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Chapter 1

THE CONJUGACY CLASSES OF

GROUP EXTENSIOI\S

In this chapter some basic theory on group extensions is first given in section 1.1 and then a method

for finding the conjugacy classes of group extensions is described in section i.2. In section 1.3 we look

at an example due to Whitley[l9 ] to illustrate how the theory developed in section 1.2 is used to

calculate the conjugacy classes of the group 23 : Gfu(Z). For section 1.1 , the books by Rotman[l7]

and Gorenstein[S] were used as references while for section 1.2 we used the works of Whitley[l9],

Moori[15], Moori and Nlpono[16] and Salleh[18].

1.1 Definitions and Basic Results

Definition 1.1.1 If N and G are groupsl an ertension of N by G is a groupG thot satisfies the

following'pro'pe'rties

1. N<G

2
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s. GIN = G

We say that G rs a split erten-qion of // by G ifc contains subgroups l{ and Gr with

Gr =- G such that

1.N<G

2. NGr: G

3. /VnGr=Id

In this .ur" G is also called a semi-direcf product of /{ by G, and we identify G1 with G

Note Llf G is a semi-direct product of It' by G, then every g €G can be uniquely expressed in

the form g: ng, where n € lt and g € G. Multiplication in G satisfies (n1g1)(rrgr) : ntnez'gtgz,

where ne denotes gng-r .

Definition L.1.2 The automorphism group of a group G, denoted by Aut(G), is the set of all auto-

morphi,sms of G under the bi,nary operation of compositi,on.

If G is a split ertension of I{ by G, then there is a homomorphism 0 : G -+ Aut(/V) given by

0n@): gng-r = ns(n e N,,g e G), where we denote 0(g)bv 0r. Thus G acts on .|y', and we say that

the extension G realizes d.

Conversely, given any groups 1{ and G, and 0 : G + Aut(/{), we can define a semi-direct product

of N by G that realizes d as follows. LetG be the set of ordered pairs (n, g)(n e I''{,g e G) with

.)
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multiplication (n1 ,gt)(nz,gz): (rr0n,(nr),grgr).Then G is a semi-direct product of l/ by G

Hence a split extension of l/ by G is completely described by the map d : G -+ Aut(I/), that is, it

is described by the way G acts on N.

We use the ATLAS [3] notation and let 1/.G denote an arbitrary extension of l/ by G. A split

extension isdenoted by N:Gor N: 'G, where 0:G -+ Aut(N) determinestheextension. A

non-split extension is denoted by N'G.

IfGisasplitextensionofNbyG,thenG:NG=Ur.rlfg,soGrnayberegardedasaright
transversal for N in G ithat is, a complete set of right coset representatives of 1/ in G). No*.rp-

pose G is any extension of N by G, not necessarily split. Sinc 
" 

G 1 X = G, there is an epimorphism

):G+Gwithkernel/V. For g € G,definealiftingof gtobeanelementg€G suchthat )(g):g.
Then choosing a lifting of each element of G, we get the set {g : g e Cl} which is a transversal for N

in G.

lVe now show that even for a noq-split extension G of N by G, where I/ is abelian, G acts on iV

This result can be obtained from Rotman[17].

Lemma 1.1.3 LetG be an ertension of an abelian group N by G , then there i-q a homo'morphism

0 : G -+ Aut(N ) such that |n(n) = grg-' (n € 1{), and 0 is independent of the choice of liftings

{g,g€G}.
Proof: For a € G, denote conjugation by a by 'y,. Since N is normal in G, 7,llr is an automorphism

of l/ and the function p, ,G -+ Aut(l/) defined by p(") :1,lr,t is a homomorphism.

If a e I{, then p(o):11,, since N is abelian. Therefore there is a homomorphism p" ,Gf lrt -+

Aut(.N) defined by p.(/[a) : p(a).

4
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Now G =GlN and for any lifting {g,g € G} , the map d: G -+G1N defined bV d(S): l/9 is

an isomorphism. If {E :h e G} is another choice of liftings , then OE-' e N so that Ng : NE.

Therefore the isomorphism / is independent of the choice of liftings. Now let 0 : G -+ Aut(l/) be

thecompositep"o$. IfgeGandlisalifting,then0(g):t-@(g)):p-(Ng):p@)€Aut(N),
so for n e N, 0n@): p(g)(n): gng-t - ni, as required. !

Note 2Let Gb" an extension of an abelian group N by G. Foreach g €G we choose a lifting

g e G, and for convenience we take T = 1. We identify G with G/ff under the isomorphism g ) NO.

Now{7:g€G}isarighttransversal forl/inG,soeveryelementheGhasauniqueexpression

of the form h : n0 (n e N,g € G), and we have the following relations.

7. Sn : ni|,where n € N and g e G.

2. gE -- J k.h)gE for some /(s, h) e /{, where s, h e G

L.2 The Conjugacy Classes of Group Extensions

LetG - N.G, where l/ is abelian. Then for each conjugacy class [9] in G with representativeg € G,

we analyse the coset /y'g, where gisaliftingof g in Gand G :l)nrol/p. To each class representative

g € G with lifting g €G, we define

Cn : {r eG : x(Ng) : (Ns=)r}.

Then C, being the set stabilizer of Ng in G under the action by conjugation of G on /fg, is a sub-

group of G. The following lemmas and their proofs due to Whitley[19] and Moori and Mpono[16]

will be required in the next section .

Lemmal.z.L N o Cn

Proof: For any n € N

b
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n(Ng)n-t: Ngn-r: Nqn-tq-tg= Ng,

the last step following from the fact that (n-r)a e l,r since N <G.

Hencely' g C'From/{ S C.SG andN oG,weobtain N oCn. tr

Lemma 1.2.2 CnlN - CdtN(Ng).

Proof: Consider /Vk € G lN. Then

l/,b € Ce tr.l/g) <-
+=+

-

-

-:

-

/ift(Ng)(rik)-' : Ng

NkNENk-' - Ng

NkNgk-t = Ng

NkNngk-'-NA Vn€1V

Nkngk-t-NO Vn€N

kngk-t€NO Vn€N

keCn.

Thus we obtain that CnlN : CetN(NA)

From the two preceding lemmas, we have lhat Cn: N.CetN(Ng). For a lifting g eG of 9 € G, we

can identify Ce t*(Ng) with C6(g) and write C, : N.Cc(g) in general. If G: N : G then we can

identify C, with Cn: {r eG: *(Ng): (Ng)x} and in this case we obtain the following corollary.

Corollary L.2.3 LetG = lV : G. Then Cn = ^1V : Cc(g).

Proof: We have already shown in the Lemma 1.2.1 that N o Cn.Now we show that Cc(g) S Cs

and that 1{ n Cc(g): {1c}. Let x e Cc(g).Then we obtain (Ng)" - x(Ns)r'r - xNsa-t :
Nrgr-r - Ng. Thus r € Cn and hence Cc(g) S Cr. Since w aCc(g) S 1{nG: {16}, then

6
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we have that l/ a Cc(g) : {1c}. This completes the proof. !

The conjugacy classes of G will be determined by the action by conjugation of Cn,for each conjugac5,

class [g]c of G, on the elements of l/P or in the case of a split extension on the elements of Ng. Since

Cs: N , Cc(g), we act first I{ and then act {h : h e Cc(g)} on the elements of 1/9. The outline of

this action is given in two steps by Moori and Mpono [16,page 5] as follows:

STEP L: The action of N on Ng:

Let C7,1(g) be the stabilizer of 7 in N. Then for any n e N we have

reCN(ng) e t(ng)x-r:ng

- -1 -1€7 r.nr 'rgr ' - ng

<+ n@gx-r): ng, since N is abelian

a_ 
_l

v iliL':g

++ r € Cx(9).

Thus C1,(7) fixes every element of Ng. Norv let ICN@)l : k. Then under the action of N, I/9 splits

into A orbits Qr,Qr,...,Q*, where

@"1 lN
IIi I

k )

Cri(g))

, fori € {1 k, "',

STEP 2: The action "f {h: h e Cc(g)} on Ns

7
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Sirrce the elements of /f! are now in the orbits Qr,...,Q6 from step I above, we need only to act

{8, t € Cc(g)} on the fr orbits. Suppose that under this action /i of the orbits Qr,...,Q* fuse

together to form one orbit A1, then the fjs obtained this way must satisfy

D1 li: k

and we have

lArl =lr#
Thus for r -- dE e A1, we obtain that

l[,]e I

' 
lce@)l

: lArl x l[ulcl
, l1{l lcl: Ij' k ^ Wdl
.- lGl

" ^ klc.(g)l

and thus we obtain that

tGt

l[r]'l
p1 "ffi
klccb)l

f,

Thus to calculate the conjugacy classes of G = /y'.G, we need to find the values of k and the /j-s for

each class representative g € G. We note that the values of k can be determined from the action of

G on N(given in lemma 1.1.3). If G - N : G (a split extension) however, we analyse the coset 1{g

instead of N(p) since in the split case G S G. Under the action of .M on l{g, we always assume that

g e Qr. Since Cc(g) fixes g, Q1 does not fuse with any other Q;. Hence we will always have that

Ir : L- Hence

8
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k Dr,
1+ Df*,

n

where the sum is taken over all rn such that g # Q*.

We now upply the method described in the Step 1 and Step 2 in the next section

1.3 The Conjugacy Classes of a Group of the Form

23: GhQ)

In this section we give the conjugacy classes of the group G : /{ : G where N is an elementary

abelian group of order 8 and G = Gh(2), as calculated by Whitle5,[19], where G acts naturall.y on

N.

We regard /y' as the vector space fi(2) of dimension three over a field of two elements. Let I{ be

generated by {"r ,e2,e3} with e!: 1 for 1 S i ( 3, so

N : { L, e1, e2, e3, €1e2, €1e3, e2€3, e1e2e3}

To determine the conjugacy classes of G we analyse the cosets ly'g where g is a representative of a

class of G. (Note that the extension is split, to G = Ur.r l/g). Now

lce@)l: wid,
where fi of the k blocks of the coset Ng have fused to give a class of G containing z.We need the

conjugacy classes of G, so we exhibit it here (obtained from ATLAS [3])

I
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class

centralizer

(1A)

168

(2A)

8

(3A)

3

(4,{)

4

(7A)

7

(78)

7

Table 1.3.1: The conjugacy table of Gfu(2)

The representatives thus must come from the classes mentioned in the table above

'9=lc

For g the identity of G, g fixes all elements of 1[, so k:8. Since G is transitive on /i - {1}

under the action of C6(g) - G , we have two orbits with fi : 1 and fz =7, so this coset gives

trvo classes of G:

u = 1, class(l), lce@)l :8 x i68:1344

r : et, class(21), lce@)l : Y :192

. se (2A):

We take

9-
010

with lC6(9)l : a. The action of g on I{ is represented by the cycle structure

(1)(t,)(e1e2q)(ezet)(ez q)(e1e2 etes), so k -- 4.

100
001

10
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The four orbits of Iy' on Ng are {g, "r"rg},{"rg, 
e1e2e3!),{"rg, e3g} and {rr"rg, eresg}

Now we act

0

1

1

0

1

0

0 )(

1 1

0

1

i
1

1

11
Cc(g): 1

0

(

on these orbits

For eg e Ng,h e Cc(g),("g)n: 
"hgh 

: ehg so we obtain the following orbits:

{g,"r"rg}"c(s) -{g,,"r"rg},{"rg,e1e2qg}cc@):{"rg,e1e2e!},{"rg,qg}cck)

= {ezg, e3!, €1€2!, etezg}

Therefore we get three classes of G

fr:1, n=g, class(22), lce@)l :4 x8:32;

Jz: l, x : ergt class(23), lce@)l :32;

.fz : 2, n : r"2gtclass(41), lce@)l: T : 16

. s e (3A) :

We take

010
g 0

1

01

11

00

)r

http://etd.uwc.ac.za/



with lC6(g)l : f. The action of g on ly' is represented by (i)(e1e2es)(et e2 e3)(ep2 e1e3 e2es).

so k = 2 which means we must have two blocks. These cannot fuse together under C6(g), since

gcc@): {g}. Therefore we ha,ve two classes of G, with /i:1 and 12 - 1:

r: g, class(31), lce@)l=2 x 3 = 6;

r: €r9, class(61), 106(z)l :6

o se (4A)

lVe get two classes of G once more

r = 9, class(42), lce@)l : 8;

ix: €r9t class(43), lce@)l : 8.

o s e (7A)

For the class (7A), we have k: l, so each coset has just one class in G. W" thus get the class

(7r) of G, with centralizer of order 7.

o se (78)

This case works the same as for the previous class and we obtain class (72) of G, with centralizer

of order 7

t2
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class of G (1A) (2A) (3A) (4A) (7A) (iB)

class of G ( I ) (2, ) (2r) (2r) (a, ) (3, ) (6r ) (ar) (a.) (7, ) (i, )

centralizer 1344 r92 32 32 16 66 88 7 7

Table 1.3.2: The conjugacy table of 23 : GLs(Z)

13
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Chapter 2

REPRESENTATIONS AND

CHARACTERS

Two ways of approaching representation and character theor.v are through the use of modrtles on the

one hand ( for instance, the approach used by James and Liebeck [10] ), and through the classical

approach used by Feit[s] for example, on the other hand. Our discussion is along the classical ap-

proach and for this purpose we follow the class notes of Vloori[15].

W'e give some basic results on the representations and characters of finite groups in this chapter

as well as some examples of how these results are used to determine the character tables of some

finite groups. In the first section, theorems and lemmas will almost always be stated without proofs.

Section 2.2 deals with the relationship between characters of groups and the characters of their

subgroups, while in section 2.3 we shall look at the role of normal subgroups in the calculation of

characters of a group. In the last two sections mentioned, only the proofs of the main results ( that

is those results dealing more directly with the techniques of finding the characters of a group) are

given. These proofs are mainly taken from Moori's notes [15]. In the last three sections we calculate

the character tables of three group extensions, which are all split extensions.

l4
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2.L Basic Concepts

Definition z.L.L LetG be a group. Let f :G + GL"(F) be ahornomo'rphism. Then ue say that f
i,s a matrir representation of G of deg'ree n (or dimension n), ouer the fi,eld F.

If Ker(f): {1c}, then we say that / is a f aithful representation of G. In this situation G }
Image(f), so that G is isomorphic to a subgroup of GL"(F).

Definition 2.L.2 Let f : G + GL"(F) be a representation of G ouer the field F. The Junction

X: G + F defined by Xb) =trace(J@)) is called the character of f .

Definition2.l.3 Ifd,G+FisafunctionfromagroupGtoafieldFuhichisconstanton
conjugacy classes of G, that it 6(g): $(xgr-t),Vr € G, then $ is a class function.

Lemma 2.L.4 A character is a class function.

