DEVELOPMENT AND IMPLEMENTATION OF

ONTOLOGY-BASED SYSTEMS FOR

MAMMALIAN GENE EXPRESSION

PROFILING

Adéle Kruger

Abstract

Thesis presented in fulfilment of the requirements for the Degree of Doctor Philosophiae at the South African National Bioinformatics Institute, Faculty of Natural Sciences, University of the Western Cape

August 2009

Advisor: Prof. Winston Hide

UNIVERSITY of the WESTERN CAPE

Keywords

ontology
expression vocabulary
gene expression
cross-species
comparison
human development
mouse development
cancer/testis
transcription factor
gene regulation

UNIVERSITY of the WESTERN CAPE

Abstract

The use of ontologies in the mapping of gene expression events provides an effective and comparable method to determine the expression profile of an entire genome across a large collection of experiments derived from different expression sources. In this dissertation I describe the development of the developmental human and mouse eVOC ontologies and demonstrate the ontologies by identifying genes showing a bias for developmental brain expression in human and mouse, identifying transcription factor complexes, and exploring the mouse orthologs of human cancer/testis genes.

Model organisms represent an impertant resource for understanding the fundamental aspects of matmalian biology. Mapping of biological phenomena between model organisms is complex and if is to be meaningful, a simplified representation can be a powerful means for comparisen.

\section*{UNIVERSITY of the}

The implementation of the entolpgiesshas been illustrated here in two ways. Firstly, the ontologies have been used to illustrate methods to determine clusters of genes showing tissue-restricted expression in humans. The identification of tissue-restricted genes within an organism serves as an indication of the finetuning in the regulation of gene expression in a given tissue. Secondly, due to the differences in human and mouse gene expression on a temporal and spatial level, the ontologies were used to identify mouse orthologs of human cancer/testis genes showing cancer/testis characteristics. With the use of model systems such as mouse in the development of gene-targeted drugs in the treatment of disease, it is

important to establish that the expression characteristics and profiles of a drug target in the model system is representative of the characteristics of the target in the system for which it is intended.

UNIVERSITY of the WESTERN CAPE

Declaration

I declare that "Development and implementation of ontology-based systems for mammalian gene expression profiling" is my own work, that it has not been submitted for degree or examination at any other university, and that all the resources I have used or quoted, and all work which was the result of joint effort, have been indicated and acknowledged by complete references.

Adéle Kruger

UNIVERSITY of the
WESTERN CAPE

Acknowledgements

I would like to thank my supervisor and mentor, Professor Winston Hide, for his guidance and support throughout this epic journey. His encouragement and work ethic has provided me with the opportunity to attend and present at international conferences, allowing me to establish collaborations with world-renowned scientists in the field. It has been a pleasure and a privilege to work with someone who is so invested in the success of his students.

I would also like to thank Oliver Hofmann for his endless patience and support in the research we have conducted together. His insight and advice has played a key
 colleagues at SANBI especially Ferial Mullins, Maryam Salie, Judith Jansen, UNIVERSITY of the Patricia Josias and Dale Gibbs, who haveprowidedpadministrative, technical and moral support. Also, a special 'thank you' to Betty Cheng and Russ Altman for their guidance and advice with respect to making a career out of bioinformatics.

In bioinformatics, collaborators play a pivotal role in all research endeavors. I would like to express my gratitude to all those who have contributed to the success of the research presented here. I would especially like to thank Yoshihide Hayashizaki, Piero Carninci and Harukazu Suzuki for their mammoth efforts in the establishment and success of the FANTOM consortium, without which this research would not have been possible. I would also like to extend gratitude and
thanks to all the members of the FANTOM consortium and the RIKEN institute in Japan for their involvement in the provision and analysis of data used in producing this thesis. I thank Duncan Davidson for his feedback during the initial phase of ontology development, Lloyd Old and Andrew Simpson from the Ludwig Institute for Cancer Research (LICR), as well as the members of the Melanoma Research Alliance (MRA) for their contributions to the cancer/testis research.

Without funding we would not be able to conduct exciting and cutting-edge research. I would therefore like to take this opportunity to acknowledge the funding agencies and projects that contributed to my research and bioinformatics education. I am especially grate the Stanford-South Africa Biomedical Informatics (SSABMI) program funded by the Eogarty International Center (Grant TW-03-008) for funding not only my research but also a research visit to Stanford - an invaluable experience that contributed greatly to my education. The National Bioinformatics Network (NBN) of South Africa and Alternate Transcript WESTERN CAPE
Diversity group EU FP programme also funded this research directly. The Medical Research Council (MRC) of South Africa, World Health Organisation (WHO), Oppenheimer Trust and Atlantic Philanthropies funded the projects represented in this thesis and provided financial support for travel. I would also like to acknowledge the funding agencies of our collaborators, RIKEN, FANTOM, LICR and MRA, because without them we would not have any research collaborators or data with which to conduct science.

On a personal note, I would like to thank my family and friends. Special thanks go to my cousins Johan and Margaret, as well as my aunts Doreen and Mariette for their moral and financial support. I would also like to thank my sister, Marlise, and her husband, Louis-Jacques, for their continuous support. To my best friend, Anrinette, thank you for always believing in me, even when at times I did not. Also, I will be eternally grateful to my mom for understanding the importance of an education and making the sacrifices she did in order for me to be where I am today.

Lastly, I would like to thank my Heavenly Father for providing me with the strength and inspiration necessary to complete such a journey as this.

UNIVERSITY of the
WESTERN CAPE

Publications arising from this thesis

Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Eiporich L, Liu J, Litunis, McWilliam S, Madan Babu M, Madera M, MarchionniL, Matsuda H, Matsuzaywa S, Miki H, Mignone F, Miyake S, Morris K, Mottasui-Tabar \$, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Satzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y. The
transcriptional landscape of the mammalian genome. Science. 2005. 309(5740):1559-1563.

Bajic VB, Tan SL, Christoffels A, Schonbach C, Lipovich L, Yang L, Hofmann O, Kruger A, Hide W, Kai C, Kawai J, Hume DA, Carninci P, Hayashizaki Y. Mice and men: their promoter properties. PLoS Genet. 2006. 2(4):e54.

Kruger A, Hofmann O, Carninci P, Hayashizaki Y, Hide W. Simplified ontologies allowing comparison of developmental mammalian gene expression. Genome Biol. 2007. 8(10):R229.

Hofmann O, Caballero OL, Stevenson BJ, Chen YT, Cohen T, Chua R, Maher CA, Panji S, Schaefer U, Kruger A, Lehvaslaiho M, Carninci P, Hayashizaki Y, Jongeneel CV, Simpson AJ, Old LJ, Hide W. Genome-wide analysis of cancer/testis gene expression. Proc Natl Acad Sci U S A. 2008. 105(51):2042220427. Suzuki H, Forrest AR, van Nimwegen Evarb Co, Balwierz PJ, Irvine KM,
Lassmann T, Ravasi T, Hasegawa Y, Hoon Mo, Katayama S, Schroder K,
Carninci P, Tomaru Y, Kanamoni-Katayama Ni,Kubosaki A, Akalin A, Ando Y, Arner E, Asada M, Asahara H Bailey TI Bajic VB, Bauer D, Beckhouse AG, Bertin N, Bjorkegren J, Brombacher F, Bulger E, Chalk AM, Chiba J, Cloonan N, Dawe A, Dostie J, Engstrom PG, Essack M, Faulkner GJ, Fink JL, Fredman D, Fujimori K, Furuno M, Gojobori T, Gough J, Grimmond SM, Gustafsson M, Hashimoto M, Hashimoto T, Hatakeyama M, Heinzel S, Hide W, Hofmann O, Hornquist M, Huminiecki L, Ikeo K, Imamoto N, Inoue S, Inoue Y, Ishihara R, Iwayanagi T, Jacobsen A, Kaur M, Kawaji H, Kerr MC, Kimura R, Kimura S, Kimura Y, Kitano H, Koga H, Kojima T, Kondo S, Konno T, Krogh A, Kruger A, Kumar A, Lenhard B, Lennartsson A, Lindow M, Lizio M, Macpherson C, Maeda N, Maher CA, Maqungo M, Mar J, Matigian NA, Matsuda H, Mattick JS, Meier S, Miyamoto S, Miyamoto-Sato E, Nakabayashi K, Nakachi Y, Nakano M, Nygaard S, Okayama T, Okazaki Y, Okuda-Yabukami H, Orlando V, Otomo J, Pachkov M, Petrovsky N, Plessy C, Quackenbush J, Radovanovic A, Rehli M, Saito R, Sandelin A, Schmeier S, Schonbach C, Schwartz AS, Semple CA, Sera

M, Severin J, Shirahige K, Simons C, St Laurent G, Suzuki M, Suzuki T, Sweet MJ, Taft RJ, Takeda S, Takenaka Y, Tan K, Taylor MS, Teasdale RD, Tegner J, Teichmann S, Valen E, Wahlestedt C, Waki K, Waterhouse A, Wells CA, Winther O, Wu L, Yamaguchi K, Yanagawa H, Yasuda J, Zavolan M, Hume DA, Arakawa T, Fukuda S, Imamura K, Kai C, Kaiho A, Kawashima T, Kawazu C, Kitazume Y, Kojima M, Miura H, Murakami K, Murata M, Ninomiya N, Nishiyori H, Noma S, Ogawa C, Sano T, Simon C, Tagami M, Takahashi Y, Kawai J, Hayashizaki Y. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet. 2009. 41(5):553-562.

UNIVERSITY of the
WESTERN CAPE

Table of Contents

Keywords ii
Abstract iii
Declaration v
Acknowledgements vi
Publications arising from this thesis ix
Table of Contents xii
List of Figures xiii
List of Appendices xiv
Preface UNIVERSITY of thexx
Chapter 1: Simplified ontologies atlowing comparison of developmental mammalian gene expression 1
Chapter 2: Expression profiling reveals tissue-restricted transcription factor complexes 32
Chapter 3: Mouse gene expression analysis of cancer/testis orthologs restricts candidates for cancer therapy 55
Conclusions 70
Afterword 75
References 79

List of Figures

Chapter 1

Figure 1: Venn diagram illustrating the integration of mouse and human ontologies represented by the eVOC system.

Figure 2: Screenshot of the Mouse Development ontology, visualized in COBrA.

Figure 3: Screenshot of the individual Theiler Stage 13 ontology, visualized in COBrA .

Figure 4: Diagram illustrating the sets of genes analyzed for developmental brain expression bias.

Chapter 2

Figure 1a: Illustration of genes clustering together based on correlated co-expression. UNIVERSITY of the

WESTERN CAPE

Figure 1b: Illustration of genes clustering together based on correlated co-expression.

Chapter 3

Figure 1: Flow-diagram representing the categorisation of mouse genes into cancer/testis categories.

Figure 2: Visualisation of the gene expression profile of 63 mouse orthologs.

List of Tables

Preface

Table 1: A list of ontologies available from the Open Biomedical Ontologies (OBO) Foundry. xxii

Chapter 1

Table 1: Statistics of the individual developmental eVOC ontologies, representing the alignment between human and mouse stages.19

Table 2: Genes showing developmental expression bias in human and mouse brain.

Chapter 2

Table 1: A list of the 145 genes expressedi in tess tfat 25% of all tissues. WESTERN CAPE

Table 2a: The top five physiological system development and functions over-represented by genes showing restricted expression.49

Table 2b: The top five diseases and disorders associated with the genes showing restricted expression in less than 25% of all tissues.51

Table 3: A list of canonical pathways over-represented by genes showing restricted expression in less than 25% of all tissues.

Chapter 3

Table 1: Classification of categories for cancer/testis genes.

Table 2: Gene identifiers and symbols of mouse genes showing testisrestricted, testis/brain-restricted or testis-selective expression, along with their human orthologs.

UNIVERSITY of the WESTERN CAPE

List of Appendices

Chapter 1

Appendix I: Transcriptional landscape of the mammalian genome, Science. 2005. 309(5740):1559-1563. 84
Appendix II: Mice and men: their promoter properties. PLoS Genet. 2006. 2(4):e54. 89
Appendix III: Correlation coefficients of genes showing biased expression for the developmental brain in human and mouse 102
Appendix IV: Expression profile of genes showing biased expression for the developmental brain in human and mouse 106
Appendix V: The individual mouse develepmental ontologies 114
 154
UNIVERSITY of the
Chapter 2 WESTERN CAPE
Appendix VIIa: The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet. 2009. 41(5):553-562. 161
Appendix VIIb: Clusters of genes from Illumina microarray expression experiment with early, mid and late response characteristics 171
Appendix VIII: Expression profile of transcription factors showing tissue restriction 176

Chapter 3

Appendix IX: Genome-wide analysis of cancer/testis gene expression. Proc Natl Acad Sci U S A. 2008. 105(51):20422-20427.183
Appendix X: Manual curation steps applied in filtering the expression array generated for the investigation of 63 potential mouse cancer/testis genes 189

Appendix XI: Expression profile of mouse orthologs of human cancer/testis genes

UNIVERSITY of the
WESTERN CAPE

```
                    Abbreviations
CAGE - Cap Analysis of Gene Expression
CGAP - Cancer Genome Anatomy Project
CT - cancer/testis
DAG - Directed Acyclic Graph
EMAP - Edinburgh Mouse Atlas Project
EST - Expressed Sequence Tag
FMA - Foundational Model of Anatomy
GNP - Genome Network Project
HUMAT - Edinburgh Human Pevelopmental Anatomy,
LPS - lipopolysaccharide
MA - Adult Mouse Anatomy
MGED - Microarray Gene Expression Data Society
MGI - Mouse Genome Informatics
MPSS - Massively Parallel Signature Sequencing
NCBI - National Center for Biotechnology Information
OBO - Open Biomedical Ontologies
```

OMIM - Online Mendelian Inheritance in Man

PMA - Phorbol Myristate Acetate

SAEL - SOFG Anatomy Entry List

SAGE - Serial Analysis of Gene Expression

TSS - Transcription Start Site

Preface

In the post-genomic era, much of the focus of research has shifted from identifying each gene in the human genome, to creating a catalogue of genes listing their corresponding function, regulatory potential, expression profile and disease involvement.

Each cell in an organism contains a complete copy of its genome, thereby providing the expression potential of the organism. Since cells do not simultaneously express all genes in the genome, it is important to determine the location and timing of each gene expression event. This expression profiling can lead to the identification of genes biased in their expression for the developmental program or diseases such as cancer. The identification of genes whose expression is biased for tumorigenic tissues provides the context for the development of drugs or vaccines in the treatment eances. The significance of this knowledge is also evident when compaing two species wose genomes show considerable WESTERN CAPE
overlap. For example, an orthologous gene may be expressed in both human and mouse but will not necessarily share the same expression profile in both species. Therefore, knowing when and where a gene is expressed is of great importance in drug discovery for disease treatment and understanding the relationship between human genes and their counterparts in the model organisms.

A popular technique used to determine the expression status of a cell is to create a cDNA library from which expressed sequence tags are derived. An expressed sequence tag (EST) is a $200-800$ nucleotide sequence from a cDNA clone. An

EST is generated randomly and represents a segment of an mRNA molecule (Adams et al., 1991; Nagaraj et al., 2007). The source of ESTs, namely mRNA, enables these tags to provide a view of the expression state of a cell by identifying the mRNA being expressed in a particular cell at any given time.

Although ESTs provide insights into many biological phenomena such as gene discovery, alternative transcript identification and genome annotation (Nagaraj et al., 2007), the EST transcripts are generated by single-pass sequencing and are therefore very susceptible to errors. The advantage of using ESTs in exploring cellular gene expression lies in their low complexity and cost-effectiveness. Since the use of any technology is dictated by its financial impact, ESTs will continue to be a popular low-cost method-amengresearehers as the current, high-impact sequencing methods become more established.

With the continuous generation of genome-scale data, it is imperative that the biological data be annotated in fuch apway that it is possible to adequately share and compare data from different biological sources, Experiments or laboratories. Since 2000 (Stevens et al., 2000), ontologies have become an accepted method in bioinformatics with which to describe experimental tissue sources and gene expression data. Table 1 lists the 26 anatomical ontologies available from the Open Biomedical Ontology (OBO) Foundry (Smith et al., 2007) as of August 2009. The OBO Foundry provides a library of reference ontologies for the biomedical domain. Strict requirements need to be met for an ontology to be endorsed by the OBO Foundry such as providing a definition for every term within the ontology. Since the implementation of the OBO requirements, the

Table 1

A list of ontologies available from the Open Biomedical Ontologies (OBO) Foundry. The eVOC ontology is not officially distributed via the OBO foundry, but is included here to give context.

Ontology	Namespace
Common Anatomy Reference Ontology	CARO
Subcellular anatomy ontology	SAO
Teleost anatomy and development	TAO
C. elegans gross anatomy	WBbt
Spider Ontology	SPD
Mouse adult gross anatomy	MA
Mouse gross anatomy and development	EMAP
Amphibian gross anatomy	AAO
Drosophila gross anatomy	FBbt
Fungal gross anatomy	FAO
Cellular component	GO
Xenopus anatomy and development Plant growth and developmental stage Plant structure \square	XAO PO PO
Spatial Ontology	BSPO
C. elegans development	hinbls
Mosquito gross anatomy	TGMA
Drosophila development	FBdv
Human developmental anatomy, timed version	EHDA
Dictyostelium discoideum anatomy	DDANAT
Zebrafish anatomy and development	ZFA
Tick gross anatomy	TADS
Foundational Model of Anatomy (subset)	FMA
Medaka fish anatomy and development	MFO
Cell type	CL
Human developmental anatomy, abstract version	EHDAA
eVOC Expression vocabulary	eVOC

eVOC ontology is no longer part of the OBO distribution as it does not provide definitions for all its terms. It is an important aim of the project to be included in the OBO distribution and further curation of the ontologies will ensure this.

An ontology is a hierarchical vocabulary used to describe a particular domain, and consists of parent and child terms defined by relationships between them. The most well-known ontology is the Gene Ontology (Ashburner et al., 2000) which describes three domains: the cellular component, molecular function and biological process of an organism. Ontologies are used by most database systems where a user is able to select a search term from a drop-down menu to select, for example the FANTOM3 CAGE Basic Viewer where the user selects the tissue for which expression information is required (htip:Hfantom3.gsc.riken.jp/).

The problem with ontologies is the inability to adequately compare human and mouse gene expression events computationally through ontologies due to their individual structures and inherentzomplexities. An effective tool to enable the ontological comparison between humar and mouse will enable the direct interspecies comparison of gene expression events, providing insight into the differences and similarities between the species - an integral aspect of model organism biology.

Model organisms are an important part of biological research because they allow researchers to perform experiments that would be either unethical or fatal if performed on humans. For example, it is considered unethical to genetically modify a human embryo by creating a knock-out of a particular gene purely to determine a possible function for that gene. Model organisms therefore allow us
to study genes in vivo, they allow us to test experimental drugs for efficacy and lethality, and they enable us to explore gene expression events throughout the lifespan of the organism since its gestation and developmental periods are typically on a scale of days and weeks rather than months and years. The laboratory mouse is a particularly good model for studying cancer because mice have a high tumour incidence, are cheap and easy to handle, can be inbred to eliminate genetic variation effects, and many may be treated at a time to provide replicate data. However, in order for model organism experiments to be informative, it is imperative that we know and understand the similarities and differences between the models and humans. A robust system for comparing human and mouse biology and expression data is therefore critical.

This dissertation describes de development and implementation of an ontologybased system as a consistent approach to ofene discovery. The processes required to successfully develop andaply-a set of ontologiesare to:

UNIVERSITY of the

1) develop a set of outologies; $\mathbb{E R N}$ CAPE
2) map data to the ontologies by using them to annotate expression data; and
3) query the system to answer specific questions regarding the data.

Chapter 1 describes the development of a mouse ontology that conforms to the structure of an established human ontology to provide a tool to compare biological aspects of the two species. Both the mouse and human ontologies are also further developed to include the ontological representation of the developing mouse and human, enabling the alignment of mouse and human anatomical
structures for the annotation of expression events. In addition to developing the ontologies, this chapter also describes using the ontologies to annotate 8852 human and 1210 mouse cDNA libraries obtained from the Cancer Genome Anatomy Project (CGAP) as an initial dataset with which to illustrate the use of the ontologies.

The remaining two chapters describe how the ontologies developed in Chapter 1 are used in two major collaborations. Both chapters describe two aspects of each collaboration, namely a publication resulting from the collaborative efforts of all the members of the collaboration and an independent study I performed within each collaboration that is unpublished. I therefore, for each chapter, briefly describe my role in the collaboration and the work I performed that resulted in the publications, and thereafter describe in detail the unpublished analyses.

Chapter 2 describes how the ontologies developed in Chapter 1 are used to determine the expression profile of human transeription factors. The investigation of the expression profile enablesEthe Mdentification of transcription factor complexes that show tissue-restricted expression patterns.

The analysis presented as Chapter 3 uses the ontologies described in Chapter 1 to explore the expression profile of the mouse orthologs of human cancer/testis genes with the aim of comparing the human and mouse expression profiles of these genes.

Chapter 1

Simplified ontologies allowing comparison of

developmental mammalian gene expression

1.1 Summary

The concept of creating a developmental mouse ontology that is structured in the same way as the existing human eVOC ontologies was suggested as a viable approach while establishing a collaboration as part of the FANTOM consortium a collaborative effort by many international laboratories with the aim to map out the transcriptional landscape of meuse and human, I was responsible for

developing and applying the method of ontology generation for both the mouse and human developmental ontologies. I was also responsible for collecting and annotating the mouse and human CGAP cDNA libraries that have been mapped to UNIVERSITY of the
the ontologies, as well as the data provided by the FANTOM3 project. The ontologies that I developed, along with the FANTOM data that I mapped to it, were incorporated into the FANTOM CAGE databases (CAGE Basic Viewer and CAGE Analysis Viewer) available online (http://fantom3.gsc.riken.jp/).

The FANTOM3 project culminated in a main publication in Science (of which I was co-author (Carninci et al., 2005)) as well as many satellite papers in PLoS Genetics - including a paper which I co-authored (Bajic et al., 2006). For 'The transcriptional landscape of the mammalian genome' published in Science (Appendix I), I was responsible for the development of the ontologies which were
used to annotate the expression data used in the paper. In the PLoS Genetics paper, 'Mice and men: their promoter properties' (Appendix II), the aim was to classify transcription start sites (TSS) based on the GC content of the 5' upstream region of each gene. I used the ontology system described in this chapter to provide the expression information for the dataset used in the paper, which shows enrichment of certain tissue categories in each of the four TSS categories identified (Table 6 of Appendix II). The methods and results for both analyses are described in detail in the publications appended.

In addition to developing the ontologies, I was responsible for preparing the manuscript describing the development and application of these ontologies, which is presented here as Chapter 1. responsibitities included the development of the manuscript concept, all data generation and anatysis, as well as the preparation and submission of the manuscript.

Dr Yoshihide Hayashizaki Japd Pr Piero Carninci provided the request of the developmental ontologies dy Exil hasacess te thelFANTOM3 data. Dr Oliver Hofmann and Dr Winston Hide provided guidance regarding ontology development and application, and oversaw the production of the manuscript.

1.2 Aim

The aim of the work presented in this chapter is to develop an ontology system that enables the comparison of human and mouse anatomy throughout development. The use of the ontologies in the annotation of human and mouse
gene expression data provides a means to accurately compare gene expression between human and mouse, thereby identifying similar and unique gene expression patterns between the two species.

1.3 Background

1.3.1 Ontologies and gene expression

Biological investigation into mammalian biology employs standardized methods of data annotation by consortia such as MGED (Microarray Gene Expression Data Society) and CGAP (Cancer Genome Anatomy Project) or collaborative groups such as the Genome Network Projectr group at thenfenome Sciences Centre at RIKEN, Japan (http://gsc.riken.go.jp index E.html). Data generated by these consortia include microarray, CAGE (cap Analysis of Gene Expression), SAGE (Serial Analysis of Gene Expressinnand MPS\$f(Massively Parallel Signature Sequencing) as well as cDNA and EST (Expressed Sequence Tags) libraries. The diversity of data types offers the opportunity to capture several views on concurrent biological events, but without standardization between these platforms and data types information is lost, reducing the value of comparison between systems. The terminology used to describe data provides a means for the integration of different data types such as EST or CAGE.

An ontology is a commonly used method of standardization in biology. It is often defined as a formal description of entities and the relationships between them, providing a standard vocabulary for the description and representation of terms in
a particular domain (Bard and Winter, 2001; Gkoutos et al., 2005). Given a need and obvious value in comparison of gene expression between species, anatomical systems and developmental states, we have set out to discover the potential and applicability of such an approach to compare mouse and human systems.

Many anatomical and developmental ontologies have been created, each focusing on their intended organisms. As many as 62 ontologies describing biological and medical aspects of a range of organisms can be obtained from the Open Biomedical Ontologies (OBO) website (http://www.obofoundry.org/), a system set up to provide well-structured controlled vocabularies of different domains in a single website. The Edinburgh Mouse Atlas Project (EMAP) (Baldock et al., 2003) and Adult Mouse Anatomy (Hayamizu et al., 2005) ontologies are the most commonly used ontologies to describe mouse gene expression, representing mouse development and adult mouse with 13730 (October, 2005) and 7702 (October, 2004) terms respectively. Mouse Genome Informatics (MGI), the most comprehensive mouse resource available, uses both ontologies. WESTERN CAPE Human gene expression however, can be represented as developmental and adult ontologies by the Edinburgh Human Developmental Anatomy (HUMAT) ontology (Hunter et al., 2003) consisting of 8316 terms (October, 2005) and the mammalian Foundational Model of Anatomy (FMA) (Rosse and Mejino, 2003) consisting of more than 110000 terms (January, 2002). Selected terms from the above ontologies have been used to create a cross-species list of terms known as the SOFG Anatomy Entry List (SAEL) (Parkinson et al., 2004). Although these ontologies more than adequately describe the anatomical structures of the developing organism, with the exception of SAEL, they are structured as Directed

Acyclic Graphs (DAG), defined as a hierarchy where each term may have more than one parent term (Hayamizu et al., 2005). The DAG structure adds to the inherent complexity of the ontologies, hampering efforts to align them between two species, making the process of a comparative study of gene expression events a challenge.

Efforts are being implemented in order to simplify ontologies for gene expression annotation. The Gene Ontology (GO) Consortium's GO slim (Martin et al., 2004) contains less than 1% of terms in the GO ontologies. GO slim is intended to provide a broad categorization of cDNA libraries or microarray data when the fine-grained resolution of the original GO ontologies are not required. Another set of simplified ontologies are those from evoc (Kelso et al., 2003). The core eVOC ontologies consist of fout orthogonal ontologies with a strict hierarchical structure to describe human anatomy, histology, development and pathology, currently consisting of 5180,156 and 19 terms respectively (August, 2006). The aim of the eVOC project is to provide the standardized, simplified WESTERN CAPE representation of gene expression, unifying different types of gene expression data and increasing the power of gene expression queries. The simplified representation achieved by the eVOC ontologies is due to the implementation of multiple orthogonal ontologies with a lower level of granularity than it's counterparts.

1.3.2 Mammalian development

The laboratory mouse is being used as a model organism to study the biology of mammals (Marra et al., 1999). The expectation is that these studies will provide insight into the developmental and disease biology of humans, coloured by the finding that 99% of the $25000-30000$ mouse genes may have a human ortholog (only 1% of mouse genes do not have a human ortholog) and at least 80% of mouse genes are $1: 1$ orthologs where the mouse sequence is the best match to the human sequence and vice versa (Waterston et al., 2002). Given the similarity between the two species, it is possible to perform functional experiments on mouse and transfer any knowledge obtained to enhance our understanding of human biology. In addition, cDNA Hraries can be prepared from very early mouse developmental stages for gene expression anaty sis.

The study of developmental biollogy incorporates the identification of both the temporal and spatial expression patterns of genes expressed in the embryo and fetus (Magdaleno et al., 2006) E is important tolurderstand developmental gene expression because many genetic disorders originate during this period (Lindsay and Copp, 2005). Similarities in behavior and expression profiles between cancer cells and embryonic stem cells (Kho et al., 2004) also fuel the need to investigate developmental biology.

Using mice as model organisms in research requires the need for comparison of resulting data and provides a means to compare mouse data to humans (Lindsay and Copp, 2005). The cross-species comparison of human and mouse gene expression data can highlight fundamental differences between the two species
such as greater olfactory and immune capabilities, impacting on areas as diverse as the effectiveness of therapeutic strategies in the treatment of cystic fibrosis or Alzheimer's to the elucidation of the components such as tail, fur and whiskers that determine species. Using ontology-annotated gene expression events to compare across species provides a structured and accurate means of identifying identical gene expression context between the species, particularly if the annotation of each species differs in granularity.

1.3.3 Cross-species gene expression comparison

Function of most human genes has been-inferred from model organism studies, based on the transitive assumption that genes shating sequence similarity also share function when consefyed across species (Zhou and Gibson, 2004). The same principle can be appedtogene regutation. The first step is to find not only the orthologs, but the commonly expressed orthofogs. We predict that although WESTERN CAPE
two genes are orthologous between human and mouse, their expression patterns differ on the temporal and spatial level, indicating that their regulation may differ between the two species.

The terminology currently used to annotate human and mouse gene expression can be ambiguous (Eilbeck et al., 2005) among species since one term may be used to describe many different structures or one structure may be defined by more than one term, which is a result of different ontologies being used to annotate different species. The way in which we circumvented this issue is to
effectively map the ontology terms across species by using the same terminology for each species. This adaptation allows the integration of human and mouse ontologies as well as the comparison of the data it is used to annotate - a feature not possible with current ontologies. Although the EMAP, MA, HUMAT and FMA ontologies describe the anatomical structures throughout the development of the mouse and human, their complexities complicate the alignment of the anatomy between the two species. With the alignment of terms between a mouse and human ontology, the data mapped to each term becomes comparable, allowing efficient and accurate comparison of mammalian gene expression. A SAEL-related project, XSPAN (Dennis et al., 2003), is aimed at providing a web tool to enable users to find equivalent terms between ontologies of different species. Although useful, the ontotogies used deseribe only spatial anatomy and
are not temporal.
We have attempted to address the issue by devetoping simplified ontologies that allow the comparison of gNIV expression between human and mouse on a WESTERN CAPE
temporal and spatial level. The distribution of human and mouse anatomy terms across development match the structure of the human adult ontologies that form the core of the eVOC system.

Due to the ambiguous annotation of current gene expression data between human and mouse, and the lack of data mappings accompanying the available ontologies, the ontologies presented here have been developed in concert with semi-automatic mapping and curation of 8852 human and 1210 mouse cDNA libraries. We have therefore created a resource of simplified, standardized gene expression enabling
cross-species comparison of gene expression between mammalian species that is publicly available.

1.4 Materials and methods

1.4.1 Ontology development

The ontologies were constructed using the COBrA (Aitken et al., 2005) and DAG-edit (http://www.geneontology.org/GO.tools.shtml\#dagedit) ontology editors. Each term has a unique accession identifier with 'EVM' as the namespace for mouse and 'EV' for human, followed by seven numbers. This is consistent with the rules defined by thegoticonsortium (Ashburner et al., 2000).

Using the human adult eVOC anatomical system ontology as a template, terms from the Theiler stage 26 mouse developmental stage immediately prior to birth) UNIVERSITY of the
section of the EMAP ontology were inserted to create the Theiler stage 26 developmental eVOC mouse ontology. Proceeding from Theiler stage 26 to Theiler stage 1, each stage was used as a template for the next stage and any term not occurring at that specific stage, using EMAP as reference, was removed. Similarly, if a term occurred in EMAP that was not present in the previous stage, it was added to the ontology. The result is a set of 26 ontologies, one for each Theiler stage of mouse development, with many terms appearing and disappearing throughout the ontologies according to changes of anatomy during mouse development.

The Theiler stage 28 (adult mouse) ontology was constructed in the same way as the developmental ontologies, using the MA ontology as a reference. A previously not available Theiler stage 27 ontology was developed by comparing Theiler stage 26 and Theiler stage 28. Any terms that differed between the two stages were manually curated and included or removed in Theiler stage 27 as needed. The Theiler stage 27 ontology therefore represents all immature, postnatal anatomical structures. Theiler stage 28 ontology terms have been mapped to the adult human eVOC terms by using the human eVOC accession identifiers as database cross-references in the mouse ontology. Similarly, the EMAP accession number for each term was mapped to the developmental mouse ontologies. The result is a set of 28 ontologies that are an untangled form of the EMAP and MA A set of human developmental ontologies were created bith mappings between them. as was used for mouse. reference ontologies for human development were the HUMAT ontologies, which describes the first 23 Carnegie stages of WESTERN CAPE development, classified according to morphological characteristics.

The 28 mouse and 23 human ontologies were merged into two ontologies - one for mouse and one for human. Each merged ontology (named Mouse Development and Human Development) contains all terms present in the individual ontologies. A Theiler Stage ontology was created for mouse, which contains all 28 Theiler stages categorized into embryo, fetus or adult. The existing eVOC Development Stage ontology serves as the human equivalent of the mouse Theiler Stage ontology. The Mouse Development, Human

Development, Theiler Stage and the existing Development Stage ontologies form the core of the Developmental eVOC ontologies.

1.4.2 Data mapping

Mouse and human cDNA libraries were obtained from the publicly available CGAP resource (January, 2006) and mapped (semi-automated) to the entire set of eVOC ontologies. The eVOC ontologies consist of Anatomical System, Cell Type, Developmental Stage, Pathology, Associated With, Treatment, Tissue Preparation, Experimental Technique, Pooling and Microarray Platform. The 'age' annotation of the mouse CGAP whaties were manually checked against the Gene Expression Database (Version 3.41; December, 2005) (Hill et al., 2004) to determine the Theiler stage of each library. Due to the lack of a resource providing the Carnegie stage-annotation for cDNA libraries, the human cDNA libraries were annotated according to the age annotation originally provided by WESTERN CAPE
CGAP. Genes associated with each mouse and human cDNA library were obtained from NCBI's UniGene (March, 2006) (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene). A list of humanmouse orthologs were obtained from HomoloGene (build 53) (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=homologene).

1.4.3 Data mining

The genes were filtered according to the presence or absence of expression evidence and homology. A gene passed the selection criteria if it has an ortholog and if both genes in the ortholog pair have eVOC-annotated expression. According to eVOC annotation, genes were categorized into those that showed expression in normal adult brain and those expressed in normal developmental brain, many genes appearing in more than one category. Genes expressed in normal adult brain were subtracted from those with expression in normal developmental brain to establish genes whose expression in the brain occurs only during development. The expression profiles of the developmentally-biased genes annotated to female reproductive system, heart, kidney, liver, lung, male reproductive system and stem cell for post-natal and developmental expression were determined according to the EVOC annotation of the CDNA libraries, and the correlation coefficient of the ortholog-pairs were catculated.

UNIVERSITY of the
 WESTERN CAPE

1.5 Results and discussion

1.5.1 Ontology development

The ontologies were originally created to accommodate requests by the FANTOM3 consortium (Carninci et al., 2005) for a simple mouse ontology that could be used in alignment to the human eVOC ontologies. The FANTOM3 project was a collaborative effort by many international laboratories to analyze the mouse and human transcriptome. The aim was to generate a transcriptional
in the developmental eVOC ontologies to ensure interoperability between external ontologies and eVOC. Terms from the mouse have also been mapped to those from human to enable cross-species comparison of the data mapped.

The integration of the ontologies is described in Figure 1, where 'Mouse eVOC' refers to the individual mouse ontologies and 'Human eVOC' refers to the individual human ontologies (including the adult human ontology). The EMAP and MA ontologies represent mouse pre- and post-natal developmental anatomical structures, respectively, and therefore exhibit no commonality. The mouse developmental eVOC ontologies integrate the two ontologies by containing terms from, and mappings to, both the EMAP and MA ontologies. Of the 2840 terms in the individual mouse ontologies, 893 and 237 map to EMAP and MA. The C ontology is an untangted version of the HUMAT ontology and has one-to-one mappings to the mouse developmental ontology, providing a link between the terms and data mappings between the mouse and human ontologies.

UNIVERSITY of the
WESTERN CAPE

The presence of species-specific anatomical structures posed a challenge when aligning the mouse and human terms. An obvious example is the presence of a tail in mouse but not in human. We decided that there would simply be no mapping between the two terms. Further challenges involved structures such as paw and hand. The two terms cannot be made identical because it is incorrect to refer to the anterior appendage of a mouse as a hand. However, due to the fact that the mouse paw and human hand share functional similarities, the two terms are not identical, but are mapped to each other based on functional equivalence.

335

Figure 1
Venn diagram illustrating the integration of mouse and human ontologies represented by the eVOC system. The total number of terms in each ontology is in parentheses. The numbers in each set are the number of terms in the intersection represented by that set. 'Mouse eVOC' represents the 28 individual mouse ontologies and 'Human eVOC' represents the 23 individual human and adult ontologies; therefore, the numbers in parentheses refer to the total number of terms in all the eVOC ontologies for each species. The intersection of the Mouse eVOC with the EMAP and MA ontologies represents the number of terms in Mouse eVOC that have database crossreferences to EMAP and MA. Similarly, the intersection of the Human eVOC and HUMAT sets represents the number of Human eVOC terms that map to HUMAT terms. The number within the arrows represents the number of mapped human and mouse eVOC terms.

In order to provide simplified ontologies, the 28 mouse and 23 human ontologies were merged to create two ontologies - one for each species. In addition, a Theiler Stage ontology was created that represents the Theiler stages of mouse development. The human stage ontology is represented by the current eVOC Development Stage. A cross-product of two terms (one from the merged and one from the stage ontology) for a species can therefore represent any anatomical structure at any stage of development.

The relationship between the Developmental Mouse and individual ontologies is illustrated in Figure 2, where the term 'brain' is mapped to 12 terms in the individual ontologies and therefore occurs in 12 of the 28 Theiler stages. All terms in the individual ontologies that are derived from EMAP or MA for mouse, and HUMAT for human are mapped to the corresponding term by adding the term's accession from the external ontology as a database cross-reference in the eVOC ontologies. Figure shows that the database cross-reference is the accession of the EMAP term, indicating that intestihe of the 'Theiler stage 13' WESTERN CAPE
ontology is equivalent to the term represented by 'EMAP:600'. This feature allows cross-communication, and thereby integration, of the EMAP, MA, HUMAT and eVOC ontologies.

The ontologies presented here are simplified versions of existing human and mouse developmental and adult ontologies, containing 1670 and 2840 terms respectively. Table 1 shows the number of terms and database cross-references for the individual mouse and human ontologies. The Theiler Stage 4 ontology contains 12 terms and has 9 mappings to the EMAP ontology. The mouse and

(.) Read MouseDevelopment.goff

Figure 2
Screenshot of the Mouse Development ontology, visualised in COBrA. The left panel shows the hierarchy of the ontology, with 'brain' as the highlighted term. The right panel lists the $\mathbf{1 2}$ database cross-references mapped to 'brain', representing the accession of 'brain' in each of the $\mathbf{1 2}$ individual ontologies.

Stat1* Read TS13.goff
Figure 3
Screenshot of the individual Theiler Stage 13 ontology, visualised in COBrA. The left panel displays the ontology with terms of anatomical structures occurring only in Theiler stage 13 of mouse development. The right panel lists the accession of the equivalent term in the external ontology as a database cross-reference.

Table 1

Statistics of the individual developmental eVOC ontologies, representing the alignment between human and mouse stages. The first three columns display the individual mouse ontologies, the number of terms in each ontology, and the number of external references of each. The last three columns display the individual human ontologies, the number of terms, and the number of external references of each. The external references refer to the EMAP and MA ontologies for mouse, and to HUMAT for human. The alignment of the rows between the mouse and human ontologies represents the alignment of the Theiler and Carnegie stages of development based on morphological similarities. For example, the Theiler Stage 4 ontology contains 12 terms and has 9 mappings to the EMAP ontology. Mouse Theiler Stage 4 is equivalent to human Carnegie Stage 3. The Carnegie Stage 3 ontology contains 13 terms and has 11 mappings to terms from the HUMAT ontology.

