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Abstract

The genomes of various organisms have been sequenced and their

transcriptome elucidated. With the information about genes and gene products

readily available it has become of the utmost importance to decipher the

underlying biological mechanisms that are involved in the transcriptional

control of these genes. Transcription initiation is a fundamental process in

living cells. It involves the interaction of transcription factors with DNA to

regulate the transcription of a gene. Despite significant research during the last

few decades into transcription factors and their role in gene regulation we are

still far from understanding the complete transcriptional machinery that acts

within biological systems.

In this dissertation two computational approaches are presented to contribute to

a better understanding of the transcriptional control of genes in mammals. The

first addresses the transcriptional regulation of microRNA genes and its

influence on the microRNA gene expression during monocytic differentiation.

This is the first large-scale approach to decipher how microRNA genes are

regulated by transcription factors during monocytic differentiation. The second

approach relates to combinatorial gene regulation and the physical interaction

of transcription factors. Here, a computational approach is used together with a

novel form of numerical representation of transcription factors to predict their

interactions. In this setup, the information necessary to predict the transcription
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factor interactions is kept at the lowest level to minimise the data acquisition

overhead that often occurs in computational prediction tasks. Both approaches

enhance our insights into transcriptional control and have an impact on the

firther study of gene regulation.
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Ghapter I

lntroduction

Numerous genomes from a variety of species have been sequenced in the last

decade []. The sheer volume of data produced is overwhelming making

computational tools essential for processing and analysis of the information.

Sequencing of complete genomes is mainly driven by the need to find and

characterise the complete gene set available within an organism l2).

Elucidation of the transcriptome, the part of the genome that is transcribed into

mRNA or other functional RNA, has opened avenues of research into

transcriptional gene regulation. Even though the genes of an entire genome are

known, it is of great interest to establish the underlying mechanisms that

conhol the transcription of these genes.

Based on the central dogma of molecular biology, sequence information flows

from DNA to proteins via RNA [3].The process of transcription is the synthesis

of RNA from DNA [4]. Prior to the actual transcription step of a gene,

transcription factors (TFs) bind to DNA in regulatory regions of a gene. Such

regions, proximal to transcription start sites (TSSs), are known as promoters,

while the control regions remote from the TSS are known as enhancers or

silencers. The TFs bound to DNA mediate the binding of RNA polymerase II

to the DNA. Promoter regions are essential for initiating a gene's transcription

[5]. The definition and characterisation of the promoter regions is difficult,
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experimentally as well as computationally, e.g. in eukaryotes mediators of

transcription bind not only the immediate surroundings of the TSS but have

also been found to bind several thousands of nucleotides away from the TSS

[a]. The complex interplay among TFs and TFs with the promoter regions of

genes with the aim to enhance or repress their transcription is generally

denoted as transcriptional regulation. Interaction of TFs results in specific

transcriptional responses. The combinatorial interplay of TFs is referred to as

combinatorial or cooperative gene regulation and enables complex regulatory

mechanisms within organisms [6,7]. TFs bind DNA via specific transcription

factor binding sites (TFBSs), short DNA motifs recognised by the TFs [8]. TFs

possess specific protein domains, DNA binding domains, with which they

recognise specific TFBSs on the DNA. Examples of DNA binding domains are

helix-turn-helix (HTH) domain, zinc finger domain, and basic leucine zipper

(bZlP) domain. A primary step towards the elucidation of transcriptional gene

regulation is the discovery of the specific TFBSs that TFs can bind.

Numerous high-throughput methods to experimentally determine TFBSs exist,

such as Systemic Evolution of Ligands by EXponential enrichment (SELEX,

[9,10]), Phage Display (PD, [ 1]) or Chromatin ImmunoPrecipitation (ChIP,

ll2,l3)), as reviewed recently [4]. Whilst experimental methods to decipher

TFBSs are essential, common to all methods are artefacts that come with

experimental technologies that impact the accuracy of TFBS determination. In

general, experimental methods are time consuming, elaborate to conduct, and

2
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expensive. Currently, it is not feasible to determine experimentally on a global-

scale all TFBSs for all known TFs.

Constraints of experimental methods emphasise the importance of

complementary computational approaches for TFBS identification. One type of

computation-based methods for predicting TFBSS uses position frequency

matrices (PFMs) or position weight matrices (PWMs). A PFMIPWM is usually

derived from multiple sequence alignments of experimentally verified and

aligned DNA binding sites for single TFs or a class of TFs and represents a

simple statistical model that reflects the relative distribution and conservation

of all nucleotides within the set of binding sites. A PFM can be converted to a

PWM by weighting normalised nucleotide frequencies by the background

probabilities of the nucleotides in genome-wide DNA (e.g. human DNA) [15].

Databases with curated PFMs/PWMs are available, e.g. TRANSFAC U6,l7l

(http : //www. gene-re gulation. com./), and JASPAR U 8] (http : //j aspar. c gb. ki. se/).

Figure I shows examples of PFMs and their visual representation in the form

of sequence logos produced using enoLOGOS [19]. Sequence logos,

displaying the information content, are a good means to gain a quick overview

of the nucleotide conservation on specific binding site positions 1201.

Differences in the matrices from different databases for the same TFs (see

Figure l), occur due to the utilisation of different binding sites for producing

the PFMs/PWMs. However, PFMs/PWMs, disregarding from which source,

are used instead of the real binding sites to analyse DNA sequences and

J
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computationally map putative TFBSs with a certain confidence to the DNA.

Examples of tools for mapping PFMs/PWMs to DNA sequences include

MATCHTM [2 1 ], Matlnspector 122,231, and ConSit e pal.

Computational prediction of TFBSs in DNA sequences has been the focus of

various studies [25-36]. Even though the technological possibilities for

experimental verification of binding sites for TFs are steadily increasing,

computational methods are still indispensable for performing large-scale

studies on transcriptional regulation. The prediction accuracy of computational

tools for predicting TFBSs is still not sufficient in rivalling experimental

methods [5,37,38]. However, while recognizing that computational methods

cannot replace laboratory experiments, in the current stage of research they are

essential and useful to gain a broad overview of the transcriptional regulatory

mechanisms involved in cells when used in synergy.

To enhance general insights into transcriptional regulation within mammals,

two distinct biological questions with relevance to the field of research have

been investigated in this thesis. One of the gene products discovered within the

last two decades, is microRNAs (miRNAs) [39]. MiRNAs are -22 nucleotides

(nt) long non-coding RNAs that influence post-transcriptional regulation, by

degrading and repressing the translation of protein-coding mRNA [40,41).

Even though it is already clear that miRNAs have a great influence within

cells, not much is known how the transcription of miRNA genes is regulated. A

4
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recent study showed that miRNAs are transcribed by RNA Polymeraselll42),

which led to the assumption that they might be controlled in a similar manner

as protein-coding genes. The effects of TFs on the transcriptional regulation of

miRNA genes are the focus of Chapter 2. Here, computational TFBS analysis

is combined with gene expression data of miRNAs and TFs to discover these

regulatory mechanisms during a distinct biological process, monocytic

differentiation.

Chapter 3 focuses on an integral part of combinatorial gene regulation, the

physical interaction of TFs. A method is devised to computationally predict if

two TFs interact. The task of predicting interacting TFs can be seen as a

subtask of the more general protein-protein interaction (PPI) prediction task.

Often, the bottleneck in studies of computational PPI prediction is the

acquisition of appropriate data for the numerical representation of the entities

involved. The core of the approach in Chapter 3 is a novel form of numerical

representation of TFs that incorporates amino acid properties of the primary

protein sequence of TFs. An artificial intelligence system is employed to build

a model that is able to predict interactions among TFs based on these

representations.

Both computational analyses enhance our insights into transcriptional

regulation. The aim of this research is to build the groundwork for further in

5
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depth investigations into transcriptional regulation of miRNAs and cooperative

transcriptional control of genes.

f i1re 1. Eremple of PFXs from TRANSFAC and JASpAR
lU Example of a PFM from the TRANSFAC Professional database (version 11.4).
Shown is a matrix for the HLF transcription factor. The middle panel shows the actual
rnatrix. The matrix consists of 10 positions arranged in a manner where each position
is represented by a row in the matrix. The first column contains the actual number of
the position in the matrix. Columns two to five contain counts of the nucleotides A, C,
G, and T. The last column represents the consensus letter for the conesponding
position. The lower panel shows a sequence logo for the matrix, another
representation that visualises the conserved information content of each position. 3/
Example of a PFM from the JASPAR database (version 3.0). Shown is a matrix for the
HLF transcription factor. The middle panel shows the actual matrix. The matrix
consists of 12 positions arranged in a manner where each position is represented by a
column in the matrix. Each row represents a nucleotide and gives for each position the
number counts of the nucleotide occurrences. The tower panel shows a sequence
logo for the matrix.
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Ghapter 2

Deciphering the Transcriptional Gircuitry of

MicroRNA Genes Expressed during Human

Monocytic Diffe rentiation.

2.1 Abstract

Macrophages are immune cells involved in various biological processes

including host defence, homeostasis, differentiation, and organogenesis.

Disruption of macrophage function is linked to increased pathogen infection,

inflammation and malignant diseases. Differential gene expression observed in

monocytic differentiation is primarily regulated by interacting TFs. Current

research suggests that miRNAs degrade and repress translation of mRNA, and

may also target genes involved in differentiation. The aim of this research is to

investigate the transcriptional circuitry regulating miRNA genes expressed

during monocytic differentiation.

Analysis of the transcriptional circuitry of miRNA genes during monocytic

differentiation was performed computationally using in vitro time-course

expression data for TFs and miRNAs. A set of TF---+miRNA associations was

derived from predicted TFBSs within promoter regions of miRNA genes.

Time-lagged expression correlation analysis was utilised to evaluate the

7
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TF-miRNA associations. 12 TFs were identified that potentially play a

central role in regulating miRNAs throughout monocytic differentiation. Six of

these 12 TFs (ATF2, E2F3, HOXA4, NFE2Ll, SP3, and YYl) have not

previously been described to be important for monocytic differentiation. The

remaining six TFs are CEBPB, CREBI, ELK1, NFE2L2, RUNXI, and USF2.

The impact on monocytic differentiation through the inferred transcriptional

regulation of several miRNAs (miR-21, miR-I55, miR-424, and miR-17-92),is

presented. This study demonstrates that miRNAs and their transcriptional

regulatory control are integral molecular mechanisms during differentiation.

Furthermore, it is the first study to decipher on a large-scale, how miRNAs are

controlled by TFs during human monocytic differentiation. Subsequently, 12

candidate key controllers (TFs) of miRNAs during human monocytic

differentiation were di scovered.

2.2 lntroduction

The mononuclear phagocyte system is defined as a family of cells comprising

of bone marrow progenitors and is derived from hematopoietic stem cells.

Hematopoietic stem cells sequentially differentiate into monoblasts,

promonocytes, monocytes and terminal macrophage cells [43]. The human

monocytic leukemic cell line, THP-I [44], is an accepted model system utilised

to explore molecular events surrounding monocytic differentiation. The

chemical Phorbol l2-myristate l3-acetate (PMA) induces the differentiation of

monocytic THP-I cells into macrophages/mature THP-I cells [45]. Before

8
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inducing differentiation, PMA first inhibits cell growth and blocks THP-I cells

in Gl-phase of the cell cycle by up-regulating the expression of p21**t'"*',

enhancing binding of the SPI factor to the p2lwartrcnl promoter. PMA

inhibition of cell growth is mediated by several signalling pathways such as

MAPK and ROS-dependent Raf/MEK/ERK pathway p6} Human monocytic

maturation incorporates lipid and protein metabolic processes together with

several G-protein coupled receptors (GPCRs) [47].

Differential gene expression that results in human monocytic differentiation is

regulated by numerous interacting TFs [46-48). Current research suggests that

miRNAs target several genes that are differentially expressed in the

differentiation process [49]. MiRNAs are -22 nucleotides (nt) long non-coding

RNAs, which play a key role in the repression of translation and degradation of

coding mRNA 140,41,50-52]. Several computational tools are available for

miRNA target prediction [5 1,53-56].

Canonical miRNA biogenesis (see Figure 2) begins with the transcription of

pri-miRNAs by RNA polymerase 1I142,57,581. The generation of pri-miRNAs

by RNA polymerase II suggests that miRNA genes are controlled through the

same regulatory machinery as protein-coding genes. These pri-miRNAs are

cleaved into 60-70nt pre-miRNAs by the microprocessor complex Drosha

(RNase II endonuclease) and DGCR8, a double-stranded RNA binding protein

[59,60]. Pre-miRNAs are exported to the cytoplasm with the help of Exportin-5

9
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and its co-factor RanGTP [61]. Dicer, a RNase III endonuclease, cleaves 22-

nucleotides at the Drosha cleavage site yielding after strand separation mature

miRNA 140,621.

Even though most miRNAs have their own transcriptional units [40], several

miRNAs are transcribed together as a single pri-miRNA [63-65]. These

clustered miRNAs are thus co-regulated. On the other hand, miRNAs can also

be transcribed together with a protein-coding host gene [40]. In addition, a

mature miRNA can be produced from several locations in the genome [40,66].

Furthermore, it is not clear how to define the regulatory regions for miRNA

genes. Thus, a straightforward analysis of the transcriptional regulation of

miRNA genes is difficult. Current research suggests that at transcription start

sites (TSSs) of genes, histones are generally trimethylated at lysine 4 residues

167,681. This has led to a potential definition of promoter regions for miRNAs

in human embryonic stem cells using such determined TSSs as reference points

[6e].

As the transcriptional regulation of miRNAs is not well understood, the focus

of this research is the analysis of transcriptional miRNA gene regulation during

human monocytic differentiation. Gene expression of miRNAs and TFs was

measured prior to PMA stimulation and over a 96 hour time-course, post-PMA

stimulation. A general method was utilised to identiff miRNAs whose

expression levels differed due to PMA stimulation in THP-I cells. Promoter
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regions for these miRNAs were extracted and TFBSs computationally mapped

to the promoter sequences. Time-lagged expression correlation analysis 170,7ll

was employed to evaluate the predicted TF---+miRNA associations by

combining the in silico TFBS analysis with the measured in vitro expression

data. Similar types of time-lagged expression correlation analyses have been

used to either predict or score TF+gene or gene+gene associations [72-74].

From these TF---miRNA associations, 12 TFs were identified to be plausibly

playing a central role in regulating miRNAs throughout the considered

differentiation process. Six of these 12 TFs (ATF2,82F3, HOXA4, NFE2LI,

SP3, and YY1) have not been previously described as important for monocytic

differentiation. The remaining six TFs, CEBPB, CREBI, ELK1, NFE2L2,

RUNXI, and USF2, although known to be involved in monocytic

differentiation, were not known to play a role in transcriptional regulation of

miRNAs in this process. The analysis was concluded by highlighting several

inferred regulatory networks that suggest interplay of TFs, miRNAs, and

miRNA targets and that are likely to have an impact on the differentiation

process.

This research is the first large-scale study that attempts to decipher the

transcriptional circuitry that regulates the expression of miRNAs during human

monocytic differentiation and identifies potential new avenues for further

research.
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The figure shows an overview of the human miRNA biogenesis. First the miRNA gene
gets transcribed into pri-miRNA by RNA polymerase ll. Shown are three examples of
pri-miFtNAs. The first miRNA has its own transcriptional unit. The second pri-miRNA
contains a cluster of three miRNAs. The last pri-miRNA contains a miRNA that is
transcribed together with a host gene. These pri-miRNAs are cleaved into 60-70nt
pre-miRNAs by the microprocessor c,omplex Drosha (RNase ll endonuclease) and
DGCR8, a double-stranded RNA binding protein. Pre-miRNAs are exported to the
cytoplasm with the help of Exportin-S and its co-factor RanGTP. Dicer, a RNase lll
endonuclease, cleaves -22-nucleotides at the Drosha cleavage site yielding after
strand separation mature miRNA.
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2.3 Methods

All biological experiments to derive the expression data for miRNAs and TFs

during PMA stimulation, were done in collaboration by scientists at the RIKEN

Omics Science Center in Yokohama, Japan. The experimental data was

submitted to all collaborators of the Genome Network Project, specifically

FANTOM4, for utilisation. All experimental data derived throughout the

project is made public with the publication of the main paper of the

FANTOM4 collaboration [48].

