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Abstract 
 

A number of technologies exist that capture data from biological systems. In 

addition, several computational tools which aim to organize the data resulting from 

these technologies have been created. The ability of these tools to organize the 

information into biologically meaningful results, however, needs to be stringently 

tested. 

 

The research contained herein focus on data produced by technology that records 

short Expressed Sequence Tags (ESTs). An EST reference dataset was generated 

that can be used to test the set of tools which use ESTs to reconstruct expression 

events. The EST reference dataset contains well-characterized biological 

phenomena (exon-skipping, paralogy) and quantified sequence error. 

 

A subset of computational tools (d2_cluster, WCD, phrap, CAP3) were tested 

using the reference dataset and it was found that CAP3 produces higher integrity 

sequences at the cost of losing alternative splicing information. Phrap, the looser 

clustering algorithms implemented in d2_cluster and the novel tool WCD, produce 

results which capture the alternatively expressed sequence information. 

 

Future related research should focus on elucidating the internal gene structure of 

the results produced by the computational tools evaluated in order to determine the 

biological validity of the results beyond the level of sequence similarity. 

Availability of dataset: www.sanbi.ac.za/~mario/dataset.tgz
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Chapter 1 Introduction 
With the increasing number of sequenced genomes (188 as on 15 May 2006*), one of 

the next challenges for researchers is to characterize the transcriptome, which is 

defined as the complete transcribed complement of the genome. Characterization 

includes transcript cataloging (including determination of all possible gene transcripts 

and expression events), transcript profiling (the spatio-temporal expression patterns of 

gene transcripts), and understanding the transcription regulatory networks1. Transcript 

cataloging is defined as the recording and description of all expressed genomic 

sequences, including alternative transcripts, anti-sense transcripts non-protein coding 

RNA. Several technologies exist, each with inherent sampling bias which attempt to 

characterize and catalogue expression products,. 

 

Examples of these technologies include Serial Analysis of Gene Expression (SAGE2,3), 

Cap Analysis Gene Expression (CAGE4-6) and Massively Parallel Signature 

Sequencing (MPSS7-9), Expressed Sequence Tags (ESTs) and Microarrays. 

 

The main tools used for cataloging and characterizing gene expression products are 

based on the use of cDNA’s, whether that be partial cDNA fragments (as used by 

SAGE, CAGE, MPSS, ESTs and Microarrays) or full-length cDNA sequences (as 

used by the Mammalian Gene Collection consortium (MGC)10 and the NEDO 

project11).  

 

All of the above-mentioned methods will be discussed in more detail in the following 

sections. Several genome-based computational tools also exist which aim to catalog 

gene transcripts through gene prediction. These tools try to infer the gene structure 

from the intrinsic genome sequence properties, and as such, fall outside the scope of 

this discussion.  
 

                                                      
* http://www.genomenewsnetwork.org/resources/sequenced_genomes/genome_guide_index.shtml 
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1.1 Transcriptome characterization technologies 

1.1.1 

1.1.2 

Serial Analysis of Gene Expression (SAGE) 

SAGE allows the researcher to determine the number and relative abundance of a gene 

transcript in a biological sample. cDNA is labeled at the 3’-end with biotin and 

immobilized on streptavidin-coated magnetic beads. The immobilized cDNA 

fragments are restricted with a 4-base restriction enzyme (NlaIII or Sau3A) which 

generates a ‘sticky’ CATG or GATC-end. An adaptor containing a recognition site for 

class II restriction enzymes (BsmFI or MmeI) is then ligated to the ‘sticky’ end1. Both 

of these restriction enzymes cut upstream of their recognition sites; BsmFi cuts 14bp 

upstream, and MmeI cuts 18-20bp upstream. Restriction with these enzymes then 

produce 14bp SAGE3 tags or 21bp LongSAGE2 tags. Tags are concatenated into 

longer sequences which are then sequenced. Quantifying the number of unique 

markers gives an estimate of the expression of a gene under a specific set of 

conditions. 

 

One of the disadvantages of SAGE is that the short tag size introduces ambiguities in 

the identification of gene transcripts since the fragments may not necessarily be 

unique. The ambiguity problem has been alleviated somewhat by LongSAGE which 

produces longer 21bp tags. An additional disadvantage is that a large number of clones 

need to be purified and sequenced, leading to increased cost and limited throughput9. 

In addition, the fact that there may not be a cut-site for the enzymes (NlaIII and 

Sau3A) acting as anchoring enzymes12 means that some transcripts may not be 

represented at all. 

Cap Analysis Gene Expression (CAGE) 

CAGE is similar to SAGE in that short nucleotide fragments (typically 20 bp) are 

generated via class II restriction enzymes. These generated nucleotide fragments are 

concatenated, cloned and sequenced. The major difference between CAGE and SAGE 

is that CAGE tags are generated from the 5’ end of the capped mRNA, as opposed to 
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the 3’ end for SAGE. CAGE relies on the CAP trapper method developed by Carninci 

et al4,6,13 which selectively captures 5’ capped mRNAs, leading to the use of CAGE 

tags in characterizing transcription start sites. 

 

The process (Figure 1, p4) starts with first cDNA-strand synthesis, followed by 

biotinylation of the diol moieties unique to the cap structure and polyA tail. 

Subsequent degradation by RNase I removes single-stranded RNA, as well as the 

polyA tail (most of which will be unprotected by the polyT primer), leaving a full-

length mRNA-cDNA hybrid which is biotinylated only at the 5’ cap structure4,13-15. 

These full-length hybrids are then isolated on streptavidin beads, subjected to RNA 

hydrolysis to remove the mRNA, and subsequent second-strand cDNA synthesis. 
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Figure 1: Diagrammatical overview of CAGE Technology6. See text (Section 1.1.2, p2) 
for further details. 

1.1.3 Oligo-capping 

Sugano et al16 developed the oligo-capping method (Figure 2, p5) in which the cap 

structure of an mRNA molecule is replaced with a synthetic oligonucleotide. The 

synthetic oligonucleotide serves to label the capped end of the mRNA, thereby 

ensuring that only full-length mRNAs are captured for library construction. Bacterial 
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alkaline phosphatase (BAP) hydrolyses the phosphate of truncated mRNA 5’ ends 

whose cap structures have been broken down, and leaves a hydroxyl group at the 5’ 

position. Tobacco acid pyrophosphatase (TAP) removes any intact cap structure, 

leaving the phosphate at the 5’ end. T4 RNA ligase then selectively ligates the 

synthetic oligo to the 5’ phosphate, ignoring the mRNA molecules containing the 5’ 

hydroxyl moiety. 

 

Figure 2: Diagram of steps involved in oligo-capping (obtained from Sugano et al16). 
Explanation in text (Section1.1.3 “Oligo-capping”, p4). 

 
 

1.1.4 Massively Parallel Signature Sequencing (MPSS) 

Like SAGE, MPSS generates a 17-20bp tag (called a signature sequence) extending 

from the 3’-most Sau3A restriction site. These unique signature sequences are then 
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attached to micro-beads via proprietary technology called Megaclone*. The signature 

sequences are sequenced in a parallel fashion, resulting in massive reduction in time 

and effort9. No prior knowledge of any of the sequences is needed, and characterising 

differential expression allows for counting transcript numbers as low as 5 transcripts 

per million (tpm)17†, making it the most sensitive of all the technologies reviewed 

here. The higher sensitivity of MPSS is an advantage when considering that certain 

transcripts are present at levels as low as 0.001 copies per cell18. 

 

Unfortunately, due to the complexity of this method, specialized equipment is needed 

which, for most laboratories, is not financially viable1. The proprietary nature of the 

technology also limits potential users to a single supplier, Lynx Therapeutics.  

1.1.5 

1.1.6 

                                                     

Microarrays 

Microarrays consist of a grid of sequence probes attached to either a glass slide or 

nylon membrane as a support medium. Based on the type of probe used, two types of 

microarrays exist: the probes on the support medium can either be cDNA or 

oligonucleotides (High-Density Oligonucleotide Arrays - HDOAs). As much as 30,000 

probes can be placed on a slide. The sequence for the probe does not need to be 

known. The targets are either cDNA synthesized from the transcript mRNA, or total 

RNA from the cell or tissue under investigation. Microarrays allow thousands of genes 

to be assayed. 

Expressed Sequence Tags (ESTs) 

ESTs are single-pass reads of the cDNA obtained from reverse-transcribing mRNA 

which is present as consequence of gene expression19,20. ESTs do not require a known 

template, and is therefore a good method for finding novel genes. Although ESTs can 

be used to quantify the level of transcription, the technology is not as sensitive as 

SAGE, CAGE or MPSS in detecting low-abundance transcripts (see for example Sun 

 
* http://www.lynxgen.com 
† http://www.takarabioeurope.com/news/mpss_faq.html#q7 
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et al21), leading to an under-representation of these low abundance transcripts in EST 

databases. 

 

ESTs have been extensively used for novel gene discovery, gene mapping, generating 

gene indices and gene annotation. For a more extensive discussion on ESTs, see the 

following section 1.2, “Rationale for Using ESTs” (p7). 

1.2 Rationale for using EST data 

SAGE, MPSS, Microarrays and ESTs give quantitative information with regards to 

expression levels of gene products. In addition, these technologies can be used to 

compare expression levels and products across various biological conditions. 

 

Oligo-capping and CAGE allow the generation of full-length cDNA and the 

subsequent characterization of the gene product. Full-length cDNA sequences (FL-

cDNA’s) are generally accepted as the best sources for transcript cataloging. In the 

MGC22 project pipeline, which aim to generate full-length cDNA’s, 5’ and 3’ ESTs are 

generated first. Therefore ESTs for a transcript is available before the FL-cDNA’s 

are23. In addition, although an FL-cDNA may be present in the database, it may not 

necessarily reflect all the alternative transcript isoforms which exist24 for a particular 

gene. Thus, ESTs represent an inexpensive and fast way of generating quantitative 

expression data, as well as for characterization of gene transcripts. 

 

It needs to be stressed that an approach which uses complementary methods of 

transcript cataloging is more sensible and provides more solid results than a single 

approach. The caveat with regard to the use of EST data for transcript cataloging is 

that it needs to be well organized and characterized. This is done in the context of a 

Gene Index, which aims to group together all ESTs emanating from the same gene 

locus25,26.  
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1.2.1 

                                                     

Characteristics of ESTs 

ESTs represent one of the most useful means of reconstructing virtual transcripts 

because they have broad expression state (e.g. species, anatomical location, disease 

state) and coverage (e.g. if humans are excluded, ESTs exist for 768 species, 519 with 

more than 100 ESTs per organism*). When considering that only about 188 genomes 

have been sequenced, it means that for most organisms, only EST data exist.  

 

The high number of ESTs in EST databases is another reason for their usefulness. 

Human ESTs account for 21.4% (7,741,240) of dbEST (which contained 36,241,897 

ESTs as on 12 May 2006)*.  

 

The initial bias towards 3’ ESTs in EST database has been met by the increase in the 

number of 5’ ESTs, as well as the presence of Open Reading frame Expressed 

Sequence Tags (ORESTES27-29). ORESTES have been shown to be distributed 

throughout the transcript length, but preferentially generate ESTs from the central 

regions of gene transcripts. The presence of ORESTES in EST databases mean that 

there is distributed transcript localization, i.e. a more representative view of the 

complete transcript, which adds to the 5’ and 3’ ESTs already present in the database. 

 

A Gene Index attempts to cluster ESTs such that ESTs belonging to a specific gene is 

assigned to a single class. ESTs have been used to generate Gene Indices such as 

STACKdb30,31, Unigene32,33 and TIGR Gene Indices (TGI34-36). These indices also 

attempt to reflect alternative splicing of these genes. 

