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ABSTRACT 

High-throughput sequencing technologies developed rapidly in recent years. Using 

such platforms to sequence DNA and RNA samples has been shown to be a powerful 

method to analyze the genome and transcriptome of even very complex eukaryotic 

organisms, including humans and diseases like cancer, which results in substantial 

genomic and gene expression changes compared to healthy tissues. Such analyses have 

led to the discovery of hundreds of thousands of novel genetic and transcriptomic 

variations associated with disease conditions such as breast cancer. The Cancer 

Genome Atlas (TCGA) is one such database which maintains RNA sequencing data of 

all cancer related genes. However, searching such a database for aberrations that 

contribute to the specific disease condition can be cumbersome, especially since a 

relatively small set of mutations and/or expression changes are drivers of the disease, 

with the large majority being ‘passengers’. Similarly, mutated or differentially 

expressed genes that are not yet known to be related to breast cancer may be incorrectly 

discarded as they are not ‘classical’ cancer genes. 

In this study novel knowledge discovery and next-generation database methods that use 

existing knowledge of gene/protein roles in cancer-related functions, phenotypes, 

pathways and protein-protein interactions to predict their likely contribution to the 

breast cancer phenotype were developed, with an aim of computationally prioritizing 

breast cancer genetic, transcriptomic and structural variation. 

The aim of this study was to develop a process of identifying and understanding 

semantics behind breast cancer data, information or content from databases and 

scientific literature to afford readily available information as nodes and links to end 
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users. This was afforded by developing a biomedical knowledge graph (BORG) and 

exploiting bioinformatics tools to re-analyze multiple types of omics data generated for 

breast cancer tissue samples. This study is stratified into independent chapters that flow 

from Chapter 2 each with its own objectives and conclusions.  

Chapter 1 introduces the expanses and complexities of breast cancer as well as the 

paucity of complete understanding of its interrelatedness to other diseases, pathways, 

and gene ontologies. It explores breast cancer statistics, related datasets and database 

integration, genetics and related omics, diagnosis and classification together with 

developments in sequencing and computational techniques. Furthermore, this chapter 

presents the rationale for the development of breast cancer specific knowledge graphs. 

The aims of Chapter 2 were to develop a breast cancer-specific knowledge graph that 

integrated relevant multiple biomedical information sources into a large on-disk 

semantic network and to verify the validity of the conceptual data graph by preforming 

tertiary analyses on real breast cancer data.  

To achieve this, an in-house biomedical semantic database that integrates a vast amount 

of curated information related to genes, disease associations, phenotypes, and pathway 

memberships was specialized to ‘understand’ breast cancer and cancer biology in 

general. Two versions of the database were developed namely, a minimal version 

centred around human genes and their associated functions and phenotype associations 

and a comprehensive database that also included similar information for rat and mouse 

genes. Furthermore, pathway involvement of human genes, as well as human protein-

protein interactions were included in the comprehensive database. Testing the minimal 

database with lists of differentially expressed genes from a breast cancer RNA-seq 

study returned several known breast cancer genes, IGFBP3 and AR with associated 

http://etd.uwc.ac.za/



ABSTRACT 

vii 

 

gene functions, phenotypes and pathways explaining the mechanism of their 

involvement indicated with PubMed IDs. The comprehensive database returned 

interesting candidates for novel genes such as VANGL2 and TPSAB1 with compelling 

evidence for roles in BCA biology. 

Chapter 3 sought to test the comprehensive databases’ ability to identify novel disease 

gene candidates, as well as evidence for their mechanisms, in the most frequently 

mutated subset of genes in breast cancer samples relative to other cancers in TCGA 

data from the Genomic Data Commons (GDC) Portal. The knowledge graph identified 

potentially novel BCA genes including CSMD1, UMODL1 and VPS13D. In Chapter 4, 

the main aim was to reanalyse RNA-seq samples from TCGA using the developed 

semantic database in Chapter 2. The Bioconductor R package, edgeR, was used for 

differential expression gene analyses of read counts arising from RNA-seq between 

normal and tumour samples for multiple BCA subtypes. These genes were further 

analyzed using the graph database, which corroborated with existing databases but 

further elucidated several that were not previously linked to breast cancer, for example 

TNXB and VIPR1. Zhang et al (2023), also confirmed that TNXB could not be linked 

to human BCA in their research although it had mouse ortholog.  

Chapter 5 hypothesizes about the ability of the data graph (BORG) to semantically 

discover and computationally filter genes identified in Next-Generation Sequencing 

(NGS) and other genomics experiments to identify potentially novel genes and 

pathways related to pathogenesis of breast cancer. Overall, this study contributes to the 

field by advancing understanding of the potential applications of graph modeling. Its 

findings have implications for both theoretical developments and practical applications 

in data science and clinical application. 
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CHAPTER 1 

LITERATURE REVIEW 

1.1 BREAST CANCER STATISTICS 

Breast cancer (BCA) is one of the most common and potentially lethal diseases in 

women worldwide (Boyle, Leon, Maisonneuve, & Autier, 2003). Differences in 

incidence and mortality in different populations and different regions of the world 

strongly indicate that the disease is multi factorial and both environmental and genetic 

factors are involved (Nathanson, Wooster, & Weber, 2001). Incidence and mortality 

due to cancer, particularly BCA, has been increasing for the last 50 years, even though 

there is a decreased gap in the diagnosis of BCA at early stages. According to World 

Health Organization (WHO) 2012 reports, BCA is the leading cause of death in women, 

accounting for 23% of all cancer deaths. In Asia, one in every three women faces the 

risk of BCA in their lifetime as per reports of WHO 2012 (Polyak, 2014).  

Breast cancer is the most frequently diagnosed cancer in the vast majority of the 

countries (154 of 185) and is also the leading cause of cancer death in over 100 

countries; the main exceptions are Australia/New Zealand, Northern Europe, Northern 

America where it is preceded by lung cancer, and many countries in Sub-Saharan Africa 

due to elevated cervical cancer rates.  

Globally, BCA incidence rates are highest in Australia/New Zealand, Northern Europe 

for example the United Kingdom, Sweden, Finland, and Denmark, Western Europe and 
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Belgium with the highest global rates, the Netherlands, and France, Southern Europe 

(Italy) (Figure1.1) (Bray et al., 2018), and Northern America, where recent statistics 

demonstrated that BCA accounted for 30% of all newly diagnosed cancer cases in 

women (Figure 1.2) (Siegel, Miller, & Jemal, 2017).  

   

Figure 1.1: Region-specific incidence and mortality age-standardised rates for 

female BCA during 2018 (Bray et al., 2018).  
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Figure 1.2: Ten of the leading cancer types for new cancer cases and cancer related 

deaths in the U.S during 2018. Image generated by and excerpted from (Siegel, Miller, 

& Jemal, 2018).  

 

In terms of mortality, BCA rates show less variability, with the highest mortality 

estimated in Melanesia, where Fiji has the highest mortality rates worldwide (Bray et 

al., 2018).    
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Although hereditary and genetic factors, including a personal or family history of breast 

or ovarian cancer and inherited mutations (in BRCA1, BRCA2, and other BCA 

susceptibility genes), account for 5% to 10% of BCA cases, studies of migrants have  

shown that nonhereditary factors are the major drivers of the observed international and 

inter-ethnic differences in incidence. Comparisons of low-risk populations migrating to 

high-risk populations have revealed that BCA incidence rates rise in successive 

generations (Johnston et al., 2015). Incidence has been increasing in most regions of 

the world, with huge inequalities between rich and poor countries. Incidence rates 

remain highest in more developed regions, but mortality is relatively much higher in 

less developed countries due to a lack of early detection and access to treatment 

facilities. For example, in Western Europe, BCA incidence has reached more than 90 

new cases per 100 000 women annually, compared with 30 per 100 000 in eastern 

Africa. In contrast, BCA mortality rates in these two regions are almost identical, at 

about 15 per 100 000, which clearly points to a later diagnosis and much poorer survival 

in eastern Africa (Tao et al., 2015). 

According to statistics from the National Cancer Registry (NCR) 2011, BCA was 

reported to have an incidence rate of 31.4 per 100 000 women in South Africa, with a 

reported lifetime risk of 1 in 29 women. Furthermore, it was reported in 2012 that a 

total of 9815 South African women were diagnosed with BCA, while a total of 3848 

women died from the disease. Not surprisingly, the National Cancer Registry (NCR) 

2014 included BCA among the top five cancers affecting women in South Africa, along 

with cervical, colorectal, uterine and lung cancer. Both breast and cervical cancer have 

been identified as a national priority in South Africa with increasing incidences 

occurring, contributing toward a governmental commitment toward the Sustainable 
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Development Goals (SDGs) which aims to achieve a one third reduction in premature 

cancer related deaths, along with other non-communicable diseases, by 2030 (Lince-

Deroche et al., 2017).  

The influence of BCA risk factor distribution on differences in incidence and clinical 

characteristics associated with ethnicity or race has received limited attention (Tariq, 

Latif, Zaiden, & Jasani, 2013). World Health Organization (WHO) has stated that BCA 

is the most frequently found cancer in women and it is affecting millions of women all 

over the world. However, death rates have been gradually declining after 1990 due to 

improvements in BCA screening, early detection, awareness and continuous 

improvement in treatment, Breast Cancer Deadline 2020 (Figure 1.3) (Dubey, Gupta, 

& Jain, 2015); (Lince-Deroche et al., 2017). Additionally, this positive trend toward 

early detection and awareness has also been influential in South Africa, since the 1990s. 

Furthermore, new technologies are being developed for the detection and diagnosis of 

BCA, often following 2 distinct routes. These include advances in BCA diagnosis and 

treatment on a global scale, along with the introduction of population-level screening 

(Lince-Deroche et al., 2017).   
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Figure 1.3:  The chronological advances in detection and diagnosis of BCA. Image 

generated by and excerpted from (Lince-Deroche et al., 2017). 

1.2 GENETICS AND BREAST CANCER 

Approximately 5-10% of all cases of BCA have been found to arise from a pre-existing 

genetic predisposition. To date, about 25 different genes have been identified as 

markers of predisposition to hereditary breast and ovarian cancer, mainly involving an 

autosomal dominant inheritance pattern with incomplete penetrance and variable 

expressivity (Nielsen, van Overeem Hansen, & Sørensen, 2016). The understanding of 

inherited BCA susceptibility, according to Beggs et. Al (2008), has changed 

dramatically over the past 5 years, with the discovery and identification of many genes 

in which mutations were found to greatly influence the risk of developing BCA (Easton 

et.al, 2015). Furthermore, most of these genes were found to be coding for tumor 
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suppressors, which function in genome maintenance by promoting homologous 

recombination repair after DNA double-strand breaks (Easton et.al, 2015).  

To date, it has been found that approximately 25% of all hereditary breast-ovarian 

cancers (HBOCs) could be explained by the highly penetrant risk genes, BRCA1 and 

BRCA2, and approximately 15% by other HBOC risk genes, including RAD51C, 

RAD51D, ATM, CHEK2, BRIP1, PALB2, BARD1, RECQL, TP53, CDH1 and NBN1 

(Easton et.al, 2015). However, this only serves to explain a combined 40% of all tested 

HBOCs, and does not account for the remaining 60%, for which it can be assumed that 

the genetic predisposition is still unknown (Beggs & Hodgson, 2008). Recently, it was 

also reported that pathogenic variants of the risk genes BRCA1 and BRCA2 conferred 

40-80% lifetime risk of developing BCA, along with an additional 11-50% risk of 

developing ovarian cancer (Alemar et al., 2018).  Thus, the further understanding of 

these genes, and their association to HBOCs, has been pivotal in BCA therapeutics, and 

has allowed for predictive medicines such as next-generation sequencing to arise. 

1.2.1 Next-generation sequencing and the understanding of breast cancer  

Next-generation sequencing (NGS) technology has steadily improved, over the past 

decade, and allows for rapid sequencing of millions of DNA fragments without 

previous sequence knowledge. Furthermore, this technology allows for high-

throughput sequencing of both large and small genomic regions for many different 

samples, allowing it to replace the conventionally used Sanger sequencing, providing a 

versatile tool in BCA R&D (Kamps et al., 2017).  More specifically, NGS provides a 

unique opportunity to practice predictive medicine, generally based on identification of 

variants that have been previously identified as being causative.  
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Putative loss-of function (pLOF) variants were previously reported to be a common 

occurrence in genomes, and therefore the improved understanding of their contribution 

to disease is a critical aspect with regard to the functionality of predictive medicine 

(Johnston et al., 2015). The previously identified pLOF variants commonly found 

occurring in genomes include nonsense, frameshift, and splice site alterations 

(Macarthur et al., 2012).  

With the increasing use of next-generation sequencing technologies, specifically for the 

purpose predictive medicine, it is essential to be able to understand the function and 

predict the consequences of pLOFs, especially in individuals without pre-existing 

clinical diagnoses. Subsequently, although it appears that many bioinformatics 

approaches have been developed to classify missense alterations, very few tools exist, 

and are available, to assess the cellular and phenotypic impact pLOF variants (Johnston 

et al., 2015). 

1.3 SEARCHING FOR THE ‘MISSING HERITABILITY’ OF BREAST 
CANCER 

More than 12 % of women will be diagnosed with BCA in their lifetime. Although there 

have been tremendous advances in elucidating genetic risk factors underlying both 

familial and sporadic BCA, a vast portion of the genetic contribution to BCA aetiology 

remains unknown (Skol, Sasaki, & Onel, 2016). With the advent of genome-wide 

association studies, the next wave of discoveries was made, whereby over 80 low-

penetrance and moderate-penetrance variants were identified. However, although these 

studies were highly successful at discovering variants associated with both familial and 

sporadic BCA, the variants identified to date still only serve to explain a combined 50 
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% of the total heritability of BCA (Skol et al., 2016). To identify genetic factors 

associated with BCA predisposition, early studies used linkage analysis and positional 

cloning in families with multiple affected individuals in order to discover highly 

penetrant susceptibility genes, such as BRCA1 and BRCA2 (Harshman et al., 1994). 

  

1.3.1. Genome-wide association to discover low-penetrance disease loci 

In the post-genomic era, genome-wide association studies (GWAS) were conducted to 

provide a more powerful approach to identify common, low-penetrance disease loci 

without prior knowledge of location or function (Harshman et al., 1994). GWAS 

examines all or most of the genes in the genome of different individuals of a particular 

species to identify the extent to which the genes vary from individual to individual 

(Wang, Barratt, Clayton, & Todd, 2005). In short, this is achieved by studying 

individuals with different phenotypes and determining their genotypes at the positions 

of single nucleotide polymorphisms, otherwise known as SNPs. SNPs for which one 

variant is statistically more common in individuals belonging to a specific phenotypic 

group are then reported as being associated with the phenotype (Donnelly, 2008). 

 In humans, GWAS can identify any associations between specific genes and various 

diseases, including BCA (Hirschhorn & Daly, 2005). Moreover, the use of GWAS has 

broken the logjam, enabling genetic variants at specific loci to be associated with 

particular diseases. Genetic association data are now providing new routes to 

understanding the aetiology of disease, as well as new footholds on the long and 

difficult path to better treatment and disease prevention (Donnelly, 2008). 
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Considering that inherent power behind GWAS, and that NGS allows for simultaneous 

sequencing of multiple cancer susceptibility genes and, at a fraction of the cost of 

sequential testing, combining the two was of the utmost importance, and as such studies 

linking them has led to current knowledge of the genetics of BCA susceptibility (Tung, 

Battelli, Allen, Kaldate, & Bhatnagar, 2015). 

1.4 BREAST CANCER DIAGNOSIS, CLASSIFICATION AND PROGNOSIS 

For BCA diagnosis, various factors are considered critical, such as molecular 

classification of BCA, which is needed for both prognosis and clinical outcomes, along 

with those associated with worse prognosis, such as age, ethnicity, tumour grade and 

lack of surgery and radiation treatments (Li et al., 2017). Subsequently, various BCA 

subtypes have been defined by gene expression profiling, such as HER2-enriched, 

Luminal-A and Luminal-B, to name a few, which each exhibit diverse responses to 

various forms of treatment. While analyses of gene expression profiling was previously 

achieved using clustering algorithms, issues surrounding accurate identification of 

highly variable subtypes, such as Luminal-A, has persisted. In addition to this, the link 

between DNA methylation and expression levels in different BCA subtypes remains 

poorly understood (Yang, Shen, Yuan, Zhang, & Wei, 2017).  

