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ABSTRACT 

 

Development of an Operon Detection Algorithm to Analyze Gene Regulation 

in Drug Resistant Mycobacterium tuberculosis 

T Calvert-Joshua 

PhD Bioinformatics Thesis, The South African National Bioinformatics Institute, 

University of the Western Cape 

 

Background: In prokaryotes, operon structures often form to allow 

microorganisms to respond rapidly and efficiently to changing environmental 

conditions. Operons are sets of neighbouring genes which are co-regulated and co-

transcribed. Studies have shown evidence of operons changing their lengths and/or 

maintaining their lengths while up- or downregulating their expression levels when 

exposed to various stresses. Since several operons have also been associated with 

drug resistance, having access to the operon map of Mycobacterium tuberculosis 

(Mtb), may give us insight into the existing mechanisms employed by Mtb to 

circumvent drug stress, and more importantly, it may allow us to target larger 

sections of a genome when designing antitubercular drugs. Although REMap was 

applied to the Mtb genome, none of the existing operon predictors, was optimized 

for the unique genome of Mtb. We therefore aimed to build a new operon predictor 

based on the foundation laid by REMap and extended the algorithmic parameters 

using empirical evidence. We also aimed to identify operons that were both 

modified in length and differentially expressed under rifampicin (RIF) stress and to 

observe if this was done in a genotype-specific or autonomous manner, by 

predicting operons for different Mtb genotypes. 

Methods: We developed COSMO, an algorithm that uses features of the Mtb 

genome and RNA expression data. We verified four parameters by evaluating a set 

of 49 experimentally verified operons (EVOs) and a matching simulated operon set. 

Our expression, data-informed parameters were: i) a minimum coding sequence 

(CDS) coverage, ii) a minimum intergenic region (IGR) coverage, iii) a maximum 

fold difference (FD) between adjacent CDSs and iv) a maximum FD between an 
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IGR and its flanking CDSs. COSMO also has a built-in feature which evaluates the 

length of the operon upon the addition of each new CDS, by testing whether the 

averages of all CDS belonging to the operon are still within the FD cut-off. 

Results: In verified operons, the coverages of IGRs were more upregulated than 

the untranslated regions (UTRs) (p = 0.005). However, they were on average, half 

the coverage of their flanking CDSs (p = 0.001). Taken together, this demonstrates 

that IGR coverage is a significant parameter, but that it should be independent of 

CDS coverage. FDs between adjacent CDSs were significantly lower in verified 

operons than in the simulated operons (p = 0.0007) - adhering to a maximum FD 

between 5x-7x. Similarly, the maximum FD between the IGRs and their flanking 

CDSs were generally below 5x in verified operons (p = 0.04 and p = 0.005, for plus 

and minus strand, respectively). We compared the predictions of COSMO for 

Beijing samples to two other operon predictors: REMap and Rockhopper. COSMO 

accurately predicted more full-length operons (60%) under control and 

experimental conditions than REMap (50%) and Rockhopper (48%). COSMO also 

predicted twice as many operons as DOOR 2.0. COSMO was also better at 

distinguishing operons predicted under control conditions from those predicted 

under RIF stress. When we combined lineage 2 and lineage 4 samples, the 

prediction rate increased to 70% of EVOs.  

Our multiple linear regression analysis showed that one of our new parameters – 

maximum FD between IGRs and CDSs - had the greatest weighting on correct 

operon prediction and that the traditionally used maximum FD between adjacent 

CDSs was the least significant parameter. 

We showed that in general Mtb tends to resist operon reorganization – even under 

RIF stress. Approximately 80% of operons had the same call under control 

conditions as under RIF stress. That is, within a specific genotype (n = 40) of strains 

had consensus calls for their operon lengths (p = 1.4 x 10-9). In the ~20% of cases 

when operon lengths were modified, the data showed that these strains were more 

likely to modify their operon lengths within their genotype than to do so strain-

independently, under both control (p = 0.0006) and RIF stress conditions (p = 0.01). 

Similarly, except for the efflux pump, MmpS5/L5, most operons were not 

significantly differentially expressed under RIF stress. This pump was also shown 
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to be under selection pressure to remain the same length regardless of stress or 

genotype differences. A gene enrichment analysis showed that operons were often 

split at genes involved in lipid metabolism with the aim to slow down Mtb’s growth 

rate and prolong survival under stress. It also showed that Mtb preferred to extend 

operon lengths with regulatory proteins – more specifically with regulatory proteins 

which are associated with lipid biochemical pathways. ATP-related proteins were 

preferentially packaged into housekeeping operons and were under the most intense 

selection pressure. Finally, by using nine drug sensitive strains that were grown 

under hypoxia, COSMO was able to predict an operon that was never predicted 

under RIF stress but was confirmed to be associated with a hypoxia pathway.   

Conclusion: COSMO has outperformed three of the best operon predictors in 

predicting full-length operons, in the accuracy of these predictions and in 

distinguishing operons under control conditions from those under experimental 

conditions. 

 

16 September 2022 
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1 

 

CHAPTER 1 

INTRODUCTION 

 

1.1 Why do we need to pay attention to operons in Mycobacterium 
tuberculosis (Mtb)?  
 

Bacteria may be the simplest free-living life-form, but their presence in nature is 

ubiquitous. However, the cost of surviving under often adverse conditions, 

necessitated the formation of molecular tools that are rare in other kingdoms of life. 

As with gene expression in higher organisms, bacteria do not simultaneously 

transcribe all their genes according to their genomic capability. Instead, the 

necessary genes or proteins are transcribed according to their need. This need can 

be dictated by both their internal and their external environment. (Seshasayee et al. 

2009). In 1960, Jacob et al., (1960) discovered that bacteria can make this process 

more efficient by the formation of operons.  

 

 

1.1.2 What are operons? 
 

Operons are co-transcribed and co-regulated clusters of neighbouring genes. As 

shown in Figure 1, they often share a promoter, which allows them to be transcribed 

as a single polycystronic messenger RNA (mRNA) (Jacob et al. 1960; Jacob and 

Monod 1961). Although the genes constituting an operon are jointly transcribed, an 

operon may modify the number of genes included in that operon (Dam et al. 2007; 

Güell et al. 2009). Changes in their external environment are often used as cues to 

facilitate these operon length modifications. For example, Lee et al. (2014) showed 

that Salmonella uses a specific series of mechanisms to receive a signal of the 

distinct environmental stress from the host, and then responds accordingly by 

activating the appropriate virulence operon. Similar behaviour was observed in 

Mycobacterium tuberculosis (Mtb). Singh et al. (2003) showed that the mymA 

operon is induced in macrophages upon exposure to an acidic pH, which may allow 
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Mtb to persist in its host. Moreover, Bretl et al. (2012) revealed that the Rv1813c-

Rv1812c operon in Mtb, is upregulated in response to hypoxia, nitric oxide, and 

carbon monoxide stresses.  

These survival strategies are however, not just activated in response to the usual 

stresses inside the human host immediately after infection, but they may extend to 

new stresses brought on by antibiotics. A cloning study carried out by Silva et al. 

(2001) revealed that the P55 gene of M. bovis was identical to the Rv1410 gene of 

Mtb. This gene that encodes a membrane protein, is a part of the Rv1410-Rv1411 

operon, that conferred both aminoglycoside and tetracycline resistance in 

mycobacteria.  

 

 

Figure 1: Illustration of the structure of an operon. In prokaryotes, a block of genes 

located adjacent to each other are often regulated by a single promoter and is called an 

operon, which may be transcribed as a single polycistronic mRNA. While structural genes 

encode products that serve as cellular structures or enzymes, regulatory genes encode 

products that regulate gene expression. A repressor is a transcription factor which binds to 

the operator to inhibit the transcription of structural genes. Alternatively, activators enhance 

transcription by enabling RNA polymerase to bind to the promoter (Parker et al. 2016).  
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1.2 Targeting operons 
 

Numerous studies have shown the gross impact made on a phenotype by targeting 

entire Mtb operons  (Thanassi et al. 1997; Banerjee et al. 1998; Pasca et al. 2004; 

Colangeli et al. 2005; Plinke et al. 2010). Shimono et al. (2003) showed that 

disruption of the entire mce1 operon in TB-infected mice, resulted in a 

hypervirulent strain that was unable to enter a persistent state of infection – a state 

attributed to the success of this pathogen. Instead, the strains continued to replicate 

and kill their rodent host more rapidly than the wild-type (WT) strains. On the flip 

side, when two other operons, mce3 and mce4, were completely deleted, this led to 

the attenuation of Mtb strains. The infected mice showed less prominent lung 

lesions at 15 weeks post-infection  (Senaratne et al. 2008). 

 

Experimental evidence therefore generously points to the significance of 

specifically targeting genes within an operon or entire operons to combat 

Tuberculosis. Continuing our research on a gene level, may not give us the 

advantage we need, because of compensatory mutations or the ability of the 

pathogen to switch to an alternative gene in the pathway.  

 

However, compared to other pathogens such as E. coli and Bacillus subtilis (B. 

subtilis), the number of experimentally verified Mtb operons is small. Despite being 

an important human pathogen, the difficulties associated with targeting and 

culturing this slow-growing, fastidious species, have discouraged detailed genetic 

analysis. Recent non-culture-based molecular testing, such as RNA-seq, has the 

advantage of avoiding the delays of days to weeks for conventional culture (Lee et 

al. 1991; Yang and Rothman 2004; Speers 2006). Leveraging this data with 

bioinformatics approaches, removed another obstacle. The strength of combining 

molecular techniques with biological computation, has proven to be invaluable in 

rapidly advancing our insight into pathogenicity and virulence in prokaryotes. This 

recipe has since been applied to the identification of operons, leading to the 

prediction of several novel operons, which were later also experimentally 

confirmed (Roback et al. 2007; Pelly et al. 2016; Bundalovic-Torma et al. 2020; 

Tjaden 2020a). 
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1.3 Problem statement 
 

Two of the predictors that were of special interest in predicting operons were 

REMap and Rockhopper (Pelly et al. 2016; Tjaden 2020a). REMap faired on par 

with DOOR 2.0 which outranked 14 other operon prediction algorithms. 

Rockhopper outperformed DOOR 2.0.  

 

Both REMap and Rockhopper considered similarity in transcript abundance 

(coverage) between directly adjacent CDSs. REMap allows for a user to define an 

average cut-off for a CDS to be considered expressed, but the algorithm uses the 

same coverage cut-off for both the intergenic region (IGR) and the coding region 

(CDS). There is evidence that the coverages of these two genomic regions are not 

the same within operons. Rockhopper calculates the coverage of adjacent CDSs and 

their intervening IGRs but does not allow the user to define a cut-off. Due to insight 

into the organism’s transcription and regulation, the user may want to define a 

minimum coverage. Rockhopper places a high significance on a short IGR distance, 

while REMap showed that this genomic region is inappropriate for Mtb operons. 

Furthermore, Rockhopper generates operons based on differential expression 

between a control and treated sample but does not show which operons are active 

under each condition. Lastly, neither predictor enforces a maximum fold change 

(FC) between adjacent CDSs or between adjacent CDSs and their intervening IGRs. 

Similarly, neither predictor uses a correlation of expression between all CDSs being 

added to a putative operon, as a feature.  

 

1.4 Aim 
 

In this thesis, we aimed to develop an algorithm to predict operons under control 

conditions versus RIF stress, using RNA-seq data. We developed our algorithm, 

Condition-Specific Mapping of Operons (COSMO), which is available at 

https://github.com/SANBI-SA/COSMO.  

COSMO leverages the foundation laid by REMap and Rockhopper but offers 

additional parameters for improved operon prediction.  
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1.4.1 Main Objectives 
 

Our main objectives of this study, were to determine:  

i) if there should be a minimum cut-off for the CDS and IGR to be 

considered expressed 

ii) if a separate expression level cut-off should be considered for the IGR 

and its flanking CDSs,  

iii) what the maximum fold differences between IGRs and their flanking 

CDSs should be,  

iv) whether we can improve operon prediction by considering the 

expression levels of all the CDSs of an operon and not just two 

immediately adjacent CDSs  

v) if COSMO was able to improve on the prediction rate of existing 

algorithms and 

vi)  if COSMO could predict operons under RIF stress for different Mtb 

lineages 

 

In Chapter 2 we discuss the uniqueness of the Mtb genome, implications of operons 

in drug resistance, the current methods for identifying operons experimentally and 

computationally, as well as why we need a new operon predictor for Mtb. 

 

In Chapter 3 we show the steps involved in developing COSMO and we benchmark 

COSMO against REMap and Rockhopper. 

 

Lastly, in Chapter 4 we predict operons for RIF treated and untreated strains from 

six different genotypes and analyze operon length changes and we evaulate 

differential expression of operons (DEO) under RIF stress. We also take a 

subsample of Mtb strains from a public database, which were grown under hypoxia 

stress, to ascertain if a unique set of operons can be predicted under a different 

environmental stress. 
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CHAPTER 2 

LITERATURE REVIEW 
 

 

2.1 The Mycobacterium tuberculosis genome 
 

Within the family Mycobacteriaceae, Mycobacterium represent a genus of bacteria 

consisting of highly successful pathogens such as Mycobacterium leprae and 

Mycobacterium ulcerans, causing leprosy and Buruli ulcers, respectively. The Mtb 

species is one of the most common pathogens- causing tuberculosis (TB) in both 

humans and animals (Haning et al., 2014). 

Mtb is a slow-growing tubercle bacillus that causes a chronic, infectious, airborne 

disease in susceptible patients. Its genome consists of a 4.4 megabase (Mb) circular 

chromosome constituting over 4000 genes in its guanine-cytosine-rich (G+C-rich) 

genome. This encodes 13 sigma factors, 11 two-component sensory transduction 

systems, 5 unpaired response regulators, 11 protein kinases and over 140 annotated 

transcriptional regulators. These transcriptional regulators have been implicated in 

response to stress signals and pathogenesis using mutagenesis and transcriptional 

profiling studies (Cole et al. 1998; Manganelli et al. 2004a; Arnvig and Young 

2012). Its genome differs from those of other bacteria in that the greatest portion of 

its coding capacity is devoted to the production of lipogenesis and lipolysis 

enzymes and to two new families of glycine-rich proteins with a repetitive structure. 

This repetitive structure is believed to represent a source of antigenic variation 

(Cole et al. 1998). Antigenic variation is the mechanism used by infectious agents 

to evade the adaptive immunity of their host by altering their surface structures (van 

der Woude and Bäumler 2004; Coscolla et al. 2015).  

Besides its slow growth, other characteristic features of this bacterium, is its 

dormancy, genetic homogeneity, intracellular pathogenicity and complex cell 

envelope. The generation time (time it takes to double in number) of the bacterium 

is ~24 hours, which contributes to its chronic disease nature, its lengthy treatment 

regimen and the challenges it imposes for researchers who wish to study it (Cole et 

al. 1998). 
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2.2 Current Mtb statistics 
 

Until the COVID-19 pandemic, the Mtb pathogen was the leading cause of death 

amongst infectious diseases worldwide. Alarmingly, South Africa ranks as one of 

the ten countries that accounts for more than 90% of the global TB cases (World 

Health Organization 2022). The high burden of human immunodeficiency virus 

(HIV) infections further exacerbates the problem, as people living with HIV are on 

average 18 times more likely to develop active TB disease. In addition, the WHO 

2019 statistics showed a 10% increase in multidrug- or rifampicin-resistant TB 

(MDR/RR-TB) cases, since the previous year (WHO 2020). This number increased 

again during 2021 (World Health Organization 2022). 

 

2.3 What are the implications of operons in drug resistance? 

2.3.1 Efflux pumps 
 

The possibility of designing better anti-tubercular drugs against Mtb or of 

attenuating virulent Mtb strains, has garnered a special interest in the scientific 

community. One mechanism of action that seems to be prevalent in all prokaryotes, 

are efflux pumps. There has long been speculation that efflux pumps may be 

involved in both pathogenesis and virulence for the following reasons: i) they are 

pervasive in all living cells, ii) the genes encoding them belong to the bacterial core 

genome, iii) a single bacterial cell usually contains more than 10 different efflux 

pumps (redundancy), iii) they are non-specific; each efflux pump is able to export 

a variety of different substrates, and iv) their expression is tightly regulated (Webber 

et al. 2009).  

 

Efflux pumps have been described in a wide variety of pathogens in which they 

generally exist as operons. Some of the most recognized efflux pumps and their 

resistance profiles are described in Table 1. One of the best studied efflux pumps 

in Escherichia coli (E. coli), the AcrAB-TolC, is a major contributor to intrinsic 

resistance to antibiotics in this micro-organism (Thanassi et al. 1997). Similarly, 

activation of this operon in E. coli is also the predominant cause of MDR in strains. 
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These transcriptional changes both downregulate cell influx and upregulate an 

intrinsic efflux system. Their mechanisms are hypothesized to be extendable to Mtb, 

since transformed cells expressed in Mycobacterium smegmatis  displayed similar 

MDR profiles (Alekshun and Levy 1997). 

 

The AcrAB-TolC operon is a MDR efflux pump in Salmonella enterica. Its 

three genes contribute to additional virulence factors involved in the adhesion, 

invasion, and colonization of its host. 

S. enterica mutants lacking these operon genes, showed differential expression of 

other major operons which were not only involved in virulence, but also in 

pathogenesis - supporting the hypothesis that there may be crosstalk between 

resistance and pathogenicity. Stated differently, operons involved in efflux systems, 

for which the functions may have been limited to causing disease (pathogenesis), 

may very well also be involved in virulence; especially virulence factors that play 

a role in antibiotic resistance.  

 

Several other studies have also highlighted the contribution of efflux pumps in Mtb 

drug resistance. Pasca et al. (2004) showed that the Rv2686c-Rv2688c 

operon encode an ABC transporter responsible for fluoroquinolone efflux, while 

Colangeli et al. (2005) discovered that the iniABC operons are induced by isoniazid 

INH and ethambutol (EMB). A PCR experiment carried out by Plinke et al. (2010) 

showed that non-synonymous mutations in 15 distinct codons of the embCAB 

operon, which target all of the genes in this operon, were present in EMB-resistant 

strains.  
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Table 1: Efflux pumps implicated in drug resistance.  

Organism Drug resistance Drug efflux 

operon 

Reference(s) 

Acinetobacter 

baumannii 

aminoglycosides adeABC (Magnet et al. 

2001) 

Bacillus subtilis thiolactomycin, 

microcin B17, 

sparfloxacin, carbonyl 

cyanide m-

chlorophenylhydrazone 

(CCCP), 

tetrachlorosalicyl 

anilide, nalidixic acid 

emrRAB 

and mcbABCDEFG 

(Lomovskaya 

et al. 1995, 

1996; Brooun 

et al. 1999; 

Xiong et al. 

2000) 

Burkholderia 

pseudomallei 

aminoglycosides and 

macrolides 

amrAB-oprA (Moore et al. 

1999) 

Escherichia coli hydrophobic 

antibiotics and 

detergents 

acrEF (Pan and Spratt 

1994) 

 
Novobiocin and 

Deoxycholate 

mdtABC (Baranova and 

Nikaido 2002; 

Nagakubo et al. 

2002) 
 

non-ionic detergent, 

hydrophobic agents 

(HAs), nonoxynol-9 

mtrCDE (Rouquette et 

al. 1999) 
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Table 1: Efflux pumps implicated in drug resistance (continued). 

 

 

Mycobacterium 

tuberculosis 

isoniazid (INH) furA-katG  (Siu et al. 

2014) 

 INH mabA-inhA (Banerjee et 

al. 1998; Ando 

et al. 2014) 

 ethambutol (EMB embCAB (Plinke et al. 

2010; Telenti 

and Iseman 

2012) 

Neisseria 

gonorrhoeae 

hydrophobic agents mtrCDE and farAB (Lucas et al. 

2014) 

Pseudomonas 

aeruginosa 

aminoglycosides, β-

lactams, quinolones, 

chloramphenicol, 

tetracycline, 

trimethoprim, 

sulfamethoxazole, and 

novobiocin 

mexAB-oprM (Poole et al. 

1996; Evans et 

al. 2001) 

 
quinolones, 

chloramphenicol and 

trimethoprim 

mexEF-oprN (Köhler et al. 

1999) 

 
aminoglycosides mexXY (Aires et al. 

1999) 

Pseudomonas 

putida 

tetracycline, 

chloramphenicol, 

carbenicillin, 

streptomycin, 

erythromycin and 

novobiocin 

arpABC (Kieboom and 

de Bont 2001) 
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Table 2: Efflux pumps implicated in drug resistance (continued). 

 

 

Staphylococcus 

aureus 

hydrophobic cations qacA/qacB (Grkovic et al. 

2001; 

Schumacher et 

al. 2002) 

Stenotrophomonas 

maltophilia 

aminoglycosides, β-

lactams, and 

fluoroquinolones 

smeABC (Li et al. 2002) 

 

Vibrio cholerae deoxycholate (DOC), 

chloramphenicol, 

nalidixic acid, and 

CCCP 

vceCAB (Woolley et al. 

2005) 

*An extensive number of efflux pump operons involved in antibiotic resistance have been 

discovered in many pathogens. Those for Mtb are shown in bold. 

  

 

2.3.2 Compensatory mutations 
 

Likewise, the importance of considering neighbouring genes when attempting to 

elucidate virulence in Mtb, was demonstrated by several studies focused on 

compensatory mutations. Developing drug resistance usually comes at a fitness cost 

to Mtb strains. For rpoB mutants, this means a reduced growth rate and a reduction 

in their overall virulence (Mariam et al. 2004; Rifat et al. 2017). However, several 

studies emphasized that mutations in the neighbouring rpoA and rpoC genes of 

rpoB, were shown to compensate for these rpoB mutations, restoring the fitness of 

strains by altering their gene expression in response to RIF (Comas et al. 2012; 

Naidoo and Pillay 2017; Xu et al. 2018).  
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2.3.3 Other mechanisms of action of operons involved in drug resistance. 
 

Besides efflux pumps and compensatory mutations, other mechanisms of action, 

specifically activated by operons, have been linked to drug resistance. 

Photorhabdus laumondii uses the pbgPE operon to resist being killed by 

antimicrobial peptides (AMPs) through lipopolysaccharide modifications 

(Derzelle et al. 2004; Bennett and Clarke 2005; Mouammine et al. 2017). 

Resistance to the frontline drug, EMB in Mtb, results from either mutations which 

cause the overexpression of the Emb protein(s), or from structural mutations in 

EmbB, or from both. This operon functions in the polymerization of cell wall 

arabinan (Telenti et al. 1997). As previously highlighted, Banerjee et al. (1998) 

showed that the upregulation of the mabA-inhA operon, led to an increase in the 

concentration of the inhA protein. This protein produces NADH-dependent enoyl-

ACP reductase, which plays a role in mycolic acid biosynthesis. This series of 

events eventually produces the INH-ETH-resistance phenotype observed in Mtb.  

 

 

2.4 Mechanisms of drug resistance 
 

Despite research pointing to the targeting of operons in the early 2000s, subsequent 

research into understanding Mtb and designing antitubercular drugs, continued to 

focus on gathering information on single genes. For example, Chan et al. (2007) 

used nucleotide sequencing to investigate 213 multi-drug resistant tuberculosis 

(MDR-TB) clinical isolates, which were also resistant to two or more of the 

antitubercular agents: ofloxacin (OFL), rifampicin (RIF), ethambutol (EMB), 

isoniazid (INH) and pyrazinamide (PZA). MDR-TB is defined as being resistant to 

both INH and RIF (CDCTB 2016). Not surprisingly, they showed that a resistance 

phenotype was not always associated with the detection of a mutation in the 

corresponding known resistance gene. This was true even for the strains that were 

resistant to all five drugs, where mutations were regularly observed in only two or 

three of the many resistance genes. Interestingly, a proportion of clinical resistant 

isolates harboured no mutations in any of the drug resistance genes (Chan et al. 

2007).  
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This was consistent with the findings of previous studies by Siddiqi et al. (2002; 

and Suresh et al. (2006). For example, RIF is the most important first-line 

antimicrobial used in the treatment of drug-sensitive tuberculosis and resistance to 

RIF is almost entirely due to mutations in its β subunit of RNA polymerase (rpoB). 

However, recent observations have implicated multiple other mechanisms for 

resistance to RIF. Many of these mechanisms appeared to be downstream of the 

initial trigger that promotes bacterial resistance (Zhu et al. 2018).  

