. Let t=(t), be such that
ty = s, for @#p and t, = s, - k. Then by (i),

£t ~ x(x); by (ii) hy(x) # «o; and by (iii), t, = hy(x)

while torsion-freeness of G implies that x e G(s",p).

Thus x is not primitive in G. L
A.1.1.7 Lemma [HM1] : If x is primitive in G with
s = x(x), then each element of the coset x + G(s") is

primitive with s as its height sequence.

Proof : Let x be primitive and s = x(x). Let
y = X + z, where z ¢ G(s'). Suppose y is not primitive

i.e. there is a pair (t,p), such that t ~ x(y) and

t, = h(y) #o. t, = hiy) = min{h,(x) ; h,(z)} = s, as
z € G(s").
But x =y - z € G(t%,p) + G(s") = G(t") + G(pt) + G(s)

and t As =t and t A s = s.
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Therefore G(t) S G(tAs) and G(t) S G((tAs)")
and G(s) € G(tAs) and G(s’) S G((tAs)’)
and G(pt) € G(p(tAs)).
Thus x € G((tAs)",p);
x{y) = x{(x) A x(z2) = s and therefore t A s = s; and

o # t, > (tAs), = s, which contradicts the primitivity of

x. |

A.1.1.8 Remark: If y € (x). and x(x) = s, then since y

depends on x, x(y) ~ s.

A.1.1.9 Lemma [HM1]: If (x). is a direct summand of G,

then x is primitive in G.

Proof: ©Let x(x)=t and let H = (x).. Suppose G = H ® K
for some K < G and suppose X is not primitive in G There

must be some height sequence s and prime p satisfying

s ~t, t, = h(x) =8, #®, such that x ¢ G(s",p). Thus
X = X + y where x* € G(s"),
y € G(ps). By properties of direct sums and by A.1.1.8,

G(s") =< K and thus x - x' is a decomposition of y into H

and K. Hence x(y) = x(x) A x(x) and in particular,
s, < hy(y) = hy(x) A h(x) = s,. Thus x is primitive in G.

[
A.1.1.10 Lemma: Suppose X = X, + X; + ... + X, with the

property that if x(x) = x(x) = s for each i and for some

height sequence s. If x(x;) ~ s for any i, then x(x) ~ s.
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Proof: Assume that x(x) ~ s. Since x(x) = x(x) = s and
since h,(x) = o if and only if s, = @, h,(x) = o if and

only if s, = w. If h(x) > s, then h(x) > s, which only

occurs finitely many times. Thus x(x) ~ s. |
A.1.1.11 Lemma : If x ¢ G, a separable group, and
x(x) = s, type(x) = o, then x is primitive if and only
if:

(1) type(x) ¢ &(G) and

Proof: Without loss of generality, we can assume that G
is completely decomposable and thus G = @egg G(7). If

7, is the projection from G to G,, then s = x(x) s x(m (x))

and o = type(x) s type(m (x)). We can write
x = E{m(x) : 7 € &G)} where

&(x) = {r e &G) : m(x) # 0}. Now suppose X is primitive
but g & &) . Then for any T e &x),
¢ < 7 = type(m (x)). Thus x € G(s") € G(s",p) for any
p € P contradicting the primitivity of x. Suppose

x (x) < x(m,(x)) then for some p ¢ P, h,(x) < hy(m(x)) and

X € G(ps) € G(s",p) and x cannot be primitive.

Conversely, suppose conditions (1) and (2) hold but x is

not primitive in G. There are thus a height sequence t
such that t ~ s and p € P such that h,(x) = t, < ® and
n+l
x € G(t",p). Thus x = Y x; where x,,, € G(pt) and for
iml
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each 1 =1,...,n, x(x) =2 t and x(x) + t. As G 1is a

direct sum, x, = L{m(x) : 7 € &)} for each
n+1

i=1,...,n, n+l and thus x = Y I{m(x) : 7 ¢ &G)}.
i=1

By Lemma A.1.1.10, x(m(x)) + t for any i = 1,...,n which

forces w,(x;) = 0. We now have that w,(x) = m,(x,,,) and

thus, by (2), t, = h(x) = h(m,(x)) = h(m, (X)) > £, a

contradiction. Thus, under these conditions, x will be

primitive. [ |

§A.1.2 Valuated coproducts

A.1.2.1 Definition [HM1]: A direct sum A; @ A, of
independent subgroups of G 1s said to be a yaluated

coproduct in G if x(a; + &) = x(a;) A x(a;) for all

a, € A, and a, € A,.

A.1.2.2 Temma [HMil: A, ® A, is a valuated coproduct if

and only if for any height sequence s, whenever

a, + a, € G(s), then a, and a, are elements of G(s) too.

Proof : Let s be any height sequence. Suppose A, @ A, is

a valuated coproduct in G. Let a; € A, for i = 1 or 2.

Then (a; + a;) € G(s) implies that

x(a;)) A x(a,) = x(a; + a;) = s and since

x(a) = x(a;)) A x(a;) for each i = 1 or 2, a; € G(s).