When prognosis is considered, the Luminal-A subtype has been shown to have more 

favourable outcomes when compared, across multiple databases, to most subtypes 

commonly found in early BCA patients. Specifically, this was apparent across 6 phase 

III clinical trials, namely TransATAC, GEICAM9906, CALGB9741, ABCSG08, 

NCIC-CTG MA.5 and NCIC-CTG MA.12 (Syrine et al., 2017). 
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Moreover, progressing the current understanding of tumour subtypes, along with 

molecular mechanisms, is of the utmost importance for the continual development of 

therapeutic strategies to the modulation of immune response. To this end, analysing 

neoadjuvant treatment makes it possible to assess direct response to therapies, the 

associated effects toward survival with the absence of disease, and overall survival 

rates. Moreover, it has been found that achieving a pathologically complete response 

following neoadjuvant chemotherapy often yields improved prognosis outcomes, 

particularly in patients who express HER2-postivie BCA, as well as expressing triple 

negative BCA (Cortazar et al., 2014). In the case of HER2-overexpressing and 

endocrine responsive BCA, targeted therapies exhibiting only moderate levels of 

toxicity are continually being developed, particularly in the realm of metastatic therapy 

(Finn et al., 2015).  

BCA can be variable in their expression of the estrogen receptor, either presenting as 

estrogen receptor positive (ER+) or negative (ER-), separating it into two distinct 

categories which are widely considered to be fundamentally separate disease entities. 

Specifically, tumours presenting as ER- are often high grade, p53 mutated, and 

generally have the worse prognosis in comparison to ER+ BCA. Furthermore, unlike 

ER+ BCA, patients suffering from ER- tumours have very limited viable treatment 

option, such as targeted therapy exploiting the over-expression of the HER2 or ERBB2 

gene in certain cases of ER- tumours (Teschendorff, Miremadi, Pinder, Ellis, & Caldas, 

2007). 

1.5 RECENT ADVANCES IN BREAST CANCER 

Over the past few years, substantial advances have been made in the discovery of new 

drugs for treating BCA. Improved understanding of the biologic heterogeneity of BCA 
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has allowed the development of more effective and individualized approach to 

treatment (Moulder & Hortobagyi, 2008). One of the major challenges for BCA 

treatment is its heterogeneous nature, which determines the therapeutic options (Polyak, 

2011). The high implication of correct HER2/neu diagnostic assessment in BCA 

therapeutic decisions is of primary importance in clinical oncology. HER2/neu 

oncogene evaluation provides important prognostic information and helps clinicians to 

identify patients with primary or advanced metastatic cancer who are the most likely to 

benefit from Herceptin-targeted therapy. For this reason, this review cannot discuss 

HER2+ omics profiles without pointing out pathologists' efforts to correctly 

characterize HER2 status (Goddard et al., 2012). 

More recently, several novel therapy strategies have emerged for the treatment of BCA. 

An example of this is the emergence of new agents aimed at the reversal of resistance 

to commonly used hormonal therapies used in the treatment of hormone receptor 

positive BCA. These include various novel drugs, such as Abemaciclib, Buparlisb, 

Everolimus and Vorinostate, to name a few, having various modes of action ranging 

from inhibiting cyclin dependent kinase CDK4 and CDK6 to acting as mTOR inhibitors 

in advanced BCA. Furthermore, advances in the realm of BCA treatment has also seen 

the improved understanding of resistance mechanisms, particularly in HER2+ BCA, 

and the emergence of immunotherapies which improve treatment outcomes. These 

include novel strategies such as making use of combinations of trastuzumab and PI3L, 

Akt and mTOR inhibitors to overcome trastuzumab resistance in HER2+ BCA, along 

with the use of the multi targeting TKIs Neratinib, the monoclonal antibody Patritumab, 

the antibody drug conjugate Trastuzumab emtansine, the farnesyl transferase inhibitor 

Lonafarnib, and using the peptide Nelipepimut-S in immunotherapy.  Furthermore, 
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advances have also been made with regard to triple negative BCA, whereby several 

novel targeted agents are emerging. These include the use of poly (ADP-ribose) 

polymerase inhibitors, antiangiogenic agents such as Bevacizumab, epidermal growth 

factor inhibitors, SRC-inhibitors and the use of the monoclonal IgG4-k antibody 

Pembrolizumab in immunotherapy (Tong, Wu, Cho, & To, 2018).    

1.5.1 Breast cancer therapy advances 

Early BCA without detectable distant metastases is considered potentially curable. 

Therapy has progressed substantially over the past years with a reduction in therapy 

intensity, both for loco-regional and systemic therapy; avoiding overtreatment but also 

under treatment has become a major focus. Therapy concepts follow a curative intent 

and need to be decided in a multidisciplinary setting, taking molecular subtype and 

loco-regional tumour load into account. Primary conventional surgery is not the optimal 

choice for all patients anymore. In triple-negative and HER2-positive early BCA, 

neoadjuvant therapy has become a commonly used option. Depending on clinical 

tumour subtype, therapeutic backbones include endocrine therapy, anti-HER2 

targeting, and chemotherapy. In metastatic BCA, therapy goals are prolongation of 

survival and maintaining quality of life. Advances in endocrine therapies and 

combinations, as well as targeting of HER2, and the promise of newer targeted therapies 

make the prospect of long-term disease control in metastatic BCA an increasing reality 

(Gnant & Harbeck, 2017).  To date, several novel molecular targets for the treatment 

of BCA are undergoing investigation.  In the case of triple negative BCA, these include 

targets such as androgen receptor, epidermal growth factors, poly ADP-ribose 

polymerase (PARP) and vascular epithelial growth factor (VEGF), along with various 
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receptors such as phosphatases, tyrosine kinases, proteases, PI3K/Akt signalling 

pathway, microRNA’s ((miRNAs) and long noncoding RNA’s (lncRNAs). In the case 

of kinase inhibitors, several genes have been identified as potential novel targets for 

drug therapy, including CL1, CDK4, JAK2, AKT1 and EGFR.   With respect to micro-

RNA based approaches, emerging strategies involve the use of antisense 

oligonucleotides to inhibit onco-microRNA’s, restoration of tumour suppressors by 

means of microRNA mimic, and finally chemically modifying microRNAs. In the case 

of long noncoding RNA’s, oncogenes such as HOTAIR, SPRY4-IT1, GAS5 and PANDR 

have been the focal point of ongoing research for the development of new therapeutic 

approaches (Mitra, 2018). 

Furthermore, recent investigations surrounding biomarkers have revealed that 

exosomes, which have been shown to play critical roles in BCA, are stable in blood and 

other body fluids and thereby may be utilised as a novel biomarker (He, Zheng, Luo, & 

Wang, 2018). Moreover, plasma microRNA’s have been identified as non-invasive, 

novel biomarker that may be used in the detection of BCA (Fang et al., 2019). Another 

example of emerging biomarkers is the Autotaxin-Lysophosphatidic acid signalling 

axis that was shown to play an essential role in the progression and invasiveness of 

BCA, and that it may serve as a novel biomarker for diagnostic and prognostic purposes 

(Shao, Yu, He, Chen, & Liu, 2019).   

Sequencing of BCA genome and transcriptome has identified BCA as a malignant 

disease with vast heterogeneity which is categorized into five distinct molecular 

subtypes including luminal A, luminal B, human epidermal growth factor receptor 2 

(HER2)-enriched, basal-like, and claudin-low (Perou et al., 2000). Yet, scientifically, 

up to ten different molecular subtypes have been identified using gene copy number 
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and expression analyses (Curtis et al., 2012). Among these, luminal-type accounts for 

the most part of BCA and is characterized with the typical expression of estrogen 

receptor (ER) and/or progesterone receptor (PR), which can be effectively targeted with 

hormone therapy. However, some patients have intrinsic resistance or acquired 

tolerance to hormone or endocrine therapy, which hampers the survival prolongation of 

these patients. Basal-like BCA, which is characterized with comparatively aggressive 

phenotype and the absent status of ER, PR and HER2, still lacks efficient treatment 

strategy. Thus, novel effective therapies are urgently required for BCA population (Xu 

et al., 2017). 

Approximately 15% to 20% of invasive BCA have amplification of the human 

epidermal growth factor receptor 2 (HER2) gene or overexpression of the HER2 

protein. Before the availability of HER2-directed therapies, women with early-stage 

HER2-positive BCA faced a worse prognosis than those with a diagnosis of HER2-

negative disease, with shorter time to disease relapse, an increased incidence of 

metastases, and higher mortality (Perez et al., 2014). Results from large adjuvant trials 

showed that incorporating trastuzumab into standard adjuvant chemotherapy regimens 

provided substantial improvements in outcomes for women with HER2-positive BCA. 

Despite these impressive results, some patients will develop recurrences after 

trastuzumab-based adjuvant therapy, so efforts to identify more effective regimens are 

appropriate (Smith et al., 2017). The addition of trastuzumab to paclitaxel after 

doxorubicin and cyclophosphamide in early-stage HER2-positive BCA results in a 

substantial and durable improvement in survival as a result of a sustained marked 

reduction in cancer recurrence (Perez et al., 2014). 
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Figure 1.4: Principles of systemic therapy in early BCA. Summary of general treatment 

strategies, updated after the publication of Harbeck and colleagues, 2010. 

1.6 PUBLIC DATASET 

The amount and diversity of genomic scale data has been steadily increasing for the 

past several years. This increase has enabled integrative translational bioinformatics 

studies across these datasets (Butte & Kohane, 2006). 

1.6.1 Genomics, Transcriptomics, Proteomics, and Metabolomics 

There are new families of technologies that provide a comprehensive analysis of the 

complete, or near-complete, cellular complement of specific constituents, such as 

RNAs, DNAs, proteins, intermediary metabolites, etc. These have been termed “-

omics” technologies, a terminology derived from the Greek suffix “-ome” which 

denotes a body or group—in the commonly-used sense of a complete body or group for 

example the “biome”—the complement of living organisms in a particular 
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environment, or the “genome”—the complete set of genes contained in the cellular 

complement of chromosomes. Omics now includes genomics, transcriptomics, 

proteomics, and metabolomics. In the near future, we may expect extension of these 

technologies to include other classes of cellular molecules, such as lipids, 

carbohydrates, lipoproteins, etc. These technologies are extremely powerful new tools 

with which to study disturbances of cellular homeostasis or structural integrity at a 

molecular level (Aardema & Macgregor, 2002). 

Fundamental biological processes can now be studied by applying the full range of 

OMICS technologies to the same biological sample (Morrison et al., 2006). Omics 

technologies provide the tools needed to look at the differences in DNA, RNA, proteins, 

and other cellular molecules between species and among individuals of a species. These 

types of molecular profiles can vary with cell or tissue exposure to chemicals or drugs 

and thus have potential use in toxicological assessments. Omics experiments can often 

be conducted in high-throughput assays that produce tremendous amounts of data on 

the functional and/or structural alterations within the cell. These new methods have 

already facilitated significant advances in our understanding of the molecular responses 

to cell and tissue damage, and of perturbations in functional cellular systems (Aardema 

& Macgregor, 2002). 

There is every reason to expect major change during the next decade, as new 

technologies and knowledge become incorporated into regulatory and industrial 

practice. Indeed, a new sub-discipline of “toxicogenomics” has already been 

recognized. Toxicogenomics has been broadly defined as the study of the relationship 

between the structure and activity of the genome, the cellular complement of genes, and 

the adverse biological effects of exogenous agents. This is consistent with the broad 
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definition of pharmacogenomics recently proposed by Lesko and Woodcock 

(Woodcock, 2014).  

1.6.2 Multi-omics approaches to studying BCA 

Recently, integrative analysis on multi-omics data to find biomarkers or pathway 

features highly associated with cancer has received considerable attention (Jeong, 

Leem, Wee, & Sohn, 2015). Considering the rich information contained in multi-omics 

data, many studies have investigated the interrelationships among multiple meta-

dimensional data for improved biological interpretation and analysis (González-

reymúndez, Campos, Gutiérrez, Lunt, & Vazquez, 2017). In a study conducted by 

González-reymúndez et. al, aimed at improving the prediction of BCA patients, they 

extended clinical models including prognostic and prediction factors with whole-omic 

data, to integrate omics profiles for gene expression and copy number variants (CNVs). 

Herewith, they described a modeling framework that is able to incorporate clinical risk 

factors, high-dimensional omics profiles, and interactions between omics and non-

omics factors, such as treatment.  

Omics technologies are extremely powerful new tools allowing for the study of 

disturbances of cellular homeostasis or structural integrity at a molecular level. 

Furthermore, advances in omics open new opportunities for cancer risk prediction and 

risk-based screening interventions (Lévesque et al., 2018). Recently, the power 

surrounding omics in BCA treatment was reported on in a study conducted by Tunali 

et al., in 2021, where they described how omics may be utilised to achieve the goal of 

precision medicine and the identification of novel strategies for the treatment of cancers 

such as BCA, based on the underlying genetic, environmental and lifestyle factors 

pertaining to patients on an individual basis. Furthermore, they highlighted how these 
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factors may be used to develop individualised treatment options with respect to 

particular drugs and their dosages (Tunali, Gillies, & Schabath, 2021). Similarly, a 

study conducted by Chakraborty et al., investigating the integration of multi-omics data 

in cancer research also reported on the emergence of system biology models which 

would allow for the development of tailored targeted therapies for patients, increasing 

onco-drug efficacy and moving towards overcoming the occurrence of resistance to 

conventional chemotherapeutic and immunotherapeutic strategies (Chakraborty, 

Hosen, Ahmed, & Shekhar, 2018).  A review by Yates and Desmedt in 2017 further 

highlighted the necessity of an integrated approach utilizing multiple forms of omics to 

advance the understanding and therapeutic strategies in overcoming BCA (Yates & 

Desmedt, 2017).  

1.7 DATA INTEGRATION AND ITS IMPORTANCE 

        Clearly there is a plethora of diverse data on diseases such as BCA. This data comes 

from diverse sources including clinical observations, biopsies, experiments and 

research articles, omics, and different databases inter alia. The onslaught of large 

genomic and imaging datasets is exacerbating this condition and has necessitated 

researchers to search for ways of coping with the acquisition, integration, storage, 

distribution, and analysis demands (Frey, 2018). This organization of data makes it fit 

for use by clinicians to expedite diagnosis and for scientists and other users to identify 

caveats. This process is referred to as data integration. Zipkin et al., (2021) defines data 

integration as a statistical modelling approach that incorporates multiple data sources 

within a unified analytical framework. Further, (Schaub & Abadi, 2011) and (Michener 
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& Jones, 2012) indicated that this methodological approach facilitates understanding of 

complex and interacting processes.  

The benefits of data integration include successful decision making, improves 

collaboration and unification of systems, reduce errors and redundancy in operations, 

create data warehouses and data lakes, and generally improve operating intelligence. 

Such formatted data may be presented meaningfully in systematic reviews, white 

papers and expedite precision medicine (Frey, 2018). However, these data may remain 

in pools of legacy systems pertaining to individual institutions which still stifle 

efficiency. It is essential to combine legacy data with external data and in keeping up 

with new developments leading to database integrations. 

1.8 TECHNOLOGICAL ADVANCES IN DATA AND DATABASE 
INTEGRATION 

There are several ways to integrate data depending on the size of institutional 

requirements. This may begin with manual data integration, all the way through to 

common storage integration. In between middleware data integration, application-

based integration and uniform integration are amongst the resources that can be used to 

develop integrated databases. Several features indicate good data integration including 

lots of connectors, open source, portability, and ease of use, transparent pricing, and 

cloud compatibility (“Reference - OGM Library,” n.d.). These features may lead to 

meaningful databases that can be integrated to effect efficiency.  

 

Database integration is the process aggregating information from multiple sources that 

securely shares a current clean version of data which is stored and well defined 

according to rules across an institution. Thus, database integration provides the base to 
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and from where all information flows within an institution. For smaller institutions on 

site repositories of data storage is sufficient. However, with compound institutions, 

such as two laboratories merger across the globe, this may be inefficient as there could 

be redundancies and space, hence increasing cost. This necessitates efficiency of using 

cloud-based databases as demonstrated by the current needs.  