Theiler Stage	Mouse Terms	External Reference	Carnegie Stage	Human Terms	External Reference
1	6	4	1	5	4
2	5	3		5	4
3	6	$411 \square 11 \square 11$			
4	12		$\|\sqrt[3]{\|l\|}\|$	13	11
5	9	6			
6	10		4	310	8
7	11	9 NIVER	SITY of th	e	
8	12	WOETET	5, ${ }^{\text {a }}$ CAP	810	8
			5b	11	10
			5c	9	8
9	14	14	6a	14	16
			6b	19	18
10	14	18	7	20	17
11	32	29	8	22	19
12	56	63	9	52	54
13	55	64	10	60	80
14	67	85	11	72	92
15	80	109	12	80	98

Theiler Stage	Mouse Terms	External Reference	Carnegie Stage	Human Terms	External Reference
16	93	128	13	103	131
17	103	137	14	122	149
18	116	155	15	131	165
19	134	173	16	155	178
20	157	171	17	170	184
21	193	239	18	188	223
			19	199	237
22	209	299	20	200	237
23	216	303			
24	226	316			
25	234	339			
26	238	348 +			
27	266	$\theta 11 \square 11 \square 11$	1118		
28	266			512	
TOTAL	2840	3288	TOTAI	2049	1951

human stages have been aligned in the table and therefore shows that mouse Theiler Stage 4 is equivalent to human Carnegie Stage 3, based on morphological similarities during development (http://www.ana.ed.ac.uk/anatomy/database/ humat/MouseComp.html). The Carnegie Stage 3 ontology contains 13 terms and has 11 mappings to the HUMAT ontology. The difference in the number of ontology terms and external references is attributed to the addition of terms to maintain the standard structure of the eVOC system. In this example, the term 'germ layers' is in the eVOC ontologies, but not in the EMAP or HUMAT ontologies. Many eVOC terms are mapped to more than one term in the external referencing ontology as an artifact of the simplification of the ontologies, resulting in a one-to-many relationship between eVOC and it's reference ontology. For example, myocardium at Theiter Stage 12 in the eVOC ontologies is mapped to five EMAP identifiers. Each EMAP identifier references a cardiac muscle, but at a different location. eVOC does not distinguish between cardiac muscle of the comoor atrial chamber (EMAP:337) and cardiac muscle of the rostral half of the bulbustcordis (EMAP:330). AC0mpared to their counterparts, the Developmental eVOC ontologies represent 22% of both the human HUMAT and mouse EMAP ontologies, with the only relationship between the terms being 'IS_A'. Note that relationships within the eVOC ontologies only indicate an association between parent and child term and do not systematically distinguish between is_a or part_of relationships. As eVOC moves to adopt relationship types from the OBO Relation Ontology (Smith et al., 2005) relations will be reviewed and curated. Using a principle of data-driven development, eVOC terms are
added at an annotator's request, resulting in a dynamic vocabulary describing gene expression.

1.5.2 Data mapping

The resources providing ontologies to annotate gene expression do not always provide the data itself. In order to obtain mouse and human data, one would have to search separate databases for each species. An example of this would be searching MGI for mouse gene expression data, and ArrayExpress for human. Apart form having to access different databases to obtain data, the terminology used to describe the data is ambiguens and differs in the level of granularity, impacting on the accuracy ofinter-species data comparison. The ontology terms have therefore been used to annotate 8852 human and 1210 mouse cDNA libraries from the Cancer Genome Anatomy Project (CGAP) (January, 2006) (http://cgap.nci.nih.gov/).

UNIVERSITY of the WESTERN CAPE

The mapping process revealed inconsistencies in the annotation of the human and mouse CGAP cDNA libraries, requiring manual intervention and emphasizing the need for a standardized annotation. All genes associated with the libraries have been extracted by association through UniGene (March, 2006). A gene was considered to be associated with a cDNA library if at least one EST was evident for the gene in a particular library. The result is a set of 21152 human and 24047 mouse genes from UniGene that are represented by CGAP cDNA libraries and annotated with eVOC terms, and represent the set of human and mouse genes for
which there is expression evidence. CGAP represents an ascertainment bias where there is a strong over-representation for cancer genes, and therefore future efforts for this research will include obtaining a well-represented, evenly distributed dataset of human and mouse gene expression. The list of human and mouse orthologs were extracted from HomoloGene to represent the 16324 human-mouse orthologs. Two genes were considered to be orthologs if they shared the same HomoloGene group identifier (March, 2006).

1.5.3 Data mining

Genes may be categorized according tothenteVOC annotation on a spatial or temporal level, or a combination of both. An example of this would be genes expressed in the heart at Theiler \$tage 26 for mouse. For the purposes of this study, we searched for humanouse orthologs that are expressed in the normal postnatal and developmental brain of both species, where a gene is classified as WESTERN CAPE normal if it's originating library was annotated as 'normal'. Research involving gene expression of the brain aims at identifying causes of psychological and neurological diseases, many of these diseases originating during development. With the use of mice as model organisms in this kind of research, it is important to identify genes which are co-expressed in human and mouse on the temporal and spatial level. The results of our analysis show that of the available 16324 human-mouse orthologs, 14434 can be found in CGAP libraries for both human and mouse. When looking at brain gene expression, we could segregate genes according to their spatial and temporal expression patterns. We found that of all
the orthologs expressed in the brain, 10980 genes were expressed in the postnatal brain of both species whereas 1692 genes were expressed in the developing brain of both species. Of these two sets of genes, 90 genes were found to have biased expression for developmental brain (Table 2) where developmentally biased genes are those that are expressed during development and not the postnatal organism in either human, mouse or both species (see Figure 4 for illustration). It is important to note that only genes whose orthologs also have expression evidence were considered for analysis. This small number of genes found to be biased for expression during brain development in both species may be a result of data-bias due to the difficulty involved in accessing developmental libraries. Our future efforts will include expanding the data platforms to provide data that is representative ofthe biology. This anatysis does however demonstrate the usefulness of the ontologies in performing eross-species gene expression analyses.

The Gene Ontology (GO) Categories that are highty associated with the 90 genes WESTERN CAPE
biased for developmental brain expression were extracted with the use of the DAVID bioinformatics resource (Dennis et al., 2003). The human representatives of the human-mouse orthologs cluster with GO terms such as 'nervous system development' and 'cell differentiation', suggesting a shared role for development of the mammalian brain, and therefore may be potential targets for the analysis in neurological diseases. Given the existence of ascertainment bias on these kinds of data, it was still surprising to see how many genes passed the stringent selection criteria. Searching the Online Mendelian Inheritance of Man (OMIM) database

Figure 4
Diagram illustrating the sets of genes analysed for developmental brain expression bias. Genes for human and mouse grouped together if they are expressed in post-natal or developmental brain, respectively. The intersection between the human and mouse developmental brain genes represent those genes showing common expression in the two species. Subtracting genes commonly expressed in human and mouse post-natal brain determines those genes that show developmental restriction in either human, mouse or both species.

Table 2

Genes showing developmental expression bias in human and mouse brain. The table lists the HomoloGene group identifier, Entrez Gene identifier and gene symbol of the $\mathbf{9 0}$ human-mouse orthologs found to have an expression bias towards the embryonic and fetal stages of brain development, without expression during postnatal development. Genes were only considered for analysis if they have an ortholog, and if the ortholog also has expression evidence based on eVOC annotation.

HomoloGene group identifier	Human Entrez Gene ID	Human Entrez Gene Symbol	Mouse Entrez Gene ID	Mouse Entrez Gene Symbol
32	435	ASL	109900	Asl
268	5805	PTS	19286	Pts
413	353	APRT	11821	Aprt
1028	1606	DGKA	13139	Dgka
1290	9275	BCL7B	12054	Bcl7b
1330	857	CAV1	12389	Cavl
1368	1054	CEBPG	12611	Cebpg
1871	4760	NEUROD1	18012	Neurod1
1933	5050	PAFAHIB3	18476	Pafah1b3
2212	6182	MRPLI2 ${ }^{\text {P }}$	56282	Mrpl12
2593	7913	DEK	110052	Dek
2880	8835	SOOS2	216233	Socs2
3476	9197	SLC33A1	11416	Slc33al
4397	8971	H1FX	243529	H1fx
4983	10991	SLC38A3	76257	Slc38a3
6535	11062	DUS44ERSITY	/ 7916	Dus41
7199	11054	OGFR	72075	Ogfr
7291	10683	DEA3 ERN C	43389	Dll3
7500	5806	PTX3	19288	Ptx 3
7516	389075	RESP18	19711	Resp18
7667	1154	CISH	12700	Cish
7717	24147	FJX1	14221	Fjx 1
7922	6150	MRPL23	19935	Mrpl23
9120	25851	DKFZP434B0335	70381	2210010N04Rik
9355	51637	C14orf166	68045	2700060E02Rik
9813	55627	FLJ20297	77626	4122402O22Rik
10026	55172	C14orf104	109065	1110034A24Rik
10494	58516	FAM60A	56306	Tera
10518	84273	C4orfl4	56412	2610024G14Rik
10663	57171	DOLPP1	57170	Dolpp1
10695	57120	GOPC	94221	Gope
10774	57045	TWSG1	65960	Twsgl
11653	79730	FLJ14001	70918	4921525L17Rik
11920	84303	CHCHD6	66098	Chchd6

HomoloGene group identifier	Human Entrez Gene ID	Human Entrez Gene Symbol	Mouse Entrez Gene ID	Mouse Entrez Gene Symbol
11980	84262	MGC10911	66506	1810042K04Rik
12021	84557	MAP1LC3A	66734	Map1lc3a
12418	124056	NOXO1	71893	Noxol
12444	84902	FLJ14640	72140	2610507L03Rik
12993	84217	ZMYND12	332934	Zmynd12
14128	91107	TRIM47	217333	Trim47
14157	90416	CCDC32	269336	Ccdc32
14180	115294	PCMTD1	319263	Pcmtd 1
14667	113510	HEL308	191578	Hel308
15843	79591	C10orf76	71617	9130011E15Rik
16890	399664	RKHD1	237400	Rkhdl
17078	387914	TMEM46	219134	Tmem46
17523	115290	FBXO17	50760	Fbxol7
18123	140730	RIMS4	241770	Rims4
18833	143678	LOC143678	75641	1700029115Rik
18903	440193	KIAA1509	68339	0610010D24Rik
19028	146167	LOC146167	234788	Gm587
20549	4324	MMP15	17388	Mmpl5
21334	10912	GADD45G	23882	Gadd45g
22818	29850	TRPM5 IIn	56843	Trpm5
24848	266629	SEC14L3	380683	RP23-81P12.8
26702	93109	TMEM44	224090	Tmem44
27813	84865	FLP1 4397	243510	A230058J24Rik
31656	27000	ZRPI	22791	Dnajc2
32293	51018	CGI-115	67223	2810430M08Rik
32331	51776	ZAKTERSITY	065964	B230120H23Rik
32546	64410	KLHL25 N	207952	Klhl25
32633	136647	Chorflice	66308	2810021B07Rik
35002	93082	LINCR	214854	Lincr
37917	1293	COL6A3	12835	Col6a3
40668	9646	SH2BP1	22083	Sh2bp1
40859	27166	PX19	66494	2610524G07Rik
41703	118881	COMTD1	69156	Comtd 1
45198	65117	FLJ11021	208606	1500011J06Rik
45867	139189	DGKK	331374	Dgkk
46116	401399	LOC401399	101359	D330027H18Rik
49899	143282	C10orf13	72514	2610306H15Rik
49970	83879	CDCA7	66953	Cdca 7
55434	1289	COL5A1	12831	Col5al
55599	669	BPGM	12183	Bpgm
55918	6882	TAFII	68776	Taf11
56005	6328	SCN3A	20269	Scn3a
56571	26503	SLC17A5	235504	Slc17a5
56774	54751	FBLIM1	74202	Fblim1

HomoloGene group identifier	Human Entrez Gene ID	Human Entrez Gene Symbol	Mouse Entrez Gene ID	Mouse Entrez Gene Symbol
64353	126374	WTIP	101543	Wtip
65280	286128	ZFP41	22701	Zfp41
65318	23361	ZNF629	320683	Zfp629
65328	7559	ZNF12	231866	Zfp12
68420	9559	VPS26A	30930	Vps26
68934	57016	AKR1B10	14187	Akr1b8
68973	1663	DDX11	320209	Ddx11
68998	170302	ARX	11878	Arx
78698	387876	LOC387876	380653	Gm872
81871	56751	BARHL1	54422	Barh11
82250	150678	MYEOV2	66915	Myeov2
84799	22835	ZFP30	22693	Zfp30

UNIVERSITY of the
WESTERN CAPE
implicated some of the 90 genes, such as GOPC, $A R X$ and $D E K$, in diseases such as astrocytoma, lissencephaly and leukemia.

To assess the similarity in expression across major human and mouse tissues other than brain, the expression profiles of the 90 genes with bias for developmental expression were determined for developmental and adult expression in the following tissues: female reproductive system, heart, kidney, liver, lung, male reproductive system and stem cell. These tissues were chosen based on the availability of data for each tissue in the developmental and adult categories. For each ortholog-pair, we determined the correlation between their expression profiles (see Appendix III). We found that, according to the cDNA libraries, one mouse gene was found to be expressed in-all the tissues in both post-natal and development (Twsg1), and three mouse genes were expressed only in the mouse brain (Resp18, Gm872, Barht1) as opposed to all other tissues (see Appendix IV for expression profile). The highest corretation score between an ortholog-pair is 0.646 (HomoloGene identifier: 27813) having identical expression profiles during WESTERN CAPE
development (expressed in liver and stem cell), but differing during post-natal expression (expression in mouse heart, kidney and stem cell but not in their human counterparts). The correlations observed suggest that the expression profiles of orthologs across these major tissues are only partially conserved between human and mouse. This finding strengthens our understanding of orthologous gene expression in that although two genes are orthologs, they do not share temporal and spatial expression patterns and therefore probably do not share a majority of their regulatory modules (Odom et al., 2007).

Developmental gene expression may be subdivided into embryonic and fetal expression which in turn may be categorized further according to the Theiler and Carnegie stages for mouse and human, allowing a high-resolution investigation of gene expression profiles between the two species. This stage by-stage expression profile for human and mouse will allow investigation into common regulatory elements of co-developmentally expressed genes and give new insight into the characterization of the normal mammalian developmental program.

1.6 Conclusions

Abstract

The developmental mouse ontolegies were-developed in collaboration with the Iロாே II FANTOM3 consortium to have the same-strueture-and format as the existing human eVOC ontologies to enable the compatison of developmental expression data between human and mouse. The developmental ontologies have been UNIVERSITY of the constructed by integrating the Edinburgh Mouse Atlas Project, Mouse Anatomy, the developmental Human Anatomy and the human adult eVOC ontologies. The re-organization of existing ontological systems under a uniform format allows the consistent integration and querying of expression data from both human and mouse databases, creating a cross-species query platform with one-to-one mappings between terms within the human and mouse ontologies.

The ontologies have been used to map human and mouse gene expression events, and can be used to identify differential gene expression profiles between the two species. In future, the ontologies presented here will be used to investigate the
transcriptional regulation of genes according to their characteristics based on developmental stage, tissue and pathological expression profiles, providing insight into the mechanisms involved in the differential regulation of genes across mammalian development.

1.7 Availability

The mouse eVOC ontologies, their mappings and the datasets referred to in this manuscript are available under a FreeBSD-style license at the eVOC website (http://www.evocontology.org) and are appended here as Appendix V and VI.

UNIVERSITY of the
 WESTERN CAPE

Chapter 2

Expression profiling reveals tissue-restricted

transcription factor complexes

2.1 Summary

The study presented in this chapter formed part of a major effort by the Genome Network Project (GNP) aimed at understanding the transcriptional networks involved in the growth arrest and differentiation in mammalian cells, using THP-1 cells (Human acute monocytic leukemia cell line) as a model system. My involvement in the project was we-fra:

1. Assist in analysing the response of 805 transcription factors from THP-1-derived macrophage cells to LPS stimulation over a range of timepoints; and UNIVERSITY of the
2. Investigate the tissue expression proffes of 805 transcription factors under investigation.

In (1) above, THP-1 cells were induced to differentiate into macrophages by adding phorbol myristate acetate (PMA). After 96 hours, an immune response was induced by adding lipopolysaccharide (LPS) and the effect on transcription was monitored over a time-series of $0.5 \mathrm{~h}, 1 \mathrm{~h}, 2 \mathrm{~h}, 3 \mathrm{~h}, 4 \mathrm{~h}, 8 \mathrm{~h}, 10 \mathrm{~h}, 12 \mathrm{~h}, 18 \mathrm{~h}$ and 24h. For each time-point, expression data was generated on three platforms: Illumina microarray, CAGE tags (cap analysis of gene expression) and qRT-PCR. I was part of the group that used the expression data from the Illumina platform to
determine which genes were up- and down-regulated during the early $(0.5 \mathrm{~h}, 1 \mathrm{~h}$, $2 \mathrm{~h}, 3 \mathrm{~h}$), middle ($4 \mathrm{~h}, 8 \mathrm{~h}, 10 \mathrm{~h}$) and late ($12 \mathrm{~h}, 18 \mathrm{~h}, 24 \mathrm{~h}$) response to LPS stimulation. The results of this analysis formed the basis of the paper 'The transcriptional network that controls growth and differentiation in a human myeloid leukemia cell line' published in Nature Genetics by the GNP (Suzuki et al., 2009), wherein I am listed as co-author due to my involvement in the analysis. The publication is appended as Appendix VIIa. My analysis method and interpretation that contributed to the publication is appended as Appendix VIIb. The analysis yielded the categorisation of 193 genes into 10 categories according to their level of expression across ten time-points. The categorisation of these genes contributed to the identification of the regulatory motifs whose activity is significantly altered during pNA-indueed differentiation. In addition, the data and computational tools developed by the consortium members have been collated into an online database that allows users to give a gene as input and is provided with it's expression on the three expression platforms across the timeseries (http://fantom.gsc.rikdn.jp/4): ERN CAPE

In (2) above, I used the ontologies and mappings described in Chapter 1 to determine the tissue expression profiles of the list of transcription factors under investigation by the GNP (1805 genes). The list of genes for which an expression profile was required was provided to me by the GNP. I was responsible for the development, implementation and interpretation of the analysis, which is presented here as Chapter 2. The results of this analysis were provided to the GNP to assist in the interpretation and discussion of the results presented in the publication.

2.2 Aim

The aim of this chapter is to use the Developmental eVOC system to illustrate the identification of tissue-restricted, co-expressing transcription factors. The identification of co-expressing genes gives insight into the regulation of genes specific to a particular cell type or disease.

2.3 Background

Each gene in a cell has a spatiat and temporal fate whereby it is only expressed in certain tissues at defined times throughout the life span of the organism. The exact timing of gene expression is a tightly controlled process (Dynlacht, 1997) and a slight deviation in this process causes aberrant gene expression that could UNIVERSIIY of the lead to disease or a cell followjing anrinappropriate developmental path. The origin of many diseases such as cancer (Liao et al., 2009), Alzheimer's (de la Monte et al., 1995) and multiple sclerosis (Satoh et al., 2007) can be attributed to aberrant gene expression, making this process a topic of much investigation. In order to understand how the uncontrolled regulation of gene expression causes disease, it is important to understand how normal gene expression events are regulated within the cell.

Transcription factors are sequence-specific DNA-binding proteins forming the regulatory machinery responsible for the differential gene expression,
development and regulation of cellular processes in an organism. Transcription factors function by binding to a promoter sequence in the upstream, untranslated region of a gene, allowing RNA polymerase II to bind and initiate transcription (Nikolov and Burley, 1997).

It is widely accepted that transcription factors function in complexes (Sandelin et al., 2007) rather than individually. The activation of transcription is greatly influenced by the composition of these transcription factor complexes where the presence or absence of even one transcription factor can alter the ability of the complex to activate transcription (Reid et al., 2009). This sensitive transcriptional switch therefore affects the regulation of gene expression on a spatial and temporal level (Lee and Young, 2000) In-addition to one gene being controlled by many different combinations of transcription factors, it is also known that any given combination of transcription factors are aple to activate more than one gene, providing a means to contrecereguation of genes (Reid et al., 2009). UNIVERSITY of the
The efficiency of transcriptibnectors are also(vatiable, with some having a high DNA-binding affinity and others having low affinity, creating a mechanism whereby the cell can control the number of mRNA molecules transcribed from a gene. In addition, it is suggested that ubiquitously expressed transcription factors control a broad set of genes that are then fine-tuned by tissue-specific transcription factors (Vaquerizas et al., 2009). Regulation of gene expression by transcription factors is therefore greatly influenced by their tissue expression profiles as well as their involvement in transcription factor complexes.

Conventional expression profiling experiments focus on a few individual genes of interest. With the discovery of high-throughput technologies, it has become increasingly apparent that genes should be analysed within their genomic context. Since transcription factors function as groups or complexes, it is necessary that our investigations of gene expression events reflect this. The aim of this study is to identify tissue-restricted transcription factor complexes based on the coexpression of 1805 transcription factors. The rationale behind this is that the identification of transcription factors responsible for tissue-specific expression of a particular gene may be investigated across different pathological states, thereby giving insight into the genes responsible for the disease in question.

2.4 Materials and methods

2.4.1 Data generation

UNIVERSITY of the
WESTERN CAPE
The members of the Genome Network Project (GNP), for which this study was conducted, compiled a list of human transcription factors for analysis, hereafter referred to as the Genes Of Interest list (GOI-list) (March, 2007). The genes in this list originally contained all 2353 known human transcription factors based on qRT-PCR experiments. Manual curation of the GOI-list resulted in 1805 transcription factors that conform to the following criteria:
a) has a DNA-binding domain;
b) shows evidence of nuclear localization according to LOCATE (Sprenger et al., 2008); and
c) is annotated as a transcriptional regulator according to the Gene Ontology database (Ashburner et al., 2000).

A transcription factor was excluded from the GOI-list if there was strong evidence supporting localisation outside of the nucleus.

To generate expression profiles for each of the genes in the GOI-list, their Entrez Gene identifiers were obtained from the National Center for Biotechnology Information (NCBI) UniGene database (March, 2009) (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene). The Entrez Gene identifiers were used to query a database of 8852 human cDNA libraries in the eVOC ontology system (Kruger et al., 2007). Only terms from the Anatomical System, Cell Type, Developmental Stage and Pathology ontologies were used to annotate the genes. The resulting expression profite lists the annotations of all the cDNA libraries in which each gene is expressed. of the

WESTERN CAPE

2.4.2 Pseudoarray generation and expression filtering

The gene expression profiles were converted into a binary pseudoarray by listing the genes in the first column and all annotations in the first row of a table. If a gene is annotated with a term, the value in the array corresponding with that gene and term is ' 1 '. Similarly, if a gene is not annotated with a term, the value in the
array is ' 0 ', creating a binary code for presence (' 1 ') and absence (' 0 ') of expression of a gene across a list of tissues represented by ontology terms.

The pseudoarray was filtered for annotations resulting from cDNA libraries derived from normal tissues. A library is considered to be from normal tissue only if the annotation explicitly states 'normal'. Annotations were discarded where the originating tissue samples were pooled or if the Anatomical System term was 'unclassifiable', indicating the sample was from an unknown tissue type. In addition, the developmental stage information was removed and identical terms from different stages were merged. Terms were collated if they were located on the same branch of a hierarchy, eg. ovary and uterus were collated and renamed 'female reproductive system'. 'lymphocyte' and 'bone marrow' were merged with 'blood', 'lymph' and 'bone', respectively. Due to ubiquitous expression, alMterns relating to 'brain' were removed, and the following terms were collated as 'other': adipose tissue, auditory apparatus, bladder, cartilage, gall bladder, gastrointestinal tract, larynx, muscle, omentum, oral cavity, pharynx, skeletal muscle, skin, spinal cord, synovium, tonsil, umbilical cord and visual apparatus. In order to explore tissuerestricted expression, genes were further filtered based on the number of terms to which they are annotated. Only genes expressed in less than 25% of tissues were used for further analysis.

2.4.3 Expression clustering

To determine genes exhibiting similar expression patterns, the correlation coefficient of each gene pair was calculated. A correlation coefficient describes the strength of a linear relationship between two variables and has a value between ' -1 ' (negatively correlated) and ' 1 ' (positively correlated). The correlation coefficients were calculated computationally by means of the numpy module of the Python scripting language. Genes showing no correlation in their expression have a correlation coefficient ' 0 ' and genes whose expression are perfectly correlated have a correlation coefficient ' 1 '. Since the aim of the study was to find co-expressing transcription factors, negatively correlated genes were not included in the analysis. The conretationresults were filtered for gene pairs showing at least 75% correlation (coeff $=0.75$) in their expression. For example, if a gene pair $(A$ and $B)$ has a 0.80 correlation coefficient, it indicates that gene A is expressed in the same tissue as gene B for 80% of the time, indicating a high degree of co-expression.

Genes were defined as clustering together in a network if a node (gene) is connected to another node (corresponding gene pair) by an edge (correlation coefficient ≥ 0.75). The nodes and edges resulting from the expression correlation calculations were visualised using the Cytoscape network and visualisation tool (Shannon et al., 2003).

2.4.4 Functional analysis

The list of tissue-restricted genes was analysed through the use of Ingenuity Pathway Analysis (IPA) version 7.5 (http://www.ingenuity.com). The set of genes was uploaded into the application as a list of Entrez Gene identifiers. Each gene identifier was mapped to its corresponding gene object in the Ingenuity Pathways Knowledge Base. The Functional Analysis component of the application identified the biological functions and diseases that were most significant to the data set. A Fischer's exact test was used to calculate a p-value determining the probability that each biological function and disease assigned to that data set is random.

The Canonical Pathways analysis identified the pattivays from the Ingenuity Pathways Analysis library of canonicall pathways that were most significant to the data set (as at August 2009). The association of a canonical pathway and the data set was measured by performing Fischers exact test, calculating a p-value to illustrate the probability that the assodiation betwetrithe pathway and genes in the data set is due to chance.

2.5 Results and discussion

2.5.1 Data generation and expression profiling

Of the 1805 genes in the TF-list, 60 genes were not represented by the cDNA libraries in the eVOC ontology system. The remaining 1745 genes were represented by 239 unique annotation tuples, where a tuple is a list of four terms (one from each ontology) representing a cDNA library. For example, the tuple representing a cDNA library obtained from the epithelial cells of a normal fetal kidney is 'kidney|epithelial cell|fetus|normal'. Due to the hierarchical nature of an ontology, libraries are often annotated with differing granularity. For example, one technician may annotate a cDNA library derived from hippocampus as 'hippocampus', whereas anothern technician would annotate the same cDNA library as 'brain'. To compensate for this annotation inconsistency, terms were

UNIVERSITY of the
The merging and removal of terms resulted in 734 genes represented by 21 ontology terms. To determine which genes showed tissue-restricted expression, the genes were further filtered based on the number of tissues in which they are expressed. Table 1 lists the 145 genes that are expressed in less than 25% of the tissues represented by the 21 ontology terms. It should be noted that, as with most analyses, the results obtained here might be subjected to a data bias. Since only one expression source (namely ESTs) is used, it is possible that the expression of certain genes were not captured. Although the focus of this study is the development of a method to determine tissue-restricted expression factors, the

Table 1

A list of the $\mathbf{1 4 5}$ genes expressed in less than $\mathbf{2 5 \%}$ of all tissues. The table consists of two panels, each listing the Entrez gene identifier and gene symbol for the human transcription factors showing tissue-restricted expression.

GeneID	GeneSymbol	GenelD	GeneSymbol
326	AIRE	8345	HIST1H2BH
430	ASCL2	8820	HESX1
579	BAPX1	8970	HIST1H2BJ
668	FOXL2	9970	NR1I3
1032	CDKN2D	10215	OLIG2
1053	CEBPE	10655	DMRT2
1745	DLX1	10794	ZNF272
1746	DLX2	11077	HSF2BP
1748	DLX4	11281	POU6F2
1761	DMRT1	25806	VAX2
1961	EGR4	26038	CHD5
1993	ELAVL2	26108	PYGO1
2016	EMX1	26468	LHX6
2020	EN2	27023	FOXB1
2103	ESRRB	27164 -	SA+L3
2118	ETV4	$27288-11 \square$	HNRNPG-T
2294	FOXF1	27439	CECR6
2295	FOXF2	30009	TBX21
2297	FOXD1	30012	TLX 3
2302	FOXJ1	50805	IRX4,
2304	FOXE1	51022	GLRX2
2306	FOXD2	574085111	CWILIE
2623	GATA1	P14502 N C	RRBX2
2672	GFII	54626	HES2
3007	HIST1H1D	55552	HSZFP36
3008	HIST1H1E	55659	ZNF416
3009	HIST1H1B	56938	ARNTL2
3110	HLXB9	56978	PRDM8
3198	HOXA1	57116	ZNF695
3205	HOXA9	57332	CBX8
3207	HOXA11	57343	ZNF304
3209	HOXA13	57801	HES4
3231	HOXD1	58495	OVOL2
3234	HOXD8	60529	ALX4
3642	INSM1	63978	PRDM14
3975	LHX1	79192	IRX1
4210	MEFV	79722	FLJ11795
4656	MYOG	79816	TLE6
4796	NFKBIL2	79862	ZNF669
4821	NKX2-2	80032	ZNF556

GeneID	GeneSymbol	GeneID	GeneSymbol
4861	NPAS1	84127	RUNDC2A
4901	NRL	84911	ZNF382
5013	OTX1	85409	NKD2
5076	PAX2	85446	ZFHX2
5077	PAX3	89870	TRIM15
5079	PAX5	90649	ZNF486
5081	PAX7	94039	ZNF101
5453	POU3F1	94234	FOXQ1
5454	POU3F2	116448	OLIG1
5455	POU3F3	126295	LOC126295
5462	POU5F1P1	129025	SUHW1
5992	RFX4	136051	DKFZp7621137
6474	SHOX2	138474	TAF1L
6493	SIM2	140883	SUHW2
6496	SIX3	142689	ASB12
6664	SOX11	146434	ZNF597
6689	SPIB	148268	ZNF570
6877	TAF5	148979	GLIS1
6899	TBX1	161253	FLJ38964
6913	TBX15	162979	ZNF342
7023	TFAP4	163059	ZNF433
7161	TP73	163071	ZNF114
7291	TWIST1	170302	ARX
7310	U2AF1L1	171392	ZNF 675
7546	ZIC2	221527	ZBTB12
7621	ZNF70	245806	Velter
7673	ZNF222	253738	EBF3
7675	ZNF 121	283078	MKXX
7710	ZNF154	285676	ZNE454
7768	ZNF225	339416	ANKRD45
8092	CART1	339488	TFAP2E
8193	DPFI	341405	ANKRD33
8320	EOMES		

addition of data sources such as CAGE, MPSS and SAGE will dramatically increase the quality of the results.

Not surprisingly, more than 80% of the restricted genes are regulators of gene expression according to their Gene Ontology annotations. In addition, a small percentage of the restricted genes are involved in immune system development (BAPX1, TBX21 and SPIB), embryonic development (EOMES, OTX1, BAPX1, FOXE1, HOXD8, SIM2, FOXF1, LHX1, VAX2, FOXF2, TRIM15, GFI1, ASCL2, FOXL2, TBX1 and ZIC2) and cell fate specification (NKX2-2, TLX3 and GFI1). The pseudoarray illustrating the expression profiles of these genes is represented by Appendix VIII. It is interesting to note that these genes showing tissuerestricted expression are biased for expression pertaining to developmental processes - probably the most tightly regulated processes in an organism. This observation strengthens the hypothesis that ubiquitqusly expressed transcription factors regulate a broad set genes whereas tissue-restricted transcription factors are responsible for the fine-tuned regulation within of thefi.

WESTERN CAPE

2.5.2 Expression clustering

The current knowledge of transcription factor function suggests that they function as protein complexes, indicating that the functional and expression profiling of a single transcription factor is unuseful. In order to determine how transcription factors regulate gene expression, it is important to determine which transcription factors function together. The correlations of gene expression profiles were
determined in order to assess which genes co-express across a range of tissues. The co-expression of transcription factors implicates their involvement in the coregulation of their target genes, providing the basis for further functional studies.

A moderate correlation cutoff of 75% resulted in 112 genes represented by 8 gene clusters. Genes clustered together if there was at least one edge (correlation coefficient ≥ 0.75) between two genes. Not surprisingly, the results show one large gene cluster (Figure 1a) with a few smaller clusters (Figure 1b). Investigations of the annotations of the genes in Figure 1b reveal a few clusters (3, 4 and 5) that exhibit tissue-restricted expression for female reproductive system, male reproductive system and stem cell, respectively. In addition, clusters 6, 7 and 8 show tissue-biased expressien Theseresults indicate that the genes in each cluster are co-expressed in certaintissues and therefore possibly function as a unit to activate the transcription of a gene (or sets of genes) responsible for the tissuespecific characteristics of tissue in wich they-are expressed. For example, it is feasible that because the genes in cluster 5 (DEX2, $B A P X 1$ and ZBTB12) coWESTERN CAPE
express only in the stem cell population that these transcription factors may be responsible for regulating the genes that define stemness (self-renewal, chemoresistance, pluripotency). Since we see transcription factors biased for expression in tissues that have developmental functions (female reproductive system, male reproductive system and stem cell), we can intuitively predict that the corresponding transcription factors play a role in the regulation of the development of the cell. It is even possible, given the tissues in which these genes are restricted, that they regulate the stem cell state of a cell since the male and female reproductive system has stem cell-containing tissues. The tissues

Figure 1a
Illustration of genes clustering together based on correlated co-expression. All gene clusters represent the sets of genes that cluster together based on a correlation coefficient larger than 0.75 .

Figure 1b
Illustration of genes clustering together based on correlated co-expression. All gene clusters represent the sets of genes that cluster together based on a correlation coefficient larger than 0.75 . Clusters $2-8$ represents genes and tissues for which there is biased expression.
represented by the tissue-biased clusters (lung, bone, kidney, heart, lymph and blood) also have a stem cell niche with cells progressing through a defined cell lineage.

Although the above statements require experimental validation, what we see here is the identification of several complexes of transcription factors that show an expression bias towards certain tissues and therefore possibly interact with each other to combinatorially regulate a defined set of target genes. It is possible that the addition or omission of even one transcription factor in a complex may alter the regulation of a gene not only quantitatively, but also on a temporal and spatial level. It is for this reason that it is important for researchers to determine the composition of transcription faetor complexes in order to understand the regulation of any gene of interest. This method of using ontologies to determine tissue-restricted transcription factor complexes can therefore be used to computationally predict transeription factors that co-regulate a set of genes.

UNIVERSITY of the
WESTERN CAPE

2.5.3 Functional analysis

A functional analysis of a list of genes reveals processes with which the genes are associated, thereby giving insight into the processes governing a particular cell type or state. The functional analysis of the 145 transcription factors that exhibit a restricted expression profile suggests a functional bias towards developmental processes. Table 2a lists the top five physiological functions associated with the restricted gene set, showing a significant enrichment for the development of

Table 2a

The top five physiological system development and functions overrepresented by genes showing restricted expression.

Physiological System Development and Function	P-value
Organ development	$4.73 \mathrm{E}-15-1.57 \mathrm{E}-02$
Nervous System Development and Function	$1.33 \mathrm{E}-10-2.34 \mathrm{E}-02$
Lymphoid Tissue Structure and Development	$3.60 \mathrm{E}-07-2.12 \mathrm{E}-02$
Digestive System Development and Function	$1.83 \mathrm{E}-04-1.83 \mathrm{E}-04$
Organismal Development	$2.92 \mathrm{E}-04-2.92 \mathrm{E}-04$

UNIVERSITY of the
WESTERN CAPE
organs and the organism as a whole. Investigation into the top five diseases associated with the data set shows that cancer is significantly over-represented (Table 2b). In addition, analysis of the canonical pathways suggests the Sonic Hedgehog Signaling pathway as the most significantly over-represented pathway by the data set (Table 3) with a p -value of 1.99×10^{-01}. Although the p -value presented here does not fall below the accepted 0.005 , it does support the findings presented in 2.5.2. The p -value obtained from enrichment analyses is influenced by the size of the gene list being investigated, where a larger gene list will have a higher statistical power resulting in more significant p-values. Even so, the order of enriched terms will remain fairly stable regardless of the size of the gene list, provided the lists of different sizes are being sampled from the same data set (Huang da et al., 2009). We can therefore argue thap the Hedgehog pathway is significantly over-represented even though high p-ralue is obtained, since it is most likely a result of having a small gene list. The Hedgehog pathway is a key regulator of embryonic deyelopment and is bighly y_{y} conserved from insects to mammals. Altered Hedgehog pathway activitycah lead to certain cancers such as basal cell carcinoma. There is also increasing evidence that this pathway is involved in regulating adult stem cells (Bhardwaj et al., 2001) and overrepresentation of this pathway is associated with proliferation and development (Kenney et al., 2003).

The over-representation of developmental functions, diseases and canonical pathways in the data set is strong evidence that the transcription factors showing a tissue-restricted expression bias are those factors that are responsible for the finetuning of the regulation of developmental gene expression. These tissue-restricted

Table 2b

The top five diseases and disorders associated with the genes showing restricted expression in less than 25% of all tissues.

Diseases and Disorders	P-value
Developmental Disorder	$2.99 \mathrm{E}-03-3.88 \mathrm{E}-02$
Antimicrobial Response	$7.87 \mathrm{E}-03-7.87 \mathrm{E}-03$
Cancer	$7.87 \mathrm{E}-03-3.88 \mathrm{E}-02$
Dermatological Diseases and Conditions	$7.87 \mathrm{E}-03-3.88 \mathrm{E}-02$
Endocrine System Disorders	$7.87 \mathrm{E}-03-7.87 \mathrm{E}-03$

UNIVERSITY of the
WESTERN CAPE

Table 3

A list of canonical pathways over-represented by genes showing restricted
expression in less than 25% of all tissues.

transcription factors may therefore also be implicated in the development of cancers and developmental disorders originating from a dysregulation of genes in a cell.

2.6 Conclusions

This study explored the expression profiles of a list of transcription factors known to localise in the nucleus. The aim of the study was to determine which transcription factors show tissue-restricted expression. The use of an ontologybased system enabled the identification of 145 transcription factors whose expression was limited to less than-25\% of the 21 tissues represented by the dataset. Investigation of the results revealed that the tissue-restricted transcription factors are involved in developmental processes such as immune system development, embryonic development and cell fate specification. The Sonic UNIVERSITY of the
Hedgehog Signaling pathway was the most significantly over-represented pathway in the data set, providing further evidence of a significant role of these genes in the development of an organism. In addition, the tissues in which the transcription factors showed biased expression are those tissues in which cells are continuously re-generating, indicating that these transcription factors may play a crucial role in the regulation of the progression of a cell down a defined cell lineage.

It is becoming increasingly apparent that transcription factors do not function individually, but rather as complexes. The identification of co-expressing
transcription factors will therefore be able to make an initial identification of transcription factor complexes. Clustering tissue-restricted genes based on a 75% correlation of their expression enabled the identification of 3 transcription factor complexes showing tissue-restricted (expressed in one tissue only) expression and 3 complexes showing tissue-biased (expressed in a limited number of tissues) expression patterns. The three clusters showing tissue-restricted expression represent the male and female reproductive systems as well as stem cells. We have therefore potentially identified transcription factor complexes that are involved in the regulation of the development of the cell and further investigation of the transcription factors represented by these clusters may contribute to the understanding of the regulation of normal stem cells.

The addition of expression sources to supplement the dataset used here will add quality to the results, however the method applied will not be affected. We have therefore described a robust method that applies an ontology-based system to enable the identification of transcription factor complexes that may be used to WESTERN CAPE
identify transcription factor complexes that function in specific tissues thereby enhancing the understanding of the regulatory potential of genes of interest.

Chapter 3

Mouse gene expression analysis of cancer/testis orthologs restricts candidates for cancer therapy.

