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Abstraa

The thesis sought to investigate the errors made in elementary differential calculus by

students studying engineering at technikons. A sample of 45 first year students from

a technikon's engineering faculty were interviewed and questioned on their

understanding of ideas considered to be important in elementary differentiation.

Differentiation tasks were used to determine the kind of errors first year technikon

students make in elementary differential calculus. Subsections of the tasks were

regrouped to form twelve items, each item relating to one aspect of differentiation.

These aqpects were grouped into four sections: elementary algebra, EE of change,

limits and infinity, and differentiation. The errors in the four sections were analyzed

according to a classification of errors. This classification of errors was linked to

concepts in cognitive theory. Analysis of the data reveals that there were more

structural errors than executive or arbitrary elTors in the sections on elementary

algebra, rate of change and differentiation. There were more executive errors than

structural errors in the section on limits and infinity. The structural errors were due

to the students not applying the correct group of principles to the tasks while the

executive errors were due to the students either omitting or replacing one substage in

a correct rule by an inappropriate or incorrect operation. It is recommended that the

errors can be alleviated by the use of appropriate computer technology such as

spreadsheet and differentid calculus software.
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CHAPTER I

INTR.ODUCTION AND STATEMENT OF THE PR,OBLEM

Mathematics is a compulsory subject for students following engineering courses at

technikons in South Africa. The first year course in mathematics consists mainly of

basic mathematics and calculus. A major component in the course is calculus which

in turn places emphasis on differentiation.

In my experience as a mathematics lecturer at ML Sultan Technikon (in Durban,

South Africa) I have found that students perform consistently poor in solving problems

on differentiation. For example, in the examination at the end of the first semester in

1991 only 32% parisr:d the section on differentiation. Similar views are expressed at

annual meetings of mattrematics lecturers of technikons in South Africa. For example,

in one meeting it was mentioned that students have a mechanistic perception of the

derivative. This phenomenon was also observed by Morgan (1990) in England. He

investigated engineering students' understanding of differentiation. The students were

studying at undergraduate and higher national diploma level at Middlesex Polytechnic

in England. He identified some of the problems students experienced with

differentiation. His findings were as follows:

(i) If the principle dy/dx:0 for a maximum or

minimum is being used, where the function y is given

I
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as an algebraic t'raction or as a sum of two functions,

many students appear to think that the two parts may be

considered ,"p*t ty.

(ii) Students appear to have difficulty with the chain

rule of differentiation. They do not appear to realize

what variable they are differentiating with respect to.

Sometimes they ignore the chain rule altogether and

differentiate with respect to the wrong variable.

(iiD Partial differentiation seems to cause much

difficulty. Students do not seem to realize which

pammeters arc consiant and which are variable.

(iv) Very often, when considering a ma:rimum and

minimum problem, students do not recall that they have

a mathematics procedure for dealing with such problems

and often resort to guessing.

(Morgan,l990:979)

Orton (1983) also investigated the understanding of differentiation. He, however,

concentrated on high school students and training college students. He concluded that

both groups found the same items difficult and the same items easy.

2
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Another dimension to the problem of understanding differentiation is the classroom

practice of the lecturer which has an irtfluence on how the students are taught

(Ernest,1991).

Mathematics is a service course at South African Technikons. I suspect that this

sinration could possibly be a contributing factor to the problems technikon students are

experiencing with differentiation. This issue was discussed at an international

conference on 'mathematics as a service course' held in Japan in 1988. At this

conference Hodgson and Muller (1989) indicated that many faculty members consider

the mattrematics service course as one or more of the following:

(i) large classes wittr a majority of uninterested students

with rather a weak mathematics preparation;

(ii) resricted and overloaded syllabuses, too difficult for

the students and with topics remote from research

interests, with emphasis on techniques;

(iii) a ask for which little technikon credit is given.

At South African technikons students do not specialise in mathematics. It is offered

as a non-ryecialist subject. Subsequently students tend to focus less on the

mathematics than on the other subjects which ttrey must pass to be allowed into the

next semester. This constitutes a problem for motivating the students.

3
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Another issue is the time afforded for the study of mathematics. Restricted time

mitigates against the teaching for understrnding in differentiation. Indeed the time

available does not allow for distinction to be made between processes in differentiation

and the ideas or concepts which underlie these processes.

In the above we have identified some of the problems impacting on the understanding

of differentiation at technikons. Since differential calculus is fundamentally important

for engineering studies at technikons, it is important ttrat we know the difficulties

students experience and that we consider ways of minimizing these difficulties. This

study sets out to investigate how students at a technikon understand introductory

concepts of differentiation.

In order to get an indication of whether any previous study of technikon students'

understanding of differentiation in South Africa was done a data base search was

executed. The research data bases at the ML Sulan Technikon Library and Natal

University Library were used. A search by Human Research Council (HSRC) was

also performed. These searches indicated no previous research has been attempted in

South Africa.

In this chapter we have discussed aqpects of students' poor perfonnance in

understanding of differentiation in South Africa and England. We alluded to other

factors, zuch as the fact that mathematics is a service course, students are not

ryecialising in mathematics and students having little time to study mathematics,

which may contribute to the problem students experience with differentiation. The

4
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priiliarj ur-,j3c[r*d oi rllii ]tudy is to iil",.iti6aie soille ri1: rr,c ucric-;iis lilr'i procrsscs

associated with differentiation which, to my knowledge and experience, could be

considered as the basis for students finding it difficult to handle differentiation.

Chapter 2 reviews theoretical issues in the literature which explore some of the

concepts and processes associated with differentiation. The theoretical framework

underpinning these concepts and processes is discussed in chapter 3. A brief

exposition of the research methodology and design is performed in chapter 4.

Chapter 5 consists of the data'analysis which leads to the quantification of the results.

The concluding remarks and recommendations on ways for improving the

understanding of elementary differcntiation at technikon level are discussed in chapter

6.

5
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CHAPTER 2

THE CONCEPTS AND PROCESSES CONSIDERED TO BE

CONTRIBUTING TO STUDENTS' DIFFICULTIES

In chapter I we alluded to the notion that students at technikons are experiencing a

degree of difficulty in understanding differentiation. Chapter 2 reviews theoretical

issues in the literature which explore some of the concepts and processes associated

with differentiation. These concepts and processes could be considered as areas where

students experience difficulty i n understanding differentiation.

2.1 DIFFERENTIATION AS AN ANALYSIS COMPONENT

In his research of the problems experienced by engineering students with mathematics

in the Netherlands, van Streun (1991), showed that analysis constitutes the biggest

conceptual stumbling block for such students. Differentiation is categorised as a

component of analysis. Differentiation techniques can be applied in the sketching of

the graphs of algebraic polynomial and rational functions. A particular application of

differentiation in this regard is the determination of relative extrema, points of

inflection, intervals on which the function is increasing or decreasing, and the

concavity of the function. The students at the M L Sultan Technikon usually fail to

appreciate the role which inequalities play in curve sketching. This comes to the fore

especially where students have to determine the interval where a function increases or

decreases.

6
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Students often confuse relative maxima with relative minima when they use the first

derivative test. For a relative minimum the derivative changes from positive to

negative. This may lead students to believe that the function is decreasing and

therefore attains a relative minima.

The second derivative test which determines whether the relative extrema is maximum

or minimum is often easier to use than the first derivative test. However, it can

happen that f"(x):O at a maximum or minimum point, and in such cases it is

necessary that we use the first derivative test. Students normally do not go back to the

first derivative test. In using the second derivative test students find it difficult to

grasp that f"(x) is negative at a maximum point and positive at a minimum point.

The points at which the curve changes from concave up to concave down, or from

concave down to concave up, are known as points of inflection (stationary points).

Students find it difficult to sketch the point of inflection. They interpret the second

derivative test as the rate of change of f(x) to be equal to z,ero at the point of

inflection. Due to this misconception students sketch the inflection point (x,y) as a

horizontal line. (y :s;.