 

Similarly, in a more recent study, Bellerose et al. (2019) found that frameshift 

mutations in the glpK gene were found to be a specific marker of multidrug 

resistance (MDR) in clinical Mtb isolates. These loss-of-function alleles were not 

just limited to MDR but were also enriched in an extensively drug-resistant (XDR) 

clone. XDR can be defined as MDR-TB plus resistance to any fluoroquinolone and 

at least one of three injectable second-line drugs (i.e., amikacin, kanamycin, or 

capreomycin) (Cheon 2017). Similarly, genetic mutations in the single genes: 

katG-, gyrA- and pncA, have been associated with resistance to isoniazid, 

fluoroquinolone (FQ) and PZA, respectively. Yet again, these mutations were found 

to be present in many, but could not explain all resistance phenotypes (Suresh et al. 

2006; Werngren et al. 2017; Zhu et al. 2018; Castro et al. 2020). Hence, it has 

become increasingly common to not be able to explain a drug resistance profiles 

with mutations in single genes.  

 

 

2.4.1 The role of operons in Mtb pathogenesis and virulence 
 

Meanwhile, in 2012, Hunt et al. demonstrated that Mtb needs the espACD-

Rv3613c-Rv3612c operon for successful infection of its host. This highly antigenic 

operon must be precisely controlled because an incorrect level of its product, ESX-

1, alerts the host’s immune system. It has been suggested that variations in the 

expression of ESX-1, contributes to the diverse pathologies and their various host 

ranges. In fact, as far back as 1998, Banerjee et al. showed that the upregulation of 
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the mabA-inhA operon, led to the isoniazid-ethionamide (INH-ETH) resistance 

phenotype observed in Mtb. Yet, most current antibiotics are aimed at single genes. 

Unsurprisingly, the World Health Organization (WHO) has stressed its concerns 

over our failure to develop new antibiotics, stating that almost all new antibiotics 

brought to the market in recent decades, were just variations of those discovered in 

the early 1980s. Even those antibiotics currently in development, offer limited 

clinical benefit over the existing drugs. A rapid emergence of resistance to those 

drugs, which are not even on the market yet, is therefore to be expected. WHO has 

urged researchers to explore more innovative approaches to current antibiotic 

development, because failure to do so, may further fuel the impact of antimicrobial 

resistance (WHO 2021).  

Targeting entire operon structures may be one such approach. This possibility was 

already demonstrated in a knockout study, where a mutation in the mce operon 

successfully attenuated virulent Mtb strains (Gioffré et al. 2005). Unlike genes, 

operons do not function in isolation, but tend to form part of higher-order biological 

modules (e.g., pathways). Mapping the operons in bacteria was therefore suggested 

to be essential for identifying novel pathways and biological processes, for 

assigning functions to hypothetical proteins and unknown genes that form part of 

an operon and for delineating operon promoters. The latter could lead to much 

larger and therefore more wide-ranging drug targets (Dandekar et al. 1998; 

Overbeek et al. 1999; Janga et al. 2005; Okuda et al. 2007; Bundalovic-Torma et 

al. 2020). These operon-related insights, may additionally give us profound 

understanding into the underlying mechanisms deployed by Mtb to persist, 

disseminate, cause disease, and develop drug resistance. 

 

 

2.5 Experimental identification of operons  
 

Currently, the most trusted methods to identify operons are by experimental studies. 

Although identifying operons experimentally is effective and generally precise, 

these types of studies are not as popular, partly due to factors that hinder their 

progress at a genomic scale. These factors include complexity, cost and duration 

(Walters et al. 2001). A review by Haller et al. (2010) reported that for 36 of the 
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experimentally verified operons (EVOs) in Mtb, several methods of operon 

identification were applied to gene pairs with longer operons; 16% of pairs were 

confirmed by primer extension, 15% of pairs used quantitative reverse 

transcription–polymerase chain reaction (qRT–PCR), 13% of pairs used promoter 

fusion experiments, 11% of pairs used Western or Southern blotting, and 15% of 

pairs used microarray co-expression (Ahmad et al. 2005; Roback et al. 2007; Casali 

et al. 2016). Some other common experimental methods to delineate operons 

include, but are not limited to, Northern blotting and RNAse protection assays 

(Lynch et al. 2001; Sáenz-Lahoya et al. 2019). 

 

Primer extension experiments attempt to locate the transcription start site (TSS) 

and/or potential promoters of an operon, using several specific primers that anneal 

to the 5’ end of operon genes (Bagchi et al. 2005; Casart et al. 2008).  

With qRT-PCR, cDNA from isolated RNA is reverse transcribed and the resulting 

product is viewed on an agarose gel for a size matching the mRNA (Woolley et al. 

2005). In multiplex-PCR multiple target sequences are simultaneously co-amplified 

in a single reaction tube using more than one primer pair. The resulting amplicon 

may similarly be visualized by gel electrophoresis or be identified by hybridization 

with specific DNA probes and detected using spectrophotometry, fluorometry, 

autoradiography or chemiluminescence (Mahony and Chernesky 1995).  

 

Promoter fusion experiments aim to analyze which genes/operons are induced by 

specific promoters. Promoter fusions are created by cloning a reporter gene in place 

of the TSS and promoter induction is measured by the expression of  reporter genes 

(Hustmyer et al. 2018; Prezioso et al. 2018).  

With Northern blotting, the total RNA of interest is resolved in a formaldehyde 

agarose and transferred to a nylon membrane. Blotted RNA is then separately 

probed (for annealed transcripts) with a radio- or non-radioactive labelled probe. 

The size of the product (band) is then visualized and measured by comparing it to 

a standard size ladder (Bhat et al. 2017). Southern and Western blotting follows a 

similar protocol to Northern blotting, but instead resolves DNA and protein, 

respectively (Singh et al. 2003; Bhatt et al. 2005). 
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RNAse protection assays (RPA) allows one to localize TSSs and to quantify mRNA 

expression levels. A single-stranded, discrete-sized, antisense probe is hybridized 

to an RNA sample. After hybridization, any remaining unhybridized probe and 

sample RNA are removed by digestion with a mixture of ribonucleases. Then, in a 

single step reaction, the nucleases are inactivated and the remaining probe:target 

hybrids are precipitated. These products are separated on a denaturing 

polyacrylamide gel and are visualized. RPAs are more sensitive than Northern blot 

analysis and are more accurate and direct than qRT-PCR analysis (Belin 1996; 

Lynch et al. 2001; Stacey et al. 2017). 

 

2.5.1 Advantages of RNA sequencing 
 

As previously stated though, experimental methods are costly and laborious at a 

genomic scale. However, those are just a few of the limiting factors. The nature of 

operons dictates that not all operons of an organism are formed and expressed 

simultaneously and across all environmental conditions (Dam et al. 2007). With 

laboratory experiments, only a few operons can be targeted at a time, which also 

means that researchers need to know which operons are induced at the time of the 

experiment. Microarray experiments aimed to solve this challenge by targeting 

multitudes of genes that are transcribed at a specific point in time and under certain 

conditions. RNA probes corresponding to gene sequences (oligonucleotides) are 

attached to a chip which are then used to capture the RNA present, by allowing the 

RNA to interact and bind to the probes. A microarray analysis also allows us to 

determine which genes are differentially expressed. However, even microarray 

experiments have the limitation that the genes of the organism must be known so 

that gene-specific probes may be created. Also, sufficient RNA must be present for 

detection and quantification of mRNA. As a result, even with microarray analysis, 

EVO data remained scarce (Parish et al. 2003; Wang et al. 2009; Mutz et al. 2013). 

 

More recently, RNA sequencing (RNA-seq) has been considered the replacement 

for microarray expression studies to both map and quantify transcriptomes. RNA-

seq is a rapid and inexpensive high throughput next generation sequencing (NGS) 
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technology. It offers the same ability as microarrays in providing us with a spatio-

temporal snapshot of all genes expressed at the time of the nucleic acid extraction. 

However, compared to microarrays, RNA-seq has considerable advantages, 

including: the detection of novel transcripts and isoforms, measurement of allele-

specific expression, and a large dynamic range of expression levels. It is not limited 

to designing and detecting only transcripts that correspond to a known genomic 

sequence. RNA-seq can also be used to resolve the exact locations of transcription 

boundaries up to a single-nucleotide resolution and to reveal sequence variations, 

such as single nucleotide polymorphisms (SNPs). Additionally, technical 

improvements have decreased sequencing costs which has drastically increased the 

size and number of available RNA-seq datasets (Wang et al. 2009; Mutz et al. 2013; 

Zhao et al. 2013). 

 

Not surprisingly, this technology has already been used extensively in an attempt to 

understand Mtb’s host-pathogen interplay, the mechanisms behind XDR and the 

potential contributions of non-coding RNA in adaptive responses, amongst other 

insights (Arnvig et al. 2011; de Welzen et al. 2017; Pisu et al. 2020). 

 

2.6 What are the features used in existing operon prediction algorithms? 
 

Due to the explosion of RNA-seq data available in public archives, and the 

unfortunate cost and time associated with the experimental discovery of operons, 

several computational methods for operon predictions have been developed over 

the years. However, the current approaches for predicting operons vary immensely. 

Algorithmic features can roughly be divided into five categories: intergenic 

spacing, conserved gene clusters, functional relations, genome sequence based and 

experimental evidence (Jacob et al. 2005). Functional relations include gene 

functions, metabolic pathways, and protein-protein interactions. These types of 

operon predictors, rely heavily on a well-characterized organism and the 

accessibility of this data.  

 

Genome sequence-based approaches include the use of codon adaptation indices, 

phylogenetic profiles, transcription start sites, promoters, terminators, transcription 
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factors and other motifs. Likewise, the use of these locations is complicated by the 

necessity for these positions to be well characterized - which is not the case for most 

microorganisms (Brendel and Trifonov 1984; Ozoline et al. 1997; Yada et al. 1999; 

Wang et al. 2007).  

 

Finally, the experimental data used in operon predictors is usually comprised of 

microarray expression data. Although, more recently, RNA-seq data has become 

increasingly popular (Romero and Karp 2004; Price et al. 2005; Wang et al. 2007; 

Pelly et al. 2016; Tjaden 2020a).  

 

Computational approaches are categorized into statistical analysis techniques, 

probabilistic scoring methods, rule-based prediction and artificial intelligence (AI) 

methods (Zaidi and Zhang 2017). Some probabilistic methods include, but are not 

limited to support vector machine (SVM), Bayesian, logistic regression, fuzzy 

scoring function, and neural network approaches (Bockhorst et al. 2003; Chen et al. 

2004; Jacob et al. 2005; Price et al. 2005; Zhang et al. 2006).  

 

2.6.1 Advancements of predictive approaches 
 

At the start of the 20th century, Overbeek et al. (1999) and Ermolaeva et al. (2001) 

predicted operon gene pairs by conserved gene cluster analysis, using a 

comparative genomics approach (CGA). Meanwhile, Zheng et al., (2002) opted to 

exploit operon prediction by using metabolism-related genes. Although the 

recorded sensitivity (89%) and specificity (87%) of gene pairs were high, this 

method is highly dependent on biochemical pathway knowledge – which is not 

extensively available for most organisms. Also, many genes in confirmed operons 

are not functionally related, and so will be incorrectly excluded. 

 

Bockhorst et al. (2003) chose the Bayesian network approach and was able to obtain 

a sensitivity and accuracy of 78% for predicting operon gene pairs in E. coli.  This 

algorithm was improved with the addition of utilizing short intergenic distance as a 

feature, which further increased the accuracy to 88% and allowed for the prediction 

of 75% of the transcriptional units (TUs) of E. coli operons. It was also an important 
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study for shedding light on the significance of using intergenic distance in 

predicting operons. This feature would subsequently be used extensively in other 

operon predictors (Salgado et al. 2000). Finally, by minimizing the need for prior 

knowledge of the organisms genome, Laing et al., (2008) was able to achieve a high 

accuracy by implementing transcription factor binding site (TFBS) position-

specific-weight-matrices (PSWMs) as operon delimiters, and achieved an accuracy 

of 83% in E. coli and 93% in Streptomyces coelicolor, by predicting their operon 

gene pairs.  

 

Around the same time Zheng and Ermolaeva were working on their individual 

predictors (Ermolaeva et al. 2001; Zheng et al. 2002),  Tjaden’s group carried out a 

high-density oligonucleotide probe array analysis using E. coli, where they 

observed that using the correlated expression levels of two neighbouring genes 

(CDSs) was a reasonable indicator that those CDSs are co-transcribed (Tjaden et 

al. 2002). In addition, they found that using this correlated expression with the 

inclusion of similar expression levels of their intervening intergenic region, gave a 

much stronger signal for predicting operons. In 2013, McClure et al. worked with 

Tjaden to improve their Rockhopper algorithm by combining these features with a 

naïve Bayes classifier. They found that 90% of gene-pairs verified to be co-

transcribed in RegulonDB, were predicted to be co-transcribed by their approach.  

 

 

2.6.2 Limitations of existing algorithms 
 

Despite these improvements, these methods all relied on predicting operon gene 

pairs or TUs and not whole operons. Predicting entire operons is more challenging 

and may therefore result in a large false negative rate. For example, even with the 

incorporation of multiple predictors such as: i) intergenic distance, ii) functional 

classification of genes to predict TU boundaries, iii) information on metabolic 

pathways, iii) protein complexes and iv) transporters, Romero and Karp (2004) was 

only able to make a moderate 4% improvement on their previous algorithm by 

correctly predicting 69% of operons. This was despite the use of a model organism 
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(E. coli) with the most extensive set of verified operons. Moreover, when this 

algorithm was tested on B. subtilis, the accuracy dropped by 23% (predicting 46% 

of verified operons), because of less available genomic information in the databases 

used.  

 

A general problem with current methods is that they do not seem to generalize well 

from one genome to another. This may be due to a larger training or true positive 

set available for the one microbe. Alternatively, it may be a consequence of 

overfitting due to the use of genome-specific features (promoters, terminators, 

motifs, transcription factors etc.) that are unique to the one microorganism; leading 

to performance reduction, when applied to a new genome. 

 

For example, in an earlier study Price et al. (2006) found that canonical spacing 

may not be under strong selection in Escherichia coli, Salmonella and some species 

of the Bacillus genus. In fact, adjacent CDSs in highly expressed verified operons 

tended to be widely spaced. In addition, the evolution of operons is also not always 

optimal, but more an adaptive approach. This is evident by more recently evolved 

operons which are comprised of functionally unrelated genes that were just in 

proximity before the operon was formed. A small IGR distance may therefore not 

be as indicative of co-regulation and co-transcription of adjacent genes as they 

anticipated. Similarly, Pelly et al. (2016) highlighted that the genome of Mtb is 

distinct from other prokaryotes in certain aspects of its genomic architecture. Unlike 

other bacteria, a great portion of its coding capacity is devoted to the production of 

lipogenesis and lipolysis enzymes and to two new families of glycine-rich proteins 

with a repetitive structure (van der Woude and Bäumler 2004; Coscolla et al. 2015). 

Mtb also makes use of alternative sigma factors and show differences in -35 binding 

domains (Bashyam et al., 1996). In addition, 26% of Mtb genes produce leaderless 

transcripts, especially under stress (Cortes et al., 2013). As previously discussed, a 

short IGR is often the most important feature used in most operon predictors – 

including in that of Tjaden’s Rockhopper. However, even here, Pelly et al. (2016) 

confirmed that Mtb tends to have large IGRs between genes of verified operons. 

Mtb may therefore have an entirely different way of regulating its transcription. 
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Taking this into account, Pelly et al (2016) created REMap. To the best of our 

knowledge, REMap was the first to use RNA-seq data for Mtb operon prediction 

and to use only the IGR and CDS coverages as parameters. That is, REMap 

bypassed sophisticated machine learning methods which consists of training 

genomic data belonging to a specific organism. By using this simplified model, 

REMap was able to fair on par with DOOR, which was previously ranked as the 

best performing algorithm among 14 operon predicting algorithms (Mao et al. 

2009). They were also able to predict strand-specific and condition-dependent 

operons and they predicted full operons – not just gene pairs.  

 

Notably, between 2010 and 2020 several new operon predictors emerged using: 

differential RNA-seq data, functional relationships contained in STRING-DB and 

other databases, terminator sequences and statistical models; none of which 

predicted operons specifically for Mtb again (Jensen et al. 2009; Sharma et al. 2010; 

Taboada et al. 2010, 2012; Fortino et al. 2014; Slager et al. 2018; Taboada et al. 

2018; Tjaden 2020a).  

 

 

In summary, several studies have pointed to the significance of turning our attention 

to the role of operons in Mtb’s virulence – especially in the context of drug 

resistance. While experimental evidence is still currently the most trusted means of 

discovering operons, computational advancements have shown a great 

improvement in the accuracy of its operon predictions. Although several 

computational methods for operon predictions exist, the uniqueness of Mtb’s 

genome necessitates the development of an operon predictor that is not trained on 

the genomic architectures of other prokaryotes. 
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CHAPTER 3 

 CONDITION-SPECIFIC MAPPING OF OPERONS 

(COSMO) USING DYNAMIC AND STATIC GENOME 

DATA 

 

Abstract 
Background: An operon is a set of adjacent genes which are transcribed into a 

single messenger RNA (mRNA). These higher modules provide prokaryotes with a 

biological advantage to rapidly and efficiently circumvent both internal and 

external stresses. Approximately 60% of the Mycobacterium tuberculosis (Mtb) 

genome is believed to be arranged into operons. Having access to the operon 

network of Mtb may allow us to access larger sections of a genome for drug 

targeting. None of the existing operon predictors, except REMap, was created for 

the unique Mtb genome. We opted to improve on the foundation laid by REMap 

and Rockhopper and extended the genomic features with empirical evidence.  

Methods and Results: We developed Condition-Specific Mapping of Operons 

(COSMO), an algorithm that uses features of the Mtb genome and gene expression 

data for Mtb exposed to RIF and its control. We verified four parameters by 

evaluating a set of 49 experimentally confirmed operons and a matching simulated 

operon set. Our first parameter was the minimum coding sequence (CDS) coverage, 

a parameter taken from REMap. The second parameter was the minimum intergenic 

region (IGR) coverage. In verified operons, the coverages of IGRs were more 

upregulated than that of the UTRs (p = 0.005). IGR coverage was also half the 

coverage of their flanking CDSs, demonstrating that IGR coverage is a significant 

parameter that should be used independently from CDS coverage. The third 

parameter was the maximum fold difference (FD) between adjacent CDSs. In real 

operons the maximum FD was between 5x-7x and was significantly lower than in 

fake operons (p = 0.0007). The maximum FD between and IGR and its flanking 

CDSs was the fourth parameter. In real operons, the maximum FD between IGRs 
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and adjacent CDSs were generally below 5x (p = 0.04 and p = 0.005, for plus and 

minus strand, respectively). Lastly, genes were also only added if they remained 

within the max FD of all genes already existing within a putative operon. A multiple 

linear regression analysis showed that our new parameter – maximum FD between 

IGRs and CDSs - had the greatest weighting on correct operon prediction and that 

the traditionally used maximum FD between adjacent CDSs was the least 

significant parameter. 

We then compared COSMO to REMap, Rockhopper. COSMO accurately identified 

more operons under control and experimental conditions (60%) than REMap (50%) 

and Rockhopper (48%) and was also able to do so at a higher accuracy (75%), 

compared to REMap (67%) and Rockhopper (66%). We also compared COSMO to 

DOOR 2.0 and COSMO was able to predict twice as many operons as DOOR 2.0. 

Lastly, COSMO was also better at separating operons predicted under control 

conditions from those predicted under RIF stress.  

Conclusion: COSMO has outperformed three of the best operon predictors in 

predicting full length operons, in the accuracy of the predictions and in 

distinguishing operons under control conditions from those under experimental 

conditions. 
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1 Introduction 

Previous studies have shown that approximately 60% of the Mycobacterium 

tuberculosis (Mtb) genome may be arranged into operons (Pelly et al. 2016). An 

operon is a set of neighbouring genes that are co-transcribed as a single messenger 

ribonucleic acid (mRNA) (Price et al. 2006). These coregulated genes may not 

always be functionally related and may not always retain the same length (Osbourn 

and Field 2009). Under different conditions, an existing operon may be modified 

by the addition or the removal of one or several genes. Similarly, completely new 

operons may form, and old ones may be destroyed over time; demonstrating that 

operons are highly dynamic in their ability to evolve over both long and short 

periods of time. These changes often drastically alter the gene expression, and 

therefore also the phenotype of a species (Price et al. 2006; Güell et al. 2009). 

However, if most genes in Mtb do not operate independently, then directing our 

anti-tubercular arsenal at individual genes may not be the most effective method of 

drug targeting. We need to be able to have an overview or network-level vantage-

point to target larger segments of the genome more efficiently. In prokaryotes, 

operon structures often form in response to environmental stresses to aid these 

microbes to respond rapidly and efficiently in a bid to overcome adversity (Zaidi 

and Zhang 2017). 

Fortunately, with the increasing availability of expression data in the form of RNA 

sequencing (RNA-seq), we are able to get an accurate representation of the overall 

gene expression within a species at any given moment (Zhao et al. 2013). RNA-seq 

is a more attractive approach than traditional platforms such as microarray, due to 

its wider dynamic range, its ability to predict more differentially expressed genes 

(DEGs), and to analyze a transcriptome at a single nucleotide resolution (Rao et al. 

2019). With an overview of a microorganism’s gene expression, we may be able to 

see which neighbouring genes are active and coregulated under orchestrated 

conditions. This data may allow us to predict operons for prokaryotes, rather than 

always resorting to costly and laborious experimental procedures. 

Currently there are a plethora of operon predictors for prokaryotes. Tjaden (2020), 

who developed Rockhopper, one of the operon predictors against which our 
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algorithm was benchmarked, tested Rockhopper on ten commonly studied 

microorganisms. He demonstrated that even though experimental methods may be 

precise and provide strong evidence, many computational tools, such as 

Rockhopper, can now identify operon gene pairs with predictive accuracies that 

exceed 90%. Several operon predictors use genomic features such as pathway 

analysis, sequence homology, gene ontologies and intergenic region (IGR) distance 

(Che et al. 2006; Cao et al. 2019). Others steer away from being bound by existing 

genomic data and instead use statistical models to do their predictions (Bergman et 

al. 2007). However, to the best of our knowledge none of the existing operon 

predictors, except REMap, were optimized for the Mtb genome. The genome of 

Mtb has been shown to have some significant differences in its transcriptional 

preferences, such as the use of alternative sigma factors and differences in the -35 

binding domains (Bashyam et al. 1996). In addition, 26% of genes produce 

leaderless transcripts. This was especially evident in strains under a stress model 

(Cortes et al. 2013). REMap also showed that longer IGR lengths are common 

between genes of Mtb operons, despite this being very uncommon in other 

prokaryotes. Short IGR lengths are often used as the most significant feature to 

identify operons in existing operon predictors  (Salgado et al. 2000; Bergman et al. 

2007; Chuang et al. 2012; Fortino et al. 2014; Taboada et al. 2018). These all 

indicate that Mtb has unique ways of regulating its transcription, which needs to be 

accounted for during algorithm design.  

 

We have therefore used the foundation laid by REMap and Rockhopper, but 

improved upon a few areas of their design. We have developed an algorithm called 

‘Condition Specific Mapping of Operons’ (COSMO), which uses our existing 

knowledge of operons and the structural annotation of the Mtb genome – which we 

call its static data. It also uses RNA-seq to get a snapshot of the gene expression 

profile observed when the Mtb is exposed- and not exposed to rifampicin (RIF) – 

which we call its dynamic data. These combined data sets are leveraged by COSMO 

to evaluate how operons may evolve in response to RIF stress.  
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2 Methods 

a) Strains and growth conditions 
 

Samples were obtained from two TB patients. The strains were classified according 

to their rifampicin minimum inhibitory concentration (MIC), with three having a 

high MIC (150 ug/ml) and three with a low MIC (40 ug/ml). The MIC is the lowest 

concentration of a substance, in this case an antibacterial, which results in either the 

maintenance or the reduction of a strain’s growth (Lambert and Pearson 2000). 