The benefits of database integration include universal reliability of data, holistic 

operations, simplified security, and ease of compliance. The technological advances 

date back from logbook system, punch card systems, onsite servers, and lately cloud 

based integrated databases. Three Apache tools namely, Apache Hadoop, Apache 

Spark, and Apache Cassandra, played a major role in developing open source and 

flexible integrated databases for theoretically unlimited scalability (“Reference - OGM 

Library,” n.d.). 

There are two main database  management systems used for data integration namely, 

relational databases (RDBMs) and graph databases. The RDBMs are characterised by 

tables, rows, columns of data, constraints, and joins. These become difficult to interpret 

at a glance with increased information. On the other hand, graph databases are easy to 

interpret at a glance. Their main features include graphs characterized by nodes, 

relationship, and connectivity. These are the first-class entities rendering relationships 

more valuable than data itself. A desirable integrated database could be one that can 

present information in both tables and graphs, for example Neo4j.  

1.9 BEYOND RAW DATA – KNOWLEDGE INTEGRATION 

Scientific knowledge is created from a subjective combination of data generated and 

shared by various institutions emanating from clinical trials, research, experiments, 

http://etd.uwc.ac.za/



CHAPTER 1 | LITERATURE REVIEW 

22 

 

information, education, decisions, intuitions, experiences et cetera. These data can be 

selected, analysed, and subsequently transformed, interpreted, and used in reasoning, 

decision making and also to create new knowledge (Rückemann et al., 2021). 

Therefore, in essence comprehensive knowledge is multi- and interdisciplinary. 

There is abundant high-quality biomedical data available from numerous research 

efforts that is available for creating new knowledge. One of these data portals includes 

Genomic Data Commons Data Portal (GDC) where there is presentation of multi omics 

data relating to cancer (GDC data portal_ https://portal.gdc.cancer.gov/). However, this 

abundance simultaneously becomes the core challenge to sharing, retrieving, 

integration and application of data and knowledge/facts. Developments in information 

technology and computational sciences have eased this problem and further enabled 

presentation of data in concise and informative formats. One of these formats is 

knowledge graphs. 

Design of knowledge graphs exploits information integration. However, first and 

foremost, data must be presented in useable formats. Generally, data may be classified 

into two categories i.e., structured data and unstructured data. Structured data is mostly 

quantitative, factual, well organised, and coded data (alphabetical, numerical, metrics 

or date) in a predefined tabular format. This makes it easy to search and analyse. On 

the other hand, unstructured data is mostly qualitative and presented in a variety of 

forms. This form of data is often not structured via predefined data models. Thus, it 

cannot be processed and analysed using conventional tools. While structured data is 

often fraught with loss of reasoning leading to the output, unstructured data may be 

thought of as residing in discourse and thus rich in explanation. However, for a 
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comprehensive database in biomedical sciences a combination of both data types is 

essential.  

The current developments in sharing data knowledge and information have necessitated 

employment of specialized information systems to facilitate the resourceful use of such 

items. This has resulted in substantial innovation in the area of data and knowledge 

integration, in the form of structured knowledgebases, the most noteworthy being those 

employing graph relational database systems and concepts such as semantic 

representation and ontology. 

1.10 EXAMPLES OF KNOWLEDGE/GRAPH DATABASES 

Some graph databases are able to model complex relationships that are almost 

impossible to depict using relational databases, due to their ability to retain relationships 

directly by linking ‘atoms’ of information (nodes) through labelled edges instead of 

accessing and browsing tables (Mei, Huang, Xie, & Mora, 2020). Biomedical domain 

has adopted graph database because of the interconnected nature of its data. This 

enables more informed representation models and better data integration workflows, 

exploration, and analysis abilities (Timón-Reina et al., 2021). Neo4j and TypeDB 

(https://vaticle.com/typedb) are currently amongst the most popular graph databases.  

Neo4j is a popular open-source graph database that is highly scalable and schema free 

(NoSQL) developed in Java and it has a rich query language called Cypher. Its 

advantages include that it provides flexible data models that can be easily modified to 

diverse applications, as well as capabilities to provide real time insights. Other 

properties of Neo4j include representing connected and semi connected data, easy and 
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fast retrieval and it is fully ACID (Atomicity, Consistency, Isolation and Durability) 

compliant (“Reference - OGM Library,” n.d.). 

TypeDB (https://vaticle.com/typedb) is a knowledge graph that is data oriented and 

ontology like, enabling complex systems making them more intelligent through logic, 

reasoning, and knowledge engineering (Nielsen et al., 2016). TypeDB is a database in 

the form of a knowledge graph that uses an intuitive ontology to model extremely 

complex datasets. It stores data in a way that enables machine learning by presenting 

meaning of information in the complete context of their relationships. The language of 

TypeDB is a declarative, knowledge-oriented graph query language that uses machine 

reasoning to retrieve explicitly stored and implicitly derived knowledge (Timón-Reina, 

Rincón, & Martínez-Tomás, 2021). Consequently, TypeDB allows computers to 

process complex information more intelligently with less human intervention (Altinok, 

2020). The platform TypeDB and the language GRAQL constitutes TypeDB.  TypeDB 

may thus be considered as a deductive database presenting data in knowledge graph 

format that exploits machine reasoning to simplify data processing challenges for AI 

applications. (Messina et al., 2018) proposed BioGrakn, a graph-based semantic 

database that takes advantage of the power of knowledge graphs and machine reasoning 

to solve problems in the domain of biomedical science. While it is claimed to model 

biological data in all its complexity and contextual specificity (Messina et al., 2018), it 

does not represent the molecular mechanisms of disease phenotypes and the biological 

processes and pathways that are perturbed/dysregulated in the initiation and progression 

of disease. 
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When comparing TypeDB and Neo4j, Altinok, (2020) argues that the latter is a true 

knowledge graph, as demonstrated by the schematic definitions in Neo4j with relations, 

classes, instances, and properties. In our experience, Neo4j is ‘whiteboard friendly’ and 

enables uncomplicated modeling of multiple biological and biomedical knowledge 

domains in a single knowledge graph that can be used for knowledge discovery. 

1.11 OVERVIEW OF RESEARCH PLAN 

In this study a bioinformatics tool is developed to enable linking data from cloud-based 

data lakes improving data quality while enabling healthcare practitioners, researchers 

and interested parties to make fast and accurate decisions by linking nodes from 

different sources.  

BioOntological Relationship Graph database (BORG) is an example of a successful 

semantic integration database integrating multiple sources of genomic and biomedical 

knowledge (Saunders, Jalali Sefid Dashti, & Gamieldien, 2016).  

In this research, Bioinformatics techniques were applied on genes implicated in cancer 

and BCA abstracted from multiple sources associated with genomics data, i.e., very 

high throughput data from TCGA on expression and from the GDC data portal the 

mutation frequency data and copy number variation data. An enrichment analysis was 

applied to the resultant data to source out relevant information. This data was then 

organised into a meaningful integrated data pool. In these integrated data pools were 

genes that were not previously linked to BCA together with myriad of cancer and non-

cancer associated pathways. These genes, ontologies and pathways were organised into 

nodes and links to model data into graphical form enabling extrapolation and thus 

purporting potential functions and anomalies.  
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CHAPTER 2 

 

THE DEVELOPMENT OF BREAST CANCER KNOWLEDGE 

GRAPH / DATABASE AND THE PROOF OF CONCEPT  

 

2.1 INTRODUCTION  

Bioinformatics and computational resources provide powerful tools for research and 

the diagnosis of complex diseases, with sophisticated software and pipelines for 

secondary and tertiary data analyses having been developed to assist in the study of 

such diseases (Sadedin et al., 2015). While the software and analysis pipelines required 

for extracting genetic variations from a genomics experiment have reached a relatively 

advanced stage of development (Meehan et al., 2019), the tools for identifying a subset 

of relevant candidates for a particular study are still in their infancy. Even after 

extensive filtering based on potential disease-causing effects and prior knowledge, 

omics studies generate more potential candidates than can be experimentally confirmed. 

This challenge is equally applicable to the investigation of inherited diseases and 

somatic disorders such as cancer and is particularly difficult in complex diseases, where 

multifactorial variations collectively contribute to the disease phenotype (Marian, 2012; 

Tam et al., 2019). Novel approaches are essential to prioritize candidates for further 

investigation, and developing specialized computational and bioinformatics resources 

and software tools is therefore necessary to extract meaningful biological and clinical 

insights from next-generation sequencing datasets. To address this need, methods and 

concepts for effectively mining functional gene annotations continue to evolve, as they 
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play a crucial role in deciphering the relationships between genes/genotypes and 

phenotypes (Beebe & Kennedy, 2016). 

Biomedical knowledge graphs for enhancing genomics discovery 

In the pre-genomic era, researchers primarily used a hypothesis-driven approach, which 

involved in-depth characterization of a disease's phenotype, leading to the identification 

of a single or a small set of disease gene candidates, which was then subjected to 

sequencing, differential expression analyses, or functional studies (Kann, 2009). While 

this method was widely practiced and contributed significantly to our understanding of 

genetic diseases in the pre-genomic era, it has largely been replaced in the next-

generation sequencing (NGS) era. However, since most diseases are complex and many 

involve multiple phenotypic presentations and diverse genetic abnormalities. This 

process has shifted from hypothesis-driven approaches to more data-driven and 

automated methods, with the goal of efficiently prioritizing candidates for further 

investigation in the NGS era. 

We posit that the assessment of genomic candidate genes should involve a 

comprehensive evaluation of their connections to known biomolecular functions and 

phenotypes. We therefore argue that there is a need for the development of carefully 

constructed knowledge graphs linking diverse formal biomedical ontologies, gene and 

protein functions, clinical phenotypes and known genotypes from diverse sources to 

enable more seamless and thorough interrogation of the multitude of information 

sources needed to make sense of candidates from a post-genomic scale study (Zhang et 

al., 2018).  The argument is that each potentially functional candidate variant or 

differentially expressed gene generated through an NGS study should undergo a 
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rigorous assessment, akin to what a biomedical scientist would perform - if it were 

feasible to manually consult the vast amount of relevant prior knowledge in the 

scientific literature in an integrated manner. In this study, we proposed to adopt 

automation and a robust data mining approach, facilitated by a comprehensive database 

that formally represents the relationships between genes and phenotypes, as well as the 

existing knowledge about the disease of interest and its phenotypic characteristics. We 

hypothesize that this approach would enable a knowledge-driven method for 

prioritizing omics candidates in general and promises to assist in the prioritization of 

genes and pathways, preventing the premature discarding of potentially promising 

candidates, whether they be from genetic, expression, epigenetic, or other genome-scale 

studies. This strategy becomes particularly valuable when traditional statistical methods 

are not applicable (Singhal et al., 2016). 

Previously, Saunders et al. (2016) identified candidate genes associated with 

tendinopathy by using our lab’s biomedical knowledge graph, the BioOntological 

Relationship Graph (BORG) database to re-screen differentially expressed human 

genes for potential links to tendinopathy. After prioritization, they identified four strong 

candidate genes that are not only differentially expressed in tendinopathy but also 

functionally related to clinical phenotypes and to genes previously implicated in other 

connective tissue diseases.  

High-value biomedical knowledge sources 

The Gene Ontology (GO) and its associated annotation project is currently the most 

comprehensive and reliable source of functional annotations. This resource involves 

both automated text mining tools and curation, identifying experimental findings in 
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scientific literature to associate specific GO terms, formally describing molecular 

functions, biological processes, or cellular locations, with gene products. While 

manually curated annotations are considered of the highest quality, annotations 

automatically extracted from texts have also proven to be valuable for functional 

annotations (Camon et al., 2004). In disease research, gene knockout experiments in 

model organisms serve as an extremely important source of functional annotations for 

implicating genes in the development of particular phenotypes (Albert & Kruglyak, 

2015). Databases for mouse and rat genomes are good examples in this regard, 

recording gene annotations that reflect observable morphological, physiological, and 

behavioural characteristics arising in gene knockout models over the lifespan of the 

animal (Kaldunski et al., 2022). Crucially, both databases employ the Mammalian 

Phenotype Ontology, a resource rich in community-accepted annotation terms that are 

also relevant to human disease research (Twigger et al., 2007). 

Chapter synopsis 

In this study, we hypothesized that existing knowledge about breast cancer and its 

typical phenotypic presentation should be considered comprehensively alongside gene 

functional annotations known to be involved in somatic oncology. This holistic 

knowledge-driven approach would help identify candidates that satisfy multiple criteria 

and are, therefore, more likely to be involved in the disease, while potentially 

uncovering previously unknown biological mechanisms underlying the disease. 

However, the multi-relational nature of such a strategy posed a significant challenge to 

relational database management systems (RDBMS), which are ill-suited for handling 

the semantic complexity and high interconnectedness of modern biological 

information. To address these limitations, emerging technologies like graph databases, 
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which enable the modeling of highly complex data and knowledge, are becoming 

increasingly important (Storey & Song, 2017).  

This chapter presents an implementation of a semantic model of breast cancer within 

our in-house biomedical knowledgebase, built on the flexible and robust Neo4J graph 

database management system (http://www.neo4j.org). It introduces a novel approach 

to integrate and mine extensive biomedical knowledge for the purpose of prioritizing 

candidates and provides a proof-of-concept for this approach in BCA. We demonstrate 

the utility of our breast cancer knowledge graph database in recommending the 

candidacy, potential disease relevance, and mechanism of action of differentially 

expressed genes from a previously published dataset. 

 

2.2  MATERIALS AND METHODS 

2.2.1 BioOntological Relationship Graph (BORG) database 

The in-house biomedical semantic database seamlessly integrates a vast amount of 

curated information related to genes, disease associations, phenotypes, and pathway 

memberships. This wealth of data is structured into a comprehensive on-disk semantic 

network, drawing inspiration from the principles in Sowa (2011). The Neo4J graph 

database (http://www.neo4j.org) serves as the foundation for this database, facilitating 

the storage of individual "knowledge atoms" and the relationships between them in the 

most intuitive and natural manner. In essence, this database resembles a large "concept 

map" that organizes genes and their roles in pathogenesis, e.g., breast cancer. It captures 

the intricate web of connections and associations in a way that resembles how a 
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biomedical scientist would conceptualize and reason about these elements (see Figure 

2.1).  

The foundational concept of this study’s semantic database centers around human genes 

and was further developed to establish connections to their known orthologs in the 

mouse and rat genomes, together with protein-protein interactions through meticulously 

annotated links that accurately describe the semantic relationships between them. 

Within this newly developed database, various bio-ontologies were incorporated to 

serve as crucial reference points for integration and furnish domain-specific terms 

essential for constructing queries. A significant focus of this study was the development 

of a specialized version of the BORG database tailored to support genomic research on 

breast cancer.  

We developed two versions of the database. The first was centred only around human 

genes and their functions, associated phenotypes, and known disease involvement 

(Figure 2.1, Table 2.1).  

1. Human genes are linked to Gene Ontology (GO) terms based on annotations 

provided by the GO consortium (Berardini et al., 2010). 

2. Disease Ontology terms based on curated associations mined from the NCBI’s 

Gene Reference into Function database (Schriml et al., 2012) 

3. Human Phenotype Ontology (Robinson and Mundlos, 2010) terms based on the 

phenotypes that are documented to be associated with human genes in the 

OMIM database. 
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Figure 2.1: The minimal iteration of the knowledge graph centered around human 

genes and their functions with associated phenotypes and known disease involvement 

related to human breast cancer. The edges linking the nodes show knowledge integrated 

from ontology mapping projects (solid black lines), ontology projects and manually-

discovered annotations (dotted blue lines), and manually-discovered annotations 

(dotted green lines). 

The second, more comprehensive iteration of the database included mouse and rat genes 

and their functions and knockout phenotypes, pathway involvement of human genes, 

as well as human protein-protein interactions (Figure 2.2, Table 2.2): 
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1. Mammalian Phenotype Ontology (Smith and Eppig, 2012) terms, which 

describe the phenotypes that arise when the gene is knocked out in mice (Bult 

et al., 2013) or/and rat (Nigam et al., 2013). 