3.1 Summary

The work presented in this chapter was conducted as part of a project aimed at characterising cancer/testis genes in human and mouse. The overall objectives of the project are fourfold:

1. Characterise, and possibly re-classify, all known human cancer/testis genes; profiling;

2. Identify which cancentestislgen lare mogt suited for developing cancer drugs or vaccines; and ESTERN CAPE
3. Identify mouse cancer/testis genes to use as a model system for cancer drug and vaccine development.

Objectives (1) and (2) resulted in a publication (Hofmann et al., 2008), wherein my contribution was to:
a) use the ontologies presented in Chapter 1 to annotate a list of human cancer/testis genes and their mouse orthologs; and
b) maintain and implement the data-generation pipeline developed by Dr Christopher Maher and Dr Oliver Hofmann.

The mouse expression information in (a) was not used in the publication due to the observation that the expression profiles of the orthologs did not conform to expected cancer/testis criteria and further investigation was required (subsequently resulting in this chapter). The human expression information was merged with expression data derived from MPSS, qRT-PCR and CAGE expression data in order to perform a multi-platform expression analysis in the attempt to re-classify human cancer/testis genes. The pipeline in (b) is a sequence of computer scripts coded in Perl, which requires raw CAGE sequence information (Kodzius et al., 2006) as input. CAGE tags are short $10-12 \mathrm{bp}$ fragments derived from the 5 ' coding region of an mRNA and, when mapped to the genome, accurately identifies the point of transcription initiation (transcription start site - TSS). The pipeline orders the CAGE tags according to chromosome and strand, and subsequently/giters the tags to provide quantitative evidence for transcription initiation. When annotated adcording tol the ontology-based system described in Chapter 1, this information provides tissue-based transcription initiation events. When codribinedwithetad cDNAFPrary information from the eVOC system as well as qRT-PCR and MPSS data, a genome-wide analysis identified genes whose expression profile classifies them as cancer/testis genes, thereby identifying novel CT genes in human. This work is discussed in detail in 'Genome-wide analysis of cancer/testis gene expression' published in PNAS (Hofmann et al., 2008), which is appended as Appendix IX.

This chapter describes objective (4), where my role was to develop, implement and interpret the analysis. The results of this study will be used to make informed decisions regarding the use of mouse as model system for investigation of
cancer/testis genes, and to further understand the relationship between human and mouse cancer/testis orthologs.

3.2 Aim

The aim of the analysis presented here is to determine whether the mouse orthologs of the human cancer/testis (CT) gene set exhibits CT characteristics. Since CT genes are a target for gene-based cancer drug therapy, and the development of these drugs includes efficacy and toxicity trials in mouse, it is important to identify human target genes whose mouse counterpart show the same tissue-restricted expression,

3.3 Introduction

UNIVERSITY of the
WESTERN CAPE
Cancer is a disease characterised by the uncontrolled growth of cells in any of a variety of tissues such as breast, prostate, lung, liver and pancreas (Jemal et al., 2008). Cancer is an invasive disease and can migrate to different parts of the body. Although there are hundreds of cancer types, they typically fall into one of five categories (leukemia, sarcoma, carcinoma, lymphoma/myeloma, and central nervous system cancers), depending on their tissue of origin. Leukemia is cancer that originates in the bone marrow where blood is formed, resulting in the production of a large number of abnormal blood cells. The sarcoma cancers develop in the connective and supportive tissues such as bone, muscle or fat.

Carcinoma is referred to cancer originating in the skin or in the tissue lining the internal organs. The lymphoma and myeloma cancers originate in the immune system, whereas the central nervous system cancers develop in the brain and spinal cord (http://www.cancer.gov/cancertopics/what-is-cancer). In addition, cancers may be classified as either benign (non-metastasizing, non-invasive, nonaggressive) or malignant (metastasizing, invasive, aggressive) tumors, the latter being the most cause of concern.

In 2004, cancer was responsible for the deaths of 7.4 million people worldwide and it is estimated that this figure will rise to 12 million in the year 2030 (http://www.who.int/en/). The exact origin of cancer is the topic of much research, however the consensus is that amorigenic cells have altered genomes compared to normal cells, resulting in aberrant gene expression, function and cellular growth (Bos, 1989). The two main theories for the origin of cancer are the clonal evolution model and the cancer stem cell thebry (Gil et al., 2008). The clonal evolution model suggests that a cell acquires a series of mutations during WESTERN CAPE the process of cell division. The cancer stem cell model states that only stem cells proliferate enough times to accumulate cancer-causing mutations and that it is these cells that gives rise to tumors. The cancer stem cell population is a subset of the tumor that possesses the self-renewal and multipotent qualities of normal stem cells.

The cancer stem cell theory suggests that if the cancer stem cell population is not removed from the tumor, the patient will experience a tumor relapse. Conventional cancer therapy includes surgery to excise the tumor followed by
chemo- or radiation-therapy to kill all replicating cells. Since cancer stem cells exhibit intolerance to chemotherapy (Gil et al., 2008) these conventional therapies are not only invasive but potentially ineffective as well. Current research focusing on cancer therapy is therefore aimed at identifying genes expressed specifically in tumors and not in normal tissues, enabling the production of drugs or vaccines to target cells that have become tumorigenic.

Cancer/testis (CT) genes are a group of genes whose expression has been observed in a variety of different tumors (Chitale et al., 2005). However, when observed in normal tissues, the expression of CT genes is limited to the immunoprivileged tissues of testis, ovary and/or placenta (Cho et al., 2006). In addition, many CT genes exhibit immunogenic properties, enabling them to elicit cellular and humoral immune responses in cancer patients (Atanackovic et al., 2006). The immunogenicity of $C T$ genes coupled with their expression in immunoprivileged sites an in a wide range of tumors, allows these genes to be considered as drug target candidates for the immunotherapeutic treatment of WESTERN CAPE cancer.

As with many pharmaceutical products, the process of creating drug targets requires the use of model systems in which to test drugs before being declared fit for clinical trials. Although the mouse is a common model system for studying biological reactions to chemical additives, it is not guaranteed that the human response will be identical. Orthologous genes may be expressed in both human and mouse, but due to different regulators their expression does not necessarily occur on the same temporal and spatial level (discussed in Chapter 1), affecting
their eventual function. For this reason it is important to identify mouse CT genes and to understand their relationship to human orthologs for the development of drug targets for cancer therapy.

3.4 Materials and methods

3.4.1 Data selection and generation

A list of 181 human cancer/testis (CT) genes was obtained from the CT Antigen Database (April, 2009) (http://www.cta.lncc.br). The mouse orthologs of the human CT genes were obtained by matching HomoloGene identifiers (as presented in Chapter 1) resultingin-only 70 mousergenes. Information for the generation of gene expression profiles of the mouse ofthologs was extracted from 1210 cDNA libraries in the evoc system (chapterli). A gene was annotated with the anatomical, cellular develbpiontaTand pathological terms associated with a library if the gene was found to be expressed in that particular library. In the cases where anatomical terms were not available, terms relating to cell type were used.

Only libraries that were annotated as having normal pathology were categorised as 'normal', whereas all other libraries not explicitly annotated as such were categorised as 'unclassifiable' in terms of pathology. Libraries comprising of more that one sample were excluded from the analysis unless all the samples were obtained from the same anatomical structure under identical pathological conditions.

3.4.2 Expression profiling

The expression information generated in 3.3.1 was organised in the form of an array. An expression array consists of a list of genes in the first column of a table, with the first row consisting of all possible annotations from the expression sources. The annotations are a combination of developmental stage, pathology and anatomical structure (or cell type) for each library used. For example, an annotation for a cDNA library obtained from the normal heart of an adult mouse would be 'adult|normal|heart'. The values for the array were based on the number of cDNA libraries from the eVOC system in which a gene was expressed, summing libraries if the annotations were identicat for example, if a gene was expressed in three different librafies all defived from a normal heart of an adt mouse, the expression valuel for that particular gene with 'adult|normal|heart' annotation would be 3. UNIVERSITY of the WESTERN CAPE
The expression array was subsequently filtered to disregard developmental stage information, remove annotations where the pathology was neither cancer nor normal, and merge terms related in terms of hierarchical structure. Appendix X lists the manual filtering steps performed on the data. A total of 7 genes were not represented by the data and were subsequently removed from the analysis.

Based on the expression profiles derived, genes were classified into three categories: (i) testis-restricted; (ii) testis/brain-restricted; (iii) testis-selective (see

Table 1 for classification and Figure 1 for a flow-diagram describing the categorisation process).

3.5 Results and discussion

Of the 181 human CT genes, only 70 have mouse orthologs according to the HomoloGene database (April, 2009) (http://www.ncbi.nlm.nih.gov/entrez/ query.fcgi? $\mathrm{db}=$ =homologene). Although $80-99 \%$ of mouse genes have human orthologs (discussed in Chapter 1), these percentages still represent between 300 6000 of the estimated 30000 genes in the mouse genome (NCBI m37, Apr 2007) (http://www.ensembl.org/Mus_musculus/nforstatsTable), thereby easily accounting for the differences in the number of human and mouse CT genes. In addition, many of the human dT genes are primate-specific.

The data filtering process inyolved rempying annotations where the pathology is unclassifiable as well as distegarding developnentat stage information. The filtering process is important as it discards genes whose origin is unknown and their expression can therefore not be specifically designated as 'normal' or 'cancer'. The developmental stage information is discarded because there is simply not enough data for each developmental stage to be a category on its own. Terms such as cerebellum and brain that are related in the eVOC hierarchy were merged to reflect the least granular term, resulting in 63 genes represented by 76 unique annotations consisting of 58 normal- and 18 cancer-related annotations. Unfortunately, the filtering of data resulted in 4 genes being excluded from the

Figure 1
Flow-diagram representing the categorisation of mouse genes into cancer/testis categories.

Is gene only expressed in testis or brain, but not normal or cancer?

Table 1

Classification categories for cancer/testis genes. Testis- and testis/brainrestricted genes are those biased for expression in immunoprivileged tissues.

Category	Classification
Testis-restricted	expression in cancer and testis only
Testis/brain- restricted	expression in cancer, testis, placenta, ovary and brain-regions only
Testis-selective	expression in cancer, testis and two other tissues

UNIVERSITY of the
WESTERN CAPE
analysis since they did not have any expression evidence in the remaining cDNA libraries. Although this process results in a loss of data, it increases the confidence of the remaining genes in that they have definite expression in 'normal' and 'cancer' tissues.

The resulting expression profile showed that 4 of the 70 genes were not found to be expressed in a testis library at all (ll13ra2, Ccdc36, Otoa and Magea8). There were 0 genes categorised as testis-restricted, 2 classified as testis/brain-restricted (Sycel and Tssk0) and 7 classified as testis-selective (Morc1, Spa17, Dkkl1, Plac1, Piwil2, Ly6k and Ssxb2). In addition, there were 17 genes expressed in testis, brain, ovary or placenta but not in normal or cancer tissues. Because these genes are not expressed in cancer, theyaretctassified as cancer/testis genes.
Figure 2 illustrates the mouse expressionn profite as well as the resulting The first panel of Figure 2 (GGategoryNo 3 represents the CT category each gene was categorised as. The sedobid pand fepesentstnotwal testis, brain, ovary and placenta expression. The third and fourth panels represent normal and cancer expression, respectively. The fifth panel represents expression derived from normal tissues relating to the reproductive system (eg. oocyte and spermatocyte) and stem cells, and were not included in the CT categorisation process. Table 2 provides the testis-restricted, testis/brain-restricted and testis-selective genes along with their human orthologs.

The results are inevitably subject to data bias since the data set is derived from one data type from a single origin and it is therefore possible that some genes are

Figure 2
Visualisation of the gene expression profile of 63 mouse orthologs. The coloured blocks within the array refer to the number of cDNA libraries a gene is expressed in ($0=$ black; $5=$ red). Genes are ordered from top to bottom according to their CT classification (testis/brain-restricted = red; no testis expression = black).

Table 2

Gene identifiers and symbols of mouse genes showing testis-restricted, testis/brain-restricted or testis-selective expression, along with their human orthologs.

more likely to be included in the data set than others. The way in which to minimise the effects of data bias would be to include more data types from different sources. Although it is not presented here, the addition of data sources to the ontology system is strongly suggested. We can therefore not definitively conclude that the genes listed above are never expressed in testis or cancer and testis only. We can, however, illustrate that (a) there is evidence that these genes may not be expressed in testis and therefore possibly not classify as CT genes, and (b) genes that are considered testis-restricted in humans are showing a lessrestrictive expression profile when expressed in mouse, which was the purpose of this study. We have therefore assessed the expression profiles of mouse genes whose orthologs, when expressed in humans, show a testis-restricted or testisbiased expression. Because model systems-are used to determine the safety and efficacy of a trial drug, it is Thportant that reaction exhibited by the mouse closely reflects the reaction that a human would exhibit to the same drug. Genetargeted drug therapy therefore requires that any drug developed to target a human
 an ortholog does not show the same expression pattern in both human and mouse, there is a high probability that the gene performs a different function in each species. It is for this reason that we have set out to determine the expression profile of the mouse orthologs of the human CT genes and we have identified only 7 mouse genes whose expression profile characterises them as potential CT genes and therefore potential candidates for the development of gene-targeted drug therapies in mouse for eventual application in humans. In order for this work to make the transition from hypothetical to actual drug therapy, drugs may
be developed to specifically target the genes highlighted in this study. The ability for a drug to identify, target and destroy a cell expressing a gene characteristic of cancer and no other normal tissue will result in a non-invasive and highly effective means of treating and eradicating cancer.

3.6 Conclusions

The answer to effective cancer therapy lies in the ability to distinguish cancer from normal cells. The cancer/testis genes have proven to be promising candidates for drug targeted therapy due to their immunoprivileged properties. Despite the obvious importanee of the-cancertestisgenes in cancer therapy, these

genes are not well charactensed and therefore poorly understood. The use of a model system such as mouse proyides an effective way to advance our knowledge of the cancer/testis genes. The problem however, is that it has been shown that UNIVERSITY of the
the temporal and spatial gene expression of human and mouse orthologs differs greatly, emphasising the need to identify mouse CT gene orthologs. The analysis presented here highlights that the mouse orthologs of human CT genes are not necessarily CT genes themselves, and identifies only 7 mouse genes showing CT gene characteristics and have human CT counterparts. These findings provide realistic targets for drug-targeted cancer therapy and deeper characterization because they have, as a result of expression profiling, been identified as genes that potentially perform the same function due to identical expression and will therefore exhibit the same responses to chemical stimuli.

Conclusions

I have demonstrated the need for an effective way to annotate expression sources such as cDNA libraries in order to allow the universal and computational comparison of the annotated data. The need for the comparison of data is not only limited to data derived from different laboratories, but also data derived from different species. I have addressed the issue of data comparison by developing a set of ontologies that describe human and mouse development. The ontologies are aligned not only between the two species, but also to other available ontologies, allowing the use of computational methods to compare human and mouse gene expression data across a range of sources. In addition, I have used the ontologies to annotate sefof $8-852$ human and 1210 mouse cDNA libraries as an initial dataset to showease the onfologies. The use of the ontologies mas been demenstrated in several ways. Firstly, the ontologies have been used to compare the expressifothof human and mouse genes in the developing brain. It was found that of the 16324 possible human-mouse orthologs, only 90 genes were expressed in the developing brain of both human and mouse. This finding highlights the differences in the temporal and spatial expression patterns of orthologous genes between the two species. I emphasise here that when using model organisms to study the behaviour of genes with the intention of inferring structural and functional information, it is important to establish that the genes of interest have similar spatial and temporal expression profiles in both species under investigation.

Secondly, the ontologies have been used to determine clusters of tissue-restricted transcription factors. A single gene may be expressed as several different transcripts in different tissues or under different conditions depending on the transcription factors binding to the promoter region of that gene. In addition, it has been found that transcription factors function in complexes and the composition of the transcription factor complexes differ between tissues as well as disease states. The identification of tissue-restricted transcription factors may therefore provide insight into the tissue- or disease-specific regulation of genes. The results from this analysis identified 145 human transcription factors showing a tissue-restricted expression pattern. Investigation into known functions of these genes revealed enrichment for developmental processes such as immune system development, embryonic devetopment and cell fate specification. Clustering of these genes based on correlation of their expression profiles revealed tissuerestricted and tissue-biased transcription factot complexes that are potentially responsible for the regulation of thestem cell state or lineage differentiation of cells.

WESTERN CAPE

Lastly, the ontologies have been used to compare the expression profiles of a set of human cancer/testis genes in mouse. Of the 181 known human cancer/testis genes, only 70 have a mouse ortholog according to the HomoloGene database. Of these 70 mouse orthologs, only 63 have expression evidence in the system used. The human cancer/testis genes have been selected based on their biased expression for either testis and cancer, or testis, brain and cancer. The investigation of the 63 mouse orthologs show that 4 genes are not expressed in the testis at all and only 2 and 7 genes showed testis/brain-restricted and testis-
selective expression, respectively. Since the cancer/testis genes are considered extremely good candidates for the development of cancer drugs and vaccines, these findings emphasise the need to consider spatial and temporal differences in gene expression between human and model organisms when using the model organism to investigate the reaction of a set of genes to a drug or vaccine. This analysis also emphasises that mouse genes whose human orthologs are cancer/testis genes, are not necessarily cancer/testis genes themselves.

Each of the studies presented here have provided evidence that many human and mouse orthologs differ in their spatial as well as temporal expression. This would lead one to question whether the genes are truly orthologs even though their sequences have a high degree of simitarity While it is true that two orthologs once performed the same function, their expression clearly has different consequences when it is not occurring on the same temporal and spatial level in both species. Since we know regutation of expression determines the timing of gene expression, it is obvious that the differences between human and mouse is WESTERN CAPE
not limited to those genes without any counterparts in the opposite species, but also include those orthologs whose transcriptional regulators differ between the two species. As discussed previously, transcription factors function in complexes and omission or substitution of even one transcription factor in a complex can change the timing of expression of a single gene. It is this quality of transcriptional regulation that allows even a 1% difference in genetic composition to determine the difference between the mouse and human phenotype.

Our need to find cures for life-threatening diseases such as cancer is a major driving force behind biological research and with the advances of modern medicine we are in a position to develop non-invasive gene-targeted drug therapy. Due to the advantages of using mouse as a model system, the development of most drugs inevitably involves injecting a mouse with a drug to test its efficacy and toxicity. Since gene-targeted drugs aim to identify a specific gene in humans, one would expect the drug to target the same gene in the mouse in which the drug is being tested. It is therefore important to determine if the gene in question is indeed expressed in the mouse in identical tissues and developmental stages as its human counterpart.

Given the importance of the regutation-of gene expression timing and the comparison thereof between human and mouse, it is therefore imperative to accurately document a genels expression profile based on tissue, disease and developmental stage and work presented here provides a method to address this. It is noted that the analyses presented here used a single source of WESTERN CAPE expression, namely cDNA libraries. While the addition of other expression sources such as microarray, SAGE and CAGE experiments may alter the findings, the methods still apply. I have therefore developed a robust method with which to investigate aspects of mammalian gene expression, which is illustrated here in several ways.

Bioinformatics is, without a doubt, a collaborative science where your data resources are dependent on publically available data as well as that of your collaborators. It is therefore inevitable that your data will be slightly biased in
many ways, which is why it is important to keep in consideration two aspects of this field. Firstly, the integrity of your analysis and subsequent results are directly correlated with the quality, quantity and granularity of your input data. Secondly, any computational expression results or predictions need to be experimentally confirmed in a laboratory.

Afterword

Examination questions and answers

1. In the first sentence of the preface you bring up the term "post-genomic". Would you not like to argue that we are not in the post-genomic era, but rather right in the smack middle of the genomic era? Is it not premature to speak of the "post-genome"?

- In this context, the term 'post-genomic' refers to the fact that we have passed the point where we have decoded the genome. Whole genomes are being sequenced on a daily basis in laboratories around the werte and is-ho-longer the major bottleneck in
 genomics. Our challenge now-is to interpret the genome by determining the function as well as regulation of all genes and the networks they are involved in.

2. What effect do yowthigk "pextgeneratione technology will have on gene expression analysis and annotation in general?

- The 'next-generation' technologies enable the sequencing of genes on a much larger scale and at a faster rate than before. While this provides more data for gene expression analysis at higher accuracy, it requires effective data management strategies. Unfortunately, the annotation is not a tightly controlled aspect of data generation and it is my opinion that with the increase in the speed at which data can be generated that this process will be neglected. In order
for us to exploit data to its full potential it should be a requirement that all data submitted to public venues be annotated according to a strict set of rules involving the use of ontologies.

3. What are annotations?

- An annotation is a 'label' associated with a particular object with the purpose of describing that object. Data annotations are therefore a set of words used by the researcher generating the data to describe it. A gene will, for example, be annotated according to the tissue from which it was sequenced, such as 'lung' or 'liver'. The more annotations associated with the gene, the more descriptive it becomes (such-as annotating the gene according to the developmental stage or pathological state of the originating tissue). Because annotations are assigned by different individuals who would not necessantly annotate-atissue with the same level of detail, all annotations are effectively 1 open to interpretation and WESTERN CAPE prone to errors.

4. What is the difference between orthologs and paralogs?

- Orthologs are genes in different species whose sequences diverged during speciation. Paralogs are genes that originated in the same species as a duplication event and the sequences of the two genes subsequently diverged. Orthologs are therefore genes separated by speciation whereas paralogs are genes separated by a duplication event.

5. What is wrong with this statement: "These two genes are 90% homologous"?

- Homology refers to two sequences having common ancestry and cannot be quantified. When comparing the composition of two sequences, a percentage is a degree of their SIMILARITY.

6. How has Open Access affected your field of research? (has it?). What should the community do differently to make this kind of data more useful? Are there some requirements on data annotation that would make this more useful? If you could change one thing that was done in the past that would have made your work more useful, what would it be?

- I have used Open Access data in my research and it has enabled me to place my work into context with respect to what other researchers are doing. Although mest data is freely-available it is UNIVERSITY of the e it is just dumped into a not easily understandable - atmost as if it is just dumped into a database because it is a requirement for publication. Adequate descriptions of Open Access data would therefore make it more valuable. One of the stumbling-blocks of my research was the lack of accurate annotation of the data that is provided in public databases, which forced me to discard most of the data anyway (for example cDNA libraries annotated as 'unclassifiable' on the anatomical, developmental and pathological level are useless). In hindsight, making an effort to resolve annotations such as 'unclassifiable' would have increased the size and value of the data
set used in all my analyses. This would have required contacting the researcher producing each cDNA library and would be extremely time-consuming. In terms of publications, I was limited to the subscriptions of my host institution and Open Access journals. I found that much of the literature required in my research was not freely-available and therefore inaccessible to me.

UNIVERSITY of the
WESTERN CAPE

References

Adams MD, Kelley JM, Gocayne JD, et al. (1991). Complementary DNA sequencing: expressed sequence tags and human genome project. Science. 252(5013): 1651-1656.

Aitken S, Korf R, Webber B, Bard J. (2005). COBrA: a bio-ontology editor. Bioinformatics. 21(6):825-826.

Ashburner M, Ball CA, Blake JA, et al. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 25(1):2529.

Atanackovic D, Blum I, Cao Y, et al. (2006). Expression of cancer-testis antigens as possible targets for antigen-specific immunotherapy in head and neck squamous cell carcinoma. Cancer Biol Ther. 5(9):1218-1225.

Bajic VB, Tan SL, Christoffels A, et al. (2006). Mice and men: their promoter properties. PLoS Genet. 2(4):e54.

Baldock RA, Bard JB, Burger A, et al. (2003). EMAP and EMAGE: a framework for understanding spatiatly organized data. Neuroinformatics. 1(4):309-325.

II II

Bard J, Winter R. (2001). Ontologies of developinental anatomy: their current and future roles. Brief Bioinform, $2(3) ; 289-299$

Bhardwaj G, Murdoch B, WuD, et al. (2001). Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol. 2(2):172-180.

WFSTERN CAD
Bos JL. (1989). ras oncogenes in human cancer: areview. Cancer Res. 49(17):4682-4689.

Carninci P, Kasukawa T, Katayama S, et al. (2005). The transcriptional landscape of the mammalian genome. Science. 309(5740):1559-1563.

Chitale DA, Jungbluth AA, Marshall DS, et al. (2005). Expression of cancertestis antigens in endometrial carcinomas using a tissue microarray. Mod Pathol. 18(1):119-126.

Cho HJ, Caballero OL, Gnjatic S, et al. (2006). Physical interaction of two cancer-testis antigens, MAGE-C1 (CT7) and NY-ESO-1 (CT6). Cancer Immun. 6(12.
de la Monte SM, Ng SC, Hsu DW. (1995). Aberrant GAP-43 gene expression in Alzheimer's disease. Am J Pathol. 147(4):934-946.

Dennis GJ, Sherman BT, Hosack DA, et al. (2003). DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4(5):P3.

Dynlacht BD. (1997). Regulation of transcription by proteins that control the cell cycle. Nature. 389(6647):149-152.

Eilbeck K, Lewis SE, Mungall CJ, et al. (2005). The Sequence Ontology: a tool for the unification of genome annotations. Genome Biol. 6(5):R44.

Gil J, Stembalska A, Pesz KA, Sasiadek MM. (2008). Cancer stem cells: the theory and perspectives in cancer therapy. J Appl Genet. 49(2):193-199.

Gkoutos GV, Green EC, Mallon AM, Hancock JM, Davidson D. (2005). Using ontologies to describe mouse phenotypes. Genome Biol. 6(1):R8.

Hayamizu TF, Mangan M, Corradi JP, Kadin JA, Ringwald M. (2005). The Adult Mouse Anatomical Dictionary: a tool for annotating and integrating data. Genome Biol. 6(3):R29.

Hill DP, Begley DA, Finger JH, et al. (2004). The mouse Gene Expression Database (GXD): updates and enhancements. Nucleic Acids Res. 32(Database issue):D568-71.

Hofmann O, Caballero OL, Stevenson BJ, et al. (2008). Genome-wide analysis of cancer/testis gene expression. Proc Natl Acad Sci U S A. 105(51):2042220427.

The Cancer Genome Anatomy Project http://cgap.ncimih.gov/
FANTOM 4. http://fantom
FANTOM3::Databases. http://fantonh.gsc.riken.jp)/
RIKEN Genomic Sciences"Centre. http://gsc.riken.go.jp/indexE.html
UNIVERSITY of the
EHDA: Human versus mouse development stage comparison. http://www.ana.ed.ac.uk/añatomydatabase/hurnat/MbuseComp.html

National Cancer Institute. http://www.cancer.gov/cancertopics/what-is-cancer
Cancer Testis Antigen Database. http://www.cta.Incc.br
Ensembl. http://www.ensembl.org/Mus_musculus/Info/StatsTable
eVOC ontology. http://www.evocontology.org
DAG-edit. http://www.geneontology.org/GO.tools.shtml\#dagedit
Ingenuity (R) Systems. http://www.ingenuity.com
NCBI HomoloGene.
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=homologene
NCBI UniGene. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene
The Open Biomedical Ontologies. http://www.obofoundry.org/

World Health Organization. http://www.who.int/en/
Huang da W, Sherman BT, Lempicki RA. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4(1):44-57.

Hunter A, Kaufman MH, McKay A, et al. (2003). An ontology of human developmental anatomy. J Anat. 203(4):347-355.

Jemal A, Siegel R, Ward E, et al. (2008). Cancer statistics, 2008. CA Cancer J Clin. 58(2):71-96.

Kelso J, Visagie J, Theiler G, et al. (2003). eVOC: a controlled vocabulary for unifying gene expression data. Genome Res. 13(6A):1222-1230.

Kenney AM, Cole MD, Rowitch DH. (2003). Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development. 130(1):15-28.

Kho AT, Zhao Q, Cai Z, et al. (2004). Conserved mechanisms across development and tumorigenesis revealed by a mouse development perspective of human cancers. Genes Dev. 18(6):629-640.

Kodzius R, Kojima M, Nishiyori H, ef (2000) CAGE: cap analysis of gene expression. Nat Methods. 3(3):21|-222. 11 n m
Kruger A, Hofmann O, Carn̄̄nei P, Hayashizaki Y, Hide W. (2007). Simplified ontologies allowing comparison of developmental mammalian gene expression. Genome Biol.

Lee TI, Young RA. (2000). Transcription of eukaryotic protein-coding genes. Annu Rev Genet. 34(77-13) NIV ERSITY of the

Liao X, Siu MK, Au CW, et AE. (2009) Aberrant activation of hedgehog signaling pathway contributes to endometrial carcinogenesis through betacatenin. Mod Pathol.

Lindsay S, Copp AJ. (2005). MRC-Wellcome Trust Human Developmental Biology Resource: enabling studies of human developmental gene expression. Trends Genet. 21(11):586-590.

Magdaleno S, Jensen P, Brumwell CL, et al. (2006). BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system. PLoS Biol. 4(4):e86.

Marra M, Hillier L, Kucaba T, et al. (1999). An encyclopedia of mouse genes. Nat Genet. 21(2):191-194.

Martin D, Brun C, Remy E, et al. (2004). GOToolBox: functional analysis of gene datasets based on Gene Ontology. Genome Biol. 5(12):R101.

Nagaraj SH, Gasser RB, Ranganathan S. (2007). A hitchhiker's guide to expressed sequence tag (EST) analysis. Brief Bioinform. 8(1):6-21.

Nikolov DB, Burley SK. (1997). RNA polymerase II transcription initiation: a structural view. Proc Natl Acad Sci U S A. 94(1):15-22.

Odom DT, Dowell RD, Jacobsen ES, et al. (2007). Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat Genet. 39(6):730-732.

Parkinson H, Aitken S, Baldock RA, et al. (2004). The SOFG anatomy entry list (SAEL): an annotation tool for functional genomics data. Comparative and Functional Genomics. 5(6-7):521-527.

Reid JE, Ott S, Wernisch L. (2009). Transcriptional programs: Modelling higher order structure in transcriptional control. BMC Bioinformatics. 10(1):218.

Rosse C, Mejino JLJ. (2003). A reference ontology for biomedical informatics: the Foundational Model of Anatomy. J Biomed Inform. 36(6):478-500.

Sandelin A, Carninci P, Lenhard B, et al. (2007). Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet. 8(6):424-436.
Satoh J, Illes Z, Peterfalvi A, ef al. (2007). Aberranttranscriptional regulatory network in T cells of multiple scierosis. Neurosci Lett. 422(1):30-33.

Shannon P, Markiel A, Ozier ©, et al. (200B). Oytoscape: a software environment for integrate modets of biomofecular interaction networks. Genome Res. 13(11):2498-2504. TVERSITY of the
Smith B, Ceusters W, Klagges B et ale (2005). Relations in biomedical ontologies. Genome Biol. 6(5):R46.

Smith B, Ashburner M, Rosse C, et al. (2007). The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol. 25(11):1251-1255.

Sprenger J, Lynn Fink J, Karunaratne S, et al. (2008). LOCATE: a mammalian protein subcellular localization database. Nucleic Acids Res. 36(Database issue):D230-3.

Stevens R, Goble CA, Bechhofer S. (2000). Ontology-based knowledge representation for bioinformatics. Brief Bioinform. 1(4):398-414.

Suzuki H, Forrest AR, van Nimwegen E, et al. (2009). The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet. 41(5):553-562.

Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. (2009). A census of human transcription factors: function, expression and evolution. Nat Rev Genet. 10(4):252-263.

Waterston RH, Lindblad-Toh K, Birney E, et al. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature. 420(6915):520-562.

Zhou XJ, Gibson G. (2004). Cross-species comparison of genome-wide expression patterns. Genome Biol. 5(7):232.

UNIVERSITY of the
WESTERN CAPE

Appendix I Transcriptional landscape of the mammalian genome, Science.

Abstract

only LKS stations in NH), are fully consist ent with this assumption, particularly for the tropical stations. In the extratropics there are only four daytime-only stations so the MSU test is less meaningfut, but the two independent estimates do agree within $0.03^{\circ} \mathrm{C}$ per decade.

To illustrate the importance of the heating bias, we have computed its impact $\delta_{\text {sol }}$ on the trends at LKS stations. The LKS f factors unhomogenized trends, and trends adjusted only for solar heating are given for the middle troposphere and lower stratosphere in Table 2 In the stratosphere, our $\delta_{\text {sol }}$ is similar to the total adjustments by LKS and others, with trends moving closer to those from MSU (13) At the tropical tropopause (of relevance to stratospheric water vapor), $\delta_{\text {oit }}$ is somewhal smaller than LKS's. In the troposphere, how ever δ is much larger than previous adjust ments. Indeed the tropical trend with this menis. Indeed, $1^{\circ} \mathrm{C}$ tropical trend with this adjustment $\left(0.14^{\circ} \mathrm{C}\right.$ per decade over 1979 to 1997) would be consistent with model simu lations driven by observed surface warming. which was not true previously (I). One independent indication that the solar-adjusted trends should be more accurate is their consistency across latitude belts: for the period 1979 to 1997, the spread of values fell by 70% in the lower stratosphere and 25% in the troposphere.

Though this is encouraging, our confidence in these nighttime trends is still limited given that other radiosonde errors have not been addressed. SH trends from 1958 to 1997 seem unrealistically high in the troposphere, espe cially with the $\delta_{\text {wid }}$ adjustment, although this belt has by far the worst sampling. Previous homogenization efforts typically produced small changes to mean tropospheric trends, which could mean that other error trend cancel out $\delta_{\text {sol }}$ in the troposphere. In our judg ment, however, such fortuitous cancellation of independent errors is unlikely compared to the possibility that most solar artifacts were pre viously cither missed or their removal ncgated by other inaccurate adjustments. To be deby on, ily, adif tected easily, a shift must be large and abrupt (79% of stations during 1979 to 1997 and 90% during 1959 to 1997 experienced ΔT 90% during 1959 to 1997 experienced ΔT trends significant at 95% levet), at such trends significant at 95% level), at such modest levels, and of sufficient frequency at many stations that many may have been undetectable. Most important, jumps in the difference beiween daytime and nighttime monthly means would be detectable at only a few tropical stations because most lack sufficient nighttime data. In any case, we conclude that carefully extracted diumal temperature variations can be a valuable troubleshooting diagnostic for climate records, and that the uncertainty in late-20th century radiosonde trends is large enough to accommodate the reported surface warming.

References and Notes B. D. Senter et ail. Scierce 309,1551 (2005): published 2. .) K. Angell. I Clim. 16, 2288 (2003). 3. J. R. Lanzante, S. A. Klein, D. J. Seidel,). Clim. 16, 241 (2003). D. E. Parker et al. Geophys Res Lett. 24, 1499 (1997) 5. P. W. Thome et ai, J. Geophys. Res, in press. D. H. Douglass, B. D. Pearson, S. F. Singer, P. C 13207 (2004). D. J. Caffen et al., Science 287, 1242 (2000). D. E. Parker, D. I. Cox, int. J. Climatol. 15, 473 (1995). M. Free. D. J. Seidel, J. Geophys. Res. 110. D07101 (2005). 10. J. K. Luers, R. E. Eskridge, J. Appl. Meteorol. 34, 1241 11. (1995). 11. (2002). Dure. T. C. Peterson, R. S. Vose. J. Clim. 15. 1335 (2002)

Ltaimberges, "Homogenization of radiosonde temperature time series using ERA-40 analysis feedtadk information, "Tech. Rep. European Center for Medium Range Weather forecasting (2005), ERA-40 Project 13. D. J. Seidel et al., J. Clim. 17, 2225 (2004). 14. P. R. Krishmaiah, B. Q. Miao, Handbook of Statistics, P. R. Krishnaiah, B. Q. Miao, Handbook of Statistics, P. R. Krishnaiah, C. R. Roo. Eds. (Elsevier, New York, 1988), vol 7. 15. M. Free et at., sul. Am. Mereorod. Soc. 83, 891 (2002). 16. W. J. Randel F. Wu, in preparation 17. D. J. Seidel, M. Free. J. Wang J. Ceophys. Res. 110 18. A. Dai, K. E. Trenberth, I. R. Kart, f. Clim. 12, 2451 (1999)

REPORTS 9. S. Chapman, R S. Lindzen, Atmospheric Todes (D. Reidel, Norwete MA 1970) 2. D. R. Easterling et al., Science 277, 364 (1997) 21. D. . Gaffen, R. . Ross, J. Clim. 12, 811 (1999) 22. W. J. Randel et al. Science 285, 1689 (1999). 23. K N. Liou, T. Sasamori, J. Atmos. Sci. 32,2166 (1975) 4. R. E. Eskidge et al., Buli. Am. Meteord. Soc. 76, 1759 (1995). 1759 (1995). York, 1954). 6. S. C. Sherwood, Geoptys. Res. Lett. 27, 3525 (2000). 27. J. R. Christy, R W. Spencer, W. B. Noortis, W. D. | Braswell, D. E. Parker, J. Atmos. Oceanic Technol. 20. |
| :--- |
| 613 | 613 (2003). 28. T. Sasamori, J. London, J. Atmos. Sci, 23,543 (1966) tainty, and interpretarion of ous results are avaliable as supporting material on Science Orline. S.CS. thanks I. Risthey and KK Bragnenta for ust oussions. This work was supported by the National Cocanic and Atmospheric Adminisistration Climate and Global Change Program award NAO3OAR4310153, and by NSF ATM-0134893.

\section*{Supporting Online Material} mw sciencemag.org/cg/content/full/ $1115640 / \mathrm{DC}$ SOM Text Data files References and Notes 2 fune 2005; accepted 27 July 2005 Published online 11 August 200 indude this information when diting this paper ind

\section*{The Transcriptional Landscape of the Mammalian Genome}

The FANTOM Consortiume and RHKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group)* This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length comple- mentary PNAs derived from the mouse genorne. We identify the 5 and 3^{\prime} poundaries of 181,047 transerigts with extensive yariation in transcripts arising from atternative promoter usage, splicing, and polyadenylation. There are 16.247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins, Genomic mapping of the transcriptome reveals transcriptional forests, with overtapping transeription on both strands, separatedtby deserts in which few transeripts-are ebserved. The data provide analysis of mamalian

\section*{The production of RNA from genomic DNA} is directed by sequenecs that determine the- description of the data sets generated, mapping mone mature RNAs. We refer to the pattern of tran- transcriptome is provided in supporting online scription control signals. and the transcnpts materal (SOM) text 1 (Tables 1 and 2). We they generate, as the transcriptional landscape. have identified paired initiation and termiTo describe the transcriptional landscape of the mammalian genome, we combined fulllength cDNA isolation ($/$) and 5^{\prime} - and 3^{\prime}-end sequencing of cloned cDNAs. with new capanalysis gene expression (CAGE) and gene identification signature (GIS) and gene signature cloning (GSC) ditag technologies for the identification of RNA and mRNA scquences corresponding to transcription initi- nation sites, the boundaries of independent ranscripts, for 181,047 independent trancripts in the transcriptome (Tablc 3) In tal, we found 1.325^{\prime} start sites for each 3^{\prime} otal, we found 1.32 sart sites for each 3 and and 1.833 ends for each 5 end table 1). Based on these data, the number of ranscripts is at least one order of magnitude larger than the estimated 22,000 "genes" in the mouse genome (4) (SOM tex 1 1), and the

large majority of transcriptional units have alternative promoters and polyadenylation sites. The use of genome tiling arrays ($5-7$) in humans has also implied that the number of transcripts encoded by the genome is at least 10 times as great as the number of "genes." To extend the mouse data, two HepG2 CAGE libraries, one constructed with random primers and the other with oligo-dT primers, were combined to produce $1,000,000$ CAGE tags. Mapping of these tags to the human genome identified the likely promoters and transcriptional starting site (TSS) of many of the gene models identified by tiling array, also called transfrags (5), and clearly indicates that the same level of transcriptional diversity occurs in humans as in mice (table S2).

as splicing events, TSS, or termination events (SOM text 1)

TKs can be clustered together into transcript forests (TFs), genomic regions that are transcribed on either strand withou gaps. TFs encompass 62.5% of the genome (table S1) and are separated by regions
devoid of transcription, or transcription deserts. With the inclusion of GSC tags in addition to full-length cDNA and paired EST sequences, the estimated total number of transeript forests is 18,461 which will col lapse further with increasing depth of coverage (Fig. 1B)

	Total	Number libraries	mapp
RIKEN full-length conas	$\left.\begin{array}{c} 102,809 \\ 56,009 \end{array}\right]\left[\begin{array}{c} T \\ \hline 237 \end{array}\right]$		$\begin{aligned} & 100373 \\ & 52.1919 \end{aligned}$
Public (non-RIKEN) mRNAs			
CACE tags (mouse)	11,567,973	145	7,151,511
CACE tags (human)	5,992,395	24	3,106,472
CIS ditags	385,797	4	118,594
CSC ditags	2,079,652	4	968,201
RIKEN S'ESTs $^{\text {d }}$	722,642	266	607.462
RIKEN 3'ESTS	1,578,610	265	907,007
S'/3'EST pairs of RIKEN CDNA	448,956	264	277,702

The approach used to isolate full-length DNAs, basod on tibrary subtraction and previously unidensified $5 / 3$ end selection before full-insert sequencing was weighted toward identification of representative transcripts. Tevel 78.393 differm wlicing varian verhelcss. 78,393 diferent splicing variants TUs contain multiple splice variants (Table 2), an increasc from our previous estimate (41%) (9). This is still expected to be an underestimate, and new approaches will be necessary for a full evaluation of exon diversity (10).

