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Chapter 1

THE CONJUGACY CLASSES OF
GROUP EXTENSIONS

In this chapter some basic theory on group extensions is first given in section 1.1 and then a method
for finding the conjugacy classes of group extensions is described in section 1.2. In section 1.3 we look
at an example due to Whitley[19 | to illustrate how the theory developed in section 1.2 is used to
calculate the conjugacy classes of the group 2% : GL3(2). For section 1.1 , the books by Rotman[17]
and Gorenstein[8] were used as references while for section 1.2 we used the works of Whitley[19],

Moori{15], Moori and Mpono[16] and Salleh[18].

1.1 Definitions and Basic Results

Definition 1.1.1 If N and G are groups, an eztension of N by G is a group G that satisfies the

following properties

1. NaG



2. G/N =G.

We say that G is a split extension of N by G if G contains subgroups N and Gy with
(G1 = G such that

Ql

1. N «

3. NmGlzla

In this case G is also called a semi-direct product of N by G, and we identify G; with G.

Note 1 If G is a semi-direct product of N by G, then every § € G can be uniquely expressed in
the form § = ng, where n € N and g € (. Multiplication in G satisfies (n1g1)(n2g2) = min3' g1z,

where n9 denotes gng~'.

Definition 1.1.2 The automorphism group of a group G, denoted by Aut(G), is the set of all auto-

morphisms of G under the binary operation of composition.

If G is a split extension of N by G , then there is a homomorphism § : G — Aut(N) given by
0,(n) = gng™! =nf(n € N,g € G), where we denote 6(g) by §,. Thus G acts on N, and we say that
the extension G realizes 6.

Conversely, given any groups N and G, and 6 : G — Aut(N), we can define a semi-direct product

of N by G that realizes # as follows. Let G be the set of ordered pairs (n,g)(n € N,g € G) with



multiplication (ny, g1)(n2, g2) = (n18,,(n2), g192). Then G is a semi-direct product of N by G.

Hence a split extension of N by G is completely described by the map 8 : G — Aut(N), that is, it
is described by the way G acts on N.

We use the ATLAS [3] notation and let N.G denote an arbitrary extension of N by G. A split
extension is denoted by N : G or N : ? G, where 8 : G — Aut(N) determines the extension. A

non-split extension is denoted by N - G.

If G is a split extension of N by G, then G = NG = U,ec Vg, so G may be regarded as a right
transversal for N in G (that is, a complete set of right coset representatives of N in G). Now sup-
pose G is any extension of N by G, not necessarily split. Since G/N = @, there is an epimorphism
A : G = G with kernel N. For ¢ € G, define a lifting of g to be an element § € G such that A(§) = g.
Then choosing a lifting of each element of G, we get the set {§: g € G} which is a transversal for N

in G.

We now show that even for a non-split extension G of N by G, where N is abelian, G acts on N.

This result can be obtained from Rotman[17].

Lemma 1.1.3 Let G be an extension of an abelian group N by G , then there is a homomorphism
0 : G — Aut(N) such that 6,(n) = gng '(n € N), and 0 is independent of the choice of liftings
{7:9€ G}.

Proof: For a € G, denote conjugation by a by v,. Since N is normal in G, ¥e|n is an automorphism

of N and the function p : G — Aut(N) defined by p(a) = v.|n is a homomorphism.

If a € N, then u(a) = ly, since N is abelian. Therefore there is a homomorphism p* : G/N =
Aut(N) defined by p*(Na) = u(a).



Now G = G/N and for any lifting {g: g € G} , the map ¢ : G — G/N defined by d(g) = Ng is
an isomorphism. If {77,_ th € G} 1s another choice of liftings , then 55_1 € N so that Ng = Nh.
Therefore the isomorphism ¢ is independent of the choice of liftings. Now let § : G — Aut(N) be
the composite pu* 0 ¢. If g € G and 7 is a lifting , then 8(g) = p"(P(g)) = p*(NgG) = u(g) € Aut(NV),
soforn € N, 8,(n) = u(G)(n) =gng~! = nY, as required. O

Note 2 Let G be an extension of an abelian group N by G. For each g € G we choose a lifting
G € G, and for convenience we take T = 1. We identify G with G/N under the isomorphism g = Ng.
Now {g: g € G} is a right transversal for N in G, so every element A € G has a unique expression

of the form h =ng (n € N,g € G), and we have the following relations.
1. gn = n9g, where n € N and g € G.

2. gh = f(g.h)gh for some f(g,h) € N, where g,k € G.

1.2 The Conjugacy Classes of Group Extensions

Let G = N.G, where N is abelian. Then for each conjugacy class [g] in G with representative g € G,
we analyse the coset Ng, where Gis a liftingof g in G and G = UgeG NG. To each class representative

g € G with lifting § € G, we define

C,={z € G:z(Ng) = (Ng)z}.

Then C, being the set stabilizer of Ng in G under the action by conjugation of G on Ng, is a sub-
group of G. The following lemmas and their proofs due to Whitley[19] and Moori and Mpono[16]

will be required in the next section .

Lemma 1.2.1 N « (.
Proof: Forany ne N



n(Ng)n~' = Ngn™' = Ngn~'g~'g = Ng,

the last step following from the fact that (n=') € N since N «G.
Hence N € C,. From N < C,<Gand N « G,weobtain N « C,. O

Lemma 1.2.2 C;/N = Cg/n(N7).
Proof: Consider Nk € G/N. Then

Nk € Cg/n(N7) Nk(Ng)(Nk)™' = Ng
NkNgNk™ = Ng
NkNgk™ = Ng
NENngk™* =Ng VneN
Nkngk™ = Ng VneN

kngk™' € Ng YneN

10 R A

ke,

Thus we obtain that Cy/N = Cg/y(Ng). O

From the two preceding lemmas, we have that C; = N.Cgz/y(Ng). For a lifting g € Gof g€ G, we
can identify Cz/n(Ng) with Cg(g) and write Cy = N.Cg(g) in general. If G = N : G then we can
identify Cy with Cy, = {z € G: z(Ng) = (Ng)z} and in this case we obtain the following corollary.

Corollary 1.2.3 Let G = N : G. Then C, = N : Cg(g).

Proof: We have already shown in the Lemma 1.2.1 that N « C,. Now we show that Ca(g) < C,
and that N N Cg(g) = {lg}. Let z € Cg(g). Then we obtain (Ng)® = z(Ng)z™' = zNgz™! =
Nzgz~' = Ng. Thus ¢ € C, and hence Cg(g) < C,. Since NNCa(g) < NNG = {lg}, then



we have that N N Cg(g) = {lg}. This completes the proof. [

The conjugacy classes of G will be determined by the action by conjugation of Cj, for each conjugacy
class [g]g of G, on the elements of NG or in the case of a split extension on the elements of Ng. Since
Cy = N : Cg(g), we act first N and then act {E :h e Cg(g)} on the elements of Ng. The outline of
this action is given in two steps by Moori and Mpono [16,page 5] as follows:

STEP 1: The action of N on NG :

Let Cn(g) be the stabilizer of g in N. Then for any n € N we have

z(ng)z™' = ng

z € Cn(ng)
:rn.:v'la:'gx—l = ng
n(zge™') = ng, since N is abelian

xﬁ:r:'l =7

t ¢ ¢ ¢ 3

z € Cn(9g)

Thus Cn(g) fixes every element of Ng. Now let |Cn(g)| = k. Then under the action of N, N splits
into k orbits @1, @3, ..., @&, where

Q] = [N:Cn()
|_1Z1, fori € {1,....k}.

STEP 2: The action of {h:h € Cg(g)} on Ng



Since the elements of NG are now in the orbits Q,,...,Qx from step 1 above, we need only to act
{E ch € Cg(g)} on the k orbits. Suppose that under this action f; of the orbits @y, ..., Qx fuse
together to form one orbit A, then the f}s obtained this way must satisfy

Z]‘ fi=k

and we have

| &= £ x B

Thus for 2 = d;g € A, we obtain that

llzlz | = |Adx|[glsl
e G
= i X X Taton
AN NG ]
= X Heatgl
and thus we obtain that
= |G|
— _ k|Cs(g)|
G AL
1G] filG|
_HCs{)
fi

Thus to calculate the conjugacy classes of G = N.G, we need to find the values of k and the f}s for
each class representative g € G. We note that the values of k can be determined from the action of
G on N(given in lemma 1.1.3). If G = N : G (a split extension) however, we analyse the coset Ng
instead of N(g) since in the split case G < G. Under the action of N on Ng, we always assume that
g € Q. Since Cg(g) fixes g, @, does not fuse with any other Q;. Hence we will always have that
fi = 1. Hence



J

=1 + me»

where the sum is taken over all m such that g ¢ Qm.

We now apply the method described in the Step 1 and Step 2 in the next section.

1.3 The Conjugacy Classes of a Group of the Form
232 GL3(2)

In this section we give the conjugacy classes of the group G = N : G where N is an elementary
abelian group of order 8 and G = G L3(2), as calculated by Whitley[19], where G acts naturally on
N.

We regard N as the vector space V3(2) of dimension three over a field of two elements. Let N be

generated by {e;,ez,e3} withe?=1for1 <7< 3, s0

N = {1, €1, €2, €3, €1€3, €1€3, €2€3, 616263}

To determine the conjugacy classes of G we analyse the cosets Ng where g is a representative of a

class of G. (Note that the extension is split, so G = Usee N9)- Now

Cala)] = ECetall,

where f; of the k blocks of the coset Ng have fused to give a class of G containing z.We need the

conjugacy classes of G, so we exhibit it here (obtained from ATLAS [3}).



class (LA) | (2A) | (3A) | (4A) | (TA) | (7B)
centralizer | 168 8 3 4 7 7

Table 1.3.1: The conjugacy table of GL3(2).

The representatives thus must come from the classes mentioned in the table above:

Og=lGZ

For ¢ the identity of G, ¢ fixes all elements of NV, so k = 8. Since G is transitive on N — {1}
under the action of Cg(g) = G, we have two orbits with f; =1 and f; = 7, so this coset gives

two classes of G:

z =1, class(l), |Cz(z)| =8 x 168 = 1344

z = e, class(2;), |Cg(z)| = &8 =192

e g€ (24):
We take
1 00
g=1]10 01
010

with |Cg(g)| = 8. The action of g on N is represented by the cycle structure

(1)(e1)(e1e2e3)(e2e3) (€2 €3)(€1€2 €1€3), 50 k = 4.

10



The four orbits of N on Ng are {g, eseag},{e1g, ere2e3g},{e2g, eag} and {eiezg, ereag}.

Now we act

11 1 11 1
Cc(g)=< 010 |, 110>
0 0 1 101

on these orbits.

For eg € Ng,h € Cs(g), (eg)" = e*¢g" = e*g so we obtain the following orbits:
g
o
{9, ezesg}ca(g) = {9, 239}, {e19, 6162839}CG(9) = {e1g, er1€2€39} , {e2g, e3g} olo)
= {629, €39, €1€29, 61639}

Therefore we get three classes of G:

fi=1, z =g, class(2;), |Cg(z)]=4x%8 =32

fo=1, z = eg, class(23), |Cx(z)| = 32;

fa=2, z = eyg, class(4,), |Cgx(z)] = 4_>2<8 Rug 2

e g€ (3A):
We take
010
g=10 01
1 00

11



with |Cg(g)| = 3. The action of g on N is represented by (1)(ejeze3)(e1 €2 €3)(er1es €1e3 eqe3),
so k = 2 which means we must have two blocks. These cannot fuse together under C(g), since
g9 = {g}. Therefore we have two classes of G, with f; =1 and f, = I:

r =g, class(3;), |Cgx(z)|=2x3=6;

r = e1g, class(6,), |Cz(z)| =6.

g € (4A):

We get two classes of G once more:

r =g, class(42), [Cg(z)|=28;

r = eg, class(43), |Cz(z)| =8.

ge(TA):

For the class (7A), we have k = 1, so each coset has just one class in G. We thus get the class

(71) of G, with centralizer of order 7.

g€ (7B):

This case works the same as for the previous class and we obtain class (72) of G, with centralizer

of order 7.

12



class of G (1A) (2A) (3A) (4A) (TA) | (7TB)
classof G | (1) (21) | (22) (25) (41) | (31) (61) | (d2) (4a) | (1) | (T2)
centralizer || 1344 192 32 32 16 6 6 8 8 7 7

Table 1.3.2: The conjugacy table of 23 : GL3(2).

13




Chapter 2

REPRESENTATIONS AND
CHARACTERS

Two ways of approaching representation and character theory are through the use of modules on the
one hand ( for instance, the approach used by James and Liebeck [10] ), and through the classical
approach used by Feit[5] for example, on the other hand. Our discussion is along the classical ap-

proach and for this purpose we follow the class notes of Moori[15].

We give some basic results on the representations and characters of finite groups in this chapter
as well as some examples of how these results are used to determine the character tables of some
finite groups. In the first section, theorems and lemmas will almost always be stated without proofs.
Section 2.2 deals with the relationship between characters of groups and the characters of their
subgroups, while in section 2.3 we shall look at the role of normal subgroups in the calculation of
characters of a group. In the last two sections mentioned, only the proofs of the main results ( that
is those results dealing more directly with the techniques of finding the characters of a group) are
given. These proofs are mainly taken from Moori’s notes [15]. In the last three sections we calculate

the character tables of three group extensions, which are all split extensions.

14



2.1 Basic Concepts

Definition 2.1.1 Let G be a group. Let f : G — GL,(F) be a homomorphism. Then we say that f

is a matriz representation of G of degree n (or dimension n), over the field F.

