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ABSTRACT
Numerical singular perturbation approaches based on spline approximation

methods for solving problems in computational finance

by

Mohmed Hassan Mohmed Khabir

PhD thesis, Department of Mathematics and Applied Mathematics, Faculty of

Natural Sciences, University of the Western Cape.

Options are a special type of derivative securities because their values are derived from

the value of some underlying security. Most options can be grouped into either of

the two categories: European options which can be exercised only on the expiration

date, and American options which can be exercised on or before the expiration date.

American options are much harder to deal with than European ones. The reason being

the optimal exercise policy of these options which led to free boundary problems. Ever

since the seminal work of Black and Scholes [J. Pol. Econ. 81(3) (1973), 637-659],

the differential equation approach in pricing options has attracted many researchers.

Recently, numerical singular perturbation techniques have been used extensively for

solving many differential equation models of sciences and engineering. In this thesis,

we explore some of those methods which are based on spline approximations to solve

the option pricing problems. We show a systematic construction and analysis of these

methods to solve some European option problems and then extend the approach to

solve problems of pricing American options as well as some exotic options. Proposed

methods are analyzed for stability and convergence. Thorough numerical results are

presented and compared with those seen in the literature.

May 2011.
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Chapter 1

General introduction

Pricing options is an important yet difficult problem in the finance research. Many

mathematical models are developed to price options using quantitative analysis. In

the past three decades, researchers have developed state-of-the-art solvers to price

these options. Many successful methods, including numerical methods and analytical

approximation formula, are able to price certain options efficiently. The recent ad-

vanced numerical methods include the binomial methods, the Monte Carlo simulation

methods, finite difference methods and finite element methods.

In this thesis, we design and analyze a special class of numerical methods, namely,

the spline approximation methods. These methods have been used very widely to

solve the problems in Sciences and Engineering. In recent past, they have been used to

solve singularly perturbed ordinary and partial differential equations. See for example,

[79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 97] and some references therein.

Due to the fact that some of these methods were very powerful when applied to the

highly stiff problems like those described by singularly perturbed problems, we decided

to explore them whether they can be used to solve option pricing problems arising in

computational finance.

Before we proceed with designing such methods, below we introduce some basic con-

1

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 2

cepts in the option pricing theory.

1.1 Option pricing: A brief overview

The past few decades have witnessed a revolution in the trading of derivative securities

in world financial markets. A derivative security, or contingent claim, is a financial

contract whose value at its expiry date T is completely determined by the prices of an

underlying asset in a fixed range of times within the interval [0, T ]. An underlying asset

to a derivative security can be any financial asset, such as shares, stocks or bonds, or

a commodity such as an agricultural product or mineral. Derivative securities can be

divided into three classes: options, forwards and futures, and swaps. In this thesis, we

focus on options.

Options

An option is the right (but not the obligation) to buy or sell a risky asset at a pre-

specified fixed price within a specified period [68]. An option is a financial instrument

that allows - amongst other things - to make a bet on rising or falling values of an

underlying asset. The underlying asset typically is a stock, or a parcel of shares of a

company. Other examples of underlying include stock indices (for example, the Dow

Jones Industrial Average), currencies, or commodities. Since the value of an option

depends on the value of the underlying asset, options and other related financial in-

struments are called derivatives. An option is a contract between two parties about

trading the asset at a certain future time. One party is the writer, for example, a bank,

who fixes the terms of the option contract and sells the option. The other party is the

holder, who purchases the option, paying the market price, which is called premium.

The holder of the option must decide what to do with the rights the option contract

grants. The decision will depend on the market situation, and on the type of option.

Options have a limited life time. The maturity date T fixes the time horizon. At

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 3

this date the rights of the holder expire, and for later times (t > T ) the option is

worthless. There are two basic types of option: call and put. The call option gives the

holder the right to buy the underlying for an agreed price E by the date T . The put

option gives the holder the right to sell the underlying for the price E by the date T .

The previously agreed price E of the contract is called strike or exercise price [141]. It

is important to note that the holder is not obligated to exercise, that is, to buy or sell

the underlying according to the terms of the contract. The holder may wish to close

his position by selling the option. In summary, at time t the holder of the option can

choose to

• sell the option at its current market price on some options exchange (at t < T ),

• return the option and do nothing,

• exercise the option (t ≤ T ), or

• let the option expire worthless (t ≥ T ).

In contrast, the writer of the option has the obligation to deliver or buy the underlying

for the price E, in case the holder chooses to exercise. The risk situation of the writer

differs strongly from that of the holder. The writer receives the premium when he

issues the option and somebody buys it. This up-front premium payment compensates

for the writer’s potential liabilities in the future.

Not every option can be exercised at any time t ≤ T . For European options exer-

cise is only permitted at expiration T . However, American options can be exercised

at any time up to and including the expiration date. For options the labels American

or European have no geographical meaning. Both of these options are traded in every

continent.

In addition to these standard options which are traded on many financial exchanges,

there is a huge over-the-counter market in which financial institutions sell a variety

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 4

of exotic options tailored to meet the demands of various clients. For example, Asian

options feature payoffs which depend on the average price of the underlying asset dur-

ing the contract. Lookback options depend on the highest or lowest price reached by

the underlying asset. There are also a number of different kinds of barrier options.

In general, such contracts specify various payoffs if the underlying asset price reaches

certain levels. For example, an up-and-out call option is like a standard call provided

that the underlying asset price remains below a barrier level for the duration of the

contract. Should the barrier level be reached, the contract is canceled and the option’s

payoff will become zero, i.e., the option will be worthless.

In this thesis, we discuss both of these standard (European and American) options

and some non-standard (barrier) options. To this end, below we describe some impor-

tant concepts which will be useful throughout the thesis.

Payoff functions

At time t = T , the holder of a European call option will check the current price S = ST

of the underlying asset. The holder will exercise the call (buy the stock for the strike

price E), when S > E. Then the holder can immediately sell the asset for the spot

price S and makes a gain of S −E per share. In this situation the value of the option

is V = S − E ignoring transaction costs. In case S < E the holder will not exercise

the option, since then the asset can be purchased on the market for the cheaper price

S. In this case the option is worthless, V = 0.

In summary, the value V (S, T ) of a call option at expiration date T is given by

Vcall(ST , T ) =





0 in case ST ≤ E (option expires worthless),

ST − E in case ST > E (option is exercised).

(1.1.1)

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 5

Hence

V (ST , T ) = max {ST − E, 0}. (1.1.2)

Considering for all possible prices St > 0, max {St − E, 0} is a function of St. This

function is the payoff function. Using the notation f+ := max {f, 0}, this payoff can

be written in the compact form (St − E)+. Accordingly, the value V (ST , T ) of a call

at day T is

Vcall(ST , T ) = (ST − E)+. (1.1.3)

For a European put options, exercising only makes sense in case if S < E. The payoff

V (S, T ) of a put at expiration time T is

Vput(ST , T ) =





E − ST in case ST < E (option is exercised),

0 in case ST ≥ E (option is worthless).

(1.1.4)

Hence

Vput(ST , T ) = max {E − ST , 0}, (1.1.5)

or

Vput(ST , T ) = (E − ST )+. (1.1.6)

The equations (1.1.3), (1.1.6) remain valid for American type options. The payoff

function for an American call is (St −E)+ and for an American put (E − St)
+ for any

t ≤ T .

Options in the market

The features of the options imply that an investor purchases puts when the price of the

underlying is expected to fall, and buys calls when the prices are about to rise. This

mechanism inspires speculators.

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 6

The value V (S, t) also depends on other factors. Dependence on the strike E and

the maturity T is evident. Market parameters affecting the price are the interest rate

r, the volatility σ of the price St, and dividends in case of a dividend-paying asset. The

interest rate r is the risk-free rate, which applies to zero bonds or to other investments

that are considered free of risks. The important volatility parameter σ can be defined

as standard deviation of the fluctuations in St, and for scaling it is divided by the

square root of the observed time period. The larger the fluctuations (represented by

large values of σ) the harder is to predict a future value of the asset. Hence the volatil-

ity is a standard measure of risk. Thus the dependence of V on σ is highly sensitive.

We write V (S, t, T, E, r, σ) when the focus is on the dependence of V on the market

parameters.

The units of r and σ2 are usually mentioned per year. Time is measured in years.

Writing σ = 0.2 means a volatility of 20%, and r = 0.05 represents an interest rate

of 5%. In Table 1.1.1, we list some notations which are used in the rest of the thesis.

These notations are standard except for the strike E, which is sometimes denoted X

or K.

The time period of interest is t0 ≤ t ≤ T . One might think of t0 denoting the date when

the option is issued and t as a symbol for “today.” But in this thesis we set t0 = 0 in the

role of “today,” without loss of generality. Then the interval 0 ≤ t ≤ T represents the

remaining life time of the option. The price St is a stochastic process; in real markets,

the interest rate r and the volatility σ vary with time. To keep the models and the

analysis simple, we assume r and σ to be constant on 0 ≤ t ≤ T . Further we suppose

that all variables are arbitrarily divisible and consequently can vary continuously, that

is, all variables vary in the set R of real numbers.
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Table 1.1.1: List of some notations used in the thesis

t current time, 0 ≤ t ≤ T
T expiration time, maturity
r > 0 risk-free interest rate
S, St spot price, current price per share of stock/asset/underlying
σ annual volatility
E strike, exercise price per share
V (S, t) value of an option at time t and underlying price S

European and American options as standard options

Derivatives securities have been used quite extensively by investors and financial insti-

tutions in past two decades. However, using the most widely accepted financial models,

there are many types of securities which can not be priced in closed form. Closed form

solutions are available only in few special cases. One example is a European option

written on a single underlying asset. The European option valuation formula was

derived in Black and Scholes [9] and Merton [117]. The value of a European option

satisfies the Black–Scholes equation with appropriately specified final and boundary

conditions, see, for example, (Shaw [143], Wilmott et al. [155]). For American options,

the essential difficulty lies in the problem that they are allowed to be exercised at any

time before the expiration day. Such an early exercise right purchased by the holder

of the option has changed the problem into a so-called free boundary value problem,

since the optimal exercise price prior to the expiration of the option is time-dependent.

As a result of the unknown boundary being part of the solution of the problem, the

valuation of American options becomes a nonlinear problem. In the case of American

options, analytical expressions for the price have been derived but there are no easily

computable explicit formulas available so far. Further complications arise when the

pay-off of the derivative security depends on multiple assets or multiple sources of un-

certainty. Analytical solutions are often not available for options with path-dependent

payoffs and other exotic options. This has necessitated efficient numerical procedures.

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 8

A fundamental problem in financial mathematics is the analysis of the American call

and put options. These are more difficult to analyze than the corresponding European

options in that the American options may be exercised prior to the expiration dates.

Mathematically the American options lead to Partial Differential Equations (PDEs)

with moving boundaries, which can only rarely be solved exactly. The location of the

moving boundary is important since it corresponds to the optimal exercise boundary

for the option. The free-boundary problems associated with the American options are

generally solved by converting them into a sequence of fixed-boundary problems. Each

of these fixed-boundary problems are then solved by some reliable PDE solvers.

The moving boundary approach, that is, the idea of transforming a free-boundary

problem to fixed-boundary problems, is exciting and powerful, particularly because

solving the fixed-boundary problem is much easier. It is evident from the mechanism

of the method that there is considerable scope for generalizing it to other optimal stop-

ping problems, though a significant amount of work in deriving the boundary update

equations and establishing convergence might be required.

Exotic options as nonstandard options

Exotic options also called special -purpose options or customer tailored options, imply-

ing that each type of exotic options can somehow serve a special purpose which standard

options cannot do conveniently or cheaply. Exotic options differ from standard options

in at least one aspect. Examples include, a deferred option or forward-start option is

an option whose effective starting time is some time in the future after the contract is

signed rather than in the present; a compound option which is an option written on a

standard option rather than on an underlying asset directly; a spread option which is

an option written on the difference between two prices or indices, rather than on one

single price or index as in case of standard options, and so on.
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The most popular group of exotic options is path-dependent options, which includes

Asian or average-price options, barrier options, lookback options, and forward-start

options. Another large group of exotic options is correlation options which includes

spread options, out-performance options, two-color rainbow options, quanto options,

exchange options, basket options, etc. Some other popular exotic options are chooser

options or as-you-like options, power options, binary or digital options [162].

Barrier options are probably the oldest of all exotic options. Options with the barrier

feature are considered to be the simplest types of path dependent options. Barrier

option’s distinctive feature lies in the fact that the payoff depends not only on the

final price of the underlying asset, but also on whether the asset price has breached

(one-touch) some barrier level during the life of the option.

Barrier options can be classified into knock-out and knock-in options. Considering

the barrier price X, the knock-out option can be exercised unless the asset price S

reaches the barrier X during the day of purchase and expiration day. The knock-in

option can be exercised if the asset price S overtakes the barrier X. The knock-out

options can be classified into “up-and-out” and “down-and-out”. The up-and-out op-

tion can be exercised unless the asset price S reaches the barrier X from below the

barrier and the down-and-out option can be done unless the asset price reaches the

barrier from above the barrier. Similarly, the knock-in options can be classified into

“up-and-in” and “down-and-in” options. The up-and-in option can be exercised if the

asset reaches the barrier from below the barrier and the down-and-in option can be

done if the asset price reaches the barrier from above the barrier. Barrier options are

used widespread, particularly for foreign currency contracts.

There are also a variety of other instruments with similar kinds of contingent payoffs,

including capped options, ladder options, and interest rate corridors. The problem can

be readily generalized to incorporate early exercise, although we must then find solu-
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tions numerically. In principle, barrier features may be applied to any options. The

valuation algorithms of the options are almost similar and therefore we discuss only

the down-and-out option later in this thesis.

A simple model for asset pricing

It is often stated that asset prices must move randomly because of the efficient market

hypothesis. There are several different forms of this hypothesis with different restrictive

assumptions, but they all basically imply two things:

• The past history is fully reflected in the present price, which does not hold any

further information,

• Markets respond immediately to any new information about an asset.

Thus the modelling of asset prices is really about modelling the arrival of new informa-

tion which affects the price. With the two assumptions above, unanticipated changes

in the asset price are modeled as a Markov process.

Firstly, we note that the absolute change in the asset price is not by itself a useful

quantity. With each change in asset price, a return defined to be the change in the

price divided by the original value, i.e., dS
S

(see, e.g. [155]). This relative measure of

the change is clearly a better indicator of its size than any absolute measure.

Now suppose that at any time t the asset price is S. Let us consider a small sub-

sequent time interval dt, during which S changes to S + dS. How the corresponding

return on the asset dS
S

might be modeled? The most common model decomposes this

return into two parts. One is a predictable, deterministic and anticipated return akin

to the return on money invested in a risk-free bank. It gives a contribution µdt to the

return dS
S
, where µ is a measure of the average rate of growth of the asset price, also

known as the drift. In simple models µ is taken to be a constant. In more complicated
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models, for example, for exchange rates, µ can be a function of S and t. The second

contribution to dS
S

models the random change in the asset price in response to external

effects, such as unexpected news. It is represented by a random sample drawn from

a normal distribution with mean zero and adds a turn σdX to dS
S
. Here the quantity

dX is the sample from a normal distribution. Putting these contributions together, we

have the stochastic differential equation

dS

S
= σdX + µdt, (1.1.7)

which is the mathematical representation of the simple recipe for generating asset prices

(see [155] for further details).

Role of Itô’s lemma

In real life asset prices are quoted at discrete intervals of time. There is thus a practical

lower bound for the basic time-step dt of the random walk (1.1.7). If we use this time-

step in practice to value options, we would find that we had to deal with unmanageably

large amounts of data. Instead, we set up our mathematical models in the continuous

time limit dt → 0; it is much more efficient to solve the resulting differential equations

than it is to value options by direct simulation of the random walk on a practical

timescale. In order to do this, Itô’s lemma is the most important result about the

manipulation of random variables. First we need the following result, with probability

1,

dX2 → dt as dt → 0. (1.1.8)

Thus the smaller dt becomes, the more certainly dX2 is equal to dt.

Suppose that f(S) is a smooth function of S and temporarily assume that S is stochas-

tic. If we vary S by a small amount dS then clearly f also varies by a small amount

provided we are not close to singularities of f . From the Taylor series expansion we
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can write

df =
df

dS
dS +

1

2

d2f

dS2
dS2 + · · · , (1.1.9)

where the dots denote a reminder which is smaller than any of the terms we have

retained. Now recall that dS is given by (1.1.7). Squaring it we find that

dS2 = (σSdX + µSdt)2

= σ2S2dX2 + 2σµS2dtdX + µ2S2dt2. (1.1.10)

We now examine the order of magnitude of each of the terms in (1.1.10). Since

dX = O(
√

dt), (1.1.11)

the first term is the largest for small dt and dominates the other two terms. Thus, to

leading order,

dS2 = σ2S2dX2 + · · · .