2.2 DIFFERENTIATION AS A COMPLEX CONCEPT

A derivative can be seen as a concept which is built up from other concepts. The

derivative can be seen as a function, a number if it is evaluated at a point or limit of

the sequence of secant slopes. There do not seem to be clear-cut characteristics that

set advanced mathematical concepts (algebra) apart from those in elementary

mathematics (arithmetic). Each advanced concept is based on elementary concepts and

7
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cannot be grasped without a solid and sometimes very specific understanding of these

elementary concepts. Thus the concepts of advanced mathematics carry an intrinsic

complexity. Students cannot grasp what is meant by a differential equation or interpret

its solution unless they have understood the concepts and not just the techniques of

differentiation. Differentiation assumes an understanding of the function concept. The

function concept assumes an understanding of the notion of a variable which in turn

presupposes the number concept. This network or sequence leads to interrelated ideas,

each idea integrating some of the more elementary ones into an added structure. For

example, a function is not only a variable but two variables that stand in a relationship

that must obey certain rules. Differentiation generates a new function, the derived

function, from a given one. For example, if f(x):42+bx+c then f'(x):2ax*b'

However, f'(x) can also be interpreted as a dependent variable, say y:2ax*b. At

x:2, f'(2):4aqb, is a real number. It is precisely this complexity of the concepts

that tends to make differentiation difficult for students to grasp them as entities.

2.3 GRAPHS AND DIFFERENTIATION

One of the ways of interpreting the meaning of a derivative is to consider the concept

of the'gradient of the graph of a function'. This interpretation, basic to the

understanding of calculus, deals with the slope of the line tangent at a point on a

curve. Consider the points P(x,,y,) and Q(xr,yr) in figure 1 below. The slope of the

line through these points is given by m: Ay/Ax : y2-!rlxz-xr which according to

Skemp (1970) is the ratio of a pair of corresponding changes. This, however,

represents the slope of the line through P and Q and no other line. If we now allow

8
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Q, to be a point closer to P, the slope of PQ, will more closely approximate the slope

of a line drawn tangent to the curve at P in figure 2 below. In fact, the closer Q is

to P, the better this approximation becomes. It is not possible to allow Q to coincide

with P, for then it would not be possible to define the slope of PQ in terms of the nvo

points. The slope of the tangent line, often referred to as the slope of the curve, is the

limiting value of the slope of PQ as Q approaches P.

v
T

'[l.r;. 
1'3)

-Qr

o,

P(.r1, y1)

o o

Figure I Figure 2

The derivative is defined as the limit of the ratio Ay/Ax as Ax approaches zero.

Therefore the derivative is the gradient of the line tangent to the curve. The average

rate of change is given by Ay/Ax. The derivative is then a measure of the rate of

change of y with respect to x at a point P. The notation dyldx is used for the

derivative. Kerslake OnT found that students have very little understanding of

gradients of lines and therefore of the derivative.

Hughes-Hallet (1989) reported that students should be able to estimate derivatives

graphically as well as to work with functions given graphically. She states that there

is an

.r
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...alarming number of students who are expert at finding derivatives

analytically, but who have no idea what they are doing graphically...

For example students find derivatives of l/(cos3(xa)) quite easily but

who (sic) are completely unable to estimate the derivative at a point on

the graph. In fact they have an attitude towards graphs which is

reminiscent of the attitude many people express towards mathematics.

Such student say 'Oh I just can't do graphs' and laugh as though this

were rather quaint and quite unimportant. After all, in their view, 'real

mathematics' is manipulating x's.

(Hughes-Hallet, 1 989: 32)

I found similar responses from my students at ML Sultan Technikon. Hughes-Hallet

goes on to state the 'rule of three' which is based on the belief that in order to

understand an idea, students need to see it from several points of view, and to build

a web of connections between the different viewpoints. In calculus most ideas should

be presented three ways: graphically,numerically and algebraically. This implies that

for teaching the derived function of x2, it should be dealt as a limit of the sequence

of ratios, numerical values of the difference quotient and a sequence of secants fixed

at one point on the graph approaching a tangent to that fixed point.

Dick (1989) proposes that the derivative should be introduced via magnification. He

states this as

The epsilon-delta's of scaling...using graphing technology in

calculus...the definition of derivative is often illustrated with secant

l0
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lines approaching a tangent line. The limiting process is visualized

using a fixed graph on which a sequence of secants are drawn with one

of the points determining the secant approaching the other point...nice

software versions of this visual limiting process exist, but their

specialized nature would make many instructors think twice about

programming them on a general graphing package or calculator...

unlike the fixed graph illustrations above, we can formulate visual

meanings for these definitions in terms of the effects of changes of

scaling of graphs of functions.

He then proposes the following scaling definition.

The function f is said to be differentiable at x=a if and only if for a

screen centred at the pixel (a,f(a)), there exists a common horizontal

and vertical scaling factor such that the graph of y:f(x) is

indistinguishable from the line whose graph is y:61*-a)+f(a). In

other words, if we 'zoom in' on the graph of a differentiable function

close enough, its graph should appear to be a straight line whose slope

is the derivative of the function at that point.

(Dick,1989: 145-147)

Strang (1989) agrees with this approach. He combines two approaches. Initially the

study of the actual machine-produced graph is done and then the understanding of the

mathematics of the graphs including concepts such as slope, concavity, scaling and

inflection.

11
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Both Strang and Dick make understanding of the derivative much simpler provided

students have an access to computers and the required software.

2.4 THE COGNITIVE ASPECTS IN DIFFERENTIATION

The cognitive structure existing in the mind of every individual yields a variety of

personal mental images when a concept is evoked. For the concept differentiation it

could evoke mental images of tangents, rate of change, secants and limits.

Accomplished mathematicians thought about researching mathematics. They took the

mathematical content and its structure as a basis for their thoughts. However,

sometimes they do not sufficiently take account of the students involved in learning

the mathematics or of the details of their understanding and how it is acquired. There

was no evidence that they investigated students' thought processes in their written

work. For example, the first account of the differential calculus was published by

I-eibniz in 1684 under the title 'Nova methodus pro maximis ... ' Here kibniz gave

the formulas dxy:16r*ydx, d(x/y):(ydx-xdy)/y2...These formulas were derived by

neglecting infinitesimals of higher order (Boyer,1989:450). No mention was made by

lribniz about the other terms in the expression or how small the infinitesimals were.

lrcturers tend to use l-,eibniz's techniques in their lessons.

Some serious crises have arisen in the lecturing of college mathematics. One such

example, the crisis in teaching calculus as given by Steen (1987). One of the reasons

for such crises is precisely that in most college or technikon mathematics teaching

t2

http://etd.uwc.ac.za/



there is no consideration of cognitive processes but only to mathematical

manipulations.

2.5 DIFFERENTIATION AND FIRST YEAR STUDENTS

First year students arrive in their calculus classes with far less knowledge, skill and

understanding than their instructors assume. In France, for example, a large scale

study has shown that beginning students are reasonably competent in algebra. They

have difficulties in logic (interpretation and manipulation of statements that include

quantifiers) and graphing Ooth in producing and interpreting) (Robert and

Boschet,1984).

Research by Artigue and Viennot (1988) has led to the following conclusions about

first year calculus students: they can compute derivatives but cannot work with linear

approximations (nor do they conceive of a derivative as an approximation), their

geometric images are normally poor and their functional thinking is relatively weak.

Students have a strong tendency to reduce differentiation to a collection of algebraic

algorithms, while avoiding graphics as well as geometric images. As a consequence

they lack the ability to grasp the role of approximations, which is fundamental for

understanding the concept of the derivative.

Another startling deduction was made by Beckman (1989) who reported that one

difficulty in calculus is that students will phrase responses in numbers as natural

numbers. This concept of a number is incompatible with the study of continuous

phenomena (Confrey, 1980). It will certainly not help the student to understand

t3
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differentiation from a method involving the 'slope of secant to slope of tangent of a

curve' where a sequence of secant slopes is generated.