They were classified as belonging to the Beijing genotype. Cultures were grown in 

7H9 media until mid-log phase and exposed to RIF for 24 hours. The control 

batches received no RIF treatment. Both the high- and low MIC strains were 

exposed to a quarter MIC of RIF, resulting in a total of n = 12 samples. We chose 

24 hours exposure and a quarter MICRIF, because the aim was to detect changes in 

transcription and not to kill the bacteria. The 24 hours also represents the doubling 

time of Mtb (Cole et al. 1998). 

 

b) RNA extraction and sequencing 
 

RNA extraction was carried out using the FastRNA Pro Blue kit (MP Biomedicals, 

Germany) and residual DNA was treated with DNase (Promega, WI, USA). 

Ribosomal depletion was performed with the bacterial option as probes for 

hybridisation of rRNA (TruSeq Total RNA, USA). Primer design and RNA-seq 

were carried out at the Agricultural Research Council (ARC) sequencing facility in 

Pretoria, South Africa, using the TruSeq DNA and RNA CD Indexes (I7 and I5 

adapters) and the Illumina HiSeq 2500. The strand-specific protocol was confirmed 

as the fr-firststrand library type, using the RSeQC v2.6.4 ‘Infer Experiment’ tool 

(Wang et al. 2012a). 

 

The fastq files have been deposited in NCBI's Gene Expression Omnibus (Edgar et 

al., 2002) and are accessible through GEO Series accession number GSE203032 

(samples GSM6152783 to GSM6152802). 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE203032 
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c) Trimming and alignment 
 

A Fastqc check in Galaxy (Jalili et al. 2020) showed that the data was of high quality 

(mean PHRED > 30), but the reads were nonetheless trimmed, and adapter 

sequences were removed using Trimmomatic V.0.38 with a PHRED = 20 with a 

sliding window of 4 (Bolger et al. 2014). Reads were aligned to H37Rv 

(NC_00096.3) using BWA-MEM 0.17.1 (Li and Durbin 2009). The quality of the 

bam files were checked using Samtools 1.9 (Li et al. 2009), to make sure ~90% or 

reads were paired , ~90% of reads were aligned to the reference genome, and that 

the average size of the reads were ~200bp, according to the RNA-seq analysis best 

practices (Conesa et al. 2016). Some of the bam files were converted to wiggle files 

for further analysis, using the RSeQC package in Galaxy (Wang et al. 2012b). 

 

2.1 The Algorithm Design 
 

We opted to improve on the foundation laid by REMap and Rockhopper by 

extending the algorithmic parameters with empirical evidence. With COSMO we 

verified four parameters, by evaluating a set of 49 experimentally confirmed 

operons and a matching simulated operon set – which we call the fake operons. The 

49 operons were obtained from literature from both the plus (n = 30) and the minus 

strand (n = 19). We created a set of 49 fake/simulated operons, by using adjacent 

genes that were not previously confirmed to belong to an operon and which did not 

overlap with, and were not located in close proximity to verified operons. Each fake 

operon therefore matched its real operon counterpart by strand and by the number 

of genes. This true negative operon list was only used for this initial comparison 

between the coverages of real and simulated operons. We were always aware that 

they were not verified true negatives, but that they may have actual operons that 

have not yet been discovered. Therefore, this list was not used as a true negative 

(TN) set to measure the performance of the three algorithms. 
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Some of the parameters we aimed to include and assess for this algorithm were: 

i) how many reads should be available on average for a gene or CDS to be 

considered expressed (minimum CDS coverage)?  

ii) is there a correlation between expression levels of CDSs of the same 

operon? (maximum FD between adjacent CDSs) 

iii) Should the IGR be an independent parameter and if yes, then what should 

the minimum coverage be for us to consider it expressed (minimum IGR 

coverage)? 

iv) is there a correlation between the expression levels of an IGR and its 

flanking CDSs (maximum FD between IGR and its flanking CDSs)? 

v) should the entire IGR be used when we compare the IGR coverage to its 

adjacent CDSs or is a certain part of the IGR more tightly regulated with 

the CDSs? 

vi) should we use IGR length/distance as a feature? 

 

The algorithm and all the scripts used in the testing and validation phases, can all 

be found at: https://github.com/SANBI-SA/COSMO. 

 

2.1.1 Defining and extracting genomic features 
 

The coverages were extracted for each CDS, IGR and UTR, for both the real and 

the fake operons, using the wiggle file. A wiggle file specifies the depth of aligned 

reads in a per-base format. The CDS is defined as the protein coding sequence, and 

for the purpose of this study, it was defined by the coordinates in the NC_00096.3 

GTF file (Ensembl). The IGR was defined as the region between two adjacent CDSs 

on the same strand. The UTRs were taken as the regions 300 bases up- and 

downstream of the start- and end coordinates of operons. We used 300 bases, since 

this was below the maximum length of the longest IGRs in our dataset, and also the 

median value for long 3’ and 5’ UTRs (Arnvig et al. 2011; Sedlyarova et al. 2016). 

We exploited this data to compute the coverage depth, which is calculated using the 

number and length of reads mapped for each genomic position. 
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The Mann Whitney U (MWU) test was used to determine if there was a statistically 

significant difference in the average coverages and FDs, between the genomic 

regions of real and fake operons, using base R v3.6.1 (R Core Team 2021).  

 

 

2.1.2 CDS, IGR and UTR coverages of real operons versus fake operons 

 

First, we wanted to ascertain whether there were observable differences in the 

overall expression patterns of operons versus non-operons (fake operons). Based 

on the wiggle files generated from the aligned RNAseq reads, we drew plots in R 

Studio using base R v3.6.1 (R Core Team 2021). We hypothesized that in the real 

operons the coverages of adjacent CDSs and their intervening IGRs should be 

correlated, while they should show no correlation in the fake operons. The UTRs 

served as an additional control, because the UTR expression levels should 

technically not be under selective pressure for coregulation in both the real or fake 

operons, and therefore their expression levels were expected to not differ. In 

addition, by comparing the noncoding UTRs of real operons to the IGRs of that 

same operon, one should be able to observe that while the UTRs may be 

uncorrelated to the operon CDSs, the IGRs should show preferential correlation to 

their flanking CDSs. On the contrary, both the expression of the IGRs and UTRs 

should be uncorrelated to the adjacent CDSs in fake operons. 

 

2.1.3 CDS coverage cut-off 

The first genomic region which we considered, was whether there should be a 

minimum expression level cutoff for CDSs of real operons (min-CDS), that could 

be set as a feature or parameter for operon prediction. If a is considered to be the 

start of a CDS, and b is considered to be the end of a CDS, then: 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = ∑  𝑟𝑖

𝑛

𝑖=1
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Where ri is the total number of reads that mapped to the nucleotide position i, 

starting at position 1 in the genome, and n is the last position of the genome, or the 

length of the genome. 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

(𝑏 − 𝑎) + 1
 

 

The average coverages of the IGRs and UTRs were calculated similarly, using their 

specific genomic positions from the GTF file. 

 

 

2.1.4 Fold difference between adjacent CDSs  

To determine the correlation of expression levels between adjacent CDSs of 

operons, the FDs between adjacent CDSs within the same operon were calculated 

using a Python script, where: 

 

𝐹𝐷(𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝐶𝐷𝑆𝑠) =
𝑎𝑣𝑔 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑎 𝐶𝐷𝑆

𝑎𝑣𝑔 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝐶𝐷𝑆
 

 

 

2.1.5 Minimum IGR expression cut-off 

We then considered the relevance of the IGRs. For the initial part of the analysis, 

we assessed if there was a statistically significant difference between the expression 

levels of IGRs versus UTRs in real operons compared to fake operons, since they 

are both non-coding regions. This was previously done only by observation. Then 

in the second part of the analysis, we tested whether we should use a minimum IGR 

coverage (min-IGR) as a user-defined parameter. 

 

2.1.6 Fold difference between IGR and adjacent CDSs 

We then assessed the relationship between the IGRs and their flanking CDSs. In 

computing the average expression level of an IGR, we need to bear in mind that 

expression levels increase before the transcription of a gene (i.e. before the 5’ end) 
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and tail off after the 3’ end. For IGRs longer than four base pairs we split the IGR 

into four regions and computed the average expression from the middle two 

segments, as shown in Figure 2, thereby avoiding the ramp up and tail off effects 

mentioned above. For IGRs shorter than four base pairs we computed the average 

expression from the entire IGR.  

We recorded the FD for an IGR and its preceding CDS separate from the FD 

between an IGR and its succeeding CDS, to see if there was a difference. The FD 

between the IGR and its flanking CDSs was calculated as, 

 

𝐹𝐷(𝐼𝐺𝑅, 𝐶𝐷𝑆) =
𝑎𝑣𝑔 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝐼𝐺𝑅

𝑎𝑣𝑔 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑓𝑙𝑎𝑛𝑘𝑖𝑛𝑔 𝐶𝐷𝑆
 

 

 

 

 

Figure 2: Illustration of the central region of an intergenic region relative to flanking 

CDSs. Two CDSs may be separated by an intergenic region (IGR) such as depicted with 

the two adjacent CDSs: CDS 1 and CDS 2. CDSs may also overlap such as the case with 

CDS 2 and CDS 3. In the case where they do not overlap, we calculate the FD between an 

IGR and each flanking CDS. However, we do not consider the entire IGR – which is the 

entire black line extending from where CDS 1 ends, to where CDS 2 begins, but only the 

centre of the IGR (red block). The entire IGR is only used when the IGR is <= 4bp. 

 

 

We recorded the FD for an IGR and its preceding CDS separate from the FD 

between and IGR and its succeeding CDS, to see if there was a difference. The FD 

between the IGR and its flanking CDSs was calculated as, 

 

𝐹𝐷(𝐼𝐺𝑅 → 𝐶𝐷𝑆) =
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝐼𝐺𝑅

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑓𝑙𝑎𝑛𝑘𝑖𝑛𝑔 𝐶𝐷𝑆
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2.1.7 Intergenic distance 
 

We then compared the average IGR lengths in real operons to the average IGR 

lengths of fake operons. As previously stated, in many operon predictors, the 

intergenic distance is considered the most defining feature for accurate operon 

prediction. This is due to the finding that in most prokaryotes, the adjacent CDSs 

of operons often either overlap, or the IGR distances between adjacent CDSs are 

separated by fewer than 20bp of DNA. However, Pelly et al. (2016) reported that 

with Mtb, this distance was often 200 nucleotides long, but could reach up to 2.47kb 

in length. We calculated the lengths of IGRs of verified operons to observe if most 

IGRs were under 50bp. We used 50bp instead of 20bp to give some leeway to the 

longer IGRs. This was then used to consider it as a potential predictive feature.  

 

2.1.8 Motifs at the start or the end of an operon 

Finally, we hypothesized that if operons are under the control of a single regulator, 

then there may be a motif somewhere close to the operon to signal its start. 

Similarly, there may be a terminating sequence that signals the end of an operon. 

Since, in the case of promoters, this is usually upstream and downstream of a gene, 

we hypothesized that these signals may be up- or downstream of the operon. Hence, 

we extracted nucleotides up to 1000 bases up- and downstream of experimentally 

validated operons, using Pyfaidx 0.5.8. These nucleotides were submitted to 

Multiple Expectation maximizations for Motif Elicitation (MEME) to see if we 

could identify common motifs (Bailey et al. 2006).  

 

2.2 Algorithm validation 

Although previous cutoffs were statistically validated, we wanted to confirm these 

cutoffs by testing a range of actual cutoff values. We also wanted to ascertain if 

having all these options made a difference in terms of the total correct operon 

predictions. The algorithm was therefore run on nine Beijing lineage isolates, using 

permutations of the following cutoffs (python and bash scripts): 
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a) min CDS cutoffs: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20]  

b) min IGR cutoffs: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20] 

c) max FD between adjacent CDSs: [5, 6, 7, 8, 9, 10, 15, 20]  

d) max FD between IGR and flanking CDSs: [5, 6, 7, 8, 9, 10, 15, 20]  

 

This produced 9216 files per bam file/sample. A python script was used to compute 

the percentage of full-length operons from our EVOs list that were correctly 

predicted, or the proportion of true positives (TPs). We also calculated the 

percentage of false positives (FPs) and false negatives (FNs). 

 

2.2.1 Multiple Linear Regression Analysis 

We used the data from these 9216 files per sample, to perform a multiple linear 

regression analysis (MLRA) in R studio to observe whether each of the four 

parameters (independent variables), namely: minimum CDS, minimum IGR, FD of 

adjacent CDSs, and FD of the CDS compared to their IGR, had a statistically 

significant impact on the outcome variable. This was additionally used to verify 

default cu toff values. The outcome variable was the percentage of correctly 

predicted full-length operons, per combination of the different cutoff values. We 

performed a backwards stepwise analysis to remove any predictors that had no 

impact on the outcome. We also used the ‘rpart’ (Therneau and Atkinson 2022) and 

‘rattle’ packages (Williams 2011) in R Studio to draw a pruned decision tree to 

confirm the default parameters in COSMO, for users who wish to run COSMO on 

default settings. Training and test sets were split into 70% and 30%, respectively. 

We reported the significant predictors, as per their t-statistic p-values, R2, the mean 

absolute error (MAE) and the Root Mean Square Error (RMSE). R2 is the 

proportion of variation in the outcome variable that can be explained by the 

independent variables. The mean absolute error is an error statistic that averages the 

distances between each pair of actual versus observed data points (residuals) 

(Boiroju 2011). The RMSE gives us the standard deviations of the residuals from a 

model. This is often argued to be the more meaningful measure of a model’s fit than 
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the R2 metric (Alexander et al. 2015). The usual practice is to choose the model 

which has a lower accuracy measure among alternative models (Boiroju 2011). 

 

2.2.2 Comparison to existing algorithms 

Finally, the performance of COSMO was tested against other existing algorithms 

that use RNA-seq data as input. Initially we wanted to use DOOR 2.0, because 

DOOR was previously ranked as the best performing algorithm among 14 operon 

predicting algorithms (Mao et al., 2009). Unfortunately, it had become obsolete at 

the time of our testing. We therefore compared our results to Rockhopper and 

REMap. REMap was chosen because the algorithm’s approach was similar to ours 

and tailor-made for the Mtb genome. Further encouragement was also due to 

REMap’s performance which fared on par with DOOR 2.0 (Pelly et al. 2016). 

Rockhopper was our second comparator, because it was previously shown to 

outperform DOOR 2.0 (Tjaden 2019).  

REMap published that an expression level of 10x was able to yield the best results. 

The algorithm however had a default value of 20x. Therefore, both parameters were 

used to predict operons using our datasets. Rockhopper does not allow user-defined 

expression level cutoffs.  

The total number of TPs, as well as the total number of FPs and FNs, were 

calculated for each predictor. The algorithms were evaluated with the performance 

metrics: precision/positive predictive value (PPV), recall (sensitivity), and F1 score, 

where: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑃𝑃𝑉⁄ (%) = (
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
) ∗ 100 

 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦⁄ (%) = (
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
) ∗ 100 

 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) 
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In the absence of a verified true negative operon set, we could not calculate the 

specificities, accuracy scores or ROC curves. Secondly, the actual number of 

operons compared to single genes most likely results in an unbalanced dataset. In 

these two scenarios, the F1 score has been proven to be a better metric than the 

accuracy score to evaluate algorithm performance. Similarly, when datasets are 

unbalanced, precision and recall were demonstrated as better evaluators than 

sensitivity and specificity for a model’s classification performance; and precision-

recall curves were more useful and robust than the ROC curves (DeVries et al. 

2021). 

 

2.3 Decision Tree 

After the selected features and parameters were statistically validated, COSMO was 

designed using the decision-tree based classifier. The decision tree classification 

method was previously tested in many different operon predictors and found to 

produce the highest sensitivity and specificity values (Chuang et al. 2012). It takes 

in a BAM file, a GTF file, as well as four user-defined parameters: a) a minimum 

CDS cutoff, b) a minimum IGR cutoff, c) the maximum FD between an IGR and 

its flanking CDSs and d) the maximum FD between two adjacent CDSs.  

As shown in Figure 3, COSMO starts by checking if the first CDS it encounters is 

expressed. That is, it checks if the average CDS coverage is equal to or above the 

user defined CDS cutoff (a). If it is expressed, it then assigns it as CDS 1 of a 

putative operon. It then advances to CDS 2 on the same strand. If CDS 2 is 

expressed and it overlaps with CDS 1, it automatically gets added as CDS 2 of the 

operon. Should CDS 2 not overlap CDS 1, then the IGR has to be expressed. That 

is, the average coverage of IGR must be equal to or above the user-defined cutoff 

(b). The average of the entire IGR region is considered if its length is below 4 

nucleotides. In the case where the IGR between CDS 1 and CDS 2 exceeds 4 bases, 

the IGR is split into four parts and the average of the bases making up the two 

middle regions is used for further analysis. Next, the FD between this IGR coverage 

and each adjacent CDS must not exceed the maximum IGR to CDSs cutoff (c). 
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Finally, before adding CDS 2 to the operon, the FDs between CDS 1 and CDS 2 

must not exceed the maximum CDS-to-CDS cutoff (d). 

The same process is followed with CDS 3. However, from CDS 3 and onwards, an 

additional rule is applied. For this fifth variable, the maximum FD is not just 

checked between CDS 3 and CDS 2, but the FD between CDS 3 and CDS1 must 

also not exceed the max-FD. If it does, then the operon is paused. However, 

COSMO does not automatically assume that because the coverages of CDS 1 and 

CDS 2 previously correlated, that they should remain an operon, and that CDS 2 

should be the start of a putative new operon. Since the correlation ended when CDS 

3 was compared to CDS 1, COSMO will conclude that the problem lies at CDS 1. 

It will therefore make a decision about how the operon should be split at CDS 1. It 

will evaluate whether the coverage of CDS 1 correlates better with CDS 2 and 

should therefore result in a bicistronic operon CDS 1 + CDS 2 or whether CDS 2 

correlates better with CDS 3 and therefore become the bicistronic operon CDS 2 + 

CDS 3, with CDS 1 being expressed independently. This variable was a built-in 

feature in COSMO which could not be tested in the MLR. However, we suspected 

that this is likely to have a significant effect on the outcome variable.  

Lastly, COSMO accounts for the circular chromosome of Mtb, so the first and last 

CDSs of the genome, may also form an operon. COSMO predicts strand specific, 

condition-dependent operons and outputs a CSV file. The output file contains the 

operon name and coordinates, the operon length and the average coverage of the 

operon, as well as the name and coverages of each individual gene and IGR within 

the operon. 
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Figure 3: Flow diagram of COSMO’s workflow. The algorithm takes a bam file, a GTF 

file, four user defined cutoffs, together with some coordinate information on the genome. 

It then adds a CDSs to an operon if it satisfies all four conditions; the average coverage 

must be: a) equal to or above the CDS cutoff, b) equal to or above IGR cutoff, c) less than 

or equal to the maximum FD between an IGR and its flanking CDSs, and d) less than or 

equal to the maximum FD between adjacent CDSs. 
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3 Results 

3.1 Defining optimal parameters 

3.1.1 CDS, IGR and UTR coverages of real operons versus fake operons 

We used the wiggle file to plot the raw coverages of the individual bases, to observe 

whether there was consistency in the expression patterns across genomic regions, 

for the 49 real operons, which did not exist in the 49 fake operons. Unsurprisingly, 

as displayed in Figure 4A, the coding sequences (CDSs) (blue) and their adjacent 

IGR coverages (red), showed no correlation in fake operons. In contrast, Figure 4B 

shows that the CDSs of real operons generally showed a correlation in expression 

levels with their adjacent CDSs, as well as with their intervening IGRs. The 

untranslated regions’ (UTRs) expression levels were no different between real and 

fake operons or single genes (plus and the minus strand: p = 0.33 and p = 0.13 

respectively). The UTRs were later compared to the IGRs in Section 3.1.4. The 

UTRs served as controls to show that although the IGRs are also noncoding regions 

like the UTRs, within real operons IGRs are preferentially regulated and the UTRs 

are not, and therefore significant.  

 

3.1.2 CDS coverage cut-off 

The difference in expression levels between the CDSs of real versus fake operons 

were not statistically significant, for both the plus- and minus-strand (Mann-

Whitney U test [MWU]: p = 0.22 and p = 0.65, respectively). This suggests that 

CDSs that make up operons are not necessarily targeted for upregulation, any more 

than independent CDSs (or single genes). Some of the CDSs of real operons were 

also expressed at very low levels - some were even below 5x coverage, as shown 

Figure 4C. Therefore, setting a high static CDS cutoff as a predictive feature, could 

cause the algorithm to bypass lowly-expressed or deliberately downregulated 

operons. The better solution might be to determine if there was a correlation of 

expression between adjacent CDSs of the real operons that does not exist within 

fake operons.  
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A fixed minimum value for the CDS coverage was therefore excluded as a static 

feature, but rather implemented as the first user-defined parameter in the algorithm. 

This is discussed later in Section 3.2 

 

 

Figure 4: Gene expression (coverage) of CDS and IGRs for real and fake operons 

(Plus strand). In this figure, UTR coverages are shown in green. CDS coverages are in 

blue and IGR coverages are in red. A) There was no relationship between the CDSs and 

the IGRs of fake operons. In fact, in many fake operons, neighbouring CDSs were not even 

transcribed. B) The general observation for real operons, was that the expression of UTRs 

started to pick up before and trail off directly after the operon was transcribed. There 

seemed to be a correlation in the expression levels between the CDSs and IGRs of real 

operons. The UTR expression levels of fake operons were no different to those of the real 

operons. MWU for plus and the minus strand: p = 0.33 and p = 0.13, respectively. C) The 

expression levels of this experimentally verified operon demonstrates that even in real 

operons, some genes can have low expression levels (below 5x). Hence a strict minimum 

cutoff may not be feasible. Allowing the user to define the cutoff is more suitable. 

 

 

3.1.3 Fold difference between adjacent CDSs  

As anticipated, the fold differences (FD) of adjacent CDSs were more tightly 

regulated with respect to each other (FD CDSs) when they formed part of an 

operon, as displayed in Figure 5A. The maximum FDs between CDSs of real 

operons, were generally lower than those of fake operons (p = 0.0007). Adjacent 
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CDSs usually adhered to a maximum FD of 5x-7x. This threshold existed not just 

for a CDS and its immediately adjacent CDSs, but between all the CDSs that 

constituted that operon - even if the operon was up to 14 CDSs long.   

In contrast, the FDs of adjacent CDSs within fake operons had a larger spread, many 

of which also frequently exceeded 10x, or even surpassed 20x (some outliers were 

removed). There was however one outlier for the real operons. The FD between 

genes Rv3418c and Rv3419c, of the operon Rv3417c-Rv3423c, exceeded 30x. 

However, previous literature demonstrated that under certain stresses, this operon 

could be split into two operons, namely: Rv3417c-Rv3418c and Rv3419c-

Rv3423c. Thus, operon Rv3417c-Rv3418c, also known as groEL1-groES, is often 

expressed as an independent bi-cistronic operon, with the CDS Rv3418c showing 

evidence of gross upregulation in two experimental studies (Stewart et al. 2002; 

Aravindhan et al. 2009; Bhat et al. 2017). This was in alignment with our analysis. 

As a result of this exception in our already small test set, and because some operons 

may be better predicted with a slightly lower (or even a higher FD), we decided that 

we would also not restrict this value to a static maximum cutoff. Therefore, as the 

second parameter of the algorithm, users may choose their own maximum FD 

cutoff for adjacent CDSs, although we do advise to keep this value to a maximum 

of 7x. A default FD of 5x was built into COSMO if the user does not provide their 

own cutoff. The excel sheet and the graphs for all the operons, can be found on our 

GitHub page at: 

https://github.com/SANBI-

SA/COSMO/blob/master/Supplementary_data/ave_CDS_IGRs_for_COSMO_cre

ation.xlsx 

 

 

3.1.4 Minimum IGR expression cutoff 

Regarding the IGRs, Figure 5B shows that in real operons, the coverages of IGRs 

were more upregulated than that of the UTRs (p = 0.005). As expected, when we 

similarly compared the coverages of the IGRs and UTRs for the fake operons, there 

was no statistical significance in their expression levels (p = 0.2).  
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This is in accord with our previous observations, which showed that while the CDSs 

and IGRs of real operons were tightly regulated - possibly by the same regulator - 

the UTRs are not. Additionally, the IGR coverages of real operons were also not 

the same as the CDSs but were on average 50% lower than the coverages of their 

flanking CDSs, as depicted in Figure 5C (p = 0.04 and p = 0.005; plus- and minus-

strand, respectively). Therefore, the IGR coverage is not just a significant parameter 

when contrasted with the UTRs, but it should be an independent parameter relative 

to their CDSs. IGR coverage was therefore included as the third user-defined 

parameter in COSMO.  