2.3.1 miRNA Time-counBe Expression Data

The miRNA expression profiles were obtained using Agilent's Human miRNA

microarrays as described in [75]. Three biological replicates were measured

prior to PMA stimulation and post-PMA stimulation at nine time points

ranging from one to 96 hours (Lfu,217r, 4bt, 6ltr, 12br,24fu, 48hr,72hr, and

96hr). For the inclusion of a miRNA expression time-series in the analysis two

criteria were derived:

il Expression of each miRNA should be denoted as "present" in at least

one time point. Otherwise it was assumed that the expression series for

the miRNA is insignificant.

iil For a miRNA, i/ must hold true in at least two of the three biological

replicates.
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The expression values of different biological replicates for a miRNA that

satisfied the criteria above were averaged at each time point to generate one

expression series per miRNA. Finally, each expression series was interpolated

using piecewise cubic hermite interpolation 176,771with half an hour steps. In

this manner, 193 (0-96hrs) expression values for each individual miRNA

expression series were obtained.

2.3.2 ldentification of miRNAs Showing Differential Gene

Erpression

The log2 fc was calculated by dividing each expression value of a miRNA by

its expression value at zero hour (control) and taking the logarithm of base two

(logz) of that ratio. A miRNA was considered to be influenced by the PMA

stimulation in the differentiation process if:

il In at least one time point / itslog2fc > I or log2fc < -1.

il At any time point / where il holds true, the absolute difference d1 in

expression e1 at time point / and the expression eo at zero hours must be

greater than 0. l.

t4

http://etd.uwc.ac.za/



2.3.3 Transcription Factor Time-cource Gene Expression

Data

The TF expression profiles were obtained using qRT-PCR as described in [78].

Two biological replicates were measured prior to PMA stimulation and in nine

time points post-PMA stimulation (lhr, 2hr, 4hr, 6hr, 12fu,24ht, 48hr,72br,

and 96hr). Primer design, RNA preparation, and oDNA synthesis were

performed analogously to [48]. Normalization of the expression data of both

replicates was done as described in [78,79].

All expression series for a TF that had available expression data within two

biological replicates were averaged over the respective biological replicates to

produce one series of expression values per TF. Finally, each expression series

was interpolated in half an hour steps using piecewise cubic hermite

interpolation. Thus, 193 (0-96hrs) expression values for each individual TF

expression series were obtained.

2.3.4 Defining Promoter Regions of miRNAs

The definition of miRNA promoters was adopted from [69]. Each of the

promoter regions had a score associated (as defined in [69]) that represents the

confidence of dealing with a genuine regulatory region. All promoter regions

with a score greater or equal to zero were extracted. The coordinates of the

promoter regions were translated from the Human genome build 17 (hgl7) to
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the Human genome build 18 (hgl8) [80] using the UCSC liftover program [81]

(see Table l).

2.3.5 Transcription Factor Binding Site Analysis of miRNA

Promoter Regions

TFBSs were mapped to the promoter region of the miRNAs with the

MATCHTM program l2ll utilising 522 mammalian matrices of the

TRANSFAC Professional Database (version 11.4) with their corresponding

minimum false positive threshold profrles. Since TRANSFAC matrices are

frequently associated with several TFs whose binding sites were used in

building these matrices, each matrix was associated to all respective TFs (that

have an Entrez Gene identifier associated). For example, several members of

the JUN-FOS family (JUN, JUNB, JLiND, FOS, FOSB, etc.) can be associated

to matrix M00517. Binding sites of these TFs have been utilised to create this

matrix. Thus, all of the TFs might be able to bind the TFBS predicted by the

matrix.

2.3.6 Weighting Associations Using Peanson Correlation

For each of the predicted TF---+miRNA associations, scores (PCCs) were

calculated as an indicator of how reliable the predicted association is, and as a

measure of the strength of the association within the context of monocytic

differentiation. The expression data for TFs and mature miRNAs during

monocytic differentiation were utilised to calculate the best time-lagged
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correlation for a TF-+miRNA association. The time-lagged expression

correlation analysis calculates a PCC between the TF expression and the time-

shifted mature miRNA expression at different time-delays in order to take the

influence of the TF on the miRNA transcription over time into account. The

method selects the time-delay that ma,rimizes the absolute value of PCC

between the expression of the TF and that of the mature miRNA. The

associations between pre-miRNA and the mature miRNA were extracted using

the miRBase sequence database (version 10.1) 155,56,821

(http://microrna.sanger.ac.uk/).

For each predicted TF+miRNA association, where the miRNA does not share

the same promoter with other miRNAs (i.e. not in a cluster), the PCC wx

calculated as follows:

il Identifu the time-shift st. This is the time-shift where the absolute value

of the PCCbetween the expression of the TF and the respective mature

miRNA is ma<imal. The PCC was calculated for time-shifts ranging

from 0.5 hour to six hours in intervals of half an hour.

iil The PCC for the association was calculated as PCC of the expression

of TF and mature miRNA at the time-shift st found in i/.

If a miRNA appears in a cluster with other miRNAs on the genome, then the

predicted TF in the promoter of that cluster is associated to each of the
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respective miRNAs. Since the cluster is transcribed as one primary transcript, it

is assumed that a TF regulates each miRNA within the cluster with the same

time-shift. Thus, one common time-shift st for the considered TF and all

miRNAs within the cluster was calculated. The time-shift s1 w&S calculated as

follows:

il The PCC of expression between the TF and each miRNA in the cluster

was calculated for each considered time-shift (0.5 hour to six hours).

iil The average of all PCCs derived in i/ was calculated for each time-shift

(0.5 how to six hours). As a criterion for inclusion, the calculated

PCCs for all associations should have the same sign.

iii/ If iil could not be calculated at any time-shift (due to the sign rule), it

was not assumed that the TF Xregulates any miRNA in that cluster and

allX--+miRNA associations of that cluster were discarded.

ivl lf not iii/, then the time-shift s1 wos determined as the time-shift that

maximizes the average calculated in iil.

PCC of one TF---+miRNA association where the miRNA is part of a cluster

forms the PCC of expression of the TF and the respective mature miRNA at

the determined time-shift st for the TF and the cluster. If a pre-miRNA is

associated to more than one mature miRNA from its 5' and 3' arm, then the

PCC was calculated independently for each mature miRNA and the maximum

absolute PCC was chosen.
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2.3.7 Target Predictions of miRNAs

The target gene predictions of human miRNAs were gathered from four public

available databases for miRNA target predictions: microRNA.org version 4

[53] (http://www.microRNA.org), TargetScan version 4.2 [51]

(http://www.targetscan.org/), miRBase version 5 [55,56], and EIMMO2 with a

cut-off value greater than 0.5 15\ (http:llwww.mirz.unibas.ch/ElMMo2/). AII

target gene identifiers utilised in the respective databases were converted to

Entrez Gene identifiers using BioMart [83]

(http://www.ensembl.org/biomarUmartview). If this was not possible the

prediction was discarded. Only predictions that were present in at least three

out of the four databases were considered.

2.3.8 Network Graphics and Pathway Analysis

All regulatory network graphics in the figures presented in the "Results and

Discussion" were produced with the help of Cytoscape [84] and all pathway

analyses were based on the Kyoto Encyclopaedia of Genes and Genomes

(KEGG; [85]; http://www.genomejplkegg/) using the Database for Annotation,

Visualization and Integrated Discovery @AVID; [86];

http ://david. abcc.ncifcrf. gov/).
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2.4 Resulfs and Discussion

First, the miRNA expression data was analysed to identiff miRNAs that are

differentially expressed due to the PMA stimulation. For these, promoter

regions were extracted and TFBSs predicted. Subsequently, each predicted

TF---miRNA association was scored using a time-lagged expression

correlation analysis to get a measure of reliability for the predicted

associations. Afterwards, TFs that are likely to play a central role in regulating

miRNAs during the monocytic differentiation process were statistically

identified. Finally, the predicted transcriptional regulation of several miRNAs

and their potential influence on the differentiation process were investigated.

Figure 3 gives an overview of the analysis steps.

20

http://etd.uwc.ac.za/



Hedf,effief nlffile mod
irfi.mf-fyt5 dmdrlre

niHApreil*3 tr33#ef
lnntAprrn*fi.

trtpnllrndfr Enlr*m Cprril*f
Tf#nrolilm

l-rflrilrl-IFrc.il'd
h$.l{rflE,-tXtm

Data Analysis steps

Tramcriptonel circuifiy of miRlk
during monocyf,,c dificre*iaSon

Fi1fro 3. Ovcrview of the analysis
The figure shows the analysis steps (blue/green boxes). ln addition, the figure shows
the data (red boxes) that have been utilised within individual analysis steps. ln total
five analysis steps have been conducted. First, the miRNA expression data was
utilised to find the miRNAs that show differential expression throughout the
difbrentiation process. Promoter regions for these miRNAs were extracted and TFBSs
cornputrationally mapped to these regulatory regions. The expression data from both
miFti.lAs and TFs was used to score the predicted TF---+miRNA associations.
Subsequently, the TFs that are enriched in the set of associations with highest PCC
between TF and miRNA expression were identified. Finally, for certain miRNAs their
transcriptional regulations and impact on monocytic differentiation have been
investigated.
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2.4.1 ldentification of miRNAs Most lnfluenced by the PMA

Stimulation

Three biological replicates of miRNA expression data provided measured

expression levels at nine time-points post-PMA stimuli and a zero hour control

prior to PMA stimulation (see Methods). Two criteria had to be met for the

inclusion of a miRNA expression time-series ('expression series' in further

text) in the analysis:

il Expression of the miRNA had to be denoted as "present" in at least one

time point, otherwise it was assumed that the expression series for the

miRNA is invalid. In this manner, 155, 238, and l9l miRNAs and

associated expression series for the first, second, and third replicate

were identified.

iil For a miRNA, i/ must hold true in at least two of the three biological

replicates.

The expression values of different biological replicates for a miRNA that

satisff the criteria were averaged at each time point to generate one expression

series per miRNA. This resulted in expression series for 187 miRNAs (see

Methods).
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The log2fc (/c standing for fold-change relative to time point zero) for each of

the 187 identified miRNAs at each measured time point was calculated (see

Methods), to identifr the set of miRNAs that show differential expression level

changes due to PMA stimulation.. A miRNA was considered to be influenced

by PMA stimulation if its log2y' > I or logzfc < -1 at any measured time point

post-PMA stimulation (see Figure 4). A total of 8l miRNAs satisfied this

criterion. The majority of the miRNA expression levels do not change

significantly over time and are confined within the selected threshold values

(see Figure 4). To determine which miRNAs deviated from the baseline

expression level, the following steps were implemented:

il For each time point f where log2fc > I or logz-fc < -1 was satisfied for a

miRNA, the difference dl of the expression e1 at time point / and its

expression es atthe zero time point was calculated.

iil The miRNAs for which abs(dt) > 0.1 in at least one time point were

sub-selected.

A set of 53 miRNAs whose expression is most likely affected by the PMA

stimulation met the implemented criteria.

Thefc does not take the level of gene expression into account. It is important to

note that miRNAs that may have very high expression levels and whose

expression level only changes minimally over time might have a strong
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biological impact, even though this is not reflected by variation in the

expression levels. The approach utilised here, based ony' is not able to identifu

such cases. On the other hand, miRNAs with very low expression levels might

have high lfc values, which might suggest a strong biological impact, even

though this may be arguable since the absolute changes in expression levels

could be very small. Hence, a second threshold for the difference in expression

values of 0.1 was introduced, even though there are no accepted standardised

thresholds for such an analysis. Thus, all miRNAs whose fc based on their

expression series suggests an impact through the PMA stimulation but were the

absolute change of expression values is below 0.1 are not considered to be

affected by the PMA stimulation.
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2.4.2 Transcription Factor Binding Site Analysis of miRNA

Promoter Regions

Promoter regions of miRNAs are regions of DNA where TFs bind to regulate

the transcription of miRNA genes into pri-miRNAs. A pri-miRNA can be

associated with several promoter regions derived from different TSSs. The

transcriptional control of TFs is towards the pri-miRNA that can be cleaved

into several pre-miRNAs [87]. Thus, miRNAs that form such clusters are

considered to be generally regulated in the same manner.

Marson et al. 169) defined promoter regions of miRNAs using TSSs that were

determined using trimethylated histones. These form the basis for the promoter

regions analysed in this study. For 34 of the 53 earlier identified mature

miRNAs, 38 promoter regions for 37 associated miRNAs were extracted (see

Methods and Table 1).

The TRANSFAC Professional database 116,17l was used to map TFBSs to the

38 promoters. TRANSFAC's 522 mammalian minimum false positive matrix

profiles of binding sites were mapped to the promoter regions (see Methods).

These matrices, which correspond to the predicted TFBSs, are associated with

TFs that possibly bind these TFBSs (see Methods). By mapping the matrices to

their corresponding TFs, 5,788 unique TF+miRNA associations for 673 TFs

and37 miRNAs were obtained.
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Table 1. miRNA Promoter Regions

hsa-mir-106b chrT_99537263_99537463_-

hsa-mir-59S chrT_l58073079_158073279_-

hsa-mir-21 chr17 55138283 55141202 +

hsa-mir-22 chr17 1566155 1566355 -

hsa-mir-23a 9_1 3807762_1 3808928_-
9 13818427 13819944 -

hsa-mir-222

hsa-mir-181a-1

hsa-mir-181a-2

hsa-mir-19a

hsa-mir-503

hsa-mir-27a

hsa-mir-34a

hsa-mir-221

hsa-mir-29a

hsa-mir-542

hsa-mir-20b

hsa-mir-29b-1
hsa-mir-17

hsa-mir-132

hsa-mir-660

hsa-mir-9-1

chrl
chrl

ch rX_45497 997 _4549848 5_-

chr9 _1 26460466_1 26460666_+

chrl _1 97 17 307 1 _197 17 327 1 _-

ch r 1 3_907 97 97 4 _907 981 7 4 _+

chrX_1 33505836_1 33508763_-

ch r 1 9_1 3807 7 62 _13808928_-
chr19 13818427 13819944 -

chrl _9 1 64884_91 65084_-

ch rX_4549 7 997 _4549848 5_-

chrT _1 302367 7 I _1 30237 964 _-

chrX_1 33505836_1 33508763_-

chrX_1 33131 533_1 33136274_-

chrT _1 302367 7 I _1 30237 964 _-
ch r 1 3_907 97 97 4 _907 98 1 7 4 _+

chrl 7_1 899412_1901 670_-

ch rX_49573865_4957406 5_+

chrl_1 54657781 _1 54657981_-
chrl 154665745 154665945 -

chr 1 5 _87 7 1 2233 _87 7 1 2433 _+hsa-mir-9-3
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hsa-mir-9-2 ch r5_8 79 97094_8800 0044 _-
chr5-8801 6256_8801 6456_-

hsa-mir-155 chr 2 1 _25867 620 _2586 80 I 8_+
chr21 _25856 1 86 25856386_+

hsa-mir-210 chrl 1 _558302_558502_-

hsa-mir-24-1 ch 19_96528703_96528903_+
chr9 96806816 96807016 +

hsa-mir-425 chr 3 J9 1 7 867 2 _49 I 7 887 2 _-
ch 13_49030949_4 9 03 1 1 49 _-

chrX_1 33505836_1 33508763_-

chrX_1 33 1 3 1 533_1 331 3627 4 _-

ch r 1 4_99840674_998 4430 1 _+

ch r 1 3_90 7 97 97 4 _907 981 7 4 _+

chrl 98284260 98284460 -

hsa-mir-424

hsa-mir-18b

hsa-mir-345

hsa-mir-18a

hsa-mir-137

hsa-mir-24-2 ch r 1 9_1 38 07 7 62_1 3808928_-
chr19 13818427 13819944 -

hsa-mir-365-2 chr17 2690991 0_269 1 01 09_+
chr17 2691 01 86_2691 3533_+

hsa-mir-365-1 ch r 1 6_1 43 09 1 82_1 4309534_+
ch 11 6_1 43 097 48 _1 43 1 2532 _+
chrl 6_1 4303600_1 4303800_+

hsa-mir-133b ch 16_52 097 7 7 I _52098 1 24 _+

hsa-mir-146a ch r5_ 1 59827 7 3 1 _1 59827 93 1 _+
chr5 159826351 159827231 +

The first column contains the miRNA identifier. The second column contains the
chromosomal positions (format chromosome_start_stop_strand) of the associated
promoter regions. Note that several miRNAs can be associated with the same
promoter region as they can be transcribed together as a cluster.
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2.4.3 Evaluation of Predicted TF+miRNA Associations

Each predicted TF+miRNA association was evaluated and scored to obtain

the most accurate picture of miRNA gene regulation during human monocytic

differentiation. The result of this evaluation relates to the confidence that a

TF+miRNA association is genuine. Evaluation was based on time-lagged

expression correlation between the gene expression series of the TF and that of

the mature miRNA (see Methods). Expression data for miRNAs and TFs was

measured in human THP-I cells prior PMA stimulus at one time point and

post-PMA stimulus at non-equidistant time points up to 96 hours.

