
vaq.zuANIeilS Of' pUnrrY vffi"num ToEsloN+"REE
.EBEUI.E.N GROUPS

6y

rYruruurru V*lu srER.

Presented in Partial Fulfilment of the Requirements for the Degree of

MAGI$-TE8 SCIENTIAE

in tfie

DEPAffTMENT Of' MATITEMATICS

of tfic

UNIVERSITY Of'THE Ii{TSTUNN CAPE

AUGUST l gg4

SUPERVISOR : PROfESSOR L G. NONGXA
T\-_

UMVEBSITEIT VAN WES.KAAPLAND

BIBLIOTEEK

s\i...1, i{E
LIBRARY

UNIVERSITY OF IH€ WESTERN CAPE

http://etd.uwc.ac.za/ 



TABLE Of COn@NtS

PREFACE

ABSTRACT

ACKNOWLEDGEMENTS

CHAPTER O

CHAPTER 1

CHAPTER 2

CHAPTER 3

APPENDX A.1

APPENDX A.2

PAGE

(v)

(vii)

l3

35

83

106

(iii)

1

65

ll

http://etd.uwc.ac.za/ 



eKETACE

In chapter 0 we give the notation used, pertinent definitions and concepts used

throughout, and state fundamental results.

Chapter 1 is a historical overview of the development of the variances of purity

Here we state the concept, the originator of the concept and approximate date when

the concept was first introduced by means of a paper. We then state the motivation

for the new concept if it is apparent in the literature

From chapter 2 onwards, we limit our discussion to variances of puriry applicable

only to torsion-free abelian groups

ln chapter 2 we compare variances of purity. We show which definition imply

others and show examples where possible, of a subgroup which satisfies a weaker

but not a stronger definition and thus providing the weaker definition with a raison

d'Otre.

Chapter 3 is a coliection of theorems which deal with groups with special

conditions. These conditions are interesting in that when a group has these

conditions, a certain class of subgroup is guaranteed to have stronger properties.

lll
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We have included appendices A.1 and A.2 since certain concepts discussed in this

dissertation, can only be fully understood once these sections have been perused

However, despite its importance, we felt that these explanations intemrpted the

flow of the main document. To this end, A.1 discusses the concepts of primitiviry,

valuated coproduct, x-valuated coproducts and *-pure subgroups; A.2 discusses

the concept of k-groups

1Y
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ABSryACT

In 1921, Prtit'er introduced the concept of a pure subgroup of an abelian group.

This concept, which is applicable only to abeiian groups, proved to be a very

useful one. Subsequently, this concept has sparked otf numerous definitions of

subgroups of abelian groups which are either generalizations or refinements of the

pure subgroup.

We look firstly, at how these ideas have developed since Priifer's time. This

picture has been gleaned by the perusal of the Mathematical Reviews to see which

papers have been published regarding this topic and then, where available, by

studying these papers to try to understand the rationale of the author.

Secondly, we group certain concepts which are comparable and then study the

interrelation between these concepts.

In chapter 3.1, it is shown that, for a torsion-free abelian groupG, the tbllowing

conditions are equivalent:

(i) G is a finite rank completely decomposable group,

(ii) all pure subgroups of G are summands,

(iii) all pure subgroups of G are balanced in G.

http://etd.uwc.ac.za/ 



One of the interesting results of section 3.2 is the theorem that states that a

subgroup of a finite rank completely decomposable group is *-purely generated if

and only if it is strongly regular pure and that of 3.3 is that any finite rank *-pure

subgroup of a separable group is a completely decomposable summand.

Section 3.4 uses for a basis, the theorem proved by P. Hill and C. Megibben which

states that a l-pure subgroup of a k-group is itself a k-group. What is so

interesting about this theorem is that one of its corollaries states that a l-pure

subgroup of a separable group is also strongly pure.

The last section of the dissertation discusses the relationship between knice

subgroups and balanced subgroups. A pure subgroup is knice if and only if it is

balanced and its quotient group is a k-group. This result looks as though it could

be helpful when trying to look at alternative definitions of balancedness.

v1
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Throughout this

otherwise stated,

group.

CIIAPTER O - PRELIMINARIES

dissertation the word group, unless

refers to an additively written abetrian

The standard referenceg are [Fu1] and [Fu2] and in this

chapter, w€ introduce the notation, definitions, basic

concepts and prelimi-nary result,s frequently used in this

dissertation.

S O. ]. NOTATION

z

.ilr

o

P

No

Nl

C,

(s),

T(G) :

G/H :

A\B :

A+B,

a:
,:

: the

: the

: the

: the

or 0)

or (l)l

C:is

set of integers.

set of non-negat,ive integers.

set of rational numbers.

set of prime numbers.

the first infinite ordinal.

the second infinite ordinal, etc.

contained, properly contained in.

: the subgroup, pure subgroup generated by S.

the torsion subgroup of G.

the quotient group G modulo H.

the elements of A which are not in B.

E4 : the subgroup generat,ed by A and B,

the empty set.

mapping between sets.

the \.

(s)'

1
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l-A : the identity map of A.

dlo : the restriction of cr to A.

ker cy : the kernel of the homomorphism o.

Im o : the image of t.he homomorphism cv.

q, q, @: the int.ernal, external, and (where there is

no ambiguity) the direct, sum of. . .

hf (x), \(x) : the p-height (p prime) of x in G, and

(where there is no ambiguity) the

p-height of x.

xc(x), X(x) : the height sequence of x in the torsion

free group G, and (where there is no

ambiguity) the height sequence of x.

typeo(x), type(x) : the type of x in the torsion free

group G, and (where there is no

ambiguity) the Lype of x.

T(G) : t,he typeset of the torsion free group G.

8(G) : The critical typeset of the torsion free group

G.

G : The set of characteristic sequences.

T : The set of t,ypes.

2
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S O .2 DEFINITIONS AI{D BASIC CONCEPTS

We start by mentioning concepts fundamental in the study

of arbitrary abelian grouPs.

O .2 . l- Internal direct sums

Let A and B be subgroups of G. We say t.hat' G is the

internal direct sum of A and B (written G = A q B) if

G = A + B (i.e. every element of G can be written as a

sum of elements in A and B) and A n B = { O }' We say

that A is a direct summand of G if G = AQ B for some B

a subgroup of G. This notion can be generalized to an

arbitrary collection of subgroups in G viz. {4 : i € r}'

We say that C = Q 4 if the following two conditions are

sat,isfied :

a) G=t Ai, and
ieI

b) Ai n Du, =(o)' foratlier'
lerjri

Each \ is a direct, summand of G-

An abelian group is called indecomposable if it has only

trivial direct.

indecomposable.

O is known to besummands.

3
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0.2.2 Direct Products and External direct sums

Let (4 : i e I) be a family of groups indexed by I.

The direct product, G = r* U,

is defined as follows:

f e G if f is a function with domain I and range UAi
1€I

and f (i) e \ for every i- e I.

f + g: I-+ U \ is defined to be (f+g) (i) = f (i) + g(i)
r-€1

and thus (f + g) (i) e 4. It can be shown that G becomes

an abelian group under the binary operation defined

above.

For every i € I, define

(a) ri: G + 4 by zr,(f) = f (i) and call- this t.he i-th
proi ection,'

(b) pi : A1 + tr 4 as follows:jer
for any x € 4, pi(x) = gi,x

where pi,*(j)
x, if i=j
0, it i*j .

t

For every f e G, we define

supp(f) = { i e r : f(i) * o } and cal-1 this subset of r

the suDport of f I f we put

F = { f e G : supp(f) is finite }, then since

supp(f+g) E supp(f) U supp(g) for every f, g € G, it is

4
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easy t.o see that. F is a subgroup of G = Il Ai. F is
i€r

calIed the external direct sum of t.he A;'s and is denoted

by QA'. It can be shown t.hat :

(1) QA' = Qp'({) and that

(2) for any f e @, Ar, t E Piftif'
ier iesupp(f)

0.2.3 : Free and divisible abelian Groups

An abelian group F is free on a set X if there exists a

function i : X + F such that for any function

f : X + G, G an abelian group, there exists a group

homomorphism 0 : F + G such that 0L = f. It can be shown

that for any non-empty Set X there exists a free abelian

group F satisfying the definition above. This implies

Ehat every abelian group is an epimorphic image of a free

abelian group (see [Fu]- : p.7a) ) i . e. f or every abelian

group G, there exists a free abelian group F, and an

epimorphism 0 : F + G. The free group F together with

0, is calIed a free resolution of G.

An abelian group P is said

abelian groups A and B, if

homomorphisms with d. onto,

0zP+Asuchthatq.0=0

proiectsiwe if, for any

+Band0:P+Bare

exists a homomorPhism

to be

d:A

there

An abelian group D is

5
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a) divisible if for every non-zero integer n and x € D,

there exists y e D such that DY = x.

b) iniectsive if, for any abelian groups A and B, if

ot : A + B and 0 : A + D are homomorphisms with cr monic,

there exists a homomorphism 0 : B + D such that 0a = 9-

0.2.4 Linear independence and rank

A subset L = {*' : i € I} of an arbitrary abelian group,

G, is calted Z-independent (or just independent if there

is no ambiguity) if for any f inite sum Dn,x, = 0, with

ni € Z, then oiXi = 0 for all i. It can be shown [Fut'p.85]

that a system L is independent if and only if the

subgroup generated by L is the direct. sum of cyclic

groups (*,), i e I. An element g of G depends on L if

there exist integers n, Dl, flz, , Dk such that

O I ng = [rXr + flzxz + + [rXr with xi e L. An

independent system L is maximal if there is no

independent, system in G containing L properly. By

Zorrt's lemma, every independent system in G can be

ext,ended to a maximal one and, if the initial independenL

system contained only elements of infinite or prime power

orders, then the Same can be assumed of the maximal one.

The rank of G, denoted r(G) is the cardinal number of a

maximal independent system in G. It can be shown that

r (G) depends only on G see [Fu1: Theorem ]-5 .3, P.851 .

Note that if r(G) = 7-, then any two elements in G depend

5

http://etd.uwc.ac.za/ 



on each other

0.2. 5 Heiqht/characteristic sequences and types

now introduce the concepts of heighc,

play a fundamental

We

and

this

height sequence

role throughouttype which will

dissertation.

A sequence s = (=o : p e P) is calIed a characteristic

aecruence if sp is either a non-negative integer or the

symbol @. (the reason that. we index the sequence by P

will be apparent later on. )

on the set G of characteristicWe define a

sequences, as

s-tif (i)

(ii )

relation
r follows:

sp

{p

@ if and only if tp = - and

so I to) is finite.

It can be shown that this defines

on G and an equivalence class

relation is caIled a t.ype.

an equivalence

with respect

relation

t.o this

We can also define

< t if and only

relation < on G by :

for all p in P. If neither

are said to be incomparabletnorts
we writ,e

an order

ifsp=Lp

s then s and t

s

a s

and

7
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With respect to this

distributive lattice
defined by:

(s n t)o = min{ sp,

respectively.

tp ) and (s V t), = ITIaX{ =0, to)

order

with

relation, G

meet and

i complete

operations

forms

j oin

Let n = fl pt, € N, where rp € N, and 1et s be any
lr€P

characteristic sequence. (Note t.hat ro = 0 if and only if

(n,p) = 1 in this product. We find it convenient to

define the "product" of s and n to be the characteristic

sequence ns = (te) where tp = sp + rp.

The order relation and meet and join operations defined

the set T of typeson

AS

for

a)

b)

If neither 11 < T2 nor

incomparable (written rr

T1 s z2 but 11 # 12, then we

G induce corresponding notions

follows:

rL and 12 in T,

11 s rz if and only if there

i = L, 2 such that s1 < szi

r = rrn 12 if and only if r

s1 € Ti where i - L,2i rt v

similar manner.

on

exist s1 € ri where

contains sl n s2 with

12 is defined in a

T2 s T1r then 11 and T2 are

ll ,rl . For convenience, if
say Lhat Tr < 12.

Let, G be a torsion free group and p a fixed prime. We

8
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obtain the following sequence of subgroups of G

G poc r pG r p2G
=

f p"G
=

n e N.

If x € G, the p-heiqht of x in G, denoted by hf (x) , is

defined to be n if x e pnG\pn*rc, otherwise it, is @.

The characteristic sequence ( h3(x) : peP ) is cal-Ied the

heicrht sequence of x in G and will be denoted by 16 (x) .

The equivalence class containing the height sequence of

x in c will be caIled the tsvDe of xinG and will be

denoted by type6 (x) . The trrpeset of tshe crroup G, T (G) ,

is the set of types of all the non-zero elements in G.

Note that for any n € Z, 16 (x) - Xc (nx) and thus

typeo(x) = typec(nx) . If lttc) ; = 1 (i.e. aII the

elements in G have the same type) then G is said to be

homoqeneous.

Every height sequence s e G determines a fulIy invariant

subgroup c(s) = {x e G: &(x) > s } of G which contains

the fully invariant subgroups G(s') and G(s',p), where

G(s.) is generated by all the x's in G(s) with 16(x) not

equivalent with s, while G(s.,p) = G(s') + pG(s) . Note

that, :

(a) if s s t, then G(t) g G(s), G(t.) g G(s.), and

G(E',p) gG(s*,p) ; and

(b) if t = rrs, then G(t) = nG(s), G(t.) = nG(s'), and

G(t',P) = nG(s.,P) '

9
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For every type 7 we also have the following fulIy

invariant subgroups of G:

G (z) = D c(s) = U G(s) and G(z')
s€7 s€7

E G (s.)
S€7

U G (s')
s€7

Remark: The subgroup G(z) of G is simply the collection

of all elements x of G such that. typeo(x) > r and is, in

general, a pure subgroup of G. However, the collection

of elements in G(s) wich height sequences not equivalenL

to s and the collection of elements of type > r do not

necessarily form a group. Hence we have to define G(s.)

and G(z') as the subgroups generated by t.hese respective

elements in G.

Clearly G(2.) c G(r) for every Lype, t, and if

G(r') C G(z) then r e T is said to be a critical trrpe of

G. The set of critical types in T (G) is cal1ed the

critical typeset of G and wil-I be denoted by 8(G) .

i ') ( tnamnl ai-a ''l 
" Aaaamnaa=l.r'l a =nrl ean=r=h'] Fara'i an Fraa

qroups

A t,orsion- f ree group is said to be completely

decomposable if it is a direct sum of rank L groups and

is ca11ed almost completelv decomposable if it contains

a completely decomposable subgroup of finite index. If

10
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every finite subset of a torsion-free group. G can be

embedded in a completely decomposable finite rank direct

summand of G, then G is said t.o be eeparable. Trivially,

every completely decomposable group is separable but

there are examples of separable groups that are not

completely decomposable .

S O .3 SOME PREI,IMINARY RESUI,TS

0.3.1: Let, F be a free group and H a subgroup of F.

Then

a) F is a direct sum of infinite cyclic groups;

b) H is also free;

c) if rank(F) = rrr a positive inLeger, then there exists

a basis {x1,x2, ....,Xn} of F and integers r, k,, k2, ..., kr,

where 1 s r s n and k, lk,*, ,i=1-,2,...,t-L such that

{k,*, , ki<,} is a basis of H. (Stacked Basis T}reorem

for finiE,e rank free groups) .

O.3.22 A group is free if and only if it has the

projective property.

0.3.3: A group is divisible if and only if it has the

injective property.

0.3.4: A divisible subgroup D of an abelian group, G, is

a direct summand. of G and we can write G = D O C where C

11
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contains no divisible subgroups other than 0

caIled a reduced group.

0.3.5: If s and t are height sequences, then s

and only if there exist n,m e Z such that ns = mt

if G is a rank 1 group, then G is homogeneoua.

Cis

rif
ThuE

0.3.5 If G = (E Gi then:

G(s) =@ci(s) and

c (7) = (E Gi(z) and

= (E Gi(s.) ;

= o Gi(2.) .

G (s.)

G (z')

0.3.7: If G is completely decomposable, then z € g(G) if

and only if there is at Ieast. one summand Go of G such

that T(G") = {r}. Let G, be t.he direct sum of all rank

one summands of G of tlPe z then G = e {C, 2 r e 8G) .

0.3.8: rf c = H O K then gG) I g@)

\2
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CIIAPTER 1 - HISTORICAIJ OVERVIEW

In this chapter the various notions of purity that

appear in the research papers reviewed in Mathematical

Reviews vol 21 to voL 92g will be introduced. As far as

possible, the names of the people who first introduced

the different concepts of purity, 3s well as the

approximate date that t.he idea was introduced, will be

given. We wil-I also endeavour, where possibl-e, to supply

the observations that Ied to some of these definitions.

In 192L, Prufer [Pr] introduced the not,ion of a 'rpure

subgroup" which has turned out to be one of the most

useful and powerful concepts in the st.udy of abelian

groups. A subgroup H of an arbitrary abelian group, G,

is said to be pure in G if nH = nG fi H for any n e Z.

Note thaL, in general, rH g nG n H for al-I inLegers n

and, in order t.o check whether a subgroup is pure or not,

we need only verify t.he other containment.

The notion of pure subgroups is int.ermediate between

subgroups and direct summands and it reflects a way in

which a subgroup is embedded in the whole group.

Specifically, it can easily be shown that all direct

summands are pure subgroups. However, since a subgroup

H is pure in a group G whenever G/u is torsion-free, Lf

we take a free resolut,ion of the group of rationals Q,

13
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the kernel is pure but not a summand otherwise its

complement would be isomorphic to O. On the ot,her hand,

22 is a subgroup of Z wlnicLr is not pure. Thus, being a

direct summand is stronger than being pure, which in

turn, is stronger than being an ordinary subgroup.

One can appreciate the significant role played by pure

subgroups when one considers, for example, basic

subgroups. These play a crucial part. in the study of

p-groups and are , by definition, pure.

ft is also a weII-known fact [Fu1: p.1051 that every

abelian group can be embedded as a subgroup of a

divisible group - called the divisible huII of the group.