Since dX2 → dt, we get

dS2 → σ2S2dt.

We substitute this into (1.1.9) and return only those terms that are at least as large

as O(dt). Using also the definition of dS from (1.1.7), we find that

df =
df

dS
(σSdX + µSdt) +

1

2
σ2S2 d2f

dS2
dt

= σS
df

dS
dX +

(
µS

df

dS
+

1

2
σ2S2 d2f

dS2

)
dt. (1.1.12)

This is Itô’s lemma relating the small change in a function of a random variable to the

small change in the variable itself.

The result (1.1.12) can be further generalized by considering a function of the ran-

dom variable S and of time, f(S, t). This entails the use of partial derivatives since
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there are now two independent variables, S and t. We can expand f(S + dS, t + dt) in

a Taylor series about (S, t) to get

df =
∂f

∂S
dS +

∂f

∂t
dt +

1

2

∂2f

∂S2dS2
+ · · · .

Using expressions (1.1.7) for dS and (1.1.8) for dX2 we find that the new expression

for df is

df = σS
∂f

∂S
dX +

(
µS

∂f

∂S
+

1

2
σ2S2 ∂2f

∂S2
+

∂f

∂t

)
dt. (1.1.13)

1.2 The Black-Scholes Equation

We begin this section with a discussion of the concept of arbitrage. One of the funda-

mental concepts in the theory of option pricing is the absence of arbitrage opportunities,

called the no arbitrage principle. As an illustrative example [155] of an arbitrage op-

portunity, suppose the prices of a given stock in Exchanges A and B are listed at $100

and $102, respectively. Assuming there is no transaction cost, one can lock in a riskless

profit of $2 per share by buying at $100 in Exchange A and selling at $102 in Exchange

B. The trader who engages in such a transaction is called an arbitrager. If the financial

market functions properly, such an arbitrage opportunity cannot occur since traders

are well aware of the differential in stock prices and they immediately compete away

the opportunity. However, when there is transaction cost, which is a common form of

market friction, the small difference in prices may persist. For example, if the transac-

tion costs for buying and selling per share in Exchanges A and B are both $1.50, then

the total transaction costs of $3 per share will discourage arbitragers.

More precisely, an arbitrage opportunity can be defined as a self-financing trading

strategy requiring no initial investment, having zero probability of negative value at

expiration, and yet having some possibility of a positive terminal payoff.
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Before describing the Black–Scholes analysis which leads to the value of an option

we used the following assumptions ( as mentioned in Wilmott et al. [155]):

• The asset price follows the lognormal random walk (1.1.7).

Other models do exist, and in many cases it is possible to perform the

Black–Scholes analysis to derive a differential equation for the value of an

option.

• The risk-free interest rate r and the asset volatility σ are known functions of time

over the life of the option.

• There are no transaction costs associated with hedging a portfolio.

• The underlying asset pays no dividends during the life of the option.

This assumption can be dropped if the dividends are known beforehand.

They can be paid either at discrete intervals or continuously over the life of

the option.

• There are no arbitrage possibilities.

The absence of the arbitrage opportunities means that all risk-free portfolios

must earn the same return.

• Trading of the underlying asset can take place continuously.

This is clearly an idealization, and becomes important in the case of trans-

action costs.

• Short selling is permitted and the assets are divisible.

By this assumption, we can buy and sell any number (not necessarily an

integer) of the underlying asset, and we may sell assets that we do not own.
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Suppose that we have an option whose value V (S, t) depends only on S and t. It is not

necessary at this stage to specify whether V is a call or a put; indeed, V can be the

value of a whole portfolio of different options although for simplicity the reader can

think of a simple call or put. Using Itô’s lemma, equation (1.1.13) can be written as

dV = σS
∂V

∂S
dX +

(
µS

∂V

∂S
+

1

2
σ2S2∂2V

∂S2
+

∂V

∂t

)
dt. (1.2.1)

This gives the random walk followed by V .

Now construct a portfolio consisting of one option and a number (−4) of the un-

derlying asset. This number is unspecified as yet. The value of this portfolio is

Π = V −4S. (1.2.2)

The jump in the value of this portfolio in one time-step is

dΠ = dV −4dS. (1.2.3)

Here 4 is held fixed during the time-step; if it were not then dΠ wold contain terms

in d4. Putting (1.1.7), (1.2.1) and (1.2.2) together, we find that Π follows the random

walk

dΠ = σS

(
∂V

∂S
−4

)
dX +

(
µS

∂V

∂S
+

1

2
σ2S2∂2V

∂S2
+

∂V

∂t
− µ4S

)
dt. (1.2.4)

The random component in this random walk can be eliminated by choosing

4 =
∂V

∂S
. (1.2.5)
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This results in a portfolio whose increment is wholly deterministic, i.e.,

dΠ =

(
∂V

∂t
+

1

2
σ2S2∂2V

∂S2

)
dt. (1.2.6)

We now appeal to the concepts of arbitrage and supply and demand, with the assump-

tion of no transaction costs. The return on an amount Π invested in riskless assets

would see a growth of rΠdt in a time dt. If the right-hand side of (1.2.6) were greater

than this amount, an arbitrager could make a guaranteed riskless profit by borrowing

an amount Π to invest in the portfolio. The return for this risk-free strategy would be

greater than the cost of borrowing. Conversely, if the right-hand side of (1.2.6) were

less than rΠdt then the arbitrager would short the portfolio and invest Π in the bank.

Either way the arbitrager would make a riskless, no cost, instantaneous profit. The

existence of such arbitrager with the ability to trade at low cost ensures that the return

on the portfolio and on the riskless account are more or less equal. Thus, we have

rΠdt =

(
∂V

∂t
+

1

2
σ2S2∂2V

∂S2

)
dt. (1.2.7)

Substituting (1.2.2) and (1.2.5) into (1.2.7) and dividing throughout by dt we arrive at

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (1.2.8)

This is the famous Black–Scholes partial differential equation. By deriving the partial

differential equation for a quantity, such as an option price, we have made an enormous

step towards finding its value. The main aim of this thesis is to find this value by

solving the equation. The value of an option should be unique (otherwise, arbitrage

possibilities would arise), and so, to find the solution, specifies the behavior of the

required solution at some part of the solution domain. This would mostly be achieved

by appropriate initial (final) and boundary conditions.

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 17

1.3 Literature review on numerical methods for pric-

ing standard options

The numerical solutions of several mathematical models arising in financial economics

for the valuation of the European options on different types of assets is considered.

Most of these models are based on the Black-Scholes partial differential equation. As

far as their numerical solutions are concerned, many results are seen in the literature

on the numerical discretization of linear Black-Scholes equation.

Brennan and Schwartz [18] were the first to describe finite-difference methods for op-

tion pricing. Geske and Shastri [58] compared the efficiency of various finite-difference

and other numerical methods for option pricing. Vázquez [152] presented an upwind

scheme for solving the backward parabolic partial differential equation problem in the

case of European options.

The earliest work on American options is by McKean [114], where a free-boundary

problem for the price function and the optimal exercise boundary (the free boundary)

is derived. The price function is expressed in terms of the optimal exercise boundary.

Moerbeke [120] further extended the analysis and studied the properties of the optimal

exercise boundary. Brennan and Schwartz [17], Courtadon [37] and Schwartz [139]

developed numerical methods to solve the free-boundary problem.

The most common numerical method for pricing American options is the binomial

methods (Cox et al. [35]), where the price process of the underlying asset is approx-

imated by a binomial lattice (see, e.g., Muthuraman [121]). Another approach to

computing the expectation (as mentioned in [121] ) is to represent the price as the sum

of the European option price and an early exercise premium (see, Kim [101], Jacka

[74], Carr et al. [24]) using an integral equation. Huang et al. [70] use Richardson

extrapolation to solve the integral expression. Ju [78] makes a piece-wise exponential
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approximation to the exercise boundary and is able to solve for the price. Geske and

Johnson [57] express the price as an infinite series of multivariate cumulative normal

functions. Broadie and Detemple [19] provide pricing methods based on lower and

upper bounds. Most of these numerical algorithms, results and implementation focus

on computing the option price for a given time to expiration and underlying stock price.

In [31] Cho et al. considered a free boundary problem arising in the pricing of an

American call option. The free boundary represents the optimal exercise price as a

function of time before a maturity date. They developed a parameter estimation tech-

nique to obtain the optimal exercise curve of an American call option and its price.

For the numerical solution of a forward problem, they adopted a time marching finite

element method.

Choi and Marcozzi [32] considered the valuation of options written on a foreign cur-

rency when interest rates are stochastic and the matrix of the diffusion representing the

global economy is strongly coercive. They solved the associated variational inequality

for the value function numerically by the finite element method. In the European case,

a comparison is made with the exact solution. They also presented a corresponding

result for the American option.

In [47], Engström and Nordén estimated the value of the early exercise premium in

American put option prices using Swedish equity options data. They found the value

of the premium as the deviation of the American put price from European put-call

parity, and computed a theoretical estimate of the premium. They also used the em-

pirically found premium in a modified version of the control variate approach to value

American puts. Their results indicate a substantial value of the early exercise premium,

where the premium derived from put-call parity is higher than the theoretical premium.

The approach of Lindset and Lund [109] for the valuation of an American put option
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under stochastic interest rates consists of a combination of a Monte Carlo simulation

approach for the valuation of Bermudan options and the valuation technique for Amer-

ican options proposed by Geske and Johnson [57].

In [127] Perrakis and Lefoll examined the optimal super-replication of American put

options with physical delivery of the underlying asset, such as stock options, by means

of a stock-plus-riskless asset portfolio. Their framework of the analysis was the bino-

mial model with proportional transactions costs on stock transactions. They extended

the model for European options, originally presented in Merton [116] and Boyle and

Vorst [16] and generalized in Bensaid et al. [8]. They adapted the optimizing frame-

work of this latter study for put options held by investors and perfectly hedged by a

market maker, and to put options written by investors. Furthermore, they showed that

a unique optimal super-replicating portfolio exists at every node of the binomial tree

for the long option, as well as for the short option when transactions costs are low.

Some of the other popular numerical methods that are used so far for pricing American

options are the front-fixing method (Wu and Kwok [156] and Nielsen [122]) and the

penalty method (Nielsen [122]). Front-fixing methods apply a non-linear transforma-

tion to fix the boundary and solve the resulting non-linear problem. Penalty methods

on the other hand eliminate the free-boundary by adding a non-linear penalty term to

the PDE. Both these methods boil down to solving a set of non-linear equations, the

computational speed and accuracy of which largely depends on the initial guess, the

problem size and the underlying non-linear solver used. These methods are not very

efficient for pricing American options but they are far more general in their applicability.

The American put option problem is posed either as a linear complementarity problem
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(LCP) of the form

Vτ ≥ LV, V (S, 0) = max(E − S, 0),

V (S, τ) ≥ V (S, 0), (Vτ = LV ) ∧ (V (S, τ) = V (S, 0)), (1.3.1)

where T is the expiry time, τ = T − t, and

L =
1

2
σ2S2 ∂2

∂S2
+ (r − δ)S

∂

∂S
− r, (1.3.2)

represents the spatial operator, or it can be posed as a free boundary value problem as

Vτ = LV, min

(
E,

rE

δ

)
= Sf (τ) ≤ S ≤ ∞, 0 ≤ τ ≤ T,

V (S, 0) = max(S − E, 0),

∂V

∂S
(Sf (τ), τ) = −1,

V (Sf (τ), τ) = E − Sf (τ),

lim
S→∞

V (S, τ) = 0. (1.3.3)

The two different formulations lead to different numerical algorithms for the pricing

the American options.

The first algorithm to value an American put option was introduced by Brennan and

Schwartz [17]. They approximated the partial derivatives by finite differences. Their

algorithm is based on transforming a tridiagonal system to a lower bidiagonal system

and then solving this system while enforcing the American constraint.

For the American option problem, Forsyth and Vetzal [50] showed that the addition of

a penalty term

λj+1
i =

1

ε∆τ
max

(
V 0

i − V j+1
i , 0

)
,
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to the Black-Scholes inequality, gives

∂Vi

∂τ
= LVi + λi. (1.3.4)

In [122], Nielsen et al. proposed the use of

λj+1 =
εrE

V j+1 − V 0 + ε
,

where ε is related to the tolerance error in the solution. Discretization of Eq. (1.3.4)

with an implicit treatment of the penalty term leads to a non-linear system. In [122],

the resulting non-linear system is solved using a Newton iteration method.

Ikonen and Toivanen [72] proposed a different technique known as operator splitting

for time discretization for solving the linear complementarity problems arising from the

pricing of American options. The space discretization is done using a central finite dif-

ference scheme. The operator splittings are based on the Crank–Nicolson method and

the two-step backward differentiation formula.

Wu and Kwok [156] proposed a transformation S = eySf (τ) which turns the unknown

free boundary of the American option into a known fixed boundary, after dividing

S, Sf (τ), V (S, τ) by E to obtain normalized variable and functions, and the American

problem is posed as

∂V

∂τ
=

1

2
σ2∂2V

∂y2
+

[
r − δ − σ2

2
+

S
′
f (τ)

Sf (τ)

]
∂V

∂y
− rV,

V (y, 0) = 0, y ∈ (0,∞),

V (0, τ) = 1− Sf (τ),
∂V (0, τ)

∂y
= −Sf (τ),

lim
y→∞

V (y, τ) = 0.

The presence of the term
S
′
f (τ)

Sf (τ)
∂V
∂y

reveals the non-linear nature of the valuation problem
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as exposed by the transformation, and the condition

−σ2

2

∂2V (0, τ)

∂y2
−

(
δ +

σ2

2

)
Sf (τ) + r = 0,

at y = 0 is used to fix the boundary conditions in the numerical procedure.

The use of transformations x = log(S/E) and τ = σ2(T − t)/2 with

u(x, τ) = eα̂x+β̂τV (S, t)/E, (1.3.5)

where α̂ and β̂ are defined as

α̂ =
1

2

(
2(r − δ)

σ2
− 1

)
, β̂ =

1

4

(
2(r − δ)

σ2
− 1

)2

+
2r

σ2
,

transformed the free boundary problem (1.3.3) to the heat equation

∂u

∂τ
=

∂2u

∂x2
, xf (τ) ≤ x < ∞, 0 ≤ τ ≤ σ2T

2
,

u(x, 0) = g(x, 0), xf (τ) ≤ x < ∞,

u(xf (τ), τ) = g(xf (τ), τ), g(x, τ) = eα̂x+β̂τ max(1− ex, 0),

u(x, τ) → 0 as x →∞. (1.3.6)

For the heat solution uc(x, τ) of an American call transformed problem upper boundary

condition uc(x̂fc(τ), τ) = gc(x̂fc(τ), τ) at any x̂fc(τ) > xfc(τ), Han and Wu [61] proved

that based on the strong maximum principle for parabolic equations, the following

inequality holds

uc(x, τ) < gc(x, τ), xfc(τ) < x < x̂fc(τ), (1.3.7)

where gc(x, τ) represents the transformed payoff for a call option. On the basis of the
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put–call symmetry and using (1.3.7) with the transformation relation (1.3.5) they have

ux,τ < gx,τ , xfc(τ) < x < x̂fc(τ), (1.3.8)

and they used this inequality as a test condition for determining the location of the

free boundary in the numerical computation for an American put option.

Tangman et al. [150] described a new finite difference algorithm for the American

option problem which is an improvement of the method proposed by Han and Wu [61].

They used an optimal higher-order compact scheme [145] instead of the Crank–Nicolson

scheme used in [61]. They set-up the problem in a singularity separating framework

given by

∂uD

∂τ
=

∂2uD

∂x2
, xf (τ) ≤ x < ∞,

uD(x, 0) = 0, xf (0) ≤ x < ∞,

uD(xf (τ), τ) = uD(xf (τ), τ)− uE(xf (τ), τ), 0 ≤ τ ≤ τmax,

uD(x, τ) → 0 as x →∞, (1.3.9)

where uE is the transformed value of a European put option. They noted that the

transformed value of the American put option which is given by u = uD + uE is made

up of a numerical part uD and an analytical part uE.