2. Pathway Ontology (Green and Karp, 2006) terms, which models gene product 

involvement in pathways at a conceptual rather than structural level. 

3. Human protein-protein interactions from BIOGRID 

(http://www.thebiogrid.org). 

 

Figure 2.2 The comprehensive iteration of the knowledge graph expanded from figure 

2.1, including mouse and rat genes and their functions and knockout phenotypes, the 

pathway involvement of human genes, as well as human protein-protein interactions. 

The edges linking the nodes show knowledge integrated from ontology mapping 
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projects (solid black lines), ontology projects and manually-discovered annotations 

(dotted blue lines), and manually-discovered annotations (dotted green lines). 

 

Structuring knowledge using ontologies offers a significant advantage: when a gene is 

associated with a very specific term through hierarchical relationships. This hierarchical 

structure enhances the ability to extract relevant information from the database when 

conducting searches to implicate a preliminary list of genes in a disease of interest. 

Additionally, it's worth noting that storing information as a directed network enables 

human genes to "inherit" knockout phenotype annotations from model organisms 

through transitive associations. 

 2.2.2 Development of a semantic network representation of BCA gene-

phenotype-disease relationships 

It is now widely acknowledged that epistasis, the intricate interplay between genes, 

plays a crucial role in shaping the phenotypic expression of complex diseases. 

Consequently, the hypothesis in this study was that any gene with prior evidence of 

involvement in a phenotype related to a specific disease could potentially be a novel 

disease gene. Similarly, genes with functions similar to those of previously associated 

genes in the context of a disease logically become potential candidates for that disease. 

However, we were acutely aware that specific phenotypes and functions are 

conceptually related as 'parent' and 'child' terms within relevant ontologies. This 

awareness meant that even with extensive manual filtering and the use of the BORG 

database, we might overlook potential candidates due to gaps in our knowledge of the 

hierarchical relationships between these phenotypes and functions. Additionally, biases 
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stemming from preconceived ideas about relevant phenotypes and functions could lead 

to the incorrect rejection of potentially significant candidates. 

  

http://etd.uwc.ac.za/



CHAPTER 2 | PROOF OF CONCEPT 

46 

 

Table 2.1 (a): Ontology terms used to transitively link genes to the breast cancer terms 

in the minimal BORG semantic database. 

TERM ID ONTOLOGY TERM 

Gene Ontology 

    GO:0005925 focal adhesion 

    GO:0048545 response to steroid hormone 

    GO:0097305 response to alcohol 

    GO:0050678     regulation of epithelial cell proliferation 

    GO:0048729     tissue morphogenesis 

    GO:0042772     DNA damage response, signal transduction resulting in transcription 

    GO:0000079     regulation of cyclin-dependent protein serine/threonine kinase activity 

    GO:1903555     regulation of tumor necrosis factor superfamily cytokine production 

    GO:0072395     signal transduction involved in cell cycle checkpoint 

    GO:0006977     DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest 

    GO:0006282     regulation of DNA repair 

    GO:0071158     positive regulation of cell cycle arrest 

    GO:0043407     negative regulation of MAP kinase activity 

    GO:0032200     telomere organization 

    GO:0000187     activation of MAPK activity 

     GO:0097191     extrinsic apoptotic signaling pathway  

    GO:0072331     signal transduction by p53 class mediator 

    GO:0043409     negative regulation of MAPK cascade 

    GO:0038127     ERBB signaling pathway 

    GO:0043410     positive regulation of MAPK cascade 

    GO:0043405     regulation of MAP kinase activity 

    GO:2001233     regulation of apoptotic signaling pathway 

    GO:0000165     MAPK cascade 

    GO:0007173     epidermal growth factor receptor signaling pathway 
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    GO:0008285     negative regulation of cell proliferation 

    GO:0043066     negative regulation of apoptotic process 

    GO:0008284     positive regulation of cell proliferation 

    GO:0043065     positive regulation of apoptotic process 

    GO:0008083     growth factor activity 

    GO:0042981     regulation of apoptotic process 

    GO:0006974     cellular response to DNA damage stimulus 

    GO:0001664     G-protein coupled receptor binding 

    GO:0048020     CCR chemokine receptor binding 

    GO:0005159     insulin-like growth factor receptor binding 

    GO:0052742     phosphatidylinositol kinase activity 

    GO:0004693     cyclin-dependent protein serine/threonine kinase activity 

    GO:0097472     cyclin-dependent protein kinase activity 

    GO:0004709     MAP kinase kinase kinase activity 

    GO:0043560     insulin receptor substrate binding 

    GO:0004713     protein tyrosine kinase activity 

    GO:0030330     DNA damage response, signal transduction by p53 class mediator 

    GO:0043516     regulation of DNA damage response, signal transduction by p53 class mediator 

Human Phenotype Ontology 

    HP:0003002 Breast carcinoma 

    HP:0001428      Somatic mutation 

    HP:0003220 Abnormality of chromosome stability 

    HP:0100013 Neoplasm of the breast 

 

 Table 2.1 (b): Ontology terms used to transitively link genes to the breast cancer terms 

in the comprehensive database. 

TERM ID ONTOLOGY TERM 

Pathways (PW) 
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 PW:0000624 breast cancer pathway 

 PW:0000232 PI3K-Akt signaling 

 PW:0001317 cell cycle pathway  

 PW:0000718 p53 signaling 

 PW:0001252 prolactin signaling 

 PW:0000525 ras signaling 

 PW:0000501 thyroid hormone signaling 

 PW:0000829 chemokine signaling 

 PW:0000386 Rap1 signaling 

 PW:0000008 wnt signaling 

 PW:0001515 hippo signaling 

 PW:0000007 MAPK signaling 

 PW:0000180 mtor signaling 

 PW:0000814 Toll-like receptor signaling 

 PW:0000542 AMPK signaling 

 PW:0000303 p53-dependent G1/S DNA damage checkpoint pathway 

 PW:0000304 p53-independent G1/S DNA damage checkpoint pathway 

Mammalian Phenotype Ontology (MP) 

 MP:0002166     altered tumor susceptibility 

 MP:0010639     altered tumor pathology 

 MP:0002019     abnormal tumor incidence 

 MP:0003077     abnormal cell cycle 

 MP:0003448     altered tumor morphology 

 MP:0010307     abnormal tumor latency 

 MP:0006035     abnormal mitochondrial morphology 

 MP:0000858     altered metastatic potential 

 MP:0003566     abnormal cell adhesion 

 MP:0008058     abnormal DNA repair 

 MP:0002006     tumorigenesis 

 MP:0005076     abnormal cell differentiation 
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 MP:0002166     altered tumor susceptibility 

 MP:0003447     decreased tumor growth/size 

2.2.3 Semantic representation of BCA disease biology through cross-

ontology mapping  

To mitigate potential human errors and make optimal use of the rich semantic 

relationships within the BORG database for candidate prioritization, we leveraged 

another important and innovative feature of storing the semantic network within the 

Neo4J graph database. This feature enabled us to establish links between terms from 

different ontologies in a semantically correct manner. Specifically, we could link terms 

relevant to breast cancer from the two phenotype ontologies, the Gene Ontology (GO) 

and pathway ontologies to the "breast cancer" term in the Disease Ontology (as 

illustrated in Figures 2.1 and 2.2). This fulfilled our objective of developing a 

semantically sound search method to discover transitive associations between genes 

and diseases based on their known involvement in relevant phenotypes, functions, or 

pathways related to human breast cancer. 

In our case, a mutated or differentially expressed gene not previously implicated in 

breast cancer but known to play a significant functional role related to the disease or its 

associated phenotypes could be considered a potential novel BCA gene, biomarker, or 

drug target. Automation was essential for this process, necessitating the selection of a 

core set of concepts that could be used to establish transitive links between genes and 

diseases via an intermediate set of functions, phenotypes, and pathways. 

Simultaneously, we had to carefully choose the highest-level term on the ontology 

hierarchy, enabling a gene linked to a highly specialized term to be automatically 
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implicated in disease involvement through its transitive association with the parent 

term, as depicted in Figure 2.2.  

2.2.4 Mining the ‘BCA-BORG’ database using path-based transitive 

association queries 

The BORG database is designed to structure individual facts in a manner that aligns 

with how humans naturally think about them. Researchers can ask complex questions 

of the system based on the underlying meaning of the data. This capability enables in-

silico experimentation through intricate querying, retrieval of annotations, and the 

semantic discovery of genotype-to-phenotype associations. The hierarchical structure 

of biological ontologies, as discussed earlier, further assists in identifying transitive 

associations that may not always be obvious but are biologically plausible and correct. 

One of the most powerful features of the BORG database is that it allows researchers 

to discover transitive links between genes and diseases. This feature returns the 

semantic relationships between all concepts (genes or terms) in the discovered path, 

such as "associated with" or "feature of," providing a comprehensible human-readable 

report that explains the biological relevance of the link. As previously mentioned, a 

significant use case for this feature is the ability to uncover potential associations that 

may not be immediately apparent but have biological validity. 

In the context of breast cancer, this querying facility operates by performing a directed 

"walk" on the semantic network to find all paths between a candidate gene of interest 

and the disease term within the database (Figure 2.3). It can find the shortest path, all 

paths, or all paths shorter than a pre-specified length. Reports are generated on a per-
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gene basis and prove particularly useful when filtering a large list of candidates, as only 

genes with at least one path leading to the disease will be returned. These reports 

incorporate information from various knowledge domains, which can be used to further 

prioritize candidates manually based on the automatically discovered evidence. The 

most appealing aspect of this query facility is its capacity to uncover transitive 

associations that might have been overlooked when consulting the literature or 

individual databases directly. 

 

Figure 2.3. Example of a path-based walk identifying transitive evidence for a gene’s 

potential role in breast cancer, as illustrated by the red arrows and blocks. 
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2.2.5 Testing the knowledge discovery potential of ‘BCA-BORG’ 

Eswaran et al. (2012) successfully mapped a breast cancer transcriptomic landscape 

through mRNA sequencing, yielding comprehensive digital transcriptomes of TNBC, 

non-TNBC, and HER2-positive breast cancers. The heterogeneity of BCA and the need 

for a better understanding of its genetic landscape, cellular hierarchy, and molecular 

basis to improve diagnosis, prognosis, and treatment were highlighted in this study. 

Furthermore, novel transcripts and differentially expressed transcripts across the three 

breast cancer subtypes were elucidated. This study generated 1.2 billion reads, with 

2617 transcripts differentially expressed between TNBC and Non-TNBC groups and 

3087 transcripts differentially expressed between TNBC and HER2-positive groups 

from 17 individual human breast cancer tissues. 

With the ground-work done in this study, there is a need for the development of more 

robust yet concise methodologies linking and presenting inter-relationships between 

genetics, cellular hierarchy, and molecular mechanisms to improve diagnosis, 

prognosis, and treatment. In the current study, the development of data graphs was 

deemed appropriate to enhance this information. 

The objective of the current study was to evaluate the ability of the minimal  ‘BCA-

BORG’ system to uncover new genes that can potentially be associated with BCA, yet 

previously not definitively linked to BCA and reported in large studies and also 

accessible in databases after enrichment analysis (https://maayanlab.cloud/Enrichr/). 

BORG was expected to return these genes with either breast cancer associated 

pathways, ontologies, disease and or “guilt by association." Furthermore, to test if the 

system can return evidence supporting the published assertions. 
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The putative genes implicated in BCA were extracted from Eswaran et al. (2012). These 

genes included those that were upregulated and those that were downregulated. These 

genes were stratified using Log2FC (≥1 and ≤ -1, for upregulated and downregulated, 

respectively) and FDR (<0.05). The clusters of genes were filtered using pathways, 

ontologies, and disease on Enrichr. The adjusted P value of < 0.05 was used to include 

relevant genes. The genes meeting the above criteria were selected to train BORG. The 

‘all paths’ option was selected. 

This analysis identified functions that were overrepresented among these genes. From 

this set of overrepresented functions, we selected an appropriate parent term that serves 

as a representative and transversely links all the identified terms and their related 

functions to the disease. 

2.3  RESULTS AND DISCUSSION 

2.3.1 RESULTS 

To identify gene functions relevant to the development of or predisposition to breast 

cancer and to implicate novel genes sharing similar impactful functional mutations, an 

analysis was conducted in BORG, genes strongly associated with BCA from the 

Eswaran study were analyzed. Several statistically overrepresented gene functions were 

identified through this analysis and subsequently yielded the compilation of Gene 

Ontology (GO), Human Phenotype (HP), Pathways (PW), and Mammalian Phenotype 

(MP) terms, as detailed in Table 2.1 (a) and (b). 
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Table 2.2: Genes returned by the BORG minimal and comprehensive knowledge 

graphs.  

Genes Minimal database Comprehensive database  

Upregulated 

  

IGFBP3, MET* ABI1, ACTN1, ANP32E, CDH3, CHST11, DDIT4, E2F3, 

EEF2, FLNA, FZD8, GAPDH, HNRNPA3, IGFBP3, 

KIF1B, KIF5B, KRT16, MET*, MFGE8, NRP2, PLEC, 

PRKX, PTP4A3, RORA, S100A8, S100A9, SOX11, 

VANGL2, YES1 

Downregulated AGR2, AR*, ESR1, 

FOXA1, RHOB 

AGR2, AR*, BCL2, ELP2, ERBB4, ESR1, FBP1, FOXA1, 

GATA3, KDM4B, RHOB, SPDEF, TPSAB1, ZNF703 

Potential novel genes are presented in bold print. The asterisk (*) indicates genes 

referred to in the section discussing the strengths of integrating the two databases. 

The gene data from Eswaran was run on BORG as two databases namely the minimal 

and comprehensive databases. Both knowledge graphs iterated genes together with 

relevant attributes including their association with human breast cancer and PubMed 

IDs. Selected results from the system will be presented and discussed in the subsequent 

sections. A comprehensive list of the BORG results is presented in an "Additional Files" 

folder.(https://drive.google.com/drive/u/0/folders/1yLjvBIaqMNYHNun8uw3nBlckQ

N_0UmtZ) 
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Amongst the differentially expressed genes returned by the minimal database were 

IGFBP3 and MET (upregulated); and AGR2 AR, ESR1, FOXA1, and RHOB 

(downregulated). These genes are known to be implicated in breast cancer and the 

system returned additional information explaining their molecular roles in oncology. 

For example, the minimal model annotated the IGFBP3 (insulin like growth factor 

binding protein 3) transcript as being involved in positive regulation of apoptotic 

process and negative regulation of smooth muscle cell proliferation , which indicate 

possible roles in the development of BCA (Figure 2.4).  

 

Figure 2.4. The result from the minimal database for the upregulated insulin-like 

growth factor binding protein 3 gene. 

With downregulated genes, Forkhead box A1 (FOXA1) is a gene that encodes a protein 

belonging to the FOX family of transcription factors. The minimal BORG annotations 

further indicated that this gene is implicated in BCA via positive regulation of apoptotic 

process (Figure 2.5). 

These results indicated that the minimal model works effectively in identifying 

information of genes in relation to breast cancer, but we hypothesized that the complete 

model would perform better. 
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Figure 2.5. The result from the minimal database for the upregulated Forkhead box A1 

gene. 

The comprehensive database returned additional information on the above known 

genes. For an example, IGFBP3 (Figure 2.6) was further reported by the system to 

interact with two other genes namely, IGF2, the insulin like growth factor 2 and IGF1R, 

the insulin like growth factor 1 receptor, which have both been previously reported to 

be involved in breast cancer. 
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Figure 2.6. The result from the comprehensive database for the downregulated insulin 

like growth factor binding protein 3 gene. 

 
Demonstration of the strengths of integrating the two databases 

The comprehensive database prioritised genes not returned by the minimal version or 

provided much more compelling evidence for a gene’s candidacy for involvement in 

BCA. Examples of genes returned by these both systems include AR as upregulated and 

MET downregulated as shown in Figures 2.7, 2.8, 2.9, and 2.10 below. 

The minimal database annotated the AR gene with attributes related to human breast 

cancer including implication to the disease, pathways, and processes. This gene is 

known to be implicated in invasive ductal carcinoma, and is involved in processes 

including negative regulation of cell population proliferation, positive regulation of cell 

population proliferation, and cellular response to steroid hormone stimulus. It is further 

implicated in negative regulation of extrinsic apoptotic signaling pathway. 