We then wanted to obtain a minimum cutoff for an IGR to be considered expressed. 

However, just as with the CDSs, the IGRs of real operons were generally not more 

up- or downregulated compared to individual IGRs of fake operons. The MWU test 

showed that the outcome was inconclusive. There was a statistically significant 

difference for the minus strand (p = 0.01), but not for the plus strand (p = 0.14). 

However, even though there may not be a defined minimum cutoff for the IGR 

coverage, from Figure 4B in the previous Section 3.1.2, we saw that in real operons, 

the IGRs (red line) show a correlation of expression levels with their adjacent 

CDSs. In contrast, we also previously showed in Figure 4A of Section 3.1.2, that 

the expression levels of IGRs and adjacent CDSs, behave haphazardly in fake 

operons. This suggests that just as with the CDSs of real operons, the IGRs may 

stay within a maximum FD to their adjacent CDSs. 

 

3.1.5 Fold difference between IGR and adjacent CDSs 

As depicted in Figure 5D, the possibility of using FDs between the interquartile 

ranges (IQRs) of the IGRs and their flanking CDSs were immediately discarded, 

because the spread of the data points representing the FDs, was too large and too 

random. Next, the FDs for the total IGR length and for that of the centre of the IGR 

were analysed. The boxplot shows that either one of the two may have been used 

as a source to calculate the FDs between the IGR and its flanking CDSs, because 

they did not perform very differently (p = 0.49).  However, when the total IGR 

lengths were used, there were more outliers. Hence, the algorithm utilizes the centre 

of the IGR to establish the FD between an IGR and its adjacent CDSs. The 
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maximum FD for an IGR and its flanking CDSs was therefore also included as the 

fourth user-defined parameter of the algorithm.  

 

 

Figure 5: Comparison of the FDs and average coverages of the genomic regions 

(CDSs, IGRs and UTRs) being analyzed in real versus fake operons. A) The average 

coverages of adjacent CDSs of real operons were compared to the CDSs of fake operons. 

For the fake operons, some extremely large data points were removed, for a better view of 

the box plot. The FDs of adjacent CDSs in real operons usually remained within 5x-7x of 

each other and were also determined to be statistically significantly lower than those of 

fake operons (p = 0.0007). In contrast, the FDs of adjacent CDSs of fake operons often 

exceeded 10x. B) The coverages of IGRs in fake operons showed no significant differences 

in expression levels compared to the UTRs of fake operons (p = 0.2). In contrast, the 

expression levels of IGRs in real operons were more upregulated than that of the UTRs (p 

= 0.005). C) The CDS coverages of real operons were on average double that of their 

intervening IGRs (plus: p = 0.04 and minus: p = 0.005). D) The FDs of the interquartile 

range (IQR), the total length of the IGR and the centre of the IGR were compared to those 

of their flanking CDSs. Although the FDs of both the total IGR length and the centre of the 

IGR generally remained below 5x, the centre was chosen as the parameter for IGR 

coverage, since it had far fewer outliers. Some outliers were removed for better 

visualization of the box plots. 
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3.1.6 Intergenic distance 
 

We then evaluated if IGR distance is an appropriate feature/parameter for Mtb 

operon prediction. As depicted in the density plot in Figure 6A, the peaks 

confirmed that most CDSs overlapped in real operons (had no IGR). Still, Figure 

6B reveals that even when using 50bp, as opposed to the 20bp usually considered, 

the lengths of 19% of IGRs on the minus strand and 15% of IGR on the plus strand 

exceeded that which is normally observed in other prokaryotes. We found that the 

length of the operon also had no impact on the length of the IGRs. Meaning, IGR 

lengths longer than 20bp were observed as frequently in operons containing two 

CDSs as they were in operons that were 14 to 15 CDSs in length. However, there 

was a preference of location for longer IGR lengths. In 44% of cases, excessive 

IGR lengths were between the first two CDSs of an operon. It should be noted that 

eight of these long IGRs were within operons containing just two CDSs. Hence, in 

the cases of bi-cistronic operons, we will miss entire operons if we filter and exclude 

CDSs based on IGR length. In fact, in many instances, these long IGRs were also 

between all the CDSs of longer operons. We calculated that 26% of our real operons 

would not be predicted if IGR length is used as a feature. This parameter was 

therefore excluded from this algorithm.  
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Figure 6: Comparison of Intergenic distance between real and fake operons.  

A) Although the IGR lengths peaked around 0 nucleotides, there were still far too many 

IGR lengths that were longer than what is usually observed in operons of other prokaryotes. 

B) A quarter of the IGRs on the plus strand and 19% of IGR on the minus strand exceeded 

50bp. Limiting the operon predictions by IGR length would result in the exclusion of more 

than a quarter of verified operons (26%). This parameter was therefore excluded from the 

algorithm. 

 

 

3.1.7 Motifs at the start or the end of an operon 

Unfortunately, MEME found no consensus sequence for any of these regions. We 

suspect that because operons are so dynamic - i.e., their compositions change with 

respect to their environment - we may need to first determine which genes of an 

operon are always expressed – even when experimental conditions vary. That is, 

consensus sequences may be more easily determined for static operons. Once these 

static operons are known, we could repeat the search for motifs that may be 

responsible for delineating the boundaries of operons. We also need to be open to 

the possibility that these motifs may not necessarily flank operons, but that they 

may lie within the CDSs or even the IGRs of operons. This parameter was therefore 

put on hold for future consideration. 
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3.2 Algorithm validation 

3.2.1 Multiple Linear Regression Analysis 

We anticipated that the FD between adjacent CDSs would have the greatest effect 

on the outcome. Surprisingly, the MLR analysis showed that the greatest impact on 

the outcome variable was the new parameter - maximum FD between the IGR and 

its flanking CDSs (coefficient estimate = -0.37). Meaning that each time this 

parameter is decreased by just 1 unit, the total number of operons predicted, 

increases by 0.37 percent. Naturally, this number is not very high, because our 

verified TP list is small, so there are less operons to catch. The next most significant 

parameter was the minimum CDS coverage, followed by the minimum IGR cut-

off. The least significant parameter was the maximum FD between adjacent CDSs. 

The MLR showed that all four predictor variables were highly statistically 

significant (< 3.8 x 10-16). As expected though, despite their significance, these 

variables accounted for 40% of the variability (adjusted R2 = 0.4). We suspect that 

the other variable (splitting putative operons at the point where correlation breaks 

between distant adjacent CDSs), discussed in Section 2.3, may have a large impact 

on the outcome, but this could unfortunately not be tested. Surprisingly, several 

authors have argued against using R2 as a strict predictive measure of model’s 

performance. They argued that R2 may be a biased, insufficient and misleading 

measure of predictive accuracy, and that RMSE may give a much better indication 

of the accuracy of a model (Alexander et al. 2015; Li 2017). We therefore measured 

the RMSE and the results showed that the error rate was definitely reduced in the 

final model (2.6), compared to the baseline model (3.4). Similarly, the MAE 

dropped from 2.5 to 2.1 in the final model, showing that the decision tree performs 

better when these four parameters were used, than if they were excluded. The 

pruned tree model (which combats overfitting of data) again calculated no default 

cutoff for a max FD between adjacent CDSs (the least significant predictor). 

However, it computed that certain cutoffs can be utilized to correctly 

predict >=37/50 EVOs for most strains.  
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This would be achieved if we restrict the: 

i) 5.5 < FD between CDS and flanking IGRs <=13, 

ii) min CDS coverage <= 7.5 and,  

iii) min IGR coverage <= 6.5.  

 

These values, together with our observations were considered for the default 

parameters of COSMO. 

 

3.2.2 Comparison to existing algorithms 
 

Finally, we compared the total full-length operons called by COSMO to REMap 

and Rockhopper. We settled on using the 10x cutoffs for REMap as per their 

publication, because it performed better than their algorithm’s default setting of 

20x. As per the REMap algorithm, this cutoff applies to both the CDS and IGR 

coverages. 

COSMO with its four parameters as input (Control: min CDS =  1x; min IGR = 

4x; max FD of IGR-vs-CDS = 6x; max FD adjacent CDSs = 7x. Experimental: 

min CDS =  2x; min IGR = 1x; max FD IGR-vs-CDS = 5x; max FD adjacent CDSs 

= 5x ) was able to accurately predict more operons under both the control and 

experimental conditions (52% and 50%, respectively) than REMap (46% and 48%, 

respectively) and Rockhopper (48% in total), as shown in Table 2. This is 

significant because most existing algorithms do not generate condition-specific 

operons. Rockhopper for example, has only a total value, because it predicts 

operons based on differential expression and also does not allow user-defined 

cutoffs like REMap and COSMO. When the control and treated samples are 

submitted independently for operon predictions, Rockhopper generated identical 

reports.  

Moreover, when the number of operons predicted under both conditions were 

combined, COSMO’s total predicted operons (60%) also exceeded that of REMap 

(50%) and Rockhopper (48%). COSMO was also the frontrunner with regards to 
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sensitivity (88%), compared to REMap (69%) and Rockhopper (57%). This 

however came with the usual trade-off in precision where Rockhopper performed 

better (77%) than COSMO (65%) and REMap (64%). However, overall, COSMO 

was not only correctly identifying more operons, but it was also doing it more 

accurately, with F1 scores for COSMO, REMAP and Rockhopper at 75%*, 67%* 

and 66%*, respectively.  

We are aware that the total number of operons caught may still seem low. In many 

other studies where operons were predicted, the performance metrics are often over 

80% or 90% for sensitivity, specificity,  and F1 accuracy scores (Zheng et al. 2002; 

Bockhorst et al. 2003; Laing et al. 2008; McClure et al. 2013). However, in these 

studies, operons are usually split into gene pairs. This obviously leads to a much 

bigger true positives (TPs) test set, allowing for more correct predictions to be 

made. With COSMO, if an operon consisting of 5 genes is split after CDS 2, our 

algorithm computes it as unpredicted, or a FN, whereas in in other studies, since 

only one gene pair was not predicted, it will be counted as 3 TPs + 1 FN. For 

COSMO we chose to call the full length as the operon, since it’s a true reflection of 

the length. 

 

*The final F1 scores may be 1% higher than when this calculation is done because the precision and 

recall values were rounded off in Table 2. 
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Table 2: Performance of the three operon prediction tools: COSMO, REMap and 

Rockhopper. 

Algorithm 

(condition)
a
 

Predicted operons  

Under  

Specific  

Conditionb (%) 

Total  

Correctly 

predicted 

Operonsc 

(%) 

Sensitivity 

(%) 

PPV d 

(%) 

F1 

score 

(%) 

Cosmo (ctrl) 52 60 88 65 75 

Cosmo (exp) 50 

 

Remap 

(ctrl) 
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50 69 64 67 

Remap 

(exp) 

 

48 

 

Rockhopper 48 

 

48 57 77 66 

 

a control (crtl) or experimental (exp) condition 

b 
percentage of operons called under control (no RIF-stress) or experimental condition (RIF stress); 

c the percentage of the total number of correctly predicted operons 

d the positive predictive value. 

 

 

 

3.2.2.1 Unique predictions 

 

In terms of unique predictions from the list of EVOs, seven operons were predicted 

only by COSMO (Rv0046c-Rv0047c, Rv0096-Rv0102, Rv0287-Rv0288, Rv1964-

Rv1966, Rv1966-Rv1971, Rv2743c-Rv2745c, Rv3516-Rv3517), as displayed in 

Figure 7A, and three operons were predicted by Rockhopper (Rv2877c-Rv2878c, 

Rv3917c-Rv3919c, Rv3921c-Rv3924c). REMap was able to predict one operon 
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from literature that was not predicted by COSMO or REMap (Rv3417c-Rv3423c). 

This is discussed in greater detail in section 3.2.2.3. 

 

3.2.2.2 Condition-dependent mapping 

 

Figure 7B, illustrates the ability of COSMO to distinguish between operons 

predicted under control conditions from those predicted when under stress (RIF 

treatment). Four operons were predicted solely under control conditions, while five 

operons were predicted as active only under RIF stress. As shown in Figure 7C, 

although REMap predicted less operons than COSMO, it also demonstrated the 

ability to classify operons in a condition-specific manner - a distinction Rockhopper 

was not able to make. The Venn diagrams were created using ‘matplotlib-venn’ 

0.11.6 (Hunter 2007) in Jupyter Notebook 6.0.3 (Kluyver et al. 2016). 
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Figure 7: Comparison of operons predicted by COSMO, Rockhopper and REMap. A) The 

intersection of operons from COSMO, Rockhopper and REMap. Only one operon was uniquely 

predicted by REMap, while three operons were uniquely predicted by Rockhopper. Seven operons 

were predicted solely by COSMO. B) COSMO also predicted four operons as only expressed under 

control conditions, while five operons were predicted only under RIF stress. C) REMap was also 

able to distinguish two operons that were predicted under control conditions from the one specific 

to RIF stress. Rockhopper is not shown, because the algorithm only predicted combined 

differentially expressed operons. 
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3.2.2.3 Operons not predicted by COSMO 

 

We investigated the operons not predicted by each algorithm, to determine whether 

the operons were either shorter than those reported in literature (FNs), or longer 

(FPs). Table 3 shows the 50 EVOs and their prediction calls across the three 

algorithms. Only 8% (n = 4) of the operons incorrectly predicted by COSMO were 

shorter than those in literature - or could be considered as FNs; in contrast to 

REMap and Rockhopper for which 22% (n = 11) and 36% (n = 18) of operons were 

FNs, respectively. Most of the operons not found by COSMO were predicted to be 

slightly longer than those in the literature and none of the operons were completely 

unexpressed (zero genes expressed). On the contrary, REMap and Rockhopper 

called all the genes of some operons as unexpressed (n = 5 and n = 6 respectively). 

Although DOOR 2.0 no longer predicts operons, we compared our results to a list 

of operons already predicted by DOOR 2.0 for Mtb (not shown). COSMO also 

outperformed DOOR, by predicting nearly twice as many operons as DOOR, which 

correctly predicted only 16 of the total operons (32%).  

 

One especially interesting feature of COSMO is that it is able to predict operons 

with CDSs that are expressed at very low levels. As briefly discussed in section 3.2, 

the expression levels of 5x and below, for both the CDS and IGR, resulted in the 

highest number of total predicted operons for most isolates. This is because 

COSMO is able to bypass low expression levels, while rather taking advantage of 

a maximum FDs between CDSs and between an IGR and its flanking CDSs. This 

is also one of the reasons why REMap and Rockhopper were not able to predict 

some operons from literature. One example of this is the operon Rv3516-Rv3517, 

which was predicted by COSMO, but not by REMap or Rockhopper, since its 

expression levels were very low. Therefore, if the expression of an operon is 

deemed detrimental by Mtb for its virulence or survival or it’s biologically 

redundant, and it deliberately downregulates the expression of this operon, COSMO 

would still be able to predict those operons and record the downregulated 

expression.  

 

https://etd.uwc.ac.za/



 

52 

Table 3: EVOs predicted by three algorithms. 

Operon COSMO REMap Rockhopper 
 

Rv0046c-

Rv0047c 

√ Rv0043c-Rv0048c NOT EXPRESSED 

Rv0096-Rv0102 √ Rv0099-Rv0101, Rv0102 Rv0096-Rv0101 

Rv0166-Rv0178 √ √ Rv0167-Rv0178 

Rv0287-Rv0288 √ Rv0280 – Rv0291 Rv0287-Rv0289 

Rv0490-Rv0491 √ √ NOT EXPRESSED 

Rv0586-Rv0594 √ √ Rv0586-Rv0589, 

Rv0591-Rv0594 

Rv0676c-

Rv0677c 

√ √ √ 

Rv0735-Rv0736 Rv0735 - 

Rv0737 

Rv0732-Rv0735 Rv0732-Rv0736 

Rv0902c-

Rv0903c 

√ √ √ 

Rv0928-Rv0930 √ √ √ 

Rv0933-Rv0936 √ √ √ 

Rv0967-Rv0970 √ √ √ 

Rv0986-Rv0988 √ √ √ 

Rv1138c-

Rv1139c 

√ √ √ 

Rv1161-Rv1164 Rv1161 – 

Rv1166 

Rv1161 – Rv1165 Rv1161-Rv1166 

Rv1285-Rv1286 Rv1284 – 

Rv1289 

√ √ 

Rv1303-Rv1312 √ √ √ 

Rv1334-Rv1336 Rv1331 – 

Rv1341 

Rv1331 – Rv1341 NOT EXPRESSED 

Rv1410c-

Rv1411c 

√ √ √ 

Rv1460-Rv1466 √ √ √ 

Rv1477-Rv1478 √  Rv1476 – Rv1481 √ 
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Table 3: EVOs predicted by three algorithms. (continued). 

Rv1483-Rv1484 Rv1483 – 

Rv1485 

Rv1483 – Rv1485 Rv1483-Rv1485 

Rv1660-Rv1661 Rv1659 – 

Rv1665 

Rv1659 – Rv1661 Rv1661-Rv1664 

Rv1806-Rv1809 Rv1806 - 

Rv1807, 

Rv1808 - 

Rv1809 

Rv1807, Rv1809-Rv1811 NOT EXPRESSED 

Rv1826-Rv1827 Rv1825 – 

Rv1829 

Rv1821 – Rv1832 Rv1822-Rv1826, 

Rv1827-Rv1828 

Rv1908c-

Rv1909c 

Rv1907c – 

Rv1909c 

Rv1907c – Rv1909c Rv1907c-Rv1909c 

Rv1964-Rv1966 √ NOT EXPRESSED Rv1964-Rv1975 

Rv1966-Rv1971 √ NOT EXPRESSED * 

Rv2243-Rv2247 √ √ √ 

Rv2358-Rv2359 √ √ √ 

Rv2430c-

Rv2431c 

√ √ √ 

Rv2481c-

Rv2484c 

Rv2481c - 

Rv2485c 

√ √ 

Rv2592c-

Rv2594c 

√ √ √ 

Rv2686c-

Rv2688c 

√ √ √ 

Rv2743c-

Rv2745c 

√ Rv2742c - Rv2745c Rv2742c-Rv2744c 

Rv2871-Rv2875 Rv2871 – 

Rv2874, 

Rv2875 – 

Rv2876 

Rv2871 – Rv2872, Rv2873 – 

Rv2876 

Rv2871-Rv2872, 

Rv2875-Rv2876 

Rv2877c-

Rv2878c 

Rv2877c - 

Rv2883c 

Rv2877c - Rv2883c √ 

Rv2931-Rv2938 Rv2930 - 

Rv2939 

Rv2928 - Rv2939 Rv2930-Rv2938 
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Table 3: EVOs predicted by three algorithms. (continued). 

Rv2958c-

Rv2959c 

Rv2958c - 

Rv2960c 

Rv2958c - Rv2960c NOT EXPRESSED 

Rv3083-Rv3089 Rv3083 - 

Rv3085, 

Rv3086 - 

Rv3089 

√ √ 

Rv3132c-

Rv3134c 

√ √ √ 

Rv3145-Rv3158 √ √ Rv3145-Rv3151, 

Rv3152-Rv3158 

Rv3417c-

Rv3423c 

Rv3417c-

Rv3418c, 

Rv3419c-

Rv3423c 

√ Rv3417c-Rv3418c, 

Rv3419c-Rv3423c 

Rv3493c-

Rv3501c 

Rv3492c - 

Rv3503c 

Rv3492c - Rv3503c Rv3492c-Rv3501c 

Rv3516-Rv3517 √ Rv3516 NOT EXPRESSED 

Rv3612c-

Rv3616c 

√ √ Rv3612c-Rv3614c 

Rv3793-Rv3795 Rv3788 - 

Rv3798 

Rv3792-Rv3793, Rv3794-

Rv3796 

Rv3789-Rv3796 

Rv3874-Rv3875 √ NOT EXPRESSED √ 

Rv3917c-

Rv3919c 

Rv3916c - 

Rv3924c 

NOT EXPRESSED √ 

Rv3921c-

Rv3924c 

* NOT EXPRESSED √ 

 

A tick mark (√ ) shows that the algorithm found an exact matching operon to that in the EVO list. 

Operon names written in bold indicate that the algorithm predicted the operon to be shorter than the 

EVO, while italic font means it was longer than the EVO. That is, the operon was extended either 

upstream, or downstream or in both directions. NOT EXPRESSED indicates that none of the genes 

of the operon were expressed by that algorithm. An asterisk represents an operon that was predicted 

to be overlapping with the previous operon. 
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3.2.2.4 Composition of predicted operons 

 

Lastly, COSMO’s potential to predict novel operons was also analyzed. Under 

control- and RIF stress conditions, the number of putative operons and the number 

of CDSs forming part of putative operons were on average not notably different 

across samples. Table 4 shows the average results for the 12 samples. Under control 

conditions, COSMO predicted approximately 71% of the 4109 protein coding 

genes in Mtb to be constituents of operons (n = 952 operons), compared to 72% 

under RIF stress. Fewer genes were expressed as single genes under RIF (n = 1035), 

compared to control conditions (n = 1045), but there were also less unexpressed 

single genes under RIF-stress (n = 119) versus under control conditions (n= 156). 

This was because most of the genes that were expressed under RIF, were expressed 

in operons (n = 2960 genes within 965 operons). Interestingly, longer operons were 

more common under control conditions and the largest operon was predicted under 

control conditions, consisting of 15 CDSs. The results for all the operons can be 

found on our GitHub page at: 

 https://github.com/SANBI-

SA/COSMO/blob/master/Supplementary_data/operons_vs_genes_vs_unexpresse

d_per_isolate.xlsx. 

 

Table 4: Average percentage of the Mtb’s genome predicted as operons and 

single genes across the 12 samples.  

  Control         RIF treatment 

 Number % Number % 

Operons Count  952  
 

965 
 

Genes 2908 71 2960 72 

Single genes Expressed 1045 25 1030 25 
  

Unexpressed 156 4 119 3 

Total genes  4109  4109  
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4 Discussion 

COSMO takes in RNA sequence reads (.bam files) together with a GTF file and 

identifies the operons active under varied experimental conditions. For this study, 

we used RIF-treatment as our experimental condition and no RIF treatment as the 

control. The user can provide four separate parameters as cutoffs. Although other 

RNA-seq based algorithms also allow users to define an expression level cut-off, to 

the best of our knowledge this is the first algorithm predictor that allows the user to 

provide a separate input for IGR coverage and CDS coverage. It is also the first 

operon predictor where users can define the maximum FD between adjacent CDSs 

as well as the maximum FD between an IGR and its flanking CDSs. Additionally, 

COSMO not only considers correlation of expression between directly adjacent 

genes, but between all CDSs within a predicted operon.  

Allowing the user to provide the FDs is especially valuable. These parameters can 

take pre-eminence over just considering the min CDS or IGR expression levels as 

predictive indicators. This tolerates expression levels of CDSs and IGRs that are 

very low, which may be crucial for identifying operons that may have been 

downregulated by the bacteria in response to stress.  

Our results therefore supported the findings of REMap, that a maximum IGR length 

may not be a useful feature for operon prediction in Mtb (Pelly et al. 2016) – despite 

being the most reliable indicator of an operon in many operon algorithms. In fact, 

approximately a quarter of our 50 EVOs would not have been predicted if we 

excluded operons based on short IGR distance. Similarly, our MLRA showed that 

even coverage between two adjacent CDSs, which is universal in other algorithms, 

and is based partly on the definition of an operon, was the least significant 

parameter. It was outweighed by three of our parameters – the greatest of which 

was the new parameter -  maximum FD between IGRs and their adjacent CDSs 

(Dam et al. 2007; Taboada et al. 2010, 2018; Tjaden 2019; Krishnakumar and 

Ruffing 2022). 

COSMO can distinguish between operons predicted under control conditions and 

operons predicted under experimental stress conditions. Being able to match which 

operons are expressed under each condition is valuable, because we may observe 
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which pool of genes are specifically expressed under one condition, while being 

deemed either detrimental or at the very least, redundant under another condition. 

This capability may eventually allow us to better understand how Mtb is able to 

circumvent and thrive under stress conditions by tailoring a condition-specific pool 

of genes within the boundaries of an operon, as well as which operons are never 

altered, but may be considered as “housekeeping operons”. 

