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Abstract

Trial-and-error is often used for developing new deep learning models. There

is no systematic procedure for improving existing models for predicting irreg-

ular sequential time-series. This research developed a systematic framework

to improve state-of-the-art deep learning models for financial time-series pre-

diction. The framework was used to create an enhanced model. A design sci-

ence research methodology was used to design this framework with customised

multidimensional evaluation criteria and metrics. The model was applied to

predict currency exchange rates more accurately than existing state-of-the-art

models found in the literature. The main contribution of this work is a frame-

work that provides a procedure for improving deep learning models. As a proof

of its usefulness, the framework was applied to develop an improved model.
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Chapter 1

Introduction

1.1 Background and introduction

When one set of technology is replaced by a new set in a relatively short pe-

riod, it is considered to be a technological revolution [123]. Steam-powered en-

gines influenced the development of the first industrial revolution, the use of

electricity in mass manufacturing as well as automation pioneered the second

industrial revolution, the third industrial revolution was driven by computer-

isation and the inter-connectivity of various technological devices. The fourth

industrial revolution (4IR) will amalgamate modern physical spaces with cy-

berspace. It is characterised by smaller, cheaper and exponentially more pow-

erful devices [118, p. 7]. According to Lee et al. [77], this revolution will impact

the global society by its improved connectivity enabled by fifth-generation (5G)

mobile technology, the abundance of data characterised by big data, automa-

tion, intelligent agents, robotics, artificial intelligence (AI), cybersecurity, hyper

automation, edge computing, quantum computing, the Internet of things (IoT),

nanotechnology, biotechnology, blockchain, vitality sensors, three dimensional
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Introduction 2

(3D) printing, augmented reality and virtual reality as shown in Figure 1.1.

Figure 1.1: Some of the major 4IR components that influenced the growth of
AI [118]

Big data is considered as the liquid capital of this revolution and AI, the golden

commodity for manipulating, analysing, modelling and forecasting these mas-

sive datasets [77]. The growth of data is phenomenal with more than 2.5

exabytes of data being created per day [52]. Hence, data “lakes” are cre-

ated from real time interconnected portable digital systems, processes, gad-

gets and sensors such as our mobile phones, social media [13], location-based

services, security cameras, financial transactions, news feeds and weather sys-

tems [16]. This poses several problems such as the storage of data, the security

of the data based on secure encryption methods and the efficient analysis of the

data [11, 16]. It is important to find ways to capitalise on this deluge of data to

make informed decisions to improve and secure the global community [67].

Deep learning models are currently the state-of-the-art in machine learning.
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These models have been successful in learning patterns and trends in mas-

sive datasets in a variety of domains. These models can carry out accurate

prediction, ranging from mimicking human cognition, to predicting complex

sequences such as sentences, domestic and industrial water/electricity usage.

Deep learning models take the form of deep multi-layered neural networks,

where each layer can consist of one or more algorithms such as a: gated re-

current unit (GRU), long short-term memory (LSTM) [58], bidirectional mech-

anism (Bi) and attention mechanism (Att). There is great flexibility in the ar-

chitecture [103], i.e. the design and arrangement of layers, in any given deep

learning model, in addition to a range of hyper-parameters that can be opti-

mized [8, 10, 22, 41].

1.2 Problem statement

A review of deep learning literature revealed that a process of trial and error

is used when designing the architecture of deep learning models [29]. At most,

various rules of thumb and guidelines for best practices may be applied, but

the overall process used to arrive at the design of each deep learning model is

ultimately one of trial and error [5, 94]. In fact, in the majority of deep learning

research, a discussion of the process used to arrive at the final model design is

usually omitted, and focus on the final model’s performance, where good result

is taken to be a sufficient justification for the design of the proposed model.

There is therefore currently no known process of systematically arriving at a

deep learning model that provides improved predictive performance as com-

pared to contemporary state-of-the-art models in a given domain [113].

Given that the architecture of a deep learning model directly determines the

predictive success of the model, there is need for a systematic process to ar-
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rive at an effective deep learning model. Accordingly, the main focus of this

research is to propose, develop and evaluate a framework that can provide a

systematic approach to design and enhance deep learning models, as compared

to the state-of-the-art models, in a given domain. The key idea underlying the

proposed framework is to apply a systematic literature review (SLR) process

to first identify the best deep learning models proposed in the literature in a

given domain and then systematically combine and refine on the best elements

of these models to arrive at an enhanced model that provides improved perfor-

mance.

A systematic framework of this kind should help to provide a design process

that is repeatable, explainable and straightforward [107]. Repeatability refers

to the extent to which a process and its corresponding results can be success-

fully repeated. Explainability is the opposite of trial and error, and refers to

the ability to clearly describe how the results of a process were arrived at. Fi-

nally, straightforwardness refers to the simplicity to implement it in a given

domain [94].

One of the main challenges in deep learning research is to search through large

numbers of research papers, that are published on a regular basis, to uncover

and identify studies of importance and disregard irrelevant studies. A formal

process by which to carry out this task is lacking.

Another significant challenge in deep learning research is a lack of standardi-

sation of methods of evaluating models. There are three main criteria to eval-

uate models [107], namely: efficacy, consistency and efficiency. Efficacy refers

to how successful a model is at predicting the target variable of a test dataset.

Consistency is a measure of the robustness of a model to deal with unseen data.

Efficiency refers to the time taken to train a model in relation to its complexity.
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Introduction 5

In general, virtually all research studies evaluate model efficacy, and some—

but not all—studies evaluate model consistency. Model consistency is usually

evaluated by applying one or more models under consideration to an unseen

dataset, which is very often an unseen portion of the same dataset from which

the training set was extracted. Where more than one model is used, there is

no metric that can quantify the consistency of models in order to be able to

objectively compare them. Efficiency is a criterion that is often entirely over-

looked, and when it is considered, it is usually done by means of timing analy-

sis without considering model complexity. The proposed systematic framework

additionally aims to provide standardized methods of evaluating models in a

given domain.

A category of data which has proven to be particularly challenging to predict

is discrete irregular sequential data. A discrete irregular sequential dataset is

defined as a dataset which is characterised by volatile patterns. Examples of

such datasets include foreign exchange rate data, financial fraud data, stock

price data, epidemiological and disease propagation data and weather fore-

casting [98]. An illustration of a discrete irregular sequential dataset can be

seen in Figure 1.2, which is a graph of the value of the United States dollar

(USD) versus the Pound sterling (GBP) from 1900 to 2015. The sharp peaks

and troughs are circled in yellow. Foreign exchange data has proven to be diffi-

cult to predict as a result of its highly volatile nature. Comparatively speaking,

other irregular sequential datasets such as weather, electricity and water us-

age. largely some consistent, seasonal and/or repeatable patterns with lower

overall volatility, all of which help provide a regularity to these sequences that

makes forecasting more feasible. In contrast, currency exchange prices are

highly volatile and irregular. The currency exchange price of a given currency

pair is dependent on numerous complex factors including the political, social

and economic climate of one or more countries at any given instant, all of which

http://etd.uwc.ac.za/



Introduction 6

can change rapidly from moment to moment [103].

Figure 1.2: USD versus GBP price from 1910–2015 showing high volatility and dis-
crete irregular sequential patterns (circled in yellow) [132].

The main outcome of this research is a systematic framework that can be used

to produce an enhanced deep learning model based on current state-of-the-art

deep learning studies. As newer studies emerge, the proposed framework will

continue to remain relevant to produce enhanced models.

In summary, this thesis proposes a systematic framework that can be used

to arrive at an enhanced deep learning model in a given domain, based on

state-of-the-art deep learning models in that domain. The design of the frame-

work is described in detail. In order to clearly demonstrate the potential of

the framework, this thesis describes an application of the framework to the

domain of forex price prediction to arrive at an enhanced forex price prediction

deep learning model, as compared to state-of-the-art models which were found

using a systematic literature review process.
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Although it is customary in a thesis for the literature to be reviewed early

in the thesis, in this thesis—since a systematic literature review process forms

part of the proposed framework—-the literature is reviewed when the proposed

framework is discussed in Chapter 4.

1.3 Aim of the research

The aim of the study was to develop a novel framework to enhance deep learn-

ing models for time-series prediction from existing state-of-the-art models and

demonstrate that it works in a given context.

1.4 Research questions

The main question is: How should deep learning models be developed in order

to improve on existing state-of-the-art models when predicting discrete irregular

sequential datasets? This question can be expanded into the following sub-

questions:

1. How should existing state-of-the-art deep learning approaches and rel-

evant existing datasets in a given domain be effectively identified and

selected?

2. How should the state-of-the-art deep learning approaches identified be

systematically combined and improved to arrive at a deep learning model

with enhanced performance?

3. How should the performance of deep learning models be evaluated when

applied to such datasets?

1.5 Research objectives

To address the research questions:
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1. A systematic literature review process was used to identify well-known

deep learning models and datasets in a given domain and their respective

performance and methodological challenges.

2. A framework to systematically improve on existing models in order to

arrive at an enhanced deep learning model was developed.

3. The developed framework was applied to the field of forex price predic-

tion in order to demonstrate the framework’s potential to arrive at an

enhanced deep learning model. To achieve this, experiments were carried

out to compare the enhanced model with the identified state-of-the-art

models.

1.6 Research methodology

It was found that design science research (DSR) methodology was an appro-

priate methodology to use for the research [140]. The methods included a SLR

process combined with the “preferred reporting items for systematic reviews and

meta-analysis” (PRISMA) [13, 104] and for the experiments—grounded the-

ory by Glaser and Strauss [128] contributed towards the identification of deep

learning models as well as discrete irregular sequential datasets. The utilisa-

tion of a hybrid methodological approach facilitated the design, deployement

and evaluation of the SeLFISA framework. A hybrid methodological approach

of this study allowed for the exploration of theoretical concepts as well as the

development of practical artefacts which was compared with state-of-the-art

models. The research methodology was presented in Section 3.2.3.

1.7 Contributions

1. The main contribution of this work is a novel framework which provides

a systematic procedure which researchers can use to systematically im-
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prove on the best deep learning models found in the literature in a given

domain. As a concrete example, this work demonstrates the proposed

framework in action in the challenging field of forex price prediction.

2. The second contribution of this work is a SLR methodology that can be

used to systematically uncover, rank and select research studies of signif-

icance.

3. The third contribution is an enhanced deep learning model arrived at by

applying the developed framework. The enhanced model outperformed

state-of-the-art models in terms of performance, consistency and efficiency.

1.8 Research ethics

The research deals with data and information from academic, commercial, so-

cietal, environmental, state and personal resources. Appropriate digital moral

behaviour and standards of cyber-ethics have been followed in this research

study [65]. The research refrained from any cyber morality issues such as sci-

entific fabrication, distortion or plagiarism, intellectual property infringement,

hacking and posting incorrect/inaccurate information [65]. The University of

the Western Cape Research Committee approved this research. The research

does not qualify to go through the University of the Western Cape Faculty

Board Research and Ethics Committees because it uses secondary data which

does not involve direct connection with humans or animals.

1.9 Thesis outline

The thesis is organized as follows:

Chapter 1: Provided a brief background to the aims of the research, the re-

search questions, objectives, methodology and contribution of the study.
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Chapter 2: Provides background on the tools and techniques used when cre-

ating deep learning models. It discusses methods of preparing datasets, tech-

niques of carrying out prediction, popular deep learning architectures, as well

as delving into a number of deep learning optimization techniques.

Chapter 3: Details the research methodology applied to answer the research

questions.

Chapter 4: Discusses in detail the structure of the proposed framework and

its implementation. The results of the implementation of the framework in-

clude: a systematic literature review on forex price prediction; a series of state-

of-the-art deep learning forex price prediction implementations; an enhanced

forex price prediction deep learning model; and a comprehensive evaluation

and comparison of the enhanced model with state-of-art deep learning models.

Chapter 5: Concludes the thesis by reflecting on the study, evaluating the

findings, listing the contributions achieved, as well as providing directions for

future work.
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Chapter 2

Deep Learning Tools and

Techniques

In this Chapter, core deep learning tools and techniques are presented. The de-

velopment of theoretical and experimental foundational notions for the build-

ing of a deep learning framework for sequential time series prediction requires

the use of these tools and techniques.

2.1 Terms and theories used

The field of artificial intelligence is characterised by often confusing and incon-

sistent terminology and theory. To provide a context for the rest of the the-

sis and avoid misunderstandings, this section will clarify the use of important

terms and theories.

2.1.1 Terms

A list of important terms is provided below:
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Deep Learning Tools and Techniques 12

– Architecture : Refers to the arrangement, structure and configuration

of the internal units of a neural network. Architectures such as the con-

volutional neural network and long short-term memory are influenced

by networks such as feed-forward neural networks, and recurrent neural

networks. An architecture influences algorithm design, while an algo-

rithm influences model design [120].

– Algorithm : A machine learning algorithm is defined as the steps to ex-

ecute, or recipe followed using data [120]. An algorithm is based on an

identified architecture guided by training approaches such as supervised

learning, unsupervised learning, or reinforcement learning [114]. Each

training technique is supported by an internal training algorithm. Ex-

amples of unsupervised learning algorithms trained on unlabeled data

include k-means clustering and association rules. Examples of reinforce-

ment learning algorithms include Q-Learning algorithms [114] a model-

free reinforcement learning algorithm which does not require a model of

the environment and temporal difference algorithms [25, 120].

– Model : A machine or deep learning model is the result of applying a

learning algorithm on a specific dataset. Thus, an algorithm becomes a

model when it is trained or exposed to data, as shown in Equation 2.1.

The goal of machine learning algorithms is to convert a dataset into a

model. As a result, an algorithm can be defined as part of a model, but

not the other way around. Generative models based on unsupervised ma-

chine learning algorithms and discriminative models based on supervised

machine learning algorithms are examples of models [120].

Model = Trainingt(Algorithm+Data), (2.1)

where t is the training time.
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– Framework : A machine or deep-learning framework is an interface,

library, or tool that allows developers to easily build machine learning

models without having to understand the underlying methods [120]. The

Caffe, Microsoft Cognitive Toolkit, and TensorFlow are examples of gen-

eral machine or deep-learning frameworks [120]. An implementation

framework is the connection between efficient optimization algorithms,

architectures, models, performance evaluation techniques and the prob-

lems being solved [66, 147].

– Artefact : Refers to a construct or any by-product of a development pro-

cess. It is an umbrella term that could refer to an architecture, algorithm,

model, or framework [53].

2.1.2 Theories

Grounded theory proposed by Glaser and Strauss is concerned with formulat-

ing hypotheses based on data that have been systematically collected and anal-

ysed. It provides a structured and analytical method for making discoveries by

ensuring that the data gathered is adequate to justify the analysis of research

results [128].

Grounded theory encourages researchers to be creative by applying critical

thinking towards data analysis [64]. Coupling any recommended research

methodology with grounded theory improves the research narrative’s robust-

ness. According to Debnath et al. [34], grounded theory is an ideal instrument

for developing a theoretical foundation for deep-learning research.
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2.2 Dealing with the prediction of sequential time-

series

Artificial intelligence artefacts are currently being used for a wide range of

real-world applications such as energy planning and smart grid management,

sensor network monitoring, disease propagation analysis, natural language

processing, image classification, and sentiment analysis [156]. The bulk of

these artefacts rely on real-time sequential data exchange [93]. This results in

large-scale complex data repositories comprising structured, semi-structured,

and unstructured records. These are challenging to analyse using conventional

tools and methodologies [127].

2.2.1 Datasets

Wherever data is acquired and indexed against time, time-series features ap-

pear in the dataset, this creates a series of time-stamped observations, with

each observation xt corresponding to a specific time t. Such sequential data

can be categorised as time-series.

Discrete irregular patterns in any dataset reveal distinct signal patterns

or characteristics, which might take the shape of regular, rhythmic growth

or logarithmic decay. Irregular patterns can be found in many datasets with

complex features such as high dimensionality, outliers, incompleteness and

noise [102, 29].

For example when results are announced in political elections or Coronavirus

disease 2019 (COVID-19) protocols are announced, these can influence finan-

cial stock market prices [30]. Figure 2.1 shows such complex patterns for the

adjusted closing prices of the Malaysia Stock Market from 2 January 2020–

19 January 2021 [56]. The lock-down measures announced in Malaysia had a
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direct effect on the stock market as shown in Figure 2.1. The removal of the

lock-down showed some recovery shocks thereby causing irregular patterns.

Figure 2.1: Irregular sequential patterns of the Malaysia stock market as a result of
COVID-19 infections [56]

Discrete irregular sequential patterns are also prominent in health datasets

such as heart beat rate. Procedures that provide accurate early detection for

possible heart problems could assist health workers, potentially saving many

human lives [96]. Systems that can detect and flag abnormalities allowing

for better diagnosis are very important. This emphasizes the significance of a

link between such datasets and prediction methods [115]. Several researchers

such as the Bengio, Hinton, and LeCun developed data analysis tools with the

capacity to provide future answers on such complex datasets [43, 75].

2.2.2 Prediction

Forecasting is about making future predictions, but this can only be done with

data from the past, emphasizing the relevance of both the dataset and the pre-

diction artefact. The demand for alternative explainable time series forecast-

ing artefacts that can deliver accurate point forecasts is on the rise. Complex

events, such as health, weather, and economic recessions or booms, as well as

natural disasters, are one area of forecasting that have attracted more atten-
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tion and contributed towards the development of such artefacts. Such events

have a tremendous socioeconomic impact, but are difficult to predict [86].

Time series prediction has been used in a variety of domains with varied fore-

cast horizons at different scales, and aggregation levels [89]. Time series fore-

casting utilise a model to predict future values of a target yi,t for a given entity

i at time t. An entity can represent the temperature or the price of financial

stock on the market [79]. The three most common approaches for time series

forecasting are [134]:

1. Naive approach: This is the simplest time series forecasting method,

which uses the most recent observation in a historical sequence of data

to forecast the future value. It lacks the ability to forecast complicated

sequential datasets efficiently and accurately.

2. Statistical approach: Such as auto-regression (AR) is a more complex

method than naive ones [18]. AR forecasts future time series values using

linear statistical methods based on historical sequential data.

3. Machine or deep learning approaches: are the most advanced time

series forecasting methods. They go beyond linearity by being able to fore-

cast several time points using regression and classification approaches

based on machine learning. Machine learning has become a significant

tool for time series forecasting and modelling due to the variety of time-

series challenges and rising data availability and computing power [79,

89]. This method was discussed in greater depth in Section 3.2.3.

Feature and structure-based similarity measurement and visualisation tech-

niques provide capabilities to distinguish between different sets of such se-

quential time-series datasets [116]. Examples of such techniques include VizTree,

created to assist visual exploration techniques for examining time series pat-

terns in datasets. It supports data analysis by discovery patterns in data with
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no requirement for prior knowledge. VizTree gives users the capacity to vi-

sually inspect data, it also offers creative interactive techniques for finding

unexpected discrete patterns and anomalies in a dataset [80].

Another technique for visualizing time-series data is the use of spiral charts.

It facilitates the detection of underlying data patterns for the analysis of chal-

lenging time series data and works well with massive data sets. Spiral charts

generate graphs that reveal the underlying patterns in time series data, mak-

ing them useful for making predictions about a variety of phenomena, includ-

ing climatic changes and financial trends. Additionally, this offers a graphical

comparison and summary reading method designed to help people’s natural

ability to find deep hidden patterns in datasets [87]. Calendar-based visual-

ization is another technique for presenting meaningful time series graphically.

It provides the ability to unpack temporal variables at different resolutions to

reveal hidden patterns. Linear algebra is used to restructure the data, which is

subsequently shown as calendar patterns, heatmaps and layouts for deciding

the time series prediction approach [138].

Another technique for visualizing time series data that uses time boxes to rep-

resent visual queries is called TimeSearcher. To assist the human eye in data

visualization, it offers anomaly detection. But in contrast, it is limited when

processing substantially large sized data sets due to constrained graphical dis-

play space which makes it essentially unreadable [57].

Datasets characterised by a high level of irregularities pose prediction chal-

lenges and opportunities [125]. In order to address such challenges, a number

of forecasting methods and solutions have been explored, proposed and applied

in the context of discrete irregular time-series forecasting. Researchers have

specific objectives when studying time-series datasets. Some are interested in
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understanding the behaviour of the data, others are aligned towards forecast-

ing future values or optimizing systems [49, 155].

Figure 2.2: ANN—perceptron versus biological—neuron [45]

Traditional statistical sequential forecasting approaches can handle time-series.