The structure of divisible groups is described completely

by Theorem 23.L [Fu1: p.104] and, thus, one of the

approaches to describing the structure of all abel-ian

groups is to study how a subgroup is embedded in its

divisible hul1. we can also be interested in when

certain properties of the larger group are inherited by

a particular class of its subgroups. It can be easily

demonstrated that pure subgroups of divisible groups

inherit the property of being divisible. Thus, a group

which is not divisible cannot be a pure subgroup of its

divisible hull. Hence one way of getting closer to

understanding the structure of abelian groups, is to

study subgroups with properties that are weaker than

being pure.

t4
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According to the famous Baer-Kaplansky-Kulikov Theorem

(see [Fu2: p.114] ) , direct. summands of completely

decomposable groups are themselves complet.ely

decomposable. Bican tBi2l gave an example of a pure

subgroup of a completely decomposable group which is not

completely decomposable. The question can thus be asked

whether a variance of purity (stronger than ordinary

purity, yet weaker than being a summand) exists so that

this cLass of subgroups of a completely decomposable

group is guaranteed to be completely decomposable. To

date, t,here are no examples in Iiterature which give a

negative or affirmative answer t.o this, except in

restricted cases (e.g. homogeneous pure subgroups of

complet.ely decomposable group G are completely

decomposable provided that 8G) is countable) [No3].

Since the introduction of the concept of purity, many

variances of purity were introduced and studied. The

question posed in the previous paragraph shows t.hat the

pursuit of finding new variances of purity is sti1I an

inEeresting and worthwhile activity. What follows in

this chapter is a collection of the definitions of the

variances of purity that exist in lit,erature.

The torsion part of an abelian group is a direct sum of

its p-components and thus the study of the torsion part

can be reduced to the study of p-groups. The observation

that every p-subgroup H of a group G has the property

15
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that enH = H n qnG for all n € [, q e P and q I .p leads to

t,he definition of p-puritv. A subgroup H of a group G

is p-pure in G if pnH = H n pnG for any n e N. From the

remark above, d p-subgroup H of G is q-pure for alL q. I p

and H will therefore be pure in G if and only if it is p-

pure in G.

If, in the definition of purity, we restrict the integers

to be only prime numbers, then we get the definition of

neatness as introduced by K. Honda 1UoJ. In other words,

H is neat in G if pH = H n pG for all p e P. A pure

subgroup is trivially neat and in torsion-free groups,

neatness and purity coincide.

If pH = H n pG for a fixed prime p

be reE, in G. For any prj-me p,

is necessarily p-neat.

€ P, then H is said to

a p-pure subgroup of G

A pure subgroup H of a group G has the property that if

O I ng € H, where g € G, then there is an element h e H

such that nh = ng. In torsion-free groups this implies

t.hat g e H. In mixed or torsion g:roups, however, this is

not necessarily the case, for if ng € H, there might

exist an element h € H, digtinct from 9, with the

property that ng = nh. A. Abian and D. Rinehart [AR] , in

1963, called a subgroup H of an arbitrary group G honest

if, for any n € N, 0 I ng e H implies that g e H' Thus

an honest subgroup will necessarily be a pure subgroup

15
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and, if G is torsion-free, then H would be honest in G if

and only if H is pure in G. It is proved in tARl that

if H is honest in c, then either H C T(G) or T(G) g H,

where T(G) is the torsion subgroup of G.

Suppose that H is a proper subgroup of the torsion

subgroup of G. Then H is honest in G if and only if the

following three conditions are satisfied :

(i) T(c) is a p-group for some prime P;

(ii) H is a direct sum of cyclic subgroups of

order p; and

(iii) H is a direct summand of G.

On the other hand, if T (G) g H, then H is honest if and

only if G/H is torsion-free.

It, can be seen, in view of condition (iii) above, that

for torsion and mixed groups where H is properly

contained in T (G) , honesty is stronger than being a

direct summand.

In l-964 K. M. Rangaswamy defined H t.o be absorbinq in G

if, whenever nx e H for some non-zero integer n, then

x e H [Ra1] . This definition is stronger than A. Abian

and D. Rinehart's definition of honesty in that absorbing

subgroups are necessarily honest. As Rangaswamy did not

specify that nx be non- zero, absorbing subgroups contain

all elements in G of finite order whereas this is not, the

case with honest subgroups. In fact, dD honest, subgroup

L7
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H of G is absorbing if and only if T(G) gH. Rangaswamy,

in the same paper, defined a subgroup H of an arbitrary

abelian group G to be full in G if G tpl c H where p is a

fixed prime number. By t.he remark above, every absorbing

subgroup is fu1l. Rang'aswamy proved that every full and

neat subgroup is absorbing.

For every non-negat,ive integer n, put, Gn = pnc and recal1

that, we can get a decreasing chain of subgroups :

G = Go = Gr = G2 = = Gn f We extend the definition

of Gn to Go = p"G where cy is any ordinal as follows:

Gd = pnc = n Gs, if aisalinitordinal-;
9<c Y

Gn = p'G = pGq,-r if a, is a successor ordinal-.

In the same way we extend t.he definition of p-heights as

follows : an eLement g in G is said to have qeneralized

p-heiqhc in G of or (i.e. hi,o(gr) o) if g € Go but

g { Go*r. Note that in torsion-free groups, PoG = p"G for

any ordinal cY > o) . Thus, in t.orsion- f ree groups, the

generalized p-height is the same as the p-height.

In 1952, Kulikov [Ku] generalized the definition of p-

purity as follows: a subgroup H of a p-group G is isotlpe

in G if p"H = p"G n H for every ordinal d. An isotype

subgroup is necessarily pure. If G is torsion-free, then

c is isotype if and only if G is pure and, if G is a p-

group containing no elements of infinite height, a

18
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subgroup H of c is isotype if and only if it is pure in

G.

Let G be a group, B and H subgroups of G. The subgroup

H is said to be B-hicrh in G if H n B = {o } and if

H C H' g G implies that H' n B I {o}. It was shown by

Irwin and Walker (see [Fu2: Theorem 80.1, p.751) that,

for any ordinal a, any p"G-high subgroup of a p-group G is

isotype. This result gives a simple way of constructing

non-Lrivial isotype subgroups of a p-group that contains

elements of infinite p-height..

In a paper published in L956 [deR], E. de Robert

introduced the concepts of p"-pure and d-pure. If o is

any ordinal and H is a subgroup of an arbitrary abelian

group G, t.hen H is said to be po-pure in G if

ppc n tt = ppH for all ordinals 0 < 0 < cv. H is said to be

cu-pure in G if H is p"-pure for aII primes p. If G is a

p-group, then a subgroup H is a-pure in G if and only if

H is p"-pure in G. A subgroup is p"-pure if and only if

it is p-pure and <o-purity coincides with ordinary purity.

Let. S g P and define a subgroup H of a group G to be

S-pure if H is p-pure in G for aI1 p in S. This notion

was first introduced by J.M. Maranda in 1950 ( [Ma] ) . If

S = P, then S-purity coincides with ordinary purity and,

if s = {p}, p a prime number, then S-purity becomes

19
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p-purity.

This concept was generalized by T.J. van Dyk, [vDJ in

1979 as follows: instead of restricting S to be a subset

of t.he set of prime numbers, Iet S be a non-empt.y subset

of integers with the property that whenever 0 # n 6 S,

then every positive divisor of n is also in S Clearly,

t.he following sets of integers satisfy the property

sLated above:

a) z;

b) Pu {r},
c) the union of {r} with any eubset of primes;

d) go) = {p* : p is fixed and k = o, L, 2, ...i, and

e) S(d) = {pe : p prime and O < 0 < o}.

Thus H is

i) Z-pure in G if and only if it is pure in G;

ii) (PU {r})-pure if and only if it is neat in G;

iii) g(n)-pure if and only if it is p-pure in G; and

iv) S(cu) -pure if and only if H is p"-pure in G.

Let G be an abelian group and H a subgroup of G. The

nat,ural epimorphism r/ : G + G/H need not preserve the

properties of elements of G. For example, if G is

torsion-free and rank(G) = rank(H) , then ry' maps elements

of infinite order into elemenLs of finite order. However,

by [Fu1: Theorem 28 .1-) , H is pure in G if and only if 
'l'

preserves the order of at least one element in every

coset of G modulo H. A1so, / need not preserve the

20
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(generalised) p-heights of elements of c ,":n. in the

free resolution of Q, elements of finite p-height are

mapped to elements of infinite p-height for every prime

p) .

An element x in G\H is said to be (p-)proper with respecE

to H if the generalized p-height of x in G equals the

generalized p-height of the coset x + H in G/H (i.e. ,1,

preserves the generalised p-height of x) .

A close analysis of the Kaplansky-Mackey proof of UIm's

Theorem led P HiIl to the discovery of a significant t.ype

of subgroup which embodies the properties of finite

subgroups relevant to the proof ([Fu2: paragraph 77]).

He called a subgroup, N of a p-group G, nice (see [Fu2:

paragraph 79)) if every non-zero coset of G mod N

contains an element. which is p-proper with respect to N.

A subgroup B of a p-group is balanced if it is both nice

and isotlpe. This idea was introduced by L. Fuchs in

[Fu2: p77) .

This concept can easily be extended to torsion-free

abelian groups as follows: if H is a pure subgroup of a

torsion free group G, then G/H is torsion free and vice

versa; a pure subgroup H is said to be balanced in G if

the natural epimorphism preserves the height sequence of

at least one element in every coset of G modulo H.

2t
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The definitions of balancedness given above apply only to
p-groups (or onlrr to torsion-free groups) . The extension

of this concept to abelian groups in general (i.e. mixed

groups), which yields the above definitions for p-groups

and torsion free groups, was carried through by Hunter

( [Hu] ) in L976. In order to introduce this concept, we

need to def ine t.he height matrices.

Let an extended characteristic sequence, (so) be a

sequence of ordinals and symbols o. Let (so) and (te) be

two ext.ended characteristic sequences. We say that
(sr) s (to) if sp s to for all p e P.

A heiqht matrix, M is defined to be an ol x c,r matrix [ooxJ

where p e P and k e .lI and whose entries t opkt are ordinals

and symbols @. Given a height. matrix, M = [oopJ , p a

prime, w€ define pM to be the matrix with p-th row

(oor, opz,...) (i.e. drop ofl and shift all other entries

one place to the Ieft,) and all other rows are identical

to the corresponding rows in M. Multiplication of height

matrices by a power of a prime p and t,herefore by an

arbitrary integer is defined in the obvious way. Not.e

that for arbitrary positive integers n and

k, (nk)M = n(kM) and the definitions here give a scalar

multiplication of height matrices by posiEive integers.

Two height matrices M and N are said to be ecnrivalent if

22
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there are positive integers m and n such that. rnM = nN.

As in the case for torsion-free abelian groups, this
obviously defines an equivalence relation on the set of

height matrices, but we have been unable to find in
Iiterature, an investigation of this equivalence relation
paralleI to the one f or t.orsion f ree groups.

Let I't =

that M <

[oorJ and N - loorJ be height matrices. we say

N if opr s ppk for all p e P and k e .lI. We denote

the pth-row of the height matrix I-l by Mo.

Let. x e G. We define the extended heiqht sequence of x,

(written 1[ (x) ) , to be (so) where (so) is an ext.ended

characteristic sequence with sp = hi,o (x) . A heiqht

matrix. Ho(x), of an element x in G is defined to be the

height matrix M - [oor] where opk = h;,p (pkx) , the

generalized p-height of pkx in G.

For each group G and height matrix M, define

c(M) = {g e G : H6(a) =

Now let H be a subgroup of G.

Il-proper with respect E,o H i-f

H-nice in G if every coset g+H

is H-proper with respect to H.

M) = n G(r'te) .

peP

An element g in G\H

uo (g) = HcrH (g+H) and

contai-ns an element

is
H15

which

An exact sequence :

0{A'dB 9g 0

is said to be balanced if the induced seguence
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there are positive int.egers m and n such that. rnM = nN.

As in the case for torsion-free abelian groups, t,his

obviously defines an equivalence rel-ation on t.he set of

height matrices, but we have been unable to find in
lit,erature, an investigation of this equivalence relation
paraI1eI to the one for torsion free groups.

that M s

IoorJ andLet M N looiJ be height matrices. We say

We denote

the pth-row of the

Ppr.forallP e Pandk e N

height matrix t't by M,.

Let x e G. We define the extended heiqht sequence of x,

(written 1i(x) ), to be (so) where (so) is an extended

characteristic sequence with sp = h[,0 (x) . A heiqht

matrix. H"(x), of an element x in G is defined to be t,he

where opr fri,, (nbc) , theheight matrix M- [oorl

generalized p-height of pkx inG

For each group G and height maLrix M, define

c(M) ={ge G:H6(a) =M} = n c(Me) .

peP

Now let H be a subgroup of G. An element. g in G\ii is II-

proper with reepect to H if Hc (g) = HcrH (g+H) and H is H-

nice in G if every coset g+H contains an element which is

H-proper with respect t.o H.

An exact sequence :

O - A +c B -P C O

is said to be balanced if the induced sequence
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o r A(ro +c B(ro -p c\o o

is exact for every height matrix M. A subcrroup H of G is

said to be balanced in G if the exact sequence above is

balanced when we replace A, B, C, d, and 0 with H, G,

G/H, the inclusion map and the canonical map

respectively. Hunter also proved in [Hu] t.hat if H is a

subgroup of G, then the following are equivalent :

(a) H is balanced in G;

(b) H is both isot.ype and H-nice in G;

(c) to each c in G/H, there is an element g in G such

that ,1, @) = c (where ',1, is the canonical map) ,

It(g) = H(c) and o(g) = o(c) ; and

(d) the sequences 0 -, H/H (M) - c/c (M) - c/C (M) + 0

(where C = G/H) is exact for all height matrices M.

Hunter also defined an exact sequence 0 -r A

to be H-Ba].anced if 0 + A(K) + B(K) - C(K) +

for all ext.ended height sequences K. If G is

then the rows of the height mat.rix consist of

for a single row and the original definition

coincides with Hunter's one ( [Fu2: Exercise 6

+B+C+0

0 is exactr

a p-group,

co's except

of balanced

, p.931).

If G is a torsion-free group, then the first column of

the height matrix of an element is t.he (ordinary) height

sequence of that element which gives t,he same amount of

information as the entire height matrix in view of the

fact t.hat for every x € G, p prime and n a non-negative

integer, \(p"x) = n + \(x) . Thus if the first column of
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the height matrix is s,

x e G(H(x) ) and by (b)

according to Hunter, H

Fuchs's definition.

then

above

x e G(s)

, Lf H l-s

if .qd only if

balanced in G

G according tois balanced in

In 1977, C.J.Boshoff [Bo] defined a subgroup H of a p-

group G to be peaked in G if for every non-zero coset g+H

in c/H, there is an h e H such that hf (S+h) = h!/H(S+u) .

She defined. a fine subgroup to be one that is peaked and

pure. Nice subgroups are by definition peaked and thus

a pure subgroup which is also nice would be a fine

subgroup.

Note that if H is a subgroup of a group G, then H is

isotype in G if and only if the height matrix of an

element in H, evaluated in H, is the same as its height

sequence evaluated in G. If G is torsion-free, H is

resular in G if tlpes(h) = typeo(h) for all- h e H.

Let H be a subgroup of an abelian p-group G wit.hout

elements of infinite heighL. It was observed by

s. ,fanakiraman and K. M. Rangaswamy in L975 [,]Rl that H

is pure in G if and only if for every a € H, there exists

a homomorphism cu : G + H satisfying o(a) = a' This

observation led to their defininition of strongly pure

subgroups: a subgroup H of a group G is Etroncrlvpure if,

for every h € H, there exists a homomorphism ot : G + I{

such that cr(h) = h. Strongly pure subgroups are pure,
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2

buE t.he converse is not true as will be shown in Chapter

The definition of a strongly pure subgroup can be

generalised in an obvious manner as follows: H is

stroncrlv reqular in G if there exists, for every h € H,

a homomorphism d. : G + H and a non-zero integer n such

that cy(h) = nh. This generalisation was undertaken by

L. Nongxa [NoZ] in 1,987; it will be shown in Chapter 2

(Lemma 2.3.4) that for torsion-free groups, strongly

regular subgroups are regular - hence the terminology.

Tn 1-979, Rangaswamy [Ra2] dualised the concept of strong

purity as follows : H is stronqly balanced in G if, for

every a e G there exist.s a homomorphism $: G/H + G

such that f (a) = {Q{G) , where

,, : G -+ G/H is the natural epimorphism. Strongly

balanced subgroups are balanced in the sense defined

above (see Lemma 2.3.3) .

Reca1l that a

subgroup that.

K. M. Rangaswamy

0-

balanced subgrouP w. r.t

is both isotype and nice

p-groups is a

H. Bowman and

ISA

isa

in [BR] defined a short exacL sequence

A-dB-PC 0 (+*)

to be st,ronqlv isotvpe if , to each a € A, there

homomorphism f : B + A such that fa(a) = a;

to be gEroncrlv nice if, to each c € C, there

homomorphism g : C + B s.t. pg(c) = c; and
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to be stronqlv balanced if it is both strongly isotype

and strongly nice. In our view, the definition of

strongly isotype coincides with the definition of

strongly pure and that of strongly nice is equi-valent to

strongly balanced. In t.he paper referred Eo above,

subgroups which are both strongly isotype and strongly

nice/balanced were not investigated in any detaj-1.

Let m be any cardinal. Rangaswamy [Ra3] calIed the

short exact sequence (**) 2

a) sEronqlw m-isot\rpe if , to each subset X of

cardinality less than m in A, there exists a

homomorphism f : B + A such that fol* = identity on

X;

b) stronqlw m-nice if, to each subset Y of

cardinality less than m in C, there exists a

homomorphism g : C -- B such Lhat bg l" = identit.y on

Y; and

c) stronqlv m-balanced if it, is both strongly m-

isotype and strongly m-nice.

A subgroup H of G is strongly m-balanced if the short

exact sequence 0+H+G+ G/H +0 is strongly m-

balanced. Strongly <,r-balanced is st.rongly balanced.