The expression series for each of the 34 mature miRNAs was interpolated

using half an hour steps (see Methods and Appendix I Xl). The TF qRT-PCR

expression series were averaged over the two biological replicates at the same

time points, and interpolated in concordance with the miRNA expression data.

In this manner, expression series for 2,197 TFs were derived (see Methods).

The TF+miRNA associations were inferred from TFBS analysis of promoter

regions of miRNA genes. From the predicted 5,788 TF--+miRNA associations,

all associations were discarded for which no expression data for the TF in the

above mentioned averaged expression set exists. The Pearson correlation

coefficient (PCC) was calculated for each TF---+miRNA associations using

time-lagged correlation analysis and the interpolated expression series for TFs
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and mature miRNAs. Hence, a set of 1,989 TF-miRNA associations (see

Appendix I X2) for 37 miRNAs and 258 TFs (see Appendix I X3), each

associated with a PCC value were derived (see Methods). The number of

TF---+miRNA associations that have PCCs equal to or greater than selected

thresholds is depicted in Figure 5,A,. As expected, the number of associations

steadily decreases with increasingly stringent PCC thresholds.

Previous research has demonstrated that the regulatory effects of a TF on its

target genes are not instantaneous but occur with a time-lag/shift [88-90].

Unfortunately, the correct time-shifts are undetermined. Hence, time-shifts in a

range from 0.5 hours to six hours were incorporated to allow for a sufficient

time-delay for the regulation by the TF to exert an effect on the transcription of

its target miRNA gene. For each of the 1,989 TF-miRNA associations, the

most favourable time-shift was calculated and with this, the time-lagged PCC

of expression as the score for the association (see Methods). It is assumed that

the value of the PCC relates to the confidence of an association being genuine

and hence, plays an important role in the differentiation process. The higher the

absolute value of the PCC for an association, the more reliable the association

is to be. For each miRNA/miRNA-cluster and its regulating TFs, the maximum

PCCs were calculated individually (see Methods). Other approaches

considered all TFs that regulate a gene to extract a common time-shift for all

TFs and the gene [73], or compute the best time-shift depending on known

examples of regulation [71]. To date, very few experimentally verified
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examples of TFs that regulate miRNAs are known, thus a model to introduce

the "correct" time-shift cannot be inferred. Furthermore, certain miRNAs were

predicted to be clustered and to share common promoter regions. Hence, a

time-shift corlmon to all miRNAs in a cluster was calculated for each of the

associated TFs. As a criterion, corlmon time-shifts were only taken into

account if all PCCs between the TF and all miRNAs that form the cluster had

the same sign (e.g. all positive or all negative) to avoid contradicting effects of

the same TF on different miRNAs of the cluster. In the cases where there was

sign disagreement in the PCCs the TF---miRNA associations were discarded.
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2.4.4 ldentification of Transcription Factorc Gentral to the

Regulation of miRNA Genes

The TFs being part of the TF---+miRNA associations that have the highest

absolute PCC were analysed to determine the TFs that have the most influence

on miRNAs during the differentiation process. 1,989 TF---+miRNA associations

were ranked according to the absolute value of their corresponding PCCs. The

upper quartile (with the highest absolute PCCs) was selected from the ranked

associations. ln this manner, 498 associations were selected, each with an

absolute PCC greater than 0.775 (see Figure 5B). The 498 associations are

formed by 1l I unique TFs and 35 unique miRNAs. TFs that appear

significantly more often in the upper quartile of associations are assumed to

more likely play a central role in regulating miRNAs during the differentiation

process. A one-sided Fisher's exact test was conducted to calculate the

Bonferroni-corrected p-value for enrichment of each TF in the upper quartile

subset of 498 associations, in contrast to the number of occurrences of the TF

in the remaining set of associations (1,491). The correction factor utilised for

the Bonferroni-correction is the number of unique TFs (258) in the complete

set of all associations (1,989). 12 TFs were identified to be statistically

significantly enriched in the set of 498 associations with a corrected p-value

smaller than 0.01 (see Table 2).

Six of these 12 TFs (ATF2, 82F3, HOXA4, NFE2Ll, SP3, and YYI) have not

been previously described with regards to monocytic differentiation. The
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remaining six TFs (CEBPB [91], CREBI 1921, ELK1 [93], NFE2L2 1941,

RUNX1 [91], and USF2 [95]) are known to play a role within monocytic

differentiation, but not explicitly as regulators of miRNAs in monocytic

differentiation .

The approach implemented attempted to identifu the most dominant TFs that

putatively regulate miRNAs from the selected subset of the TF---miRNA

associations with highest PCCs. The complete set of 1,989 TF-+miRNA

associations consists of many associations with a low PCC (see Figure 5).

Associations with the highest PCCs were sub-selected, in order to be able to

focus on associations that are most likely to be genuine. Simultaneously, to be

able to deduce the general participants in the transcriptional regulation process

of miRNAs, it is important not to focus on too few associations. Consequently,

the upper quartile of TF---+miRNA associations ranked, based on decreasing

absolute values of PCC, were selected as a reasonable compromise between

sensitivity and specificity.
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Table 2. TFs Predicted to have a Gentral Role in regulating miRNAs

The TFs that have been identified through statistical analysis to be statistically
enriched (corrected p-value < 0.01) within the upper quartile of predicted TF--* miRNA
associations (see main text) are presented. The correction factor utilised for the
Bonferroni-correction is the number of unique TFs in the complete set of predicted
TF---+miRNA associations (258).

Gene'
Symbol

Hlts In
subset

Number o,f
issoclatlons

ln subset

Total
number
of hita

Total
numbsr of

assoctatlong
p-Value

p-Value
(Bonferronl-
conocbd)

CREBl
ATF2
SP3

NFE2L2
NFE2L1

YY1
CEBPB
RUNXl
USF2
EzF3
ELKl

HOXA4

1 385
1 386
6670
4780
4779
7528
1 051

861

7392
1871
2002
3201

18

15

13

12

10

10

10
11

9

13

10

11

498

20
1

1

1

1

1

1

1

1

1

1

I

7

4
3

0
1

1

3

0

I
2

4

1 989

1.33E-09
6.56E-08
1.46E-07
5.52E-07
9.04E-07
7.72E-06
7.72E-O6
1.04E-05
2.85E-05
3.18E-05
3.59E-05
3.77E-05

3.43E-07
1.69E-05
3.76E-05
1.42E-04
2.33E-04
1.99E-03
1.99E-03
2.69E-03
7.35E-03
8.21E-03
9.27E-03
9.74E-03
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2.4.5 Transcriptional Circuitry of miRNAs during Monocytic

Differentiation

To shed light on a portion of the molecular underpinnings of monocytic

differentiation, the TF-+miRNA associations for miRNAs that have been

described earlier to be affected by PMA stimulation are discussed. In this

manner, it can be determined whether or not the findings in this analysis

correspond to published scientific results and fuither introduce novel

TF--+miRNA associations. An overview of the regulatory effects of the TF

subset (Table 2) on the miRNAs is depicted in Figure 6. Figure 6 shows each

TF-miRNA association, from within the subset of the upper quartile of

associations for the 12 TFs, in form of a coloured dot in a heat-map created

using the TIGR Multiexperiment Viewer (version 4.3) (TMEV, 196,97D.

Certain clusters of miRNAs that are regulated by the same set of TFs can be

observed (see Figure 6). In the following results and discussion, the focus is

mainly on the upper quartile of TF-+miRNA associations and on the TFs

illustrated in Figure 6 that were identified to be central to monocytic

differentiation. For the sake of completeness, several TFs that are known to be

regulators of certain miRNAs are discussed as well, even though they might

not appear in the set of TF+miRNA associations with highest PCCs. Subsets

of miRNAs that have literature-based support for their expression during PMA-

induced differentiation are discussed.
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I fr
Fi1re 3. Ovcrvbw of 12 TFs and their Reguletory Effcct on miR]aAS
The figure shows a heat-map, with miRNAs on the x-axis and TFs on the y-axis. The
TF names on the y-axis are composed of the Entrez Gene syrnbo! and Entrez Gene
identifier, separated by "_". A coloured square indicates the value of the PCC between
a TF and a mature miRNA where the TF has been predicted to regulate the
conesponding miRNA. A red square indicates a negative PCC whereas a blue square
indicates a positive PCC. The figure only shows associations where a TF identified to
be central to monocytic differentiation takes part and only associations from the top
quartile with highest PCC. A white dot in the figure does not necessarily indicate a
non-association. A possible association would have a PCC that prevented its inclusion
in the top associations and is thus not shown. The heat-map has been clustered using
hierarchical clustering with average linkage and Euclidian distance as the distance
mea€ure.
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2.1.5.1 miR-21

Fugita et al. demonstrated that mir-21 is expressed during PMA induced

differentiation in the human promyelocytic leukaemia cell line, HL-60 [98].

The expression data utilised in the current analysis demonstrate that miR-21 is

up-regulated during the differentiation process (see Figure 7C). The correlation

data suggest that several of the 12 TFs (see Table 2), which were identified as

being central to the monocytic differentiation process bind in the promoter

region of miR-21 (YYl, NFE2L2, ATF2 and NFE2Ll, see Figure 6).

Additionally, the binding of TFs, AP-l/c-jun, and c-fos to the promoter region

of mir-21 has been shown via ChIP in the HL-60 cell line four hours post-PMA

induction [98]. The TFBS analysis suggests the binding of several members of

the JUN-FOS family (JUN, JUNB, JUND, FOS, FOSB, FOSLI, and FOSL2)

to the promoter region of mir-21, even though they do not appear in the upper

quartile of TF--+miRNA associations (see Appendix lX2). Expression data for

the JUN family members displayed continued up-regulation for 96 hours,

whereas FOS family members, with exception of FOSLI, were down-regulated

after 4 hours (see Figure 7B). AP-l/c-jun form a complex with the JUN-FOS

family members during transcription, and AP-l/c-jun is known to be activated

by PMA-induction which is supported by the measured expression data (see

Appendix I X3) [99]. Fugita et al. also demonstrated that AP-l and SPI1

synergistically mediate the transcriptional process [98]. TFBS analysis predicts

a SPI1 binding site in the promoter region of the mir-21gene. The time-lagged
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correlation analysis also demonstrates that SPI1 is highly correlated to miR-21

(PCC:0.798; see Figures 78 and 7C).

miR-21 has been found to have an anti-apoptotic function and targets tumour

suppressor genes, like PTEN in human hepatocellular cancer cells [100],

tropomyosin I (TPMI), PDCD4, and maspin gene in the human breast cancer

cell line, MDA-MB-231 UOll. The miR-21's predicted targets (see Methods)

were found to be primarily involved in pathways such as TGF-p signalling

pathway, MAPK signalling pathway and the JAK-STAT signalling pathway

(see Figure 7A and Methods). The TGF-p signalling pathway and MAPK

signalling pathway are primarily involved in differentiation, proliferation,

apoptosis and developmental processes, while the JAK-STAT signalling

pathway is involved in immune responses. Several TFs such as ATF2, FOS,

JUN and JUND included in the predicted TF-mir-2l associations are

involved in the MAPK signalling pathway (see Figure 7A).

TimeJagged expression correlation analysis demonstrates that NFE2LI and

SPIl are highly correlated to miR-21, as opposed to YYl, NFE2L2, and ATF2,

which have negative PCCs (see Figure 6). Besides JUN-FOS family members

and SPII that are known to regulate miR-21, the results suggest a novel

NFE2LI+miR-2I association, which seems to play an important role in

monocytic differentiation (see Figure 7A).
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2.1.5.2 miR121

Rosa et al. reported that mir-424 is expressed during PMA-induced

differentiation [102]. Additionally, mir-424 is transcribed by SPI1 in CD34+

human cord blood cells and CEBPA (C/EBPo) blocks SPII induced dendritic

cell development from CD34+ human cord blood cells by displacing the

coactivator c-Jun [102,103]. The up-regulation of miR-424 (see Figure 8C)

leads to the repression of NFIA which allows for the activation of

differentiation specific genes such as M-CSFr (CSFIR) [02]. Furthermore, the

pre-mir-424 is transcribed together with pre-mir-503 and pre-mir-542 as one

transcript. These pre-miRNAs form the mature miRNAs miR-424, miR-503,

miR-542-5p, and miR-542-3p. The TFBS analysis suggests that several of the

12 TFs (see Table 2), which were identified as being central to the considered

differentiation process bind in the promoter region of miR-424 (RUNXI,

82F3, SP3, YYI, NFE2L2, CREBI, ATF2, USF2, ELKI, CEBPB ANd

HOXA4; see Figure 6). As mfu-424 and mir-542 are regulated by the same

TFs, they form tight clusters in the heat-map (see Figure 6). However, mir-503,

part of the same cluster and thus subject to the same regulations, is not present

in Figure 6. This is a consequence of the expression data obtained for miR-503

causing the PCCs for the TF+miRNA associations to decrease and thus not

being part of the top quartile of associations (see Appendix lX2). A SPII and

CEBPA binding site were predicted in the promoter region of these clustered

miRNAs, which corresponds to the findings reported by Rosa et al.ll02l. SPII

is positively correlated to miR-424 and CEBPA negatively correlated to miR-
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424. In addition, both associations are not within the top quartile of

associations with highest PCCs. Nevertheless, these observations indicate that

SPII enhances the expression of the mir-424 cluster and might work in

conjunction with other identified TFs to influence the miRNA's transcription.