If Ker(f) = {lg}, then we say that f is a faithful representation of G. In this situation G =
),

Image(f), so that G is isomorphic to a subgroup of GL,(F').

Definition 2.1.2 Let f : G — GL,(F) be a representation of G over the field F. The function
x : G = F defined by x(g) = trace(f(g)) is called the character of f.

Definition 2.1.3 If ¢ : G — F is a function from a group G to a field F which is constant on

conjugacy classes of G, that is ¢(g) = ¢(zgz~"),Vz € G, then ¢ is a class function.

Lemma 2.1.4 A character is a class function.

Proof: See [15, Lemma i.4 |

Definition 2.1.5 Two representations p,¢ : G = GL,(F) are said to be equivalent if there exists

an n X n matriz P over F such that

P-1p(g)P = #(9), Vg€QG.

Theorem 2.1.6 FEquivalent representations have the same character.

15



Proof: See [15,Theorem i.5]

Before defining the concepts of reducibility and irreducibility of representations and characters, we
need to say what is meant by a reducible and an irreducible set of matrices. If S is a set of matrices,

then S is reducible if 3m, k € N,and 3 P € GL,(F) such that V A € S we have

B 0
¢ D

PT'AP =

where B is an m x m matrix, D is a k x k matrix, C is a k x m matrix and 0 is the zero matrix. If
no such P exists, we say that S is irreducible. Furthermore if C =0V A € S, we say that S is fully
reducible and if 3 P € GL,(F) such that

B, 0 0
0 B, 0
\ D etissagei By

where each B; is irreducible, we say S is completely reducible.

Definition 2.1.7 Let f : G — GL,(F) be a representation of G over F and let S = {f(g): g € G}.
We say that f is reducible, fully reducible, or completely reducible if S is reducible, fully reducible,

or completely reducible, respectively.

Definition 2.1.8 If x, is a character afforded by a representation p of G, then we say that X, is an

irreducible character of G if p is an trreducible representation.

16



Definition 2.1.9 Let p : G = GL,(F) and ¢ : G = GL,(F) be two representations of G over F.
Define p+ ¢ : G — GLpym(F) by

P(g)nxn Onxm

Omxn ¢(g)m><m
Then p + ¢ is a representation of G over F, of degree n + m.

(p+ o)) = ( ) =p(g) ®#(g9), Ygedq.

If x1 and Y, are the characters of p and ¢ respectively and Y is the character of p + ¢, then for all

g € G we have x(g) = x1(g) + x2(9)-

Theorem 2.1.10 (Maschke’s theorem) Let G be a finite group. Let f be a representation of G over
a field F whose characteristic is either equal to zero or is a prime that does not divide |G|. If f is

reducible, then f is fully reducible.

Proof: See [15,Theorem i.6]

Theorem 2.1.11 ( The general form of Maschke’s theorem)
Let G be a finite group and F be a field whose characteristic is either equal to zero or is a prime that

does not divide |G|. Then every representation of G over F' is completely reducible.

Proof: See [5,(1.1) ]

Theorem 2.1.12 (Schur’s lemma) Let p : G = GLn(F) and ¢ : G = GLn(F) be two representa-
tions of a group G over a field F. Assume there ezists an m x n matriz P such that Pp(g) = #(g9)P
for all g € G. Then either P = Opuxn or P is non-singular so that p(g) = P~1¢(g)P (that is, p and

¢ are equivalent representations).

17



Proof: See [5,(1.2)]

Definition 2.1.13 Let G be a finite group and assume that the characteristic of the field F does
not divide |G|. If p and ¢ are two functions from G into F, we define an innerproduct {,) by the

following rule:

l.—‘

(P 8) = 151 LgecP(9)d(g™")

Q

where I—léT stands for |G|™! in F.

Theorem 2.1.14 The innerproduct (,) is bilinear:

(i) (p1 + p2,¢) = (p1,8) + (p2, })
(it) (p, &1 + ¢2) = (p, d1) + (p, b2)

(iii) ( ap,¢ ) = ap,8) = (p,ad), VaeF

and symmetric:

(p, @) = (¢, p)

18



Proof:

l =

(pr+p2,0) = (Pl + P2>(g)‘b(9_l)

Q

‘ =
<
m
Q

= (m (9) + pz(g)) ¢(g™")

Q
<
m
Q

|~

= (pl(g)¢)(g'1)+p1(g)¢(g'1)),F being an additive abelian group
€

I

@
Q

|
Q|-
™

pla)la™) 41z Do palalols™)

l g€eqG 9€eqG
= <P1, >+<P27¢>
(ii) Similar to (i).
(iii)
1 -1
(ap, @) = ] gezc(ap)(g)¢(g )
1 -1
= o geaa(p(g)>¢(9 )
1 -1
= g ger(g)cb(g )
= a(p,gﬁ)
and
_ L1 . -1
(0p,6) = 1o gec(p)w)as(g )
1 -1
= G gecap(g)cﬁ(g )

19



1

l—é—l— Zp(g)a(b(g'l)7 F being a multiplicative abelian group

geG

= ﬁ Zp(g)(a¢)(g“)
13

= (p,ad)

To complete the proof, see [15,Theorem 1.11]. O

Note 1 If p: G = GL,(C) is a representation of a group G, then we denote the (i, j) entry of p(g)

by pij(g). Hence p;;(g) is a map from G into C.

For the rest of this chapter we shall mean finite groups when mentioning groups, unless explicit

exceptions are made and all representations will be over the field C of complex numbers.

Theorem 2.1.15 Let G be a finite group and let p and ¢ be two irreducible representations of G.

(i) If p and & are inequivalent. then

(prs, $ij) =0, Vi,j,r, ands.
)

.. 8is-djp
(i) {prsy i) = 3575

Proof: See [15, Theorem ii.l ]

Theorem 2.1.16 Let G be a finite group and let p and ¢ be two irreducible representations of G,

with characters x, and xs.

20



(1) If p and ¢ are equivalent, then

(X/h X¢> =

(i1) If p and ¢ are not equivalent, then

(XprXx8) =0

(iii} (Xpa X’p> =1

Proof: See [15,Theorem ii.2]

Theorem 2.1.17 Two representations of a group G are equivalent if and only if they have the same

characters.

Proof: See [15,Corollary ii.4]

Lemma 2.1.18 (i) If

k
X = 2/\19(;‘
t =1

where x; are distinct irreducible characters of a group G and )\; are nonnegative integers, then

k
ox) = AN
1 =1

(ii) If x is a character of G, then x is irreducible if and only if (x,x) = 1.

21



Proof:

k

(. x) = <.Z Aixi s Z AiXi )

x>

k

= Z Z Xt ’ XJ

= Z A xi s Xi)

— z,\f
===l

(ii)By theorem 2.1.7, we have that if x is irreducible, then (x, x) = 1.

kol

=

For the converse, assume that (x , x ) = 1. Let

k
A=si= Z/\iXi
=

where y; are distinct irreducible characters of G' and A; are nonnegative integers, then by (i), we have

k
1 =1

= A =1, forsome j=12,.,k
and A =0 Vi#j.

Hence A; = 1. Thus x = ¥; is irreducible. O
Note 2 If C; is a conjugacy class of G, then

22



Ci'={g€G:g—1€Ci}

is also a conjugacy class of G and C; = Cy if and only if g ~ g~! for all g € C;.

Theorem 2.1.19 Let Irr(G) = {x1, X2, ---s Xk}- Then

(i) & Lec Xil9)xi(g) = &;j,  (row orthogonality)

(ii) s =1 X:(9)X:(95) = 6157 |Ca(g)| , (column orthogonality)

Proof: See [15, Theorem ii.17]

Theorem 2.1.20 The number of irreducible characters of a group G equals the number of conjugacy

classes of G.

Proof: See [15, Theorem ii.18]

2kw .

Proposition 2.1.21 Let G = ( z ) be a cyclic group of order n. Let e™= '  be the n-th roots of
unity in C, k=0,1,2,...,n — 1. Define pr : G = C* by

Fork=0,1,2,...,n =1, pi defines the n distinct irreducible representations of G.

Proof: We first show that px is well defined:

23



Let z™ =az™ where m=sn + ¢, m'=sn + t, s,€Zand ¢t t' =0,1,2,...n—

From which we get zf=2z" = t=¢.

2km

If for contradiction, [e%" P ™ # [e*+* i ™, then we have

2km

[ F £ 1 [ ]l =)
i](s—-s')n £1

pi(a H)"nél
pi(a®) #

[ P10 A,

[e™

I e

giving us the contradiction. Hence p; is well defined.

Next we show that p; is a homomorphism:

pr(z™)pr(z™) = ( Hpr(z")

2km - ]

= [
[ein" i]t+t’
= pela™)

= pe(ztz?)

1

= pr(z™.2™)

So pi is a homomorphism and hence a representation.

Pk 1s unique:
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Let pr = pi with k, k' <n. Now Vg € (z), ¢g=2z" wherer =0,1,2,...,n — 1. So we have

pla") = pu) = [ = [T
Lt - 2
I,
= pu-k(z") =1, Vr=0,1,2,...,n—1
= k—k =0, so that k=K'

Lastly we must show that p; is irreducible:

We use lemma 2.1.2.

(Pe,pr) = 0] pe(9)pe(g™")

I

3|~
i~
—
@
QI

Il
3|
©
=
—
O

3|
=
Q

I
—

Hence py is irreducible.

This completes the proof of the proposition. O

Definition 2.1.22 Let P = (pi;)mxm and Q = (gij)nxn be two matrices. Then the mn X mn matriz
P ® Q is defined by
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pllQ p12Q leQ

png png png
PeQ:=(p;Q) =

Pm1Q Pm2®@ o o o Pmm@ )

From this definition, we can show that

(PoQ)P 2Q)=(PP)2(QQ) (*):

(P ®6Q )(P/ ® Q ) = Z PilQP;iQ/ Jmn x mn

k

3

3 ( Z pilpgiQQl )mn X mn
k=1

= (PP') ® (QQ).

Definition 2.1.23 Let T and U be representations of a group G, then the tensor product
is defined by:

(TeU)g): = T(9)©U(y)

Theorem 2.1.24 Let T and U be representations of a group G, then

(i) T @ U is a representation of G.

(i) if x(r  v) is the character afforded by T ® U then

X(T 2 Uy = XTXU

26
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Proof: See [15,Theorem iii.l |

Definition 2.1.25 Let G = H x K be the direct product of two groups H and K and let T : H —
GLm(C) and U : K — GL,(C) be representations of H and K respectively. Since for every element
g in G,g = hk uniquely, for some h € H and some k € K, the direct product

T x U can be defined by

(TxU)g): = T(h)QU(K)

From the uniqueness of g = hk and because of the property of representations T and U of being
well defined, it can be shown that T x U is well defined. Also for ¢ = hk and ¢’ = 'K’ with
h,h' € H and k, k" € K, we have

(T x U)@IT x U)g) = (T(h)y@URNT ()@ U(K))
= T(R)T(K) @ UK)U(K), by (¥)
= T(hh") @ U(kK'")
= (T xU)(gg),

which means T x U is a homomorphism and therefore a representation.

From definition 2.1.22, we can deduce that for two matrices P and @, that

Trace(P® Q) = Trace(P).Trace(Q).

So we show the following
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X(rxv)(g) = Trace((T x U)(g))
= Trace(T(h) ® U(k))
= Trace(T(h)).Trace(U(k))

and the next theorem tells us that all the characters of a direct product are constructed in this way.

Theorem 2.1.26 Let G = H x K be the direct product of two groups H and K. Then the direct
product of any irreducible character of H and any irreducible character of K is an irreducible char-
acter of G. Moreover, every irreducible character of G can be constructed

in this way.

Proof: See [15,Theorem iii.2]

Definition 2.1.27 Let x be a character of a group G. For n € (NU{0}), we define x™ by

x*(9): = (x(9)*, Vgeqaq.

If G is a group and H is a subgroup of G, then we can use the irreducible characters of G to find
at least some of the characters of H and vice versa. We deal with the methods of doing this in the

following section and use the notes of Moori[15] again.

2.2 Restriction and Induction of Characters

Definition 2.2.1 Let G be a group and H be a subgroup of G. If p: G — GL,(C) is a represen-
tation of G, then (p L H) : H — GL,(C) given by
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(pd H)(R) = p(h), VheH,

is a representation of H. We say that p | H is the restriction of p to H. If x, is the character of p,
then x, 1 H is the character of p | H. We refer to x, | H as the restriction of x, to H.

Theorem 2.2.2 Let GG be a group and H < G. If ¢ is a character of H, then there is

an trreducible character x of G such

(x| Hp # 0.

Proof: See [15,Theorem iv.1.1].

Theorem 2.2.3 Let G be a group and H < G. If
x € Irr(G) and Irr(H) = {1, %2, ..., ¥, },
then

X dui o ais Z(L«/}i, where. 6; € (NU{0}) and
=1

Y& < (G H] ()

Moreover, we have equality in (*x) if and only if x(9) =0, Vg€ (G\ H).