 

ESTs have been used to assist in gene identification, i.e. the detection and 

characterization of novel genes, through the use of tissue-specific EST libraries, as 

well as in gene expression studies. In addition to this, ESTs can be used to identify 

genetic variations such as Single Nucleotide Polymorphisms (SNPs) and alternatively 

expressed genes37. 
 

* http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html 
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1.2.2 EST Disadvantages 

Although ESTs are extremely useful in reconstructing the virtual transcript, they are 

marred by several problems in the data. These include (1) low sequence quality, or 

sequencing error, (2) the presence of chimeras, (3) the existence of gene families, (4) 

the presence of repeats, (5) contamination with genomic sequence, (6) contamination 

with vector sequence, (7) alternatively expressed transcription, (8) the existence of 

database errors. These features complicate the organizing and usefulness of ESTs. In 

addition, the transcript sequence information may be incomplete, since it most 

frequently contains only incomplete fragments of gene transcripts. Wang et al 

conclude that most clustering errors occur because of Insufficient Sequence Overlap 

(ISO) errors38. ISO errors can, however, be countered by full-length cDNA cloning and 

sequencing. 

1.2.2.1 Sequence Error 

Sequence error refers to the random single-base errors that occur in biological 

sequence data. The causes for this may be biological or technical. Biological error may 

be due to polymerase decay (error probability increases with increasing sequence 

length), primer interference (primer interferes with the start of a sequencing read), or 

stuttering (a part of the DNA to be transcribed gets re-read; happens after repeated G’s 

or T’s). Technical errors occur during sequencing and include lane-tracking error. 

Depending on the level of error per sequence, related sequences may differ from each 

other to such an extent that they may be assessed to be unrelated. On the other hand, so 

much error may have been introduced that unrelated sequences may appear highly 

similar. 

1.2.2.2 Chimeras 

Chimeras are made up of sequence fragments from different sequence sources. These 

might be due to the artificial ligation of ESTs during EST production, or clones 

mistakenly ligated from different mRNA species. The presence of chimeras would 
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cause clustering and sequence assembly to associate totally disparate sequences with 

each other. 

1.2.2.3 Gene Families (Paralogs) 

Paralogs are accepted as having been derived from gene duplication, subsequent to 

which sequence divergence occurred39. Gene family members share similar nucleotide 

sequence motifs, as well as amino acid secondary and tertiary structure. According to 

Taylor and Brinkman40, 10% of human genes have ancient paralogs. Depending on the 

level of sequence divergence i.e. sequence identity, between the family-derived ESTs, 

apparently homologous family members would tend to cluster together. Consequently, 

EST sequences from completely separate genes would then be merged into a single 

gene. 

1.2.2.4 Repeats 

Repeated DNA sequences (repeats) are ubiquitously dispersed throughout a particular 

genome. These repeats my vary both in length and copy number.  Repeats are more 

prevalent than the coding regions of the genome. Most of these are found outside the 

coding regions, but are often found within the exonic parts of these genes. Sometimes 

these repeats even perform regulatory functions41. Repeats may cause false gene 

clustering and assemblies, since the common repeats would force unrelated sequences 

to group together based on assumed similarity; repeats should ideally be masked and 

not deleted from the sequences containing them. 

1.2.2.5 Sequence Contamination 

ESTs, like any other sequence data, may contain foreign sequence matter i.e. sequence 

derived from sources other than the intended source. The foreign sequence matter may 

comprise all, or part of the sequence. Sequence contamination common to sequences 

could lead to the erroneous clustering or grouping of unrelated sequences together*. 

                                                      
* http://www.ncbi.nlm.nih.gov/VecScreen/contam.html 
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1.2.2.6 Vector Sequence 

EST databases contain some EST sequences that have been found to contain vector 

sequences which were not removed prior to the sequence submission process. 

Although the quality control of sequence submission has increased, these contaminated 

sequences are still present and as such, vector sequences should be masked out. Vector 

masking is done by searching sequence against a known vector database and masking 

the appropriate vector fragment. 

1.2.2.7 Alternative splicing 

Alternative pre-mRNA splicing (AS) produces various gene products from the same 

gene template through the use of alternative transcription initiation and 

polyadenylation sites as well as alternative exon usage. AS appears to account for the 

large disparity between the number of genes found on a genome, and the expression 

products represented by the proteome. It is estimated that as much as 70% of all 

human genes are alternatively expressed. ESTs which represent a specific AS gene 

may be deemed to be so dissimilar to each other, that they are placed in different 

clusters or assemblies.  

1.2.2.8 Database Errors 

The deluge of biological data requires human intervention to create the relevant 

databases, as well as to capture the relevant data. In addition to this, complementary 

annotation data are added to characterize the relevant data points. Each step of this 

process presents possibilities of error introduction. Errors may include the format of 

the data files, syntactic, typographical and scientific error in the sequence, as well as 

the incorrect annotation of sequences42. 

 

All of the above-mentioned phenomena complicate the use of ESTs, and make the 

analysis of results obtained from EST data difficult. When using EST data, these 

phenomena need to be considered, and where possible, avoided or removed. 
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1.3 Some tools which use ESTs to reconstruct gene 

transcripts 

This section gives an overview of some of the tools which use ESTs to reconstruct 

gene expression events. There are tools which do this reconstruction on the systems 

level by just classifying or clustering related sequences into a single class i.e. one class 

would ideally represent a single gene or transcript. These clustering tools include 

d2_cluster43, and the clustering utilities of the TIGR Gene Indices Clustering Tool 

(TGICL). For these tools no further processing of these classified sequences are done. 

 

The other set of tools attempt gene expression reconstruction on the assembly level i.e. 

if enough criteria are met, related sequences are assembled into linear contiguous 

sequences which are longer composites of the related sequences. Assembly tools 

include the Phragment Assembly Program (phrap), the Contig Assembly Program 

(CAP3), and TIGR Assembler (TA). Both CAP and phrap were designed to assemble 

fragments into a single linear sequence, and as such, the behavior of these programs in 

e.g. the presence of alternative splicing is uncertain. 

 

These tools are commonly combined into a pipeline which clusters related sequences, 

upon which the clusters are then assembled. Examples of these pipelines are StackPack 

(clustering via d2_cluster, and assembly via phrap), TGICL (clustering via tclust, nrcl 

and sclus, and assembly via CAP3). 
 

1.3.1 Assemblers 

1.3.1.1 Phragment Assembly Program (phrap) 

Phrap was originally designed for assembling shotgun genome DNA sequence. Phrap 

allows the usage of the complete sequence, not only the high quality sequence data. 

Instead of generating a consensus sequence, phrap uses the high quality data fragments 

to generate a ‘mosaic’ contig. Sequence similarity is based on “word-nucleated” local 
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alignment. The sequences to be compared are searched for identical subsequences or 

‘words’ of a specified length. If there are multiple matching words between the input 

sequences, the diagonals in the Smith-Waterman alignment matrix representing these 

matches are extended. This process is done recursively, possibly resulting in multiple 

alignments with scores above the cut-off score. Phrap is able to generate its own 

quality scores if none are provided*. 

1.3.1.2 Contig Assembly Program (CAP3) 

CAP is an assembly tool which has also been developed for genome assembly. It was 

designed by Huang in 199244, and has been improved several times45,46. The most 

recent version, CAP4, is a commercial product for which no algorithmic information is 

available. 

 

CAP produces its assemblies in three phases: 

Phase 1: 5’ and 3’ poor regions of each read are identified using local 

alignment and removed. Overlaps between reads are computed and false 

overlaps are identified and removed. 

Phase 2: Reads are joined to form contigs in decreasing order of overlap 

scores. In CAP3, corrections are made to contigs via forward-reverse 

constraints. These constraints are obtained by sequencing both ends of a sub-

clone and insist that “the two reads should be on opposite strands … within a 

specified distance range”. 

Phase 3: Multiple sequence alignment of reads is constructed and a consensus 

sequence with quality values is calculated for each base in the contig46. 

1.3.1.3 Partial Order Alignment (POA) 

Lee et al47 have suggested the use of partial order (PO) graphs as data structures to 

represent multiple sequence alignments (MSA). Dynamic programming is then used to 

align the PO-MSA. Dynamic programming starts of in the usual way with the 

                                                      
* http://www.phrap.org/phredphrap/phrap.html 
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alignment of two sequences. The resultant alignment is represented as a PO-MSA. All 

subsequent sequences to be added to the MSA, are aligned to the PO-MSA. The result 

is a graph representation of a MSA. Lee48 then extended the work done on POA by 

developing the heaviest_bundling algorithm to use dynamic programming to construct 

consensus sequences. 

1.3.2 Clustering tools 

1.3.2.1 d2_cluster 

d2_cluster43 is based on the d2 distance function. Clustering of similar sequences is 

done in one of two ways: alignment-based (sequences are aligned to each other to 

determine the similarity) and non-alignment based. d2_cluster is a word-based method 

which falls into the second category. The d2 distance function is based on word count 

and the most similar sequences are the ones with the lowest d2 value. The d2 value for 

two sequences is calculated by determining the word frequencies of each sequence and 

then taking the sum of the square of the differences. 

 

Mathematically: 

d (x, y) = Σ2
k |w| = k(cx(w) – cy(w))2 , 

 

where x and y are sequences, w is a word which has length k. 

 

Instead of calculating the d2 score over the complete sequence, it is calculated over a 

predefined contiguous length called a window. The d2 score for a pair of sequences is 

then the minimum score between all the pairs of windows for these sequences. The 

default window size for d2_cluster is 100 bp. 

1.3.2.2 WCD 

WCD is a novel extension of d2_cluster which, in addition to the d2 distance function, 

allows for the use of two additional distance functions; edit distance and a common 
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word heuristic. An added feature of WCD is the ability to do simple parallel 

processing. 

 

Our selection of tools for evaluation were limited to the two clustering tools d2_cluster 

and the novel tool WCD, as well as the assembly tools phrap and CAP3. 

1.3.3 Pipelines 

1.3.3.1 stackPack 

StackPack uses d2_cluster to do word-based clustering of EST sequences, phrap to 

assemble the clusters, and CRAW, which does additional sequence analysis to 

determine possible alternatively expressed transcripts. 

1.3.3.2 TGICL 

TGICL49 is a pipeline of programs which first clusters ESTs using three clustering 

utilities tclust (a transitive closure clustering tool with overlap filtering options), nrcl 

(a containment clustering and layout utility which processes pairwise alignments) and 

sclust (a seeded clustering tool that processes pairwise alignments) and then assembles 

these clusters using CAP346.  

1.4 Definition of fidelity of program reconstruction 

The fidelity of reconstruction can be defined as the measure to which the virtual 

transcripts resemble the actual gene products. This would include the extent to which 

the tools assign ESTs to the correct (known) groupings, whether these groupings are 

clusters or assemblies. Fidelity is also affected by the ability of programs to 

reconstruct and record alternative splicing events. 

 

To the best of my knowledge, a comprehensive fidelity assessment for reconstruction 

tools has not yet been performed. Bouck et al50 did a cursory assessment of STACK 

and the HGI using one gene, whereas Liang et al34 did a more extensive analysis using 

73 genes and assessing CAP3, phrap, TIGR Assembler (TA) and their new EST-
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specific implementation of TA, called TA-EST. Their analysis however, focused only 

on assembly level reconstruction, i.e. it only considered the assembled contigs. 

Determining the fidelity of these tools is dependent on knowledge of, not only the gene 

sequence boundaries, but also the structure internal to the gene extremities.  