The TF expression data (see Appendix I X3) confirms the down-regulation of

the miR-424 target, NFIA shown by Rosa et al. ll02l. However, NFIA is

down-regulated (--2.46-fold) three hours post-PMA induction, but recovers at

12 hours (see Appendix I X3). The predicted targets of miR-424 are involved

in the same pathways as the targets of miR-21; the TGF-p signalling pathway,

MAPK signalling pathway, and JAK-STAT signalling pathway, with

additional pathways such as acute myeloid leukaemia and antigen processing

and presentation, the p53 signalling pathway and SNARE interactions in

vesicular transport (see Methods). Several TFs included in the predicted

TF+mir-424 associations, are involved in the MAPK signalling pathway

(ELKI, ATF2), acute myeloid leukaemia (82F3, RUNXI) and antigen

processing and presentation (CREBI) (see Figure 8A).

The time-lagged expression correlation analysis demonstrates that ELKI

USF2, CEBPB and HOXA4 are positively correlated to the expression of miR-

424 (see Figure 6 and Figures 8B and 8C). Apart from the involvement of SPI1

in regulatingmir-424 |021, the analysis suggests that ELKI, USF2, CEBPB,
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and HOXA4 may be TFs likely responsible for the expression of mir-424 in

monocytic differentiation (see Figure 8A).
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2.4.5.3 miR-155

Chen et al. reported that mir-155 is expressed during PMA-induced

differentiation in the human promyelocytic leukaemia cell line, HL-60 U041.

The expression data also shows miR-155 to be up-regulated during the

differentiation process (see Figure 9C). The TFBS analysis data suggest that

several of the 12 TFs (see Table 2), which were identified as being central to

the considered differentiation process bind in the promoter region of miR-I55

(SP3, NFE2L2, CREBI, NFE2LI and ELKI; see Figure 6). Zeller et al.

demonstrated binding of MYC to the promoter region of mir-155 in human

burkitt lymphoma cell line, P493-6 U051. Also, Yin et al. demonstrated

binding of FOSB and JUNB to the promoter region of mir-155 using ChIP in

the human B-cell line [106]. miR-155 has been linked to Epstein-Barr viral

(EBV) related diseases that are latent, during which only a subset of viral genes

are transcribed with a set of EBV-encoded miRNAs. One such EBV gene is

LMPI which is a known oncogene that induces miR-155 expression in EBV-

negative human B cells (DeFew cells) U07]. Gatto et al. demonstrated the

positive expression of miR-155 in DeFew cells induced with PMA and that the

promoter region has two NF-KB (NFKBI) binding sites [07]. Once again,

several members of the JUN-FOS family were predicted to bind to the

promoter region of mir-155, but neither MYC nor NF-rB. This may be a

consequence of the extracted regulatory region for mir-l55, being incomplete.

The expression data demonstrated the up-regulation of JUN-FOS (see Figure

78) family members and NF-rB, but a down-regulation of MYC (see
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Appendix I X3). These observations indicate that JUN-FOS family members

enhance the expression of the miR-155, even though the predicted associations

are not within the top quartile of associations with highest PCCs.

MiR-155's predicted targets were found to be involved in the same pathways

as the targets of miR-21 and miR-424; the TGF-B signalling pathway, MAPK

signalling pathway, and JAK-STAT signalling pathway with additional

pathways such as acute myeloid leukaemia and Wnt signalling pathway (see

Figure 9A and Methods). Several TFs such as ATF2 and ELKI, included in the

predicted TF-+mir-155 associations, are involved in the MAPK signalling

pathway and CREBI was found to be involved in antigen processing and

presentation (see Figure 9,A. and Methods).

The TFBS analysis and time-lagged expression correlation analysis

demonstrated that of the 12 TFs (see Table 2), only NFE2LI and ELK1 had

TFBSs predicted within the promoter of miR-155 and were positively

correlated to miR-155 (see Figure 6 and Figure 98) and thus these findings

propose that the NFE2LI+mir-l55 and the ELKI+mir-l55 associations are

likely to be important to the monocytic differentiation process.
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2.1.5.1 miR-17-92

Members of the miRNA cluster mir-17-92 are known to be down regulated in

the HL-60 cell line after PMA stimulation U04]. The miRNA cluster on

chromosome 13 contains several miRNAs (hsa-mir-l7, hsa-mir-I8a, hsa-mir-

19a, hsa-mir-2Da, hsa-mir-19b-1, and hsa-mir-92-l (hsa-mir-92-l was excluded

from analysis, due to ambiguous nomenclature)) that are transcribed as a single

fianscript. The expression data demonstrates that members of miR-17-92 are

indeed down regulated after PMA stimulation and furthermore, that the lowest

PCC between the expression series of the miRNA cluster members is -0.86,

which supports the cluster membership. Even though the function of miR-17-

92 is largely unknown, lymphomas that express these miRNAs at a high level

have reduced apoptosis [08,109] and the miRNAs target multiple cell cycle

regulators which promote Gl+S phase transition U 10]. Expression of miR-

17-92 is high in proliferating cells and is positively regulated, in part, by MYC

(c-Myc) [111]. E2Fl, an activator of MYC, is itself atarget of miR-17 and

miR-2Oa [08] indicating that both MYC and E2Fl are under the control of a

feedback loop. E2F3 has been experimentally shown to activate transcription

of the miR-17-92 cluster [87,109]. A model has been proposed that miR-I7-92

promotes cell proliferation by targeting pro-apoptotic E2F1 and thereby

favouring proliferation through E2F3 mediated pathways [87]. Additionally,

E2F3 is shown to be a predominant isoform that regulates miR-17-92

transcription [87]. Time-lagged expression correlation analysis indicates that

after ranking PCCs of gene expression between miRNAs and putative TFs,
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E2F3 is the only TF appearing significantly associated with mir-17-92 within

the upper quartile of TF-miRNA associations (see Figure 6).

Amongst a small set of eight predicted regulators (E2Fl, 82F3, 82F4,

TFAP2A, TFAP2B, TFAP2C, TFDPI, SPI), TFDPI is known to form a

heterodimer with another putative TF, E2Fl lll2), implicating TFDPI/E2FI

complex as a regulator of miR- I 7 -92 transcription.

The putative regulation of miR-17-92 and its known effects in proliferation,

differentiation and apoptotic pathways is depicted in Figure l0A. Specifically,

E2Fl and E2F3 are predicted to regulate the miR-17-92 cluster. Figure l0B

demonstrates that expression of miR-17-92 members are correlated to E2F3

with a minimum PCC of -0.9. Conversely, miR-17-92 members are correlated

with E2Fl by a maximlm PCC of --0.65. A disproportionately high PCC of

E2F3 gene expression to miR-17-92, as compared to other TFs, seems to

support the claims made by Woods et. al. thatBZF3 is indeed the predominant

TF in this regulatory context [87]. In addition, Cloonan et al. demonstrated that

the pri-miRNA is cell cycle regulated, which supports the claim that the cluster

is under the control of E2F family members, which are master regulators of the

cell cycle U10]. On inspection of the log2 fc of the TF gene expression over

time (see Figure 10C), it was observed that E2F3 is sharply up-regulated at 6

hours by ^2 fold, whilst its closely related and pro-apoptotic family member,

E2Fl, is down-regulated by a factor of -5.7. After -70 hours E2F3 and E2Fl
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gene expression levels return near to baseline corresponding to a progression

towards a differentiated state before 96 hours post-PMA stimulation. Yet,

regardless of the hldh PCC between E2F3 gene expression and the miR-l7-92

cluster, the miRNA cluster is generally down-regulated (see Figure 10D).

Acknowledging that the miRNA cluster targets and inhibits a well known

RUNXI (AMLI) induced differentiation and proliferation pathway [113],

these results strongly suggest that PMA stimulation disfavours both E2F1

induced proliferative and E2Fl induced apoptotic pathways. Whilst, equally,

given that both ETSI and ETS2, components of the RUNXI differentiation and

proliferation pathway, ure up-regulated (see Appendix I X3), these results

indicate that PMA-treated monocytes up-regulate members of differentiation

pathways. In light of the above findings it can be hypothesized that since

members of the AP-l complex are concurrently up-regulated in the early stages

after PMA stimulation, monocytic differentiation is mediated by the M-CSF

receptor-ligand RAS signalling pathway and indirectly controlled by miR-17-

92 through the E2F TF family members E2F1 and E2F3. Generally, this

hypothesis seems to be plausible, since RUNXI is also an inhibitor of miR-17-

92 lll3l indicating its dual role to both suppress transcription of the pro-

proliferative miRNA cluster miR-17-9} and to mediate an M-CSF receptor

differentiation pathway. Additionally, pafferns of expression observed for miR-

17 -92 during monocytic differentiation are similar to previous analysis of miR-

17-92 expression levels during lung development [1 l4], supporting the general

involvement of miR- I 7-92 amongst differentiation pathways.
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TFAP2A (AP-2) and SPI are two TFs predicted to regulate the miR-17-92

cluster and are notably up-regulated along with the cluster in the first 20 hours

post-PMA stimulation. TFAP2A and SPl are known to activate transcription of

an enzyme involved in the sphingolipid metabolism consisting of several

metabolites which affect cellular proliferation [115]. TFAP2A and SPI

transcribe sphingomyelin phosphodiesterase I (SMPDI) during monocytic

differentiation in THP-1 cells after PMA stimuli U 151. SMPDI is required for

the cleavage of sphingomyelin to phosphocholine and ceramide. As ceramide

is a known inhibitor of proliferation [116], it seems reasonable that TFs of

SMPDI are up-regulated during differentiation. However, ceramide is also a

substrate for several other enzymes whose products have not been implicated

in proliferation, apoptosis or differentiation. Interestingly, miR-19a and miR-

l9b (part of the miR-I7-92 cluster), were predicted to target sphingosine kinase

2 (SPHK2) mRNA in four independent databases (see Methods). SPHK2 is an

enzyme that metabolizes downstream ceramide products. In the sphingolipid

metabolism, SPHK2 has two functions. First, it catalyses the production of

sphingosine l-phosphate from sphingosine, which is produced from ceramides'

and second, it catalyses the production of sphinganine l-phosphate from

sphinganine I 16]. Sphinganine and sphinganine l-phosphate have been shown

to inhibit and promote cell growth, respectively [116]. Thus, the predicted

targeting and down-regulation of SPHK2 by miR-l9a and miR-l9b in the first

20 hours post-PMA stimulation could prevent the metabolism of two anti-
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proliferative metabolites simultaneously, thereby inhibiting proliferation. PMA

stimulation is known to block proliferation of THP-I cells up to 24hrs [46).

Hence, an additional regulatory effect of TFAP2A and SPI on the sphingolipid

metabolism via the miRNA cluster miR-17-92 is proposed. TFAP2A/SPI

mediated transcription of SMPDI alone might not be enough to maintain an

anti-proliferative ceramide signal, as ceramide is metabolized by other factors.

On the other hand,TFAP2NSPl co-transcription of miRNAs targeting SPHK2

could provide an efficient and succinct means to retain the ceramide signal.
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2.5 Conclusions

The regulatory machinery that potentially affects transcription of miRNA

genes during monocytic differentiation was computationally analysed. The

methodology included the extraction of promoter regions for miRNA genes

defined by trimethylated histones, computational prediction of TFBSs to

establish TF+miRNA associations, and the use of time-course expression data

for TFs and miRNAs measured during monocytic differentiation to assess

reliability of the predicted TF+miRNA associations via time-lagged

expression correlation analysis.

Several TFs (CEBPB, CREBI, ELKI, NFE2L2, RUNXI, and USF2), which

are known to play a role in monocytic differentiation, were identified to have

an important influence on the regulation of miRNAs as well. In addition,

several other TFs (NFE2LI, E2F3, ATF2, HOXA4, SP3, and YYl) were

proposed to have a central role in the regulation of miRNA transcription during

the differentiation process. For several miRNAs (miR-21, miR-155, miR-424,

and miR-17-92) it was shown how their predicted transcriptional regulation

could impact the monocytic differentiation process.

The process of identifring a complete list of TF---miRNA associations is

hampered by the correct definition of promoter/regulatory regions being an

unresolved issue that has a great impact on all studies that deal with gene
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regulation. A recent set of promoters defined, based on the observation that

histones are generally trimethylated at lysine 4 residues at TSSs of genes, was

used. Due to the promoter definition employed by Marson et al. it was not

possible to extract regulatory regions for several miRNAs. Furthermore, the

subset of promoter regions defined by Marson et al. that were used in this

analysis range in length between 200 and -4,700 bp with 60 percent of the

utilised promoter regions being of length below 202 bp. Consequently, the

promoter set defined by Marson et al. allows for analysis of regulatory

elements primarily proximal to the TSS. Nevertheless, it has been well

documented [17,118] that proximal regulatory elements such as the TATA

box play an important role in type II polymerase gene transcription. However,

the promoter set utilised in this study, though possibly incomplete, represents

one of the first described sets of regulatory regions for miRNA genes.

It is important to note that the transcriptional circuitry described in the analysis

is specific towards monocytic differentiation expression data, as several of

TF-+miRNA associations were discarded due to missing/incomplete

expression data for either TF or miRNA. Furthermore, the expression based

approach is limited as mature miRNAs are not the direct product of the TF-

mediated regulation, but can undergo post-transcriptional regulation on the pri-

and pre-miRNA level [19]. Hence, it is possible that miRNAs that are

transcribed together as one primary transcript, show different expression

profiles on the mature miRNA level. The three main reasons that constrained
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the set of TF+miRNA associations determined in this study are as follows: l/

An incomplete promoter set for miRNA genes. 2l An incomplete/inaccurate

motif set for the prediction of TFBSs. 3l An incomplete expression set for TFs

and miRNAs. Each of the reasons impacts on the accuracy of the predicted

TF+miRNA associations.

Nevertheless, this analysis provides the first large-scale insights into the

transcriptional circuitry of miRNA genes in monocytic differentiation. Taken

together, the results suggest important regulatory functions of several TFs on

the transcriptional regulation of miRNAs. The regulatory networks discussed

here form only the starting point for an in-depth analysis of the regulatory

mechanisms involved. The predicted TF-miRNA associations and their

corresponding PCCs can provide the basis for a more detailed experimental

analysis of miRNA regulation during monocytic differentiation.
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2.7 Appendix I

Xl - Interpolated expression data for 34 mature miRNA

The file consists of 195 columns. The first column contains the mature miRNA

identifier. The second column contains the associated pre-miRNA identifier(s).

Column 3-194 contain the interpolated expression values ranging in half an

hour steps from 0 to 96 hours.

X2 - Predicted TX'+miRNA associations and their infered.RCCvalues

The file consists of three columns. The first column contains the TF. An

identifier consists of the Gene Symbol separated by an underscore with the

Entrez Gene id. The second column contains the miRNA identifier that forms

an association with the TF of the first column. The third column contains the

inferred PCC for the association, which is based on the expression data of the

TF and the mature miRNA associated to the miRNA(s). In total the file

contains 1,989 TF+miRNA associations.

)L3 - Interpolated expression data for 25E TFs.

The file consists of interpolated expression data for 258 TFs that are present in

the predicted TF+miRNA associations. Furthermore, the file consists of 194

columns. The first column is the TF identifier (Entrez Gene Id). Column 2-194

contain the interpolated expression values ranging in half an hour steps from 0

to 96 hours.
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Chapter 3

Predicting Human Transcription Factor

lnteractions from Primary Structure

3.7 Abstract

Combinatorial control is an important mechanism within the scope of

transcriptional gene regulation. Physical interactions between TFs play a

crucial role in this process. Knowledge about these interactions is scarce and

thus predicting these interactions will help in better understanding the complex

machinery involved in gene regulation. The present study attempts to develop a

system that is able to predict if t'wo TF interact. It is based on primary sequence

information of the participating TFs alone to minimise the data acquisition

overhead. Amino acid properties were utilised to construct simple

representations of TF pairs. A support vector machine was trained on known

examples of TF interactions to create a model that is able to classiff these TF

pairs. Cross-validation experiments demonstrated a prediction accuracy of 80.1

%o. Feature selection techniques led to a high reduction in the computational

resources necessary for model selection. Even though the system for TF

interaction prediction is of a simplistic nature, its performance is comparable to

much more complicated approaches for predicting protein-protein and TF

interactions.
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3.2 lntroduction

The transcriptional regulatory machinery that acts on the transcription of genes

is complex and not yet completely understood. TFs are proteins that regulate a

gene's transcription by binding in regulatory regions on genomic DNA [a].