Proof: See [15, Lemma i.4 ]

Definition 2.1.5 Two representations p,6: G + GL"(F) are said to be equiualent if there erists

annxn rnatrir P ouer F suchthat

P-'p(g)P = 6b), Vs Q G

Theorem 2.L.6 Equiualent representations haue the same character

15
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Proof: See [l5,Theorem i.5]

Before defining the concepts of reducibility and irreducibility of representations and characters, we

need to say what is meant by a reducible and an irreducible set of matrices. If S is a set of matrices,

then ^9 isreducibleif 1m, k € N, and I P e GL"(F) such that V Ae ,9 we have

p-,Ap =(: ;)
whereBisanmxmmatrix,Disakxkmatrix,Cisakxmmatrixand0isthezeromatri-x. If

no such P exists, we say that .9 ts irreducible. Furthermore if C :0 V A € S, we say that S is fully

reducible and if I P € G L"(F) such that

Bt0
0Bz

P-I AP : V A€5,

0 B*

where each B; is irreducible, we say ,9 is completely reducible

Definition 2.1.7 Letf :G+GL"(F)bearepresentationof G ouerF andletS:{f(g):ge G}.

We say that f isreducible,fully reducible, or completely reducible if S is reducible, fully reducible,

or completely reducible, respectiuely.

Definition 2.1.8 If y o is a character afforded by a representati,on p of G , then we say that yo is an

irreducible character of G ,f p is an irreducible representation.

0

0

16
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Definition 2.L.9 Let p: G + GL^(F) and 6, G + GL^(F) be tuo re'p'resentati.ons of G rtuer F

Defi,ne p + d: G -+ GL,+*(F) by

Q + 6)@) -_
P(g)"r" \nr^

0^*n d(g)^*^
: p(g) e 6G), Vs e G

Then p + 6 is a repT'esentation of G ouer F, of degree n + m

If 11 and 1,2 are the characters of p and / respectively and 1 is the character of p * /, then for all

g e G we have X@) : xr(s) + xz(g).

Theorem 2.1.10 (Maschke's theorem) Let G be a finite group. Let f be a rep'resentation of G oue'r

a fi,etd F whose characteristic is either equal to zero or is a p'rime that does not di'uide lGl. IJ' I is

reducible, then f is fully reducible.

Proof: See [l5,Theorem i.6]

Theorem 2.L.LL ( The general form of Maschke's theorem)

Let G be a finite gT.oup and F be a field whose characteristic is either equal to ze'ro or is a prime that

does not diuide lGl. Then euery representation of G ouer F is completely reducible.

Proof: See [f,(t.t) ]

Theorem 2.1.12 (Schur's lemma) Let p: G + GL,(F) and 6, G + GL*(F) be two representa-

tions of a group G ouer afield F. Assume there edsts anmxn matrix P such that Pp(g): d(g)P

for all g e G. Then either P:0^*n o'r P is non-singular so that p(g) - P-'db)P (that is, p and

$ are equiualent representations).

T7
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Proof: See [5,(1.2)]

Definition 2.1.13 Let G be a finite g'roup and assume that the characteristi,c of tfu field F does

not diui,de lGl. If p and $ are two functi,ons trom G into F, we define an inne'rproduct (,) by the

follouing rule:

(p,6) = # I,." pk)6(g-t) ,

uhere fii stands for lGl-t in F

Theorem 2.L.14 The innerproduct (, ) i-r bilinear

(i) (p, + p2,6) = (h,6) + (pr,6)

(ii) (p,6 * d) : (p,6t) + (p,6r)

(iii) (ap,6):a(p,61 :b,od), V ae F

and sym'metric

(p,6): (6,p|

18
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Proof:

(i)

(p, + pz,6) :

(ii) Similar to (i)

(iii)

and

Ei ,} ('' * o')@)6(s-')

1

le
1

ia
I

IET

(p,,

(t
seG

t
seG

D
seG

pr(g) + pz(g) 6(g-'))

(orldOtn-') + pr(o)d(o-')), f being an additive abelian sro.p

p,G)6(g-') * # D_p,(g)o(g-'),

d) + (pr,dl

("p,6) D ("r) (dd(s-')1

lGl seG

I

seG

: 
"(p,d)

la !'(nta)) 6(g-')

: ,brD,*P(g)6(g-')

("p,6) D (,r) (dd(g-')1

lcl seG

19
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* f p@)o6@-'), F being a multiplicative abelian group
It Irrsec

iet I oo('o)ts-'t
(p, 

"6)

To complete the proof, see [15,Theorem i.11]. tr

Note L lf p: G -+ GL"(C) is a representation of a group G, then we denote the (i, j) entry 
"f 

p(g)

by p,i\). Hence pri@) is a map from G into C.

For the rest of this chapter we shall mean finite groups when mentioning groups, unless explicit

exceptions are made and all rep resentations will be over the field C of complex numbers.

Theorem 2.1.15 Let G be a finite group and let p and $ be two irreducible representations of G

(i) If p and $ are inequiualent. then

(P,",6;il = 0, Vi,i,r, and s

(ii) (p,",6d: *#
Proof: See [15, Theorem ii.1 ]

Theorem 2.1.16 Let G be a finite group and let p and $ be two irreducible re'presentations of G,

with characters y, and y6.

20
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(i) If p and $ are equiualent, then

(xo,xo): I

(ii) If p and $ are not equi'ualent, then

(xo, xi - o

(iii) (yo,xr) : I

Proof: See [l5,Theorem ii.2]

Theorem 2.L.L7 Tuo representations of a group G are equiualent if and only if they haue the same

characte'rs.

Proof: See [l5,Corollary ii.4]

Lemma 2.1.18 (i) If

X D ^,r,

k

i=1

)

(ii) If y is a character of G, then y is irreducible if and only if (X,X) : L.

where Xt are distinct irreducible cha'racters of a group G and Ai are nonnegatiue integers, then

Q,xl
kt
=l

2l
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Proof:

(i)

k

l'=1

k

(x, x) (I 
^'r, 

, D )ixi )
i=l
k

,=1
k

D^nI^,(rn,xi)
i=l

k

'i=l
k

j=l

I ^:(r, 
, x; )

D^;

(ii)By theorem 2.1.7, we have that if 1is irreducible, then (X,X) :1

For the converse, assume that (1 , X ):1. Let

x I r'r,
k

i=l

where Xi are distinct irreducible characters of G and ), are nonnegative integers, then by (i), we have

k

I ^: 
: (x, xl : l

i=7

=)

Hence )j : 1. Thus X: Xj is irreducible. tr

Note 2 If C; is a conjugacy class of G, then

^i 
= 1, for some j : 1,2

and 
^?:Q 

Vi+i.
k
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Co,-{geG:g-reC;}

is also aconjugacy class of G and Ct=Ct, if and only if g - g-1 for all g e Cr,.

Theorem 2.1.19 Let Irr(G) = {X,,X2,...,X*}. Then

(i) fr Dr." xi(g)xj?) :6;j, (rou orthogonalitv)

(ii) Df = r \,(9t)x,( gi) : 6;i' lCc(gi)l , (column orthogonalitv)

Proof: See [I5, Theorem ii.17]

Theorem 2.1.20 The number of irreducible characters of a group G equals the number ol conjugacy

classes of G.

Proof: See [15, Theorem ii.18]

Proposition 2.L.2L Let G : ( x ) be a cyclic gT'oup of order n. Let "*n be the n-th roots of

unity in C, k :0,1,2,...)n - l. Define k : Q + C* by

pr(r*1 :\e*i 1^.

For k: 0, 1 ,2,...,n - 7, p* defines the n distinct irreducible representations of G

Proof: We first show that p1 is well defined

23
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Let t^: J-', where m: sn * t, rn': s'n * t', s,-s'6 Zand t, t' :0, 1,2r...rn-l
From which we get x:t : rt' =+ t : t'.

If for contradiction, l"* ' l* + l"'* n ]*', then we have

l"*, f*-*' + I + lrT,1("-"')n + (,-,') * L

I ^'rn i 1(s-s')n J I+ le" I' TL
. t (s-s')n+ P't(zt"-" "") + L

+ po(*o) * |

, r^z*.;p J r+ le" ) T rr

giving us the contradiction

Next we show that p* is a homomorphism

pk(r^)pk(r*') : o*@t)p1,(rt'1

r 2kn itt t 2kn i.tt,: le^ lle^ I

: l"*;y+r
: pt"(x'+'')

: p*(r'.*'')
/ n m'r:pkw.r)

Hence pa is well defined

So p* is a homomorphism and hence a representation

p[ ls unlque:
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Let pp - pfr, with k,k' 1n. Now Yg e (r), g: r' where r: 0, 1,2,...,n - l. So we have

pn({) - pn,(r') + l"*t)' : p*i y
t 2k* .r' . 2k' t .r' ,,+ et-;-' - ---;-" : L

+ "T {*-*'\; - '
+ P6-x,1 (r") :1, Vr:0,I,2,...,n-I

+ k-k':0, so that k:k'.

Lastly we must show that p1. is irreducible

We use lemma 2.1.2.

(pn, p,")
I

t6l D px?)p{s-l)
9e (.r/

1 f pkbs-'\)
g€(")

n

I

i
t pr(11,1)

e€(c)

I 1c.
n

s€(r)
1

-nn

Hence pr is irreducible

This completes the proof of the proposition. E

Definition 2.L.22 Let P -- (pni)^r* and Q : (q;j)nr* be two matrices. Then the mn x mn matrix

P 8 Q is defined by

1
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PEQ

From this definition, we can show that

(P ,:c Q)( P' & Q') : (P P') s (88') (*)

: (p,iQ) =

htQ

PnQ

PrzQ

PzzQ

pbnQ

p2*Q

P*^QP*rQ P^zQ

(P sQ)e'8 Q') ( t p,tQpi,Q' )^n , ^n

na

,lc=1
TN

( I P;tPirQQ')*n, ^n
k

(PP') I (ee')

Definition 2.L.23 LetT andIJ be're'p'resentations of a group G, then the tensor p'roduct TqLI

is defined by:

(r e u)(g) rk) e u(g)

Theorem 2.L.24 LetT and IJ be representations of a group G, then

@ f e LI is a representati,on of G.

(ii) ,f Xg s u1 is the character afforded by T I U then

Xeau): XTXU
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Proof: See [15,Theorem iii.l ]

Definition 2.1.25 LetG:Hx K bethedirectproductof twogrou'psH andK andletT:H ---+

GL*(C) and{J: K 
-r 

GL"(C) be representations of H and h' respectiuely. Since fo'r eue'ry ele'ment

g in G, g : hk uniquely, for some h e H and so'me k e K, the direct, product

T x Li can be defined by

(r x u)(s) r(h) s u(k)

From the uniqueness of g = hk and because of the property of representations 7 and [/ of being

well defined, it can be shown that T x [/ is well defined. AIso for g - hk and g' : h'k' with

h,h'e F1 and k,k'e /{, we have

gxU)(s)(TxU)(g') : (T(h) s u(,k))(T(h') a u(k'))

: r(Dr(h')8u(k)u(k'), bv (*)

: T(hh') I U(kk')

: (7 , U)(ss'),

From definition 2.1.22, we can deduce that for two matrices P and Q, that

Trace(P 8 Q) - Trace(P).Trace(Q).

which means T x U is a homomorphism and therefore a rePresentation.

So we show the following
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and the next theorem tells us that all the characters of a direct product are constructed in this wav

X(r x u lg) : Trace((T x U)(g))

: Trace( 7(h) S U(k) )

= Trace(T(h)).Trace(U (k))

Theorem 2.L.26 Let G : H x h be the direct p'roduct of ttoo grou'ps H and K. Then the di,rtct

product of any irreducible character of H and any irreducible characte'r of Ii is an irreducible char-

acter of G. Moreo'uer, euery ireducible character of G can be constructed

in this uay.

Proof: See [l5,Theorem iii.2]

Definition 2.1.27 Let y be a character of a group G. For n € (Nu {0}), we define x" by

n/ \Y \9/ &(g))", Ys € G

If G is a group and .FI is a subgroup of G, then we can use the irreducible characters of G to find

at least some of the characters of 11 and vice versa. We deal with the methods of doing this in the

following section and use the notes of Moori[l5] again.

2.2 Restriction and Induction of Characters

Definition 2.2.L LetG be a group and H be a subgroup of G. If piG ---+ GL"(C) is a re'presen'

tation of G, then (p t H) : H + G L"(C) giuen by

28

http://etd.uwc.ac.za/



i,s a'representation of H. We say that p I H is the restriction of p to H. If y, is the character of p.

then yo t H is the cha'racter of p J. H. We refer to X, f, H as the 'restriction of yo to H.

Theorem 2.2.2 Let G be a group and H SG. If tl, is a character of H, then there is

an irreducible character y of G such

&IH,rb)ru + o

Proof: See [15,Theorem iv.i.1 ].

Theorem 2.2.3 Let G be a group and H S G. If

y e trr(G) and Irr(H) : {rbr,rhr,...,rb,} ,

then

b I n)(n)

r

i=l

p(h), Vhe H,

XIH Dt, lrn, where dr € (N U {0}) and

r

Dlf s [G: /1] (*x)
i=l

Moreouer, we haue equality in (xx) if and only if Xk) :0, Vg e (G \ H)

Proof: Since X I H is a characterof H,16; € (NU {0}) such that

r

l6;,b;:

29
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Now

and

Hence we get

From

we obtain that

r

i=l

f

i=l
QIH,xlH)n (Don*,,1t,,b,),

D,t: ('h;,'b;)p
i=1
r

Dt:

*IH,xIH)n #"P"x(h)M

heH

i=l

se(G\H)

f

L,U: dTE x(h)t6

t
i=1

\,x@ x6 (+ * *)

so that

t xG).xk)
g€(G\II)

I tx?)t'
g€(c\n)

i=7
r

H 5?

r

i=1

1 (x, xl"

EExb)M
1- 1

@l hxk) 
x@) * t"l

lHl Dol *lGt

lHl

lGl

1

EI

D6? -A

I D x@'x@ bY (* * *)

lGt

lHl Dol
r

1

lcl 'i=l

30
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and therefore

Also

L-' lHl
i=l I I

1

lGl t txa)t' if and only iJ
s€(G\ri)

0

0lxb)l' V g e (G\ H)

Hence

lGl D tx(g)t' 0 if and only if
u€(G\H)

x@) 0 Vg€(G\H)

and we have the equality in (xx) !

We have seen how the irreducible characters G can be used to find characters of a subgroup H and

can now look at a technique of finding the characters of G from the irreducible characters of an.y

subgroup. We start with the following definition.

Definition 2.2.4 Let H be a subgroup of G. The right transuersal of H in G is a set of re'p'resenta-

tiues for the right cosets of H in G.