 

Figure 2.7. The result from the minimal database for the downregulated androgen 

receptor gene. 
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These annotations were further expanded by the comprehensive database to include 

mouse associations to several phenotypes, pathways and processes broadly associated 

with BCA. These included annotations associating AR with decreased tumor latency, 

decreased tumor incidence, preneoplasia, abnormal tumor morphology, negative 

regulation of extrinsic apoptotic signaling pathway, cellular response to steroid 

hormone stimulus, inter alia. In addition to the above, the comprehensive database 

identified numerous interactions with AR including: STAT3, KAT7, CCNE1, KMT2D, 

inter alia. It is of interest that the comprehensive model also returned interactions with 

rare genes such as MLH3 which is not commonly associated with BCA. 
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Figure 2.8. The result from the comprehensive database for the downregulated 

androgen receptor gene. 
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Figure 2.8 (continued). The result from the comprehensive database for the 

downregulated androgen receptor gene. 
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The minimal database annotated MET (MET proto-oncogene, receptor tyrosine kinase) 

with the following attributes: it is implicated in invasive ductal carcinoma and broadly 

in breast cancer. Furthermore, MET has functions in protein tyrosine kinase activity, in 

transmembrane receptor protein tyrosine kinase activity, and in hepatocyte growth 

factor receptor activity. The latter two functions are both protein tyrosine kinase 

activity with a possible role in BCA (Figure 2.9).  

 

Figure 2.9. The result from the minimal database for the upregulated MET proto-

oncogene, receptor tyrosine kinase gene. 

The annotations on this gene was further enhanced in the comprehensive database with 

information from mouse and rat orthologs, and interactions with several genes (Figure 

2.10). The mouse and rat orthologs are associated with increased and abnormal tumor 

incidence; which is a clinical feature of BCA. It further showed that MET is associated 
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with abnormal neuron differentiation and abnormal axon extension. The functions are 

similar in both minimal and comprehensive databases albeit with additional 

information on mouse and rat orthologs in the latter database. The comprehensive 

database further identified protein to protein interactions including with STAT3, CDH1, 

GRB2, CASP3, and EGFR all implicated in BCA. 
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Figure 2.10. The result from the comprehensive database for the upregulated MET 

proto-oncogene, receptor tyrosine kinase gene. 
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Potentially novel genes implicated in BCA 

The comprehensive Breast cancer semantic system further annotated novel genes with 

relatively scant information. This could mean these genes are novel to breast cancer 

pathogenesis. Protein-protein interactions are crucial in cancer for elucidating disease 

mechanisms and, hence, implicating novel genes in disease pathogenesis. 

Examples of novel genes picked up by our Breast cancer semantic system include: 

PLEC, VANGL2, CHST11, FZD8, HNRNPA3 among the upregulated genes, and ELP2, 

FBP1, KDM4B, RHOB, and TPSAB1 as downregulated genes. However, some of these 

genes had paucity of information, e.g., VANGL2 and TPSAB1. The VANGL2 (VANGL 

planar cell polarity protein 2) gene product interacts with FGF8, a fibroblast growth 

factor 8, which is known to be involved in breast cancer, thereby implicating the 

candidate gene. FGF8 is implicated in cell growth, proliferation, and differentiation, 

which are crucial processes in both normal development and cancer progression. Liu et 

al. (2014) reported that the expression levels of FGF8 correlate with those of HBXIP 

in clinical breast cancer tissues, where HBXIP activates the LXRs/SREBP-1c/FAS 

signaling cascade. This enhances the abnormal lipid metabolism and growth of breast 

cancer cells (Zhao, 2016). 

 

Figure 2.11 The result from the comprehensive database for the upregulated VANGL 

planar cell polarity protein 2 gene. 
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The TPSAB1 (tryptase alpha/beta 1) gene was annotated by the comprehensive model 

as having a mouse ortholog that is associated with abnormal mast cell differentiation. 

This gene was further annotated as associated with abnormal granulocyte 

differentiation and abnormal cell differentiation, which are clinical features of breast 

cancer. This indicates that this gene may have roles in the breast cancer phenotype. 

 

Figure 2.12 The result from the comprehensive database for the downregulated 

tryptase alpha/beta 1 gene. 

There are also genes prioritised by the system that have not yet been associated with 

breast cancer. For example, HNRNPA3 (heterogeneous nuclear ribonucleoprotein A3) 

has a mouse ortholog that is associated with abnormal neuron differentiation, abnormal 

DNA repair, mitotic nondisjunction, and increased mitotic index, which are attributes 

of breast cancer. The system further indicated that this gene interacts with ESR1 - 

estrogen receptor 1, ICAM1 - intercellular adhesion molecule 1, and SNW1 - SNW 

domain containing 1. These interactions, processes, and associations are commonly at 

the core of human breast cancer development. The detailing in the iterations mentioned 

above indicate that the comprehensive Breast cancer semantic system has merit in 

genomic studies, especially in elucidating potentially novel disease genes. 
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2.3.1.1 Semantic discovery strongly implicates previously hypothesized 

BCA genes in the disease 

When we applied the novel path-based guilt-by-indirect-association approach to 

analyze genes previously implicated in the development of breast cancer, we were able 

to extract a significant amount of information from the BCA-BORG semantic network. 

This information would have been exceedingly challenging to uncover without the 

automation and reasoning approach provided by our system. In some instances, the 

system provided both functional and phenotypic evidence, as illustrated in Figure 2.4. 

One particularly notable aspect of the system's performance was its ability to traverse 

multiple levels within an ontology, identifying transitive links that were not 

immediately obvious but were biologically relevant and semantically correct. 

Moreover, in addition to uncovering evidence implicating a gene of interest as a 

potential disease gene, the system had the potential to suggest possible mechanisms 

related to the gene. This comprehensive approach not only supported the gene-disease 

association but also provided insights into the potential biological mechanisms 

underlying the gene's involvement in breast cancer. 

2.4 CONCLUSION 

The evidence presented in this chapter provides strong support for the idea that 

ontology-driven semantic discovery has the potential to implicate novel genes in breast 

cancer, particularly when those genes are differentially expressed or carry high-impact 

functional mutations. Further details and insights on this topic will be presented in 

subsequent chapters, where the system's effectiveness in identifying and understanding 
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the functional relationships between genes and the disease will be explored in more 

depth. 
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CHAPTER 3 

ANALYSIS OF GENOMIC MUTATIONS 

 

3.1 INTRODUCTION 

Cancer is generally a heterogeneous disease having diverse genetic variations (Shao et 

al., 2019). It has been known for decades that this diversity may be demonstrated by 

single-nucleotide polymorphisms (SNPs) which are amongst the most frequently 

encountered forms of human genetic variation (Redon et al., 2009). These are good 

resources for mapping complex genetic traits (Marth et al., 1999). Ahmad & Shah 2021 

demonstrated that SNPs can be used for diagnosis of breast cancer (Ahmad & Shah, 

2021).  

Single nucleotide variations (SNVs) and copy number variations (CNVs) are currently 

the two major types of genomic alterations associated with tumorigenesis (Xu, 2021).  

Research has further shown evidence that copy number variations (CNVs) of certain 

genes are involved in development and progression of many cancers (Shao et al., 2019). 

They indicated a caveat whether the CNVs and multiple cancers correlation can be 

considered a general phenomenon. However genomic mutation is the key element 

influencing gene expression and function, and hence greatly contributes to the 

phenotype (Hollander et al., 2018). 

Genetic structural variation in the genome may also occur due to large chromosome 

aberrations besides CNVs and SNVs. (Redon et al., 2009).  
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While SNPs were previously regarded as the predominant form of structural variation 

and accounted for much phenotypic variation however, CNVs have taken a centre stage 

in research (Gökçümen & Lee, 2009).   

Copy number variation (CNV) is defined as polymorphism in the human genome 

involving DNA fragments larger than 1kb. The CNV sites provide hotspots of somatic 

alterations in various cancers accounting for a crucial part of genetic structural variation 

(Sebat et al., 2004); (Shao et al., 2019).  

Patterns of somatic mutations in cancers has provided valuable information about their 

role in tumorigenesis, and thus can be explored for intervention in these diseases 

(Murakami et al., 2021).  TP53 is an example of a gene associated with tumour 

suppression and promoting activities (Mair et al., 2016).  

SNVs have been widely used in evolutionary history studies of cancer because they are 

accumulated gradually without reverse mutations. This gradual accumulation is 

demonstrated in the phylogenetic trees of cancers such as prostate cancer, renal cancer 

and other cancer types (Gao et al., 2020). A number of SNVs are linked with altered 

human traits and genetic diseases through alteration of the normal activity of existing 

regulatory elements (Bozhilov et al., 2021). SNVs and CNVs are both structural 

variants and can play a role in modulation of the upregulation and downregulation of 

genes in some cases. 

In this study frequencies, upregulation and downregulation of the SNVs and CNVs 

genes implicated in breast cancer are compared to other cancers. The genes of interest 

are those that are not well reported either broadly across all cancer types or specifically 

in BCA. 
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3.2 RESEARCH AIMS AND OBJECTIVES 

The aim of the study was to compare mutation frequency of all genes in breast cancer 

samples in the Genomic Data Commons (GDC) Portal (GDC data portal_ 

https://portal.gdc.cancer.gov/) using the TCGA data to all other cancers to identify 

those substantially more frequently mutated in the former using the developed semantic 

database (BORG). 

The candidate genes in the different mutation categories were subjected to enrichment 

analysis to discover non-classical cancer genes that are associated with breast cancer. 

Those genes not assigned to any cancer-relevant enriched functions and pathways were 

then analysed using the here developed semantic database to evaluate potential novel 

roles in cancer biology. 

3.3 MATERIALS AND METHODS 

The Genomic Data Commons Portal (GDC data portal_ https://portal.gdc.cancer.gov/) 

repository was used to manually curate and perform exploratory analysis by identifying 

variations in cancer cells that may play a vital role in breast tissue carcinogenesis 

development. The data gleaned from the GDC portal helped in identifying both high- 

and low-frequency cancer drivers such as mutations. The portal provides access to 

valuable DNA sequence data and generates associated Variant Calling Format (VCF) 

and Mutation Annotation Format (MAF) files that identify somatic mutations such as 

point mutations, missense mutations, nonsense mutations, and insertions and deletions 

(indels) of nucleotides in the DNA. The portal also provides access to Copy Number 

Variation (CNV) data to identify amplified and attenuated gene expression due to 
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chromosomal duplications, losses, insertions and deletions (GDC data portal_ 

https://portal.gdc.cancer.gov/). 

3.3.1 Selection criteria for subsequent analysis 

The top 500 frequently mutated genes were selected from the DGC portal (TCGA) out 

of 11519 of all the cancer patients (Table 3.1 in Appendix 1). The focus was in (i) the 

number of the mutations in the Breast Cancer cohort (TCGA-ductal and lobular 

neoplasm-primary tumor-genes) i.e. the number of cases where the gene is 

mutated/cases tested for simple Somatic mutations (SNVs), (ii) the number of 

mutations overall in the same gene i.e. number of cases where genes contain simple 

Somatic mutations/number of cases tested for simple Somatic mutations, (iii) the 

number of duplications i.e. number of cases where CNV gain events are observed in 

gene/number of cases tested for Copy Number Alteration in gene and (iv) the number 

of gene loses i.e. number of cases where CNV gain events are observed in gene/ number 

of cases tested for Copy Number Alteration in gene. We then selected the top 500 

frequently mutated genes (GDC portal).  

Firstly, the data was from the samples of affected cases in the breast cancer cohort 

matched against the sample of affected cases in all cancer cohorts. Furthermore, to 

streamline data SNVs and CNVs were selected as the other main parameters. Thereafter 

for each of the SNVs and CNVs gains and losses were used as further defining 

parameters. 

The frequencies of breast cancer mutation were calculated from the number of affected 

breast cancer cohort to the total of cancer cohorts in the data. Thereafter the frequencies 

of each SNVs and CNVs gains in genes were calculated from patients with positive 
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gains and the total number of patients where these gains were calculated. Similarly, 

percentage losses were calculated for each of the 500 selected genes. These constituted 

the frequencies of the mutations in these genes.  

3.4 RESULTS AND DISCUSSION 

Selection criteria for subsequent analysis 

The top 500 genes from the DGC portal comparing mutations in breast cancer patients 

and all cancers are reflected in Table 3.1 in the link. Out of all cancer patients (11 519), 

954 patients had single nucleotide mutations. The percentage mutation for each gene 

SNV was calculated by dividing the number of specific SNV by the total number of 

SNV mutation in all BCA patients. There were 1029 affected patients with CNV 

amongst all cancer cohorts. In order to calculate % CNV per gene the number of specific 

CNV mutation was divided from the total number of CNVs. After cleaning the results 

according to the selected parameters and applying the cut off value (5%) genes of 

interest were obtained. This resulted in 17 SNVs with higher frequencies in BCA than 

other cancers and 135 CNVs that were frequently upregulated and 124 frequently down 

regulated CNVs, respectively. The fact that these genes are frequently mutated already 

but there are differences in mutation frequencies between breast cancer and other 

cancers is what makes it interesting.  

Hereafter, these genes were then further analysed in Enrichr to see which classes of 

these genes are frequently duplicated or lost and which pathways are frequently 

duplicated and lost. On Enrichr, p≤0.05 was considered significant. To achieve this, the 

associated pathways and ontologies were analysed, yielding statistically favourable 

results.  The analyses yielded 23 duplicated and 11 lost genes without apparent 
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association with breast cancer Table 3.2 and Table 3.4 (Appendix I). For example, 

CACNA1E is duplicated in almost 10% of breast cancer patients while RB1 has loss in 

12% of the same cohort.  

Enrichr and scientific literature elucidated some genes not previously describes as 

classical cancer genes where others had no link with breast cancer. These genes include 

GOLGA6L6, XKR4, REXO1L1P, NBPF12.  Selected mutated genes not yet linked to 

breast cancer will be discussed. 

GOLGA6L6 has not been associated with either cancer or any disorder (GeneCards, 

accessed on the 11/19/2021). While Enrichr did not link this gene with any pathway, 

GeneCards showed protein interactions associated with this gene (Figure 3.1). In this 

study SNVs in GOLGA6L6 has been linked to 5% of BC patients compared to 2% of 

all other cancers. Furthermore, GOLGA6L6 CNV was also lost in 9% and duplicated in 

5% of breast cancer samples. 

 

Figure 3.1: Selected Interacting proteins linked to GOLGA6L6 Gene expression 

(GeneCards). 
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We found downregulation of CNVs in XKR4 gene with the frequency of 6.32% in BCA 

compared to other cancers. In as much as this gene is not associated with any disorders 

in Gene cards, literature has linked this gene to papillary thyroid carcinoma (Zhan et 

al., 2014). SNVs in this gene was below the set threshold of 5% while both upregulation 

and downregulation of CNVs was above threshold at 9% and 6%, respectively.  

In this study only SNV for the REXO1L1P gene was of significance with a frequency 

of 1.5 in breast cancer compared to all other cancers. However, looking at breast cancer 

mutations separately, these SNVs were 3.04%. The CNVs were insignificant.  Chen et 

al., 2017 indicated that the SNV in this gene is associated with stop-gains in BC. 

 

According to GeneCards NBPF12 is not yet associated with any disorder or pathway. 

However, recently the Neuroblastoma Breakpoint Family (NBPF) has been linked to 

increased brain size and neuropsychiatric diseases, including autism and schizophrenia 

(Benton et al., 2021). In this study the SNV in this gene and its CNV down regulation 

were insignificant while the CNV upregulation was 18% in breast cancer patients.  

 

To date the ERICH3 gene has not yet been conclusively associated with any disorder 

and its associated pathways are still to be elucidated. In this study, SNV for ERICH3 

and its CNV upregulation were below the set thresholds, while the CNV 

downregulation 5.54% in breast cancer cohort. 
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A selection in both highly relevant genes and insignificant genes were then run through 

the developed semantic BORG database to see if any of the latter returned with better 

annotations. 