Proof: Since x | H is a character of H, 35; € (NU {0}) such that
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Now

and

Hence we get

From

we obtain that

(x{ Hx | H)n

=
>
£

Il

=1 heH
= <X’X>G
1 hed
= mZx(g) x(9)
gea
T 2 . S
= @Zx(g) x(9) + 5 x(9)-x(9)
geH 9€(G\H)
|H| - 2 1 NYPRY
= — 0 +— X by (* x x
@ Z o, 2 (9)-x(g) by (**%)
|H|§r: 2 1 2
= ) 0 +— Ix(g)l
Gl = Gl 9E(G\H)
IHIZr: 2 1 2
= ) O 1 — — Ix(g)}* <1
G| & |G] )

Il
P
ﬁMﬂ

—

e
&
Il
o
s
~——



and therefore
. G
d &t o< ||_f7|| =[G : H]
=1
Also

1 . C
€] Z Ix(¢)? = 0 ifandonlyif
9€(G\H)

Ix(9)? = 0 Vge(G\H).

Hence

1 . :
e 3 g = 0 ifandonlyif
9€(G\H)

x(g) = 0 Vge(G\H)

and we have the equality in (x*). O

We have seen how the irreducible characters G can be used to find characters of a subgroup H and
can now look at a technique of finding the characters of G from the irreducible characters of any

subgroup. We start with the following definition.

Definition 2.2.4 Let H be a subgroup of G. The right transversal of H in G is a set of representa-
tives for the right cosets of H in G.

The following theorem tells us how a representation of H can be extended to a representation of G.

Theorem 2.2.5 Let H be a subgroup of G and T be a representation of H of degree n.
Extend T to G by T%(g) =T(g) if g € H and T°(g) = Onxn if g ¢ H . Let {z1,2s,..., 2}
be a right transversal of H in G. Define T 1T G by
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(To(xlga:fl) T(z19x7"') .o o . To(xlga::l)\

T (z2927") T%z2927') o oo oo T°(x29z%)
(TTG)g) : =
\To(xng:vl_l) T(zngz;') oo o oo T%zngz!)
= (’!’O(:cigrisj"l))ijzl2 o Vged.

Then T 1 G is a representation of G of degree nr.

Proof: See [15, theorem iv.2.1].

Definition 2.2.6 The representation T t G defined in the previous theorem said to be induced from
the representation T of H. Let ¢ be the character afforded by T. Then the character afforded by T 1 G
is called the induced character from ¢ and is denoted by ¢©. If we extend ¢ to G by ¢°(g) = #(g) if
g€ H and ¢°(g) =0 if g ¢ H, then

¢G(g) = Trace((TTG)(g))
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In order to construct a formula to find the induced character, the next two propositions are needed.

Proposition 2.2.7 If H < G and ¢ is a character of H, then ¢° is independent of the choice of

transversal.

Proof: See [15, Proposition iv. 2.2 ].

Proposition 2.2.8 The values of the induced character are given by

#lg) = =3 gz, g€GC
€qG

141

Proof: See [15, Proposition iv.2.3 ].
The following proposition provides us with a formula to calculate the induced character and the

proof is provided by Moori [15, Proposition iv.2.4 |.

Proposition 2.2.9 Let H < G, ¢ be a character of H and g € G. Let [g] denote the conjugacy

class containing g.

(i) [fHNg] = 0, then ¢%(g) = 0,

(i) f HN[g] # 0, then
G _ = ¢(zi)
QS (g) - |CG(g)|; |CH(-1'1)|

where 1,2, ..., Tm are representatives of classes of H that fuse to [g]. (That is H N [g] breaks

up into m conjugacy classes of H with representations Ty, T, ..., Tm.)
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Proof: By Proposition 2.2.8, we have

Zcﬁo rgz~").

xEG
If HN[g) = 0, then zgz™' ¢ H for all z € G, so ¢°(zgz™!) = 0 Vz e Gand ¢%(g) = 0.

If HN[g] # 0, then as z runs over G, zgz~! covers [g] exactly |Cg(g)| times, so

1

(@) = % 1% Y Fw)
y€lg]
1
o e =
y€([g]n
3 IC&((T’)I x Z[H:C’H(xi)]-¢(xi)

= 1Cs(a)l ) |(,?:(Ux))| 5

The restriction and induction of characters are related and can be expressed by means of a matrix
which we call the Frobenius Reciprocity table. To obtain this relationship, we shall take the route
through class functions. We shall use the proof given by Moori [15] for the main result( the Frobenius

Reciprocity theorem ) in establishing the relationship.

Definition 2.2.10 Let H be a subgroup of G and ¢ be a class function on H then the induced class
function ¢ on G is defined by



where ¢° coincides with ¢ on H and is zero otherwise. Notice that

¢%(ygy™") = ¢ (zygy~'z™")

Thus ¢© is also a class function on G.

Note 3 If H < G and ¢ is a class function on G, then ¢ | H is a class function on H.

Theorem 2.2.11 (Frobenius Reciprocity)
Let H < G, ¢ be a class function on H and ¢ a class fuction on G. Then

(¢, viHa = (6% da

Proof:

(6 W)e = =3 %))
Gl e
1 1 0 rqxr 1 ¥(g)
- @z i 2 9 ) ()
1 0 “Nbla)  (x * x%
_ mz\;wg )B(g) (%% xx)
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Let y = zgz~!. Then as g runs over G, zgz~' runs through G. Also since 9 is a class function on

G, ¥(y) = ¥(zgz™') = %(g). Thus by (* * **) we have

(06 = T o 2SI

ye€G z€G

1 0, \ =
- |G|_|H|;(;¢<y>.w<y))

1 0\ TN
= @ 1o yezcas(y).zz(y)

ﬁ S o) )

yeEH

Corollary 2.2.12 Let H < G. Assume that [rr(G) = {X1,X21--, Xr} and Irr(H) = {1, %2, e s}
‘ Suppose that

8
xibH = ) biybi and
=1
v = Zai]‘X]‘, then
J=1
aq; = b,']', Vl,]

Proof: See [15,Corollary iv.3.2 ].

Remark 1 (Frobenius Reciprocity table)
Let H < G. Assume that Irr(G) = {x1,x2,--» xrtand Irr(H) = {1,%2,...,%s}, then by the
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previous corollary we have

S

X;+H = zaij'¢i and

=1
r

d)zG = Z Ai5X 5, then

i=1

the matrix A = (a;;)s- is called the Frobenius Reciprocity table for G and H.

2.3 Normal Subgroups

In this section we shall look mainly at how the irreducible characters of a quotient group of a group

G can be used to find some of the characters of G itself .

In order to justify a definition for the concept ker(x) , where x is a character of G, we state lemma

2.3.1 and lemma 2.3.2 and prove the lemma 2.3.2 using the thesis of Whitley [19].

Lemma 2.3.1 Let x be a character of a group G afforded by the representation T. Then for g € G,
T(g) is similar to a diagonal matriz diag(ey, es, ..., e,) where each e; is a complez root of unity. Then

x(g) =€+ ez + ... + e, and x(g7') = x(g), where T denotes the complez conjugate of z.

Proof: See [19,Lemma 2.2.1].

Lemma 2.3.2 Let x be a character of a group G afforded by the representation T. Then g € ker(T)

if and only if x(g9) = x(1).
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Proof:

Let n = x(1), so n is the degree of T. If g € ker(T) then T(g9) = [, = T(1), where [, is the
n x n identity matrix, so x(g) = n = x(1). Conversely, assume x(g) = x(1) = n. By lemma 2.3.1,
x(g9) = e1 + €2+ ...+ €, , where each ¢; is a complex root of unity. Therefore, e; + €2+ ... + e, = n.

But |e;| = 1 for all 7, so we must have e; = 1 Vi. Hence T(g) is similar to diag(ey, ez, ..., €n) = In,

so g € ker(T). O

Definition 2.3.3 Let x be a character of a group G. We define

ker(x) = {g€G:x(g) = x(1)}.

We note from lemma 2.3.2 ker(Y) is a normal subgroup of (. The next two theorems taken from
the Moori-notes[15, pages 78 and 79] will tell us how the normal subgroups of G can be determined

from its character table and how we can tell whether G is simple or not.

Theorem 2.3.4 Let N be a normal subgroup of G. Then there exists irreducible characters x1, X2, -, Xs
of G such that

N = [)ker(x:).
=1
Proof: See [15, Theorem v.3].

Theorem 2.3.5 A group G is simple if and only if x(g) # x(1) for all nontrivial

irreducible characters of G and for all non-identity elements g of G.
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Proof: See [15, Theorem v.4].

The following results form the basis for another tool in finding the characters of a group.
Theorem 2.3.6 Let N be a normal subgroup of G.

(a) Let X be a character of G/N and x : G = C be defined by
x(9) = X(gN) forg€G,

Then x is a character of G and x has the same degree as X.

(b) Let x be a character of G, N < ker(x) and x: G/N — C be defined by
XN) = xlg) forg€G,
Then X is a character of G/N.

(c) In both of the statements above, X is an irreducible character of G/N if and only if x s an

irreducible character of G.

Proof:

(a) Let T be the representation of degree n that affords % and define T : G — GL,(C) by
T(g) = T(gN). Then for g1,9 € G,

g = G2 alN = 92N
= T(aN) = T(e:N)
= T(n) = T(g)
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So T is well-defined. Also

T(gg2) = T(q192N)

Hence T' is a homomorphism and therefore a representation.

Now Trace(T(g)) = Trace(T(gN)) = x(gN) = x(g) forall g € G, so T affords y. Moreover

=T ()TN

and so the degree of y is the same as that of y.

(b) Let T be the representation that affords x and define 7 : G/N = GL,(C) by T(gN) = T(g).
Then for ¢1, 92 € G,
N =N = g7'gs € N < ker(x) = ker(T)
= T(g7'¢2) = I,the identity matrix
= T(9;")T(g:) =1
= T(gq1) =T(g2)
= T(a:1N) = T(g:N)

thus T is well-defined and

~

T(Ng;N) = T(g192N)

I
N~

= T(g1)T(g2)

A

(
(9192)
(
(g1 N)T(g2N)

=T



Hence T a representation.

Trace(T(gN)) = Trace(T(g)) = x(g) = X(gN) for all g € G, so T affords ¥.
(c) For this part, we use the proof by Whitley [19]:

GX)e = 1617 Il

g€G

GI7 > IR(aN))

9€G

= |GIN Y R(gM)P

gNeG/N

=" |G/NT )" il M)
gNeG/N

LY. SY. Y7

il

By lemma 2.1.2,

x € Irr(G) X)g =1

= {x
<  (LXenN=1
—

% e Irr(G/N) O

We end this section with a definition from James and Liebeck [10, Definition 17.2].

Definition 2.3.7 Let N be a normal subgroup of G and let X be a character of G/N, then the char-

acter x which is given by

x(g) = XxX(gN) forge@G

is called the lift of X to G. The process of obtaining characters of a group from the characters of any
of its quotient groups using theorem 2.3.5 is called the lifting process.
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In each of the remaining sections we shall try to illustrate in a group extension how some of the
concepts discussed in this chapter are used to calculate the character table of the specific group in

discussion.

2.4 The Character Table of a Group of the form 23:7

Let G be a split extension of N, an elementary abelian two-group of order 8, by G, a cyclic subgroup
of GL(3,2) of order 7. As with the example in chapter 1 ( section 1.3), we use the method described

in section 1.2 of chapter 1 to calculate the conjugacy classes of G.

G can be generated by the following element of order 7 in G'L3(2)

1 10
z=1101
111

and N = V3(2), the vector space of dimension three over a field of two elements. G, being cyclic,
has 7 conjugacy classes of which each class consists of a power of z. In this example, we thus work
with seven cosets, namely Nz’ where j = 0,1,2,...,6. For each j we must consider the action of

N = (e, e €e3) and Cg(z') on Nz7.

Action of N and Cg(lg) on Nlg :
1g fixes all elements N so that Cy(lg) = N. Thus k = 8. That is we have eight orbits, @, with
s = 1,2,...,8, each consisting of one element. Now Cg(lg) = G so we only need to look at the action
z on N. This action is represented by the cycle structure (e erezes e3 ezes eey €2 €1€3 ).
So
8
Ay = {1} = Q@ and &, = | Q.

=2
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Hence f = 1 and f = 7. We obtain the following:

|IC5(lg)| = —— = 56;
h
& x 7
|Cz(e))| = 5 8;
2

Action of N and Cg(z) on Nz :

Cn(z) = {lg}. So k =1 and therefore f = 1 . Also Cg(z) = G so we have |Cgz(z)| =7. In fact
|Cz(z7)] = 7 for all j = 1,2,...,6 because the action of z7 is represented by a 7 — cycle and hence
2/ (j # 0) fixes only 1y. We thus have Cn(z?) = {1}, j # 0 and so k = | and again f = 1. With
Co(z?) = G, j#0wehave |[Cx(z)] =7, VYi=12, .6 With that, the conjugacy table of G

is completed:

class (D) | () | (2) | (2%) | (=) | (=) | (=°) | (=)
no. of elements || 1 7 8 8 8 8 8 8
order 1 2 7 7 7 7 7 7
centralizer 56 | 8 7 7 7 7 7 7

Table 2.4.1: The conjugacy table of 2° : 7.

To calculate the character table of G we use the method of inducing characters of subgroups of G
(discussed in section 2.2). In this case we shall use the irreducible characters of N and G.

The character table of N is easily calculated from the character table of Z; = (a :a® = 1) by
using the product of these characters (theorem 2.1.13). We give the character tables of Z; and N.

class (1) | (a)
centralizer || 2 | 2
U 1|1

() 1] -1

Table 2.4.2: The character table of Z,.
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class (1) | (e1) | (e2) | (e3) | (ere2) | (ere3) | (e2e3) | (e1€2€3)
order 1 2 2 2 2 2 2 2
centralizer | 8 8 8 8 8 8 8 8
8 1 1 1 1 1 1 1 1
T2 1 1 -1 1 -1 1 -1 -1
T3 1| -1 1 1 -1 -1 1 -1
T4 1 -1 -1 1 1 -1 -1 1
Ts 1 1 1 -1 1 -1 -1 -1
T6 1 1 -1 -1 -1 -1 1 1
T7 1 -1 1 -1 -1 1 -1 1
T8 1 -1 -1 -1 ! 1 1 -1

Table 2.4.3: The character table of the group 2°.