In their paper [BR], Bowman and Rangaswamy also defined

a *-balanced subgroup to be a

torsion-free group G such that.

H n (G{r.1 )- =

balanced subgroup H of a

for each type r
(u{2.) )..
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It is easy

inGisan
was lifted

[No2 ] He

free group

(u (2.) ), = fi

to see that the assumption that H b.e balanced

unnecessary restriction. This restriction

in a definition introduced by L.Nongxa in

thus defined a pure subgroup H of a torsion

Gtobe *-Dure in G if

n (c{r.) ). for every type r

A torsion-free group G is calIed a But1er qroup if G is

finite rank completely decomposable

' were found to be equivalent:

a pure

group.

subgroup of a

The following

(1) cisapure
decomposable

subgroup of a finite rank completely

group;

(2) c is an epimorphic image of a (finite rank)

completely decomposable group;

(3) r(G)

every

(i)

(ii )

is finite and closed under infimums and, for

r e T(G),

G(z) = G, (E (C{2.) )., where G, is a homogeneous

(possibly 0) completely decomposable group,

(c { r.) ) ,/c tr-) is a f inite group; and

t G1 where Gi is a pure, rank one subgroup of G(4) G

The

!-L

equivalence of (1), (2) and (3) was established by

R. But,ler in 1955 [eu] and the equivalence of (2) and

28
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(4) was established by L. Bican in L970 [Bi1]

In 1985, U. Albrecht and P. Hill [AI{] , defined a decent

subgroup in order to get a characterization of a

particular generalization of Butler groups, to groups

having infinite rank vLz. the class of Br-groups. (a

torsion-free group G is caI1ed a B2-group if G is the

union of a smooth chain 0 = G0 s Gl c G, g of pure

subgroups Go such that, for each o, Go+r = Go + Bo where Bo

is a Butler group (of finite rank) . ) They called a

subgroup H of the torsion-free group G decent, if for any

f inite subset S of G t,here exists a f inite number of

rank 1 pure subgroups 4, 1 s i s n, of G such that

H+ Ai is pure in G and contains S. U. Albrecht and

P. HiIl proved that. a giroup G is a B2-group if and only if

G satisfies the third axiom of countability wit.h respecL

to decent subgroups.

M. Dugas and K.M. Rangaswamy [DR2] defined a group G to

satisfy the torsion extension property (for short,

T.E.P.) over a pure subgroup H, if every homomorphism

f : H + T, where T is any torsion group, extends to a

homomorphism g : G + T. They went on to prove t.hat. if G

is a Butler group of rank <a and H a pure subgroup, Lhen

H is decent in c if and only if G satisfies the T.E.P.

over H.

If G is a torsion-free group and H a pure subgroup of G,

29
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it was shown by L.S. Ljapin that, for every x.€ G\H

16,r(x + H) = sup{Xc(x + h) : h € H}.

It can be concluded t.hat the definition of balanced

subgroups implies that. there exisLs h e H such that

Xc(x + h) is the supremum of the set on the right-hand

side.

Generalising this observation, F. Richman in tRil defined

a pure subgroup H of a torsion-free group G, to be semi-

balanced in G if for every g e G\lt there is a finite

subset {h,, ..., h"} c H such that

Xom(g+H) = sup { Xc(g+hi) : 1 s i s n }

In the case that n is equal to 1-, H is balanced in G.

This concept was st.udied by L. Fuchs and G. Viljoen in

IFV] who cal1ed t.hese subgroups E-ebale4qed.-

REI{ARK: Lemma 1 in tFVl asserts that the eguaLion

above is satisfied if and only if
(u,g). = H + (g+h,)' + + (g*h")'

However, although the former equation implies the Iatter,

the reviewer of this paper, Wi1liam,J. Wickless noted

that in general the two equations are not equivalent see

[Mathematical Review 9la:20062) . In [FM], L. Fuchs and

C. Metelli redefined a prebalanced subgroup as follows :

H is prebalanced in G if and only if for every g € G,

there is a non-zero integer m and a finite subset

{h,,hr,...,hn} of H such that

Xcrn(mg+H) = sup { 16(mg+h;) : 1 s i s n }. Atorsj-on-free
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group G, is called a IocaIIy Butler qroup if every finite

subset of G can be embedded in a pure subgroup of G which

is a finite rank Butler group.

L. Fuchs and G. Viljoen proved that a pure subgroup H of

a torsion-free group is decent if and only if H is

prebalanced in G and G/H is a Ioca1Iy BuEler group.

For any type r, 1et X" be a rank 1 torsion free group of

type r. It is easy to see that G(z) is the subgroup of

G generated by {f tx,) : f e Hom (x,, c) } . D. Arnold and

C. Vinsonhaler in [AV] call-ed this subgroup the r-socle

of G and "dualised'r it as follows: the subgroup of G

caI1ed the z-radieal of G, denoted by G[z] , is defined t.o

be n ker f , and G.[r] = nc[o]. They defined a
feHon(c, xr) o<"

Dure subcrrouo H of G to be co-balanced if

0 -> H/Hlr) - G/Glr) is pure exact for every type r .

A.,J. Giovannitti and K. M. Rangaswamy [GR] "dualised"

the notion of a prebalanced subgroup by calling a

subgroup H of G to be precobalanced if for any subgroup

K in H with H/K = R, a rank one group, there are

subgroups Kr, Kr, K:, , Kn of G satisfYing:
(1) each G/K1 = Ri, a rank one group;

(2) (=n{r' nu:l-si=n} ;and

(3) for each h € H,

authors showed that

always prebalanced

1*y6 (h+K)

exact sequences of

and precobalanced.

31
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they proved t.hat. if the exact sequence

0+A+B+C-r0

is a sequence of torsion-free groups, then:

(a) if B is a Butler group and A is precobalanced in B,

then A is prebalanced in B;

(b) if C is a Butler group and A is prebalanced, then A

is precobalanced.

In [DHR] , M. Dugas, P. Hill and K.M. Rangaswamy def ined

a pure subgroup H, of a torsion-free group G, to be

hrncerbalanced if for each g e G and each countable

subset. C of H there is some h e H with gt. = h[ where a[ :-s

defined to be a map from C into the set of all height.

sequences Uy a{(x) = Xc(a+x) for all x e C. They proved

that if H is hlperbalanced in G, then H is also balanced

in G (see Lemma 2.5.20) .

P. Hill in tHil defined a subgroup H of a torsion-free

group G to be separable if for each g e G there is a

countable subset {tr, r n.c,r} of H satisfying t,he following

condition: for h € H, there is a corresponding n < o)

such that Xc(g+h) s Xc(g+h") . (This concept is now called

separative) . If H is balanced in G, then the countable

subset {h"} is a set containing only one element and this

set satisf ies the condition above. Thus al-1 bal-anced

subgroups are necessarily separable. Trivially all

countable subsets of G are also separable. He went on Lo

define a subgroup to be absolutelw separable if it is
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separable in any torsion-free group in which .it appears

as a pure subgroup.

P. Hill and C. Megibben [HM1] int.roduced the notion of

kniceness which they claimed generalized niceness to

torsion-free groups. To define knice subgroups however,

requires the definitions of primitive elements, valuat.ed

coproducts, *-valuated coproducts, and free *-valuated

subgroups. These concepts will be dealt with in great

detail in the Appendix A.1. A subgroup N of the torsion-

free group G, is said to be a knice subgroup if for each

finite subset S of G, there are primitive elements y1, yz,

...,y* such that N' = N @ (V,) O (Vr) O O (y*) with N'

a *-valuated coproduct and with (s,N')/N' f init.e.

In [HM1], P. HiIl and C. Megibben also defined a pure

subgroup H of G to be *-pure in G if H n G(s.) = H(s.) and

H n G(s*,p) = H(s',p) . Direct summands and rank one pure

subgroups generated by primitive elements, are

necessarily *-pure. The ascending union of *-pure

subgroups is also *-pur€ and the *-vaLuated coproduct

(see A.1.3 in the appendix) H = @!Ii is a *-pure subgroup

if each Hi is *-pure. In this paper HilI and Megibben

also proved that pure and knice subgroups are necessarily
*-pure. This definition was published about the same

time ds, and independent of L. Nongxa's definition of a

*-pure subgroup. The relationship between these two

different t,ypes of *-pure subgroups will be demonstrated
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IN Chapter 2

In L987 P. HilI and C. Megibben [HM2] defined a subgroup

H of an arbitrary abelian group G to be E-pure in G if,
wheneverh=gr+gz+...+gnwithhe H and gi eG(si) ,

then h = hr + h2 + .. + hn where hi e H(s1) . HilI and

Megibben showed in [HM2] that pure knice subgroups are

necessarily D-pure and that D-pure subgroups are

necessarily *-pure. This variance of purity will also be

discussed in greater detail in Chapter 2. The dJ-scovery

of D-pure subgroups led Hill and Megibben Lo answer - in

the negative - the question posed by L. Nongxa in [No1]:
rrAre al1 strongly pure subgroups of completely

decomposable groups also completely decomposable? "
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Note t.hat

otherwise

group".

from henceforth, the word rrgrouprr,

stated, wilI mean a "torsion-free

unless

abelian

S 2.1 Int,roduction: In this chapter we compare the

relative st,rengths of some of the notions of purity

restricted to torsion-free abelian groups which appear in

Chapter 1. In particular, we wiII compare the concepts

of, "being a direct summand", ordinary purity, strong

purity, *-purity, E-purity, s*-purity, ts*-purity (to be

introduced in this chapter), regularity, strong (pure)

regularity, kniceness, balancedness, * -balancedness,

strong balancedness, Z-strongi balancedness (to be

introduced in this chapter), semibalancedness, pre-

balancedness, decency, and hyperbalancedness.

S 2.2 Stronq puriEv, direct suglnrands and puritsw:

Reca1l that a subgroup H of G is said to be strongly pure

if, for every h € H, there exists a homomorphism

,1, : G + H such that /ttrl = h.

If G is any abelian group, and H a sr:mutand of G, then the

projection r : G + H satisfies n(h) = h for aL1 h e H.

Thus:

35
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2.2.1 Remark: Arry summand is a strongly pure subgroup of

G (thus "being a summand" implies strong purity) .

In order to show that the implication sign above is not

reversible, we need the following three remarks:

2.2.2 Remark: LeL F = 6 (*,) be any finite rank free
i=1

group and 1et H be a pure subgroup of F. By the Stacked

Basis Theorem, t,here exist k, Rl , rn1 such that
kk

fi= O(*,*,) . AsHispureinF,H= O(*') whichis
i=1 i=1

a summand of G. Thus each pure subgroup of a finitse rank

free group is a sr:ltmand.

2.2.3 Remark:

strongly pure.

Proof: Let F= @
ier

pure subgroup of F. For any h € H,

Any pure subgroup of a free group is

(*') be a free group and let H be a

h= E
j€ro

rlX; r where Io

is a finite subset of I. Thus h e (E (*') which is a
j€ro

finite rank (free) summand. of F. Now (fr). g u and

(rr).9 O (*,) . By2.2.2, (rr).isasummandof O (*')
i€ro i€ro

and thus also a summand of F. The projection from F to
(fr). is a map from F to H which fixes h implying that H

is strongly pure. I

2.2.4 Remark: The converse of 2.2.1does not necessaril

35
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hold; for, if we take a free resolution of Q, then the

kernel, which is pure, is, by 2.2.3, also strongly pure

but is not a summand, otherwise, its complement, which is

free would be isomorphic to Q, a contradict.ion.

2.2.5 Remark lJRl : Strongly pure er:bgroups are

neceEsarily pure.

Suppose H is strongly pure

some p e P and some k e .l\I.

and Lhere exists O

x = 0(x) = d(p*g) = pkd(g) e

is pure in G. Hence:

2.2.5 mma fJRl

any finite subset S

A:G+Hsuchthat

inGandletxeHnpkG for

Thenx=pkgforsomegeG

: G -) H such that

pkH and this implies that H

5 is not

result,
tJRl and

In order to show that the converse of Remark 2.2

necessarily true, w€ require the following

obtained by S. Janakiraman and K. Rangaswamy in

its corollary.

If H is sErongly pure in G, Lhen for

= {h,, hr, h"} of H, Lhere exists

d(x) = x for aII x e S.

Proof: This is by induction on n and the i

true for n=1 by definition of strong purity.

Assume this is true for n-l- and 1et {nt : G

that /"-l(hi) = hi for aII i = L, 2, , r-1

hn-ry'n-l(hn) € H, there is {n :G + H such that

statement is

+ H be such

Since
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,rn (hn-ly'n-l (hn) ) - h, - {nt(h") .

Let. O = l/n + *n-, - {n{nt. Then, for 1 s i s o-1,

d(hi) = /"(hi) + /"-r(hi) - ,lr"(P,-r(hi) )

= ry'"(hi) + hi - P"(hi) = hi, and

O(h") = (0^ + tlrn-, - ,l,n**r) (h")

= pn (h,) + /"-1 (h,) - /n/"-1 (h")

= hn - ry'"_r (h,) + /n-1 (hn) by (*)

=hn

Thus $: G + H fixes the whole of S.

(*)

2.2 .7 CorolIary tJRl Finite rank strongly pure

subgroups of torsion-free abelian groups are summands.

Proof: Let. G be torsion-free and H a finite rank

strongly pure subgroup of G, then H = (s). where

S = {h,,hr,...,hn} is finite. Let O : G - H be such t,haE

{ fixes the whole of S. If x € (s)., then nx = E n,h, , for

some n, I1i € Z which implies that d(nx) = nd(x) = D ni O(hi)

= E n'h, = nx and, by torsion-freeness, d(x) = x. This

implies that O is a projection and thus H = (s)' is a

summand of G. I

Let, G be any indecomposable torsion-free group of finite

rank (see for example [Fu2: Example 5, p.1,25)) , and let

S be a proper non-zero pure subgroup of G. Then S cannot

be strongly pure otherwise S would have to be a summand

of G by Corollary 2 .2 .7 , contradict ing t.he assumption

that. G is indecomposable. Thus pure subgroups need not
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be strongly pure.

S 2 .3 Reqularitw, stronq recrularitw

Note that if II is a pure subgroup of G, then Xc (h) = Xn (h)

for any h € H. Recal1 that a subgroup H of a torsion-

free group G is said to be reqular in G if, for every h

€ H, tlpes(h) = type6(h) .

2.3.1- Remark: Since, from the definition of purity, the

p-height of an element in a pure subgroup is the same as

its p-height in the main group, pure subgroups are

regrular. However, 22 is not pure in Z but the type of

any element in 22 is the same as its Lype tn Z sj-nce both

groups are cyclic. Hence 22 is regular in Z but not pure

in Z.

Recall that a subgroup H of G is said to be st.ronqly

reqular in G if for every h € H, there exists a

homomorphism ,t : G -) H such that. ry'(h) = nn.h for some

n6 e Z. As pointed out in Chapter l, this is an obvious

generalisation of t.he definition of strong purity thus:

2 . 3 . 2 Remark: Strongly Pure sr.rbgroups are strongly

regrular.

The group of

regular in z

even integers, 22, is

since multiplication

in

by

fact strongly

gives a

39
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homomorphism satisfying
regularity. We therefore

def inition of st.rong

conclude that strongly
pure and therefore not

the

also

beregular sr:.bgroups need not

nece€,Eari1y strongly pure.

An analogue of the observation made by S. .lanakiraman and

K. Rangaswamy (Lemma 2.2.6) also holds for strongly

regular subgroups, namely:

2.3.3 Lemma : If H is a strongly regular subgroup of

G then, for any finite subset S of H, there exist an

integer m and a homomorphism O : G -) H such that

d (x) = ITrx for all x e S.

Proof: Let s = {*,, xz, , xn} be any finite subset

of H. The proof will be by induction on n and the case

n = 1 follows immediately from the definition of strong

regularity.

Suppose that there exist an integer r and a homomorphism

{, : G -) H such that r/, (xi) = rxit

1 s i s n- l- Then there exist. an integer s and a

homomorphism ry', : G + H such that

{z(rxn - /1(x,) = s(rxn - r/,(x") )

= rsxn - sry', (xn)

IfwedefineO:G+Hby:

0 = sfr + rrlrz - rlrr{t, then, for 1 s i s n-1 we have
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d (xi) = sry', (xi) + rr!t2$) - rltllr$)

= rsxi + rrltr(x) - rrlrr(x)

= fsx' and

d (x") = sr/, (xn) + rrltr(xn) - rlrtttr(x^)

= sry', (xn) + {z(rxn - r/, (x") )

= sry', (xn) + srxn - sry't (xr) = srxn thus m = rs -

The name given to this concept was motivat.ed by the

simple observation that :

2 .3 .4 Lemma: Strongly regular sr:bgrouPc are regirrlar

Proof: Suppose H is strongly regular in G. Let h e H.

Then there exists ry' : G + H a homomorphism and nn e Z suc}:.

that /(nl = nnh. Thus

types (h) s type6 (h) s tlpe* (/ (h) ) = tlpen (nnh)

= type H(h) and thus tlper(h) = tlpeo(h) and H

is regular in G. I
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s 2.4 s*-puritv, t*-puritv, *-puritw, *-purelv

qenerated and E-puritv.

Recall that, in [No2], a pure subgroup H of a torsion-

free group is caIled *-pure if
(u(2.) * = H fl (c(r.) ), for every tlpe r.

In [HM1], a pure subgroup H of a torsion-free group G is

also called *-pure if H n G(s.) = H(s.) and

H n G1s*,p) = H(s*,p) for all height sequences s and all

primes p. These two definitions were introduced almost

simultaneously and independent of each other. It. will

be shown that, they are not equivalent and, the names

possibly coincided since in the one case use is made of

the ful1y invariant subgroup G(r') and in the other, use

is made of G (s.) . We will at.tempt to resolve this

situation as follows:

2.4.1 Definition: Let H be a pure subgroup of a

torsion-free group G; then H is:

a) *-pure in G if it satisfies the definition of

P.Hi1I and C. Megibben;

b) s'-pure in G if H(s.) = H n G(s.) for all height.

aequences s,.

c) t'-pure in G if H(r') = H n G(r.) for aII -Eypes r; and

d) *-purelv qenerated in G if it satisfies the

definition of L. Nongxa.