Technical statistical prediction methods that have been applied include au-

toregressive integrated moving average (ARIMA) or the exponential smoothing

method by Box and Jenkins [18]. Predicting ft from f1, f2, . . . , fn, is given by

Equation 2.2:

ft = β0 +
n∑

t=1

(βtft−1 + ϵt), (2.2)

where t is the time and f1, f2, . . . , fn is the stationary time-series, ϵ1, ϵ2, . . . , ϵn is

the residual and β0, β1, . . . , βn are the model coefficients.

However, statistical linear auto-regressive models are known to be weak when

considering non-linear or complex environments [18]. This makes them unattrac-

tive for predicting such data. The biology of the brain served as inspiration for

various artificial intelligence techniques [43]. There are few effective method-

ologies that enhance time-series forecasting performance in terms of efficiency,

accuracy, and reliability due to the complexity of time-series analysis and fore-
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casting [82]. Figure 2.2 shows a biological neuron on the left modeled by an

artificial neural network (ANN)—perceptron on the right by McCulloch and

Pitts in 1943 [45].

An ANN can simulate the computational function of neurons within the human

nervous system. ANNs allow non-linearity by means of models designed with

non-linear activation functions [71]. Machine learning allows a machine to

learn or extract patterns from data without human intervention [32]. Known

machine learning driven models that have been applied for sequential time-

series modelling include a multi-layer perceptron, decision trees, support vec-

tor machines, linear regression and Bayesian networks [31, 106]. Modern mod-

els have demonstrated significant accuracy improvement over traditional lin-

ear statistical models [114]. However, they face a wide range of challenges such

as:

1. inefficiency when predicting highly nonlinear patterns [99],

2. they can not accurately analyse or predict increasingly sophisticated mod-

ern complex data [30],

3. having repeatability and reproducibility issues since their designs have

been created through trial and error [153] and,

4. are not able to match evolving hardware infrastructure such as graphical

processing units (GPUs), digital signal processors, and field-programmable

gate arrays [81].

2.2.3 Architectures and algorithms

Standard machine learning algorithms are constructed with shallow architec-

ture, which has performance limits [75] and thus can not keep up with the
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exponential increase in data complexity. Deep learning was developed as a so-

lution for difficult problems based on hierarchical situations [4, 99, 148].

Models generated through deep learning networks have been more accurate

and effective in learning features compared with machine learning models [43].

This is illustrated by the artificial intelligence maturity diagram in Figure 2.3.

The diagram demonstrates three transitions namely (1) threshold logic units—

early 1940s to the mid-1960s, (2) connectionism—early 1980s to mid-1990s

and (3) modern deep learning—mid-2000s to the present. These developments

come with a complexity cost as more variables and parameters are involved [70].

Figure 2.3: History and maturity of neural networks [70]

Deep learning networks have the capacity and potential to solve problems in

areas where primitive machine learning is insufficient even if the field is still

developing [13, 46, 98]. Factors that influenced the development of deep learn-

ing networks are:
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1. big data [119],

2. supercomputers, GPUs, tensor processing unit (TPU), neural processing

unit (NPU) and InfiniBand communication systems [148],

3. huge investment in human capital [122] and

4. the global race for artificial intelligence dominance [60].

Four categories of algorithms that have been applied to prominent deep learn-

ing networks models are:

1. Recurrent Neural Networks (RNNs) favoured by Schmidhuber and

Hochreiter for sequential time-series processing [58], are based on a cyclic

connection which distinguishes them from other feed-forward neural ar-

chitectures. The cyclic connection facilitates updating of the current state

based on the previous state and the current input during sequential learn-

ing [72].

2. Convolutional neural networks (CNNs) are a special form of neural

network (ConvNet) designed by LeCun et al. [15]. CNN imitates human

vision by using several building parts such as convolution layers, pool-

ing layers and fully connected layers. Facial recognition, image process-

ing and virtual, augmented and mixed reality are examples of computer

vision applications that use them. A convolution is a mathematical ap-

proach for combining two functions to create a third function that shows

how the shape of one is affected by the other. ConvNet uses a backprop-

agation learning algorithm to condense a given image into a form that

is easier to analyse without sacrificing crucial internal qualities in order

to produce an accurate forecast. [76]. A dilated architecture of CNNs is

suited for forecasting long historical financial time series as an alterna-

tive to RNNs. Dilated CNNs are faster and easier to implement, and they

outperform linear and recurrent models [17].
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3. Generative adversarial network (GAN) models by Goodfellow et al. [44]

are made up of a generator and a discriminator, both of which are trained

using the adversarial learning concept. Gated recurrent units (GANs)

are used to estimate the potential distribution of real-world data samples

and create new samples from that distribution. The field of computer vi-

sion, image processing, cybersecurity, and voice and language processing

have all benefited from GANs [143]. GANs trained on historical time-

series datasets have lately shown success in tasks previously dominated

by RNNs, such as medication sales forecasting and financial stock price

prediction. This illustration shows how GANs increase the accuracy of

modelling tasks that are dominated by anomaly detection [63].

4. Transformer neural networks provides a sequential design for effi-

ciently resolving long-range dependencies [139]. They are supervised se-

quential learning model, which instead of employing an RNN mechanism—

it intelligently exploits the attention mechanism in a deep feed-forward

network as an alternative of traditional encoding and decoding approaches.

Transformers, unlike RNNs, do not always process data in the same or-

der, the attention mechanism offers context for any place in the input

sequence. This allows them to process a sequence quickly since they fo-

cus on the most critical elements. Transformers have revolutionized the

field of sequential modelling but rely on huge datasets where they can be

trained to learn everything from scratch [68].

Transformers have been shown to be particularly successful for natu-

ral language processing [139]. Bidirectional encoder representations from

transformers (BERT) and generative pre-trained transformer (GPT) have

been trained using large datasets [35]. This makes them appealing in

terms of forecasting long time-series sequences with high prediction ca-

pacity [157].
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Predominant variants for sequential data influenced the development of

RNNs to process dynamical systems with long-term dependencies [50]. When

compared to traditional sequential data modelling techniques, the RNN archi-

tecture provides a stable performance. This makes them a good candidate for

sequential processing [126].

RNNs were developed by Elman (1990) but they suffered from the problems of

exploding and vanishing gradients which led to the development of LSTM by

Hochreiter and Schmidhuber in 1997 [58]. The rectified linear unit (ReLU) ac-

tivation function in LSTM addressed the vanishing gradient problem. Whilst

the backpropagation through time (BPTT) learning algorithm tackled the ex-

ploding gradient problem through gradient clipping. The stochastic gradient

descent with momentum by Sutskever [127] introduced dropout for reducing

overfitting [91].

These developments failed to fully exhaust the optimum strength of RNNs

when solving complex sequential problems [155]. A detailed analysis of some

RNNs for sequential time-series prediction is shared below:

1. Gated recurrent architectures are an improvement of general RNNs

described as a family of gated or cell algorithms. LSTMs or GRUs are

flavours of gated RNNs used for sequential modelling [126] and can mem-

orize useful historical sequential time-series data by forgetting irrelevant

data. A combination of gated RNNs and attention techniques focus the

predictive process onto the most relevant data [155].

(a) LSTM [58] learns long-range dependencies better than conventional

RNNs. The LSTM shown in Figure 2.4 has a gated RNN architecture

equipped with accumulators and gating functions. The introduction

of LSTM architecture was largely influenced by the deficiencies in

the general RNNs such as (1) the exploding and vanishing gradient
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problem, (2) the sensitivity of the network decays over time as new

inputs overwrite the activations of the hidden layer and the network,

and (3) optimization hurdles that plague general RNNs [13].

LSTMs remember information to avoid the long-term dependency

problem [4]. An LSTM architecture can be improved by manipulat-

ing the bias of the forget gate. The anatomy of a LSTM model can be

enhanced to solve time series such as stock exchange data [48].

Figure 2.4: Illustration of LSTM architecture [48], where f is forget gate, i is input
gate, o is the output gate, c is the cell state and y is the output.

LSTMs learn long time-series dependence in sequential forecasting

using gates with memory for remembering past sequential patterns.

This makes them an effective tool for predicting future patterns:

i. Forget gate or front gate is a block equipped with a sigmoid

function that determines what information to throw away as il-
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lustrated in Equation 2.3 [56].

ft = σ(Wf .[ht−1 + xt] + bf ), (2.3)

where ft is a forget gate, Wf is the weight, ht−1 is the hidden cell

at time t− 1, xt is input at the current time stamp t and bf is the

bias.

ii. Input gate consists of a tanh layer. It tells what new information

is going to be stored in the cell state from current input as shown

in Equation 2.4. It has two parts, namely, (1) the input gate

which is another sigmoid layer which fires outputs between 0 and

1 and decides which values we will update and (2) the tanh layer

creates a vector of new candidate values, Ch
t which was used to

update in Equation 2.5 the cell state at time t. An aggregation of

these two layers creates an update to the state.

it = σ(Wf .[ht−1 + xt] + bi), (2.4)

Ch
t = tanh(Wc.[ht−1 + xt] + bc, (2.5)

where it is an input gate, Wx is weight for respective gate x neu-

rons, hit is the output of the previous LSTM block (at timestamp

tt−1), xt is input at current timestamps t and bx is bias of the re-

spective gates x

The next step is to update the old cell state, Ct−1 into the new cell

state Ct as shown in Equation 2.6,

Ct = ft.Ct−1 + it.C
h
t (2.6)
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iii. Output gate is the last gate to determine the next hidden cell

as in Equation 2.7. There is a need to first run a sigmoid layer to

determine what will be output. This is then attenuated between

−1 and 1 using a tanh-layer in Equation 2.8, multiplied by the

output of the sigmoid gate.

ot = σ(Wo.[ht−1 + xt] + bo), (2.7)

ht = ot. tanh(Ct). (2.8)

These extra memory cells or gates in LSTM demand more mem-

ory which increases the computational complexity for sequential

prediction. Developing different flavours of LSTM has led to

better models. LSTM flavours such as: stacked LSTM; bidirec-

tional LSTM; multidimensional LSTM; grid LSTM; frequency-

time LSTM almost similar to grid type; differential RNN and

local-global have been developed [59].

Jozefowicz et al. [68] have optimised GRU architectures which

outperform LSTM architecture for sequential datasets. This is

because the LSTM architecture is ad hoc and uses components

whose purpose is not immediately apparent. GRU tends to out-

perform LSTM in time-series applications analysis not related to

language manipulations [68].

(b) GRU architecture is an improved LSTM that combines forget and

input gates into a single gate called the update gate and a reset gate

[26]. Figure 2.5 shows a GRU structure. In sequential prediction,

LSTMs are outperformed by GRUs [68]. GRU architecture is faster

than LSTM because it uses less network parameters [68].
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Figure 2.5: A GRU architecture [40]

RNNs exist in a variety of variants, some of which include:

(a) Unitary RNNs solve hard tasks involving very long-term dependencies

which cannot be solved using ordinary RNNs. They are more computa-

tional and memory-efficient than gated RNN architectures [78].

(b) Gated orthogonal RNNs hybridise remembering the strength of uni-

tary RNNs and the forget ability of gated RNNs to come up with an ar-

chitecture at modelling long-term sequential dependencies [95].

(c) Clockwork RNNs have a unique approach to tackling long-term depen-

dencies in sequential forecasting. Clockwork RNNs lower the number of

RNN parameters in sequential forecasting and classification which en-

hance performance and accelerates network analysis [73].

(d) Independent RNNs by Li et al. [78] are good at solving gradient vanish-

ing and exploding problems associated with general RNNs.

(e) Quasi-RNNs alternate between convolutional layers and recurrent pool-

ing functions to improve low parallelism. Stacked quasi-RNNs outper-

form stacked LSTMs of the same hidden size in terms of prediction accu-

racy. They are up to 16 times faster at train and test times due to their
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higher parallelism [19]

(f) Skip RNNs are self-optimised models which shorten the effective size

of the computational graph and conduct fewer updates for long-term se-

quences. Skip RNNs can learn to skip state updates making the optimiza-

tion problem simpler [20].

(g) Multi-dimensional RNNs are an important tool for modelling high di-

mensional sequences which cannot be handled by simple RNNs [47].

(h) Fast–slow (FS) RNNs outperform other models when learning long-term

dependencies [95]. This was illustrated when comparing FS-LSTM archi-

tecture with stacked-LSTM and sequential-LSTM architectures, under

the same parametric conditions. FS-LSTM outperformed other models in

learning long-term dependencies [47].

The bidirectional RNNs or LSTM or GRU [117] improve sequential optimi-

sation and increase the amount of input information available to the network.

Bidirectional RNNs split neurons of a regular RNN into two directions during

their deployment—one for positive time direction focused on forwarding states

and the other for negative time direction of backward states. The development

of the Bidirectional RNN was meant to address analysis problems of outputs

that may depend on next elements rather than only the previous sequential

elements. The BiRNN normally contains RNNs which process input informa-

tion based on the generic forward sequential order as well as reverse input

order [155].

The bidirectional mechanism provides RNNs with the ability to detect irreg-

ular elements during training and forecasting. The bidirectional mechanism

captures both the future and past context of the input sequence better than

the LSTM. The forward pass for hidden layers in bidirectional RNNs is the

same as for a unidirectional RNN, except that the input sequence is presented
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in opposite directions compared with the two hidden layers. The output layer

of bidirectional RNNs is not updated until both hidden layers have processed

the entire input sequence. Bidirectional LSTMs show very good results as they

can deal with the context more efficiently than LSTMs [28]. They require the

start and end points of a sequence to predict both the positive and negative

time directions simultaneously. When applying the bidirectional LSTM archi-

tecture in traffic speed prediction it produces exciting results both in terms of

accuracy and robustness [28]. Differential RNNs proved to be the best for se-

quential modelling especially in capturing spatio-temporal patterns and thus

these RNNs are good candidate architectures for sequential prediction [92]

RNNs combined with an attention mechanism in deep learning improve

model performance efficiency, especially for long sequences. The attention

mechanism was proposed to solve long-range dependence problems in sequen-

tial modelling which cannot be solved by bidirectional RNNs of LSTMs [155].

The attention mechanism is good at capturing features that could influence

any situation. It is specific in its approach and has been widely used in natu-

ral language processing (NLP). Sheny et al. [155] applied in several attention

mechanisms with a combination of RNN models. The research observed that

the bi-directional block self-attention network was more accurate and time-

efficient than RNNs, self-attention networks, CNN, bidirectional LSTM and

bidirectional GRU. Combining gated RNNs and the attention improves the pre-

dictive analysis process [155].

Sequential architectures have further influenced the design of some modern

enhanced artefacts such as:

(i) BERT by Devlin et al. [35] is an extension of the transformer architecture.

It is simple and cheap to design because it is focused on transfer learn-
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ing. It demonstrates its robustness when deployed in natural language

processing with large unlabeled datasets [35].

(ii) Capsule networks by Hinton et al. [54]—analyse images in a manner that

approaches the way humans do it. Capsule networks are primarily de-

signed to solve limitations associated with CNNs such as the Picasso

problem when analysing spatial relationships between high-level compo-

nents of an object. However, capsule networks have not been scaled to

larger datasets.

(iii) Temporal convolutional networks by Bai [9] use a convolutional architec-

ture for sequential modelling.

(iv) Dilated recurrent neural networks [23] are more suitable for modelling

very long-term dependencies. It has been used in the design of hybrid

sequential models.

2.3 Optimisation

Having identified a diverse set of architectures, algorithms and models, it is

notable that these technologies present with some common characteristics that

have an impact on their performance. Optimal deep neural network design is

difficult to achieve due to the large number of variables involved [98].

As a result, tuning a deep neural network model to outperform existing per-

formance standards is a process that must take into account a wide range of

criteria such as the selection of input data sets, data preparation processes,

network designs and algorithms [98].

Other factors that influence performance include the type of activation func-

tion [45], loss functions or cost function; optimization methods, a layer and pa-
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rameter counts controlling technique; network memory requirements estima-

tion procedure, weight initialization strategies, understanding learning rates,

application of learning optimisers; computational configuration; epochs con-

trolling technique during training, nature of regularization method and weight

initialization strategy [45]. It is important to implement a hyper-parameter

tuning method or any configuration setting that might affect performance such

as layer size, magnitude, regularization techniques and normalization schemes

for input data [55].

2.3.1 Regularization

Mathew et al. [88] found that designing any deep neural networks is focused

on optimisation of the network structure, avoiding the problem of both over

and under-fitting and by allowing the network to converge using a correct loss

function and selecting proper hyper-parameter, parameters and optimisers.

A good regularization method avoids over-fitting by using a penalisation mech-

anism of weights. A child can learn to recognize a new kind of object or animal

using only a few examples and is then able to generalize that to other circum-

stances. To mimic this learning ability in complex environments, designing an

artefact that can produce consistent and understandable results in different

prediction scenarios would be a game-changer for the previously highlighted

4IR challenges [88].

Regularization techniques address [55] over-fitting and under-fitting issues by

adjusting the gradient update scheme and managing the capacity of the deep

neural network [88], where overfitting and underfitting are avoided by stop-

ping the training at the best network performance point. In the sequential

prediction process, the creation of a separate validation data set will help in

addressing this problem but this is not enough on its own, there is a need to
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couple it with other techniques. Major regularization methods help in reducing

the margin between the training loss and the validation loss of a hyperparame-

ter tuning process and include dropout, drop-connect, Lasso regression penalty

and ridge regression penalty (weight decay) [111].

2.3.2 Activation functions

Activation or suppression functions are important parameters for the perfor-

mance of any neural network. They allow neural networks to learn non-linear

relations between inputs and the desired outputs [45]. They are critical in the

performance of deep neural network models since they capacitate networks

to learn complex relationships. Task performance and training dynamics of a

DNN model depends on the choice and deployment mechanism of activation

functions [45].

Every activation function produces a unique performance result when applied

to the same architectures. Applying different activation functions on to the

same architecture or within different hidden layers and comparing their per-

formance provides a better approach towards the design of optimal prediction

artefacts. However, relying on a single activation parameter when designing

optimal models may not provide state-of-the art performance. It is important

to explore the possibility of applying a multidimensional approach that consid-

ers a variety of parameters but this comes at a cost of complexity with variable

explosion characteristics [111].

Some examples of these activation functions are listed by Nwankpa et al. [100]

include linear activation for linear neural networks, binary step activation for

binary classification tasks, sigmoid for binary classification and attention mod-

els, hyperbolic tanh, rectified linear unit (ReLU) family with many flavours such

as ReLU, leaky ReLU and parametric ReLU (PReLU), exponential linear unit

http://etd.uwc.ac.za/



Deep Learning Tools and Techniques 33

(ELU), scaled exponential linear unit (SELU) for CNNs and RNNs, softplus

and maxout. Neurons get stuck in the upper and lower areas of the sigmoid

and hyperbolic tangent as described by Nwankpa et al. [100]. The introduction

of ReLU activations changed deep neural networks since it was almost impos-

sible to train the networks using other activation functions.

Salehinejad et al. [111] demonstrated how the problem together with the re-

spective input data signal guide the choice of activation function. An activation

function such as tanh and sigmoid, saturate the network neurons faster, which

can result in the gradient vanishing. Furthermore, the tanh activation function

also causes dynamic instability during the gradient update process for differ-

ent weights. ReLU has flexibility in large gradient flows, thus when the weight

matrix grows the neuron may remain inactive during training [100]. The tech-

nique of setting the threshold of an activation value at zero when using the

ReLU activation function, makes it computationally cheap. Experiments by

Agarap [2] cited the dying neurons problems associated with deep neural net-

work models driven by the ReLU activation function during the learning pro-

cess compared to the softmax activation function. They also show that ReLU

also experienced convergence and accuracy challenges during image prediction

processes [28].

2.3.3 Training strategy

The model optimisation process is also affected by the choice of a training

method. Training model is part of solving an optimization problem in deep

learning and involves the selection of proper training algorithms, scheduling

step sizes as well as tuning other hyperparameters in a sensitive manner.

A proper training approach balances the reduction of training complexity—

reduction of training error with an acceleration of algorithm convergence by

picking the correct global minima [111]. Correct learning in deep neural net-
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works produces good generalization behaviour.