J.and A. Selden (1989) observed that the calculus courses based on textbooks

produced before the introduction of electronic technology are not producing the

desired results. Not only do apparently successful students fail to appreciate the

relationship between theory and problems, but some even have a poor grasp of the

fundamental concepts. In addition, students were rarely able to solve unseen problems,

an important ability for anyone interested in applications. Furthermore, traditional

calculus books contain perhaps too many sample solutions and detailed algorithms for

solving problems. Consequently students stress procedural aspects over conceptual

ones. For example, students who were asked to discuss differentiability of

f(x,y) :2x*4y*t'((1-cosx)ttz+x2) immediately started computing the partial

derivatives of f rather than studying the structure of the expression (Alibert,1988).

Students were found to look at differentials as purely fictional elements and they do

not see differentials as approximations, functions nor a single variable.

2.6 THE CONCEPT IMAGE VERSUS FORMAL CONCEPT DEFINITION

There is a distinction between the mathematical concepts as formally defined and the

cognitive processes by which they are conceived. The term concept image describes

the total cognitive structure that is associated with the concept. This includes all

mental pictures and associated properties and processes. Vinner (1982) stated that

students in a service level calculus course were given the graph Y:x3. Most of them

t4
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stated correctly that it is possible to draw exactly one trangent to the curve at the

origin, but fewer than20% were able to draw the tangent correctly (Vinner,1982).

Their concept image did not include a horizontal tangent at a point other than at a

maximum or a minimum point.

In coming to understand mathematical concepts at school, students evolve mental

pictures at a concrete level. For example, to understand rate of change students may

evoke pictures of a moving car. The mental pictures which served the students well

at school level may now become an impediment. Bruner (1986) suggested that iconic

processing limited ideas and urged a movement onto the symbolic Ievel. The student

with an inadequate concept image may find such a development difficult to achieve.

2.7 CONCLUSION

In differentiation as an analysis component students find inequalities, first derivative

and second derivative tests and sketching the derivative of the curve at the inflection

point difficult. Differentiation is built up of a network of other concepts which makes

it a complex concept.

Using the graphical nature of the differentiation opens the possibility for determining

gradients of secants at a sequence of points and then finally arrive at a tangent for the

curve at a point as the limit of a sequence. Due to the cognitive structure of the

student, technikon mathematics teaching must take into account cognitive processes.

For some of the first year students differentiation will be a problem because their

15
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fundamental mathematical knowledge and understanding are limited. Students with an

inadequate concept image may find developing other concepts difficult to achieve. In

this chapter some of the concepts and processes that may explain the errors made by

students in elementary differential calculus at technikons, have been expounded.

Chapter 3 is a discussion on the theoretical framework underpinning this study.

16
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CHAPTER 3

THEORETICAL FRAMEWORK

In this chapter I will discuss the theoretical framework underpinning this study.

Errors in students' understanding of differentiation are categorised as structural,

executive and arbitrary by Donaldson (1963). This categorisation will be integrated

with the theoretical framework of Davis (1984).

3.I DONALDSON'S ERROR CLASSIFICATION FORMAT

From my experience I observed that students make the kind of errors expounded by

Donaldson (1963). For example, to find the derivative of !:llx at x:0 most students

will write and make the structural error by either giving 0 or infinity as the answer.

Structural errors are described as those which arise from some failure to appreciate

the relationships involved in a problem or group of principles essential to the solution

of the problem. There is a distinction to be drawn between principles of wide

generality, applicable to all problem solving behaviour, and principles relevant to the

form or structure of a particular problem. As the name 'structural' implies, it is

failure to grasp a principle of the latter kind. (Donaldson,1963).

Failure to handle relationships in a problem is seen as arising from a false expectation

of the problem. Structural errors may arise in connection with variable interaction.

Successful solution demands, in the first place, a grasp of the notion that perfect

correlation makes possible inference from the possession of one property to the

t7
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possession of another. Structural errors arise when the subject is acting on the basis

of the given in so far s/he is able to comprehend it and grasp what it implies i.e., it

occurs within the deductive mode: they occur whenever the subject reasons

deductively but fallaciously. One may expect that failure to perceive inconsistency or

consistency would be a common source of structural error. (Donaldson,1963).

Another example of a common error occurs when students are required to find the

derivative of y:1n. If they experience difficulty they recall the logarithm law of

logx':nlogx and then equate this with the derivative. This type of error is an

executive error which involves failure to carry out manipulations, although the

principles may have been understd. Some defect of concentration, attention or

immediate memory lies at their origin. The most prevalent of this class of errors is

loss of hold on reasoning. (Donaldson,1963).

The third type of error is when a student differentiates y:3x' to get dy/dx:2x and

ignores the constant 3. This type of error is classified as an arbitrary error. Arbitrary

errors are those in which the subject behaves arbitrarily and fails to take account of

the constraints laid down in what was given. These are errors which have as their

outstanding common feature a lack of loyalty to the given. Sometimes the subject

appears to be constrained by her/his knowledge of what is 'true' by some

considerations drawn from 'real-life' experience. Sometimes there is no constraint of

any kind. The subject simply decided 'it is so'. (Donaldson,1963:184).

18
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3.2 THE COGNITIVIST THEORY OF DAVIS

Davis (1984) proposed a cognitivist theory as a language to describe mathematical

behaviour. This theory regards mathematical thought processes as fundamental. The

theory relates observations to a postulated theory of 'metaphoric' processes with

information of how the individual thinks about some mathematical problem. This

theory borrows its basic concepts from the field of artificial intelligence.

In what follows I will comment on four of the basic concepts of Davis's theory and

link them to Donaldson's classification of errors. In addition to the four basic concepts

of Davis's theory there are also pointers, descriptors, metaphor and isomorphism,

flexibility, planning space, planning language and meta-language.

3.2.1 SEQUENTIAL PROCESSES

Sequential processes are devices for guiding mathematical problem solving activity.

It makes use of procedures which are algorithmic and step-by-step activities. There

are at least two kinds of procedures: visually moderated sequences and integrated

sequences. The input in the visually moderated sequences cues the retrieval of a

procedure. The execution of the procedure modifies the visual input. The modified

visual input cues the retrieval of a new procedure. The cycle continues until some

process triggers termination. (Davis,1984). For example, to differentiate the

polynomial function f(x):4*r we use the procedure f'(x):4d(x3)/dx i.e., the

procedure d(cf(x))/dx:cd(f(x)/dx. The modified visual input d(x3)/dx cues the

retrieval of the procedure d(xn)/dx:nxn'' when n:3 which yields d(x3)/dx:3x2' The

19
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two new visually modified inputs viz., the constant 4 and the differentiated component

3x2 triggers the termination f'(x):4.3*2:12x2. Sequences which through sufficient

practice, have become independent of visual cues for program guidance are called

integrated sequences. The power of a 'procedure' is that once a procedure has been

synthesized in a student's mind, that procedure can be given a name and new

procedures can be synthesized which use this name as if it were a command in the

student's internal cognitive 'programming language'. (Davis, 1984). For example, the

integrated procedure for d(4x3)/dx is 4.nxn-' or d(cx")/dx:c.nxn-' which is the

synthesized procedure and a command name can be 'polynomial times a constant'.

There are relations among procedures. One procedure A may call upon or transfer

control to a second procedure B. When B has completed its assigned task, it returns

control to procedure A. Procedure B is said to be a subprocedure A. Procedure A is

called the superprocedure (Davis,1984). For example, to differentiate polynomials the

superprocedure cnx'-l is used for differentiation of subprocedure x'. The errors caused

by the use of superprocedures and subprocedures can be classified by Donaldson's

error classification format. If a wrong superprocedure has been selected the error will

be a structural one. If the wrong subprocedure has been selected the error is an

executive error. The student may just lose track of the algorithm s/he is trying to use.

S/he has to keep track of all the sub-assemblies. Keeping track of all the sub-

assemblies is an example of a control task. The human-mind have internal mechanisms

for keeping track of where we are, while working through a task. (Minsky,1980).