They are found in the nucleus of cells where they often work cooperatively to

enhance or repress the transcription of various genes [6,7]. This cooperative

fi.rnctioning can be achieved through the physical interaction of TFs [6,7]. To

better understand the elaborate transcriptional machinery that acts within the

nucleus of cells, it is essential to know about these interactions.

The combinatorial regulation of genes has been studied extensively 178,120-

124). Here, groups of TFs were identified that work cooperatively to facilitate

their role on the transcription of genes or gene groups. The combinatorial

regulations described do not necessarily entail the physical interaction of the

participating TFs. However, to better understand the underlying mechanisms

that play a role in gene regulation, knowledge of TF interactions is of great

importance.

Protein-protein interaction (PPI) prediction gained a lot of attention over the

last decade. Various methods and tools exist that predict such interacting

proteins |25-129). These methods make use of manifold properties of proteins

and combinations thereof, such as functional categorisation and gene ontology

annotations [130], primary structure [13]-135], secondary, tertiary structure,
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and protein domain information U26,127,129,136-139], ortholog-based and

phylogenetic-based profiles [140,141], gene expression and other experimental

datall42), text mining 1128,1431, etc.

Predicting TF interactions can be seen as a subclass of the PPI prediction

problem that, unfortunately, is more complex. Members of TF families are

often, due to duplication, sequence-wise very similar to each other [44],

which makes a sequence based prediction of interactions difficult.

Furthermore, TFs are located in the same cell compartment, the nucleus,

making it impossible to utilise such discriminative factors as cellular

localisation as distinguishing attributes. Finally, information about known TF

interactions is scarce as compared to PPIs.

Former approaches for deciphering the combinatorial control of TFs have

included co-expression analysis [45], thermodynamic models based on time-

course microarray data 1146), relationships of TFBSs 1147,1481, or

phylogenetic footprinting and combinations of the afore mentioned methods

[49]. To aid future studies of combinatorial gene regulation, the present study

aims at predicting TF interactions computationally. As with computational PPI

predictions, a representation for an interacting TF pair has to be found with a

multitude of possibilities being available as mentioned before. Common to all

of these is that often it is difficult to acquire such information or the

information is not readily available at all. To circumvent these obstacles, the
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approach utilised here is based on protein sequence information alone. The

present analysis shows that even with minimal prior knowledge about TFs, it is

possible to achieve comparable prediction performance to more complicated

approaches. This analysis utilises amino acid (AA) properties for TF primary

sequences and combines these into a representation for TF pairs. The artificial

intelligence system employed to classiff these interactions is a support vector

machine (SVM) [50,151]. The SVM learns, based on examples, a model that

classifies positive and negative TF interactions. A brute-force grid search was

employed to find the SVM parameter combination with which a trained model

achieves best prediction performance. Different feature selection techniques

were tested to minimise the computational resources necessary for model

selection. A lO-fold cross-validation (CV) showed that the system presented

here performs with an accuracy of 80.10%o, while having a precision of 89.30

%o, arecall of 68.89Yo, and a specificity of 91.39% respectively. The advantage

of the here presented methodology over other more complicated methods lies

in its simplicity, which could be easily extended to include more complex data,

but yielded a comparable prediction performance nevertheless.

3.3 Methods

3.3.{ lnteracting Transcription Factors

TRANSFAC Professional database (version 11.4) [6,17] contains information

about TFs, TF families, DNA binding site, motifs for binding site prediction,
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etc. In addition, it contains information about interacting TFs. In total the

database contains 2,291 human TF interactions (based on the interaction of

TRANSFAC entities) mined from scientific literature. From these, all

interactions were sub-selected where each participating TF has AA sequence

information available in the database. In this manner, a total of 338 positive TF

interaction pairs (TRANSFAC entities) were extracted.

Negative examples of TF interactions were randomly chosen by associating

two TRANSFAC TF entities that have AA sequence information available. In

total, 1,184 TRANSFAC TFs have an associated AA sequence. Three different

classes of negative TF pairs were identified:

I Absolute negatives: None of the two TFs that form the pair is part of

the TFs forming the positive interactions.

ii/ Partial negatives: One TF that forms the pair is part of the TFs from the

positive interactions.

iii/ PPI negatives: Both TFs that form the pair are part of the TFs from the

positive interactions but the pair itself is not within the positive group

of interactions.

3.3.2 Feature Representation and Feature Vectors

The AAIndex database [ 52] (www. genome jp/aaindex,f) contains biochemical

and physicochemical properties for AAs collected from scientific literature. In
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total the database contains 544 AA properties. All properties that were

available for all 20 AAs were selected. This reduced the number of properties

that conformed with this condition to 531 (see Appendix II Y1). The feature

vector for a TF pair consists of two concatenated feature representations for

each participating TF. The feature representation F1 for a single TF / consists of

531 featuresfo, each representing the average of one of the 531 AA properties

p over its AA sequence, Fr: (fil,... fpstt).An individual feature fo for AA

property p is calculated as:

. -Z',=rP,J o --,,n

where n equals the protein sequence length, i the ith AA, and pi the value of

AA property p for AA i. Thus, each TF, disregarding the length of its AA

sequence is represented with the same length of feature representation. If an

AA in the sequence is either "X" or "I-I", then the AA was disregarded from the

averaging process.

To represent a pair of interacting TFs, the representations for individual TFs

got concatenated into one vector, consisting of 1,062 features (531 features

from each TF comprising the interacting pair). In order to avoid multiple

different representations of the same TF interaction pair caused by symmetry

of the interaction, the following condition for concatenation had to be met.

Consider a TF interaction A-8, where A and B are two TFs, then the first
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representation is always the one for the TF with the smaller molecular weight.

Lets assume that in the interaction above .B is the TF with the smaller

molecular weight, then the interactions between A and B is always expressed as

B-A.ln this marurer, the resulting feature vector for a TF interaction is always

unique.

3.3.3 Support Vector Machines

The artificial intelligence system utilised here for the classification task is a

SVM [50,151]. The inputs into a SVM are vectors of features of arbitrary

length (for one problem each vector must have the same length). A feature can

either be nominal (yes vs. no; present vs. not present) or continuous (real

numbers). The most common classification task is binary, which entails that

the SVM classifies a feafure vector into one of two classes (e.g. positive vs.

negative). To be able to train a SVM model, it is necessary that the SVM

"learns" on known examples of preferable both classes. Hence, the SVM

belongs to the class of statistical supervised learning methods (e.g. decision

trees [153], random forest [154] , etc.), as opposed to the class ofunsupervised

learning methods (e.g. clustering, independent component analysis [155], etc.).

Each of the vectors represents a point in a high-dimensional space (the number

of dimensions equals the number of features). The two classes of vectors form

clouds in the high-dimensional space, e.g. positive and negative TF interactions

(see Figure I l). The SVM tries to calculate a representation for a hyperplane
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that separates the two classes. In an ideal case the two clouds would be clearly

separated from each other so that such hyperplane is easily found. In real case

scenarios the clouds almost always overlap, thus making the construction of

such a hyperplane difficult. A new vector that is projected into the space is

mapped on one of the two sides of the hyperplane and thus classified into one

of the two classes. The representation of the hyperplane which the SVM

"learns" consists of the so called support vectors (see Figure l1) which are

vectors from the set of vectors used to train the SVM model. Support vectors

are the vectors with minimal distance to the theoretical hyperplane in the

region where the vectors of the two classes are closest to each other. The aim is

to maximise the margin of the support vectors to the hyperplane while

minimising the training error. The parameter c controls the trade-off between

margin and the emor.

The hyperplane presented in Figure 11 that is used to separate the two classes

is linear. For most problems this is generally not applicable, e.g. overlapping

clouds. The kernel technique aims to overcome this problem by mapping the

input data into an even higher dimensional space, where a linear separation is

possible U561. The Gaussian radial basis frurction kernel (rbf-kernel) is used in

this analysis. It is defined as:

-lx,-x,12K(x,,xi) = exp(1#)

where x; and xi ara two vectors where one of them is a support vector and a is

an adjustable parameter that determines the area of influence of the support
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vector over the data space. Larger values of o reduce the number of support

vectors, since each support vector covers more data space.

The SVM implementation used in the present analysis is SVMrist 1tSZ1

(http://svmlightjoachims.org/) which is free for academic use. Once trained

the SVM model can be utilised to classiff new vectors. The parameterT can be

used to apply different weights for penalties for wrongly classified positive and

negative examples. Once a new vector is submitted to a SVM model, the

decision function of the SVM outputs a value that indicates if the new

classified vector belongs to the positive or negative class. The threshold for the

decision function value th determines how to classifu a decision function value,

meaning that values greater than th are classified as positives and values less

than th classified as negatives. By default this threshold, th equals zero.
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Figure 11. Schematic of a SVM Glassification
The figure illustrates positive and negative examples (represented through plus signs
and minus signs) in two dimensional space. The SVM learned the representation of a
hyperplane, here illustrated through a grey rectangle that best separates the two
classes of examples from each other. The examples that lie on the edge of the
hyperplane are the so called support vectors (the actual representation learned by the
svM).
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3.3.4 Min-Max Scaling

In general it is good practice to scale the values for each separate feature before

presenting the feature vectors to a SVM. The scaling technique employed here

is commonly known as min-max scaling:

I For all values vTof featuref over all examples find minimum value vq-^i,

and maximum value u7-r*

iil For an individual value rarland featwef, calculate the new scaled value

This results in a scaling for each value for one feature between zero and one.

When a model is utilised that was trained on the scaled training set, Zs";n to

classiff examples of a test set, fr"r1, then the values of 4..t have to be scaled

before classification according to the minimum and maximurn values for each

feature found while scaling 766r. Thus, the scaled values of fl.rt do not

necessarily lie in the range of zero and one but are scaled according to fip6,

which is important for the classification task.

3.3.5 Model Optimisation and Performance Evaluation

Several performance measures are used to judge the performance of a

classification system that is based on machine learning. Considering the
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confusion matrix presented in Table 3, the precision (positive predictive value)

is defined as:

,l,D

Precision - t t

TP+FP

The precision is the percentage of real positives on all predicted positives. The

recall (sensitivity) is defined as:

Recall
TP

TP+FN

The recall is the percentage of predicted real positives on all positives in the

set. The specificity is defined as:

Specificity :TN
TN+FP

The specificity denotes the percentage of predicted real negatives on all

negatives in the set. The accuracy is defined as:

Accuracy _ TP+TN

TP+FP+TN+FN

The accuracy is the percentage of true prediction on all predictions.

The F-measure is the harmonic mean between precision and recall and is

defined as:

F-measure : (2* precision * recall) / (precision + recall)

Several parameters of the SVM can be tweaked to enhance the performance of

the classification. The parameters changed in this study in order to enhance the

performance are the trade-off factor c, the cost factor j, the o parameter of the

rbf-kernel function, and the threshold for the decision function th (see above).
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The method utilised for model selection was a brute-force grid search over the

parameter space. The parameters for c, j, and o were tested on a exponentially

growing sequence (c :2-s,2n,...,23; j :2-t,2u,...,2"; o:2-rs,2-'0, ...,2').

The threshold for the decision function, th was varied from -0.99 to 0.99 in

steps of 0.01. In total, 612,522 different parameter combinations were tested.

Each parameter combination was tested with a l0-fold CV and the

performance measures calculated as the average over the ten CV runs.

Table 3: Gonfusion tatrix

ll Actual class

PosiUve Negative

,o
C
E
!o
fl
(, il

Eo
L
o.

o
:E
6o
O.

True positive
(TP)

False positive
(FP)

o
.z+,oooz

False negative
(FN)

True negative
(TN)

The table indicates the nomenclature for an outcome of a prediction in perspective to
the actualvalue.

3.3.6 Feature Selection Based on the Mahalanobis Distance

During feature selection, the task was to find the best combination of features

with which help it is possible to achieve similar performance for the

classification task and to speed up the model selection.
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Given two vectors with random variables x and y sampled from the same

distribution, and the covariance matrix S, the Mahalanobis distance [158] is

defined as:

d(x,v)= (r-y)'s-'(r-y)

The same Matralanobis distance can be used to calculate the distance between

two matrices. Here each matrix contains vectors of one of the two classes. The

aim is to find the subset of features that maximises the distance between the

two classes. An iterative process was conducted:

il Find feature f1 that ma:<imises the Mahalanobis distance between the

two classes.

iil Delete featurel from further investigation and put/ into feature group

(,
b'

iii/ Find next feature f" that maximises together with features in g the

Mahalanobis distance between the two classes.

ivl Putt" into feature group g and deletefr from matrices.

vl Redo steps iii/ and iv/ until no improvement in the Matralanobis

distance can be achieved.

The result is a group of features g that maximises the distance between the two

matrices and thus between the two classes.
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3.3.7 Feature Selection Based on t€tatistic

The second approach for feature selection ranks the features according to the t-

statistic, which is based on Student's t-test [159,160]. The underlying

assumption is that the values of each feature for each separate class are

sampled from a normal distribution with equal variances. The t-statistic

assesses the quality of each feature to separate members of the positive and

negative class, while comparing the mean values of a specific feature in both

classes. Each feature is evaluated independently and is assigned a t-value. The

higher the t-value for a feature, the better the feature is suited to separate the

two classes. The t-statistic is calculated for each feature. Sorting the list of

features based on their calculated t-values, results in a ranked list of features

(ranked according to their suitability to separate the two classes). The formula

utilised to calculate the t-value I is:

t- lp,-p
11

nx fry

nr+nr-2

where x and y are two vectors of values of the considered feature of the two

classes x and r(positive and negative), n, is the number of elements inx and n,

is the number of elements in y. Fx and lty Ta the mean values of x and y. with

the list of featues ranked according to the t-value in decreasing order, it is

possible to create feature vectors of any length n (n <: 1062) based on the n

features with highest t-value.

.[]0, - p.)' .fo, - r,Y)
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3.4 Results

In the following, four experiments were conducted. First, the performance

evaluation of the methodology utilising the complete feature set is presented.

Subsequently, the best models were tested on independent data sets of TF

interactions and on data with randomised class labels. Finally, feature selection

techniques were applied to reduce the feature space and speed up the model

selection and performance evaluation procedure.

3.4.1 Performance Evaluation Using the Complete Feature

Set

Examples of positive TF interactions were selected from the TRANSFAC

database (see Methods). In total, it was possible to extract 338 TF interactions.

The number of TFs (TRANSFAC entities) comprising these interactions is

212. The distribution of sequence lengths of this set of TFs is presented in

Figure 12B. The mean and standard deviation of the sequence lengths is 546.54

AAs and 400.08 AAs, respectively.