2.3.4 Architecture design

To design compact deep neural network models for sequential predictive per-

formance on unstable data with the best accuracy and least computational

demands—it is important to consider algorithms within the internal architec-

tural design. The choice of architecture and network is a major bottleneck

when considering both the performance and energy efficiency of a deep neu-

ral network algorithm. Design inefficiencies are normally caused by existing

ad-hoc designing procedures. A well-designed architecture enables smooth in-

ternal data flow between each layer similar to the data flow neurons in the

human brain. An efficient model has a simple topology with few hidden layers

and parameters but gives a similar or better performance than its deeper and

more complex counterparts [46].

The deeper the network in terms of neurons and hidden layers with internal

weight adjustments, the more the model can reach a convergence point, which

then improves its generalisation. Some researchers adopted an ad-hoc method

of manipulating design properties of each layer of neurons to achieve optimum

performance of a particular model. It is not advisable since it is not an under-

standable procedure or approach [46].

2.3.5 Choice of optimiser function

Selection of a correct learning rate stabilises the training process of any DNN

model by reducing of error of the neural network’s guesses [46] . If the learning

rate is low, the network may diverge instead of converging and can waste re-

sources since the network could converge more slowly. Momentum updaters

such as Nesterov’s momentum, RMSProp, Adam and AdaDelta are critical
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in determining the right choice of the learning rate for an optimisation prob-

lem [44].

The minimal gated unit (MGU) model for sequential learning is a derivative

of the GRU. In the MGU the reset gate and input gate are integrated into one

gate. To improve minimal gated units for sequential data modelling, Takamura

and Yamane [130] introduced an optimised MGU for processing sequential data

in a simpler, faster and more accurate way than LSTM, GRU, and ordinary

MGU. The design principle of this optimised MGU model is based on applying

a Chrono initialiser as the initialization method of MGU [130].

2.4 Summary

Chapter 2 presented a range of deep learning tools and techniques that deal

with the prediction of sequential time series. These tools and techniques are

the primary elements that are considered, utilised and configured in the frame-

work proposed in this thesis to arrive at an enhanced deep learning model in

a given domain. Therefore, the background provided in this chapter serves as

an underpinning for the description of the framework in the next chapter, and

more importantly, for the implementation of the framework to the domain of

currency exchange forecasting in Chapter 4.
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Chapter 3

Research Methodology

In Chapter 2, an overview of a range of deep learning methods and techniques

towards sequential time series prediction was given. In this chapter the theo-

retical perspective, methodology and methods that drive the research are dis-

cussed.

3.1 Research approach

To improve the performance of any deep learning artefact is a process of iter-

ated refinements [30]. Many methodologies and methods for sequential time-

series prediction have been proposed and implemented [131]. The philosophi-

cal stance and theoretical perspective of the researcher inform the methodology

and provide a context for the research process [27].

The research approach illustrated in Figure 3.1 broadly outlines a work plan

to address the following seven questions:

1. What are our research questions?

2. What are our research objectives?
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Figure 3.1: Research approach [27]

3. What epistemology informs the suggested theoretical perspective?

4. What theoretical perspective underpins the preferred methodology?

5. What methodology guides the choice and use of the proposed methods?

6. What are the appropriate methods and how do we plan to use them?

7. What is the end product?

Observing the bottom row of Figure 3.1, it can be seen that the overall research

work plan is divided into three phases, namely, Input, Processing and Output.

The following sub-sections describe these phases.

3.1.1 Input

The start node of the research approach in Figure 3.1 deals with:

1. Research questions—are the foundation of this investigation. The prob-

lem is identified and the specific research questions are developed to ad-
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dress it.

2. Research objectives—are inextricably linked to the research questions.

Properly designed research questions lead to specific, measurable, achiev-

able, relevant and time-bound (SMART) objectives [133].

3.1.2 Processing

This is the most important section of the conceptual research approach with

the following components:

1. Epistemology, according to Crotty [27], epistemology is concerned with

the theory of the nature of knowing. Metaphysics combines epistemology

with ontology. It gives a conceptual foundation for the decision about the

types of knowledge that are feasible, as well as ensuring that they are

both adequate and legitimate. Epistemological beliefs can range from ob-

jectivism to subjectivism. Objectivism asserts that a meaningful reality

exists outside of the mind and can be described by quantifiable attributes

that are unaffected by the observer or subject [27]. Subjectivism on the

other hand, maintains that meaning is imposed by the subject’s mind

without the help of the outside world, that there is no meaning outside

of the mind and that the observer is not independent of the subject. The

objectivist viewpoint provides a theoretical foundation for quantitative

research and researchers are more likely to do quantitative rather than

qualitative study as a result [62]. Some studies feel objectivism and sub-

jectivism are completely contradictory, while others believe they are com-

plementary [38]. This research takes on an objectivist stance and thus

does quantitative research [29].

2. The theoretical perspective is directly influenced by the choice of the

epistemology. The theoretical perspective distinguishes between two ma-

jor research philosophies (1) positivism—often known as scientific and (2)
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interpretivism or anti-positivism.

Positivists use objective analysis to separate the object from the topic of

the research [135]. Positivists concentrate on the facts or what is al-

ready known and disregard anything else, claiming that events should

be isolated from one another and that observations should be repeatable.

According to Gall [39], positivist research is fundamentally the same as

quantitative research.

Interpretivism, on the other hand, or anti-positivism, denies objective re-

ality and maintains that any reality can only be examined through cre-

ations such as awareness, language and shared meanings from the per-

spective of the individuals directly engaged. Interpretive research aims

at comprehending phenomena by the subjective interpretations that ob-

servers attribute to them and it argues that phenomena should be inves-

tigated in their natural setting. As a result, interpretivism concentrates

on the study and scope of meaning [109].

This research study is positivist. This paradigm provides a variety of

methodological options for researchers who use quantitative methodolo-

gies.

3. Methodology—the theoretical approach influences the research method-

ology. A methodology provides a set of guidelines for conducting research.

The methodology best-suited for designing a deep learning framework is

DSR, which focuses on the production of an artefact [140]. This method-

ology was discussed in more depth in Section 3.2.

4. Methods—Every research instrument is intrinsically linked to commit-

ments to specific representations of the world and to understand them.
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This means that a method’s efficiency is largely determined by the epis-

temology’s justification [61]. The term research methods refers to a set of

tools that can be used to collect data. Methods are led by the study goal,

thus they are inextricably linked to the research methodology. Experi-

ments, observations, systematic literature reviews, surveys, interviews

and other research methods are examples of how data can be collected.

Experiments, surveys and some observations are quantitative in charac-

ter, whereas interviews are qualitative in nature. When a method in-

volves dealing with original data, it is referred to as a primary method

and when data was collected by someone else for other reasons, it is called

secondary method.

This study used experiments and a hybrid systematic literature review to

collect data.

3.1.3 Output

The final output of the conceptual methodological pipeline shown in Figure 3.2,

is a deep-learning framework capable of producing enhanced deep-learning

models. Research articles, journal and conference paper publications are con-

sidered as outputs. In conclusion, the output, selected methods, methodology,

theoretical perspective and epistemology are all intertwined.

3.2 Design science research

The DSR methodology illustrated in Figure 3.2 is a research strategy that

comes with a set of standard guidelines to describe and justify the method-

ologies and tools chosen for this research [140]. The chosen methodology has

a robust loop-back function to accommodate changes done at various stages

during the execution cycle. Knowledge creation and contribution is the overall
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Figure 3.2: Outline of DSR methodology [140]

outcome of this methodology illustrated in Figure 3.2. The four phases of DSR

are:

3.2.1 Phase 1—Knowledge flows

In the context of developing a novel framework to enhance deep learning mod-

els for time-series prediction, the study presents a unique contribution to knowl-

edge. The foundation for knowledge generation is provided by the first phase

of DSR shown in Figure 3.3. Design, analysis, reflection and abstraction are

used to fill in the gaps.

3.2.2 Phase 2—Process steps

1. Awareness of the problem—New developments in industry or research

groups, individual experiences, experiments, relevant sources, interdis-

ciplinary discussions, workshops, conferences, seminars and interviews,

can all help raise awareness of the problem. In this scenario, the method
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Figure 3.3: Phase 1 of knowledge flows of the DSR [140]

used, such as the systematic literature review to be discussed as part

of selected methods in Section 3.2.3, really does have an impact on the

awareness phase. This is illustrated in Figure 3.4.

2. Suggestions result in a tentative design. The systematic literature re-

view guides the development of a tentative design. It’s also possible to

incorporate the performance of a prototype based on the proposed design

at the suggestion phase. The research is thrown aside and deemed un-

suitable if the tentative design does not present a solution. This stage is

simply a brainstorming session for new functionality based on a unique

arrangement of current or new parts.

3. Development step may begin when the tentative design of the sugges-

tion phase has been accepted. The tentative design is further examined

and executed during the development step. Depending on the artefacts,

the experimental methods employed and the development process fol-
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Figure 3.4: Illustration of DSR showing Phase 2 of process steps [140]

lowed may differ. Beyond the application of models, the novelty is es-

sentially in the design of a framework as an artefact. Unexpected prob-

lems may arise during the development phase, resulting in various con-

straints, at which time the tentative design is re-evaluated and the pro-

cess is restarted from phase one. It is worth noting that, despite these

potential issues, useful content is being added to the knowledge base.

4. Evaluation follows the development of a solution. During the evalua-

tion step, the artefact is tested against certain multidimensional criteria

that are always implicit and made explicit. Quantitative and qualitative

deviations from the predicted findings are documented, analysed and ex-

plained. These findings either confirm or contradict current literature,

expectations and domain norms in line with the study. If the findings are

not satisfactory, the process is resumed. In general, rather than being

fully abandoned, adjustments are made in light of any new observations

as shown in Figure 3.4 on Page 43.
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5. Conclusion step is the end of the research cycle. The evaluation phase’s

findings are summed together and added to the body of knowledge for

deep learning. These findings are compiled and the knowledge gained is

classified either as a fact that has been learned or as aberrant behavior

that defies explanation and could be the focus of future research. If the

findings were not satisfactory, the method was evaluated and improved in

order to achieve a greater level of accuracy.

3.2.3 Phase 3—Selected methods

Figure 3.5: Illustration of DSR showing Phase 3 of selected methods [140]

In the context of Figure 3.2 in Section 3.1.2, there are a variety of methods that

can be used in research towards knowledge generation. However, the approach

used must be acceptable for the theoretical perspective at hand. The following

are the two main methods employed in this study shown in Figure 3.5 are:
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(a) Method 1—Systematic literature review

In this research, awareness of the problem and suggestion phases of the process

steps in Section 3.2.2 are guided by the SLR. It is a review of clearly formulated

DSR questions that use systematic and explicit methods to identify, select and

critically appraise relevant research, and to collect and analyse data from the

studies that are included in the review. The SLR process is a robust tool that

follows the PRISMA methodology of Abhela et al. [1]. The SLR is deemed to be

the most appropriate method to identify existing datasets, prediction models

and evaluation mechanisms as it guides the development of a tentative design.

This stage focuses on trying to find initial answers to the following questions:

1. Which datasets are sequential in nature with irregular characteristics?

2. Which artefacts in the form of models have been applied elsewhere to anal-

yse such datasets?

3. How were those artefacts evaluated in terms of determining their perfor-

mance?

The chosen SLR methodology for the identification step of the proposed frame-

work demonstrates the breadth and depth of the existing body of knowledge of

deep-learning frameworks, as well as identifying inconsistencies and gaps in

this body of information, as illustrated in Figure 3.6 [150].

This SLR, according to Peter et al. [101], provides a comprehensive, targeted,

dependable, reproducible, and extensive literature overview [6, 104, 137]. The

SLR procedure employed in this study had the following five stages:

Stage 1—Identification of specific keywords to search for irregular-patterned

sequential time-series prediction, as well as identifying appropriate online re-

search database platforms, for example Google Scholar. The identified key-

words are used to search for published accredited peer reviewed journal arti-
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Figure 3.6: Systematic literature review methodology

cles on online research database platforms [104]. The journal article titles are

then used to determine which papers to consider and these are then saved for

later evaluation.

Stage 2—Cleaning of the list of identified journal articles gathered in Stage

1 of the SLR. This stage requires a qualitative assessment of each article’s

suitability based on its abstract. The articles that did not meet the inclusion

criteria were then removed. If additional keywords discovered in the abstracts,

they were added to the original list of keywords and Stage 1 was repeated, in a

grounded theory fashion [128].
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Stage 3—Eligibility of the articles identified in Stage 2. Stage 2’s output is

subjected to a thorough qualitative screening process based on predefined el-

igibility criteria [124]. This stage results in a long list of articles, with those

that did not meet the qualifying criteria being discarded.

Stage 4—Inclusion of the state-of-the-art articles selected based on identi-

fied inclusion criteria. The articles found during this step are then entered

into a database. The entire article is considered at this point. Critical meta-

data, such as the year of publication, is qualitatively recognized and recorded

in fields, each with an appropriate column heading. The articles that are not

included in the database should now be deleted. The output for this stage is a

comma-separated values file with extension ‘.csv’.

Stage 5— An analytical quantitative method was used to examine the database.

Within a Jupyter Notebook environment, data analytic processes were per-

formed utilizing Python libraries such as TensorFlow, Numpy, Keras, SciPy,

Theano and Pandas. The relationship between essential aspects of the records

was mapped across selected fields. During stage 5 the relationship of records

was visualised as a word cloud for better graphical representations. Finally,

the used codes, tools and the database of identified literature was uploaded on

an online platform as open data to allow free access to other researchers.1

(b) Method 2—Experiments

The outputs of the SLR procedure informs the tentative experimental design.

To assist researchers in the future, a novel framework was developed that de-

scribes a process that starts with a review of existing state-of-the-art deep

learning models and datasets for time-series prediction and uses knowledge of

these models to systematically derive an enhanced deep-learning model that
1All the experimental code is given in the Jupyter Notebook files on the GitHub website at:

https://github.com/Dandajena/SDA/.
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can predict discrete irregular sequential patterns more effectively. The re-

search utilized DSR through experimental methods to design the framework.

Deep-learning workloads require an intensive computing environment. Com-

plex deep learning modelling cannot be done by researchers using simple com-

putational resources such as laptop or desktop computers. This is because time

is needed for iterations, specifically, time to train with multiple specifications

in the form of hyper-parameters and general parameters. Hence, to accom-

modate complex permutations, experiments utilized scalable hybrid high-end

computational processing environments provided by the South African Cen-

tre for High-Performance Computing (CHPC). The CHPC resources provided

NVIDIA GeForce MX130 graphical processing units (GPUs) and random ac-

cess memory ranging between 20–210 gigabytes of random access memory, 10

terabytes hard disk drive memory; a CUDA toolkit for GPU deployment; Ana-

conda distribution software with Python and Jupyter Notebook, and the Keras,

TensorFlow, Pandas and other libraries. Detailed experimental settings have

been described [30].

3.2.4 Phase 4—Expected outputs

The DSRM’s final phase in Figure 3.7 is made up of research outputs, which

include the following:

1. Proposal implementation of SLR method to inform research proposal. A

precise plan or blueprint for the proposed research is generated as an out-

put to create a plan for the research. The proposal is the most important

step in the research process and it involves conducting keyword searches

in order to develop a scientifically appropriate study proposal.

2. Tentative design is guided by insights from the SLR, a tentative design

is developed for the proposed artefact.
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Figure 3.7: Illustration of DSR showing Phase 4 of produced outputs [140]

3. Artefact—experiments highlighted in the previous experimental section,

guide the development of a novel framework to enhance models for pre-

dicting discrete irregular sequential patterns as the end product of the

research.

4. Performance measures specific metrics were applied to evaluate the

implemented artefacts. These include mean absolute error (MAE), mean

squared error (MSE) and the coefficient of determination—R-squared R2,

the ratio of the total number of parameters and modelling duration. The

stability, explainability and repeatability are some of qualitative criteria

evaluated using visualisation, analysis and the expertise of human ex-

perts.

5. Results are recorded, published and shared using online platforms such

as Github, conference papers and journal publications.
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3.3 Summary

This section explained the DSR methodology to design the framework for en-

hancing and upgrading the leading deep learning models. The implementation

of the designed framework and the recording of findings are discussed in Chap-

ter 4.
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Framework Design,

Implementation and Results

The purpose of Chapter 4 is to create and execute a novel framework based on

the research methodology and methods presented in Chapter 3. This chapter

will also demonstrate the effectiveness of the framework through the results.

There is a literature evaluation and examination section that considers specific

arguments as well as the gaps in seminal readings identified by the systematic

literature review.

4.1 SeLFISA framework design

Currently no known procedure could be found that can be systematically fol-

lowed to improve existing research in a given domain [83]. In most cases a

trial-and-error approach is being used to develop models with superior perfor-

mance over current state-of-the-art models [154]. There is no comprehensive

approach that encompasses the varying stages of design, implementation and

evaluation. To address this shortcoming a six-step method for improving the

best deep learning artifacts for such difficult forecasting was developed.
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Figure 4.1: SeLFISA Framework

The five interrelated process steps of the selected DSR of Chapter 3, provided a

platform for creating and contributing to scientific body of knowledge. The sug-

gested DSR methodology resulted in the Systematic enhanced deep Learn-

ing Framework for Irregular Sequential Analysis (SeLFISA) shown in

Figure 4.1. SeLFISA was used to create an enhanced deep-learning model for

currency exchange prediction. It begins by identifying and implementing the

best deep learning models available in the literature for a given domain, then

combining and refining the best components of these models to create a more

effective model [30].
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4.2 Steps for SeLFISA framework

Six key steps make up the structure of the novel framework. These are:

4.2.1 Step 1—Identification

Figure 4.2: Step 1—Identification of the SeLFISA Framework

This first step in Figure 4.2 involves carrying out a SLR method of DSR to iden-

tify key existing datasets, prediction models, and evaluation mechanisms. This

step also creates a precondition for implementing the SeLFISA framework by

ensuring that it produces repeatable and reliable output. Failure to satisfy the

initial condition will not only affect the entire development process of creating

better models to analyse such datasets but will negatively affect the substanti-

ation of the results. It considers the outcomes of the SLR process. This process

results in a core set of relevant papers [29, 30].

http://etd.uwc.ac.za/



Framework Design, Implementation and Results 54

4.2.2 Applying Step 1 and results

The following is a step-by-step account of the implementation and results of

the first step of the SeLFISA Framework, guided by the design principles out-

lined in Chapter 3. The SLR was used to find relevant research publications

that could provide details on current datasets, prediction models and evalua-

tion processes [29]. The systematic process defined by Step 1 of Identification

addresses questions concerning (1) the nature of time-series sets of data with

discrete irregular sequential characteristics, (2) artefacts in the form of models

that have been applied elsewhere to predict using such datasets and (3) evalu-

ation mechanisms in order to arrive at the first research objective—portraying

past and present approaches using deep learning models. Figure 4.3 on Page 55

summarises the phases of the systematic literature review to provide the re-

sults of the implemented SeLFISA framework and Figure 4.4 on Page 56 shows

a word cloud of widely used architectures. This step’s execution plan is as fol-

lows:

(a) Stage 1—at initially, a total of eight keywords or search phrases were

used to search relevant literature. As shown in Figure 4.3, some of the

subjects presented included a deep-learning framework, sequential mod-

els optimization, irregular patterns, time-series forecasting, parameter, volatile

financial prediction and unusual weather forecasting. Two more new key-

words were uncovered after the Stage 2 cleaning process. As a result,

articles were identified using a total of ten keywords.

The following 11 online research database systems were used in the search

University of the Western Cape Electronic Library, Google Scholar, Cite-

Seerx, GetCITED, Microsoft Academic Research, Bioline International

Directory of Open Access Journals, PLOS ONE, Papers with Code, BioOne,

Science and Technology of Advanced Materials, New Journal of Physics,
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Figure 4.3: Processing the results of the SLR

ScienceDirect and NIPS. During this stage, 412 search results were com-

piled into a complete collection of peer-reviewed literature. The inclu-

sion of an article or document was based on the findings of each online

database platform’s first ten pages. These items were kept for subsequent

processing.

(b) Stage 2—the grounded theory approach [128] was used to identify new

keywords whilst considering the abstracts of 378 articles discovered in

Stage 1. This revealed two more keywords namely sequential learning

and financial signal processing were used as input for Stage 1 to iden-

tify more possible articles. This resulted in the identification of 34 more

articles. However, 226 of the 412 articles were eventually deemed to be

unsuitable for the study and were deleted, 186 articles were kept.
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Figure 4.4: Word cloud illustrating frequently used sequential architectures

(c) Stage 3—the remaining 186 publications were assessed using the fol-

lowing criteria: identified keywords, publication dates from 2016 to the

present, model relevance in terms of complicated datasets, accreditation

and journal quality (i.e., citation index) [124]. Each article’s abstract was

thoroughly read, if it failed to meet eligibility criteria, it was deleted leav-

ing 60 articles.