These executive errors are mainly made by beginners. These behaviours are mainly

due to distractibility within the context of the problem i.e., s/he may take a different

20

http://etd.uwc.ac.za/



route in solving a problem although s/he may be familiar with the solution route

3.2.2 CRITIC

A critic is an information-processing operator that is capable of detecting certain kinds

of errors. The critic may detect arbitrary or executive errors. For example, to

differentiate the function x2+f :9 the student may do the following 2xdx*2y:Q.

The critic will look for the dy in the equation and the student will be aware that his

solution is incorrect. The critic operator gives the student the motivation and the

apparatus for stepping back and critiquing her/his own thinking as well as saying

something about her/his errors (Brown,1978).

3.2.3 FRAMES

Information in one's mind must typically be organized into quite large chunks (Davis

and McKnight,1979; Minsky,1975'). A frame is an abstract formal structure, stored

in memory, that somehow encodes and represents a sizeable amount of knowledge.

Minsky (1975:212) states that " when one encounters a new situation...one selects

from memory a substantial structure called a frame. This is a remembered framework

to be adapted to fit reality by changing details as necessary". A frame differs from a

procedure in that it is not sequential. It allows multiple points of entry and provides

some flexibility in its use. A frame can be retrieved when needed. The retrieval

occurs almost instantly.
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3.2.3.1 FRAME SELECTION PROCEDURES

Davis (1984) lists six possible frame selection procedures:

(i) Bootstrapping

This involves what one sees in the given.

(ii) Not knowing too much

The students learn and apply the concept of differentiation when confronted with a

minimum or maximum problem.

(iii) Focus on some key cue

Students may focus on some cues whose presence would be taken as evidence for the

retrieval of some specific frame. For example, the rules for differentiation of

polynomials.

(iv) Using context

Students use the context to influence their choice.

For example, in curve sketching, a section which comes under the differentiation in

the Technikon syllabus, the students may use differentiation techniques.

(v) Using systematic search

The student may develop systematic procedures for searching his/her memory. In

curve sketching the student first finds the r@ts, differentiate once to find the

minimum or maximum points. Differentiate one more time to determine the exact

minimum position or maximum position.

(vi) Parameter-adjusting or spreading activation

The student sees an array of 'assimilation' candidates. Whenever one of these is

satisfied, its 'expectation value' is increased. For example differentiating a term with
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x to some non zero positive power indicates that it is a polynomial. It increases the

expectation value that derivative is of the form nx"'r. The frames become active and

assume control. If it is an incorrect frame it will contribute to a structural error.

3.2.3.2 INTERNAL ORGANISATION OF THE FRAME

Frames possess considerable internal organisation. The frame variables or slots seek

specific values from input data. When tlre input does not provide enough information

to permit certain slots to be filled, the frame may insert some tentative 'guess', based

on past experience. When slots are filled in this way, it is called default evaluations.

If the tentative guess is incorrect, then it is an arbitrary error.

3.2.3.3 PRE-DIFFERENTIATION FRAMES

Everyone possesses a large and powerful repertoire of frames for dealing with

operations. Differentiation is a collage of these operations. The successful

mathematician has built on these pre-differentiation frames and synthesized the

abstract frames appropriate to what we recognize as mathematical thought. Not all

students have done this. All Technikon students are supposed to have pre-

differentiation frames and if we can bring them to bear on a differentiation problem,

they can probably solve the problem. The retrieval of appropriate mathematical

frames, and not the following of natural language sentences,is essential if one is to

succeed in mathematics.

Papert (1980) stated that anything is easy if one can assimilate it into one's collection
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of mental models. He found that working with gears made him relate new concepts

to his earlier ideas of gears. This is an expert testimony on behalf of the importance

of pre-differentiation frames.

It can be postulated that one mechanism for dealing with a novel situation involves the

following:

(i) Some initial interpretive frame is retrieved, based on some cues in the input data.

(ii) A possession of a collection of basic information processing frames, such as the

differentiation frame.

(iii) The initial frame recognizes that the input data deal with differentiation so it

causes the retrieval of the differentiation frame or some other appropriate frame.

(iv) The retrieval of the basic differentiation frame automatically lists the previous

uses of this frame. This allows one to consider whether any of these are similar to the

present task.

(v) If so, selection of pieces of this previous 'solution' is executed.

The above is also a recipe for building a new frame. The entire sequence we have just

gone through can be 'welded together' into a single cognitive entity (Davis,1984).

In general, a problem may be quite easy if you have an effective representation for

the problem itself, and the effective representations for the relevant areas of

knowledge.

The definition of differentiation does not induce the creation of adequate frames.

Maybe an appropriate frame can only be synthesized from experience with some

suitable collection of examples and counter-examples. The mental representation of

the concept derivative depends in a central way on:

(i) the ability to recall or to invent candidate exemplars. These may be examples or

24

http://etd.uwc.ac.za/



counter-examples. For example, the differentiability of a function at the point (0,0)

graphed below.

Graph 1:

Y:X2

5

3

v
2

1

o
-3 -2 -1

The above function is differentiable for all x

4

321o

x
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Graph j

y:lxl

'1.2

0.8

Y o.o y'lrl
0.4

o.2

-1.5 -1 -o.5 1 1.5

The above function is irot differentiable at x:o.

(ii) the capability of making judgements on exemplar candidates. For example,

polynomials are differentiable everywhere.

1

o
o.5o

x
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3.2.3.4 DIFFICULTIESWITHDIFFERENTIATION

FRAMES

With respect to the ideas expressed above one can expect that students will be faced

with three difficulties when dealing with differentiation, viz.,

(l) finding the correct pieces in the mind,

(2) determining the units in the input data, and

(3) finding the correct mapping of input units into frame slots after the frame has been

selected.

For example, a problem on differentiation of polynomials will elicit a frame with

'differentiation of polynomials with rules of differentiation'. This results in 'top-down'

and 'bottom-up' processing. In the top-down processing the frame helps as a guide

to the input data. In the bottom-up processing it may turn out that the transformation

did not facilitate the application of the main final solution. If the units in the input

data are incorrect then one will not be able to slot it in the frames. A correct mapping

must be selected. While the 'building' is in progress the partially completed

representation will be subjected to meta-analysis to guide the search for a solution. In

'recognition problems' the student knows the usual facts and techniques. For example,

the process of finding a derivative of a polynomial. S/he may run into difficulty

because none of the familiar tools may suffice to work through a problem. The

student must retrieve a correct 'assimilation paradigm' and devise a correct paradigm

for it.

A visually-similar cue may elicit a well-established frame which was learned earlier.

Since eliciting cues are not sharply defined, confusion may result. Consequently an
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established frame is preferred to a tentative new one. For example, to find a slope of

a tangent at a point in a parabolic graph the student may determine the slope to a

secant cutting two points on the graph. Such an error can be classified as structural

error

When a student has learned differentiation s/he would have built in her/his mind a

knowledge representation structure or frame. The frame will seek inputs for certain

key frame variables. The frame will seek the type of function we want to differentiate

and the rules that are applicable. If the student cannot apply the rule then we can say

the student had not synthesized an adequate knowledge representation structure of

differentiation. The student's frame is sketchy and incomplete.

When the student uses the matching frame without the required input then this will

constitute an error in the mathematical solution. This error is the same as Donaldsons'

arbitrary error.

3.2.3.5 REAL-TIME CONSTRUCTION

What we need may not be retrievable from memory. Therefore we must be able to

create new knowledge representation structures at the moment when we need them.

This is called real-time constructions. We see a two-part process viz., 'top-down' and

'bottom-up' being performed simultaneously. Suppose a student was asked from a set

of data to calculate the rate of change (derivative). The frame may ask whether the

graph obtained from the set of data is a straight line or whether the gradient of the

tangent is the same as the rate of change. The student may possess a frame labelled

'how to solve maths problems'. (Davis,1984:263). This frame embodies a number of
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heuristic principles. It has variables that allow one to input a description of the

problem to be solved. As one of its outputs it will supervise the creation of an ad hoc

representation structure for this particular problem. It will make use of representations

retrieved from memory. One of its tasks is to guide the process of locating these items

in memory. The frame directs a search in the problem statement in order to find what

was being asked. The frame has the responsibility for assembling a procedure for

solving the problem. The frame may resort to 'backward-chaining' to show that rate

of change is the same as the derivative. (Larkin,1980). We have the two processes

converging: first the heuristic problem analysis sequence and, secondly, the building

up of a cognitive representation of the solution.