COSMO was able to predict all experimentally validated operons from literature, 

with 60% of the operons being exact matches to those obtained from literature, 

while Rockhopper predicted 48% and REMap predicted 50%. COSMO also 

obtained a greater accuracy, with an F1 score (75%), compared to REMap (67%) 

and Rockhopper (66%). With regards to those that were not exact matches; some 

operons were slightly shorter than in literature. However, most operons that were 

not identical to those from literature, were predicted to be slightly longer. On the 

contrary, REMap and Rockhopper not only predicted more shorter operons (FN), 

but they also predicted entire operons as unexpressed.  

Although matching only 60% of operons from literature correctly may seem rather 

low, it would be more alarming if we predicted everything or if we predicted close 

to 100% of operons. This would contradict our understanding that different operons 

are expressed under different environmental conditions. The lower value compared 

to other operon prediction studies, was also as a result of predicting full-length 

operons. This is a more accurate representation of what is happening in the context 

of operons, than in other studies where gene pairs are predicted (Overbeek et al. 

1999; Ermolaeva et al. 2001; Zheng et al. 2002; Bockhorst et al. 2003; Laing et al. 

2008; McClure et al. 2013; Tjaden 2020b). For this study, we have also only tested 

COSMO on isolates under control versus RIF stress conditions. This was because 

the main objective was just to evaluate COSMO against existing operon-predicting 

algorithms.  

COSMO was in agreement with the results that REMap and Rockhopper previously 

showed, in that at any given point in time, the larger proportion of Mtb genes/CDSs, 

are not operating independently, but they are instead predicted to be constituents of 

operons. COSMO predicted that ≥71% of Mtb’s protein coding genes may 

constitute operons – whether it was under control or RIF-stress conditions. REMap 
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reported this number to be just under 60% for Mtb (Pelly et al. 2016), while 

Rockhopper predicted this  as a range between 38% for Caulobacter vibrioides to 

80% for Vibrio cholerae (Tjaden 2019). 

This may indicate that Mtb and other prokaryotes have a heavy reliance on forming 

operons as a means of regulating its genome. We also predicted that under RIF 

stress, operons seemed to form more frequently and shorter operons were more 

common under RIF stress. This may suggest that under RIF-stress, Mtb activates 

operons on an ad hoc basis, to swiftly and efficiently handle the adversity it faces 

at that specific time. The significance of this, is that Mtb, the species responsible 

for causing Tuberculosis, is known for its impressive ability to evade and survive 

within their hosts (Namouchi et al. 2016). This pathogen, which is responsible for 

more deaths than any other infectious agent, worldwide (World Health Organization 

2019), has co-evolved with its hosts over several millennia and has continuously 

outsmarted the myriad of drugs that were carefully designed to disrupt its virulence 

at a gene or SNP level (Hoagland et al. 2016; Coll et al. 2018). If Mtb favours 

operons under stress conditions, then it may make more sense to study its evasive 

tactics in the context of operons, rather than by looking at mutations or differential 

expression of individual genes – which is how it was traditionally done. However, 

further analyses would have to be carried out to determine whether creating shorter 

operons allows it to have a tighter control over gene regulation or whether it has an 

alternative purpose. One of our current analyses involves taking a deeper look at 

the functions of the genes in the operons that are changing and differentially 

expressed under each experimental condition. 
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5 Limitations and Future work 

One of the limitations we had in this study was the very small list of validated 

operons. Once this list becomes more populated, we may be able to evaluate the 

algorithm’s accuracy using more traditional methods such as sensitivity and 

specificity ROC curves. We are hoping that once this algorithm is tested across a 

variety of lineages and experimental conditions, we may be able to detect the static 

CDSs of operons. This may aid us in further optimizing the algorithm if static 

operons can lead us to one or several consensus motifs that can be used as a feature 

or parameter in the algorithm design. Lastly, an experimental validation will have 

to ensue on carefully selected candidate operons predicted by COSMO to further 

gauge its performance. 

 

This analysis will also be extended to other Mtb families and to Mtb genomes 

exposed to different environmental conditions. This should generate a higher 

number of matches to operons published in literature, since the current 

experimentally validated operon list we used, consisted of operons discovered from 

a variety of different Mtb lineages and from a variety of experimental conditions. 

However, COSMO has already demonstrated an improved capacity to identify 

existing operons when compared to REMap and Rockhopper. Additionally, because 

it does not rely on inherent Mtb-specific traits for operon prediction, it could also 

be utilized for operon predictions in other microorganisms. 
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6 Data Availability Statement 

The datasets and scripts generated/analyzed for this study can be found in the 

links below. 

COSMO algorithm: https://github.com/SANBI-SA/COSMO 

GTF and other coordinate files: https://github.com/SANBI-

SA/COSMO/tree/master/Algorithm_parameter_testing/GTF_%26_other_coordina

te_files 

Some wiggle files: https://github.com/SANBI-

SA/COSMO/tree/master/Algorithm_parameter_testing/Wiggle_files 

Calculating total correctly predicted operons: https://github.com/SANBI-

SA/COSMO/blob/master/Algorithm_parameter_testing/Python_scripts/calc

ulate_total_correct_operons.py 

Coverages - Genes and IGRs: https://github.com/SANBI-

SA/COSMO/blob/master/Algorithm_parameter_testing/Python_scripts/ave_opero

n_genes_and_IGRs.py 

Coverages - UTRs: https://github.com/SANBI-

SA/COSMO/blob/master/Algorithm_parameter_testing/Python_scripts/ave_cov_

UTRs_operons.py 

 

Calculating TP, TN, FPs: https://github.com/SANBI-

SA/COSMO/tree/master/Algorithm_parameter_testing/python_scripts_for_predic

tion_calls 

 

MLR and decision tree script: https://github.com/SANBI-

SA/COSMO/tree/master/Algorithm_parameter_testing/R_script 
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CHAPTER 4 

GENOTYPE- AND CONDITION-SPECIFIC OPERON 

PREDICTION FOR MYCOBACTERIUM 

TUBERCULOSIS UNDER RIFAMPICIN STRESS  
 

Abstract  
Background: Bacteria often form operons in response to unfavourable 

environmental conditions. Operons are sets of adjacent genes which are co-

expressed as a single polycistronic mRNA. They are not just dynamic in terms of 

their length, but several studies have shown evidence of up- or downregulation of 

entire operons, when exposed to stresses. We previously showed that our algorithm, 

COSMO, outperformed the best operon predictors and was also able to better 

distinguish between operons predicted under control conditions versus RIF stress. 

In this study, we aimed to see if operons were differentially expressed and if their 

lengths were altered under RIF stress, and whether these modifications occurred in 

a genotype-specific or strain-specific manner. We also aimed to understand what 

the biological implications of operon modifications could be. 

Methods: Using COSMO, we predicted operons for 64 Mtb samples from RIF-

resistant lineage 2 and lineage 4 strains, as well as for drug sensitive wild type 

strains. Predicted operons were evaluated against a set of 50 experimentally verified 

operons (EVOs). Operon expression changes as well as changes in operon lengths 

were predicted under RIF-stress conditions, for each genotype. Lastly, we predicted 

operons under hypoxia stress using publicly available RNA seq datasets of nine 

strains. 

Results: We predicted 70% of the full-length EVOs across the genotypes and our 

sensitivity, precision and F1 accuracy scores showed significant improvements. A 

total of 32% of operons maintained the same length as the EVOs, even when 

exposed to RIF stress. These operons may be under selection pressure and could 

possibly serve as housekeeping operons, which would be interesting targets for anti-

tubercular drugs. Only one operon, Rv0676c-Rv0677c, also known as the MmpS5-

MmpL5 efflux system, was significantly downregulated in the rpoB mutant 
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genotype (log2 FC ≥ 0.58; p < 0.05). Mtb seemed to prefer to alter the length of an 

operon under RIF stress, over up- or downregulating the expression levels of an 

entire operon. Still, even for the operons which lengths were modified, most strains 

(80%, p = 1.4 x 10-9) regulated their operon lengths in genotype-specific manner, 

rather than for each strain to individually modify its operon length in response to 

RIF-stress. Proteins involved in lipid metabolism were the most frequent targets 

where operons were split to produce shorter operons. Regulatory proteins were 

favoured for creating operons that were longer than the EVOs, and proteins 

involved in ATP-related processes were under the most intense positive selection 

pressure to constitute static TP operons. Finally, an additional operon, which was 

not previously predicted by COSMO under RIF-stress, was predicted for strains 

grown under hypoxia. This operon was confirmed to participate in the hypoxia 

pathway. 

Conclusion: In this analysis COSMO was able to i) correctly identify more EVOs 

using different genotypes, ii) demonstrate that Mtb operons generally resisted being 

reorganized, and resisted being up- or downregulated under RIF stress with respect 

to their genotype, iii) distinguish between operons predicted under RIF stress from 

those predicted under hypoxia stress and v) show that the operon predictions may 

help us to assign meaningful biological inferences relating to the pathogen’s 

adaptation to stress. 
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1 Introduction 

 

The Mycobacterium tuberculosis complex (MTBC) consists of seven main human-

adapted lineages, which are all obligate pathogens. There are approximately 1200 

single nucleotide polymorphisms (SNPs) which separate these MTBC strains into 

their distinct lineages. Although the number of classifying SNPs may seem few, 

they are still enough to produce a notable phenotypic difference in the way each 

Mtb lineage metabolizes lipids, in their degree of virulence, resistance and 

immunogenicity (Coscolla and Gagneux 2014).  

Lineages 5 and 6 (L5 and L6) belong to the Mycobacterium africanum species. The 

other five lineages belong to the respiratory system pathogen, Mycobacterium 

tuberculosis (Mtb). Mtb is the causal agent behind tuberculosis. Before the SARS 

CoV-2 pandemic, it was the most infectious and the most fatal global disease. Its 

ancient lineages, L1 (Indo-Oceanic) and L7 (Ethiopia), are geographically confined 

strains. In contrast, the more recently evolved lineages consist of L2 to L4, also 

known as the Beijing, East-African Indian and Euro-American lineages, 

respectively. These newer lineages have evolved with virulent traits which favour 

transmissibility and are therefore more prevalent, as evident by their global 

presence (Comas et al. 2013, 2015; Nebenzahl-Guimaraes et al. 2016; Orgeur and 

Brosch 2018). However, despite having evolved more recently, L2-L4 already 

demonstrate significant differences between them. An in vitro study by Ford et al. 

(2013) showed that due to a higher mutation rate, the L2 lineage acquired drug-

resistance more rapidly than the L4 lineage.  

 

A 2006 study by Gagneux et al., showed that Mtb strains from different lineages 

demonstrated distinct levels of resistance and fitness costs when treated with the 

same dose of rifampicin (RIF), depending on the location of the mutation. In 

general, mutations in single drug resistance (DR) genes have been extensively 

studied to observe how they fluctuate across lineages. 

For example, Ford et al., (2013) showed that L2 strains have mutations in the katG 

and inhA genes, which confer a resistance to isoniazid (INH). Likewise, several 
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studies also confirmed the link between differential expression of single DR genes 

and Mtb virulence (Manganelli et al. 2004b; Lam et al. 2008; Garima et al. 2015). 

 

However, many DR strains harbour no mutations in any of these DR genes (Chan 

et al. 2007; Al-Saeedi and Al-Hajoj 2017). Moreover, research has shown that drug 

resistance in some strains were only conferred when several DR genes were 

mutated. More importantly, some DR phenotypes were only observed when all the 

genes which make up an operon were mutated, or if the expression of the entire 

operon was up- or downregulated (Banerjee et al. 1994; Bretl et al. 2012; Hunt et 

al. 2012). 

 

An operon is a set of genes which are transcribed as a single poly messenger 

RNA (Price et al., 2006). They are mostly prevalent in bacteria and archaea, 

although some operons have been identified in eukaryotes, such as nematodes and 

the fruit fly (Spieth et al. 1993; Brogna and Ashburner 1997). Operons often form 

in response to changing environmental conditions, to aid microbes to rapidly and 

efficiently respond to environmental stresses (Zaidi and Zhang, 2017). This could 

explain why the majority of Mtb’s genes are expected to not function 

independently. Previous studies predicted that ~60% of the Mtb genome may 

operate within these higher module operon structures (Pelly et al., 2016). 

However, despite the prevalence of operons and their association with drug 

resistance, to the best of our knowledge, no other studies have reported on how 

operons adapt across lineages/genotypes in control versus rifampicin (RIF) stress 

conditions.  

 

We used our operon prediction tool, COSMO (https://github.com/SANBI-

SA/COSMO) to predict how operons are reorganized across genotypes. COSMO 

was previously compared to three of the best performing operon predictors. It was 

shown to outperform all competitors in the number of correctly predicted full-

length operons, and in the accuracy of these predictions.  
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We therefore used COSMO to generate an overview of operons which changed 

(dynamic operons) or maintained their lengths (static operons) under RIF stress, 

using strains from two lineages (L2 and L4). We also used limma voom to observe 

whether the entire operon’s expression levels were altered in response to RIF stress 

with respect to each genotype. Lastly, we observed if a different set of operons could 

be predicted under hypoxia stress. 

 

2 Methods 

We previously predicted operons with COSMO for Lineage 2 Beijing strains of 

both low and high MICRIF statuses. In this study, we increased the sample size by 

adding additional strains from lineage 2 and 4 and predicted operons per genotype. 

A genotype refers to the Mtb family with its MIC status. That is, a genotype could 

be Family X low MIC or wild type (WT) strains or rpoB mutants, etc. All strains 

were RIF resistant, except for the WT strains, which were RIF sensitive.  

 

By using these additional strains, we aimed to observe if: 

i) COSMO predicted more EVOs with a more varied collection of 

strains. 

ii) any operons remained the same length (static) across the genotypes. If 

yes, were they static true positives (TPs), static false positives (FPs) or 

static false negatives (FNs). 

iii) any operons changed in length (dynamic) under RIF stress and if so, 

whether they changed in a genotype-specific or more strain-specific 

(individual) way. 

iv) any operons were up- or downregulated under RIF stress. 

v) a functional annotation (FA) of these predictions could help us infer 

some of the possible biological reasons for the changes in the operons, 

and 

vi) unique operons can be predicted under hypoxia stress. 
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a) Sample Collection 

 

The samples were obtained from three Mtb patients and RNA-sequenced (ethics 

number N10/04/126). The lineages and drug resistance profiles were confirmed 

using the TBProfiler tool  (Phelan et al. 2019) in Galaxy (https://galaxy.sanbi.ac.za/) 

(Jalili et al. 2020). Except for the WT genotype, all other strains were RIF resistant.  

As shown in Figure 8, the 64 samples were from lineage 2 and lineage 4. L2 

consisted of three wildtype (WT) biological replicates (BR) which were grown 

only under control conditions (no RIF treatment). It also consisted of three BRs of 

high MIC of 150 ug/ml, from the Beijing genotype, grown under control conditions 

and three BR grown under experimental conditions (RIF treatment). Similarly, three 

low MIC (40 ug/ml) BRs from the Beijing genotype were grown under control 

conditions and three under RIF stress. Under L4 we grew three BRs which 

were rpoB mutants under control conditions and three BRs under RIF-stress. 

Furthermore, L4 also consisted of three high MIC (150 ug/ml) BRs and three low 

MIC (40 ug/ml) BRs belonging to the Family X genotype, grown under control 

conditions and under RIF stress. Each BR of the Family X samples contained at 

least three technical replicates (TR).  Cultures were grown in 7H9 media until mid-

log phase and exposed to RIF for 24 hours. Both the high- and low MIC strains 

were exposed to a quarter MIC of RIF.  
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Figure 8: Outline of the study design for lineage 2 and 4 samples. A combined 64 samples were 

used in this study which spanned Lineage 2 and Lineage 4. At least three biological replicates were 

used for each of the four families, namely: WT, rpoB mutants, Family X and Beijing. Each Family 

X BR also had at least three TRs. A genotype was considered to be the family together with its MIC 

status. Therefore, while the WT strains was one genotype and the rpoB mutants were another, the 

Beijing and Family X families consisted of 2 genotypes each. Thus, there is a total of 6 genotypes 

in the figure above.  

 

b) RNA extraction and sequencing 

RNA extraction was carried out using the FastRNA Pro Blue kit (MP Biomedicals, 

Germany) and residual DNA was treated with DNase (Promega, WI, USA). 

Ribosomal depletion was performed with the bacterial option as probes for 

hybridisation of rRNA (TruSeq Total RNA, USA). Primer design and RNA-seq 

were carried out at the Agricultural Research Council (ARC) sequencing facility in 

Pretoria, South Africa, using the TruSeq DNA and RNA CD Indexes (I7 and I5 

adapters) and the Illumina HiSeq 2500. The strand-specific protocol was confirmed 

as the fr-firststrand library type, using the RSeQC v2.6.4 ‘Infer Experiment’ tool 

(Wang et al. 2012a). 
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All fastq files have been deposited in NCBI's Gene Expression Omnibus (Edgar et 

al., 2002) and are accessible through GEO Series accession number GSE203032. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE203032 

 

c) Trimming and alignment 

A FastQC (Andrews 2022) check in Galaxy (https://galaxy.sanbi.ac.za/) showed 

that the data was of high quality (mean PHRED > 30), but the reads were 

nonetheless trimmed and adapter sequences were removed using Trimmomatic 

V.0.38 with a PHRED = 20 with a sliding window of 4 (Bolger et al. 2014). Reads 

were aligned to H37Rv (NC_00096.3) using BWA-MEM 0.17.1 (Li and Durbin 

2009). The quality of the bam files were checked using Samtools 1.9 (Li et al. 

2009), to make sure ~90% or reads were paired , ~90% of reads were aligned to the 

reference genome, and that the average size of the reads were ~200bp, according to 

the RNA-seq analysis best practices (Conesa et al. 2016).  

 

2.1 Predicting operons 

For each strain, the RNA-seq bam files were submitted to COSMO, using its default 

settings. The predicted operons were compared to a list of 50 EVOs and grouped 

into the prediction calls: TPs, FPs and FNs, using a custom python script, where: 

i TP operons were the same length as the EVO 

ii FP operons were longer  

iii FN operons were shorter.  

 

We could not classify true negatives (TNs) in the absence of a set of genes con-

firmed as never forming part of an operon.  

As shown in Table 5, for a biological replicate (BR) to be assigned a call (TP, FP 

or FN), at least 2/3 of its technical replicates had to have the same call. Then for the 

genotype to be assigned the call, all three biological replicates (BR) had to reach a 

consensus call. If these criteria were not met, then the prediction was considered a 

heterogeneous call. 
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Table 5: Three scenarios demonstrating the rules for assignment base on replicates. 

 BR_1a BR_2b BR_3c Call 

Scenario 1 

          

Scenario 2 

 
X 

      
X 

 

Scenario 3 

       
X X 

 

 

abiological replicate 1  

 bbiological replicate 2 

cbiological replicate 3 

Each column contains at least three technical replicates per biological replicate. 

 

 

2.1.1 Total number of operons predicted 

 

For the first part of our analysis, we tested if we were able to predict more EVOs 

when we use strains belonging to two different lineages, and with different MIC 

statuses and different drug resistance profiles (drug sensitive versus RIF resistant). 

We previously showed that with a small subset of nine Beijing samples, we were 

able to achieve a sensitivity, precision and F1 score of: 75%, 65% and 75%, 

respectively. Here, we repeated the evaluation to see if there were any 

improvements with this larger, more varied sample size. The performance metrics: 

precision/positive predictive value (PPV), recall/sensitivity, and F1 score, were 

calculated as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛/𝑃𝑃𝑉 (%) = (
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
) ∗ 100 

 

𝑅𝑒𝑐𝑎𝑙𝑙/𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) = (
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
) ∗ 100 
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𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
) 

 

 

2.1.1.1 Sample variance 

 

We also calculated the variance across biological samples. For the BRs, we asked 

how many BRs shared the same prediction. A three meant that all samples had a 

consensus prediction, a two meant that two samples shared a prediction and a one 

meant that none of the samples agreed on the prediction. 

The TRs were a bit more complicated, since some had four or five replicates. Scores 

were between one and five. In the case where there was only three TRs, the scoring 

system was the same as for the BRs. In the case of four replicates, a score of three 

and four still represented the number of samples which had the same prediction. 

However, to receive a two, two samples must have had the same prediction, while 

the other two also had to have the same prediction. In the case where two were the 

same, and one prediction fell into one category and the other in another, the sample 

received a score of one. 

We used the coefficient of variation (CV), which measures the ratio/percentage of 

standard deviation to the mean. This gives an indication of how reliable/variable 

our predictions were across the samples. A value above 100%, indicates that the 

variability of the predictions was greater than the mean, and the predictions were 

therefore volatile. A value below 100% means that there is less variability and that 

the results were more reproducible (Shechtman 2013; Khaw et al. 2019).  

 

The coefficient of variance was calculated as: 

 

𝐶𝑉 (%) 
𝜎

𝑚𝑒𝑎𝑛 
 𝑥 100 

 

The calculations were carried out using Microsoft Excel’s V2301 built-in functions. 
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2.1.2 Overall static operons 

 

Although COSMO is a prediction tool, and therefore, predicted operons are not 

final proof of operon organizations, COSMO is based on RNA expression data. It 

therefore still allowed us to track changes in gene expression and compare fold 

changes between adjacent genes and IGRs. We could therefore also make certain 

inferences from the way prediction calls fluctuated with respect to genotype for the 

distinct conditions under which strains were grown. In this part of the analysis, we 

aimed to observe whether certain operons received the same prediction call (static) 

across genotypes, and experimental conditions. We were firstly interested in static 

TP operons. That is, operons which were predicted to be the exact lengths as the 

EVOs and of which the TP prediction never changed under RIF stress. We reasoned 

that if these TP operons are never reorganized – even under RIF-stress, then they 

may be good test cases for finding motifs, which could potentially be used to im-

prove COSMO’s prediction rate. More importantly, static TP operons may indicate 

that these operons are under selection pressure, lending evidence to the hypothesis 

that just as there are established housekeeping genes, there may also be housekeep-

ing operons (Naville and Gautheret 2009). Static TP operons may also be useful in 

guiding us to the most impactful promoters, hub proteins or biochemical pathways, 

which would in turn allow for more potent drug targets.  

For the second part of the analysis, we scrutinized operon predictions which were 

static FP or FN across the genotypes. We reasoned that static FP predictions (oper-

ons which were ALWAYS longer than the EVOs) may represent important, undis-

covered genes/biological processes (BPs) required under RIF stress. Similarly, 

static FN predictions (consistently shorter operons) could mean that the genes 

which were not predicted to be part of the operon may either be detrimental, impute 

a too large of a fitness cost, or that they may be redundant. 
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2.1.3 Dynamic operons 

 

After identifying possible static operons, we then analyzed the operons which 

changed in length (dynamic) under RIF-stress across the genotypes.  To examine 

these operon reorganizations, we split the analysis in two. 

 

i) The aim of the first part of the analysis was just to ascertain if there was any 

operon length modification under RIF stress. We argued that if a genotype 

predicted an operon to be one call, for example, TP under control condi-

tions, then whether the operons were a consensus FN under RIF stress, or a 

heterogeneous call consisting of TP/FP/FN calls, then technically in both 

cases the operon lengths changed under RIF stress. 

 

ii) For the second part of the analysis, we made a distinction between the two 

outcomes. Here we reported whether changes in operon lengths under RIF 

stress were genotype-specific (consensus calls among strains) or strain-spe-

cific (heterogeneous calls) under RIF stress. Here we were not just inter-

ested in whether we were observing operon changes under RIF stress, but 

we wanted to observe whether strains responded similarly to the changing 

environment, as if they received a genotype-specific signal on how to mod-

ify the operon length, or whether each strain behaved autonomously to cir-

cumvent the RIF stress.  

The paired t-test was used to evaluate statistical significance. 

 

2.2 Differential expression of operons  

 

There are two ways in which an operon can be modified under RIF stress; either by 

changing the length of the operon or by altering the expression levels of the entire 

operon. Naturally, if the expression levels of individual genes of an operon are al-

tered independently, it may result in a lack of co-expression of the adjacent genes. 

This would automatically cause a change in the operon length. For example, the 
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operon may split at the gene where the respective co-expression breaks the corre-

lated gene expression.  