The model utilised for the classification task should be able to distinguish

between positive and negative TF interactions. Thus, it is necessary to present

negative examples to the artificial intelligence system as well. No database

exists where information about non-interacting TFs is stored. Thus, a set of TF

interactions that do not appear in the positive set of TF interactions had to be

randomly sampled. Three groups of negative interactions were identified (see
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Methods). ll2 TF interactions from each group were sampled at random,

resulting in a set of 336 negative TF interactions. These are comprised out of

493 different TFs (TRANSFAC entities). Figure l2C shows the length

distribution of the AA sequences of all TFs comprising the randomly sampled

negative set of TF interactions. The mean and standard deviation of the

sequence length in number of AAs is 520.17 and 438.67, respectively. The

distribution of sequence lengths of the combined set of 566 unique TFs from

the positive and negative set of TF interactions is shown in Figure l2A. The

mean and standard deviation of the combined unique set of TFs is 523.41 AAs

afi 438.25 AAs, respectively.

For the complete set of 674 positive and negative TF interactions, all 1,062

features were extracted and the feature vectors created (see Methods). The set

of 674 positive and negative TF interaction feature vectors were randomly split

into ten groups, preserving the same ratio of positives and negatives within

each group. The model selection and performance evaluation was done

utilising a l0-fold CV, where in each step the respective training set was scaled

(min-mo< scaling, see Methods) and the respective testing set scaled

accordingly to the training set (using the maximum and minimum values from

the respective training set).

The precision versus the recall of all tested parameter combinations is

presented in Figure 13A. The receiver operating characteristic (ROC) curve for
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the same parameter combinations is presented in Figure 13B. The best

achievable accuracy was 80.10%. The best F-measure was found tobe79.25o/o.

The model selection and performance evaluation process ran on a Linux

Pentium 4 core duo machine with a 1.8 GHz CPU and 2GB of memory in-92

hours. 612,522 different parameter combinations were tested and evaluated.
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Figure 12. Histogram of Sequence Length Distribution
A/ Presented is a histogram with 100 bins of the length of all sequences in the
complete set of 674 TF interactions. 566 different protein sequences are shown in the
figure. The average sequence length is 523.41 AAs and the standard deviation is
438.25 AAs. B/ Presented is a histogram with 100 bins of the length of all sequences
in the positive set of 338 TF interactions. 212 different protein sequences are shown in
the figure. The average sequence length is 546.54 AAs and the standard deviation is
400.08 AAs. G/ Presented is a histogram with 100 bins of the length of all sequences
in the negative set of 336 TF interactions. 493 different protein sequences are shown
in the figure. The average sequence length is 520.17 AAs and the standard deviation
is 438.67 AAs.
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Figure 13. Performance Results of the GV with the Complete Feature Set
A/ Depicted is the precision versus the recall of all 612,522 dilterent parameter
combinations tested during the 10-fold CV on the TRANSFAC derived data with all
available features. The typical trade-off between precision and recall is evident. B/
Presented is the ROC-curve. Each dot represents again a performance result of one
parameter combination tested during the 1O-fold CV on the TRANSFAC derived data
with all available features. Here the false positive rate is plotted versus the true
positive rate.
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3.4.2 Performance Evaluation on Independent Data Sets

After evaluating the performance of the methodology using CV, it is of interest

to see how the method performs on independent sets of TF interactions.

Several databases provide data about PPIs, such as the Human Protein

Reference Database (HPRD; [161]; http://www.hprd.org/), the Biomolecular

Interaction Network Database (BIND ; | 62,1 631 http ://www.bind.ca.I), the

Molecular INTeraction database (MINT; [6a];

http://mint.bio.uniroma2.itlmint/Welcome.do), the IntAct database [65,166]

(http/www.ebi.ac.uk/intact/), and the Database of Interacting Proteins (DIP;

[167,168]; http://dip.doe-mbi.ucla.edr:/dip/Ivlain.cgi). A recent collection of TF

interactions from these sources was downloaded [78]. From these, all TF

interactions from the public sources described above were extracted. Each TF

within these interactions is represented by the Entrez gene identifier of the

corresponding gene. The protein sequences for all Entrez gene identifiers were

assigned using Ensemble's BioMart system [83]. A TF represented by a gene

identifier might have multiple protein sequences assigned to itself, due to the

nature of gene-protein relations. This led to various feature representations for

single TFs (see Methods). Hence, the feature vector for a TF interaction, which

consists of the concatenated feahue representations of two TFs, is not always

unique.
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In the following, a TF interaction is represented by concatenating each possible

combination (similar to a cross-product) of the feature representation of each

protein sequence associated to the first and second TF. This led to several

different feature vectors for the same TF interaction, due to the multiple

assigned protein sequences per TF. The positive interactions were created for

each source separately and for one cofilmon set of all unique interactions. The

number of interactions and number of feature vectors for each group is

presented in Table 4. The number of unique TFs that are part of all interactions

is 1,344. The distribution of the sequence lengths of all1,344 TFs is presented

in Figure 14. 1,907 sequences are associated to the 1,344 TFs. The average

sequence length in number of AAs is 607.14 and the standard deviation is

491.39 respectively.

Negative examples were sampled at random. Here, two TFs from the set of

1,344 unique TFs were selected at random. If they were not known to interact,

feature representations of their protein sequences were created, associated to

each other (again similar to a cross-product), and the feature vectors created as

described above. Negative feature vector examples were sampled for each

independent set in a similar amount as positive feature vector examples are

available for the respective independent set (see Table 4). Thus, each

independent set consists of similar amounts of positive and negative TF

interaction feature vector examples.
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Set
Number of

pocltve',
lnteracffonr

Number of
porlfivo faaturu,

vectordr

Number of
nogatlve

lnt6ractions

Number of
neg3tlvo feature

vectors
BIND
DIP

INTACT
M!NT
HPRD
ALL

668
204
631
839
4907
5213

1528
574

1417
1935

11

11

190
944

838
304
689
1024
5609
6986

1528
574

1417
1934

11189
11944

Table 4. Number of Positive and Negative TF lnteractions and Unique
Feature Vectorr for Each lndependent Set of Interactions

The table presents the number of unique TF interaction and unique feature vector
representations for each of the independent set of interactions. Presented are the
numbers for the positive interactions and the randomly sampled negative interactions.
The sets "ALL" consist of all unique TF interactions over all utilised database sources.
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Figure 14. Histogram of the sequence Lengths of rFs in the lndependent
Sets of TF interactions

Presented is a histogram with 100 bins of the length of all 1,907 sequences of the
1,344 TFs from the independent sets of TF interactions. The average sequence length
is 607.14 AAs and the standard deviation is 491.39 AAs respectivety.
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In order to classifu the new data sets, a model is necessary that performs the

classification task. Two strategies to derive such a model were applied. The

first utilises the parameter combinations found during the CV that yielded best

performance results in terms of accuracy and F-measure. In this manner, two

different parameter combinations were chosen (see Table 5). The complete set

of vectors (674) derived from TRANSFAC was scaled. Each individual

independent test set was scaled accordingly to the former scaling of the

TRANSFAC vectors. Two models were created utilising the scaled

TRANSFAC vectors and employed to classifr the scaled independent sets.

The second strategy involved a different model selection and training

methodology. The complete TRANSFAC feature vector set of positive and

negative interactions was randomly split into two equal sized sets of 337 TF

interactions, while preserving the ratios of positive to negative interactions in

either subset. one of the subsets was denoted as the "Training set" while the

other was denoted as the "Testing set". The "Training set" of feature vectors

was once again scaled. Afterwards, scaling of the "Testing set" was performed

accordingly to the "Training set". A grid search with the same value ranges as

denoted above for the SVM parameters was performed. The scaled "Training

set" was utilised for creating the model with the chosen parameter combination

and the scaled "Testing set" was employed to evaluate the model. In this

manner all parameter combinations were tested. Once again two parameter

combinations were chosen for model development. The first parameter set
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according to the best accuracy and the second according to the best F-measure

on the "Testing set" (see Table 5). The results in form of precision versus recall

of all tested parameter combinations are presented in Figure l5A. The

respective ROC-curve is presented in Figure 15B.

To summarise, four different models derived from the TRANSFAC TF

interactions were selected for further investigation of their performance on the

independent sets of TF interactions:

l. The model that achieved the best accuracy during 10-fold CV

2. The model that achieved the best F-measure during l0-fold CV

3. The model that achieved the best accuracy on the "Testing set" with the

Training-Testing setting

4. The model that achieved the best F-measure on the "Testing set" with

the Training-Testing setting

To create the model 1 and 2 all scaled TRANSFAC vectors were utilised,

whereas for models 3 and 4 only the scaled "Training set" of the second

strategy explained above was used. The performance of each model on the

independent sets of TF interactions are presented in Table 6.
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TP FP TN FN

1

2
I
4

I
1

0.25
0.25

0.18
-0.16

89.30
75.55

68.89
83.71

91.39
72.31

80.10
78.02

77.35
79.25

23.3
28.3

2.9
9.3

30.7
24.3

10.5
5.5

3
1

2
1

I
8

0.125
0.125

-0.03
-0.03

74.73
71.36

82.25
86.98

72.02
64.88

77.15
75.96

78.31
78.40

139
147

47
59

1

1

21
09

30
22

Table 5. Selected todels, their Parameter Gombinations, and
Performance on their Respective Test Data

Presented are the four chosen models for application on the independent sets of TF
interactions. Highlighted numbers, indicate the method for selecting the respective
model (highest accuracy versus highest F-measure). The first two models were
chosen from the 10-fold CV runs, whereas the model 3 and 4 have been selected
utilising a simple training and testing set methodology (see main text). All performance
measures for model 1 and 2 represent averages over the CV runs. This is the reason
why the numbers for TP, FP, TN, and FN are floating point numbers.
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Table 6. Prediction Performance of the Four Models on the lndependent
Sets of TF lnteractions

r ll',lll'iii,iliiiiil il|ir,rirrt.

ItP-dni,

!rir,r,I,,1,1, i,,,,.,.,,,.,

lhdefndent sat

.Hi
>qH

lritrir Oi lrrl.rlll.l

s
,'.rr liitir (l rrlir llllll.l,o

' Lri
"B
lt l',1 i, t . i :.1111i,, '

._.,trr,r.rllt,

rli.',',S''
frlt

r,iilliiilrrrr O i

. E','l

l.'l ltlt ll: ", r i..,r,

,'..,,,...,.s.,.',,

{a
(r.
rF
ooc

.gD

,li - : -

FI\c+
H

L(,
Cl
L!t

.., u...,',r,t'''(l " '

r'. ( ''

Il-ls
lHtoILl=t6Ir!loIFllr.
I

I

BIND
DIP

INTACT
MINT
HPRD
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80.14
82.97
70.68
74.50
79.69
78.77

29.58
26.31
13.27
20.98
24.48
23.89

92.67
94.60
94.50
92.81
93.76
93.56

61.13
60.45
53.88
56.89
59.12
58.72

43.21
39.95
22.34
32.74
37.45
36.66

2

BIND
DIP

INTACT
MINT
HPRD
ALL

67.31
70.59
59.68
64.21
67.46
67.00

48.10
48.08
31.55
40.05
45.33
44.63

76.64
79.97
78.69
77.66
78.13
78.01

62.37
64.02
55.12
58.85
61.73
61.32

56.11
57.20
41.27
49.33
54.22
53.58

3

BIND
DIP

INTACT
MINT
HPRD
ALL

65.43
67.16
54.83
59.94
63.21
62.92

53.27
55.92
34.86
41.45
48.26
47.70

71.86
72.65
71.28
72.29
71.91
71.89

62.57
64.29
53.07
56.86
60.08
59.79

58.73
61.03
42.62
49.01
54.73
54.26

I

BIND
DIP

INTACT
MINT
HPRD
ALL

61.88
61.91
53.66
58.91
60.42
60.11

62.37
64.29
46.51
52.30
58.21
57.54

61.58
60.45
59.85
63.50
61.86
61.81

61.98
62.37
53.18
57.90
60.03
59.67

62.13
63.08
49.83
55.41
59.29
58.80

Presented are for all four models the performance results on each independent set of
TF interactions.
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Figure 15. Performance Results of the GV during Uodel Selection for the
lndependent Test Sets

A/ Depicted is the precision versus the recall of all 612,522 dillerent parameter
combinations tested with the Training-Testing setting on the TRANSFAC derived data
with all available features. The typical trade-off between precision and recall is
evident. B/ Presented is the ROC-curve. Each dot represents again a performance
result of one parameter combination tested with the Training-Testing setting on the
TRANSFAC derived data with all available features. Here the false positive rate is
plotted versus the true positive rate.
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3.4.3 Performance Evaluation with Randomized Glass Labels

To evaluate the chosen models further, and to see if they do not represent only

artefacts learned from random data, an additional evaluation step was

performed. First the models selected utilising the CV were evaluated. The

complete scaled TRANSFAC data set was used to create the models I and 2

from the previous section. The same TRANSFAC data was chosen for testing

but the labels (positive and negative interaction) beforehand randomly shuffled.

This was performed 100,000 times and the average performance over the

100,000 prediction steps calculated. The calculated average performance is

presented in Table 7. In the following the models 3 and 4 from the previous

section were evaluated. Here, the scaled "Training data" was employed to

create the models. These were tested on the scaled "Testing data" with

permutated labels. Here, 100,000 different permutations were tested as well

and the average performance calculated (see Table 7).

Table 7. Prediction Perfiormance with Randomized Glass Labels

The table presents the performance of the four selected models on their individual test
data with randomized class labels. The class labels have been randomized 100.000
times and the average performance measures are depicted. As expected is the
performance around 50%.

'i. r '... ..t. i):.::. :',

ilodel
;i, , '.i, 'lriif..tl

Prechlon:
W

Recall
P,6l

.ri..:i.'

Specificlty
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Phl

, .1.:.. 
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.,

F-ileasure
Phl

1

2
3
4

50.14
50.14
50.1 5
50.1 5

50.14
49.99
55.1 I
61.13

49.84
49.99
44.81
38.87

49.99
49.99
50.01
50.03

50.14
50.06
52.55
55.1 0
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3.4.4 Feature Selection Based on the Mahalanobis Distance

A feature selection was performed to find a smaller Soup of features that is

able to distinguish the positive and negative TF interactions in a similar fashion

as when utilising the complete set of available features. After randomly

splitting the whole set of TRANSFAC derived feature vectors into half, the

feature selection was performed on one half ("feature selection set"), and

evaluated on the other half ("evaluation set"). Thus, the feature selection was

run on 337 vectors (see Methods) and produced a subset of 34 features (see

Table 8). The 34 features were extracted for each vector of the "evaluation

set". Furtherrnore, the "evaluation set" was split into ten goups for CV

purposes, preserving the ratio of positives to negatives in each group. Each

CV-training group was scaled and the respective CV-testing groups scaled

respectively. Afterwards, the model selection and performance evaluation was

done with a lO-fold CV, utilising the same brute-force grid search as

mentioned earlier. Thus, the performance of the sub-selected features was

evaluated with a l0-fold CV on the "evaluation set" that was not utilised to

select the features in the first place.