The following theorem tells us how a representation of // can be extended to a representation of G

Theorem 2.2.5 Let H be a subgroup of G andT be a representation of H of degreen'

Ettend T to G by To(g) -f@) if g e H and To(g)= 0,",, if g # H . Let {*r,rr,...,r,}
be a right transuersal of H in G. Define T J G by

1
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To(x1gx;t)

To(x2gxrt)

To(xgx;t)

To(x2gz1t)

To(rgr;t)
To(x2gr;t)

g t G)(s)

(ru@;s*;')),,,=,,,,,,

To(x^gnrt) To(x*gxrt) . To(r^gx;t)

Y se G

Then T t G is a representation of G of degree nr

Proof: See [15, theorem iv.2.1]

Definition 2.2.6 The representation f I G defined in the p'reuious theorem said to be induced frorn

the representationT of H. Let$ bethe character affordedbyT. Thenthe character affordedbyT I G

is called the induced character from $ and is denoted by dG . If we ertend $ to G bV 6o (g) : 6(g) if

s e H and $o(s) :0 if g ( H, then

6G @) : Trace(tr t O(g))

: frro""({r'{rnor;'))
i=1
r

| 6o@;s*r')
i-7
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In order to construct a formula to find the induced character, the next two propositions are needed

Proposition 2.2.7 If H S G and $ is a character of H, then $G is independent of the choice of

trans'uersal.

Proof: See [15, Proposition iv. 2.2]

Proposition 2.2.8 The ualues of the induced cha'racter are gi'uen b'y

1

6G @) loolro*-'), s e G
Hl ,eU

Proof: See [15, Proposition iv.2.3 ].

The following proposition provides us with a formula to calculate the induced character and the

proof is provided by Moori [15, Proposition iv.2.4).

Proposition2.2.9 LetH <G, dbeacharacterof H andg e G. Letlg) denotethe conjugacy

class containing g.

(t) If H alsl then 6tb) 0a

(ii) If H algl + 0, then

6.b) __ tc"(dti
i=1

where tt,x2,...,t* are representatiues of classes of H

up into m conjugacy classes of H with representations

6@n)

lcn(*,)l

that fuse to lgl. (That is H ilsl breaks

IlrI2t...rI^.)
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Proof: By Proposition 2.2.8, we have

6'(g) iT}6o@g*-')

If I/n[g] :0,then *g*-'(.Hfor allr€G,so $o(xgr-l) :0 Vz€Gand dc(g): 0

If fln [9] f A,then as u runs over G, rgr-r covers [9] exactly lc.(g)l times, so

6" (g)
frT 

x Pcb)l) o'tu)

dl x Pc(s)t D 6tu)
ve([e]nr1

lH : Cs(r;rr.61"n)lcc(g)l
lHl

tc"(dtL 6@;)

lcn(*o)l

X

i=l

o€G

tnL

i=1

!

The restriction and induction of characters are related and can be expressed by means of a matrix

which we call the Frobenius Reciprocity table. To obtain this relationship, we shall take the route

through class functions. We shall use the proof given by Moori [15] for the main result( the Frobenius

Reciprocity theorem ) in establishing the relationship.

Definition Z.Z.LO Let H be a subgroup of G and $ be a class function on H then the induced class

function 6G o, G is defi,ned hy

1

6" b) 16o@0"-'), s € G
@
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where $o coincides uith $ on H and is zero othe,rwise. Notice that

#I do((*v)g@il-')

# f doQg'-')

6" G)

Note 3If H ( Gand{isaclassfunctionon G,then 6lH isaclassfunction on H

Theorem 2.2.LL (Frobenius Reci'procity)

Let H 1G, $be a classfunction on H andtft a classfuction onG' Then

$o (ygv-')

Thus $G is also a class function on G

(6,,1, IH)g ( 6o, ,hl"

Proof:

( 6o, ,hlo : #P oo@'bb)

: fr E (Trr 
E6o(*s*-'))66

1 '(- t go@sr-t).,1.\s) (xx*x)
lcl lrll u,* ir"
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Let y - rgr-r.Then as g runs over G, rgr-t runs through G. Also since tlt is a class function on

G, ,!@) : $(rgx-t) : r/(g). Thus by (x + **) we have

( 6t, ,b)o
EfuT E,A6o@)'b6

#rT D (\o'atw)

lc*tl lq I Eo@)'t\Y)

#,Ed@)M
(6,rbIH)n !

Corollary 2.2.t2 Let H 3 G. Assume that Irr(G) : {X, ,X2,...,X,} and Irr(H) : {rbr,4,2,...,rb"}.

Suppose that

xiIH lua',/:; "nd

,

i=l
r

G
,b l.a;iyi, then

j=l
a;j b;j, vi, j

Proof: See [15,Corollary iv.3.2 ]

Remark 1 (Frobenius Reciprocity table)

Let H < G. Assume that Irr(G) = {Xr,X2,...,X'}and Irr(H)
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previous corollary we have

Xjl,H D""'b'
s

i=l
r

and

,b G Dot,r,, then
j=l

2.3 Normal Subgroups

In this section we shall look mainly at how the irreducible characters of a quotient group of a group

G can be used to find some of the characters of G itself .

In order to justify a definition for the concept ker(y), where 1is a character of G , we state lemma

2.3.1 and lemma 2.3.2 and prove the lemma2.3.2 using the thesis of Whitley [19].

Lemma 2.3.1 Let y be a character of a group G afforded by the representation T. Then for g e G,

T(g)issirnilartoadiagonalmatrfudiag(e1,€z,...,en)whereeache;isacorn'plea'rootof uni,ty' Then

Xb): et * ez+... + en and X@-r) =M, whereT denotes the co'rnplet conjugate of x.

Proof: See [19,Lemma 2.2.11

Lemma 2.3.2 Let y be a character of a group G afforded by the representation T. Then g e ker(T)

if and only if x(g) : x(1).
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Proof:

Let n = X(1), so n is the degree of 7. If 9 € ker(T) then 7(g) - In :7(1), where /, is the

n x n identity matrix, so X(g) : rL :1(1). Conversely, assume X@) : X(l) = n. By lemma,2.3.1,

Xk):e1*e2+...+e,,whereeache;isacomplexrootofunity.Therefore,et*ez+...+€n:71,.
But le,l : I for all i, so we must have e;: I Vi. Hence 7(g) is similar to diag(e1,ez,...,en): In,

sos€ker(T). tr

Definition 2.3.3 Let y be a character of a group G. We define

ker(y) = {ge C:xk) = x(1)}.

We note from lemma 2.3.2 ker(y) is a normal subgroup of G. The next two theorems taken from

the Nloori-notes[15, pages 78 and 79] will tell us how the normal subgroups of G can be determined

from its character table and how we can tell whether G is simple or not.

Theorem 2.3.4 LetN beanorrnalsubgroupof G. Thenthereeristsi,rreduciblecha'racte'rsXt,Xz,...,X,

of G such that

1{ )ker(y;)
s

i=l

Proof: See [15, Theorem v.3]

Theorem 2.3.5 A group G is sirnple if and only if y(g) I X0) for all nontriuial

irreducible cha'racters of G and Jor all non-identity elements g of G.
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Proof: See [15, Theorem v'4]

The following results form the basis for another tool in finding the characters of a group

Theorem 2.g.6 Let N be a no'rrnal subg'roup of G

(a) Let y be a character of GIN andv:G -+C be d'efined by

x(g) = t(gN) fors€G,

Then y i.s a cha'racter of G and' y has the sa'me deg'ree as y'

(b) Lety be a character ofG, N Sker(v) andi:GlN -+C' be defined bv

t(gN) = xb) fors€G,

Then ft i-s a character of G lN '

(c) In both of the statements aboue, x i, an irreilucible character of G I N I and only if y is an

irreducible character of G

Proof:

(a) Let r u" the representation of degree n that affords f and define T : G

T(g) : f 1gN)' Then for 91 ,92 € G'

+ $N-g2N
+ T(g,N) - t(s2N)

+ T(gr) -- T(gr)'

-| ct"(c) by

9t=gz
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So 7 is well-defined. Also

T(grgr) = i'(grgrl,{)

: i(g1N g2N)

: i(s,Df GrN)

: T(gr)T(gr)

Hence 7 is a homomorphism and therefore a representation.

Now Trac"(T(g)) = Tror"('i(glf)) : xbN) : x?)for all g e G,so ? affords x. Moreover

I^: r(1) :7(l/) : In

and so the degree of 1 is the same as that of 1.

(b) Let ? be the representation that affords X and define 7

Then for h,gz € G,

G lN + G L*(C) by r(eN) : T(g)

g1N : g2N

thus 7 is well-defined and

gr' gz € Itr < ker(Y) : ker(T)

T(gr'gr) : r, the identitY matrix

rbr\rbz): I
T(gr) : T(gr)

i(grw) : i(srw)

: i(grgrN)

: T(grgr)

= T(gr)T(gr)

= f GrN)f brN)

T(hN s2N)
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Hence 7 a representation

Trace(i(sll)) = Trace(T(g)) = X(g) : XkN) for all g e G, so ? affords X

(c) For this part, we use the proof by Whitley [19]

(x, r)c lGl-'t lx(dl'
seG

lcl-'I lt(g/r)l'
seG

lGl-'lr/l t lt(g/f)l'
gNeG/N

lGlNa't li(g1r)l'
gNeGlN

(i,il.tN.

By lemma 2.L.2,

y e Irr(G) <+ (x,x)c: I

(x,x)c1N: t

i e Irr(G lN) tr

We end this section with a definition from James and Liebeck [10, Definition 17.2]

Definition 2.3.7 Let N be anormal subgroup of G andletflbe acharacterof GlN, thenthe ch'ar-

acter y uhich is giuen by

xG) : x@tv) forse G

is called the lift of i to G. The process of obtaining characters of a group fro'm the cha'racte'rs of any

of its quotient groups using theorem 2.3.5 is called the lifting process.
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In each of the remaining sections we shall try to illustrate in a group extension how some of the

concepts discussed in this chapter are used to calculate the character table of the specific group in

discussion.

2.4 The Character Table of a Group of the form 23 . 7

LetG be a split extension of ly', an elementary abelian two-group of order 8, by G, a cyclic subgroup

of GL(3,2) of order 7. As with the example in chapter 1 ( section 1.3), we use the method described

in section I.2 of chapter I to calculate the conjugacy classes of G.

G can be generated by the following element of order 7 in G fu(Z)

11

and l/ = Vt(2), the vector space of dimension three over a field of two elements. G, being cyclic,

has 7 conjugacy classes of which each class consists of a power of r. In this example, we thus work

with seven cosets, namely /{ri where j : 0,1,2,...,6. For each j we must consider the action of

/[ = ("r,"r,e3) and Cc@') on Nzi.

Action of N and Cc(Lc) on /{15, :

1c fixes all elements N so that C1,'(16) = /V. Thus k : 8. That is we have eight orbits, Q, with

s : 1, 2, ...,8,each consisting of one element. Now C6(16) : G so we only need to look at the action

z on N. This action is represented by the cycle structure ( e1 e1e2es e3 e2€t et€2 €2 ept)'

So

8

Ar: {1}: Q, and, 42: U
s=2

0

1

1

1

r
0

1

1

a

42
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lcd(tG)l : ry-56;
Jt

lca("')l : Ly -8;
J2

Action of N and Cc(*) on Nr :

Cr,r(") : {1c}. So k: 1 and therefore I = 1. Also Cc(t) : G so we have lCe@)l:7. In fact

lCe@t)l :7 for all j : L,2,...,6 because the action of zr is represented by a 7 - cycle and hence

,j (j+ 0) fixesonlyl,^,'. WethushaveCl,,(rr) : i1), jl0andsok:landagain J:1. With

C"(ri) : G, j * 0 we have lce@)l:7, V i: I,2,...,6. lvith that, the conjugacy table of G

is completed:

Hence f : I and ./ : 7. We obtain the following

class (1) (r,) (r) (r') \x') (rn) (*') (ru)

no. of elements 1 7 8 8 8 8 8 8

order 1 2 7 7 7 7 7 7

centralizer DO 8 7 7 7 7 7 7

Table 2.4.L: The conjugacy table of 23 :7

To calculate the character table of G *" use the method of inducing characters of subgroups of G

(discussed in section 2.2). In this case we shall use the irreducible characters of N and G.

The character table of // is easily calculated from the character table of Z2 : (a : a2 : 1) bV

using the product of these characters (theorem 2.1.i3). We give the character tables of Z2 and l/.

class

centralizer

( 1 )

2

( a )

,

,b,

,b,

1

1

1

-1

Table 2.4.2: The character table of Z2

43

http://etd.uwc.ac.za/



class

order

centralizer

( 1

1

8

) (r, )

2

8

("r)

2

8

(", )

2

8

(rr"r)

2

8

("r".)

2

8

("r,r)

2

8

(e1e2q)

2

8

T1

T2

T3

T4

,tl

T6

T7

Tg

1

1

1

i
I

1

1

1

1

I

I

1

1

I

I

I

1

1

1

1

I

1

1

1

1

1

1

1

1

1

-1

I

1

1

1

1

I

1

1

I

1

1

-1

-1

-1

-1

I

I

1

1

1

1

1

I

I

1

I

-1

-1

1

-1

1

I

-1

Table 2.4.3: The character table of the group 23

lVe have seen in proposition 2.1.11that if [{ = (x: xn : 1), then px: H 
-> 

C* defined by

p*(r*) l"*)^

defines n irreducible representations of FI. So the character table of G : (r '. t7 = 1) is completely

determined by its representatives of this type. The character table of G is as follows:
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and we obtain the following characters of G

If pe Irr(G),then

d,,,P lrr., :

pd ("r) :

p.- (r,) =

b6(+) :8.p(1)

0

ztfll=p(,i),

Table 2.4.5

f or each i : L,2,...,6

The characters of G induced from G are

class

no. of elements

order

centralizer

)

56

( 1

1

1

(r, )

7

2

8

( )fr

8

7

I

a

8

7

I

( )T (r')
8

7

7

("')

8

7

7

(rt)

8

7

7

("u)

8

7

7

-d,l
nd

I

7

7

I

0

0

0

0

0

0

0

0

0

0

0

0
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class

no. of elements

order

centralizer

(1)

I

1

,1t)

(", )

7

2

8

(r)

8

7

I

( ,)

8

n
I

7

T (r')
8

7

7

(rn)

8

7

7

5

8

7

I

( )x ("')
8

7

7

pg

=pi
p7

p7

pf
p?

p?

8

8

8

8

8

8

8

0

0

0

0

0

0

0

1

br

b2

b3

b4

b5

6o

1

b2

b4

b6

bt

b3

b3

1

b3

b6

b2

bs

b1

b4

1

b4

b1

b5

b2

b6

b3

b5

b3

br

b6

b4

b2

I 1

b6

bs

b4

b3

b2

bl

Table 2.4.6

where for each k : 7,2, b
Ur:.