1.5 The importance of “stable gene structure”     

There are common elements that define gene structure: (1) a transcription initiation 

site, (2) a 5’ untranslated region (UTR) with transcription regulation signals, (3) an 

initiation site for the protein coding sequence, (4) exon-intron boundaries, with splice 

site signals at the termini, (5) a termination site for the protein coding sequence, and 

(6) a 3’ UTR with signals for polyadenylation and regulation. The elucidation of gene 

structure is helped tremendously by the availability of full-length cDNA sequences51. 

 

In order to accurately measure the integrity of reconstruction obtained by the methods 

under investigation, the output generated by these methods needs to be compared 

against some form of consistently annotated gene structure.  A minimal description of 

gene structure requires only the protein coding termini and the exon structure and is 

therefore sufficient to assess how well these programs use sequence data to reconstruct 

the underlying expression events. 

1.6 Thesis Organization 

Chapter 1 reviews the field of transcript characterization, the various challenges 

facing it, the means of characterizing, as well as the use of ESTs in transcript 

characterization. Chapter 2 states the aims of this research. Chapter 3 describes the 

generation of the dataset, and concludes with a summary of the dataset content. The 

performance of these programs in the presence of the various artifacts is described and 

discussed in Chapter 4. Chapter 5 summarizes the findings of the research as 

captured in Chapters 3-4. 
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Chapter 2 Aims  
The various transcriptome technologies capture various elements of gene expression. 

In an attempt to analyze and organize the vast amounts of data coming from the 

different transcriptome projects, computational tools are needed. How well the 

computational tools reconstruct the underlying biology as recorded by the specific 

technology needs to be accurately assessed. 

 

Sensitivity (Sn) reflects the extent to which a tool detects, or fails to detect, the right 

object or a true positive (TP) as defined by a reference set. The specificity (Sp) is 

defined in terms of the success of the tool to NOT select a wrong object or a false 

positive (FP). 

  

The biological efficiency or fidelity may be defined as the extent to which the results 

obtained from computational tools reflect actual biology in the presence of data 

containing biological artifacts and phenomena. In addition to the biological variability, 

the data upon which the various computational tools operate may also contain error 

introduced in the process of obtaining the biological data. 

 

The aim of this research is to contribute to the assessment of computational tools by 

creating a reference dataset consisting of sequence data from a single transcriptome 

technology (ESTs). The reference dataset should be as reflective of a true biological 

system as possible. As such, the reference dataset should include well-characterized 

and quantified biological phenomena. Additionally, certain data-processing error 

should also be included. The clustering tools (d2_cluster, WCD), assembly tools 

(phrap, CAP3) will be assessed for Sn and Sp, as well as for the biological fidelity of 

the results generated by these tools. 

 

To accomplish the aim, the following approach will be followed: 
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1. A reference dataset will be produced using as basis the gene dataset created by 

Hide et al52, in which they annotate 52 exon-skipped genes, as well as the ESTs 

which capture these exon-skips . In addition to the exon-skip data, paralogous 

EST data, as well as EST data simulating sequencing error, will be added to the 

reference dataset. 

2. The behavior of the various programs will be assessed in the presence of 

known sequence error, gene paralogs and exon-skipping. The fidelity of 

reconstruction will be assessed for the programs in the presence of these 

artifacts.  

 

Supervised clustering assumes the presence of a known homolog to the gene from 

which the EST transcripts are obtained, whereas such a homolog may not exist. In 

addition, a RefSeq sequence used for ‘supervision’ represents a single form of the gene 

transcript when several transcript isoforms may exist. Partly because of these 

limitations, this research follows an unsupervised approach, in which no parent mRNA 

is used to classify or order ESTs. However, since true biology is partially represented 

by expressed mRNAs, parent mRNAs will be used to assess the similarity of contigs 

generated by the assembly tools. 
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Chapter 3 Dataset generation 

3.1 Introduction 

In order to assess how well computational tools perform the tasks for which they were 

designed, there needs to be a standard reference dataset against which their results can 

be compared. The reference dataset can be compiled in one of two ways: 

1. theoretically or synthetically, 

2. based on specific empirical characteristics. 

To ultimately assess the performance of the selected gene expression reconstruction 

systems, the EST test dataset to be generated will be of the second type, in which the 

unifying characteristics will be exon-skipping and paralogy. In order to derive this 

dataset, an existing gene dataset of 52 exon-skipped genes created by Hide et al52 will 

be used. Hide et al52 have manually curated the various transcript isoforms of these 

exon-skipped genes, as well as the exons which are skipped in each transcript isoform. 

 

The characteristics around which the EST test dataset will be built will include: 

1. genes with known alternative splicing, 

2. genes for which paralogs exist, and 

3. gene-specific ESTs with known sequence error-rates. 

The last criterion will be met by generating gene-specific ESTs with known error-rates 

based on research done by Ewing et al53,54 and Liang et al34. 

 

In order to be useful for this research, the generated dataset should: 

1. be able to annotate i.e. 

a. The dataset should be able to relate ESTs to the gene from which they 

were derived, 

b. Provide a description of the genomic region from which the gene 

transcripts originate e.g. providing genomic coordinates for the 

genomic region spanned by the gene. 
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2. provide a measure of EST identity to the gene from which it originates. 

3. provide a record of isoform presence, numbers and composition. 

4. include paralogous genes. 

5. include known errors with well defined properties and characteristics. 

 

3.2 Methods 

Unless otherwise stated, all sequence and sequence-related data used in this project 

were obtained from the UCSC Browser based on the May 2004 Assembly of the NCBI 

build 35.*

3.2.1 

                                                     

Gene selection 

3.2.1.1 Confirming correct HUGO identifiers 

It was decided to refer to the genes by the assigned HUGO name. The 52 genes in 

Hide et al52 gene dataset have originally been annotated according to their ENSEMBL 

id’s and therefore did not have consistent HUGO identifiers. MatchMiner† is a suite of 

tools that uses information from different sources to correlate disparate gene ID’s with 

each other. MatchMiner succeeded in matching the ENSEMBL ID’s for these genes to 

RefSeq accession numbers for 42 of the 52 genes. Using BLAST (v2.2.13), the 

remaining 11 genes for which MatchMiner could not find a RefSeq accession number 

were confirmed by using the nucleotide sequence for that gene as query sequence. The 

best BLAST hit using default search parameters and a significance cut-off of 10e-120 

was selected as the gene accession number. 

 

Where accession numbers were present, the most recent version of that sequence was 

found by searching NCBI and UCSC Browser (May 2004 human assembly). Where 

uncertainty existed about multiple Genbank accession numbers, the sequence data for 

the gene was used to BLAST-search for the most significant sequence match, and that 
 

* http://www.genome.ucsc.edu 
† http://discover.nci.nih.gov/matchminer/index.jsp 
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identifier was accepted. The identifier would be the HUGO name where it existed, the 

Refseq ID, or the DNA accession number. 

 

From the 52 genes, 27 (Table 1, p22) were selected for which protein entries exist in 

the SwissProt* version 49.7 protein database (See Table 15 in Appendix 6.6, p54). 

For some of these genes, actual PDB structures were found as well. An additional 

selection criterion was that the paralogs found for the Hide et al52 dataset be as 

representative of real biology as possible. That would mean that 10% of the genes 

should have known paralogs40. Only 3 confirmed paralogs could be found for these 52 

genes (See Table 3, p26), which limited the dataset to 27 genes. 

 

The following information was obtained for each gene from the UCSC Genome 

Browser: 

1. the HUGO gene name, 

2. sequence information from the ”Known Gene” track (which excludes introns, 

as well as 5’ and 3’ UTR’s, but includes all exons) 

3. the total number of exons as annotated in the longest “Known Gene” 

4. gene-specific ESTs, which include spliced ESTs (ESTs that span intronic 

regions), 

5. isoform number per gene (taken to be the number of mRNAs for each gene). 

 

The data used is based on the May 2004 Assembly of the NCBI build 35. 

                                                      
* http://www.ebi.ac.uk/swissprot 
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Gene Exon(s) skipped (EST GenBank Accession Number) 
ARVCF 19 (T79735, R08546) 
ATP6E 2 (AA332132), 5 (BE735148, BE732718), 5-7 (AI929680) 
BCR 20 (AW025032) 
CLTCL1 29 (AA378884) 
DGCR2 2, 3 (BE531182) 
ECGF1 5 (AI347252) 
EWSR1 6 (BE311429) 
G22P1 3 (BE018656) 
GCAT 2 (AA670436), 2,3,5 (AI198343) 
GGT1 3 (AW903997, AU077341), 7 (AI222095, H27285, AA917932) 

GSTT1 2 (AA280398, AA280360, AA689400, BE280663), 2-3 (R05684, AV650136), 3 (BF343733), 3-4 
(AA298437) 

GTPBP1 2 (AA418991, AW592929, AW510699, AW182864, AI652565, AI474631, AW015416) 

HMG2L1 2 (AA053700, AA223380, AA192830, AA223568), 5 (AA595272, BE745167), 2,5 (BE793346, 
AW374294) 

LGALS1 3 (BE738697, BE738430, BE738129, BE737824, AA095630, AW006485, AI922873) 
MFNG 2, (BE254149, AU143259), 7 (AW170461, AW166072, AI762014) 
MIL1 2 (BE741543), 3 (BE900458, BE798008, AW250153, AW580672) 
NF2 2, 3 (BE265514) 
NPAP60L 4 (H45683) 
PIK4CA 36,37,38,39,40,41,42 (W04181), 50 (BE670661) 
PMM1 4 (R36322) 
RBX1 2 (AW163628, AW161957, AW161517, AA843156), 4 (AI140018) 
SEC14L2 10 (H06489, AA147533) 
SLC25A17 2-4 (AA326069), 3 (AU123445), 3-4 (BE298274) 
ST13 8 (AI424473) 
TCF20 3 (AW366548) 
UBE2L3 2 (BE093601) 
UFD1L 2, 3 (R08973) 

Table 1: Exon-skipped genes as annotated by Hide et al52, with the EST support for the 
exon-skips recorded in column 2 e.g. in UFD1L, exons 2 and 3 are skipped, and this is 
confirmed by the EST with Accession Number RO8973. Genes are ordered 
alphabetically according to HUGO gene symbol. 

3.2.1.2 Obtaining unambiguous genome coordinates 

The coordinates for the RefSeq sequences were obtained from the UCSC Browser 

(May 2004 human assembly: NCBI Build 35). Where there was only one RefSeq gene/ 

sequence per gene, the location of the gene was taken to be the coordinates of the 

RefSeq gene. When multiple RefSeq transcripts existed per gene, the composite 

coordinates were taken as the location of the gene i.e. the maximum region which 

includes all RefSeq transcripts. Care was taken that all mRNA data used had genomic 
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coordinates within this maximum genomic region. 

 

The genes identified by Hide et al52 are distributed throughout chromosome 22. Table 

2 (p23) summarizes the data gathered for these genes.  It records the genomic location 

of each gene, as well as the total number of exons contained by these genes. In 

addition, it records the total number of UCSC-assigned ESTs and the number of 

spliced ESTs i.e. ESTs spanning intronic regions. 