We have seen in proposition 2.1.11 that if H = (z : * = 1), then py: H — C* defined by

2kms

p(a™) = [

defines n irreducible representations of H. So the character tableof G = (z:z” = 1) is completely

determined by its representatives of this type. The character table of G is as follows:
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and we obtain the following characters of G :

dass | ()] (0] @] 6] @] 6| @] 6
no. of elements || 1 7 8 8 8 8 8 8
order 1 2 7 7 7 7 7 7
centralizer 56 | 8 7 7 7 7 7 7
g 71710l o0} 0] 0] 0|0
G 7110l 0|0} 0] 0|0
Table 2.4.5
If pé€ Irr(G), then
= L.p{1 ’
P = ey
p%e) = 0
pﬁ(xi) = 7([)(;c )) = p(z), for eachi=1,2,...,6.

The characters of G induced from G are :
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class (1) | (er) | (z) | (@) | («%) | (=%) | («°) | (=°)
no. of elements || 1 7 8 8 8 8 8 8
order 1 2 7 7 7 7 7 7
centralizer 5 | 8 7 7 7 7 7 7
oG 81 0 | 1| 1| 1| 1]1]1
o 81 0 | by | by | b3 | ba | bs | b
oG 81 0 | by | by | b | by | b3 | bs
oS 8 1 0 | by | b6 | b | b5 | b | by
oS 8| 0 | by | by | bs | by | bs | bg
oG 81 0 | bs | by | b | bg | by | b
g S pm e ——————— | b

Table 2.4.6.

where for each &k = 1,2,...,6, b, = =

Foreach: = 1,2,...,6,

il
b

(%, %)

Hence none of these characters are irreducible, but for each 1,

g,y = L

This means that for each ¢ = 1,2,...,6, p¢ is the sum of two irreducible characters of G of
which one is Tf?_. Hence for each 1, p;-g - 7'26 is an irreducible character of G. With this, we now

have all the irreducible characters of G.
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class (1) | (e1) | () | (&) | (&%) | (&%) | (=®) | (=°)
no. of elements || 1 7 8 8 8 8 8 8
order 1 2 7 7 7 7 7 7
centralizer 56 8 7 7 7 7 7 7
X1 /A T T R S S O A O I 1
X2 = pS—78 | 1| 1 | by | by | bs | by | b5 | be
Xs = pS—7C || 1| 1 | by | by | b6 | by | b3 | bs
xa = p5—7C || 1| 1 | bs| b | by | bs | by | by
Xs = pS =79 | 1| 1 | b | by | bs | by | bs | bs
Xe = pC—70 L | 1 | b5 | b3 | by | b | by | b
xr = pC gl el bo o (baral=barel 20 | by
xs = 12 701 -1lo0lo ol ofo/|o
Table2.4.7: The character table of 23 : 7.

2kme

where for each £ = 1,2,...,6, b, = e 7 .
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2.5 The Character Table of a Group of the form 23 : GL;(2)

Once we knew what the irreducible characters of NV and G in the example in section 2.4 was, we solely
applied the method of induction to calculate the character table of G. To calculate the character
table of G = 2°: GL3(2) where G L3(2) acts naturally on 23, we shall in addition to the method of
induction, also use the methods of restriction (discussed in section 2.2) and of lifting of characters
(discussed in section 2.3). The character table of this group has also been calculated by Whitley [19]

but through the use of Fisher matrices.

The conjugacy classes of G has been discussed in chapter 1 (section 1.3), so we start immediately
with the business of finding the irreducible characters of G. As in section 1.3 we let N be the group
2® and G be the group GL3(2). Now G = G/N, which implies that some of the irreducible
characters of G can be found by lifting the irreducible characters of G to G. The character table of G
is obtained from ATLAS(3], so our first six irreducible characters of G are the lifts v;, ¢ = 1,2,....6

of x: € Irr(G):

class (LA) | (24) | BA) | (4A4) | (TA) | (7B)
centralizer || 168 8 3 4 7 7

X 1 1 1 1 1 1
X2 3 -1 0 1 a a
X3 3 -1 0 i} a a
X4 6 2 0 0 -1 -1
Xs 7 -1 1 -1 0 0
X6 8 0 -1 0 1 1

Table 2.5.1:The character table of G = G L3(2)

where a = J(-1 + Vi)
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class (1) | (20) | (22) | (28) | (41) | (31) | (61) | (42) | (4a) | (T1) | (T2)
no. of elements 1 7 42 42 84 | 224 | 224 | 168 | 168 | 192 | 192
centralizer 1344 | 192 | 32 | 32 16 6 6 8 8 7 7
Y1 R T
X2 3 3 -1 -1 -1 0 0 1 1 a a
X3 3 3 -1 -1 -1 0 0 1 1 a a
X4 6 6 2 2 2 0 0 0 0 -1 -1
X5 7 7 -1 -1 -1 1 1 -1 -1 0 0
Xs 8 8 0 0 0 -1 -1 0 0 1 1

Table 2.5.2.

where a = %(—1 + \/71)

The induction of the characters of G to G will put us in a position to find more irreducible characters

of G :

If ¥ € Irr(G), then by using the formula for induced characters, we find that

%) = 8%(1)

(R)%(9) = 4x(g) forge (2);

(0(9) = 2%(g) for g€ (31)U(42);

(09 = xlg) forge (T1)U(2);
and (%)%(g) = Oforg¢G.

Inducing X1, X2, X4, Xs, we obtain (1)%, (%2)%, (X4)€ and (%5)¢
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class (1) [ (20) | (22) | (23) | (41) | (31) | (61) | (42) | (43) | (T1) | (T2)
no. of elements || 1 7 | 42 | 42 | 84 | 224 | 224 | 168 | 168 | 192 | 192
centralizer 1344 | 192 | 32 32 16 6 6 8 8 7 7
x)¢ | 8 {0 | 4]0 0| 201|201 1]1
(%2)° %@ o | 4]o0olololo|2]|01]a]a
(%4)% 8 ol sl ololololo | o] 1]
(%5)% 56 | 0| -4l 0ol 2lo0ol]=<201]o0]o0
Table 2.5.3.
Now
( G)CTIR T AT krd
{ x1, (Q1)6> = 1, sothat
v = ((0f - x) € @)
Similarly,
(%)% (%2)°) = 2 and
<X2,()22)5> — 1, sothat
Xs8 = (()22)6 3 Xz) € Irr(-C_;_)

G is a maximal subgroup of the group As. Thus by restricting the characters of Ag to G we may find

more irreducible characters of G. We shall use the following character, say 7 of Ag obtained from its

character table ( in ATLAS, page [22] ):
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class 1A 24 |2B|{3A |3B|4A | 4B |5A|6A| 6B |7A| 7B | 15A | 15B

centralizer || 20160 | 192 | 96 | 180 | 18 | 16 | 8 |15 |12 | 6 7 15 15

T 21 -3 1 6 0 1] -1 1 1-210 0 1 1
Table 2.5.4.

Using the fusion map of G into As and restricting 7 to G, we obtain 7 | G :
G | As
W | aa
(21) 1 (24)
(22) || (2B)
(23) || (24)
(41) || (44)
(31) || (3B)
(61) || (6B)
(42) || (4B)
(43) || (4A4)
(1) | (74)
(72) || (TB)
Table 2.5.5.
class (1) | (20) ] (22) | (23) | (41) | (31) | (61) | (42) | (4a) | (T1) | (72)
no. of elements 1 7 42 42 84 | 224 | 224 | 168 | 168 | 192 | 192
centralizer 1344 | 192 | 32 32 16 6 6 8 8 7
Tl G 21 { -3 | 13|10 |0O0]-1]1]0

Table 2.5.6.
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Because

Furthermore

and also

And so the character table of G is completed.

= 1 we have

= r1G € Irr(G)

so that

( (/‘%4)5 P T = X9)) € Irr(G)

Thus

((/‘24)0 ety =R Xg)) e Irr(G).
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class (1) | (20) | (22) | (28) | (40) | (31) | (61) | (42) | (4a) | (T1) | (T2)
no. of elements 1 7 42 42 84 | 224 | 224 | 168 | 168 | 192 | 192
centralizer 1344 | 192 | 32 32 16 6 6 8 8 7 7
X1 1 1 1 1 1 1 1 1 1 1 1
X2 3 3 -1 -1 -1 0 0 1 1 a a
X3 3 3 -1 -1 -1 0 0 1 1 a a
X4 6 6 2 2 2 0 0 0 0 -1 ] -1
X5 7 7 -1 -1 -1 1 1 -1 -1 0 0
X6 8 8 0 0 0 -1 -1 0 0 1 1
X7 7 -1 3 -1 -1 1 -1 1 -1 0 0
Xs 21 -3 -3 1 1 0 0 1 -1 0 0
X9 21 -3 1 -3 1 0 0 -1 1 0 0
X10 14 -2 2 2 -2 -1 1 0 0 0 0
X11 7 -1 -1 3 -1 1 -1 -1 1 0 0
Table 2.5.7: The character table of 2° : GL3(2).
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2.6 The Character Table of a Group of the form (A5 x 3): 2

Let N be the direct product of the groups As and the cyclic group Z3 and let G' be a cyclic group of
order two. For the calculation of the character table of G = N : G, a maximal subgroup of Ag, we
shall use the methods of restriction and induction of characters. For this purpose we shall make use

of the character tables of the groups H = S5 x S3 and V.

Since N is non-abelian we cannot use the method discussed in section 1.2 of chapter 1 to calculate
the conjugacy table of G. By regarding As as the alternating on the set {1,2,3,4,5}, Zsas {(6 7 8))
and G as the group ((1 2)(6 7)), we can determine the conjugacy classes of G by acting (1 2)(6 7)

on N. We first show the conjugacy classes of N:

class @ 64| 38) | (30) (3D) (3E)
class representative | 1 | (678) | (687)|(123)|(123)(678)|(123)(687)
no. of elements 1 1 1 20 20 20
Table 2.6.1 : The conjugacy table of A5 x 3.
class (24) (6A4) (6B)
class representative || (12)(34) | (12)(34) (678) | (12)(34)(687)
no. of elements 15 15 15

Table 2.6.1 : The conjugacy table of As x 3(continued).

class (5A) (15A) (15B)
class representative || (1234 5) | (12345)(678) |(12345)(687)
| no. of elements 12 12 12

Table 2.6.1 : The conjugacy table of As x 3(continued).

class (5B) (15C) (15D)
class representative | (13452) | (13452)(678)|(13452)(687)
no. of elements 12 12 12
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Table 2.6.1 : The conjugacy table of A5 x 3(continued).

By the action of (1 2)(6 7) on N we obtain the following fusion table

N (As x 3) :2

(1) (1)

(34) | (31)

(3B) |l (31)

(3C) | (32)

(3D) || (3s)

(3E) || (33)

(24) | (21)

(64) | (61)

(68) | (61)

(54) | (51)

(15A) || (151)

(15B) || (152)

(5B) | (51)

(15C) || (152)

(15D) || (151)

Table 2.6.2.
and hence complete the conjugacy table of G.

class (1) B | (3B) (33) (21)
class representative || 1 | (678) | (123)](123)(678)](12)34)
no. of elements 1 2 20 40 15
centralizer 360 | 180 18 9 24
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Table 2.6.3 : The conjugacy table of (45 x 3)): 2.

class (61) (51) (157)

class representative || (1 2)(34)(678) | (12345)|(12345)(678)
no. of elements 30 24 24
centralizer 12 15 15

Table 2.6.3 : The conjugacy table of (45 x 3)): 2 (continued).

class (152) (22) (62) (41)
class representative || (1234 5)(687)|[(12)(67)|(12)(345)(67)|(1234)(67)
no. of elements 24 30 60 90
centralizer 15 45 6 4

Table 2.6.3 : The conjugacy table of (As x 3): 2 (continued).

We start the calculation of the character table of G by restricting the characters of H to G. We show

the character table of H on the next two pages.
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90
8

30
24

40

18

60
12

20
36

20
36

30
24

10
72

240 | 360

1
720

10

12

10

class

no. of elements

centralizer

P

P2

b3

P4

Ps

Pe

@7

Ps

b9

¢10

¢11

¢12

¢13

¢14

¢15

¢16

¢17

¢18

P19

P20

¢2l

Table 2.6.4 : The character table of S5 x Sj.

38



class 124 2D |2E | 6C | 6D | 6E | 6F | 54 | 10A | 15A
no. of elements || 60 | 15 | 45 | 30 | 20 | 60 | 40 | 24 | 72 | 48
centralizer 12 |48 | 16124 |36 |12 18|30 | 10 | 15

b1 A T T O O A O O A | 1
b: Al 2101 2]0-1f2] 0] -1
®3 1 1 |-1| 1|1 ]-1}]1]1]-1 1
P4 55 ' T T S I S I A A | 1
b5 2012|0120 -1
b6 S5 N N T S (S I I 1
b7 T e o P N, o iy R 0

Ps et e e Pt .t e
b9 0 | 2 21200 T 010 | 1 1
®10 o |2-2|2]0]l0]0] 1|1 1
b11 0o |4l0]2]0|0]O0]2]|0]-
®12 0 |2|21-2]10]|0]0}|1]|-1 1
b13 e s e e s e e M 0
b14 g Tt b e ot N Y ol e R 0
b15 MY BANR R & U GFE 0 0
b16 0 {000 |-1]-1]-2f-11{-1]-1
b17 TR TR R B 1 E L R SR U 1
¢18 olojo |0 |-1]1}-1]-1]1 -1
b19 o |lojo| o} 1|1 ]|1]-1]-}-1
®20 o lo|o]jol|2]0]-1]2]0]-1
b2 o lojo|of1]-1]1]-1]1}-1

Table 2.6.4 : The character table of S5 x Sz(continued).