(d) Stage 4—all 60 articles in the folder were now thoroughly examined and

read. An excel .xlsx database was created to capture a record of each

article that was deemed to be eligible.1 The article’s critical meta-data

was recorded in designated fields such as: journal source web link, jour-

nal name, journal title, authors, pages, timelines (day, month and year),

editor, volume, issue number, city, country, continent, standard number,

day accessed, month accessed, year accessed, data set, data set type, set of
1Accessible at: https://github.com/Dandajena/SDA/
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data sources, dataset summary, research problem, research objective, im-

plementation framework, architectural style properties, baseline models,

best models, methodological approach, evaluation mechanism or criteria,

evaluation metric, result comments, future recommendations and gaps

comment. The tabled data fields were important for the empirical data

analytic operations for visualisation, which would be introduced in Stage

5. In Stage 4 of the procedure, a total of 28 ineligible articles were re-

moved because they did not directly relate to the goal of the literature

review study. The database now had only 32 relevant articles, with the

rest being removed. The .xlsx database file was further cleaned and

converted to a .csv file.1

(e) Stage 5—a program was implemented to analyse the database—the cleaned

.csv result of Stage 4. The analysis was visualized in the form of graphs,

word cloud and graphical representations. Ultimately, the code, tools, and

literature search database were published to GitHub, allowing other in-

vestigators unrestricted access to all experimental study materials and

code. The GitHub website provides free access to the literature study

database. All outputs, schematic diagrams were documented online.2

Finally, sequential datasets, pre-existing deep learning models and evaluation

criteria were selected from 32 scholarly articles to be employed in the next

steps.

4.2.3 Step 2—Exploration, evaluation and selection

This stage, shown in Figure 4.5, begins with a thorough examination of the re-

search articles obtained in Step 1 in order to make a final selection of core rele-
1Accessible at: https://bit.ly/3e9mgHy
2All the experimental code is given in the Jupyter Notebook files on the GitHub website :

https://github.com/Dandajena/SDA/.
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Figure 4.5: Step 2—Exploration, evaluation and selection of the SeLFISA Frame-
work

vant publications from which to extract applicable data, deep-learning models

and assessment procedures. In these significant linked research studies, key

topics highlighted in these publications were examined and appraised. This

was done in order to create an ecosystem that included high-performance com-

puter resources as well as software libraries and tools. Parts where inconsis-

tency and ambiguity may affect future implementation processes and proce-

dures were removed. A selection procedure was initiated, based on the follow-

ing criteria:

1. Datasets—This step entails a thorough quantitative and qualitative anal-

ysis of the information gathered in Step 1. Combining descriptive numer-

ical and graphical tools makes it easier to choose the right datasets and

models. To determine the amount of discrete irregular sequential pat-

terns in datasets, the following is considered while assessing the levels of

irregularity in selected datasets:
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(a) Box and whisker plot—using the inter-quartile range (IQR) outlier

calculation, statistical descriptive analysis of abnormal patterns on

all datasets is performed [97]. This method displays the dataset’s

minimum and maximum values. The box plot depicts the data’s first,

second and third quartiles, namely Q1, Q2, and Q3. The gap be-

tween the minimum and maximum values determines the range of

the dataset. Finally, Equation 4.1 offers an IQR based on the differ-

ence between Q3 and Q1.

IQR = Q3−Q1 (4.1)

Outliers in irregular patterns can easily be detected as those data

points that are either one and a half times IQR below Q1—in Equa-

tion 4.2 or above Q3—in Equation 4.3, i.e.,

below = Q1− (1.5× IQR), (4.2)

above = Q3 + (1.5× IQR). (4.3)

(b) Billauer’s algorithm—is utilized in [149] to validate the outcomes of

the box and whisker plot results, as well as to detect local maxima

and minima. It calculates the degree of irregularity in the original

data environment using a graphical visualization analysis of peaks.

The method is then tweaked to give irregular pattern peak period

detection (IPPD) capabilities, which looks for values that are sur-

rounded by smaller or bigger values for maxima and minima through-

out the y-axis and matching x-axis to find discrete peak values. To

provide the maximum number of discrete peaks, a look-ahead value

for determining the look-ahead distance for a potential peak must be

set as a specific value.
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(c) Further exploratory data analytics—is then conducted to gain in-

sights into how variables in the chosen sequential dataset are con-

nected to one another. This includes data description, data pre-processing,

data crunching, data cleaning and exploratory data analysis.

2. Artefacts or models—after that, candidates are chosen based on their

inherent design, application, context and authenticity. At this point, the

focus must be on current issues related with common, contentious and

contradictory issues raised by various authors. When there is a larger

search space, factors like variable explosion must be carefully considered

throughout the selection process of candidate models. The use of cus-

tomisable clipping mechanisms is a potential solution.

3. Evaluation—deep learning models are chosen from a pool of resilient

candidate models based on their performance reports. Models are chosen

based on three key criteria (1) efficacy, (2) consistency and (3) efficiency.

The efficacy of a model relates to how well it predicts the target variable

on a test dataset. In general, many research articles assess the model’s ef-

ficacy but only a few assess model consistency. Consistency is a measure of

a model’s resilience in terms of its ability to generalize data that was not

seen during training. There is currently no metric that can quantify the

consistency of models in order to compare them objectively as described

in Equation 4.4.

The time it takes to train a model in relation to its complexity is referred

to as efficiency, with a shorter training time and lower complexity being

preferable. Efficiency is a frequently disregarded criterion. When it is

taken into account, it is usually done through timing assessments that

ignore model complexity.

The SeLFISA framework includes a comprehensive examination of the
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models developed as a fundamental element. The first step is to choose

an adequate set of criteria to assess accuracy. Two new measures have

been created to quantify criteria for consistency and efficiency. Analyzing

core research papers to determine a set of domain-specific metrics that

can be used to evaluate model efficacy and consistency, is an important

aspect of this step.

MSE, MAE and R2 are the most often used metrics for regression effi-

cacy. For consistency and efficiency, custom-defined metrics are used. For

consistency it is based on MAE metrics and for efficiency it is based on

model parametric magnitude and overall modelling time. When assess-

ing model consistency, it is recommended that two separate testing sets

be used. The first should be an unseen portion of the same dataset used

for training, i.e. the primary dataset and the second of which is a differ-

ent dataset with the same input and output as the primary dataset, i.e.

the validation dataset. For the metric value of the primary testing set m1

and the validation testing set m2, each model created using the SeLFISA

framework will be assessed with both testing sets to get a coherent effi-

cacy metric value—assuming that there is reasonable variability across

datasets. The SeLFISA model consistency Cs is defined by Equation 4.4

and is a measure to compare the two different metric values m1 and m2.

Cs =
m1 +m2

α|m1 −m2|
(4.4)

where α = 2 averages the metric values m1 and m2. Cs provides the recip-

rocal of the normalized difference of the metrics m1 and m2 across the pri-

mary and validation datasets. The better the consistency Cs of the model

across the two sets, and the higher the corresponding value of Cs gets, the

closer the two metrics are. In general, greater Cs values indicate that the
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model is more effective in predicting values in a series.

The SeLFISA model efficiency Es metric was created to quantify and com-

pare the efficiency of the models under consideration. The goal was to

benchmark models in terms of training time. A model with higher com-

plexity might be regarded more efficient than a model with lower com-

plexity when both models have the same time for training. To account for

this, Es in Equation 4.5 calculates the ratio of a model’s total number of

trainable parameters n to the time it takes to train the model t in sec-

onds; the greater the metric value, the faster a model can train with a

particular amount of learnable parameters.

Es =
n

t
, (4.5)

Given two models with the same number of trainable parameters, the ef-

ficiency Es is directly dependent on the inverse of the training time. If

two models have the same training time and one of the models has twice

as many training parameters as the other, the Es value of the first model

is double that of the second, suggesting that it can train twice as many

parameters in the same amount of time. In general, a higher Es num-

ber suggests improved training efficiency. In other words Es is directly

proportional to n.

4.2.4 Applying Step 2 and results

The following is a step-by-step account of the implementation and results of

the second step of the SeLFISA Framework, guided by the design principles

outlined in Chapter 3.

1. Datasets—following on from the previous phase, 32 papers were found to

be directly applicable to the current implementation in terms of the mod-
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els proposed and the results achieved in these studies, out of a total of 60

publications reviewed [30]. These 32 articles were picked for execution

and, maybe, selective inclusion into the improved model in a later step.

At this point, all of the datasets discovered were gathered into a dataset

bank 1. A hybrid high-end computational processing environment pro-

vided by the CHPC was used as the experimental processing enviroment.

For this application, a total of 16 currency exchange rate datasets ex-

tracted from datasets of the 32 articles were analyzed and compared. Ta-

ble A.1 in Appendix A on Page 134 contains a list of these datasets along

with methods and evaluation metrics. The box and whisker plot and Bil-

lauer’s technique, which emphasizes outliers in a dataset through IQR

calculation as shown in Figure 4.6 on Page 63, guided the process of es-

timating the number of irregular patterns in a dataset. The number of

irregular patterns in a specific sequence is used to calculate the overall

number of outlier patterns.

Figure 4.6: Box plot showing outlier distribution of daily exchange data between the
GB Pound and the US Dollar from 1990 to 2016

Only three datasets contained the required number of irregular sequences.
1Accessible at: https://github.com/Dandajena/SDA/
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Period

Price

Figure 4.7: IPPD visualization analysis of daily exchange data between the GB
Pound and the US Dollar from 1990 to 2016 [23]

The GBP/USD dataset had the most irregular sequences, 639 out of the

6135 daily records. The JPY/USD dataset was then examined, and 24 un-

usual sequences were discovered out of 5000 daily records. The GBP/USD

dataset illustrated in Figure 4.7 was chosen as the primary dataset and

JPY/USD as the validation dataset, respectively. These datasets were

gathered and loaded into a database to be processed further.

2. Models—from the 32 publications reviewed, 12 deep learning models

were discovered. These were used as candidate models—Table 4.1 on

Page 97 contains the specific architecture of each of these models, as well

as the scholars who proposed the architecture [112, 59].

The models employ various combinations shown in the table of: GRU,

LSTM unit, one-dimensional convolutional layer (Conv1D), one-dimensional

transpose of a convolutional layer (Conv1DTranspose), fully connected

neural network layer (Dense), Bi, global attention mechanism (Attention),

self-attention mechanisms (SeqSelfAttention), drop out layer (Dropout), as

well as the Keras TimeDistributed (TimeDist) layer which applies a given

convolutional operation separately during each time step of a feature vec-
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tor, [8, 41, 22] and the Keras RepeatVector layer which transforms a

feature vector to a given desired output shape. Note that the following

notation applies in the table [10, 106, 144]:

(a) Layer(q) specifies that q nodes were used in a given Layer.

(b) Layer1(q1) + Layer2(q2) + . . . + LayerN(qN ) implies a model with se-

quentially connected layers starting with Layer1, followed by Layer2

and so on, and terminating with LayerN, noting from the previous

point that the number of nodes in these layers is q1, q2, . . . , qN .

3. Evaluation—three generally used model efficacy metrics, MAE, MSE,

and the R2 (coefficient of determination), were used together with the

SeLFISA model consistency and efficiency criteria defined in Equation 4.5.

Description of most relevant SLR papers

This section reviews the most relevant SLR papers of the 32 seminal papers

identified in Step 2 of the SeLFISA framework. These papers were selected

because of their specific findings, methodologies, procedures and tools obtained

by different authors in predicting sequential time series datasets. These papers

all gave state-of-the-art results with regard to accuracy and efficiency but all

did not conform to explainability, reproducibility and simplicity criteria.

Determining the impact of window length on time series forecasting

using deep learning

Azlan et al. [8] investigated the effects of window length or time lags or fore-

casting horizon on financial stock market price prediction using a simple LSTM

model. The research used the Standard and Poor’s 500 (S&P 500) daily clos-

ing price stock market dataset from Yahoo Finance with 4171 observations. By

executing three experiments with distinct windows—25, 50, and 100 days—on
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the same univariate dataset, the studies were conducted in a desktop comput-

ing environment.

Accuracy of the model was used as a criterion for measuring model perfor-

mance, and findings showed that a 25-day window length provided 81.25% per-

formance accuracy, a 50-day window length had 62.5%, and a 100-day window

length produced 100%. It is significant to note that this work introduced a win-

dow period as a hyper-parameter for sequential prediction model improvement.

This study by Azlan et al. [8] showed that LSTM-based models offer good per-

formance accuracy in financial forecasting tasks if the proper window length is

established. To get better results, similar time series models can be employed

and ranked using a wide range of evaluation criteria. This add value towards

establishment of an approach for improving such models by examining their

performance in a multidimensional manner.

Motorway Traffic Flow Prediction using Advanced Deep Learning

In a sequential time series prediction study, Mihaita et al. [90] applied LSTM

based deep learning and other variants to predict the sequential flow of traf-

fic on Sydney’s motorways. The research suggested a framework for creating

a deep learning model for traffic prediction in four steps: network identifi-

cation, data profiling, feature generation, and trial-and-error deep learning

model building. For the experiments, a sequential traffic dataset with 36.34

million data points or observations was used, which required a high speed com-

puter environment (24 Intel cores). CNN, LSTM, and backpropagation neural

networks (BPNN) were used individually or in combination in this investiga-

tion. The models needed between 10 and 15 epochs to converge, and the hyper

parameter tuning procedure was restricted to batch sizes in the range (20; 30;

. . . 100). RMSE, MAE, and symmetric mean absolute percentage error (SMAPE)

metrics were used to evaluate models using prediction accuracy as a criterion.
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The LSTM-based model performed better than other sequential models, al-

though it struggled to predict on smaller datasets accurately. The proposed

methodology by Mihaita et al. (2019) [90] offered a four-step process to direct

the creation of sophisticated deep learning prediction models, as well as the

selection of hyperparameters and assessment measures.

Improved Forecasting of Cryptocurrency Price using Social Signals

Glenski et al. [41] used sequential LSTMs and ARIMA models to look into

ways to improve currency stock price prediction using social signals. The study

used historical cryptocurrency price data (daily high, low, and price at mar-

ket open and close) plus social media data from GitHub and Reddit to antici-

pate prices for three cryptocurrencies: Bitcoin, Ethereum, and Monero. RMSE,

MSPE, MAPE, max absolute percentage error (MaxAPE), and RMSPE metrics

were used to assess accuracy performance of these models. The historical price

alone, the historical price and each social signal, and the historical price and

combinations of each of the social signals were used as a method to train and

evaluate the models.

The LSTM design that performed better than other models was made up of

Dense (1), LSTM Layer (800), and LSTM Layer (400). Hyper-parameter tuning

considered batch sizes (16, 32, and 64); learning rates [0.1, 0.01, 0.001, 0.0001,

and 0.00001]; stopping call-backs with a maximum limit of 20 epochs; and com-

binations of LSTM layers ranging from 10 to 400-dimensional layers followed

by 20 to 800-dimensional layers [41]. The best-performing LSTM model by

Glenski et al. (2019) [41] had a batch size of 16, a learning rate [0.001, 400

and 800 units] for LSTM layers, respectively. The LSTM architecture reduced

computation speed of the model. This work’s methodology focuses on ways to

assess the effectiveness of combining signals from social media into models

that predict the future price of a cryptocurrency. According to this study, the
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complexity of the domain makes it difficult for present models to accurately

predict financial currency price movements. Gated recurrent neural network

models are regarded as good models for sequential tasks, despite the fact that

this study did not adequately explain how the adopted models were chosen.

Incorporating a more finely grained approach and taking into account such

models in extreme scenarios are some of the recommendations of this paper—

both of which could have positive effects if put into practice with a systematic

implementation framework [41].

High-Performance Stock Index Trading: Making Effective Use of a

Deep LSTM Network

The sequential time series prediction study by Chalvatzisa et al. [22] was

aimed at creating a deep LSTM model with high sequential prediction and

good trading performance (buy and hold strategy). In order to predict the price

for the upcoming time period, the deep LSTM model took into account a limited

amount of features and past time steps varying from 11 to 22. The performance

of the proposed model was tested on four major US stock indices, namely the

S&P 500, the DJIA, the NASDAQ and the Russell 2000 (R2000) over the pe-

riod of 8 year. Hyper-parameter tuning was performed using a grid search

algorithm on a desktop computer, 1600 epochs, a rolling window training pro-

cedure, hidden units (32; 64; 128), input sequence length (11; 22; 44), dropout

(0; 50; 70), input sequences of 11–22 time-steps, and 3–128 neurons.

Model accuracy was assessed based on different datasets using accuracy cri-

teria based on mean directional accuracy (MDA), MSE, MAE, MAPE and R2

metrics. The experiments obtained the best MDA = 50.02% on R2000, MAPE =

0.6% on DJIA, MAE = 9.01 on R2000, MSE = 142 on R2000 and R2 = 99.95% on

NASDAQ. The suggested method for effectively using a deep LSTM network by

adjusting various hyperparameters is a technical strategy for model optimiza-
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tion. However, the study was restricted to the gated architecture, attention

mechanisms, and bidirectional mechanisms which was not fully accounted for

by the methodology framework. The study also offered a wide variety of perfor-

mance evaluation indicators to evaluate the models’ accuracy. To offer design

clarity and an explainable framework, it is necessary to broaden performance

evaluation at various stages of implementation [22].

Multimodal deep learning for short-term stock volatility prediction

According to research by Sardelicha and Manandhara [112], a deep multimodal

learning framework that generates a multimodal hierarchical network model

was suggested to predict volatile short-term or daily stock prices of different

industries. The hierarchical model demonstrated the impact of NLP news data

for enhancing the process of forecasting stock movements.

This model was designed using LSTM, bidirectional and attention mechanism

architectures which require more data during training. The attention layer

of the design improved the results by paying attention to important volatile

patterns during training. Its hyper-parameters were tuned using grid search

which included mini-batch SGD, Adam optimizer and eight early stopping epochs

to effectively predict volatility. Prediction performance was measured using

accuracy with MSE, MAE and R2 metrics. Experimental results demonstrated

that the multimodal approach equipped with a global training mechanism out-

performed a baseline econometric generalized autoregressive conditional het-

eroscedasticity (GARCH) model. The best results of the multimodal hierar-

chical network model were: R2 = 0.455, MSE = 1.90E-05 and MAE = 2.82E-

03 [112]. The choice of the adopted models namely a gated recurrent neural

network, bidirectional mechanism and attention mechanism are good exam-

ples of sequential modeling architectures. However, this approach did not ade-

quately address uncertainty in model parameters.
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DSANet: Dual Self-Attention Network for Multivariate Time Series

Forecasting

A study by Huang [59] developed a novel deep learning framework called the

dual self-attention network (DSANet) for volatile multivariate time series pre-

diction on a real-world sequential dataset—a 4 year daily revenue data of five

gas stations. To predict sequential time series patterns, the hybrid DSANet

model architecture combined local temporal convolution, a self-attention mech-

anism, and autoregressive components in a parallel technique. The model

implemented in HPC outperformed the baselines models—with Intel i7-8700

CPU, GTX1060 GPU, 6 cores and 32 GB RAM.