 

The second way in which an operon may be modified, is when the expression levels 

of all the genes of an operon are altered, but with respect to each other (co-

expression/coregulation). In this case the length of the operon will remain the 

same, but the overall expression will be upregulated or downregulated, resulting in 

a differentially expressed operon (DEO). So, in this part of the analysis 

we examined whether the average operon expression levels (coverages) were up- 

or downregulated for each of the genotypes under RIF-stress (DEO).  

 

This was done using limma voom 3.48.0 (Smyth 2005; Law et al. 2014; Liu et al. 

2015) in Galaxy (https://galaxy.sanbi.ac.za/). We created a GTF file which 

contained the start and end coordinates of the entire operon, as opposed to the usual 

gene coordinates captured in a GTF file. The DEO analysis therefore included the 

intergenic regions between operon genes. We used the “with sample quality 

weights” parameter to deal with outliers by downweighing them (Ritchie et al. 

2006). The Trimmed mean M-values normalizations (TMM) was applied, where a 

weighted trimmed mean of the log expression ratios is used to scale the counts for 

the samples (Robinson and Oshlack 2010). Finally, we filtered the result using the 

t-tests relative to a threshold (TREAT) method, which is a robust method that 

combines the FDR and log2FC values to analyze differentially expressed data in 

both a statistically and a biologically significant manner (McCarthy and Smyth 

2009). We used the parameters log2(1.1) = 0.13, and the adjusted p-value or false 

discovery rate (FDR) of  <0.05, based on the Benjamini-Hochberg method 

(Benjamini and Hochberg 1995). This initial low log2FC was suggested for the 

TREAT method, because TREAT is designed to constantly adjust the FDR as it 

ranks the genes/operons, which could cause most of the operons to be excluded if 

the initial FC value was any higher (false negatives). 

FC cut-off values are usually arbitrary and are chosen by the researcher. For exam-

ple, Miryala et al., (2019) chose a cut-off value of logFC (<−0.58 and >+0.58) the 

p value (<0.05) when evaluating resistance against bedaquiline and capreomycin. 
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Thus, even though the log2FC was set quite low for the initial calculations, we used 

logFC = (<−0.58 and >+0.58), when we eventually labelled an operon as signifi-

cantly differentially expressed. This equates to a log2(FC) = 0.58, or a FC of 1.5. 

That is, under RIF stress, the average expression of the operon must have changed 

by at least 50%. 

 

2.3 Functional annotation of operon genes  

 

We then carried out a biological process (BP) enrichment analysis to analyze the 

potential consequences of the operon lengths changes and operon dysregulations 

under RIF stress.  

We did a protein-protein interaction (PPI) analysis and pulled all the functional an-

notations of the genes belonging to the 50 EVOs from the STRING-

DB (https://string-db.org/). We also included all genes that were classified among 

the FP operons to observe if the functions of these genes were predicted as co-

expressed neighbouring genes. The Application Programming Interface (API) of 

the STRING-DB was accessed using a Python script. We also queried Mycobrowser 

(Kapopoulou et al. 2011), PATRIC (Wattam et al. 2014) and literature to confirm 

the enrichments, especially if STRING-DB listed the function of the protein as un-

known or as a hypothetical protein. 

 

 

2.4 Testing COSMO on Mtb strains under hypoxia 

 

Lastly, we observed whether COSMO was able to capture additional operons when 

exposed to a different environmental stress. RNA-seq datasets of nine drug 

sensitive Mtb strains (from L4) that were exposed to various levels of hypoxia were 

obtained from the European Nucleotide Archive (ENA) 

(https://www.ebi.ac.uk/ena/browser/home) under the project code PRJNA478238 

(Peterson et al. 2020). The lineage and drug resistance profiles were determined 

using TBProfiler (Phelan et al. 2019) in Galaxy. The fastq RNA-seq reads were 

aligned to H37Rv (NC_00096.3) using bwa-mem, in Galaxy. Subsequent bam files 
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were then submitted to COSMO under the same cut-offs as the RIF bam files. The 

hypoxia predicted operons were then analyzed against the EVOs. 

 

 

3 Results  

 

3.1 Total number of operons 

 

As shown in bold (without asterisks) in Table 7, 70% of the 50 experimentally 

verified operons (n = 35) were correctly predicted by COSMO across the 

genotypes. These were predicted by some and not all 64 samples, and some were 

identified under control conditions and others only under RIF stress. 

Five additional operons were predicted for the Family X, WT and rpoB mutants, 

and were not previously predicted when only the Beijing genotype was analyzed.  

 

With the prediction of additional operons, COSMO’s performance metrics naturally 

improved. While the sensitivity increased to 90% (up from 88%), the greatest 

improvement was observed in COSMO’s precision, which increased from 65% to 

76%. Similarly, the F1 score showed a moderate, but welcomed improvement, from 

75% to 82%. 

 

 

3.1.2 Variance of samples 
 

As displayed in Table 6, the CVs for the BRs, were all lower than the mean (less 

than 100%), with the average CoV at 20%. For the TR, this average was even lower 

(12%) – data not shown. The samples with the most TRs (n = 5), were not always 

the most volatile. A sample from the Family X high MIC experimental group had 

five TRs but also had the lowest CoV (8.6%). Nevertheless, the CVs across all the 

genotypes were all below 100%. Thus, the predictions made by COSMO were 

reproducible between BRs and TRs. All data and calculations for both TRs and BRs 

can be found in our Supplementary data on our GitHub page at:  
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https://github.com/SANBI-

SA/COSMO/blob/master/Supplementary_data/CoVs.xlsx 

 

 

Table 6: The mean, standard deviation and coefficient of variance of COSMO’s predictions 

for samples of the same genotype 

 

 

WT

Operons CONT CONT EXP CONT EXP CONT EXP CONT EXP CONT EXP

1 Rv0046c - Rv0047c 3 3 3 3 3 3 2 3 2 3 3

2 Rv0096 - Rv0102 2 3 2 3 2 2 2 3 3 2 2

3 Rv0166 - Rv0178 2 2 2 3 3 3 2 2 2 3 2

4 Rv0287 - Rv0288 2 2 3 2 3 1 3 1 2 2 3

5 Rv0490 - Rv0491     3 3 3 3 3 3 3 3 3 3 3

6 Rv0586 - Rv0594 3 3 3 3 3 1 2 1 2 3 2

11 Rv0676c - Rv0677c    3 3 3 3 3 3 3 3 3 3 3

12 Rv0735 - Rv0736 2 3 2 3 2 1 2 1 1 2 2

13 Rv0902c - Rv0903c    3 3 3 3 3 3 3 3 3 3 3

14 Rv0928 - Rv0930      3 3 3 3 3 3 3 3 3 3 3

15 Rv0933 - Rv0936      3 3 3 3 3 3 3 3 3 3 3

16 Rv0967 - Rv0970      3 3 3 3 3 3 3 3 3 3 3

17 Rv0986 - Rv0988      3 3 3 3 3 3 3 3 3 3 3

18 Rv1138c-Rv1139c 3 3 3 3 3 3 2 1 1 3 2

19 Rv1161 - Rv1164      3 3 3 3 3 3 3 3 3 3 3

20 Rv1285 - Rv1286 3 3 3 3 3 2 2 1 1 2 2

21 Rv1303 - Rv1312      3 3 3 3 3 3 3 3 3 3 3

22 Rv1334 – Rv1336     3 3 3 3 3 3 3 3 3 3 3

23 Rv1410c - Rv1411c    3 3 3 3 3 3 3 3 3 3 3

24 Rv1460 - Rv1466      3 3 3 3 3 3 3 3 3 3 3

25 Rv1477-Rv1478 3 3 2 3 3 3 3 3 3 3 2

26 Rv1483-Rv1484 3 3 3 2 2 3 3 3 3 3 3

27 Rv1660 - Rv1661 3 3 3 3 3 2 2 2 1 3 3

28 Rv1806 - Rv1809 2 3 3 3 3 3 2 2 2 2 2

29 Rv1826 - Rv1827 3 2 3 3 3 1 2 3 3 3 3

30 Rv1908c - Rv1909c 3 3 3 3 2 1 2 1 1 3 3

31 Rv1964 - Rv1966 2 3 2 3 3 1 1 1 1 3 1

32 Rv1966 - Rv1971 3 3 3 3 3 2 1 1 1 2 3

33 Rv2243 - Rv2247     3 3 3 3 3 3 3 3 3 3 3

34 Rv2358 - Rv2359    3 3 3 3 3 3 3 3 3 3 3

35 Rv2430c - Rv2431c    3 3 3 3 3 3 3 3 3 3 3

36 Rv2481c - Rv2484c 3 3 2 3 3 3 2 2 3 2 2

37 Rv2592c - Rv2594c   3 3 3 3 3 3 3 3 3 3 3

38 Rv2686c - Rv2688c 3 3 3 3 2 3 3 3 3 3 3

39 Rv2743c - Rv2745c 2 2 2 1 2 1 1 1 1 3 3

40 Rv2871 - Rv2875    3 3 3 3 3 3 3 3 3 3 3

41 Rv2877c - Rv2878c 3 3 3 3 2 2 3 2 2 3 3

42 Rv2931 - Rv2938 3 3 3 3 3 3 3 3 2 3 3

43 Rv2958c - Rv2959c    3 3 3 3 3 3 3 3 3 3 3

44 Rv3083 - Rv3089 2 2 2 2 2 2 2 1 1 2 2

45 Rv3132c - Rv3134c    3 3 3 3 3 3 3 3 3 3 3

46 Rv3145 - Rv3158      3 3 3 3 3 3 3 3 3 3 3

47 Rv3417c - Rv3423c 3 3 3 3 3 2 2 3 3 3 3

48 Rv3493c - Rv3501c 3 2 2 3 2 2 1 3 3 3 3

49 Rv3516 - Rv3517 3 2 2 3 3 2 3 1 1 2 3

50 Rv3612c-Rv3616c 3 3 3 3 2 3 2 1 2 3 3

51 Rv3793 - Rv3795     3 3 3 3 3 3 3 3 3 3 3

52 Rv3874 - Rv3875     3 3 3 3 3 3 3 3 3 3 3

53 Rv3917c - Rv3919c 2 2 2 2 2 2 2 2 3 3 3

54 Rv3921c - Rv3924c   3 3 3 3 3 3 3 3 3 3 3

No of samples 3 3 3 3 3 9 11 10 13 3 3

Sum 141 142 139 144 139 126 126 120 122 141 138

Standard deviation 0.384 0.367 0.414 0.382 0.414 0.728 0.64 0.849 0.804 0.384 0.472

Mean 2.82 2.84 2.78 2.88 2.78 2.52 2.52 2.4 2.44 2.82 2.76

CV 13.62 12.91 14.9 13.25 14.9 28.88 25.397 35.36 32.95 13.62 17.09

Number of biological samples with the same prediction call

Beijing (Low) Beijing Family X (Low) Family X (High) rpoB mutants

https://etd.uwc.ac.za/
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3.2 Static operon calls 

 

Table 7 shows that 46% of the 50 EVOs (n = 23) were always the same length 

across the 64 samples, regardless of whether they were grown under control 

conditions or under RIF-stress. We called these static operons. For 16 of these 23 

static operons, all 64 samples matched the operon length of the EVOs. Since they 

were therefore TPs, and they were static, we called them static TPs. Four of the 

static operons were always longer than the EVOs for all 64 samples (static FPs) 

under both control condition and RIF stress, and three operons were consistently 

shorter across all 64 samples (static FNs).  

 

Table 7: The correctly identified operons and the operons which were static across 

genotypes.  

EVOs CONT or 

EXP 

CONT & 

EXP (TP) 

CONT & 

EXP (FP) 

CONT & 

EXP (FN) 

Rv0046c-Rv0047c 
    

Rv0096-Rv0102 
    

Rv0166-Rv0178 
    

Rv0287-Rv0288 
    

Rv0490-Rv0491 
    

Rv0586-Rv0594 
    

Rv0676c-Rv0677c 
    

Rv0735-Rv0736 
    

Rv0902c-Rv0903c 
    

Rv0928-Rv0930 
    

Rv0933-Rv0936 
    

Rv0967-Rv0970 
    

Rv0986-Rv0988 
    

Rv1138c-Rv1139c 
    

Rv1161-Rv1164     

Rv1285-Rv1286     

Rv1303-Rv1312 
  

  

Rv1334-Rv1336     
Rv1410c-Rv1411c 

    

Rv1460-Rv1466 
    

Rv1477-Rv1478 
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Table 8: The correctly identified operons and the operons which were static across 

genotypes (continued).  

 
Rv1483-Rv1484     

Rv1660-Rv1661     

Rv1806-Rv1809 
    

Rv1826-Rv1827 
    

Rv1908c-Rv1909c 
    

Rv1964-Rv1966 
    

Rv1966-Rv1971 
    

Rv2243-Rv2247     
Rv2358-Rv2359 

    

Rv2430c-Rv2431c 
    

Rv2481c-Rv2484c     

Rv2592c-Rv2594c 
    

Rv2686c-Rv2688c 
    

Rv2743c-Rv2745c 
    

Rv2871-Rv2875     
Rv2877c-Rv2878c     

Rv2931-Rv2938     

Rv2958c-Rv2959c     

Rv3083-Rv3089 
    

Rv3132c-Rv3134c 
    

Rv3145-Rv3158* 
    

Rv3417c-Rv3423c 
    

Rv3493c-Rv3501c     

Rv3516-Rv3517 
    

Rv3612c-Rv3616c 
    

Rv3793-Rv3795     

Rv3874-Rv3875* 
    

Rv3917c-Rv3919c     

Rv3921c-Rv3924c 

  

    

 

 operon was predicted. 

 operon was not predicted. 
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3.2.1 Functional Annotation (FA) of Static TPs 
 

We further investigated these 16 static TP operons, to have a better understanding 

of the biological functions that Mtb seemed to exert under selection pressure. Again, 

we know that these are predictions, but if COSMO always called these the same 

regardless of genotype or experimental conditions, then the expression levels of 

these genes, either remained the same, or the expression levels of the adjacent genes 

always changed with respect to one another, suggesting co-expression/co-regula-

tion.  

 

We submitted the 65 genes belonging to these static operons to STRING-DB. 

STRING-DB shows the PPI and the gene ontology (GO) enrichment against a ran-

dom selection of proteins from the Mtb genome. The random selection of the pro-

teins is carried out automatically by the STRING-DB algorithm. On the highest 

confidence level, all 65 proteins could be grouped under just three biological pro-

cesses (BPs). The proteins highlighted in red in Figure 9 show that many proteins 

were involved in transmembrane transport – more specifically, the transport of var-

ious molecules/protons/electrons related to adenosine triphosphate (ATP) synthesis 

(FDRs <=1.9 x 10-12). The blue and yellow-coloured proteins were involved in ‘re-

sponse to stimulus’ and to ‘pathogenesis’ (FDRs: 0.00014 and 0.0003), respectively. 

The list of 65 TP operon genes can be found in Supplementary Table 1. 

 

To add to the PPI analysis, we also interrogated the literature, to uncover what oth-

ers may have found about these operons. We also retrieved the BP for the individual 

genes of the operons independently using Mycobrowser and PATRIC. 

Table 9 shows the most enriched BPs to which the static TP operons were assigned. 

The bottom of the table provides a summary of the number of operons and their 

proteins which were associated with a BP, to show that sometimes a BP can be  

 

enriched, due to a large number of proteins linked to it. However, from an operon 

view, the same BP may not be as enriched. In order of the greatest to the least num-

ber of operons targeted, the categories were: i) cell and cell wall processes with  
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Figure 9: The 65 genes belonging to the static TP operons were submitted to STRING-DB for a 
functional annotation analysis. The red proteins were linked to transporting of 
molecules/protons/electrons involved in ATP-related processes (FDR 1.9 x 10-12). The blue and 
yellow genes were involved in ‘response to stimulus’ and to ‘pathogenesis’ (FDRs: 0.00014 and 
0.0003), respectively. 

 

 20 proteins across 9 operons, ii) regulatory proteins with 10 proteins across 6 

operons and iii) intermediary metabolism and respiration with 28 proteins across 

3 operons. The rest of the 7 proteins were scattered across four operons and be-

longed to the BPs: ‘conserved hypothetical proteins’, ‘virulence, detoxification, ad-

aptation’, ‘information pathways’ and ‘PE/PPE family’.  
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We then examined whether our proteins/operons may have been allocated to these 

specific BPs merely because of their prevalence in the genome. (Lamichhane 2018) 

showed that the most common biological processes to which Mtb H37Rv proteins 

were allocated, were indeed ‘i) conserved hypothetical proteins’, ii) ‘intermediary 

metabolism and respiration’ and iii) ‘cell wall and cell processes.’ The latter two 

categories for our static TP proteins could therefore have been enriched BPs by 

chance.  

Similarly, the ATP-related processes highlighted by the STRING-DB analysis, is a 

subcategory of respiration. The reason for this enrichment by STRING-DB was due 

to 3 operons which each contained a high number of proteins involved in 

intermediary metabolism and respiration, namely: Rv1303 - Rv1312 (9 proteins), 

Rv1460 - Rv1466 (5 proteins) and Rv3145 - Rv3158 (14 proteins). That is, 43% of 

the 66 static TP proteins were involved in ATP-related processes. However, this 

does not negate the fact that there seems to be a preference for Mtb to regulate ATP-

related proteins in the form of operons and more specifically, in operons which are 

under selection pressure. This is BP is also worth noting since the ‘conserved 

hypothetical proteins’, which is the most abundant BP for H37Rv, seemed to have 

been preferentially avoided for constituents of static TP operons. In addition, other 

studies have shown that intracellular concentrations of ATP and proteins involved 

in the electron transport chain are unusually tightly regulated in Mtb to reduce its 

sensitivity to drugs (Rao et al. 2019; Talwar et al. 2020). 

 

Even more intriguing was that none of the static TP operons contained proteins 

which partook in ‘lipid metabolism’, despite this also being one of the biggest 

functional classes to which H37Rv were assigned. The ‘regulatory proteins’ was 

another class which piqued our interest. Although it was not one of the most 

prevalent functional categories for H37Rv, they were one of the most enriched BPs 

for static TP operons. It is therefore possible that, just as with ATP-related proteins, 

regulatory proteins may be preferentially grouped into operons by Mtb. 
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Table 9: The most common BPs for the 16 static TPs operons across the genotypes.  

                                        BIOLOGICAL PROCESS OF OPERON GENES 

OPERON RP 1 CCPW
2 

CHP 3 IMR 4 PE/ 

PPE 5 

IP  6 VDA 7 

Rv0490 - Rv0491 
       

Rv0676c - Rv0677c        

Rv0902c - Rv0903c 
       

Rv0928 - Rv0930        

Rv0933 - Rv0936        

Rv0967 – Rv0970 
       

Rv0986 – Rv0988        

Rv1303 - Rv1312        

Rv1410c-Rv1411c        

Rv1460-Rv1466 
       

Rv2358 – Rv2359 
       

Rv2430c – Rv2431c        

Rv2594c - Rv2592c        

Rv3134c-Rv3132c 
       

Rv3145 – Rv3158        

Rv3874 – Rv3875        

Number of Operons 6 9 1 3 1 1 1 

Number of Proteins 10 21 1 28 2 3 1 

 

1 Regulatory protein  

2 Cell and cell wall processes  

3 conserved hypothetical protein 

4 intermediary metabolism and respiration  

5 PE/PPE family proteins 
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6 information pathways 

7 virulence, detoxification, adaptation 

 operon contains genes which function in the BP listed in the column header. 

 operon does not contain genes which function in the BP listed in the column header. 

 

 

3.2.2 Functional annotation of Static False positives  

 

We then analyzed the four operons predicted in the static FP group, to observe if 

there was a functional relevance to COSMO adding these additional genes, or if it 

was just as a result of the crude logic behind the algorithm.  

 

The four-gene operon, Rv1334 – Rv1336, was consistently predicted as a 10 gene 

operon (Rv1332 – Rv1341) across all genotypes. As shown by the red proteins in 

Figure 10A, all of the predicted FP proteins, except for Rv1338 (murl), form part 

of the molybdopterin cofactor (MoCo) metabolic process (FDR = 9.34 x 10-8) – 

which is the same metabolic process to which three of the operon’s proteins belong. 

These three EVO proteins also function in a novel cysteine biosynthesis pathway 

(blue proteins). Interestingly, the MoCo metabolic pathway was proven to be 

tightly linked to the cysteine pathway (Voss et al. 2011; Mendel 2013; Leimkühler 

2014). 

 

Operon Rv3793 – Rv3795 was predicted as a range of different lengths for each 

genotype, but it was always a combination of the proteins from Rv3788 – Rv3798. 

STRING-DB showed that four of these FP proteins (Rv3789 – Rv3792) which are 

directly upstream of the EVO, function in the same biological process as the EVO, 

namely cell wall organization (FDR = 1.60 x 10-9). This is depicted by the red pro-

teins in Figure 10B. Interestingly, in 2008 Goude et al. carried out an Mtb experi-

ment involving ethambutol and ofloxacin treatment and showed that this operon 

should officially be extended upstream to include three of these FP proteins which 

COSMO predicted, namely: Rv3790 - Rv3791 (involved in lipid metabolism and 

cell wall organization) and Rv3792 (involved in cell wall organization). Hence, 
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four of the FP proteins take part in the same BP as the EVO and three of the FP 

proteins were confirmed to be co-expressed with this operon when Mtb is grown 

under other drug stresses. It is therefore not improbable that this operon may be 

extended by some of these proteins, but an appropriate study with the required en-

vironmental stress, has not yet been designed to observe their co-expression. It’s 

also interesting that a lipid metabolism protein was implicated. 

 

The Rv2958c - Rv2959c operon was always predicted as being extended by the 

hypothetical protein Rv2960c. The proteins of the EVO participate in 

intermediary metabolism and respiration. However, the function of Rv2960c is 

unknown, so it is unclear whether it could be a protein that is occasionally co-ex-

pressed with this operon.  

 

Finally, the proteins of operon Rv3921c – Rv3924c, were classified as belonging to 

a mixture of three BPs, namely: ‘cell wall and cell processes’, ‘virulence, detoxi-

fication, adaptation’ and ‘information pathways.’ This operon was always predicted 

to overlap with another operon Rv3917c – Rv3919c. These two operons are sepa-

rated from each other by just one hypothetical protein, Rv3920c. Perhaps it’s just 

proximity, but we may not dismiss that it may be a longer operon, for which previ-

ous studies have not recreated the appropriate conditions for its induction. 

 

For a more detailed overview of the functional annotations of these genes, see Sup-

plementary Table 2. 
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Figure 10: STRING-DB PPI of true positive operons and their predicted false positive 

genes. A) All of the predicted FP proteins of the operon Rv1334 – Rv1336, except for 

Rv1338 (murl), form part of the molybdopterin cofactor (MoCo) metabolic process (FDR 

= 9.34 x 10-8), including three of the proteins which belong to the EVO. The proteins 

belonging to the experimentally verified operon (EVO) also function in a novel cysteine 

biosynthesis pathway. However, the MoCo metabolic pathway has been shown to be 

closely associated with the cysteine pathway. B) The genes of the EVO, Rv3793 – Rv3795, 

and its four upstream FP genes, Rv3789 – Rv3792, have been shown to function in the 

same BP, namely cell wall organization (FDR = 1.60 x 10-9). Three of the FP proteins 

(Rv3790 – Rv3792) have been shown to form part of the operon under two other drug 

stresses. These are the proteins shown in red. For the official gene names of these common 

gene names, see Supplementary Table 2. 
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3.2.3 Functional annotation of Static False Negatives  

  

Finally, we assessed the possible reasons for why some operons were consistently 

predicted as shorter than the EVOs. Operon Rv1161-Rv1164 was always split, with 

the first two genes expressed as single genes, while the latter two were expressed 

as an operon. The reason behind the split was a huge drop in the IGR expression 

levels between these genes (up to a 14x fold difference). Since the IGRs and their 

flanking CDSs usually showed correlated expression in experimental operon stud-

ies (REFs), it’s unlikely that these genes were coregulated in our strains. All of these 

genes are involved in intermediary metabolism and respiration. 

 

For the kas operon (Rv2243 - Rv2247), the first gene of this operon (fabD), was 

always expressed independently from the rest of the operon. This was as a result of 

a 3-fold higher expression level compared to the rest of the genes. Consistent with 

our findings, both Wilson et al. (1999) and Fu (2006) showed that fabD showed 

varying expression levels, depending on which drug it was exposed to. Under 

isoniazid exposure, it was increased by up to 3-fold compared to the rest of the 

operon genes, while a 2-fold decrease was observed under delamanid treatment. 