3.2.4 DEEPER-LEVEL PROCEDURES

Matz (1980) postulates two levels of procedures which are stateable as rules. The

surface level rules are ordinary rules of algebra. The deeper level rules serve the

purpose of creating superficial-level rules, modifying superficial rules or changing the

control structure. The deeper level procedures are by no means infallible. They

produce many superficial level procedures that are erroneous. The deeper level

procedures operate in a systematic and consistent fashion. For example,

d(sin2x)/dx:2d(sinx)/dx. These symtematic errors are similar to Donaldson's

structural errors. Apparently some aspects of 'familiarity' weighs the outcome in

favour of the more familiar frame. Students making the above error are not doing a

careful enough job of verifying that frame selection and instantiation have proceeded

colrectly (Davis, 1984).
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Students retrieve incorrect frames which function in certain situations but should not

be used in a context under consideration. One way of dealing with this is that higher

level goals must be achieved. The constraints can then be relaxed in order to satisfy

these higher level goals. For example, implicit differentiation must be used to find the

derivative of y:(sinx)'z. If the higher level goals cannot be achieved then the error

made will be structural in nature.

3.3 CONCLUSION

The three errors of Donaldson were linked to the sequential pr@esses, critic, frames

and the deeper level procedures. The learning of differentiation does not require

verbatim repeating of verbal statements but the development of appropriate mental

frames to represent the concepts and procedures of differentiation. Structural elrors

are caused by incorrect frame retrieval, sketchy or incomplete frames, deep-level

procedures and superprocedures.

Executive errors are caused by incorrect subprocedures and control structure of sub-

assemblies.

Arbitrary errors are caused by mapping incorrect inputs to the retrieved frame.

The theoretical framework refers to the ways students are thinking with respect to the

mathematical tasks. This necessitates that one has to get information from students

whilst they are engaged in specific mathematical tasks. The mathematical tasks and

the research methodology are discussed in the next chapter.
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CHAPTER 4

METHODOLOGY AND DESIGN

In this chapter I will give an overview of the subjects, methodology and the design

of my research experiment.

4.1 THE SUBJECTS

The aim of the present study was to investigate the understanding of elementary

differentiation by first year technikon engineering students. The subjects of the study

were from the engineering faculty of the ML Sultan Technikon, Durban, South

Africa. All students studied the elementary notions of differentiation at school. They

had also completed the first semester mathematics course at the Technikon. Students

matriculated from the, now discontinued, Department of Education and Training and

Departments of Education and Culture (House of Representatives and House of

Delegates). There were 45 students in the sample. In selecting the sample to be

interviewed there were problems in terms of balance between males and females. This

can be attributed to the fact that presently more males than females pursue engineering

courses.

4.2 METHODOLOGY: DATA COLLECTION
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Orton's (1983) battery of tests was used as the testing instrument. The battery contains

37 tasks of which 12 dealt with elementary differentiation here for the sake of

convenience renumbered and combined into l0 tasks. These 10 tasks were divided into

12 items described on page 44. These 12 items were used in this study.

Interviews were conducted on Technikon premises and lasted from forty five minutes

to sixty minutes. Responses to the differentiation tasks were given orally or written

on paper. A tape recording was taken of the students' oral responses. I used the

clinical method which stresses the importance of the subjective experience of

individuals.

4.3 THE PILOT STUDY

The Orton tasks were piloted with three students and later used in the main study. The

students were selected to reflect the attainments on which the main study was to be

based. From the nature of the responses it became clear that some tasks were not

properly understood or, perhaps, not well formulated. For example, Task 6 required

clarification as to whether it is a general curve or an exponential curve.

4.4 THE TASKS

These tasks come from Orton's instruments for the understanding of

di fferentiation. (Orton, I 983).

TASK I

The diagram shows a circle and a fixed point P on the circle. Secant lines PQ are
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drawn from P to points Q on the circle and are extended in both directions.

Q2

1o

Q3

Q4

P

(1.1) How many different se€nts could be drawn in addition to the ones already in

the diagram?

(1.2) As Q gets closer and closer to P starting from Q, what happens to the secant?

DISCUSSION

It was intended to mirror the following situation in differentiation. The moving point,
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Q, approacires ilre tixed point, P. 'fhe secanr approaches che tangent ro the circle at

the fixed point. The slope of the tangent at a fixed point can be considered as the limit

of the sequence of slopes of secants through the same fixed point. The frame the

student should retrieve incorporates the following: secant cutting two points on a

culve, sequence of secants through Q and P with Q approaching P and the secant

approaching the tangent to the curve at the fixed point, P. The student could also

synthesize the above frames welded into a single frame or could construct each frame

from assemblies. The student could also represent the problem with the curve being

cut by a secant and approaching a point (x,y).

TASK 2

Water is flowing into a tank at a constant rate, such that for each unit increase in time

the depth of the water increases by two units. The graph illustrates this situation.

12

10

Y6

2

o
o

I

4

6543

x

21

What is the rate of increase in the depth when x:2r/z? when
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x:T?

DISCUSSION

Both questions related to the general theme of rate of change, are based on the same

graphical siruation. The student should retrieve the frame 'a tank being filled with

water', 'a straight line graph with gradient 2', and 'rate of change equal to gradient'.

The "tank being filled" can be taken as pre-mathematical frames or collages for the

synthesized frames. The procedure of the frame (top-down processing) is to recognise

that constant rate relates to straight line graphs and that every point on the x-a,ris

yields the same rate of change.

TASK 3

The graph below represents y : 3x - I

12

10

Y6

2

o
30 2

x

(3.1) What is the value of y when x : a? [a is any real number]

8

4

Y '3x-1

3s

1
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(3.2) What is the value of y when x : a + h? [h is any increment]

(3.3) What is the increase in y as x increases from a to a * h?

(3.4) What is the rate of increase of y as x increases from a to a * h?

(3.5) What is the rate of increase of y at x : 2Vz? at x : X?

DISCUSSION

Task 3 was complementary to Task 2. Both included a variety of questions following

the theme of rate of change. Task 3 was based on a linear function whereas Task 2

was based on a real world problem. This type of task is usually found in engineering

courses. The frame to be retrieved in this task is similar to the previous one. The

framewillrequireinputsforafunctiony:f(x),changeofy'changeofx'rateof

change : Ay/Ax and this is constant throughout the x-axis.

TASK 4

The graph below represents Y :3x2+ 1, from x :0 tox :4'

60

50

40

30
v

20
2

Y'3x+1

10

1 5432

x

o
0
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(4.1) What is the value of y when x : a? [a is any real number]

(4.2) What is the value of y when x : a + h? th is any increment on the x-axisl

(4.3) What is the change in y as x increases from a to a * h?

(4.4) What is the average rate of change in y in the x-interval a to a * h?

(4.5) Can you use the result of (4.4) to obtain the rate of change of y at x : 2t/z? at

x : T? If so, how?

DISCUSSION

This task complemented the previous one by considering the same kind of questions

but with a different type of function. The task is aimed at extracting information

concerning students' capabilities and understanding relating to rate of change based

on graphs. The retrieved frame will be similar to the above except that the input

function is a quadratic and that average rate is now Ay/Ax. Recall that in the linear

graph the rate of change is the same as the average rate of change' Using a

superprocedure within the frame, limn- Ay/Ax : the rate of change, the student will

be able to determine rate of change atx:2Vz and at x:T. The subprocedures are the

determination of Ay, Ax and the limit. These subprocedures can also be taken as

assemblies.

TASK 5

(5.1) What is the formula for the rate of change for the equation Y : xn? [n is an

element of the natural numbersl

(5.2) What is the rate of change formula for each of the following equations:-
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Y:3x3?