2 .4 .2 Remark: It f ollows immediately f rom t.he
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definition that *-purity lmplies

the converse is not true as we

example.

s* -purit.y.

see in the

However,

following

2.4.3 Example: Let G = Gr O Gz, where Gl is infinite

cyclic and G, = {n/Zr : m and k int.egers}. Let us choose

any prime p # 2, x, in G, whose height sequence is (0,0,

...., 0) , xz in G, of height sequence

(o, 0,0, O). Let x = pXr + x, and H = (*)-. Then

H is s*-pure in G since, for all height sequences s,

H(s.) = {O} = H n G2 and G(s") = Gz. However,

x € pH(s.) = H(s.,p) whereas x e G(s',p) n H. Thus H is

not *-pure in G.

2.+.4 nemark: From the observation that , for every tlpe

r, and any t.orsion-free group gi, G(z') = U G(s.) we
seT

can deduce that every B'-pure sr-rbgroup ie t'-pure since

H n G(2.) = H fl ( U c(s')) = U (H n G(s.) = U H(s.)
s€7 s€7 s€7

= H (2.)

2.4.5 Remark: It can also be seen t.hat Ehe not,ion of

t*-purity introduced abowe implies *-purely generaEed,

since, if H(2.) = H n G(z') for any tlpe r, with H pure in

c, then (u(r') ). g tt n (c(r') ).. Also, if

h € H n (C(2.) )., then nh e G(s') for some nonzero integer

n and s e r. This implies that

nh e H n G(s.) = H(s') g H(z') g (u(2.) ), and therefore
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h € (H(2.) )..

be illustrated

However, the converse is not true as can

by the following example:

2.4.6 Example: Let G = Gr O G, @ G, be a torsion-free

group where G, is of rank one, T(Gi) = ri, G' is reduced for

l- s i < 3, rt ll ,r, and z3 = max{r1, rz}. Let p be a prime

for which G, - and thus G, and G, - is not, p-divisible and

let gi e G, with h$(g,) = o. Let H = (gr*pg,, 9r+P9z).. H is
*-purely generated as (utri) ). = {o} =HrtG = HnG(ri)

for i - a,2 and H = (ntzi) )- = H n G = H n G(7;) but

utzi) = H(rr) O u(rr) I H as by Lemma 1 in IBi2l, H is not

completely d.ecomposable. Hence H is not t*-pure in G.

2.4.7 Lemma : If H is a pure, strongly regular subgroup

of G, then H is *-purely generated.

Proof: Let H be a pure, strongly regular subset of G and

let z be any type. For any h e H n (o(r') )., h in H

implies that there exists a homomorphism ,1, : G + H so

that ry'(h) = fin.h; and h in (C{z') ), implies that there is

an integer mh such that. mh.h e G(r.) . Thus m6-h = D1g, such

that tlpe(g1) ) r, where g' e G.

Now mnnnh = r/(m1h) = Di ry'(gi) e H(z') and this implies that

h € (H(r.) ). since H(z') g H n G(r') , purity of H in

c implies that (U1r.) ), g U n (C(z') ). and hence we have

equality. I

Recall that in tHM2l a subgroup H of a torsion-free group
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G is E-pure

{=,, s2,

if, for any

sni , D,tt(s,)

set of height

D,G (s1) .

sequences

that

isa

= D'h'

Thus

finite

HN

2 4 I Pronosition l'HM2l

Strongly pure + E-pure + *-pure :+ pure.

Proof:

1. Strongly pure implies E-pure.

Let H be a strongly pure subgroup of G and suppose

gr + + gn = h € H, with gi e G(s1) . There

homomorphism, @6:G - H t.hat leaves h fixed. Thus h

where hi = dr, (gi) € H, and

1s(hi) = Xs(fln(gi) ) > Xo(gi) > s1 for 1 s i < n.

h e D,lI(s1) which implies that H is D-pure in G.

2. E-pure irplies pure.

Suppose H is E-pure in G. Let h - ng € H n nG and put

s = Xc(g) . Then h e H n G(ns) = H(ns) =nH(s). Thus

h - nh'where h' e H(s) and torsion-freeness implies that.

g=h'andhenH.

3. E-pure implies *-pure.

Suppose H is X-pure in G . By 2, H is pure in G and t,hus

for anyh€H, Xc(h) =1s(h) . Let. h€HnG(s') . Then

h = gr + + gn with gi e G(s) and xc(gi) * s. By E-

purity, h - hr + + hn with each h' e H(Xc(gi) ) and thus

for each i - !, 2, ... t n, 1s(h1) * s which means that

h e H(s.) . Let h € H n G(s',p) for any p e P. Then
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h=9r+ +9n+g where geG(ps) and -for each

L=a,2,...,n, 9i e G(s) and xc(gi) + s. By E-purity,

h-hr+ +hn+h'whereh'eH(xo(g) ) SH(ps) andfor

each L=A,2,...,r1, hi e H(X6(gi) ) and thus 1,1(h1) > s and

1s(h1) + s. Thus h e H(s',p) and H is *-pure in G.

4. By definition, *-purity implies purity.

2.4.9 Remark: 2.4.3 is an example of a pure subgroup

which is not *-pure. 3.4.7 in Chapter 3 is an example of

a *-pure set which is not D-pure and 2.6.5 is an example

of a D-pure subgroup which is not strongly pure. Thus we

see that none of the implications of proposition 2.4.8 is

reversible.

52.5 VARIAI{CES OF BAI,AI{CEDNESS

In t.his section we compare balancedness with being a

direct summand, strongly balanced, *-balanced, semi-

balanced, prebalanced, hlperbalanced and Z-strongly

balanced (a concepL which will be introduced in this

section) .

We quote t.he following result which is especially useful

when we quote examples.
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2.5.0 Lemma (See tFu2l )

For any abelian group G, there exist a completely

decomposabale group A and an epimorphism 7 : A + G such

that ker l is balanced in G. ^y : A + G is calIed the

balanced resolution of G.

2.5.1 Remark: All direct surElands of a grouP G are also

baLaneed in G. This follows from the fact that if H O K

is a decomposition of G and g = h + k is an arbitrary

element of G then xc(h+k) = xc(h) A 16(k) s 1(k) for any

h e Handk e Kandhencel6Tg(g+H) = 1o,r(k+H) = Xo(k) .

2.5.2 Remark: Recall that a *-balanced subgroup H of G

is a subgroup that is balanced and which satisfies

(g(2.) ). = H fl (c{r.) ).. Thus by definition, *-balanced

subgroups are necessarily balanced.

Reca1l that a subgroup H of G is said to be sErongly

balanced in G if given any coseE 9+H, there is a

homomorphism Q:G/H - G such t.hat g+H is fixed by V0

where ,1, is the canonical map f rom G to G/H. The

motivation for the name 'strongly balanced' is not

apparent from the definition. However, H strongly

balanced in G implies that H is balanced in G as is

proved in the following lemma.

2.5.3 l,emma

balanced.

A11 strongly balanced subgroups are
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Proof: Suppose H is strongly balanced in G.- Then

any g + H e G/ll, there is o:G/H '> G such

,lrorlrG) = ry'(g) . If we put g' = o(g + H),

{(g) = g+H = rLo\(g)) = {(g') = g'+H. Now

Xc(g') s Xo1i-(g'+H) = 167g(g+H) < Xc(o(g+H) ) = xo(g').
g' = o(g+H) is proper in g+H.

for

that
t.hen

Thus

Examples of strongly balanced subgroups can be found

easily in t,he light of the following result.

2.5.4 Theorem: Suppose H is balanced in G and G/H is

separable then H is strongly balanced in G.

Proof : If g e C\g then O * g+H e G/H and bY

separability, there exists some C/H = G/H such that C/H

is a finite rank completely decomposable summand of G/H

containing g+H. As completely decomposable groups are

balanced projective, we have the following commutative

diagram:

C/H

0 r rE 1li
O+H+G-UG/H+0

where i is the inclusion map, ry' is the canonical map, zr

is t,he projection mdp, and 0 is the induced map so that

l/0 = i. Now Or:G/H + G with

{0r{ (S) = rlt|t (g+H)

= {0 (g+H) (as g+H e c/H)

= g+H (as {r0 = i)
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= ,lr\).
Thus H is strongly balanced in G

2.5.5 Remark: Strongly pure and strongly regular

subgroups of G are defined in terms of a single element

in G. However, if we have a finite subset S in G, we can

find a homomorphism from G to H which fixes S (see Lemma

2.2.5 in the case where H is strongly pure) or multiplies

the elements in S by integers (see Lemma 2.3.3 in the

case that H is strongly regular) . fn exactly the same

wdy, if S is a finite set in G/H and H is st.rongly

balanced in G, we can find a homomorphism 0 from G/H to

G so that {/0 fixes a}I the elements of S (where ry' is the

canonical homomorphism from G to G/H).

2.5.5 Theorem [Ra3l: Suppose H is strongly balanced

G where G/H is countable, then H is a direct summand

G.

in
of

Proof : Let G/H = {g,*H , gz+H', 9r+H, . . .} . For each

rr=1,2,3,... Iet Gn/H = (g,*H, gz+H , gn+H) . By 2.5.5,

for each i > 1, we can find fr G/H - G such t.hat ,lrfi

restricted to G,/H is E.he identity (here agai-n, t! is the

canonical epimorphism from G to G/H). As

9i*r+H - {fi(g1*,+H) e G/H, Lhere is a homomorphism 7:G/H - G

such that h f ixes ( (g1*,+tt) - ,l,fi(gi*r+H) ) . Now def ine

fi*, = ^y + fi - ^f{fi and note that fr*r:G/H - G, fi*r

restrict.ed to G,/H is fi, and ry'f;*, restricted to Gi*r/H is
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the identity
f (x+H) = f"(x+H)

that x+H e Gn/H.

Now def ine f :G/H - G

is the least positive integer

kerf=HisasummandofG.

map -

ifn

Thus

by

such

I

2.5.7 Remark: Let G be a countable indecomposable

group and 1et A +? G be a bal-anced resolution of G. This

means that A is completely decomposable, I is an

epimorphism and ker 7 is balanced in G. Thus we have

that G = A/ker I. If ker T were strongly balanced in G,

then by 2.5.6 ker y woul-d be a direct summand of A and

t,hus by the Baer-Kaplansky-Kulikov Theorem, A/ker y is

completely decomposable, a contradiction. Hence

balancedness does not imply strongly balancedness.

We introduce now a dual of the concept of strongly

regular.

2.5.8 Definition: A pure subgroup H of G is said to be

Z-stronqlv balanced if for every g e G there is a

homomorphism o2G/H + G and an integer De such that

{o{ @) = ne/ (s) .

The name Z-strongly balanced was chosen as this notion is

related to being strongly balanced. However, we have not

investigated the properties of Z-strongly balanced

subgroups and we have not ascertained whether such groups

are in fact balanced.
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Subgroups of this nature occur naturally as wiIl be

demonstrated in the next result.

2.5.9 Theorem: Suppose H is balanced in G and G/H is

almost completely decomposable, then H is Z-sLrongly

balanced in G.

Proof: As G/H is almost completely decomposable there is

a completely decomposable subgroup C/H of G/H such that

| (G/H) / (C/H) | = n, say and t.hus , for any g € G,

n (g+H) e c/u. Hence def ine the homomorphism v :G/H '> C/H

by z (g+H) = ng+H. As C/H is completely decomposable and

hence balanced projective, there is a 0:C/H + G such that

the following is a commutative diagram:

C/H

0o v 1l:
O-H+G-fG/H0

where i is the inclusion ffidp, ,1, is the canonical map

The homomorphism 0v:G/H - G satisfies
,1,0 vrl, @) = t!0 v (g+H)

= r/0 (ng+H)

= ng+H (as 0rl, = i)

= n(*(g) ) .

Thus H is Z-strongly balanced in G. t

2.5.10 Remark It is clear that al-I strongly balanced
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subgroups are z-strongly balanced for in this case, rs = 1

for all g in G.

Recall that a pure subgroup H of G is said to be semi-

balanced if for every g € G, there exists

{h,, hr, ..., hn} S H such that

xcrn(g+H) =Xo(g+h,) VXo(g+h2) V VXo(g+hn) . Recall

also that a pure subgroup H of G is said to be

prebalanced in G if for every g € G, there exist

h,, hz, , hn in H such that

(u,g)'= H + (g*h,). + (g*hr). + ... + (g*L\).

2.5.11- Remark: AII balanced subgroups are semi-balanced

for then n would just be 1.

2.5.12 Lemma: Let G be a torsion-free

typeset is a chain. A pure subgroup of

balanced if and only if it is balanced.

1et {h,, hz, , hn} be such that xcr,(g+H) =

group whose

G is semi-

Proof : By 2.5.1-1, w€ need only show that if H is semj--

balanced in G, then H is balanced in G. Let g e G\H and

n
V 16 (g+h;)

i=1

Since Lhe typeset of G is a chain, w€ can assume that

tlpec/H (g+H) = t type6 (g+h1) = typeo (g+h") . The coset
j=1

g+H contains an element of the same type as the coset and

by Baer's Lemma [Fu2: Theorem 85.4J g+H contains an

element of the same height sequence as the height
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sequence of the coset

is balanced in G.

As g+H was an arbitrary coset, H

2 .5 . 13 Lemma [FVl :

necessarily prebalanced.

Semi-balanced subgroups are

Proof: Let g be any element in G. By our assumption,

167H(g+H) = 1o(g+h1) V Xo(g+hr) V V Xc(g+L\) where hi € H,

1 s i s n. Since for all the i's, hi € H, we obviously

have that

H + (g*h,). + (g+hr). + + (g*fr.), 9 (H,g)..

Now l-et x € (H,g)-. There are integers n and m such that

rrX = m(h+g) for some h e H and, as G is torsion-free, w€

can assume that, (n,m)=1. For any prime p and integer k

satisfying pk I .r, we have that pk / m which implies that

pk | (h+g1 . Let nk and gr. be such that n = phr and

h*g = pk9r. Since pk I (h+g) , pk I g*il which by our

assumpt.ion, implies that pk I g*h' for at least one i.

Thus let 9i be such that 9+hi = pkgi. Now

pkgr - pkgi = g+h - (g+h1) = h - hi e H. The torsion-

freeness of G and the purity of H means that 9r - gi e H.

Thusgr.eH+(g*h,).and

nkx=mgkeH+(g*h,)..

Repeating this process with all the prime power factors

of n, we conclude that x e H + t ( g*h,).
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We have the following characterizat.ion of a prebalanced

subgroup.

2.5.L4 Lemma tFVl H is prebalanced in G if and only

if any rank one pure subgroup K/H of G/H is the sum of

the images of pure, rank one subgroups X1, Xz, , Xn of

G under the canonj-caI map.

Proof: Suppose H is prebalanced in G. Let K/H be a rank

one subgroup of G/H which means that K/H = (g*H). for some

g e G. By our assumption, there exist h1, hz, hn all

inHsuchthat
(g,g). = H + (g*h,). + (g+hr). + + (g*hn).. Let r/ be the

canonical map. ry'((H,g).) = (g*H), and thus

(g*u). = Etl ( (g+hi).) .

Conversely, suppose the rank one, pure subgroup,

(g+ti). = K/tl = (tt, gl./tl = Ery' (xi) where the Xi's are all

rank one pure subgroups in G. This implies that
(U,g)* = H + Di Xi. For 1s i s D, Iet Xi = (*,).. We now

have that x, € (H,g). and thus there are integiers n, m with

(n,m) =1 such that rIXi = mg + h, for some hi in H which in

turn implies that 0 tfr' + mg) = r/ (nx') . Hence

(*,). + H = (g*h,), + H and we have found the desired set of

h,'s. I

2.5.L5 rem l'FVl : Let H be a pure subgrouP of G

rank. G is a Butler grouP if andwhere G is of finite

only if :
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(1)

(2)

both H and G/H are Butler groups; and

H is prebalanced in G.

Proof: Suppose G is a Butler group. Since G/H is an

epimorphic image of G and H is pure in G, G/H and H are

also But,Ier groups. Let g e G\H and H' = (u,g).. H' is

pure in G,and thus H' is also a Butler group. Thus

H' - Gl + Gz + + Gn = H + Gr + Gz + + Gn

where each G' is of rank 1 and is pure in G. By Lemma

2.5.14, H is prebalanced in G.

Conversely, suppose (1) and Q) hold. As G/u ts Butler,

G/H = Cl + Cz + + Cn where each C' is rank one and pure

in G/H. As H is prebalanced in G, each Ci = ry'(o') where

Di = H + Hir + Ho +- + H,,,n,, and each Hij is rank one. Hence

G H+ Since H is itself a

Butler group, G is But1er.

2.5.16 Corollarv tFVl A group of finite rank is a

Butler group if
prebalanced.

and only if all of its pure subgroups are

Proof: Let G have finite rank. If G is a Butler group,

then the resutt follows from Theorem 2.5.1-5. Conversely,

suppose all pure subgroups H of G are prebalanced. Let

{gr, 92, ..., g"} be a maximal independent set in G and

define Gi = (g,, 9i).. As each G1 is pure in G, Gi is

prebalanced in G. Gl and each Gi/Git are rank l- and t,hus

Butler. Thus by induction and theorem 2.5.1-5, each G' is
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Butler. Thus G Gn is Butler.

2 .5. l-7 Example: Let G = Gr @ Gr, where Gl is inf inite

cyclic and G, = {^/z* : m and k are integers}. Let p be

any prime not equal Eo 2, x, e G, whose height sequence is
(0,0, .,0,...), xz e Gz whose height sequence is
(o,0,...,0,...)t x = pXr + xz and H - (*)-. Let

{rr} = T(Gr) and {rrll = T(G2) and note that z, < r, and thus

the typeset of G is a chain. By 2.5.L5, H is

prebalanced. Suppose H is semi-balanced. Then by

2.5.L2, H is balanced in G. Now G/H is rank one and thus

is balanced projective, making H a direct summand of G.