In the process of restricting the characters of H to G we first have to see how the conjugacy classes

of G fuse to the classes of H:
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l
x

(O] —

w ~—
— e e e N N

o o (] —

Al wl el o

(

(

(

(

(2,) | 2D
(6 6C
(51 5A
(15y) || 154
(15;) || 154
(2;) [ 2C
(62) || 6E
(4,) || 4B
Table 2.6.5.

By restricting @1, ¢, b3, b7, ds, b9, 10, b16, P17 and ¢1s of [rr(H), we obtain ten irreducible

characters of G.

We now look at the character table of NV for the induction of some of its irreducible characters to G.
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class (1) | BA) | 3B) | (3C) | (3D) | (3E) | (2A) | (6A)
no. of elements 1 1 1 20 20 20 15 15
centralizer 180 | 180 | 180 9 9 9 12 12
L2 1 1 1 1 1 1 1 1
(I 1 c T 1 c C 1 c
(7 1 [ c 1 ¢ c 1 C
(o 3 3 3 0 0 0 -1 -1
¥s 3 | 3 | 3 | 0 0 0 -1 | —c
(% 3 3c 3¢ 0 0 0 -1 —C
Y7 3 3 3 0 0 0 -1 -1
(I 3 3c 3c 0 0 0 -1 —c
o 313 | 3 | 0 0 0 -1 | —¢
Y10 4 4 4 1 1 1 0 0
1 4 4c 4c 1 c c 0 0
Wia 4 | 4 | 4e 1 z c 1 | -e
Y13 5| 5 5 | -1 | -1 | -1 1 1
Y14 3 S¢ 5¢ -1 —C —C 1 c
Y15 5 1 5¢c 5¢ -1 —c | —c 1 &

Table 2.6.6 : The character table of A5 x 3.
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class (6B) | (5A4) | (15A4) | (15B) | (5B) | (15C) | (15D)
no. of elements || 15 12 12 12 12 12 12
centralizer 12 15 15 15 15 15 15
(2 1 1 1 1 1 1 1
Vs T 1 c T 1 c T
Y3 c 1 [ c 1 & c
Py -1 a a a b b b
s —c a ac ac b be bc
Ve —c a ac ac b bc bc
Y7 -1 b b b a a a
Vs iy be be a ac ae
P9 —c b be be a ac ac
P10 0 -1 -1 -1 -1 -1 -1
Y1 0 -1 —c —¢ -1 —c —c
Y12 0 -1 —C —c -1 —c —c
[2E 1 0 0 0 0 0 0
Y14 G 0 0 0 0 0 0
Y15 c 0 0 0 0 0 0

Table 2.6.6 :

where

The character table of A5 x 3 (continued).

1+ V5
2 b
1 -5
2

1 V3

3 T 7

and

If ¥ € Irr(N), then by using the formula for induced characters, we have
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WClg) =  d(z) + W(zm) g€ Bi) = € (34)and z: € (3B)
vO(g) = 24(z) ; g € (3)and z € (3C)

vC(9) = w(z) + ¥(x=) g€ (33); = € (3D)and z € (3E)
¥Cg) =  24(z%) ; g € (21)and z € (24)

WCg) =  W(z) + Y(=); g € (6B1); =z € (64) and z € (6B)
) =  P(z) + U(z0); g € (51); 2z € (5A)and zip € (5B)
$%(g) = wlzn) + ¥(ze): g € (151); zip € (154) and 212 € (15D)
¥e9) =  W(zs) + w(z:a); g € (15); =3 € (15B)and 212 € (15C)
Wlg) = 0 if g € (2) U6a) U(4)

From the character table of N we induce the characters ¥5 and g to G to obtain the irreducible

characters x1; and x12 of G and so complete the character table of G-
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class L] (31) | (32) | (33) | (21) | (61) | (51)
no. of elements || 1 | 2 | 20 | 40 | 15 | 30 | 24
centralizer 360 | 180 | 18 | 9 | 24 | 12| 15
X1 plr vt
X2 o | a1 2|1 2|12
Xa R
Xa 505 | -1]-1]1]1]0
Xs w|sl2]1]1211]o0
Xe 5 05 | -1]-1]1]1]o0
X7 61 6| 0 0{-2]-2]1
Xs Tttty | -1
Xs PR | -2
X10 TERTRSSI TR TD | -1
X11 6 -3 0 0 -2 1 1
X12 6 | 3|00 ]-2]1]|1
Table 2.6.7 : The character table of As x 3: 2.
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class (151) (152) | (22) | (62) | (41)
no. of elements 24 24 30 | 60 | 90
centralizer 15 15 12 6 4
X1 1 1 1 1 1
X2 -1 -1 0 0 0
X3 1 1 -1 -1 -1
X4 0 0 1 1 -1
X5 0 0 0 0 0
Xs 0 0 -1 -1 1
X7 1 1 0 0 0
Xs 1 - 9fe1 | 0
X9 1 . 0 0 0
X10 -1 -1 -2 1 0
X11 ac + b2 a + bc| O 0 0
X12 ac¢ + belac + bec| O 0 0

Table 2.6.7 : The character table of As x 3 : 2(continued).

where
1 ++5
a = 2SN
2
b = L-v5
2
1 V3
C = —‘2’ + -‘—2—1

To conclude this chapter we give as examples for our discussion on how the methods of restriction

and induction of characters are related (section 2.3) , the following two Frobenius reciprocity tables:
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N\E X1 X2 X3 X4 Xs Xe X7 X8 X9 Xio X1 Xi2

P 1
P
V3
¢4

¥s
Ve
Y1
Ps
o
d’lO

—
)

o

o

o

o O o

o O O O O o o o o
o O O O o o o o o
- o O O QO

o O O O o o O

—

_o O O O O o o o o o
[

o O O O O o o o o o o
b

[

Y12
Y13
Y14
Yis

O O O O o O o o o o o o

p—

o O O O O O o o o o o o o o o
—
o

o O O o o O o o o o <o o -
o O o o o o O o o o o o o ©o
o o O, O O O o o o o o o o o
o o o o o

o O O

oS O O o O

o OO0 O O o o o o o

o O o o o o

1 0

Table 2.6.8.

From the table above we can easily express ¥C as a sum of irreducible characters x; of G for every

¥ € N and likewise express x | N as a sum of irreducible characters ¢; of N for every x € G.
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¢3 ¢4 ¢5 ¢6 ¢7 ¢8 ¢9 (751 0 ¢1 1

P2

G\ H|Il &
x1 T

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

Table 2.6.9.
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G\H |l ¢12 d13 b4 b1s b6 b7 b5 b9 ¢ o
x1 T 0 0 0 0 0 1 0 0 0 0
X2 0 0 0 0 0 0 0 0 0 0
X3 0 0 0 0 0 0 0 0 0 0
X4 0 0 0 1 0 0 0 0 0 0
Xs 0 0 1 0 0 0 0 0 0 0
X6 0 1 0 0 0 0 0 0 0 0
X7 1 0 0 0 0 0 0 0 0 0
X8 0 0 0 0 1 0 0 0 0 1
X9 0 0 0 0 0 1 0 0 1 0
X10 0 0 0 0 0 0 1 1 0 0
X11 0 0 0 0 0 0 0 0 0 0
X12 0 0 0 0 0 0 0 0 0 0

Table 2.6.9(continued)

The Frobenius table (above) in this case tells us how to express x as a sum of irreducible characters

é; of H for every Y € G and how to express ¢ | G as a sum of irreducible characters x; of G for

every ¢ € H.
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Chapter 3

FISCHER MATRICES

In this chapter we discuss the theory of Fischer matrices and show how it is applied in finding the
irreducible characters of three finite groups which are all split extensions. We shall first look at
results which are necessary for our discussion of Fischer matrices. This theory, called Clifford theory,
s discussed in section 3.1. Section 3.2 deals with the properties of Fischer matrices and in the rest
of the chapter we calculate the character tables of the three groups as mentioned. For the first two

sections we make use of the thesis of Whitley [19].

3.1 Clifford Theory

We consider the characters of G, an extension of N by G, with N not necessarily abelian.

Let § € Irr(N), where N « G and for g € G, n € N we let 6 be defined by

#9(n) = 0(gng~'). Then 67 is a character of N and is said to be conjugate to 8 in G. G per-
mutes Irr(N) by g : 8 — 69. Since N acts trivially on Irr(NV), Irr(N) is permuted by G/N, by
gN:0 — 09

The next result, due to Clifford [2], is fundamental to the work that follows in this and the next
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section. The proof is from Isaacs[9].

Theorem 3.1.1 (Clifford’s theorem) Let N «G and x € Irr(G). Let 0 be an irreducible constituent
of X|n and suppose that § = 61,0, ...,0, are the distinct conjugates of 6 in G.
Then x|n = €Y i, 0; where e = (x|n,8).

Proof: We compute §°|y. Define 8° on G by

8°(z) =

6(z) , ifzeN
0 , T &N

For n € N, we have

Ha(n) = |N|"1290(znw'1).

1:65
Since znz~! € NV z € G we have
Ga(n) = |N|™! Z@I(n). Therefore
IE—G
NPl = S6,
z‘E_G"

and if ¢ € Irr(N) and ¢ ¢ {; : 1 <i <t} then

0 = () 6°0), so(6°v,9) = 0.

xea
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Since x is an irreducible constituent of 9% by Frobenius reciprocity, it follows that

{x|n,®) = 0. Thus all the irreducible constituents of x|y are among the 6;, so

t

xlv =Y {xln, 0.0

1=1

But {x|n,8:) = (x|n,0) since §; and 8 are conjugate and so the proof is complete. U

Definition 3.1.2 Let N <G and € Irr(N). Then Iz(8) = {g€ G: 69 =0} is the inertia group
of 8 in G.

Since Iz(0) is the stabilizer of 6 in the action of G on [rr(N), we have that [z(f) is a subgroup
of G and N C I5(). Also [G : I5(9)] is the size of the orbit containing 6, so in the formula
xlv = eY i, 0;, we have t = [G : [5(8)].

As a consequence of Clifford’s theorem, we have the following theorem.

Theorem 3.1.3 Let N «a G, 0¢ Irr(N)and H = I5(8). Then induction to G maps
the irreducible characters of H that contain 0 in their restriction to N faithfully

onto the irreducible characters of G which contains 0 in their restiction to N,

Proof: See [19,Theorem 3.3.2]

Theorem 3.1.3 shows that to find the irreducible characters of G that contain @ in their restriction
to N, it suffices to find the irreducible characters H = Iz(6) that contain 6 in their restriction. If 0
can be extended to an irreducible character ¥ of H ( that is ¥ € Irr(H) with |y = 6), then the

relevant characters of H can be obtained by using the following theorem.

Theorem 3.1.4 (Gallaghar [6]) With N, G,0 and H as above, if 6 estends to a character
W € Irr(H) then as B ranges over all irreducible characters of H that contain N in their kernel,
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B ranges over all irreducible characters of H that contain 0 in their restriction.

Proof: By definition of H, @ is the only H-conjugate of 8, so by Clifford’s theorem 9ﬁ|N = fO for

some integer f. Comparing degrees, 07|y = [H : N6, so

07, 67) = (6,67 )
= [H:N].

Now we claim that 87 = Zﬁ B(1)B, where B runs over all irreducible characters of H that contain
N in their kernel, or, equivalently, over all irreducible characters of H/N. Both 97 and > 8(1)8Y
are zero off N because for g ¢ N, 6" (g) = 0 since zgz™' ¢ N ¥V z € G, and by the column orthogo-

nality for the character table of H/N since g does not belong to N, we have

S BB = S BB9))b(g) =0
B

B

Also

because for g € N,

I
|
=
=
s
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Therefore 87 = 2.5 B(1)B% as claimed. Now

[A:N] = (8%,6%)
= (O BW)BY, > v(1)ve)
g v

= 3 BB, 1Y),
B,y

The diagonal terms contribute at least 3_ 3(1)? = [H : N] so the 8¢ are irreducible and distinct.
These B¢ are all the irreducible constituents of 9" so are all the irreducible characters of H that
contain  in their restriction, since for ¢ € Irr(H),{(é|y,0) = (&, ¢ﬁ). a

Note 1 Now suppose G is an extension of N by G. If every irreducible character of N can be
extended to its inertia group in G, then by application of theorems 3.1.3 and 3.1.4 the characters of
G can be obtained as follows:

Let 61,8, ..., 0, be representatives of the orbits of G on Ir7(N). For each i, let H; = I5(6;) and let
Y; € Irr(ﬁi) with ¢;|ny = 6;. Now each irreducible character of G contains some 6, in its restriction

N by Clifford’s theorem, so by theorems 3.1.3 and 3.1.4 we have

t

1rr(@) = |J {887 :8 € Ire(H), N C ker(8)}

=1

Hence the characters of G fall into blocks, with each block corresponding to an inertia group.