The framework evaluated the performance of the model using accuracy crite-

rion based on relative squared error (RRSE), MAE and empirical correlation

coefficient (CORR). For RRSE and MAE, a smaller value is preferable, whereas

a larger value is preferable for CORR. The GRU, recurrent-skip layer (LSTNet-

S), temporal attention layer (LSTNet-A), temporal pattern attention mechanism

(TPA) and DSANet produced better performance than other nine baseline mod-

els. This performance was demonstrated on an experiment of predicting com-

plex time series datasets at different window lengths and forecasting horizon

ranging from 32, 64, 128 and 3, 6, 12, 24 respectively. DSANet produced the

best results in all cases: at window-horizon pair of 32-3—DSANet had RSSE =

0.781 and MAE = 0.407; at window-horizon pair of 32-6—DSANet had RSSE =

0.771 and MAE = 0.410; at window-horizon pair of 32-12—DSANet had RSSE

= 0.829 and MAE = 0.436; and at window-horizon pair of 32-24—DSANet had

RSSE = 0.927 and MAE = 0.442 [59].
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Forecasting of Jump Arrivals in Stock Prices: New Attention-based

Network Architecture using Limit Order Book Data

For predicting jump arrivals or direction in stock prices across five different

NASDAQ stocks, Makinen et al. [85] proposed a state-of-the-art CNN-LSTM

with attention (CNN-LSTM-A) model. This model architectural design pro-

vided capabilities to adapt and focus its forecasting attention on the most im-

portant features. To validate the performance of the CNN-LSTM-A model,

additional baseline models with the following network architecture were also

deployed on the same time series datasets. Architectural design of all imple-

mented models is as below:

(1) CNN-LSTM-A = [Input+Attention(SeqSelfAtt(32))+Conv1D(32)+Conv1D(MaxP)+

LSTM+(40)+Dense(40)+Dense(1)]

(2) MLP = [input+Dense(40)+Dense(40)+Dense(1)]

(3) CNN = [input+Conv2D(16)+Conv2D(16)+Conv2D(MaxP)+Conv1D(32)+Conv1D(32 filters)+

Conv(MaxP)+Dense(32)+Dense(1)]

(4) deep LSTM = [Input+LSTM(40)+Dense(40)+Dense(1)]

(5) Random classifier = [Input+Classifier]

Performance of these models was evaluated using precision, recall, F1 and Co-

hen’s Kappa (CK) metrics. The CNN-LSTM-A produced highest average F1,

recall and CK scores (F1 = 0.72, Recall = 0.8, CK = 0.62 and Precision = 0.66),

the second best was a deep LSTM (F1 = 0.69, Recall = 0.66, CK = 0.60 and Pre-

cision = 0.73), followed by the CNN (F1 = 0.66, Recall = 0.66, CK = 0.55, and

Precision = 0.66), and MLP (F1 = 0.72, Recall = 0.50, CK = 0.00 and Precision

= 0.24). This study demonstrated how difficult it is to predict the stock price.

By considering experimental procedure of this work it was not clear how they

arrived at the results [85].
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Leveraging Financial News for Stock Trend Prediction with Attention-

Based Recurrent Neural Network

Using sequential financial news titles, Liu [81] developed a deep Attention-

based LSTM (At-LSTM) model to predict the directional movements of the

S&P 500 index and individual company stock prices. The model’s self-attention

mechanism was used to distribute attention on the most relevant words, news,

and days. Gated RNN was used to encode the news text and capture context in-

formation. Reuters news data for 473 S&P 500 listed companies was collected

over a five-year period, and the historical stock price data for each individual

share of the S&P 500 was gathered from Yahoo Finance from 2006 to 2018. Ex-

perimental baseline models included SVM, CNN-LSTM, embedding input and

CNN (EB-CNN), knowledge graph and CNN (KGEB-CNN), At-LSTM without

sentence encoder (Bag-At-LSTM), At-LSTM without character level composition

(WEB-At-LSTM), At-LSTM with news abstract (Ab-At-LSTM), At-LSTM with

news document (Doc-At-LSTM) and At-LSTM with technical indicator (Tech-A

(KGEB-CNN)).

When compared to the baseline state-of-the-art models, the At-LSTM model

demonstrated promising and competitive performance. On each individual pre-

diction of the price of an S&P 500 stock, it had an accuracy of 70.36% on aver-

age and a maximum accuracy of 72.06%. In terms of multi-dimensional perfor-

mance evaluation of the model to validate its performance, the implementation

framework’s clarity was not fully demonstrated during the experiments [81].

Autoregressive Convolutional Recurrent Neural Network for Univari-

ate and Multivariate Time Series Prediction

In 2019, Maggiolo and Spanakis [84] proposed an auto-regressive convolu-

tional recurrent neural network model for univariate and multivariate time

series prediction on 4 different sequential time series datasets, including two
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univariate datasets (daily values for Melbourne’s Minimum temperature and

Zurich sunspot) and two multivariate datasets (Energy production for 10 dif-

ferent photovoltaic power plants and SML2010). The three components of the

model architecture design were: (a) a multi-scale, convolutional part to extract

features from the input TS; (b) a recurrent part with three GRU units to encode

the sequence; and (c) an auto-regressive part.

Three metrics, including the MSE, MAE, and dynamic time warping (DTW),

were used to evaluate model performance based on prediction accuracy. The

suggested model appears to perform 50% better than generally accepted base-

lines. These baseline models were namely the ARIMA models, support vector

machines (SVM), simple LSTM, Deep GRU and LSTNet. This demonstrated

the strength of models with a hybrid architecture in complex sequential time

series prediction. The best results of the proposed model on multivariate en-

ergy were MSE = 10.1 and MAE = 1.824 then MSE = 8.5 and MAE = 1.061 on

a multivariate SML 2010 dataset. It is also significant to highlight that when

applying this model to predict temperature and sunspot datasets, the proposed

model was outperformed by ARIMA and LSTNet. This leads to disagreement

and inconsistency in how the results are interpreted [84].

Comparison of Deep Learning Models on Time Series Forecasting: A

Case Study of Dissolved Oxygen Prediction

Utilizing a 4-year real-time oxygen time series data in dissolved water from

China’s Yangtze River Basin, Qin (2019) [106] compared sequential deep learn-

ing models for time series prediction. A training set of 90% of the data, includ-

ing 64411 observations, was used. RMSE, MAE, and R2 metrics were used to

evaluate the performance of the model. In this work, better performance was

demonstrated by values that are nearer to 0 for RMSE and MAE and nearer to

1 for R2. The GRU-based model performed significantly better than competing
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baseline models including CNN, temporal convolutional network (TCN), LSTM,

and bidirectional recurrent neural network (BiRNN).

Models were created utilizing the Adam optimiser. Units, batch size, and vali-

dation split were set to 50, 128 and 0.1 for LSTM, GRU, BiLSTM, and BiGRU

models. In each time step, GRU produced the highest average R2. The LSTM

model performed the worst since it had the highest RMSE, MAE, but the lowest

average R2 values. In order to avoid increased error rates during training, this

study advised researchers to pay close attention to time during training [106].

Deep Equilibrium Models

A study by Bai [10] presented a novel the deep equilibrium model (DEQ-Transformer)

for modelling sequential data. The model was applied on the large-scale high-

dimensional sequential WikiText-103 benchmark, which contains over 100M

words and a vocabulary size of over 260K, and a smaller Penn Treebank (PTB)

corpus, with 888K words at training and a vocabulary size of 10K,. The work

demonstrates how the DEQ-Transformer can be applied to two state-of-the-art

deep sequence models: self-attention transformers and trellis networks. The

DEQ-Transformer equipped with a good temporal memory retention mecha-

nism produced improved performance accuracy over baseline state-of-the-art

models such as the trellisnet (TCN), LSTM and GRU. Due to an analytical

backward step, the deep equilibrium model uses substantially less memory

than traditional deep nets. It vastly reduced memory consumption by 88%

memory reduction which is often one of the efficiency bottlenecks for training

large sequential models [10].

Specific issues that came to the fore during SLR

Based on the outcomes of these 32 seminal papers of Step 2 of the SeLFISA

framework, it is clear that our daily lives are largely dependent on deep learn-
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ing tools and systems in various fields such as health, education, business,

and socio-economic services [108]. The exponential growth in data volume and

dimension has created new problems that call for innovative and effective ap-

proaches, particularly in the prediction of complicated sequential time series

datasets [51]. It is difficult to predict the stock price with enhanced model per-

formance, as this is a difficult area [29].

The M1 to M4 Competitions by Makridakis and Hibon, the Sante Fe Compe-

titions by the Santa Fe Institute, the Knowledge Discovery and Data Mining

(KDD) cup competitions by the Association for Computing Machinery’s Special

Interest Group on KDD, the Kaggle time series competitions by Goldbloom,

the Global Energy Forecasting Competitions by Tao Hong, and the Interna-

tional Journal of Forecasting include some of the most influential competitions

that have influenced sequential time series prediction [142]. For time series

prediction, a number of cutting-edge deep learning models, including stable

LSTMs and their hybrid variants, have been largely proposed [51, 103]. It

is worth noting that the underlying data-driven technologies [8, 10, 22, 41]—

algorithms and models—were created by different designers with different and

conflicting objectives [59, 81, 84, 90, 106, 112].

The quantity of scientific and media publications about artificial intelligence is

increasing rapidly. Existing research on deep learning frameworks for sequen-

tial modelling has resulted in a substantial body of publications that cover a

wide range of subjects, including methods, experimental design, optimization

techniques, input signal issues in the form of datasets, application domains

and theories. However, these studies have numerous problems, constraints,

and contradictions as well as strengths and opportunities. When developing

and examining deep-learning frameworks, researchers undoubtedly have a va-

riety of goals in mind. In most cases, the interest of the designer does not
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necessarily align with those of the users or readers [121, 145]. This triggers

the need for a systematic implementation approach that eradicates elements

of confusion.

The following list some critical issues:

1. Literature inadequacy, contradiction, and inconsistency with one

another—no systematic strategy or process with refined steps, that can

be used to improve the design of state-of-the-art models ethically, could be

found in the current scientific literature [21, 69, 74]. Numerous sequen-

tial prediction models are being pitched as ”robust” or ”state-of-the-art”

by various authors under various conditions, however, they lack adequate

evidence in terms of implementation details and procedure. There is inad-

equate demonstration on how decisions were made at various levels to ar-

rive at an enhanced deep learning model, understandable to researchers,

general users, and other stakeholders. Predictive performance challenges

associated with existing models are conflicting since they lack traceable,

well-established and explainable literature for sequential prediction on

the same implementation platform [141]. This causes uncertainty within

the body of deep learning knowledge. Thus there is a need for system-

atic guidelines to shape deep learning models through an implementable

framework.

2. Design and implementation complexity—A wide range of designs

and arrangements of deep learning models have been suggested to date.

New performance capabilities in predicting financial time series are pro-

vided by hybrid architectures that combine the strengths of multiple deep

learning models. Most models with higher performance or enriched efficacy—

above current state-of-the-art models—are typically developed through

random or ad-hoc design strategies with no clarity on design and imple-

mentation mechanism [5, 94, 113, 142]. These trial-and-error methods
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have led to high levels of model design bias, poor transparency [23] and

non-interpretability [74]. This is also driven by high levels of uncertainty

which exist from model parameter selection that best explains the selec-

tion of deep learning models to the interpretation of results. This com-

promise levels of understandability of a deep learning models. Under-

standability is often inversely proportional to its prediction accuracy, i.e.

the better the prediction accuracy is the lower the model understandabil-

ity [152]. The bulk of existing deep learning approaches are classified as

black boxes since they do not provide enough explanation of how these

models function or are derived [3]. This raises issues of bias, suitability

and transparency that reduce the chances of attaining human trust in AI

systems [129].

3. Lack of multidimensional performance analysis—while the major-

ity of earlier research has been done to improve the performance of AI

models based on general accuracy and efficiency [59, 81, 84, 90, 106, 112],

but understandability is rarely considered as part of the multidimen-

sional performance evaluation criteria [23, 103, 72]. The extent to which

the result of a measurement, calculation, or specification agrees with

some benchmark, or standard is not consistent in most literature [8, 10,

22, 41].

4. Inadequate transparency, repeatability and understandability—

regarding the procedures used to create models, produce data sets, and

explain the results has remained an issue within the field of deep learn-

ing. There is a trade-off between achieving algorithm explainability and

maintaining performance robustness [152]. Existing seminal readings

have limited ease of reproducing the same result, they do not provide ad-

equate distinct implementation that any researcher in any domain can

follow and use to improve state-of-the-art prediction models. The major-

ity of these follow an ordinary machine learning pipeline framework that
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struggles to provide step by step implementation and evaluation of pro-

cess and outcome. Hence, this work argues that a state-of-the-art frame-

work cannot be said to be optimal without a comprehensive explanation.

The path to explainable models begins with a simplified description with

systematic evaluation mechanisms embedded at various levels. Such an

approach ensures trustworthiness when such systems are deployed [7].

This also compromised straightforwardness, or simplicity of the imple-

mentation process, or the ease of understanding as opposed to a research

by Dignum (2018) [36] which indicated that the understandability of AI

systems should be a priority of any deep learning development [42].

5. Prediction inefficiencies—where most state-of-the-art deep-learning

frameworks [33] experience efficiency performance problems when ex-

posed to different sequential datasets [136, 142]. Because of stochastic-

ity of features especially in financial stock price datasets characterised

with irregular patterns [37, 105]. Sequential stock price datasets require

extensive analysis resources [151]. There is a wide deficiency of tradi-

tional deep learning models for capturing nonlinear or dynamic depen-

dencies between time steps and between multiple time series [59]. Lack

of accurate, reliable, and interpretable modern deep-learning models for

uncertainty estimation over continuous variables [74]. This further de-

mands ever-growing requirement of computing power, time and resources

particularly when predicting unstable extreme sequential weather pat-

terns [24].

In summary, to the best of our knowledge this step of SeLFISA framework has

revealed that—recent research has primarily demonstrated that deep learn-

ing model selection and design are largely trial-and-error procedures, with re-

searchers adopting tools and methodologies based only on randomization and

then applying them to specific circumstances. The selection of a particular

dataset, computing environment evaluation criteria and their corresponding
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metrics, network architecture, hyperparameters, evaluation criteria and their

respective metrics, and many other decisions are not supported by a sound sci-

entific theory or methodology. The majority of sequential deep learning results

lack of transparency, interpretability and clarity on the methods adopted for de-

signing models, generation and explanation of data sets and results. There are

a number of challenges associated with deep learning, no single ideal frame-

work addresses the behaviour associated with such time series, and top-ranked

baseline algorithms and models have limited methods for evaluating perfor-

mance at different levels of implementation. The gap extends to no comprehen-

sive approach that encompasses the varying stages of design, implementation

and evaluation. There is room for exploring better ways to design sequential

frameworks with potential to systematically produce models with better perfor-

mance in understandable way. The .csv file.1 file on GitHub contains meta-

data along with a description of each of the 32 selected articles. This file also

provides a detailed examination the above-mentioned scientific gap towards

the prediction of sequential time series patterns.

4.2.5 Step 3—Implementation

In this step, the training component of the primary dataset is used to imple-

ment and train selected candidate deep learning models found in the core re-

search papers. Algorithm 4.1 summarizes the steps involved in completing

this task. The procedure divides the primary dataset into training and testing

sets using an appropriate ratio and then applies the model to the validation

dataset to compute the SeLFISA consistency criterion, as explained in the pre-

vious step.

Lines 4–11 of the Algorithm 4.1 are used to train the model of the training set,

generate testing results on the testing portion of the training dataset and gen-
1Accessible at: https://bit.ly/3e9mgHy
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Figure 4.8: Step 3—Implementation of the SeLFISA Framework

erate testing results of the validation set for each of the models found in Step

2 of the SeLFISA framework. To minimise generalization mistakes, a hyper-

parameter regularisation strategy is used, which involves randomly dropping

out or changing internal neurons and their connections during training [127].

These findings are then collated and compared in order to identify and the pick

N top-performing models that will serve as the foundation for the next phases

in creating an improved model. In the following steps, the top-performing N

models was referred to as the baseline models.
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Algorithm 4.1 Implementation of models from core research articles and se-

lection of baseline models in line with Figure 4.8

1 Inputs−−primary dataset split into training, and testing subsets; Validation dataset

2

3 For each model resulting from Step 2 of the SeLFISA framework:

4 Get summary of model [design structure; total number of parameters]

5 Set monitoring and regularization function

6 to avoid overfitting [monitoring accuracy metric values]

7 Fit model to training set using parameters recommended in articles

8 Plot training performance loss to monitor training / validation loss

9 Use trained model to generate predictions on the training set

10 Evaluate training performance accuracy metrics

11

12 Generate testing results on the testing subset:

13 Use trained model to generate predictions on the testing set

14 Record prediction accuracy metric results

15 Visualise / Plot prediction results along with ground truth

16

17 Generate testing results on the unseen validation dataset:

18 Use trained model to generate predictions on the validation set

19 Record prediction accuracy metric results

20 Visualise / Plot prediction results along with ground truth

21

22 Save the model as .tf file

23 Save output results as .csv file

24

25 Tabulate all results observations

26 Analyse the results

27 Select top N performing models as baseline models based on accuracy

28 metric values on the testing portion of the primary dataset.

29 Compute efficiency and consistency of baseline models

4.2.6 Applying Step 3 and results

The following is a step-by-step account of the execution and results of the third

step of the SeLFISA Framework, guided by the design principles outlined in

Section 3.2.3.
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Algorithm 4.2 Implementation of models from core research articles and se-

lection of baseline models

1 Inputs: GBP/USD for training 80% and testing 20%;

2 JPY/USD for validation,

3

4 For each model resulting from Step 2 of the SeLFISA framework:

5 Get summary of model [design structure; number of parameters]

6 Set monitoring and regularization function

7 to avoid overfitting [monitoring MSE rates]

8 Train the model on the training set

9 [epochs = 50; batch size = 50; validation split = 0.2; learning rate = 0.1]

10 Monitor training performance using plots [training loss; validation loss]

11 Use trained model to generate predictions on the training set

12 Evaluate training performance

13 using accuracy metrics [MAE; MSE; Adj. R2 Score]

14

15 Generate testing results on the testing dataset:

16 Use trained model to generate predictions on the testing set

17 Record accuracy prediction metric results [MAE;MSE; Adj R2 Score]

18 Visualise / Plot prediction results along with ground truth

19

20 Generate testing results on the validation dataset:

21 Use trained model to generate predictions on the validation set

22 Record accuracy prediction metric results [MAE; MSE; Adj. R2]

23 Visualise / Plot prediction results along with ground truth

24

25 Save the model in a robust serialisable format

26 Save output results as .csv file

27

28 Tabulate all results observations

29 Analyse the results

30 Select top 4 performing models as baseline models using accuracy

31 metrics [MAE; MSE; Adj. R2] on testing set

32 Compute efficiency and consistency of baseline models

The selected candidate models were implemented and trained on the chosen

training dataset in this step. The implementation code can be found online1.

The GBP/USD and JPY/USD datasets were employed as the primary and vali-
1Accessible at: https://github.com/Dandajena/SeLFISA_Paper_2021_F
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dation datasets, respectively, as seen in Algorithm 4.2. The GBP/USD dataset

was divided into two subsets: training and testing, with the training subset

accounting for 80% of the total. For validation, the JPY/USD dataset was used.

The Open, High and Low prices of all time steps inside a shifting window of a

particular duration were utilized as input towards predicting the Close price of

the 100th time step using a feature vector created from the datasets for train-

ing/testing. The shifting window was set to 100 pixels wide, as recommended

by Azlan et al. [8]. This feature vector format was utilized to train all models

in this implementation, including both the candidate models in this stage and

the upgraded candidate models in the next step.

The training set was used to train the 12 models that resulted from the previ-

ous stage, and the testing set was used to evaluate them. With a batch size of

50, a validation split of 0.2, and a learning rate of 0.1, training was completed

over 50 epochs. The training environment was a hybrid high-end computa-

tional processing environment offered by the CHPC.

The efficacy measures, such as MAE, MSE, and R2, as well as the consistency

and efficiency metrics provided in the preceding phase, were computed and

tabulated for each model once it was trained. Models 2, 3, 4, and 7 were chosen

as baseline models for the following stage since they had the best performance

among the twelve models. Table 4.3 summarizes the outcomes of these baseline

models.

1. The Model column refers to models in Tables 4.3.

2. The next six columns are divided into two groups, each of which summa-

rizes the model accuracy findings for each dataset in terms of the three

separate accuracy metrics used, namely the MAE, MSE, and adjusted

R2. The results of the JPY/USD dataset are particularly informative of

the generalization potential of each model, given that it was completely
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unobserved throughout training and optimisation.

3. The next two columns group the Training Efficiency of the models and

provide training time of each model, and the SeLFISA efficiency metric Es

based on Equation 4.5.

4. This is followed by the SeLFISA consistency column which computes the

consistency Cs of each model according to Equation 4.4.

5. Two values are highlighted in each relevant column for comparison: the

value corresponding to the best-performing baseline model and the value

relating to the SeLFISA model.

Model 3 had a noticeably lower MAE and R2 than the other models, while

Model 7 had a marginally lower MSE than other models, as shown in Table 4.3.

An examination of the error on the training set, i.e. GBP/USD training set, un-

covered that the four baseline models had mostly comparable results, although

Model 3 had a substantially lower MAE and R2 than the other models, and

Model 7 had a marginally lower MSE than the other models. In comparison

with the MAE, the MSE is more susceptible to big outlier errors. This means

that, while Model 7 has fewer outlier deviations, Model 3 is more accurate over-

all. Model 3’s R2 is higher than that of the other baseline models.