 

Gene Exons ESTs Spliced 
ESTs Genomic Position on Chr. 22 

ARVCF 20 165 67 18331974-18378863 
ATP6E 9 758 543 16449489-16486044 
BCR 22 379 215 21847105-21982698 
CLTCL1 33 106 46 17541541-17653751 
DGCR2 10 595 177 17398353-17484458 
ECGF1 9 328 271 49096589-49100664 
EWSR1 17 1144 1010 27988824-28021059 
G22P1 13 2296 1996 40260392-40303081 
GCAT 9 125 112 36447010-36455942 
GGT1 16   263 102  23323736-23349524  
GSTT1 5 230 149 22700695-22708825 
GTPBP1 12 197 69 37426468-37452744 
HMG2L1 12 235 60 33978049-34016353 
LGALS1 4 1048 953 36314681-36318846 
MFNG 8 229 168 36108141-36125424 
MIL1 4 360 96 16546303-16586545 
NF2 14 49 31 28324118-28419137 
NPAP60L 7 138 62 43840612-43857701 
PIK4CA 54 584 312 19386544-19517555 
PMM1 8 210 152 40215945-40228910 
RBX1 5 315 245 39671884-39693168 
SEC14L2 10 190 68 29117486-29144382 
SLC25A17 9 203 121 39409130-39458363 
ST13 12 1172 387 39545102-39577187 
TCF20 4 175 16 40786901-40841468 
UBE2L3 4 1147 554 20246572-20302877 
UFD1L 12 406 344 17812394-17841280 

Table 2: Summary of genes and the ESTs covering them and their splice sites. The exon 
count was confirmed by the existence of protein entries for the specific gene in the 
SwissProt database (See Table 14 in Appendix 6.6, p54). Genes are ordered 
alphabetically. 
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3.2.2 Data processing 

3.2.2.1 EST pre-processing 

3.2.2.1.1 Duplicate Accession number detection and removal 

Each gene-specific EST set of sequences was searched for Accession number 

duplicates within and across sets. Where these sequences existed they were removed. 

3.2.2.1.2 Sequence masking 

All the EST sequences used were masked with RepeatMasker set to mask for human 

repeats (with the following options: –mam: mask repeats in non-primate, non-rodent 

animals, -pa 4: use 4 parallel processors, -nocut: do not excise masked bases, -ace: 

produce additional aceDB formatted output) and DUST (masks for Low Complexity 

Regions or simple repeats). Figure 3 (p25) summarizes some of the information 

obtained through RepeatMasker (GC content, as well as the percentage of EST 

sequence masked). For the raw EST data for each of the genes, the longest, shortest 

and average EST length was determined. Subsequently, sequences shorter than 100 bp 

were removed. Figure 3 (p25) is based on information recorded in Table 9 in 

Appendix 6.1 (p47). 

3.2.2.1.3 Short sequence removal 

Sequences shorter than 100 bp, as well as sequences having less than 100 unmasked bp 

were removed. 
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EST Statistics before Pre-Processing
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Figure 3: Raw EST data. GC content and percentage masked bases obtained from 
RepeatMasker. The data in Table 9 (p47) in Appendix 6.1 was used for this graph. 

3.2.3 Artifactual data inclusion 

3.2.3.1 Sequence error 

It is commonly accepted that the most error-prone regions of ESTs are the sequence 

termini. Ewing and Green53,54 empirically determined error rates for these. In order to 

introduce sequence error, the individual EST sequences were mutated using msbar, an 

application found in the EMBOSS suite of programs. msbar introduces random error 

within a specified sequence. These error rates varied from 1-11% as per Ewing and 

Green53. msbar was used as follows: 
“msbar -sequence sequence_name -count number_of_mutations -point 1 -block 0 -codon 0 -outseq mutated_output_sequence” 

 

msbar Parameters: -sequence: sequence to be mutated, 

-count: number of mutations to introduce (integer value), 

-point: whether to introduce point mutations (0=no, 1=yes), 

-block: whether to introduce block mutations (0=no, 1=yes), 
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-codon: whether to introduce codon mutations (0=no, 1=yes), 

-outseq: the name of the output sequence 

 

The mutations that are introduced are (0=None, 1=Any of the following, 2=Insertions, 

3=Deletions, 4=Changes, 5=Duplications, 6=Moves). Only point mutations were 

introduced (-point 1). 

3.2.3.2 Paralogs 

Searching GeneCards55 and UCSC for paralogs of the Hide et al52 dataset resulted in 

the genes summarized in Table 3 (p26). 
Gene Paralog Paralog Genomic location 
*GGT1 GGT2 Chr 22: 19892266-19910582 
*ST13 FAM10A3 

FAM10A4 
FAM10A5 
FAM10A6 
FAM10A7 

Chr. 12: no known coordinates 
Chr. 13: 49644155-49645750 
Chr. 11: 18240031-18241622 
Chr. 8: 134489324-134490574 
Chr. 7: 132310019-132312611 

†UBE2L3 UBE2L6 Chr. 11: 57075704-57091756 
†GSTT1 GSTT2 Chr. 22: 22624162-22650652 
†ATP6E ATP6V1E2 Chr. 2: 46650638-46658747 

Table 3: Paralogs found by searching GeneCards and UCSC for annotated paralogs. (*) 
GeneCards match, (†) UCSC match. Paralog Genomic Location: GeneCards/ UCSC 
coordinates for the genomic location of the paralog. 

 

To have a dataset that is representative of real biological data with an estimated 10% 

paralog presence in gene data40, only three of these paralogous genes were included: 

GGT2, UBE2L6 and ATP6V1E2. 

 

The ST13 family members were excluded since 2 of them (FAM10A6 and FAM10A7) 

lacked mRNA sequence data, and one (FAM10A3) lacked genomic coordinates. 

GSTT2 was excluded because it has an ambiguous assignment to two separate 

genomic locations in alternative orientations. 
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3.2.3.3 Exon-skipping 

The subset of genes used contains information about which exons are skipped as 

summarized by Hide et al52 and recorded in Table 1 (p22). 

3.3 Discussion 

For each of the genes, the mRNAs associated with each gene were downloaded from 

UCSC. As a measure of the integrity of the ESTs assigned to each gene, the ESTs 

were aligned to the each of the gene-specific mRNAs with BLAST. Table 4 (p28) 

shows the number of ESTs classified based on the sequence identity attained. If an 

EST aligns to an mRNA with a sequence identity of between 80 and 85% of the entire 

EST length, it is classified as a Class D EST, if 85 to 90% identity exists, it is a Class 

C EST, a Class B if 90-95% identical. A Class A EST is more than 95% identical to 

the target mRNA. Table 4 (p28) shows that most ESTs are more than 90% identical to 

the mRNAs assigned to each gene. 
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Gene Class A Class B Class C Class D 
ARVCF 143 2 0 0 
ATP6E 787 12 1 0 
BCR 281 6 0 0 
CLTCL1 71 0 0 0 
DGCR2 638 7 0 0 
ECGF1 301 10 3 0 
EWSR1 1142 11 1 0 
G22P1 0 0 0 0 
GCAT 137 0 0 0 
GSTT1 219 4 0 0 
GTPBP1 178 1 0 0 
HMG2L1 180 4 0 0 
LGALS1 952 17 0 0 
MFNG 185 2 1 0 
MIL1 326 4 0 0 
NF2 208 2 0 0 
NPAP60L 103 0 0 0 
PIK4CA 424 0 0 0 
PMM1 208 4 0 0 
RBX1 242 4 0 0 
SEC14L2 173 1 0 0 
SLC25A17 211 2 0 0 
ST13 810 18 2 0 
TCF20 69 0 0 0 
UBE2L3 1063 10 1 0 
UFD1L 367 3 0 0 

 

Table 4: Indication of the sequence identity of the EST dataset to the parent mRNAs 
obtained from UCSC for the subset of Hide et al52 geneset. Class A: 95-100% identity to 
mRNA, Class B: 90-95% identity to mRNA, Class C: 85-90% identity to mRNA, Class D: 
80-85% identity to mRNA. 

 

As an additional measure of the integrity of the UCSC EST assignment to a specific 

gene, two databases (TGI* and Unigene32) with their own methods for doing EST-to-

gene assignments were  selected, and their EST assignments were compared to those 

of UCSC. 

  

                                                      
* http://www.tigr.org/db.shtml 
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TGI identifies all sequence overlaps between EST sequences. It then uses TIGR 

Assembler to join, through transitive closure, sequences which are more than 95% 

identical over more than 40 base pairs. Unigene uses BLAST to compare the complete 

set of organism genes to itself. An initial cluster of highly similar genes is created and 

ESTs are aligned and added to these initial clusters.  Table 10 (p49) in Appendix 6.2 

records the HUGO names for each gene, as well as the corresponding TGI and 

Unigene gene index ID’s. 

 

If an EST is assigned to a gene by all three databases, it would imply a high integrity 

sequence and as such, is assigned a Class I status. If only two out of three databases 

assign that EST to a gene, it is a Class II EST, else the EST in UCSC is a Class III 

EST (see Table 11 (p51) in Appendix 6.3). This class assignment is specific with 

respect to the ESTs contained in the UCSC data i.e. Class I + Class II + Class III = 

total number of UCSC ESTs. 

 

Figure 4 (p30) summarizes the measure of confidence in the EST-to-gene assignment 

as annotated by UCSC. For all of the genes except for MIL1, both Unigene and TGI, 

or either of Unigene or TGI concurs with the UCSC EST-to-gene assignment.  
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EST-to-Gene Assignment Correlation between UCSC, Unigene and TGI
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Figure 4: Classification of ESTs based on the concurrence in EST-to-gene assignment 
between UCSC, Unigene and TGI. Based on data contained in Table 11 (p51) in 
Appendix 6.3. 
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Chapter 4 Analysis of results produced by the 
evaluated programs  

4.1 Introduction 

4.1.1 Need for fidelity assessment (especially in the presence of 
artifacts) 

The rationale for doing fidelity assessment of these programs is two-fold: firstly, there 

is the variability of biological systems and secondly, the errors present in the recording 

of biological sequence data. 

 

Biology is unpredictable and does not always follow our distilled observations of 

phenomena nor our idealized hypotheses or theories thereof.  Therefore, the tools 

which aim to discover biological features have to be assessed on their ability to do so 

in the presence of biological data variability, as well as on the ability to generate 

results which reflect real-life biology. In essence, given a dataset containing evidence 

for natural phenomena (e.g. ESTs which capture expression events), any program 

should be assessed on its ability to reconstruct that phenomenon (e.g. an expression 

event) as accurately as possible. 

 

Although at present stricter quality control measures are being enforced with regard to 

biological sequence submission, there are already low-integrity sequences present in 

the existing databases. As a rule, when using EST databases, the first step should be 

standard cleaning procedures which include masking for contaminants (e.g. genomic, 

vector, bacterial, and mitochondrial sequences) as well as for the wide range of repeats 

present in human sequence data. 

 

Once all cleaning measures have been implemented, certain sequence features still 

exist which can negatively impact the efforts of transcript reconstruction and therefore 
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of cataloging these transcripts. These features include, but are not limited to, possible 

chimeras, alternative transcripts, sequencing and database errors, as well as paralogs. 

 

A truly successful program would provide the best possible reconstruction of an 

expression event amidst these additional sequence features. A consistent measure of 

the success of a reconstruction attempt is therefore crucial when assessing these 

programs. 

4.2 Results 

4.2.1 Rand Index for each program 

The Rand Index (RI) is a measure of the similarity between two datasets. In this case 

the program results are compared to the reference EST dataset. The rand Index is 

calculated as follows: 

dcba
daRI
+++

+
=  

where a and d are the number of agreements between the two datasets, and b and c are 

the number of disagreements between the two datasets. Therefore, the lower the 

number of disagreements b and c, the more RI tends towards 1. 