Besides the trivial character Xo, we have another irreducible character of G in rF, because

r-d -dr\t2rt2l 1

e,k6

Foreachi: L,2, 6

,d dr
\P;,P; ) 2

Hence none of these characters are irreducible, but for each i,

t-C
\P; , 1_d

l,

This means that for each i - I,2,...,6, pf i. th" sum of two irreducible characters of G of

whichoneis f. H".r""foreach i, p?-E isanirreduciblecharacterofG. Witnthis,wenow

have all the irreducible characters of G.
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class

no. of elements

order

centralizer

)

56

i

I

1

( (t, )

7

2

8

(r)

8

7

7

)
n

8

I

I

Z( (r')

8

7

7

(r')
8

7

7

(rt)

8

7

7

(ru)

8

7

I

*Gt2

nG,2

nG-
'2

nG
l,

,F
-c,2

p?-
p7-
pg-
p7-
p3-
pg-

Xs:,F

Xt

x2

(3

Xc:
.(5

{6

Xt:

1

1

1

I

1

1

1

I

1

1

I

1

I

I

1

1

1

bl

b2

b3

b4

b5

b6

0

b2

b4

b6

br

bt

b5

0

1 1

be

b6

b2

b5

br

b4

0

1

b4

br

b5

b2

b6

63

0

1

b5

b3

br

b6

b4

b2

0

1

b6

bs

b4

b3

b2

br

0

where for each k : 1,2, 6

Table2.4.7: The character table of 23 :7

- 2krt
bp = g7
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2.5 The Character Table of a Group of the form 23 : G fu(2)

Once we knew what the irreducible characters of N and G in the example in section 2.4 was, we solely

applied the method of induction to calculate the character table of G. To calculate the character

table of G : 2s: Gfu(2) where Gh(2) acts naturally on 23,we shall in addition to the methocl of

induction, also use the methods of restriction (discussed in section 2.2) and of lifting of characters

(discussed in section 2.3). The character table of this group has also been calculated by Whitley [1g]

but through the use of Fisher matrices.

The conjugacy classes of G has been discussed in chapter 1(section 1.3), so we start immediately

with the business of finding the irreducible characters of G. As in section 1.3 we let N be the group

23 and G be the group Gh(2). Now G =GlN, which implies thar some of the irreducible

characters of G can be found by lifting the irreducible characters of G to G. The character table of G

is obtained from ATLAS[3], so our first six irreducible characters of G are the lifts 1;, i - 1,2,....6

of i; e Irr(G):

class

centralizer

(1A)

168

(2A)

8

(3A)

3

(4A)

4

(7 A)

I

(7 B)

7

X I

x,

x,

Xn

x,

Xu

1

3

3

6

7

8

1

-1

-1

2

-1

0

1

0

0

0

1

1

I

1

1

0

1

0

1

a

a

-1

0

1

1

a

a

1

0

1

Table 2.5.i:The character table of G : GLz(Z)

where a=|(-t+,,fi11
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class

no. of elements

centralizer

(1)

1

1344

(2, )

7

t92

(2r)

42

32

(2r)

42

32

(a, )

84

16

(3, )

224

6

(6, )

224

6

(ar)

168

8

(a.)

168

8

(7, )

t92

7

(7 r)

t92

7

Xt

Xz

Xs

Xs

Xs

Xa

I

3

3

6

I

8

1

3

3

6

7

8

1

1

1

2

1

0

1

-1

-1

2

-1

0

1

1

1

2

-1

0

1

0

0

0

I

-1

1

0

0

0

1

I

1

1

1

0

1

0

1

1

1

0

1

0

1

a

a

1

0

1

1

a

&

1

0

1

Table 2.5.2

where a:lt-t+Jli)

The induction of the characters of G bG will put us in a position to find more irreducible characters

ofG:

If i € Irr(G), then by using the formula for induced characters, we find that

(i)d(1)

(*)d(g)

(i)d(g)

G)6(g)

and (y)d (s)

8i(1)

qx@) forse (2r);

zxb) f or s e. (31)u (ar);

x@) forse (71)u(2r);

0forg(G.

Inducing xr, xz, *.n, *.r, we obtain (i,)e, (x)d, (xn)c and. (i5)d
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class

no. of elements

centralizer

(1)

I

1344

(2r )

7

192

(2r)

42

32

(2. )

42

32

(a, )

84

16

(3r )

224

6

(6r )

224

6

$r)
168

8

(ar)

168

8

(7' )

192

7

(7 r)

t92

7

(i,)e

Q)d
Qo)d

(iu)d

8

24

48

bb

0

0

0

0

4

-4

8

-4

0

0

0

0

0

0

0

0

2

0

0

,

0

0

0

0

,

,

0

.t

0

0

0

0

1

a

-1

0

1

d

1

0

Table 2.5.3

Now

Similarly,

( (i,)e, (i,)d )

( x, , (i,)d )

and

so that

and

, so that

Qic - Xz

2

I

Xt

( (ir)d, (ir)d )

( x, , (ir)d )

Xs

(tl,l. - x') € Irr(G)

2

I

( € Irr(G)

G ir u maximal subgroup of the group A6. Thus by restricting the characters of As to G we may find

more irreducible characters of G. We shall use the following character, say r of Aa obtained from its

character table ( in ATLAS, page 122) ):

b1
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class

cenbralizer

IA

20160

2A

192

2B

96

3A

180

3B

18

4A

16

4B

8

5.q

15

6A

t2

6B

6

7A

7

7B

7

t5A

15

L5B

15

T 2L -3 I 6 0 1 1 1
a,

0 0 0 I 1

Table 2.5.4

Using the fusion map of G i.,to As and restricting r toG, we obtain , IG

G AE

(

(

(

(

(

(

(

(

(

(

(

1)

21

2z

23

4r

3r

6r

4z

4s

)

)

)

)

)

)

)

)

)

)

7 I

72

(1A)

(2A)

(28)

(2A)

(4A)

(38)

(68)

(48)

(4A)

(7 A)

(7 B)

Table 2.5.5.

Table 2.5.6.

class

no. of elements

centralizer

(1)

I

1344

(2, )

7

192

(2r)

42

32

(zz)

42

32

(a, )

84

16

(3, )

224

6

(6, )

224

6

$r)
168

8

(a.)

168

8

(7' )

1,92

7

(7 r)

192

7

TIG 2t -3 1 -3 1 0 0 -1 1 0 0
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Beca,use

Furthermore

and also

( (tr)d, (in)e )

( (io)d, xn )

( (xn)d, x, )

( (io)d, xn )

Xto

and

so that

(r IG , r IG) L we haue

r tG e Irr(G)Xg

4

1

1

1

( (io)e - (xn * xz *xr)) e Irr(G)

( (i,)e, (iu)e )

( (ir)d, xu )

( (iu)d, x. )

( (ir)d, xn )

Xrt

4

1

I

1,

( (xn)d - (xn + Xz * xr) ) e Irr(G)

and

Thus

And so the character table of G is completed
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class

no. of elements

centralizer

(1)

1

t344

(2, )

7

192

(2r)

42

32

(2r)

42

32

(a, )

84

16

(31 )

224

6

(6, )

224

6

(ar)

168

8

(ar)

168

8

(7, )

r92

7

(7 r)

192

7

Xt

Xz

Xs

Xq

Xs

Xo

Xi

Xa

Xs

Xto

Xtt

1

3

3

6

7

8

7

2T

2T

t4

7

1

3

3

6

7

8

I

-3

-3

,

1

1

I

1

2

-1

0

3

-3

I

2

-1

I

-1

-1

2

-1

0

-1

I

-3

2

3

1

1

I

)

1

0

1

1

1

-2

1

1

0

0

0

1

-1

I

0

0

-1

1

1

0

0

0

I

1

1

0

0

1

1

1

1

1

0

I

0

I

1

1

0

1

1

1

1

0

1

0

1

1

1

0

i

I

o"

a

-1

0

1

0

0

0

0

0

1

a

d

1

0

I

0

0

0

0

0

Table 2.5.7: The character table of 23 : Gh(2)

54

http://etd.uwc.ac.za/



2.6 The Character Table of a Group of the form (Ar x 3) : 2

Let N be the direct product of the groups As and the cyclic group Z3 and let G be a cyclic group of

order two. For the calculation of the character table of G : N : G, a maximal subgroup of As, we

shall use the methods of restriction and induction of characters. For this purpose we shall make use

of the character tables of the groups H : Ss x ^93 and N.

Since.Ay' is non-abelian we cannot use the method discussed in section 7.2 of chapter 1 to calculate

the conjugacy table of G. By regarding A5 as the alternating on the set {1,2,3,4,5}, 23 as ((6 7 8))

and G as the group ((1 2)(6 7)), we can determine the conjugacy classes of G by acting (1 2)(6 i)

on ly'. We first show the conjugacy classes of N:

class

class representative

no. of elements

(1)

I

1

(3,4)

(6i8)
1

(38)

(687)

1

(3c)

(1 2 3)

20

(3r)

(123)(678)
20

(3r)

(123)(687)
20

Table 2.6.I : The conjugacy table of A5 x 3

class

class representative

no. of elements

(2A)

(1 2)(3 4)

15

(6A)

(1 2X3 4) (6 7 8)

15

(68)

(1 2)(3 4)(6 8 i)
15

Table 2.6.L : The conjugacy table of As x 3(continued)

class

class representative

no. of elements

(5A)

(12345)

T2

(154)

(12345)(678)

L2

(158)

( 12345) (687)

t2

Table 2.6.1 : The conjugacy table of As x 3(continued)

class

class representative

no. of elements

(58)

(r3452)
t2

(15C)

(13452)(678)

72

(15D)

(13452)(687)
t2
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Table 2.6.I : The conjugacy table of As x 3(continued)

By the action of (1 2)(6 7) on ly' we obtain the following fusion table

T\/ (Au x 3) :2

(1)

(3A)

(38)

(3c)

(3r)

(38)

(2A)

(6A)

(68)

(5,4)

(154)

(158)

(58)

(15c)

(15D)

(1)

(3, )

(3, )

(3r)

(3r)

(3r)

(2, )

(6, )

(6r )

(5' )

(15, )

(152)

(5, )

(15r)

(15' )

and hence complete the conjugacy table of G

Table 2.6.2

class

class representative

no. of elements

centralizer

(1)

360

I

I

(3r )

(678)

2

180

(3r)

(123)

20

81

(3.)

(123)(678)

40

9

(2')

(1 2)(3 4)

15

24

bb
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class

class representative

no. of elements

centralizer

(6' )

(1 2)(3 4)(6 7 8)

30

t2

(5, )

(12345)

24

15

(15, )

(1 2345) (678)

24

15

Table 2.6.3 : The conjugacy table of (A5 x 3)) , 2

Table 2.6.3 : The conjugacy table of (A5 x 3)) ' 2 (continued)

class

class representative

no. of elements

centralizer

( 15r)

(12345)(68i)
24

15

(1

(2r)

2)(67)
30

l2

(6, )

(12)(345)(6i)
60

6

(a' )

(1234)(6i)
90

4

Table 2.6.3 : The conjugacy table of (A5 x 3) ' 2 (continued)

We start the calculation of the character table of G by restricting the characters of H bG. We show

the character table of H on the next two pages.
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t

class

no. of elements

centralizer

A1

1

720

2A

3

'240

3,4

2

360

2B

10

72

2e

30

24

6A

20

36

3B

20

36

6B

60

t2

3e

40

18

4A

30

24

4B

90

8

d,

6z

6s

6q

6s

6u

6,

6a

6n

6rc

6,,

6,,

6rz

du

6ru

6ra

6n

6,,

6rc

dro

6rt

1

2

1

1

2

1

5

10

b

6

12

6

5

10

5

4

8

4

4

8

4

i
0

-1

1

0

-1

5

0

-5

6

0

-6

5

0

-5

4

0

-4

4

0

-4

1

-1

1

1

-1

1

5

-5

5

6

-6

6

5

-b

c

4

-4

4

4

-4

4

1

2

1

-1

-2

-1

I

2

1

0

0

0

-1

-,

-1

2

4

-2

-2

-4

-2

1

0

-1

-1

0

1

1

0

-1

0

0

0

-1

0

1

2

0

-2

-2

0

2

1

-1

1

-1

1

-1

1

-1

1

0

0

0

-1

1

-1

2

-2

-2

-2

2

-2

I

)

1

1

2

1

-1

-2

-1

0

0

0

-1

-2

-1

1

2

1

1

2

I

1

0

1

I

0

-1

-1

0

I

0

0

0

1

0

1

1

0

1

1

0

1

1

-1

1

1

1

1

1

I

1

0

0

0

1

1

I

1

1

1

1

-1

I

1

2

1

-1

,

-1

-1

-)

-1

0

0

0

1

2

1

0

0

0

0

0

0

1

0

-1

-1

0

1

-1

0

1

0

0

0

I

0

-1

0

0

0

0

0

0

Table 2.6.4 : The character table of ,9s x .9s
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class

no. of elements

centralizer

L2A

60

t2

2D

I5

48

2E

45

16

6e

30

24

6D

20

36

6E

60

12

6T

40

18

5A

24

30

l0A

72

10

L5A

48

i5

1

-1

1

-1

-1

-1

-1

1

0

0

0

0

1

-1

I

0

0

0

0

0

0

I

2

1

1

2

1

i

2

-2

-2

-4

.')

I

2

1

0

0

0

0

0

0

I

0

-1

I

0

-l

1

0

-,

-2

0

2

I

0

-1

0

0

0

0

0

0

1

-1

1

1

-1

I

1

-1

-2

-2

2

-2

1

-1

1

0

0

0

0

0

0

I

,

1

-1

-2

-1

I

2

0

0

0

0

-1

-,

-1

-1

o

-1

I

,

1

I

0

1

1

0

1

1

0

0

0

0

0

-1

0

1

1

0

1

1

0

1

I

-1

1

-i
1

-1

1

-1

0

0

0

0

-1

1

-1

-1

-1

-1

1

-1

1

1

2

1

1

2

1

0

0

1

I

2

1

0

0

0

-1

-2

-1

-1

2

-1

1

0

I

1

0

1

0

0

I

1

0

1

0

0

0

1

0

1

-1

0

1

i
-1

1

1

1

I

0

0

1

1

1

1

0

0

0

1

1

1

-1

1

1

6t

6,

6"

6n

du

du

d,

dr

ds

6rc

6n

drz

drs

6rn

6rc

6ru

6v

dr"

6rn

dzo

6zt

Table 2.6.4 : The character table of ^9s x S3(continued)'

In the process ofrestricting the characters of I/ to G *e first have to see how the conjugacy classes

of G fuse to the classes of H:
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c H

(i)

(3r )

(3r)

(3.)

(2, )

(6, )

(5, )

(15,)

(15,)

(2r)

(6r)

(a, )

LA

3A

3B

3e

2D

6e

5A

rcA

t5a

2e

6E

4B

Table 2.6.5.

By restrictirg d, , 62, 6t, 62, 6a, 6s, drc, 6rc, dn and dra of Irr(H), we obtain ten irreducible

characters of G.