Moreover, Salina et al. (2019) showed that while all five of the kas operon genes 

were upregulated during an early resuscitation growth stage, the fabD was not as 

highly upregulated as the other four genes. This demonstrates again that different 

environments induced different lengths in this operon. We found no evidence in 

literature of this operon being tested under RIF stress. Yet, based on the 

observations of its modifications in response to other drugs, it’s possible that 

experimental evidence may confirm our results. All the genes of this operon 

function in lipid metabolism.  

 

Lastly, across the different genotypes and conditions, the operon Rv2871 - Rv2875 

was never consistently the same length. Rv2871 (vapB43) is a possible antitoxin, 

while Rv2872 (vapC43) may be a toxin, which is involved in antibiotic stress 

response, cell wall structure, and biofilm development (Wang et al. 2018). Lipid - 
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especially cholesterol-induced antibiotic persistence, have been shown to be 

critically dependent on these toxin-antitoxin systems (Talwar et al. 2020). 

 Rv2873 (mpt83) may be an antigen in the presence of the drug vancomycin 

(Mustafa 2011) and Rv2875 (mpt70) is an immunogenic protein. Both are possibly 

involved in cell and cell wall processes. Rv2874 (dipZ) is possibly involved in 

intermediary metabolism and respiration. However, not much is reported in 

literature about this operon and the functions of most of the proteins are still 

probable. Hence, we could not do any further cross referencing to experimental 

studies.  

 

Interestingly, while lipid metabolism proteins were never part of the static TP 

operons, both the static FN and static FP operons had operons lipid-related proteins. 

This suggest that proteins involved in lipid-related BPs may be a target for adjusting 

operon lengths. 

For a more detailed overview of the FA of these genes, see Supplementary Table 

2. 

 

3.3 Dynamic operons  

 

Unlike the 23 static operons where the operon lengths were the same across all 64 

samples, for 27 of the 50 EVOs (54%), the operons were not consistently the same 

length across samples. Instead, the strains belonging to each genotype reorganized 

the operons in their unique way under control conditions or RIF stress. Where some 

strains may have lengthened an operon in response to RIF stress (FP), other strains 

may have shortened the same operon (FN), and still others may have retained the 

operon length, even after being exposed to RIF stress. We therefore called these 

dynamic operons, because the operon had different lengths amongst the strains.  
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Table 10 shows that although in response to RIF stress, the strains regulated their 

operon lengths uniquely, there was still a general sense of resistance to operon 

length modifications. Moreover, if the modifications were allowed, the type of 

operon length modification seemed to be similar amongst strains of the same 

genotype. That is, on average, for 63% of these dynamic operons (n = 17/27), the 

strains of a genotype almost agreed upon what the length of the operon should be 

for their specific genotype under control conditions and would resist a change in 

length when RIF stress was introduced.  

*Note that this was 63% of dynamic operons (n = 27), and not of the 50 total EVOs.  

 

 

3.3.1 Heterogeneous calls versus consensus calls for dynamic operons 
 

A distinction was made between a dynamic operon and an operon prediction call 

that was a consensus call or a heterogeneous call. Just to reiterate, a dynamic 

operon refers to an operon which is not the same length across all 64 samples under 

control AND RIF-stress conditions. A consensus prediction by COMSO was one 

where all biological replicates of a genotype agreed on the prediction call under a 

growth condition. For example, all strains of a genotype agreed that their operon 

was longer than the experimentally verified operon (FPs) under either control 

conditions or RIF stress. On the contrary, a heterogeneous call, was one where at 

least 1 of the biological replicates (BRs), received a prediction call that was 

different from the rest, under either control conditions or RIF-stress.  

 

Dynamic operons could therefore have a consensus or heterogeneous prediction 

call. Static operons could have ONLY consensus calls, because for these all 64 

samples had the same prediction call, which is why the topic of heterogeneity was 

never introduced then.  
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Table 10 illustrates the prediction outcomes for dynamic operons. One example was 

that of operon Rv0735 – Rv0736 from the Beijing high MIC genotype, for which 

COSMO predicted the operon as TP under control conditions, but under RIF-stress, 

some operons remained TP, while others were predicted as longer (FP), resulting in 

a heterogeneous call, with a combination of TPs + FPs operons. An alternative 

scenario for a heterogeneous call, was when COSMO identified a complete mixture 

of operon lengths, such as with operon Rv2743 – Rv2745, where for the same 

genotype, this operon received all three prediction calls (FP, FN and TP) under 

control conditions.  

 

On the contrary, dynamic operons, could also have consensus calls, such as with 

operon Rv3516 – Rv3517 of the Beijing high MIC genotype, where all strains 

reported the operon as shorter than the experimentally verified operon (FN) under 

control conditions, but longer under RIF-stress (FP).  

 

 

3.3.2 Operon change genotype or strain-specific? 

 

One of the primary questions we had was how often the operons within a genotype 

had a consensus call, and how often the operon had a heterogeneous call. This was 

important because the former could allude to a genotype-specific 

regulator/promoter which modulates the length of an operon for that genotype, 

while the latter means that each strain regulates its operon length independently. We 

also wanted to know whether this possible genotype-specific regulation occurred 

more often under control conditions or under RIF-stress.  
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Table 10 shows that for the 27 dynamic operons, although strains were slightly more 

likely to have heterogeneous calls under RIF stress (p = 0.02), under both control 

conditions and RIF-stress conditions, strains belonging to the same genotype were 

more likely to have consensus calls than heterogeneous calls (p = 0.0006 and p = 

0.01, respectively). This therefore still indicates that strains of the same genotype 

tended to modify operons as if they were regulating their gene expression via 

operons according to their genotype, and not as independent strains. 

 

Additionally, when we consider that our strains already shared 23 static operons for 

which the lengths of the operons remained the same across the 64 samples, and we 

combine this data with the consensus calls of the dynamic operons (average n = 

17), then out of this combined EVO operons, approximately 80% (n = 40) of strains 

had consensus calls for their operon lengths (p = 1.4 x 10-9). This indicates that, as 

a whole, Mtb strains showed a greater propensity for regulating their operon lengths 

in a genotype-specific manner than for each strain to respond to environmental 

stresses autonomously.  

 

We also checked if certain genotypes showed a greater affinity for operon length 

modifications under RIF stress than others. The low MIC Family X strains from 

L4 more readily modified their operon lengths under RIF-stress compared to the 

other genotypes (n = 16; 32%), while the Beijing low MIC strains offered the great-

est resistance to length changes (n = 6, 12%). Nevertheless, despite being of the 

same family, the high MIC strains of Family X, contrarily reported some of the 

greatest resistance to being modified (n = 8; 16%). Hence, it was not just the family, 

but also the MIC status of strains which influenced how operon lengths were ad-

justed in response to RIF exposure.  
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Table 10: The dynamic operons and their predictions under control conditions versus 

RIF stress, per genotype.  

 

 * The orange blocks were operons which were the same length under RIF stress as they were under 

control conditions, within their genotype. The green blocks indicate operons which changed their 

length under RIF stress and indicates that the change was a unanimous call (consensus) under both 

conditions E.g., FN under control conditions and FP under RIF stress. Alternatively, the green 

blocks may also indicate that the operon length was a unanimous call under one condition (e.g., FN 

under control) and a slightly mixed call in another (e.g., TP and FN under RIF). Grey blocks 

indicates that the calls were completely mixed (TP and FP and FN) under one or both conditions. 

 

 

Dynamic Operons CONT RIF CONT RIF CONT RIF CONT RIF CONT RIF

Rv0046c - Rv0047c FN TP, FN

Rv0096 - Rv0102 TP TP, FN FN TP,  FN FP, TP, FN FN

Rv0166 - Rv0178 TP TP, FN TP TP, FN

Rv0287 - Rv0288 FP, TP FP FP, TP FP FP, TP FP FP, TP TP

Rv0586 - Rv0594 FN TP, FN FN TP, FN

Rv0735 - Rv0736 FP FP, TP TP FP, TP FP, TP FP FP, FN, TP FP, TP FP, TP TP,  FN 

Rv1138c - Rv1139c FP, TP FP FP FP, TP

Rv1285 - Rv1286 FP, FN FP, FN

Rv1477 - Rv1478 FP, TP FP FP FP, TP

Rv1483 - Rv1484

Rv1660 - Rv1661

Rv1806 - Rv1809 TP TP,  FN TP,  FN FN

Rv1826 - Rv1827 FP, TP FP

Rv1908c - Rv1909c FP FP, FN FP FP, FN

Rv1964 - Rv1966 FP FP, FN FP, FN, TP FP, FN FP FP, FN FP FP, FN, TP

Rv1966 - Rv1971 FP, FN FN FN FP, FN FP, FN FN

Rv2481c - Rv2484c FP FP, FN FN FP

Rv2686c - Rv2688c FP FP, TP

Rv2743c - Rv2745c FP, FN, TP FP, TP FP FP, TP FP, FN, TP FP, TP

Rv2877c - Rv2878c FP FP, FN

Rv2931 - Rv2938

Rv3083 - Rv3089

Rv3417c - Rv3423c TP,  FN FN

Rv3493c - Rv3501c FP FP, FN FP, FN FP

Rv3516 - Rv3517 FN TP TP,  FN TP TP TP,  FN TP,  FN TP

Rv3612c - Rv3616c FN FP, TP FN FP, TP

Rv3917c - Rv3919c FP FP, FN

Different call 

under CONT vs RIF-

Heterogeneous 

calls 8 10 7 11 10 11 11 14 9 10

Consensus calls 19 17 20 16 17 16 16 13 18 17

Total no. dynamic 

operons 27 27 27 27 27

6 13 16 8 8

TP,  FN 

FN FP, FN FN

FP, FN FP, FN FN FN

FN FN FN FN

FP, FN FP FP

FP FP FP FP, FN FP

TP,  FN TP,  FN TP,  FN TP,  FN TP,  FN 

FP, FN TP

FP FP FP, FN FP

FP FP FP, FN

FP TP TP FP

FP FP FP

FN

FN FN

FN FN TP,  FN 

FP FP, TP FP FP

FP

FP FP FN FN FP

FP FP FP

FP FP, FN FP FP

FP FP, TP

FP FP FP FP, FN

TP, FN FN TP, FN

FP, TP

TP TP

Beijing 

(Low MIC)

Beijing 

(High MIC)

Family X 

(Low MIC)

Family X 

(High MIC) rpOB  mutants

FN FN FN FN

FN TP,  FN 

Lineage 2 Lineage 2 Lineage 4 Lineage 4 Lineage 4

TP

FP
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3.3.3 Functional annotation of dynamic operons 
 

Naturally, after observing the most enriched BPs for the static operons, we wanted 

to analyze the functional annotations of the dynamic operons, to see if this gives us 

some hints as to the mechanisms used by Mtb to circumvent RIF stress.  

The three most enriched BPs for the dynamic operons were i) cell and cell wall 

processes, ii) intermediary metabolism and respiration and iii) regulatory 

proteins, which are shown in Figure 11. As discussed before, the first two BPs 

could again have been coincidental, as these were two of the BPs containing the 

most genes on average for Mtb H37Rv. Yet, the regulatory protein class, was again 

one of the most targeted BPs for these dynamic operons, despite not being one of 

the most enriched protein classes for H37Rv.  

 

More specifically, operons were most often extended with regulatory proteins, 

resulting in a longer operon (FP). Since regulatory proteins were also a target for 

static TP operons, it may demonstrate a propensity for Mtb to package this protein 

class into operons, or more importantly, for their impromptu co-expression with 

existing operons. The aim of an operon is after all, to regulate the genome more 

efficiently. 

 

In contrast, operons were most frequently split at a protein involved in ‘lipid 

metabolism’, leading to shorter operons. This emphasised yet again, that while 

none of the static TP operons harboured genes involved in lipid metabolism, this 

class of proteins may be important target sites for operon adjustments under RIF 

stress. For a more detailed overview of the FA for all of the dynamic operon genes, 

see Supplementary Table 3. 
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Figure 11: Functional annotation of the genes constituting the dynamic operons. The 

most common biological processes (BPs) to which the dynamic operon genes belonged 

were ‘cell and cell wall processes’, ‘intermediary metabolism and respiration’ and 

‘regulatory proteins’, respectively. Proteins involved in lipid metabolism were the most 

frequent target sites where an operon would be split, leading to FNs. Operons were most 

often extended by regulatory proteins, leading to FPs. 

 

 

3.3.3.1 Slowed growth rate 

 

In Chapter 2, Section 2.3.3, we discussed how operons involved in lipid 

modifications have a history of being targeted for drug resistance (Derzelle et al. 

2004; Bennett and Clarke 2005; Mouammine et al. 2017). A secondary analysis 

involved a more detailed probing into the specific proteins where the operons were 

split at lipid metabolism genes and lengthened by regulatory proteins. This revealed 

that when these specific proteins were differentially expressed or disrupted in 

previous studies, they always resulted in a slowed growth rate, which in turn 

contributed to the non-replicating survival state of Mtb strains.  
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In some instances, the FN operon resulted from lipid proteins which were 

downregulated compared to the rest of the operon gene, and previous studies 

confirmed that those proteins were in fact non-essential (Wipperman et al. 2014). 

In some cases, they even showed additional internal promoters behind the changes 

in co-regulation (Bhat et al. 2017). 

 

Lipid homeostasis is tightly controlled by Mtb to acclimatize the cell to ever-

changing environments and to allow for optimum growth and/or survival (Zhang 

and Rock 2008), but lipid biosynthesis is an energetically expensive activity (Zhang 

and Rock 2010). Thus, it makes sense for Mtb to inactivate or downregulate these 

genes unless they are absolutely required for survival. 

 

Conversely, all of the FP regulatory proteins by which the dynamic operons were 

extended, were shown to be essential for persistence under stress and/or they were 

required for cholesterol uptake, demonstrating that these regulatory proteins were 

specifically linked to lipid metabolism.  

 

In summary, there were reasonable explanations for the FP or FN prediction calls 

of these dynamic operons. The different length predictions seemed to point to 

underlying changes in co-expression when strains were exposed to RIF stress, 

which was also supported by literature, and which pointed to a careful selection of 

very specific biological processes to aid in its survival under RIF stress.   

 

For a more detailed look at how these proteins have been implicated in lipid 

metabolism and slowed growth, see Supplementary file 1. 
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3.4 Differential expression of operons (DEO) 

 

The final part of the analysis was to observe if Mtb strains may have opted to up- 

or downregulate the entire operon’s expression, instead of altering the gene 

expression of individual genes, which may explain the low prevalence of changes 

in operon lengths under RIF stress. Despite setting the initial threshold very low 

for the differential expression analysis, most of the operons failed the criteria for 

evidence of differential expression.  

Table 11 shows that while operon Rv0096-Rv0102 had an FDR <0.05, it FC fell 

just below the cut-off of absolute 0.58 [(abs (0.58)]. Only one operon met both 

conditions. The rpoB mutant strains downregulated operon Rv0676c-Rv0677c by 

about 60% under RIF stress (FC = 2-0.7).  

 

It is not clear why this operon was downregulated. A 2007 study carried out by 

Briffotaux et al., reported that this operon is highly conserved in all sequenced 

genomes of the Mycobacterium genus, with the exception of M. leprae. This efflux 

pump, also known as MmpS5-MmpL5, is essential for virulence (Wells et al. 2013) 

and has been implicated in bedaquiline, clofazimine and azole resistance (Milano 

et al. 2009; Andries et al. 2014).  However, Narang et al. (2019) did show that 

MmpL5 was only induced in 44% of RIF resistant clinical strains under RIF stress.  

Nevertheless, despite being downregulated under RIF-stress in the rpoB mutants, 

the expression level of this operon across all genotypes - including that of rpoB, 

was typically still quite high (minimum of 50x coverage). Not only was its 

expression level substantial, but the length of MmpS5-MmpL5 was also previously 

shown by us to be tightly regulated – even under RIF stress, as this was one of the 

static TP operons, as reported in Section 3.2.1.   

 

Table 11: The differentially expressed operons called by limma voom 

Genotype Operon logFC Adjusted p-value (FDR) 

rpoB mutants Rv0676c-Rv0677c -0.7 0.016 

rpoB mutants Rv0096-Rv0102 -0.56 0.016 
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3.5 Testing COSMO on Mtb strains under hypoxia 

 

The last functionality we tested, was COSMO’s ability to predict operons under a 

different environmental stress. By using six drug sensitive strains grown under 

hypoxia conditions (lineage 4), a combined set of 48% of operons were called. We 

found that COSMO was able to correctly predict one additional operon (Rv1285-

Rv1286), which was never previously picked up under RIF-stress. A STRING-DB 

analysis revealed that this operon functions in cellular response to sulphur 

starvation and oxidative stress (FDR < 2.96 x 10-5). Fu and Tai (2009) showed that 

the first gene of this operon is often upregulated in Mtb to survive hypoxia. This 

finding was supported by Punina et al. (2015) who showed that although these are 

sulphate adenylyl transferase genes, this operon is also upregulated under hypoxia 

in Mtb.  

 

These results demonstrate that COSMO is able to differentiate between operons 

induced under different stress conditions (hypoxia versus RIF-stress). Moreover, 

together with the operons predicted under RIF-stress, this brings the total number 

of correctly predicted EVOs by COSMO, to 74%. The percentage of true positives 

is likely to increase when samples grown under other experimental conditions are 

included in the experimental set.  
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4 Discussion 

After COSMO was benchmarked against Rockhopper, REMap and DOOR 2.0 and 

was shown to outperform all three algorithms, we wanted to ascertain if operons 

were up- or downregulated or reorganized when exposed to RIF-stress with respect 

to their genotype. We tested 64 samples belonging to the WT, rpoB mutants, Beijing 

(high- and low MIC) and Family X (high- and low MIC) genotypes.  

 

We previously showed that although COSMO correctly identified more EVOs than 

its best performing competitors, it still captured only 60% of full-length operons. 

However, we are aware that the current understanding is that operons are dynami-

cally responsive to the environment, and thus, they would reorganize depending on 

which genes are required for survival under that environmental stress. The operons 

we collected from literature were identified under a wide variety of stresses. Nev-

ertheless, under just one stress (RIF), COSMO was able to predict 70% of full-

length operons documented in literature with the addition of the strains from other 

genotypes. We also showed an improvement in the three metrics used to measure 

the performance of COSMO, namely, its precision, recall and F1 score. The preci-

sion had the greatest improvement (17%).  

 

We discovered that a large percentage of operons (46%) did not modify their length 

under RIF stress across all the genotypes but maintained the length they had under 

control conditions (static TP, FP or FN). The biggest group of these static operons 

belonged to the TP operons (32%). That is, they were the same length as the EVOs, 

and they never altered their length when exposed to RIF. We investigated their bio-

logical functions. They could be collectively grouped under ATP synthesis and 

transmembrane transport activity related to this process. If these operons were un-

der such intense selective pressure, then they may have to be classified as house-

keeping operons. These static TP operons also had an usually high number of reg-

ulatory proteins within their operons. Since operons are higher modules that may 

control entire pathways, targeting them for antitubercular intervention, could prove 

to be more efficient than individual genes which are the current drug targets.  
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A small subset of these static operons was always predicted as FP (8%) and FN 

(6%). Most of the FP proteins were enriched for the same biological process as the 

EVO which they were ‘falsely’ predicted to be a part of. Interestingly, some of these 

static FP genes have previously been proposed as extensions to these associated 

operons, due to the co-expression with the operon genes under certain drug stresses 

(Goude et al. 2008; Voss et al. 2011; Mendel 2013; Leimkühler 2014).  

 

Similarly, the genes of FN operons were split by COSMO due to unusual discrep-

ancies in expression levels between neighbouring operon genes and/or their uncor-

related IGR coverages. Here again, other studies have confirmed that depending on 

the environmental stress, many of these genes may not be co-expressed with the 

rest of the operon genes (Wilson et al. 1999; Fu 2006; Wang et al. 2018; Salina et 

al. 2019). Some were even shown to specifically have internal promoters to regulate 

this co-expression (Bhat et al. 2017). Hence, the rules underlying our algorithm are 

showing promise for its ability to correctly predict operons from literature. A CoV 

analysis also showed that the predictions of COSMO are reproducible across BRs 

and TRs. 

 

Regarding strain or genotype-specific cues to stress; we observed that operon 

lengths among strains were usually the same for strains belonging to the same gen-

otype. Instead of responding to RIF stress autonomously, operons preferred to settle 

on operon length within their genotype and may be under such intense pressure to 

maintain that operon length, that they resist operon reorganization, even under RIF 

stress. On average 80% of operons maintained the length they had under control 

conditions after they were exposed to RIF stress, within each genotype.  

 

The Family X low MIC strains from L4 were the most flexible to operon reorgani-

zations. However, this same family reported both the lowest and the highest re-

sistance to operon length changes, depending on the MIC levels. Therefore, both 

the family and MIC status contributed to the strains’ response to RIF stress.  
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Although this lack of substantial differences in the operon reorganization under RIF 

stress was a bit disappointing, this resistance to length modifications was supported 

by literature. Price et al. (2006) observed that there was a strong negative selection 

against operon reorganizations. Interestingly, Yoon et al. (2011) showed that micro-

organisms that were resistant to high heat, may also resist changes in operon organ-

ization. Although Mtb is a mesophile, previous studies have shown that it displays 

remarkably similar behaviour to thermophiles in its ability to survive high temper-

atures (Zwadyk et al. 1994; Doig et al. 2002).  

 

A functional annotation of the dynamic operons (operons which allowed length ad-

justments across genotypes) revealed that proteins functioning in lipid metabolism 

may be the sought-out target sites where operons receive signals to split in response 

to RIF-stress. Proteins which function in lipid metabolism have already been con-

sistently highlighted as targets for drug resistance in Mtb (Bailo et al. 2015; Bah et 

al. 2020). On the contrary, regulatory proteins were often preferred as targets where 

operons were extended (FPs). These specific FP regulatory proteins which were 

predicted by COSMO, were linked to lipid pathways in literature – pointing again 

to the careful regulation of lipid levels in response to RIF stress. 

 

When Mtb goes into a persistence state, it does so in a well orchestrated process, 

which starts with it recognizing the type of stress in its immediate environment. 

This is followed by inducing the formation of the lipid-rich macrophages of its host. 

Mtb then adapts itself for the utilization of these host-derived lipids (especially 

cholesterol) and lyses the macrophages for lipid uptake. However, the lipid uptake 

requires the complimentary regulatory proteins to activate the lipid metabolism 

enzymes. At the same time, Mtb then signals for the inhibition of growth pathways, 

since lipid/cholesterol metabolism is bioenergetically expensive. The slowed 

growth rate results in Mtb persistors, which are able to survive under severe stress. 

One serendipitous consequence of this, is that Mtb becomes less susceptible to 

drugs (Pandey and Sassetti 2008; Miner et al. 2009; Zhang and Rock 2010; 

Colangeli et al. 2014; Talwar et al. 2020). This cascade of events shows the intricate 
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link and therefore possible strategy behind Mtb’s targeting of lipid metabolism 

genes and the associated regulatory proteins, to attain RIF resistance. 

 

 

When we looked at the differential expression of operons under RIF-stress, only the 

MmpS5/L5 operon was downregulated in the rpoB genotype. We could not ascer-

tain the reason for the downregulation, because MmpS5/L5 is an efflux pump for 

many anti-tubercular drugs. Despite being downregulated, the average expression 

levels across all genotypes – including rpoB mutants- were still quite high, indicat-

ing that this pump was always in an induced state. This operon was also one of the 

operons for which the length was strictly maintained across all genotypes – even 

under RIF stress. This intense selection pressure aligns with what was observed in 

literature and lends to the call that this may be an interesting drug target for Mtb. 

 

Nevertheless, the general lack of differential expression of operons, as well as the 

low prevalence of operon length alterations under RIF stress, seems to indicate that 

Mtb tightly regulates the co-expression of the proteins which constitute operons, so 

that both their lengths and their overall expression levels are preserved, and if they 

do fluctuate, they do so mostly in a genotype-specific manner and by specifically 

targeting proteins which assist in lipid metabolism. 

 

 

Finally, when COSMO was tested on strains grown under hypoxia, we identified 

an operon which was previously never called correctly under RIF stress. It was 

therefore not surprising when the genes of this operon were confirmed to be induced 

in the presence of hypoxia stress in Mtb. 