Transcript diversity also arises through alternative termination. Littic is known about sequence motifs that control alternative polyadenylation. We identified 27 motif families with six or more nucleotides that were statistically overrepresented within 120 base pairs of the polyadenylation site of individual trancripls in our data sel. These motifs represent andidate modulators of polyadenylation site for eight unconventional altemative polyadenylation signals ($/$) (table S3). In addition, we found a widespread motif family with sequence TTGTTT, which was associated with both the canonical (AAUAAA and AUUAAA) and unconventional signals (/, //).
Gene names of 56,722 transcripts that were protein coding were assigned according to annotation rules (9,12). Their encoded proein sequences were combined with the publicly available proteins supported by cDNA equences (8). This generated a nonredundant et of 51,135 proteins with experimental evidence [isoform protein set (IPS)], 36,166 of which are complete (complete IPS). By comparison, the mammalian gene collection (http:// mgc.ncinih.gov) has cloned, as of July 2005, only $\sim 16,700$ transcripts (11,514 nonredundant). In the FANTOM3 data set, 16,274 proin sequences are newly described. Their ace variants were grouped together into

There are a total of 32.129 protein-coding Ks on the genome, of which 19.197 have only a single protein splice form, although 2525 of hose do have an alternative noncoding splice nef. The SUPERFAMILY analysis of SCOP out for each sequence. Of the 12,932 TKs that shoy variation in splicing. 8365 showed variation in SCOP domain prediction. Of the 12.932 variable TKs, 2392 produce proteins with different observed contents of InterPro

CACE tags (mon)
CIS ditags
RIKEN $5^{\prime \prime E}$ STS
$S^{\prime} / 3^{\prime} E S T$ pairs of RIKEN CDN entries. More than two altematives were ab served in 439 of the alternatives were obTKs. Thus, in the majority of variable loci, splicing controls some aspect of domain content or organization. To seek evidence for such an impact in specific sets of regulatory proteins, we compared a representative protein set

REPORTS

Fig. 3. Noncoding RNA promoters are highly conserved. (A) Human-mouse conservation of coding and noncoding RNAs compared with random geand C Promoters conand C) Promoters con-
servation of noncoding servation of noncoding
and coding mRNA and coding mRNA tity and (C) by alignment (D) Overlap of promoters of ncRNAs. (\mathbf{E} and F) Promoters of coding mRNAs contain a larger fraction of low complexity and repeats than noncoding promoters. LINE, long elements LTR, long terelements LT, long terminal repeats; SNES. dear elements.

A
Conservation of mouse RNAS vs. tuman
Rynarwo
Sequence conservation of mouse promoters vs. Chicken

号:

B Sequence canservation of mouse promoters vs. human
E
25536 protein-coding promoters

C Sequence conservation of mouse promoters vs. human

(RPS) and a variant protein set (VPS) of variantselass within the full set of TUs (table CDS were supported as genuine transcripts and phosphatases and kinases that have been (55), which revealed 1287 TUs that exhibit lare believed to be neRNA variants of proteincomprehensively annotated (14) by beok at domain composition (14) by looking at domain composition counts (table S4). These phosphoregulators could be functionally modulated through alteration in their intracellular location. Among the 21 receptor tyrosine phosphatase loci, we identified 23 variant transcripts from 14 laci with predicted changes to the subcellular localization and function of the encoded peptides. Of these, we identified two noncatalytic classes. secrete (10) and tethered (3). Furthermore, we iden-
tified two catalytic classes that lack the ex tifted two catalytic classes that lack the ext-
tracellular domains: catalytic only (5) and tethered catalytic (5). Similarly, among the 77 receptor kinase loci, we identified 41 variant transcripts from 33 loci which encode secreted (16), tethered (10), catalytic only (7), or other tethered catalytic (8) peptides. We then analyzed the membrane organization splicing

| S5), which revealed 1287 TUs that exhibit |
| :--- | :--- |
| alternative initiation, splicing, and |
| tion, likely to yiold yariant isoforms |

yon, likely to yicld yariant isoforms of mem-
location.
Of the 102.281 EANTOM3 cDNAs, 34,030 coding cDNAs.
Many ncRNAs appear to start from initia fion sites in 3^{\prime} untranslated regions (3'UTRs) of protein-coding loci (16). The normalized distribution of CAGE tags along annotated lack-anly prowinceding sequence (CDS) and exons of known transcripts with more than 300 (ncRNA) mapped tags each is shown in Fig. 2A. A ncrna) (6.5) (table S1. Many putative expected, the highest tag density on average ICRNAs were-isingletons in the futi-length + pocurs at the 5^{\prime} end, but there is also a sub
CDNA set. Among the FANTOM3 cDNA set, stantial increase of tags in the last one-fifth there was additional CAGB hags or other CDNA clones overlapping 41.025 cDNAs of termination shes for acRNA This, many known supported ncRNA set includes many are dynamically (SOM text 4), and 5). Following 8961 cDNAs previously annotated as trincated
of the 3'UTR. Strong evidence of 3^{\prime} end initiation was correlated with a short inter imitiation was correlated winh a short inter genic distance when in tais-to-tail onentation
with a neighboring gene (Fig. 2B), suggesting a possible role in an intergenic regulatory interaction
The function of ncRNAs is a matter of debate (I7). Some neRNAs are highly conserved even in distant species: 1117 out of 2886

Table 2. Transcript grouping and classification. The extent of splice variation was calculated by exduding T-cell receptor and immunoglobulin genes from the transcripts. The remaining 144,351 transcripts were grouped in 43,539 TUs, of which $18,627(42.8 \%)$ consist of single-exon transcripts, 8110 (18.6%) contain a single multiexon transcript, and the remaining 16,802 TUs $\{38.6 \%$) contain at least two spliced ranscripts. Among these TUs, 5862 (34.9%) show no evidence of splice variation, whereas 10,940 65.1\%) contain multiple splice forms.

Mice and Men: Their Promoter Properties

Vladimir B. Bajic ${ }^{1,2^{*}}$, Sin Lam Tan ${ }^{1,2}$, Alan Christoffels ${ }^{3,4}$, Christian Schönbach ${ }^{5}$, Leonard Lipovich ${ }^{6}$, Liang Yang ${ }^{7}$, Oliver Hofmann ${ }^{2}$, Adele Kruger ${ }^{2}$, Winston Hide ${ }^{2}$, Chikatoshi Kai ${ }^{8}$, Jun Kawai ${ }^{8,9}$, David A. Mume ${ }^{10}$, Piero Carninci ${ }^{8,9}$, Yoshihide Hayashizaki ${ }^{\text {8,9 }}$

1 Knowledge Discovery Laboratory, institute for Infocomm Research, Sirgapore, $\mathbf{2}$ South African National Bioinformatics institute, University of the Western Cape, Belivilie, South Africa, 3 Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 4 School of Biological Sciences, Nanyang rechnotogical University, Singapore. 5 immunoinformatics Research Team, Advanced Genome information Technology Research Group, RIKEN Genomic Sciences Center, RiKEN Yokohama Institure, Yokohama, Japan, 6 Genome institute of Singapore. Singapore, 7 Department of Obstetrics and Gynecology, National University Hospital, National University of Singapore, Singapore, Genome Exploration Research Group GGenome Network Project Core Groupl, RIKEN Genomic Sciences Center, RiKEN Yokohama Instiute, Yokohama, Japan, 9 Genome Science Laboratory, Discovery Reseasch Institute, RIKEN Wako Institute, Wako, Japan, 10 Australian Research Council Special Research Centre for Functional and Applied Genomics. Instirute for Molecular Bioscience, University of Oueensland, Brisbane, Oueensland, Australia

Using the two largest collections of Mus musculus and Homo sapiens transcription start sites (TSSs) determined based on CAGE tags, ditags, full-length CDNAs, and other transcript data, we describe the compositional landscape surrounding TSSs with the aim of gaining better insight into the properties of mammalian promoters. We classified TSSs into four types based on compositional properties of regions immediately surrounding them. These properties highlighted distinctive features in the extended core promoters that helped us delineate boundaries of the transcription initiation domain space for both species. The TSS types were analyzed for associations with initiating dinucleotides, CpG islands, TATA boxes, and an extensive collection of statistically significant cis-elements in mouse and human. We found that different TSS types show preferences for different sets of initiating dinudeotides and ciselements. Through Gene Ontology and eVOC categories and tissue expression libraries we linked TSS characteristics to expression. Moreover, we show a link of TSS characteristics to very specific genomic organization in an example of immune-response-related genes (G0:0006955). Our results shed light on the global properties of the two transcriptomes not revealed before and therefore provide the framework for better understanding of the transcriptional mechanisms in the two species, as well as framework for development of new and more efficient promoter- and gene-finding tools.

Citation: Bajic VB, Tan SL. Christoffels A, Schonbach C. Lipovich L. et at. (2006) Mice and men: Their promoter properties. PLoS Genet 214): e54. DOI: 10.7371/journal.pgen.

The Genome Network Project - FANTOM3 article collection

Introduction

 dhrss were recomly tuplated with the mapping of 1 that if
 Refseq mouse genes |l.2]. Functional amalves of these mammalian promoters bate been reartioted to shated manserpuion factor binding stes (TFBSs, between homan and monse dataset, |e|, tiang the same collection of promoters comatimed in ditss. Aerivet at embanked on a chatacterbation of pronaters by cxtending theje stuly to inosephla melanugetar and Fugu nobripes |3|. Furthe chatacherization of mammalian promoters is deperndem on be atalability of experimentally verified fiss that wonld complement and extend existing datasels represcbued by the FANTOM colktions. dblss. He H-fwitational database |f|. and
 aboratory. US)-1ogether with'Ptos-Genetics' EIC Wayne Franket The Jackson Laboratory. US)
Received August 15, 2005, Accepted February 27, 2006, Published April 28, 2006 Dot: 10.1371/journal.pgen. 0020054
Copyright: 2006 Bajic et al. This is an open-access atticle distributed under the terms of the Creative Commons Artribution License. which permits unrestricted and source are credited.
Abbreviations: CGI, CPG island; GO, Gene Ontology; Inr, initiator; ORI, over representation index; PE, promoter element: TF, transcription factor; TFBS,

- To whom correspondence should be addressed. E-maill vadkitsanbiac.za

Synopsis

Tens of thousands of mammalian genes are expressed in various cells at different times, controlled mainly at the promoter level through the interaction of transcription factors with cis-elements. The authors analyzed properties of a large collection of experimental mouse (Mus musculus) and human (Homo sapiens) transcription start sites (TSSS). They defined four types of TSSs based on the compositional properties of surrounding regions and showed that (a) the regions surrounding TSSs are much richer in properties than previously thought, (b) the four TSSs types are associated with distinct groups of cis-etements and initiating dinucleotides, (c) the regions upstream of TSSs are distinctly different from the down stream ones in terms of the associated cis-elements, and (d) mouse and human TSS properties relative to CPG islands (CGIs) and TATA and human Ths properies relative (o CpG islands, (CGIs) and TATA box elements suggest species-specific adaptation. The authors linked TSS characteristics to gene expression through categories
defined by the Gene Ontology and eVOC classifications and tissue defined by the Gene Ontology and eVOC classifications and tissue expression libraries. They provided examples of the preference of
immune response genes for TSS types and specific genomic organization. Their results shed light on the fine compositional properties of TSSs in mammals and could lead to better design of promoter- and gene-finding tools, better annotation of promoters by cis-elements, and better regulatory network reconstructions. These areas represent some of the focal topics of bioinformatics and genomics research that are of interest to a wide range of life scientists.

Thatarerige the regions immediately surmonding ISs based an whe compowitional propertics. Ool determination of tentaise TSS locatons has been based on the use of C AC: tags [10] and ditags $111 /$ ent iched with additional independant pieces ot evidence of transoript existence inchating 5 '
 Eilly sequenced ()N: fom full-length libarics.
In this studs. we repert several distinctive features in the extencted come prometers that helped no delineate the (ore Pquct The diverbutions of ISS pexitions in the case of

UNIVERSITY of the
WESTERN CAPE
b
C
Figure 1. Transcription Initiation Domains for Mouse and Human
Distribution of mouse (red) TSSs overlapped by human (blue) TS5s based on (A) C. G content, (B) A. G content, and (C) T, G content. Nucleotide content is determined for upstream [100,1$]$ and downstream $[1-1+100 \mid$ regions relative to the TSS. The distribution of TSS locations is more or less andom when viewed in terms of A, G content (B) or $T+G$ content (C). Strong polarization of distributions is evident only in the $G . C$ case (A). DO1: 10.1371/journal.pgen.0020054.g001

Figure 2. Distribution of Mononucleotides in Mouse Promoters in the Region Surrounding the TSS
The nucleotides adenine, cytosine, guanine, and thymine are represented by blue, green, red, and light blue, respectively. The TSS types that afe GC poor upstream (C and D) show very characteristic enrichment in adenine and thymine nucleotides around [-35, 20], suggesting a potential dominant influence of TATA box and similar AT-rich etements in transcription initiation in these types. In type B and A TSSs, this influence does not seem to be dominant, but the presence of such elements is suggested by a significant reduction of the GC content in the [35,20] region. In principle, one could attempt to link the types of AT rich upst

Figure sif: it abo only graduatly changes with a change of the diald for (aC: richness (Figure St). These lindings nuggo robustnesw of ouf ISS dassification.

Are Two TSS Types (GC-Rich and AT-Rich) Sufficient to Consider?

 Gation tor this redies an the fact that mans ra-e ements bate a stadios of promoter groups ||t.| 5 . Thus. monsidering

 differint groups of banding ats, that mat conter diftereth ramseription intiation sematios
An casential supponf for the biok gival relevanse of our imsoducer iss dawification welies on the facs thas wome Wharsotic genomes have dominant TSS characteristics of the chasen we defined. For example based on the wonk of Acotser
whe we whered that belle of the TSS

 type (1) in D. matatugester, while (eper A is chatacteristio of th
 ming certain functional ratuer than compositional proper Cliterem syes A thenglifference in the surmonding ensimoment of the mitiating dimuterodes between the for ISS spes, and (6) differem proterenco of some functionat gethe groups for particular tss types The of teatures cammot be ohserved if the groups are lamperd.

GC Content of TSS Surroundings Reflects Types of

Putative cis-Elements

By considering the GC content upeream and downsiream spatatly, we allowed for one more degre of freedom in

A

Figure 3. Distribution of Densities of Selected PEs in Promoters of the Four TSS Types in Mouse The density of PEs is calculated from the region covering (100,100) rebative to the TSS. Density is determined for bins of length 50 bp and shifted by 10 bp . In total, there are 17 bins . The vertical axis shows the percentage of TSSs of the considered type that contain the PE (A) Distribution of selected PES that prefer GC-rich (left) and AT rich (right) domains in type B (above) and type C (below) TSS groups. Bin number 9 is centered around the TSS. It can be seen that groups of PES change significantly in their concentrations in transition from upstream to downstream regions and characterize two distinct ISS types (B and C).
(B) Distribution of selected PEs across all four TSS types. Blue, green, red, and light blue correspond to distributions characterized by type A, B, C, and D TSSs. The first five PEs are those that prefer GC-rich regions, and the last seven PEs prefer AT-rich regions (the plus or minus sign in front of the TFBS symbol denotes the strand where the TFBS is found)
DOI: 10.1371/journal.pgen.0020054.g003
oherwing global ISS properties. Here we denote a PE as a TFBS and the wrand whese it in fomad Mans PEs have
 For example, the well-known IXTX box clement, being II sith, will be fond mome trequently in . AT -rich regions. white the Spl-hinding sites. being (;--rich. will be fonal mome
 We consider could be comedated in a global momoes with dee
 for the inthence of potential lFs on specific Ths iypes is whaned from the diveributions of PF densities :Figure 3).
 sith) domatins in spe B and Iype (: FSSs are depicted in Figure 3: We ohserve that Pe gromps thange the ir comenfations significantiv in tamsition fome upateam to downsfeam regions Moseoter. in Figure 3 B we present

 and mimus signs in fromt of the TFBS symbols denoles the stabd where the TFBS in (ound). It is interenting (th obsore that these Ple ocour in high conechtations in the tape I group (ce-dic) accu: in considezably lower comentations in type 1) (AT-AT), and follen the chasge of (6 C content in wes B and (: We shacese the converse to the sumanily

 Enrichment by Specific PEs

 The weals are pewented in Figure

为 (hat

 for wioc (TSSs such intluence is likels theough PE that are lacated upstram of the ISS bat preter AI-rich domaios.
 In milize a mix of hoth (iC-bich-preferting and AT-rich-
 beante of the vers small sumber of highly cariched clements oweath Sorcence, applying the Chi-spuate teat for the cquality of distributions in the upsuream and downstemm regions we gat $p=1.34 \times 10^{17}$. Which strongly reject, the null

hepotheris that these distributions ate the same Sll shese linding suggest that upicean and downotedn regions thould be comsidered reparated bas we do). The recolts emphavire entichmen of different PE gromps ansociated with Moneana abd downstean regions in the poomoters of the fonat liss repers

Four TSS Types Associate with Different Sets of PEs

 bugest that the ISsis may lie conerolled by spectalized coslections of thancription factors (TFs). Thus, we atempterl fo tind the perential TFs that cond play dominant fole in

 Materiats and Meehodst in differem TSS ryper, (b) unique and common motis it the (oc-richfAT-rich upstram/downsteam regions for different ISS wper, and (6) the moss
 B. C. and D.

To carry one these analbses we intially compared the incidence of predicted DN:-binding site of known IFS in the differempromer segment in mobe in the four TSS Nper against these in rantom mense DNA. For the tepp 150 predicted motits (represemitig approximately 10% of at] succialived collcetmon of puthice hindion sites that do not appear in the top 150 ranked sites of the wher wpe dor
 prometers of tepe \boldsymbol{A} ISss) (Table S2).

Even those TFs that ate foumd to te common in the
 significanth different proportions of promoters of these Inpes as summatiacd in Figure Se. For example, Ens (I able sl)
 Howerer, in tupe B TSiss is appeats in 17.08\% of promences.
bat whly on the misun atand, white in lype () it appears in 13. ife of promoters. bat onls on the phes strand

Domoder, if we consider unigue motifs that appat in ditterent gronps, thes ate sommbobly pesem in latge proportions of promotes of thove tangel groups. For exampke in tansoripts initiated trom Iope I) [SSs, we fimd

 the celtBP lanily, which appears in $26 . \overline{7}$'s of prometer with tope D ISSs and only on the minos veand. The wher element. Nox. is colleris meuron hemeobox and ats as an
 stion. differentative cell fate and mantonance of proper
 pronoters wibl epe D ISss and onty on the ples wand.

Since ans two of the lous l'ss ryperabld difter in the it © fonlent in the afstedme downetram, of beth reghoms and comsequenty bathor differem sels of significant motifs, we conclute that, owerall. Tiss typer contain sets of significant signature motits delmed by a plun sign next to the ORI value in Table SI and a plas sign in Table S2) blat poremiaty may constibute formentaion. and are likely ta metact with distind set of IFs. This concoms with the results of the preceding two subsections and suggest owerall difterent trancripetional programs present in the transtipes of these ISS typer Lists of the mont significan Pra that appear in the TSS grompe are providerl in Cable S S

The Initiating Dinucleotide and Its Environment

lite antazed in monse and human datast the mitiating dinnelestide. flat is. the one that cothpies prositions $\mid-1,-1$ relative to the ISs. We tound that at maber of difterent
 vatome Tss sper and that they when ewtain regularigice related to the (af: content of unstram and downoticem
rgion ourcounding the TSt. Table 2 wow for mounc and human data all statisticalls signitionat cases based on the p value ohbaned be the right-sided Fishers exact test and conerted lor muttiplicity feating by the Bonterromi methorl. The assonciation of inimating dimeteotide w I'ss properties is very spocific, It is intereving to note that the ithitating
 AT-rich upwratm. downstream. or bork (B. (. and D), white
 significanly coriched in TSS upe that are Al-rich pecot ically downstram (B and D) Type I Thss atre significatoly

 appears statistically vigniticans anly fors Tis wpes that chatige GC. richness (B and C). Finatly, the ISS wope C group contain
 while there do not appeat significat in anv ather TSS mpe.

1his compositional property of obe intiating dinucteotide
 propeties of the upstream ind downsteam regions would not be possible to slise ern if the ThS group were humper We ace that these properties clatat terize signitiont numbers of

 B. (: and 1), reppectisels. and thus the den net dppear to bs artifact of the propered TSS clavification that we have intradnced. The condumon is that the initiating dinuclersrides show speritic preferences atatisticatly signitionatevels 1s differem tist emsommens ind that a signiticamt portion of ISSs in cor dhawe ate chatateriace! by these initiating dinmbentides Moreover. atmont all of them ate different from the canomial © it dinuckentle.

This bast whervation kade wion byethesize that difterem
 Cements Figure 2 depicts the quite ditferent emmposition of

 mot contarlict our byoothess of perentially different lan
 reginens $f+20$ for the four Jiss wes in mouse and hamans. Again. we obsetse sgniticabl smatably between the pereses in the componition of the region for mpe A SSB while the other fSs sper show signiticants more catiabilits. This mat sugest species-spetific omamiation of the come promoters for the me morin ISS aper (B . (. and 1) .

Relation of TSS Types to TATA Box Elements and CpG Islands

We analyed the four TSS eper in motase and in haman (Sabies ${ }^{3}$ and t) tor the presonce of ThTA box chenents and

Figure 4. Distribution of Selected Groups of PEs That Are Highly Enriched (at Least 3 -Fold) Upstream or Downstream of the TSS The upstream region considered covers $[-100,-1]$, while the downstream region covers $[+1,+100]$ relative to the TSS. In all TSS types, the upstream region contains significantly more enriched PEs than the downstream region.
DOI: 10.1371/journal.pgen.0020054.g004

Table 2. Starting Dinucleotide [1, 1] for Various T5S Types in Mouse and Human Datasets

Organism	Starting Dinucleotide	$\begin{aligned} & \text { Tss } \\ & \text { Type } \end{aligned}$	Number of Cases	Number of TSSs with Starting Dinucleotide	Total Number of TSSs in the Same TSS Group	Total Number of TSSs	Multiplicity Correction Factor	p-Value	Banferroni Corrected p-Value
Mouse	AG	c	172	1.943	2.524	39,156	16	$1.41 \cdot 10^{5}$	2.25 : 10^{\prime}
	CA	B	458	1.440	10.000	39.156	16	$3.25{ }^{-10}$ "	$5.20 \times 10^{\circ}$
	CA	c	558	1,943	10,000	39,156	16	6.09 - 10 *	$9.75: 10^{3}$,
	CC	A	1,299	34,245	1,410	39,156	16	7.17×10^{4}	1.15×10^{2},
	CC	A	8.669	34.245	9.076	39.156	16	1.06 - $10^{3 x}$	$1.69 \cdot 30^{142}$
	CT	A	579	34,245	635	39,156	16	1.80×10^{3}	$2.88: 10{ }^{\text {2 }}$
	GA	B	16	1.440	171	39.156	16	$6.09: 10$ *	$9.75 \cdot 10^{3}$
	GA	D	15	1.528	171	39.156	16	2.99×10^{3}	4.79×10^{7}
	GG	B	264	1,440	2,952	39.156	16	$1.32 \cdot 10^{42}$	$2.12 \cdot 10^{17}$
	GG	D	350	1.528	2,952	39,156	16	$8.28 \cdot 10^{8 \%}$	1.33 $\cdot 10^{\text {\% }}$
	ta	8	151	1.440	2.703	39.156	16	1.866^{-10}	2.97: 10 "
	ta	c	187	1,943	2.703	39.156	16	$2.30 \times 10{ }^{6}$	$3.68 \div 10^{3}$
	ta	D	169	1.528	2.703	39.156	16	$7.82 \cdot 10^{10}$	1.25 - 10^{*}
	TG	c	455	1.943	7,381	39.156	16	1.55×10^{7}	2.48; 10°
Human	AA	D	12	385	88	10.255	16	$1.03 \cdot 10^{1}$	1.65 - 10 :
	cG	A	2.777	9.269	2.878	10.255	16	2.37×10^{46}	3.79×10^{45}
	GG	D	85	385	578	10.255	16	$4.28: 10^{24}$	6.85 : 10^{26}
	TA	8	25	244	575	10.255	16	2.55 * 10 *	4.07 : $10^{\text {? }}$
	TA	c	35	357	575	10.255	16	$8.68 \cdot 10^{1}$	$1.39 \cdot 10^{2}$

We show only statistically significant cases.
pO:: $10.1371 /$ ournat.pgen. 0020054.1002
 propertice of tis type between thee two yer ies bus the ere are alse signifatan differences. This mouse-human compatiison must te preated with some caurions, vince the mone and homath datasels ate based uporn amabion of distithet timotes. and the haman set is probably leos comprebensise In some measure the distinctish mav also selate en depth of cowerght
in the Linking TSS Properties and Gene Expression

 IANA-box-containing permoters assotiated with (\%ils in Iss types A. B, and (, and encratl: and (d) the number of TATAkess promoters anobiated with Cois in ISS mpes A and 1. and wemall. There data suges that the are apecemperific solutions for trabstiptional intiation in monter and human for the amazer TSS type

There are a momer of core Phe other that IATA bexes

type (D) ThSs. These gesults suggest that between menese and
 comerved. Dimblotion of all mone ESS deroms the four
 are provideat in lable sis.
We further analyed sereal sperific cases for many (b) cotegories we forand that laberipts asoceiated with them
 framewosk (table I) Fors example, the immone reponse

Figure 5. Sequence Logos
(A) Sequence logos for Inr in human (left) and mouse (right) obtained using [5,5$]$ segments relative to TSS locations. There is an evident bias in the nucleotide composition surrounding the TSS that effectively determines different Inr elements.
(B) Sequence logos for segments [$35, \cdot 20$ I relative to TSS locations. Strong similarity exists between human (lieft) and mouse (right) in ISS type A, whide that similarity is considerably reduced for the other TSS types.
DOI: 10.1371/journal.pgen.0020054.g005

Table 3. Basic Statistics on Relation of TATA Box Motifs, CGls, and Four TSS Types for MM5 Transcripts

Category	TSS Type				
	Type A	Type 8	Type C	Type D	Overall
Number of promoters	34,245	1.440	1.943	1.528	39.156
CGI	27,026 (78.92) [1]	253 (17.57) [1]	363 (18.68) [1]	9 (0.59) 11]	27,651 (70.62) ! 11
No CGI	7.219 (21.08) [2.74 * $10^{\text {- }}$]	1, 187 (82.43) \|4.87 ~ $10{ }^{1}$	1,580 (81.32) [9.58 - $10^{2} 1$	1,519 (99.41) [8.82 - $10^{\text {a }}$)	11.505 (29.38) 16.26 - 10
tata	$2.539(7.41)$ (1)	188 (13.06) [1]	567 (29.18) [1]	434 (28.40) [1]	3,728 (9.521) 11)
tatasess	31.706 (92.59) \{1.63 * 10^{3}	1.252 (86.94) [1.43 : 10^{31}	1.376 (70.82) [1]	1,094 (71.60) [1]	35.428 (90.48) [2.02, $10{ }^{\prime}$
cGl tata	1,613 (4.71) [1]	33 (2.29) [1]	$58(2.99)$ [1]	1 (0007) [1]	1.705 (4.35) [1]
cGl TATA less	25,413 (74.21) [1]	220 (15.28) [1]	305 (15.70) (1]	8 (0.52) ${ }^{\text {(11] }}$	25.946 (66.26) [1]
no cg , tata	926 (2.70) [2.19 * 10^{\prime})	155 (10.76) [1]	509 (26.20) [1]	433 (28.34) 111	2.023 (5.17) 12.09 < 10 4
No CGl tataless	6.293 [18.38) [3.72 * $\left.10^{41}\right]$	1.032 (71.67) 11.22, $10^{\prime \prime} 1$	1.071 (55.12) (1)	1.086 [71.071 [1)	$9.482\left[24.221!2.111^{\prime} 10^{\prime}\right]$

We present for each category (CGI, no (GG, etc) the number of cases for each TSS type, the percent (in parentheses) of the total population in that ISS type, and the fonferioni corrected pvalue in brackets) cakulated from a night sided Fisher's exact test based on the hypergeometik distribution. DO: 10.137/fournat pgen. 0020054 (003
 respectively, than one woth expect based on the proportion of transcript in the ex grotes in our velevence monse data. Ithe entichment in spe C and I) TSS, is statisticalls sigaifuant (Bonferoni-oomected tigha-sicked Fishats wat tem. $p=1.3: 3 \times 10^{64}$ and $p=2$.ind $\times 10$. respectively) Batsed
 chatacterized by increased participation on tameripts from Tss aper that are AT-ash upstrean on downetrans. We abalized in mose detail the genomic organization of loci correspending lo genes fron the mos overrepresented [SS
 to 3ti nonterlundan genes. of which wo are in hidirectionat prombers (2/:6). which means these ate materepresemed
 genes (ibl\%) that are appearing in gene family chatem thatis.

Table 4. Basic Statistics on Relation of TATA BOX Motifs, CGIS, and Four TSS Types for MST7 Transcripts

Categary					
	Type A	Type B	Type C	Type D	Overall
Number of promoters	0,269 T/V	$\Gamma_{24} \omega \mathbb{N} \mathrm{~B}$	b) $[A]$		10.255
CGI	$7,887(85.09]\left[2.74 \times 10^{41}\right]$	$74\left(30.331\left[4.87 \cdot 100^{5}\right]\right.$	86 (24.09) $\left.99.58 \cdot 10^{3}\right\}$	$8(2.08)\left(8.82 \times 10^{2}\right)$	8.055 (78.55) [6.26 $\times 10^{\circ} 1$
No CGI	1,382 114,91) [1]	170 (69.67) [1]	271 (75.91) [1]	377 (97.92) 111	2.200 (21.451) (1)
tata	$791(8.53)\left(1.63 \times 10{ }^{3}\right.$	$45(18.44)$ [1.43 * $\left.10{ }^{1}\right]$	106 (29.69) [1]	101 (26.23) [1]	1,043 \{10.17) \{2.02 * $\left.10{ }^{1}\right\}$
tata-less	8.478 (91.47) [1]	199 (81.56) 117	251 (70.31) [1]	284 (73.77) 11!	9.212 (89.83) [1]
CGI TATA	574 (6.19) [7.00 * $\left.10{ }^{4}\right]$	16 (6.56) [7.01-10 ${ }^{\text {a }}$	$22(6.16)\left[2.99: 10{ }^{2}\right]$	0 (0.00) 11$]$	612 (5.97) [1.05 - 10.10$]$
cGi tataless		$58\left(23.7717 .80 \cdot 10{ }^{3} 1\right.$	64 (17.93) [1]	$8\{2.08)\{5.64 \cdot 10\}$	7.443 (72.58) (4.31 $10^{3.4}$
No CGI TATA	217 (2.34) (1)	29 (11.89) [1]	84 (23.53) [1]	101 (26.23) [1]	431 (4.20) [1]
No CGI TATA-less	1,165 (12.57) [1]	141 (57.79) [1]	187 (52.38) [1]	276 (71.69) [1]	1.769 (17.25) (1)

We presert for each category (CGI, no CGI, etc) the numbes of cases for each TSS type. the percent in parentheses) of the total population in that TSS type, and the Bonferroni corrected p value (in brackets) calkutated from a right-sided Fisher's exact test based on the hypergeometric distribution
DOI: 101371 /gournal.pgen.0020054 to04

Table 5. Enrichment of TSS Types in Selected GO Categories in Mouse

Go Category	GO ID	Term	Bonferroni Corrected p-Values for the TSS Types			
			A	B	C	D
Cellular component	600005833	Hemoglobin complex	1	1.74 - 10 "	1	1
	60:0005579	Membrane attack complex	1	1	1	1.24 - 10 :
	60.0005576	Extracellular region	1	1	4.79 - 10 *	2.09 - 10 "
	60:0005794	Golgi apparatus	2.84×10^{17}	1	1	1
	60.0005634	Nucleus	6.15 - $10^{\prime \prime}$	1	1	1
	60:0005737	Cytoplasm	325×10^{4}	1	1	1
	600005739	Mitochondrion	1.23 - 10 \%	1	1	1
	60,0005829	Cytosol	$2.28 \cdot 10^{*}$	1	1	1
Motecular function	G00001524	Globin	1	$1.74 \cdot 10^{*}$	1	!
	600005125	Cytokine activity	1	1	198.10	,
	60:0003677	DNA binding	163 - 10	1	1	1
	60.0003723	RNA binding	$3.38 \cdot 10$ \%	1	1	1
	600003925	Small monomeric GTPase activity	139 - 10 +	1	1	1
	60.0005524	ATP binding	$4.48: 10{ }^{7}$	1	1	1
	60.0005525	GTP binding	1.62 - 10 :	1	1	1
	G0.0008565	Protein transporter activity	2.11×10^{7}	1	1	1
	60.0016301	Kinase activity	$6.82 \cdot 10$	1	1	1
	G0.0016740	Transferase activity	3.19×10^{4}	1	1	1
Biological process	600006935	Chemotaxis	1	1	132-10	1.36-10 \%
	60,0006952	Defense response	1	1	$3.12 \times 10^{\prime \prime}$	5.11 : 10^{2}
	600006955	Immune response	1	1	$1.33 \cdot 10^{\text {1/ }}$	2.60 - $10^{\text {a }}$
	G00006886	Intracellular protein transpon	1.77×10^{12}	1	1	1
	60:0007049	Cell cycle	3.66 - 10	,	1	1
	60.0007264	Small GTPase-mediated signal transduction	2.76:10	,	1	1
	G0.0015031	Protein transport	$3.36 \cdot 10^{\text {\% }}$,	1	1

The whle shows some statistically significant examples of biased distribution of transcripts from different co caregories in spectic TSS groups from all mouse data.
COO: 10.1371/journal.pgen.0020054.1005

(atule 6)
 Conclusions initiation active domains in the two speties Lowking

[^0](19). PLoS Genetics / www.plosgenetics.org

0010

Figure 6. Distribution of TSSs for Transcripts Related to Immune Response through 60:0006955
There are $1.58,4.85$ - and 3.35 -fold more transcripts having TSS types B, C, and D than one would expect based on the proportion of transcripts in these groups in our reference mouse data. Enrichment is statistically signitioned by the right-sided Fisher's exact test Trable 5) DOI: 10.1371/journal.pgen.0020054,g006
wh ane itic proterenco for the ISt prexem in statisticalty significant prophrtions of the TSSis it our datarets and are almon all differ dimucleotide: Very sperifice weto of in asonciated with difterent TSS typ content is well correlated with the tives. Dis suggess the potemiaf p clemense that may be chatacteristio and anocitted with different muck opent en the Iss ispes sumpomding domain.
We have shown that different
 differon TSS wpe are chatacterized by difterens collections
 wose. Af these findings sugges likels eomeral of the respective tansoripes be ditterent collections of signiticant IPE residing upstream or downstram of the ISS. Our results on ThS properties relatise 10 Cois. TATA boxes. and Im clements in monse and homban sugges speries-specific adaptation. Finally, we have shown a mumber of examples of tratsotipe groupe obtaned on the basis of different
 carichment in at least ane of the ISS tepes. Thin han provided a Jink between TSS shatacterintics and expression data.

Wa believe that the tesulas of thiv atadsin will help in befter understanding the general teanscription kegulation properfies of manmalian promoters and prose unctul fon furber dovelopmems and cohancement of penseter and gene precliction toralo.

Materials and Methods

 Iss The ISs is consedenci whe beacen pisitions 1 and +1 , Ihe

 dewastram (Al-dI) Eath las can be reprosild ad a peint in

 TF binding sites in promoters. We uned alf analade matris medes

 ato A.t thing a

 tabuhte weporss.
Most significant PEs, Fin cath of the Ish wpe is nomec. wa

 betwe

 assumat in the itw. If rexim.
eVOC. GO, and tissue expression libraries. In onder to. .mow the

 Hatuladizel abalosis of were expresion and prometed profike
 aligimal datimet.

Supporting Information

Dataset SI. Supplemerutar Vinpmomer bat.

 1.if Pts in (ompanisule of bifletelt

Table SL. Live of Lip, ISO If: That Appeat
Catembice

 in the conviteral region lon the omsidened iss wpe. For example.

 gromp. then it is abociated and with one plas of mina sign.

 another TSS tspe with the some (ir) ric luters

 Tope becwern Human and Mones

 was wopporterf by at leat hlue ths.

 sumer contributions. VBB. Jh. P6. and EH comberiod and

 tative ally signtitats antiched in the tared sets

References

 Dx:

 grant of the Cemone Vetwork Propect fome the Minisirs of

 Competing interests. Hhe athonvhan ded lared hat no comperimy

 3.6:

1. 1

 1) 212-52 24

 रite-sx!

 pathy 1010 240 - xat

 3-4

 is loni-16iz.

2.

UNIVERSITY of the WESTERN CAPE

Appendix III Correlation coefficients of genes showing biased expression for the developmental brain in human and mouse

The correlation coefficients of the 90 genes showing bias for developmental expression in the human and mouse brain. The table lists the HomoloGene group identifier, Human Entrez Gene identifier, Human Entrez gene symbol, Mouse Entrez Gene identifier, Mouse Entrez gene symbol and the correlation coefficient between the expression profiles of the genes in each species.