Y=4 ?

! :21x2?

DISCUSSION

Tasks (5.1) and (5.2) are typical problems found in mathematics at first year level at

technikons. The student retrieves the rules of differentiation frame. The higher order

rules could be production rules which are the 'if-then' rules. Foi example, if the

student is confronted with a polynomial mathematical expression then he should first

identify it as a polynomial. This is a higher order rule. The lower order rule will elicit

the polynomial rule for differentiation.

TASK 6

The diagram below is used to introduce the definition of the derivative, viz., dy/dx

: limn.o [y(x+h)-y(x)l/h in engineering mathematics, where y is any function and h

is an increment in x.

(6.1) At which point or points of the graph does the formula measure the rate of

change?

(6.2) Explain why the formula defines this rate of change?
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o

P

y(x*h)

Y(x)

x*h

DISCUSSION

In the pilot study I discovered that students thought that the above curve was an

exponential curve. This led me to rephrase the problem statement as 'the diagram

below represents a general curye'. The frame to be retrieved could be the sequential

secant tending towards a tangent to the curve at a point and ttre slope of the tangent

is a representation of a rate of change at that point. Furthermore the rate of change

repre sents di fferentiation.

TASK 7

The graph of y for a certain equation, for x : 0 to x : 6, is shown.

x
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I

v

6

4

2

o

-2

-4
o 1 2 5 6 743

x

What is the average rate of change of y with respect to x,

(7.1) From A to B?

(7.2) From B to E?

(7.3) From A to J?

DISCUSSION

The main aim of this task is that the idea of rate of change can be introduced in the

sinusoidal wave which is often encountered by engineering students. The frame to be

retrieved is that average rate of change can be calculated from any two points

irrespective of the curve.
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TASK 8

Explain the meaning of each of the following symbols:-

(8.1) 6x,

(8.2) 6y,

(8.3) 6y/Dx,

(8.4) dx

(8.s) dy

(8.6) dy/dx

(8.7) What is the relationship between 6y/6x and dy/dx ?

DISCUSSION

The understanding of various symbols used in connection with differentiation was

tested. The frame retrieved gives a meaning to each symbol and the relationship

between the symbols and related concepts such as differentiation or limits or average

rate of change. The symbols can be seen as pointers to other concepts which are

descriptors of another concept. For example, the symbol 6y/6x is a pointer for rate

of change which is the descriptor for the derivative.

TASK 9

In each of the following, calculate the rate change at the point indicated, and explain

the significance of your answer:-

(9.1) y: x2-4x *1 atx=1,

(9.2) Y: x2-4x *l atx:2,

(9.3) y : llx at x:0.
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DISCUSSION

This task tested understanding of zero and negative derivatives in relation to the

graph. It also tested whether the students could obtain the derivatives. Part (9.3) is

also encountered in engineering. For example, in electronics the student is required

to calculate the rate of change of current with respect to the resistance of the

alternating current resonance circuit. The equation is i:E/R where E is the constant

voltage, i is the current and R is the resistance of the circuit. The circuit experiences

zero resistance at resonance. Therefore i:E/R in this situation is similar to y: llx at

x:0, where y:i, 1:E and x:R.

The retrieved frame incorporated 'rules for differentiation', calculate a value for the

derivative by substituting it into the derivative equation, using rules to interpret the

values for the derivative at a certain point.

TASK IO

Find the coordinates of the point or points on the curve

Y:x3-3x2*4
at which there is a turning point or stationary point. Determine also what kind of

point you have found.

DISCUSSION

This is a typical mathematics problem which are used to test applications of

differentiation at first year technikon level. The frame retrieved must be able to draw
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curve, use first differentiation and second differentiation higher order rules to

calculate turning points and stationary points.

4.5 THE ITEMS AND THE TASKS

In several tasks similar types of skills and concepts were required. Responses to

appropriate subdivisions of the tasks were re-grouped to form items (Orton,1983).

Each item related to just one aspect of elementary differential calculus. The result of

the re-grouping was twelve items. The following is the summary of the tasks and

items.
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I

2

3

ITEMS AND RELATED TASKS

Item no. Item Description

Infi nite geometric sequences

Limits of geometric sequences

Substitution and increases from

equations

Rate of change from straight line

graph

Rate, average rate and

instantaneous

Average rate of change from

curve

Carrying out differentiation

Differentiation as a limit

Use of the d-symbolism

Significance of rates of change

from differentiation

Gradient of tangent to curve by

differentiation

Stationary points on a graph

Related Tasks

1.1

1.2

3.1;3.2;3.3

4.1;4.2;4.3

3.5

24

5

6

7

8

9

3.4

l0

4.4;4.5

7.1;7.2;7.3

5.1;5.2

6.1;6.2

8. 1;8.2;8.3;8.4;8.5

8.6;8.7

9.1;9.2;9.3

10

l0

1l

t2
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4.6 CONCLUSION

Forty five subjects were chosen for the study. Using the clinical method, responses

to a selection of Orton's tasks were elicited. Orton's tasks on differentiation were

listed and discussed as to relevance and type of the frame retrieved. The tasks were

then itemised according to required skills and concepts. There were 12 items listed in

the table above.

In the following chapter the responses of the students to these tasks will be analyzed

according to Donaldson's classification of errors.
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CHAPTER 5

ANALYSIS OF DATA

In chapter 4 the methodology and design of this study were discussed. The tasks for

the students were also discussed. The present chapter deals with the analysis of the

data of the study. At the M L Sultan Technikon mathematical concepts in differential

calculus are conveniently divided into four sections: (i) elementary algebra, (ii) rate

of change, (iii) limits and infinity, and (iv) differentiation. Errors demonstrated by the

students in these sections'will be classified in terms of structural, executive and

arbitrary errors. Examples of students' work are presented in APPENDIX.

5.I ELEMENTARY ALGEBRA

A considerable proportion of the algebraic content of the tasks was concerned with

graphs of functions. Item 3 concerns finding function values for small increments in

the independent variable. Item 3 consists of tasks 3.1,3.2,3.3,4.1,4.2 and 4.3 (see

chapter 4, p35-37). Item 12 consists of task 10 (see chapter 4, p42). The table below

indicates the items and the number of errors made by the students in terms of

structural, executive and arbitrary elTors.
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Item Structural Executive Arbitrary

3 10 6 3

t2 l3 5 3

CLASSIFICATION OF ERRORS IN ELEMENTARY ALGEBRA

ERRORS

In what follows tasks from items 3 and 12 will be used as exemplars for the various

types of errors made by students.

STRUCTURAL: TASK 4.3

y: 3x2+ 1:3((a+h)-a)+ I

:3(a*h-a)*1

: 3(h)+ I

:3h* I

[incorrect representation for

Ay by not calculating

function at a+h and a...

structural error]

Another exemplar is the 'zero product principle error' which illustrates Davis' 'rules

creating rules' (Davis, 1984).

x3_3x2+4:0

xt'3x2:-4

az(a-l):-4

x2:-4

or x:-4*3

x:"[-4
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or x:-l

EXECUTIVE: TASK 3.3

y : 3a-1-(3a+3h-l)

: 3a-1-3a-3h+1

: -3h

ARBITRARY: TASK 4.3

6y :(3a2 * 3h2+ 1)-(3a2+ 1)

[Ay and not y ...

and change in y taken from f(a) to

f(a+h)...executive errorl

[Ay and not Ax...

arbitrary errorl:3a2+3h2* 1_1-3a2_1

:3h2

For the tasks under item 12 *e chapter 4 task l0 p42-43.

STRUCTURAL: TASK l0

y :x3-3x2+4

Y':3x2-6x

Y':o

3x2-6x:0

x2-2x:0

x(x-2):g

x:0

Of x:2
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Y":6x-6

6x-6:0

6x:6

x:l
y(1):1r-312-u4

:l-314

:)

(r;2)

for x:0 y:4 (0;4)

maximum for x:2

y:8-12+4:0 (2;0)

minimum for x:0

Y":6x-6:-6

Y" (2):6(12)-6:66.