We now look at the character table of N for the induction of some of its irreducible characters to G
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class

no. of elements

centralizer

(1)

1

180

(3A)

1

180

(38)

I

180

(3c)

20

9

(3D)

20

9

(38)

20

I

(2A)

15

L2

(6A)

15

1.2

t,
,b,

,hs

,bn

,1.,u

,bu

,b,

,h,

,hn

,bro

,bI

,brz

,b 
',,

,hrn

'btu

1

1

1

3

3

3

3

3

3

4

4

4

5

5

b

1

c

c

3

3c

3z

3

3c

JC

4

4c

4Z

5

5c

5C

1

c

c

3

JC

3c

3

JC

3c

4

4Z

4c

5

bC

5c

1

1

1

0

0

0

0

0

0

I

1

1

1

1

1

1

c

c

0

0

0

0

0

0

1

C

z

-1

-c
-e

1

c

c

0

0

0

0

0

0

I

Z

c

I

-c
-c

1

1

1

1

1

1

1

I

1

0

0

1

1

1

1

1

c

c

-1

-c

-z
-1

-c
_Z

0

0

-7
1

c

c

Table 2.6.6 : The character table of As x 3.
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class

no. of elements

centralizer

(68)

15

T2

(5A)

L2

15

(15A)

t2

15

(i5B)

t2

15

(58)

t2

15

(15c)

t2

15

(15D)

t2

15

rb,

,hz

,bs

,bn

tbu

,hu

,b,

t,
,l,n

,brc

,hn

thtz

,bB

,bA

thw

1

Z

c

I

_Z

_C

-I

-c

-c
0

0

0

1

Z

c

I

1

I

o,

o,

a

b

b

b

-1

-1

-1

0

0

0

I

c

Z

a

ac

aZ

b

bc

bc

-1

-c
=

0

0

0

1

c

c

a

aZ

o,c

b

bc

bc

-1

_Z

-c
0

0

0

1

1

1

b

b

b

a

a

a

-1

-1

-1

0

0

0

1

c

c

b

bc

bc

a

ac

aZ

-1

-c
-c
0

0

0

1

c

c

b

bc

bc

a

at

ac

-l

-c

-c
0

0

0

Table 2.6.6 : The character table of A5 x 3 (continued)

r+J5
where

/=
vb1

a

b

2

and
2

'/J
2

If ,b e lrr(N), then by using the formulafor induced characters, we have

c
1

2
+
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,r.(r-) =

,bd (d :
,bd (g) :

,bd (g) :

,bd(il :
,ld (g) :

,ld (g) :

,bd(g) :

,bd (s) :
,td (d :

2.rb(IN)

,bQr) + ,bQr); s € (3,); 21 € (3A) and z2 e (38)

z.rhQ") ; s € (32)and 23 € (3C)

,bQo) + ,b?u); e € (3r); 24 € (3D) and 25 € (3r)

z:l,ku) ; g € (21)and 26 € (2,4)

,bQr) + /(rr); g € (6,); Z7 € (6A) and zs € (68)

,l;(rn) + ,b(rro); g e (5,); zs € (5,4) and .zro € (58)

,hQr) + ,l:Qrr); s € (15,); Zl € (I5A) and Zn € (15D)

,!(rrt) + ,hQri; s € (15r); Zn € (tSB) and Zn € (15C)

0. if s € (2r) u(6r) u(4r)

From the character table of N we induce the characters ry's and r/6 to G to obtain the irreducible

characters \11 and Xrz of G and so complete the character table of G:
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class

no. of elements

centralizer

1

1

360

(3r )

2

180

(32 )

20

18

(3r)

40

9

(2, )

15

24

(6' )

30

t2

(5, )

24

15

Xr

Xz

Xs

Xa

Xs

Xa

Xi

Xa

Xs

Xto

Xtt

Xtz

1

2

1

5

10

D

6

4

8

4

6

6

1

-1

1

D

-b

b

6

4

-4

4

-3

-3

I

)

1

1

-2

I

0

I

2

1

0

0

1

-1

I

I

1

1

0

1

i
1

0

0

1

2

1

1

2

I

-2

0

0

0

-2

-2

1

-1

1

I

-1

1

-2

0

0

0

1

I

i
2

1

0

0

0

1

-1

-2

-1

1

1

Table 2.6.7 : The character table of As x 3 :2
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class

no. of elements

centralizer

(15, )

24

15

(15r)

24

15

(2r)

30

12

(6r)

60

6

(a, )

90

4

Xr

Xz

Xs

Xe

Xs

Xo

Xt

Xa

Xs

Xto

Xtt

Xtz

1

-1

1

0

0

0

1

-1

1

-1

ac * b.c

a.c + bc

1

-1

1

0

0

0

I

-1

1

-1

a.c * bc

ac * 0.c

I

0

-1

1

0

-1

0

2

0

,

0

0

-1

1

0

1

0

1

1

0

0

1

0

0

1

0

-1

-1

0

1

0

0

0

0

0

0

where

Table 2.6.7 : The character table of As x 3 : 2(continued)

l+\fr
a

1 rfr
2

2
and

1

+

To conclude this chapter we give as examples for our discussion on how the methods of restriction

and induction of characters are related (section 2.3) , the following two Frobenius reciprocity tables:

b

c '/5
2

1,

2
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/i\G I X, Xz Xs Xs Xs Xo Xz Xa Xs Xro Xrr Xtz

,b, t
,bz

,bt

,hn

t,
,bu

,b,

,b"

{n

,bro

,h rr,

$t,

,brs

,bro

,bru

Table 2.6.8

From the table above we can easily express ',lrG u" a sum of irreducible characters 1; of G for every

,h € Nand likewiseexpressXlN as asumof irreduciblecharacterslsl of N foreveryX e G.

0

0

0

0

0

0

0

0

0

0

0

0

I

0

0

0

0

0

I

0

0

i
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

I

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

I

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1
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G\ H t d, 6z 6s dn 6u do 6, 6* dn 'brc 6r,

Xrt
Xz

Xz

Xs

Xs

Xa

Xz

Xe

Xs

Xto

Xtt

Xrz

Table 2.6.9

10
01
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
10
00
00
00
01
01

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

I

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

I

0

0

0

0

0

0

0

0

0

0

0

0

I

0

0

0

0

0

0
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^\tl
Xz

Xa

Xq

Xs

Xo

Xz

Xa

Xg

Xto

Xtt

Xrz

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

I

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

I

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

10000
00000

G\ H I 6rz drs 6rq 6ru drc dn 68 6w 6ro 6zr

Table 2.6.9(continued)

The Frobenius table (above) in this case tells us how to express XH as a sum of irreducible characters

e; of H for every 1 € G and horv to express 6IG as a sum of irreduciblecharacters 1, of G for

every d € H.
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Chapter 3

FISCHER MATRICES

In this chapter we d,iscuss the theory of Fischer matrices and show how it is applied in finding the

irreducible characters of three finite groups which are all split extensions. We shall first look at

results which are necessary for our discussion of Fischer matrices. This theory, called Clifford theory,

is discussed in section 3.1. Section 3.2 deals with the properties of Fischer matrices and in the rest

of the chapter we calculate the character tables of the three groups as mentioned. For the first two

sections we make use of the thesis of Whitley [19].

3.1 Clifford Theory

We consider the characters of G, un extension of N by G, with N not necessarily abelian

Let0€lrr(N),where N <G andfor geG,ne N welet 0sbe definedby

1n(n) : 0(grg-r).Then 0s is a character of N and is said to be conjugate to 0 inG. G p"t-

mutes Irr(N) by g : 0 + gs. Since N acts trivially on Irr(N), /rr(.M) is permuted by G/l/, by

g[{:0 -} 0s.

The next result, due to Clifford [2], is fundamental to the work that follows in this and the next
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section. The proof is from Isaacs[9].

Theorem 3.1.1 (Cli.fford'stheorem) Let N <G andye Irr(G). Let0 be an irreducible constituent

ol Xlx and, suppose that 0:0t,02,...,01 are the distinct conjugates of 0 inG.

Then ylp : 
"Dl=r 

0; where e - (Xl,u,0l.

Proof: We compute ddl1,,. Define 00 on G by

oo1r1:
e@)

0

if r € N

"4N

lNl-'D oo@nr-t)
r€G

,EU

For n € 1{, we have

Since xnx-r e N V r eG we have

ec@)

ec@) lNl-'D o'@). Therefore

lNl.adl, : \_r",
teG

andif 6elrr(w) and 6({00:l1i <i}then

Q : (\e',67 , so (dchr,d)
xeG

70
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Since X is an irreducible constituent of 0d by Frobenius reciprocity, it follows that

Olw,6): 0. Thus all the irreducible constituents of Xl1,' are among the 0;, so

Dul*,e,l,.,xlru
i=1

But (Xl1v',0r): \XIN,0) since 0i and d are conjugate and so the proof is complete. !

Definition 3.1.2 Let N <G and 0 e Irr(N). Then I6Q) = {S eG :0s :0} is the inertia group

of 0 inG.

Since /6(0) is the stabilizer of g in the action of G on Irr(N), we have that /6i(0) is a subgroup

of G and N e f6i!). Also [G : t6(0)\ is the size of the orbit containing d, so in the formula

xlru : ,Il=, 0;, we have t - lG : IeQ)l-

As a consequence of Clifford's theorem, we have the following theorem

Theorem 3.1.3 Let N o G, 0 e Irr(N) and E: IcQ). Theninduction toG maps

the irred,ucible characters of H that contain 0 in their restriction to N faithfully

onto the i'rreducible characters of G which contains 0 in their restiction to N .

Proof: See [l9,Theorem 3.3.2]

Theorem 3.1.3 shows that to find the irreducible characters of G that contain d in their restriction

to N, it suffices to find the irreducible characters H : IGQ) that contain 0 in their restriction. If d

can be extended to an irreducible character 1., of H ( that is r/ € Irr(E) with r/lr :0), then the

relevant characters of H can be obtained by using the following theorem.

Theorem 3.1.4 (Gallaghar [6]) With N,G,0 andE ot aboue, if 0 ertends to a character

$ e Irr(E) then as B ranges ouer all irreducible characters of E that contain N in their kernel,
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B$ ranges o,uer all irreducible characters ofE that contain 0 in their restriction.

Proof: By definition of Ti,0 i" the only ff-conjugate of 0, so by Clifford's theorem TElp : f 0 for

some integer /. Comparing degrees, 0El1{ = [E: /{]d, so

(eF,r-E) Q, eF l*)

[tr: I{].

Now we claim that Ofr : DB 0(L)7rb,where B runs over all irreducible characters of 11 that contain

N in their kernel, or, equivalently, over all irreducible characters otElN. Both dtr ancl !, t|(I)7rt'

are zero ofi l{ because for g ( fV, gFb):0 since rgr-1 f IU V x eG, and by the column orthogo-

nality for the character table of tr lw since g does not belong to /{, we have

D ptt)(gt)G) : \totrlotd),b@) : Q

B B

Also

becauseforg€ly',

onl* = lE: N)o : tlOtr)0,fi1*
p

B
loototd,hk) ItooD'.,t'o

p

lE : N)thG)

lE : Nll(s).
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Therefore gE - DB 00)01! as claimed. Now

ptr,rF)

<loolo,h,Dt$Wb)
0t

I oltlt(r)(g,h,rbl.
0,t

The diagonal terms contribute at least D gtt)' : lE : /{] so the C$ are irreducible and distinct.

These Bp are all the irreducible constituents of 0F. so are all the irreducible characters of H that

contain d in their restriction, since for d e Irr(E),(dlN,0) = (6,6F). D

Note 1 Now suppose G is a, extension of N by G. If every irreducible character of /y' can be

extended to its inertia group in G, then by application of theorems 3.1.3 and 3.1.4 the characters of

G ,u, be obtained as follows:

Let 01,02,...,01 be representatives of the orbits of G on Irr(N). For each i,letE; : te(0,) and let

$; e Irr(H;) with ,b||r,, : d;. Now each irreducible character of G contains some d; in its restriction

N by Clifford's theorem, so by theorems 3.1.3 and 3.1.4 we have

t

Irr(G) = U{fOl,,lt:P € Irr(E;),Nctcer(l1\
i=l

Hence the characters of G futt into blocks, with each block corresponding to an inertia group

We now quote some results which give sufficient conditions for the irreducible characters of I{ to be

extendible to their respective inertia groups, so that the above method can be used to calculate the

characters of G.

The following result and proof was obtained from Curtis and Reiner ([4, page 353]).

[E: I/] :
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Theorem 3.1.5 (Mackey's theorern) Suppose that N is a normal subgroup of H suclt

that N is abelian and H is a serni-direct product of N and H fo'r some H <8. tf

0 € lrr(I{) isin'uariantinE (thatis,0h: 0,Vh €E )then0 canbeextendedto

a li.near charactercf H .

Proof: Since H irusemi-directproduct, arry h € Ecanbewrittenuniquelyas ft.: nk,n e N,k e H.

Define y on H by X(nk) : 0(n). Since N is abelian, 0 has degree 1, hence is linear, and the fact that

0:0h forall heE impliesthat0(n) =O(hnh-r) forall heE. Thenif hr : n1k1, h2: tuzkz,

we have

x(/,rhz) : y(nft1n2k2)

= y@rnf, krk2)

: o@rnl')

= 0(n1)0(nl')

: 0(n1)0(n2)

= 0(np2) : y(h1)y(h2)

Therefore X is a linear character olE, and 111,' : 0 !

Since in all our examples that we will consider, 1{ is abelian and the extension is split, Mackey's

theorem will apply. Mackey's theorem is a corollary of a more general result by Karpilovsky [11]

which we state without proof.

Theorem8.l.6 Letthegroup H containasubgroup H of ordernsuchthatE: NH forN norrnal

in H and, let y e lrr(/V) be inuariant in H. Then y ertends to an irreducible character

,f tr ,f the following conditions hold:
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1. (*,2) : 1 ulr.ere m = X(L),

2. N a H < N' uhere N' is the deriued subgroup of N

Another extension theorem which can be found in [7] is the following:

Theorem 3.1.7 tf Ir{ is a normal subgroup of E and 0 is an irreducible character of N that is

inuariant in H, then 0 is ertendahle to an i'rceducible charactercltr if

([E: ri], ffi) : I

3.2 Properties of Fischer Matrices

In this section we give some properties of the Fischer matrices which will enable us to compute the

character tables of three finite group extensions in the last three sections. lVe however need to look

at some background material first.

Let G be an extension of N by G, with the property that every irreducible character of ly' can be

extended to its inertia group. With the notation of the previous chapter we have that

llrr(G): Ul=, {U3rh)t- : g e lrr(fi) with l/ c ker(B)}] Now we show how the character table

G cun be constructed using this result. We construct a matrix for each conjugacy class of G (the

Fischer matices). Then the character table of G can be constructed using these matrices and the

character tables of factor groups of the inertia groups. These constructions of Fischer matrices have

been discussed by Salleh [tS], List [13] and List and Mahmoud [14].