 

RI values range from 0 to 1, with higher values indicating higher similarity e.g. a 

value of 1 would mean the groupings are identical. The sets (clusters or contigs) 

produced by the various programs were compared to the reference dataset based on 

UCSC assignments. The RI values for each gene were calculated and averaged over 

the 27 selected genes (Table 5 (p32)). 
 phrap CAP3 d2_cluster WCD 

RI 0.8953 0.8750 0.9341 0.9329 

Table 5: Average Rand Index (RI) results for phrap, CAP3, d2_cluster and WCD. 
RI gives an indication of the similarity between two groupings. The reference 
grouping is the known EST membership per gene, and the second grouping is 
the grouping obtained from a specific program. 
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4.2.2 Sensitivity (Sn) and Specificity (Sp) 

Sensitivity (Sn) reflects the extent to which a tool detects, or fails to detect, the right 

object or a true positive (TP) as defined by a reference set. Sn is dependent on how 

many true positives are recognized out of the total number of reference set of true 

positives (TP+FN) where FN (false negatives) is the number of reference set objects a 

tool fails to detect. Therefore: 

Sn = TP/ (TP+FN) 

 

The specificity (Sp) is defined in terms of the success of the tool to NOT select a 

wrong object or a false positive (FP). Sp is affected by the number of objects rightly 

excluded from being selected i.e. true negatives (TN). Therefore: 

Sp = TN/ (TN+FP) 

 

For the analysis of Sn and Sp, each program processed a composite EST dataset 

comprised of the reference dataset of 27 genes (all positive) from the Hide et al52 set, 

as well as the ESTs belonging to the selected paralogous genes (all negatives). In this 

context, the true positives contained in a cluster or contig would be the ESTs which 

make up the majority of that cluster or contig. The rest of the members for this cluster 

or contig would be labeled false positives. 

 

For example, if cluster A consists of 40% of ESTs from gene1, 30% of ESTs from 

gene2 and 30% of ESTs from gene3, cluster A is representative of gene1. For cluster A 

then, the 40% of ESTs for that cluster are counted as true positives, and the rest (60%) 

are false positives. False negatives are those ESTs belonging to gene 1 which have 

been assigned as singletons, or have been assigned to the cluster defined by another 

gene. True negatives are the paralog ESTs that have not been assigned to any of the 

clusters defined by the reference dataset. A summary of  TP, FP, TN, FN, Sn and Sp is 

shown in Table 6, p34. 
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 TP FP TN FN Sn Sp 

CAP3 13055 49 570 879 0.94 0.92 
Phrap 12372 627 564 637 0.95 0.47 
D2 12471 478 552 561 0.96 0.54 
WCD 12634 477 565 831 0.94 0.54 

Table 6: Sensitivity and Specificity values for the composite set of 27 reference gene 
ESTs and 3 paralogous gene ESTs [Sn=TP/(TP+FN), Sp = TN/(TN+FP)]. 

 

4.2.3 Contigs generated by phrap and CAP3 

Using the default parameter settings for phrap and CAP3, a number of contigs were 

produced. Figure 5 (p34) shows the contig-to-mRNA ratio for CAP3 and phrap. The 

data upon which this figure is based is shown in Table 12 in Appendix 6.4 (p53). 

CAP3 and phrap contig-to-mRNA ratio
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Figure 5: Ratio of contigs generated by CAP3 and phrap vs. the number of mRNAs 
assigned to each gene by UCSC. The data for this table is contained in Table 12 in 
Appendix 6.4, p53. 
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4.2.4 Skipped ESTs missed by CAP3 

Skipped ESTs contain information about which exons are skipped. Their inclusion into 

any cluster and assembly therefore adds exon-skipping information to the resultant 

grouping. For all of the selected genes, phrap has incorporated the skipped ESTs in its 

analysis and in results. CAP3 fails to incorporate such exon-skipping information for 

37% (10 of the 27) of genes analyzed. For those 10 genes, 12-100% of exon-skipping 

information is lost (See Table 7, p35). All of these missed ESTs have higher than 98% 

identity to the parent mRNAs. 

 

HUGO 
Name 

Skipped 
EST 

Missed 

Total 
Skipped 

ESTs 

Percentage 
of Skipped 

ESTs missed
EST Acc Number 

ATP6E 1 4 25.00% AI929680 
GCAT 2 2 100.00% AA670436, AI198343 
GSTT1 1 8 12.50% AA298437 
LGALS1 1 7 14.29% BE738129 
NF2 1 1 100.00% BE265514 
NPAP60L 1 1 100.00% H45683 
RBX1 1 5 20.00% AI140018 
SLC25A17 1 3 33.33% AU123445 
ST13 1 1 100.00% AI424473 
UFD1L 1 1 100.00% R08973 

Table 7: CAP3 results with respect to exon-skipped ESTs. CAP3 assigns these skipped 
ESTs to the singlet class, thereby losing alternate transcript information. Phrap 
incorporates all of the exon-skipped ESTs. 

 

4.2.5 Program output 

The basic outputs obtained from the programs tested are contigs and clusters, in the 

instances where sequences could be grouped together. Sequences which could not be 

grouped together are labeled as singletons (in the case of clustering) or singlets (in the 

case of contig assembly). The results for the assemblers (phrap, CAP3) and the 

clusterers (WCD, d2_cluster) are shown in Figure 6 (p36) with information extracted 

from Table 13 in Appendix 6.5 (p54). The high contig-to-singlet ratio for phrap, and 

cluster-to-singleton ratio for d2_cluster and WCD are mostly due to the lower number 

of singlets/ singletons. 
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Contig-to-Singlet and Cluster-to-Singleton (C/S) ratio
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Figure 6: Summary of Contig-to-Singlet Ratio for assemblers and Cluster-to-Singleton 
ratio for clustering tools. Data for this table is recorded in Table 13 (p54) in Appendix 
6.5. 
 

4.2.6 BLAST matches to longest Assembler-generated contigs 

In order to get some measure of how well the reconstructed genes resemble the known 

sequences, the contigs generated by phrap and CAP3 were searched against a database 

consisting of the longest representative mRNAs of the original genes. From the 

BLAST results, the extent to which the contig spans or covers the length of the 

representative mRNA, was recorded as ‘coverage’ (See Table 8, p37).  
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HUGO 
Name 

Genbank 
Transcript 
Identifier 

phrap 
Contig 
Length 

phrap 
Best 
BLAST 
Match 

phrap 
Coverage 

CAP3 
Contig 
Length 

CAP3 Best 
BLAST 
Match 

CAP3 
Coverage 

phra
p/ 
CAP3 

ARVCF U51269 3470 U51269 63.52% 4654 U51269 60.55% 0.75 
ATP6E BC004443 2133 BC004443 10.60% 2704 BC004443 47.12% 0.79 
BCR X02596 5392 X02596 68.01% 5339 X02596 78.74% 1.01 
CLTCL1 X95486 3222 X95486 95.84% 3064 X95486 98.56% 1.05 
DGCR2 D79985 4966 D79985 73.84% 3543 D79985 83.52% 1.40 
ECGF1 BC052211 2221 BC052211 33.00% 2256 BC052211 69.90% 0.98 
EWSR X66899 3211  None None 2629 X66899 88.66% 1.22 
G22P1 BC008343 2833 BC008343 70.60% 3213 BC008343 64.43% 0.88 
GCAT AK123190 1588 AK123190 65.05% 1490 AK123190 87.38% 1.07 
GSTT1 BC007065 1335 BC007065 17.98% 1676 BC007065 57.16% 0.80 
GTPBP1 AF077204 4621  None None 2554  None None 1.81 
HMG2L1 AL079310 4416 AL079310 86.30% 2578 AL079310 87.35% 1.71 
LGALS1 BC020675 998  None None 954 BC020675 55.14% 1.05 
MFNG U94352 2293 U94352 63.37% 2069 U94352 83.37% 1.11 
MIL1 AF146568 4104 AF146568 39.47% 2041  None None 2.01 
NF2 AF369658 4631 AF369658 80.89% 2561 AF369658 99.41% 1.81 
NPAP60L BC028125 3326 BC028125 45.85% 3516 BC028125 45.11% 0.95 
PIK4CA AF012872 4821 AF012872 87.45% 3893 AF012872 99.67% 1.24 
PMM1 BC016818 1605 BC016818 58.26% 2312 BC016818 52.94% 0.69 
RBX1 BC017370 1818 BC017370 10.34% 2501 BC017370 7.36% 0.73 

SEC14L2 AL096881 3321 AL096881, 
AB006630 

80.75% 
80.75% 3108 AL096881, 

AB006630 
90.07% 
90.07% 1.07 

SLC25A17 BC005957 2435 BC005957 53.96% 2010 BC005957 76.67% 1.21 
ST13 BC052982 4012 BC052982 27.54% 3533 BC052982 88.85% 1.14 
TCF20 AB006630 3068 AB006630 91.75% 2793 AB006630 98.68% 1.10 
UBE2L3 AJ000519 3320 AJ000519 27.62% 2674 AJ000519 84.37% 1.24 
UFD1L BC005087 1878 BC005087 9.27% 2280 BC005087 45.00% 0.82 
Average  3117  54.84% 2767  72.92% 1.14 

Table 8: Contig vs. mRNA BLAST results: This table summarises the results 
obtained after searching the longest contigs generated by phrap and CAP3. 
Column 1: HUGO name - the accepted HUGO identifier for the known gene. 
Column 2: Genbank Transcript Identifier - the identifier of the complete mRNA 
transcript. Columns 3 and 6: Contig Length - the longest contig generated each 
assembler. Columns 4 and 7: Best BLAST Match - the best BLAST match when 
the assembler-generated contig is searched against the database consisting of 
only the gene-specific mRNAs in column 2. Columns 5 and 8: Coverage - defined 
as the percentage of contigs that align to the total mRNA length. Column 9: 
phrap/CAP3 – the ratio of phrap (Column 3) and CAP3 (Column 6) contig length. 
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4.3 Discussion 

The fidelity with which tools reconstruct an underlying expression event as captured 

by ESTs is determined by 1) the ability to correctly assign ESTs from a single gene to 

a single gene class, 2) the biological validity of the reconstructed event.  

 

4.3.1 Correct assignment of member ESTs 

It needs to be iterated that an unsupervised clustering and assembly method has been 

followed. The correct assignment of member ESTs were defined by the EST-to-gene 

assignments done by UCSC. UCSC uses BLAT56 to align the ESTs to the genome, 

insisting that there be at least a 93% base identity over the entire alignment length. 

Therefore the reference set of ESTs has also been obtained by an unsupervised 

method. 

4.3.1.1 The Rand Index values  

The average Rand Index (Table 5, p33) appears to show that the clustering tools 

produce group assignments which correlate more highly with the reference dataset. 

The difference in method of finding related sequences is evident between the sequence 

similarity-based assemblers and the word-count-based clusterers. RI is a normalized 

count of the pairs of sequences that were treated alike by the different algorithms. 

Similarity-based methods would fail to detect sequence similarity between a pair of 

sequences where the word-count based method would determine a sequence 

relationship. 

 

The similar RI values for phrap (0.89) and CAP3 (0.87) in Table 5, (p32) would 

imply similar results. However, the sensitivity and specificity values discussed in the 

following section 4.3.1.2, as well as the results in Table 8, p37 (discussed in section 

4.3.2) show that a high correlation in RI does not mean high integrity of 

reconstruction. 
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4.3.1.2 Sensitivity and Specificity 
All the tested programs are fairly successful in determining the paralogous data e.g. all 

capture between 552 and 570 of the 574 paralogous ESTs (Table 6, p34). This would 

mean that at least 96.2% of all paralogous data would be distinguished from its family 

members. The failure of phrap, d2_cluster and WCD to be more discriminatory in the 

inclusion of paralogous data is evident from the very low Sp values (0.47-0.54). The 

programs are also relatively successful at determining which ESTs belong to a specific 

gene class with Sn values between 0.94 and 0.96. All the programs are also fairly 

consistent in assigning as false negatives those 160 true positives which are shorter 

than 50 bp. 