Suppose now that for some a; € Ay, a, € Ay,
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t = x(a; + a,) > x(a;) A x(a,) while at the same time, for
any height sequence s, a; + a, € G(s) implies that
a; € G(s), 1 =1 and 2. Thus x(a,) = t and x(a,) = t and
hence x(a;) A x(a,) = t which is a contradiction. We can

thus conclude that x(a; + a,) = x(a;)) A x(a,). [

A.1.2.3 Definition [HM1] : We can extend the definition’

of a valuated coproduct to an arbitrary sum of

independent subgroups of G as follows: D A is a
i€

valuated coproduct if, for any height sequence s,

whenever x(Z;a;) € G(s), then a, € G(s) for each i.

Alternatively, @ A, is a valuated coproduct if, for any
ier
a = )Y @&, where I, is a finite subset of I, then
i€I,
x(a) = A {x(a)}. As in A.1.2.2, we can show that these
ier,

definitions are equivalent.

A.1.2.4 Temma [HM1]: 1If B;/A;, is torsion for all i € I,

then B = @ B, is a valuated coproduct if and only if
i€r
A = € A is a valuated coproduct.
ier
Proof: Suppose B is a valuated coproduct. Let s be an

arbitrary height sequence. Suppose
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a; +ta; *ta; *+...+a; € G(s), a;, €-A4;.

Now A; « B,

i i, for each j =1, ..., n and as B 1is a

valuated coproduct, a; ¢ G(s) for each j. Thus A is
also a valuated coproduct. Conversely, suppose that A is
a valuated coproduct and let s be an arbitrary height

sequence. Suppose
b=b; +b; + ... +b; €G(s)

with b; € B; for all 7=1,2,...,m

such that n. b, €A and thus

There 1is an n.
1y Tl 1y

n= (II.n%) is such that nb ¢ A. Now b € G(s) implies

Fe1
m
that nb € nG(s) = G(ns). nb=3% b, and as A is a
J=1
valuated coproduct, nbije G(ns) and thus b € G(s) as G is
torsion-free. Thus B is a valuated coproduct. n
A.1.2.5 Remark: If G = @G, then x(Zg) = Alx(g))

i€er

where g; € G, and thus G is a valuated coproduct.

A.1.2.6 Lemma [HM1]: The valuated coproduct,
A = i%Z'Ai in G is pure in G if and only if each A is

pure in G.

Proof: As each element in G can be represented as a sum
of finitely many elements in the A;’s, the proof reduces

(using induction if necessary) to the case when the
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valuated coproduct A = A, @ A,. Suppose A, and A, are pure
in G. Let ng € A. Now ng = a; + a, Where

a, €A, i =10r 2. x(ng) = min{x(a); x(a;)}. Thus nx(g)
s x(a) for i = 1,2 and therefore nl|a, and n|a,. Thus
there are b, and b, elements in A, and A, respectively such
that

a, = nb; and a, = nb, and ng = nb, + nb, = n(b;, + b,)

and A is pure in G.

Now suppose that A is pure in G. For any ng € A, ng is
also in A and by the purity of A, g ¢ A and thus

g = b, + b, with b, € A,. Thus ng = nb; + nb, and

ng - nb, = nb, ¢ A, n A, = {0}. Hence ng = nb, and by
torsion-freeness, g = b, € A, and A; is pure in G.
Similarly, A, is pure in G. |

§A.1.3 *-Valuated Coproducts

A.1.3.1 Definition [HM1]: Let A = @D A; be a valuated

ier

coproduct in G and represent each a € A as a finite sum

a = fer Qi where each a; € A, and I, is a finite subset
0

of I. If for each prime p and each height sequence s it
is the case that a e G(s’) implies that a; ¢ G(s") for all
the i’s and a € G(s',p) implies that a; ¢ G(s’,p) for all

the i’s then we say that A =@ A 1s a *-valuated

coproduct.
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A.1.3.2 Temma: If H = (H;).® (H).® ... ® (H,). and

N=H® ... ®H, then H is a *-valuated coproduct if and

only if N is a *-valuated coproduct.

Proof: Suppose H is a *-valuated coproduct in G. Each

element in N is a sum of elements in the H;’s which are

contained in the (H;).’s. Thus N is also a *-valuated
coproduct in G. Conversely, suppose N is a *-valuated
coproduct in G. Let h =x + %X + ... + x, where each

x; € (H). and let h € G(s",p) for some height sequence s.
Then there are integers %k, 1 = 1,2,...,n such that
kx; € H;. If k = IIk; then for each i, kx ¢ H; and thus
kh € N. As N is a *-valuated coproduct and
kh ¢ G((ks)",p), kx;, € G((ks)",p) for each i and thus by
torsion-freeness, each x; € G(s",p) and H is a *-valuated

coproduct. [ |

A.1.3.3 Lemma: If G = EBGi, I some index set, then G
i€x

is a *-valuated coproduct in G.

Proof: By A.1.2.5, G is at least a valuated coproduct.
Let g ¢ G theng = g; + ... + g, with each g; ¢ G; for some
j € I. Suppose g ¢ G(s’,p) for some height sequence s and
some prime p. Thus g = X; + X, + ... + X + Y where

x(y) = ps, x(x) = s and x(x) + s for each j=1,2,...,m.