As previously, let 01,...,d1 be representatives of the orbits of G on 1rr(1/), and let H, : /6(9,) and

Hi:H;lN. Let lt;be an extension of 0;to H;. !!'e take 0r = lN, so I/1 : G and Hr = G. We

consider a conjugacy class lglof G with representative g. Let X(g) = {*r,'..*"b)} be representatives

of G-conjugacy classes of elements of the coset l{g. Take rr = g. Let R(g) be a set of pairs (i,y)
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where i e {1,...,1} such that H. contains an element of [g], and y ranges over representatives of the

conjugacy classes of H, that fuse to [g]. Corresponding to this U € H;, let {y1*} be representatives of

conjugacy classes otE that contain liftings of y.

lf g e Irr(E) with N C ker(B), then B has been lifted from some B e Irr(H;), with i(y): g(atr)

for any lifting Utr of y. For convenience we write B(y) for B@).

Now, using the formula for induced characters given in Proposition 2.2.9., we have

0],,,9)d ("i)

,,rn,F"r,r +' E#fh'@' ) 
g @)

I t' lce@i)l
lca(ail

'b;@u)

,h;(wn) 0(y)
s:(i,c)€E(s) k

By Xr' we mean that we sum over those fr for which y1* is conjugate to ri in G. No* we define the

Fischer matrix M(g): (r{,,ry) with columns indexed bV X(g) and rows indexed by r?(g) by

ol,,ul:D' lce@i)l
lcq(a)l

Then

?b,g)c(,)= t o1,,,19fu).
y:(i,y)eR(s)

The rows of M(g) can be divided into blocks, each block corresponding to an inertia group. Denote

the submatrix corresponding to H;by M;(g), and let Cn(g)b" the fragment of the character table of

f{ consisting of the columns corresponding to classes that fuse to [g]. Then, by the above relation,

the characters of G at the classes represented by X(g) obtained from inducing characters of H; are

given by the matrix product C;(g).M;(g).

We now state a result of Brauer and prove a lemma which will be needed later

k
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Lemma 3.2.L (Brauer) Let A be a group of automorphisms of a group Ii. Then A also acts on

Irr(li) and the nu'mber of orbits of A on lrr(li) is the sarne as that on the conjugacy classes of [i.

Proof: See [8, 4.5.21

Lemma 3.2.2 Let A be a group of automorphisms of a group Ii , so A acts on t'rc(li) and on the

conjugacy classes of I{ with the same number of orbits on each by the preuious lemma. Su'ppose we

haue the follouing matrir desc'ribing these actions:

1 I L a lj

111S1

S2 azt azz

si ail aiz

Sg

1

At;

:

qii

cL2t

clit

att a0 atj du

where a;j: L for j - 1,...t, li 's are lengths of orbits A on the conjugacy cLasses of I(,

s; 's are lengths of orbits A on Irr(K),

a;i is the surn of s; irreducible characters of Ii on the element ri, wlt,ere xi be an element of the orbit

of length 11.

Then the following relation holds for i,i' e {1,...t}:

D",iwti: lKls;6;;,
j=7

Proof: Let s; denote the sum of s; irreducible characters of K, so s;(r;) - a;i.Then

( si, si, >: l1(l-r\t1s;(x)qd: lKl-tD,,o,,*
j=l
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But by orthogonality of irreducible characters, ( si, si, )- 5;;,s;, so

Dl,ont*: lA-ls;d;,,. !
j=l

Now let M(g): (o{;,ry) be the Fischer matrix for G : N.G at g e G. We present M(g) with

corresponding "weights" for columns and rows as follows

lCe@r)l lCe@r)l . lCer"ktl

lcu,(g)l I 1 1

lcn,(v)l

lc a,(v')l

lC u,(y)l

olr,il o?r,ol

oir,n) o?r,u')

lcn,(a)l oln,,t o'a,u)

ol,r,i o'(r,u)

The matrix M(g) is divided into blocks (separated by horizontal lines), each corresponding to an

inertia group. Note that o!r,n) = 1 for all j € il,...,"(g)). Fischer has shown that M(g) is square

and nonsingular(see[14]). In the following propositions and note we give further properties of Fischer

matrices
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Proposition 3.2.3 (column orthogonality)

I lc n,(v)la!1n,r1o'1';*1 - 5ii'lce@)l
(i,v)€R(s)

Proof:The partial character table of G at classes /1,..., r"1r; is

Cr(g)Mr(g)

C,(g)M,(g)

where C;(g), M;(g) are as defined earlier in this section.

By column orthogonality of the character table of G, we have

lc6@1)16v

'Ti=l p,Qlrr(l!;) v:(i,v)€R(g)
t "1,,,t9,(v))( t ax1';,,19;(v')

T' D"i,,r",, rB nfu)M * D t, i,,rfi, O,@ g,t a' )
i=l B,Elrr(l!,) g

yt:(i,yt)eR(s)

v y'*v

tt
i=l

t

D
i=1

/
I I,t,,,,4,T t 9,@)96 + tt,1,,o)o1',,o,) t oJv)o,@\
\ v g;elrr(H;\ s Y'*Y 9;€In(Hi\
/_\
lLri,,r"'1',,uylC a,(u) I + o 

)
/

t o!1;,u'1o!1';,ulCn,(Y)l !

Proposition 3.2.4 (List [13]) At the identity of G, the matrb M(1) is the matrtu with rous equal

to orbit sums of the action of G on Irr(N) with duplicate columns discarded.

(i,y)€R(s)
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For this matrir ue ha'ue o1r,r): lG : H;1, and an o'rtlt.ogonality'relation fo'r'rous

L "i,,rt"i,,,rylCe@ )l-' : 6;;'lCn, (1) I-' = 5;;'l H;l-'
J=l

Proof:: The (i, L), j'h entry of M(1) is

oio,,l : D
k

lCe@, ,blyu)
lca(adl

where we sum over representatives of conjugac,v classes of r?i that fuse to [rr] in G. Therefore o{,,r) :

,b7@).By theorem 3.n $7 is an irreducible character of G, and < r!?l*,0; ):( $;lx,0i ): 1.

Therefore, by Clifford's Theorem (Theorem 3.1.i), ,b?l* : DoXo, where we sum over all X, e

Irr(N) in the orbit containing d;. Norv .ry € 1{, and ,i,,,) = !" x,(rr). The orthogonality relation

follows by Lemma 3.2.2. tr

Note f If /r/ is an elementary abelian group (which is the case for our calculations), then List[13]

has also shown the following for ful(g), where g I l,

If G is a split extension of lV by G, then M(g) \s the matrix of orbit sums of C, (u. defined in section

1.2) acting on the rows of the character table for a certain factor group of N with duplicate columns

discarded.

If the extension is not split, M(g) is the matrix of orbit sums of Cn acting on the rows of the character

table with duplicate columns discarded and with each row multiplied by u p - th root of unity where

lNl : pn for some n. It may be that the root of unity for each row is 1.

For these matrices (I/ elementary abelian, any extension) o'(,,r) : E#r, and we have an orthogo-

nality relation for rows (as a consequence of Lemma 3.2.2.):

.@)

D *, o\;orfl; : 5 
1;, y1 p,,u, ylc c (dllc r,(v)l -' l N l : 6 

1i.v1 ( i', v)"f;.ry l l/ l

j=l
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where Tttj : lCn : C6@1)1.

(ln the notation of section 1.2, mi is the length of the orbit Ar of Cs, so mj: 4P)
The relations given in the above propositions and note will be used later in our calculations of Fischer

matrices, so for convenience we list them in a theorem.

Theorem 3.2.5 Fo'r a Fi,schermatrir M(g) - (o7i,A) ofG: N.G ue haue the following relations

1 o\r,il: I for all, € {1, "','G))'

t lc p,(v)lri,,r4, : sii,lce@)1.
(i,s)erC(g)

3 If N is elementa'ry abelian,then ol,n,ul: ffi, and,

4 m i at1;,oya11;,,u, 
1 
: 5 {;,u\(;',oYl;,nl N l'

6)

.(g)t
j=l
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3.3 The Character Table of a Group of the forun 2a : Ss x Ss

LetG =.1{:G where 1{ is an elementary abelian 2-group of order 16 and G : 53 x 53. We start

with the conjugacy classes of G and use the facts that ft = GL2(2) and that l/ is isomorphic to

Vn(z), the vector space of dimension four over a field of two elements. Now

0
G L2(2) )

1

0

0

1

(
1

11

so we consider the following 4 x 4 matrices over GF(2)

16

X1

( (1), (1) )

( (1 2), (1) )

000

010

1

0

0

0

100

001

0100
1000

1100
0010ut : ((123),(1))

x,2 ( (1), (1 2) )

0010
0001

0100

0001

1000
0100
0001
0010
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Ig ( (1 2),(1 2) )

I/J1 ((r2 3),(1 2) )

Az ( (1), (1 2 3) )

U2 ( (1 2),(1 2 3) )

0

1

0

0

100
000
001
010

1000
100
001

0100
1i00
0001
0010

0

0

0 0i1

0100
1000
000i
0011

0100
1100
0001
0011

Us ( (1 2 3),(1 2 3) )

We let G :1 xttUr;rz,Uz ). Then {1o,rr,x2,x3,Ar,az,A3,ut,u2} is a complete set of the class

representatives for G. N is generated by {e1, e2,e3rea} i.e.

N= ( (1 0 00), (0 1 0 0), (0 0 i 0), (0 0 0 1) )
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LetG actnaturallyon/{. Usingthemethoddiscussedinchapterl,sectionl.2,weactly'andC5(g)

on the cosets Ng where g € {Io,tr,x2,x3,!Jt,az,Ut,ut,wz}.

9:lc:a

If g is the identity of G, then g fixes all elements of ly', so k = 16. Under the action of

Cc(lc) = G these orbits are fused as follows:

f,r:lG-l 
- -/r:1.

A2 - {e1}" : {t,, e2,e1e2} 
- .fz:3,

A3: {e3}" : {"r, ea,esea} + ls:3 and

Aa:{e1,r.}G:N \ (A,UA2UA3) + fq:9,

so this coset gives four classes of G

lce\)l :16x36:576
lCeGr)l :10x36 . 3:192
lCekr)l :16x36 + 3 - r92

lC6@1q)l :16x36 = 9: 64

9:xt:

z1 fixes the elements of ( €3, €4, erez ) so k : 8. The orbits are

Qt : {rr, r,1€2r1} , Qr: {errt, €2r7} , Q, - {""rr, €1€2e3r1} , Q, - {"n*r, e1e2e4r1) ,

Qs: {er€3t1, e2€3rr}, Qo -- {e1eax1, €2€4x1}, Q, - {4eax1, e1e2e3e4r1},
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a

Q* - {"r"teax1, e2e3e4r1}

Under the action of C6(r) : (rr,rr,yz), Qr : A1 and Q2 : A2 are fixed while

Q, U Qo U Q7 becomes Ae and Q5 U Qe U Qs becomes Aa and we obtain f t : l, .fz : l, ,/a : 3

and /i = 3, so this coset gives us four classes of G:

lCe@r)l :8xtz:96
lC6@1x1)l :8xtZ:96

lC6@3r1)l =9x12 -. 3:32
lC6@1qr1)l :8x12 + 3 : 32

Cro(y,) : ( rr, ,n ), so k - 4. Under the action of C6(y1) : \yr,rr,Uz) three of the orbits

are fused into one and we obtain lr : I, and J2: 3, so this coset gives us two more classes of G:

lCefur)l :4 x la : 72

lCekrar)l :+x18 -- 3: 24

'g:12

Here we have C7,,,(22) : ( "r, "r, etea), so,k:8. Under the action of C6(x2) : \'r,'r,yr)

we obtain ft : l, fz:3 fs: I and /4 : 3, so we obtain four more classes of G:

lce@r)l:Sx12: e6

lC6@1x2)l :8 x 12 : 3: 32

lC6@3x2)l :8x12 = 96

9=at:
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a

lC6@1qx2)l :Sx12 + 3: 32

I : Uz'.

CN(g) : ( "r, ", ), so k:4. Under the actiorof C6(g) : (Ar,rr,z1) we obtain ,fi : 1 and

.fz : 3 and we obtain another two classes of G:

lCefur)l :4 x 18 : 72

lCekryr)l =4x18 + 3:24

Here we have C,r,'(g) : ( "r"r, ese+1, hence k = 4. Under the action of Cc(g) : (xt,rz,l

we obtain fi:1, fz:l f":1and fq:l and so there are four more classes of G:

lCe@r)l:4x4 - 16

lC6@1q)l: 16

lC6@sq)l: 16

lC6@14r3)l: 16

We have CN(g) = {ho}, therefore k : 1, hence fi : L We thus gained one class

lce(v.)l :lcc(vs)l : e

'9:tat"

9:xs:

a 9:As:

CN(g)

fz=l
: ( 

"r"n ), 
so ,t : 2. Under the action of C6(g)

We have obtained another two classes of G:
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lCe@r)l :2x0 = 12

lC6@3u1)l :2x0: 12

'9:wz

CN(g) : ( "r", ) and so k = 2. Under the action of Cc(g)

lz : I and so obtain the last two classes of G:

\rr,yr) we get .fi : I and

lCe@r)l :2x6 : 12

lC6@3u1)l :2x6: L2

The conjugacy classes of G are given below and h; denotes the number of elements in a conjugacy

class.

class 1 €1 €3 €tes I1 eta t €zr t e1€3I1 Ut esat X2 €trz €sr2

h1 1 .J 3 I 6 6 18 18 8 24 6 18 6

ce@) b/b r92 r92 64 96 96 32 32 72 24 96 32 96

Table 3.3.1 : The conjugacy table of 2a : Sz x Se

class €1e3I2 az eraz I3 e tts e3r3 e1€3I3 Us W1 ezwt 'W2 €twz

h; 18 8 24 36 36 36 36 64 48 48 48 48

ce@) 32 72 24 16 16 16 16 9 t2 t2 I2 t2

Table 3.3.1 : The conjugacy table of 2a : St x S3(continued)

We proceed to calculate the Fischer matrices. From the action of G on lrr(/{) we obtain the same

number of orbits as when G acts on N. From each of the four orbits, we determine the inertia groups

11; where i : 1,2,3,4. Then we let H; - H ilN and we obtain the following inertia factors
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Ht : G; H2 : (rt, xz, yz); H3 = (rr, *r, yr) and H4- (rr, xz, )

The character tables of these inertia factors are

class

h;

ce@)

1

1

36

I1

3

t2

I2

3

12

t3

9

4

Ut

2

18

Az

2

18

As

4

9

U1

6

6

U2

6

6

,b,

,b,

,b,

,bo

,lru

,ba

,h,

,b"