The precision versus the recall of all tested parameter combinations is

presented in Figure 16.4'. The ROC curve for the same parurmeter combinations

is presented in Figure 168. The best achievable accuracy was 76.53%. The best

F-measure was found tobe75.5loh.
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The model selection process with the reduced feature set and only half the

TRANSFAC data ran on a Linux Pentium 4 core duo machine with a 1.8 GHz

CPU and zGB of memory in -7 hows. 612,522 different parameter

combinations were tested and evaluated.
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ARGP82O102
AURR98O103
cHoP780206
cHoP780211
FAUJ88O1 12
GARJ73O1O1
GEtM800103
GUOD860101
KANMSOOl02
MErH800103
NAKHgOOl06
RACS77O1O1
RtcJ880106
wtMW960101

woLR810101
AURR98O102
BHAR88O1O1
cEDJ970105
cHoP780204
cHoP780214
rsoY800105
NAKHg2O1O1
oo8M850102
oo8M850103
PALJ8101 13
PONP800106
PRAM82O103
QrAN880123
RACS820107
RtcJ880103
RtcJ880107
TANS77O106
TANS77O109
WERD78O103

Table 8. Features Selected the tahalanobis Distance

TF1
TF1
TF1
TF1
TF1
TF1
TF1
TF1
TF1
TF1
TF1
TF1
TF1
TF1

TF1
TF2
TF2
TF2
TF2
TF2
TF2
TF2
TF2
TF2
TF2
TF2
TF2
TF2
TF2
TF2
TF2
TF2
TF2
TF2

Signal sequence helical potential
Normalized positional residue frequency at helix termini N"
Normalized frequency of N{erminal non helical region
Normalized frequency of C-terminal non beta region
Negative charge
Partition coefficient
Alpha-helix indices for beta-proteins
Retention coefficient at pH 2
Average relative probability of beta-sheet
Average side chain orientation angle
Normalized composition from animal
Average reduced distance for C-alpha
Relative preference value at N3
Free energies of transfer of AcW|-X-LL peptides from
bilayer interface to water
Hydration potential
Normalized positional residue frequency at helix termini N"'
Average flexibility ind ices
Composition of amino acids in nuclear proteins (percent)
Normalized frequency of Nterminal helix
Frequency of the 3rd residue in turn
Normalized relative frequency of bend S
AA composition of CYT of single-spanning proteins
Optimized propensity to form reverse turn
Optimized transfer energy parameter
Normalized frequency of turn in all-alpha class
Surrounding hydrophobicity in turn
Correlation coefficient in regression analysis
Weights for beta-sheet at the window position of 3
Average relative fractional occurrence in AO(i-1)
Relative preference value at N-cap
Relative preference value at N4
Normalized frequency of chain reversal D
Normalized frequency of coil
Free eofa to alh

The table presents the 34 sub-selected features derived through the approach that
was based on the Mahalanobis distance (see Methods). The first column indicated the
position in the features vector. Each feature appears twice in the feature vector
representation for a TF interaction (once for each TF comprising the interaction). lf the
entry in the column indicates 'TF1" ('TF2"), then the feature was selected from the first
(second) 531 features of the first (second) TF. The second column contains the
AAlndex identifier for the AA property. The third column contains a short description of
the property taken from the AAlndex database.
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Figure 16. Performance Results of the CV with Selected Featurec
Extracted through tahalanobis Distance

A/ Depicted is the precision versus the recall ol all 6'12,522 ditferent parameter
combinations tested during the 1O-fold CV on the TRANSFAC derived "evaluation set"
with 34 features, selected through the Mahalanobis distance. The typical trade-off
between precision and recall is evident. B/ Presented is the ROC-curve. Each dot
represents again a performance result of one parameter combination tested during the
10-fold CV on the TRANSFAC derived "evaluation set" with 34 features, selected
through the Mahalanobis distance. Here the false positive rate is plotted versus the
true positive rate.
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3.4.5 Feature Selection Based on t€tatistic

The second feature selection approach utilised the t-statistic (see Methods) to

calculate for each of the 1,062 features the t-value. Again, the complete

TRANSFAC set of TF interactions was randomly split into half. The feature

selection was performed on one half of the data ("feature selection set") and

the model selection and performance evaluation on the other half of the data

("evaluation set"). The ordered t-values of all 1,062 features are presented in

Figure l7A. The distribution of t-values is shown in Figure l7B. The top 25

features with highest t-value where selected from the ranked list of features

(see Table 9). The 25 features for each of the 337 feature vectors of the

"evaluation set" were sub-selected. The vectors were subsequently divided into

l0 equal sized groups for CV purposes while preserving the ratio of positive to

negative examples in each set. Scaling of each CV-training and CV-testing set

was performed as described above. Finally, the brute-force grid search with a

l0-fold CV was run. The results in form of the precision vs. recall plot and the

ROC-curve of the grid search are presented in Figure 18A and Figure l88. The

best accuracy and F-measure achieved during CV was 72.15% and 73.01%o,

respectively. The CV with the sub-selected features and half the TRANSFAC

data ran on a Linux Pentium 4 core duo machine with a 1.8 GHz CPU and 2GB

of memory in -8 hours. 612,522 different parameter combinations were tested

and evaluated.

91

http://etd.uwc.ac.za/



t-Value AAlndex
lden0fler

6.5983
6.4810
6.1823

6.1 205
5.9698

5.8427
5.7012

5.6225
5.4939
5.4921
5.4850
5.4611

5.3822
5.3736

s.3367
5.2824
5.2719

5.1449
5.1321
5.1304

5.1222
5.0781
5.0686
5.0659

5.0147

RACS82O107
oo8M850102
vtNM940103

2AS8820101
PALJ8101 12

BAEKOsOlOl
wtMW960101

CASG920101
2458820101
NAKHg2O103
SUYMO3OlOl
FUKSO1Ol04

SNEP66O103
NADHOlOlOS

GEOR030104
SUYMO3OlOl
GUYH8sO102

ROBB7601 1 1

WERD78O101
FUKSO1Ol 12

c4SG920101
QrAN880122
GARJ73O1O1
vtNM940101

vtNM940104

TF

TF2
TF2
TF2

TF2
TF2

TF2
TF1

TF2
TF1
TF1
TF2
TF1

TF2
TF2

TF2
TF1
TF2

TF1
TF2
TF1

TF1
TF2
TF2
TF1

TF1

Table 9. Features Selected using t-statistic

AAlndex descripton

Average relative fractional occurrence in A0(i-1)
Optimized propensity to form reverse turn
Normalized flexibility parameters (B-values) for
each residue surrounded by one rigid neighbours
Dependence of partition coefficient on ionic strength
Normalized frequency of beta-sheet in alpha/beta
class
Linker index
Free energies of transfer of AcW|-X-LL peptides
from bilayer interface to water
Hydrophobicity scale from native protein structures
Dependence of partition coefficient on ionic strength
AA composition of EXT of single-spanning proteins
Linker propensity index
Surface composition of amino acids in nuclear
proteins (percent)
Principal component ll!
Hydropathy scale based on self-information values
in the two-state model (25o/o accessibility)
Linker propensity from 3-linker dataset
Linker propensity index
Apparent partition energies calculated from Wertz-
Scheraga index
lnformation measure for C-terminal turn
Propensity to be buried inside
Entire chain composition of amino acids in nuclear
proteins (percent)
Hydrophobicity scale from native protein structures
Weights for beta-sheet at the window position of 2
Partition coefficient
Normalized flexibility parameters (B-values),
average
Normalized flexibility parameters (B-values) for
each residue surrounded one id hbours

The table presents the 25 sub-selected features derived through the approach that
was based on the t-statistic (see Methods). The first column indicated the position in
the features vector. Each feature appears twice in the feature vector representation for
a TF interaction (once for each TF comprising the interaction). lf the entry in the
column indicates "TF1' ('TF2"), then the feature was selected from the first (second)
531 features of the first (second) TF. The second column contains the calculated t-
value for the feature. The third column contains the AAlndex identifier for the AA
property. The fourth column contains a short description of the property taken from the
AAlndex database.
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Figure 17. t-statistic Results
A/ Shown is the calculated t-value for each feature, ordered according to the t-value.
The figure shows that only a few features have a high t-value. B/ Shown is the
distribution of t-values in form of a histogram with 100 bins.
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Figure 18. Performance Results of the GV with Selected Features
Extracted through t-statistic

A/ Depicted is the precision versus the recall of all 612,522 different parameter
combinations tested during the 1OJold CV on the TRANSFAC derived "evaluation set"
with 25 features, selected through t-statistic. The typical trade-off between precision
and recall is evident. B/ Presented is the ROC-curve. Each dot represents again a
performance result of one parameter combination tested during the 1O-fold CV on the
TRANSFAC derived "evaluation set" with 25 features, selected through t-statistic.
Here the false positive rate is plotted versus the true positive rate.
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3.4.6 Performance Evaluation on lndependent Sets with

Mahalanobis Distance Sub-Selected Features

Because the evaluation of the feature selection was done on the "evaluation

set" (see above), the model creation for testing the independent sets was done

on this scaled "evaluation set". The complete "evaluation set" with only the 34

selected features, was scaled and the SVM models created. The models that

were chosen for evaluation on the independent sets were selected from the CV

results of the "evaluation set" (see above). Two models were chosen; the one

that achieved the best accuracy ("Model l") and the one that achieved the best

F-measure ("Model 2") during CV (see Table l0). The 34 features from Table

8 were sub-selected for each feature vector of each independent set of TF

interactions (see Table 4) and scaled according to the "evaluation set".

Afterwards the two models, created with the parameters presented in Table 10,

were utilised to classify the TF interactions from each independent set. The

results are presented in Table I l.
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Table 10. tahalanobis Distance: Selected iiodels, their Parameter
Combi and Performanco on their Test Data

Presented are the two chosen models for application on the independent sets of TF
interactions. Highlighted numbers indicate the method for selecting the respective
model (highest accuracy and highest F-measure). The two models were chosen from
the 10-fold CV runs. All performance measures represent averages over the CV runs.

Table ll. Prediction Perfornance on Independent Data Set with the
Features Selected h tahalanobis Distance

Presented are for the two selected models the performance results on each
independent set of TF interactions. Only the 34 features selected through the
Mahalanobis distance were utilised from each independent set of interactions.
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3.4.7 Performance Evaluation on lndependent Sets with t-

Statistic Sub€elected Features

Two models were chosen from the CV run for further investigation on the

independent sets of TF interactions. The models were once again selected

based on best average accuracy and F-measure during CV on the t-statistic

"evaluation set" (see Table 12). The 25 features, selected based on t-statistic

(see Table 9), were extracted for each feature vector of the "evaluation set" of

the TRANSFAC data. The complete "evaluation set" was scaled using min-

max scaling and the two SVM models created utilising the parameters shown

in Table 12. The same 25 features were extracted for each feature vector of the

independent sets of TF interactions (see Table 4). Each of the independent sets

was scaled according to the "evaluation set" of TF interactions used for

creating the models. Subsequently the two models were used to classiff each

feature vector of the independent sets. The results of the classification are

presented in Table 13.
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Table 12. t-statistic: Selected todels, their Parameter Gombinations, and
Performanco on their Respective Test Data

Presented are the two chosen models for application on the independent sets of TF
interactions. Highlighted numbers indicate the method for selecting the respective
model (highest accuracy versus highest F-measure). The two models were chosen
from the 10-fold CV runs. All performance measures represent averages over the CV
runs. This is the reason why the numbers for TP, FP, TN, and FN are floating point
numbers.

Table 13. Prediction Perfornance on lndependent Data Set with the
Features Selected through t-statistic
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independent set of TF interactions. Only the 25 features selected through the t-statistic
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3.5 DLscussion

Despite the variety of experimental techniques to verify PPIs, e.g. protein chips

[169], two-hybrid based methods [170], etc., the information gained through

these methods covers up to now only a fraction of the PPIs involved in

biological processes. lnformation about experimentally verified TF

interactions, which form a subclass of PPIs, is scarce.

Approaches for the deciphering of combinatorial gene regulation included co-

expression analysis [45], thermodynamic models based on time-course

microaray data 1146l, or relationships of TFBSs 1147,1481. The corporative

regulation of genes by multiple TFs requires often the physical interaction of

these TFs [6,7]. In order to support future studies that deal with combinatorial

gene regulation, the present study implements a computational approach for

predicting if specific TFs interact.

The task of predicting TF interactions is comparable to the task of predicting

PPIs. Most methods for predicting PPIs need a great deal of information to

represent protein pairs and to predict protein synergisms. Often this

information is difficult to acquire or is sometimes not readily available.

Prediction of PPIs has been done before solemnly from sequence information

[3]-134] to circumvent the obstacles of the requisition of the multitude of

data. Bock et al. made use of k-mers of AAs to infer PPIs by AA properties
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[31] and Shen er al. by k-mer frequencies [133]. The former method made use

of a small selected set of AA properties and an undefined method for reducing

the feature space of the TF interaction representation to avoid the problem of

having vectors of different length, due to different protein sequence lengths.

The latter method only focuses on frequencies of AA triads that have been

classified into groups of AAs with similar properties, and a newly proposed

kernel method to circumvent the problem of symmetry of feature vectors

(Proteinl-Protein2 equals Protein2-Proteinl). Pitre et a/. utilised the PAM120

similarity matrix to compare and score short AA sequences of individual

partners of a hypothetical interaction with the sequences of proteins that are

known to interact U32). Guo et al. used a fixed set of seven distinct

physicochemical properties to construct feature vectors based on auto

covariance and thus circumvent the problem of vectors that differ in length

[134]. On the other hand, they did not address the problem of symmetry in

protein pairs. Van Dijk et al. focused on specific TF families and utilised short

motif sequences found in sequences of TFs to predict specific TF interactions

with the help of a random forest feature selection approach [135].

Most of these methods for predicting PPIs achieved a prediction accuracy of

around 80%. Shen et al. achieved 83.9%o accuracy for the prediction of human

PPI. Van Dijk et al. predicted interaction between specific TF families and

achieved for different families varying prediction accuracy ranging from 60-

90%. The PPI prediction method by Guo et al. achieved -88% in terms of
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accuracy, but was solely applied to yeast data [134] and had a very large

training base available.

The method implemented here utilises only primary protein sequences to build

a representation for a TF interaction pair without any additional prior

knowledge to minimise the complexity in feature vector generation. The

technique applied here for representing features is based on an averaging

scheme of AA properties. It takes the protein sequence as a whole into account

and does not put preference onto certain parts ofthe sequence. Even though the

methodology is simple, it might obscure certain domain specific properties,

particularly as most parts of the protein sequence are not necessary for the

interaction and thus their influence in the averaged values might hamper the

performance. Encouragingly though, the distributions of sequence lengths in

the utilised positive and negative data sets are similar (see Figures 12 and 14),

which leads to the assumption that such an effect would affect both sets in the

same manner.

The artificial intelligence system used for the classification of the TF

interactions is based on a SVM. SVMs have been extensively utilised in

various tasks in computational biology. Examples are, but are not limited to,

analysing DNA microarray data |71-1731, prediction of protein localisation

1174-1761, protein secondary structure prediction 1177,1781, biomedical text

mining U79,1801, functional gene classification [181], etc.
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The performance of the SVM model applied in the present study achieved a

prediction accuracy of 80.10% on the TRANSFAC data set as evaluated by l0-

fold CV (see Figure 13). When selecting an appropriate model, one can

observe the typical trade-off between precision and recall (see Figure 13A).

Generally, the performance of the model with the highest achieved accuracy or

F-measure is chosen and reported. Different tasks require that e.g. the recall of

the model should be a hundred percent, so as to not lose any positives that are

within the set. Other tasks, on the other hand, require a precision of one

hundred percent so as to be absolutely sure about a positive predicted element.

These models are not necessarily the ones with highest accuracy or F-measure.

However, here the models with highest accuracy and F-measwe were reported

(see Table 5) to allow for a comparison with the former approaches for PPI and

TF interaction prediction. The performance of SVMs depends heavily on the

selected SVM parameters utilised to train the model. The approach of selecting

these parameters with a brute-force grid search, as applied in the current study,

is common practice but unfortunately does not ensure that the best parameter

set is found and in addition requires significant computational resources. Other,

more elaborate, methods for selecting parameters, including genetic algorithms

[182], or simulated annealing techniques [83]. etc., are much more difficult to

apply to problems where the parameter space is restricted as in the present case

(e.g. no negative values allowed for SVM parameters c and j; different value

ranges per pmirmeter). In addition, the number of parameters that can be
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adjusted within a SVM setting is relatively small. For example, the application

of a genetic algorithm would involve the adjustment of genetic algorithm

specific parameters, such as the mutation rate, crossover probability, number of

individuals, etc., which introduces another layer of complexity.