92

http://etd.uwc.ac.za/



Each x5 = X + X5 + ... + X; and y =y, + ... + Yy, where
each y; and each x; are contained in G. Since G is a
direct sum and by A.1.1.10, all the x;’s are such that
x(x;) = s and x(x3) + s and x(y;) = ps.

g =ZIZxy + Ly = Zi{Zx; + v where each ZIx; + y; € Gj.
Thus each g; = Ix; + y; and hence g ¢ G(s",p). Similarly,

if g € G(s"), then each g; ¢ G(s"). |

A.1.3.4 Lemma [HM1]: Let A = A © A, be a valuated
coproduct where A, = (x) with x primitive in G. If
a=a +a € G(s",p) implies that a; € G(s",p) for all the

i’s then A is a *-valuated coproduct.

Proof: Let a € G(s"). BAs G(s") € G(s",p), a € G(s",p) and

by our hypothesis, a; ¢ G(s",p) and, for some n,

nx = a, € G(s',p). But nx is primitive and thus either
(i) x(nx) + s or (ii) x(nx) ~ s but at the same time,
h,(nx) > s,. If (i) is true them nx e G(s’) and

a, = a - a is also in G(s") and A is a *-valuated
coproduct.

Suppose (ii) 1s true. As A 1s a valuated coproduct,
A.1.1.10 implies that x(a) ~ s and a ¢ G(s’) implies that
a =% + X + ... + %, where for each i, x(x) =z s and

x(x) # s. By A.1.1.8, each x; € A, and thus a, = a and
n = 0 which trivially implies that a; ¢ G(s") and

nx ¢ G(g") and hence that A is a *-valuated coproduct. B

A.1.3.5 Lemma [HM1]: If N & (x) is a *-valuated
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coproduct in G with x primitive and if y = x_+ 2z where
z € N and x(y) = x(x), then y is primitive and N & (y) is

a *-valuated coproduct in G.

Proof: Let (s,p), be any pair such that s is a height

sequence equivalent to x(y) = x(x) and p is a prime such
that s, = h,(y) = h(x) # o. If y € G(s',p) then as
N ® (x) is a *-valuated  coproduct, x € G(s",p)

contradicting the primitivity of x. Thus y is primitive
too. N + {(y) €N + (x) by definition of y.

a € N® (x) implies that a = n + kx for some n € N, and
k ¢ Z. Thus a =n - kz + ky €¢ N + (y) and hence
N@® (x) =N + (y) and since, N n (y) = {0} by properties
of direct sums, N® (x) = N@® (y). We now have to prove
that N ® (y) is a *-valuated coproduct. Let w ¢ N and

k € Z then x(w+ky)

x(w + kz + kx)

= x(w + kz) A x(kx) s x(kx) = x(ky).
Suppose that w + ky € G(s) then
s s x(w + ky) = x(ky). Thus ky € G(s) and w ¢ G(s) as
G(s) is a subgroup of G. Thus we have that N ® (y) is a
valuated coproduct in G. Now suppose that
w + ky € G(s",p). This implies that kx and w + kz are in
G(s",p) as N & (x) is a *-valuated coproduct. The
primitivity of x implies, thus, that either kx + s (in
which case ky + s and ky € G(s') € G(s",p)) OR that
h,(kx) = hy(ky) > s, (in which case ky € pG(s) & G(s,p)).
In either case, ky € G(s,p). Because G(s",p) 1is a

subgroup of G, kz = ky -kx € G(s",p) and hence
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W =W + ny - ny € G(s",p). By A.1.3.4, N® (y) is a

*-valuated coproduct. u

A.1.3.6 Remark: If HE P S G and G is torsion-free but

G/H is torsion and P is pure in G, then P = G. This is
proved as follows: Let g € G then, by torsion freeness
of G/H, there is an n € Z such that ng € H and thus
ng € P. Purity of P implies that there is an h € P such
that ng = nh and torsion-freeness of G implies that

g = h. Thus G = P.

A.1.3.7 Corollary [HMi]l: If G = (x).® K and x(x) = s,
and if y = x + 2z with z € G(s’), then G = (y). ® K.
Proof : N = (x) ® K is a *-valuated coproduct in G by

"

.1.3.2. As z € G(s"), x(y) = sandby A.1.1.8, z € K; by
A.1.1.9, x 1is primitive in G and thus by A.1.3.5,

N = (y) ® K is a *-valuated coproduct which in turn

implies (A.1.3.2) that (y). ® K is also a *-valuated

coproduct. Now by A.1.2.6, (y). ® K is pure in G and G/N

is torsion. Thus, by A.1.3.6, G = (y). ® K. |
A.1.3.8 Lemma [HM1]: Suppose N = (x,) ® (x,) & ... & (x,)
is a *-valuated coproduct in G, where x;, %X, ... , X, are
all primitive elements of the same type. Then every

element of N is primitive in G. Moreover, if

Y = X + X + ... + X,, then there exist elements
Yar +-. . V. in N such that N = (y;) & (y,) & ... & (y,) is
85
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a *-valuated coproduct in G.