Homolo- Gene ID	Human Gene	Human Symbol	Mouse Gene	Mouse Symbol	Correlation coefficient
7516	389075	RESP18	19711	Resp18	in mouse, only expressed in brain
78698	387876	LOC387876	380653	Gm872	in mouse, only expressed in brain
81871	56751	BARHL1	54422	Barhl1	in mouse, only expressed in brain
10774	57045	TWS@1	65960		Twsg1

HomoloGene ID	Human Gene	Human Symbol	Mouse Gene	Mouse Symbol	Correlation coefficient
37917	1293	COL6A3	12835	Col6a3	0.408
55918	6882	TAF11	68776	Taf11	0.378
10695	57120	GOPC	94221	Gope	0.316
14128	91107	TRIM47	217333	Trim47	0.300
68998	170302	ARX	11878	Arx	0.300
12418	124056	NOXO1	71893	Noxol	0.289
55599	669	BPGM	12183	Bpgm	0.284
45198	65117	FLJ11021	208606	1500011J06 Rik	0.284
18123	140730	RIMS4	241770	Rims4	0.277
65328	7559	ZNF12	231866	Zfp12	0.273
68934	57016	AKR1B10	14187	Akrlb8	0.258
65280	286128	ZFP41	22701	Zfp41	0.258
22818	29850	TRPM5	56843	$\begin{aligned} & \text { Irpp15 } \\ & \hline 1 \text { m } \\ & \hline \end{aligned}$	0.258
10663	57171	DOUPP1	57170	Dolppl	0.251
45867	139189	DGKK	331374	Dokk	0.240
17523	115290	FBXO1	50760	Fbxol	0.207
4397	8971	$\mathrm{H} 1 \mathrm{X} \mathrm{~N}$	243529	Hifx	0.207
2212	6182	MRPL迷S	56282	Mrpl12	0.194
11980	84262	MGC10911	66506	$\begin{aligned} & \text { 1810042K04 } \\ & \text { Rik } \end{aligned}$	0.167
26702	93109	TMEM44	224090	Tmem44	0.149
56571	26503	SLC17A5	235504	Slc 17a5	0.141
7717	24147	FJX1	14221	Fjx 1	0.122
18903	440193	KIAA1509	68339	$\begin{aligned} & \text { 0610010D24 } \\ & \text { Rik } \end{aligned}$	0.101
1028	1606	DGKA	13139	Dgka	0.101
4983	10991	SLC38A3	76257	Slc38a3	0.055
9813	55627	FLJ20297	77626	$\begin{aligned} & 4122402 \mathrm{O} 22 \\ & \text { Rik } \end{aligned}$	0.055
1368	1054	CEBPG	12611	Cebpg	0.055

HomoloGene ID	Human Gene	Human Symbol	Mouse Gene	Mouse Symbol	Correlation coefficient
64353	126374	WTIP	101543	Wtip	0.026
12993	84217	ZMYND12	332934	Zmynd12	0.000
7199	11054	OGFR	72075	Ogfr	0.000
46116	401399	LOC401399	101359	$\begin{aligned} & \text { D330027H18 } \\ & \text { Rik } \end{aligned}$	0.000
7500	5806	PTX3	19288	Ptx 3	0.000
413	353	APRT	11821	Aprt	-0.026
49899	143282	C10orfl 3	72514	$\begin{aligned} & 2610306 \mathrm{H} 15 \\ & \text { Rik } \end{aligned}$	-0.026
12021	84557	MAP1LC3A	66734	Map1lc3a	-0.043
11920	84303	CHCHD6	66098	Chchd6	-0.050
32633	136647	C7orf11	66308	$\begin{aligned} & \text { 2810021B07 } \\ & \text { Rik } \end{aligned}$	-0.050
7922	6150	MRPL23	99	Mrpl23	-0.050
1290	9275	$\mathrm{BCE} 7 \mathrm{~B}$	12054	$\mathrm{Bc} 9 \mathrm{~b}$	-0.050
9355	51637	C14off166	68045	$2700060 \mathrm{E} 02 \mathrm{Rik}$	-0.077
40668	9646	$\mathrm{SH} 2 \mathrm{BP} \mathrm{P}^{1}$	22083	Sh2bpl	-0.101
40859	27166	$\begin{aligned} & \text { PX19 } \\ & \text { UNIV } \end{aligned}$	66494 RSIT	$\begin{aligned} & 2610524 \mathrm{G} 07 \\ & \text { Rike } \end{aligned}$	-0.113
10494	58516	FAM60AS	56306	Ferac	-0.113
6535	11062	DUS4L	71916	Dus41	-0.122
65318	23361	ZNF629	320683	Zfp629	-0.125
14180	115294	PCMTD1	319263	Pcmtd1	-0.145
32	435	ASL	109900	Asl	-0.145
68420	9559	VPS26A	30930	Vps26	-0.167
32331	51776	ZAK	65964	$\begin{aligned} & \text { B230120H23 } \\ & \text { Rik } \end{aligned}$	-0.175
11653	79730	FLJ14001	70918	4921525L17 Rik	-0.194
49970	83879	CDCA7	66953	Cdea 7	-0.207
1330	857	CAV1	12389	Cav1	-0.213
14157	90416	CCDC32	269336	Ccdc32	-0.213

Homolo- Gene ID	Human Gene	Human Symbol	Mouse Gene	Mouse Symbol	Correlation coefficient
56005	6328	SCN3A	20269	Scn3a	-0.240
10026	55172	C14orf104	109065	$\begin{aligned} & \text { 1110034A24 } \\ & \text { Rik } \end{aligned}$	-0.273
31656	27000	ZRF1	22791	Dnajc2	-0.273
41703	118881	COMTD1	69156	Comtd1	-0.289
14667	113510	HEL308	191578	Hel308	-0.300
268	5805	PTS	19286	Pts	-0.330
2593	7913	DEK	110052	Dek	-0.330
20549	4324	MMP15	17388	Mmp15	-0.354
18833	143678	LOC143678	75641	1700029115 Rik	-0.354
9120	25851	$\begin{aligned} & \text { DKFZP434B0 } \\ & 335 \end{aligned}$	70381	$\begin{aligned} & \text { 2210010N04 } \\ & \text { Rik } \end{aligned}$	-0.372
15843	79591	C10orf76	71617	9130011E15 Rik	-0.372
3476	9197	$\begin{gathered} \text { SLE33AI } \\ \hline 11 \end{gathered}$	11416	Ste33a1	-0.389
21334	10912	GADD45G		$\text { Gadd } 45 \mathrm{~g}$	-0.389
19028	146167	$\text { LOQ } 146167$	23488	$\text { Gम5 } 587$	-0.408
10518	84273	C4orit	56412	$\frac{2610024 \mathrm{Gl} 4}{\text { Rik }}$	-0.411
35002	93082	LINCR	214854^{-1}	Lincr	-0.411
12444	84902	FLJ14640	72140	2610507 L 03 Rik	-0.452
82250	150678	MYEOV2	66915	Myeov2	-0.646
24848	266629	SEC14L3	380683	RP23-81P12.8	-0.646

Appendix IV and mouse

The expression profiles of the 90 genes showing bias for developmental expression across major human and mouse tissues in the form of a binary pseudoarray. The tissues represented are female reproductive system, heart, kidney, liver, lung, male reproductive system and stem cell for both post-natal and developmental expression. The table lists the HomoloGene group identifier, Entrez Gene identifier and Entrez gene symbol for human and mouse, as well as the species each row represents. Values in the table are 1 if the genes (in rows) are expressed in the given tissues (in columns) and 0 if the genes are not found to be expressed in the tissues (PN - post-natal; D - development; FRS - female reproductive system; MRS - male reproductive system).

HomoloGene ID	$\begin{aligned} & \text { O} \\ & \text { did } \\ & \text { d } \end{aligned}$			$\begin{aligned} & 0 \\ & \ddot{B} \\ & \ddot{z} \\ & \ddot{A} \end{aligned}$	를 シ̈ \ddot{Z} \ddot{Z}		$\begin{aligned} & \text { 刨 } \\ & \ddot{Z} \\ & \ddot{Z} \end{aligned}$	$\begin{aligned} & \text { 曾 } \\ & \ddot{Z} \\ & \ddot{z} \end{aligned}$	$\begin{aligned} & \stackrel{y}{x} \\ & \underset{i z}{z} \\ & \ddot{Z} \end{aligned}$	$\begin{aligned} & \text { 플 } \\ & \text { E } \\ & \frac{U}{0} \\ & \ddot{Z} \\ & \ddot{Z} \end{aligned}$	硅	苞	$\begin{aligned} & \text { 気 } \\ & \text { 至 } \\ & \ddot{\theta} \end{aligned}$	克	$\begin{aligned} & \text { 弟 } \\ & \text { 曾 } \\ & \ddot{\theta} \end{aligned}$	$\frac{\underset{\Sigma}{\Sigma}}{\ddot{\mathrm{a}}}$	$\begin{aligned} & \text { 를 } \\ & \text { E } \\ & \frac{U}{6} \\ & \ddot{0} \end{aligned}$
268	5805	PTS	Human	1	0	0	1	1	1	0	1	1	0	1	1	1	1
7500	5806	PTX3	Human	1	1	0	0	1	1	0	1	1	0	0	0	0	1
7922	6150	MRPL23	Human	1	0	0	1	1	1	0	1	1	0	1	1	1	1
2212	6182	MRPL12	Human	1	0	0	1	1	1	0	1	1	0	1	1	1	1
56005	6328	SCN3A	Humant	0	θ	1	0	0	1	0	0	0	0	1	1	1	1
55918	6882	TAF11	Human ${ }^{-1}$	4	0	1	0	1	1	0	0	1	0	1	1	1	1
65328	7559	ZNF12	Human？	1	0	0		1	1	0	1	1	1	1	1	1	1
2593	7913	DEK	Human	1	1	0		1	1	0	1	1	1	0	1	1	1
2880	8835	SOCS2	Human ${ }^{\text {－}}$	13	0	1		1	1	0	1	1	0	1	1	1	1
4397	8971	H1FX	Humair	12	0	0	0	1	1	0	1	1	0	1	1	1	1
3476	9197	SLC33A1	Human	14	θ	0		1	1	0	1	1	1	1	1	1	1
1290	9275	BCL7B	Human	12	0	1		1	1	0	0	1	0	1	1	1	1
68420	9559	VPS26A	Human ${ }^{2}$	1	0	1		1	1	0	1	1	1	1	1	1	1
40668	9646	SH2BP1	Human	7	1	0		1	1	0	0	1	1	1	1	1	1
7291	10683	DLL3	Human	5	θ	0	0	0	1	0	1	1	0	0	0	1	1
21334	10912	GADD45G	Human	等	0	0	1	1	1	0	1	1	0	0	1	1	1
4983	10991	SLC38A3	Human	1	0	0	1	0	0	0	0	0	0	1	1	0	0
7199	11054	OGFR	Human	1	0	0	1	1	1	0	0	0	0	0	1	1	1
6535	11062	DUS4L	Human	1	0	0	1	1	1	0	1	1	0	1	1	0	1
84799	22835	ZFP30	Human	1	0	0	0	1	1	0	1	1	1	1	1	1	1
65318	23361	ZNF629	Human	1	0	0	0	1	1	0	1	0	0	1	1	1	1
7717	24147	FJX1	Human	0	0	0	0	1	1	0	0	0	0	1	1	0	1
9120	25851	DKFZP434B0335	Human	1	0	0	0	1	1	0	0	0	0	0	0	1	1
56571	26503	SLC17A5	Human	1	0	0	1	1	1	0	1	1	0	1	1	1	1
31656	27000	ZRF1	Human	1	0	1	1	1	1	0	1	1	0	1	1	1	1

$\begin{aligned} & \text { 若 } \\ & \text { Ü } \\ & \text { U } \\ & \text { e } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ei } \\ & \text { UU心 } \\ & 0 \end{aligned}$	$\overline{0}$ E E E 0 0 0 0		会 $\ddot{2}$ $\ddot{2}$				$\begin{aligned} & \text { en } \\ & \text { E } \\ & \ddot{E} \\ & \ddot{z} \end{aligned}$	$\begin{aligned} & \text { 足 } \\ & \sum_{2}^{2} \\ & \ddot{y} \end{aligned}$		$\begin{aligned} & \underset{y}{y} \\ & \text { 关 } \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \text { 들 } \\ & \ddot{\theta} \\ & \ddot{\theta} \end{aligned}$		$\begin{aligned} & \mathscr{D} \\ & \ddot{\ddot{Z}} \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \text { 最 } \\ & \ddot{E} \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \stackrel{n}{\hat{N}} \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \text { 플 } \\ & \text { Ey } \\ & \ddot{U} \\ & \ddot{\theta} \end{aligned}$
40859	27166	PX19	Human	1	0	1	1	1	1	0	1	1	1	1	1	1	1
22818	29850	TRPM5	Human	0	0	0	0	0	0	0	1	1	1	1	1	1	0
32293	51018	CGI－115	Human	1	0	0	1	1	0	0	1	1	1	1	1	1	1
9355	51637	C14orf166	Human	1	1	1	1	1	1	0	1	1	1	1	1	1	1
32331	51776	ZAK	Humaņ	1	17	1	－1	1	1	0	1	1	1	1	1	1	1
56774	54751	FBLIM1	Human ${ }^{\text {－}}$	$\underline{1}$	1	1	91	1	1	0	1	1	1	1	1	1	1
10026	55172	C14orf104	Human＇	1	0	1	11	1	1	0	1	1	0	1	1	1	1
9813	55627	FLJ20297	Human ${ }^{\text {］}}$	1	0	1	0	1	1	0	1	1	1	1	1	1	1
81871	56751	BARHL1	Human ${ }^{\text {² }}$	0	0	0	0	0	0	0	1	1	1	1	1	1	0
68934	57016	AKR1B10	Human ${ }^{2}$	10	0	1		1	1	0	1	1	1	1	1	1	1
10774	57045	TWSG1	Human	1	θ	0	0	1	1	0	1	1	0	1	1	1	1
10695	57120	GOPC	Human	T	0	1	10	1	1	0	1	1	0	1	1	1	1
10663	57171	DOLPP1	Humar	T	0	01	$0 / 7$	1	0	0	1	1	0	1	1	1	1
10494	58516	FAM60A	Human	¢	0	1		1	1	0	1	1	1	1	1	1	1
32546	64410	KLHL25	Human	T	0	0	0	0	1	0	1	1	0	0	1	1	1
45198	65117	FLJ11021	Human	F	0	1	1	1	1	0	1	1	0	1	1	1	1
15843	79591	C10orf76	Human	1	1	1	1	1	1	0	1	1	1	1	1	1	1
11653	79730	FLJ14001	Human	1	0	1	0	0	1	0	1	1	1	1	1	1	1
49970	83879	CDCA 7	Human	1	0	0	0	1	1	0	1	1	0	1	1	1	1
12993	84217	ZMYND12	Human	0	0	0	0	0	1	0	1	1	1	1	1	1	0
11980	84262	MGC10911	Human	1	0	0	0	1	1	0	1	0	0	1	1	1	1
10518	84273	C4orf14	Human	1	0	0	1	0	1	0	1	1	1	1	1	1	1
11920	84303	CHCHD6	Human	1	0	1	0	1	1	0	1	1	0	1	1	1	1
12021	84557	MAP1LC3A	Human	1	0	1	0	1	1	0	1	1	0	0	1	0	1
27813	84865	FLJ14397	Human	1	0	0	1	0	1	0	0	0	0	1	0	0	1

	$\begin{aligned} & \text { eid } \\ & \text { ei } \\ & \text { in } \end{aligned}$			2 \ddot{x} \ddot{z}		$\begin{aligned} & \text { 突 } \\ & \stackrel{y}{y} \\ & \ddot{z} \\ & \ddot{z} \end{aligned}$	岂 \ddot{Z} \ddot{Z}	$\begin{aligned} & \text { 搨 } \\ & \underline{B} \\ & \ddot{z} \end{aligned}$	$\begin{aligned} & \text { e } \\ & \sum_{n}^{2} \\ & \ddot{z} \end{aligned}$	$\begin{aligned} & \bar{U} \\ & \ddot{⿺} \\ & \ddot{E} \\ & \ddot{U} \\ & \ddot{Z} \end{aligned}$	$\begin{aligned} & \tilde{x} \\ & \underline{x} \\ & \ddot{\theta} \end{aligned}$		$\begin{aligned} & \text { 岂 } \\ & \text { 苛 } \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \ddot{0} \\ & : Z \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \text { 最 } \\ & \frac{E}{\ddot{\theta}} \end{aligned}$	$\begin{aligned} & i n \\ & \sum_{\ddot{n}}^{\infty} \end{aligned}$	$\begin{aligned} & \overline{\ddot{U}} \\ & \text { E } \\ & \text { E. } \\ & \ddot{0} \end{aligned}$
12444	84902	FLJ14640	Human	1	0	1	0	1	1	0	1	1	1	1	1	1	1
14157	90416	CCDC32	Human	1	0	1	1	1	1	0	1	1	0	1	1	1	1
14128	91107	TRIM47	Human	1	0	1	1	1	1	0	1		0	1	1	1	0
35002	93082	LINCR	Human	0	0	0	0	1	1	0	1	1	1	1	1	1	0
26702	93109	TMEM44	Human	\square	0	0	0	1	1	0	1	1	0	1	1	1	1
14667	113510	HEL308	Human－	7	0	0	9	1	1	0	1	1	1	1	1	1	1
17523	115290	FBXO17	Humañ	H	0	1	1	0	1	0	0	1	0	1	1	1	1
14180	115294	PCMTD1	Human＇］	F	0	1	1	1	1	0	1	1	0	1	1	1	1
41703	118881	COMTD1	Human－	1		0	0	1	1	1	0	0	0	0	1	1	0
12418	124056	NOXO1	Humañ	1	0	0	0	0	1	0	1	，	0	0	1	1	1
64353	126374	WTIP	Humay	1	0	0		1	1	0	1	1	1	1	1	1	1
32633	136647	C7orf11	Human	H）	0	0	1	1	1	0	1		0	1	1	1	1
45867	139189	DGKK	Human	H．	0	0	0	0	0	0	1	1	1	1	1	1	1
18123	140730	RIMS4	Human＇	9	0	0	$0 /$	1	1	0	0	1	0	0	1	1	1
49899	143282	C10orf13	Human	－	0	0	0	0	1	0	1	1	0	1	0	0	1
18833	143678	LOC143678	Humar ${ }^{\text {² }}$	0	0	0	0	0	0	0	1	1	1	1	1	1	0
19028	146167	LOC146167	Human	0	0	0	0	0	1	0	1	，	1	1	1	1	0
82250	150678	MYEOV2	Human	1	0	0	0	1	1	0	1	0	0	1	1	1	1
68998	170302	ARX	Human	1	0	0	0	1	1	0	1	0	0	0	0	0	0
24848	266629	SEC14L3	Human	0	0	0	0	0	0	0	1	，	1		1	1	0
65280	286128	ZFP41	Human	1	0	1	0	1	1	0	0	0	0	0	0	0	1
78698	387876	LOC387876	Human	0	0	0	0	0	0	0	1	1	1	1	1	1	0
17078	387914	TMEM46	Human	0	0	0	1	1	0	0	1	1	1	1	1	1	1
7516	389075	RESP18	Human	0	0	0	0	0	0	0	1	1	1	1	1	1	0
16890	399664	RKHD1	Human	1	0	0	0	1	1	0	1	1	1	1	1	1	1

	$\begin{aligned} & \text { ei } \\ & \text { ex } \\ & 0 \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \text { E } \\ & \text { E } \\ & \text { N } \\ & \text { U } \\ & 0 \end{aligned}$		$\begin{aligned} & \text { 㒸 } \\ & \ddot{z} \end{aligned}$		$\begin{aligned} & \text { 总 } \\ & \text { 空 } \\ & \ddot{z} \\ & \ddot{z} \end{aligned}$	$\begin{aligned} & \stackrel{y}{0} \\ & \stackrel{\rightharpoonup}{z} \\ & \ddot{Z} \end{aligned}$	$\begin{aligned} & \text { 䭫 } \\ & \ddot{z} \\ & \ddot{z} \end{aligned}$	$\begin{aligned} & \tilde{y} \\ & \sum_{i}^{2} \\ & \ddot{z} \end{aligned}$	$\begin{aligned} & \text { 플 } \\ & \text { 를 } \\ & \text { 를 } \\ & \ddot{z} \end{aligned}$	$\begin{aligned} & \tilde{n} \\ & \frac{\alpha}{I} \\ & \ddot{\theta} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{t}{W} \\ & \stackrel{y}{n} \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \text { 岳 } \\ & \text { 学 } \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \frac{L}{D} \\ & \ddot{\underline{a}} \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \text { 呢 } \\ & \ddot{\ddot{\theta}} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{y}{c} \\ & \stackrel{y}{c} \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \text { 플 } \\ & \text { E } \\ & \frac{0}{2} \\ & \ddot{\theta} \end{aligned}$
46116	401399	LOC401399	Human	0	0	0	0	0	0	0	1	1	1	1	1	1	1
18903	440193	KIAA1509	Human	1	0	1	0	1	1	0	1	1	1	1	1	1	1
3476	11416	Slc33a1	Mouse	1	1	1	1	1	1	1	0	0	0	0	0	1	1
413	11821	Aprt	Mouse	1	0	1	1	1	1	0	0	1	1	1	0	0	1
68998	11878	Arx	Mouse	θ	10	017	0	0	1	0	1	1	0	0	0	1	0
1290	12054	Bcl7b	Mouse ${ }^{\text {¹］}}$	4	1	1	T	1	1	0	1	1	1	1	0	0	0
55599	12183	Bpgm	Mous	L	1	1	1	1	1	0	1	1	1	1	0	1	0
1330	12389	Cav1	Mouse ${ }^{-1}$	1	1	1	1	1	1	1	1	1	1	1	1	0	0
1368	12611	Cebpg	Mouse ${ }^{\text {¹］}}$	1	\square	$1+$		1	1	0	0	1	1	1	0	1	1
7667	12700	Cish	Mouse ${ }^{\text {P }}$	$\underline{0}$	1	1		1	1	0	0	1	0	1	0	0	0
55434	12831	Col5al	Mouse ${ }^{\text {a }}$	1	1	1	－	1	1	0	0	1	0	1	0	1	1
37917	12835	Col6a3	Mouse	T	0	1	0	0	1	0	1	1	0	1	0	1	0
1028	13139	Dgka	Mouse	It	0	0	0	0	1	1	0	0	0	0	0	0	0
7291	13389	D113	Mouse	θ	0	0	0	0	1	0	0	0	0	0	0	0	1
68934	14187	Akrlb8	Mouse	0	θ	0 O－1	1	1	1	0	0	0	0	0	0	1	0
7717	14221	Fjx 1	Mouse	1	0	0	0	1	0	0	0	0	0	0	0	0	0
20549	17388	Mmp15	Mouse	1	1	1	1	1	1	1	1	1	1	1	1	0	0
1871	18012	Neurodl	Mouse	0	1	1	1	0	1	0	0	0	0	0	0	0	0
1933	18476	Pafah1b3	Mouse	1	1	1	1	1	1	0	1	1	1	1	1	1	1
268	19286	Pts	Mouse	1	1	1	1	0	1	1	1	1	1	1	0	0	1
7500	19288	Ptx 3	Mouse	0	1	0	0	0	0	0	0	1	0	1	0	1	0
7516	19711	Resp18	Mouse	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7922	19935	Mrpl23	Mouse	1	1	1	1	1	1	0	0	0	1	1	1	0	1
56005	20269	Scn3a	Mouse	0	0	0	0	1	0	0	0	0	0	0	0	0	0
40668	22083	Sh2bp1	Mouse	1	1	1	1	0	1	1	0	0	0	0	0	1	1

	$\begin{aligned} & \text { a } \\ & \text { d. } \\ & \text { ij } \end{aligned}$	$\bar{\circ}$ E E 0. 0 0 0	$\begin{aligned} & \text { en } \\ & \text { ed } \\ & \stackrel{0}{n} \end{aligned}$	$\begin{aligned} & \text { g } \\ & \text { 只 } \\ & \ddot{2} \\ & \ddot{z} \end{aligned}$		$\begin{aligned} & \text { 离 } \\ & \text { yy } \\ & \ddot{y} \\ & \ddot{z} \end{aligned}$	$\begin{aligned} & \stackrel{y}{d} \\ & \stackrel{己}{\vec{n}} \\ & \ddot{\ddot{~ u}} \end{aligned}$	$\begin{aligned} & \text { 皆 } \\ & \text { ت̈ } \\ & \ddot{Z} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \underset{i n}{z} \\ & \ddot{Z} \end{aligned}$	$\begin{aligned} & \text { 플 } \\ & \text { 를 } \\ & \stackrel{U}{6} \\ & \ddot{z} \end{aligned}$		$\begin{aligned} & \text { 㖋 } \\ & \ddot{\#} \\ & \ddot{\theta} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\ddot{\theta}}{\\|} \end{aligned}$	$\begin{aligned} & \ddot{B} \\ & \stackrel{\ddot{B}}{\ddot{\theta}} \\ & \hline \end{aligned}$	$\begin{aligned} & \tilde{y} \\ & \sum_{2}^{2} \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \text { 플 } \\ & \text { E } \\ & \ddot{4} \\ & \ddot{\theta} \end{aligned}$
84799	22693	Zfp30	Mouse	0	0	0	0	0	0	0	1	1	1	1	1	0	0
65280	22701	Zfp41	Mouse	0	0	1	0	0	1	0	0	0	1	1	0	1	1
31656	22791	Dnajc2	Mouse	1	1	1	1	0	1	1	1	1	1	1	0	0	1
21334	23882	Gadd45g	Mouse	1	1	1	0	0	0	1	1	1	1	1	1	1	1
68420	30930	Vps26	Mouse	1	1	11	1.	1	1	1	1	1	1	1	1	0	0
17523	50760	Fbxol7	Mouse ${ }^{\text {¹ }}$	0	0	1	0	0	0	0	0	0	0	0	0	0	0
81871	54422	Barhl1	Mouse ${ }^{\text {／}}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2212	56282	Mrpl12	Mouse ${ }^{-1}$	1	1	1		1	1	0	1	1	1	1	0	1	1
10494	56306	Tera	Mouse ${ }^{\text {d }}$	1	1	1		1	1	1	1	1	1	0	1	1	1
10518	56412	2610024G14Rik	Mouse	0	1	1		0	1	1	0	0	0	0	0	1	0
22818	56843	Trpm5	Mouse	O	θ	0	0	1	1	0	0	0	0	1	1	1	0
10663	57170	Dolpp 1	Mouse	12	1	1	1	1	1	1	0	1	0	1	1	1	1
10774	65960	Twsg1	Mouse	T	1	1	／	1	1	1	1	1	1	1	1	1	1
32331	65964	B230120H23Rik	Mouse	7	1	1	91	1	1	1	1	0	0	1	0	1	1
11920	66098	Chchd6	Mouse	7	1	11	，	1	1	1	0	1	0	1	0	0	1
32633	66308	2810021B07Rik	Mouse	\％	1	1	1	0	1	1	1	0	0	1	0	1	1
40859	66494	2610524G07Rik	Mouse	1	1	1	1	1	1	1	1	1	1	1	0	1	1
11980	66506	1810042K04Rik	Mouse	1	0	1	1	0	1	0	0	0	0	1	0	0	1
12021	66734	Mapllc3a	Mouse	1	1	1	1	0	1	1	0	1	0	0	0	1	1
82250	66915	Myeov2	Mouse	1	1	1	1	0	1	1	0	1	1	0	0	0	1
49970	66953	Cdca 7	Mouse	1	1	1	1	0	1	1	1	1	1	1	1	1	1
32293	67223	2810430M08Rik	Mouse	1	0	0	0	1	1	1	1	1	1	1	1	1	1
9355	68045	2700060E02Rik	Mouse	1	1	1	1	1	1	1	1	1	0	1	1	1	1
18903	68339	0610010D24Rik	Mouse	1	0	1	0	0	1	1	0	1	0	1	0	0	0
55918	68776	Taf11	Mouse	1	1	1	1	1	1	0	0	1	0	0	0	1	1

HomoloGene ID	$\begin{aligned} & \text { E } \\ & \text { E } \\ & \text { Hex } \end{aligned}$	Gene Symbol		$\begin{aligned} & \ddot{a} \\ & \ddot{x} \\ & \ddot{z} \\ & \hline \end{aligned}$			$\begin{aligned} & \text { 右 } \\ & : Z \\ & \ddot{Z} \\ & \ddot{Z} \end{aligned}$	B0 틀 \ddot{Z} \ddot{Z}	$\sum_{\ddot{z}}^{\mathscr{Z}}$	$\begin{aligned} & \overline{\ddot{U}} \\ & \text { ㄹ } \\ & \text { ㄹ } \\ & \ddot{\vdots} \\ & \ddot{Z} \end{aligned}$	合 寿 $\ddot{\theta}$	皆	$\begin{aligned} & \text { Bu } \\ & \text { 를 } \\ & \ddot{\theta} \end{aligned}$	弟	苞	$\frac{\ddot{y}}{\frac{A}{2}}$	$\begin{aligned} & \bar{U} \\ & \text { E } \\ & \text { 트 } \\ & \ddot{\theta} \\ & \ddot{\theta} \end{aligned}$
41703	69156	Comtd 1	Mouse	1	1	1	1	0	1	0	0	0	0	1	0	0	1
9120	70381	2210010N04Rik	Mouse	1	1	1	1	1	1	1	1	1	1	1	1	0	1
11653	70918	4921525 L 17 Rik	Mouse	0	0	0	0	0	1	1	0	0	0	0	0	0	0
15843	71617	9130011E15Rik	Mouse	1	1	1	0	0	0	1	0	0	0	0	0	0	1
12418	71893	Noxol	Mouse	1	0	1	11	0	1	0	1	0	0	1	1	1	0
6535	71916	Dus41	Mouse	0	0	0	0	0	0	1	0	0	0	0	0	0	1
7199	72075	Ogfr	Mousè／	1	1	1.	1	0	1	0	0	1	1	1	0	1	1
12444	72140	2610507L03Rik	Mouse－］	θ	1	1	1	0	1	1	1	0	0	0	0	1	1
49899	72514	2610306H15Rik	Mouse．	1	0	0	0	0	0	0	0	1	0	0	0	1	0
56774	74202	Fblim1	Moused		1	1	1	1	1	0	1	1	1	1	1	0	1
18833	75641	1700029I15Rik	Mouse	0	0	0	1	0	1	0	0	0	0	0	0	0	0
4983	76257	Slc38a3	Mouse	0	0	1	1	0	0	1	0	0	0	0	0	0	0
9813	77626	4122402O22Rik	Mouse 2	4	0	0	1	0	1	1	1	1	1	0	1	1	1
10695	94221	Gopc	Mouse	Sl	0	0	0	0	1	1	1	1	0	0	0	1	1
46116	101359	D330027H18Rik	Mouse	4	θ	0	0	0	0	0	0	1	0	0	0	0	0
64353	101543	Wtip	Mouse ${ }^{\text {－}}$	－ 1	1	0	θ	1	0	0	0	1	0	0	1	0	0
10026	109065	1110034A24Rik	Mouse	0	1	1	1	0	1	1	1	1	1	1	0	1	1
32	109900	Asl	Mouse	1	1	1	1	1	1	1	1	1	1	1	0	1	1
2593	110052	Dek	Mouse	1	1	1	1	0	1	1	0	1	1	1	0	0	1
14667	191578	Hel308	Mouse	0	0	1	0	0	0	1	0	0	0	1	1	0	0
32546	207952	Klhl25	Mouse	1	0	1	0	0	1	1	1	1	1	0	1	0	1
45198	208606	1500011J06Rik	Mouse	1	0	1	1	1	1	1	1	1	1	1	0	1	1
35002	214854	Lincr	Mouse	1	0	1	0	1	0	1	0	0	0	0	0	0	0
2880	216233	Socs2	Mouse	1	1	1	1	1	1	0	1	1	1	1	1	1	1
14128	217333	Trim47	Mouse	1	1	1	1	1	1	1	0	1	0	1	0	1	0

Appendix \mathbf{V} The individual mouse developmental ontologies

TS01

first polar body
one-cell stage
second polar body
unclassifiable
zona pellucida

TS02
second polar body
two-cell stage
unclassifiable
zona pellucida
TS03
4-8 cell stage
compacted morula
second polar body
unclassifiable
zona pellucida
TS04
blastocoelic cavity
embryo

germ layers
trophectoderm

second polar body
unclassifiable
zona pellucida
UNIVERSITY of the
TS05
blastocoelic cavity
embryo
inner cell mass
germ layers
trophectoderm
mural trophectoderm polar trophectoderm
unclassifiable
TS06
blastocoelic cavity
embryo
epiblast
germ layers
primitive endoderm
trophectoderm
mural trophectoderm
polar trophectoderm
unclassifiable
embryo
epiblast
germ layers
endoderm
trophectoderm
mural trophectoderm polar trophectoderm
ectoplacental cone
unclassifiable
yolk sac cavity
TS08
embryo
epiblast
germ layers
ectoderm
endoderm
trophectoderm
mural trophectoderm polar trophectoderm ectoplacental cone
unclassifiable
yolk sac cavity
TS09
embryo
germ layers
ectoderm
endoderm mesoderm trophectoderm mural

primitive streak proamniotic cavity
unclassifiable
yolk sac cavity
UNIVERSITY of the

WESTERN CAPE

TS10
allantois
embryo
germ layers
ectoderm
endoderm
mesoderm
trophectoderm
mural trophectoderm
polar trophectoderm
ectoplacental cone
primitive streak
unclassifiable
yolk sac
TS11
allantois
amnion
anatomical site

```
    hematological system
    blood island
nervous system
        central nervous system {CNS}
            floor plate
            future brain
                        future midbrain
                        future prosencephalon
                future rhombencephalon
            future spinal cord
                neural tube
            neural crest
            notochord
    peripheral nervous system {PNS}
            auditory apparatus {ear}
                        internal ear
            visual apparatus {eye}
primitive streak
unclassifiable
yolk sac
```

TS13
alimentary system
diverticulum
intestine \{gut\}
mesentery
anatomical site
head
trunk
whole body
branchial arch
cardiovascular system
artery
carotid artery
dorsallab市 I VERSITY of the
heart
commbity dity chamber N CAPE
mesocardium
myocardium
primitive ventricle
sinus venosus
vein
endocrine system
thyroid primordium
germ layers
ectoderm
endoderm
mesenchyme
hematological system
blood
nervous system
central nervous system $\{\mathrm{CNS}\}$
floor plate
future brain
future midbrain
future prosencephalon
future rhombencephalon
future spinal cord
neural tube
neural crest
notochord
peripheral nervous system \{PNS\}
auditory apparatus \{ear\}
internal ear
olfactory apparatus
visual apparatus \{eye\}
primitive streak
unclassifiable
urogenital system
nephric cord
presumptive nephric duct

TS14

alimentary system
diverticulum
intestine $\{$ gut $\}$
mesentery
anatomical site
anterior limb bud
head
tail bud
trunk whole body
branchial arch
cardiovascular system artery
heart carotid antery dorsal apita
common atrial chamber
mesocartium myocardium primituverentricle R SITY of the
sinus venosus
vein
WESTERN CAPE
endocrine system
pituitary gland
thyroid primordium
germ layers ectoderm
endoderm
mesenchyme
hematological system
blood
nervous system central nervous system \{CNS\}
floor plate
future brain
future forebrain
future diencephalon
future midbrain future rhombencephalon prosencephalon ventricular system
fourth ventricle
third ventricle

```
            future spinal cord
                    neural tube
            neural crest
            notochord
    peripheral nervous system {PNS}
            auditory apparatus {ear}
            internal ear
            olfactory apparatus
            visual apparatus {eye}
primitive streak
respiratory system
    nose
unclassifiable
urogenital system
    nephric cord
    nephric duct
    pronephros
```

 alimentary system
 diverticulum
 gall bladder primordium
 intestine \{gut\}
 mesentery
 dorsal meso-oesophagus
 oral cavity
 pharynx
 anatomical site
anterior limb bud
head
posterior limb ridge
tail
trunk
whole body
branchial arch
cardiovascular system
artery WESTERN CAPE
carotid artery
dorsal aorta
heart
atrium
common atrial chamber
mesocardium
myocardium
primitive ventricle
sinus venosus
vein
endocrine system
pituitary gland
thyroid primordium
germ layers
ectoderm
endoderm
mesenchyme
hematological system
blood
musculoskeletal system
pre-cartilage condensation
nervous system
central nervous system $\{\mathrm{CNS}\}$
floor plate
future brain
future forebrain
diencephalon
telencephalon
future midbrain future rhombencephalon ventricular system fourth ventricle third ventricle
future spinal cord neural tube
neural crest
notochord
peripheral nervous system \{PNS\}
auditory apparatus $\{$ ear $\}$
internal ear
otocyst
ganglion
olfactory apparatus visual apparatus $\{$ eye $\}$ intraretinal space optic stalk
respiratory system lung nose tracheal unclassifiable
urogenital system mesonephros nephric cord
nephric duct

diverticulum
intestine
large intestine anal region
small intestine
liver and biliary system
cystic duct
gall bladder primordium
hepatic duct
liver
mesentery
oesophagus
oral cavity
pharynx
stomach
anatomical site
anterior limb bud
head
posterior limb bud
tail
trunk

```
    whole body
branchial arch
cardiovascular system
    artery
        carotid artery
        dorsal aorta
    heart
        atrium
            common atrial chamber
            mesocardium
            myocardium
            primitive ventricle
            sinus venosus
            valve
    vein
dermal system
    dermis
    epidermis
endocrine system
    pituitary gland
    thyroid primordium
germ layers
    ectoderm
    endoderm
    mesenchyme
hematological system
    blood
lymphoreticular system
musculoskeletal system
    cartilage condensation
    pre-cartilage condensation
nervous system
```



```
        brain
            Uforebtain RSSITMY of the
            WEST telecephalon.APE
                hindbrain
                    trigeminal V
                        midbrain
                        ventricular system
                                    fourth ventricle
                                    lateral ventricle
                                    third ventricle
        floor plate
        future spinal cord
                neural tube
        notochord
    peripheral nervous system {PNS}
        auditory apparatus {ear}
                                    external ear
                                    internal ear
                                    otocyst
                                    middle ear
                ganglion
                olfactory apparatus
                peripheral nerve
                visual apparatus {eye}
```

```
                                    intraretinal space
                                    optic stalk
respiratory system
    bronchus
    lung
    nose
    trachea
unclassifiable
urogenital system
    reproductive system
        gonadal component
    urinary system
        mesonephros
        nephric cord
        nephric duct
```

alimentary system
diverticulum
intestine
large intestine
anal region
small intestine
duodenum
liver and biliary system
common bile duct
cystic dict

hepatic duct $=$
liver
mesentery
oesophagus
oral cavity
tongue
pancreas primordieni IVERSITY of the
pharynx
stomach WESTERN CAPE
anatomical site
anterior limb bud
head
posterior limb bud
tail
trunk
whole body
branchial arch
cardiovascular system
artery
carotid artery
dorsal aorta
heart
atrium
common atrial chamber
mesocardium
myocardium
pericardium
primitive ventricle
sinus venosus
valve
vein
dermal system
dermis epidermis
endocrine system
pituitary gland
thyroid
germ layers
ectoderm
endoderm
mesenchyme
hematological system
blood
lymphoreticular system
musculoskeletal system
cartilage condensation
pre-cartilage condensation
nervous system
central nervous system \{CNS $\}$
brain
forebrain
diencephalon
telencephalon
hindbrain
metencephalon

third ventricle
floor plata IVERSITY of the
future spinal cord
Wreufarmbe RN CAPE
notochord
peripheral nervous system $\{$ PNS $\}$
auditory apparatus \{ear\}
external ear
internal ear
otocyst
middle ear
ganglion
sympathetic ganglion
olfactory apparatus
peripheral nerve
visual apparatus \{eye\}
cornea
lens vesicle optic stalk retina
respiratory system
bronchus
lung
nose
trachea

```
unclassifiable
urogenital system
        reproductive system
        gonad primordium
        urinary system
        mesonephros
        metanephros
        nephric duct
        ureteric bud
alimentary system
        diverticulum
        intestine
            large intestine
                anal pit
        small intestine
                duodenum
        liver and biliary system
            common bile duct
            cystic duct
            gall bladder
            hepatic duct
            liver
    mesentery
    oesophagus
    oral cavity
```



```
            mandible primordium-
            maxillary prodess primordum
        tongue
    pancreas primordum,
    pharynx
    stomach UNIVERSITY of the
anatomical site
    anterior limb bưq ES T ERN CAPE
    head
    posterior limb bud
    tail
    trunk
    whole body
branchial arch
cardiovascular system
    artery
        carotid artery
        dorsal aorta
    heart
        atrium
        mesocardium
        myocardium
        pericardium
        sinus venosus
        valve
        ventricle
    vein
        vena cava
            inferior vena cava
```