Now if x, has non-zero component in H, then tlpeo(xr) = rl

t.hus 1 = hff (px,) = hf (px,+xr-xr) = h$ (px,+xr) A hB (x2) = o,

which gives a contradiction. Thus a semi-balanced

subgroup is necessarily prebalanced but prebalancedness

does notr necessarily imply semi-balancedness.

we now compare decent, balanced and prebalanced.

2 .5.18 Lemma [FVl : If a pure subgroup H of G is

decent, then it is prebalanced.

Proof: Let g e C\U and 1et

pure rank one subgroups,

geH+CwhereC=Gl+Gr+

c and thus (u,g). g u + C.

rhar (H,g). = (u,g). n (H +

H be decent in G. There are

Gt, Gz, , G* such that

+GnandH+Cispurein

By the modular 1aw we have

c) = H + (c n (u,g).) . c is
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a Butler group and thus C n (H,g)., which is a pure

subgroup of C, is a Butler group which in turn implies

that (u,g). = H + EC1 where each C, is rank one and pure in

G. I

2.5.1-9 Example: Let A be a finite rank homogeneous,

indecomposable group and Iet G +1 A be a balanced

resolution of A. G is completely decomposable and as

H - ker y is balanced in G, H is prebalanced. Suppose H

is decent. Let T = {",, dz, a"} be a maximal

independent set in A and 1et S = {g,, gz, g,} be such

that T(gi) = a1 for each i = 7-, 2, ... t n. As H is decenE,

S g G' = H + Gr + Gz + + G*, where each Gi is a pure,

rank one subgroup of G, and G' is also pure in G. The

Butler group , G' /H is pure in G/H - A and G' /H contaj-ns

the whole of T and thus G'/H = [. Thus A is a

homogeneous, finite rank Butler group and M. C. R. Butrler

proved in [Bu] that homogeneous, finite rank Butler

groups are completely decomposable providing the

contradiction. Thus a prebalanced subgroup of G is

necessarily decent in G, but the converse is not true.

We will now l-ook at the relationship between balanced and

hyperbalanced.

2.5.20 Lemma IDHRI Any hyperbalanced subgrouP H of G

is also balanced in G.
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Proof : Suppose H is hyperbalanced in G i.e. for any

g e G and any countable set C in H, there is some h e H

with gt, = h[ where k[:c + the set of height sequences, k

any element in G, is defined as k{(x) = X(k+x) for all

x e C. Assume that H is not balanced in G. Then t.here

j-s at least one coset, g+H, say without proper element.

Let go be any element in g+H and then suppose that 9, has

been defined for aII ^y < d where o < or. Note that.

C = {g", - g | ^y < a} is countable. Since H is

hyperbalanced, there is some hl e H with

Xo (g+ (gr-g) ) = Xc (h,+gr-g) f or aII ^f < d. Thus

Xc (g-h,) > xo (9r) for each 1 . As g+H has no proper

element, t,here is some h2 € H with 16(g-hr) < Xo(g-hr) .

Now define c' = C U {-ht, hr} which is still a countable

set in H. Thus there is h3 e H with

Xo (g+ (gr-g) ) = 1o (hr+gr-g) . As above , Xa (g-h:) z Xc (gr) ,

xc(g-hr) > 16(h2), and xc(g-hl) > 16(h,) . NoEe that for aII

^y 1 d, xc(9r) < Xc(g-hl) for el-se

16(g+h2) s Xc(g+h3) = xo(9r) s 16(g-h1) < Xa(g-hr)

which is a contradiction. Set 9o = g+hr. We have now

constructed an uncountable sequence of elements in g+H in

such a way that the height sequences of the elements of

the sequence are strictly increasing:. This contradicts

the fact that each sequence of strictly increasing height

sequences can have only countable many elements. I
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52 .5 KNTCE SI]BGROUPS

The concept of knice subgroups requires the introduction

of primitl-ve elements, valuated coproducts, *-valuated

coproducts and free *-valuated subgroups as introduced by

P. Hill and C. Meggiben in [HMl] We have omitted a

discussion of these concepts in this chapter and left it

to appendix A.1 in order not to interrupt our exposition

of the different notions of purity.

2.5.1 Definition: A subgroup N of the torsion-free

group G, is said to be a knice subgroup if for each

finite subset S of G, there are primitive elements Yr,

y2,..., y* such that N' = N (E (Vr) O (n) O O (y,) with

N' a *-valuated coproduct with (s,w')/N' finite.

2.6.2 Lemma [HM1]

then the y,'s can be

both pure and knice in G

that S c N'

IfNis

chosen so

Proof:

Suppose S = {*} and suppose

N, = N O (V,) O O(y")

finite, there is a k e

n

kx = n + Elry, where 1i €

i=1

that

, then as

.M so that

Z for each

+ (*) I /trt' is

€ N'. Thus

If s = x(x),

(N,

kx

i.

then kx e G(ks). However, N' is a *-valuated coproduct

and thus liyi e G(ks) = kG(s) . Thus, for each i, there

exists (y')i e G (s) such that. liYi = k (y' )i. Now
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n kx D*; k(x v ) and thus, by purity ofi
i=1 i

N,x- E
i=1-

Furthermore,

dependent,

n
eNandxeN* I y

-t -r

n
v i7

as the

the (y' )1's

l-sNO
n
o (y

j=1 7

N"=

Thus

that

kr,

krxr

NO
n
o (y

j=1

yi's and the (y');'s are linearlY

generate their own direct sum,

a *-valuated coproduct. and

i is such that (N" + S)/N"

the required conditions.

In the same way as above,

is finite.

Now suppose

we can find

such that

Nrr satisf ies

s = {*,; xz} .

kr, Ii, ITli int.egers and Y'i, and Y"i
nn

=nr+ E fiYi; kx2=n, + f, friYi;
j=r i=1-

n
E
-l =1

y; e N and xz+
n lt
)- Y , e N. For each i,
T-J'1
l-L

xl+

RikrY'i = IikzY", and thus x(y') x(y"i) Thus

A - {p : \(y'1) I \(y"1) < o} is finice. Constru'cE each

zi as follows: for each p € A, ltn(z) = o and f or each

peA, \(z) =\(y'1) =4(y".) and at the same time,

np = 
"U" 

t\ (v'i) v \ (y"1) J is such that hz is both a

multiple of y'i and y"1. Then xi e N @ \rrl O O (r"l for

each i. Continuing in this waY, we can show t.hat if

I s I = an arbitrary m, say, then we can find suitable y,'s

so that S is completely contained in

NO(v,) O O(y"). I

: If N'2.6.3 ition l'I{M1l
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is a *-valuated coproduct in G with N a knice subgroup of

G and each x, primitive in G, then N' is a knice subgroup

of G.

Proof: By induction, it suffices to consider case rI=1.

Assume then that N' = lq @ (x) is a *-valuated coproduct

in G with N knice and x primitive. Let S be a finite

subset of G. Let S' = S U {"}. Since N is knice, there

isa*-valuatedcoproductF = NO (v,) @ (vr) @ O (y.) ,

where the y,'s are primitive and (S',F)/r' is finite. Thus

there is a multiple of x, say x' , such that x' € F. Thus

x' = z + trYr + + t,oYr, where ti e -lrl. Since N O (*')

is a *-valuated coproduct, if all the tiyi's had type

greater Ehan t.he type of x' , the primitivity of x' would

be contradicted. Thenx' =z +y + gwhere the primitive

element y is the sum of the t,y,'s having the same t)pe as

x'. I

2.6.4 Proposition tHM2l A subgroup which is pure and

knice is E-pure

Proof: Suppose h

each gi is in G(s1)

kniceness, there

which contains s.

we see that X (gi) s

and, as

h - (h, + h2 +

= gr + gz + + gnr where h e H and

and Iet. S = {g,, gz, , gn} then, bY

is a *-valuated coproduct H O A in G

Writing g, = hi + di, ai e A and h' € H,

1(h1) . Thus h' e H(s1) for all the i's

ar++ hn)
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HNA {o}. rhus h hl+h2

inG

Proof:

there

hn and H. is E-pure

I
+ +

The following example shows that the above implication is
not reversible.
2 . 5 .5 Example: Let G = (@,2, 2l\Zl. A11 countable sets

in G are free and thus every non-zero element in G is

primitive in G and if F = (*,) O (*r) O O (r.") is pure

in G, t,hen F is a * -valuated subgroup of G. Let

x = (2,2,...,2,...) then x is not contained in any finite

rank summand of c but (*). is pure and knice in c. By

2.6.4, (x). is E-pure in G. However, as (*). fails to be

a summand of G, (*). is not strongly pure in G and thus,

by 2.4.8, (*). is not knice. Thus a subgroup of G which

is knice and pure is necessarily E-pure but. (x). above is

pure and E-pure but not knice in G.

2 .5 .5 Proposition tHMll A pure and knice subgroup H

of c is balanced in G

Let H be pure and knice in G. L,et x e G\H. Then

are Yt, Yz, . . . ' Yn such that

x e H (E (V,) O O (y") which is a *-valuated coproduct

in G. Thus there exist z e H and int.egers m1, fr2, mn

such t,hat [=z+mlyl+m2y2+ *[nyn. By A.1.1.5,

each miyi is primitive and H O (*,y,) O O (rqy") is a

valuated coproduct. y = mryr + * RnYn is such that

H @ (V) is also a valuated coproduct and x = z + Y. For
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anyh€H,

X(x+h) = X(z+h) min X(y) < X(y) . Thus X(y) is an upper

bound for {X (x+h) : h € H} . However, x&-z) = X (y) and

t.hus X{gy) = sup{1(x+h) : h € H} = 1o,,.,(x+H) and H is

balanced in G. I

We represent. the above schematically by the following:

€
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zo
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CHAPTER 3

In this chapter we will see under which condiLions, if
dny, the different kinds of purity discussed in Chapter

2 , coinc j-de.

53.1 In this section we will prove that all pure

subgroups of a group G are direct summands of G if and

only if G is a homog:eneous, finite rank, separable group.

We will also prove that aI1 pure subgroups are balanced

in G if and only if G is a homogeneous, finite rank,

separable group. Furt.hermore we show that pure subgroups

are strongly pure if and only if G is homogeneous and

separable.

The following Eheorem was initially proved by Baer

[Ba] but the proof given is an al-ternate one given

Hill and Megibben in [HM1] on page 74]-.

3.1.1 Theorem : Any finite rank pure subgroup of

homogeneous separable group is a direct summand.

in

by

a

Proof: Let H be a non-zero finite rank, pure subgroup of

a homogeneous separable group, G. Let. T(G) = {r\, say

and hence G(s') = 0 for any s in r. Thus each element in

G is primitive in G. Let, {y,, yz, , yn} be a maximal

ind.epend.ent. set in H and let N = (V,) O (Vr) O O (y") .
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As G is separable, {y" i L,

Gj is a rank one subgroup and

(N=nas N>n wouldlead

independence of the yi's and

contradiction of the fact that

n) c
IIo G, where each

j=7

,Me Gj is a summand of G

t,o a contradiction to the

N < n would lead to a

{y,r i = l, ..., n} is a

n

maximal independent set.. ) Each yi t 9it where each

9i; e G;. As Gj is a rank one group, (g,.i , 9n;) = (x1)

for some x, e c;. Thus N g F = (*r) O O (*"). We show

that N is a *-val-uated subgroup by invoking A.1.3.9 as

follows:

F is a *-valuated coproduct and G is homogeneous and thus

by A.L.3.9, we can find ztz, zt3, ... t ztn in F such that

Fl = (v,) O (rrr) @ O (rr^l is a *-valuated coproduct

and F/Ft is f inite. Now (rrr) O (E (rr") is also a

*-valuated coproduct, ensuring that there exist 223, zz4,

...t z2ni-nF suchthat

F2= (v,) O(y, )O(rrrl O O(rr,) is a *-valuated

coproduct. with F/F2 finite. We continue Iike t.his until

we get N = F, = (V,) O O (y") is a *-valuated coproduct

with F/N finite. By A.1.3.13, the pure closure of N

(which is H) is a summand of G. I

L. Fuchs, A.

converse of

theorem in

converse.

Kertesz and T Szele in [FKS] proved that

this theorem is also true. We state

its strongest form but Prove onIY

the

the

its
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3 .L.2 Theorem f FKsl pure subgroup of

G is separable,

: Every

only if

a group G

of finiteis a summand if and

rank and homog:eneous

Proof: Suppose G = {g" : ct . p} is such that every pure

subgroup of G is a direct summand. Define

Go = ( {ge : B . d} ).. By our assumpLion, Go is a summand

of G and thus also of Go*r. Let Co = Go*t/G, then for each

d., Co is either zero or of rank 1. It follows that

G = @ Co is complet,ely decomposable. If 11 and rz are
c(F

distinct elements in g(G), then G has a summand

C = Cr (E C2 with each Cl of rank l and tlpe(C1) = ri, i=a,2-

If ,rllrr, then let O * gi € Ci, L=a,2 and observe that

H - (g, + gr). is a summand of G which is impossible. rf

11 I 12, say then, ds without loss of generality we can

assume that G is reduced, let p be a prime such that

pG I G. Choose O * gz € C2 such that fr!(Sz) = O. For any

Olgr € Cr,fr$(nSr +gz) = 0andH= (pgr +9zl*cEr.nrotbea

summand of G otherwise, as all t.he elements in H would be

of type rr, C = H (E Cz and

1 = hF (pgr) = frf (nSr + 9) A hE (-gz) = 0 which is a

contradiction and G is homogeneouE,. If rank(G) is

infinit.e, Ehen let K be any finite rank indecomposable

homogeneous group of the same type as G. Observe that

there is an epimorphism 0:G + K. As kerO is pure in G,

by our initial assumption, ker0 is a summand of G. By

the Baer - Kaplansky - Kulikov Theorem, G/ker? = K is

completely decomposable which provides the desired
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cont,radiction

decomposable,

We conclude thus that,

homogeneous and of finite

Gis

rank.

completely

I

3.1.3 Theorem: A11 pure subgroups of a

balanced if and only if G is a homogeneous,

separable group.

Proof: Suppose

separable. Then

direct summand and

G is homog:eneous, f inite rank, and

Conversely, suppose G

pure subgroup of

group G are

finite rank,

by 3 .1-.2, every pure subgroup is a

thus balanced, by 2.5.L.

= {g, : d . p} is such that every

G is balanced. Define

AS

Go = ( {ge : $ . 0} ). and observe that

Go g Go+r provided o+1 < p. Since Go is

is balanced in Go*, and Go*1/G, is either

and hence balanced projective. Thus

Q= U
d<F

balanced

zero or

Go+1

Go and

in G, iL

rank one

@ c" andGo

Q = O Co and is thus completety decomposable. If r, and
d<F

rz are distinct elements in g(G) , then G has a summand

C = C, @ c2 with each C, of rank l and type(ci) = ri, i=L,2.

If ,rllrr, then let O * gi € Ci, t=a,2. By assumption

H = (S, + gzl* is balanced in G and thus in C.

c/H = q/H @ Cr/H and is thus completely decomposable and

hence balanced projective. Thus H is a summand of C

which is impossible as T(H) = {r, n rzl1. If rt 1 r2, say,

then, ds without loss of generality we can assume that G

is reduced, Iet p be a prime such that. pG * G. Choose

O I gz e Cz such that hf (gr2) = o. For any 0 * 9r € Cr,
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frftns, + g) = 0 and H = (pg, + 9z). cannot be balanced. in
G for else it would be a summand of G and as in 3.a.2, we

would get a contradiction. We conclude that G iE

homogeneoue. Let rank(G) be infinite and let K be a rank

one group of the same type as G. Note that as K is rank

one it is also balanced projective. Since K and G are of

the same type, we can f ind an epimorphism 0 : G -+ K.

Ker 0 is pure in G and thus by our assumption, ker 0 is
balanced in G. G/ker 0 = K and thus ker 0 is a summand

of G. By the Baer-Kaplansky-Kulikov Theorem, K = G/ker 0

is completely decomposable which provides the desired

contradiction. We concl-ude thus that G is complet.ely

decomposable, homogeneous and of finite rank. I

3.1.4 Theorem:

pure if and only

A11 pure subgroups H of G are strongly

is homogeneous and separable.ifc

Proof: Suppose G is homogeneous and separable. Let H be

pure in G. For any O # h € H, (fr). is a summand of G by

3.1.1. Thus the projection 0 : G + (fr). fotlowed by the

inclusion map i r (h)* + H is a homomorphism from G to H

which fixes h and H is strongly pure in G. Conversely

suppose every pure subgroup is strongly pure in G. LeE

s = {*,, x"} be a f inite set in G. As (s ). j-s

strongly pure, there is a homomorphism 0 which takes G to

H and which fixes the whole of S and thus the whole of
(s).. Thus 02 = 0 and. is a projection from G to (s). which

means that (S), is a summand of G. Every pure subgroup in
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<S>, is strongly pure and therefore a summand. . By 3.1-.2,

<S>* is completely decomposable and homogeneous. we

conclude that G is separable and homogeneous. I

3.1.5 Remark: Every element of a free group F can be

embedded in a finite rank free summand of F. The Stacked

Basis Theorem implies that every pure subgroup of F is a

summand of F.

S3.2 In this section we prove that a pure subgroup of a

finite rank completely decomposable group G is *-purelY

generated if and only if it is strongly regular pure.

Throughout this section, G will denoLe a completely

decomposable group Reca11 that
g(G) = {r e T(G) ' (c(r') )' C G(r) } and 8(c) is called the

critical tl4peset of G. Note that, in completely

decomposable groups, a t,ype would be an element of the

critical t)4)eset if and only if the group has a rank one

summand of that type. Thus we let G = (E {O, I r e 8G)}

be a homogeneous decomposition of G (i.e. G, = G(r)/G(z'))

and T,:G G is the projection such that kerzr, @
t/ *t

Gr,+ f

for every r e gG) .

3.2.1- Lemma: Let H be *-purely generated in G. For

every r e g(H) , H(7) = H, (E (U{r.) ). where H, is a

homogeneous completely decomposable group.
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Proof : H(r)/(u(z') ). = (H n G(r))/ (g n G(2.)