4.3.2 Biological validity 

From inspection of BLAST alignments (Table 8, p37), it can be seen that phrap 

generates contigs that have lower similarity to the representative mRNAs. The 

reduction in BLAST matches brought on by excluding matches with less than 95% 

identity could mean one of two things. Either, the low identity contigs are of such low 

integrity, that it generates spurious hits, or it does not map to contiguous regions. If the 

latter, that would mean that phrap is better able to capture exon-skips, as the inclusion 

of all of the skipped ESTs would suggest. phrap Generates longer contigs than CAP3, 

as can be seen by the average phrap vs. CAP3 length ratio of 1.14 (Table 8). This 

might be due to the higher number of included ESTs used by phrap for its assembly.  

 

Contigs generated by both assemblers seem to differ from the parent mRNA to such an 

extent that no similarity can be found between contig query and target parent. This can 

be seen when looking at columns 4 and 7 of Table 8 (p37). phrap-Generated contigs 

miss 3 out of 26 genes (11.54%) whereas CAP3-generated contigs miss 2 out of 26 

genes (7.70%). Both assemblers generate contigs which fail to resemble GTPBP1. The 

reason for this is not clear. CAP3 also generates virtual transcripts which have better 

average width coverage (coverage over the length of the parent transcript) than phrap 

(72.92% vs. 54.84%). It would appear as if CAP3 is good at reconstructing a single 
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high–integrity sequence with longer coverage, whereas phrap has better ability to 

incorporate alternative splicing data (Table 7, p35), deemed to be low-integrity 

sequences. 

 

Both the assemblers produce contigs which have high coverage statistics for the native 

SEC14L2 mRNA, as well as for the mRNA transcript associated with the gene TCF20. 

A search of the location of the genes (SEC14L2: 29,117,486 – 29,144,382 vs. TCF20: 

40,880,516 – 40,935,078), shows that these genes have no overlap whatsoever. The 

paralog list which was determined for this dataset does not indicate that these genes 

are in any way paralogous. 

 

CAP3 and phrap both use sequence identity to relate sequences to each other, making 

these programs more prone to insufficient sequence overlap (ISO)38. In the presence of 

ISO, sequences belonging to the same gene may be placed in a separate cluster or 

contig. This may explain the higher number of contigs than actual transcripts produced 

(Figure 6, p36). Whether these additional transcripts are novel expressions or just 

assembly artifacts has yet to be investigated. Non-alignment methods (WCD, 

d2_cluster) are not as sensitive to ISO, which may account for the higher correlation 

(Table 5, p32) to the known EST clustering/ grouping. 
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Chapter 5 Conclusion 
 

In general, the highly variable nature of biological data requires diverse means of 

properly describing and mining this data. A single tool or utility is unlikely to do 

justice to the richness of biology and the data captured from biological systems. A 

suite of such tools, at best, would capture only a grainy snapshot of biological 

phenomena in time. 

 

With regard to EST organization and ordering, it is no less true. In the face of 

alternative splicing, a looser grouping or clustering approach, as in d2_cluster, WCD 

and phrap, appears to be a better option for capturing that diversity. Unfortunately, this 

looser approach also allows the inclusion of lower integrity sequences under the guise 

of sequence variability. The low-integrity nature of ESTs makes the loose clustering 

approach appropriate. 

 

The stricter approach used by CAP3 is more appropriate where the sequences are of 

higher integrity i.e. sequences with higher coverage than the single-pass nature of 

ESTs. It must be kept in mind that most of the assembly tools have been developed 

with high-quality sequences as source material. 

 

With the vast amounts of biological data being generated, human analysis of said data 

becomes, at the very least, a daunting task and at most, impossible. Computational 

tools for analyzing data are becoming more ubiquitous. The success of these tools to 

extract the underlying biology that give rise to the data, needs to be measured 

consistently. A mere comparison of novel tools to existing tools only gives a relative, 

maybe erroneous measure of the success of the tool to reconstruct the underlying 

biology. The best means of assessment of computational tools remains biological data 

with well-characterized features. 
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This thesis has undertaken to generate a well-characterized dataset that can be used to 

test computational tools that use ESTs to reconstruct expression events, especially in 

the presence of sequence errors, the presence of gene families, and the presence of 

exon-skipping. The thesis has created the dataset aimed for: 

- The reference dataset contains quality-characterized EST sequences which 

have been characterized according to there identity to the related gene (Table 

4, p28), as well as to the fidelity of assignment by selected Gene Indices 

(Figure 4, p30; Table 11, p51). 

- The reference dataset clearly relates each EST member to the gene from which 

it is estimated to originate. 

- The reference dataset contains: 

1. quantified EST sequence error (1-11%) 

2. 10% annotated gene paralogs (GGT2, ATP6V1E2, 

UBE2L6) (Table 3, p26) 

3. EST’s capturing the exon-skips recorded in Table 1, 

p22. 

- The reference dataset unambiguously demarcates the genomic location of each 

gene. 

The generated dataset can be found at http://www.sanbi.ac.za/~mario/dataset.tgz. 

 

Extension of this research may focus on: 

- Better annotation of the internal gene structure of each gene in order to 

elucidate the exon structure for each gene. 

- Testing additional programs and tools on the paralogous, sequence error and 

the exon-skipping information contained in the generated test dataset. 
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Chapter 6 Appendices: 

6.1 Summary of Raw EST data 

All of the ESTs were masked with RepeatMasker and subsequently masked with 

DUST. Columns 2 and 3 in Table 9 (p47) summarizes data reported by RepeatMasker. 

Columns 4-6 shows length statistics for the ESTs contained in the UCSC EST-to-gene 

assignment. 

HUGO Gene 
Name 

GC 
Content 

Percentage 
Sequence 
Masked 

Longest 
EST 

Sequence 
Length 

Shortest 
EST 

Sequence 
Length 

Average 
EST 

Sequence 
Length 

ARVCF 61.15% 1.07% 1179 40 535 
ATP6E 46.54% 1.17% 1868 90 596 
BCR 55.85% 5.78% 1503 50 545 
CLTCL1 52.53% 13.85% 1092 84 462 
DGCR2 59.27% 2.93% 1447 68 576 
ECGF1 66.96% 1.91% 1436 91 659 
EWSR1 52.87% 1.36% 1616 50 646 
G22P1 59.57% 1.82% 1244 72 635 
GCAT 61.23% 0.52% 1143 31 581 
GGT1 61.18% 6.26% 1789 37 545 
GSTT1 56.25% 3.97% 1099 50 554 
GTPBP1 56.93% 5.64% 1244 50 547 
HMG2L1 42.81% 7.47% 1127 73 539 
LGALS1 56.55% 2.32% 1884 50 515 
MFNG 59.49% 7.46% 1178 68 504 
MIL1 47.20% 10.57% 1277 50 567 
NF2 53.34% 9.72% 1845 39 521 
NPAP60L 46.94% 2.43% 1146 69 499 
PIK4CA 52.03% 9.00% 1822 50 494 
PMM1 58.00% 0.94% 1428 72 599 
RBX1 44.87% 4.84% 1317 91 469 
SEC14L2 55.14% 5.56% 1144 76 493 
SLC25A17 45.34% 8.36% 1456 64 573 
ST13 41.15% 1.27% 1660 68 518 
TCF20 48.98% 11.00% 1250 50 430 
UBE2L3 47.82% 1.84% 1640 50 578 
UFD1L 49.11% 3.84% 2167 64 568 

Table 9: Gene-specific EST statistics of raw EST data. Column 1 contains the HUGO 
name of gene, GC content: Total GC content of the ESTs for each gene, Percentage 
Sequence Masked: Percentage of bases masked by RepeatMasker, Longest, Shortest 
and Average Length of the ESTs for each gene. 
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6.2 Unigene clusters and TGI Tentative Human Consensi ID’s 

corresponding to the UCSC gene 

Both TGI and Unigene were searched for the cluster assignment correlating to the 

HUGO Gene name of the reference dataset. The results are shown in Table 10 (p49). 

In order to do the analysis reported in Table 11 (p51), multiple clusters for the each 

gene were combined into a single file e.g. for BCR, the Unigene files Hs.474328, 

Hs.517461, Hs.534451and Hs.551463 were combined into a single file. Similarly, the 

multiple TGI files for BCR (THC2243616, THC2256273, THC2430310, 

THC2434400, THC2264599, THC2445841) were combined. Where no cluster was 

found for a specific gene, this was indicated by “No cluster found”. 
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Gene Unigene ID TGI Acc Num 

ARVCF Hs.326730 THC2261875 

ATP6E Hs.517338 No cluster found 

BCR Hs.474328, Hs.517461, 
Hs.534451, Hs.551463 

THC2243616, THC2256273, THC2430310, THC2434400, 
THC2264599, THC2445841 

CLTCL1 Hs.368266 THC2242120, THC2248235 

DGCR2 Hs.517357 THC2244118, THC2401426 

ECGF1 No cluster found THC2246034, THC2256759, THC2256758, THC2256760 

EWSR1 Hs.374477 THC2398091 

G22P1 Hs.292493 THC2255256 

GCAT Hs.54609 THC2236271 

GGT1 Hs.444164 THC2242753, THC2246917, THC2252944 

GSTT1 Hs.268573 THC2235456, THC2240483, THC2335207, THC2346894 

GTPBP1 Hs.276925 THC2233956, THC2257788, THC2371426 

GTSE1 Hs.386189, Hs.475140 THC2256618, THC2264408, THC2257974, THC2361387 

HMG2L1 Hs.197086, Hs.588815 THC2240131, THC2257233, THC2257234 

LGALS1 Hs.445351 THC2233894,THC2272272, THC2254242, THC2398817 

MFNG Hs.517603 THC2234903, THC2409491 

MIL1 Hs.118681 No cluster found 

NF2 Hs.187898 
THC2242050, THC2252009, THC2259070, THC2259071, 
THC2259072, THC2259073, THC2276539, THC2276541, 
THC2285460 

NPAP60L Hs.475103 THC2247389 

PIK4CA Hs.529438 THC2256070 

PMM1 Hs.75835 THC2257433, THC2434093 

RBX1 Hs.474949 THC2244889, THC2404816 

SEC14L2 Hs.335614 THC2234283, THC2246132, THC2338679, THC2263909 

SLC25A17 Hs.474938 THC2257286 

ST13 Hs.546303, Hs.558698, 
Hs.567998 THC2254921, THC2262045 

TCF20 Hs.475018 THC2246637, THC2264092 

UBE2L3 Hs.108104 THC2250568, THC2309103 

Table 10: For each gene, the corresponding matching Unigene and TIGR gene clusters 
were found that correspond to the ESTs assigned to a gene by UCSC. “No cluster 
found” means that no clusters were assigned to the specific HUGO gene name. 
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6.3 EST Classification Based on Database correlation 

Table 11 (p51) shows the number of ESTs contained in each of the EST-to-gene 

assignments for UCSC, Unigene and TGI. The columns labeled “TGI Count”, 

“Unigene Count” and “UCSC Count” record the number of ESTs assigned by each 

database.  In most instances Unigene have larger EST datasets per gene than either 

UCSC or TGI. This is reflected in the lay-out of Table 11: EST assignment number 

increases across the table from left-to-right. The cells labeled “None” mean that no 

EST-to-gene assignment was found for that specific gene e.g. for ATP6E, MIL1, 

SLC25A17 and ST13, no TGI assignments were found. Since the basis for the 

reference dataset is data obtained from UCSC, the classification of ESTs is dependent 

on the data contained in the UCSC EST-to-gene assignments. Therefore, the values 

contained in columns 5-7 sum to the number of EST present in the UCSC assignment 

i.e. 