Proof: The proof is by induction on n.

Let N = (x;) ® (x,) with x,, x, both primitive. Let

x(x,) = t;, and x(x,) = t,, say. By our assumption, t;, and
t, belong to the same type, 7, say. Let y = nx;, + mX, and
let x(y) = t. N is a *-valuated coproduct and therefore
t € 7. Suppose s is a height sequence such that s € 7
and p is such that s, = t, = h(y) # . If y € G(s’,p) and
if without loss of generality, h,(nx;) s hy(n,x;), then
nx, € G(s',p) as N is a *-valuated coproduct which
contradicts the primitivity of nx;. Thus y is primitive
and my is primitive for any m € Z and hence every element
in N is primitive.

Let y;, = X + X,.

Since t, ~ t,, the sets A} = {peP: h(x,) < h,(x,) # »} and

A, = {peP: h(x,) < h,(x,) # o} are finite. Let |A/]| = n’,
and |A;| = m’. Let n; be such that h, (p;™ X)) = h, (x,)
for all p; € A, and all 1 =1, ..., n’ and let m be such

that  h, (py™ %;) = by (x) for all p; € A, and all
i=1, ..., m'.
/

Let n =p,™p,™...p,/» where each p; € A,

and m=p™p,™...p, ™ where eachp; €4,. (n,m =1 as

A N A =@, Thus h,(nx,) = b, (x) for all p; € A

and hpj(xl) = hpj(nvfz) for all p; € A,. Let k,1 € Z such

that 1 = kn + 1lm and let y, = -knx; + lmx,. If p € A,

then h,(y;) = h,(x;) A hy(x%) = hy(x) (*)
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and h,(y,) = h,(-knx,) A h,(1lmx,)

= h,(-kx,) A h,(1x,) (as (p,m)=1)
= h, (x,) as (k,1) = 1. (*%)
Similarly, if p € A,, then h,(y;) = h,(x) and h,(y;) = h,(x)
and for p € P\(A, U A), hy(y) = h(y)) = h(x) = hix,).
Now
_[1 17, X1 _ "]
T = l_km 1n | is such that XzJ = leJ’
det(T) = 1 and 7T = Lo —1].
lem 1

Let x ¢ N then x mx, + n,x, for some n,, n, € Z.

: ]lxll
. n, n
s ot

1, [,
(n, n,1T Tl x|

Y1
-1
(n, n,]T |-

[ ]fln—lllJﬁl
Pt | km o1 Il y, |

(n;ln + nkm)y, + (n, - n,)y,.

I

Therefore N = (y,) + (v,).

Let g ¢ (y;) n (y,) then g = my, = myy, for some m;, m, € Z.

Thus m; (X, + X,) = m(-kmx, + lnx,) and
(m, + mkm)x; = (mln - m)x,. As (x,) ® (x,) is a direct
sum, m; + mkm = 0 and mln - m = 0. We thus have the

following system of equations:
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1 km 1! m |

l-11nilm | Lo
Bearing in mind that km + 1ln = 1, we get that m = 0 and
m, = 0. Thus N = (y;) ® (v,).
Claim: N is a valuated coproduct.

Proof: Let y = ny; + n,y,. Note that

by, |
y = [0 nyl
Ly, |
¥
= [1’11 n2] T T‘l &
Ly, |
L T e ——
'Yl ckmln ] L x, |
3ty )]
= [ nl = nzkm nl + nzln ]
| x, |
Thus v = ny, + ny, = mxX, + mX, where m = n; - n,km and

m, = n; + Myln. We need to show that

h, (v, + Y, = h(ny,) A h(ny,) for all n;, n, ¢ Z and
p € P. We need only check the case when
h, (n;y;) = hy(ny,) . G is torsion-free and therefore common
p-power factors can be cancelled and hence at least one
of n, and n, is coprime to p. If pe A/, UBA, then
h,(y;) < h,(y;) and h,(n;y,) = h,(n,y,) implies that p | n, but

p / n,. On the other hand, if p & A, U A, then p | n, and

p / n,.

If p € Ay, then h,(nx) = h, (nyy) by (*)
= h, (n,y;) by assumption
= h,(y,) as p I m

h, (x,) by definition of y,.
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Now h, (nkmx;) h,(kmx,) as p [ m

h,(kx,) by definition of m.
Therefore, by definition of A;, p | mkm and thus, p | m,.
Note that my - m; = n, and p | n, implies that p [ m,.
Hence, h,(mx,) = h,(n,y,) as p / m, p | n,, and (**)

= h, (ny,) by assumption

s hy(mx,) .
Thus h,(n;y; + ny,) = hy(mx;) A hy(mx,) = hy(mx,) = hy(x;)
And h,(ny,) A h,(ny,) = h, (n;yy) by assumption

= h,(x,) by above.

We thus have the desired result that

h, (nyy; + npy,) = hy(nyy) A hy(ngy,) .