,bn

I

2

I

2

4

2

1

2

I

1

2

1

0

0

0

1

-2

I

1

0

-1

2

0

-,

1

0

-1

1

0

1

0

0

0

1

0

1

1

2

I

-1

-2

-1

1

2

1

1

-1

1

2

-)

2

1

-1

1

1

-1

1

-1

1

-1

1

-1

1

1

0

-1

0

0

I

1

0

-1

1

-1

1

-1

0

0

-1

I

-1

Table 3.3.2 : The character table of fI1 - ^93 x Ss

class

h;

ce@)

1

1

1 2

A1

1

t2

A2

3

4

t3

3

4

Uc

2

6

U2

2

6

6t

6,

6s

6o

6,

6u

1

2

1

1

2

1

1

2

1

-1

-2

-1

1

0

-1

1

0

-1

1

0

1

1

0

1

1

-1

1

1

-1

1

1

1

1

1

1

I

Table 3.3.3 : The character table of H2
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and their fusion maps into G are

class

h;

ce@)

i

1

1 2

J'l

3

4

fr2

i
t2

t3

3

4

Ur

2

6

U1

)

6

T1

T2

T3

T4

T5

T6

1

2

1

1

2

I

1

0

-1

I

0

-1

1

2

I

1

-2

1

1

0

I

1

p

1

1

-1

1

1

-1

I

I

1

1

1

1

1

Table 3.3.4 : The character table of H3

class

h;

ce@)

1

1

4

I1

1

4

t2

1

4

A3

1

4

o1

0s

o4

Oo

1

I

1

1

1

1

-1

-1

1

-1

1

1

1

-1

1

1

Table 3.3.5 : The character table of H4
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H2 G

1

X1

X2

r3

Uz

U2

1

fr1

X2

t3

Uz

U2

Table 3.3.6

Hs G

1

I1

X2

A3

ar

U1

1

&l

I2

T3

Ur

U1

H4 G

1

I1

I2

I3

1

I1

I2

t3

Table 3.3.7

Table 3.3.8

To calculate the Fischer matrices we use the relations of Theorem 3.2.5. For every g \t Ng, we

have the Fischer matrix M(g). For each matrix M(g), we index the columns by the orders of the

centralizers of the class representatives of G which comes from I/g and the rows by the orders of the
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centralizers of the class representatives of the inertia factors which fuse to [g] in G. Corresponding

to 15, we let

576 r92 192 64

M(tG):

M(tG):

A4

b4

C4

d4

r92;

0;

0;

192; and so on

36

1,2

72

4

A1

br

C1

dr

A3

b3

C3

d3

A2

b2

C2

d.2

because we obtained four orbits from the action of G on Nl and so we have a 4 x4 matrix. Now by

relation 3.2.5 (i ), o; :1 for each i -- L,2,3,4 and by relation 3.2.5 (3) we have 6r : 3; cr : 3; dt : 9.

By column orthoganality given by relation 3.2.5 (2), we have for example

Manipulating these equations we obtain the matrix

36 + r2lb2l2 * tzlc2l' + +1ar1' :

36 + L2.3.b2 I 12.3.c2 + 4.9d2 =

36 + lz.h.bz * l2.c1.cz I 4.dr.d2 =

36 + tzlhl2 * Dlcalz + 4lhl2 :

576 r92 r92 64

36

L2

T2

4

11
3 -1
33
9-3
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Similarly, we determine the other Fischer matrices. They appear below.

'9:xt

a

'9:xz

9:Ur:

12

t2
M(x1):

4

4

M(Yr):

96 96 32 96

1111
I -1 -1 I

3 3 -1 -1
3 -3 1 -1

72 24

18

6

1

1

1

3

96 32 96 32

t2

4

I2

4

1

I11

1

3

1

3

111

-1 3
M(x2) -

1-3 1
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o

o 9:rz:

. g:y3:

9:Az:

72 24

18 1i
M (ar) :

6 3-1

16 16 16 16

1

I

1

1

1

1

1

1

1

1

1

1

4

4

4

4

1 -1
3M

-1 -1

9

M(vt): I ( )1
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'9:tal:

'9=ttsz

M(w1):

12 t2

(li)6

6

t2 12

6

1 1

11
M(w2):

6

We are now ready to determine the character table G. There are four inertia factors, so the characters

of G fall into four blocks. The characters are calculated from the Fischer matrices and the character

tables of the inertia factors. This is achieved by multiplying rows of the matrix M(g) with sections

of the character tables of the inertia factors fusing to [g].

For g: lc we have

M(t) :

111
13

1

-1
1 -1

3

3

I -3-3 1

3

By multiplying each row of M(I)by the columns in the character tables of the inertiafactors which

correspond with the classes fusing to 16 respectively, we obtain the values of the characters of G on
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the G-classes with representatives 1, er, e3 and e1e3

1

2

1

2

4

,

1

2

1

(

1

2

I

2

4

2

1

2

I

1111

3-13-1

33-1-1

3 -1 3

6-26
3 -1 3

3 -1 3

6-26
3 -1 3

3 3 -1
66 -2
33-1
3 3 -1
66 -2
33-1

)

1

2

1

2

4

2

1

2

1

1

2

1

2

4

2

I

2

1

1

2

1

2

4

2

i
2

1

1

2

I

I

2

I

( )

-1

-2
-1
-1

-2

-1

-1
-2
-1

-1

-2
-1

I

2

1

I

,

1

( )
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(

1

I

I

1

9-3-3

9-3
9-3
9-3
9-3

-3 1

-3 1

-3i
-3 1

1)

We determine the values the characters of G .o.."rponding to the class of G with representative e1

in a similar fashion:

1

2

i
0

0

0

-1

-2
-1

(r 1 1 1)

1)=(r

1

2

1

0

0

0

-1
-2
-1

1

2

1

0

0

0

-1

-2
-1

1

2

1

0

0

0

-1
-2
-l

i
2

1

0

0

0

-1

-2
-1

1

2

1

-1

-2

-1

1

2

1

1

2

1

1

2

1

-t

-1 -1 1

1 -1

2-2 2

-2

I1 1

1

2

1

1

96
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1

0

-1
1

0

-1

1

I

33 11

3

0

o
-.)
3

0

,
-t)

(

3-3 1

3 -1 -1
000
-3 11
3 -1-1
000
-3 11

-3 I -1

-3 1 -1
3 -1 1

3 -1 1

)

I

1

3

3

o_J

,
-d

( 1 )

With this we now also know the values of the characters of G on the G-classes with representatives

11, e1x1, e3Lt and e1egt1.

Continuing this process with the other classes of G, we complete the character table of G
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class

h;

ce@)

7er
13

576 192

€3 ete3

39
192 64

t1

6

96

etr t

6

96

e3z t

18

32

e 1egT1

18

32

Ut etUr

824
72 24

I2

6

96

€txz

18

32

e3r2

6

96

€1€3t2

18

32

Xt

Xz

Xs

Xs

Xs

Xo

Xz

Xa

Xs

1

2

1

2

4

2

1

2

1

11 1

2

1

2

4

2

1

2

1

22
t1
22
4

)

t

2

I

4

2

1

2

1

1

2

1

0

0

0

-1

-2

-1

1

2

1

0

0

0

1

2

1

0

0

0

1

2

I

0

0

0

-1

-,

-1

I 1

-2 -2

-1 1

1

2

1

1

2

i
-1

-2

-i
1

2

1

1

-2

1

1

,
1

1

0

-1

2

0

q

1

0

-1

1

0

-1

2

0

-2

1

0

-1

I

0

-1

2

0

-2

1

0

-1

1

0

-1

2

0

2

I

0

1

Xto

Xtt

Xrz

Xta

XA

Xts

3

6

3

3

6

3

-1

-2

-1

-1

-)

-1

3

6

3

3

6

3

-1

-2

-1

-1

-2

-1

1

2

1

1 1 1

2

I

-1

-2

-1

-2 -2

1 1

-1 1 1

-222
-1 1 1

0

0

0

0

0

0

0

0

0

0

0

0

3

0

-3

3

0

-3

-1

0

1

-1

0

1

3

0

-3

3

0

-3

1

0

1

1

0

1

Xrc

Xrz

Xte

Xrs

Xzo

Xzr

3

6

3

3

6

3

3

6

3

3

6

3

I 1

-2 -2

I 1

1 1

-2 -2

1 1

3

0

-3

3

0

-3

3

0

-3

3

0

-3

1 1

00
1 1

1 1

0

1

0

1

3 I

-3

3

3

-3

3

1

1

1

I

1

I 1 -1

,r-)
1 1 -1

-1

,

-1

1

2

1

-1 -1 1

_r-r,
-1 -1 1

Xzz

Xzs

Xza

Xzs

9

9

9

9

-3

-3

-3

-3

3

3

3

3

1

1

i
I

3

3

-3

-3

-3

-3

3

3

1

1

-1

-1

1

1

1

1

0

0

0

0

0

0

0

0

3

-3

3

-3

-1-31
13 1

-1-31
13-1
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Table 3.3.9 : The character table of 2a : Sz x ,Ss
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class

h;

ce@)

Az etaz

824
72 24

e1e3I3

36

16

esxs

36

16

A3 €tXZ

36 36

16 16

Us

64

9

e3U)t

48

t2

'lr1

48

L2

e tw2

48

t2

?D2

48

t2

Xt

Xz

Xs

Xa

Xs

Xa

Xz

Xs

Xs

1

-1

1

2

a,

2

1

-1

1

I

-1

1

2

-2

2

I

-1

I

1

0

1

00
0

0

-1

0

1

1

0

1

0

0

1

0

1

1

0

-1

0

0

0

-1

0

1

1

0

1

0

0

0

1

0

1

1

-1

1

1

I

1

1

1

1

1

0

1

1

0

I

1

0

1

1

0

-1

1

0

1

1

0

1

1

-1

I

0

0

0

-1

I

-1

1

1

1

0

0

0

1

1

1

Xto

Xtr

Xtz

Xte

Xu

Xts

1

1

1

I

1

1

3

-3

3

3

-3

3

-1

0

1

1

0

-1

I

0

1

1

0

1

i
0

1

1

0

1

1

0

-1

-1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

I

1

1

1

Xto

Xrz

Xta

Xtg

Xzo

Xzt

0

0

0

0

0

0

0

0

0

0

0

0

-1

0

1

1

0

-1

1

0

I

1

0

I

I

0

I

1

0

1

1

0

-1

-1

0

1

0

0

0

0

0

0

1

-1 1

1

-1 1

1

-1 1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

Xzz

Xzs

Xza

Xzs

0

0

0

0

0

0

0

0

1

-1

-1

I

1

1

1

1

1

1

I

1

1

-1

-1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
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Table 3.3.9 : The Character Table of 2a : ,5s x ^93(continued)
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3.4 The character table of a Group of the forrn 2a : S+

Again weletG - N:Gwhere N is anelementaryabelian 2-group of order 16 and G : Sa. The

symmebricgroup Sa is generated by (l 2) and (1 2 3 a). BV identifying (1 2) and (1 2 3 4) with

9r

0100
1000
0010
0001

and 92 :

0100
0010
0001
1000

respectively, we can regard .9n ar the subgroup (gr, gz) of GL4(2) ! So. Then we act the group

(gr, gr) naturallY on 7a(2) = I/'
To determine the conjugacy classes of G we need the conjugacy table of S.r for the cosets otGlX

and for this purpose, we use the character table of G : S+. We may again use the method discussed

in chapter 1, section 1.2. We act N and C6(g) on the cosets /t'g as follows:

9:7:

The identity of G fixes all elements of ly', so k = 16. Under the action of C6(1c) : G on N1,

we obtain

h:1, fz:4, "fe:6, fa=4andfu-1

and so the following classes of G from the coset N

lca(t)l :16 x24 : 384

lCekr)l:16x24 + 4:96
lC6Q1e2)l :16 x24 '- 6 : 64

lC6@ve24)l : 1O x 24 + 4 - 96

lC6(e1e2esee)l : 16 x24 : 384

102
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. se (2A)

Also lCc(g)l : a and we obtain

lC-(g)l: tz

lC6k1s)l :32

lCekrg)l : 16

lC6\lqs)l : 16

lC6k3eas)l :32

lC6(elqeas)l = 32

. s € (3A) :

"fr = 1, .fz= l, fz=Z, fa: L,fs : 1 and tu-2

0

1

0

0

1

0

0

0

00

g-
0

0

1

0

1

0

With the action of g on N we get k : 8 and the action of C6(ry) gives us

0

0

I

0

1

0

0

i
0

0

0

0

0

1

g

This case gives us k:4 and /,:1, for each i :1,2,3, 4. ICG(g)l :3 and we obtain

0

0
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lce?)l : 12

lCeGrg)l: rz

lCekng)l - t2

lC6kleas)l - \2

o se (28)

We have k :4 and

lcc(s)l : 8 and we obtain

lce@)l :32

lCeGrg)l :16

lC6G1%s)l:32

o se (4A)

"fi : 1, fz :2, and /3 - 1

g

0

I

0

0

1

0

0

0

0

0

0

1

0

0

I

0

I

This case gives us k = Zand /, : 1, for each i = l, 2. We have lcc(S)l = 4 and so we obtain

0

0

1

0

0

0

0

1

1

0

0

0

0

1

0

0

c
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lce(g)l : a

lC6k1s)l:8

which gives us the conjugacy table of G

class 1 (2r ) (2,\ (2. ) (2n) (2u) (2u) (2',) (2.) (2n) (2,0)

no. of elements 1 4 6 4 1 T2 12 24 12 t2 24

centralizer 384 96 64 96 384 32 32 16 32 32 16

Table 3.4.1 : The conjugacy table of 2a : Sq

class (3, ) (3, ) (3r) (3n ) (2,, ) (2rr) (2,.) (a, ) (ar)

no. of elements 32 32 32 32 t2 24 t2 48 48

centralizer L2 t2 T2 L2 32 16 32 8 8

Table 3.4.2 : The conjugacy table of 2a : Sn(continued)

We can now calculate the Fischer matrices. From the action of G on Irr(N) we obtain five orbits.

From each of these orbits, we determine the inertia groups Ei where i : 1,2,3,4, 5. Then we obtain

the following inertia factors

H1:Hs H2 H3 .9a and Hq - ((12), (34))

The character tables of these inertia factors are

G
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class

no. of elements

centralizer

I

1

24

(2A)

6

4

(3.4)

3

3

(28)

3

8

(4A)

6

4

,h,

,b,

,h,

,bq

,b,

1

1

2

3

3

1

1

0

1

1

1

I

1

0

0

i
1

2

I

-1

I

1

0

1

I

Table 3.4.3 : The character table of Hr

class

no. of elements

centralizer

I

1

6

(24)

3

2

(37)

2

.)

6,

6z

dz

1

1

2

1

1

0

1

I

1

Table 3.4.4 : The character table of H2

Table 3.4.5 : The character table of Ha

class

no. of elements

centralizer

1

1

4

(24)

1

4

(28)

1

4

Qe)
1

4

o

o

o

o

1

.'