ClassI + ClassII + ClassII = UCSC EST Count. 

 50



 

HUGO ID TGI EST 
Count 

UCSC 
EST 

Count 

Unigene 
EST 

Count 
Class I 
(3db) 

Class II 
(2db) 

Class III 
(1db) 

ARVCF 80 163 164 75 69 19 
ATP6E-ATP6V1E1 None 757 875 0 722 35 
BCR 190 379 415 171 168 40 
CLTCL1 55 106 130 51 48 7 
DGCR2 248 594 793 182 394 18 
ECGF1 35 328 None 0 33 295 
EWSR 20 1141 1266 16 1050 75 
G22P1 1602 2294 2715 1203 986 105 
GCAT 21 125 155 20 100 5 
GGT1 94 263 552 66 62 133 
GSTT1 44 230 270 41 174 15 
GTPBP1 56 195 300 47 133 15 
HMG2L1 67 232 262 64 150 18 
LGALS1 0 1048 1130 0 999 49 
MFNG 115 229 257 98 122 9 
MIL1-BCL2L13 None 357 423 0 0 357 
NF2 105 263 308 86 160 17 
NPAP60L-NUP50 78 138 308 40 74 24 
PIK4CA 184 583 470 81 308 194 
PMM1 76 210 237 72 131 7 
RBX1 161 315 338 151 148 16 
SEC14L2 30 190 198 29 126 35 
SLC25A17 9 203 246 0 174 29 
ST13 863 1165 88 78 682 405 
TCF20 25 172 151 8 124 40 
UBE2L3 3 1146 1149 2 1014 130 
UFD1L 205 406 427 198 184 24 

Table 11: Summary of ESTs assigned to each gene by each method (TIGR, UCSC, 
Unigene), as well as the number of ESTs common to the three methods. Class I ESTs 
are common to all 3 databases (3 db), Class II ESTs are only common to 2 out of the 3 
databases (2db), and Class III ESTs are the remainder of the UCSC ESTs. 
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6.4 Contig-to-mRNA ratio 

The number of mRNAs assigned by UCSC to belong to a specific gene has been 

downloaded and the numbers recorded. These numbers are reflected in Column 2 in 

Table 12 (p53). The number of contigs generated by phrap and CAP3 are recorded in 

columns 3 and 5 of Table 12. As a crude measure of the success of gene transcript 

reconstruction from ESTs by CAP3 and phrap, the ratio of contigs generated vs. actual 

number of mRNAs recorded was calculated (columns 4 and 6 of Table 12). On 

average, CAP3 produces more contigs (1.33) than does phrap (1.17). 

 

The number of mRNAs assigned to a gene does not necessarily reflect the alternative 

transcript count for that gene unless care has been taken to ensure that these mRNAs 

are non-redundant. No tests were done in this research to remove redundant mRNAs 

from the UCSC data, and therefore the contig-to-mRNA ratio remains a crude metric. 
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HUGO 
Name 

Actual 
mRNAs 

CAP3 
Contigs

Cap3/mRNA 
ratio 

phrap 
Contigs

phrap/mRNA 
ratio 

ARVCF 11 6 0.55 4 0.36 
ATP6E 4 3 0.75 4 1.00 
BCR 36 14 0.39 15 0.42 
CLTCL1 13 9 0.69 10 0.77 
DGCR2 24 19 0.79 12 0.50 
ECGF1 5 10 2.00 8 1.60 
EWSR 26 16 0.62 14 0.54 
G22P1 13 9 0.69 23 1.77 
GCAT 3 2 0.67 5 1.67 
GGT1 18 13 0.72 17 0.94 
GSTT1 5 8 1.60 9 1.80 
GTPBP1 5 10 2.00 6 1.20 
HMG2L1 11 21 1.91 9 0.82 
LGALS1 10 5 0.50 5 0.50 
MFNG 9 8 0.89 7 0.78 
MIL1 15 25 1.67 12 0.80 
NF2 23 12 0.52 13 0.57 
NPAP60L 8 6 0.75 7 0.88 
PIK4CA 12 26 2.17 21 1.75 
PMM1 7 6 0.86 6 0.86 
RBX1 8 5 0.63 4 0.50 
SEC14L2 9 14 1.56 11 1.22 
SLC25A17 11 8 0.73 12 1.09 
ST13 8 7 0.88 10 1.25 
TCF20 3 26 8.67 14 4.67 
UBE2L3 6 10 1.67 13 2.17 
UFD1L 13 13 1.00 14 1.08 
Averages   1.33  1.17 

Table 12: Transcript isoform data: Relationship between the contigs generated by each 
assembler and the actual number of mRNAs (transcript isoforms). Actual mRNAs: 
Actual number of mRNAs are defined to be transcripts which fall well within the region 
defined by the RefSeq gene. The data therefore may not reflect unique transcripts, and 
contains a level of redundancy. CAP3 Contigs, phrap Contigs: The number of contigs 
generated by CAP3 and phrap. CAP3/mRNA, Phrap/mRNA: The ratio of CAP3/contigs 
vs. actual mRNAs. 

 53



6.5 Contig-to-Singlet and Cluster-to-Singleton (C/S) Ratio 
 
Gene CAP3 phrap WCD d2_cluster 
  Contig Singlets Contigs Singlets Clusters Singletons Clusters Singletons 
ARVCF 6 23 4 7 13 11 1 8 
ATP6E 3 46 4 10 2 15 3 13 
BCR 14 66 15 35 12 41 13 38 
CLTCL1 9 24 10 14 24 15 9 14 
DGCR2 19 75 12 17 26 18 8 19 
ECGF1 10 40 8 1 1 5 1 5 
EWSR1 16 114 14 4 5 9 5 8 
G22P1 9 199 23 6 2 17 2 11 
GCAT 2 9 5 2 1 4 1 3 
GGT1 13 53 17 12 5 28 7 19 
GSTT1 8 20 9 4 5 7 4 3 
GTPBP1 10 34 6 3 6 9 6 9 
HMG2L1 21 50 9 5 6 11 6 12 
LGALS1 5 182 5 2 2 23 3 7 
MFNG 8 37 7 4 3 4 3 4 
MIL1 25 66 12 4 5 9 5 7 
NF2 12 27 13 11 10 11 10 10 
NPAP60L 6 16 7 5 2 6 2 5 
PIK4CA 26 84 21 29 12 45 13 41 
PMM1 6 10 6 2 1 5 1 2 
RBX1 5 49 4 4 2 9 1 12 
SEC14L2 14 20 11 2 14 4 10 3 
SLC25A17 8 32 12 9 3 8 4 8 
ST13 7 82 10 10 2 13 4 12 
TCF20 26 44 14 7 14 11 16 11 
UBE2L3 10 85 13 16 7 23 7 17 
UFD1L 13 50 14 9 21 12 7 14 
Total 311 1537 285 234 206 373 152 315 

Table 13: Summary of assembler (CAP3, phrap) and clustering (WCD, d2_cluster) contig 
and singlet/ singleton results for individual genes. Genes are arranged in order of 
increasing number of ESTs. 

Program Contig/Cluster 
members 

Contigs/ 
Clusters 

Singlets/ Singletons C/S Ratio

CAP3 12343 273 888 0.31 
phrap 12771 335 639 0.52 
WCD 12588 160 837 0.19 
d2_cluster 12703 170 562 0.30 

Table 14: Results of the composite dataset comprised of the reference set of 27 gene-
specific ESTs and the 3 paralog ESTs 
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6.6 SwissProt information for the 27 selected genes 

Genes were selected, as far as possible, if protein entries existed for them in the 

SwissProt protein database. For some of them, actual PDB structures were found as 

well. The only exception to this rule is TCF20, since the “Known Gene” track only 

supplies one representative mRNA (AB006630), which has a hypothetical trEMBL 

entry (Q9UGU0). These genes were selected in such a way that the gene/ mRNA 

which cover the most number of exons was used as the representative sequence for the 

gene. This approach gives us the total number of exons for the gene. This is an 

assumption that is valid only if account is kept of the transcripts which have not been 

included, since they only have hypothetical trEMBL proteins, or their sequences have 

been assigned “Provisional” status by NCBI annotators. 

HUGO ID Representative 
mRNA Exons Protein 

arvcf U51269 20 O00192 
bcr1 X02596 23 P11274 
cltcl1 X95486 33 P53675 
dgcr2 D79985 10 P98153 
ecgf1 BC052211 10 P19971 
ewsr1 X66899 17 Q01844 
g22p1 BC008343 12 P12956 
gcat BC014457 9 O75600 
gstt1 BC007065 5 P30711 
hmg2l1 AL079310 12 Q9UGU5 
lgals1 BC020675 4 P09382 
mfng U94352 8 O00587 
mil1 AF146568 4 Q9BXK5 
nf2 AF369658 17 P35240 
npap60l AF116624 7 Q9UKX7 
pik4ca AF012872 54 P42356 
pmm1 BC016818 8 Q92871 
rbx1 BC017370 5 P62877 
rpl3 BC012786 10 P39023 
sec14l2 AL096881 12 O76054 
slc25a17 BC005957 9 O43808 
st13 BC052982 12 P50502 
tcf20 AB006630 5 trEMBL: Q9UGU0 
ube2l3 AJ000519 4 P68037 
ufd1l BC005087 12 Q92890 

Table 15: SwissProt Proteins found for each of the reference dataset genes. 
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6.7 Default Program Parameter Settings 

For each of the programs used, the default parameters were accepted. Table 16 (p56) 

summarizes only the some of the parameters that have impacted this study. 
Program Variable Parameters 

phrap forcelevel=0, penalty=-2, gap_init=-4, gap_ext=-3, ins_gap_ext=-3, 
del_gap_ext=-3, maxgap=30 

CAP3 
-o  N  specify overlap length cutoff (40) 
-p  N  specify overlap percent identity cutoff (80) 
-r  N  specify reverse orientation value (1) 

d2_cluster window_size (100), word_size (6), sequence length cut-off (50), similarity cut-off 
(0.96), reverse_comparison (1) 

WCD window length (-l, 100), word size (-w, 6), sequence length cut-off (-T, 40), 
common word (-H, 5) 

Table 16: The default parameters, which affect the performance of the various 
algorithms, have been applied for all the programs used. 
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6.8 Scripts used for data analysis 

6.8.1 Python script for calculating the Rand Index (RI) 

The script has been provided by Scott Hazelhurst of WITS University 
import sys 
 
from   string import split 
import re 
 
def compReader(inp,clustering): 
    """ reads in cluster table from inp and produces a 
        dictionary in clustering """ 
    cnum=0 
    max = 0 
    data = inp.readline() 
    data = data.strip("\n.") 
    while len(data) != 0: 
        nums = split(data) 
        rep  = nums[0] 
        for n in nums: 
            clustering[n]= rep 
        data = inp.readline() 
        data = data.strip("\n.") 
 
def randIndex(clustering1, clustering2): 
    # computes the rand index between clustering1 and clustering2 
    # these are  
    n=a=d=0 
    for i in clustering1.keys(): 
        for j in clustering2.keys(): 
            if i != j: 
                n=n+1 
                if clustering1[i] == clustering1[j] and 
clustering2[i]==clustering2[j]: a=a+1 
                if clustering1[i] != clustering1[j] and 
clustering2[i]!=clustering2[j]: d=d+1 
    return float(a+d)/n 
 
f1 = file(sys.argv[1]) 
f2 = file(sys.argv[2]) 
 
c1 = {} 
c2 = {} 
compReader(f1,c1) 
compReader(f2,c2) 
 
print randIndex(c1,c2) 
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6.8.2 Perl script to find duplicate accession numbers 

This script finds duplicate EST accession numbers in a gene-specific EST fasta file. It 

uses system calls to *nix commands sort and diff to produce a file containing the 

duplicate accession number(s), if found. 
 