 

Semantic analysis results for frequently mutated genes  

The knowledge graph returned several genes including the frequently mutated, the 

upregulated and the down-regulated ones. Selected genes are presented below. A 

comprehensive list of the BORG results is presented in "Additional Files" 

(https://drive.google.com/drive/u/0/folders/1vkBCRNBApPGzzM1LRIqxj19vz3KE6

B97). Amongst the genes returned are known BCA genes and genes that were 

previously not associated with BCA. Some of these genes are implicated in BCA via 

protein–protein interactions while others may be associated via extrinsic and intrinsic 

apoptotic signaling pathways, cytochrome release, cell proliferation, cyclin-dependent 

protein kinase activity, inter alia. Some of the novel genes returned are implicated by 

prior knowledge from rat and mouse orthologs. Amongst the known BCA genes are 

AKT1, CBFB, CDH1, GATA3, MAP2K4, MAP3K1, PIK3CA and RUNX1. 

 

BORG annotated AKT1 with diverse biological processes associated with human breast 

cancer including effects in breast adenocarcinoma, invasive ductal carcinoma, negative 

regulation of extrinsic apoptotic signaling pathway in absence of ligand, negative 

regulation of oxidative stress-induced intrinsic apoptotic signaling pathway, positive 

regulation of smooth muscle cell proliferation, positive regulation of transcription, 

DNA-templated, negative regulation of apoptotic process, amongst others. These 

processes are involved in carcinogenesis as well as the progression of the disease. For 

http://etd.uwc.ac.za/

https://drive.google.com/drive/u/0/folders/1vkBCRNBApPGzzM1LRIqxj19vz3KE6B97
https://drive.google.com/drive/u/0/folders/1vkBCRNBApPGzzM1LRIqxj19vz3KE6B97


CHAPTER 3 | ANALYSIS OF GENOMIC MUTATIONS 

81 

 

an example the negative regulation of extrinsic/intrinsic apoptotic signaling pathway 

inhibits apoptosis of breast cancer cells immortalising them (Yang et al., 2021). On the 

other hand invasive ductal carcinoma correlates with angiogenesis-related factors in 

metastatic breast cancer (Li et al., 2021). 

The system also annotated AKT1 (Figure 3.2) interactions with numerous proteins 

including IL13RA2, EGFR, PLCG1, MAPT, CSNK2A1, PIK3CA, BCL2L1, PRKDC, 

KAT2B, NOS3, PTEN, ESR1, SKP2, TSC1, IKBKB, XIAP, NCOR2, NF2 - NF2, 

CDKN1B, TERT, BAD, TSC2, SMAD4, PAK1, FANCA, BRCA1.  Furthermore, AKT1 

returned with rat and mouse orthologs for an example where it is associated with 

thymoma viral proto-oncogene 1 which increases in increased mammary 

adenocarcinoma incidence and increased mammary gland tumor incidence. 
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Figure 3.2. Semantic analysis results of AKT1 gene (frequently mutated). 
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CBFB (Figure 3.3) returned with only one ortholog that has transcription coactivator 

activity (Pubmed:21873635). It is involved in negative regulation of transcription by 

RNA polymerase II, thus implicated in BCA. The protein–protein interactions 

associated with human breast cancer genes that were returned for CBFB were MYC and 

RUNX3.This gene had several rat and mouse orthologs associated with breast cancer 

functions including involvement in negative regulation of transcription by RNA 

polymerase II and abnormal osteoblast differentiation in mouse. In rats this gene 

returned with association transcription coactivator activity. 

 

 

Figure 3.3. Semantic analysis results of CBFB gene (frequently mutated). 

 

CDH1 (Figure 3.4) was shown to be previously associated with invasive ductal 

carcinoma, invasive lobular carcinoma and breast lobular carcinoma, and cellular 
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response to indole-3-methanol, positive regulation of transcription, DNA-templated. A 

clinical case study previously reported the importance of CDH1 germline variants in 

patients with lobar breast cancer and gastrointestinal cancers (Adib et al., 2022). The 

protein – protein interactions returned by the system included F11R, RB1CC1, 

 STAT1, NF2, DDX3X, CTSB, CASP3, DDR1, SKP2, PTEN, EGFR. CDH1 returned 

with several biological functions associated with cancer in rat and mouse, e.g. abnormal 

tumor vascularization, regulation of morphogenesis, increased metastatic potential in 

rats and mouse amongst others. 
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Figure 3.4. Semantic analysis results of CDH1gene (frequently mutated). 
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FOXA1(Figure 3.5) returned without protein–protein interactions however with 

numerous biological processes associated with cancer in human, and rat and mice. The 

system yielded functions that are associated with transcription activation, apoptotic 

processes, and uncontrolled growth. These functions were represented by DNA-binding 

transcription activator activity, RNA polymerase II-specific, positive regulation of 

transcription by RNA polymerase II, positive regulation of apoptotic process. There 

were similarities between human, rat and mouse gene functions that were returned by 

our system in as far as DNA-binding transcription activator activity, RNA polymerase 

II-specific, negative regulation of transcription by RNA polymerase II and positive 

regulation of apoptotic process. However, there were additional biological processes 

associated with cancer returned by the system via ortholog knockouts in rats and mice. 

These include positive regulation of intracellular estrogen receptor signaling pathway, 

decreased incidence of tumors by chemical induction, increased incidence of tumors by 

chemical induction, increased hepatocellular carcinoma incidence inter alia. 
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Figure 3.5. Semantic analysis results of FOXA1gene (frequently mutated) 
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GATA3 (Figure 3.6) returned linking to numerous biological processes, protein-to-

protein interactions and with mouse and rat orthologs that differ to human in function. 

The functions associated cancer included DNA-binding transcription activator activity, 

transcription repressor activity, negative regulation of cell proliferation, negative 

regulation of apoptotic process, regulation of transcription and negative regulation of 

mammary gland epithelial cell proliferation. Protein-protein interactions with known 

BCA genes were with CDK2 and BRCA1. There were also numerous relevant functions 

associated with rat and mouse orthologs, including regulation of neuron apoptotic 

process, regulation of endothelial cell apoptosis, regulation of interleukin-2 production 

and interferon-gamma production, and regulation of cell proliferation. 

 

 

Figure 3.6. Semantic analysis results of GATA3gene (frequently mutated). 
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MAP2K4 (Figure 3.7) was shown to be previously associated with invasive ductal 

carcinoma. Cancer-relevant functions returned included JUN kinase kinase activity, 

MAP kinase kinase activity and MAPK cascade. Previously, inhibition of the MAP2K4 

signal axis has been reported to have an effect in regulation of the proliferation and 

apoptosis of cancer cells (B. Wang et al., 2022). The Breast cancer semantic system 

returned MAP2K4 protein-protein interactions with known BCA gene products, 

including EGFR,  MAPK1, JUN, MAP3K1, AKT1, MAP3K8. The rat and mouse 

evidence yielded by the system included: regulation of multiple apoptotic processes and 

positive regulation of JUN kinase activity.  

 

Figure 3.7. Semantic analysis results of MAP2K4 gene (frequently mutated). 

 

MAP3K1 (Figure 3.8) biological processes that were associated with human breast 

cancer included the following functions: MAP kinase kinase kinase activity and MAP 
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kinase kinase kinase activity. Literature has reported that MAP3K1 as one of the MAPK 

family serine-threonine kinase that is often mutated in human cancer with prognosis in 

breast (Cheukfai et al., 2022). The MAP3K interactions with known BCA genes 

included: BRCA1; KAT5; PAK1; GSTP1; JUN ; TP53; RHOA; IKBKB; GRB2; MAPK1 

and MAP2K1. 

The rat and mouse evidence yielded by the system included the following functions: 

JUN kinase kinase kinase activity; MAP kinase kinase kinase activity; positive 

regulation of JUN kinase activity and JNK cascade. 

 

 

Figure 3.8. Semantic analysis results of MAP3K1 gene (frequently mutated). 

 

The system returned RUNX1 (Figure 3.9) with human, rat and mouse orthologs together 

with protein-to-protein interactions with known BCA genes. RUNX1 was shown to be 

functionally relevant based on functions in regulation of transcription and interactions 
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with the previously BCA-associated proteins: FANCD2; SOX2; NCOR2; MYC; CDK1; 

SMARCA4; VDR; KAT6B. Furthermore, rat and mouse knockout evidence included 

abnormal tumor morphology, increased lymphoma incidence, increased chronic 

myelocytic and promyelocytic leukemia and lymphoma incidence, increased incidence 

of tumors by chemical induction, and increased metastatic potential.  

 

Figure 3.9. Semantic analysis results of RUNX1 gene (frequently mutated). 

 

The system annotated PIK3CA (Figure 3.10) human, rat and mouse orthologs together 

with protein-to-protein interactions. In humans PIK3CA is implicated in estrogen-

receptor positive breast cancer; breast adenocarcinoma, breast angiosarcoma with 

functions in phosphatidylinositol kinase activity, negative regulation of anoikis. The 

regulation of anoikis is involved in the regulation of the apoptotic process while others 

may impact cancer via ERBB signaling pathway.  

  

PIK3CA returned with the following protein-protein interactions: IL13RA2; AKT1, 

ESR1, STAT1, GRB2, KRAS, ATR - ATR. These interactions are in breast cancer via 

different mechanisms.  
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This system returned similar functions to human ortholog from rat and mouse orthologs. 

In addition to these functions, rat and mouse orthologs were also involved in negative 

regulation of fibroblast apoptotic process, negative regulation of neuron apoptotic 

process, regulation of genetic imprinting, response to dexamethasone, decreased 

incidence of induced tumors, increased fibroadenoma incidence, increased skin 

hamartoma incidence, increased mammary gland tumor incidence, increased sarcoma 

incidence; malignancy amongst others. Some of these features play a possible role in 

breast cancer development while others are clinical features of breast cancer.  
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Figure 3.10. Semantic analysis results of PIK3CA gene (frequently mutated). 

MUC2 (Figure 3.11) returned with protein – protein interaction with MLH1 which is 

implicated in breast cancer. 

MUC2 had rat and mouse orthologs where it is involved in positive regulation of 

apoptotic process, negative regulation of cell population proliferation, abnormal 
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mitochondrial crista morphology, dilated mitochondria and increased intestinal 

adenocarcinoma incidence. Others have a putative role in breast carcinogenesis. Some 

of these features play a possible role in breast cancer development while others are 

clinical features of breast cancer.  

 

 

Figure 3.11. Semantic analysis results of MUC2 gene (frequently mutated) 

 

MUC4 (Figure 3.12) returned with several functions but had no protein-protein 

interactions. MUC4 functions include negative regulation of apoptotic process, 

response to progesterone which may have a possible role in BCA. Furthermore, MUC4 

returned with known clinical features of breast cancer in rat and mouse including 

decreased incidence of tumors by chemical induction. 
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While MUC4 is overexpressed in metastatic breast cancer patients (Dreyer et al., 2022). 

It is the MUC5B gene that is commonly abnormally expressed in breast cancer tissue. 

MUC2, MUC5A and MUC5B are commonly indicated in colorectal cancers 

(Iranmanesh et al., 2021). 

 

 

Figure 3.12. Semantic analysis results of MUC4 gene (frequently mutated). 

Semantic analysis results for the upregulated CNVs 

The breast cancer semantic system retuned the following genes: FCGBP, KIAA1549L, 

MAGEA12, MALAT1, PDZD2, QSER1, RLF, TANC2, and UMODL1. 
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The FCGBP (Figure 3.13) gene returned with protein-protein interaction with MLHI. 

This interaction is implicated in breast cancer development. However, FCGBP is 

mostly implicated in colorectal and prostate cancer progression (Wang et al., 2021). 

 

 

Figure 3.13. Semantic analysis results of FCGBP gene (Up regulated CNV) 

 

KIAA1549L (Figure 3.14) gene returned with protein-protein interaction with GRB2 I, 

an interaction implicated in breast cancer development. 

 

Figure 3.14. Semantic analysis results of KIAA1549L gene (Up regulated CNV) 

 

The system returned with the information that MAGEA12 (Figure 3.15) is involved in 

negative regulation of transcription by RNA polymerase II which is implicated in 

human breast cancer. 

 

Figure 3.15. Semantic analysis results of MAGEA12 gene (Up regulated CNV) 
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The system returned MALAT1 (Figure 3.16) with that this gene is involved in positive 

regulation of cardiac muscle myoblast proliferation. Furthermore, it returned that this 

gene is involved in positive regulation of cell population proliferation with a conclusion 

that it may have a possible role in human breast cancer.  

MALAT1 is a gene that was originally identified in pulmonary adenocarcinoma (Huang 

et al., 2021). 

 

Figure 3.16. Semantic analysis results of MALAT1 gene (Up regulated CNV) 

 

The system returned PDZD2 (Figure 3.17) with the information that its protein interacts 

with MYC-MYC proto-oncogene and therefore may be implicated in human breast 

cancer. 

 

Figure 3.17. Semantic analysis results of PDZD2 gene (Up regulated CNV) 

 

The information presented by the system included that QSER1 (Figure 3.18) transcripts 

reacts with SOX2 - SRY-box transcription factor 2. The system concluded that due to 

this interaction this gene may be implicated in human breast cancer development. 
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Figure 3.18. Semantic analysis results of QSER1 gene (Up regulated CNV) 

 

The system returned with that the RLF (Figure 3.19) gene has DNA-binding 

transcription activator activity that is RNA polymerase II-specific. It is involved in 

positive regulation of transcription by RNA polymerase II, and positive regulation of 

transcription of DNA-template. It further concluded that as such, the RLF gene is 

implicated in breast cancer development. 

 

 

Figure 3.19. Semantic analysis results of RLF gene (Up regulated CNV) 
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The TANC2 (Figure 3.20) gene was returned with the following annotations. It interacts 

with CDC25C - cell division cycle 25C, PTPN13 - protein tyrosine phosphatase non-

receptor type 13, and kinase suppressor of ras 1. It further concluded that these 

interactions may be implicated in human breast cancer development. 

 

 

Figure 3.20. Semantic analysis results of TANC2 gene (Up regulated CNV) 

 

UMODL1 (Figure 3.21) was returned with rat and mouse orthologs. This gene was 

reported to be involved in regulation of apoptotic process and regulation of granulosa 

cell apoptotic process. Both these biological processes implicate the gene in human 

breast cancer development. 

This gene is not commonly associated with breast cancer development, however when 

its upregulated it is associated with lung cancer metastasis and ovarian degradation 

(Davenport et al., 2021). 
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Figure 3.21. Semantic analysis results of UMODL1 gene (Up regulated CNV) 

 

Semantic analysis results for the downregulated CNVs 

The breast cancer semantic system returned the following downregulated CNV genes: 

CSMD1, MALAT1, VPS13D and ZNF292.  

 

The system did not return the human orthologs for the CSMD1 gene (Figure 3.22). 

Therefore, this gene may be considered a novel gene in human breast cancer. 

CSMD1 returned with rat and mouse orthologs with no protein-to-protein annotations. 

The system reported that this gene is implicated in mammary gland branching involved 

in pregnancy where mammary gland duct, epithelial tube, epithelial branching and 

general breast tissues morphogenesis occurs. The Breast cancer semantic system 
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reported that all these biological processes are implicated in breast cancer development 

in these mammals. 

Overexpression of CSMD1 is known to have tumor suppressor effect in breast cancer 

therefore it’s under expression may be associated with breast cancer proliferation 

(Gialeli et al., 2021). 
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Figure 3.22. Semantic analysis results of CSMD1 gene (downregulated CNV) 
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The system annotated MALAT1 gene (Figure 3.23) as potentially downregulated in 

some cancers while in others it is regulated as observed above. Similarly, to upregulated 

conditions of the gene it is involved in positive regulation of cardiac muscle myoblast 

proliferation. 

 

 

Figure 3.23. Semantic analysis results of MALAT1gene (downregulated CNV). 

 

The VPS13D gene (Figure3.24) returned the information that it interacts with: ESR1. 

Furthermore, the system surmised that this interaction implicated the gene in human 

breast cancer. 

 

 

Figure 3.24. Semantic analysis results of VPS13D gene (downregulated CNV). 