We now quote some results which give sufficient conditions for the irreducible characters of N to be
extendible to their respective inertia groups, so that the above method can be used to calculate the

characters of G.

The following result and proof was obtained from Curtis and Reiner ([4, page 353]).
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Theorem 3.1.5 (Mackey’s theorem) Suppose that N is a normal subgroup of H such
that N is abelian and H is a semi-direct product of N and H for some H < H.If
9 € Irr(N) is invariant in H (thatis, 0* = 6,V h € H ) then 0 can be extended to

a linear character of H.

Proof: Since H is a semi-direct product, any h € H can be written uniquely as h = nk,n € N,k € H.
Define x on H by x(nk) = 6(n). Since N is abelian, 8 has degree 1, hence is linear, and the fact that
0 = 6" for all h € H implies that 8(n) = 0(hnh~!) for all h € H. Then if hy = niky, hy = ngks,

we have

X(h1h2) = X(nlkln2k2)

Therefore x is a linear character of H, and x|y = 6. O

Since in all our examples that we will consider, N is abelian and the extension Is split, Mackey’s
theorem will apply. Mackey’s theorem is a corollary of a more general result by Karpilovsky [11]

which we state without proof.

Theorem 3.1.6 Let the group H contain a subgroup H of order n such that H = NH for N normal
in H and let x € Irr(N) be invariant in H. Then x extends to an irreducible character
of H if the following conditions hold:
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1. (m,n) =1 where m = x(1),
2. NN H < N' where N’ is the derived subgroup of N.

Another extension theorem which can be found in [7] is the following:

Theorem 3.1.7 If N is a normal subgroup of H and 8 is an irreducible character of N that is

invariant in H, then 0 is eztendable to an irreducible character of H if

([(H:N], i) = L.

3.2 Properties of Fischer Matrices

In this section we give some properties of the Fischer matrices which will enable us to compute the
character tables of three finite group extensions in the last three sections. We however need to look

at some background material first.

Let G be an extension of N by G, with the property that every irreducible character of N can be
extended to its inertia group. With the notation of the previous chapter we have that

[Irr(G) = Ui {(89:)€ : 8 € I[rr(H;) with N C ker(8)}] Now we show how the character table
G can be constructed using this result. We construct a matrix for each conjugacy class of G' (the
Fischer matices). Then the character table of G can be constructed using these matrices and the
character tables of factor groups of the inertia groups. These constructions of Fischer matrices have

been discussed by Salleh [18], List [13] and List and Mahmoud [14].

As previously, let 6y, ...,0; be representatives of the orbits of G on Irr(N), and let H, = I%(8;) and
H, = ﬁi/N. Let 1; be an extension of 6; to H;. We take §; = 1y, so H, =G and H = G. We
consider a conjugacy class [g] of G with representative g. Let X(g) = {z1,...Z(y)} be representatives

of G-conjugacy classes of elements of the coset Ng. Take z; = g. Let R(g) be a set of pairs (2,y)
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where i € {1,...,t} such that H; contains an element of [g], and y ranges over representatives of the
conjugacy classes of H; that fuse to [g]. Corresponding to this y € H;, let {y;, } be representatives of
conjugacy classes of H; that contain liftings of y.

If 8 € Irr(H;) with N C ker(8), then 3 has been lifted from some 3 € Irr(H;), with B(y) = B(y,)
for any lifting y;, of y. For convenience we write 8(y) for B(y).

Now, using the formula for induced characters given in Proposition 2.2.9., we have

wolle) = 3 > L b8 )

(i,y)ER(g) k ! ylk

|C5(z))| 5
5 }jlc i)

v:(4,y)ER(g)

s

y:(4,y)€R(g)

lk

1/% ylk)) 5(3/)

By X' we mean that we sum over those k for which y;, is conjugate to z; in G. Now we define the

Fischer matrix M(g) = (a{i’y)) with columns indexed by X(g) and rows indexed by R(g) by

Z||CG xJ , lk)
Then
WiB)C(z))= D af,,B8).

v:(i.y)E€R(g)

The rows of M(g) can be divided into blocks, each block corresponding to an inertia group. Denote
the submatrix corresponding to H; by M;(g), and let Ci(g) be the fragment of the character table of
H; consisting of the columns corresponding to classes that fuse to [g]. Then, by the above relation ,
the characters of G at the classes represented by X(g) obtained from inducing characters of H; are

given by the matrix product C;(g).Mi(g).
We now state a result of Brauer and prove a lemma which will be needed later.
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Lemma 3.2.1 (Brauer) Let A be a group of automorphisms of a group K. Then A also acts on
Irr(K) and the number of orbits of A on Irr(K) is the same as that on the conjugacy classes of K.

Proof: See [8, 4.5.2]

Lemma 3.2.2 Let A be a group of automorphisms of a group K , so A acts on Irr(K) and on the
conjugacy classes of K with the same number of orbits on each by the previous lemma. Suppose we

have the following matriz describing these actions:

1= 11 12 lJ lt
S1 1 11 \
3] a1 Qy ... Q25 ... Gy
S a;i Az ... Qg .. a;
St \ as agy ... Qg ... Ay /

where a;; = 1 for j =1,...t, l; ’s are lengths of orbits A on the conjugacy classes of K,

s; ’s are lengths of orbits A on [rr(K),

a;; is the sum of s; irreducible characters of K on the element z;, where z; be an element of the orbit
of length ;.

Then the following relation holds for i,:" € {1,...t}:

t

Za,-ja_i/;lj = |I\"‘Si5w

1=1

Proof: Let s; denote the sum of s; irreducible characters of K, so si(z;) = ai;. Then

Els x,s, (z;) E lia;jam;

< iS¢ >=

[



But by orthogonality of irreducible characters, < s;, 54 >= d;#5;, s0
t
Z lja,-jm = l[\"|si5,~1~/. D
J=1

Now let M(g) = (af

) be the Fischer matrix for G = N.G at g € G. We present M(g) with

corresponding "weights” for columns and rows as follows:

ICa(z1)] |Cqlz2)l ... |Cgzeg)l
Cae(9) 1 —
|Ch, (y)] s U2)
IC, ()] Unyy Yy
|Ch. (y)l iy i)
|Ch. (y)] a(lt,y) a?t,y)

\

The matrix M(g) is divided into blocks (separated by horizontal lines), each corresponding to an
inertia group. Note that a{l’g) =1 for all j € {1,...,c(g)}. Fischer has shown that M(g) is square
and nonsingular(see{14]). In the following propositions and note we give further properties of Fischer

matrices.

78



Proposition 3.2.3 (column orthogonality)

Y ICuW)lal; al; ) = 8x|Cx(z;)l

(1.y)€R(g)

Proof:The partial character table of G at classes z, ..., Te(g) 1S

Ci(g)M(9)

Ci(g)M:(9)

where C;(g), Mi(g) are as defined earlier in this section.

By column orthogonality of the character table of G, we have

Ca(z)ldy = >, D Yo ad B D ali By

i=1 g;elrr(H) \v:(i,y)€R(g) y:(i,y')ER(g)
t
= Z Z (Z i) (w)ﬁ‘ ’B’ +ZZ @i ) (w)’g' By )>
i=1 g;€lrr(Hy) Yy vy y'#y
t
= Z Z o) ¥ oy O BB + DD ety i Y BWEY)
i=1 B:elrr(H;) y y'Fy Bi€lrr(H;)
i
= Z(Za(w zy)lCH'( )|+0>
i=1 Y
= Z aw) »y)ICH( )| U
(:,¥)€R(9)

Proposition 3.2.4 (List [13]) At the identity of G, the matriz M(1) is the matriz with rows equal

to orbit sums of the action of G on Irr(N) with duplicate columns discarded.
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For this matriz we have a{ = [G : H;], and an orthogonality relation for rows:

i

t

Zafi,n“fil,l)|CE($J')|—1 = 8| Cr (D)™ = | Hi| ™!

i=1

Proof:: The (i, 1), 7** entry of M(1) is

i G|
iy = zk: m%(ylk)

where we sum over representatives of conjugacy classes of H; that fuse to [z;] in G. Therefore a{i’l) =
w?(z]) By theorem 3.1.3 d)? is an irreducible character of G, and < 1[);5|N,0,- >=< Yi|n, 0, >= 1.
Therefore, by Clifford’s Theorem (Theorem 3.1.1), ¢?|N = Y., Xa» Where we sum over all x, €
Irr(N) in the orbit containing §;. Now z; € NV, and a{i,l) = > . Xal(z;). The orthogonality relation
follows by Lemma 3.2.2. O

Note 1 If N is an elementary abelian group (which is the case for our calculations), then List[13]

has also shown the following for M(g), where g # 1:

If G is a split extension of N by G, then M(g) is the matrix of orbit sums of C, (as defined in section
1.2) acting on the rows of the character table for a certain factor group of N with duplicate columns

discarded.

If the extension is not split, M(g) is the matrix of orbit sums of Cy acting on the rows of the character
table with duplicate columns discarded and with each row multiplied by a p — th root of unity where
|N| = p™ for some n. It may be that the root of unity for each row is 1.

For these matrices (N elementary abelian, any extension) a%iyy) = Ti(%r;:((%})l-l’ and we have an orthogo-

nality relation for rows (as a consequence of Lemma 3.2.2.):

m;al; @y = 36| Cal@Ch W INT = Sy @i V]
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where m; = [C, : Cgx(z;)].
(In the notation of section 1.2, m; is the length of the orbit A; of Cy, so m; = ﬁ;c]y-l)
The relations given in the above propositions and note will be used later in our calculations of Fischer

matrices, so for convenience we list them in a theorem.

Theorem 3.2.5 For a Fischer matriz M(g) = (a{i,y)) of G = N.G we have the following relations.

1. aflyg) =1 forall j € {l,...;c(g)}.

2. > [CH(y)le, ol = 8izlCa(2;)|-

(1.¥)€R(g)
3. If N is elementary abelian,then azi,y) e T%&%H, and
<(g) . '
_ 1
4 mja‘zi,y)a‘zi’,y’) - 5('i,y)(i’,y’)a(i,y)'N|'
i=1
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3.3 The Character Table of a Group of the form 2* : S3x S;

Let G = N : G where N is an elementary abelian 2-group of order 16 and G = S3 x S3. We start
with the conjugacy classes of G and use the facts that S; = GLy(2) and that N is isomorphic to

V4(2), the vector space of dimension four over a field of two elements. Now

oo - ((22) (1))

so we consider the following 4 x 4 matrices over GF(2):

—
(sms]
[« (= § [

o O
)

o= ((12),(1)) =

(=]

[ | | o T
p—
o

noo= ((123),(1))

I
s
o
o = o o
o o o

= ((1),(12)) =

o O O
S =
o o O

[T = N =]
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((12),(12))

I3

o
o O O =
o o O
o

o o O
(e

o
o O =

((1),(123)) =

Y2

= =) 14,
=8 B
o o ©

(el

w, = ((12),(123)) =

o —
(o) o
- o o o
e e = =]

y» = ((123),(123)) =

o
o O = =
o O O
(]

0 11

We let G =< z1,y1,%2,y2 >. Then {lg,z,,z2,T3,Y1,Y2, Y3, W1, w2} is a complete set of the class

representatives for G. N is generated by {e;, e, €3,€4} i.e.

N=((1000),(0100), (0010), (0001))
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Let G act naturally on N. Using the method discussed in chapter 1, section 1.2, we act N and C's(g)

on the cosets Ng where g € {lg, 1,2, 3,1, Y2, Y3, W1, W2 }.

og:lGZ

If g is the identity of G, then g fixes all elements of N, so k = 16. Under the action of

Ce(lg) = G these orbits are fused as follows:

A=1=1 = fi=1,

Ar = {e}° = {e1, e, 006} = fo =3,

As = {e3}® = {e3. e4,e3e4} = f3 =3 and

Ag={e e} =N\ (AJUAUA;) = fi=09,

so this coset gives four classes of G:

IC5(1)] = 16 x 36 = 576

|Cx(e1)] =16 x 36 +~ 3 = 192
|Cx(es)| =16 x 36 +~ 3 = 192
|Cx(eres)| = 16 x 36 = 9 = 64

[ ] g =T :
z; fixes the elements of { e3, e4, €1€7 ) so k = 8. The orbits are

G = {331, 8162331}7 Q2= {61331, 62331}, Qs = {6’31‘1, 616263731}, Qs = {64371, 616264331}»

Qs = {6163131, 6263301}» Qs = {6184131, 6264131}, Q'f = {636411, 61626384931},
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Qs = {616364331, €2€3€4$1}-

Under the action of Cg(zy) = (z1,72,¥2), @1 = A;and Q; = Ay are fixed while
Qs U Q4 U Q7 becomes Az and Qs U Qs U Qs becomes A4 and we obtain f; = 1, fa=1, =3

and f; = 3, so this coset gives us four classes of G-

ICx(z1)| =8 x 12 = 96
|Cx(eray)| =8 x 12 = 96
(
(

)
Ql

Co(eszi)| =8 x 12 + 3 = 32
|C_G_ 6163131)' =8x%x12 -3 = 32

Q

.g:yl:

Cn(y1) = (es, €4 ), so k= 4. Under the action of Ca(y1) = (y1,2,y2) three of the orbits

are fused into one and we obtain f; = 1, and f, = 3, so this coset gives us two more classes of G:

|ICx(y1)| =4 x 18 = 72
|Cx(esyr) =4 x 18 + 3= 24

o g=Ty:

Here we have Cn(z3) = (e, €2, eseq ), so k = 8. Under the action of Cs(z2) = (z1,%2,)

we obtain f; =1, fo =3 fs = 1 and f4 = 3, so we obtain four more classes of G:

\Cg(.rgﬂ =8x12 = 96
|C‘§(€1$2)| =8x12 = 3= 32
|Ca(eszs)| =8 x 12 = 96
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|Ca(erezzs)| =8 x 12 = 3= 32

¢ g=1Y2:

Cn(g) = (€1, €3 ), so k =4. Under the action of Cg(g) = (y1,z2, 1) we obtain f; =1 and

f2 = 3 and we obtain another two classes of G:

Ca(ys)] = 4 x 18 = 72
|ICa(eryz2)| =4 x 18 + 3= 24

g=2x3.