As previously stated, using a new dataset for validation purposes, such as the

JPY/USD dataset, helps to provide a far more realistic reflection of the re-

silience and wide applicability of a particular model. While it is essential for

a model to successfully predict using the datasets that it was trained on such

as currency prediction, it is also valuable for the model to expand to be extend-

able. Model 4 emerged as the best of the four baseline models, with its MAE

and MSE smaller than that of any of the other models [146], and R2 is greater,

see Table 4.3 on Page 102. Models 4’s consistency value in the table is at least

three times greater than that of the other models. Furthermore, Models 2 and
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7 did not perform well with the new dataset, resulting in negative adjusted R2

values. Other datasets were not used with these models.

Models 2, 3, and 4 were similar in terms of efficiency, with Model 2 being the

most efficient of the three, while Model 7 was the least efficient of the three. A

comprehensive examination of the results can be found in Section 4.2.11 where

the results are discussed, it should be noted that the majority of the models

used at this stage gave predictions that did not coincide with the ground truth

values.

Figures 4.9 and 4.10 show a visual example of a high vertical and horizontal

displacement between the ground truth and the prediction of a given arbitrary

model. A horizontal shift indicates the presence of a prediction delay, whereas a

vertical shift has a quantitative influence on each prediction. Horizontal shifts

generate mistakes in the forecast direction at data points with large price in-

flections. An ideal model for solving such a problem would be one that can

preserve the same vertical magnitude while shifting the horizontal dimension

backwards to provide insight into future patterns before they occur.

A second casual observation is that gated LSTM-based models outperformed

GRU models because the LSTM architecture contains more internal gates,

such as input, output, and forget gates, whereas GRU models by [26] have reset

and update gates. To accurately anticipate future trends, the LSTM models use

linked features stored in the massive memory architecture at their disposal. As

a result, the performance of the GRU models, which have fewer gates, is supe-

rior in terms of performance efficiency [72].
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Figure 4.9: An illustration of the vertical displacement Vn from the ground truth
prediction analysis of irregular patterns

Figure 4.10: An illustration of the horizontal shift Hn from the ground truth predic-
tion analysis of irregular patterns
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Figure 4.11: SeLFISA Deep learning model:
BiDirectional(GRU(32 Units)) + Attention(SeqSelfAtt(30)) + Dropout(0.2) + Bi(LSTM(32)) + BiDi(GRU(32)) +
Bi(LSTM(32)) + Bi(GRU(32)) + LSTM(32) + GRU(32) + Dense(1)

Figure 4.12: Step 4—Mapping of the SeLFISA Framework

4.2.7 Step 4—Mapping

This stage depicted in Figure 4.12 entails compiling and tabulating all vari-

ables and intrinsic elements connected with the different ways in which the
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baseline models’ architectures might be employed to build an improved model,

as a culmination of the previous three steps.

A total of 29 variables in Table C.1 of Appendix C summarizes the variables

identified—that can be considered, selected and manipulated in order to ob-

tain an enhanced predictive model using the existing models were identified in

Step 3. Table C.1 of Appendix C summarizes the count and listing of features

that each variable may have in the Feature Count and Feature List columns.

The features are aspects of each variable—options to select from and activities

to carry out. For example, for the 6th variable in Table C.1 Implementation

Languages, there are five possible options to use namely Python, Java, Lisp,

Prolog and R. The 29 variables provided in the table are generally applicable

to any deep learning domain of research. The feature list for some variables

are applicable to a variety of domains, e.g. Variables 13 and 14 which are gen-

eral data manipulation and splitting procedure applicable to any domain.

On the other hand, the feature list of some variables in the table may vary ac-

cording to the domain of application, e.g. the feature list for Variable 4 in the

table—Existing research sources—, will likely vary depending on the domain of

research and the available papers at a given time. Compiling such a table is a

principal part of this step as it serves as a guide towards the design and opti-

misation of the enhanced model. It provides a way of managing and pruning

the number of variables to consider and optimize based on strategic importance

and feasibility, since these variables may be considered to be hyperparameters

of the model.

Table C.1 also includes a classification of each variable into one of two cate-

gories combinatorial or permutative [110]. Permutative features follow a fixed

order, whereas combinatorial variables are unaffected by the order, placement,
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or organization of the process. The final column of Table C.1 contains a brief

comment on each variable’s implementation.

After the table has been created, a manual approach is used to identify fea-

tures that may be important in achieving an upgraded model. To generate and

improve a new design, key parameters and hyper parameters of relevance are

selected, with specific attention to one performance metric at a time. The fol-

lowing phase involves using permutations and/or combinations of these factors

that have the potential to increase performance.

4.2.8 Applying Step 4 and results

The following is a step-by-step account of the implementation and results of

the fourth step of the SeLFISA Framework, guided by the design principles

outlined in Section 3.2.3. Step 3 gave rise to ideas for a better model for discrete

irregular sequential prediction, see Figure 4.8 on Page 79. This stage produced

a thorough list of classified variables and hyper-parameters, which was used

as a knowledge foundation for the next step (see Table B in Appendix:B).

4.2.9 Steps 5 and 6—Propose, design and implement a new

model

Step 5 of the SeLFISA framework is for conceiving a new model, whereas Step

6 is for implementing it. It’s worth noting that Step 6 loops back into Step 5,

emphasizing that the two are inextricably linked. In reality, the process entails

proposing and designing a new model based on insights acquired in prior steps

and/or earlier iterations of Steps 5 and 6 shown in Figure 4.13; and executing

and testing the new design to see if it outperforms the baseline models.

The goal is to iteratively reach a new neural network architecture with im-
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Figure 4.13: Steps 5 and 6—Propose, design and implement a new model using the
SeLFISA Framework

proved performance depending on the outcome of the prior steps and the in-

sights acquired from them. The new architecture takes advantage of the base-

line models’ best features. Algorithm 2 gives a rundown of the steps involved

in creating a better model.

There are two parts to the algorithm. The baseline models’ important com-

binations are identified in Part 1. The architectures of the models in these

combinations serve as a design reference for future models. In each case, the

new model is trained and then tested on the testing set to produce prediction

values that are displayed against the ground truth, as well as accuracy mea-

sures.

Part 2 of the approach entails assessing whether any of the new models cre-

ated in Part 1 surpass the baseline models, and if so, selecting the best new

model as the final improved model. If not, the operation is repeated, this time
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using the newly learned insights and knowledge about the architectures of all

baseline and new models. This is repeated until a better model is obtained or

a certain number of iterations has been done.

Algorithm 4.3 Algorithm to arrive at an enhanced deep learning model

1 Inputs: Baseline models resulting from Step 3;

2 primary dataset split into training set and testing set;

3 validation dataset.

4 Part 1—Construct initial models based on the baseline models

5 Identify key combinations K of baseline models in Step 3 of the SeLFISA

6 framework to enhance performance

7 For each combination M in K:

8 Use the design of the models M as a basis for a new design EM

9 placed in set E = {EM : M ∈ K} of enhanced models

10 Train the model EM

11 Use EM to generate predictions on the testing set

12 Record accuracy prediction metric results for EM

13 Visualise / Plot prediction results along with ground truth

14

15 Part 2—Construct derivative models using

16 baseline models and new models from Part 1

17 While performance of any model in E is not significantly better than baseline

18 models and iterations < N :

19 Execute Lines 5–11 of Algorithm 1, with M set to baseline models and

20 models in E to create a new derivative model EM

21 Append EM to E

22

23 Select the highest−performing EM in E as the final enhanced model

24 Apply optimisation to EM on additional hyperparameters, i.e. layers,

25 activation functions, ordering, etc.

26 Apply grid search optimisation to EM on additional hyperparameters,

27 i.e. learning rate, dropout rate and batch size.

This process gives an organized method of working towards developing an ini-

tial upgraded model given enough training data and a reasonable number of

repetitions. Once an upgraded model has been identified, it is subjected to a

number of optimization methods in order to further refine it and improve its

performance. The initial optimisation method in Line 24 of Algorithm 4.3 on
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Page 91 focuses on examining and selecting the optimal layer configurations

and activation functions progressively. The second optimisation procedure in

Line 26 of Algorithm 4.3 on Page 91 uses grid search to find several training

hyperparameters such learning rate, dropout rate, and batch size.

This approach of improving a model has the advantage of being an organized

procedure that combines knowledge from (1) the literature and (2) iterative

experimentation. A second benefit is that the hyper-parameter optimisation

procedure is designed to avoid an overabundance of hyper-values over a large

number of models; individual hyper-parameters are only optimized when a

promising upgraded model has been found using default parameters. Because

the number of hyperparameters is related to the degree of overfitting, it aids

in limiting overfitting [55].

4.2.10 Applying Steps 5 and 6 and results

The following is a step-by-step account of the implementation of the last two

steps of the SeLFISA Framework, guided by the design principles outlined in

Section 4.2.

http://etd.uwc.ac.za/



Framework Design, Implementation and Results 93

Algorithm 4.4 Algorithm to arrive at an enhanced deep learning model

1 Inputs: Models [2,3,4,7] resulting from Step 3 of the SeLFISA framework;

2 GBP/USD for training 80% and testing 20%;

3 JPY/USD for validation

4 Part 1—Construct initial new models based on the baseline models

5 Identify combinations of models in Step 3 of the SeLFISA framework

6 that enhance performance: K = {[2, 3], [3, 4], [3, 4, 7], [2, 3, 4, 7]}

7 For each combination M ∈ K:

8 Use the design of the models M as a basis for a new design EM

9 placed in set E = {EM : M ∈ K} of enhanced models

10 Train the model EM

11 [epochs = 50; batch size = 50; validation split = 0.2; learning rate = 0.1]

12 Use EM to generate predictions on the testing set

13 Record accuracy prediction metrics for EM [MAE; MSE; RMSE, Adj. R2]

14 Visualise/Plot prediction along with ground truth

15

16 Part 2—Construct derivative models using baseline models

17 and new models from Part 1 above

18 While performance of any model in E is not significantly better

19 than baseline models and iterations < N :

20 Execute Lines 8–14 of Part 1, for models M ∈ [2, 3, 4, 7] and models in E

21 to create a new derivative model EM

22 Append EM to E

23

24 Select the highest−performing EM in E as the final enhanced model

25 Apply optimisation to EM on additional hyperparameters

26 [layers, activation functions, order]

27 Apply grid search optimisation to EM on additional hyperparameters

28 [learn rates = [0.001; 0.02; 0.2],

29 dropout rates = [0.0; 0.2; 0.4],

30 batch sizes = [10; 20; 30]]

Algorithm 4.4, which is a more conceptual version of Algorithm 2, but provides

detail, describes the process of proposing, designing and implementing an im-

proved model utilized in this implementation1. In Part 1, we found critical

combinations of the baseline models, such as [2, 3], [3, 4], [3, 4, 7] and [2, 3, 4, 7].

The architectures of the models in these combinations were used to create new

models that corresponded to each combination. With a batch size of 50, a val-
1Accessible at: https://bit.ly/3AQ2U1Y
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idation split of 0.2, and a learning rate of 0.1, each new model in this section

was trained across 50 epochs. The testing set was then used to run each model

to gather prediction values and record accuracy measures. Plotting the outputs

against the ground truth allows them to be visualized.

As a result, four additional models were created. Because the new models cre-

ated in Part 1 did not outperform the baseline models in Part 2, a number of

iterations were conducted in which the baseline models and all new models

created in each iteration were utilized to create a series of new models. This

continued until the 11th iteration, when an improved model was discovered.

This improved model was then fine-tuned. On the new model, a range of layer

configurations and activation functions were first investigated, and the best

option was chosen. The learning rate, drop out rate, and batch size were then

optimized using a grid search, with the values studied being [0.001, 0.02, 0.2],

[0, 0.2, 0.4], and [10, 20, 30], respectively. A total of 27 possible hyper-parameter

combinations were investigated, with three alternatives for each hyper-parameter.

The best combination was chosen and used to create the upgraded model in the

end.

As a result of implementing the SeLFISA framework, an improved deep learn-

ing model architecture known as the SeLFISA model1 and plotted in Figure 4.18

was created. The ideal model depicted in Figure 4.11 on Page 87 can be written

as follows:

Bi(GRU(32)) + SeqSelfAtt(30) + Dropout(0.2) + Bi(LSTM(32)) + Bi(GRU(32)) +

Bi(LSTM(32)) + Bi(GRU(32)) + LSTM(32) + GRU(32) + Dense(1)

In contrast to ordinary GRUs or LSTMs, which have a unidirectional flow of

input data or information flow, i.e. always backwards or always forwards, the
1Not to be confused with the SeLFISA framework, which is the overall process described in

Section 4.2, pictured in Figure 4.13 and implemented in this section.
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bidirectional mechanism within the GRU was positioned at the beginning to

enhance performance of the overall neural network architecture by increas-

ing concurrent multidimensional sequential flow of data in both directions, i.e.

future to past and past to future, as shown in Figure 4.11. Because there is

no previous information at this step of training, a GRU rather than an LSTM

should be used as the first node. Following that, a self-attention technique was

used as the first hidden layer to track and trace selected relevant discrete irreg-

ular sequential patterns within the dataset with three features, namely open

price, highest price and lowest price in every time step in the input consisting

of 100 steps to predict the price in the next time step [14].

By balancing the accuracy, efficiency and consistency of the models, alternat-

ing LSTMs and GRUs in other hidden layers improved overall performance.

The learnt pattern was then supplied to a deeply linked dense neural network

layer in the eighth hidden layer of an efficient plain GRU, which yielded the

projected price.

The network was built by gating the model design with GRU as the head and

tail of the model. It performed better than other combinations or baseline mod-

els. This is due to the fact that the financial dataset utilized, with 6135 data

points, was a manageable size with a variable distribution of discrete irregular

sequential points [29]. According to empirical’s study by Jozefowicz et al. [68]

on recurrent network architectures, any exponential increase in the size of a

dataset would necessitate replacing GRU nodes in a model with an LSTM,

which can store long sequences in larger datasets, but this could compromise

model efficiency due to increased parametric size.

Self-attention, which is a component of transformer networks [68], proved to be

a useful tool for uncovering hidden relationships among irregular patterns in
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sequential financial data items. This resulted in empirical exploration knowl-

edge, which informed the decision to use an equal number of GRUs and LSTMs

in the SeLFISA model’s architectural design.

Table 4.1 shows a sampling of the sequential models generated by the SeLF-

ISA framework. The SeLFISA framework’s Step 2 found these prospective deep

learning models. They combine GRU, LSTM unit, Conv1D, Conv1DTranspose,

Dense layer, Bi-directional mechanism (Bi), global attention mechanism (Atten-

tion), self-attention mechanisms (SeqSelfAttention), drop out layer (Dropout),

Keras TimeDistributed (TimeDist) and RepeatVector layer. The candidates are

less successful than the Table 4.2 enhanced optimal model, whose findings are

shown in Table 4.3.

4.2.11 Performance comparison of SeLFISA model

This chapter demonstrated how the framework can be used to develop better

models. The unavailability of a systematic procedure for improving and up-

grading the best deep learning models, with a focus on predicting irregular

time-series sequences has been identified as a major challenge. The imple-

mentation process of the SeLFISA framework revealed that there are many

underlying challenges associated with most modern deep-learning models for

predicting sequential series. Complexity in modelling and capturing extremely

long-term sequential patterns using traditional deep learning models such as

RNN [59], lack of transparency and explainability in deep learning model im-

plementation [23], and lack of a comprehensive comparison analysis of exist-

ing deep learning models for sequential learning are just a few of the chal-

lenges [29]

Table 4.3 on Page 102 shows the findings of the baseline models as well as the

findings of the SeLFISA model, with the metric values highlighted to make
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Table 4.1: Candidate deep learning models identified in Step 2 of the SeLFISA
framework
Model Architecture Remarks

1 LSTM(32) + Dropout (0.2) + Dense (1) Derived from Azlan et al. (2019) [8] and Mihaita et al.
(2019) [90]

2 LSTM(32) + LSTM(64) + Dropout(0.2) +
LSTM(128) + Dropout(0.5) + Dense(1)

Influenced by Glenski et al. (2019) [41] and Chalvatzisa
et al. (2019) [22]

3 Bi(LSTM(50)) + Dense(10) + Dense(10) +
Dense(1)

A gated LSTM suggested by Sardelicha and Manandhara
(2018) [112]

4 Bi(GRU(50)) + Dense(10) + Dense(10) +
Dense(1)

A gated GRU mentioned by Sardelicha and Manandhara
(2018) [112]

5 LSTM(100) + Dropout(100) + Atten-
tion(SeqSelfAttention(32)) + LSTM(16) +
Dense(10) + Dense(10) + Dense(1)

Derived from experiments by Huang (2019) [59]

6 LSTM(32) + Conv1D(32) + Dropout(0.2) +
Conv1D(16) + Conv1DTr(16) + Dropout(16)
+ Conv1D(32) + Conv1D (16) + Atten-
tion(SeqSelfAttention(1)) + LSTM(16) +
Dropout(0.2) + Dense (1)

As indicated by Makinen et al. (2018) [85] and Huang
(2019) [59]

7 LSTM(32) + Dropout(100) + Atten-
tion(SeqSelfAttention(32)) + LSTM(16) +
Dense(10) + Dense(10) + Dense(1)

As implemented by Liu (2018) [81]

8 LSTM(32) + Dropout(0.2) + Atten-
tion(SeqSelfAttention(32)) + Bi(LSTM(32)) +
Bi(LSTM(32)) + Dense(10) + Dense(1)

Demonstrated by Sardelicha and Manandhara
(2018) [112]

9 LSTM(32) + Conv1D(32) + Dropout(0.2)
+ Conv1D(16) + Conv1DTranspose(16) +
Dropout(0.2) + Conv1DTranspose(32) +
Conv1DTranspose(1) + GRU(32) + Dropout(0.5)
+ Dense(1)

Suggested by Maggiolo and Spanakis (2019) [84]

10 GRU(32) + GRU(64) + Dropout(0.2) + GRU(128)
+ Dense(1)

Designed by GRU by Qin (2019) [106]

11 LSTM(32) + LSTM(64) + RepeatVector(64)
+ LSTM(64) + TimeDist(1) + LSTM(128) +
Dropout(128) + Dense(1)

Suggested by Qin (2019) [106]

12 LSTM(50) + Dropout + LSTM(100) +
Dropout(0.5) + GRU(100) + LSTM(100) +
Dropout(0.5) + LSTM(100) + Dropout (0.5) +
Dense(100) + Dense(10) + Dense(10) + Dense(1)

Implemented by Bai (2019) [10]

Table 4.2: The optimal model produced by SeLFISA
Model Architecture Remarks

SeLFISA BiD(GRU(32)) + SeqSelfAtt(att width=30) +
Dropout(0.2) + BiD(LSTM(32)) + BiD(GRU(32))
+ BiD(LSTM(32)) + BiD (GRU(32)) + LSTM (32)
+ GRU(32) + Dense(1)

Proposed optimized model

comparisons with the best baseline models easier. When compared to the top

performing baseline models, the total improvement Pi of the SeLFISA model,

determined using Equation 4.6, is presented. Pi is the percentage difference

between two metric values based on these data, adjusted by dividing the dif-

ference by the mean of the two values. In each metric category, using Pi to
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measure the improved performance of the SeLFISA model over the best base-

line model for purposes of comparison, where a positive value of Pi signifies

an improvement of the SeLFISA model over the baseline and a negative value

of Pi indicates a drop in performance of the SeLFISA model over the baseline

model.

Pi =
mS −mb

(mS +mb)/λ
× 100, (4.6)

where mb is a given metric value of the best-performing baseline model, mS is

the corresponding metric value of the SeLFISA model and λ is an averaging

constant which is usually set to 2.

When looking at the data in Table 4.3 on Page 102, the fact that the SeLFISA

model outperforms the highest performing baseline models in every metric cat-

egory is quite encouraging. This is quantified and proved by positive Pi values

in every case. On the testing set, i.e. the GBP/USD testing set, the SeLFISA

model outperforms the best baseline models by 47% in MAE and 156% in MSE,

while providing a small increase in adjusted R2. The gain in MSE is notewor-

thy; as previously stated, the MSE is sensitive to outliers and an increase in

MSE shows that the SeLFISA model is significantly more robust to outliers, i.e.

irregular patterns. As a result, it is quite successful for what it was designed.