EXECUTIVE: TASK IO

3x2-6x:0

3x2:6x

x2:2x

x:2

fincorrect use of the second

derivative test... structural error]

[...finds minimum and maximum

point but cannot determine which

is maximum or minimum...omits
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one root viz., 0...lack of

control. . .executive errorl

ARBITRARY: TASK 10

3x2-6x:0

x(3x-3):g

x:0

3x-3:0

3x:3

x:1 [...finds maximum or minimum

points butcannot determine which

is maximum and minimum point,

writes 3 instead of 6...arbitrary

errorl

5.2 RATE OF CHANGE

Three tasks on graphs, two linear relationships (tasks 2 and 3) and one quadratic

relationship (task 4) (see chapter 4, p34-37), were considered to be important. Graphs

form an important basis for the study of rate of change in differentiation. Task 7 (see

chapter 4, p39-40) provided further questions on the rate of change. Task 2 is an

elementary real life rate of change problem. The table below indicates the items and

the corresponding number of structural, executive and arbitrary errors made by the

students.
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Item Structural Executive Arbitrary

4 32 3 2

5 24 6

6 10 I

CLASSIFICATION OF ERRORS ON RATE OF CHANGE

ERRORS

In the item 4 (see chapter 4, p34-35) the following are the exemplars of the structural,

executive and arbitrary errors.

STRUCTURAL: TASK 2

III: )2-)1/Xz-Xr

:4-212-l

:2ll

m:2

Y:mx+c

4:2(2)*c

c:0

Y:2*Vz

Y:2.

.'.the rate of increase is

two times when x:ZVz ...
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When x:T

!=27

.'. rate will be 2T. [takes y as rate of

change... structural errorl

EXECUTIVE: TASK 2

rate :5,317 [divides estimated y-value at 2V2

with T...but cannot give an exact

answer...executive error]

ARBITRARY: TASK 2

.-T

Y:27

At x:ZVz

x:T the graph is a straight

line so that the rate of change

[no numerical answer was

given... omits the constant from

equation.. .arbitrary errorl

In item 5 (see chapter 4, p36-37) the following are examples of the structural and

executive errors

ls
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STRUCTURAL: TASK 4

Average=

(3a2*6ah *3h2+ I +3a2 * l)12

[incorrect formula for

average... structural error]

EXECUTIVE: TASK 4

f' (x) : lirn- 3a2 * 6h * 3h2 * I -3a2 -l I h

:limpe 6h+3h2lh

:limr,+ 6+3h 6+310; :6

[incorrect squaring of

a*h...executive errorl

In item 6 (see chapter 4, p39-40) the following are exemplars of structural and

executive errors.

STR.UCTURAL: TASK 7

0-6:-6 [change in y incorrect ...omitted

change in x...structural error]

EXECUTIVE: TASK 7

...to use the average

rate of change in y

in the x-interval a

to a*h, we may use
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the differentiation

Ay : limn.o f(a+h)-f(a)/h

: limo-03(a+h)2 + 1 -(3a+ 1 )/h

: limm3a2 + 6ah + 3h2 * l-3a2 -l lh

-6a [...change in y taken as

differentiation...omits change in

x...executive errorl

5.3 LIMITS AND INFINITY

Limits are important for a conceptual understanding of differentiation. Items I and2

were based on the limits of the infinite sequences of Task 1 (see chapter 4, p32-33).

The idea of a sequence of secants through a fixed point resulting in a sequence of non-

fixed points associated with the sequence of secants approaching the fixed point was

intended to relate to the definition of a derivative of a function. It was considered to

be an important task in giving further evidence concerning the level of understanding

of the tangent as a limit. The table below indicates the items and the corresponding

number of structural and executive errors made by the students.

54

http://etd.uwc.ac.za/



CLASSIFICATION OF ERRORS ON LIMITS AND INFINITY

ERRORS

Item Structural Executive

1 2 19

2 2 3

In the item 1 (see chapte r 4, p32-33) the following are examples of the structural and

executive elTors.

STRUCTURAL: TASK 1

2rr circumference -can

be drawn to all parts [takes the circumference to mean

secant. .. structural error]

EXECUTIVE: TASK I

r79 [takes secant as being angle in the

semi circle...executive errorl

In the item 2 (see chapter 4, p32-33) the following are exemplars of the structural and

executive errors
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STRUCTUR.AL: TASK 1

the length of the

secant lncreases [structural error]

EXECUTIVE: TASK 1

The secant disappears

and a perpendicular is

formed [executive error]

5.4 DIFFERENTIATION

The concept of "limit" and "the rate of change" both appeared in the tasks on

differentiation. Items 7 , 8, g,10, 11 , and 12 (see chapter 4 p37-43 for tasks and p44

for grouping into items) were used to examine and explain the errors' The table

below gives the number of structural, executive or arbitrary errors in each of the

above items made bY students.
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Items Structural Executive

7 8 1

8 39 3

9 124 2

10 13

11 9 4

t2 3

CLASSIFICATION OF ERRORS ON DIFFERENTIATION

In item 7 the following are exemplars of structural and executive errors.

STRUCTURAL: TASK 5.1

Y:Zlxz"'

dy/dx = 212x. [differentiated the

denominator. . . incorrect

rule... structural error]

Further exemplars of the structural error are given below:

TASK 5.1: (l) y:xn...dx/dt:xn[associates rate of change with the variable time...

structural error]

(2) y:xn...nlogx.
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TASK 5.2: (1) Y=3x'...

dx/dt :3xr...y :4...Y :21x2...

y:Zlxz...dxldt:2lxz

(2) y:3x':ln3 *3lnx

!:4...Y:0

. . .y :2 I xz :2x-2 : -2lo}2x.

(3) 3:y:3*'...Y:4...

2:y:21x2

EXECUTIVE: TASK 5.2

dyldx:-2lxt

A further exemPlar is

TASK 5. 1: y:1n...logy:1eg*n..

logy :n1o*x...Y :3x'...

logy:3logx3

than an integer... structural errorl

[associates rate of change variable

time... structural errorl

[whenever a variable is raised to a power

it is operated on bY logarithms

...structural errorl

[takes the rate of change as the

constants... structural error]

[omits the constant 2

...executive error]

58

http://etd.uwc.ac.za/



In item 8 the following are exemplars of structural and executive errors.

STRUCTURAL: TASK 6.2

It is because point :Y*K

depends on Y and x*h depends

on x .'.rate of y upon x is

y*k-y/x*h-x. '

EXECUTIVE: TASK 6.1

(1) measured from

point x+(x*h)

(2) The formula

compares the change in x

and the change in y as the

x-variable tends to zero ie.

gets smaller.

[uses logarithms on all

functions... seem to be stuck on a

rule... executive error]

[takes average rate of change as

rate of change... structural errorl

[omits sequence

of secant... structural error]

[omitted the h tends to zero

... executive error]
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In item 9 the following are examples of structural and executive errors.

STRUCTURAL

TASK E.3

derivative of

function/equation wrt x

TASK 8.4:

derivative in

respect to x

TASK 8.5:

derivative in

respect to y

TASK 8.7:

dy/dx is derivative

[takes average rate of change as the

derivative which is the rate of

change... structural errorl

[takes part of the symbol for the

derivative as being the derivative

of x...structural error]

[takes part of the

symbol for the derivative as

being the derivative of

y...structural error]

of 6y/6x
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EXECUTIVE

TASK 8.1:

function of equation

in respect to x

TASK E.2:

function of equation

in respect to y

In item 10 the following are example of structural errors.

STRUCTURAL:

TASK 9.3

At x:0 y':0

Further exemplars are given below:

TASK 9.3: (1) rate of change :0.

..structural errorl

[takes change in x for function of

x ...executive errorl

[takes change in y as function...

executive error]

[/0 is taken 0...structural error]

[1/0 is taken as 0...

structural errorl

[takes the antiderivative as

the derivative ...structural errorl

(2) dyldx:lnx:lnO

(3) y:x-':-1x-2...