If p e A, then hi(x) > h(x), hily) = hi(x), and
hy,(y;) = h,(x;) . Thus
h,(n;x;) = h,(n;y,) = h,(n,y,) = h,(yy) = h,(x,);
h,(1nn,x,) = h,(1lnx,) as p [ n,

= h,(1x,) by definition of n; and
h, (myx,) = h(nx, + 1nnx,) = hy(x) A h(1x,) = h(x)).
Asp € Ay, p | mand thus p | m, and again, as m, - m; = n,,
P/ m. Hence h, (mx;) = hy(x;) = h;(mx,) and so
h, (ny, + my,) = hy(mx,) A h(mx,) = h(mx,) = h, (%) and
h, (ny;) A hy(ny,) = hy(ny)) = hy(x)). Thus we have the

desired result that h (ny, + my,) = h(my)) A h(ny,) . On
the other hand, if p € A, U A,, the equation

m, - m = n, ensures that p divides at most one of the
integers m, and m, and consequently, in this case, we have
that hy (mx;) A h,(mx,) = h,(x;) = hy(x,) = h(y;) = h(y,) and
h,(n;y,) A hy(nyy;) = hy(y;)) = h(y;) asp [ n;, i=1,2. Thus,
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in each case, h,(ny, + ny,) = h(ny;) A h(ny,) and N is a
valuated coproduct. To show that N is a *-valuated
coproduct, let 0 #y =ny, + 0y, € G(s',p). y is
primitive and therefore either

(1) x(y) + s or

(2) x(y) ~ s but y € G(ps). In (1), x(ny) + s and
x(ny, + s as n,y;, ny, € G(s) and thus nyy, € G(s’) and
ny, € G(s") € G(s",p). In (2), as N is already a valuated

coproduct, y € G(ps) implies that

n,y, and n,y, € G(ps) S G(s",p). Thus N is a *-valuated
coproduct. Assume that if N = (x;) & ... ® (x,,) is a
*-valuated coproduct in G; X, X, ... , X, X, are all

primitive elements of the same type; then every element

in N is primitive in G; and if y; = (%) + ... + (x.),
then there exist vy,, .e« 4+ ¥¢ in N such that
N=(y)® ... D (y,) is a *-valuated coproduct in G.
Now let N = (x,) & ... & (x,;) ® (x,) and let y ¢ N. For
simplicity, let N, = (x) & ... & (x,,). Then

y = a,; + kx, where a,, € N, and+ k, ¢ Z. By the

inductive hypothesis, a,, 1s primitive and thus, by

exactly the same argument as in the case when n = 2, y is

primitive. In particular, if y, = X, + X + ... + X, + X,

then, for simplicity, let x; + ... + X = b;. By the

inductive hypothesis, there are y,, V3, ..., Ya.1 Such that

N, = (b)) & (y,) & ... & (y,,) is a *-valuated coproduct.
n-1

Note that type(b;,) = lAl{type(xi)} = type (x;) for every

i thus, as in the case of n=2, choose y, such that
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(b;) ® (x,) = (y1) ® (y,) is a *-valuated coproduct. Now

N =(x)@® ... ®(x,) & (x,)
= (b)) ® (y2) & ... & (yu) ® (x,)

= (y)®(y,) © ... ® (v,..) ® (y,) which is also a
*-valuated coproduct. n
A.1.3.9 Theorem [HM1] : Suppose that
N = (x) ® (x,) ® ... ® (x,) is a *-valuated coproduct in
G where each of the xs are primitive. If vy, # 0 1is a

primitive element contained in N, then there exist
primitive elements Y2 o ! Ym such that
N' = (y,) ® (y,) @ ... ® (y,) is a *-valuated coproduct

with N/N’ finite.

Proof: Yi € N implies that we can write
Y, = )X, + X, + ... n.x,. Note that:

1. in the event that n; is zero, we can, for the sake of‘
this part of the proof, rewrite N as

N=(x)® ... 9 (x,) ® (x,,) ® ... & (x,) and add (x;) to
N and N’ in the end for the result to hold; and
2. N = (nx,) ® (nx,) ® ... ® (nyx, 1is a *-valuated

coproduct and y, € N’ with N/N’ finite.

By the above, we can consider Yy to be
Y1 = Xl + X2 + ... Xm.

m
Now x (y,) = /\ x(x;) < x(x;), for each 1.

1=1

Rearrange the x;’s so that the first k x;'s are of the same

type as v;; let y = x + ... + X and
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g = X4y + ... +X y € 0 for else

me
v € Glix(y))?) € a((x(y)) " p) for any p € P which
contradicts the primitivity of vy;. As N and N’ are
*-valuated coproducts, x(y,) = x(y+g) = x(y) which implies
that x(y) = x(y,) for else y, € G((x(y,))") which again
contradicts the primitivity of y,. By lemma A.1.3.8 there
are primitive elements Y2, .. , Y that

N = (y) ® () & ... & (vi) & (%) ® ... ® (x,) and by

lemma we can replace y by y;. [

A.1.3.10 Corollary : If x is a primitive element in the

separable group G, then (x). is a direct summand of G.