The SeLFISA model outperforms the baseline models on the validation set

which is different from the one used for training: 115% improvement in MAE,

51% improvement in MSE, and 15% improvement in R2. This is supported by

a consistency value of 2.74, which is about 1.5 times greater than the most con-

sistent baseline model, Model 4, with a consistency of 1.88. This is a promising

outcome, indicating that the SeLFISA framework has created a model that can

be adaptable to an unknown dataset in the same format as the training set

.
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Given the foregoing, it was critical to assess how the upgraded model’s signifi-

cant gains in accuracy and consistency would affect its efficiency. However, it is

seen that the enhanced model delivers a significant improvement in this aspect

as well, with an efficiency value of nearly 29 compared to approximately 20 for

Model 2, the most efficient baseline model. The enhanced model is not only the

most accurate and consistent of the models evaluated, but it is also the most

efficient.

Visual findings have been provided in Figures 4.14–4.18, which are plots of the

predictions of each baseline model or the SeLFISA model vs. the ground truth,

as a confirmation of the objective results and analysis above. Each plot shows

the actual vs. expected price over time. When the baseline models’ plots are

compared to the SeLFISA model’s, it can be seen that the SeLFISA model’s

forecasts are closer to the ground reality than any baseline model’s. This visu-

ally verifies the numerical results.

SeLFISA’s robust performance is further validated in the graphs in Figure

4.14-18 that compares it to the top 4 existing state-of-the-art baseline mod-

els. This is after being trained on a separate portion of the GBP/USD training

set. When their performance were evaluated on a separate GBP/USD testing

set, and a completely unseen JPY/USD validation dataset. Comparing Model

2 in Figure 4.14, Model 3 in Figure 4.15, Model 4 in Figure 4.16 and Model 7

in Figure 4.17 to the SeLFISA model in Figure 4.18, the SeLFISA model pro-

duced best results in every performance category. The five graphs shows that

SeLFISA model’s prediction significantly decreased both the graphical hori-

zontal and vertical displacement between the existing financial currency price

and the predicted price. Hence, the SeLFISA model generated the best results

in every category since it significantly decreased the graphical horizontal and

vertical displacement.
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Figure 4.14: Model 2
LSTM(32) + LSTM(64) + Dropout(0.2) + LSTM(128) + Dropout(0.5) + Dense(1) implemented by Glenski and Hristu-
Varsakelis (2019) [41]

Figure 4.15: Model 3
Bi(LSTM(50)) + Dense(10) + Dense(10) + Dense(1) influenced by Sardelicha and Manandhara
(2018) [112]

Figure 4.16: Model 4
Bi(GRU(50)) + Dense(10) + Dense(10) + Dense(1) by Sardelicha and Manandhara
(2018) [112]
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Figure 4.17: Model 7
LSTM(32) + Dropout(100) + Attention(SeqSelfAtt(32)) + LSTM (16) + Dense(10) + Dense(10) + Dense(1) by Liu
(2018) [81]

Figure 4.18: SeLFISA Model
Bi(GRU(32)) + SeqSelfAtt(30) + Dropout(0.2) + Bi(LSTM(32)) + Bi(GRU(32)) + Bi(LSTM(32)) + Bi(GRU(32)) +
LSTM(32) + GRU(32) + Dense(1)
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Table 4.3: Results of top-performing baseline models compared with SeLFISA model

Model
GBP/USD dataset JPY/USD dataset Training Efficiency

ConsistencyMAE MSE Adj. R2 MAE MSE Adj. R2 Number of
Parameters

Time
Seconds Efficiency

2 0.0487 0.00349 0.865 0.502 0.263 -5.15 128513 6430 19.99 0.61
3 0.0167 0.00311 0.976 0.172 0.0331 0.226 23131 1210 19.12 0.61
4 0.0321 0.00236 0.828 0.0554 0.00561 0.362 17931 963 18.62 1.88
7 0.0197 0.00208 0.885 0.345 0.127 -1.96 10276 3150 3.26 0.56

SeLFISA 0.0103 0.000255 0.981 0.0149 0.00333 0.421 117538 4080 28.81 2.74
Pi 47.41% 156.32% 0.51% 115.22% 51.01% 15.07% 36.15% 37.42%

4.3 Summary

Chapter 4 developed and implemented a novel SeLFISA framework to improve

deep learning models for time-series prediction from existing state-of-the-art

baseline models, based on DSR and specific methods identified in Chapter

3. Using a financial currency exchange dataset as an example, this Chapter

demonstrated how the framework works. In Chapter 5, the outcomes of the

implementation process are discussed.
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Chapter 5

Discussion, Limitations, Future

Recommendations and

Conclusion

In this chapter the findings of the research are discussed in terms of the re-

search questions posed. The contribution as well as limitations and future

recommendations are highlighted.

5.1 Reflecting on the study

This research considered how deep learning models should be developed in

order to improve on the existing state-of-the-art models when predicting dis-

crete irregular sequential patterns. Deep learning models for discrete irregular

sequential prediction encounter a variety of challenges as was found after do-

ing a systematic literature review of recently published scientific articles. A

six-step SeLFISA framework1 was created in a high-performance computing
1See Figure 4.1 on Page 52.
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experimental setting using a design science research methodology.

1. The first sub-question of the study was, “How should existing state-

of-the-art deep learning approaches and relevant existing datasets in a

given domain be effectively identified and selected?” To answer this ques-

tion, a customized SLR research method using the preferred reporting

items for systematic reviews and meta-analyses(PRISMA) methodology

was blended with grounded theory to facilitate a detailed literature re-

view [1]. This identified well-known deep learning models and datasets

in a given domain and their respective performance and methodological

challenges.

Sequential time-series datasets from different domains were identified,

captured and recorded in a sharable knowledge bank that can be utilised

by researchers. This process systematically demonstrated that existing

literature is inadequate, contradictory and inconsistent and it does not

provide a comprehensive comparison. The systematic literature review

resulted in a clear and thorough summary of research gaps, inconsisten-

cies and conflicts, which served as a foundation for improving deep learn-

ing models for predicting such complex datasets [30].

2. The second sub-question of the research was, “How should the state-

of-the-art deep learning approaches identified, be systematically combined

and improved to arrive at a deep learning model with enhanced perfor-

mance?” The sequence and design of layers in a deep learning model have

a direct impact on the model’s prediction efficacy. A further detailed re-

view of current approaches indicated that there is a wide range of deep

learning designs and arrangements, most of these used a trial-and-error

strategy to construct more effective models. There is currently no estab-

lished procedure for the systematic improvement of such models. Using
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the SeLFISA framework, datasets characterised with the most discrete

irregular sequential patterns were identified by applying Billauer’s algo-

rithm and interquartile range outlier calculations to select, explore and

evaluate them [149]. The daily exchange rate data between the GB Pound

and the US Dollar was identified as a dataset suitable for learning be-

cause of its high irregularity [23]. A daily exchange rate dataset between

the Japanese Yen and the US Dollar was then applied as a validation

dataset.

In addition, the systematic literature review identified 12 implementable

or executable sequential forecasting models from various authors, which

constituted candidate artefacts. A combination of architecture distinc-

tiveness and referenced performance qualities were considered during the

selection process. Gated RNNs, autoencoders, convolutional neural net-

works, bidirectional mechanisms, attention mechanisms, ensemble tech-

niques, deep and vanilla architectures were used in some of these mod-

els. These 12 models were chosen for their architectural design qualities,

which included the gated LSTM architecture [8, 41, 22]; the bidirectional

mechanism combined with both LSTMs and GRUs [112]; the attention

mechanism combined with gated neural networks [59]; deep CNN en-

semble with LSTM and an attention mechanism [85]; a GRU [106] au-

toencoders combined with LSTM [144] and finally a deep gated recurrent

neural network architecture made up of both GRU and LSTM [10].

A framework that includes the SLR process was developed in Section 4.2,

which can systematically improve on existing models to arrive at an en-

hanced deep learning model. The SeLFISA framework produced an en-

hanced deep learning model with higher efficacy, explainability, perfor-

mance consistency, and straightforwardness when compared with base-
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line models. To achieve this, Step 3—Implementation, Step 4—Proposing

and designing a new artefact, Step 5—Mapping and Step 6—Implemen-

tation of the SeLFISA framework were used to demonstrate a way to en-

hance the model for predicting such datasets. This process took advan-

tage of current deep learning artefact variants and the identified datasets

with the most discrete irregular sequential patterns.

Based on the results and insights gained from the preceding steps, the

SeLFISA framework iteratively arrived at a new neural network archi-

tecture design with improved performance. It used a two-part procedure1

to harness the best attributes of the baseline models. The first part identi-

fied important best-performing combinations from the 12 baseline models,

resulting in four new models, i.e [2, 3], [3, 4], [3, 4, 7], [2, 3, 4, 7] to drive the

development of new models matching each combination. The new model

was trained and then validated on the testing set to get prediction values

that were displayed against the ground truth, as well as accuracy mea-

sures. With a batch size of 50, a validation split of 0.2, and a learning rate

of 0.1, each new model in this section was trained across 50 epochs. The

testing set was then used to run each model to gather prediction values

and record accuracy measures. Plotting the outputs against the ground

truth allowed them to be fully visualized.

Procedures of the SeLFISA framework provided a way to determine whether

any of the new models created outperformed the baseline models 2; if so,

the best new model was chosen as the final enhanced model. If not, the

operation was repeated, this time using the newly learned insights and

knowledge about the architectures of all baseline and new models. This
1See Algorithms 4.1–4.4 on Pages 81–93.
2See Algorithm 4.4 on Page 93.
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was repeated until a better model was obtained. Because the new mod-

els initially created by the SeLFISA framework did not outperform the

baseline models in the case of the daily financial currency exchange rate

dataset, a series of iterations were carried out in which the baseline mod-

els and all new models produced in each iteration were utilized to develop

a series of new models. This continued until the 11th iteration when a

better model was discovered. The improved model was then guided by

the algorithm. A variety of layer configurations and activation functions

were evaluated first on the new model, and the best option was chosen.

The learning rate, dropout rate, and batch size were then optimized using

grid search, with the values studied being [0.001, 0.02, 0.2], [0, 0.2, 0.4], and

[10, 20, 30], respectively. A total of 27 distinct hyper-parameter combina-

tions were investigated, with three alternatives for each hyper-parameter.

The best combination made up of:

Bi(GRU(32)) + SeqSelfAtt(30) + Dropout(0.2) + Bi(LSTM(32)) + Bi(GRU(32)) +

Bi(LSTM(32)) + Bi(GRU(32)) + LSTM(32) + GRU(32) + Dense(1)

was chosen as the final upgraded SeLFISA model.

The entire process of creating a new deep learning model with improved

efficacy was done with high degrees of explainability, performance con-

sistency, and straightforwardness characteristics of the SeLFISA frame-

work.

3. The third sub-question asked, “How should the performance of deep

learning models be evaluated when applied to such datasets?” The devel-

oped framework was applied to the field of forex price prediction in order

to demonstrate the framework’s potential to arrive at an enhanced deep

learning model. Experiments were carried out to compare the enhanced
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model with the identified state-of-the-art models. This inquiry was an-

swered by evaluating the model’s robustness based on multidimensional

performance evaluation criteria. To evaluate the performance resilience

of the specified deep learning model, new metrics such as SeLFISA effi-

ciency and performance improvement were developed.

The performance of the SeLFISA model, measured qualitatively and quan-

titatively, exceeded baseline state-of-the-art models. This took into ac-

count the following performance evaluation criteria: (1) quantitative ac-

curacy measured using MAE, MSE, and Adj. R2, (2) quantitative effi-

ciency measured using a derived SeLFISA efficiency metric in Es Equa-

tion 4.5 on Page 62, (3) quantitative performance consistency measured

using a derived SeLFISA consistency metric in Cs Equation 4.4 on Page 61—

demonstrated by the process flow of the SeLFISA framework, (4) qual-

itative straightforwardness—demonstrated by the six distinct iterative

steps of the SeLFISA framework which led to an enhanced output and

finally, and (5) qualitative design consistencies—which is illustrated by

the aggregation robustness performance characteristic of the framework

over existing trial and error approaches.

The model produced by the SeLFISA framework of Section 4.2 was ap-

plied to predict forex price to demonstrate its potential. This work demon-

strated SeLFISA framework provides a useful platform for deriving an

enhanced deep learning model that outperformed the baseline deep learn-

ing models in terms of accuracy, efficiency and consistency performance.
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5.2 Evaluation of the findings

The findings of this study revealed that most models with higher state-of-the-

art performance were typically developed by trial-and-error [30]. The SeLF-

ISA framework addresses model improvement in a systematic way. It has the

advantage of being a structured process that pools the knowledge from the lit-

erature with iterative experimentation. A second advantage is that the hyper-

parameter optimisation process is constructed in such a way that it avoids an

explosion of hyper-parameters over a large number of models—specific hyper-

parameters are only optimised once a promising enhanced model is arrived

at. Models derived using this framework are consistent, efficient, accurate, ex-

plainable and straightforward [29, 115].

5.3 Contribution

Three important contributions to the field of enhancing deep learning models

for the prediction of discrete irregular sequential datasets were achieved in

this thesis. These unique contributions to knowledge came from various stages

of the framework.

1. Development of a novel framework: The first and the main contribu-

tion of this work is a novel framework which provides a systematic proce-

dure which researchers can apply in order to systematically improve on

the best deep learning models found in the literature in a given domain.

As a concrete example, the author demonstrates the proposed framework

in action in the field of forex price prediction in Section 4.2.5.

2. SLR: The second contribution of this work is a SLR that can be used to

systematically uncover, rank and select research studies of significance

in a given domain. To demonstrate the proposed SLR process in action,
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and as part of the proposed framework, this work practically applies the

proposed SLR process to the domain of forex price prediction. The SLR

created a knowledge bank of articles, variables and metadata to provide

a comprehensive, targeted, dependable, reproducible and extensive liter-

ature overview [101, 6, 137, 104]. It answered the following questions:

(a) Which datasets are sequential in nature with irregular characteris-

tics? Using Box and Whisker plot and Billauer’s techniques, two

datasets with most discrete irregular sequences were selected from

a nucleus of 32 articles

(b) Which artefacts in the form of models have been applied elsewhere to

analyse such datasets? From the 32 publications reviewed, 12 deep

learning models based on specific algorithms and architectures were

selected. These were recorded in a sharable open access knowledge

bank for future use.

(c) How were those models evaluated in terms of determining their perfor-

mance? Specific performance evaluation criteria and their respective

metrics were identified. Most approaches for sequential time series

prediction relied on limited performance evaluation criteria with ac-

curacy as a widely used criterion calculated using metrics such as

MAE, MSE, and adjusted R2. This revealed a research gap and the

need for the development of multidimensional evaluation procedures.

3. A model for currency exchange rate prediction: The third contri-

bution is an enhanced deep learning model arrived at by applying the

proposed framework to the domain of forex price prediction, where the

enhanced model was shown to out-perform the state-of-the-art identified

within the SLR in the framework in terms of performance, consistency

and efficiency.
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5.4 Limitations and future recommendations

Deep learning is a rapidly evolving domain. The scope of this study was re-

stricted to the forecasting of financial time series data. The SeLFISA frame-

work has proven to be reliable in financial currency exchange datasets, but it

has to be tested on other datasets such as health, weather, and transporta-

tion to confirm its usefulness in different fields. Further research could look

into other procedure for addressing the variable explosion issue for sequential

time-series prediction leveraging SeLFISA framework’s capabilities.

5.5 Conclusion

This study investigated the current problem associated with the design of deep

learning models for analysis of discrete irregular patterned sequential datasets.

The findings of this study indicated a lack of a systematic approach to guide the

development of a deep learning model that outperforms existing state-of-the-

art models, especially for discrete irregular sequential patterns such as cur-

rency exchange. The study presented a new framework with a six-step mecha-

nism to design a better model for predicting discrete irregular sequential pat-

terns.

An enhanced model was created, demonstrating competitive outcomes in re-

lation to prior research in terms of enhanced performance efficiency and con-

sistency. Specifically, it exhibited a 36.15% improvement in performance effi-

ciency and a 37.42% improvement in consistency when compared to the most

advanced models currently available for predicting financial currency exchange

rates derived from 412 latest articles. The framework is a contribution to the

field of artificial intelligence and machine learning since it is demonstrated

how modern deep learning models can be systematically refined, improved

and evaluated. This thesis’s publications add to the body of scientific knowl-
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edge in a number of ways including model design and improvement, algorith-

mic development and enhancement, empirical multi-dimensional evaluations

of models, interpretability and explainability considerations, irregular sequen-

tial datasets generation and curation and domain-specific applications.

———————
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Selected Papers that Analyse
Sequential Patterns

Table A.1 lists papers that analyse irregular sequences, found in a systematic
literature review.
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Table A.1: Behaviour of Irregular Sequential Patterns
List Sequential datasets Sequential artefacts Evaluation metrics

1. Daily exchange rates data from
Australia, British Canada,
Switzerland, China, Japan, New
Zealand and Singapore from 1990
to 2016 by (Lai et al. 2017)

Attention based frameworks (At-
LSTM)

Agreement Cohen’s Kappa

2. NASDAQ stock price dataset by
Qin Y. et al (2017)

Hybrid attention based frame-
works (At-LSTM)

Average negative log-likelihood
(NLL)

3. Appliances energy prediction
dataset by Candanedo L. et al
(2017)

Autoregressive models (AR) Computational time spent by a
model

4. Air quality prediction (AIR De Vito
S. et al (2008)

Hybrid autoregressive model Copy memory loss and memory
footprints

5. Weather dataset by Liang X, et al
(2015)

Back-propagation neural networks
(BPNN)

Correlation coefficient (R2)

6. European G´EANT traffic data
points

Bayesian based algorithms Cosine proximity

7. Telecom datasets from Cell2Cell Bidirectional (Bi) based frame-
works

Dynamic time warping (DTW)

8. Crowd Analytix dataset Bidirectional combined with atten-
tion (Att) mechanism

Empirical correlation coefficient
(ECORR)

9. Unstable social media dataset
from Persian movie reviews from
2014 to 2016.

Bidirectional combined with GRU
(BiGRU) and LSTM (BiLSTM)

F-Measure

10. Standard benchmark ACL18 data
for NASDAQ and NYSE markets
from Jan 2014 to Jan 2016 by (Xu
and Cohen, 2018)

Capsule neural network (CapsNet) Hit ratio

11. Standard KDD17 dataset by
(Zhang et al., 2017)

Convolutional neural networks
(CNNs)

Matthews correlation coefficient
(MCC)

12. Stock index data (DOW 30, S&P
500 and NASDAQ)

Deep autoencoder (DA) Max absolute percentage error
(MaxAPE)

13. Ultra-high-frequency order book
data from 5 liquid U.S NASDAQ’s
(Google, Microsoft, Apple, Intel
and Facebook) financial stocks

Deep Bayesian neural networks
(BNN)

Mean absolute error (MAE)

14. Financial stock indices dataset
(S&P 500, Dow Jones Industrial
Average (DJIA), NASDAQ and
Russel 2000)

Deep differential privacy-inspired
LSTM (DP- LSTM)

Mean absolute percent errors
(MAPE)

15. Historical financial price data
from Crypto-Compare for Bitcoin,
Ethereum and Monero

Deep feed forward neural network
(FFNN)

Mean absolute scaled error
(MASE)

16. Social data from publicly available
social platforms (GitHub and
Reddit).

Deep sequential spatio-temporal
residual neural network (ST-
ResNet)

Mean directional accuracy (MDA)

17. Standard Penn Treebank (PTB)
data

Denoising autoencoder (DAE) Maximum error (ME)

18. Standard WikiText-103 (WT103)
data

Transformer neural network Mean Error Percent (MEP)

19. Financial news dataset from
Reuters and Bloomberg on 473
Standard & Poor’s 500 listed com-
panies (Google, Amazon, Cisco,
Microsoft, Apple, Intel, IMB, AMD,
NVidia, Qualcomm, Walmart)

Transformer neural network
combined with RNN and CNN

Mean prediction accuracy (MPA)

20. Sydney motorway traffic flow data
of 2017

TrellisNet Mean relative error (MRE)

21. Financial stock dataset from
Bank of China (601988), Vanke
A (000002) and Kweichou Moutai
(600519).

Differentiable architecture
(DARTS)