In order to additionally evaluate the perforrnance of the methodology, it was

applied to independent data sets. The main obstacle here was the creation of

feature vectors for the independent sets of positive and random negative TF

interactions. The positive TF interactions were extracted from several

databases, while individual TFs were represented through their Entrez gene

identifiers. The method employed here utilises the primary protein sequences

of the interacting TFs to represent an interaction. The representation of a TF

through its Entrez gene identifier hampered the assignment of the protein

sequences to the TFs. A gene identifier can be associated to several different

protein sequences for the same gene, stemming from e.g. different isoforms or

splice products. Even though the protein sequences extracted for one TF's gene

identifier might be very similar to each other, it is by no means obvious which

of the sequences does take part in the reported interaction. Here, the process

denoted all possible sequence combinations of two TFs as positive. This

problem had a negative effect on the performance of the applied models. Not

all sequence combinations for a positive TF interaction are interacting. The

process of automatic protein sequence assignment to the gene identifiers of the

TFs is not able to ascertain which of the possible sequence combinations is the
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one reported to interact. The performance of the models on the independent

sets of TF interactions was thus impacted for these reasons, resulting in a

considerably lower prediction performance than that shown through CV on the

TRANSFAC data (see Table 5 and Table 6). The selection of an appropriate

model for the classification task is equally crucial. Here, a general approach

was applied to select the models for classiffing the independent sets. One

approach took the model with highest accuracy; the other approach chose the

model with highest F-measure. Either approach selected individual models

with specific characteristics in terms of precision, recall, and specificity (see

Table 5).

Class label randomisation was performed on the data used for model

evaluation, to test if the selected models are problem specific and do not stem

from random artefacts. Given a sufficient amount of such permuted datq one

can estimate the performance of the created models on random data and

evaluate their prediction performances on the actual data. The expectation is

that the models perform worse on the random labelled data than on the original

one. This expectation held true for all 4 selected models (see Table 7). when

looking at specific performance measures of the models under consideration,

one can estimate their perfornance on the data with randomised class labels.

These expectations are not fulfrlled for model I and 2.The expected specificity

for model I is 6l % wfih an expected recall of 39Yo. The discrepancy in

numbers comes from the different data utilised for the model selection and the

t04

http://etd.uwc.ac.za/



randomisation (CV folds vs. complete set of vectors, see Results). Even though

the results in Table 7 represent exactly the expectations for model 3 and 4, one

can observe a small bias towards the recall in these models. The models 3 and

4, as presented in Table 5, predict more interactions as positives as opposed to

negatives. These ratios are reflected in the results when randomisation of class

labels was applied. Nevertheless, the results show that all models perform on

random data badly, which confirms that the models were not randomly selected

but that they incorporate specific properties of the data utilised.

SVMs are known to handle large feature sets well. In order to minimize the

computational resources required and to improve the speed of computation, a

feature selection step makes sense. The aim is to find a subset of features

which performs the classification task in a similar fashion as when performing

the analysis using all features. Such a sub-selected group of features has two

advantages. First, by reducing the number of features, the whole system

becomes much faster during the training, testing, and model selection process.

The second advantage is based on the assumption that most features do not

hold much information to distinguish the groups of positives and negatives and,

thus, a model based on a subset of features becomes more reliable.

Two distinct feature selection algorithms, based on the Mahalanobis distance

and on t-statistic, were employed. To gain a fair evaluation of the performance

of the sub-selected set of features, it is important that vectors that were utilised
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for selecting the features do not take part in the evaluation step. Thus, in both

feature selection trials, only half of the data (337 random feature vectors) were

used to select a subset of feafures. The sub-selected features were then

evaluated using the other half of the data set. Using the Mahalanobis distance,

a set of 34 features was sub-selected by the algorithm (see Methods). After

creation of feature vectors with only the sub-selected 34 features (see Table 8),

a CV was performed to evaluate the performance of models with varying SVM

parameter combinations (see Figure 16). The best achievable accuracy and F-

measure with the reduced feature set is 76.53Yo and75.slyo, respectively. The

interpretation of the selected feature set (see Table 8) is diffrcult in so far as

only the combination of these features led to their selection. The focus on

individual features within the set might lead to misinterpretations.

Features selected based on t-statistic are associated with a calculated t-value

that represents a feature's value in being able to separate the two classes of

positive and negative interactions. The calculation of the t-value is independent

for each feature, as opposed to the feature selection using the Mahalanobis

distance. In Figures l7A and l7B it can be observed that only few features

have high t-values. However, the selection of a feature subset can be done in

multiple ways. Here, all features were selected that had a t-value of over six.

This selection was arbitrary. The only requirement that should be met was that

the subset of features should be appropriately small to achieve a highly reduced

computation time for the model selection and performance evaluation.
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Nevertheless, a different cut-off value based on the t-value for the inclusion of

a feature into the subset of features might result in a different performance. A

total of 25 features were selected (see Table 9), the respective feature vectors

created, and the performance during a l0-fold CV evaluated (see Figure 18).

The best achieved accuracy and F-measure is 72.15% and 73.01yo,

respectively.

Two models were created for each, the Mahalanobis distance based feature

subset and the t-statistic based feature subset, using the SVM parameter

combinations that led to highest accuracy and F-measure as shown through CV

(see Table l0 and Table l2). These models were used to classi$ the TF

interactions of the independent sets and their perfornance was calculated (see

Table 1l and Table 13). The same reasons as discussed before (when utilising

all features on the independent sets of TF interactions) led to a huge reduction

in all perfornance measures, with the exception of specificity.

The interpretation of the selected features in both cases using Mahalanobis

distance and t-statistic is difficult. All AA properties have influence on the

conformation of the protein structure, which in turn affects the proteins ability

to interact with other proteins. Interestingly, in the t-statistic subset of features

the feature "linker propensity" is often represented. Linker region are regions

in the sequence that link protein domains. The multiple occturences of these
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linker features could suggest that TFs with multiple domains are more likely to

interact.

Nevertheless, the reduction in performance due to the feature selection, the

doubts about their general applicability, and the characteristic of SVMs which

handles large feature sets well, suggests a classification with the complete

feature set for further application.

Three major problems were identified that occur while predicting either PPIs or

TF interactions from sequence data alone:

I Symmetry problem of representing pairs of interacting proteins.

iil Different feature-vector lengths, due to different protein sequence

lengths.

iii/ Missing negative set of protein interactions for training an appropriate

model.

The first two problems deal with the representation of features, while the last

one affects the artificial intelligence system employed for classification. The

present approach utilised a stringent methodology for the representation of a

pair of TFs, thus not having a symmetrical effect while creating TF pairs (see

Methods). Protein sequences of TFs vary in their length (see Figures 12 and

14). In this study, a representation that is not dependent on the length of the
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AA sequence of a TF was implemented (see Methods). The nature of the

feature representation approach utilised ensures that a feature vector

representation for any pair of TFs is always of the same size. The problem that

still exists is the rare number of training examples, positive as well as negative

interaction pairs. The lack of datasets of non-interacting TFs is a huge

disadvantage. The same obstacles as in the PPI prediction task are evident

[84]. Just tuning parameters of machine leaming algorithms is not sufficient

to compensate for missing real negative examples, which are necessary to train

the classification system properly. One common practice is to choose random

negatives [133,134,185,186] and/or negative interaction partners that are not

functional in the same cellular compartment [84,187]. The latter approach is

not applicable in the case of predicting TF interactions, due to the localisation

of TFs in the nucleus where they are functional. The random selection of

negative examples in the present study, tried to cover cases of negative TF

pairs with varying prediction complexity (see Methods). The random selection

of negatives TF pairs has its limitations. The performance of the system as

presented here might not reflect the real performance, because the as negative

denoted interactions can be contaminated with positives that are neither yet

experimentally verified nor contained in the TRANSFAC database. This has an

influence on all performance measures, which might be in reality higher. In

particular, an in-depth experimental investigation into the group of false

positive predictions might be of interest, because these would contain possible

new true interactions that are not yet known. Nevertheless, the absence of a
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real negative set of non-interacting gene products, has been shown to be the

bottleneck in all studies that dealt with either PPI or TF interaction prediction.

In addition, during the task of predicting TF interactions, one has to deal with a

relatively small set of positive interactions available for training as opposed to

the larger number of positive examples in PPI prediction task. This is an

additional shortcoming for developing models for predicting TF interactions

with hi gher performance.

It is known that not all residues in a protein are equally important, some are

important for function and binding while others can be exchanged without such

a loss of function [188]. The parts of a protein that interact with another protein

are normally very short (often between 3 and 8 residues) US9]. The present

study focused on the complete AA sequence of the TF. Further studies could

incorporate methods for predicting the importance of certain AA residues in

the sequence [90], e.g. through conservation analysis for protein-protein

interfaces U91,1921, utilise different classification methods, and investigate

more elaborate parameter selection al gorithms.

Nevertheless, even though the task of predicting TF interactions is more

difficult than the prediction of general PPIs and the representation for a TF pair

utilised in the present analysis is much simpler, the method applied here is able

to achieve comparable prediction performance results when utilising the

complete feature set. The advantage of the method lies in its simplicity of
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feature representation. Even though the approach takes much less prior

knowledge, such as sequence motifs, domains, a specific set of AA properties,

gene expression data, etc., into account it is able to perform the classification

task with a reasonable performance.

3.0 Conclusions

The present study investigated the feasibility of computationally predicting

interactions between TFs using only their protein sequences. The methodology

presented here excels through its simplicity. The advantages over more

complex methods for representing PPI or TF interactions in the form of feature

vectors for classification through an artificial intelligence system are evident.l

priori information about single TFs is kept to a minimum. Only primary

protein sequence information, the AA sequence, is utilised. The features

representation takes available AA properties into account and addresses the

problems of symmetry and different sequence lengths in a manner that ensures

correctness and simplicity. The major shortcoming of the method is the non-

existing negative set of interactions for training an appropriate model. The

employed SVM was able to classifu positive and random negative TF

interaction examples with an accuracy of 80. l\Yo as shown through CV, which

is comparable to earlier employed methods for predicting PPIs. The results

presented here indicate the potential for further studies that deal with the

prediction of TF interactions solely from protein sequences and might impact

on studies in combinatorial gene regulation in general.
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3.7 Appendix ll

Yl - 531 AA properties utilised for creating the feature vectorrs.

The table shows in alphabetical order the AA indices utilised in the analysis.

The first column holds the AAIndex identifier. The second column holds a

short description taken from AAIndex. Columns 3-5 contain the reference of

the properties in the form of authors, title of publication, and journal.
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Chapter 4

Gonclusions

An understanding of the machinery that controls the transcription of genes is of

great interest. Studies on transcriptional regulation deal with the identification

and investigation of regulatory events that lead to the transcription of a gene or

gene group. In the present study, two distinct biological questions within the

general scope of transcriptional regulation have been investigated.

The first analysis dealt with the deciphering of regulatory events that lead to

the distinct expression of miRNA genes within human monocytic

differentiation. Human THP-I cells were treated with PMA to stimulate

differentiation of the cells to macrophage-like cells. Here, computational TFBS

predictions were combined with time-course gene expression data for miRNAs

and TFs to deduce the underlying regulatory mechanisms. This resulted in

three major findings. First of all, a global map was derived of the regulatory

machinery that acts upon miRNA genes during monocytic differentiation.

Secondly, a set of specific miRNAs that are known to be influenced by PMA

stimuli were investigated in detail. Here, information from available scientific

literature was combined with the predicted transcriptional regulation to deduce

how the regulation of the miRNAs affects monocytic differentiation. Finally,

several TFs could be identified that seem to have a central role in regulating

miRNA genes during the differentiation process.
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The analysis is the first of its kind to computationally elucidate, on a large-

scale, how miRNAs transcription is regulated during human monocytic

differentiation. It uses expression data to find secondary support for the

computational predictions. The study makes valuable predicted suggestions for

further validation through biological experiments. Furthermore, it defines a

starting point for wet lab scientists that are interested in fruther studying the

regulatory circuitry of miRNAs and its impact on monocytic differentiation.

Three general problems could be identified during the analysis that would

impact further studies on miRNA gene regulation. First of all, promoter regions

for miRNA genes are not well defined and incomplete. The promoter set used

in the present analysis is one of the first characterised sets of miRNA promoter

regions [69]. In general, the promoters utilised here are very short and can only

be considered as partial promoter regions [5]. other regulatory regions such as

proximal and distal promoter regions, enhancers, or silencers may also impact

the regulation of any gene, including miRNA genes [a]. The second problem

that affects all computational studies on transcriptional regulation is the

incomplete set of PWMs/PFMs for the actual prediction of TFBSs. Many

known TFs are not represented through a PWM/PFM, because there are either

no or too few experimentally validated binding sites of the TF known for the

introduction of such a matrix. on the other hand, even the PWMs/PFMs that

are currently available are, in many cases, only comprised of incomplete
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information on the biologically utilised binding sites in living organisms. Thus,

the computational predictions can only be as accurate as the imperfect

PWMs/PFMs allow for. The third problem is more specific towards the present

study. Expression data for both TFs and miRNAs was used to evaluate the

predicted regulations. To be most accurate, the inclusion of an expression time-

course series was handled in a strict manner. Hence, several TFs and miRNAs

had to be excluded from the analysis, because of inconsistencies in the

measured data. This had an effect on the completeness of the analysis with

respect to the miRNAs and their regulating TFs.

Follow up studies could include the biological experimental validation of the

top predicted associations. This would show to what extent the methodology is

able to deduce the regulations computationally. Furthermore, it would show

where the methodology could be further improved to enhance future

computational studies of this type. With the experimental discovery of more

detailed promoter regions for miRNAs, the same kind of computational

analysis could be repeated to get an even more detailed picture of the TFs

involved in regulating miRNA genes.

Studies on transcriptional regulation frequently involve the analysis of the

cooperative functioning of TFs in regulating a gene's transcription. This

cooperative function is often mediated through the physical interaction of the

TFs [6,7]. In the third chapter, a study is presented whose focus is on
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predicting these interactions computationally. Previous studies on

computational PPI prediction incorporated various properties of TFs to

represent an interaction of two TFs in a format that can be further processed by

a computer. The information about the TFs is often difficult to acquire or not

available at all. To circumvent these problems, previous studies concentrated

on predicting PPIs from sequence data alone [131-134]. An approach for

predicting TF interactions based only on sequence information is presented in

Chapter 3. Here, available properties of AAs were combined to represent a

protein sequence in the form of a vector. An interaction of two TFs is

represented by combining two of these vectors. These are fed into an artificial

intelligence system to create a computational model which enables the

classification into interacting and non-interacting TF pairs. The outcome of this

analysis indicates that such a computational classification is possible but with

certain restrictions in performance.

As mentioned previously, the major problem that influences all studies on the

prediction of PPIs or TF interactions is the missing set of negative examples.

Such a set would be invaluable in training an appropriate model and would

significantly enhance the performance of the system. Another problem is the

relatively small set of known TF interactions. A sufficiently large set of

examples is necessary to create a model with good generalisation properties.
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Besides enhancing the prediction methodology, future subsequent studies could

include a combination of the method for TF interaction prediction with a TFBS

analysis of promoter regions of genes. It would be of interest to see how

TFBSs of TFs that are known to interact or are predicted to interact, are

distributed in regulatory regions. In addition, new TF interactions might be

identified that are important for the control of certain genes.

However, the results of the analysis affect further studies on combinatorial

gene regulation. It suggests that the utilisation of this kind of analysis in the

scope of combinatorial gene regulation would make valuable contributions

towards the elucidation of the machinery that controls the transcription of

genes.
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