Proof: By separability of G, x is contained in a direct
summand A = A, © A, ® ... ® A, where each A; is a rank one
subgroup of G. Thus x = x; + ... + X, where each x; ¢ A
and x € N = {x;) & ... & {(x,). Bearing in mind that
A = (x)«, A/N is torsion and each (x;). is a direct summand
of G which implies that each x; is primitive in G. The
previous theorem yields N’ = (x) @ (v,) ® ... & (y,) where
each Yi is primitive and N/N’ is finite.
B = (x).® (y,)«:® ... & (y,)« is pure in G and thus pure
in A with A/N’ torsion. Thus by A.1.3.6, B = A and (x).

is a summand of A and thus of G too. n

A.1.3.11 Definition [HM1] : Any subgroup, F, of G which

can be represented as a *-valuated coproduct
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F = G}mz<xg>, where the x;’s are non-zero -primitive

elements of G, is called a free *-valuated subgroup of G.

Under these circumstances, the x;’s are said to form a set

of free generators of F.

A.1.3.12 Theorem [HM1] : If F and N are free *-valuated
subgroups of G, where N has finite rank and N & F,
then there is a *-valuated coproduct F’ = N @ M, where
F/F’ is finite and M is also a free *-valuated subgroup

of G.

Proof: Let vy, Y2, --- . Ym be a set of free generators
of N. We proceed by induction on the number of y;’s that
are also free generators of F’.

Let M = F and let F, = (0). Then F = F, ® M is such that
F/F is finite and M is a free *-valuated subgroup of G.
Assume that F, = (y,) © ... @ (y..) ® M, is such that F/F,
is finite and M., is a free -valuated subgroup of G. The

finiteness of F/F,, guarantees that there is a multiple vy,’

of vy, ¥so L that & vils &%, Thus we can write
vy = =yVi' - Y2' - ... = Yu1' + my, where my, € M, and for
each i =1,...,n-1, vy 1is a multiple of vy;. Let
x(y.') = s. As F,, 1is a *-valuated coproduct,
s = x(va') s x(my) and, for all i=1,...,n-1,
x(y.’) = x{yi’). Rearrange the y;’s so that y,, Y2r ... .

v, all have the same types as type(y,’) and note that

k = 0 makes no difference to the proof and that vyi. ',
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., Y. are all contained in G(s"). By the first part

of lemma A.1.3.8, v,/ + VvV, + Yy + ... + Y, 1is primitive
in G. x(y." + v + .. +wv') = AMxyv."), x(yv;"),

x(ye')} = x(ya')= s. Because M,, is also a free *-valuated
subgroup, we can, as above, write m,, = y + g where y is

the sum of primitive elements in M,, of the same type as
typel(y,’) = 7, say and g € G(s’) n M,,;. Here again, by the
first part of lemma A.1.3.8, y is primitive in G and, as

G(7) 1is a subgroup and type(y) s type of each of its

summands, typel(y) = 7. Note that if vy = 0, then
a=v, +¥4' + ... +vy,' € G(s") a contradiction to the
primitivity of a. Suppose x(y,’) < x(y), then for at

least one p € P, h(y,’) < h,(y) and y € G(ps) which means

that y,” € G(s",p) which contradicts the primitivity of

Y.’ . Thus x(y,”) = x(y). By Theorem A.1.3.9, we can find
/ / , i

M, = (y) ® M, so that Mﬂ‘l/Mn—l is finite and by

Lemma A.1.3.5, M’ = (v,”) ® M,. Thus we have

F'oi = (v1) ® ... ® (y,) & (yv,) ® M, with F_ ,/F',, finite

and thus F/F’,, is finite. Since (vy,)/(v.’) has finite

order, F', = (y;) ® ... @ (v,) ® (y,) ® M, satisfies the
conditions of the theorem. [ |
A.1.3.13 Corollar HM1] : If N is a finite rank, free

*-valuated subgroup of the separable group G, then the

pure closure of N is a direct summand of G.

Proof: Let N = (y,) ® ... & (y,), where the y,’s are free

generators of N. Since N is separable, N is contained in
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a direct summand A = A @A, ® ... & A, of G, where each

m
A; is a rank one subgroup. Each y, = E n;a;; , a

Sy € A.
J=1

ij j

Each A; is locally cyclic and therefore we have nonzero

x;'s such that (x) = (a;, ay, ..., a;) €A and hence
F=(x)® ... ® (x,) contains N. By A.1.3.12, we have a
*-valuated coproduct F' = N & M, where F/F’ is finite and

M is a free *-valuated subgroup of G. A/F is torsion as
A= (x)«® ... ® (x,)« and F/F’ is finite. Hence A/F’' is

torsion and by A.1.3.6, A is equal to the pure closure of

F’. |
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APPENDIX A.2

In this appendix we introduce the concept of a k-group
and show that any finite rank, free *-valuated subgroup

of a k-group G, is knice in G.
k - Groups were first introduced by Hill and Megibben in
[HM1:p 741]. They were also studied by M. Dugas and

K.M. Rangaswamy in [DR1].

Definition [HM1l]: A torsion-free group, G, is called a

k-group if each finite subset can be imbedded in a

finite rank, free *-valuated subgroup.

A.2.1 Lemma [HM1] : Any separable group is a k-group.