 

The ZNF292 gene (Figure3.25) returned with only with rat and mouse orthologs 

implicated in positive regulation of transcription by RNA polymerase II. This DNA-

binding transcription activator activity may have a possible role in breast cancer of these 

mammals. 
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Nirgude et al, reported this gene as a tumor suppressor gene and therefore it may be 

considered as enhancing carcinogenesis when under expressed (Nirgude et al., 2022).  

 

 

Figure 3.25. Semantic analysis results of ZNF292 gene (downregulated CNV) 
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3.5 CONCLUSION 

Given the number of mutated genes linked to breast cancer that are not classical cancer 

genes prioritized by the BCA knowledge graph indicates the utility of this tool. It of 

course remains to determine pathways associated with these non-classical cancer genes 

after having implicated them in BCA and to verify their role in immortalisation and 

proliferation of breast cancer cells. That said, the system and concept have potential for 

use in other diseases that are associated with gene mutation and their expression.  

The here generated Breast cancer semantic system proved effective because it returned 

known genes implicated in human cancer development substantiating it with sound 

biological information published in scientific journals. Furthermore, it pointed out 

novel genes that are not previously implicated in human breast cancer while linked to 

other mammalian breast cancers as well as other cancers. Some of the information that 

came through may be used to identify the stages in carcinogenesis for an example, 

metastasis. This means that the developed system has a potential of indicating novel 

breast cancer genes, which can inform BCA diagnosis and potentially drug 

development. 
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CHAPTER 4 

DIFFERENTIAL EXPRESSION 

4.1 INTRODUCTION 

4.1.1 RNA-Sequencing and Cancer 

Next generation sequencing (NGS) technologies have been utilised for genome, DNA 

sequencing (DNA-seq), chromatin immunoprecipitation (Chip-seq), methylation 

(Methyl-seq), and more importantly RNA sequencing (RNA-seq) (Jazayeri, Saadat, 

Ramezani, & Kaviani, 2015).  RNA sequencing (RNA-seq) is a technique which utilises 

various methods of either high throughput sequencing or next generation sequencing to 

examine the quantity and sequences of RNA in a sample. Moreover, this technique 

analyses the transcriptome of gene expression patterns encoded within our RNA 

(Jazayeri et al., 2015). Particularly, the transcriptome contains coding messenger RNA 

(mRNA’s), along with non-coding RNA’s (ncRNA’s) such as microRNA’s (miRNA) 

long-coding RNA (LncRNA), Ribosomal RNA (rRNA), and transfer RNA (tRNA).   

Nevertheless, RNA-seq allows for the investigation and discovery of total cellular 

RNA’s, including mRNA, rRNA and transfer RNA (tRNA), providing key insights into 

the transcriptome, and thus functional genomic protein expression. More specifically, 

the technique can provide insights into specific cellular gene activity, such as which 

gene are expressed, the nature of their expression, along with when they are switched 

on or off (Ozsolak & Milos, 2011).  Hence, a number of techniques utilize the 
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functionality of RNA-seq, including SNP identification, RNA editing, differential gene 

expression profiling, and transcriptional profiling (Han et al., 2015) and (Jazayeri et al., 

2015). With particular regard to the transcriptome, RNA-Seq provides an in-depth 

view, and can be divided into several steps. These include RNA extraction, library 

construction, sequencing, and data analysis (Kukurba & Montgomery, 2015). Initially, 

high quality RNA must be extracted from cancerous tissues, and will be composed of 

rRNA, mRNA and various types of ncRNA (Kukurba & Montgomery, 2015) and (L. 

Wang, Feng, Wang, Wang, & Zhang, 2009). To achieve this, a number of separation 

techniques have been developed. For example, the 3′ polyadenylated (poly-A) tail of 

mRNA may be extracted using oligo-dT primer beads by selecting for poly-A RNAs 

(termed a poly-A library). Hereafter, a proportion of the lncRNA are excluded from the 

poly-A library due to the absence of a poly-A tail (C. Wang, Lu, Emanuel, Babcock, & 

Zhuang, 2019). Another method involves removal of rRNA using commercially 

available kits, such as Ribo-Zero and RiboMinus (Peano et al., 2013). Specifically, 

these kits selectively isolate small RNAs, including miRNA and piwi-interacting RNA 

(piRNA), which are short (15–30 nt), sparse, and lack a poly-A tail (Kukurba & 

Montgomery, 2015). Once RNA is isolated from the total RNA content, it may be 

converted to a library of complementary DNA (cDNA) fragments with adaptors ligated 

to one or both ends (C. Wang et al., 2019). Subsequently, these adaptors may be ligated 

to small RNAs and finally undergo reverse transcription. Long RNA or cDNA 

molecules must first be fragmented into smaller pieces, however, in order to be 

compatible with Next Generation Sequencing (NGS) technologies.  
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4.1.2 Gene expression in breast cancer 

Breast cancer has been reported to be the most commonly occurring cancer on a global 

scale, accounting for a reported 11.6% of new cancer cases, and 6.6% of all cancer 

related deaths (Vishnubalaji, Sasidharan Nair, Ouararhni, Elkord, & Alajez, 2019). 

Global statistics reported in GLOBOCAN 2022 demonstrated that breast cancer was 

the most frequently diagnosed, and leading cause of cancer-related deaths in women.  

For the past decades, researchers have tried to stratify BC in order to find improved 

means for early diagnosis and ultimately better therapeutic approach. Research within 

the pathology department worldwide has attempted to find clear pathological 

stratification on the basis of the difference in gene expression profile Five major groups 

were characterised as follows: the first two groups are called Luminal A and B and were 

ER positive. The remaining three were ER negative and grouped as follows: A “Basal-

like breast cancer characterised by the lack of expression of ER, PgR and HER-2 as 

well as increased expression of basal cytokeratins CKs 5/6 and 17. The second type is 

erbB2 like/HER-2 like with high expression of erb2 and thirdly the normal like BC 

showing molecular characteristics of normal tissue (Sørlie et al., 2001). 

 
Gene expression analyses has previously classified breast cancer into five main 

molecular subtypes, namely the luminal A, luminal B, HER2-enriched, triple negative, 

and non-cancerous breast tissue subtypes (Vishnubalaji et al., 2019) and (Desmedt et 

al., 2012). Additionally, genome-wide association studies have led to the identification 

of a number of novel breast cancer variants. These new variants include hereditary risk 

factors, such as BRCA1, BCRA2, TP53 and PALB2, to name a few (Vishnubalaji et 

al., 2019) (Desmedt et al., 2012). 
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Mutations in the BRCA1 and BRCA2 genes in particular have been linked to an 

estimated 5-10% of breast cancer cases (Pharoah et al. 2008). The identification and 

testing for BRCA mutations have led to the creation and implementation of potentially 

life-saving strategies, including the use of magnetic resonance imaging (MRI) scanning 

in breast cancer surveillance and more timely use of chemotherapeutics, along with 

surgical options (Vishnubalaji et al., 2019) (Desmedt et al., 2012). Thus, the continued 

understanding of the transcriptome has led to improved understanding of the driving 

factors involved with breast cancer, identifying new targets for improved prognostic 

outcomes. 

 
4.1.3 The Cancer Genome Atlas (TCGA) 

The Cancer Genome Atlas (TCGA), collaboration between the National Cancer 

Institute (NCI) and National Human Genome Research Institute (NHGRI), aims to 

generate comprehensive, multi-dimensional maps of the key genomic changes in major 

types and subtypes of cancer. A three-year pilot project initiated in 2006 confirmed that 

an atlas of changes could be created for specific cancer types. It also showed that a 

national network of research and technology teams working on distinct but related 

projects could pool the results of their efforts, create an economy of scale and develop 

an infrastructure for making the data publicly accessible. Importantly, it proved that 

making the data freely available would enable researchers around the world to make 

and validate important discoveries. The success of the pilot led the National Institutes 

of Health to commit major resources to TCGA to collect and characterize additional 

tumour types. TCGA finalized tissue collection with matched tumour and normal 

tissues from 11,000 patients, allowing for the comprehensive characterization of 33 
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cancer types and subtypes, including 10 rare cancers. To achieve this, TGCA aimed to 

investigate catalogue upwards of 30 human cancers on the bases of cancer-causing 

genomic alterations, by means of large-scale genome sequencing and integrated multi-

dimensional analyses and making these data available to all researchers (Chandran et 

al., 2016) and (Tomczak, Czerwińska, & Wiznerowicz, 2015). 

Presently, TCGA data accounts for over 1.2 Petabytes of information, including 

multiple forms of datasets, such as whole genome sequencing, whole exome sequence, 

methylation, RNA expression, proteomic, and clinical data. Access to these datasets are 

intended for multiple independent research groups to analyse data with the ultimate 

goal of accelerating the discovery of various biomarkers associated with cancer 

initiation, progression and response to therapy (Chandran et al., 2016) and (Tomczak 

et al., 2015).  

Datasets provided by TCGA consist of both publicly available and protected datasets. 

Multiple portals are used to release publicly available TCGA datasets, including the 

TCGA data portal, the cBIO cancer genomic portal, and University of California, Santa 

Cruz cancers genome browser. Additionally, these datasets may also be directly 

downloaded from FIREHOUSE, hosted by the Broad Institute, and via the Sage 

Bionetworks Synapse repository.   Moreover, a number of tools may be used to analyse 

datasets, including the portals’ GUI interfaces, or R packages such as TCGABioLinks 

(Chandran et al., 2016) and (Tomczak et al., 2015). 
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4.2 RESEARCH AIMS AND OBJECTIVES 

The aims of this chapter were: 

To determine which differentially expressed genes are potentially involved for the onset 

and progression of breast cancer in a developed Breast cancer semantic system. 

Particular focus was to identify genes that have not yet been described to be involved 

in breast cancer, or other cancers. Therefore, this was achieved by reanalysing publicly 

available RNA-seq data from multiple subtypes of breast cancer and normal breast 

tissues from The Cancer Genome Atlas and performing semantic analysis on these 

using the complete breast cancer knowledge graph, as in Chapter 2. 

 

4.3 MATERIALS AND METHODS 

A manually curated set of already consented and anonymized patient RNA-seq samples 

from TCGA was re-analysed using an R-based differential expression analysis pipeline. 

EdgeR was used to filter data based on the p values. 

Differentially expressed genes were subjected to classical enrichment analysis using 

the Enrichr web service and genes that were not assigned to any enriched functions or 

pathways were then analysed using the semantic database to evaluate potential novel 

roles in cancer biology. 
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4.3.1 Data Curation 

Selection of Publicly Available Datasets 

The Cancer Genome Atlas (TCGA) repository was used to manually curate raw gene 

counts of RNA-Seq data from breast tissue samples. Subsequently, this database was 

used to evaluate tumour tissues associated with breast cancer and normal breast tissues 

against one another.  

Table 3.1 shows the dataset generated by the TCGA Research Network (“The Cancer 

Genome Atlas Program - National Cancer Institute,”). The samples were curated using 

their allocated TCGA sample IDs from the Genomic Data Commons Data Portal 

(“GDC Data Portal,” n.d.). Normal-adjacent-tumour breast and primary breast tumour 

samples were curated and the TCGA research paper (The Cancer Genome Atlas 

Network, 2012) was used to obtain the correct molecular subtypes of tumour samples 

according to PAM50 classification. 

Table 4.1: Summary of breast tissue samples curated from The Cancer Genome Atlas 

Data Repository. 

*TCGA–The Cancer Genome 

Atlas 

Dataset 

Tissue Type Data type 

 

Data Repository 

Paired/Unpaired samples 

 

*Normal-Adjacent-Tumour  

 Breast Tissue 

*Estrogen-Positive Primary 

Tumour 

*Her2-PositivePrimary 

Tumour 

*Triple Negative Primary 

Tumour 

*Triple Positive Primary 

Tumour 

 

 

 

 

Raw RNA-Seq counts 

 

 

 

 

TCGA 
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4.3.2 Discovery of Differentially Expressed Genes (DEGs) 

Paired TCGA Samples 

 

The Bioconductor R package, edgeR, was used for differential expression gene analyses 

of read counts arising from RNA-Seq between normal and tumour samples. 

To achieve this, 30 paired samples (normal-adjacent-tumour and primary tumour 

sample from a single patient, from different patients) were used for a differential gene 

expression signal to determine if the signal was present, and to ensure correct 

implementation and application of the edgeR package. (Workflow link in Appendix II) 

4.3.3 Processing of Gene Expression Data and Statistical Analysis 

Differential expression analysis 

Differential expression analysis was performed by comparing all groups’ subtypes to 

healthy subjects (Normal versus tumor), for P-values and fold changes (FC). Next, a 

filter was created to remove genes with low FC or insignificant P-values (P >0.05). 

Additionally, the filter accounted for log-fold change, otherwise known as false 

discovery rate (FDR), whereby 2-fold was considered 4X more or 4X less in differential 

expression, shown by Log FC ≥2 or ≤─2. Additionally, data was filtered using FDR, 

significant P-values (P ≤0.05). Following this, InteractiVenn (www.interactivenn.net) 

tool was used to compare multiple data for each subtype to identify genes shared 

between subtypes, specifically normal versus HER2, normal versus triple positive, 

normal versus triple negative, normal versus ER positive PR negative, and normal 

versus ER positive PR positive.  
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An R script was used to filter for significant genes based on the following criteria: both 

p-value and FDR ≤ 0.05 and LogFC between ≤ -2 or ≥ 2. Bar charts showing the 

distribution of the original raw data and the filtered data for each of the five breast 

cancer subtypes (Normal_vs_ ERPositivePRNegative, Normal_vs_ 

ERPositivePRPositive, Normal_vs_ HER2, Normal_vs_ TripleNegative and 

Normal_vs_ TriplePositive) were plotted in excel. Another R script was used to check 

for and extract all the gene IDs that are common to the five filtered subtypes. 

 

4.3.4 Functional Enrichment Analysis 

Shared genes were analysed further using Enrichr for enrichment analysis to determine 

which pathways the different genes are involved in. Common and unique DEGs were 

identified, genes that were DE in a subtype and linked to cancer were of interest. On 

Enrichr, p≤0.05 was considered significant. To achieve this, Pathways and Ontologies, 

specifically, were analysed.  Genes in each group that were not involved in any enriched 

pathway or function relevant breast cancer were selected for semantic annotation using 

the BCA knowledge graph. 
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4.4 RESULTS AND DISCUSION 

4.4.1 Overlapping genes between breast cancer subtypes 

Venn diagrams generated indicated 1069 overlapping genes, "Additional Files" 

(https://drive.google.com/drive/u/0/folders/1T6O8tUKF_PjuvCN8RU-meN40s-

oPh7__) 

that are shared between breast cancer subtypes, specifically normal versus HER2, 

normal versus triple positive, normal versus triple negative, normal versus ER positive 

PR negative, and normal versus ER positive PR positive (Figure 1). There were 271 

unique genes for Normal versus ER positive PR negative, 267 unique genes for normal 

versus Triple positive, 271 unique genes for normal versus ER positive PR positive, 

642 unique genes for normal versus HER2 and 1193 unique genes for normal versus 

Triple negative. 
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Figure 4.1: Venn diagram showing common and unique DEGs in Breast cancer 

(LogFC between ≤ -2 or ≥ 2 and significant P-values (P ≤0.05) between all five breast 

cancer subtypes. There are 1069 common DEGs across five breast cancer subtypes. 

 

Amongst the 1069 genes were those that were downregulated and those that were 

upregulated. Figures 4.2 and 4.3 present the interactions of the downregulated and 

upregulated across the different breast cancer subtypes. The interaction revealed 413 

and 638 upregulated and down regulated genes, respectively. 

 

 

 

 

Figure 4.2: Venn diagram showing common and unique upregulated DEGs in breast 

cancer (LogFC between ≤ -2 or ≥ 2 and significant P-values (P ≤0.05) between all five 

breast cancer subtypes with 413 genes in common across the five breast cancer 

subtypes. 
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Figure 4.3: Venn diagram showing common and unique downregulated DEGs in breast cancer 

(LogFC between ≤ -2 or ≥ 2 and significant P-values (P ≤0.05) between all five breast cancer 

subtypes with 638 genes in common across the five breast cancer subtypes. 

4.4.2 Semantic analysis of DEGs 

 

Selected DEGs were run through the comprehensive BCA semantic database as 

described in Chapter 2. Selected results from the system will be presented and discussed 

in the subsequent sections. A comprehensive list of the BORG results is presented in 

an "Additional Files" folder (https://drive.google.com/drive/u/0/folders/1xTBbzr6g2-

_JvmuLGhBnUS2h6aj1a0V8). 