TS19
dermal system
dermis
epidermis
endocrine system
pituitary gland
thyroid
germ layers
ectoderm
endoderm mesenchyme
hematological system
blood
lymphoreticular system
musculoskeletal system
cartilage condensation
pre-cartilage condensation
nervous system
central nervous system $\{\mathrm{CNS}\}$
brain
forebrain
diencephalon
telencephalon
hindbrain
hypoglossal XII
metencephalon

lateral ventricle
JNIV Ihire ventricle of the
floor plate
future \$pinha gord ERN CAPE neural tube
notochord
peripheral nervous system \{PNS\}
auditory apparatus \{ear\}
external ear
future tympanum
internal ear
membranous labyrinth saccule utricle
osseous labyrinth
semicircular canal
middle ear
ganglion
sympathetic ganglion
olfactory apparatus
peripheral nerve
visual apparatus $\{$ eye $\}$
cornea
lens vesicle
optic stalk
retina
respiratory system bronchus
lung
nose trachea
unclassifiable
urogenital system
reproductive system genital tubercle gonad primordium
urinary system mesonephros metanephros nephric duct ureteric bud

```
alimentary system
    diverticulum
    intestine
        large intestine
                anal pit
        small intestine
                duodenum
    liver and biliary system
        common bile duet
```



```
        gall bladder
        hepatic duct \
    mesentery
    oesophagus
    oral cavity
        mandibularymocess R S STY of the
        maxillety Progess ERN CAPE
                maxilla
                premaxilla
            tongue
    pancreas
    pharynx
        nasopharynx
    stomach
anatomical site
    anterior limb
    head
    posterior limb
    tail
    trunk
    whole body
cardiovascular system
    artery
        carotid artery
        dorsal aorta
    heart
        atrium
        mesocardium
```

```
    myocardium
    pericardium
    sinus venosus
        valve
        ventricle
    vein
        vena cava
        inferior vena cava
dermal system
    appendages
        vibrissa
    skin
        dermis
        epidermis
endocrine system
    pituitary gland
    thymus primordium
    thyroid
germ layers
    mesenchyme
hematological system
    blood
lymphoreticular system
musculoskeletal system
    bone
    cartilage
    cartilage condensation,
```



```
nervous system
    central nervous $ystem[{N$} [- - [T]
    brain
            forebrain
                diencephaton
```



```
                thalamus
```



```
                                    cerebral cortex
                                    corpus striatum
                            hindbrain
                            medulla oblongata
                                    hypoglossal XII
                                    vagal X
                                    metencephalon
                                    cerebellum primordium
                                    pons
                                    facial VII
                                    trigeminal V
                                    vestibulocochlear VIII
            midbrain
                oculomotor III
                ventricular system
                fourth ventricle
                    lateral ventricle
                                    third ventricle
                floor plate
                notochord
                spinal cord
```

peripheral nervous system \{PNS\}
auditory apparatus \{ear\}
external ear
auricle
external acoustic meatus
future tympanum internal ear membranous labyrinth saccule utricle osseous labyrinth cochlea semicircular canal
middle ear
ganglion
sympathetic ganglion
olfactory apparatus
peripheral nerve visual apparatus $\{$ eye $\}$
cornea
lens vesicle optic chiasma optic stalk retina
respiratory system bronchus lung nose trachea
unclassifiable urogenital system reproductive system genitalt urinary system $\begin{gathered}\text { mesonephros }\end{gathered} \operatorname{VRSITY}$ of the metañiphtws TERN CAPE nephric duct primitive ureter
alimentary system intestine
large intestine anal pit colorectal rectum
small intestine duodenum
liver and biliary system
common bile duct cystic duct gall bladder hepatic duct liver
mesentery
oesophagus
omentum
lesser omentum
oral cavity
jaw
mandible
maxilla
premaxilla
tooth
molar
salivary gland
sublingual gland primordium
submandibular gland primordium
tongue
pancreas
pharynx
nasopharynx
stomach
anatomical site anterior limb head posterior limb tail trunk whole body
cardiovascular system
artery
heart

perica
ventride NIVERSITY of the
vein
vena quva 2 STERN CAPE
inferior vena cava
superior vena cava
dermal system
appendages
vibrissa
skin dermis epidermis
endocrine system
pituitary gland
thymus primordium
thyroid
germ layers
mesenchyme
hematological system
blood
lymphoreticular system
musculoskeletal system
bone
cartilage
cartilage condensation

```
    joint
        ligament
    muscle
        skeletal muscle {striated muscle}
    pre-cartilage condensation
    tendon
nervous system
    central nervous system {CNS}
    brain
                forebrain
                    diencephalon
                            epithalamus
                            hypothalamus
                                    thalamus
                            telencephalon
                                cerebral cortex
                                    olfactory I
                                    corpus striatum
                                    olfactory lobe
                hindbrain
                    medulla oblongata
                            hypoglossal XII
                            vagal X
                    metencephalon
                                cerebellum
```

VII


```
            ventricular system
            W ES T EerebravaqueductP E
                    fourth ventricle
                    lateral ventricle
                    third ventricle
    floor plate
    spinal cord
peripheral nervous system {PNS}
    auditory apparatus {ear}
        auditory ossicle
        external ear
            auricle
            external acoustic meatus
        future tympanum
        internal ear
            membranous labyrinth
                        saccule
                        utricle
                    osseous labyrinth
                                cochlea
                                semicircular canal
            middle ear
    ganglion
```

```
    joint
        ligament
    muscle
        skeletal muscle {striated muscle}
    pre-cartilage condensation
    tendon
    nervous system
    central nervous system {CNS}
    brain
                forebrain
                    diencephalon
                                epithalamus
                                hypothalamus
                                thalamus
                            telencephalon
                                caudate nucleus
                                cerebral cortex
                                    olfactory I
                                    corpus striatum
                                    lentiform nucleus
                                olfactory lobe
            hindbrain
                    medulla oblongata
                hypoglossal XII
                vagal X
```



```
            II[IIEII- Impons|[IM
```



```
            UNIV IEMPe क.aptry of the
```



```
                    oculomotor III
                    tegmentum
                    trochlear IV
            ventricular system
                cerebral aqueduct
                fourth ventricle
                    lateral ventricle
                third ventricle
    floor plate
    spinal cord
peripheral nervous system {PNS}
    auditory apparatus {ear}
        auditory ossicle
        external ear
            auricle
                    external acoustic meatus
            future tympanum
            internal ear
                membranous labyrinth
                    saccule
                utricle
```


TS23
alimentary system
intestine
large intestine
anus
colorectal
rectum
small intestine
duodenum
jejunum
liver and biliary system common bile duct
pineal primordium
pituitary gland
thymus primordium
thyroid
germ layers
mesenchyme
hematological system
blood
lymphoreticular system
lymph sac
spleen primordium
musculoskeletal system
bone
cartilage
cartilage condensation
joint
ligament
muscle
skeletal muscle \{striated muscle\}
pre-cartilage condensation
tendon
nervous system
central nervous system $\{\mathrm{CNS}\}$
brain
forebrain

UNIVERSI tentiform pucleus
Whingring R N CAPE
medulla oblongata
floor plate
hypoglossal XII
vagal X
metencephalon
cerebellum
pons
abducent VI
facial VII
trigeminal V
vestibulocochlear VIII
meninges
arachnoid
dura mater
pia mater
midbrain
oculomotor III
tegmentum
trochlear IV
ventricular system
cerebral aqueduct

```
                        fourth ventricle
                        lateral ventricle
                                third ventricle
        spinal cord
        peripheral nervous system {PNS}
        auditory apparatus {ear}
            auditory ossicle
            external ear
                auricle
                external acoustic meatus
                future tympanum
                internal ear
                membranous labyrinth
                    saccule
                    utricle
                    osseous labyrinth
                        cochlea
                                    semicircular canal
                middle ear
    ganglion
        sympathetic ganglion
        olfactory apparatus
        peripheral nerve
        visual apparatus {eye}
        choroid
        eyelid
```



```
                Loptic chiasma _
```



```
respiratory system
        bronchus
        diaphragm
        larynx
        lung WESTERN CAPE
        UNIVERSITY of the
        nose
        pleura {pleural cavity}
        sinus {hindbrain}
        trachea
unclassifiable
urogenital system
    reproductive system
        female reproductive system
            mammary gland
            Mullerian tubercle
            ovary
            paramesonephric duct {Mullerian duct}
            genital tubercle
        male reproductive system
            penis
            testis
                primitive seminiferous tubule
            vas deferens
        urinary system
        bladder
        metanephros
```


nephron

glomerulus
ureter
urethra

TS24

```
alimentary system
    intestine
        large intestine
            anus
            colorectal
                    colon
                rectum
            small intestine
                    duodenum
                jejunum
    liver and biliary system
            common bile duct
            cystic duct
            gall bladder
            hepatic duct
            liver
    mesentery
    oesophagus
    omentum
            greater omentum
            lesser omentum
    oral cavity
            jaw
```



```
                    UNIV metas ITY of the
            salivary gland
            WpargidglandR N CAPE
                    sublingual gland
                    submandibular gland
            tongue
    pancreas
    pharynx
            nasopharynx
    stomach
anatomical site
    anterior limb
    head
    posterior limb
    tail
    trunk
    whole body
cardiovascular system
    artery
        aorta
        carotid artery
    heart
            atrium
            endocardium {endocardial tissue}
```

```
            mesocardium
            myocardium
            pericardium
            valve
            ventricle
    vein
        vena cava
            inferior vena cava
                                    superior vena cava
dermal system
    appendages
        hair
        hair follicle
        vibrissa
    skin
        dermis
        epidermis
endocrine system
    adrenal gland
        adrenal cortex
        adrenal medulla
    pineal gland
    pituitary gland
    thymus
    thyroid
germ layers
    mesenchyme
hematological system
    blood
lymphoreticular system
    lymph sac
    spleen
musculoskeletal system
    bone
    cartilage UNIVERSITY of the
    cartilage condensation
    joint WESTERN CAPE
    ligament
    muscle
        skeletal muscle {striated muscle}
    pre-cartilage condensation
    tendon
nervous system
        central nervous system {CNS}
            brain
                forebrain
                    diencephalon
                    epithalamus
                    hypothalamus
                    thalamus
                telencephalon
                            caudate nucleus
                                    cerebral cortex
                                    olfactory I
                                    corpus striatum
                                    lentiform nucleus
                                    olfactory lobe
                                    temporal lobe
```


hindbrain

medulla oblongata floor plate hypoglossal XII vagal X
metencephalon cerebellum pons
abducent VI facial VII trigeminal V vestibulocochlear VIII
meninges
arachnoid
dura mater pia mater
midbrain
oculomotor III
tegmentum
trochlear IV
ventricular system
cerebral aqueduct
fourth ventricle
lateral ventricle
third ventricle
spinal cord
peripheral nerveussystem \{PNS
auditory apparatus $\{$ ear\} $11 \square 11 \square 1$

internal ear
UNIV V Emembranquis labyriqte saccule
WESTERNutficile PE osseous labyrinth
cochlea semicircular canal
middle ear ganglion
sympathetic ganglion
olfactory apparatus
peripheral nerve
visual apparatus \{eye\}
choroid
cornea
eyelid
lens
optic chiasma
optic stalk
retina
sclera
vitreous humor
respiratory system
bronchus diaphragm

```
    larynx
    lung
    nose
    pleura {pleural cavity}
    sinus {hindbrain,sinus}
    trachea
    unclassifiable
    urogenital system
    reproductive system
        female reproductive system
            mammary gland
            Mullerian tubercle
            ovary
            oviduct
            vagina
        genital tubercle
        male reproductive system
            penis
                glans
            testis
                primitive seminiferous tubule
                vas deferens
    urinary system
        bladder
        metanephros
            \mathrm{ nephron glomerulus_}
            HB [II renal convoluted tubule
        ureter
        urethra
```



```
alimentary system
    intestine
            large ntestigeV ERSITY of the
            WdolgeqtaERN CAPE
                colon
                rectum
            small intestine
                duodenum
                jejunum
    liver and biliary system
            common bile duct
            cystic duct
            gall bladder
            hepatic duct
            liver
    mesentery
    oesophagus
    omentum
            greater omentum
            lesser omentum
    oral cavity
            jaw
                gum
                mandible
                maxilla
```

premaxilla
tooth
molar
salivary gland
parotid gland
sublingual gland
submandibular gland
tongue
pancreas
pharynx
nasopharynx
stomach
anatomical site
anterior limb
head
posterior limb
tail
trunk
whole body
cardiovascular system
artery
aorta
carotid artery
heart
atrium

dermal system
appendages WESTERN CAPE
hair
hair follicle
vibrissa
skin
dermis
epidermis
endocrine system
adrenal gland
adrenal cortex
adrenal medulla
pineal gland
pituitary gland
thymus
thyroid
germ layers
mesenchyme
hematological system blood
lymphoreticular system lymph sac spleen

```
musculoskeletal system
    bone
    cartilage
    cartilage condensation
    joint
        ligament
    muscle
        skeletal muscle {striated muscle}
    smooth muscle
    pre-cartilage condensation
    tendon
nervous system
    central nervous system {CNS}
    brain
                forebrain
                    diencephalon
                        epithalamus
                        hypothalamus
                        thalamus
                    hippocampus
                    telencephalon
                        caudate nucleus
                        cerebral cortex
                                    olfactory I
                                    corpus striatum
                                    lentiform nucleus
                                    lentiform nucleus
                                    offactory lobe
```

 offactory lobe
    ```
```

 UNIVERSI qPrqbellmmhe
 WESTERN CA pbducentVI
 facial VII
 trigeminal V
 vestibulocochlear VIII
 meninges
 arachnoid
 dura mater
 pia mater
 midbrain
 oculomotor III
 tegmentum
 trochlear IV
 ventricular system
 cerebral aqueduct
 fourth ventricle
 lateral ventricle
 third ventricle
 spinal cord
 peripheral nervous system {PNS}
auditory apparatus {ear}
auditory ossicle
external ear

```
```

 auricle
 external acoustic meatus
 internal ear
 membranous labyrinth
 saccule
 utricle
 osseous labyrinth
 cochlea
 spiral organ of Corti
 semicircular canal
 middle ear
 tympanum primordium
 ganglion
 spinal ganglion
 sympathetic ganglion
 olfactory apparatus
 peripheral nerve
 visual apparatus {eye}
 choroid
 ciliary body
 cornea
 eyelid
 iris
 lens
 optic chiasma
 O-
 ISclera - II - 11: II [m
 vitreous humor
 respiratory system
bronchus
diaphragm
larynx
lung
alveolusNTVERSITY of the
nose
pleura {pleuralqảyity% T ERN CAPE
sinus {hindbrain,sinus}
trachea
unclassifiable
urogenital system
reproductive system
female reproductive system
mammary gland
Mullerian tubercle
ovary
oviduct
vagina
genital tubercle
male reproductive system
penis
glans
testis
primitive seminiferous tubule
vas deferens
seminal vesicle
urinary system
bladder

```
metanephros
nephron
glomerulus renal convoluted tubule
ureter
urethra
TS27

\section*{alimentary system \\ intestine}
large intestine
anus
colorectal
cecum colon rectum
small intestine
duodenum
ileum
jejunum
liver and biliary system
bile duct
cystic duct
gall bladder
hepatic duct
liver
mesentery
oesophagus
omentum
greater omentum 11 II
oral cavity
jaw
jaw

mandible
Unaxilla ERSITY of the
premaxilla \(\mathrm{W}_{\mathrm{tobta}}^{\text {premaxila }} \underset{\text { molar }}{\mathrm{E}} \mathrm{RN}\) CAPE
salivary gland
parotid gland
sublingual gland
submandibular gland
tongue
pancreas
pharynx
hypopharynx
nasopharynx
oropharynx
stomach
anatomical site
anterior limb
head
posterior limb
tail
trunk
whole body
cardiovascular system
```

 artery
 aorta
 carotid artery
 capillary
 heart
 atrium
 cardiac valve
 endocardium
 myocardium
 pericardium
 ventricle
 vein
 vena cava
 inferior vena cava
 superior vena cava
 dermal system
appendages
hair
hair follicle
sebaceous gland
sweat gland
vibrissa
skin
dermis
epidermis
endocrine system
adrenal gland

```

```

 adrenal medulla _IL _ _ _ _ _
 parathyroid
 pineal gland
 pituitary gland
 thymus
 thyroid
 hematological system UNIVERSITY of the
blood
bone marrow WESTERN CAPE
lymphoreticular system
lymph node
spleen
tonsil
lingual tonsil
palatine tonsil
musculoskeletal system
bone
cartilage
joint
ligament
synovium
muscle
skeletal muscle {striated muscle}
smooth muscle
tendon
nervous system
central nervous system {CNS}
brain
forebrain
diencephalon

```

```

 sympathetic ganglion
 olfactory apparatus
 peripheral nerve
 visual apparatus {eye}
 choroid
 ciliary body
 conjunctiva
 cornea
 eyelid
 iris
 lacrimal gland
 lens
 optic chiasma
 optic stalk
 retina
 fovea centralis
 macula lutea
 sclera
 vitreous humor
 respiratory system
bronchus
diaphragm
larynx
lung
alveolus
nose
pleura {pleuraleavity}
sinus {hindbrain,sinus}|[.1ID|IIDIIDII
trachea
unclassifiable
urogenital system
reproductive system
femaleteproductive system 1._N
amnion
U precesvVERSSITY of the
WdzafyTERN CAPE
oviduct
placenta
uterus
cervix
endometrium
myometrium
vagina
vulva
male reproductive system
epididymis
penis
foreskin
glans
prostate
testis
seminiferous tubule
vas deferens
seminal vesicle
urinary system
bladder
kidney

```
nephron

> renal corpuscle
> glomerulus
> renal tubule loop of Henle renal collecting duct renal distal convoluted tubule renal proximal convoluted tubule
ureter
urethra
TS28
alimentary system
intestine
large intestine
anus
colorectal
cecum
colon
rectum
small intestine
duodenum
ileum
jejunum
liver and biliary system
bile duct
cystio duct
gall bladder 11 - 11 - \(11 \square \square \square\)
hepatic duct
liver
mesentery
oesophagus
omentum
greater omentum
lesseforitemin ERSITY of the
oral cavity
jaw WESTERN CAPE
gum
mandible
maxilla
premaxilla
tooth
molar
salivary gland
parotid gland
sublingual gland
submandibular gland
tongue
pancreas
pharynx
hypopharynx
nasopharynx
oropharynx
stomach
anatomical site
anterior limb
head
posterior limb
```

 tail
 trunk
 whole body
 cardiovascular system
artery
aorta
carotid artery
capillary
heart
atrium
cardiac valve
endocardium
myocardium
pericardium
ventricle
vein
vena cava
inferior vena cava
superior vena cava
dermal system
appendages
hair
hair follicle
sebaceous gland
sweat gland
skin

```
        vibrissa
        vibrissa
```

 parathyroid
 pineal gland UNIVERSITY of the
 pituitary gland
 thymus WESTERN CAPE
 thyroid
 hematological system
blood
bone marrow
lymphoreticular system
lymph node
spleen
tonsil
lingual tonsil
palatine tonsil
musculoskeletal system
bone
cartilage
joint
ligament
synovium
muscle
skeletal muscle {striated muscle}
smooth muscle
tendon
nervous system

```
```

central nervous system {CNS}
brain
forebrain
diencephalon
epithalamus
hypothalamus
thalamus
hippocampus
telencephalon
caudate nucleus
cerebral cortex
olfactory I
corpus striatum
lentiform nucleus
olfactory lobe
temporal lobe
hindbrain
medulla oblongata
hypoglossal XII
olivary nuclei
vagal X
metencephalon
cerebellum
pons
abducent VI
_
_
meninges m

```

```

oculomotor III
UNIV $\underset{\text { trochlear IV }}{\text { fegn of the }}$
W ventrichassten CAPE cerebral aqueduct
fourth ventricle lateral ventricle third ventricle
spinal cord
peripheral nervous system \{PNS\}
auditory apparatus \{ear\}
auditory ossicle
auditory tube
external ear
auricle
external acoustic meatus
internal ear
membranous labyrinth
saccule
utricle
osseous labyrinth cochlea
spiral organ of Corti semicircular canal vestibule

```
middle ear
tympanum \{tympanic membrane\}
ganglion
spinal ganglion sympathetic ganglion
olfactory apparatus
peripheral nerve
visual apparatus \{eye\}
choroid
ciliary body
conjunctiva
cornea
eyelid
iris
lacrimal gland
lens
optic chiasma
optic stalk
retina
fovea centralis
macula lutea
sclera
vitreous humor
respiratory system
bronchus diaphragm larynx
lung

unclassifiable
urogenital system
reproductive system \(\underset{N}{\text { UNESITY of the }}\)
femalefreproguqtive system CAPE
amnion
breast
mammary gland
ovary
oviduct
placenta
uterus
cervix
endometrium
myometrium
vagina
vulva
male reproductive system
epididymis
penis
foreskin
glans
prostate
testis
seminiferous tubule
vas deferens

\section*{Appendix VI The merged mouse developmental ontologies}
```

Mouse developmental ontology
4-8 cell stage
alimentary system
diverticulum
intestine
large intestine
anal pit
anal region
anus
colorectal
cecum
colon
rectum
small intestine
duodenum
ileum
jejunum
liver and biliary system
bile duct
common bile duct
cystic duct
gall bladder
gall bladder primordium
hepatic duet
mesentery
dorsal meso-oesophagus T
oesophagus
omentum
greater omentu
lessef omentum
oral cavity
jaw UNIVERSITY of the
W%umatibie
maxilla
premaxilla
tooth
molar
mandibular process
mandible primordium
maxillary process
maxilla primordium
salivary gland
parotid gland
sublingual gland
sublingual gland primordium
submandibular gland
submandibular gland primordium
tongue
pancreas
pancreas primordium
pharynx
hypopharynx
nasopharynx

```
stomach
allantois
anatomical site
anterior limb
anterior limb bud head posterior limb posterior limb bud posterior limb ridge tail tail bud trunk whole body
blastocoelic cavity
branchial arch
cardiovascular system
artery
aorta
carotid artery
dorsal aorta
capillary
heart
atrium
common atrial chamber
cardiac valve endocardium mesocardium [II myocardium \(=\) pericardium sinus venosus valve ventricle
vein
UNIVERSITY of the vena cava

Winfer vencavi CAPE
superior vena cava
chorion
dermal system
appendages
hair
hair follicle
sebaceous gland
sweat gland vibrissa
skin
dermis
epidermis
embryo
compacted morula
epiblast
inner cell mass
endocrine system
adrenal gland
adrenal cortex
adrenal medulla
parathyroid
```

 pineal gland
 pineal primordium
 pituitary gland
 thymus
 thymus primordium
 thyroid
 thyroid primordium
 first polar body
germ layers
ectoderm
endoderm
mesenchyme
mesoderm
primitive endoderm
trophectoderm
mural trophectoderm
polar trophectoderm
ectoplacental cone
hematological system
blood
blood island
bone marrow
lymphoreticular system
lymph node
lymph sac
spleen
spleen primordium
tonsil

```

```

 lingual tensil
 palatine tonsil [T
 palatine tonsil
 musculoskeletal system
bone
cartilage
cartilage condensation
joint UNIVERSITY of the
ligament
synowi\psiWESTERN CAPE
muscle
skeletal muscle
smooth muscle
pre-cartilage condensation
tendon
nervous system
central nervous system
brain
forebrain
diencephalon
epithalamus
hypothalamus
thalamus
hippocampus
telencephalon
caudate nucleus
cerebral cortex
olfactory I
corpus striatum
lentiform nucleus
olfactory lobe

```
temporal lobe
hindbrain
medulla oblongata
floor plate
hypoglossal XII
olivary nuclei
vagal X
metencephalon cerebellum cerebellum primordium pons
abducent VI
facial VII
trigeminal V
vestibulocochlear VIII
myelencephalon
meninges
arachnoid
dura mater
pia mater
midbrain
oculomotor III
tegmentum
trochlear IV
ventricular system

future prosencephalon
U füturertombericephalon of the prosencephalon
futur"spinafotd R N CAPE neural tube
neural crest
notochord
spinal cord
peripheral nervous system
auditory apparatus
auditory ossicle
auditory tube
external ear
auricle
external acoustic meatus
future tympanum
internal ear
membranous labyrinth
saccule
utricle
osseous labyrinth cochlea
spiral organ of Corti semicircular canal vestibule
```

 otocyst
 middle ear
 tympanum
 tympanum primordium
 ganglion
 spinal ganglion
 sympathetic ganglion
 olfactory apparatus
 peripheral nerve
 visual apparatus
 choroid
 ciliary body
 conjunctiva
 cornea
 eyelid
 intraretinal space
 iris
 lacrimal gland
 lens
 lens vesicle
 optic chiasma
 optic stalk
 retina
 fovea centralis
 macula lutea
    ```
            macula lutea
```

```
                                    diaphragm
                            larynx
                            lung
                                    UNIVERSITY of the
                                    alve\sigma|द\mp@code{ESTERN CAPE}
    nose
    pleura
    sinus
    trachea
    tracheal diverticulum
second polar body
two-cell stage
unclassifiable
urogenital system
    presumptive nephric duct
    pronephros
    reproductive system
        female reproductive system
            amnion
            breast
                mammary gland
                    Mullerian tubercle
                    ovary
                    oviduct
                    paramesonephric duct
                placenta
```

uterus
cervix
endometrium
myometrium
vagina
vulva
genital tubercle
gonad
gonad primordium
gonadal component male reproductive system epididymis mesonephric duct penis
foreskin
glans
prostate
testis
primitive seminiferous tubule
seminiferous tubule
vas deferens
seminal vesicle
urinary system
bladder
degenerating mesonephros
kidney
nephren

UNIVERSI Fend proxinal convoluted tubule
mesonephros
metañophins TERN CAPE
nephric cord
nephric duct
primitive ureter
ureter
ureteric bud urethra
yolk sac
yolk sac cavity
zona pellucida

Theiler Stage

adult
Theiler Stage 27 \{TS 27; TS27\}
Theiler Stage 28 \{TS 28; TS28\}
embryo
Theiler Stage 01 \{TS 01; TS01\}
Theiler Stage 02 \{TS 02; TS02\}
Theiler Stage 03 \{TS 03; TS03\}
Theiler Stage 04 \{TS 04; TS04\}
Theiler Stage 05 \{TS 05; TS05\}
Theiler Stage 06 \{TS 06; TS06\}

[^1]
Appendix VIIa The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet.

nature
genetics

The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line

The FANTOM Consortium and the Riken Omics Science Center ${ }^{1}$

Abstract

Using deep sequencing (deepCAGE), the FANTOM4 study measured the genome-wide dynamics of transcription-start-site usage in the human monocytic cell line THP-1 throughout a time course of growth arrest and differentiation. Modeling the expression and target genes. Systematic siRNA knockdown of 52 transcription factors confirmed the roles of individual factors in the regulatory network. Our results indicate that cellular states are constrained by complex networks involving both positive and negative regulatory interactions among substantial numbers of transcription factors and that no single transcription factor is both necessary and sufficient to drive the differentiation process. $\overline{8}$ 家 growth arrest and the acquisition of a differentiated cellular in most celltine models, only a subset of cells undergoes growth arrest phenotype. Upon stimulation with phorbol myristate acetate and-difierentiation. To maximize the sensitivity in this study, we (PMA), human THP-1 myelomonocytic leukemia cells cease pro- identified a subctone ofTHP-1 cells in which the large majority of cells \& liferation, become adherent and differentiate into a mature mono- became adherent in response to PMA (Supplementary Figg, 1 online). © cyte-and macrophage-like phenotyp ${ }^{1,2}$. This study aimed to Our strategy began with deepCAGE, which identified active TSSs at understand the transcriptional network underlying prowth arrest single-base-paif resolution, and simultaneously measured their timeand differentiation in mammalian cells using THP-1 cells as 2 dependent expression (using normalized tag frequency) as cells model system. Most existing methods for regulatory network reconstruction cDN A microarray analysis on an Illumina platform. The differentiacollect genes into coexpressed clusters and associate these clusters tion of the cells was evident from the large increase in expression of with regulatory motifs or pathways (for- example,-see-vels. 3-3). macrophage-specific genes such as CD14 and CSF1R detected by with regulatory motifs or pathways (for-xample, see-vels.-3-5). macrophage-specific-genes such as CD14 and CSFIR detected by Alternatively, one can model the expression patterns of all genes both deepeAGL and microarray in all replicates (Supplementary Alternatively, one can model the expression patterns of anf genes both deep(AG post-translational activities of their cognate Mranscription factors Cogure sumparizespor Motif Activity Response Analysis (MARA) post-translational activities of their cognate Iranscriptign factors $(\mathrm{TFs})^{6-8}$. Although this approach is challenging in complex eukaryotic sumpanizes gur Motif Activity Response Analysis (MARA) Promoters were aefited as local clusters of coexpressed genomes owing to large noncoding regions, ChIP-chip data indicates TSSs and promoter regions as their immediate flanking sequences that the highest density of regulatory sites is if ound heaf transcripfion. (Fig. lab). To. reconistruct transcription regulatory dynamics we start sites (TSSs) and regulatory regions originally thought to be distal " refined earliet computational methods ${ }^{\boldsymbol{h}-8}$ by incorporating comparamay often be alternative promoters ${ }^{10,11}$. Precise identification of TSS tive genomic information and each TF's positional preferences relative locations is thus likely to be a crucial factor for accurate modeling of to the T'SS in the prediction of regulatory sites. Binding sites for a transcription regulatory dynamics in mammals. In this study, we extend our previous observations of genome-wide ISS usage by Cap Analysis of Gene Expression (CAGE) ${ }^{12}$ and using deep sequencing to identify promoters active during a time course of differentiation and quantify their expression dynamics. DeepCAGE data are used in combination with cDNA microarrays, other genomescale approaches, novel computational methods and large-scale siRNA validation to provide a comprehensive analysis of growth arrest and differentiation in the THP-1 cell model. to the TSS in the prediction of regulatory sites. Binding sites for a comprehensive and unbiased collection of mammalian regulatory motifs were predicted in all proximal promoter regions (Fig. Ic) and the observed promoter expression profiles (Fig. 1d) were combined with the predicted site-counts (Fig. 1e) to infer time-dependent activity profiles of regulatory motifs (Fig. 1f). We inferred individual regulatory interactions (edges) between motifs and promoters by comparing the promoter expression and motif activity profiles (Fig. 1g). Rigorous Bayesian probabilistic methods were developed for all steps of the computational analysis. Finally, a core network was

${ }^{1}$ A full list of authors and affiliations is provided at the end of this paper.
Received 16 July 2008; accepted 25 March 2009; published online 19 April 2009; doi:10.1038/ng. 375

Figure 1 Motif Activity Response Analysis (MARA). (a) CAGE tags are mapped to the human genome and their expression is normalized; vertical lines represent TSS positions, and their height is proportional to the normalized expression. (b) Mapped tags are clustered into promoters on the basis of their relative expression, and neighboring promoters are joined into promoter regions. (c) A window of - 300 to +100 flanking each promoter region is extracted, multiply aligned and the Motevo aigorithm is used to predict binding sites for known motifs. (d-) Observed expression of all promoters (d) and predicted
site-counts (e) are used to infer motif activities (f) (g) The statistical significsmice of the regulatory edge from motif to promoter is calculated based on site-counts (e) are used to infer motif activities (f). (e) The statistical significance of the regulatory edge
correation of the promoter expression and motif activity profies:

-

constructed by selecting the motifs that explained the greatest propor- Among the identified promoters $84 \%(24,984)$ were within 1 kb of tion of the expression variance, obtaining all predicted regulatory edges the starts of knowntranscripts and $81 \%(24,327)$ could be associated
7in between TFs corresponding to these motifs and seleting those reg- with 9,452 Entrez genes Approximately half of the remaining pro ulatory edges that had independent experimental support. Using this moters were more than 1 kb away from the loci of known genes approach, we reconstructed the transcriptional regulatory dynanics (Supplementary Fig. 4 online). These newly identified promoters are associated with cellular differentiation in human THP-1 cells, and conserved across mammals, suggesting that they are true transcription validated a subset of predicted regulatory interactions, $\quad \begin{aligned} & \text { starts of currently unknown transcripts (Supplementary Fig. } 5 \\ & \text { online). The association of } 24,327 \text { promoters with } 9,452 \text { Entrez }\end{aligned}$ DeepCAGE quantification of dynamic TSS usage \square genes extends previous evidence of alternative promoter usage ${ }^{11}$-in CAGE tags generated from mRNA harvested at each time point were this case even within a single cell type (Supplementary Table 1 mapped to the human genome. Promoters were defined as clusters of online)-and demonstrates that promoter regions frequently contain nearby TSSs that showed identical expression profiles (within mean muitipte promoters with distinguishable expression profiles (Supplesurement noise) and were substantially expressed in at least onestime mentarg Table i bpline) Dhaddition, for genes with known multiple point (Fig. la,b). Using these criteria we identified 29,857 promoters promoters deepCAGE frequently identified only one promoter to be expressed in THP-1 cells containing 381145 unique TSS positions, aetive in the-vTHP-1 samples (Supplementary Fig. 6 online). Hence, (which is a subset of the nearly 2 million TSss,detected at least once in deepCAGE samples adistinct aspect of transcriptional activity that can THP-1). These promoters were contained within 14,607 promoter and does vary independently of mRNA abundances as measured by regions (separated by at least 400 bp ; Methods and Supplementary Fig. 3 online). The deepCAGE data was validated using genome tiling array ChIP for markers of active transcription. Of the promoters identified, 79% and 78% were associated with H3K9Ac and RNA polymerase II, respectively (both markers of active transcription ${ }^{13,14}$), compared to 18% and 27% for inactive promoters (Supplementary Note online). hybridization to representative microarray probes.

Promoter expression

Using the normalized tags per million (tpm) counts assigned to the promoters, we tested reproducibility among the three biological replicates and compared the outcome to the Illumina array from the same samples (Supplementary Fig. 7 online). DeepCAGE

Figure 2 Statistical significance and consistency across replicates of the inferred motif activity profiles. Each dot corresponds to a motif. The significance of each motif in explaining the observed expression variation is quantified by the z value of its activity profile (horizontal axis, see Methods). The consistency of the inferred activity profile of each motif is quantified by the fraction of the variance (FOV) in the activity profile across all six replicates (three biological replicates for both CAGE and Illumina), which
expression measurements were comparatively noisy (Supplementary Fig. 7a). Nevertheless, the median Pearson correlation between the replicate-averaged expression profiles of CAGE and microarray was around 0.72 (Supplementary Fig. 7b), which is comparable to that observed with other deep transcriptome sequencing datasets ${ }^{15}$. As predicted, the correlation is lower for genes with multiple promoter regions (Supplementary Fig. 7b and discussed further in Supplementary Note).

Comprehensive regulatory site prediction

Known binding sites from the JASPAR and TRANSFAC databases ${ }^{16,17}$ were used to construct a set of 201 regulatory motifs (position-specific weight matrices, WMs), which represent the DNA binding specificities of 342 human TFs. We predicted transcription factor binding sites (TFBSs) for all motifs within the proximal promoter regionst - 300 t +100 bps) of all CAGE-defined promoters. Extending the proximal the signiffeance of the inferred activity profiles by comparing the promoter regions beyond the -300 to +100 window decreased the fraction-of the 'expression signal' (expression variance minus replicate quality of the fitted model described below (data not shown). In noise) that is explained by the model, compared to randomized contrast to previous approaches that used simple WM scannings, we教 incorporated information from orthologous sequences in six orsors and and under a tepfold cross-vation test (Supplementary mammals and used a Bayesian regulatory-site prediction algorith and this significance is maintained under tenfold cross-validation that uses explicit modeis for the evolution of regulatory sites' ${ }^{\prime}$. (Methods). In addition, the highly peaked positional profiles of (Fig. Ic and Methods). Notably, different motifs had distinct and TFBSs (Supplementary Fig. 8) suggest that knowing the exact TSS highly specific positional preferences with respect to TSS (Supple- is important for accurare TFBS prediction. Indeed, the predicted mentary Fig. 8 online), extending a previous genome-scale-analysis. The - from CAGL promoters explain substantially more of the Positional preferences were incorporated in the TFBS predietion by expression-signal in-micrearrays than predicted TFBSs of the assoassigning each site a probability that it is under selection and correctly ciated RefSeq promoters (Supplementary Fig. 10). We observe that positioned. This analysis generated approximately 245,000 prediald cthe model better predicts the expression profiles of those promoters T'FBSs for the 201 motifs genome-wide. For each promoter-motif what are more stonglyexp tessed, more reproducible across replicates, combination, the TFBS prediction was summarized by a count $N_{p m}$, and have higher expression variance (Supplementary Fig. 11 online). which represents the estimated total number of functional TFBSsfor? Simitarly, samples at the start and end of the differentiation time motif m in promoter p. The TFBS predictions wete compared with course arebetter predicted than those at intermediate time points published high-throughput protein-DNA interaction datasets (ChiPchip) and predicted target genes were significantly (P values ranged from 0.02 for ETS1 to $6.60 \mathrm{E}-263$ for GABPA) enriched among genes for which binding was observed (Supplementary Table 3 online).

Inferring key TFs and their time-dependent activities
The details of our Motif Activity Response Analysis (MARA) are described in Methods. Briefly, for each motif m and each time point t,
egonst -300 to information in a-system undergoing dynamic change. We validated
there is an (unknown) motif activity $A_{m b}$, which represents the time dependent nuclear activity of positive and negative regulatory factors that bind to the sites of the motif (for example, the E2F activity will depend on nuclear E2F1-8, and DP1-2 levels, as well as RB1 phosphorylation status). As in previous work ${ }^{6-8,21}$, motif activities were inferred by assuming that the expression $e_{p t}$ of promoter p at time t is a lincar function of the activities $A_{m z}$ of those motifs tha have predicted sites in p. Additionally, the effect of motif m on the expression of promoter p is assumed to be proportional to the predicted number of functional sites $N_{p m}$. Assuming that the deviapredicted number of functional sites $N_{p m}$. Assuming that the devia-
tions of the predicted expression levels $\varepsilon_{p m}^{\text {then }}=$ constant $+\sum_{m} N_{p m} A_{m t}$ tions of the predicted expression levels $e_{p}^{p_{m}}=$ constant $+\sum_{m} N_{p m} A_{m t}$
from the observed levels $e_{p t}$ are Gaussian distributed, and using a Gaussian prior on the activities, we determine fitted activities $A_{m t}^{*}$ that have maximal posterior probability (Methods).

The inferred motif activities were validated using a number of internal tests. First, our Bayesian procedure quantifies both the significance of each motif in explaining the observed expression variation as well as the reproducibility of its activity across replicates (Fig. 2 and Supplementary Table 4 online). The activity profiles of the top motifs are extremely reproducible across replicates and different measurement technologies (Figs. 2 and 3a and Supplementary Fig. 9 online). It should be stressed that, although motif activities are inferred by fitting the expression profiles of all promoters, the model cannot be expected to predict expression profiles of individual genes from the predicted TFBS in proximal promoters alone. The effects of chromatin structure, distal regulatory sites, nonlinear interactions between regulatory sites, and the contribution of the large numbers of human TFs for which no motif is known, are not considered. Furthermore, especially for genes that are dynamically regulated, mature mRNA abundance can be dynamically regulated independently of transcription initiation and promoter activity through selective mRNA elongation, processing and degradation. Our aim is not to predict expression profiles of individual genes but rather to predict the key regulators and their time-dependent activrather to predict the key regulators and their time-dependent activ-
ities, which can be inferred from integration of global expression (Supplementary Fig. 12 online), possibly because individual cells differentiate at different rates and leave the cell populations less homogeneous at intermediate time points.