Proof : Any finite subset, S say, of a separable group,
G is contained in a finite rank, completely decomposable
summand, A, say, of G. In the same way as in the first
part 3.1.1, we can find a free *-valuated subgroup, N

which contains S and which in turn is contained in A. N

A.2.2 Proposition [DR1] : A finite rank summand of a k-

group is completely decomposable.

Proof: Let A be a finite rank summand of the k-group G.
Then there is a finitely generated subgroup, F, of A with

A/F torsion. Since G is a k-group, F is contained in a
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free *-valuated subgroup N of G. The pure closure, B, of
N is a completely decomposable group containing A and A
is a direct summand of B. Thus, as direct summands of
completely decomposable groups are completely

decomposable too, the proof is complete. |

A.2.3 Theorem [HM1] : G is separable if and only if G

is a k-group with property that the pure closure of each
finite rank, free *-valuated subgroup is a direct

summand .

Proof: Lemma A.2.1 shows that separable groups are k-
groups and 3.1.1 proves that separable groups have the
property that the pure closure of a finite rank, free
*-valuated subgroup of a separable group is a summand of
that group. Now suppose that G is a k-group with the
property stated above. Let S be any finite subset of G
then, as G is a k-group, S can be embedded in a finite
rank, free *-valuated subgroup, N, say, of G. By the '
assumption, the pure closure, B, of N is a finite rank
summand of G. By A.2.2, B is completely decomposable and

thus G is separable. |

A.2.4 Lemma [HMl:Lemma 3.4] : Any finite rank, free

*-valuated subgroup of a k-group G, is a knice subgroup

of G.

Proof: Let X, X,, ..., X, be a set of free generators of
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N and 1let S be any finite set in G. Take
S’ =S U {x, ..., X}- Since G is a k-group, we can

select a finite rank, free *-valuated subgroup F

containing S’. Then N &€ F and by theorem A.1.3.12, we
have a *-valuated coproduct N’ = N® (y,) & ... & (y.),
where the y,’s are primitive and F/N’ is finite. Since
S € F, the proof is complete. [

A.2.5 Theorem [HM1] : A countable k-group is completely

decomposable.

Proof: Suppose X;, X, ---, X5, ... is an enumeration of

the elements of G and let X, = {x;:

.+ i < n} for each n < N.

As G is a k-group, {x,} 1is contained in a finitely

generated free *-valuated subgroup,

Fl = (Yll) @ <YI2) @ . o e @ ( yl,nl ). By 3.2.4, Fl iS knice

in G and therefore there are primitive elements vy, Yau:

.++ Y, sSuch that F, = F, & (ya) ® ... ® ( 3, ) and
m
(X,, F,)/F, is finite. Let S, = |J i Yz o <o+ o Yia}
i=1
and F = nL<JmF”' Then T is a free *-valuated subgroup of

G. Suppose g € G\F then g = xy for some N < R. Thus

there is an n, € 2 such that n,g € Fy and G/F is torsion

n.
and G is the pure closure of F. F = & ® <y;;> and
i<w j=1
n;
hence G = & & <y;;>. which implies that G is
i<w j=1
108
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completely decomposable. n

[AR]

[AH]

[av]

[Ba]

[Bil]

[Bi2]

[Bol

[BR]

REFERENCES

A. Abian and D. Rinehart, Honest Subgroups of
Abelian Groups, Rend. Circ. Mat. Palermo (2)
12 (1963) 353-356.
U.Albrecht and P.Hill, Butler Groups of
Infinite Rank and Axiom 3, Czech. Math. J, 37
(222) (1987),293-308.
D.M.Arnold and C.Vinsonhaler, Pure Subgroups of
finite rank completely decomposable groups II,
Lect. Notes in Math., Vol. 1006, Springer-
Verlag, Berlin, Heidelberg, New York, 1983, 97-
143.
R. Baer, Abelian Groups without Elements of
Finite Order, Duke Math. J. 3 (1937), 68-122.
L. Bican, Purely Finitely Generated Groups,
Comment. Math. Univ; Carolinae 11 (1970), 1- 8
-------- f Completely Decomposable Abelian
Groups any Pure Subgroup of which is Completely
Decomposable, Czech. Math. J. 24 (99) (1974),
176-191.
C.J. Boshoff, A Note on Fine Subgroups,
Tydskrif Natuurwetenskap 17 (1977) No. 1, 20-
26.

H. Bowman and K. M. Rangaswamy, On Special

09

http://etd.uwc.ac.za/



[Bul

[deR]

[DHR]

[DR1]

[DR2]

[FKS]

[Ful]

Balanced Subgroups of Torsion-Free Separable
Abelian Groups, (Proceedings, Oberwolfach
Conference, 1981) Lecture Notes in Math.,
Vol. 874, Springer-Verlag, Berlin-Heidelberg-
New York, (1981), 32-40.

M.C.R.Butler, A Class of Torsion-free Abelian
Groups of Finite Rank, Proc. London Math.
Soc. (3) 15 (1965), 680-698.

E. de Robert, Géneralisation d’un théorém e
die T. Szele et d’un probléme de L. Fuchs, C.
R. Acad. Sci. Paris Sér. A-B, 263 (1966),
A237 - A240.