The Black–Scholes model for American put problems take the form of moving-boundary

problems. The American early exercise constraint leads to the following model for the
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value P (S, t) of an American put option to sell the asset

∂P

∂t
+

1

2
σ2S2∂2P

∂S2
+ rS

∂P

∂S
− rP = 0, S > Sf (t), 0 ≤ t < T,

P (S, T ) = max(E − S, 0), S ≥ 0,

∂P

∂S
(Sf , t) = −1,

P (Sf (t), t) = E − Sf (t),

lim
S→∞

P (S, t) = 0,

Sf (T ) = E,

P (S, t) = E − S, 0 ≤ S < Sf (t). (1.3.10)

Note that, since early exercise is permitted, the value P of the option must satisfy

P (S, t) ≥ max(E − S, 0), S ≥ 0, 0 ≤ t ≤ T. (1.3.11)

In the case of the American put option (1.3.10) which involves an unknown boundary,

Khaliq et al. [100] approximated the model by adding a penalty term yielding a

nonlinear partial differential equation on a fixed domain. Specifically, with 0 < ε ¿ 1,

a small regularization parameter, they considered the initial-boundary value problem

∂Vε

∂t
+

1

2
σ2S2∂2Vε

∂S2
+ rS

∂Vε

∂S
− rVε +

εC

Vε + ε− q(S)
= 0, S ∈ [0, S∞], t ∈ [0, T ),

Vε(S, T ) = max(E − S, 0),

Vε(0, t) = E,

Vε(S∞, t) = 0, (1.3.12)

where C ≥ rE is a positive constant and q(S) = E − S. They discretized the domain

[0, S∞]×[0, T ], and applied an implicit algorithm to (1.3.12) obtained result in a system

of nonlinear algebraic equations. They used the well-known θ-method with second-

order central differencing applied to the diffusion operator and upwind differencing of
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the transport term to avoid oscillations due to spatial discretization, and get

V n+1
j − V n

j

∆t
+

1

2
σ2S2

j

[
θ
δ2
SV n+1

j

∆S2
+ (1− θ)

δ2
SV n

j

∆S2

]

+rSj

[
θ
∆SV n+1

j

∆S2
+ (1− θ)

∆SV n
j

∆S2

]
− r[θV n+1

j + (1− θ)V n
j ]

+θ
εC

V n+1
j + ε− q(Sj)

+ (1− θ)
εC

V n
j + ε− q(Sj)

= 0, (1.3.13)

where δ2V vn
j = V n

j+1 − 2V n
j + V n

j−1 and ∆SV n
j = V n

j+1 − V n
j . They treat the penalty

term in (1.3.13) explicitly by replacing V n
j by V n+1

j in that term. The corresponding

linearly implicit scheme then has a form which dose not require a nonlinear iterative

solver.

Hon [67] developed another numerical method for solving the Black-Scholes equation

for valuation of American options prices. Since his method does not require solving a

resultant full matrix, the ill-conditioning problem resulting from using the radial basis

functions as a global interpolant can be avoided. He showed that the method is ef-

fective in solving problems with free boundary condition. He used the transformation

S = ex to transform the Black-Scholes equation to

∂U

∂τ
+

1

2
σ2∂2U

∂x2
+ (r − 1

2
σ2)

∂U

∂x
− rU = 0, (1.3.14)

with terminal condition

U(x, T ) =





max {E − ex, 0}, for put

max {ex − E, 0}, for call.

(1.3.15)
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He approximated the unknown function U using the quasi-radial basis functions as

U(x, t) '
N∑

j=0

Uj(t)Ψj(x), (1.3.16)

where Uj is the unknown option value at x = xj which depends on time t and

Ψj(x) = Ψ(‖x− xj‖) is a linear combination of the radial basis functions φ(‖x− xj‖).
He used the implicit time integration scheme for the time-discretization to discretize

equation (1.3.14) for the valuations of the European and American options. To satisfy

the early optimal exercise for the valuation of the American put options, he simply

updated, at each time step t, in the valuation of the European option, the elements of

Un by Un(i) = max {E − exi , Un(i)}.

More relevant numerical works dealing with pricing American options include Alle-

gretto et al. [1], Clift and Forsyth [36], Ekström [46], Israel and Rincon [73], Kallast

and Kivinukk [99], Kohler [103], Kwok [105], Markolefas [113], Wilmott et al. [155],

Zvan et al. [165], and some of the references there in. Some other works pertaining to

the standard options will be discussed further in the respective chapters.

1.4 Literature review on numerical methods for pric-

ing nonstandard options

Exotic options are widely used in the field of finance (see Bormetti et al. [13]; Joshi

[77]; Lasserre et al. [107]; Taleb [148] and Zhang [162]). Exotic options are partic-

ularly challenging for traditional numerical methods which can perform inaccurately

due to the discontinuities in the payoff function (or its derivatives). Large errors may

also occur in estimating the hedging parameters e.g., delta, vega, and gamma values,

even though the prices appear to be correct. The non-smooth data can further lead to

serious degradation in the convergence of the numerical schemes.
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Explicit schemes are easy to implement but suffer from stability problems noticed

by Heston and Zhou [64]. The fully implicit Backward Euler method may be used to

accurately solve the Black-Scholes PDE due to its strong stability properties (see Zvan

et al. [164], [166]). Pooley et al. [126], Giles and Carter [59] utilized a smoothing

scheme developed by Rannacher [130] which uses a finite number of steps of the fully

implicit Backward Euler method followed by the Crank–Nicolson method.

Goto et al. [60] described the valuation scheme of European, barrier, and Asian options

of single asset by using radial basis function approximation. The option prices are gov-

erned with Black–Scholes equation. They discretized the equation with Crank–Nicolson

scheme and then the option price is approximated with the radial basis functions with

unknown parameters. They showed that the European and the barrier options, the

prices are governed with Black–Scholes equation, but the governing option of the Asian

option is different from them.

Arciniega and Allen [5] analyzed the fully implicit and Crank–Nicolson difference

schemes for solving option prices. They proved that the error expansions for the differ-

ence methods have the correct form for applying Richardson extrapolation to increase

the order of accuracy of the approximations. They applied the difference methods to

European, American, and down-and-out knock-out call options. Their computational

results indicated that Richardson extrapolation significantly decreases the amount of

computational work in estimation of option prices.

In [15] Boyle and Tian considered an explicit finite difference approach. They dis-

cuss the issue of aligning grid points with barriers by constructing a grid which lies

right on the barrier and, if necessary, interpolating to find the option value correspond-

ing to the initial stock price.
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Figlewski and Gao [48] illustrated the application of an adaptive mesh technique to

the case of barrier options. Their basic idea is to use a fine mesh in regions where it is

required (e.g. close to a barrier) and to graph the computed results from this onto a

coarser mesh which is used in other regions. This is an interesting approach and would

appear to be both quite efficient and flexible, though they only examined a simple case

of a down-and-out European call option with a flat, continuously monitored barrier.

It also should be pointed out that restrictions are needed to make sure that points on

the coarse and fine grids line up.

Zvan et al. [166], proposed to use an implicit method which has superior convergence

(when the barrier is close to the region of interest) and stability properties as well as

offering additional flexibility in terms of constructing the spatial grid. Their method

also allows to place grid points either near or exactly on barriers. In particular, they

presented an implicit method which can be used for PDE models with general algebraic

constraints on the solution. Examples of constraints can include early exercise features

as well as barriers. Also in their method, barrier options with or without American

constraints can be handled. Either continuously or discretely monitored barriers can

also be accommodated, as can time-varying barriers.

For some further reading on Barrier options, the reader may refer to [20, 21, 69, 71,

106, 111, 133, 147, 153, 154].

Some other works related to the nonstandard options would be reviewed inside the

chapters.

1.5 Outline of the thesis

We have organized the rest of this thesis as follows:
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A basic theory and some properties of spline functions are described in Chapter 2.

These properties will be very useful in deriving/proving some results in the thesis.

In Chapter 3, we will make a thorough comparison of various numerical methods to

solve a typical option pricing problems. This includes, the application of method of

lines and cubic spline interpolation to discretize the problem in the spatial direction.

For the time integration of the system obtained via method of lines, we have used a

number of MATLAB ode solvers whereas for the one obtained by using cubic spline,

we use an implicit Euler method. We also present results obtained via B-spline in this

chapter. After a thorough comparison, we found that the results obtained by B-spline

are more suitable for a number of reasons which are indicated in subsequent chapters.

Also it is noteworthy that B-splines have the smallest support size among all splines

and therefore, we decided to use them further to solve other option pricing problems.

Chapter 4 deals with a thorough derivation of B-spline for solving problem that price

a European option. The method is analyzed for stability and convergence. Several

comparative numerical results are presented.

The method presented in Chapter 4 is extended in Chapter 5 to solve American option

problems where a different derivation of the method is discussed by reducing the prob-

lem to a constant coefficient problem. Then using an update procedure, the American

option problem is solved.

In Chapter 6, we extend the B-spline approach to solve a class of exotic options.

Finally, we provide some concluding remarks and scope for future research in Chapter

7.

 

 

 

 



Chapter 2

Splines approximations: Basic theory

and applications to solve differential

equations

In this chapter, we discuss some basic theory and properties of spline functions that

are useful to solve some differential equation models.

2.1 Introduction

It is more than 50 years since Schoenberg [135, 136] introduced “spline functions” to

the mathematical literature. Schoenberg is generally acknowledged to be the “father”

of splines. These functions were named and singled out for special study by him in the

middle of the 1940’s. Since 1960 the field of spline interpolation and approximation

has grown enormously.

Splines are proved to be very useful and important in various branches of Mathemat-

ics such as approximation theory, numerical analysis, numerical treatment of differential

and integral equations, and Statistics. Also, they have become useful tools in other

domain, for example, Engineering, Biosciences, Chemistry, Physics, Geophysics, Mete-

orology, Medicine, Business and Social Sciences, Imaging and Visualization, Computer-

30
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aided design and manufacturing, Computer Vision and Robotics, etc. It is well known

that interpolating polynomial splines can be derived as the solution of certain mathe-

matical problems.

The rest of the chapter is organized as follows. In Section 2.2 we discuss the

interpolation using different type of splines. Some properties of splines, in particular,

those of B-splines are mentioned in Section 2.3. Finally, applications of these methods

are discussed in Section 2.4.

2.2 Interpolation by different splines

Qudratic B-splines

To describe the quadratic B-splines, we partition the interval [a, b] into N finite elements

of equal length h by knots xi, such that a = x0 < x1 < · · · < xN−1 < xN = b. The set

of splines {φ−1, φ0, ..., φN} forms a basis for functions defined over the problem domain

[a, b]. Quadratic B-splines φi(x) with the required properties are defined by [128]

φi(x) =
1

h2





(xi+2 − x)2 − 3 (xi+1 − x)2 + 3 (xi − x)2 , [xi−1, xi]

(xi+2 − x)2 − 3 (xi+1 − x)2 , [xi, xi+1]

(xi+2 − x)2 , [xi+1, xi+2]

0, otherwise,

where h = xi+1 − xi, i = −1, 0, ..., N .

The quadratic spline φi(x) and its first derivative φ′i(x) at the knots are given in

Table 2.2.1. An approximate solution UN(x, t) to the analytical solution U(x, t) to a
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Table 2.2.1: Values of the quadratic B-splines φi(x) and its derivatives with knots at
different points

x xi−1 xi xi+1 xi+2

φi(x) 0 1 1 0
hφ′i(x) 0 2 −2 0

differential equation is usually sought in form of an expansion

UN(x, t) =
N∑

i=−1

ci(t)φi(x),

where ci(t) are time-dependent nodal parameters needs to be determined using a given

boundary conditions.

Each spline covers three intervals so that three splines φi−1(x), φi(x), φi+1(x) cover

each finite element [xi, xi+1]. All other splines are zero in this region.

Cubic B-splines

The region [a, b] is partitioned into N finite elements of equal length h by knots xi,

such that a = x0 < x1 < · · · < xN−1 < xN = b. The cubic B-splines will be used

to approximate a solution UN(x, t) to the analytical solution U(x, t) to a differential

equation. Thus, an approximation UN(x, t) to the analytical solution U(x, t) can be

expressed in terms of the cubic b-splines as

UN(x, t) =
N+1∑
i=−1

δi(t)φi(xj), j = 0, 1, 2, ..., N,

where δi(t) are time dependent parameters to be determined from boundary conditions

and collocation form of the differential equation. A cubic B-spline covers four elements
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and is defined as

φi(x) =





(x−xi−2

h

)3
, [xi−2, xi−1]

1 + 3
(x−xi−1

h

)
+ 3

(x−xi−1

h

)2 − 3
(x−xi−1

h

)3
, [xi−1, xi]

1 + 3
(xi+1−x

h

)
+ 3

(xi+1−x
h

)2 − 3
(xi+1−x

h

)3
, [xi, xi+1]

(xi+2−x
h

)3
, [xi+1, xi+2]

0, otherwise

(2.2.1)

where h = xi+1 − xi, i = −1, 0, ..., N + 1. So the four cubic B-splines φi−1(x), φi(x),

φi+1(x), φi+2(x) lie in each element. Over the typical element [xi, xi+1], the approximate

UN is given by

UN(x, t) =

j+2∑
i=j−1

δi(t)φi(xj),

where φi(x) act as element shape functions of the element, with δi(t) as element param-

eters. This form shows the variation of all contributing cubic B-splines over a single

element and is useful for working out the solution inside the element. The values of

φi(x) and its derivatives are shown in Table 2.2.2.

Table 2.2.2: Values of the cubic B-splines φi(x) and its derivatives with knots at dif-
ferent points

x xi−2 xi−1 xi xi+1 xi+2

φi(x) 0 1 4 1 0
hφ′i(x) 0 −3 0 3 0

h2φ′′i (x) 0 6 −12 6 0
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Quintic B-splines

We subdivide the interval [a, b] into subintervals by the set of N + 1 distinct points xi,

i = 0, 1, ..., N , such that a = x0 < x1 < · · · < xN−1 < xN = b.

The construction of the quintic B-spline interpolate UN to the analytic solution U

of a differential equation for spaced knots a = x0 < x1 < · · · < xN−1 < xN = b can be

performed with the help of the 10 additional knots such that

x−5 < x−4 < x−3 < x−2 < x−1 and xN+1 < xN+2 < xN+3 < xN+4 < xN+5.

The quintic B-splines φi(x), i = −2,−1, ..., N + 2, are defined by

φi(x) =
1

h5





(x− xi−3)
5 , [xi−3, xi−2]

(x− xi−3)
5 − 6 (x− xi−2)

5 , [xi−2, xi−1]

(x− xi−3)
5 − 6 (x− xi−2)

5 + 15 (x− xi−1)
5 , [xi−1, xi]

(x− xi−3)
5 − 6 (x− xi−2)

5 + 15 (x− xi−1)
5

− 20 (x− xi)
5 , [xi, xi+1]

(x− xi−3)
5 − 6 (x− xi−2)

5 + 15 (x− xi−1)
5

− 20 (x− xi)
5 + 15 (x− xi+1)

5 , [xi+1, xi+2]

(x− xi−3)
5 − 6 (x− xi−2)

5 + 15 (x− xi−1)
5 − 20 (x− xi)

5

+ 15 (x− xi+1)
5 − 6 (x− xi+2)

5 , [xi+2, xi+3]

0, otherwise
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where h = xi+1 − xi, i = −2, 0, ..., N + 2.

The set of quintic B-splines φi(x), i = −2,−1, ..., N + 2, form a basis over the re-

gion a ≤ x ≤ b [128]. A global quintic B-spline interpolate UN to the analytic solution

U , is given by

UN(x, t) =
N+2∑
i=−2

δi(t)φi(x),

where δi are time-dependent nodal parameters needs to be determined. The values of

φi(x) and its derivatives are shown in Table 2.2.3.

Table 2.2.3: Values of the quintic B-splines φi(x) and its derivatives with knots at
different points

x xi−3 xi−2 xi−1 xi xi+1 xi+2 xi+3

φi(x) 0 1 26 66 26 1 0
hφ′i(x) 0 5 50 0 −50 −5 0

h2φ′′i (x) 0 20 40 120 40 20 0

Sextic B-splines

The region [a, b] is partitioned into N finite elements of equal length h by knots xi,

such that a = x0 < x1 < · · · < xN−1 < xN = b. Let φi, i = −3, ..., N + 2 be the sextic

B-splines with both knots xi and 12 additional knots outside the region positioned at:

x−6 < x−5 < x−4 < x−3 < x−2 < x−1 < x0

and xN < xN+1 < xN+2 < xN+3 < xN+4 < xN+5 < xN+6.