Scriptname: duplicate_finder.pl 
 
#!/usr/bin/perl -w 
# Script uses some system calls to generate a file containing the 
# duplicate EST's within a specific file. It does so as follows: 
# 1. Extract the accession numbers from the FASTA headers and write 
# to a file 
# 2. Create file from "1" above with the numbers ordered with "sort" 
# 3. Create file from "1" above with the numbers uniquely ordered 
# with "sort -u" 
# 4. Use "diff" to locate the differences between files created in 
#  "2" and "3" above and write it to file. The differences would 
# be the duplicated accession numbers 
 
foreach $file(@ARGV){ 
# Step 1: Extract Accession Numbers and write to file 
 $gene = (split(/\./, $file))[0] ; 
 $duplicate_file = $gene.".differences.txt" ; 
 open(IN, $file) ; 
 $unsorted = $gene.".unsorted.txt" ; 
 open(OUT, ">>$unsorted") ; 
 $sorted = $gene.".sorted.txt" ; 
 $sorted_unique = $gene.".sorted_unique.txt" ; 
 while(<IN>){ 
  if(/>.+\|.+\|.+\|(.+)\|/){# Accession number now in $1 
   $acc = $1 ; 
   $acc =~ s/\..+$// ;# Remove terminal version number 
   print OUT "$acc\n" ; 
  } 
 } 
 close(IN) ; close(OUT) ; 
 
# Step 2: Create sorted file from file created in Step 1 above 
 system("sort $unsorted > $sorted") ; 
 
# Step 3: Create uniquely sorted file from file created in Step 1 
# above 
 system("sort -u $unsorted > $sorted_unique") ; 
 
# Step 4: Locate the differences/ duplicates between files created in 
# Steps 2 and 3 
 system("diff $sorted $sorted_unique > $duplicate_file") ; 
 
# Create ouput file containing the duplicate accession numbers 
 open(IN, $duplicate_file) ; 
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 open(OUT, ">$gene.duplicates.txt") ; 
 while(<IN>){ 
  if(/^<\s(.+)\n/){ 
   print OUT $1, "\n" ; 
  } 
 } 
 close(IN) ; close(OUT) ; 
 
# Cleaning up some files 
 system("rm $duplicate_file $unsorted $sorted $sorted_unique") ; 
} 
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6.8.3 Perl script to remove duplicate sequences from a FASTA file 

Once duplicate accession numbers are found, this script uses the output file from 

section 6.8.2 on p58 above, to remove those sequence(s) from a FASTA file. 
Scriptname: duplicate_sequence_remover.pl 
#!/usr/bin/perl -w 
# Given an input file with the duplicate accession numbers 
# 1. duplicate acc nums are read into an array 
# 2. a hash is created with duplicate acc nums as keys and the 
# values for each hash member is initialized to 0 
# 3. the accession number found in a fasta file is compared against 
# the duplicate acc num array 
# - if it is absent from the duplicate array, it is written to 
#  the outfile 
# - if it is present in the duplicate array, it is written to 
# the outfile, and its value changed to "1" to indicate that the 
# entry has been written already, and to prevent it from being 
# added to the output file again 
foreach my $file (@ARGV){ 
 %removal_hash = () ; 
 my $out = $file."_minus_duplicates" ; 
 my $gene = (split(/\./, $file))[0] ; 
 my $duplicates = $gene.".duplicates.txt" ; 
 my @remove = to_be_removed($duplicates) ; 
  
 # Create a hash with acc nums as keys and value=0 
 foreach my $acc_num(@remove){ 
  $removal_hash{$acc_num} = 0 ; # Means "not found" 
 } 
 $/ = "\n>" ; 
 open(SEQUENCE, $file) ; 
 open(CLEANED, ">>$out") ; 
 while(<SEQUENCE>){ 
  $to_write = 1 ; 
  if(/gb\|(.+)\.\d+\|/){ 
   $to_write = searcher($1, $to_write) ; 
  } 
  if($to_write == 1){ 
   print CLEANED ; 
  } 
 } 
 close(SEQUENCE) ; 
 close(CLEANED) ; 
} 
 
sub to_be_removed{ 
# Write the duplicate accession numbers into an array and returns the 
array 
 $/ = "\n" ; 
 my ($duplicates) = $_[0] ; 
 my @remove_acc_nums = () ; 
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 open(DUPLICATES, $duplicates) ; 
 while(<DUPLICATES>){ 
  chomp ; 
  push(@remove_acc_nums, $_) ; 
 } 
 close(DUPLICATES) ; 
 return(@remove_acc_nums) ; 
} 
 
sub searcher{ 
# Determine whether a fasta entry has been added to the output file 
# or not. 
# - If the accession number is not in the duplicate array, 
# "$to_write" remains unchanged 
# - If it is and the hash value is "0" it means it has not been 
# written yet 
# - If it is and the hash value is "1" it means it has already 
# been written and will not be written again 
 my ($bait, $found) = @_ ; 
 foreach my $match(keys %removal_hash){ 
  if($bait eq $match){ 
   if($removal_hash{$match} == 1){ 
    $found = 0 ; 
   }elsif($removal_hash{$match} == 0){ 
    $removal_hash{$match} = 1 ; 
    $found = 1 ; 
   } 
  } 
 } 
 return($found) ; 
} 
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6.8.4 Perl script that calculates Sensitivity and Specificity values 

Scriptname: sn_sp.pl 
#!/usr/bin/perl -w 
# Takes an algorithm file with cluster/assembly members on a single 
# line, as well as singlets on individual lines and 
# determines the gene each EST comes from. 
# It needs the reference files which are files with gene-specific 
# names, containing the EST accesion numbers for each gene 
 
$results_file = shift(@ARGV) ; 
 
foreach $file(@ARGV){ 
 my $gene = (split(/\./, $file))[0] ; 
 
 # Get a list of all the genes from the filenames 
 push(@genelist, $gene) ; 
 gatherer($file, $gene) ; 
} 
 
$TP = $FP = $TN = $FN = 0 ; 
$grand_total = 0 ; 
 
open(IN, $results_file) ; 
while(my $line = <IN>){ 
 $singleton = 0 ; 
 # Initialize the counter for each gene in the genelist 
 foreach(@genelist){ 
  $gene_counter{$_} = 0 ; 
 } 
 chomp($line) ; 
 if($line =~ /\s/){ 
  @ests = split(/\s/, $line) ; 
  @ests = sort(@ests) ; 
 }else{ 
  @ests = $line ; # Singletons: Single AccNum per line 
  $singleton = 1 ; 
 } 
 $grand_total += @ests ; 
 $total = @ests ; 
 
 foreach my $est (@ests){ 
  foreach my $gene(keys %all_genes){ 
   if($all_genes{$gene} =~ /$est/){ 
    $gene_counter{$gene}++ ; 
    if($singleton == 1){ 
     if($gene =~ /paralog/){ $TN++ ; } 
     else{ $FN++ ; } 
    } 
   } 
  } 
 } 
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 # Obtain total number of ESTs in a grouping 
 
 foreach my $gene(keys %gene_counter){ 

if($total != 0){ # Ensures that a gene is represented: 
"0" means no EST for that gene was  

 # found 
  $gene_fraction{$gene} = sprintf("%0.2f", 
$gene_counter{$gene}/$total) ; 
  if($gene_fraction{$gene} >= 0.5){ 
   if($gene !~ /paralog/){ 
    $TP += $gene_counter{$gene} ; 
   }elsif($gene =~ /paralog/){ 
    $TN += $gene_counter{$gene} ; 
   } 
  }elsif($gene_fraction{$gene} < 0.5){ 
   $FP += $gene_counter{$gene} ; 
  } 
  $members{$gene} = $gene_counter{$gene} ; 
  } 
 } 
 
 foreach my $gene(sort{$gene_fraction{$b} cmp 
$gene_fraction{$a}} keys %gene_fraction){ 
  if($gene_fraction{$gene} > 0){ 
  print "$gene $members{$gene} " ; 
  } 
 } 
 print "\n" 
} 
 
print "TP: $TP\tFP: $FP\tTN: $TN\tFN: $FN --> Grand Total: 
$grand_total\n" ; 
 
close(IN) ; 
 
sub gatherer{ 
 my ($filename, $gene) = @_ ; 
 my @acc_nums = () ; 
 open(IN, $filename) ; 
 while(my $line = <IN>){ 
  chomp($line) ; 
  push(@acc_nums, $line) 
 } 
 close(IN) ; 
 @acc_nums = sort(@acc_nums) ; 
 $all_genes{$gene} = join(",", @acc_nums) ; 
} 
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6.8.5 Perl script that uses msbar to mutate sequences 

This script uses msbar (Mutate Sequence Beyond All Recognition) to introduce 

random point mutations into the original EST sequence. For the sake of comparison, a 

range of error percentage values were selected (1%, 3%, 5%, 7%, 9% and 11%). The 

single UCSC FASTA file containing all the ESTs specific to a gene was fragmented 

such that the resultant files each contained a single EST fasta-formatted sequence. 

These single-sequence files were then used as input for msbar and the range of error 

percentages was introduced. 
 
Scriptname: msbar_mutator.pl 
 
#!/usr/bin/perl –w 
 
# Script will add random error into the original EST dataset. In 
# order to do this. msbar will be used. Msbar only operates on 
# individual sequences, so the FASTA file containing all the ESTs for 
# a specific gene has to be fragmented s.t. the sequences are all 
# separated into individual files. 
# Thereafter, msbar will mutate these individual sequence files by 
# introducing 1, 3, 5, 7, 9 and 11% error. 
# Program outline: 
# 1. Take as input each gene-specific file and create individual 
# FASTA files consisting of a single FASTA sequence i.e. Gene1 
# contains 30 UCSC assigned ESTs. After this step, there will be 
# 30 individual files for Gene1, each file containing a single 
# sequence from the original file 
# 2. Use files created in 1 above as input for msbar and create one 
# file per sequence per percentage error i.e. after this step, 
# one of the 30 files produced in step 1 above would have 
# produced a file with 1% error introduced into the original 
# sequence, a file with 3% error, a file with 5% error, etc. 
 
$/ = "\n>" ; 
foreach $file(@ARGV){ 
# Step 1: Fragment original EST FASTA file into individual EST 
sequences 
 $dir = $file.".temp" ; $filenums = 1 ; 
 system("mkdir $dir") ; system("chmod 777 $dir/") ; 
 system("cp $file $dir/") ; 
 
 open(IN, $file) ; 
 while(<IN>){ 
  $out = $file.$filenums ; 
  s/>\n$/\n/ ; 
  open(OUT, ">$dir/$out") ; 
  print OUT ">$_" ; 

 64



  close(OUT) ; 
  $filenums++ ; 
 } 
 close(IN) ; 
 
 $/ = "\n" ; 
 for( $x = 1 ; $x <$filenums ; $x++){ 
  $single_seq = $file.$x ; $length = 0 ; 
  open(IN, "$dir/$single_seq") ; 
  while($line = <IN>){ 
   chomp($line) ; 
   if($line !~ />/){ 
    $length += length($line) ; 
   } 
  } 
  close(IN) ; 
 
# Step 2: Introduce error into the individual EST sequences 
  @percent = qw(1 3 5 7 9 11) ; 
  foreach $perc (@percent){ 
   $number = int(($perc/100)*$length) ; 
   $mute_file = $single_seq."_".$perc ; 
   system("msbar -sequence $single_seq -count $number 
-point 1 -block 0 -codon 0 -outseq $mute_file") ; 
  } 
 } 
} 
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