M.Dugas, P.Hill and K.M.Rankaswamy, Butler
Groups of Infinite Rank II, Trans. Amer.
Math. Soc., 320, no 2, (1990), 643-664.

M. Dugas and K.M. Rangaswamy, On Torsion-free
Abelian k-Groups, Proc. Amer. Math. Soc., 99 no
3, (1987}, 403-408.

M.Dugas and K.M.Rangaswamy, Infinite Rank
Butler Groups, Trans. Amer. Math. Soc., 305, no
L, =(N9BE) =2 GHTA2,

L. Fuchs, A. Kertesz, and T Szele, Abelian
Groups 1in which Every Serving Subgroup 1is a
Direct Summand, Publ. Math. Debrecen 3 (1953),
95-105.

L. Fuchs. Infinite Abelian Groups, Vol 1,

Academic Press (1970).

http://etd.uwc.ac.za/



(Fu2]

[FM]

[FV]

[GR]

[Hi]

[HM1]

(EM2]

[(Hol

[Hul

L. Fuchs.  ----------cmcmmmmemmm - = Vol 2,
Academic Press (1973).

L. Fuchs and C. Metelli, Countable Butler
groups, Cont. Math. (130), 1992, 133 - 143.

L. Fuchs and G. Viljoen, Note on the
Extension of Butler Groups, Bull. Austral.
Math. Soc. 41 (1990), no. 1, 117-122.

A. J. Giovannitti and K. M. Rangaswamy,
Precobalanced Subgroups of Abelian Groups,
Comm. Algebra, 19, no. 1, (1991), 249-269.

P. Hill, Isotype  Subgroups of Totally

Projective Groups, Lecture Notes in
Mathematics, Vol 874, Springer-Verlag,
Berlin, Heidelberg, New York, (1983), 305-
321.

P. Hill and C. Megibben, Torsion-Free Groups,
Trans. Amer. Math. Soc. 295 (2), (1986), 735-
L5

————————————————————— , Pure Subgroups of
Torsion-Free Groups, Trans. Amer. Math. Soc.
303N (2 w5 E(TYBTN #6557 78

K. Honda, Realism in the Theory of Abelian
Groups I, Comment Math. Univ. St. Paul 5
(1956), 37-75; II, Comment. Math. Univ. St
Paul 9 (1961), 11-28; III, Comment. Math.
Univ. St. Paul 12 (1964), 75-111.

R. H. Hunter, Balanced subgroups of Abelian

Groups, Trans. Amer. Math. Soc. 215 (1976) 8,

11

http://etd.uwc.ac.za/



[JR]

[Kul

[Ma]

[No1ll

[No2]

[No3]

[Pr]

[Ral]

[Ra2]

1-98.

S. Janakiraman and K.M. Rangaswamy, Strongly
Pure Subgroups of Abelian Groups, Proc.
Miniconf. Theory of Groups Canberra (1975), 57-
65.

L. Ya. Kulikov, Generalized Primary Groups,
Trudy Moskov. Mat. Obsc. I, 1, (1952), 247-

326; II, 2, 85-167.

J. M. Maranda, On Pure Subgroups of Abelian

Groups, Arch. Math 11 (1960) 1-13.

L. G. Nongxa, Strongly Pure Subgroups of

Separable Torsion-Free Abelian Groups, Trans.
Amer. Math. Soc. 290 (1), (1985), 363-373.
——————————— , *-Pure Subgroups of Completely
Decomposable Abelian Groups, Proc. Amer.

Math. Soc. 100 (4), (1987), 613-618.
——————————— , Homogeneous Subgroups of

Completely decomposable groups, Arch. Math.
(42), 1984, 208 - 213.

H. Prifer, Untersuchungen liber die

Zerlegbbarkeit der abzdhlbaren primdren
abelschen Gruppen, Math. Z. 17 (1923), 35-61.
K. M. Rangaswamy, Full Subgroups of Abelian
Groups, Indian J. Math. 6 (1964), 21-27.
————————————————— , An Aspect of Purity and
its Dualisation 1in Abelian Groups and

Modules, Symposia Math. 23, (1979), 307-320.

http://etd.uwc.ac.za/



[Ra3]

[Ri]

[vD]

—————————————————— ' On Strongly Balanced
Subgroups of Separable Torsion-Free Abelian
Groups, Abelian Group Theory, (Proceedings,
Honolulu, Hawaii, 1983), Lecture Notes in Math,
Vol 1006, Springer, Berlin - New York, (1983),
268-274.

F. Richman, Butler Groups, Valuated Vector
Spaces and Duality, Rend. Sem. Mat. Univ.
Padova, Vol 72 (1984), 13 - 19.

T. J. van Dyk, Suiwerheid van Ondergroepe 1in
die Abelse Groepteorie, Unpublished Thesis,

University of Pretoria, (1979).

http://etd.uwc.ac.za/



	Title
	Contents
	Abstract
	Chapter 0- Preliminaries
	Chapter 1- Historical overview
	Chapter 2
	Chapter 3
	Appendices
	References