Mean square error (MSE)
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Table A.1: Behaviour of Irregular Sequential Patterns (Cont.)
List SOTA Sequential datasets Sequential artefacts Evaluation metrics

22. UCI daily grocery sales datasets Dilated recurrent neural network
(DilatedRNN)

Mean squared percentage error
(MSPE)

23. Univariate (Daily values for Mel-
bourne’s minimum temperature
and Zurich Sunspot) datasets

Dilated temporal convolutional
network (TCN)

Mean symmetric mean absolute
percentage error (SMAPE)

24. Multi-variate (Energy production
for 10 different photovoltaic power
plants in California and SML2010
dataset containing internal and
external measurements in a do-
mestic house) datasets

Dual self-attention network
(DSANet)

Median MASE

25. Real time Yangtze River dissolved
oxygen time series data automati-
cally recorded from 2012 to 2016.

Dual-stage attention based recur-
rent neural network (DA-RNN)

Median SMAPE

26. 4 years sequential time series
Uber dataset for 8 large cities
in U.S. and Canada (Atlanta,
Boston,Chicago, Los Angeles, New
York City, San Francisco, Toronto,
and Washington D.C)

Elmann recurrent neural networks
(ERNN)

Normalized deviation (ND)

27. Trajectory data (TaxiBJ from
taxicab GPS data and meteorology
data in Beijing (2013 – 2016) and
Trajectory data (BikeNYC) from
NYC bike system (2014)

Extension GARCH (EGARCH ) Normalized RMSE (NRMSE)

28. Historical S&P 500 stock price
data from the Yahoo Finance

Fast-slow recurrent neural net-
work (FS-RNN)

Normalized root mean squared
error (NRMSE)

29. 46. NLP sentimental news dataset
from financial domain (CNBC.com,
Reuters.com, WSJ.com, For-
tune.com and Wall Street Journal)

Feed forward neural networks
(FFNN)

Precision F1 score

30. Daily revenue data from five gas
stations companies

Generative adversary neural
networks (GAN)

Precision jumps recall

31. 45 datasets of different time series
lengths from random real world
application domains which en-
compass Meteorology, Astronomy,
Physiology, Acoustics, and others

Gated recurrent unit (GRU) Proportion of variance R2

32. Real-world JD.com of China’s (JD-
demand and JD-shipment) data

Gated recurrent unit with hybrid
architecture

Rank MASE

33. Electricity consumption dataset
for servers in a data centre by
Flunkert et al.(2017)

Gaussian models (GP) Rank SMAPE

34. Traffic flows data by Lv et al.
(2015)

General regression neural network
(GRNN)

Regression coefficient (R2)

35. Internet traffic dataset for internet
companies’ by Kaggle (2017))

Generalized autoregressive condi-
tional heteroscedasticity (GARCH)

Root mean square error (RMSE)

36. Daily exchange rates data from
Australia, British Canada,
Switzerland, China, Japan, New
Zealand and Singapore from 1990
to 2016 by (Lai et al. 2017)

Generalized linear regression
(GLM))

Root mean squared logarithmic
error (RMLSE)

37. NASDAQ stock price dataset by
Qin Y. et al (2017)

Hierarchical multi-scale recurrent
neural network (HM-RNN)

Root mean squared percentage
error (RMSPE)

38. Appliances energy prediction
dataset by Candanedo L. et al
(2017)

Hierarchical neural network archi-
tecture

Root relative squared error
(RRSE)

39. Air quality prediction (AIR De Vito
S. et al (2008)

Independently recurrent neural
network (IndRNN)

Symmetric mean absolute percent-
age error (SMAPE)
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Table A.1: Behaviour of Irregular Sequential Patterns (Cont.)
List SOTA Sequential datasets Sequential artefacts Evaluation metrics

40. Weather dataset by Liang X, et al
(2015)

Large feedforward neural network
(LFNN)

Trading profitability measures (cu-
mulative return (CR), annualized
return (AR), annualized volatility
(AV), Sharpe ratio and (SR) and
draw-down (DD))

41. European G´EANT traffic data
points

Logistic regression (LR)

42. Telecom datasets from Cell2Cell Long short-term memory (LSTM)
43. Crowd Analytix dataset Memory-based ordinal regression

deep neural networks (MOrdReD)
44. Unstable social media dataset

from Persian movie reviews from
2014 to 2016.

Momentum models (MOM)

45. Standard benchmark ACL18 data
for NASDAQ and NYSE markets
from Jan 2014 to Jan 2016 by (Xu
and Cohen, 2018)

Mean reversion models (MR)

46. Standard KDD17 dataset by
(Zhang et al., 2017)

Multilayer perception (MLP)

47. Stock index data (DOW 30, S&P
500 and NASDAQ)

Multivariate adaptive regression
splines (MARS)

48. Ultra-high-frequency order book
data from 5 liquid U.S NASDAQ’s
(Google, Microsoft, Apple, Intel
and Facebook) financial stocks

Neural architecture search (NAS)

49. Financial stock indices dataset
(S&P 500, Dow Jones Industrial
Average (DJIA), NASDAQ and
Russel 2000)

Particle filter recurrent neural
networks (PF-RNNs)

50. Historical financial price data
from Crypto-Compare for Bitcoin,
Ethereum and Monero

Quasi-recurrent neural network
(QRNN)

51. Social data from publicly available
social platforms (GitHub and
Reddit).

Radial basis neural networks
(RBFNN)

52. Standard Penn Treebank (PTB)
data

Random Classifier (RC)

53. Standard WikiText-103 (WT103)
data

Random connectivity LSTM
(RCLSTM)

54. Financial news dataset from
Reuters and Bloomberg on 473
Standard & Poor’s 500 listed com-
panies (Google, Amazon, Cisco,
Microsoft, Apple, Intel, IMB, AMD,
NVidia, Qualcomm, Walmart)

Random forest (RF)

55. Sydney motorway traffic flow data
of 2017

Recurrent highway network
(RHN)

56. Financial stock dataset from
Bank of China (601988), Vanke
A (000002) and Kweichou Moutai
(600519).

Recurrent neural network (RNN)

57. UCI daily grocery sales datasets Rule-based regression (RBR)
58. Univariate (Daily values for Mel-

bourne’s minimum temperature
and Zurich Sunspot) datasets

Sequence to sequence (Seq2seq)
architectures or encoder-decoder
models

59. Multi-variate (Energy production
for 10 different photovoltaic power
plants in California and SML2010
dataset containing internal and
external measurements in a do-
mestic house) datasets

Skip recurrent neural network
(SkipRNN)

http://etd.uwc.ac.za/



137

Table A.1: Behaviour of Irregular Sequential Patterns (Cont.)
List SOTA Sequential datasets Sequential artefacts Evaluation metrics

60. Real time Yangtze River dissolved
oxygen time series data automati-
cally recorded from 2012 to 2016.

Small feedforward neural network
(SFNN)

61. 4 years sequential time series
Uber dataset for 8 large cities
in U.S. and Canada (Atlanta,
Boston,Chicago, Los Angeles, New
York City, San Francisco, Toronto,
and Washington D.C)

Spatio-temporal long short-term
network (ST-LSTM)

62. Trajectory data (TaxiBJ from
taxicab GPS data and meteorology
data in Beijing (2013 – 2016) and
Trajectory data (BikeNYC) from
NYC bike system (2014)

Squares support vector machine
regression (LS-SVMR).

63. Historical S&P 500 stock price
data from the Yahoo Finance

StockNet which uses a variational
autoencoder (VAE)

64. 46. NLP sentimental news dataset
from financial domain (CNBC.com,
Reuters.com, WSJ.com, For-
tune.com and Wall Street Journal)

Support vector machine regression
(SVMR)

65. Daily revenue data from five gas
stations companies

Support vector machines (SVM)

66. 45 datasets of different time series
lengths from random real world
application domains which en-
compass Meteorology, Astronomy,
Physiology, Acoustics, and others

Temporal convolutional networks
(TCN)

67. Real-world JD.com of China’s (JD-
demand and JD-shipment) data

Transformer networks

68. CIF 2016 Forecasting Competition
Dataset

TrellisNet

69. NN5 Forecasting Competition
Dataset

Variational LSTM

70. M3 Forecasting Competition
Dataset

71. M4 Forecasting Competition
Dataset

72. CIF 2016 Forecasting Competition
Dataset

73. NN5 Forecasting Competition
Dataset

The full code and results can be found on GitHub at https://bit.ly/3w622ok
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Appendix B

Irregular Sequential Patterns
Identified by the SeLFISA
Framework

Table B.1 lists 16 irregular sequences, found in a systematic literature review.

Table B.1: Behaviour of Irregular Sequential Patterns
List Name Length Number of IQR Outliers

1 S&P500 from Jan–Dec-2011 [156] and [22] 251 0
2 NASDAQ from Jan–Dec-2011 [156] and [22] 251 6
3 DJI from 01-2008–12-2009 [22] 504 0
4 NASDAQ from 01-2008–12-2009 [22] 504 0
5 S&P from 01-2008–12-2009 [22] 504 0
6 Monero Crypto Currency Daily Rates from 2015–2018 [41] 1208 0
7 DJI from 10-2010–09-2016 [12] and [22] 1513 0
8 S&P500 from 10-2010–09-2016 [12] and [22] 1696 0
9 CAD USD Daily Exchange Rate from 1990–2016 [23] 5000 0
10 CNY-USD Daily Exchange Rate from 1990–2016 [23] 5000 0
11 NZD USD Daily Exchange Rate from 1990–2016 [23] 5000 0
12 SGD USD Daily Exchange Rate from 1990–2016 [23] 5000 0
13 JPY USD Daily Exchange Rate from 1990–2016 [23] 5000 24
14 AUD USD Daily Exchange Rate from 1990–2016 [23] 5906 0
15 GBP USD Daily Exchange Rate from 1990–2016 [23] 6135 639
16 SwiFranc USD DailyExchange Rate from 1990–2016 [23] 7015 0

All the experimental code is given in the Jupyter Notebook files on the GitHub

website at: https://github.com/Dandajena/SDA/.

Accessible at:

https://github.com/Dandajena/SDA/blob/master/Database.csv.
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Appendix C

Variables identified and used in
the SeLFISA Framework

Table C.1: Variables for SeLFISA Framework
No. Variable

Name
Feature
Count

Feature List Category Implementation Remarks

1. Domain of
research

1 Deep Learning Framework for the
Prediction of Discrete Irregular
Patterned Sequential Environ-
ments

Combinatorial
in identifi-
cation and
selection but
permutative in
implementation

This is the initial stage driven
by the research challenges in
sequential modelling.

2. Domain
Challenges
classes

3 Major classes are within frame-
works, datasets and evaluation

Combinatorial Addressed all through a frame-
work

3. Specific
prediction
challenges

11 consistency or inconsistency,
reliability, repeatability, straight-
forwardness transparency, ex-
plainability, sensitivity to out-
liers and extreme values, lack
of well-established, explainable
literature, poor comprehensive
comparison analysis, lack of
multidimensional performance
evaluation on single framework,
dominance of accuracy metrics,
computational complexity.

Combinatorial Focused on those that distort
performance robustness

4. Existing
research
sources

400 400 articles were the initial
sources of literature research

Combinatorial 33 articles created nucleus
articles based on a matrix
specific selection, inclusion and
analysis criteria.

5. Implementation
AI Platforms

8 Google AI Cloud Platform, Ama-
zon AI Services (Amazon Sage-
Maker), Google Cloud AutoML,
MATLAB, Microsoft Azure (Ma-
chine Learning Studio), IBM
Watson Machine Learning and
Anaconda Enterprise.

Combinatorial Anaconda Enterprise was our
platform of choice because
its open source versatility
platform with a Python based
IDE compatibility with many
languages and notebooks. This
avail the entire life cycle which
prepare, build, validate, deploy
and monitor AI models.

6. Implementation
Languages

5 Python, Java, Lisp, Prolog and R
Programming

Combinatorial Python was our language of
choice since it is easy to learn,
deploy and it integrates effi-
ciently with a wide range of
syntax
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Table C.1: Variables for SeLFISA Framework (Cont.)
No. Variable

Name
Feature
Count

Feature List Category Implementation Remarks

7. Implementation
environ-
ments

3 Jupyter Notebook, Kaggle and
Google Colaboratory

Combinatorial We created our environment
based on Jupyter Notebook be-
cause of its interactive features
that can mix code, script, inline
graphs, interactive figures, into
a shareable web document.

8. Libraries
and modules

22 Regular expressions, garbage
collectors, operating systems,
system-specific parameters, time,
spacy, Keras, pickle, requests,
math time, Matplotlib, NumPy,
Pandas, progress bar TQDM
library, math log2, Seaborn,
sklearn, metrics, TensorFlow.

Combinatorial We choose more than 22 li-
braries and modules that are
already written in Python to
set routines and functions.
These libraries and modules
were expanded from internal
module through an “from main
library import internal library”

9. Computational
Environment

4 High Performance Computing
from CHPC, Google Cloud, Kaggle
and On-Premise Core i7 Laptop.

Combinatorial
on design and
Permutative on
installation and
executions

CHPC High Performance Com-
puting combined through on-
Prem Laptop.

10. Datasets
domain

8 Weather, energy, finance, weather,
astronomy, transportation, health
and general domain benchmark
datasets.

Combinatorial Finance domain was our pri-
mary choice.

11. Datasets 73 The 8 domains from 33 nucleus
articles produced 73 accessible
datasets.

Combinatorial 2 Financial market-daily cur-
rency exchange datasets were
selected with high levels of ir-
regular discrete properties.

12. Selected
dataset
features

6 Date, price, open, high, low and
change

Combinatorial Pre-process before training.

13. Data ex-
ploratory
processes

10 More than 10 activities in the
form of data wrangling, descrip-
tion, data pre-processing, data
munching, data cleaning, and ex-
ploratory data analysis

Permutative Pre-process before training.

14. Dataset
splitting
ratio

3 Training, validation and testing
(80%–20%, 90%–10% and 70%–
30%) and respective window
length to determine prediction
horizon.

Combinatorial
on ratio se-
lection and
permutative on
execution

Pre-process before training.
A window length of an array
of 100 inputs were used to
determine the next outcome.

15. Algorithms
and models

335 These architectures produced 335
algorithms and models based on
statistical, probabilistic, gated,
attention, bidirectional, general
neural, encoders and decoders,
transformer, vanilla, hybrid,
ensemble, convolutional, classifi-
cation and other

Combinatorial
on selection and
Permutative
during execu-
tion

Focused on best performing
through experimental deploy-
ment and application

16. Algorithms
learning
technique

4 Supervised, Semi supervised,
Unsupervised and Reinforcement

Combinatorial
but learning
process is per-
mutative

Pre-process before training.

17. Algorithms
analysis
types

4 Regression, classification, cluster-
ing and association

Combinatorial Regression analysis was ap-
plied

18. Evaluation
criteria
category

2 Quantitative and Qualitative Combinatorial Pre-process before training
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Table C.1: Variables for SeLFISA Framework (Cont.)
No. Variable

Name
Feature
Count

Feature List Category Implementation Remarks

19. Evaluation
criteria

9 Consistency, efficiency, accuracy,
visualization sharpness, compu-
tational complexity. repeatability,
straightforwardness and explain-
ability

Combinatorial Pre-process before training

20. Activation
function

24 ReLU. Leaky ReLU, Maxout,
Tanh, linear / identity, Binary
step, piece wise linear, Sigmoid,
Complementary log-log, Bipo-
lar, Bipolar Sigmoid, LeCun’s
Tanh, Hard Tanh, Absolute, Rec-
tifier, Smooth Rectifier, Logit,
Probit, Cosine, Softmax, Maxout,
Multiquadratic and Inverse Multi-
quadratic.

Pre-process
before training

21. Evaluation
metrics
category

3 Regression, binary classification
and multi-class classification

Combinatorial Regression was the choice of
the research

22. Evaluation
metrics
or Loss
functions

12 Mean Error (ME),Mean Squared
Error (MSE), Mean Absolute Er-
ror (MAE), Root Mean Squared
Error (RMSE),R Squared, Cat-
egorical Cross Entropy, Binary
Cross Entropy ,Hinge Loss,
Squared Hinge, Multi-Class
Cross-Entropy Sparse Multi-
class Cross-Entropy and Kullback
Leibler Divergence.

Combinatorial A hybrid approach was consid-
ered

23. Weights 1 Randomly allocated using param-
eter optimisation techniques

Permutative Automatically assigned

24. Bias 1 Automatically selected using
libraries.

Permutative Guided by other factors

25. Net input 1 Depend on the nature of the input
features of the dataset.

Permutative Guided by other factors

26. Number of
Neurons

1 Determined by a specific mathe-
matical formula

Permutative Guided by other factors

27. Number of
layers

1 Determined by a specific mathe-
matical formula

Permutative Guided by other factors

28. Interconnections 2 Feed-forward and recurrent Com-
binatorial and permutative

Guided by other
factors

29. Training
process

2 Backpropagation and Backpropa-
gation through time

Automatically implemented
through Python libraries.

Number of
subvariables

≥ 410
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Appendix D

Visualisation of Models
Predicting JPY vs. USD

Figure D.1: Model 1
LSTM (32) + Dropout (0.2) + Dense (1) suggested by
Azlan et al(2019) [8], Li et. al (2019) [90] and Glenski
et. al (2019) [41]

Figure D.2: Model 2
LSTM(32) + LSTM(64)+Dropout(0.2) + LSTM(128) +
Dropout(0.5) + Dense(1) by Deep LSTM Model based
implemented by Glenski et. al (2019) [41] and Chal-
vatzisa et. al (2019) [22]

Figure D.3: Model 3
BiD(LSTM(50)) + Dense(10) + Dense(10) + Dense( 1)
influenced by Sardelicha and Manandhara (2018) [112]

Figure D.4: Model 4
BiD(GRU(50)) + Dense(10) + Dense(10) + Dense(1) by
Sardelicha and Manandhara (2018) [112]
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Figure D.5: Model 5
LSTM(100) + Dropout(100) + Atten-
tion(SeqSelfAttention) + LSTM(16) + Dense(10)
+ Dense(10) + Dense(1) by Deep LSTM by Huang
(2019) [59]

Figure D.6: Model 6
LSTM(32) + Conv1D(32) + Dropout(0.2) + Conv1D
(16) + Conv1DTr(16) + Dropout(16) + Conv1DTr(32)
+ Conv1D (16) + AttSeqSelf(1) + LSTM(16)
+ Dropout(0.2) + Dense (1) by Makinen et. al
(2017) [85]SeqSelf(1) + LSTM(16) + Dropout(0.2) +
Dense (1) attention by Huang (2019) [59]

Figure D.7: Model 7
LSTM(32) + Dropout(100) + Attention (SeqSelf (32)) +
LSTM (16) + Dense(10) + Dense(10) + Dense(1) by Liu
(2018) [81]

Figure D.8: Model 8
LSTM(32)+Dropout(0.2) + Attention (SeqSelf)(32) +
Bidirection(LSTM(32)) + Bidirection(LSTM(32)) +
Dense(10) + Dense(1) by by Sardelicha and Manand-
hara (2018) [112]

Figure D.9: Model 9
LSTM(32) + Conv1D(32) + Dropout(0.2) +
Conv1D(16) + Conv1DTranspose(16) + Dropout(0.2)
+ Conv1DTranspose(32) + Conv1DTranspose(1) +
GRU(32) + Dropout(0.5) + Dense(1) by Maggiolo and
Spanakis (2019) [84]

Figure D.10: Model 10
GRU(32) + GRU(64) + Dropout(0.2) + GRU(128) +
Dense(1) by GRU by Qin(2019) [106]
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Figure D.11: Model 11
LSTM(32) + LSTM(64) + RepeatVector(64) +
LSTM(64) + TimeDist(1) + LSTM(128) + Dropout(128)
+ Dense(1) by Qin(2019) [106]

Figure D.12: Model 12
LSTM(50) + Dropout + LSTM(100) + Dropout (0.5)+
GRU(100) + LSTM(100) + Dropout(0.5) + LSTM(100) +
Dropout(0.5) + Dense(100) + Dense(10) + Dense(10) +
Dense(1) by Bai(2019) [10]

Figure D.13: SeLFISA Model
BiD(GRU(32)) + SeqSelfAtt(att width=30) + Dropout( 0.2) + BiD(LSTM(32)) + BiD(GRU(32)) + BiD(LSTM(32)) + BiD
(GRU(32)) + LSTM (32) + GRU(32) + Dense(1)
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