-1(0)a:9.
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(4) y'(0) :g

0...structural errorl

[dividing by zero is taken as

zero. .. structural error]

[dividing by zero is taken

zero, .. structural error]

[dividing by zero is taken as

zeto... structural errorl

(5) dy/dx:0

(6) f'(0) :-(Q)'':Q

(7) dyldx:lnx:lnO [takes the antiderivative as the

derivative...structural error]

In item 11 the following are examples of structural and executive errors.

STRUCTURAL: TASK 10

d2yldzx :6x-6:6(3)-6

m:12.

Another exemplar is:

TASK 10: Gradient of the tangent

: 
Y = x3-3x2 + 4 : (3)3 -3(l7z I O

:9-27 *4:-14

[takes the second derivative as

being the tangent at

x :3...structural error]

[y value taken as rate of

change... structural error]

EXECUTIVE: TASK 10
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dy/dx:3x2*6x ...at x:3....

dy/dx : 3(9)+18=27* 18:45 [omitted the negative

sign...executive errorl

In item 12 the following is the structural error

STRUCTURAL: TASK 10

Turning points

flzyllxz:0 2x-3

:0 x:312

where x:312:

y:(312)r-3Q12)2+4

:3,375-6,75*4

:0,625. [uses the second derivative for the turning

points instead of the first

derivative. . . structural error]

5.5 CONCLUSION

The error types were more structural than executive or arbitrary with the exception

of the classification of errors on limits where there were more executive errors than

structural ones. It was in the structural error that students show an obvious

misunderstanding in the concept of the sequence of secants fixed at one point

approaching the tangent at the fixed position on the circle. Structural elrors were
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pafticularly noticeable in the section on rate of change where the differentiation

symbols caused the students some difficulty.

A number of students divided by zero and gave a result of zero. Few students

retrieved the Davis's classical error of the 'zero product principle'.

In the following chapter I will conclude the thesis by connecting the analysis with the

relevant literature and make recommendations for teaching differentiation at

technikons.
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CHAPTER 6

CONCLUDING REMARKS AND RECOMMENDATIONS

Some of the general factors that may contribute to the students' improper

understanding of differentiation at the technikon could be the following: (i) lack of

importance attached to mathematics as a service course, (ii) students have little time

per semester to study mathematics and little time to study differential calculus as an

analysis component, and (iii) classroom practices of lecturers.

The tasks performed by students for this thesis formed a suitable base from which

research into students' understanding of elementary differential calculus has been

carried out. A snrdy of errors was performed.

Many of the errors were structural and executive. A small proportion was arbitrary.

In the set of tasks used for this study, students made more structural errors than

executive errors. This might be attributed to students tendency to rote learning the

elementary differential calculus. These structural errors indicate that students do not

understand differentiation principles.

Students did experience a number of serious difficulties. A core of three items was

found to be difficult in the sense that even "good" students i.e., students getting less
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than two items wrong, could not cope with them. These are items 4, 8 and 9. With

these three items we investigated an understanding of differentiation based on rate of

change, differentiation as a limit and the use of 6 symbolism, all of which constitute

a real stumbling block in learning elementary differentiation. Over 60% of the

students could not grasp at least one of these imporlant steps in learning

differentiation. This finding indicates that differentiation is a complex concept.

Differentiation becomes a complex concept in that it relies upon other concepts for its

understanding. For example, differentiation relies upon rate of change, limits and 6

symbolism for its definition. Therefore cognitive processes should be taken into

consideration.

In chapter 5 it was clear that many students experienced many difficulties with algebra

such as indices, logarithms, squaring of a binomial. In item 3 many students

experienced great difficulties with substitution and increases in y and x values in

equations. Arithmetic, which is the foundation for algebra, seems to be a problem for

the students. For example, many students divided by zero. Many of the frames

retrieved by the students were sketchy or incomplete. Some of the frames retrieved

were the Davis's classical error'rules creating rules'. It is doubtful that the

introduction to differentiation can be completely meaningful in conventional lectures

if the algebra within studies of gradient, rate of change of functions and sketching of

graphs for maximum and minimum points, and inflection points still causes problems.

Some students had conceptual difficulties with algebra. They could not carry out the

procedures they had in mind without error. There are mathematical technology

software packages such as Maple, Derive and Mathematica which automatically treat
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the algebraic procedures and allow the student to concentrate on the notion of the

slopes of secant lines 'becoming' the slope of the tangent line.

Rate of change needs to be studied intensely. Many students experienced great

difficulties with the items 4, 5 and 6 involving rate of change. For example, students

could not distinguish between rate of change, average rate of change and Ay. It

appeared in many responses by students that difficulties which might at first seem to

be associated with understanding differentiation, might be attributed to insufficient

attention given to the study of rate of change.

Students made more executive errors than structural errors in items I and 2 which

concern the concept limit. This implied that students encountered difficulties with the

control of the sub-assemblies associated with the concept of the limit and infinity.

The limit is used in the definition of the derivative at a point which is often

interpreted as the limit of a sequence of slopes of secant lines approaching a tangent

at the same point. Perhaps using Dick's (1989)'epsilon-delta of scaling ...using

graphing technology in calculus' and Strang's (1989) procedure 'centering and

zoom...graphing technology' may alleviate the pressure of understanding the limit

concept in the context of differentiation.

There were twenty times more structural errors than executive errors in item 9. This

suggests that great care needs to be taken when introducing the notation of differential

calculus. Students found the notations 0y/6x, dy and dx and the relationship between

6y/0x and dyldx difficult.
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It is in the graphs of tasks 3, 4, 6, and 7 and the diagram of task 1 that students

experienced difficulties. In particular at the technikon level the graphical approach

could be used more frequently. Hughes-Hallet (1989) mentioned the fact that students

can differentiate complicated functions analytically but cannot interpret differentiation

graphically. She further advocates the rule of three for the learning of differentiation

viz., algebraic, numerical and graphical methds. Eventhough the technikon syllabus

encourages the use of graphical approach it is usually neglected. In items 10, l1 and

12 a number of structural errors were noted. The results from items 10, 11 and 12

support Hughes-Hallet (1989) assertion. It indicated that a number of students could

not interpret the derivative graphically although they could differentiate the functions

analytically. This finding is also consistent with Artique and Viennot (1988), Alibert

(1988), Vinner (1982) and Robert and Boschet (1984). The behaviour of the curve

should grow out of studying the graph of the curve in the interval. This could prevent

the use of algorithmic procedures.

As stated earlier a major concern that flows from this study is students' difficulties

with basic algebra and its impact on understanding differentiation. Errors in algebra

were structural, executive and arbitrary. Booth (1984) captures the nanrre of the

students' errors in her study in a different form when she reports that students have

difficulty with algebra because they don't understand: (i) what letters mean, (ii) the

various notations in algebra, (iii) the basic properties of real numbers which are the

foundations of algebraic manipulation, (iv) that a response does not have to be a

number and (v) that you can express the same value or relationship in more than one

way. These errors were also observed in this study. Lins (1992) considers that
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thinking arithmetically is a component of thinking algebraically. Some students

divided by zero and got a value of zero in item 10. These errors will further

exacerbate the problems in algebra and consequently differential calculus.

Further research is required to determine whether technikon students would understand

differentiation to a greater degree if they use the computer techniques as expounded

by Strang (1989) and Dick (1989). Computer tasks could be designed to foster student

construction of the differentiation concept. It permits students to learn a host of

techniques for calculation by performing them quickly and easily on the computer.

Visual representations of functions are constructed automatically. This may motivate

students to acquire a deeper meaning of the mathematical principles underlying

differential calculus. Consequently structural errors may be minimised.

While this study concentrated on identifying and analyzing the errors students made

in the tasks performed, it may be useful to analyze all items the students performed

correctly. Such an analysis may indicate some unique thought processes acquired and

demonstrated by the students. It may also give the lecturer some insight into future

structures of the lesson plan.
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DIFFERENTIATION
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