The set of sextic B-splines {φ−3, φ−2, ..., φN+2} forms a basis for functions defined over

the problem domain [a, b] ([128]).
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The sextic B-splines are defined as

φi(x) =
1

h6





(x− xi−3)
6 , [xi−3, xi−2]

(x− xi−3)
6 − 7 (x− xi−2)

6 , [xi−2, xi−1]

(x− xi−3)
6 − 7 (x− xi−2)

6 + 21 (x− xi−1)
6 , [xi−1, xi]

(x− xi−3)
6 − 7 (x− xi−2)

6 + 21 (x− xi−1)
6 − 35 (x− xi)

6 , [xi, xi+1]

(x− xi+4)
6 − 7 (x− xi+3)

6 + 21 (x− xi+2)
6 , [xi+1, xi+2]

(x− xi+4)
6 − 7 (x− xi+3)

6 , [xi+2, xi+3]

(x− xi+4)
6 , [xi+3, xi+4]

0, otherwise

where h = xi+1 − xi, i = −3, 0, ..., N + 2.

The sextic B-splines and its first fifth derivatives vanish outside the interval [xi−3, xi+4].

The values of the sextic B-splines and its principal five derivatives at the knots are listed

in Table 2.2.4.

An approximate solution UN(x, t) to the analytical solution U(x, t) to a differential

equation is usually sought in form of

UN(x, t) =
N+2∑
i=−3

ωi(t)φi(x),

where ωi are time dependent parameters to be determined using a given boundary

conditions for the differential equation.
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Table 2.2.4: Values of the sextic B-splines φi(x) and its derivatives with knots at
different points

x xi−2 xi−1 xi xi+1 xi+2 xi+3

φi(x) 1 57 302 302 57 1
hφ′i(x) 6 150 240 −240 −150 −6

h2φ′′i (x) 30 270 −300 −300 270 30
h3φ′′′i (x) 120 120 −960 960 −120 −120

h4φ
(4)
i (x) 360 −1080 720 720 −1080 360

h5φ
(5)
i (x) 720 −3600 7200 −7200 3600 −720

Septic B-splines

The interval [a, b] is partitioned into N finite elements of equal length h by knots xi,

i = −0, ..., N , such that a = x0 < x1 < · · · < xN−1 < xN = b. The septic B-spline
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function φi(x) at these knots is given by

φi(x) =
1

h7





(x− xi−4)
7 , [xi−4, xi−3]

(x− xi−4)
7 − 8 (x− xi−3)

7 , [xi−3, xi−2]

(x− xi−4)
7 − 8 (x− xi−3)

7 + 28 (x− xi−2)
7 , [xi−2, xi−1]

(x− xi−4)
7 − 8 (x− xi−3)

7 + 28 (x− xi−2)
7 − 56 (x− xi−1)

7 , [xi−1, xi]

(xi+4 − x)7 − 8 (xi+3 − x)7 + 28 (xi+2 − x)7 − 56 (xi+1 − x)7 , [xi, xi+1]

(xi+4 − x)7 − 8 (xi+3 − x)7 + 28 (xi+2 − x)7 , [xi+1, xi+2]

(xi+4 − x)7 − 8 (xi+3 − x)7 , [xi+2, xi+3]

(xi+4 − x)7 , [xi+3, xi+4]

0, otherwise

where h = xi+1 − xi, i = −3, 0, ..., N + 3, implying that all intervals [xi−1, xi] are of

equal size. This means that the values of the septic B-spline function φi(x), and all its

first, second and third derivatives vanish outside the interval [xi−4, xi+4]. The set of

splines {φ−3, φ−2, φ−1, φ0, φ1, ..., φN , φN+1, φN+2, φN+3} forms a basis for the functions

defined over [a, b]. The values of φi(x) and its derivatives are shown in Table 2.2.5.

An approximate solution UN(x, t) to the analytical solution U(x, t) to a differential

equation is usually sought in form of an expansion of B-splines

UN(x, t) =
N+3∑
i=−3

ωi(t)φi(xj), j = 0, 1, 2, ..., N,
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Table 2.2.5: Values of the septic B-splines φi(x) and its derivatives with knots at
different points

x xi−4 xi−3 xi−2 xi−1 xi xi+1 xi+2 xi+3 xi+4

φi(x) 0 1 120 1191 2416 1191 120 1 0
hφ′i(x) 0 7 392 1715 0 −1715 −392 −7 0

h2φ′′i (x) 0 42 1008 630 −3360 630 1008 42 0
h3φ′′′i (x) 0 210 1680 −3990 0 3990 −1680 −210 0

where ωi are time dependent parameters to be determined using the given boundary

conditions for the differential equation.

2.3 Basic properties of splines

We define spaces of polynomial splines and show that there exists a basis consisting

of polynomials and truncated power functions. Spline spaces are prototypes of weak

Chebyshev spaces. We begin the discussion here with the definition of polynomial

splines.

Definition 2.3.1 Let points a = x0 < x1 < · · · < xk < xk+1 = b and an integer m ≥ 1

be given. We call

Sm(x1, · · · , xk) = {s ∈ Cm−1[a, b] : s|[xi,xi+1] ∈ Pm, i = 0, · · · , k}, (2.3.1)

the space of polynomial splines of degree m with k fixed knots x1, · · · , xk, where Pm is

the polynomial of order m. For a given spline space Sm(x1, · · · , xk), we always associate

further points x−m < · · · < x−1 < a and b < xk+2 < · · · < xk+m+1, where these points

may be chosen arbitrarily.
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Definition 2.3.2 For a given point x ∈ (a, b) the function

(t− x)m
+ =





0, if t ≤ x

(t− x)m, if t > x,

(2.3.2)

is called the truncated power function of degree m with knot x.

We now show that there exists a basis of a given spline space consisting of polynomials

and truncated power functions.

Theorem 2.3.1 The set of functions

{1, t, · · · , tm, (t− x1)
m
+ , · · · , (t− xk)

m
+} (2.3.3)

forms a basis of Sm(x1, · · · , xk). In particular, the dimension of Sm(x1, · · · , xk) is

k + m + 1.

Proof. It is easy to see that

{1, t, · · · , tm, (t− x1)
m
+ , · · · , (t− xk)

m
+}

is a subset of Sm(x1, · · · , xk). It remains to show that every s ∈ Sm(x1, · · · , xk) has a

unique representation

s(t) =
m∑

i=0

ai ti +
k∑

i=1

bi(t− xi)
m
+ , t ∈ [a, b]. (2.3.4)

Let a spline s ∈ Sm(x1, · · · , xk) be given. We set

pi(t) = s(t), t ∈ [xi, xi+1], i = 0, · · · , k.
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Then we have p0, · · · , pk ∈ Pm. Therefore, p0 ∈ Pm has a unique representation

p0(t) =
m∑

i=0

ai ti, t ∈ [x0, x1].

Moreover, since s ∈ C(m−1)[a, b], we have

p
(i)
1 (x1) = p

(i)
0 (x1), i = 0, · · · ,m− 1.

Since p1 − p0 ∈ Pm, this implies that p1 − p0 has a unique representation

p1(t)− p0(t) = b1(t− x1)
m.

Therefore, we have

s(t) =
m∑

i=0

ai ti + b1(t− x1)
m
+ , t ∈ [x0, x2].

Proceeding recursively, we finally obtain (2.3.4). This prove Theorem 2.3.1.

The next theorem, due to Schoenberg and Whinteney [137], says that spline spaces

are weak Chebyshev subspaces.

For proving this result, we need the following version of the well-known Rolle’s Theorem

which can be found in standard books on Analysis.

Theorem 2.3.2 Let a function f ∈ C1[a, b] and points a < t1 < t2 < b be given such

that f(t1) = f(t2) = 0. Then the function f ′ has at least one zero in (t1, t2). If, in

addition f(t) 6= 0 for some point t ∈ (t1, t2), then f ′ has at lest one sign change in

t1, t2.

Theorem 2.3.3 The space Sm(x1, · · · , xk) is a (k+m+1)-dimensional weak Chebyshev

subspace of C[a, b].
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Proof. We will show that every s ∈ Sm(x1, · · · , xk) has at most k + m sign changes.

Then it follows from Theorem 1.6 in Nürnberger [123] that s ∈ Sm(x1, · · · , xk) is a weak

Chebyshev subspace. Suppose that a spline s ∈ Sm(x1, · · · , xk) has at least k + m + 1

sign changes. Then it follows from Theorem 2.3.2 that s′ ∈ Sm−1(x1, · · · , xk) has at

least k + m sign changes. We consider further derivatives of s and finally get that

s(m− 1) ∈ S1(x1, · · · , xk) has at lest k + 2 sign changes. This is a contradiction, since

such a spline of degree one has at most k +1 sign changes. This proves Theorem 2.3.3.

Basic properties of B-splines

It is shown that the so–called B-splines form a basis of spline spaces. B-splines are

splines which have smallest possible support, in other words, they are zero on a large

set. For the evaluation of splines, it is desirable to have basis functions with this prop-

erty. Moreover, a stable evaluation of B-splines with the aid of a recurrence relation

is possible. B-splines form a partition of unity and that the B-spline basis is variation

diminishing. Also, we give results on the differentiation and integration of splines.

In this section, we discuss the properties of B-splines. We need the following defi-

nition of polynomial splines on (−∞,∞).

Definition 2.3.3 Let points x−m < · · · < x−1 < a = x0 < x1 < · · · < xk < xk+1 =

b < xk+2 < · · · < xk+m+1 be given. A function s : (−∞,∞) → R is called a polynomial

spline of degree m with knots x−m, ..., xk+m+1 if s has m − 1 continuous derivatives

at xi, i = −m, ..., k + m + 1, and s|xi,xi+1
∈ Pm, i = −m − 1, ..., k + m + 1, where

x−m−1 = −∞ and xk+m+2 = ∞.

The first result on the existence and uniqueness of splines with certain zero properties

is due to Curry and Schoenberg [38, 39].

Theorem 2.3.4 For each i ∈ {−m, . . . , k}, there exists a unique spline Bm
i of degree
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m with knots x−m, . . . , xk+m+1 such that

Bm
i (t) = 0, t ∈ (−∞, xi] ∪ [xi+m+1,∞), (2.3.5)

Bm
i (t) > 0, t ∈ (xi, xi+m+1), (2.3.6)

and ∫ xi+m+1

xi

Bm
i (t)dt = 1. (2.3.7)

Proof. Every spline Bm
i of degree m satisfying (2.3.5) has the form

Bm
i (t) =

i+m+1∑
j=1

aj(t− xj)
m
+ t ∈ (−∞,∞). (2.3.8)

It follows from (2.3.5) that

i+m+1∑
j=1

aj(t− xj)
m = 0, t ∈ [xi+m+1,∞). (2.3.9)

Then by using the binomial theorem, we have

i+m+1∑
j=i

m+1∑
r=0

aj(−1)r

(
m

r

)
xr

j tm−r = 0, t ∈ [xi+m+1,∞). (2.3.10)

Since the coefficients of the functions 1, t, . . . , tm must be zero, we get that

i+m+1∑
j=i

ajx
r
j = 0, r = 0, . . . , m. (2.3.11)

Moreover, it follows from (2.3.7) that

i+m+1∑
j=i

aj(xi+m+1 − xj)
m+1
+ = m + 1. (2.3.12)
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Again by using the binomial theorem, we obtain

i+m+1∑
j=i

m+1∑
r=0

aj(−1)r

(
m + 1

r

)
xr

jx
m+1−r
i+m+1 = m + 1. (2.3.13)

Equations (2.3.11) and (2.3.13) imply

i+m+1∑
j=i

ajx
m+1
j = (−1)m+1(m + 1). (2.3.14)

The determinant corresponding to the linear system of equations (2.3.11) and (2.3.14) is

the nonzero Vandermonde determinant. This shows that the unknowns ai, . . . , ai+m+1

are uniquely determined and that there exists a unique spline Bm
i of degree m satisfy-

ing (2.3.5) and (2.3.7).

Property (2.3.6) can be easily proved by induction on m with aid of the subsequent

recurrence relation (2.3.29) which is independent of (2.3.6). This proves Theorem 2.3.4.

Definition 2.3.4 The spline Bm
i in Theorem 2.3.4 is called the B-spline of degree m

with support [xi, xi+m+1].

Remark 2.3.1 The proof of Theorem 2.3.4 shows that, if i ∈ {−m, . . . , k}, r ∈
{1, . . . ,m} and s is a spline of degree m with knots xm, . . . , xk+m+1 satisfying

s(t) = 0, t ∈ (−∞, xi] ∪ [xi+r,∞), (2.3.15)

then s = 0. Therefore, we may say that B-splines have “minimal” support.

Curry and Schoenberg [39] proved the following result on the shape of B-splines.

Theorem 2.3.5 Let an index i ∈ {−m, . . . , k} be given. Then for all j ∈ {1, . . . , m−
1}, the spline (Bm

i )(j) has exactly j distinct zeros in (xi, xi+m+1) and it changes sign at

these zeros.
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Proof. Let an integer i ∈ {−m, . . . , k} be given. We first show that

(Bm
i )(j) has at least j sign changes in (xi, xi+1), j = 1, . . . , m− 1. (2.3.16)

Since Bm
i (xi) = Bm

i (xi+m+1) = 0, it follows from (2.3.6) and Theorem 2.3.2 that the

spline (Bm
i )′ has at least one sign change. By applying Theorem 2.3.2 several times,

we see that (2.3.16) holds. Next, we show that

(Bm
i )(j) has only finitely many zeros in (xi, xi+m+1), j = 1, . . . , m− 1. (2.3.17)

Indeed, if (Bm
i )(j) vanishes on a knot-interval in [xi, xi+m+1], then (Bm

i )(m−1) vanishes

on this interval. But then it is easy to see that the spline (Bm
i )(m−1) of degree one

cannot have m− 1 sign changes, which contradicts (2.3.16). Finally, we show that

(Bm
i )(j) has at most j distinct zeros in (xi, xi+m+1), j = 1, . . . , m− 1. (2.3.18)

Assume to the contrary that (Bm
i )(j) has at least j + 1 distinct zeros in (xi, xi+m+1).

Then, since in addition Bm
i (xi) = Bm

i (xi+m+1) = 0, it follows from Theorem 2.3.2 that

(Bm
i )′ has at least j +2 sign changes. By applying Theorem 2.3.2 several times, we get

that (Bm
i )(m−1) has at least m sign changes. This is a contradiction since (Bm

i )(m−1) is

a spline of degree one with (Bm
i )(m−1)(xi) = (Bm

i )(m−1)(xi+m+1) = 0, and therefore has

at most m − 1 sign changes. Now, the result follows from (2.3.16) and (2.3.18). This

proves Theorem 2.3.5.

B-Spline basis

It is shown that for a given spline space there exists a basis consisting of B-splines.

The result formulated in the next theorem is due to Curry and Schoenberg [39].
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Theorem 2.3.6 The set of B-splines

{Bm
−m, · · · , Bm

k } (2.3.19)

forms a basis of Sm(x1, · · · , xk) on [a, b].

Proof. We will show that the B-splines {Bm
−m, · · · , Bm

k } are linearly independent on

[a, b]. Suppose to the contrary that there exist real numbers a−m, · · · , ak such that

k∑
i=−m

|ai| 6= 0, (2.3.20)

and
k∑

i=−m

ai Bm
i (t) = 0, t ∈ [a, b]. (2.3.21)

We set j = min{i ∈ {−m, · · · , k} : ai 6= 0}. Then by the properties of the B-splines

k∑
i=−m

ai Bm
i (t) = aj Bm

i (t) 6= 0, t ∈ [xj, xj+1]. (2.3.22)

This implies that j < 0, otherwise we get a contradiction to (2.3.22). We set

s(t) =
k∑

i=−m

ai Bm
i (t), t ∈ [−∞, xk+1]. (2.3.23)

Then we have

s(t) = 0, t ∈ (−∞, x−m] ∪ [x0, xk+1]. (2.3.24)

Then it follows from Remark 2.3.1 that s = 0 which implies that

k∑
i=−m

ai Bm
i (t) = 0, t ∈ [x−m, x0]. (2.3.25)

Since j ∈ {−m, · · · ,−1}, this is a contradiction to (2.3.22). This proves Theorem

2.3.6.