Among the selected genes returned from BORG common across all BCA subtypes, 

three genes had numerous protein-to-protein interactions, namely CAV1, TP63 and 

NR4A1. The transcripts of the CAV1 gene (figure 4.5) returned with 19 protein-to-

protein interactions. For an example CAV1 interacts with TLR4 - toll like receptor 4, 

MAPK1 - mitogen-activated protein kinase 1, PTEN - phosphatase and tensin homolog.  
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Figure 4.4. Semantic analysis results of CAV1gene across all BCA subtypes.  

 

TNXB (Figure 4.6) returned with no reported protein-to-protein interactions yet was 

associated with abnormal tumor susceptibility, which is relevant to cancer. To date 

literature has not linked this gene to BCA indicating that it could potentially be a novel 

effector. 
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Figure 4.5. Semantic analysis results of TNXB gene across all BCA subtypes. 

 

The rat and mouse orthologs of IGFBP6 (Figure 4.7), insulin like growth factor binding 

protein 6 (IGFBP6) are involved in positive regulation of MAPK cascade, negative 

regulation of cell population proliferation and positive regulation of stress-activated 

MAPK cascade, all of which have potential roles in tumour biology.  

 

Figure 4.6. Semantic analysis results of IGFBP6 gene across all BCA subtypes. 

 

G0S2 (Figure 4.8), the G0/G1 switch 2 (G0S2) gene, has rat and mouse orthologs. G0S2 

had no reported protein-to-protein interactions but is implicated in breast cancer by 

being associated with cellular differentiation and is involved in regulation of the 

extrinsic apoptotic signaling pathway. 

ALDH2, aldehyde dehydrogenase 2 family member, has rat and mouse orthologs and 

has protein-to-protein interaction with the SOD2 superoxide dismutase, is associated 
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with decreased tumor latency, negative regulation of apoptosis process and responses 

to ethanol and progesterone. 

 

Figure 4.7. Semantic analysis results of G0S2 across all BCA subtypes. 

 

We found that the AR gene is the androgen receptor gene to be differentially expressed 

in the triple negative breast cancer (TNBC) subtype. AR expression was previously 

implicated in breast cancer, including TNBC where it is implicated in cell growth, 

epithelial-to-mesenchymal transition, angiogenesis and immunity, migration, and 

apoptosis (Lehmann et al., 2020), affecting disease prognosis (Maqbool, Bekele, & 

Fekadu, 2022). The BCA semantic system annotated AR as implicated in invasive 

ductal carcinoma with rat and mouse ortholog associated with preneoplasia, decreased 

tumor latency, abnormal tumor morphology amongst other attributes. Furthermore, AR 

was annotated as being involved in regulation of apoptotic signaling, positive regulation 
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of transcription, inter alia. Finally, the system identified several AR interactions with 

known BCA genes including STAT3, KAT7, CCNE1, NCOA6, JUN, and FOXA1. 

The prevalence of AR expression in all invasive BCA is ± 80% and in about 30% of 

TNBC patients (Rampurwala, Wisinski, & O’Regan, 2016), (Qattan, Al-Tweigeri, & 

Suleman, 2022), (Anestis, Zoi, Papavassiliou, & Karamouzis, 2020).  

In AR positive BCA, AR may be exploited as a therapeutic target with drugs, for 

example PROTAC as in prostate cancer (Han et al., 2019) and AR antagonists, such as 

enzalutamide and bicalutamide in breast cancer (Bhattarai, Saini, Gogineni, & Aneja, 

2020). Also, Lehmann et al. demonstrated that preclinical patients with androgen 

receptor triple-negative breast cancer (TNBC) cells are sensitive to AR antagonists 

(Lehmann et al., 2020). Thus, AR antagonist may be exploited to improve prognostic 

outcomes. Furthermore, some studies have reported AR expression association with 

positive effects in BCA such as the decrease proliferation of TNBC cells and expression 

of cell-cycle regulator Cyclin D1 (Shen et al., 2017).  These are positive effects, 

indicating the positive potential of the AR gene in BCA. However, other studies 

indicated a negative effect of AR expression, for an example, AR-mediated 

downregulation of G-protein coupled estrogen receptor expression is associated witth 

promoting the proliferation in TNBC cells (Zhu et al., 2016), (Anestis, Zoi, 

Papavassiliou, & Karamouzis, 2020).  

On both accounts, AR provides a potential target for regulating these BCA where it is 

expressed. Furthermore, the accumulating evidence suggests that androgen signaling 

plays an important role in BCA and androgen receptor (AR) is emerging as a practical 

marker and therapeutic target as well as a prognostic indicator (Yuan et al., 2017), 
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(Liman et al., 2022), (Yi, Hong, Ohrr, & Yi, 2014), (Park et al., 2011). Bhatarrai et al. 

indicated that in as much as 10–43% of TNBCs with Androgen receptor (AR) benefit 

from AR expression the remaining 67%–90% of TNBCs not expressing AR, do not 

benefit from AR antagonists. Some studies have reported worse prognosis for AR 

negative-TNBC patients compared to those with AR-positive TNBC (Bhattarai et al., 

2020), (Rakha et al., 2007).  

There is a higher prevalence of younger patients diagnosed with AR-negative triple 

negative breast cancers compared to AR-positive patients, with an average age ranging 

between 35 and 49 (Park et al., 2011), (Davis et al., 2018). Furthermore, Davies et al. 

indicated higher prevalence of downregulation of AR express in African American 

patients compared to whites (Davis et al., 2018). AR negative TNBC patients have 

decreased survival rate compared to the AR positive TNBC patients (Anestis et al., 

2020), (Davis et al., 2018). 

The presence and absence of AR indicates that it can be considered as an independent 

and essential biomarker for the prevalence of and prognostic factor for triple negative 

breast cancer. Triple-negative breast cancer (TNBC) is a heterogeneous collection of 

biologically diverse cancers (Lehmann et al., 2011; Vtorushin, Dulesova, & Krakhmal, 

2001). Upregulation and downregulation of AR suggests of classification of TNBC into 

two clades, AR+TNBC and AR-TNBC. Furthermore, the prevalence of, and the 

therapeutic difficulties in treating AR-TNBC may suggest this clade as a potentially 

independent BC subtype, the quadruple negative breast cancer (QNBC) (Date et al., 

2016).  
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Figure 4.8. Semantic analysis results of AR gene, which was differentially expressed 

in triple negative breast cancer. 

 

Another gene of interest prioritized by our system was ERBB4 (Figure 4.10). This gene 

encodes the erb-b2 receptor tyrosine kinase 4 with a function in protein tyrosine kinase 

activity that is involved in positive and negative regulation of cell population 
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proliferation. The system annotated that this gene has mouse and rat orthologs that have 

roles in breast cancer, positive regulation of transcription, inter alia. Furthermore, 

annotations included interactions with several BCA genes including MUC1, GRB2, and 

DUSP.  

 

 

Figure 4.9. Semantic analysis results of ERBB4 gene in triple negative breast cancer. 
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BORG prioritization included genes with paucity of information, which that could 

indicate novelty implicating them to BCA, for an example VIPR1 (Figure 4.11). This 

gene is implicated through interaction with TINF2, which has known roles in BCA. 

To date literature has not linked VIPR1gene to BCA. 

 

Figure 4.10. Semantic analysis results of VIPR1gene in triple negative breast cancer. 

 

4.5 CONCLUSION 

The currently designed semantic database is sensitive enough to prioritize known genes 

associated with BCA together with novel genes that have not been associated with the 

disease. The latter genes are scantily reported in literature. Therefore, further analysis 

needs to be done to elucidate their association with breast cancer. This includes linking 

AR gene expression with triple negative breast cancer leading to further classification 

of this subtype into QNBC. 

This tool maybe used across different diseases for discovering novel genes that may be 

associated with the discovery of novel biomarkers and potential drug targets. 
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CHAPTER 5 
 

CONCLUDING REMARKS 

 

BCA is a heterogeneous complex of disease having a spectrum of many subtypes with 

distinct biological features that lead to differences in response patterns to various 

treatment modalities and clinical outcomes. For the past two decades, researchers have 

tried to stratify BCA in order to find improved means for early diagnosis and ultimately 

better therapeutic approach (Yersal & Barutca, 2014). Due to the complexity of this 

disease there is still disjointed and paucity of information. Therefore, a development of 

semantic discovery databases with artificial intelligence is crucial. Such databases will 

enable end users accessing in-depth information throughout the stages of disease 

development. 

This PhD study developed a comprehensive semantic data graph (BORG) addressing 

pathogenesis of BCA exploiting computationally filtered genes from various databases 

including literature to identify novel genes and pathways relating to this disease. This 

may expedite early detection and intervention curtailing the scourge due to this disease.  

It has the potential to assist in improving the understanding of the disease and possibly 

early detection by respective associations. Interestingly, this tool revealed several genes 

not previously linked to BCA connecting them through guilt by association through 

protein-protein interactions with genes with known roles in BCA. 

Furthermore, this tool may not be limited only to understanding BCA but may also be 

extended to other diseases with minor variations, using the semantic modeling methods 
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presented in Chapter 2. In a dynamic graph format, this system may enable an end user 

to pick up a node or link and detailed information with BCA subtypes, ontologies, 

pathways etc., may come up. 

To date, some of the genes picked out by this system as novel still come with 

inconclusive information associating them with BCA. For an example, Lu et.al (2022) 

could not associate HNRNPA3 gene with the disease. The discovery of genes implicated 

to BCA through “guilt by association” also opens avenue for future research elucidating 

their role in the disease. Moreover, the overall description of genes from the here 

developed semantic discovery and computational filtration may pave way for drug 

repurposing. 

The limitation is the speed of generating information in this day and age which may 

make data appear outdated. However, the idea behind this study was to tap on artificial 

intelligence. Therefore, the use of the here-developed semantic system will 

automatically be updated. 
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APPENDIX I 
Table 3.1: Comparison of frequencies of SNVs mutation between breast cancer and 

other cancers. "Additional Files" 

(https://drive.google.com/drive/u/0/folders/1HxuY4NhCHKQTAHCzle9omVtUhCjy

E6e-) 

Symbol # SSM Affected 
Cases in Cohort 

Total 
BCA SNV 

% BCA 
mutated 

# SSM 
Affected 

Total All 
CA SN 

% SNV All 
Cancers  

BCA vs All  
(percent 

difference) 

CDH1 149 954 15.62% 397 11,519 3.45% 453.2% 

GATA3 134 954 14.05% 370 11,519 3.21% 437.4% 

MAP3K1 89 954 9.33% 347 11,519 3.01% 309.7% 

CBFB 28 954 2.94% 114 11,519 0.99% 297.1% 

PIK3CA 331 954 34.70% 1,416 11,519 12.29% 282.3% 

MAP2K4 43 954 4.51% 208 11,519 1.81% 249.8% 

AKT1 32 954 3.35% 160 11,519 1.39% 241.2% 

GOLGA6L6 49 954 5.14% 254 11,519 2.21% 233.1% 

RUNX1 48 954 5.03% 259 11,519 2.25% 223.7% 

MUC2 109 954 11.43% 716 11,519 6.22% 183.9% 

FOXA1 32 954 3.35% 218 11,519 1.89% 177.0% 

FAM230B 24 954 2.52% 164 11,519 1.42% 177.0% 

MUC4 193 954 20.23% 1,340 11,519 11.63% 173.9% 

ST6GALNAC3 38 954 3.98% 286 11,519 2.48% 160.3% 

REXO1L1P 29 954 3.04% 229 11,519 1.99% 152.9% 

CCDC168 51 954 5.35% 405 11,519 3.52% 152.2% 

NBPF12 38 954 3.98% 308 11,519 2.67% 148.8% 

Table 3.2: Upregulated CNVs_Enrichment Analysis  

Genes not on 
Enrichr 

Gene Prev. described in Breast 
Cancer (Y/N) 

Gene Prev. described in any other 
Cancer (Y/N) 

Enrchr pathways 
KEGG 

TANC2  No No No data 

FER1L6  No No No data 

PKHD1L1  No No No data 
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PHF20L1  No disorders were found for 
PHF20L1 Gene 

No disorders were found for 
PHF20L1 Gene 

No data 

NBPF12  No No No data 

PCNXL2  No No No data 

MALAT1  No Yes No data 

CCDC168  No Yes No data 

XKR4  No disorders were found for XKR4 
Gene 

No disorders were found for XKR4 
Gene 

No data 

POTEM  No disorders were found for 
POTEM Gene 

No disorders were found for POTEM 
Gene 

No data 

KIAA1549L  No disorders were found for 
KIAA1549L Gene 

No disorders were found for 
KIAA1549L Gene 

No data 

QSER1  No disorders were found for 
QSER1 Gene 

No disorders were found for QSER1 
Gene 

No data 

ADAMTSL3  Yes Yes No data 

GOLGA6L10  No Yes No data 

FAT3  No No No data 

UMODL1  No No No data 

MAGEA12  No Yes No data 

NBEA  No No No data 

FCGBP  No Yes No data 

PDZD2  No Yes No data 

RLF  No No No data 

KIAA2018  No No No data 

NBEAL1  No Yes No data 

 

Table 3.4: Downregulated CNVs_Enrichment Analysis 

Genes not on 
Enrichr 

Gene Prev. described in Breast 
Cancer (Y/N) 

Gene Prev. described in any other 
Cancer (Y/N) 

Enrchr pathways 
KEGG 

VPS13D  No No No data 

CSMD1  No Yes No data 

GOLGA6L6  No No No data 

NBEA  No No No data 

ZNF292  No Yes No data 

CSMD2  No Yes No data 

FAT3  No No No data 

XKR4  No disorders were found for XKR4 
Gene 

No disorders were found for XKR4 
Gene 

No data 
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CMYA5  No No No data 

ERICH3  No disorders were found for 
ERICH3 Gene 

No disorders were found for ERICH3 
Gene 

No data 

MALAT1  No Yes No data 
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APPENDIX II 
R (EdgeR) WORKFLOW: 

EdgeR workflow for differential expression gene analyses of read counts arising from 

RNA-Seq between normal and tumour samples. 

 

#WORKFLOW on R (EdgeR): 

files <- dir()  # tell R your files are in the working directory (only 

htseq.count files) 

x <- readDGE(files,header=FALSE,columns=c(1,2),comment.char="_")   # read 

files into edgeR format 

dim(x)    # check that all lines (genes) and samples read in correctly, 

dimensions (dim) of datagroup 

<as.factor(c("N","N","N","N","N","N","N","N","N","N","TN","TN","TN","TN","TN

","TN","TN","TN","TN","TN")) 

data <- DGEList(counts = x, group = group)   # assigning tissue type (group 

label) to each sample read into R 

data$samples     # check each sample correctly labelled 

count_table<- data $ counts # gives you a table of all raw counts 

keep <- filterByExpr(data,design=NULL,group=group,min.count = 

1,min.total.count = 10)   # 30 in my case filtering out rows (rowSums) that 

equal zero, or don't have at least a count of 1 transcript per sample 

table(keep)    #checking how many genes were TRUE or FALSE based on conditions 

provided in filtering step 

y <- data[keep,]   #removing the non-informative genes/transcripts from dataset 

for DE analysis 

z <- calcNormFactors(y,method = "upperquartile")    #normalizing/scaling data 

to the top 25% of the raw counts (3rd or upper quartile in data distribution 

bell curve) 

a <- estimateCommonDisp(z)   #estimate common dispersion of normalized data 

(z) 
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b <- estimateTagwiseDisp(a) #estimate data dispersion based on assigned labels 

of samples, but use previous variable (a) 

de <- exactTest(b, pair = c("N","TN"))   #find differentially expressed genes 

between two groups N and TN (10 samples each) 

tt<- topTags(de, n=nrow(de))    #ranking of DE genes with logFC and adjusted 

p-value (FDR); n can equal any number (desired top number of genes e.g. Top 

100 DE genes, then n = 100) 

write.csv(tt,"DE_genes.csv")   #write DE genes (ranked) to csv file to view 

in Excel, with logFC, p-values, etc. 
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