= (H n c(r))/ (u n G(z) n G(r')

= (tt n G(r) , G(r') ) /o(r')

s G(r)/G(r')

which is a homogeneous completely decomposable group by

[Fu2: Theorem 85.5]. By Baer's Lemma, [Fu2: Theorem

85.47, (u(r') ). is baLanced in H(r) and since completely

decomposable groups are balanced projective, (u(z')). is

a summand of H(z) with complement H", and as r e g(H), H"

is non- zeno. I

3 .2 .2 Lemma: Let H and G be as above. then 8(H) = 
gG)

Proof : Let r e 8(H)\g(G). Then G(r') = G(7)

implies that, (u{2.) ). = H n G(2.) = H n G(r)

cont,radicting the noEion of a critical type set..

which

= H(z)

I

3.2.3 Lemma: Let G, H and H, be as above. For every

r e gG) and o *h e H,, n,(h) i 0 where nr is the

projectj-on from G to the homogeneous summand of G of type

T.

Proof: Let g = @{G, i r e 8(c) } b" a decomposition of G

into maximal homogeneous components and for every

r e K), 1et rrt: G + G, be the corresponding projection.

If o * h € Hs, where H(7) = H, O <H(z*) ,r, then

h = E{n,(h) . o is an element of a finite subset I of

g(c)I and r = inf{o i o € r} s o for every o e r. rf

rG I or if re I but zr,(h) = 0, then
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h e G(z') o H o H, = <H(7')). fl H, = o,

Thus zr,(h) * O.

a contradiction.

H, l-s3.2.4 Proposition: Let G, H and H, be as above

strongly regular in G.

Proof: Let regGt) andlet. o*h €H,. (zr,(h)),isa

summand of G, = n,(G) as G, is homogeneous and completely

decomposable group. Let 0 be the project.ion from G to

(zr,(h) ).. Let A - {p,, pz, ..., pr} be the set of primes

such that
h:,(h) = h:.(h\ < h:,(r,(h) ) i=L,2, ...,k.

k
Ler ,, = fI p!('t where n(:) = ho"r(r,(h) ) - hecr(h), and thus

j=1

n I zr,(h) in (zr,(h) )". Let n,(h) = n9'. For any p e A,

hH(h) = h3(7r,(h) ) = hg(s')

and for any p € A, hf (g' ) = hX (h) . Thus xo(g') = xc (h)

and. there is an isomorphism {' ,(9')* - (fr). with

,lr' (g') - h. we then have

ttt' |r,(h) = rlt' 0 (ng') = nl/' (g') = oh and {/ = {' 0n, is the

desired homomorphism. I

3 .2.5 Theorem [No2l : A subgroup H of finite rank

completely decomposable group G is *-purely generated if

and only if it is strongly regular pure.

Proof : By 2.4.7, strongly regular pure implies *-purely
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generated. By the proposition above, H, is strongly

regular for every z i-n g(H). By [No2] , the H,'s generate

their direct sum. Let O I h e @ {u" . r e 8G)} i...
n

h = E n, where each h, e H,. and each 11 e 8G) . For each
j-1 ' '7

i=a,2,...,rL, there is a {i:G + H" and an integer rt1 such
n

that r/i(hi) = nihi. Thus {rj(h) = Ej=L,j

/'(\) , H,i , D/i (Lrj) , H,i As H,, is

contains hi, Hr, = (fr,)-. This implies
integers k, and 1, such that krhi = ItEry'r(hj) .

II*,\ = k'i . Then /i(lih) = 11n,h, + IE/t(\)

= I,ntht + ktht

= ( Iin, + ki) hi.

: Suppose H = (y). i= *-pure in G.

such that so * a and sp = hF (y)

73

tlrj (hj) and as each

rank one which

thaL there are

LetI\=kand

If s - X(y) and

but y e G(s',p),

*i

Let Ii = l,n,+k, and let r = ffri and r', = \,,iri. Then

rh = rE,(h1) = E1r'ir,hi = D'rir/1(11h) = Eirili(h) . Thus

O {u" . r e 8(e) } i" strongly regular in G. By [No2J ,

O {n, , r e 8(c) } fras finite index in H. Thus for every

g e H there is an integer ns such that

nege@{u,2 r eg(e)} andthusrnsg= E'rjry',nr(g) . I

53.3 In this section we will study under which

conditions *-pure subgroups are summands.

3 .3 . L Lemma tDRll : y e G is primitive if and onIY if

the pure subgroup (y). is *-pure in G.

Proof
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then, by our assumption, y e H(s',p). Thus y
n+l

Ej=1
h l,

with hn+r e H(ps) and for each i=1, . . .,n, hi e G(s) but

X(hi) + s. As hi depends on y, X(y) - X(hi) s and t.hus

for each i=1, ..,n, hi = 0. We thus have that y e G(ps)

which is a contradiction to the choice of p and y is

primitive. Conversely, suppose y is primitive. Let

x € H = (y).. Then there are n,m, such that (n,m) = l and

nx = my. But fry, and hence nx and x are primitive by

A.1.1.5. Let x e H n G(s.,p). By A.1.1.3, either X(x) +

s or x e H n G(ps) . This implies t.hat either x e H(s') or

x e H(ps) (as H is pure in G) which in turn implies that

x e H(s',p). Therefore H n G(s',p) g H(s*,P)

andHnG(s*,p) =H(s',p)

H n G(s') = H(s') as H is pure in

G. Thus H is *-pure in G. I

The following lemma is useful when proving 3.3.3

3.3.2 Lemma: Let y be primitive in G and let

v EV, where each Yi is also primitive in G. There
i=l

n

exists

typec (y)

Ieast

t1pe6 (y.;)

at one Yj, 1s jsn such that.

Proof : Let s = Xc(Y) and let r = t1pe6(y). If all the

yi's are such that type6(y1) ) r, then y e G(s',P) for any

p e P which contradict,s the primit,ivity of y in G. I
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?-3-3 Th orem l'DRLl IfG is separable,. then any

H is a completelyfinite rank *-pure subgroup

decomposable summand.

Proof: The proof is by induction on n, the rank of H.

Let n = 1. Then H = (y). and as G is separable, H c K, a

completely decomposable summand of G. Thus

( = (y,). O (yr). O (E (y,,),. There exist k, 1,, lr,

1* such that ky = Eiliyi. But (1,y,). = (y'), ana (:<y). = (y)..

So without loss of generalit.y, we may assume that y = EiYi.

m

x(y) = A x$) s x(yi) for each i. By our assumption, H
i=1

is *-pure in G and thus by Lemma 3.3.1-, y is primitive in

G. By A.1.1.9, each Yi is primitive and Lemma 3-3-2

implies that at least one of the y;'s is of the same type

as y and rearrangingr the Yi's if necessary, write

y = y' + bwherey' = yr + + y*withtype(y) = type(yi)

for each i=1,2 k and b = yr+r + .. + yn. (y'). which

is pure in the homogeneous completely decomposable group

(y,). O O (y*). is, by 3.1.1, a summand of K and thus

of c and thus G - (y')' (E N, say with b e N. We thus

conclude that Q = (y).(Eu.

Now suppose H is of rank n > 1 and the result holds for
*-pure subgroups of rank less than n. Let Y e H be an

element of maximal type r and let X(y) = s. H(s') = 0 and

for each prime p for which sp = ho(y) i @,

y € H(ps) = H(s',P) = H n G(s',p) . This is true for any

t e r and any prime p with tp = h, (yo) and thus y is

primitive in G. By Lemma 3.3.1, (y). is *-pure and thus
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by our assumption, (y), is a summand of G and thus of H.

Let c= (y).@rc and H= (y).O1. Let xeLnG(s') .

Since H is *-pure in G, x e H(s') and x = Dh, wit.h each

hi e G(s) but 1(hi) * s. Each h, = ki + 1, with k1 e (y). and

Ii e L and Ii e G(s) but 1(1i) + s. Now

x - EI, = Eki = O by properties of direct sums and thus

r = D1, and x e L(s.) which implies that L n G(s.) = L(s.) .

Simj-1ar1y, L n G(s',p) = L(s.,p) and hence L is *-pure of

rank n-1 and which by the inductive hypothesis is a

completely decomposable summand of G. I

53.4 In this section, we use results that are dependent

on t.he theory of k-groups . A k-group, which is a

generalization of a separable g:roup, was first int,roduced

by P. Hill and C. Megibben in [HM1] and later studied by

M. Dugas and K.M. Rangaswamy in [DR1] . The definition

and properties of k-groups can be found in the appendix

A.2.

We quote the following result of P. HilI and C. Megibben.

3.4.1 Theorem: [HM2: Theorem 4.1]

A E-pure subgroup of a torsion-free k-group is again a k-

group.

3 .4 .2 Corollary tHM2l : A str ongly-pure subgroup of a k-

group is again a k-group.
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Proof: A

necessarily a

strongly-pure subgroup is, by 2.4.8,

E-pure subgroup. I

3 .4.3 Corollarv fHM1. Fu2l : A direct summand of a k-

group r-s

separable

agaJ-n a

group is

k-group and a direct summand of

agai-n a separable group.

a

Proof:

direct

2.4.8,

This foll-ows directly f rom 2 .2.L vLz . that

summands are strongly pure subgroups and t.hus, by

E-pure subgroups as well-. I

A strongly

a separable

3 .4 .4 Corollarv [No1l pure subgroup of a

group.separable group is again

Proof: Let. H be a strongly pure subgroup of the

separable group G. By 3.4.2, H is a k-group. Let

A - (V,) O O (y") be a finite rank, free *-valuated

subgroup of H. As a consequence of 2.2.6, there is a

homomorphism @:G + H which fixes the whole of A. Thus

(a). is a summand of G and hence of H as weII. By A.2.3,

H is separable. I

3 .4 - 5 Corollarw l'I{M1 . DRI : A pure knice subgroup of a

k-group is again a k-group

Proof:

E-pure

From 2.5.4

subgroup.

a pure and knice subgroup is also a

result follows from TheoremThus the
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3.4.1_

4.4 6 Coro Ilarv l'HM2l A E-pure subgroup of a separable

group iE strongly pure.

Proof: Let G be a separable group and Iet H be a E-pure

subgroup of G. Let h e H. By 3.4.A, H is a k-group and

thus we can find a finite rank, free *-valuated subgroup,

N, in H such that h e N. By A.2.3, (N)r is a summand of

c and thus (U). is a summand of H. Thus the projection

map from G to (u). is a map from G to H which fixes h. I

Recall (2.4.8) t,hat E-pure subgroups are necessarily
*-pure. The following is an example quoted by P. Hill

and C. Megibben that illustrates that *-pure subgroups do

not coincide with E-pure subgroups.

3.4.7 Example: [HM2] Let. F denote the countable

collection of all finite subsets of the set P. Let {Fnin.,

be a sequence such that Fn e F and for each F € F, there

are infinitely many n for whj-ch Fn = F. It is well known

that there exists a sequence {En}n., that sat,isfies the

following condit,ions whenever i, j < 0):

(1) Ei c P.

(2) Ei is infinite and E' 2 Fi.

(3) Ei n Ej is finite when i I i.
(4) Ek n Ej properly contains Ei n Ej when i # i and

k > max{i,j}.
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Select t,he sequence {En}n., which satisfies the gonditions

(1) -(4) above. Let sn be the height sequence consisting

of 0's and o's such that sn assumes the value of o if and

only if p € En. Choose a rank one group (g"). = Gn I O so

that the height sequence of 9n in Gn is precisely sn. Let

G = @n.,Gn. Let @n be the map from Gn to O that maps gn to

1 and let @:G + Q be the induced map. Hill and Megibben

proved in [UUZ: Theorem 6.2) thaE ker@ = }I is *-pure in

G but H is not completely decomposable and in fact does

not contain primitive elements. G is completely

decomposable and H is countable. If H were E-pure in G,

then as G is a k-group, H would be a k-group by 3.4.1.

However, this contradicts A.2.5 which sEates that aII

countable k-groups are completely decomposable. Thus we

have a *-pure sr:.bgroup which is not E-pure.

53.5 In this section, we will look at the connection

between balancedness and kniceness and under which

conditions kniceness implies being a summand.

3 . 5 .1- Lemma fHMll

height sequence,

(G/H) (s*) =

(c/H) (s.,p) = (G(s.,p)

balanced in GIfHis
t,hen

(o(s
+ H) /H.

(c/H) (s ) =

) + H)

and s

(G(s) +

/u,

is any

H) /H,

and

Proof: We only look at the last equation as the

verifications of the other two equations are very

similar. Suppose x+H e (G /H) (s*, P) then
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x+H = yl+H + + yn+H + y+H where each yi+H is. such t,hat

X(yi+H) = s but X(yi+H) * s and X(y+H) > ps. As H is

balanced, each coset y,+H contains an elemenE z, such that

x(zr) = X(yi+H) > s and thus X(z) * s and there is a

z e y+H such that X(z) = X(y+H) .

x+H=zr+H++zn+H+z+H

= (zr+zr+...+zn+z)+H

e (G(s',p) + H)/H.

Now suppose x+H e (G(s.,p) +H)/H. Thenx = y + hwhere

y e G(s*,p) and h e H. y=Yr +... +Yx+ Y' where

x(y') = ps and X (yi) > s but x(y) * s. Thus

x(y'+H) > x(y') > ps and x(yi+H) > x(yi) > s and

X (Yi+H) + s. Now

x+H = y+H - y,+H + + yn+H + y'+H

which implies that x+H e (G(s',p) + H) /H. t

3 .5 .2 Theorem l'HM1l A pure subgroup H of G is a knice

H is balanced in G and G/H is asubgroup if and only if

k-group.

Proof : Suppose H is pure and knice in G. By 2.6.6, H J-s

balanced. in G. Let S = {xr+H, xr+H, ...t xn+H} be

contained in G/H then, ds H is pure and knice in G,

S' = {*,, xn} is contained in H + N where

]rJ=(V,)O(Vr)O O(V-) and H+N is a *-valuated

coproduct. in G and all the yi's are primitive in G. Let

si xGlH (y,+H) and Iet p e P be such that hf/H (y'+u)

rf yi+H e (G/H) ( (s1) .,p) , then yi+H e (G((s1).,p) +
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lemma 3.5.1. Thus yi+h e G((s')',p) for some ft e H. As

H O N is a *-valuated coproduct, y' e G((s;).,p). As H is

balanced in G, there is an h e H such thaE

1c (y,+h) = xclH (y,+H) and as H @ x is a valuaLed coproduct,

X (yi) s 1(y1+h) - si which contradict,s the primitivity of

yi. Thus each y,+H is primitive in G/H. In a similar way

we can show that K = (y,+H) O O (y**H) is a *-valuated

coproduct in G/H and thus K is the free, *-valuated

subgroup of G/H containing S and G/H is a k-group.

Conversely, suppose H is balanced in G and G/H is a k-

group. Let S = {*,, x2, ... t xn} be 1n H then S' = {x,+H,

xn+H) is a f inite set in G/H and thus

s' in (y,+H) (E (yr+H) @ O (y,,*H) which is a *-valuated

coproduct and each y,+H is primitive in G/H. Suppose t.hat

the yi's have been chosen so that. Xo(yi) = Xcnt (y1+H) then

the primitivity of y,+H guarantees the prj-mitivity of each

yi. Let x = h + tryr + Lzyz + + t.Y* where h e H.

x+H = t,y,+H + + L.y.+H and (t,y,+H) @ @ (t*yr+u) is

also a valuated coproduct. Now suppose x e G(s) for some

height sequence s. 1(x+H) = X(x) > s and thus for each

i, t,y,+H e (G/H) (s). Since X(tiyi) = 1(t1y1+H) , trYi e G(s).

Thus H O (V,) O O (y.) is a valuated coproduct. Now

suppose that x e G(s',p). As before, each

t,y,+H e G/H) ( s., p) but as t,y,+H is primitive , either

t,y1+H e (G/H) (ps ) or 1 (t,y1+H) * s . In either case ,

1(t1y;) = X(tiyi+H) implies that tiYi e G(s',P). I

If H is a pure knice subgrouP of3 .5.3 Corollarv fHM].l
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G and if c/H IS countable, then H is a summand of G

Proof: As H is pure and knice, H is balanced and G/H is

a k-group . c/H is count.able and thus by A.2.5, c/H is

completely decomposable and is thus balanced projective

which immediately gives that H is a summand of G. I

3 .5.4 Corollary [DR1l : G is a

G = C/B where C is completely

knice in C.

k-group if and only

decomposable and B

if
is

Proof : Let 0 + H -: C -d G + 0 be a balanced resolution of

c. Suppose c is a k-group. Then G = C/H where C is

completely decomposable and H is balanced in C. By

3.5.2, H is knice in C. Conversely, suppose H is knice

in C then by 3.5.2, H is balanced and C/H, which is

isomorphic to G, is a k-group. I

3-5-5 Corollarv l'DRll A countable knice subgroup of a

group is a summand.completely decomposable

Proof: Let H be a countable knice subgroup of G, a

completely decomposable group. By 3.5.2, G/H is a k-

group. We can assume that G is countable and thus G/H is

a countabl-e k-group which by A.2.5, is completely

decomposable and thus balanced projective. Hence H is a

summand of G. I
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APPENDIX A.1

SA. 1. l- Primitive Elements

PRIMITIVE ACCORDING TO BAER

A.1.1.1 Definition: Baer, in [Ba] , defined an element

x in G, a torsion-free group, to be primitive of type r

if x e G(z)\G(z') and x is proper with respect to G(z')

(i.e. xc(x) > xc (x+g) for all g e G(2.) ) .

PRIMITIVE ACCORDING TO HILL A}ID MEGIBBEN

A.1 . l-.2 Def iniLion: P. Hill and C. Meggibben [HM1]

defined primitive element,s in a torsion-free group as

follows :- Let x e G and let (p,s)* be a pair with p a

prime and s a height sequence equivalent to X (x)

satisfying:
(i) \(x) #a
(ii) so = \(x) .