 

 

 

 



CHAPTER 2. SPLINES APPROXIMATIONS: BASIC THEORY AND
APPLICATIONS TO SOLVE DIFFERENTIAL EQUATIONS 47

Remark 2.3.2 It follows from Theorem 2.3.6 that every spline s ∈ Sm(x1, · · · , xk)

has a unique representation

s(t) =
k∑

i=−m

ai Bm
i (t) = 0, t ∈ [a, b]. (2.3.26)

This representation has the desirable property that if we have to compute the value

s(t) for some t ∈ [a, b], then only m+1 values of the k+m+1 values Bm
−m(t), · · · , Bm

k (t)

are different from zero. (This follows from (2.3.5) in Theorem 2.3.4).

Recurrence relations

We show that B-splines can be represented as divided differences of truncated power

functions and as complex contour integrals. Moreover, it is shown that a stable eval-

uation of B-splines is possible by using a recurrence relation. Finally, we prove that

normalized B-splines form a partition of unity and give results on differentiation and

integration of splines.

The first result shows that there is a fundamental relation between B-splines and di-

vided differences.

Theorem 2.3.7 For all t ∈ (−∞,∞),

Bm
i (t) = (−1)m+1(m + 1)(t− x)m

+ [xi, · · · , xi+m+1], (2.3.27)

i.e., Bm
i (t) is the divided difference of order m + 1 of the function x → (−1)m+1(m +

1)(t− x)m
+ , x ∈ (−∞,∞), with respect to the knots xi, · · · , xi+m+1.

Proof. We set

s(t) = (−1)m+1(m + 1)(t− x)m
+ [xi, · · · , xi+m+1], t ∈ (−∞,∞),
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and show that s satisfies the B-spline properties 2.3.5 and 2.3.6. If t ∈ (−∞, xi], then

(t− xr)
m
+ = 0, r = i, · · · , i + m + 1,

and therefore s(t) = 0. If t ∈ [xi+m+1,∞], then

(t− x)m
+ = (t− x)m, x ∈ [xi, xi+m+1].

Since x → (t− x)m is a polynomial of degree m, it follows (see Nürnberger [123]), that

s(t) = 0. This shows that s satisfies (2.3.5). Moreover, we have

∫ xi+m+1

xi

s(t)dt =

∫ xi+m+1

xi

(−1)m+1(m + 1)(t− x)m
+ [xi, ..., xi+m+1]dt

=
(−1)m+1(t− x)m

+ [xi, ..., xi+m+1]
∣∣xi+m+1

t=xi

= (−1)m+1(xi+m+1 − x)m+1[xi, ..., xi+m+1]

= xm+1[xi, ..., xi+m+1] = 1.

This shows that s satisfies (2.3.7). Then it follows from the proof of Theorem 2.3.4

that s = Bm
i . This proves Theorem 2.3.7.

The following complex integral representation of B-splines is due to Meinardus [115].

Theorem 2.3.8 For all t ∈ (−∞,∞),

Bm
i (t) =

1

2πi

∫

Ct

(m + 1)(z − t)m

(z − xj) · · · (z − xj+m+1)
dz, (2.3.28)

where Ct is a simply closed rectifiable curve in the complex plane containing all knots

xr with t ≤ xr ≤ xj+m+1 and no others in its interior, and the integration is carried
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out in the positive direction.

Proof. For all t ∈ (−∞,∞), we denote the right hand side of (2.3.28) by Im
j (t). It

follows from the residue theorem that the function Im
j : (−∞,∞) → R is a spline of

degree m with knots xj, ..., xj+m+1. Since the numerator of the integrand in (2.3.28)

is a polynomial of degree m and the denominator is a polynomial of degree m + 2, by

the residue theorem we get that

Im
j (t) = 0, t ∈ (−∞, xj].

Moreover, it follows from Cauchy’s theorem that

Im
j (t) = 0, t ∈ [xj+m+1,∞).

Furthermore, we have

∫ xj+m+1

xj

Im
j (t)dt = − 1

2πi

∫

Cxj+m+1

(z − xj+m+1)
m+1

(z − xj) · · · (z − xj+m+1)
dz

+
1

2πi

∫

Cxj

(z − xj)
m+1

(z − xj) · · · (z − xj+m+1)
dz.

Again by Cauchy’s theorem the first integral is zero. Therefore, it follows from the

residue theorem that

∫

Cxj

(z − xj) · · · (z − xj+m)− (z − xj)
m+1

(z − xj) · · · (z − xj+m+1)
dz = 0.
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Since the numerator of the integral is a polynomial of degree m and the denominator

is a polynomial of degree m + 2. This implies that

∫ xj+m+1

xj

Im
j (t)dt

=
1

2πi

∫

Cxj

(z − xj)
m+1

(z − xj) · · · (z − xj+m+1)
dz

=
1

2πi

∫

Cxj

(z − xj)
m+1 + (z − xj) · · · (z − xj+m)− (z − xj)

m+1

(z − xj) · · · (z − xj+m+1)
dz

=
1

2πi

∫

Cxj

1

(z − xj+m+1)
dz = 1.

Therefore, it follows from Theorem 2.3.4 that Im
j = Bm

j . This proves Theorem 2.3.8.

As has been shown by Meinardus [115], the subsequent results on B-splines can be

derived from the representation (2.3.28) by using a simple decomposition technique for

the rational integrand. Furthermore, by using (2.3.28) it is easy to compute derivatives

of B-splines with respect to the knots. For example, if m ≥ 2 and r ∈ {j, ..., j +m+1},
then for all t ∈ (−∞,∞),

∂Bm
j (t)

∂xr

=
1

2πi

∫

Ct

(m + 1)(z − t)m

(z − xj) · · · (z − xr−1)(z − xr)2(z − xr+1) · · · (z − xj+m+1)
dz.

This expression can reduced to B-splines of degree m− 1.

The next result, due to de Boor [10] and Cox [34], shows that B-splines can be evaluated

with the aid of a recurrence relation.

Theorem 2.3.9 If m ≥ 2, then for all t ∈ (−∞,∞),

Bm
i (t) =

m + 1

m

(
t− xi

xi+m+1 − xi

Bm−1
i (t) +

xi+m+1 − t

xi+m+1 − xi

B−1
i+1(t)

)
. (2.3.29)
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Proof. Let m ≥ 2 and t ∈ (−∞,∞) be given. We set f1(x) = (t − x) and f2(x) =

(t − x)m−1
+ for all x ∈ (−∞,∞). Then it follows (see Nürnberger [123] for further

details), that

Bm
i (t) = (−1)m+1(m + 1)(f1f2)[xi, ..., xi+m+1]

= (−1)m+1(m + 1)
i+m+1∑

r=i

f1[xi, ..., xr]f2[xr, ..., xi+m+1]

= (−1)m+1(m + 1)(f1[xi]f2[xi, ..., xi+m+1] +

+ f1[xi, xi+1]f2[xi+1, ..., xi+m+1])

= (−1)m+1m + 1

m
(mf2[xi+1,...,xi+m+1] +

+ (t− xi)
mf2[xi+1, ..., xi+m+1]−mf2[xi, ..., xi+m]

xi+m+1 − xi

)

=
m + 1

m
(

t− xi

xi+m+1 − xi

(−1)mmf2[xi, ..., xi+m] +

+
xi+m+1 − t

xi+m+1 − xi

(−1)mmf2[xi+1, ..., xi+m+1])

=
m + 1

m
(

t− xi

xi+m+1−xi

Bm−1
i (t) +

xi+m+1 − t

xi+m+1 − xi

Bm−1
i+1 (t)).

This proves Theorem 2.3.9.
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2.4 Applications of splines approximation methods

In this thesis, we develop a numerical method based on the B-spline collocation ap-

proach. The specific splines that are used to solve the option pricing problems consid-

ered in this thesis are described in the respective chapters. Below we provide literature

review on some of the works (apologies for any omissions which is due to space limita-

tions and completely unintentional) that use splines to solve the differential equation

models. Such methods have become interesting and very promising in solving partial

differential equations, due to their flexibility in practical applications.

A lot of work has been done using B-splines in other fields of sciences and engineer-

ing. The B-spline functions are used as window functions to construct a reproduc-

ing kernel function in the reproducing kernel methods and meshfree particle methods

[7, 28, 29, 30, 108, 110, 158]. B-splines are also used as basis functions in the finite

element methods [2, 3, 66, 104]. A variant of B-splines method has been successfully

applied to solve singular perturbation problems [23, 89, 90, 94, 95, 96, 97, 98, 131].

In the field of nonlinear partial differential equations, nonlinear dispersive wave equa-

tions exhibit fascinating solutions such as solitary waves and solitons. Existence of such

solutions has been source of intense interest. Solution of those equations is not analyti-

cally available in general. There are many different examples of these type of equations,

each modelling several different physical problems, for example, many researchers con-

centrate on the equal width (EW) equation whose solutions exhibits soliton like so-

lutions. Main properties of those solutions are that solitary waves propagate in one

direction with constant speed without changing its shape and that the solitary waves

pass through one another and emerge unaltered in shape. B-splines are applied to find

the numerical solutions of those equations in order to develop an understanding of the

nonlinear phenomena, see, for example, [3, 40, 41, 42, 45, 119, 129, 132, 140, 159, 163].
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The use of various degree of the B-splines in getting the numerical solution of some

partial differential equations are shown to provides easy and simple algorithms [52, 53,

54, 55, 56]. Various forms of finite element method incorporated with the B-splines as

shape functions have been presented to give smooth solutions and these functions guar-

antee continuity of approximating functions at the mesh points up to one less degree of

B–splines. Cubic B-spline Galerkin finite element method is applied to EW equation

to model propagation and interaction of solitary waves [52, 53]. By using the Petrov-

Galerkin method using quadratic B-spline spatial finite elements, motion of solitary

waves and development of the undular bore was studied in [56]. The development of

the solitary waves from an arbitrary initial condition for the EW equation is examined

via least squares technique using linear-space finite elements [52]. The development of

a train of EW solitary waves induced by boundary forcing is revealed by implementa-

tion of Petrov-Galerkin finite element method with shape functions taken as quadratic

B-splines [160].

 

 

 

 



Chapter 3

Comparison of some numerical

methods for option pricing problems

In this chapter we, propose two numerical methods for pricing European option pric-

ing problem which is represented by a time dependent parabolic partial differential

equation. The first method is based on the semi-discretization by the Method of Lines

and then using a finite difference approximation in space where several MATLAB ode

solvers are used to perform the time integration. The second one is based on the tem-

poral semi-discretization by implicit Euler and a cubic spline discretization in space.

After thorough numerical comparisons, we found that in terms of applicability, the

approach based on splines is more flexible than the one based on the method of line.

3.1 Introduction

Financial mathematics is a branch of applied mathematics that assesses the risk and

value of various financial instruments. Banks, companies, and other institutions mit-

igate their risk through financial instruments known as derivatives, that derive their

value from some underlying asset. These derivatives are often represented by differen-

tial equations. However, equations that arise from pricing and modeling can be very

complex, and thus leading to the necessity of numerical methods.

54
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The specific derivatives that we are interested to discuss in this chapter are options.

An option is a security giving its holder the right to buy or sell an asset, subject to

certain conditions, within a specified period of time. If the option for buying the asset,

it is called a Call option whereas if it is for selling the asset, it is a Put option. These

options are mainly classified as standard and non-standard options. From these classes,

we choose a standard option, namely, European put options to study in this chapter.

From the definition of the European option, which states that, a European option can

be exercised only on the expiration date, we see that the holder of option has the right

without obligation to transact, so the option has some positive value.

Numerical methods in option valuation have been investigated by many researchers.

The numerical approaches vary from finite element discretizations [49, 124] to finite

difference approximations [155]. A finite-difference scheme often employed is the Crank-

Nicolson (CN) scheme (see [155]). The CN scheme employs a classical trapezoidal for-

mula for time integration and second-order central difference formulas for discretization

of asset derivatives.

Brennan and Schwartz [18] were the first to describe finite-difference methods for op-

tion pricing. Geske and Shastri [58] compared the efficiency of various finite-difference

and other numerical methods for option pricing. Vázquez [152] presented a upwind

scheme for solving the backward parabolic partial differential equation problem in the

case of European options.

Second-order L-stabilized time integration schemes have been proposed by Chawla

et al. [25]. Chawla et al. [26] presented high-accuracy finite-difference methods for the

Black-Scholes equation in which they employed the fourth-order L-stable time integra-

tion schemes (LSIMP) developed in Chawla et al. [27] and the well-known Numerov

method for discretization in the asset direction. They compared the computational effi-
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ciency of their LSIMP-NUM schemes with the CN and Douglas schemes by considering

valuation of European options and American options via the linear complementarity

approach.

Company et al. [33] constructed a finite difference scheme and the numerical anal-

ysis of its solution for a nonlinear Black-Scholes partial differential equation modelling

stock option prices in the realistic case when transaction costs arising in the hedging

of portfolios are taken into account.

The method of lines is an interesting numerical method for solving partial differen-

tial equations. The idea is to semi-discretize the PDE into a system of continuous

and interdependent ODEs, which can then be solved by using efficient time integration

schemes. However, this method is only suitable for certain classes of partial differential

equations, namely initial value problems (IVPs). The pricing of the European op-

tions meets this criteria because of its structure in time. An example of an unsuitable

partial differential equation would be the standard Laplace equation which does not

have any such initial conditions. Our IVP is solved using the MATLAB ode suite [142].

After we study the method of lines, we discuss another class of numerical methods,

namely, a cubic spline interpolation. In terms of applicability, the approach based on

splines is more flexible than the one based on method of lines.

The rest of the chapter is organized as follows. In Section 3.2, we describe an op-

tion pricing problem and show how to reduce it to a simple parabolic problem. The

numerical methods are constructed in Section 3.3. Comparative numerical results are

presented in Section 3.5 whereas in Section 3.6 we summarize the main outcomes.
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3.2 Problem description

The value of a European option satisfies the Black–Scholes equation with appropriately

specified final and boundary conditions, see, for example, ([143],[155]):

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV = 0, 0 < S < ∞ , 0 < t ≤ T. (3.2.1)

The parabolic equation (3.2.1) has boundary conditions

V (0, t) = V0(t), V (∞, t) = VT (S), (3.2.2)

and a final payoff condition

V (S, T ) = VT (S), (3.2.3)

for given V0(t), V (∞, t) and VT (S).

In the above, V = V (S, t) denotes the value of a European put option, where S is

the value of the underlying asset at time t, σ is the volatility of the underlying asset;

E is the exercise price; r is the interest rate and T is the expiry time T .

We reduce the above problem to a simple parabolic problem.

Note that Black and Scholes had proposed the backwards parabolic equation model

(3.2.1) for the valuation of European options with the final condition at t = T

V (S, T ) = max(E − S, 0). (3.2.4)

The boundary condition at S = 0 satisfies

V (S, t) = Ee−r(T−t) − S, (3.2.5)
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and the boundary condition at S = +∞ satisfies

V (S, t) = 0. (3.2.6)

The use of log transformation transforms the Black–Scholes equation to a standard

diffusion equation. With the transformations

S = Eex, t = T − 2τ

σ2
, V (S, t) = E exp

[
−1

2
(k − 1)x− 1

4
(k + 1)2τ

]
u(x, τ), (3.2.7)

and setting k = 2r/σ2 the Black–Scholes equation (3.2.1) is transformed into

∂u

∂τ
=

∂2u

∂x2
, −∞ < x < ∞, 0 < τ ≤ 1

2
σ2T. (3.2.8)

The final condition (3.2.4) is transformed to the initial condition

u(x, 0) = f(x) = max

(
exp

[
1

2
(k − 1)x

]
− exp

[
1

2
(k + 1)x

]
, 0

)
(3.2.9)

and the boundary conditions (3.2.5) and (3.2.6) are transformed to

u−∞(τ) = exp

[
1

2
(k − 1)x−∞ +

1

4
(k + 1)2τ

]
exp

(
−2rτ

σ2

)
, (3.2.10)

and

u∞(τ) = 0. (3.2.11)

In next section we explain two different approaches to solve the above reduced problem.

3.3 Solving option pricing problem by method of lines

The method of lines (MOL) is used to solve diffusion equations by reducing the prob-

lem to an IVP. This is done by introducing approximations for the x−derivatives, and
using initial value methods to solve the resulting problem. The basic idea behind the
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MOL is to replace the spatial (boundary-value) derivatives in the PDE with algebraic

approximations. Once this is done, the spatial derivatives are no longer stated explic-

itly in terms of the spatial independent variables. Thus, in effect, only the initial-value

variable, typically time in a physical problem, remains. In other words, with only one

remaining independent variable, we have a system of ODEs that approximate the orig-

inal PDE. Once formulating the approximating system of ODEs is done, we can apply

any integration algorithm for initial-value ODEs to compute an approximate numerical

solution to the PDE. Thus, one of the salient features of the MOL is the use of existing,

and generally well-established, numerical methods for IVPs for ODEs.