3

4

1

1

1

1

1

1

1

1

I

1

1

1

1

-1

1

1

and their fusion maps into G are
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^9e G

1

2A

3A

1

2A

3A

Table 3.4.6

H4 G

1

2A

2B

2e

1

2,4

2A

2B

Table 3.4.7

Next we use the relations of Theorem 3.2.5. again to calculate the Fischer matrices which are

a 9:lc:

384 96 64 96 384

M(t):

11
42
60
4-2
1 -1

11
-2 -4
06
2-4

-1 1

24 1

0

2

0

1

6

4

6

24
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. se (2A)

. se(3A)

. se(4A)

M(g) -

4

2

,

4

4

4

1

2

2

I

I

1

32 32 16 32 32 16

11li1
-2 0 2-2 0

-2 0-2 2 0

1 -1 1 1 -1
1 -1 -1 -1 I

1 1 -1 -1 -1

L2 12 L2 12

tul(s) =

8

M(g) : 4

8

1111
1 1 -1 -1
i -1 1 -1
I -1 -1 I

32 16 32

11
0-2
11

3

3

3

3

1

2

1

108
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. se(28):

4 (ti)M(g) =
4

We can now determine the character table G. As with the example in section 3.3, we just need

to multiply the rows of the matrix M(.g) with sections of the character tables of the inertia factors

corresponding to g.

There are five inertia factors, so the characters of G fall into five blocks.

The character table of G is as follows:

88
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class

no. of elements

centralizer

1 (2,1 Qz) (2,) (2o)

t4641
384 96 64 96 384

(2u )

I2

32

(2u)

t2

32

(2.,) (2r) (2n) (2,0)

24 t2 L2 24

16 32 32 16

Xt

Xz

Xe

Xs

Xs

1 1 1 1 I

1

2

3

3

11I1
2

3

3

,

3

3

22
3

3

3

3

1 1 1 1 1 I

1 1 1 I 1 I

000000
1 1

1

1 1 1 1

1I 1 1 1

Xo

Xz

Xa

4

4

8

2

2

4

0

0

0

.)
-L

-2

-4

-4

-4

-8

,
.t

0

-2

2

0

0

0

0

2

-2

0

-2

2

0

0

0

0

Xs

Xto

Xrr

Xrz

6

6

6

6

0

0

0

0

,

-2

-2

-2

0

0

0

0

6

6

6

6

2

0

0

2

0

0

-2

0

0

2

0

2

.')

0

0 0

q

2

0

2

-2

2 -2 0

Xte

Xu

Xts

4

4

8

-2

o

-4

0

0

0

2

2

4

-4

-4

-8

2

(,

0

-2

2

0

0

0

0

.)

2

0

20
-20
00

Xrc

Xtz

Xts

Xts

Xzo

1

1

2

3

3

-1

-1

-2

-3

-3

1

I

)

3

3

-1

-1

,

-3

-3

1

1

,

3

3

I 1 1 -1 1 -1

I 1 1 1

0

1

0

i
0000

1 1 I i 1 1

-1 1 1 I 1 1

Table 3.4.8 : The character table of 2a : Sa.
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class

no. of elements

centralizer

(3' ) (3r) (3r) (3n)

32 32 32 32

12 12 12 t2

(2,, ) (2rr)

L2 24

32 16

(2'.)

72

32

(4,

48

8

) $r)
48

8

Xt

Xz

Xs

Xa

Xs

1 1 1

1

-1

0

0

1

I I 1

1 1 1

00 0

00 0

1 I

1

-2

-1

-1

I

1 1

-2 -2

1 I

-1 1

1 1

-1

0

-1

I

1

0

1

I

Xa

Xz

Xs

I 1 -1 -1

11 I 1

i 1 I 1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Xg

Xto

Xtt

Xrz

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

)

-2

-2

2

0

0

0

0

-2

2

2

-2

0

0

0

0

0

0

0

0

Xts

Xts

Xts

1 -1 1 -1

1 1 1 1

1 1 -1 1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Xro

Xn

Xts

Xts

Xzo

I

i
-1

0

0

1 1 1

1

-1

0

0

1 -1

1

0

0

1

0

0

1 1 1

1 -1 1

-r)-,
-1 1 -1

1 1 -1

1 1

-1 1

00
-1 1

1 1

Table 3.4.8 : The character table of 2a : Sa(continued)
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3.5 The Character Table of a Group the forrn 2a : Ss x Ss

LetG = ly':G where N is as defined in the previous two examples and G : Sa x Sa. The action

of G on /y', given by CAYLEY [1], is different from the action in section 3.3, so G i. u different

extension of N by G.

We start to determine the conjugacy classes of G by giving the character table of 53 x 53 again

class

no. of elements

centralizer

TA

1

36

2A

3

t2

2B

3

T2

2C

I
4

3A

2

18

3B

2

18

3C

4

I

6A

6

6

6B

6

6

,b,

,b,

,bz

,bn

,h,

,ha

,b,,

,be

,hn

1

2

1

2

4

2

1

2

1

1

2

I

0

0

0

-1

-,

-1

1

0

-1

2

0

-2

I

0

-1

I

0

-1

0

0

0

-1

0

1

1

2

1

1

-,

I

1

2

1

1

-1

1

)

-2

2

1

-1

1

1

i
1

-1

1

-1

1

1

1

I

0

1

0

0

1

I

0

1

1

1

1

1

0

0

I

1

1

Table 3.5.1 : The character table of ^9s x ,9s

Using the same method as that in the previous sections we determinethe the conjugacy classes of G

by acting ,A/ and Cc(S) on the cosets Iy'g as follows:

' 9: lc.,
All elements of I{ - { (0,0,0,0), (1, 1, 1, 1), (1,0,1,0), (1,0,0, 1), (0, 1, 1,0),

(0, 1,0, 1), (0,0, 1,0), (1, 1, 1,0), (1,0,0,0), (1,0, 1, 1), (0,0,0, 1), (1,1,0,0),

(0, 1,1,1), (1, 1,0,1), (0,0, 1,1), (0,1,0,0) ), are fixed, so k : 16. Under the action of C6(16) =

r12
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G on 1Vlc, we obtain the following blocks:

{(o, o, o, o)},

(1,0,0,0), (1,0, 1, 1), ),

{(1, 1, 1, 1), (1,0, 1,0), (1,0,0, 1), (0, 1, 1,0), (0, 1,0, 1), (0,0, 1,0), (1, 1, 1,0),

{ (0, 0, 0, 1), (1, 1, 0, 0), (0, 1, 1, 1), (1, l, 0, 1), (0, 0, 1, 1), (0, 1, 0, 0)} So we have

ft = l, fz = 9, and /'s :6

and so the following classes of G from the coset ly'

lCa(t)l :16x36 :576

lOe( (t,1,1,1) )l :10x36 + 9: 64

lCa( (0,0,0, 1) )l :10 x 36 + 6 : 96

o se (2A

1000

0010
1100

g

With the action of g on N we get the orbits

(1,0, 1,0), (0,0,1,0), (1,0,0,0)(0,0,0,0),

(0, 1,0, 1), (1, 1, 1, 1), (1, 1,0, 1), (0, 1, 1, 1)

1), (1,0, 1, 1), (o, o, o, 1)(0,0. 1, 1), (1,0,0,

(1, 1,0,0), (0, 1, 1,0), (0, 1,0,0), (1, 1, 1,0)

0011

{

{

{

{

)

)

)

)

so that k:4
and the by the action of Cc(g)

{ (0,0,0,0), (1,0, 1,0), (0,0, 1,0), (1,0,0,0) } is fixed while the other orbits are fused into one,

giving us i - 1, and fz:3. Also lC6(g)l - 12 and we obtain
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lC-(e)l : a8

lca( (1,1,1,1) s)l : 16

o se (28)

1010
1101

9- 0010
0011

This case gives us k:4, h: I and f2 = 3. lCc(g)l : 12 and we obtain

lc-(e)l - a8

l0a( (1,1,1,1) e)l : 16

. se (2C):

0

0

101
100

lVe have k:4, h:1, fz= 1, and fs=2. lCc(o)l = 4 and we obtain

lC-(s)l = 16

lCa( (1,1,1, l)s )l : 10

lce( (1,0, 1,0)g )l : S

o se(3A)

I

g

1011
1100

1110
0011
1011
1100

tt4
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Wehave k:1, and fi -t. lCc(s)l = 1g and weobtain lceb)l = 18

. s e (38) :

1010
0111

0101
0100
1110
i101

1010
1101

0

We have k = L, and /1 : t. lCc(g)l : 0 and we obtain lC6@)l:6

g
r000
1100

We have k:1, and /1 :L. lCcb)l :18 and we obtain lcek)l = 18

. s e (3C) :

We have k : 4, ft : I, and f2:3. lCc(g)l : 9 and we obtain

lcek)l :36

lca( (1, 1, I, l)g )l: t2

o s€(6A

000
0

g

g

1

1

0
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. s e (68) :

0

1

0

0

1

1

1

0

g

0

1

0

1

I

0

0

0

We have k:1, and fi =1. lCc(g)l :0 and weobtain lCek)l:a

We have completed the conjugacy table of G. We show it below

class | (2,) (2r) (2r) (20) (2') (2u) (22) (2.) (2n)

ce@) 576 64 96 48 16 48 16 16168

Table 3.5.2 : The conjugacy table of 2a : Ss x Sr

class (3r ) (3r) (3a ) ( 3a ) (6' ) (6, )

ce@) 18 18 36 L2 6 6

Table 3.5.2 : The conjugacy table of 2a : Ss x S3(continued)

From the action of G on Irr(N) we obtain three orbits. From each of these orbits, we determine the

inertia groups I/; where i : L,2,3,4,5 and hence the following inertia factors

Hr = G, H, anon-cyclicsubgroupof Gof orderfourwhichisgeneratedby

10
01
01

0

0

1

0

1

0

0

1

0

0

0

1

1

0

0

0

and

0

1

0

0

0

0

1

000
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and I13 a non-abelian subgroup of G of order six which is generated by

1111
0011
0110

1001

0001

and
100
110
001

0

0

0

The character tables of these inertia factors are that of G and

Table 3.5.3 : The character table of. H2

class

no. of elements

centralizer

1

1

6

(24)

3

2

(37)

2

3

d,

6z

6,

1

1

2

1

1

0

1

1

1

Table 3.5.4 : The character table of Hz

and their fusion maps into G are

class

no. of elements

centralizer

I

I

4

(24)

1

4

(32)

1

4

(2E_)

1

4

,b,

,h,

,b"

,bn

1

1

I

I

1

1

1

1

I

1

1

-1

1

1

1

1

tt7
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H3 G

1

2A

3A

I

2C

3C

Table 3.5.5

Hz G

1

2A

28

2e

1

2C

2B

2A

Table 3.5.6

We use the relations of Theorem 3.2.5. to calculate the Fischer matrices which are:

o 9:Lc:

576 64 96

36

From the equations

M(I) :

36 + +lal2 + 6lcl2 =

36+36a*36c :

118

i
b

d

1

d

c

4

6

1

I
6

64 and

0
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weobtaino : 1 andc : -2. Thenfrom

36 + 4b- r2d :
36+366+36d:

and

weget b - -3 andc = 2

By using the appropriate relations, the other Fischer matrices are determined

. se(2A):

16

0

0

48

M(g) =
L2

4

11
3 -1

. se (28):

48 16

M(g) =
t2

4 3

11
1
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. se(2C):

o se (3A)

ose(38)

o se (2C)

4

M(g) - 4

2

11
1 -1
20

18

16168

1

1

2

tul(s): 18 (

(

1

18

Ivl (s) = 18 1

36 t2

I 11
3-1

M(g) -

)

3

r20
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. se(6A)

. se(68)

6

M(g): u (, )

6

M(g): 6 ( 1 )

To determine the character table of G, *" just need to multiply the rows of the matrix M(g) with

sections of the character tables of the inertia factors corresponding to g. The characters of G futt

into three blocks and are shown in the following table.

t2t
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class

ce@)

1 (2')

576 64

(2r)

96

(2s) (2n)

48 16

(2u) (2e)

48 16

(22) (2.) (2s)

16168

Xt

Xz

Xs

X+

Xs

Xa

Xt

Xa

Xs

I

1

1

1

)

2

2

2

4

1 1

1 1

1 1

11
22
2

2

2

4

2

2

2

4

1 1

1

-i
-1

2

0

0

-2

0

I

I

I

2

0

0

-2

0

1 1

-1

-1

1

0

2

-,

0

0

-1

-1

1

0

2

-,

0

0

1 1 1

1 1 1

I 1 1

1 1 1

000
0

0

0

0

0

0

0

0

0

0

0

0

Xro

Xrt

Xtz

Xtz

9

9

I
9

1

1

1

1

-3

-3

-3

-3

3 I

-3 1

3 1

-3 1

3

3

-3

-3

1

1

1

1

1 1 1

1 1 1

11 1

1 1 1

Xv

Xts

Xrc

6 -2

a,

-4

2

2

4

6

L2

00
0

0

0

0

0

0

0

0

0

0

)
()

0

-2

2

0

0

0

0

Table 3.5.7 : The character table of 2a : Ss x Ss'
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class

ce@)

(3' )

18

(3r)

18

3a)

36 t2

()33( (6, )

6

(6r)

6

Xr

Xz

Xs

Xq

Xs

Xa

Xz

Xa

Xs

1

1

1

1

2

I

1

2

-2

1

1

I

1

i
2

2

i
-,

1

t

1

1

1

1

I

1

1

1

1

1

1

1

I

1

1

1

1

1

1

1

1

0

0

1

0

1

-1

-1

I

0

-1

1

0

0

Xto

Xtt

Xrz

Xts

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Xrq

Xrs

Xrc

0

0

0

0

0

0

3-1
-1

1

3

-3

0

0

0

0

0

0

Table 3.5.7 : The character table of 2a : Sz x S3(continued)

For the completion of the character table of G most of the calculations were done by CAYLEY[I]
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Summary

The work done in this mini thesis deals mainly with different methods of calculating character tables

of split extensions of finite groups. Three of the six character tables that are calculated are done

with the use of Fischer matrices. In this work the method of Fischer is applied on groups of the

form N.G where N is an elementary abelian group. In fact, only one of the six groups of which the

character tables are calculated, is not of this form and so Fischer matrices could easily have been

used to calculate five of the character tables. The aim of the work done here however is to exhibit a

variety of methods to calculate the character tables of split extensions.

In Chapter one a review of basic definitions and results on group extensions and a description of a

method for finding the conjugacy tables of group extensions is given. An example on the application

of this method is also given. Chapter two deals with basic concepts and results on representa- tion

and character theory as well as the application of some of these results in calculating the character

tables of some group extensions. In Chapter three we discuss Fischer matrices and how it is used to

calculate the character tables of group extensions of the form I{.G where N is an elementary abelian

group.
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