If x fi c(s.,p) for all pairs (p,s)^ ds above, then x is

said to be primitive in G.

A.l-.l-.3 Remark lHlntfl: Suppose x is primit.ive (Hi11 and

some prime p and someMegibben) in G but x e G(s',P) for

height sequence s, then either X(x)

the event that. X (x) * s, \ (x) , spi
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that X(x) - s either \(x)
both cases, either
Eper l\tx) - =ol = ,o or

\ (x) sp.. Thus in=coOf

x€ G(ps)

A.1.1.4 Lemma: Primitive according to Baer implies

primitive according to Hill and Megibben.

Proof: Let x e G be primitive (Baer) of type r for some

type r. Then x e G(r)\G(r') which implies that

type (x) = z and for any height sequence s € r,

s-X(x) . Letpe Pbesuchthatsp=\(x) #a. Suppose

x e G(s*,p) then x = xl + xz where

xr e G(s.) - which implies that xl = Yr + Yz + + Yn

wherex(yi) >sandx(yi) +s -andxreG(ps) . Each

yi e G(r.) and thus x, e G(z') which implies that

x - xt = x2 e x+G(z') . Primitivity (Baer) implies that

X(x) > 1(x-x1) = X(xr) and recalling that \(x) = sp and

\(x2) , sp, we get the desired contradict.ion. Hence x is

primitive (HiI1 and Megibben).

From now on we

Megibben) merely

will refer to primitive (HiIl and

as primiEive.

A.1.1.5 Note that if H is *-pure in G then x is

primitive in H if and only if x is primitive in G.

A.1.1.5 Lemma lHMl-l : Let, x e G and suppose n is a non-

zero integer. Then x is primitive in G if and only if nx
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is primitive in G

Proof: Suppose x is not primitive in G. Then for some

paj-r (p, s), wiEh (i) s x(.x) ; (ii) \(x) I a; and (iii)

sp = \(x) , x e G(s',p) . By (i) , ns X(nx) ; by (ii) ,

\(nx) * @; and by (iii), rsp = \(nx) x e G(s*,P)

implies that nx e nG(s*,p) which in turn is equal to

c((ns)',p) . Thus nx is not primitive in G.

Conversely, suppose that nx is not primitive. Then there

is a pair (p,s)* such that (i) s - X(nx) ;

(ii) \(nx) t @; (iii) sp = \(nx); and x e G((ns).,p).

Let k be such that (n/pk,pk) = 1-. Let t=(t), be such that

tq = sq for q4 and t, = sp - k. Then bY (i),

t - x(x) , by (ii) \(x) * @,' and by (iii) , te = \(x)
while torsion-freeness of G implies that x e G(s*,P)

Thus x is not primitive in G. I

A.1.1.7 Lemma [HMl'l : If x

s = X (x) , Lhen each element of

primitive with s as its height.

primitive in c with

cosetx+G(s-)is

sequence.

l-s

t.he

Proof : Let

y - x + z,

i.e. there

tp = \(f) #

z e G(s') .

Butx=y z e G(t.,p)

t and tn

x be primitive

where z e G(s')

is a pair (t,p)y

@. to = \tV)

and s = X(x) . Let

. Suppose y is not primitive

such that. t - X(y) and

> min{\tx) ; \(z)} = sp as

+ G (s.)

sss

G (s.)
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Therefore G(t)

and G (s)

c G (tAs)

c G (tAs)

c (t.)

G (s')

c(pt)

and

and

and

g c ( (tns)').

c G ( (tAs)')

g G(p(rns)) .

Thus x

6#Lp

e G( (tns)t,p) i

x(x) A xQ) = s and therefore

which contradicts

s=s;and
primitivity of

r

+ xn with the

i and for some

then X(x) - s.

(tAs), = sp

tn
the

x

A.l-.1.8 Remark: If y e (x), and X(x)

depends on x, X(y) - s.

s, then since y

A.1.1.9 Lemma [HM1] : If (*). is a direct summand of G,

then x is primitive in G

Proof : Let X(x) =t and let H - (*).. Suppose G = H (E K

for some K < G and suppose x is not primitive in G There

must be some height sequence s and prime p satisfying

s t, tp = \(x) = so * a, such that x e G(s*,P) . Thus

{ = x'+ y where x* e G(s'),

y e G(ps) . By properties of direct sums and by A.1.1.8,

G(s.) s K and thus x - x* is a decomposition of y int.o H

and K. Hence X (y) = X (x) A 1 (x') and in particular,

sp. \(V) = \(x) n \(x.) = sp. Thus x j-s primitive in G.

I

A. L.l-. L0 Lemma: Suppose x = Xl + x2 +

property that if 1(x1) > x (x) > s f or each

height sequence s. If 1(x1) - s for any i,
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Proof : Assume that 1(x;) s. Since X(xi) > X(x) z s and

since \(x') = co if and only if sp = -, \(x) = @ if and

only if sp = -. If \(x) , sp, Ehen \(x1) > s, which only

occurs finitely many times. Thus X(x) - s. I

A.1 .1.11 Lemma:

X (x) = s, type (x)

if:

If x€G, a separable

= o, then x is primitive

group,

if and

and

only

(1)

(2)

tlpe (x)

1 (n" (x) )

e 8(G) and

= X(x).

Proof: Without loss of generality, we can assume that. G

is completely decomposable and thus G = O,eqcl G(z) Tf

n" is the projection from G to G,, then s = X(x) s x(n"(x) )

and o = ty,pe (x) s type (zr,(x) ) . We can write

x = D{n"(x) . r e 8(C)} where

8&) {r e 8(c) : zr,(x) * o}. Now suppose x is primitive

but o G g@) . Then for any r e 8(x) ,

o < r = type(n,(x) ). Thus x e G(s') g G(s*,P) for any

p e P contradicEing the primitivity of x. Suppose

x(x) < x(n,(x) ) then for some p e P, \(x) . q(zro(x) ) and

x e G(ps) S C(s.,p) and x cannot be primitive.

Conversely, suppose conditions (1) and Q) hold but x is

not primitive in G. There are thus a height sequence t

suchthatt sandpeP suchthat\(x) = tp<@ and

n+1

x e G(t',p) . Thus x = E*, where Xn+l e G(pt) and for
i-1
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each i

direct

1 ,i, X(x,) > t

sum, xi E {n" (x1)

and 1(xi) + t

. r e ?G)l
AsGisa

for each

AroA2of

a valuated

for aII

n+1

l- 1, ...,rr, n+1 and thus x Ej=1
D {n" (xi) TC g(c) \

By Lemma A.1.1.10, X(n,(xi) ) * t for any i = L, ...,n which

forces zr, (xi) = 0 . We now have t.hat tn(x) = n, (xn*1) and

thus, by (2), tr=\(x) =\(zr,(x)) = \(r,(xn*1)) > to, a

contradiction. Thus, under these conditions, x will be

primitive. I

SA. 1. 2 Valuated coproducts

A.1.2.1 Def inition [HM1l :

independent subgroups of c

coproduct in G if X (ar + az)

d1 € A1, and a2 € Az.

A direct sum

is said

= X (ar)

to be

n y (a2)

A.1.2.2 Lemma lHMll : Ar (E A, is a valuated coproduct if

and only if for any height sequence s, whenever

ar + d.2 e G(s), then a, and a2 are elements of G(s) too.

Proof : Let s be any height sequence.

a valuat,ed coproduct in G. Let EI; e

Then (at + az) e G(s) implies that

x(ai) z 1(a1) n x(.a) for each i - 1

Suppose now that for some

Suppose A, O A, is

Ai for i l-or2

or 2, EI; e G(s)
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t = X(a, + a) > x(a,) A x(a) while at the same. time, for

any height sequence s, ar + az e G(s) implies that

ai e G(s) , i - l and 2. Thus X(a,) = t and X(ar) > t and

hence X(a,) n X(a2) = t which is a contradiction. We can

thus conclude that X(a, + az) = X(ar) A 1(a2) . I

A.1-2.3 De f nition lHMll

of a valuat,ed coproduct

independent subgroups of

valuated coproduct if,
whenever 1(E1a1) e G (s) ,

We can extend the definit.ion

to an arbit,rary sum of

G as follows: OAi is a
i€r

for

then a1

any height sequence

e G(s) for each i.
S,

Alternatively, @ 4 is a valuaEed coproduct if, for any
ieI

a= E
ie ro

di, where I0 is a finite subset, of T, then

X (a) = A {X (a,l } . As in A.1.2 .2, we can show that t.hese
i€ro

def initions are equj-vaIent.

A.L.2.4 Lemma [HM]-l: If Bi/Ai is torsion for all i e T,

then B o
ier

Bi is a valuated coproduct if and only if

A O 4 is a valuated coproduct.
ier

Proof: Suppose B

arbitrary height

is a valuated coproduct. Let s be an

sequence. Suppose
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Now Ar, g Br, for each

valuated coproduct, 
"r,

also a valuated coproduct..

a valuated coproduct and

sequence. Suppose

b=b. +b,
11 t2

j=L,nandasBisa

e G(s) for each j. Thus A is
Conversely, suppose that A is

1et s be an arbitrary height

2., +a. +a, +rl t2 13 e.A

* bi^ e G(s)

with b CB for aLL j=1,2,...,fili1 i1

There is an nr, such that ,rrbr, , Ar, and thus

n (ff nrr) is such that nb e A. Now b e G(s) implies

that nb e nG(s) G (ns) . nb b andasAisa71

+

ij=L

valuated coproduct, nbr, e G(ns) and thus b e e(s)

torsion-free. Thus B is a valuated coproduct.

A. 1.2 . 5 Remark: If G (E G,
i€r

t.hen X (xigi) n,(1(gr) )

where 9i € G, and thus G is a valuaLed coproduct.

asGis
I

A.l-.2.6 Lemma [HM]-l :

[ = -3, u, in c is pure in
pure in G.

valuated coproduct,

and only if each A' is
The

cif

Proof: As each element. in G can be represented as a sum

of finitely many elements in the {s, the proof reduces

(using induction if necessary) to the case when the
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valuated coproduct A = A, O &. Suppose A, and A, are pure

in G. Let ng € A. Now ng = al + az where

ai € 4, i = t or 2. x(ng) = min{x(a') ; x(ar) }. Thus nx(g)

= 1(a1) for i - a,2 and therefore nlar and nlaz. Thus

there are b, and b2 elements in A, and A, respectively such

that :

al = nbr and a, - nbz and ng = nbr +

and A is pure in G.

Now suppose that A is pure in G.

also in A and by the purity of A,

g - br + b2 with bi e \. Thus ng

ng - nbr = nbz € Ar n A = {O}.

torsion-freeness,g=bl€Ar

Similarly, Nz is pure in G.

SA. 1 . 3 +-Valuatsed Coproducts

q

For any ng € A1, ng is

geAandthus

nbr +

Hence

and Al

and by

in c.

I

nbz n (b, + br)

nb, and

ng = nbr

is pure

A.l-.3.1 Def ition f HMll : LetA

coproduct in G and represent each as a finite sum

s
k, di, where each ai e .\ and Io is a finite subset
4L40

of I. If for each prime p and each height sequence s it

is t.he case that a e G(s') implies that a, e G(s.) for all

the i's and a e G(s',p) implies that d1 e G(s',P) for all

the i's then we say that A = @ Ai is a *-valuated

coproduct.

= 0a
ier

aeA

, be a valuated
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A.1.3.2 Lemma: rf H=(u,).O(nr).O O(rl), and

N = Hr (E @ Hn then H is a *-valuated coproduct if and

only if N is a *-valuated coproduct.

Proof : Suppose H is a *-valuat.ed coproduct in G. Each

element in N is a sum of elements in the Hi's which are

contained in the (H,).'". Thus N is also a *-valuated

coproduct in G. Conversely, suppose N is a *-valuated

coproduct in G. LeE h = Xr + x2 + * Xn where each

xi e (Hi). and 1et h e G(s',p) for some height. sequence s.

Then there are integers k,, i - L,2,...,n such that

kixi € Hi. If k = IIki then for each i, kx, € Hi and thus

kh e N. As N is a *-valuated coproduct and

kh e G((ks).,p) , kxi e G((ks).,p) for each i and thus by

torsion-freeness, each x, e G(s',p) and H is a *-valuated

coproduct. I

A.1.3 .3 Lemma: If G I some index seL, then G

is a *-valuated coproduct in G

Proof: By A.1.2.5, G is at least a valuated coproduct.

Letg e Gtheng = gr + .. + gnwiEheachg, e G.;i forsome

j e I. Suppose g e G(s.,P) for some height sequence s and

some prime p. Thus 9 = Xr * xz + ... + XIn * Y where

x(y) = ps, 1(x1) > s and x(>1) * s for each 1=L,2, ...,1TI.
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Each xj - xrj * xzt + * Xnj and y = yr + I yn where

each yi and each xij are contained in G'. Since G is a

direct sum and by A.1.1.l-0, all the Xij's are such that

x(x'1) > s and 1(41) * s and x(yi) > ps.

g = E.;E,x, + Eiyi = E1(Erx, + yi) where each E.ix,j + Yi € Gi.

Thus each g, = Ei*,i + y, and hence g, e G(s*,p) . Similarly,

if g e G(s') , then each 91 e G(s') . I

A.1.3.4 Lemma [HM1l : Let A = A1 O A2 be

coproduct where A, = (*) with x primitive in

a = dl + a2 e G(s-,p) implies that ai e G(s',p)

i's then A is a *-valuated coproduct.

a valuated

G. If

for all the

Proof: Leta e G(s.) . AsG(s') gG(s*,P) , d e G(s',p) and

by our hypot,hesis, al e G (s*, p) and , for some n,

rrX = a2 e G(s*,p) . But nx is primitive and thus either
(i) X (nx) + s or (ii) X (nx) - s but at the same time,

\(nx) , sp. If (i) is true then nx e G(s') and

ar = a - az is also in G(s') and A is a *-valuated

coproduct,.

Suppose (ii) is true. As A is a valuated coproduct,

A.l-.1.10 implies that X(a) - s and a e G(s.) implies that

a = Xr + xz + * Xn where for each i, 1(x1 ) > s and

X(xi) * s. By A.1.1-.8, each xi € Ar and thus al = a and

r] = O which trivially implies that ar e G(s.) and

nx e G(s.) and hence that A is a *-valuated coproduct. I

A.1.3.5 Lemma [HM1l : If N O (*) is a *-valuated
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coproduct in G with x primitive and if y = x. + z where

z e Nandx(y) = x(x) , thenyisprimitiveandNO(v) is

a *-valuated coproduct in G.

Proof: Let (s,p)* be any pair such that s is a height

sequence equivalent to X (y) = 1 (x) and p is a prime such

that. sp=\(V) =\(x) *a. If y e G(s*,P) then as

N (E (") is a *-valuated coproduct, x e G(s*,P)

contradicting the primitivity of x. Thus y is primitive

too. N + (v) c N + (") by definition of y.

a e NO (*) implies that a = r| + kx for some n € N, and

kez. Thus a= n'kz +kyeN+(V) and hence

N @ (*) - N + (V) and since, N n (v) = {o} by properties

of direct sums, N @ (x) = N (E (y)' we now have to prove

that NO (V) is a *-valuated coproduct. Let w e N and

k e Z i-lnen 1(w+ky) = X(w + kz + kx)

= x(w + kz) A 1(kx) < x(kx) = 1(ky) .

Suppose that w + ky e G(s) then

s s x(w + ky) s x(ky) . Thus ky e G(s) and w e G(s) as

G(s) is a subgroup of G. Thus we have that N O (V) is a

valuated coproduct in G. Now suppose that

w + ky e G(s.,p) . This implies that kx and w + kz are in

G(s',p) as N O (*) is a *-valuated coproduct. The

primitivity of x implies, t.hus, that either kx * s (in

which case ky * s and ky e G(s.) g G(s.,p) ) oR that

\(kx) = \(ky) , sp (in which case ky e pG(s) g G(s',p) )

rn either case, ky e G(s',p) Because G(s.,p) is a

subgroup of G, kz = ky -kx e G(s*,P) and hence
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w = w + ny - ny € G(s*,p) . By A.1.3.4, N@ (V) is a

*-valuated coproduct. f

A.1.3.5 Remark: If HgPSG andG is torsion-free but

G/H is torsion and P is pure in G, then P = G. This is
proved as follows: Let g e G then, by torsion freeness

of G/H, there is an n e Z such that ng e H and thus

ng € P. Purity of P implies that there is an h e P such

that ng = nh and torsion-freeness of G implies that
g=h. Thus@=P.

A.1.3.7 Corollary [HM1] :

andifY=x+zwithze

Ife=(*).@KandX(x)

G(s.) , then G = (y), O r.

s,

Proof: N = (*) O rc is a *-valuated coproduct in G by

A.1.3.2. Asz e G(s') , X$) = sandbyA.l.l-.8, z e K; by

A.1 .1. 9, x is primitive in G and thus by A. I . 3 . 5,

lrJ = (V) O K is a *-valuat.ed coproduct which in turn

implies (A.1.3.2) that (y). @ K is also a *-valuated

coproduct. Now by A.L.2.5, (V); e K is pure in G and G/N

istorsion. Thus,by A.l-.3.5, Q=(y)"Ox. I

A.1.3.8 Lemma l'HMIl : Suppose N = (*,) @ ("r) O . . . O (r..)

is a *-valuat,ed coproduct. in G, where x1, x2,

aII primitive elements of the same type.

element of N is primitive in G. Moreover, if

y = xl + x2 + + Xnr then there exist

yz, , yn in N such that N = (Vr) @ (Vr) O

xn are

Then every

elements

@ (y") is
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a *-valuated coproduct in G.

Proof: The proof is by induction on n.

Let N = (*,) O (rc.r) with x1, x, bot.h primitive. Let

1(x,) = tl, and 1(x2) = tz, say. By our assumption, t, and

t, belong to the same t)rpe, r, say. Let y = [rXr + nrx, and

Iet X(y) = t. N is a *-valuated coproduct and therefore

t e r. Suppose s is a height sequence such that s e r

and. p is such that so = tp = \(V) # a. If y e G(s',p) and

if without loss of generality, \ (n1x,) s \ (n2x2) , Lhen

DrXr e G(s*,p) as N is a *-valuated coproduct which

contradicts the primit.ivity of n,x,. Thus y is primitive

and my is primitive for any m e Z and hence every element

in N is primitive.