To proceed with, first we discretize the domain. The infinite interval −∞ < x < ∞
is replaced by a finite interval x−∞ ≤ x ≤ x∞. The end values x−∞ = xmin < 0 and

x∞ = xmax > 0 should be chosen in such a way that for Smin = Eex−∞ , Smax = Eex∞

and the interval Smin ≤ S ≤ Smax, a sufficient smooth approximation can be obtained.

Then for a suitable integer n, the step length in x is defined by ∆x = h = (x∞−x−∞)/n.

To illustrate the procedure, we carry out the following steps (see [65] for further details)

for the diffusion equation (3.2.8).

The first step is to evaluate the equation at x = xi. This gives

uτ (xi, τ) = uxx(xi, τ), 0 ≤ τ ≤ 1

2
σ2T. (3.3.1)

Introducing the centered difference approximation for the spatial derivative, we obtain

uτ (xi, τ) =
u(xi+1, τ)− 2u(xi) + u(xi−1, τ)

h2
+O(h2). (3.3.2)
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Dropping the truncation error term, we obtain

d

dτ
ui(τ) =

ui+1(τ)− 2ui(τ) + ui−1(τ)

h2
, 1 ≤ i ≤ n− 1, (3.3.3)

where ui(τ) is the resulting approximation for u(xi, τ).

Combining all the above steps, we see that the solution to ui(τ) is the solution to

the following IVP:

f(x) = max

(
exp

[
1

2
(k − 1)x

]
− exp

[
1

2
(k + 1)x

]
, 0

)
, (the initial value) (3.3.4a)





u0 = u−∞(τ), (the left boundary value)

(
du
dτ

)
1

= 1
h2 (u2 − 2u1 + u0) ,

(
du
dτ

)
2

= 1
h2 (u3 − 2u2 + u1) ,

...
...

...

(
du
dτ

)
n−2

= 1
h2 (un−1 − 2un−2 + un−3) ,

(
du
dτ

)
n−1

= 1
h2 (un − 2un−1 + un−2) ,

un = u∞(τ). (the right boundary value).

(3.3.4b)

Solving the above problem, we obtain the approximation for u(xi, τ).
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Collecting the ui’s together (excluding the left and the right boundary values), equation

(3.3.4b) can be written in a vector form as

d

dt
u(t) = Cu. (3.3.5)

where

u(t) =




u1(t)

u2(t)
...

un−1(t)




(3.3.6)

and

C =
1

h2




−2 1

1 −2 1 0

1 −2 1
. . . . . . . . .

0 1 −2 1

1 −2




. (3.3.7)

The initial condition u(x, 0) = f(x) now takes the form

u(0) =




f1

f2

...

fn−1




. (3.3.8)

Equations (3.3.5)-(3.3.8) represents a standard IVP. Furthermore, we can see that the

system is strictly diagonally dominant and hence non-singular. This guarantees the

uniqueness of the solution. We can now use a wide variety of IVP solvers to solve

the system for u and recover the solution by using the transformation (3.2.7) back to

V (S, t). To this end, in this work, we have used MATLAB solvers ode45, ode15s and

ode23s.
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3.4 Solving option pricing problem by cubic splines

In this section, we present a numerical method which is based on implicit Euler for

temporal semi-discretization and then the use of a cubic spline for the discretization

in space. We consider a two-dimensional grid as follows: Let ∆τ and ∆x, be the

mesh step-sizes in the τ and x-directions. The step-size in τ -direction is given by

∆τ = τmax/m with τmax = 1
2
σ2T where m is an integer. The calculation of the step-

size for the x-discretization is done as in the previous section where the method of

lines was applied. Note that the equidistant grid is defined in terms of x and τ , and

not for S and t. Transforming the (x, τ)-grid via the transformation in (3.2.7) back

to the (S, t)-plane, leads to a nonuniform grid with unequal distances of the grid lines

S = Si = Eexi . The actual error is then controlled via the numbers n and m of grid

lines.

Time semi-discretization

Now for temporal discretization, we use finite difference technique with uniform step-

size ∆τ , for discretizing equation (3.2.8) and obtain the following system of linear

ordinary differential equations:

u0 = f(x), −∞ < x < ∞, (3.4.1a)

um+1 − um

∆τ
= um+1

xx , −∞ < x < ∞, τ > 0, (3.4.1b)

with the boundary conditions,

um+1(x−∞) = u−∞(τm+1), um+1(x∞) = u∞(τm+1), (3.4.1c)

where um+1 is the solution of Eq.(3.4.1) at (m + 1)th time level. Here um = u(x, τm),

∆τ is the time step-size and the superscript m denotes mth time level, i.e., τm = m∆τ .
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At time level m = 0, we can rewrite Eq.(3.4.1) as

u0 = f(x), −∞ < x < ∞, (3.4.2a)

δu1
xx + u1 = u0, −∞ < x < ∞, τ > 0 , (3.4.2b)

with the boundary conditions,

u1(x−∞) = u−∞(τ 1), u1(x∞) = u∞(τ 1), (3.4.2c)

where δ = −∆τ .

The same can be done at all levels. Then at each of these levels, we will use cu-

bic spline approximations to solve the problem in spatial direction. This is explained

below.

Spatial discretization

In this section, we describe the derivation of the cubic spline, in general, as well as in

context of our problems.

Cubic spline in general

Suppose we have n + 1 points x0, x1, ..., xn in the segment [a, b] which satisfy a grid

a = x0 < x1 < ... < xn = b. These points are called knots. The points x0 and xn are

called end (boundary) knots. The grid above is called uniform if a distance between

every two neighboring knots is the same ([144]).

A function S(x) given on segment [a, b] is called a spline of type p + 1 (degree p)

if this function consists of piecewise polynomial which are p − 1 times continuously

differentiable on every segment 4j = [xj, xj+1], j = 0, 1, ..., n− 1, that is, we can write
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S(x) in the form

S(x) = Sj(x) =

p∑

k=0

a
(j)
k (x− xj)

k, j = 0, 1, ..., n− 1, (3.4.3)

where S(x) ∈ Cp−1[a, b]. The condition S(x) ∈ Cp−1[a, b] means that the function S(x)

and its derivatives S
′
(x), S

′′
(x), ..., Sp−1(x) at the points x1, x2, ..., xn−1 are continuously

differentiable. There is a separate cubic polynomial for each interval, each with its own

coefficients:

Sj(x) = a
(j)
0 + a

(j)
1 (x− xj) + a

(j)
2 (x− xj)

2 + a
(j)
3 (x− xj)

3. (3.4.4)

Note that the index (j) of coefficient a
(j)
k indicates for every partial segment 4j a sys-

tem of numbers of the function S(x) (see, e.g., [144]).

Given a function y(x) defined on [a, b] and a set of knots a = x0 < x1 < ... < xn = b, a

cubic spline interpolant, S, for y(x) is a function that satisfies the following conditions

([22]):

(a) S is a cubic polynomial denoted by Sj on the subinterval [xj, xj+1] for j =

0, 1, ..., n− 1,

(b) S(xj) = y(xj) for j = 0, 1, ..., n,

(c) Sj+1(xj+1) = Sj(xj+1) for j = 0, 1, ..., n− 2,

(d) S
′
j+1(xj+1) = S

′
j(xj+1) for j = 0, 1, ..., n− 2,

(e) S
′′
j+1(xj+1) = S

′′
j (xj+1) for j = 0, 1, ..., n− 2,

(f) one of the following set of end (boundary) conditions is satisfied

1. S
′′
(x0) = S

′′
(xn) = 0, (free or natural boundary),

2. S
′
(x0) = y

′
(x0) and S

′
(xn) = y

′
(xn), (clamped boundary).
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When the free boundary conditions occur, the spline is called a natural spline, and it

approximately takes the shape of a long elastic rod if forced to go through the data

points. In general clamped splines are more accurate approximations since they include

more information about the function.

Why do we need the end conditions? In each interval we need to find 4 coefficients

to specify the cubic polynomials, and we have n intervals. We therefore have a total

of 4n unknowns to find. The conditions (b) give n + 1 independent equations, and

the conditions (c), (d) and (e) give 3 × (n − 1) independent equations. So we have

4n unknowns and 4n − 2 equations. There are two missing equations, and that is

why the end (boundary) conditions (f) are required. The conditions (b) are called the

interpolation conditions, and the conditions (c), (d) and (e) are called the continuity

conditions.

Now we derive the equation for Sj(x) on the interval [xj, xj+1]. First we define the

numbers zj = S
′′
(xj). These zj exist for 0 ≤ j ≤ n and satisfy

lim
x→x−j

S
′′
(x) = zj = lim

x→x+
j

S
′′
(x), (1 ≤ j ≤ n− 1), (3.4.5)

because S
′′
(x) is continuous at each interior knots [102].

Since Sj(x) is a cubic polynomial on [xj, xj+1] , S
′′
(x) is a linear function satisfy-

ing S
′′
j (xj) = zj and S

′′
j (xj+1) = zj+1 and therefore it is given by the straight line

between zj and zj+1, i.e.,

S
′′
j (x) =

zj

hj

(xj+1 − x) +
zj+1

hj

(x− xj), (3.4.6)
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where hj = xj+1 − xj. Integrating twice, we obtain

Sj(x) =
zj

6hj

(xj+1 − x)3 +
zj+1

6hj

(x− xj)
3 + C(x− xj) + D(xj+1 − x), (3.4.7)

where C and D are the constant of integration. The interpolation conditions Sj(xj) =

yj and Sj(xj+1) = yj+1 can be imposed on Sj to determine C and D; where we use the

notation y(xj) = yj. This gives

Sj(x) =
zj

6hj

(xj+1 − x)3 +
zj+1

6hj

(x− xj)
3 +

(
yj+1

hj

− zj+1hj

6

)
(x− xj)

+

(
yj

hj

− zjhj

6

)
(x− xj). (3.4.8)

To determine z1, z2, ..., zn−1, we use the continuity conditions for S
′ . At the interior

knots xj, we should have S
′
j−1(xj) = S

′
j(xj). Equation (3.4.8) at x = xj gives

S
′
j(xj) = −hj

3
zj − hj

6
zj+1 − yj

hj

+
yj+1

hj

, (3.4.9)

and

S
′
j−1(xj) =

hj−1

6
zj−1 +

hj−1

3
zj − yj−1

hj−1

+
yj

hj−1

. (3.4.10)

The continuity condition therefore implies

hj−1zj−1 + 2(hj + hj−1)zj + hjzj+1 =
6

hj

(yj+1 − yj)− 6

hj−1

(yj − yj−1), (3.4.11)

where 1 ≤ j ≤ n − 1. It then gives a system of n − 1 linear equations for the n + 1

unknowns z0, z1, ..., zn. We can set z0 = 0 and zn = 0 corresponds to placing simple sup-

ports at the end [1], and solve the resulting system of equations to obtain z1, z2, ..., zn−1.

The resulting spline function is called a natural cubic spline [102]. The linear system

of equations (3.4.11) with z0 = 0 and zn = 0 is symmetric, tridiagonal, diagonally
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dominant, and of the form




u1 h1

h1 u2 h2

h2 u3 h3

. . . . . . . . .

hn−3 un−2 hn−2

hn−2 un−1







z1

z2

z3

...

zn−2

zn−1




=




v1

v2

v3

...

vn−2

vn−1




(3.4.12)

where

hj = xj+1 − xj,

uj = 2(hj + hj−1) ,

bj = 6
hj

(yj+1 − yj),

vj = bj − bj−1.

Application of cubic spline to option pricing problem

The approximate solution of problem (3.4.2) is given in the form of a cubic spline

S(x), which is denoted by Sj(x) on each subinterval [xj, xj+1] for j = 0, 1, ..., n − 1,

and satisfies the equation





δS
′′
(xj) + S(xj) = fj, x−∞ 6 xj 6 x∞

S(x−∞) = u−∞(τ), S(x−∞) = u∞(τ),

(3.4.13)

where fj = f(xj). Then we have

zj = S
′′
j (xj) =

1

δ
[fj − Sj(xj)] =

1

δ
[fj − uj] , (3.4.14)
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where S ≈ u. We substitute zj in equations (3.4.11) and obtain

1

δ
hj−1 [fj−1 − uj−1] +

2

δ
(hj + hj−1) [fj − uj] +

1

δ
hj [fj+1 − uj+1]

=
6

hj

uj+1 − 6

hj

uj − 6

hj−1

uj +
6

hj−1

uj−1, (3.4.15)

which upon simplifications leads to

[−hj−1

δ
− 6

hj−1

]
uj−1 +

[−2(hj + hj−1)

δ
+

6

hj

+
6

hj−1

]
uj +

[−hj

δ
− 6

hj

]
uj+1

= −hj−1

δ
fj−1 − −2(hj + hj−1)

δ
fj − hj

δ
fj+1.

Multiplying by −δ, we have for 1 ≤ j ≤ n− 1:

[
hj−1 +

6δ

hj−1

]
uj−1 +

[
2(hj + hj−1)− 6δ

hj

− 6δ

hj−1

]
uj +

[
hj +

6δ

hj

]
uj+1

= hj−1fj−1 + 2(hj + hj−1)fj + hjfj+1. (3.4.16)

By choosing a uniform mesh spacing h, equation (3.4.16) becomes

[
h +

6δ

h

]
uj−1 +

[
4h− 12δ

h

]
uj +

[
h +

6δ

h

]
uj+1

= hfj−1 + 4hfj + hfj+1, (3.4.17)

or

γ−j yj−1 + γc
jyj + γ+

j yj+1 = q−j fj−1 + qc
jfj + q+

j fj+1, (3.4.18)

where

γ−j = h + 6δ
h
,
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γc
j = 4h− 12δ

h
,

γ+
j = h + 6δ

h
,

q−j = h,

qc
j = 4h,

q+
j = h.

Equation (3.4.18) gives a system of n−1 linear equations for the unknowns u1, u2, ..., un−1

with u0 = u−∞(τ) and un = u∞(τ) of the form

Au = q, (3.4.19)

where

A =




γc
1 γ+

1

γ−2 γc
2 γ+

2

γ−3 γc
3 γ+

3

. . . . . . . . .

γ−n−2 γc
n−2 γ+

n−2

γ−n−1 γc
n−1




, (3.4.20)

u =




u1

u2

u3

...

un−2

un−1




, (3.4.21)

 

 

 

 



CHAPTER 3. COMPARISON OF SOME NUMERICAL METHODS FOR
OPTION PRICING PROBLEMS 70

and

q =




q−1 f0 + qc
1f1 + q+

1 f2 − γ−1 u0

q−2 f1 + qc
2f2 + q+

2 f3

q−3 f2 + qc
3f3 + q+

3 f4

...

q−n−2fn−3 + qc
n−2fn−2 + q+

n−2fn−1

q−n−1fn−2 + qc
n−1fn−1 + q+

n−1fn − γ+
n−1un




. (3.4.22)

We can see that the system is strictly diagonally dominant and hence non-singular.

Hence this method applied to the problem above using a basis of cubic spline has a

unique solution. It should be noted that at each time level we solve the system (3.4.19)

to get the solution of equation (3.2.8).

3.5 Numerical simulations and results

In this section, we present some numerical results for the solution of Black-Scholes

equation describing European put option. The values V (S, t) can be interpreted as a

piece of surface over the subset S > 0, 0 ≤ t ≤ T of the (S, t)-plane. We use the

following parameters for numerical simulations:

Expiration date T = 0.5 (year)

Exercise price E = 10.0

Risk free interest rate r = 0.05

Volatility σ = 0.2

Number of equations m = 100

3.5.1 Numerical results using method of lines

Figure 3.5.1 illustrates the character of this surface for the European put option for

the fixed values of E, T, r and σ. Through Figure 3.5.2, we explain that the European

put option can take values above the lower bound Ee−r(T−t) − S. For small values of

S the value V approaches its lower bound.
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In Table 3.5.1 we have tabulated the comparative results; it consists of the exact,

Quasi-RBFs and MOL solutions for the European put option.