Here we have Cn(g) = ( eiez, €seq ), hence k = 4. Under the action of Cg(g) = (z1,23,)

we obtain fi =1, f, =1 f3 =1 and f; =1 and so there are four more classes of G:

Co(es)| =4 x4 = 16
|Cx(erzs)] = 16
|Ca(eszs)| = 16
(

|Cx(ereszs)| = 16

Q

g=Yys3:

We have Ci(g) = {ln}, therefore k = 1, hence f; = 1. We thus gained one class:
Calys)l = [Calys)l = 9

g = w;:

Cn(g) = ( eseq ), so k = 2. Under the action of Cg(g) = (y1,z2) we obtain f; = 1 and

f2 = 1. We have obtained another two classes of G:
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Cn(g) = (eies ) and so k = 2. Under the action of Cg(g) = (z1,y2) we get fi = | and

f» = 1 and so obtain the last two classes of G:

Calw)| =2 x6 =

|C§(€3'LU1)| =2x6

The conjugacy classes of G are given below and h; denotes the number of elements in a conjugacy

12

12

class.

class 1 €1 €3 €i1€3 | I1 €12y | €32 €1€3T1 31 €3Y1 Iy | €122 | €322

h; 1 3 3 9 6 6 18 18 81 24 | 6 18 6

Cg(;v) 576 1192 | 192 | 64 |96 | 96 32 32 721 24 [ 96| 32 96

Table 3.3.1 : The conjugacy table of 2* : S5 x Ss.

class €1€3T2 | Y2 | €1Y2 | T3 | €1T3 | €3T3 | €1€3L3 | Y3 | W1 | €3Wy | W2 | £W2
h; 18 8| 24 |36} 36 36 36 64 | 48 | 48 | 48 | 48
Cg(z) 32 721 24 | 16| 16 16 16 9 |12 12 12 12

Table 3.3.1 : The conjugacy table of 2* : S3 x Ss(continued).

We proceed to calculate the Fischer matrices. From the action of G on Irr(N) we obtain the same

number of orbits as when G acts on N. From each of the four orbits, we determine the inertia groups

H; where: = 1,2,3,4. Then we let H; = Fi/N and we obtain the following inertia factors
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H =G; H = <f'31, T2, y2>; H; = <l'1, Ty, y1) and Hy= (iEl, Iy, >

The character tables of these inertia factors are:

class Lz x| 23| yr | y2 |Ys | wr | we
h; 1131392 |2|4|6]F€6
Cg(z)||36]12 12| 4 |18 189 | 6 | 6
(2 L1111 (1 1}1|1
() 21210102 {-1{-1]0]-1
Y3 1y 1 (-1{-1}p1|14¢1]-1}1
(' 21012 (0(-1}2{-110]-1
Vs dmglry O QB3 2neh— 2l by —0- <0
(2 2 (0}-2{0}-1}2]|-1]1]@0
e Lj-1)14y-1y1rj111}]1}4-1
Vs 21210102 |-1{-1]07¢1
(i 1 {-1y-1j1|1}y1|1}-1]-1

Table 3.3.2 : The character table of H; = S5 x Ss.

class 1 |z |2y | 23| y2 | we
hi 1|1{3|3]2]:2
Ca(z) || 1212 4 | 4 [ 6| 6
é1 11 |1]1]1}1
®2 212100 |-1]-1
és 1|1 f-1{-1|1]1
b4 1 |-1]1]-1]1}-1
b5 2(-2{0|0|-1]1
b6 1|-1]-1]1]1]-1

Table 3.3.3 : The character table of H,.
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class L |zy |z |23 | yn | wn
h; 1 (3|1 3|22
Cglz) || 12 4 |12 4 | 6| 6
T 111 (1}]11
Ty 2101210 ]|-1]-1
T3 1 -1 1¢-1{1]1
T4 11 (-1¢-111/)-1
Ts 210 (-21P¢-1|1
Te 1 |-1]-1t1¢(1}-1

Table 3.3.4 : The character table of H;.

class 1|z |2 | 23
hi -
Ce(z) 4] 4] 4| 4
o, 1{111]1
®; 1{1]-1]-1
o, I{-1]11]-1
i 1(-1)-1}1

Table 3.3.5 : The character table of Hy.

and their fusion maps into G are:
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H, | G

1 1

zy || 21

zy || z2

x3 || z3

Y2 || Y2

wy || we
Table 3.3.6.

Hs | G

1 k

1 1

o || 22

3 || T3

Y1 0

wy || wy
Table 3.3.7.

Hy | G

1 1

T || 1

z3 || 22

z3 || T3
Table 3.3.8.

To calculate the Fischer matrices we use the relations of Theorem 3.2.5. For every g in Ng, we
have the Fischer matrix M(g). For each matrix M(g), we index the columns by the orders of the

centralizers of the class representatives of G which comes from Ng and the rows by the orders of the
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centralizers of the class representatives of the inertia factors which fuse to [g] in G. Corresponding

to 1g, we let

576 192 192 64

36 a, Gz az dy
12 b b bs b
M(lg) = 1 2 3 4

12 ¢ cy c3 ¢4

because we obtained four orbits from the action of G on N1 and so we have a 4 x4 matrix. Now by
relation 3.2.5 (1), a; = 1 for each i = 1,2, 3,4 and by relation 3.2.5 (3) we have b; = 3; ¢; = 3; dy = 9.

By column orthoganality given by relation 3.2.5 (2), we have for example

36 + 12]bg)? + 12]c;]> + 4|dof> = 192
36 + 12.3.by + 12.3.c; + 49d; = G0
36 + 12.by.b + 12.c1.cy + 4.dy.dy = 0
36 + 12|bs]> + 12|cs|* + 4|ds|* = 192; and so on.

Manipulating these equations we obtain the matrix:

576 192 192 64



Similarly, we determine the other Fischer matrices. They appear below.

e g=1I:
9% 96 32 96
12 1 1 1 1
12 1 -1 -1 1
M(zy) =
4 3 3 -1 =1
4 3 =3 1 -1
® g=U
72 24
18 1 1
M(yl) =
6 3 -1
e g=1=IT3.:
9% 32 96 32
12 1 1 1 1
4 3 -1 3 -1
M(:l)g) =

4 3 -1 -3 1
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*g=Y:
® g=T3:
*g=¥Ys

72 24
18 1 1
M(y2) =

6 3 -1
16 16 16 16
4 | 1 1 1
4 1 1 -1 -1

]\/[(133) =
4 1 -1 1 -1
4 1 -1 -1 1
9
M(ys)= 9 ( 1 )
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12 12
6 1 1

M(wn) =
6 1 -1

® g = W

12 12
6 1 1

M(w2) =
6 I

We are now ready to determine the character table G. There are four inertia factors, so the characters
of G fall into four blocks. The characters are calculated from the Fischer matrices and the character
tables of the inertia factors. This is achieved by multiplying rows of the matrix M(g) with sections

of the character tables of the inertia factors fusing to [g].

For g = 1¢ we have

M(1) =

Nel w (] —
w
|
—
I
[

-3 -3 1
By multiplying each row of M(1) by the columns in the character tables of the inertia factors which

correspond with the classes fusing to 1z respectively, we obtain the values of the characters of G on
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the G-classes with representatives 1, e;, e3 and eje3 :

2
4(1111)=
2

. (33—1 —1>=

95
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1 9 -3 =31

1 9 -3 =31
9 -3 -3 1)=

1 ( ) 9 -3 =3 1

1 9 -3 =31

We determine the values the characters of G corresponding to the class of G with representative z,

in a similar fashion:

[ =) i M S
2 2 2 2 2
1 T —
0 0 0 0 o
o [(1111)=] 0 0 o o
0 00 0 0
-1 -1 -1 -1 -1
Z9 Zo Lo 2 =2

2 2 —2 -2 2
1 ( L1 -1 1 ) _ 1 -1 -1 1
-1 11 1 -1
) 2 2 2 -2
\ -1 ) \ -1 1 1 -1

96



0 0o 0 0 0

-1 -3 -3 1 1
( 3 3 —-11 ) =

1 3 3 -1 -1

0 0 0 0 0

1 B RIl-1

1 T Ao
< 3 -3 1 -1 ) -

-1 =313 =l 1

-1 -3 3 -1 1

With this we now also know the values of the characters of G on the G-classes with representatives

zy, e1T;, ear; and eje3x;.

Continuing this process with the other classes of G, we complete the character table of G.
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€1Tx9 €3T2 €1€3T2

T2

18
32

18
32

96

96

€31

n

24
24

72

€1Ty €3T1 €;€3T)

3

18
32

18
32

96

96

€1 €3 €i1€3

1

192 192 64

576

class
hi

Cz(z)

X1

X2

X3

X4

X5

Xs

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X198

X20

X21

X22

X23

X24

X25
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Table 3.3.9 : The character table of 24 : S5 x Ss.

F .
[ aws 3

UNIVERSITY of the
WESTERN CAPE
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€1W3

wa

48

48

12

12

€3wn

wy

48

12

12

Ys

64 | 48

€3T3 €1€3%3
36

€173

Z3

36

36
16

36

16

16

16

€1Y2

Y2

24
24

class

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X1s

X16

X17

X18

X19

X20

X21

X22

X23

X 24

X25
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Table 3.3.9 : The Character Table of 2* : S5 x S3(continued).
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3.4 The character table of a Group of the form 2¢ : S,

Again we let G = N : G where N is an elementary abelian 2-group of order 16 and G = S4. The
symmetric group Sy is generated by (1 2) and (1 2 3 4). By identifying (1 2) and (1 2 3 4) with

0100 0100

1 000 0 0160
9 = and g =

0010 0 001

0 001 1 000

respectively, we can regard Sy as the subgroup (gi, ¢2) of GL4(2) = Ss. Then we act the group
{g1, g2) naturally on V4(2) = N.

To determine the conjugacy classes of G we need the conjugacy table of Sy for the cosets of G/N
and for this purpose, we use the character table of G = S;. We may again use the method discussed

in chapter 1, section 1.2. We act N and Cg(g) on the cosets Ng as follows:

e g=1:

The identity of G fixes all elements of N, so k = 16. Under the action of Cg(lg) = G on N1,

we obtain

fl=l’ f2=47 f3=67 f4=4andf5=l

and so the following classes of G from the coset N:
|ICx(1)| =16 x 24 = 384

ICx(e))] =16 x24 + 4 = 96

ICx(eres)| = 16 x 24 = 6 = 64

|Ca(erezes)| =16 x 24 + 4 = 96

|Ca(erezeses)| = 16 x 24 = 384
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e g€ (24):

<

o o O
= O
[ R oo BN e ]

()
[sa]
—

With the action of g on N we get k = 8 and the action of Cg(z,) gives us

f1=1, f2=]-7 f3=27 j4=]~ j5=1andj6=2

Also |Cg(g)| = 4 and we obtain

|Ca(9)| = 32
| ICa(e1g)| = 32
C5(esg)| = 16

|Cz(eresg)| = 16
|C5(eseag)| = 32
|Cz(e1ese49)| = 32

e g€ (3A):

o
—
o

0
1
0

1

o O O
o o O

0
0

—

This case gives us k = 4 and f; = 1, for each i = 1, 2, 3, 4. |Cs(g)| = 3 and we obtain
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ICa(g)| = 12

|Cx(erg)| = 12

|Cz(eag)| = 12

|Cz(ereag)| = 12

e g€ (2B):
0100
1 000
77 0 001

0010

We have k = 4 and

f]‘—“]., f2=2, andf3=l

|Cs(g)| = 8 and we obtain

|Cz(9)| = 32
|Cz(e19)| = 16
|Cz(eresg)| = 32

o g€c (4A):

-0 o O
o o o =
o O =O

— o O

0
This case gives us k = 2 and f; = 1, for each i = 1, 2. We have |Cs(g)| = 4 and so we obtain
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which gives us the conjugacy table of G.

class 1| (20) | (22) | (23) | (24) | (25) | (26) | (27) | (28) | (26) | (210)
no. of elements 1 4 6 4 1 12 12 24 12 12 24
centralizer 384 | 96 64 96 | 384 | 32 32 16 32 32 16

Table 3.4.1 : The conjugacy table of 2% : Sj.

class (31) | (32) 1 (3a) | (Ba) | (211) | (212) | (213) | (41) | (42)
no. of elements || 32 32 32 32 12 24 12 48 48
centralizer 12 12 12 12 32 16 32 8 8

Table 3.4.2 : The conjugacy table of 2 : Sy(continued).