Motif activities that were independently inferred from all 11,995 expressed microarray probes were combined with the inferred moti activities from all CAGE and microarray replicates into a final set of time-dependent motif activities (Methods). From these, we selected 30 'core' motifs that contribute most to explaining the expression

ARTICLES

Figure 3 inferred time-dependent activities of the key regulatory motits. (a) The time-dependent activity protile of the E2F1-5 regulatory motif as inferred from CAGE (ieft) and microarray (right) data. The three biological replicates are shown in red, blue and green. (b) The 30 most signiticant motifs with consistent activity profiles across alt replicates (CAGE and microarray) were clustered into nine sets of motifs with similar dynamics. Each panel shows the activity of the members of the cluster (colored curves), the names of motifs contributing and the cluster average activity profile (black).
variation (red dots in Fig. 2) and segregated their activity profiles using a Bayesian procedure into nine clusters (Fig. 3b and Methods), including three clusters of upregulated motifs, three clusters of downregulated motifs and three clusters containing single motifs with profiles involving different transient dynamics. The genome-wide set of target promoters for each of the motifs was determinedas described in Methods. The significance of each regulatory 'edge' from a motifio tified by the 2 value of the correlation between the motif's activity a putative target promoter (containing a prodicted TFBS) was quan- siRNA knockdowm combined with PMA treatment for SPI1 (more
tified by the z value of the correlation between the motif's activity commonly known in the literature as PU.l). Alt knockdowns were tified by the z value of the correlation between the motil's activity commonly known in the litcrature as PU.l). Alt knockdowns were
profile and the promoter's expression profile (Fig. le)
Core transcriptional regulatory network The final aim in reconstructing transcription to infer not only the key regulators and their target gene sets, but also the way in which the actions of these key regulators are coordinated. were onlue). Changes For this purpose, we collected all 199 predicted-regulatory- edges gene, we-obtained the list of predicted regulatory targets for the (z value ≥ 1.5) between the 30 core motifs. Recognizing that the associated motif and divided the microarray probes into predicted
 constructed a core regulatory network (Pig. 4) of 55 highly trusted confidence fargets) in genefal show greater expression changes upon edges by filtering the predicted edges according to experimental knockdown (Fig. 5a shows the example TF genes MYB, SNA13, EGR1 validation, either within our data or in exasting literature (Supplef) and $R U N N X T$ additional examples are shown in Supplementary mentary Table 5 online). In addition, for cach core tnotif we extraeted . Fig. 14 online). For Sph, even in the absence of PMA treatment the set of predicted target genes (z value ≥ 1.5) and checked for siRNA knockdown caused significant downregulation of predicted enrichment of gene ontology terms. A selection of significantly SPIl targets, but the effects were much stronger when knockdown was enriched terms is shown as oval nodes in Figure 4 (full set of GO combined with 1 h or 24 h of PMA treatment (Fig. 5b), confirming . 4 (full set of GO enrichments are available as Supplementary Table 6 online).
Whereas our method infers the key regulators $a b$ initio, the majority of factors within this core network are known to be important in the monocyte-macrophage lineage, thereby validating the method. In addition the predicted targets of these motifs
are enriched for biological processes known to be involved in differentiation of the monocytic lineage.
The gene ontology enrichments can broadly be divided into four groups. Downregulated motifs E2F1-5, NFYA,B,C and MYB are associated with cell cyde-related terms, consistent with the growth arrest observed during PMA-induced differentiation and the specific downregulation of numerous genes required for DNA synthesis and cell cycle progression within 24 h of PMA addition. Notably, MYB targets are also enriched specifically for microtubule-cytoskeletonassociated genes. Conversely, targets of upregulated motifs are associated with the terms immune response, cell adhesion, plasma membrane, vacuole and lysosome, all of which are consistent with differentiation into an adherent monocyte-like cell. The targeting of lysosomal genes by cholesterol-regulated SREBFs (sterol regulatory element-binding transcription factors) is of note, as hipid homeostasis is important in the macrophage in atherosclerosis and lysosomal storage diseases ${ }^{22}$. We also saw enrichment of signal transduction genes among targets of the earty induced motifs EGR1-3 and TRP Finaily, there is a set of motifs whose targets are enriched in TFs. These motifs correspond to the transiently induced/repressed motifs, ATF5 CREB3, FOXO1,3,4 and SRF, and the repressed pair of OCT4 and FOXIL,I2 motifs.

Validation of edge predictions

THP-1 cells, even in an 'undifferentiated' state, are clearly a myeloid cell line. In seeking to validate the transcriptional network, we noted that there was a large set of TF genes expressed constitutively in the cells that were rapidly downregulated in response to PMA, of which MYB is an example, and another set that was expressed but further upregulated during differentiation. It is technically difficult to apply siRNA knockdown to genes that are only expressed later in the differentiation. To validate predicted edges empirically, we therefore chose to carry out siRNA knockdowns in undifferentiated THP-1 cells for genes encoding 28 TFs that are expressed in the undifferentiated for genes encoding 28 TFs that are expressed in the undifferentated
state and for which we have associated motifs. To assess whether siRNA knockdown carried out in the undifferentiated state is appropriate to address factors that increase expression during the time course, we carried out the technically more difficult experiment of which in most cases was greater than 80% online; in addition, protein-level knockdown ein blot for 14 siRNAs, see Supplementary in gene expression caused by TF knockdown micuarrars For each knocked-down that PMA causes upregulation of SPII activity. A good correlation between target confidence (2 -value cut-off) and average log expression ratio was observed for the large majority of experiments (Fig. 5c). For an intermediate cut-off of $z=1.5$ we quantified the difference in log expression ratio of predicted targets and nontargets (Fig. 5d) and

Figure 4 Predicted core regulatory network of the 30 core motifs. An edge $X \rightarrow Y$ is drawn whenever 30 core motifs. An edge $x \rightarrow Y$ is drawn whenever with motif Y has a predicted regulatory edge for motif X (Z value ≥ 1.5) and the edge has independent experimental support. The color of each node reflects its cluster membership and the size of the node reflects the significance of the motif. Edges confirmed in the literature, by ChIP or by siRNA are shown in red, blue and green, respectively. In cases where there are multiple lines of support only one evidence type is shown. Supplementary Table 5 shows all predicted edges and their experimental support. GO terms significantly enriched among target genes are shown as white nodes with black edges. FOS $/ \mathrm{UNN}$ (FOS, B,L1_JUNB ,D), CREB (ATF5_CREB3), GABPA (ELK1,4_GABPA,B2).
and IRF1,2 motif activities failed to be induced and the GATA4 and TBX4,5 motif activities failed to be downregulated (Fig. 6c). Notably, knockdown of CEBPG, encoding
found significant changes (z-value larger than 2) for 23 of 33 case with SPII knockdown combined with 24 h of PMA treatment and MYB knockdown being the most significant (Supplementary Fig. 15 online shows the entire distribution of log expression ratios of targets and nontargets for eight example TFs). Notably, for the TF genes LMO2, MXII and SP1, the knockdown led to a significant upregulation of their targets, suggesting that the three encoded TFs act primarily as repressors in undifferentiated THP-1 cells (Fig. 5d, also see Supplementary Fig. 14a). Together these results provide compelling experimental validation of our predicted regulatory edges.

Single TF knockdowns affect multiple motif activities

 Besides validating predicted targets, the siRNA knockdowns can also be used to assess the effects of the knockdown of one TF gene on the motif activities of other TFs. In addition to the-28 TFs perturbed above, we included a further 24 TFs that lacked motifs bui were naturally repressed during PMA differentiation, or had been reported o have a role in myeloid differentiation or leukemia (Suqplementang of adherence could belinked to the GO enrichment for cytoskeletonassociated genes among MYB targets noted above. Given thes The motif activity inference method observations one might wonder whether MYB is a master regulato changes in activities of all motifs upon knockdod to determine the of the differentiation process and whether stronger and longer knock changes in activities of all motifs upon knockdown of each TF eenc. down would have reproduced the complete differentiation observedTo assess the role of each TF in differentiation, we defined the under PMA treatment Several observations argue strongly agains differentiative overlap between a TF gene knockdown and the PMA this. First, the gene sets perturbed by MYB and by the other protime course as the fraction of all motifs that significanny changed theil differentiative-tes-overtap only partially (Supplementary Table 11 activity in the same direction upon TF gene-kneckdewn-as in the online), Secend, whesteother pro-differentiative TF genes only two PMA differentiation (Methods). By far the largest differentiative (CEBPG and GFII) are affected by MYB knockdown. Both these facts overlap (69%) was observed for the MYB knockdown, which no1 Gindicate thathe other pro-differentiative TF genes are not simply only affected MYB motif activity, but also the activity of nost motifs. bownstreamLof diyb, Third, MYB downregulation does not occur in the core network, with the most significant activity changes all in until after the second hour of the PMA time course (Fig. 3b), which is the same direction as in the PMA time course (Fig 6a). Knockdown) atoodds with the idean $M Y B$ sitting at the top of the regulatory of 13 other TF genes generated an overlap greatentthan the negative - hierarchy. It is also worth neting that THP-1 cells harbor a leukemocontrol (Supplementary Table 9 online), and Figure 6 shows three further examples (E2FI, HOXA9 and CEBPG).
As for MYB, E2FI knockdown reproduced some of the downregulation of MYB and E2F activity observed upon PMA stimulation, but it failed to reproduce the upregulation of SREBF1,2, PU.1, NFATCl-3 and FOS,B,L1_JUNB,D activity (Fig. 6b). Similarly, the activity changes that HOXA9 knockdown induced were mostly in the same direction as in the PMA differentiation; however, the SNAIl-3
genic fusion ${ }^{23}$ between MLL (mixed-lineage leukemia) and MLIT3 (MLL translocation partner 3) and that the MLLT3 siRNA targets this leukemogenic fusion (note that full-length MLIT3 does not seem to be expressed in THP-1 as there is no CAGE 5^{\prime} signal for this gene). Our data indicate that this fusion interferes with differentiation and that neither PMA treatment nor MYB knockdown affects MLL-MLLT3 levels, suggesting these stimuli can bypass the differentiative block. Conversely, MLLT3 knockdown had no effect on MYB levels. These

Figure 5 Validation of predicted target promoter sets using siRNA knockdowns. (a) Difference in the average log expression ratio upon knockdown between predicted target promoters and predicted nontargets (vertical axis) as a function of the z-value cut-off on target prediction (horizontal axis, more stringent cut-offs are on the right) for knockdown of the TF genes MPB (red), SNA13 torange). RUNXX (green) and EGR1 (light blue). (b) As in a but now for knockdown of SP1 followed by 1 h without treatment (light bite), 24 h without treatment (cark blue), 1 h of PMA treatment (orange) and 24 h of PMA treatment (red). All straight lines are linear regression fits. (c) Pearson correlation coefficients petween the average log expression ratio difference of targets and nontargets and the cut-oft on target predictions (horizontal axis). Red bars indicate correlation coefficients larger than 0.75 in absolute value; green bars, absolute values between 0.5 and 0.75 ; and blue bars, less than 0.5 . (d) Significance (z value) of the difference in \log expression ratio between predicted targets and nontargets (cut-off $z=1.5$) for all 28 TFs associated with a motif, measured as a 2 value (number of standard errors). Red bars correspond to significant changes, that is, greater tian two standard ernops; green pars, chianges petween 1 and 2 standard errors; and blue bars, changes
less than 1 standard error. siRNA knockdowns were carried out in biotogical triplicate and knockdown was assessed by qRT.PCR (Supplementary Table 7) results agree with previous RNAi studies that conclude that down- factors may well be important in these cells. Of the 610 expressed TR regulation of MLL leukemogenic fusion proteins can promote growth 64 were-most unghly expressed in the undifferentiated and 34 in the arrest but is not required for terminat differentiation ${ }^{24,25}$. Thus, differentiated state In addition, 101 TFs were transiently induced or individual TF gene knockdowns affect the activities of multiple repressed during differentiation. To elucidate the connection of these motifs and elicit different, but overlapping, subsets of therregulatory TTis to the inferred_network, we compared the predicted regulatory changes observed in the PMA time course. Taken together, the dath inputsof co-regulated subsets of TFs with the predicted regulatory indicate that the independent perturbation of expression of multiple inputs of the set of all 610 expressed TFs.
lFs in response to PMA is both necessary and sufficient to initiate. Whereas no motifs are overrepresented among inputs of statically partial differentiation. for a subset of motifs. TFs downregulated from 0 to 96 h PMA were
Many TFs are involved in the differentiation process
The network predictions and the siRNA results above suggest that upregulation and downregulation of the activities of multiple cooperating TFs is required for differentiation. Of a curated list ${ }^{26}$ of 1,322 human TFs, 610 were detected by both CAGE and microarray in at least one time point (Supplementary Table 12 online); however, only 155 of these are covered by weight matrices, suggesting that other
most enriched for three downregulated motifs of the core network OCT4 ($3.4 x$), GATA4 ($3.3 x$) and NFYA, BC C ($2.2 x$) (Supplementery Table 13a online). Similarty, TRs upregulated from 0 to 96 h were most enriched for core network motifs that increase activity during differentiation: SNAII-3 (4.6x) and TBP (5.2x) (Supplementary Table 13b). Finally, transiently regulated TFs were enriched for the SRF ($3.5 x$) and NHLH1,2 ($3 x$) motifs (Supplementary Table 13c).

A.L, A.R.RF, CA.W, C. Kai, C. Kawazu, CO., C.P., C. Simon, C.W., D.AH, E.B., E.M.-S., F.B., G.S.L, H. Koga, H. Miura, H.N., H.O.-Y, H.S., H.Y, IB., IC f.K., I.O., I.S.M., J.Y., K.E:, K. Imamura, K.M., K.M.1., K.N., K. Schroder, K. Shirahige, L.W., M.A., M.C.K., M.E., M. Hashimoto, M. Hatakeyama, M.J.S., ...-., M. Kouma, M. Murata, M.N., M.R., M. Suzuki, M.T., N.A.M., N.L., . Takeda, T.,., R.D.T., S.M.G., S.H., S.L., S. Miyamoto, S. Noma, S. Nyga Y. Hasegawa, Y.L., Y. Kitazume Y. Koyma, Y. Sano, T. Suzuki, V.O., Y.A., (nvolved in biological asperts of the project. A.M.C., A.R.R.F, A.S., B. L., C.O.D. D.F., E.A., E.v.N., G.J.F., H.A., H.S., I.D., J.M., I.Q., J.S.M., K.W., M. Lindow, M.Z., N.C., N.M., O.H., P.J.B., P.C., R.I.T., R.S., S.M.G., S. Kondo, T.L., T.R. and designed and carried out the motif activity response analysis. A. RRE, EvN
Y. Tomaru and M.K.-K. carried out the siRNA analysis. A.R.R.E., C..D., D.A..
E.v.N., H.S., J.K., PC. and Y. Hayashizalki oversaw the project. H.S., A.R.R.E.,

$$
\begin{aligned}
& \text { E.v.N., H.S., J.K., PC. and Y. Hayashizaki oversaw the project. H.S., A.R.R.F., } \\
& \text {..v.N., and D.A.H. wrote the manuscript with assistance from T.R, T.L., M.J. }, ~
\end{aligned}
$$

Ev.N., and D.A.H. wrote the manuscript with assistance from T.R, T.L., M.J.S.,
C.A.W., J.Q., W.H., A. Kubosaki, Y. Tomaru, V.B.B., M. Suruki and
Y. Hayashizaki:
ublished online at hitp://mww nature.com/inaturegenelics.
Reprints and permissions information is avalable onisise at hitp://npg.nature.com
by a pho, et a. induction of maturation in cultured human monocytic leukemia celis
2. Absink, Mo, Giebt, A.E., Hancer Res. R., Nilssen, K. \& Hellman, L. Human cell lines U-937, macrophage cell lineage. Leukemia 8 . $1579-1584$ (1994). 3. Beer, M.A. \& Tavazoie, S. Predicting gene expression from sequence. Cell 117
4. Ramsey, S.A. et al. Uncovering a macroptage transcriptional program by integrating
evidence fromm motif scanning and expression dynamics. PLos Compul. Biok 4, evidence from mot
5. Segal. E. et al. Module networks: identifying regul atory modules and their condition
specific regulators from gene expression data. Nat. Genet, 34, 166-176 (2003).
6. Dact. D., Nahle, Z. \& Zharge. M.Q Actaptively infering human transcriptional subnet
works, Mol, Syst. Biol. 2, 2006.0029 (2006).
7. Gao, F., Foat, B.C. \& Bussemaker, H.J. Defining transcriptional networks through integrative model ing of mRNA expression and transcription factor binding data. BMC
Bioinformatics 5,31 (2004).
Nguren, D.H. \& D'Haeseleer,
9. Bukaryotic genomes. Mol. Syst. Biol. 2, 2006.0012 (2006).
9. Birney, E. ef ad. Identification and analysis of functional elements in
genome by the ENCODE pilot project. Nature 447, $799-816$ (2007) \Rightarrow
10. Caminci, P. et al. The transcriptional landscape of the memmatian ernome science
10. Caminci, P. et a. The transcriptional landsciape of the mammatian genome Science
$309,1559-1563(2005)$.
11. Carninci, P. et at. Genome-wide analysis of mammatian promoter architecture and
evotution. Nat. Genet. 38, w 26 - 635 (2006).
12. Shiraki, T. et at. Cap analysis gene expression for high-throughput analysis of
12. Stiraki, T. et at Cap analysis gene expression for high-throughput analysis of
transcciptional starting point and ident
Sici, USA $100,15776-15781$ (2003)
13. Roth, T..., Cuddapath, S. \& Zhao, K. Active chrompation dema ths are definined
acety
(20) acetylation
(2005).
 4. Sandoval, J. et at. RNAPOI-ChIP; a novel application of chromatin inmunopreci inituon network in girb byoxic stren cells. Cell $133,1106-1117$ (2008).
 Cing. Nat. Methocs 5, 613-619 (2008). response tactor 15 essembibt for mesoderm formation during mouse embryogenesis. 6. Vlieghe, O. et al. A new generation of JASPAR, The openaccess reposilory lor EMRO J. 17,6289-6299 (19998).

20. Frith. M.C. et at. A code for transcription intitation in mammalian genomes. Genome 49. Kauffman, S . The Origins of Order: Self-Organization and Selection in Evotution
Res. 18, 1-12 (2008).

The full list of authors and affiliations is as follows:
The FANTOM Consortium:
 Mutsumi Kanamori-Katarama ${ }^{251}$. Atsutaka Kubosaki251, Altuma Akalin ${ }^{7}$, Yoshinari Ando ${ }^{2}$, Erik Amer ${ }^{2}$, Maki Asoda ${ }^{8}$, Hiroshi Assahara ${ }^{8}$, Timothy Bailey

 Mariko Hatakeyama ${ }^{20}$, Susanne Heinzel ${ }^{21}$, Winston Hide ${ }^{9,2251}$, Oliver Hofrnann ${ }^{9}{ }^{92}$, Michael Hörnquist ${ }^{9}$, Lukasz Huminiecki ${ }^{23}$, Kazuho Ikeo ${ }^{17}$, Naoko Imarmoto ${ }^{24}$, Satoshi Inoue ${ }^{25}$, Yusuke Inoue ${ }^{26}$, Ryoko lshihara2, Takao Iwayanagi ${ }^{27}$, Anders Jacobsen ${ }^{28}$, Mandeep Kaur ${ }^{2}$, Hideya Kawaiji', Markus C Kers ${ }^{15}$, Ryuichiro Kimura ${ }^{12}$,
 Ajit Kumar ${ }^{32}$, Boris Lenhard ${ }^{751}$. Andreas Lennartsson ${ }^{2}$, Morten Lindow ${ }^{28}$. Marina Lizio ${ }^{2}$, Cameron MacPherson ${ }^{3}$, Norihiro Maeda ${ }^{2}$, Christopher A Maher Monique Maqungo, Jessica Mar ${ }^{33}$, Nicholas A Matigian ${ }^{3}$, Hideo Matsuda ${ }^{34}$, John S Mattick ${ }^{13}$, Stuart Meier ${ }^{9}$, Sei Miyamoto ${ }^{17}$, Etsuko Miyamoto-Sato ${ }^{35}$, Kazuluko Nakakayashi ${ }^{12}$, Yutaka Nakachi's, Mika Nakano ${ }^{2}$, Sanne Nygard ${ }^{26}$, Toshitsugu Okayama ${ }^{17}$, Yasushi Okazaki ${ }^{36}$, Hannka Okuda-Yabukami ${ }^{2}$, Valerio Orland ${ }^{37}$ Jun Otomı ${ }^{38}$, Mikhail Pachkov, Nikolai Petrovsk y^{27}, Charles Plessy ${ }^{2}$, John Quackenbush ${ }^{33,51}$, Aleksandar Radovanovic ${ }^{9}$, Michael Rehli ${ }^{39}$, Rintaro Sait ${ }^{40}$,

 Ole Winthe ${ }^{28}$, Linda Wu ${ }^{2}$, Kazumi Yamaguchi', Hiroshi Yanagawa ${ }^{35}$, Jun Yasuda ${ }^{2}$, Mibacla Zavolan ${ }^{4}$ \& David A Hume ${ }^{49,5152}$

Riken Omics Science Center:
Takahiro Arakawa ${ }^{2}$, Shiro Fukuda ${ }^{2}$, Kengo Imamura ${ }^{2}$, Chikatoshi Kair ${ }^{2}$, Ai Kaiho ${ }^{2}$, Tsugumi Kawashima ${ }^{2}$, Chika Kawazu ${ }^{2}$, Yayoi Kitazume ${ }^{2}$, Mikiki Kojima ${ }^{2}$, Hisashi Miura², Kayoko Murakami², Mitsuyoshi Murata², Noriko Ninomiyaz ${ }^{2}$, Hiromi Nishiyorŕ', Shohei Noma ${ }^{2}$, Chihhiro Ogawa ${ }^{2}$, Takuma Sano ${ }^{2}$, Christophe Simon ${ }^{2}$, Michihira Tagami ${ }^{2}$, Yukari Takahashi ${ }^{2}$ Iun Kawai ${ }^{251}$

General Organizer:

Rilike Hayamizakp:31.s Australia. ${ }^{6}$ Department of Bioengineering, Jaccobs School of Engineering, University of Califormia, San Dicgo, La Jolla, California, USA. 'Bergen Center for Institute, University of the Western Cape, Belville, South Africa. ${ }^{10}$ Computational Medicine Group, Atherosclerosis Rescarch Unit, Center for Molecular Medicinc Department of Medicine, Karolinska Institute, Karolinska Universiry Hospital Solna, Stockholm, Sweden. ${ }^{11}$ Institute of Infectious Disease and Molecular Medicine (IJDMM), Wolfson Pavilion Level 2, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa. ${ }^{12}$ Department of Biological Science and Technology, Tokyo University of Sciense, Japan ${ }^{13}$ Australian Research Council (ARC) Special Research Centre for Functional and Aplied Genomics, Institute for
Molecular Bioscience, The University of Queensland, St. Iucia, Australia. ${ }^{14}$ Departent of Biochernistry, McGill University, Montreal, Quebec, Canada. ${ }^{15}$ Australian Molecular Bioscience. The University of Queensland, St. Lucia, Australia. ${ }^{4}$ Department of Biochemistry, McGill University, Montreal, Quebec, Canada. ${ }^{5}$ Ausralian
Rescarch Council (ARC) Centre of Excellence in Bioinformatics, Institute for Molecular Biossience, The University of Oueensland. St. Lucia. Australia. ${ }^{15}$ Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, Osaka, Japan. "Research Organization of Information and Systems, Center for Information Biology and DNA Data Bank of Japan (DD8), National lnstitute of Genetics, Shizuoka, Japan. ${ }^{18}$ Department of Computer Science, University of Bristol, Menchan Venturers Building, Woodland Road, Bristol, UK. ${ }^{19}$ Deparment of Science and Technology, Linkëping University, Norrkëping, Sweden. ${ }^{20}$ Computational and Experimental Systens Biology Group, RIKEN Genomic Sciences Center, RIKEN Yokoharna Institute, Kanagawa Japan. ${ }^{21}$ Department of Diabetes and Endarinology, ${ }^{23}$ Flinders University and Medical Centre, Bedford Park, Adelaide, Australia. ${ }^{22}$ Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden. ${ }^{24}$ Cellular Dynamics Laboratory. Discovery and Rescanch Institute,
KIKEN Wako Institutc, Saitama, Japan. ${ }^{25}$ Graduate School of Medicine and Faculty of Mediane, the University of Tokyo. Tokyo, Japan. ${ }^{26}$ Department of Biological an Chemical Engineering, Gunna University Faculty of Engineering, Guma, Japan. ${ }^{27}$ R\&D Solution Center, Ressarch \& Development Group, Hitachi Ltd., Tokyo, lapan. ${ }^{20}$ The Bioinformatics Centre, Department of Biology and Biotech Research \& Innovation Centre, University of Copenhagen, Copenhagen, Denmark. ${ }^{29}$ Department of Information and Knowledge Engineering, Faculy of Engineering, Tottori University Jonori, Tapan. ${ }^{30}$ The Systems Biology Institute, Shibuya, Tokyo, Japan. ${ }^{13}$ Department of Human Gene Research, Kazusa DNA Research Institute, Chibai lapan. ${ }^{2}$ Department of Biochemistry and Molecular Biology, the George Washington University Medical Center, Washington, D.C., USA. ${ }^{33}$ Despartment of Biostaistec, Harvard Schoot of Pobblie Hicalth, Dana-Farber Cancer Institute, Boston, ${ }^{3}$ Massachusetts, USA. ${ }^{3}$ TDepartment of Bioinformatic Enginecting, Graduate School of Information Skiencc and Techinglogy, Osaka University, Osaka, Japan. ${ }^{35}$ Department of Biosciences and Informatics, Faruly of Science and Technology, Keio University, Yokohama, Iapan. ${ }^{3 / D}$ Division of Functional Genomics and Systems
Medicine, Research Center for Genomic Medicine, Saitama Medical School, Saitama, lapan. ${ }^{3}$ Dublbeto Telethon Institute, IRCCS Fondazione Santa Lucia at EBRI, Rome and IGB CNR, Naples, Itrily. ${ }^{38}$ Central Research Laboratory, Hitachi Lud., Tokyo, lapan. ${ }^{39}$ Department of Hematology and Oncology, University of Regensburg, of Genornics and Genetics, Nanyang Technological
${ }^{43}$ Department of Computer Science, Graduate Scho Bioscience, School of Molecular and Microbial Sci Broscience, School of Molecolar and Microbial Sae
Aioinformatics Institute, Welkome Trust Genome Linkëping, Sweden. ${ }^{47}$ Structural Studies Division MP Insitute, Jupiter, Florida, USA, ${ }^{49}$ The Roslin Instio

UNIVERSITY of the
WESTERN CAPE

Appendix VIIb: Clusters of genes from Illumina microarray expression experiment with early, mid and late response characteristics

Data selection

For each time-point, the Rank Invariant normalization values, as well as the Flag Detection scores for each probe, were extracted from the files supplied by the Consortium. The Flag Detection scores are determined as follows:

- for each probe, the bead standard deviation (defined as the 'average standard deviation associated with bead-to-bead variability for the sample in the group' - Illumina BeadStudio User Guide) was divided by the intensity value to determine the variance of the measurements, yielding the flag detection score
- for flag detection scores equal to 1 , the probe is flagged as 'present' (P)
- for flag detection scores-between 0.99 and 1.00, the probe is flagged as 'marginal' (M)

- for flag detection scores less than $0 . \overline{99}$, the probe is flagged as 'absent' (A) We excluded from consideration all probes that weresflagged as 'absent' at any time-point. This resulted in 1 totaf pf 9 d 87 probes $t /$ The probe identifiers were converted to EntrezGene identifiers Many of the probe identifiers did not have a corresponding gene identifier and were excluded from further analysis. This filtering step finally yielded 7932 genes associated with the probes.

Data transformation

The 7932 genes selected were subjected to the following transformation steps:

- add a value of 50 to all data-points to eliminate negative values
- perform a $\log 2$ transformation on the dataset
- normalize the data of the 0 hr by making zero mean and standard deviation of 1
- transform all other time point values using the mean and standard deviation determined for 0 hr .
- to determine the change x in the expression over time for each probe relative to the expression level at point 0 hr , subtract the 0 hr value from all the other time-point values for each probe
- to calculate the fold-change in expression for each time-point relative to 0 $h r$, calculate $2^{\wedge} x$ for each time-point value x.

The result of the data transformation is a fold-change value varying from 0 to infinity. A fold-change value between 0 and 0.5 indicates that the expression of the probe is half or less of what it was originally (at 0 hr), and therefore the respective gene is considered significantly down-regulated. A fold-change value of 2 or more indicates that the expression of the probe is 2 or more fold greater than it was originally (at 0 hr) and we considered it to represent a significant upregulation of the gene.

Clustering

The transformed data was binned into the following categories for clustering: UNIVERSITY of the

- Down-regulated: all/ values in the range $0:<\mathbb{R} E=0.5$
- clustering value $=-1$
- No regulation: all values in the range $0.6<X<2$
- clustering value $=0$
- Up-regulated: all values $>=2$
- clustering value $=+1$

The tool used to perform clustering was TIGR MultiExperiment Viewer (version $3.1)$, which is freely available from http://www.tm4.org. For clustering we applied a Hierarchical Clustering algorithm using the Euclidean distance metric and average linkage clustering.

Selection of clusters

Of the transformed 7932 genes, 1807 genes were not regulated throughout the time-points, 710 genes were down-regulated at the 24h time-point only, and 5220 genes were up-regulated at the 24 h time-point only. These three clusters of genes were not selected.

The remaining clusters were visually inspected and divided into 10 categories based on their regulation over time as presented in Table 1 (see Figure 2 for graphical representation). In Table 1 we used the following classification of the time intervals in the gene response:

- early regulation refers to the first four time-points $(0.5 \mathrm{~h}, 1 \mathrm{~h}, 2 \mathrm{~h}, 3 \mathrm{~h})$
- middle regulation refers to the next three time-points ($4 \mathrm{~h}, 8 \mathrm{~h}, 10 \mathrm{~h}$)
- late regulation refers to the last three time-points ($12 \mathrm{~h}, 18 \mathrm{~h}, 24 \mathrm{~h}$)

The heat-map of the selected clusters is depictedin Figure 1.

Table 1: Clustering categories for Illumina data based on the time of the response of genes to LPS stimulation.

	Early Regulation	Midde IT Y 07 zegulation	Late regulation	GeneCount
Category 1	Up	Up	Up	4
Category 2	Up	None	Up	40
Category 3	Up	None	Down	5
Category 4	None	None	Up	38
Category 5	None	Down	Up	36
Category 6	None	Down	None	15
Category 7	None	Down	Down	15
Category 8	Down	None	Up	31
Category 9	Down	None	Down	7
Category 10	Down	Down	Down	2

Figure 1
Clustering image from TMeV. Clusters were selected based on the visual inspection of expression profiles. Each cluster was classified into an expression category based on their expression over time.

Figure 2
Average expression profiles for the expression categories. The average expression profile for each category was plotted along the time-points. Values in the graph range from -1 (down-regulated) through 0 (no regulation) to 1 (up-regulation).

Appendix VIII Expression profile of transcription factors showing tissue restriction

The expression profile of the 145 transcription factors expressed in 25% of tissues. (FRS - female reproductive system; MRS male reproductive system).

https://etd.uwc.ac.za/

ләчıо	\bigcirc									－		－	－	－	－	－							
р！̣окй	\bigcirc	\bigcirc	－	－	－	－	－	－	－	－		0	0	O	0	0	－	\bigcirc	\bigcirc	\bigcirc	－	－	0
snuイ̌ul	0	－	－	－	0	\bigcirc		\bigcirc	－	－		0	0	0	0	0	－	\bigcirc	\bigcirc	0	－	－	0
	－	\bigcirc	\bigcirc	－	－	－	－	－	0	\bigcirc		0	－	\bigcirc	－	－	\bigcirc	\bigcirc	\rightarrow	－	－		
uәว ${ }^{\text {d }}$	0	\bigcirc	－	－	－	－			－ 0	－		0	－	－	－	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	－	－	－
put｜\％R．atumud	\bigcirc	\bigcirc	－	－	－	\bigcirc						－ 0	\bigcirc	\bigcirc	0	\bigcirc	－	\bigcirc	－	－	－	－	－
purfor［rauid	\bigcirc	\bigcirc		0	0	\bigcirc				－		0	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	0	\bigcirc
stanjurd	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	－	\bigcirc	－	－	－	－
esomnur	－	\bigcirc	－	\bigcirc	\bigcirc	－			0	\bigcirc		00	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc
S8W	－	－	－	－	－	\bigcirc	－	\bigcirc	－	－		－ 0	－	－	－	－	－	－	\bigcirc	－	－	－	－
	\bigcirc	0	0	－	－	－	\bigcirc		－	－		－ 0	0	0	－	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	－	－	
sunI														\bigcirc	－	－	－	\bigcirc	\bigcirc	\bigcirc	－	－	－
дәл！	\bigcirc													\bigcirc	－	－	－	－	－	\bigcirc	－	－	－
反әирпу														－	－	－	－	－	－	－	－	－	0
1.1839	－												\％	\bigcirc	0	0	－	－	－	－			－
S4	－	6	0	I	V	E		8	50	do		010	0	b	－	－	－	－	－	－			0
моливu әuоq	\bigcirc				\％	8		10	50	8		$8 \mathrm{O}$			\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc
0u0q	\bigcirc	－	\bigcirc	－	\bigcirc	－						$0 \cdot$	－	\bigcirc	－	－	－	－	－	－	－	－	－
［əssan poolq	\bigcirc	－	0	－	－	\bigcirc	－	0	\bigcirc	－		00	－	0	－	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	－
p0019	\bigcirc	－	\bigcirc	\bigcirc	－	\bigcirc				0		0	0	0	\bigcirc	\bigcirc	－	－	\bigcirc	\bigcirc		－	－
риеן®［виәлре	－	－	\bigcirc	\bigcirc	\bigcirc	－						0 O	0	0	\bigcirc	－	－	\bigcirc	－	－	－	－	－
Ioquiss әuәワ	$\left\|\begin{array}{l} a \\ x \\ x \\ 0 \end{array}\right\|$	$\begin{aligned} & 1 \\ & x \\ & 0 \\ & \hline \end{aligned}$	$\sqrt{\bar{x}}$	$\begin{aligned} & \bar{x} \\ & 0 \\ & 0 \end{aligned}$	$\left\{\begin{array}{l} \frac{\pi}{x} \\ 0 \\ 0 \end{array}\right.$	$\left\lvert\, \begin{aligned} & 0 \\ & x \\ & 0 \\ & 0 \end{aligned}\right.$		$\underset{\sim}{\vec{y}}$								$\begin{aligned} & m \\ & x \\ & x \\ & 0 \\ & x \end{aligned}$		$\begin{aligned} & \infty \\ & \underset{\sim}{㐅} \\ & \underset{\sim}{\otimes} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & \underset{Z}{z} \\ & \underline{Z} \end{aligned}\right.$	爻	Σ	2	N
đ1วบว๊	$\left\lvert\, \begin{gathered} \mathrm{N} \\ \text { N } \end{gathered}\right.$	$\underset{\sim}{n}$	$\underset{N}{2}$	$1 \begin{gathered} \mathbf{8} \\ \\ \hline \end{gathered}$	don	$\begin{aligned} & 0 \\ & 0 \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}$				Bion				No	－	－	N	N	n	フ	\％	\bigcirc

https：／／etd．uwc．ac．za／

	$\begin{aligned} & \overline{\mathrm{O}} \\ & \text { E } \\ & \text { E } \\ & \text { U. } \\ & \text { U } \end{aligned}$		$\begin{aligned} & \text { च } \\ & \text { 合 } \end{aligned}$	$\begin{aligned} & \text { 己 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ® } \\ & \text { d } \end{aligned}$		$\begin{aligned} & \text { 会 } \end{aligned}$	$\begin{aligned} & \stackrel{⿺}{6} \\ & = \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 馬 } \\ & \text { 关 } \end{aligned}$	$\stackrel{\geqq}{D}$	$\begin{aligned} & \text { E0 } \\ & \text { E } \end{aligned}$	를	$\frac{\infty}{\Sigma}$		$\begin{aligned} & \text { ⿷匚⿳⿻コ一冖巳巳灬} \\ & \text { E } \\ & \text { E. } \end{aligned}$			$\frac{\text { E }}{\frac{0}{0}}$	$\begin{aligned} & \overline{\ddot{U}} \\ & \text { E} \\ & \text { E } \end{aligned}$	曾	$\begin{aligned} & \text { 를 } \\ & \text { 曹 } \end{aligned}$	霏
4821	NKX2－2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
4861	NPAS1	0	0	0	0	$0 \leq$	1	0^{9}	1	0	0	1	0	0	0	0	0	0	1	0	0	1
4901	NRL	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	0	0	1
5013	OTX1	0	0	0	0	00_{0}	$0=$	0	0	0	11	0	0	0	0	0	0	0	1	0	0	1
5076	PAX2	0	0	0	0	$0 \ldots$	$0 \leq$	0		$0=$	1	0	0	0	0	0	0	0	0	0	0	1
5077	PAX3	0	0	0	0	0 ［x	0^{-1}	1	0	ρ	0	0	1	0	0	0	0	0	1	0	0	1
5079	PAX5	0	0	0	0	02	\cdots	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1
5081	PAX7	0	0	0	0	0	0	0	0	9	1	0	0	0	0	0	0	0	0	0	0	0
5453	POU3F1	0	0	0	0	0	$0]$	0	1	0	0	0	0	0	0	0	0	0	1	0	0	1
5454	POU3F2	0	0	1	0	$0 \bigcirc$	Q	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
5455	POU3F3	0	0	0	0	$0>$	ω	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0
5462	POU5F1P1	0	0	0	0	$0 \square$	$0{ }^{2}$	0	0	9 C	0	0	0	0	0	0	0	0	0	0	0	1
5992	RFX4	0	0	0	0	0 －	σ	0^{+}	0		4	0	1	0	0	0	0	0	1	0	1	1
6474	SHOX2	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	
6493	SIM2	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1
6496	SIX3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
6664	SOX11	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1
6689	SPIB	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	1
6877	TAF5	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0	1	0	0	1
6899	TBX1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1
6913	TBX15	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	1
7023	TFAP4	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	1	0	1	1
7161	TP73	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	1	0	0	1

https：／／etd．uwc．ac．za／

$\begin{aligned} & \text { O} \\ & \text { O} \\ & \text { d } \\ & 0 \end{aligned}$	$\overline{0}$ E E W 0 0 0		$\begin{aligned} & \text { ت } \\ & \text { 弟 } \end{aligned}$	$\begin{aligned} & \text { च } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	B 暑 E 0 0 0	$\begin{aligned} & \tilde{\alpha} \\ & \frac{\alpha}{x} \end{aligned}$		突	$\stackrel{\text { U. }}{3}$	$\begin{aligned} & \text { 易 } \\ & \text { 易 } \end{aligned}$	를	$\frac{\mathrm{N}}{\mathrm{E}}$					$\frac{\tilde{E}}{\stackrel{E}{0}}$	$\begin{aligned} & \text { ㄹ } \\ & \text { E } \\ & \text { E } \end{aligned}$		$\begin{aligned} & \text { 른 } \\ & \text { 를 } \end{aligned}$	㐫
7291	TWIST1	0	0	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	1	0	0	1
7310	U2AF1L1	0	0	0	0	$0 \leq$	$0 \cdot$	9	0		0	0	1	0	0	0	0	0	1	0	0	1
7546	ZIC2	0	0	0	0	0	0	0	0	0 ＝	0	0	1	0	0	0	0	0	1	0	0	1
7621	ZNF70	0	0	0	0	0	E	0	0	0	9	0	，	0	0	0	0	0	0	0	0	0
7673	ZNF222	0	1	0	0	$0=$	13	1	1	b	0	0	0	0	0	0	0	0	0	0	0	1
7675	ZNF121	0	1	0	0	0	［	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0
7710	ZNF154	0	0	0	0	0	\cdots	，	0	0	0	1	0	0	0	0	0	0	1	0	0	1
7768	ZNF225	0	0	0	0	0	θ^{2}	0	1	0	1	1	0	0	0	0	0	0	1	0	0	1
8092	CART1	0	0	0	0	0	01	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
8193	DPF1	0	0	0	0	00	02	0	0	0	Q	0	0	0	0	0	0	0	0	0	0	1
8320	EOMES	0	0	0	0	$0>$	Q	0	0	0	1	1	1	0	0	0	0	0	1	0	0	1
8345	HIST1H2BH	0	0	0	0	0 －	0		0	1.	0	1	0	0	0	0	0	0	1	0	0	0
8820	HESX1	0	0	0	0	0×1	E	0^{1}	0		0	0	0	0	0	0	0	0	0	0	0	0
8970	HIST1H2BJ	0	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1
9970	NR1I3	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1
10215	OLIG2	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0
10655	DMRT2	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1
10794	ZNF272	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	0	0	1	0	1	0
11077	HSF2BP	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	1	0	0	1
11281	POU6F2	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	1	1
25806	VAX2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
26038	CHD5	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1
26108	PYGO1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1

https：／／etd．uwc．ac．za／

$\begin{aligned} & \text { 을 } \\ & \text { it } \end{aligned}$	$\bar{\circ}$ E 合 0 0 0		$\begin{aligned} & \text { : } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	8		$\begin{aligned} & 2 \\ & \frac{2}{x} \\ & \hline 10 \end{aligned}$		$\begin{aligned} & \text { 突 } \\ & \text { 豆 } \end{aligned}$	$\stackrel{\vdots}{\ddot{D}}$	$\begin{aligned} & \text { 最 } \\ & \text { 易 } \end{aligned}$	를	\sum_{Σ}^{2}					$\frac{\text { E }}{20}$	$\begin{aligned} & \text { U } \\ & \text { E } \\ & \text { EU } \end{aligned}$			㐫
26468	LHX6	0	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	1	0	0	1
27023	FOXB1	0	0	0	0	03	$\underline{\square}$	9	0	0	0	0	1	0	0	0	0	1	1	0	0	1
27164	SALL3	0	1	0	0	0	0	0	1	0 E	9	0	1	0	0	0	0	0	1	0	0	1
27288	HNRNPG－T	0	0	0	0	0	0	0	0	0	11	0	1	0	0	0	0	0	0	0	0	0
27439	CECR6	0	0	0	0	0	$0 \leq$	0	0	$1=$	0	0	1	0	0	0	0	0	1	0	0	1
30009	TBX21	0	0	0	0	0	0^{-1}	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0
30012	TLX3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
50805	IRX4	0	0	0	0	0	0^{2}	0	1	0	0	0	1	0	0	0	0	0	0	1	0	1
51022	GLRX2	0	0	0	0	0	01	0	1	0	0	0	1	0	0	0	0	0	1	0	0	1
51402	LW－1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
51450	PRRX2	0	0	0	1	$0>$	E	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
54626	HES2	0	0	0	0	0 －	5	0	0	$p=$	0	0	1	0	0	0	0	0	1	0	0	1
55552	HSZFP36	0	0	0	0	0×1	E	p^{\prime}	0	0	1	0	1	0	0	0	0	0	1	0	0	0
55659	ZNF416	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	1	1
56938	ARNTL2	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0	0	0	0	0	0	1
56978	PRDM8	0	1	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	1
57116	ZNF695	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
57332	CBX8	0	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0	0	1	0	0	1
57343	ZNF304	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
57801	HES4	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
58495	OVOL2	0	0	0	0	0	1	0	0	0	1	0	1	0	0	0	0	0	1	0	0	1
60529	ALX4	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	0	0	1	0	0	1
63978	PRDM14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1

https://etd.uwc.ac.za/

https：／／etd．uwc．ac．za／

$\begin{aligned} & \text { e } \\ & \text { U0 } \\ & \text { U } \end{aligned}$			$\begin{aligned} & \text { 릉 } \\ & \text { 苟 } \end{aligned}$		$\begin{aligned} & \text { ® } \\ & \hline \end{aligned}$		$\underset{y}{x}$			$\stackrel{2}{D}$	昆	咅	\sum_{i}^{N}							皆	$\begin{aligned} & \text { 흘 } \\ & \text { 号 } \end{aligned}$	㐫
161253	FLJ38964	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
162979	ZNF342	0	0	0	0	$0 \leq$	1	9	0	0	0	1	1	0	0	0	0	0	0	0	0	1
163059	ZNF433	0	0	0	0	$0=$	0	0	0	0 ＝	11	0	1	0	－	0	0	0	1	0	0	0
163071	ZNF114	0	0	0	0	0	$1=$	0	0		9	0	0	0	0	0	0	0	1	0	0	1
170302	ARX	0	0	1	0	$0 \rightarrow$	$0 \leq$	0	0	0	T	0		0	0	0	0	0	0	0	0	0
171392	ZNF675	0	0	0	0	$0 \times$	0^{2}	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1
221527	ZBTB12	0	0	0	0	$0 \sim$	00	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
245806	VGLL2	0	0	0	0	0	F	0	0		0	0	0	0	0	0	0	0	0	0	0	1
253738	EBF3	0	1	0	0	0	H	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1
283078	MKX	0	0	0	0	$0 \bigcirc$	K	0	0	1	1	0	1	0	0	0	0	0	0	0	0	1
285676	ZNF454	0	0	0	0	$0>$	b	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1
339416	ANKRD45	0	0	0	0	0 －	0	0	0	p	0	0	1	0	0	0	0	0	0	0	0	0
339488	TFAP2E	0	0	0	0	0 O2，	O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
341405	ANKRD33	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Appendix IX Genome-wide analysis of cancer/testis gene expression. Proc Natl Acad Sci USA.