In Table 3.5.2 we have tabulated the exact solution, B-spline solution and solution

obtained by method of lines along with MATLAB solver ode45 for a European put

option. Note that here we only put results for B-splines. We compute results using

B-splines with the parameters given above along with ∆t = 10−5 and ∆x = 0.005. The

actual error is controlled via the numbers n and m.

In Table 3.5.3 we have tabulated the exact solution and those obtained by using method

of lines along with MATLAB solvers ode45, ode15s and ode23s.
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Figure 3.5.1: Values of European put option obtained by using method of lines for
T = 6/12, E = 10, r = 0.05, σ = 0.20 with ∆x = 0.05, x ∈ (−10, 1)
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Figure 3.5.2: Values of European put option at t = 0 using method of lines for T =
6/12, r = 0.05, σ = 0.20 with ∆x = 0.05. The curve with ’*’ shows payoff whereas
the solid curve represents the value of the option.

Table 3.5.1: Comparison between the exact solution, Quasi-RBF solution [67] and
solution obtained by method of lines along with MATLAB solver ode45 for a European
put option for two different space step-sizes

MOL solutions
S Exact solution Quasi-RBF solution [67] ∆x = 0.01 ∆x = 0.005

2.00 7.7531 7.7531 7.7531 7.7531
4.00 5.7531 5.7531 5.7531 5.7531
6.00 3.7532 3.7532 3.7532 3.7532
7.00 2.7568 2.7568 2.7569 2.7568
8.00 1.7987 1.7988 1.7988 1.7987
9.00 0.9880 0.9881 0.9881 0.9880
10.00 0.4420 0.4420 0.4416 0.4419
11.00 0.1606 0.1606 0.1607 0.1606
12.00 0.0483 0.0483 0.0484 0.0484
13.00 0.0124 0.0124 0.0124 0.0124
14.00 0.0028 0.0028 0.0028 0.0028
15.00 0.0006 0.0006 0.0006 0.0006
16.00 0.0001 0.0001 0.0001 0.0001
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Table 3.5.2: Comparison between the exact solution, B-spline solution and solution
obtained by method of lines along with MATLAB solver ode45 for a European put
option for two different space step-sizes

MOL solutions
S Exact solution B-spline solution ∆x = 0.01 ∆x = 0.005

2.00 7.7531 7.7531 7.7531 7.7531
4.00 5.7531 5.7531 5.7531 5.7531
6.00 3.7532 3.7532 3.7532 3.7532
7.00 2.7568 2.7568 2.7569 2.7568
8.00 1.7987 1.7987 1.7988 1.7987
9.00 0.9880 0.9880 0.9881 0.9880
10.00 0.4420 0.4419 0.4416 0.4419
11.00 0.1606 0.1606 0.1607 0.1606
12.00 0.0483 0.0484 0.0484 0.0484
13.00 0.0124 0.0124 0.0124 0.0124
14.00 0.0028 0.0028 0.0028 0.0028
15.00 0.0006 0.0006 0.0006 0.0006
16.00 0.0001 0.0001 0.0001 0.0001

Table 3.5.3: Comparison between the exact solution and solution obtained by method
of lines along with different MATLAB solvers for the European put option.

MOL solutions with ∆x = 10−3

S Exact solution ode45 ode15s ode23s
2.00 7.7531 7.7531 7.7531 7.7531
4.00 5.7531 5.7531 5.7531 5.7531
6.00 3.7532 3.7532 3.7532 3.7532
7.00 2.7568 2.7568 2.7568 2.7569
8.00 1.7987 1.7987 1.7987 1.7987
9.00 0.9880 0.9880 0.9880 0.9880
10.00 0.4420 0.4419 0.4419 0.4419
11.00 0.1606 0.1606 0.1606 0.1606
12.00 0.0483 0.0484 0.0484 0.0483
13.00 0.0124 0.0124 0.0124 0.0124
14.00 0.0028 0.0028 0.0028 0.0028
15.00 0.0006 0.0006 0.0006 0.0006
16.00 0.0001 0.0001 0.0001 0.0001
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3.5.2 Numerical results using cubic spline

Figure 3.5.3 illustrates the character of this surface for the European put option for

the fixed values of E, T, r and σ. Through Figure 3.5.4, we explain that the European

put option can take values above the lower bound Ee−r(T−t) − S. For small values of

S the value V approaches its lower bound.

In Table 3.5.4, we have tabulated the comparative results. It consists of the exact,

B-spline and cubic spline solutions for the European put option for E = 10, r = 0.05,

T = 0.5, and σ = 0.20, with ∆t = 10−5 and ∆x = 0.005. Note that the results

obtained by cubic spline and B-spline are exactly the same. In Table 3.5.5 we have

tabulated the exact, B-spline and cubic spline solutions for the European put option

for E = 10, r = 0.05, T = 0.5, and σ = 0.20, with ∆t = 10−5 and ∆x = 0.008. Also

the results obtained by cubic spline and B-spline are exactly the same. The actual

error is controlled via the numbers n and m.
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Figure 3.5.3: Values of European put option obtained by using cubic spline for T =
6/12, E = 10, r = 0.05, σ = 0.20 with ∆τ = 0.001, and ∆x = 0.05, x ∈ (−10, 1)
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Figure 3.5.4: Values of European put option at t = 0 using cubic spline for T =
6/12, r = 0.05, σ = 0.20 with ∆τ = 0.001, and ∆x = 0.05. The curve with ’*’ shows
payoff whereas the solid curve represents the value of the option.

Table 3.5.4: Comparison between the exact, B-spline and the cubic spline solutions
for the European put option for E = 10, r = 0.05, T = 0.5, and σ = 0.20. With
∆x = 0.0050 and ∆t = 10−5.

S Exact solution B-spline solution Cubic spline solution
2.00 7.7531 7.7531 7.7531
4.00 5.7531 5.7531 5.7531
6.00 3.7532 3.7532 3.7532
7.00 2.7568 2.7568 2.7568
8.00 1.7987 1.7987 1.7987
9.00 0.9880 0.9880 0.9880
10.00 0.4420 0.4419 0.4419
11.00 0.1606 0.1606 0.1606
12.00 0.0483 0.0484 0.0484
13.00 0.0124 0.0124 0.0124
14.00 0.0028 0.0028 0.0028
15.00 0.0006 0.0006 0.0006
16.00 0.0001 0.0001 0.0001
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Table 3.5.5: Comparison between the exact, B-spline and the cubic spline solutions
for the European put option for E = 10, r = 0.05, T = 0.5, and σ = 0.20. With
∆x = 0.008 and ∆t = 10−5.

S Exact solution B-spline solution Cubic spline solution
2.00 7.7531 7.7531 7.7531
4.00 5.7531 5.7531 5.7531
6.00 3.7532 3.7532 3.7532
7.00 2.7568 2.7568 2.7568
8.00 1.7987 1.7987 1.7987
9.00 0.9880 0.9880 0.9880
10.00 0.4420 0.4418 0.4418
11.00 0.1606 0.1606 0.1606
12.00 0.0483 0.0483 0.0483
13.00 0.0124 0.0124 0.0124
14.00 0.0028 0.0028 0.0028
15.00 0.0006 0.0006 0.0006
16.00 0.0001 0.0001 0.0001

3.6 Summary and discussions

In this chapter, we studied two classes of numerical methods for pricing European

option pricing problem which is represented by a time dependent parabolic partial dif-

ferential equation. The first method is based on the semi-discretization by the Method

of Lines and then using a finite difference approximation in space where several MAT-

LAB ode solvers are used to perform the time integration. The second one is based on

the temporal semi-discretization by implicit Euler and a cubic spline discretization in

space. As it is seen from the tabular results, in each case we obtained the results that

can be compared with those seen in the literature.

 

 

 

 



Chapter 4

B-spline approximation method for

pricing European options

In this chapter, we construct a numerical method based on spline approximations to

solve a nonlinear Black-Scholes partial differential equation modelling European option

pricing problem on a single asset. We use the classical Euler implicit method for the

time-discretization and a B-spline collocation method for the spatial discretization. The

method is shown to be unconditionally stable and accurate of orderO((∆x)2+∆τ). The

computational performance of the proposed scheme is compared with those obtained

by using a scheme based on the quasi-radial basis functions.

4.1 Introduction

It is very important for financial institutions operating in the over-the-counter mar-

ket to have accurate models in order to determine what price to charge for these

individually-tailored contracts and how they hedge the risk exposure arising from their

sale. Options can be used, for instance, to hedge assets and portfolios in order to

control the risk due to movements in the share price. In an idealized financial mar-

ket the price of a European option can be obtained as the solution of the celebrated

Black-Scholes equation [9, 117]. This equation also provides a hedging portfolio that
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replicates the contingent claim. The Black-Scholes equation has been derived under

quite restrictive assumptions. In recent years, nonlinear Black-Scholes equations have

been derived in order to model, transaction costs arising in the hedging of portfolios

[6, 43], feedback effects due to large traders [51, 125, 138], and incomplete markets [62].

As far as their numerical solutions are concerned, a few results are seen in the litera-

ture on the numerical discretization of linear Black-Scholes equation. The numerical

approaches vary from finite element discretizations [49, 124] to finite difference ap-

proximations [155]. A finite-difference scheme often employed is the Crank-Nicolson

(CN) scheme (see [155]). The CN scheme employs a classical trapezoidal formula for

time integration and second-order central difference formulas for discretization of asset

derivatives. Second-order L-stabilized time integration schemes have been proposed by

Chawla et al. [25]. Chawla et al. [26] presented high-accuracy finite-difference meth-

ods for the Black-Scholes equation in which they employed the fourth-order L-stable

time integration schemes (LSIMP) developed in Chawla et al. [27] and the well-known

Numerov method for discretization in the asset direction. They compared the compu-

tational efficiency of their LSIMP-NUM schemes with the CN and Douglas schemes by

considering valuation of European options and American options via the linear com-

plementarity approach. Company et al. [33] constructed a finite difference scheme and

the numerical analysis of its solution for a nonlinear Black-Scholes partial differential

equation modelling stock option prices in the realistic case when transaction costs aris-

ing in the hedging of portfolios are taken into account.

Hon [67] developed a numerical method for solving the Black-Scholes equation for

valuation of American options where he has used the concept of quasi-interpolation

and radial basis functions (RBFs) approximation.

In this chapter, we develop a numerical method based on the B-spline collocation

approach to solve European option problems. Such methods have become interesting
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and very promising in solving partial differential equations, due to their flexibility in

practical applications. A lot of work has been done using B-splines in other fields of

sciences and engineering. The B-spline functions are used as window functions to con-

struct a reproducing kernel function in the reproducing kernel methods and meshfree

particle methods [7, 28, 29, 30, 108, 110, 158]. B-splines are also used as basis functions

in the finite element methods [2, 3, 66, 104].

The rest of the chapter is organized as follows. In Section 4.2, we describe the option

pricing problem. The numerical method is constructed in Section 4.3. This method is

analyzed for convergence in Section 4.4. Comparative numerical results are presented

in Section 4.5 whereas Section 4.6 deals with some concluding remarks and scope for

future research.

4.2 Problem description

The value of a European option satisfies the Black–Scholes equation with appropriately

specified final and boundary conditions, see, for example, [143, 155]. We denote its

value by V = V (S, t), where S is the current value of the underlying asset and t is the

time. The variables S and t are independent. The value of the option also depends on

the volatility of the underlying asset σ, the exercise price E, the expiry time T , and the

risk-free interest rate r. With these notations, the governing Black-Scholes equation

for V (S, t) on a single asset is given by

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (4.2.1)

The domain of the independent variables S, t is (0,∞) × (0, T ). For a European put

option exercising only make sense in case S < E. The payoff V (S, T ) of a put at
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expiration time T is

V (S, T ) =





E − S for S < E (option is exercised)

0 for S ≥ E (option is worthless),

and hence the final condition at t = T is

V (S, T ) = max(E − S, 0), (4.2.2)

the boundary condition at S = 0 satisfies ([141])

V (S, t) = Ee−r(T−t) − S, (4.2.3)

and the boundary condition at S = +∞ satisfies

V (S, t) = 0. (4.2.4)

In order to construct our numerical method, we first reduce the above problem to a

standard diffusion equation. The use of log transformation transform the Black-Scholes

equation as a standard diffusion equation. With the transformations

S = Eex, t = T − 2τ

σ2
, V (S, t) = E exp

[
−1

2
(k − 1)x− 1

4
(k + 1)2τ

]
u(x, τ), (4.2.5)

and setting k = 2r/σ2 the Black–Scholes equation (4.2.1) is transformed into

∂u

∂τ
=

∂2u

∂x2
, −∞ < x < ∞, 0 < τ <

1

2
σ2T. (4.2.6)

The final condition (4.2.2) is transformed to

u(x, 0) = u0(x) = max

(
exp

[
1

2
(k − 1)x

]
− exp

[
1

2
(k + 1)x

]
, 0

)
(4.2.7)
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whereas the boundary conditions (4.2.3) and (4.2.4) are transformed to

u−∞(τ) = exp

[
1

2
(k − 1)x−∞ +

1

4
(k + 1)2τ

]
exp

(
−2rτ

σ2

)
, (4.2.8)

and

u∞(τ) = 0, (4.2.9)

respectively. We solve problem (4.2.6)-(4.2.9) using B-spline for space discretization

and implicit Euler for time discretization as described in the next section and then

recover the solution of the original problem (4.2.1)-(4.2.4) using (4.2.5).

4.3 Construction of the numerical method

Our numerical method is based on B-spline for the discretization in space and the finite

difference techniques for the temporal one. We consider a two-dimensional grid as fol-

lows: Let ∆τ and ∆x, be the mesh step-sizes in the τ and x-directions. The step-size

in τ -direction is given by ∆τ = τmax/m with τmax = 1
2
σ2T where m is an integer. The

calculation of the step-size for the x-discretization is little complicated. The infinite

interval −∞ < x < ∞ must be replaced by a finite interval x−∞ ≤ x ≤ x∞. Here

the end values x−∞ = xmin < 0 and x∞ = xmax > 0 should be chosen in such a way

that for Smin = Eex−∞ , Smax = Eex∞ and the interval Smin ≤ S ≤ Smax, a sufficient

quality of approximation is obtained. Then for a suitable integer n the step length in

x is defined by ∆x = (x∞ − x−∞)/n. This defines a two-dimensional uniform grid.

Note that the equidistant grid is defined in terms of x and τ , and not for S and t.

Transforming the (x, τ)-grid via the transformation in (4.2.5) back to the (S, t)-plane,

leads to a nonuniform grid with unequal distances of the grid lines S = Si = Eexi . The

actual error is then controlled via the numbers n and m of grid lines.

Now for temporal discretization, we use finite difference technique with uniform step-

size ∆τ , for discretizing equation (4.2.6) and obtain the following system of linear
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ordinary differential equations:

u0 = u0(x), −∞ < x < ∞, (4.3.1a)

um+1 − um

∆τ
= um+1

xx , −∞ < x < ∞, τ > 0 (4.3.1b)

with the boundary conditions,

um+1(x−∞) = u−∞(τm+1), um+1(x∞) = u∞(τm+1), (4.3.1c)

where um+1 is the solution of Eq.(4.2.6) at (m + 1)th time level. Here um = u(x, τm),

∆τ is the time step-size and the superscript m denotes mth time level, i.e., τm = m∆τ .

We can rewrite Eq.(4.3.1b) as

−δum+1
xx + um+1 = um, (4.3.2)

where δ = ∆τ .

The spatial discretization is done as follows. Given n distinct knots x1 < x2 < ... < xn

in the open interval (a, b) and an integer k ≥ 1, let Sk(x) be the space of functions

of class Ck−1 over [a, b] which coincide with polynomials of degree at most k on each

interval [xj, xj+1], for 1 ≤ j ≤ n, with x0 = a and xn+1 = b. The space Sk(x) is called

the space of splines of degree k [134]. A function of the form

B
(0)
j (x) =





1, x ∈ [xj, xj+1]

0, x /∈ [xj, xj+1]

is called a B-spline function of degree zero defined on segment [a, b]. The B-spline

function of degree k > 1 defined on segment [a, b] is constructed by the recurrent
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relation

B
(k)
j (x) =

x− xj

xj+1 − xj

B
(k−1)
j (x) +

xj+k+1 − x

xj+k+1 − xj+1

B
(k−1)
j+1 (x). (4.3.3)

To adopt the above approach for our case, let the approximate solution of prob-

lem (4.3.2) be given in the form of the B-spline. To proceed with, we subdivide

the interval [a, b], and we choose uniformly distributed mesh points represented by

ω = {x0, x1, x2, ..., xn}, such that x0 = a, xn = b and h is the uniform spacing between

two mesh points. We then define the cubic B-spline for i = 1, 2, ..., n as

Bi(x) =





(x−xi−2

h

)3
, if x ∈ [xi−2, xi−1],

1 + 3
(x−xi−1

h

)
+ 3

(x−xi−1

h

)2 − 3
(x−xi−1

h

)3
, if x ∈ [xi−1, xi],

1 + 3
(xi+1−x

h

)
+ 3

(xi+1−x
h

)2 − 3
(xi+1−x

h

)3
, if x ∈ [xi, xi+1],

(xi+2−x
h

)3
, if x ∈ [xi+1, xi+2],

0, otherwise.