Let yr = Xl * xz.

Since tl tz, the sets A, = {peP: \(x,) < ho(x2) f *} and

A2 = {peP: \(x2) . \(*,) * a} are finite. Let la, I = (r' ,

and larl = m' . Let ri be such

for all pi € Ar and all i = t,
hrr(or^t x) = hor(xr)

m'.

that hrr(pr'i xr) = hor(xr)

and 1et mj be such

Pi € Az and all
,fl'

t.hat

) - L,

for all

Let n = pt4prn",.,prrnnt where each pi e A,

and fi = pthpr*..,pr,^,' where each pi € Ar. (n,m) = 1 as

Al n \. = A. Thus hrr(nxr) = hor(xr) for a1I p1 € Ar

and hrr(xr) = hpt@xr) for aII pj e Ar. Let k,I e Z such

that l- - kn + Im and let yz = -knx, + Imxr. If p € A1,

then \(yr; = \(x1) n \(x2) = \(x1) (*)
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and \(y2) = Lro(-knx1) A q(Imxr)

= \(-kxr) A \(Ixr) (as (p,m)=l)

= \(x2) as (k,1) = l-. (**)

Similarly, if p e \., then h,(y,) = \(x2) and \(y2) = \(x,)
and for p € P\(Ar U A2) , h,(y,) = \(Vz) = \(x,) = \(x2) .

Now

T [1 1 I ,uchthatf,xr]=lYrl= f-k 1r, I '" " ,xrt = Lyr)'

det(T) = t- and T-L = lI .'ltkm lJ
Let x e N then x = orXr + \zxz

I

= ln, nr),

f or some nr, rL2 e Z

xLl
xr)

fn, nr) T-Lr

= [nrn)[tn lllh I

I tm t ll- y, )

= (n,1n + nrkm)y1 + (nz - nr)yz.

Therefore N = (v,) + fyr],.

Let. g e (yr) n (Vr) then g = mryr = Wyz for some m1, m2 e Z.

Thus m,(x1 + x) = Rz(-kmx, + 1nx2) and

(mr + mrkm)x, = (mr1n - m,)x2. As (*,) O (r.r) is a direct

sum, ml + m2km = 0 and mrln - ml = 0. We thus have the

following system of equations:

x!
x2

Yt

Yz
1ln, nr) T
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l-

l_

\
m2

kfil
1n

I

I

0

0

Bearing in mind that km + In = 7-, we get t,hat ml = 0 and

m2 = O. Thus N = (V,) O (Vr) .

Claim: N is a valuated coproduct.

Proof : Let y - nryr + nzyz. Note that

y = [nr nz]
lhl
ly2)

ln, nzl T T-r
Yr

Yz

lnr nz]
I r 1l
L-tmrnl

In, n2km rt1 + nrln ]

xt
x2

t xt
x2L

Thus y - nrYr + nzYz = RtXl + m2x2 where ml = nl - nrkm and

R2 = nl + nr1n. We need to show that

\(.,y, + izyD = \(n,y,) A \(nry2) for all 11, rlz e Z and

p e P. We need only check the case when

\(n1y1) = \(n2y2) . G is torsion-free and therefore common

p-power factors can be cancelled and hence at least one

of nr and r12 is coprime to p. If p e Ar U ^fu t,hen

h,(y,) . \(Vz) and \(n1y1) = \(n2y2) implies that p I n, but

p t r12. on the other hand, if p € a, U &, then p / n, and

P I r12.

If p € A1, then \(n,x,) = h,(.,y,) by (*)

= \ (nryr) by assumPtion

= }r,(yr) as p I nz

= \(x2) by definition of Yz.

98

t

t

I

I

http://etd.uwc.ac.za/ 



Now \(nrkmx,) = \(kmx,) as p / n2

= \(kx2) 5y definition of m.

Therefore, by definit,ion of A1, p I nrkm and thus, p | *r.

Note that m2 - mr = D2 and p I rLz implies that p I mz.

Hence, \(m2x2) = \(n2y2) as p I mz, p I nz, and (**)

= h,(.,y,) by assumption

< \ (mtx,) '

Thus \(.,y, + n2y) = \(m,x,) A th(m2x2) = \(m2x2) = \(x2)
And \(.,y,) A tb(n2y) = h,(.,y,) by assumption

= \ (x2) by above .

We thus have the desired result that :

\(.,y, + r,2!) = \(.,y,) A h,(n2y).

If p e \., then \(x1) > \(x2) , \(Vr) = \(x2) , and

\ (yr) = \ (x,) . rhus :

h, (n,xr) = h, (n1y1) = ho (n2y2) = h, (y2) = ho (x1) ;

\(lnnrxr) = Lh(Inxr) as p / n,

= \(1x,) by def inition of n; and

\(m2xr) = \(n,x, + lnnrx2) = \(*,) A tb(1x1) = \(x,) .

As p e \,, p I m and thus p I m, and again, as m2 - mr = fl2,

p I mr. Hence \ (m1x1) = \ (xr) s \ (mrx2) and so

4(.,y, + nzy) = \(mrx,) A ib(mrx2) = \(m,x1) = \(*,) and

4(.,y,) A tb(nyr) = t5(n,y,) = 4(x,) . Thus we have the

desired result that \(.,y, + n2y) = L5(r,yt) A th(n2y). on

the other hand, if p C at U }"z, the equation

m2 - ml = nz ensures that p divides at mosE one of the

integers m, and m, and consequently, in this case, we have

that\(m,x,) A rb(m2x2) = \(x11 = \(x2) = t5(y,) = 4(yz) and

\(n1y,) A \(nry21 = \(y1) = \(vz) as p I n,, i=L,2. Thus,

99

http://etd.uwc.ac.za/ 



in each case, \(r,y, + nzy) = h,(.,y,) A fb(n2y).and N ie a

valuated eoproduet. To show that N is a *-valuated

coproduct, let O*y =rryr+nzyz eG(s*,p) y is

primitive and therefore either :

(1) x(y) + s or

(2) x(y) - s but y e G(ps) . rn (1) , 1(n,yr) + s and

y62y2) * s as trryr, nzyz e G(s) and t,hus nryr e G(s.) and

nzyz e G(s.) g G(s*,p). rn (2), as N is already a valuated

coproduct, y e G(ps) implies that

nryrandnryre G(ps) gG(s.,p) .Thus N is a *-valuated

coproduct. Assume that if N - (*,) O O (r."-,) is a

*-valuated coproduct in Gi X, xz, , xk, Xn-l are all

primitive elements of the same type; then every element

in N is primitive in G; and if yr = (*,) + + (*n-,),

then there exist yz, , yx in N such that

|rJ = (V,) O O (y"-,) is a *-valuated coproduct in G.

NowletN-(*,)O O(r."-,)O(r,.)andlety e N. For

simplicity, Iet Nn-r = (*,) @ O (rq,-,). Then

y - dn-r + krXn where dn-l € Nn-r, and kn e Z. By the

inductive hypothesis, drrr is primitive and thus, by

exactly the same argument as in the case when n = 2, y is

primitive. rn particular , Lf yr = Xr + x2 + * Xn-l * Xn

t,hen , for simplicity, Iet xl + + Xk = bl. By the

inductive hypothesis, there are y2, y3, ..., yn-, such that

N,-r = (U,) O (Vr) O @ (y"-,) is a *-valuated coproduct.

n-1-
Note that tlpe (b1) A Itype (xi) ) type (x1) for every

l- 1

i thus, ds in the case of (L=2 , choose Yn such t.hat
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(U,) O (",) = (V,) O (v") is a *-valuated coproduct.

lrJ=(*,) O O(rq-,) O(ri)
= (u,) @ (vr) O O (y"-,) O (r.")

= (v,) O (vr) O O (y"-,) O (y") which is also a

*-valuated coproduct.

Now

m

At- X@) < 1(xi) , for each i

Rearrange the x1's so that the first k x" s are of the same

type as Yr,' Iet Y = Xr + + x. and

A.1.3.9 Theorem tHMll : Suppose that

N - (*,) @ (*r) O O ("-) is a *-valuated coproduct in

G where each of the Xi's are primitive. If Yr* 0 is a

primitive element contained in N, then there exist.

primitive elements yz, , Y^ such that

N' = (V,) O (Vr) (E O (y.) is a *-valuat,ed coproduct.

with N/N' finite.

Proof yl € N implies that we can write

Yr = [rXr + f,zxz + [rnX*. Note that:

f . in the event. that ns is zero, we can, for t.he sake of

this part of t.he proof , rewrite N as

|rJ=(*,) O O(*,-,) O(*,*,) O O(*,,) andadd(x,) to

N and N' in the end for the result to hold; and

2. N' = (r,*,) O ( \x) O (E (n,ox.) i" a *-valuated

coproduct and y, € N' with N/N' finite.

By the above, we can consider Yr to be

Yr=Xl+x2+Xm.

Now x (yr)
1
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g = Xk+l + *X*- Y g 0 for else

yr € G((x(yr) ).) c G((X(yr)).,p) for any p e P which

contradicts the primitivity of yr. As N and N' are

*-valuated coproducts , x(yr) = X (y+g) s x (y) which implies

that x(y) = XQ) for else yr e G((x(yr) ).) which again

contradicts the primitivity of yr. By lemma A.1.3.8 there

are primitive elements yz, , yu t.hat

N'=(v) @(vr) e O(v*)O(***,) O O(*-) andby

lemma we can replace y by yr. I

A. r_.3 .10 CorolIarv If x is a primitive element in the

separable group G, t.hen (*). is a direct summand of G.

Proof : By separabilit.y of G, x is contained in a direct

summand A = Ar O & O @ a* where each \ is a rank one

subgroup of G. Thus X = Xl + * X,n where each X1 € Ai

and x e N = (*,) @ O (*-). Bearing in mind that

4 = (*,)., A/N is torsion and each (x,), is a direct, summand

of G which implies that. each x' is primitive in G. The

previous theoremyieldsN' = (*) O (Vr) O O (y,) where

each yi is primitive and N/N' is finite.

B = (*). O (yr). (E O (y*). is pure in c and thus pure

in A with A/N' E,orsion. Thus by A.t.3.5, B = A and (*).

is a summand of A and thus of G too. I

A.l-.3.11 Def inition tHMll Any subgroup, F, of G which

a *-valuated coproductAScan be represented
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F = O:., (xi) , where the Xi's are non- zero'primitive
el-ements of G, is called a free *-valuated subqroup of G.

Under these circumstances, the xi's are said to form a set

of free qenerators of F.

A.1.3.12 eorem fHMll 2 If F and N are free *-valuated

subgroups of G

then there is

F /F', is f inite

of c.

where N has finite rank and N g F,

a *-valuat,ed coproduct F' = N @ M, where

and M is also a free *-valuated subgroup

Proof: Let Yr, Yz, , y, b€ a set of free generators

of N. We proceed by induct.ion on t.he number of y1's t.hat.

are also free generators of F'.

Let M = F and let Fo = (O). Then F = F0 O M is such that

F/F is finite and M is a free *-valuated subgroup of G.

Assume thaL Fn-, = (V,) e O (y^-,) O u,-, is such that F/Fn-r

is finite and Mn-, is a free -valuat,ed subgroup of G. The

finiteness of F/Fnt guarantees that there is a multiple yn'

of yn so that. Yn' € Fn-r. Thus we can write

yn' = -yt' - yz' - Yn-r' + Illn-l where Rn-t € Mn-r and for

each i = 1, . . .,[-1 , yi' is a mu]tip]e of Yi. Let

X(yn') = s. As Fn-r is a *-valuated coproduct,

s = X(yn') s X(nh-r) and, for all i=1, .',fl-I,

X(yn') < X(yi') . Rearrange t.he Yi's so that Yr, Yz, t

yr aII have the same types as type (yo') and noEe that

k = O makes no difference to the proof and that. Yk*r' ,
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yn-t' are all contained in G(s') . By the first part

of lemma A.L.3.8, yn' + yr' * yz' + + yr' is primitive

in G. X(yn' + yr' + + yr') = A{X (yn') , X(yr') ,

X(yr')) = X(yn')= s. Because Mn-, is also a free *-valuated

subgroup, w€ can, as above, wriLe Rn-l = y + g where y is

the sum of primitive elements in Mn-, of t.he same type as

type(yn') = rt say and g e G(s.) fl Mn_r. Here again, by the

first part of lemma A.1.3.8, y is primitive in G and, as

c (7) is a subgroup and type (y) s tlpe of each of its

summands, type(y) = r. Note that if y - 0, then

a = yn' + yr' + * yr' e G(s-) a contradiction to the

primitivity of a. Suppose X(yn') <X(y), then for at

least one p € P, k5(yn') . \(V) and y e G(ps) which means

that yn' e G(s.,p) which contradicts the primitivity of

yn'. Thus X(yn'; = 1(y) . By Theorem A.L.3.9, we can find

*n'-, = (V) O r,r, so that a,-r/af,-, is finite and by

Lemma A.1.3.5, M'n-l = (y.') (E Mn. Thus we have

F'n-r = (v,) O O (y"-,) e (y", ) (E Mn with Fn-1/F'n_r finite

and Ehus F/F'n-t is f inite. since (v) / (y"') has finite

order, F'n = (V,) O O (y"-,) O (n) O Mn satisfies the

conditions of the theorem. f

A.1.3.1-3 Corollarv tHMll IfNis

separable

a finite rank,

t,hen

free

the*-valuated subgroup

pure closure of N is a direct summand

(V,) O O (V") , where the y1's are f ree

Since N is separable, N is contained in
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a direct summand A A, O & O O a,, of G, where each

Ai is a rank one subgroup. Each yi
mtj=!

fr jaij aije\

Each \ is locally cyclic and therefore we have nonzero

Xj's such that (*.i) = (",j, azj, ant) s q and hence

F = (*,) O (E (*,n) contains N. By A.1.3.12, we have a

*-valuated coproduct F' = N @ M, where F/F' is finite and

M is a free *-valuated subgroup of G. A/F is torsion as

A - (*,). O O (*.). and F/F' is f inite. Hence A/F' is

torsion and by A.1.3.5, A is equal to the pure closure of

F' I
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APPENDIX A.2

In this appendix we introduce the concept of a k-group

and show that any finite rank, free *-valuated subgroup

of a k-group G, is knice in G.

k - Groups were first introduced by Hill and Megibben in

and[ltlrtt:p 741,1 . They were also studied by

K.M. Rangaswamy in [DR1] .

M. Dugas

Definition [HM1] : A torsion-free group,

finite subset can be

*-valuated subgroup.

G, is called a

imbedded in ak-qroup if

finite rank,

each

free

A.2.1- Lemma [HM1l : Any separable group is a k-group.

Proof : Any finite subset, S sdy, of a separable group,

G is contained in a finite rank, completely decomposable

summand, A, say, of G. In the same way as in the first

part 3.1.1, we can find a free *-valuated subgroup, N

which contains S and which in turn is contained in A. f

A.2.2 Proposition tDRll : A f inite rank summand of a k-

group is completely decomposable

Proof: Let A be a finite rank summand of the k-group G.

Then there is a finitely generated subgroup, F, of A with

A/F torsion. Since G is a k-group, F is contained in a
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free *-valuated subgroup N of G. The pure closure, B, of

N is a completely decomposable group containing A and A

is a d.irect summand of B. Thus, 4s direct summands of

completely decomposable groups are completely

decomposable too, the proof is complete. I

A.2.3 Theorem lHMll : G is separable if and only if G

is a k-group with property that the pure closure of each

finit.e rank, free *-valuated subgroup is a direct

summand.

proof: Lemma A.2.L shows that separable groups are k-

groups and 3.1.1 proves t.hat separable groups have the

property that the pure closure of a finite rank, free

*-valuated. subgroup of a Separable group is a Summand of

that group. Now suppose that G is a k-group wit.h t,he

property stated. above. Let S be any finite subset of G

then, ds G is a k-group, s can be embedded in a finite

rank, free *-valuated subgroup, N, sd1r, of G. By the

assumption, the pure closure, B, of N is a finite rank

summand of G. By A.2.2, B is completely decomposable and

thus G is separable. I

A.2 .4 Lemma [HMl: Lemma 3 .4.l :

*-valuaLed subgroup of a k-grouP

of c.

Any finite rank, free

G, is a knice subgrouP

xn be a set of free generators of

L07

Proof: Let x1, x2,
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N and 1et S be any finite set in q. Take

s' = s U {*r, xn} . since G is a k-group, we can

select a finite rank, free *-valuated subgroup F

containing S' Then N g F and by theorem A.1.3.L2, w€

have a *-valuated coproduct N' = N (E (V,) O O (y.) ,

where the yi's are primitive and F/N' is finite. Since

S g F, the proof is complete. I

A.2.5 Theorem tHMll A countable k-group is comPletelY

decomposable.

Proof: Suppose Xl, x2, ..., Xn, is an enumeration of

the elements of G and let, Xn = t*,r i < n) for each n < N.

As G is a k-group, {*,} i= contained in a finitely

generat.ed f ree * -valuated subgrouP,

Fr = (y,,) O (y,r) O (E ( yr,r, ). By 3.2.4, Fl is knice

in G and therefore there are primitive elements Yzr, Yzz,

yz,n, such that F2 = Fr @ (yr,) O (E ( Yr,n, ) and

(xr, Frl /F, is f inire. Let s* lYy, Yiz , Yi,n)
m

U
-L-

xN

1

andF= U F^
12< (o

G. Suppose g

there is an ns

e G\F then g

e Z such that

ThenTisafree * -valuat,ed subgroup of

for some N < N. Thus

FN and G/F is torsion
ni

F= O (B <yij> and
L<(l) i=1

ne9 e

and G is the pure closure of F

o
17:

o <yi?, which imPlies that G ishence G
i<co j=1
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completely decomposable .
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