Genome-wide analysis of cancer/testis gene expression

Oliver Hofmann a,b,1, Otavia L. Caballeroc, Brian J. Stevenson ${ }^{\text {de }}$, Yao-Tseng Chen ${ }^{\ddagger}$, Tzeela Cohenc, Ramon Chuac. Christopher A. Maher ${ }^{\text {b }}$, Sumir Panjib, Ulf Schaefer ${ }^{\text {b }}$, Adele Kruger ${ }^{\text {b }}$, Minna Lehvaslaiho ${ }^{\text {b }}$, Piero Carnincig.t, Yoshihide Hayashizakis,h, C. Victor Jongeneel ${ }^{d, 4}$, Andrew J. G. Simpsonc, Lloyd J. Old ${ }^{c, 1}$, and Winston Hide ${ }^{\text {,b }}$
adepartment of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, SPH2, 4th Floor, Boston, MA 02115 ; bSouth African National
Bioinformatics Institute University of the Western Cape, Private Bag X17, Bellvilie 7535 , South Africa; ©Ludwig Institute for Cancer Research, New Yo Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville 7535 , South Africa; 'Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 1/ A Ludwig Institute for Cancer Research, Lausanne Branch, 1015 Lausanne, Switzerland; "Swiss institute of Bioinformatics, 1015 Lausanne, Switzerland; 'Weill Medical College of Cornell University, 1300 York Avenue, New
York, NY $10024: 9$ Genome Exploration Research Group (Genome Network Project Core Group), RIKEN Genomic Sciences Center (GSO), RIKEN Yokohama nstitute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; and hGenome Science Laboratory, Discovery Research Institute, RIKEN Wako Institute, 2-1 Hirosawa, Wako, Saitama, 3510198, Japan
Contributed by Lloyd J. Old, October 28, 2008 (sent for review June 6, 2008)

Cancer/Testis (CT) genes, normally expressed in germ line cells but also activated in a wide range of cancer types, often encode antigens that are immunogenic in cancer patients, and present potential for use as biomarkers and targets for immunotherapy. Using multiple in silico gene expression analysis technołogies, including twice the number of expressed sequence tags used in previous studies, we have performed a comprehensive genomewide survey of expression for a set of 153 previously described CT genes in normal and cancer expression libraries. We find that although they are generally highly expressed in testis, these genes exhibit heterogeneous gene expression profiles, allowing their dassification into testis-restricted (39), testis/brain-restricted (14), and a testis-selective (85) group of genes that show additional expression in somatic tissues. The chromosomal distribution of these genes confirmed the previously observed dominance of X thromosome location, with CT-X genes being significantly mo testis-restricted than non-X CT. Applying this core classification in astis-restricted than non-X CT. Applying this core classification in clalnec,br). An analysis of the human X chromosome has also restricted or testis-selective using RT-PCR, with variod as testis- may be CTgenes (15). Given this increasing number of CT and restricted or testis-selective using हT-PCR, with variable expression. CT-like genes, theit comprehensive classification based on extion provides an objective ranking for potential CT genes, which is biological role and regulation of expression.
useful in guiding further identification and characterization of In an aftempt to resolve this and to identify new CT antigens, these potentially important diagnostic and therapeutic targets. we have taken an in silico approach to produce a comprehensive
gene index ; prediction
(16) together with the depth and resolution provided by masancer/Testis (C/T) genes are a heterogencous group that are sirely parallel signature sequencing (MPSS) expression libraries - normally expressed predominanty in germ cells and in (1). cap-analys.0i Gene Expression (CAGE) libraries (18), trophoblasts, and yet are aberrantly activated in up to 40% of and a survey using sentiquantitative reverse-transcription PCR various types of cancer types (1). A subset of the CT genes has (RT-PCR) on a panel of 22 normal tissues. As a result, we have
been shown to encode antigens that are iminunogenidand elicit created a cpherept classification of CT genes, and new CT genes
 humoral and cellular immune responses in-cancer patients (2). 1.) have beenlidentified cusing
Because of their restricted expression profile in normal tissues and confirmation criteria. Because oftheir restricted and because the testis is an immunoprivileged site, the CF cancer vaccines, as revealed by early-phase clinical trials (3-10). Biologically, the CT genes provide a model to better understand complex gene regulation and aberrant gene activation during cancer.
Any gene that exhibits an mRNA expression profile restricted o the testis and neoplastic cells can be termed a CT gene. Existing definitions of CT genes vary in the literature, from genes expressed exclusively in adult testis germ cells and malig. nant tumors $(1,11)$ to dominant testicular expression (12), possible additional presence in placenta and ovary and epige netic regulation (13) or memberstip of a gene family and ocalization on the X chromosome (14) Reflecting this lack of ocalicen CT candidates have appeared in the literature, with available
suggested that as many as 10% of the genes on this chromosome
expression profile information frequently limited to the original defining articles. In some cases, e.g., ACRBP, the original CT-restricted expression in normal tissues could not be confirmed by subsequent experiments (1). Partialily due to this lack of a clear and broadly applicable definition, or "type specimen," for a CT gene, it has become increasingly challenging to identify the CT genes that are most suitable for cancer vaccine development. Moreover, this incoherent classification increases the risk of pursuing unsuitable clinical targets. However, with more expression data becoming available, CT gene transcripts of genes originally thought to have the CT expression profile are being detected in additional tissues (1), resulting in the more stringent "testis-restricted" description being altered to one of "testispreference." Based on a compilation from the published literature, the CT database now lists >130 RefSeq nucleotide dentifiers as CT genes that belong to 83 gene families (www, uggested that as many as 10% of the genes on this chromosome In an aftempt to resolve this and to identify new CT antigens, wrey of CT gene expression proffiles by combining expression formation from an existing corpus of $>8,000 \mathrm{cDNA}$ libraries

ReJults and piscussion-
CT classification. CT genes were classified into 3 groups, testisrestricted, testis/brain-restricted and testis-selective, based on

Author contributions: O.H., O.LC.C. C.A.M., U.S., A.K., A.J.S., L.O., and W.H. designed U.S. M.L. A.K., P.C., Y.H., and CV. contributed new reagent/analytic tool; O. H., O.L.C., and B.IS. anayyzed data; and O.H. wrote the paper.
The authors declore no conflikt of interest.
Freely available oniine trought the PNAS open access option.
'To whom correspondence may be addressed. E-mail: ohofmomehsph.haryard.edu or toldelict.org.
This article contans supporting information ontine at prids org iulicontent full

- 2008 by The National Academy of Sciences of the USA
 the support for the expression of a CT genes in a given anatomical site (blue for low combined expression evidence ≥ 1, red for strong support from at least 3 sources (for the normal tissue panel) with a total score ≥ 3) or 2 sources (the cancer panel lacking RT-PCR data), respectively. The most abundant expression (red) is seen in testis for most genes, oarticularly in the non-X CT group. Expreassion values were normalizedioh a per-gene basis relative to the combined normal testisplacenta expression confidence (lower) or the source of the highest ieancer expressionconfidence (Upple). The 3 CT annotation groups itestis-restricted, testisbrain-restricted and testis-selective) are highlighted. See ()dtaset 53 for the full list of CT classifications.

WESTERN CAPE

their expression profiles obtained from a manually curated corpus of CDNA, MPSS, CAGE expression libraries and RTcorpus of cDNA, MPSS, CAGE expression libraries and RT-
PCR (see Datase1 SI for MPSS and CAGE library annotation and http://evocontology.org for the cDNA annotation). By merging expression information using different technology platforms, we were able to leverage their individual strengths - the breadth of tissue coverage associated with the CDNA/EST expression libraries, the high sensitivity of CAGE/MPSS and the ability to
custom-tailor PCR primers. Of 153 genes, 39 with transcripts present only in adult testis and no other normal adult tissue except for placenta were classified as testis-restricted; 14 CT genes with additional expression in other adult immuno restricted sites (all regions of the brain) were classified as testis/brain-restricted, and 85 genes, designated as testisselective, were ranked by the ratio of testis/placenta expression relative to other expression in normal adult tissues (see Fig. 1 for

Fig. 2. RT-PCR analysis of selected CT genes in the testis-restricted category (MAGEA1, GAGE, SSX2, NY-ESO-1, MAGEC1, and SPAN)O. Expression profile are shown for a range of 22 normal tissues (Left) and 31 cancer cell lines (Right).
the expression array, Fig. 2 for the PCR panel of selected testis-restricted CT genes, and 1 ig. $S I$ and Databel S ? for arrays from individual expression sources).

An uneven chromosomal distribution of the CT genes was observed, with 83 of 153 genes (54%) being on the X chromosome and 70 on non-X chromosomes (1"iz. S.). Furthermore, $35 \mathrm{CT}-\mathrm{X}$ genes were classified as testis-restricted, whereas only 4 non-X CT genes belong to this group. An additional 12 CT-X genes were found to be testis/brain-restricted, compared with 2 non-X testis/ brain-restricted CT genes. CT-X gene family members thus appear to be under more stringent transcriptional restriction in somatic tissues, whereas non-X CT genes are more broadly expressed. This validates the CT gene classification into CT-X and CT non-X groups, with the CT-X group being of particular interest for therapeutic approaches.

Twenty-six CT-X and 59 non-X CT genes belong-to-the testis-selective category, and 36 of these genes (5 CT-X and 31 - in the present study, we have ranked the testis-seleetive gene non-X CT) had $>50 \%$ of the uped the ratios of their expression evidence in testis and non-testis or placental libraries, indicating that these might mot placenta relative to other somatic tissues, rather than using fixed non-testis or placental libraries, indicating that these might mot thresholds and the pumber of somatic tissues in which a CT
qualify as CT genes.

Seven CT genes were not identified in any library at all (2 Cr-X and 5 non-X CT). An additional 8 CT-X genes (SPANX -1 1, PAGE1, CSAG1, SSX5/67/9, and CT45-2 were not present in any testis-annotated library. Of these, SSXS and SSX7 have been shown
to be expressed in testis by RT-PCR (19), suggesting a likely to be expressed in testis by RT-PCR, (19), suggesting a likely counterparts, an expected phenomenon for large and highly homologous gene families like SSX. In contrast, the absence of testicular expression of SSX6 and SSX9 was confirmed ift that study, indicating that some of the currently recognized CI genes coun either be silent or expressed at extem list with classification and raw expression stores across the merged
expression array can be found in I atr gene properties and their
Associations between different CT gene properties and their assigned classification were analyzed using the APRIORI algo rithm. Besides being more likely testis-restricted, CT-X genes were found to be more often members of multigene families than non-X CTs. In addition, Gene Ontology terms showed CT-X genes to be more often in the "molecular function unknown" and "biological process unknown" categories, whereas the non-X CTs are associated with known functions such as meiosis, sexual
reproduction, and gametogenesis (see l)atasel \$4 for all at tributes and annotations)

While the description of CT-X genes such as NY-ESO-1 (20), SSX2 (21), and MAGE-A1 (22) match our classification-all are in the testis-restricted category--not all CT genes were found to be as testis-restricted as described in the literature. BAGE SPO11 LIPI, LDHC, and BRDT, considered to be testis restricted based on a tissue panel of 13 non-gametogenic normal tissues (1), fall into the testis-selective category in our screen, most likely due to a larger amount of expression source sampled. Despite the broader coverage we could not confirm an expression of MAGE-A1, MAGE-C1, and NY-ESO-1 at low levels in the pancreas reported in the same study. In agreement with the study in ref. 1, we found IL13RA1, ACRBP, and SPA17 to be expressed in a wide variety of tissues, falling into the lower end of the restis-selective category. candidate is allowed as the distinguishing criteria for CT versus non-CT geres (2). Genes without any somatic expression have inique potential for cancer vaccines and other therapeutic approaches to cancer. From past work involving screening of larger sets of genes (23), a cutoff was introduced that defined CT candidate genes as genes with 2 -fold higher expression evidence intestis and placentarelative to all other somatic normal tissues. This approach was complementary to our current one and will not-require updated thresholds as the number of sampled tissue sotrequre updated fresiolds as the number of sampled tissue
Intriguingly, a number of C T genes were found to be expressed in no somatic tissues except for brain, suggesting the presence of a distinctive/transetiptional control mechanism that functions with tisstre specificity in berm cells and in brain. There have been relatively few studies of CT gene expression in different anatomical regions of normal brain and similarly not many in brain tumors (24,25), except for NXF2, which was shown to be expressed in normal brain (26). Our in silico study has discovered a broader subset of CT genes with brain expression, among them members of the otherwise fully testis-restricted GAGE and MAGE families, found to be expressed in the hippocampus and cerebral cortex. A previous study has similarly identified a group
of cancer/testis/brain (CTB) antigens (27). However, despite the bioinformatic evidence, we have not been able to confirm the expression of selected CT genes (MAGEA9, MAGEC2, PASD1, and GAGE) in tissue samples from total brain, cerebellum, caudate nucleus, thalamus, frontal cortex, occipital cortex, pons, or amygdala by RT-PCR (data not shown), and whether these genes are expressed in brain remains to be proven.

Distriluution of CT Genes in Cancer Tissues. Our ranking by the number of different cancer types and anatomical sites of CT genes expressed in cancer-annotated libraries distinguishes CT"rich" and CT-"poor" tumors based on the in silico analysis obtained from cDNA, CAGE, and MPSS libraries (Fig. 1 and 1) itasel Si). The broadest distribution of CT genes was found in germ cell tumors, melanomas and lung carcinomas, adenocar cinomas and chondrosarcomas. Breadth of cancer expression was uncorrelated with tisue restriction in normal tissues (r was uncor 18 ($=$ 0.18 for CT-X genes, $r=0.02$ for non-X CT genes using Spearman rank correlation); for instance, the fully testisrestricted CT genes, such as MAGEA2/A2B and CTAG2, were found to be present in a variety of different tumor tissues.
Melanoma, non-small-cell lung cancer, hepatocelluar carcinoma and bladder cancer have been identified as high CT gene expressors, with breast and prostate cancer being moderate and eukemialymphoma, renal and colon cancer low expressors (1). Our in silico analysis confirms this distinction, in particular for umor tissues well represented by the available libraries, showing a broad distribution of CT genes expressed in cancers of skin including melanoma (43% of CT genes with cancer expression were found in at least one melanoma library), lung (37\%), and liver (34%). Strong presence of CT expression found in the present study but not by previous RT-PCR studies includes tumors from germ cells (39%), stomach (28%), and cartilage chondrosarcomas, 26%. One reason for this discrepancy could be the lack of RT-PCR data for certain tumors, e.g gastric cancer is much rarer than other carcinomas in the Western world and mesenchymal tumors are also not well represented in many of the RT PCR studies to date Our in silico information many of the RT-PCR studies to date. Our in silico information especially useful for recently described CT genes notyet anatyzed especially useful for recently described CT genes notyet analyzed in great detail. Discrepancies are also likely to oecur due to the unlike normal tissue samples explicitly labeled as normal, ate often not diistinguished from primary tumor samples. A third reason for this observed discrepancy could be the bias that resulted from differences in library num tumor type: for instance, ovarian cancer but not evident from our in silico study, number of available ovarian cDNA libr cancer, a CT-poor tumor, was correctil requency of CT genes despite the ence in library numbers may not have been a significant factor Last, the in silico tinding of high CT expression in germ cell tumor represents a special situation that can be explainfed by two reasons. One is that a subset of CT genes, particurary the no-ג
 served expression of lineage-specific markers-rather than-aberrant gene activation, conceptually similar to the expression of hyroglobulin by thyroid cancer or prostate specific antigen by prostate cancer. The other reason would be that the germ cell tumors from which the mRNA expression profiles were derived could have been contaminated by the adjacent or entrapped esticular tissue, which provides the source for CT gene trancripts when the germ cell tumor was actually negative for the CT gene in question.

CT Candidate Prediction. Prediction of CT candidates based on their expression profiles in cDNA, MPSS, and CAGE libraries resulted in 28 genes supported by 2 expression platforms in the testis- or testis/brain-restricted category, including 10 known CT genes and 18 novel CT candidates (1 g .5 , and 1) antwo 5(1). An additional, less stringent screen for CT-X genes identified 47 genes in the same categories, including 34 known CT genes and 13 novel candidates. After manual curation, the list of novel candidates was extended to include the highest scoring testisselective CT-X candidates, TKIL1 and NXF3, the latter being a known CT gene, a member of the NXF2 CT family (28)

Of 33 novel CT candidate genes, 12 most promising genes were manually selected for experimental validation by RT-PCR based on an evaluation of available gene expression data in human cancer. Of the 5 X - and 7 non-X-chromosomal candidates, 11 transcripts could be amplified, whereas transcripts from VCX2 were not detected in any of the 23 normal tissue RNA samples. Three of the amplified gene transcripts exhibited testis-restricted (AKAP4) or testis-selective (PEPP-2, OTOA) expression (data not shown). RT-PCR products of these genes were also detected in samples from a panel of 30 cancer cell lines.
PEPP-2, an X-linked human homeobox gene, encodes a transcriptional factor with similar cancer/testis restricted expression patterns in both human and mouse (29); it is also a member of a top 50 list of genes under strong positive selection between human and chimpanzee (30). Otoancorin (OTOA) was reported to be specific to sensory epithelia of the inner ear (31), but has also been associated with ovarian and pancreatic cancer due to its homology with mesothelin, a cancer immunotherapy target (32). AKAP4 (CI-X), identified in the 2 -platform screen, exhibits weak expression in different cancer cell lines and encodes a kinase anchor protein (33) involved in the cAMP-regulation of motility (34) and was recently suggested as a CT gene in an independent study (35)
All 3 confirmed genes are candidates for immunotherapy based on their restricted expression, and further investigation of their mRNA and protein expression in various tumors is warranted and ongoing. Given the comprehensive nature of our study and the limited number of confirmed novel CT candidates, itseems that the number of true CT genes matching the criterion of stringent testis-restricted expression profile has reached a Although it is clear that the CT designation has been inappropriately given to a large number of genes with wide normal tissue expression, it is less evident how precisely the term CT should be applied. There is no difficulty with CT genes whose expression Profile have a classic CT pattern; we estimate ≈ 39 enes presently in this category and $\approx 90 \%$ of them reside on the chromosome. The challenge for the remaining CT genes, most which are non-x coded, is that they are expressed in testis and issues. Shoudd these be designated CT? Perhaps the best soluCT ners, eve and their products, including function, binding partidentification of expressing normal somatic cells, aberrant nonineage expression in cancer, and immunogenicity, before estabtishing a uniform classification of CT genes.

ishing a cuniform classifica

Methods
selection of CT Gemes. A total of 153 CT genes (200 unique RefSeq transcript identifiers) were selected from the CT Antigen DB (http:/www.cta.Incc.br) and by manual curation of the literature. Genes were annotated with their most current gene identifiers and merged based on shared National Center for iotechnology information Refseq nucleotide identifiers (1) ataset 5). Addiional gene identifiers were obtained from RefSeq release 11 (37). IPI version 3.29 (38); genomic coordinates were taken from the University of California, Santa Cruz Genome Browser hg18 human genome build (39). Of these 153
genes, 83 that encode 107 RefSeq transcripts were mapped to the X chromo some (CT-X genes) whereas 70 genes were on autosomes (non -XCT genes) Subceliular localization was based on predictions in the human version of the LOCATE system (40). SEREX information was obtained from the Cancer Im nomeDB). Ambiguities were resolved by manual curation.
somere of Exprucilon Informatioa. Gene exprestion profiles were determined based on 4 different sources: 99 CAGE libraries from the RIKEN FANTOM3 projec (18), 47 MPSS libraries ($17,23,41$), a collection of 8401 ©DNA expression libraries from the eVOC system (16), and semiquantitative RT. PCR across 22 normal tisue samples Sounce materiads were annotated with regards to the anatomical site and patholo tol fiable, cem ype intormation was used. Bone marrow/blood itbranies were designated bone marrow, and all combinations with muxosa (colon, stomach) were merged int "mucosa." Libraries not explicitly annotated as "normal" were considered as uncla sified. Libramies from pooled tissue sources were ignored, and pooled samples wer kept as long as the pathological and anatomical status was identical for all donon (see Oatdset 51 for annotated libraries).

Psendoamrays. Expression information was organized into "pseudoarrays based on expression information obtained from CAGE-, MPSS-, and CDNA case of normal tisue appresio. Colows CT transcript was identified and rows represent individual Refseq transcripts. Annotation was based on the general library class description (normal, cancer or unclassified) combined with pathological state and anatomical site. To evaluate the relative levels of CT expression we converted expression signals from the 4 sources into "expression evidence": For CAGE- and MPSS based expression data, expression evidence was based on detected tags per million (IPM), with matches <3 TPM (F81 transcript per celi) filtered ou Normalized and subtracted EST Iibraries prevent quantitaton of expression strength based on EST counts, therefore expression evidence is represented by the number of cDNA libraries in which a given transcript was identified RT-PCR results were manually binned into 5 groups of expression, ranging
from 0 (not expressed) to 4 (strongly expressed). For each expression source, evidence values were normalized on a per-transcript basis by setting the highest expression evidence in normal tissues to a value of 1 , reflecting relative changes in expression levels across tissues and pathological states. Pseudoarrays from the 4 expression sources were merged by summing the individual expression evidence scores for a given transcript from each platform. Expres sion profiles for multiple transcripts associated with the same gene were merged into a single representation, keeping the highest expression score f columns based on their dass (e.g., alt cancer expression information), the highes expression score across all annotated libraries wass kepefor eachgene.
in placenta, brain, testis, and developing ovary, their testis/placenta tissue specificity; their X v. non- X chromosomal status; membership in a gen family; subcellular localization; and evolutionary status (36) followed by a analysis with the APRIORI aigorithm (42), which identifies association rule matching a predefined threshold of support (30%) and confidence $(\geq 0.8$)

Search Criterla for CT Candidetes. CT candidates were identified using the same in silico expression sources, but with no filters for minimum TPM value and satisfying the following criteria: (0) exhibit expression in testis and at least on otation fin not be present above those levels in with testis and capt for placenta, ovary, and brain and (fiti) be supported independently by 2 platforms, Identified candidates were ranked using the same approach used to classify known CT genes. To increase coverage of CT-X genes, a second genome-wide search was conducted requiring suppor from only a single platform. Candidates were selected for RT-PC.R validation by manual curation, removing hypothetical proteins, predicted genes and cand dates with multiple publications indicating expression in somatic tissues.

RT-PCR. RNA preparations were purchased from the normal tissue panels of Clontech and Ambion or prepared from cancer cell lines using the RNAeasy kit (Qiagen) and were used to prepare CDNA for RT-PCR. A total of $1.0 \mu \mathrm{~g}$ of RNA wa reverse transcribed into CDNA in a total volume of 20μ. using the Omniscript R kit (Qiagen) according to the manulacturer's protcol using oligo(d)hs prime (Invitrogen). The cDNA was diluted 5 times and 3μ - was used in the PCR wit primers specific to each analyzed gene in a final volume of 25μ L. Primers used for $P C R$ amplification were designed to have an annealing temperature $\approx 60^{\circ} \mathrm{C}$ using Primer3 software (www-genome.wi.mitedu/cgi-binfprimer/primer 3 www.cgi) and were chosen to encompass introns between exon sequences to avid ampli fication of genomic DNA. DNase rreatment was underaken berore 11 A Urists of a the Notional Center for Biotectnology information sequence databser using BLAST (sizes are provided in [2ates. 4 JumpStart REDTaq ReadyM
cording to the manufacturer's instrua Aldrich) was used for amplification precyding hold at $95^{\circ} \mathrm{C}$ for 3 min , followed by 35 specific cycles of denatur ation at $95^{\circ} \mathrm{C}$ for 15 seconds, annealing for 30 seconds (10 cycles at $60^{\circ} \mathrm{C}$, 10 cyeles at $58^{\circ} \mathrm{C}$ and 15 cycles at $56^{\circ} \mathrm{C}$) and extension at $72^{\circ} \mathrm{C}$ for 30 second followed by a final extension step at $72^{\circ} \mathrm{C}$ for 7 min . β-actin was amplified a control. PCR products were separated on 1.5% agarose gels stained wit ethidium bromide. For semiquanutative PCR analysis, RT-PCR products we classified into 0 (negative) to 4 (strongest signal) based on the intensity of the product on ethidlum bromide-stained gels.

Visualication amd Ramking, Genes were divided into CT-X and non-XCT panels, ACKNOWLEDGMENTS. We thank Dmitry Kuznetow for providing access to the then individually ranked by their expression properties in normal tissues and SEREX information on CI genes and Erika fitter (Ludwig institute for Cancer classified into the following 3 categories: (1) expression in testis and placenta Pesearch, New York Branch at Memorial Sloan-Kettering Cancer Center. New only (testis-restricted); (i) expression in testis, plat lenta and braip-regions only York) for providing cell ines. This project was supported by the South Africa
(testis/brain-restricted), and (iin) all other genes (testis-selective), Final ranking National Bioinformatics Network; National lnstitutes of Health Stanford-South (testishbrain-restricted), and (iin) all other genes (testis-selective). Final ranking Aational Iffinformatis yetwork, National haith Grant TW-03-008; Atlantic Philan normal tissue specificity as measured by the combined testis and plocenta Gropies; The Oppenheimer Memorial Trust; a Research Grant for the RIKEN
 Clustering Methods. Associations between CF annotation and theirclassifiea- Sporks, Scrence and Tecthnotogy, lapan. This work was conducted as part of th tion were investigated by recording their assigned class; presence or absence Foundation and the Ludvig linstitute for Cancer Research.
 tion, and commentary. Concer immer 4:t
Simpson AIG, Caballerc OL, Jungbleth A, Chen VT, OHUU (2005) Concartiestix antigens
 melanoma Urosted winh an antigenik
 broad integratad antibody and CDet
5. Itager E, et al (2006) Recombinant vacciniafiowipox NY-ESO. 7 vaccines inchice both
mural and cellular NY-ESO-1-specific immune responsees incancer patients. Proc Nat
Acad Sci USA 103:14453-14458.
indikes integrated antibody'th! responses and $\mathrm{CD8} \mathrm{t}$ celis through cross- priming. Proc Nat Acad Sci USA 104:8947-8952.

NY EsO Odungition y. (2Oa $)$ Yaccination with an NY-ESO-1 peptide of HLA class ilii specific Sci USA 104.128387-12842 9. Atanackovic D, et al. (2006) Expression of cancer-testis antigerss as possible targets for antigen-specitic immunotherapy in head and nedk squamous cell carcinoma. Cancer Biol Ther 5:1218-1225.
10. Gniatic S, et at. (2006) NY-EsO-1: Review of an inmmogenic tumor antigen. Ad Cancer Res 95:1-30.
11. Scanlan MU, et al. (2002) Identrifikation of cancernestis genes by darabase mining and mRNA expression analysis. flt J Cancer $98: 485-492$.
Zendman AJW. Ruiter DJ, Muijen GNPV genes: Identification, expression profile, and purtative function. I Cell Physio 194:272-288.

```
13. Costa FF, Blanc KL, Brodin 8(200) Concise review: Cancertestis amigens, stem cefls,
14.14d cancer. Stem Cef/s 25:707-711
14. Kateis M Eranoreisal (2005) Cancer/mestis antigema and gametogenesi: A review and
15. Brosm-stomming" session. Concer Cell int 5:4
    Ross M2, et
F. Ketwo S, et %./(2003) eVOC.A
    Genome Res 13:1222-1230
```



```
8. Camature: Sequencing (MPSS). Gemorne Res 15:1007-1014.
    Science 309:1559-1563
,Gimce 309:1559-1563.
```



```
complete genos. Int J Cancer 101:448-453
O.
Sotected by acrotogous milbody s(esning. Prox Nott ACsd Sci USA 94:19:4-1918.
    yynovial sarcommas, codos for the human tumor antigen HOM-MEL-40. Cancer Re
    56:4766-4772.
22. van der Bruggen P, er al. (1991) A gene encoding an amtigen recognized by cytolytict
hymphogtes on a hummen melanoma. Science 254:1643-1647.
Wmphocytes on a humum melanoma. Science 254:1643-1647.
#, (a)
```



```
Cancer Res 6:3916-3922
55 5acella DL e el (1999) Exprovir)
Scarcella DL, ef al, (1999) Exprossion of MAGE and GAGE in high-grode brain turnow
5:335-341.
26. Zhang M, Wang Q, Husng Y (2007) Fragile x mental retardation protein FMRP and the
    RNA export factor NXF2 associsto with and destabilize NXF1 mRNA in neuronal cell.
    Proc Nat/ Acad Sci USA 104:10057-10062
27. Scanlon ML, Gure AO, Jungbluth AA, OWdU, Chen YT (2002) Cancerthestis amtigens: An
exponding family of torgets for cancer immunotherapy. immunol Rev 188:22-32
*xpsodimg famaly of targets for cancer immunotherapy. Immunol Rev 188:22-32,
    among 12 geres exprossed in spormatogonia. fit & Cancer 105:371-376.
```

13. Costa FF, Blanc KL, Brodin 8 (200) Conkise review: Cancertrestis antigens, stem celle,

"bram-storming" session. Concer Cell int 5.4
434:325-337.
Genome Res $13: 1222-1230$.

Science 309:1559-1563
Güre $A O$, Weil U, O Od U, Chen YT (2002) The SSX gene family: Characterization of 9
Then $Y T$ et ef (1997) A testiculer antigen
Tareci O, et al. (1996) The SSX.
yynovial sarcormas, codes for the hemman tumor antigen HOM-MEL-40. Cancer Res 6,4766-4772.
ymphocytes on a hurven melanerna. Science 254:1643-1647.
Chen IT, et al (2005) Identificiction of carcert/estis-antigen gen
Cancer Res $6: 3916-3922$
Scarcenlla DL, et al. (1999) Exprossion of MAGE and GAGE in high-grade brain turroors
Thang M, Wang Q. Huang $Y(2007$ Fragile \times mental retardation protein $F M R P$ and the Proc Net/ Acad Sci USA 104:10057-10062. expmonding fanily of targetst for cancer inmunnotherapy. Immuno/ Rev 188:22-32. among 12 geress exprossed in spormatogonia. int J Carceer 105:371-376.
14. Wayne CM, Madean JA, Cornwall G, Wilkinson MF (2002) Two novel thuman x-tinked Whmeobox genes, hPEPP 1 and hPEPPP , selectively expressed in the testis. Gene 301:1 11.
 and chimpenzees. PLoS Biol $3:=170$
15. Zwaenepoet1, et al. (2002) Otoancorn, an inmer ear prote in restricted to the interface between the apical wurficce of sensory epithatia and their overiying xcelmiar geatsis defective in autosomak recessive deafness OFNB22. Proc Nat Acad Sci USA 99:6240 6245.
16. Muminova ZE, strong TV, Show DR (2004) Chwracterization of thuman mesothetion uranscripts in ovarian and pancceatik cancer. BMC Cancer 4:19.
17. Turree RM, Johnson CR , Haig-Ladewig L Gerton $G L$, Mow $S 8$ (1998) An X-linked gene tion, protein kinase arti binding, and distriturtion of the precursor in the sperm tail. IAich Chem 273:32335-32141.
18. Michel IIC, Scott ID (2002) AKAP mediated signal transduction. Annu Rev Pharmace Toxicol 42:235-257.
19. Chiriva-Interrati M, et of. (2008) AKAp A: A myeloma. Br / Haematol 140:465-468
20. Stevenson 8J, et al. (2007) Rapid evokrtion of carcernestis genes on the X Ctwomosome. BMC Genomics 8:129.
Whesler DL, et at (200 3 Dateonse recoucces of the National Center for Biotechnotoo Nujeicic Acids Res 31:28-33.
21. Kersey PJ, et al. (2004) The intemational Protein madex: An integrated database for proteomic experiments. Proteomics 4:1985-1989.
22. Kent WJ, et al. (2002) The tuman genome browser at UCSC. Genorme Res 12.996 -1005

40 . Fink sl, et at. (2006) LOCATE: A mouse protein subceltular localization databse Nucleic Acios Res 34:D213-7
41. Grigoriadis A, et as. (2006) Establisthment of the epithelia1-specific tramsaiptome of cormal and maligrant thuman breatt colls based on MPSS and array expression data.
42. Agrawal R, mieliniskiT, Swarm A (1993) Mining association rules botween sets of item in large dalabases. Proc ACM-SGGMOD Management Data 22:207-216.

UNIVERSITY of the
WESTERN CAPE

Appendix X: Manual curation steps applied in filtering the expression array generated for the investigation of 63 potential mouse cancer/testis genes

Remove column if annotation is:

- Unclassifiable pathology
- Pooled from different tissues
- Non-cancer pathology
- Whole body, head, neck, trunk, anatomical site, maxillary process, anterior limb or diaphragm

Remove developmental stage information from annotation

Remove cell type information from annotation unless there is no anatomical system information

- Carcinoma $=$ adenocarcinoma, teratocarcinoma
- Bone = bone marrow
- Brain $=$ cerebellum, cerebral cortex, corpus striatum, diencephalon, hippocampus, hypothalamus, lateral ventricle, medulla oblongata, midbrain, olfactory lobe
- Intestine = cecum, colon, small intestine
- Visual apparatus = choroid, retina
- Auditory apparatus = internal ear, spiral organ of Corti
- Blood = B-lymphocyte, erythroblast
- Lymphoreticular system = lymph node

For all annotations that are identical, merge them into one column and sum the values in each column for every gene.

UNIVERSITY of the WESTERN CAPE

Appendix XI Expression profile of mouse orthologs of human cancer/testis genes

The gene expression profile of 63 mouse orthologs for which expression evidence is available. The red squares within the array indicate a gene is expressed in a particular tissue, whereas black squares indicate there is no evidence of expression in that tissue.

[^0]: Do1 :0.1371/fournal.pgen. 0020054,100

[^1]: Theiler Stage 07 \{TS 07; TS07\}
 Theiler Stage 08 \{TS 08; TS08\}
 Theiler Stage 09 \{TS 09; TS09\}
 Theiler Stage 10 \{TS 10; TS10\}
 Theiler Stage 11 \{TS 11; TS11\}
 Theiler Stage 12 \{TS 12; TS12\}
 Theiler Stage 13 \{TS 13; TS13\}
 Theiler Stage 14 \{TS 14; TS 14\}
 Theiler Stage 15 \{TS 15; TS15\}
 Theiler Stage 16 \{TS 16; TS16\}
 Theiler Stage 17 \{TS 17; TS17\}
 Theiler Stage 18 \{TS 18; TS18\}
 Theiler Stage 19 \{TS 19; TS19\}
 Theiler Stage 20 \{TS 20; TS20\}
 Theiler Stage 21 \{TS 21; TS21\}
 Theiler Stage 22 \{TS 22; TS22\}
 fetus
 Theiler Stage 23 \{TS 23; TS23\}
 Theiler Stage 24 \{TS 24; TS24\}
 Theiler Stage 25 \{TS 25; TS25\}
 Theiler Stage 26 \{TS 26; TS26\}
 Theiler Stage Unclassifiable \{TS UN; TSUN\}