 

4.1 Limitations of this study 
 

One of the limitations of this study is that only two of Mtb’s lineages were analyzed, 

but this study can naturally be extended to include all Mtb lineages, and thus pro-

vide a more diverse overview of operon modification. The predicted operons were 
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also not experimentally validated, so there remains a great scope for increasing the 

credibility of this study with long range PCR or another appropriate experimental 

method. Our aim is also for COSMO to accept multiple bam files at once, and thus, 

COSMO will need to include a means to normalize between samples and possibly 

even have the capability of processing Fastqs as input. 

 

Furthermore, the EVO used in this study were identified under various conditions 

– none of which were RIF stress. Also, none of the EVOs were previously compared 

across different genotypes. There were also no Mtb genes which were previously 

confirmed to always be expressed as single genes. This means that both a true pos-

itive and a true negative list were difficult to validate. The lack of a true negative 

list also prevented us from testing for specificity and from drawing a ROC curve.  

Lastly, it was a challenge to ascertain how a high GC content and possible gDNA 

contamination may have in influenced the coverage of the various genomic regions 

under study. 

 

However, overall, COSMO has shown promise in its ability to accurately identify 

operons under distinct environmental conditions and to give us insight into the un-

derlying biological processes which may be relevant for Mtb’s adaptation to RIF 

stress.  

 

 

5 Future work 

In future we would like to carry out operon predictions for organisms with a more 

extensive true positive list of operons such as E. coli and B. subtilis. The current list 

of EVOs for Mtb is very small and therefore creates limitations, especially with 

regards to the validation of a true negative operon list. We would also like to include 

samples from other environmental stresses, to observe if more operons from 

literature can be predicted. We aim to allow COSMO to accept multiple files, which 

means that it will be optimized to normalize the reads across samples. Future work 

also includes testing newly predicted operons and dynamically changing operons 
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in the lab to extend the validated operon list for Mtb and includes making COSMO 

available for non-bioinformaticians on the Galaxy interface. 

 

6 Supplementary Material 

 

Supplementary Table 1: List of 65 genes which made up the static TP operons. 

TP genes 
Rv0490 

Rv0491 

Rv0676c 

Rv0677c   

Rv0902c 

Rv0903c 

Rv0928 

Rv0929 

Rv0930 

Rv0933 

Rv0934 

Rv0935 

Rv0936    

Rv0967 

Rv0968 

Rv0969 

Rv0970 

Rv0986 

Rv0987 

Rv0988 

Rv1303 

Rv1304 

Rv1305 

Rv1306 

Rv1307 

Rv1308 

Rv1309 

Rv1310 

Rv1311 

Rv1312 

Rv1410c 

Rv1411c 

Rv1460 

Rv1461 
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Rv1462 

Rv1463 

Rv1464 

Rv1465 

Rv1466 

Rv2358 

Rv2359 

Rv2430c 

Rv2431c 

Rv2592c  

Rv2593c  

Rv2594c   

Rv3132c 

Rv3133c 

Rv3134c 

Rv3145 

Rv3146 

Rv3147 

Rv3148 

Rv3149 

Rv3150 

Rv3151 

Rv3152 

Rv3153 

Rv3154 

Rv3155 

Rv3156 

Rv3157 

Rv3158 

Rv3874 

Rv3875 
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Supplementary Table 2: Static FP and static FN operons and the functional annotation of their 

operon genes 

Static FP 

operons  

LM 
1 

CCPW 
2 

PE/ 
PPE 

3 

IMR 
4 

VDA 
5 

IP 
6 

CHP 
7 

RP 
8 

ISP 
9 

Rv1334 – 

Rv1336      

 

Rv1337 
Rv1338 
(murl)  

Rv1333 
Rv1334 

(mec) 
Rv1335 

(cysO) 
Rv1336 

(cysM) 
Rv1339 
Rv1341  

Rv1340 

(rphA)  Rv1332  

Rv2958c - 

Rv2959c     
   

Rv2958c  
Rv2959c    Rv2960c   

Rv3793 - 

Rv3795      

Rv3790 

(dprE1) 
Rv3791 

(dprE2) 
Rv3797 

(fadE35

) 

Rv3789 
Rv3792 

(aftA) 
Rv3793 

(embC) 
Rv3794 

(embA) 
Rv3795 

(embB)     Rv3796 Rv3788 Rv3798 

Rv3921c - 

Rv3924c    
 Rv3921c   Rv3922c 

Rv3923c 
Rv3924c Rv3920c   

No. of times 
BP was tar-
geted 1 3 0 2 1 2 3 2 1 

FPs 1 2 0 1 0 1 3 2 1 

Static FN 

operons 

LM 
1 

CCPW 
2 

PE/ 
PPE 

3 

IMR 
4 

VDA 
5 

IP 
6 

CHP 
7 

RP 
8 

ISP 
9 
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Rv1161 - 

Rv1164       

   

Rv1161 
Rv1162 
Rv1163 
Rv1164            

Rv2243 - 

Rv2247      

Rv2243 
Rv2244 
Rv2245 
Rv2246 
Rv2247              

Rv2871 - 

Rv2875     
 

Rv2873 
Rv2875  Rv2874 

Rv2871 
Rv2872     

No. of times 
BP was tar-
geted 1 1 0 2 1 0 0 0 0 

FNs 1 1 0 2 1 0 0 0 0 

 

Bold gene name: added protein (FP) 

Underlined gene name: protein where the operon was split 

*FN: one split was counted between two genes if they were in the same category 

 

1 Lipid metabolism 

2 Cell and cell wall processes  

3 PE/PPE family proteins 

4 intermediary metabolism and respiration  

5 virulence, detoxification, adaptation 

6 information pathways 

7 conserved hypothetical protein 

8 Regulatory proteins 

9 Insertion sequences and phages 
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Supplementary Table 3: Dynamic operon genes and the biological process enrichment. 

Dynam 
Opero 

1 

LM 
2 

CCPW 
3 

PE/ 
PPE 
4 

IMR 
5 

VDA 
6 

IP 
7 

CHP 
8 

RP 
9 

Rv0046c 
- 
Rv0047c    Rv0046c    Rv0047c 

Rv0096 - 
Rv0102 

Rv0098 
Rv0099 
Rv0100 
Rv0101 Rv0102 Rv0096 Rv0097     

Rv0166 - 
Rv0178 Rv0166 

Rv0173 
Rv0175 
Rv0176 
Rv0178   

Rv0167 
Rv0172 
Rv0174    

Rv0287 - 
Rv0288  

Rv0287 
Rv0288 
Rv0289 
Rv0290 
Rv0292  Rv0291     

Rv0586 - 
Rv0594  Rv0593   

Rv0587 
Rv0588 
Rv0589 
Rv0590 
Rv0591 
Rv0592 
Rv0594   Rv0586 

Rv0735 - 
Rv0736      

Rv0735 
Rv0736  Rv0737 

Rv1138c 
- 
Rv1139c  Rv1139c  Rv1138c    Rv1137c   

Rv1285 - 
Rv1286 Rv1288   

Rv1284 
Rv1285 
Rv1286   

 
 
Rv1289 Rv1287 
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Rv1477 
- 
Rv1478  

Rv1476 
Rv1481    

Rv1477 
Rv1478  Rv1480 Rv1479 

Rv1483 - 
Rv1484 

Rv1483 
Rv1484   Rv1485     

Rv1660 - 
Rv1661 

Rv1660 
Rv1661 
Rv1662 
Rv1663 
Rv1664 
Rv1665       Rv1659  

Rv1806 - 
Rv1809   

Rv1806 
Rv1807 
Rv1808 
Rv1809      

Rv1826 - 
Rv1827    Rv1826   

Rv1825 
Rv1829 

Rv1827 
Rv1828 

Rv1908c 
- 
Rv1909c    Rv1908c   Rv1907c Rv1909c 

Rv1964 - 
Rv1966     

Rv1964 
Rv1965 
Rv1966 
Rv1967    

Rv1966 - 
Rv1971  

Rv1970 
Rv1972 
Rv1973 
Rv1974   

Rv1966 
Rv1967 
Rv1968 
Rv1969 
Rv1971   Rv1975 

Rv2481c 
- 
Rv2484c 

Rv2482c 
Rv2483c 
Rv2484c   Rv2485c    Rv2481c 
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Rv2686c 
- 
Rv2688c  

Rv2686c  
Rv2688c 
Rv2687c   Rv2689c     Rv2690c  

Rv2743c 
- 
Rv2745c Rv2744c  Rv2743c     Rv2742c Rv2745c 

Rv2877c 
- 
Rv2878c Rv2881c 

Rv2877c 
Rv2878c  

Rv2879c 
Rv2880c  Rv2882c  Rv2883c 

Rv2931 - 
Rv2938 

Rv2931 
Rv2932 
Rv2933 
Rv2934 
Rv2935 
Rv2939 

Rv2936 
Rv2937 
Rv2938       

Rv3083 - 
Rv3089 

Rv3087 
Rv3088 
Rv3089   

Rv3083 
Rv3084 
Rv3085 
Rv3086     

Rv3417c 
- 
Rv3423c  

Rv3417c  
Rv3418c  

Rv3419c 
Rv3421c 
Rv3422c 
Rv3423c  Rv3420c   

Rv3493c 
- 
Rv3501c 

Rv3492c 
Rv3493c 
Rv3495c   

Rv3502c 
Rv3503c 

Rv3494c 
Rv3496c 
Rv3497c 
Rv3498c 
Rv3499c 
Rv3500c 
Rv3501c    

Rv3516 - 
Rv3517 

Rv3516 
Rv3517        
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Rv3612c 
- 
Rv3616c  

Rv3614c 
Rv3615c  
Rv3616c       

Rv3612c  
Rv3613c  

Rv3917c 
- 
Rv3919c Rv3916c 

Rv3917c 
Rv3919c 
Rv3918c       

FNs * 6 2 2 5 4 1 1 3 

FPs 
added 5 2 0 6 2 1 6 7 

TP 6 11 1 6 5 1 0 5 

No. of 
times BP 
was 
targeted 13 14 2 14 6 3 7 14 

 

Bold gene name: added protein (FP) 

Underlined gene name: protein where the operon was split. 

*FN: one split was counted between two genes if they were in the same category. 

1 Dynamic operon 

2 Lipid metabolism 

3 Cell and cell wall processes  

4 PE/PPE family proteins 

5 intermediary metabolism and respiration  

6 virulence, detoxification, adaptation 

8 information pathways 

8 conserved hypothetical protein 

9 Regulatory proteins  
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Supplementary file 1: Literature review of dynamic FP and FN proteins 

We probed further into literature to understand the detailed functions of the genes which 

were target sites where operons were split, to see if they had more in common than just 

their involvement in lipid synthesis. 

 

We extended this analysis for the genes which were predicted as extensions (FPs) to EVO, 

to see beyond their enriched BP, ‘regulatory proteins.’ 

 

Lipid biosynthesis is an energetically expensive process, and genes partaking in these pro-

cesses have been shown to be silenced during stress to prevent lipids from being oxidized 

and permanently damaged. 

 

 

 

FN under Lipid Metabolism 

 

genes: Rv0166 - Rv0178, genotypes: all 

The gene involved in lipid metabolism Rv0166 is often downregulated according to 

COSMO. 

When this gene is disrupted, Mtb’s growth rate slowed down in certain media. However, 

this disruption gave mice infected with these mutant strains the advantage of surviving 

166 days longer. 

This operon was often split due to the downregulation of the protein Rv0166 (fadD5). Lit-

erature confirmed that the downregulation of this gene slows Mtb’s growth rate, which 

enables it to persist under stress. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225055/ 

 
 
 

Rv1483 - Rv1484 FN under both conditions for Beijing (High MIC) 

This lipid metabolism operon was often split due to uncorrelated expression levels of these 

proteins and their IGR, which may suggest the use of alternative promoters. This fabg1 – 

inhA operon is implicated in isoniazid resistance. However, studies have shown that both 

genes are actually not required for growth in Mtb. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2393810/ 
 
 

https://etd.uwc.ac.za/
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Rv1660 - Rv1661 split under control and experimental conditions in Family X 

When SigL was over-expressed, it led to a strong upregulation of four small operons: sigL 

(Rv0735)-rslA (Rv0736); mpt53 (Rv2878c)-Rv2877; pks10 (Rv1660)-pks7 (Rv1661); and 

Rv1139c-Rv1138c. 
 
In a murine infection model, the sigL mutant exhibited marked attenuation compared with 

the parental strain, suggesting a role of σL in virulence; however, there were no significant 

differences in the growth rate or in the size and extent of lesions in the infected organs.   

https://febs.onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2009.07479.x 
 
Involved in weakening the cell surface or in an inappropriate modulation of the host im-

mune response https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1418919/  

 

 

This operon was always split in the Family X genotype, due to the downregulation of 

protein RV1660 (pks7). When this specific protein of the operon was disrupted, it re-

sulted mutants deficient in lipid biosynthesis and in severe growth defects in mice.  

https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.26278-0 
 
 

 

Rv2743c - Rv2745c under control, genotypes: Beijing + Fam X high MIC 

Rv2744c may function in regulating lipid droplet homeostasis and nonreplicating persis-

tence (NRP) in M. tuberculosis  

COSMO showed that Rv2744c (35kd_ag) is often significantly upregulated compared to 

the other genes, causing the splitting of the operon. This protein regulates lipid homeosta-

sis and nonreplicating persistence (NRP) in M. tuberculosis  

https://pubmed.ncbi.nlm.nih.gov/27002134/ 
 
 

Rv2931 - Rv2938 in Family X high MIC 

This operon was often split due to the downregulation of Rv2932 (ppsB).  Literature has 

shown that this protein can be specifically targeted for dysregulation to diminish growth 

in Mtb.  

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2958.2006.05102.x 
 
 

 
 

Rv3516 - Rv3517, genotypes: all 

https://etd.uwc.ac.za/
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This operon was split due to uncorrelated expression IGR between the proteins of this op-

eron, indicating that they may have separate promoters. Others have found that  

although Rv3516 (echA19) is involved in cholesterol metabolism, it is not essential for 

growth when Mycobacteria use cholesterol as fuel during macrophage infection.  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255906/ 

https://www.mdpi.com/1420-3049/21/5/598 

 
 
When Mtb goes into a persistence state, it does so in a well executed process which starts 

with the recognition of the stress environment. This is followed by the inducing the for-

mation of lipid-rich macrophages. Mtb then adapts itself for utilizing host-derived lipids -

which includes cholesterol - and lyses its source – the macrophages. The cholesterol up-

take then also signals the inhibition of growth pathways, since replicating/growing organ-

isms are susceptible to drugs. At the same time, it signals the activation of cholesterol bio-

synthesis pathways – resulting in Mtb persistors. 

 

https://dx.plos.org/10.1371/journal.pone.0091024 

https://pubmed.ncbi.nlm.nih.gov/19634704/ 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2393810/ 

https://journals.asm.org/doi/10.1128/mSystems.00855-20 

 
 
 
 
 

False positives under regulatory proteins 

 

Rv0735 - Rv0736: all genotypes and conditions 

This operon was extended by Rv0737. Rv0737 is a regulatory protein. Some of its 

functions include adaptation to environmental changes and resistance to antibiotics.  

https://www.sciencedirect.com/science/article/pii/S0891584919323767 
 
 

 

 

 
 

Rv1285 - Rv1286 under RIF all genotypes and conditions 

https://etd.uwc.ac.za/
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This operon often included the FP protein Rv1287 which is a sulfate adenyl transfer-

ase, just like the two proteins of the operon. It uses ATP as its substrate and has been 

shown to be upregulated under nutrient stress and implicated in persistence.  

https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2958.2002.02779.x 
 
 

 

Rv1477 - Rv1478 all genotypes 

The operon was often extended by Rv1479 (moxR1). Hu and Coates (2001) once again, 

showed that this protein was grossly upregulated in Mtb persistor cells. 

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1574-6968.2001.tb10780.x 
 
 

 

Rv1660 - Rv1661 FP under control and experimental conditions in the Beijing 

and rpoB genotypes. 

This operon was often extended by an upstream protein, Rv1659 (argH), and four down-

stream proteins Rv1662 (pks8), Rv1663 (pks17), Rv1664 (pks9) and Rv1665 (pks11).  All 

four downstream proteins have the same function as the two-gene operon and have been 

shown to be co-expressed with this operon in another study.   

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1418919/ 
 
 

This operon was often extended upstream by Rv1659 (argH).  Argininosuccinate lyase 

(argH)  is essential for the survival of Mtb and plays a key role in nutrient acquisition and 

pathogenesis during infection. It is required for growth on cholesterol.  

https://onlinelibrary.wiley.com/doi/abs/10.1002/iub.1683 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5357164/ 
 
 

Rv1826 - Rv1827 FP in all genotypes 

This operon is often extended by Rv1828. The promoter of Rv1828 also lies within the 

IGR of the operon Rv1826 - Rv1827 and have therefore been suggested to play a role in 

co-regulating this FP protein and the last gene of the operon. Rv1828 belongs to the MerR 

family of transcriptional repressors/activators, was shown to be essential in Mtb infection 

and survival under stress.  

https://onlinelibrary.wiley.com/doi/abs/10.1111/febs.14676 
 
 

https://etd.uwc.ac.za/
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Rv1966 - Rv1971 FP in all except Beijing high MIC 

This operon was often extended by protein Rv1975. Despite being a regulatory protein, it 

is upregulated during cholesterol metabolism and is as such required for long-term 

growth in macrophages. 

https://europepmc.org/articles/PMC4255906 
 
 

 

Rv2686c - Rv2688c FP in Beijing and rpoB 

This operon was predicted to be extended by Rv2690c. This transport protein helps to in-

crease apoptosis during infection of macrophages.  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864267/ 

  

It was also previously confirmed to be upregulated in rpoB mutant strains, helping these 

strains to increase their uptake of exogenous amino acids.  

https://www.frontiersin.org/article/10.3389/fmicb.2018.02895 

  

Access to amino acids such as arginine are essential to bacterial infection, but it is a bioen-

ergetically expensive activity. Thus, there is a preference for sequestering these amino ac-

ids from the external environment, by inducing the relevant genes.  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC127984/ 

https://journals.asm.org/doi/10.1128/JB.00064-09 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482997/ 
 
 

 

Rv2481c - Rv2484c, genotypes: Beijing and rpoB (cont and exp) 

Rv2481c was a FN regulatory protein, because it was downregulated in some strains of the 

Beijing and rpoB lineage. 

Putative triacylglycerol synthase tgs genes are induced when the pathogen goes into the 

non-replicative drug-resistant state caused by slow withdrawal of O2 and also by NO 

treatment, which is known to induce dormancy-associated genes. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC451596/ 
 
 

 

 

 

https://etd.uwc.ac.za/
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7 Data Availability Statement 

The links to the most important scripts used for this thesis can be found below. All 

scripts were written by myself. 

 

Operon list: https://github.com/SANBI-

SA/COSMO/blob/master/Algorithm_parameter_testing/python_scripts_for_predi

ction_calls/50_combined_operon_list.txt 

 

Script for making predictions (T, FP, FN): https://github.com/SANBI-

SA/COSMO/blob/master/Algorithm_parameter_testing/python_scripts_for_predi

ction_calls/dict_no_strains_pred_operon_TP_FP_FN.py 

 

Script for summarizing the total predictions across lineages and families:  

https://github.com/SANBI-

SA/COSMO/blob/master/Algorithm_parameter_testing/python_scripts_for_predi

ction_calls/predicted_operons_counts_per_lineage.py 

 

STRING-DB: https://github.com/SANBI-

SA/COSMO/blob/master/Algorithm_parameter_testing/python_scripts_for_predi

ction_calls/fetch_FA_of_operon_genes_frm_STRING-db.py 

 

 

 

 

 

 

 

 

https://etd.uwc.ac.za/
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 
 

In this thesis we sought to develop a new operon predicting algorithm to detect 

operons in Mycobacterium tuberculosis. We aimed to build COSMO on the 

foundation laid by REMap, in that it is not constrained by features representative 

of one organism’s genomic architecture. We also aimed to test COSMO across 

lineages to observe whether operons were reorganized under RIF stress and whether 

it was done in a lineage-specific or strain-independent way. Finally, we also sought 

to detect if any operons were targeted for up- or downregulation under RIF stress. 

 

Summary of Chapter 3  

In Chapter 3 we developed COSMO by integrating the user-defined parameters: i) 

the minimum CDS coverage, ii) the minimum IGR coverage, iii) the maximum FD 

between adjacent CDSs and iv) the maximum FD between CDSs and their flanking 

IGRs. COSMO also has a built-in feature which re-evaluates the length of the 

operon upon the addition of each new CDS, by testing whether the averages of all 

CDS belonging to the operon are still within the FD cut-off. The parameters were 

empirically validated and found to be statistically significant. We used 12 RIF 

resistant samples from the Beijing family (L2), which were grown under control 

conditions and under RIF-stress. COSMO outperformed REMap, Rockhopper and 

DOOR 2.0 by correctly identifying the most full-length EVOs. COSMO was also 

able to better distinguish between operons predicted under RIF stress versus those 

predicted under no RIF stress and obtained the highest F1 score. Our MLRA also 

showed that the greatest impact on the outcome variable was the new parameter - 

maximum FD between the IGR and its flanking CDSs and that the least significant 

parameter was the traditionally used maximum FD between adjacent CDSs. 

 

 

 

 

 

https://etd.uwc.ac.za/
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Summary of Chapter 4 

In Chapter 4 we tested COSMO on 64 samples consisting of WT (drug sensitive) 

strains and RIF resistant strains from Beijing (high- and low MIC), Family X (high- 

and low MIC) and rpoB mutant strains. We later also tested COSMO on nine Mtb 

samples grown under hypoxia that were obtained from literature. 

Using COSMO’s default settings, we were able to increase the number of operons 

correctly identified from 60% to 70% of EVOs. We also increased our precision 

(from 65% to 76%), our recall (from 88% to 90%) and our F1 score (from 75% to 

82%).  

A larger than expected number of operons (32%) maintained the length of the 

EVOs, regardless of genotype and even when they were exposed to RIF stress. If 

these operons are under selective pressure, then these may be valuable higher 

module targets for anti-tubercular drugs. 

We showed that in general Mtb tends to resist operon reorganization – even under 

RIF stress. Approximately 80% of operons had the same call under control 

conditions as under RIF stress. That is, within a specific genotype (n = 40) of sample 

had consensus calls for their operon lengths (p = 1.4 x 10-9). In the ~20% of cases 

when operon lengths were modified, the data showed that these strains were more 

likely to modify their operon lengths within their genotype than to do so 

independently, under both control (p = 0.0006) and RIF stress conditions (p = 0.01). 

 

Similarly, only one operon was downregulated under RIF stress - the MmpS5/L5 

efflux pump. This pump seems to be important to Mtb because it was previously 

also observed to be one of the operons that was under selective pressure by strictly 

co-regulating the genes of the operon across all genotypes (static TP). Although it 

was downregulated, its expression levels were still high under both experimental 

conditions. 

We also showed that ATP-related proteins and regulatory proteins may be preferred 

constituents of “housekeeping” operons, and the latter were also preferred additions 

to lengthen operons when Mtb was under RIF stress. On the contrary, proteins 

involved in lipid metabolism seem to be targeted when Mtb adjusted its operon 

lengths in response to RIF stress, resulting in shorter operons. 

https://etd.uwc.ac.za/
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Finally, under hypoxia, COSMO correctly called one operon that was never 

previously called under RIF stress. This operon was previously confirmed to be 

upregulated under hypoxia stress. 

Taken together, COSMO successfully demonstrated an improved ability to 

correctly identify operons, compared to some of the best existing predictors. It is 

also able to distinguish between operons induced under different stresses and to do 

this more accurately than its comparators.  

 

 

Future work 

 

We aim to test COSMO on its ability to predict operons in other bacteria. We also 

aim to optimize COSMO to accept and process multiple bam files per run. Part of 

the optimization will involve a model which will allow COSMO to suggest optimal 

parameters to the user, or to utilize these parameters automatically, based on the 

expression profiles within the submitted bam files. COSMO will also be tested on 

samples exposed to alternative stresses and experimental stages to observe if 

more/different operons are predicted. Finally, for those who are not proficient in 

Bioinformatics, we aim to integrate COSMO into the Galaxy environment.  
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