We can now calculate the Fischer matrices. From the action of G on Irr(/N) we obtain five orbits.
From each of these orbits, we determine the inertia groups H; where i = 1,2,3,4,5. Then we obtain

the following inertia factors

Hl = H5 =G; H2 = H3 = 53 and H4= ((12), (34)>

The character tables of these inertia factors are:
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class 1 {(24) | (34) | (2B) | (44)
no. of elements || 1 6 3 3 6
centralizer 24 4 3 8 4
1 1 1 1 1 1
b2 1) -1 1 1 -1
3 2 0 -1 2 0
Y 3| 1 0 | -1 | -1
¥s 3| -1 0 -1 1

Table 3.4.3 : The character table of H;.

class 1| (24) | (34)
no. of elements || 1 3 2
centralizer 6| 2 3
& 1] 1 1
b2 Iy -1 1
¢3 2 0 -1

Table 3.4.4 : The character table of H,

class 1| (24) | (2B) | (20)
no. of elements | 1 1 1 1
centralizer 41 4 4 4
®, 1 1 1 1
P, 1 1 -1 -1
o5 1} -1 1 -1
o, 1y -1 -1 1

Table 3.4.5 : The character table of Hy.

and their fusion maps into G are:
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214 2A
34| 34

Table 3.4.6.

Hy |G
1 1
2A
2A
2B

o o
ve| RN

Ql

2

Table 3.4.7

Next we use the relations of Theorem 3.2.5. again to calculate the Fischer matrices which are:

Og=1GI

384 96 64 96 334

ey ok - v e et e
6 | 4 2 0 —2 —4
M(l)= 4 | 6 0 -2 0 6
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e g (24):

32 32 16
4 {1 1 1
212 -2 0
212 -2 0
M(g) =
411 1 =1
I R o |
4\1 —
e g€ (3A):
12 12
R
Fac sl
M(g) =
AP L
S %ol n-rl
e g€ (44):

32

8 [ 1

M(g)= 4 | 2

8 \ 1

108

32 32

1 1

2 =2

-2 2

1 1

-1 -1

-1 -1

12 12

| E—

hs —.

B |

=k Al
16 32
1 1
0 -2
-1 1




e g€ (2B):

8 8

4 {1 1
M(g) =

4 \1 -1

We can now determine the character table G. As with the example in section 3.3, we just need
to multiply the rows of the matrix M(g) with sections of the character tables of the inertia factors
corresponding to g.

There are five inertia factors, so the characters of G fall into five blocks.

The character table of G is as follows:
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(26) (27) (28) (20) (210)

(25)

24
16

12
32

12 24 12
16 32

32

12
32

N

(21) (22) (23) (24)

1

1
384

64 96 384

96

class

no. of elements

centralizer

X1

X2

X3

X4

X5

Xe

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X20

ZS4.

Table 3.4.8 : The character table of 24
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class (31) (32) (33) (Ba) | (21) (212) (213) | (&) (42)
no. of elements || 32 32 32 32 12 24 12 48 48
centralizer 12 12 12 12 32 16 32 8 8
X1 1 1 1 1 1 1 1 1 1
X2 1 1 | 1 1 1 1 -1 -1
X3 -1 -1 -1 -1 -2 -2 -2 0 0
X4 0 0 0 0 -1 -1 -1 -1 -1
Xs 0 0 0 0 -1 -1 -1 1 1
X6 1 1 -1 -1 0 0 0 0 0
X7 1 1 -1 -1 0 0 0 0 0
Xs -1 -1 1 1 0 0 0 0 0
Xo 0 0 0 0 2 0 -2 0 0
X10 0 0 0 0 -2 0 2 0 0
X11 0 0 0 0 -2 0 2 0 0
X12 0 0 0 0 2 0 -2 0 0
X13 1 -1 1 -1 0 0 0 0 0
X14 1 -1 1 -1 0 0 0 0 0
X15 -1 1 -1 i} 0 0 0 0 0
X16 1 -1 -1 I -1 1 1 -1
X17 1 -1 -1 1 1 -1 1 -1 1
X18 -1 1 1 -1 -2 2 -2 0 0
X19 0 0 0 0 -1 1 -1 -1 1
X 20 0 0 0 0 -1 1 -1 1 -1

Table 3.4.8 : The character table of 2 : Sy(continued).
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3.5 The Character Table of a Group the form 2* : S; x S

Let G = N : G where N is as defined in the previous two examples and G = S3 x S3. The action
of G on N, given by CAYLEY [l1], is different from the action in section 3.3, so G is a different
extension of NV by G.

We start to determine the conjugacy classes of G by giving the character table of S3 x S again.

class 1A12A12B|2C |3A|3B|3C |6A | 6B
no.ofelements|| 1 | 3 [ 3 |9 |2 | 2| 4| 6|6
centralizer 36 |12 121 4 |18 | 18| 9 6 6
U " T R e~ e~ I R
W 2l o Blg ol of L& B | o | -1
s YRR T TN Ty | -1 | !
Vs 2102 {0 |-1|2})-1]0]-1
¥s 41000 |-2]-2}1-1]l01]0
Ve 20|20 |-1]2|-1]1]|0O0
e T e ey o P\ o L2 L IS
Vs 212|002 |-L|-1]0]1
g 554 A O ' e 90 S I

Table 3.5.1 : The character table of Sz x Ss.

Using the same method as that in the previous sections we determine the the conjugacy classes of G

by acting NV and Cg(g) on the cosets Ng as follows:

c9=lg:
All elements of N = { (0,0,0,0),(1,1,1,1),(1,0,1,0),(1,0,0,1),(0,1,1,0),
(0,1,0,1),(0,0,1,0),(1,1,1,0),(1,0,0,0),(L,0,1,1),(0,0,0, 1), (1,1,0,0),
(0,1,1,1),(1,1,0,1),(0,0,1,1),(0,1,0,0) }, are fixed, so k = 16. Under the action of Cs(lg) =
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G on Nlg, we obtain the following blocks:

{(0,0,0,0)},
{(1,1,1,1),(1,0,1,0),(1,0,0,1),(0,1,1,0),(0,1,0,1),(0,0,1,0),(1,1,1,0),
(1,0,0,0),(1,0,1,1),},
{(0,0,0,1),(1,1,0,0),(0,1,1,1),(1,1,0,1),(0,0,1,1),(0,1,0,0)}. So we have

fl"_“la f2=93a‘ndf3=6

and so the following classes of G from the coset N:
|Ca(1)| = 16 x 36 = 576

|ICa( (1,1,1,1) )| =16 x36 = 9 64

|C=( (0,0,0,1) )| =16 x36 = 6 = 96

o g€ (24):

S =
[T
———e O
O | 62

o
<o

With the action of g on N we get the orbits

{(0,0,0,0),(1,0,1,0),(0,0,1,0),(1,0,0,0) }

{(0,1,0,1),(1,1,1,1),(1,1,0,1),(0,1,1,1) }

{(0,0,1,1),(1,0,0,1),(1,0,1,1),(0,0,0,1) }

{(1,1,0,0),(0,1,1,0),(0,1,0,0),(1,1,1,0) }

so that k =4

and the by the action of Cg(g)

{(0,0,0,0),(1,0,1,0),(0,0,1,0),(1,0,0,0) } is fixed while the other orbits are fused into one,
giving us f1 = 1, and f, = 3. Also |Cs(g)| = 12 and we obtain
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ICa(g)| = 48
ICz((1,1,1,1) g)| =16

e g€ (2B):
1 010
1101
g:
0 010
0011

This case gives us k =4, f; =1 and f, = 3. |Cg(g)| = 12 and we obtain
ICa(g)l = 48
ICz( (1,1,1,1) g)| = 16

e g€ (20):

1 100
We have k =4, fi =1, fo =1, and f3 = 2. |Cs(g)| = 4 and we obtain
ICz(g)} = 16
ICz((1,1,1,1)g )| = 16
[C5( (1,0,1,0)g )| =8

e g€ (3A):

—
o O
e
o



We have k = 1, and f; = 1. |Cg(g)| = 18 and we obtain |{Cz(g)| = 18

e g€ (3B):

1 01
011
1 00
110
We have k =1, and f; = 1. |Cg(g)| = 18 and we obtain |Cz(g)| = 18

o O = O

e g€ (3C):
A ——
01 00
g =
Jow 1N ol ]
1101
We have k =4, f; =1, and f, = 3. |Cs(g)| = 9 and we obtain
|Cz(g)| = 36
IC&( (1,1,1,1)g )| =12
e gc (64):
1010
11 01
g ==
1 000
0100

We have k = 1, and f; = 1. |Cg(g)| = 6 and we obtain |Cz(g)| = 6
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e g€ (6B):

—
o

[=> TR e B
o

01 0

We have k = 1, and f; = 1. |Cg(g)| = 6 and we obtain [Cz(g)| = 6

We have completed the conjugacy table of G. We show it below.

class L (21) (22)](23) (24)1(25) (26)](27) (28) (29)
Ce(z) | 576 64 96 | 48 16 | 48 16 | 16 16 8

Table 3.5.2 : The conjugacy table of 2* : S5 x Ss.

class | (31) | (32) | (33) (34) | (61) | (62)
Co(z)| 18 | 18 | 36 12| 6 | 6

Table 3.5.2 : The conjugacy table of 2* : S5 x S3(continued).

From the action of G on Irr(N) we obtain three orbits. From each of these orbits, we determine the

inertia groups H; where i = 1,2,3,4,5 and hence the following inertia factors

H, = G, H, a non-cyclic subgroup of G of order four which is generated by

1 0 01 0010

0100 0001
and

0110 1 000

0 0 01 01 00
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and Hs a non-abelian subgroup of G of order six which is generated by

1 111 1 001

0 01 1 01 0O
and

0 110 0 1 10

0 001 0 001

The character tables of these inertia factors are that of G and:

class 1| (24) | (34) | (2B)
no. of elements || 1 ) 1 1
centralizer 41 4 4 4
W 1= 1 1
(28 1] -1 1 -1
by 1 WL Wl 2
(N 1} -1 -1 1

Table 3.5.3 : The character table of H;.

class 1| (24) ] (34)
no. of elements || 1 | 3 2
centralizer 6 2 3
¢ 1| 1 1
&2 1| -1 1
¢3 21 0 -1

Table 3.5.4 : The character table of Hj.

and their fusion maps into G are:
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ro
ol
o
Sy

2C || 24

Table 3.5.6.

We use the relations of Theorem 3.2.5. to calculate the Fischer matrices which are:

.g:]_G:

576 64 96

From the equations

36 + 4la|* + 6|c]>* = 64 and
36 + 36a + 36c = 0
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we obtaina = 1 and ¢ = —2. Then from

36 + 4b— 12d = 0 and
36 + 36b + 36d = 0

weget b = —3 andc = 2.

By using the appropriate relations, the other Fischer matrices are determined:

e g€ (24):

e g€ (2B):

48 16

12 11
M(g) =

4 3 -1
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e g€ (2C):

e g€ (3A):

e g€ (3B):

e gc(20):

120

16 8
1 1 1
1 1 -1
2 -2 0
18



e g€ (6A):

e g (6B):

To determine the character table of G, we just need to multiply the rows of the matrix M(g) with
sections of the character tables of the inertia factors corresponding to g. The characters of G fall

into three blocks and are shown in the following table.
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81.1_00000]_.111_‘000
—~
S E~ 7 2 7 o0 oo o~ T Al a o
S
~—~
d 8- 7 2 7 o o o o ol 7o Hla Qoo
S
—
& L= 7 7 4 o & Q@ o o|l7 7 A —~|lo o ©
N’
——
& B~ 7 7 ~ o & § o o|lm v P Rlo o .o
S
an
S EClt = TN e o Qo A o o o
S
)8
e}
@41144200303333000
—~
S Bl = = - & g DR RN N
"
—
N—
e o~
1“1111222249999661
—~
w 8
2 T [« o> D >+ B I S T~ B o)
8 B - & ® o+ w v &~ o o 2 Z = S 2 2
O VO = X X X X X X X x| X X X x| X X X

253 X 53.

Table 3.5.7 : The character table of 2*
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class | (31) | (32) | (33) (34) | (61) | (62)
Ce(z)| 18 | 18 {36 12| 6 | 6
1 N T A R T A B I |
X2 111 1|1 |-l
Ya 1| 1|1 1|1
X4 1 1|1 1 |-11}1
Xs 2 f 1| -1 -1 1]-11]0
Yo 1] 2|1 1|0 |-1
e 10211 1|01
s o S e S i o g )
Xg S S ——————
X10 e resp—————————
4 G| NSO | PO O 0
N oo |0 o0 o0 /0
44 oo |0 o000
= oo |3 -11]01]o0
N 0 ] s i 11 e 1)
?rd 0 Aoty eBi & X 9 LD

Table 3.5.7 : The character table of 2¢: S; x Ss(continued).

For the completion of the character table of G most of the calculations were done by CAYLEY([1].
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Summary

The work done in this mini thesis deals mainly with different methods of calculating character tables
of split extensions of finite groups. Three of the six character tables that are calculated are done
with the use of Fischer matrices. In this work the method of Fischer is applied on groups of the
form N.G where N is an elementary abelian group. In fact, only one of the six groups of which the
character tables are calculated, is not of this form and so Fischer matrices could easily have been
used to calculate five of the character tables. The aim of the work done here however is to exhibit a

variety of methods to calculate the character tables of split extensions.

In Chapter one a review of basic definitions and results on group extensions and a description of a
method for finding the conjugacy tables of group extensions is given. An example on the application
of this method is also given. Chapter two deals with basic concepts and results on representa- tion
and character theory as well as the application of some of these results in calculating the character
tables of some group extensions. In Chapter three we discuss Fischer matrices and how it is used to

calculate the character tables of group extensions of the form N.G where N is an elementary abelian

group.
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