(4.3.4)

We introduce four additional knots as x−2 < x−1 < x0 and xn+2 > xn+1 > xn. From

equation (4.3.4) we see that each of the functions Bi(x) are twice continuously differ-

entiable on the entire real line. Also

Bi(xj) =





4, if i = j,

1, if i− j = ±1,

0, if i− j = ±2,

(4.3.5)
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and that Bi(x) = 0 for x > xi+2 and x 6 xi−2. Furthermore, we can show that

B
′
i(xj) =





0, if i = j,

± 3
h
, if i− j = ±1,

0, if i− j = ±2,

(4.3.6)

and

B
′′
i (xj) =





−12
h2 , if i = j,

6
h2 , if i− j = ±1,

0, if i− j = ±2.

(4.3.7)

Let Ω = {B−1, B0, B1, ..., Bn+1}. The functions in Ω are linearly independent on [a, b].

Now we define

S(x) =
n+1∑
i=−1

ciBi(x), (4.3.8)

where ci are unknown real coefficients and Bi(x) are cubic B-spline functions. Here we

have introduced two extra splines B−1 and Bn+1 to force S(x) to satisfy the boundary

conditions. Then let S(x) satisfy the equation (4.3.2). We have

LS(xj) = f(xj), 0 6 xj 6 n, f(xj) = um(xj), (4.3.9)

where Lum+1 ≡ −δum+1
xx + um+1, therefore

−δ

n+1∑
i=−1

ciB
′′
i (xj) +

n+1∑
i=−1

ciBi(xj) = fj, fj = f(xj).
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By solving the above equation and noting that the support of the function Bi(x) is the

segment [xi−2, xi+2], we have

cj−1(−δB
′′
j−1(xj) + Bj−1(xj)) + cj(−δB

′′
j (xj) + Bj(xj))

+cj+1(−δB
′′
j+1(xj) + Bj+1(xj)) = fj, ∀j = 0, 1, ..., n, (4.3.10)

by using equations (4.3.5) and (4.3.7) we get

(h2 − 6δ)cj−1 + (4h2 + 12δ)cj + (h2 − 6δ)cj+1 = h2fj, ∀j = 0, 1, ..., n. (4.3.11)

The given boundary conditions (4.2.8) and (4.2.9) becomes

c−1 + 4c0 + c1 = u−∞(τ0), (4.3.12)

and

cn−1 + 4cn + cn+1 = 0. (4.3.13)

Equations (4.3.11), (4.3.12) and (4.3.13) lead to an (n+3)× (n+3) tridiagonal system

with (n + 3) unknowns c−1, c0, ..., cn+1. By eliminating c−1 from the first equation of

(4.3.11) and (4.3.12), we get

36δ c0 = f0h
2 − (h2 − 6δ)u−∞(τ0). (4.3.14)

Similarly, eliminating cn+1 from the last equation of (4.3.11) and (4.3.13), we get

36δ cn = fnh2. (4.3.15)

 

 

 

 



CHAPTER 4. B-SPLINE APPROXIMATION METHOD FOR PRICING
EUROPEAN OPTIONS 86

By putting the equations (4.3.14) and (4.3.15) with the (n− 1) remaining equations of

(4.3.11), we get a system of (n + 1) linear equations

AxN = dN , (4.3.16)

in the unknowns xN = (c0, c1, , ..., cn)T of the form




36δ

γ γc γ

γ γc γ
. . . . . . . . .

γ γc γ

36δ







c0

c1

c2

...

cn−1

cn




=




f0h
2 − γu−∞(τ0)

f1h
2

f2h
2

...

fn−1h
2

fnh
2




, (4.3.17)

where

γ = h2 − 6δ,

γc = 4h2 + 12δ.

We can see that the system is strictly diagonally dominant and hence nonsingular. So

we can solve the system for c0, c1, ..., cn and substitute into the boundary equations

(4.3.12) and (4.3.13) to obtain c−1 and cn+1. Hence this method of collocation applied

to the problem above using a basis of cubic B-spline has a unique solution S(x) given

by (4.3.8). At each time level we solve (4.3.17) and recover the solution via (4.3.8)

and (4.3.5). The readers may note that the above approach is valid for single asset

options problems. However, for a multi-asset problem, one would require to use a multi

variable B-spline.
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4.4 Analysis of the numerical method

For the sake of simplicity, let us denote L1 ≡ − ∂2

∂x2 . As we have mentioned earlier, we

discretize the time variable by implicit Euler with uniform step-size ∆τ , therefore we

rewrite (4.3.1) as

u0 = u0(x), −∞ < x < ∞, (4.4.1a)

(I + ∆τL1)u
m+1 = um, −∞ < x < ∞, τ > 0, (4.4.1b)

um+1(x−∞) = u−∞(τm+1), um+1(x∞) = u∞(τm+1), (4.4.1c)

which gives semi-discrete approximations um(x), at time levels τm = m∆t, to the exact

solution u(x, τ) of (4.2.6). The stability of (4.4.1) follows from the maximum principle

for the operator I + ∆τL1, because

‖(I + ∆τL1)
−1‖∞ ≤ 1

1 + b̃∆τ
. (4.4.2)

The local truncation error of the time semi-discretization method (4.4.1) is given by

em+1 = u(τm+1)− ûm+1, where ûm+1 is the solution of

(I + ∆τL1)û
m+1(x) = u(x, τm), −∞ < x < ∞, τ > 0, (4.4.3a)

ûm+1(x−∞) = u−∞(τm+1), ûm+1(x∞) = u∞(τm+1). (4.4.3b)

This error measures the contribution at each time step to the global error of the time

semi-discretization which is defined as Em ≡ u(x, τm)− um(x).

Now we show that the following accuracy results hold:

Lemma 4.4.1 (Local error estimate) If

∣∣∣∣
∂i

∂ti
u(x, τ)

∣∣∣∣ ≤ C0, −∞ < x < ∞, 0 < τ <
1

2
σ2T, 0 ≤ i ≤ 2, (4.4.4)
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then the local error satisfies

‖em+1‖∞ ≤ C0(∆τ)2, (4.4.5)

where C0 is a positive constant independent of ∆τ .

Proof. Since the function ûm+1 satisfies

(I + ∆τL1)û
m+1(x) = u(x, τm),

and as the solution of (4.2.6) is smooth enough, we have

u(τm) = u(τm+1)+∆τL1u(τm+1)+

∫ τm+1

τm

(τm−s)
∂2u

∂τ 2
(s)ds = (I+∆τL1)u

m+1(x)+O(∆τ 2).

Then, em+1 is the solution of a boundary value problem of type

(I + ∆τL1)em+1 = O(∆τ 2),

em+1(x−∞) = em+1(x∞) = 0,

and now (4.4.5) follows when applying the stability result (4.4.2).

Theorem 4.4.1 (Global error estimate). Under the hypotheses of Lemma 4.4.1, we

have

‖Em‖∞ ≤ C0∆τ, ∀ m ≤ σ2T

2∆τ
. (4.4.6)
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Proof. Using the local error estimate up to the mth time level given by Lemma (4.4.1),

we get the following global error estimate at (m + 1)th time level

‖Em+1‖∞ =

∥∥∥∥∥
m∑

l=1

el

∥∥∥∥∥ , m ≤ σ2T

2∆τ

≤ ‖e1‖∞ + ‖e2‖∞ + ... + ‖em‖∞

≤ C1(m∆τ)∆τ using (4.4.5)

≤ C1

(
1

2
σ2T

)
∆τ since m∆τ ≤ 1

2
σ2T

= C0∆τ. (4.4.7)

Therefore the time semi-discretization process is uniformly convergent of order one.

¤

Now we prove that the B-spline collocation method convergent of order two in the

spatial domain. To proceed with, we first prove the following lemma:

Lemma 4.4.2 The B-splines B−1, B0, B1, ..., Bn+1 defined in Eq.(4.3.4), satisfy the

inequality
n+1∑
i=−1

|Bi(x)| ≤ 10, x−∞ ≤ x ≤ x∞.

Proof. We know that ∣∣∣∣∣
n+1∑
i=−1

Bi(x)

∣∣∣∣∣ ≤
n+1∑
i=−1

|Bi(x)|.

At any node xi, we have

n+1∑
i=−1

|Bi| = |Bi−1|+ |Bi|+ |Bi+1| = 6 < 10.
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Also we have

|Bi(x)| ≤ 4 and |Bi−1(x)| ≤ 4, xi−1 ≤ x ≤ xi.

Similarly,

|Bi−2(x)| ≤ 1 and |Bi+1(x)| ≤ 1, xi−1 ≤ x ≤ xi.

Therefore, for any point xi−1 ≤ x ≤ xi, we have

n+1∑
i=−1

|Bi(x)| = |Bi−2|+ |Bi−1|+ |Bi|+ |Bi+1| ≤ 10.

¤

Theorem 4.4.2 Let S(x) be the approximation from the space of cubic splines S3(ω) to

the solution ûm+1(x) of the semi-discrete boundary value problem (4.4.3) at the (m+1)th

time level. If f(x) ∈ C2[x−∞, x∞], then the uniform error estimate is given by

‖ûm+1(x)− S(x)‖∞ ≤ Mh2,

where M is a positive constant independent of h.

Proof. To estimate the error ‖ûm+1 − S(x)‖∞, let us assume that Yn be the unique

spline interpolant from S3(ω) to the solution ûm+1(x) of our semi-discrete boundary

value problem (4.4.3). If f(x) ∈ C2[x−∞, x∞], then ûm+1(x) ∈ C4[x−∞, x∞], and it

follows from the de Boor-Hall error estimates ([11]) that

‖Dj(ûm+1(x)− Yn)‖∞ ≤ ζjh
4−j, j = 0, 1, 2, (4.4.8)

where ζj’s are constants independent of h and m.

Let

Yn(x) =
n+1∑
i=−1

biBi(x). (4.4.9)
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It is clear from the estimates (4.4.8) that

|LS(xi)− LYn(xi)| = |f(xi)− LYn(xi) + Lûm+1(xi)− Lûm+1(xi)| ≤ λh2, (4.4.10)

where

λ = [δζ2 + ζ0h
2]. (4.4.11)

Also

LS(xi) = Lûm+1(xi) = f(xi).

Let

LYn(xi) = f̂n(xi), ∀ i

and

f̂n = (f̂n(x0), f̂n(x1), ..., f̂n(xn))T .

Now from system (4.3.16) and (4.4.10), it is clear that the ith component [A(xN−yN)]i

of A(xN − yN), where yN = (b0, b1, ..., bN)T , satisfies the inequality

|[A(xN − yN)]i| = h2|fi − f̂i| ≤ λh4. (4.4.12)

Since (AxN)i = h2f(xi) and (AyN)i = h2f̂(xi), ∀ i = 1, 2, 3, ..., n. Also (AxN)0 =

h2f(x0) − (h2 − 6δ)u−∞(τ) and (AyN)0 = h2f̂n(x0) − (h2 − 6δ)u−∞(τ). But the ith

component [A(xN − yN)] is the ith equation

(h2 − 6δ)ηi−1 + (4h2 + 12δ)ηi + (h2 − 6δ)ηi+1 = ξi, 1 ≤ i ≤ n− 1, (4.4.13)

where ηi = bi − ci, −1 ≤ i ≤ n + 1, and ξi = h2[f(xi) − f̂n(xi)], 1 ≤ i ≤ n − 1.

Obviously |ξi| ≤ λh4.

Let ξ = max1≤i≤n−1 |ξi|, consider η = (η−1, η0, ..., ηn+1)
T , and then define %i = |ηi|
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and %̃i = max1≤i≤n |%i|. Eq. (4.4.13) then becomes

(4h2 + 12δ)ηi = ξi + (6δ − h2)(ηi−1 + ηi+1), 1 ≤ i ≤ n− 1. (4.4.14)

Taking absolute value and simplifying, we have

(4h2 + 12δ)%i ≤ ξ + 2%̃(6δ − h2). (4.4.15)

Therefore,

(4h2 + 12δ)%i ≤ ξ + 2%̃(6δ − h2) ≤ ξ + 2%̃(6δ + h2).

In particular,

(4h2 + 12δ)%̃ ≤ ξ + 2%̃(6δ + h2). (4.4.16)

Solving for %̃, we obtain

2h2%̃ ≤ ξ ≤ λh4,

which gives

%̃ ≤ 1

2
λh2. (4.4.17)

Now to estimate %−1, %0, %n and %n+1, we observe that the first equation of the system

A(xN−yN) = h2(fn− f̂n) where fn = (f0, f1, ..., fn) yields 36δη0 = h2(f0− f̂0), which

gives

%0 ≤ λh4

36δ
. (4.4.18)

Similarly, we obtain

%n ≤ λh4

36δ
. (4.4.19)

Now %−1 and %n+1 can be evaluated using the boundary conditions given by Eqs.

(4.3.12) and (4.3.13) (therefore note that η−1 = (0−4η0−η1) and ηn−1 = (−4ηn−ηn−1))

as

%−1 ≤ λh4

9δ
+

1

2
λh2 (4.4.20)
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and

%n+1 ≤ λh4

9δ
+

1

2
λh2. (4.4.21)

Using (4.4.11), it is easy to see that there exits a constant C̃ such that

% = max
−1≤i≤n+1

{%i} ≤ C̃h2. (4.4.22)

The above inequality enables us to estimate ‖S(x)− Yn(x)‖∞, and hence ‖ûm+1(x)−
S(x)‖∞. In particular, we will have

S(x)− Yn(x) =
n+1∑
i=−1

(ci − bi)Bi(x). (4.4.23)

Thus

|S(x)− Yn(x)| = max |ci − bi|
n+1∑
i=−1

|Bi(x)|. (4.4.24)

Since

n+1∑
i=−1

|Bi(x)| ≤ 10, x−∞ ≤ x ≤ x∞, (using Lemma 4.4.2). (4.4.25)

Combining Eqs. (4.4.22), (4.4.24) and (4.4.25), we see that

‖S − Yn‖∞ ≤ 10C̃h2. (4.4.26)

Moreover,

‖ûm+1 − Yn‖∞ ≤ ζ0h
4

and

‖ûm+1(x)− S(x)‖∞ ≤ ‖ûm+1(x)− Yn‖∞ + ‖Yn − S(x)‖∞.

This implies that

‖ûm+1(x)− S(x)‖∞ ≤ Mh2, (4.4.27)
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where M = 10C̃ + ζ0h
2.

¤

We have therefore proved the following main result.

Theorem 4.4.3 Let u(x, τ) be the solution of problem (4.2.6) and S(x, τm) be the

B-spline collocation approximation from the space S3(ω) to the solution u(x, τm). If

f(x, τm) ∈ C2[x−∞, x∞], then under the hypotheses of Theorems 4.4.1 and 4.4.2, the

error estimate is given by

‖u(x, τm)− S(x)‖∞ ≤ M̃(∆τ + h2), (4.4.28)

where M̃ is independent of mesh parameters.

Proof. The proof is accomplished by using the results from theorems 4.4.1 and 4.4.2.

¤

Remark 4.4.1 To determine the functional relationship between the two step-sizes

used in the numerical simulation, we apply the conventional von-Neumann stability

analysis for the system (4.3.11). Using

cm
j = εm exp (iβjh) , i =

√−1, (4.4.29)

along with (4.3.11), where ε is the growth factor and β is the mode number, we obtain

at mth time level

αcm+1
j−1 + α̃cm+1

j + αcm+1
j+1 = cm

j−1 + 4cm
j + cm

j+1, ∀j = 0, 1, ..., n, (4.4.30)

where

α = 1− r1, α̃ = 4 + r2, r1 = 6
∆τ

h2
, r2 = 2r1.
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Using Eq. (4.4.29) and the recurrence relation (4.4.30), we get

εm+1 [α exp(−iβh) + α̃ + α exp(iβh)] = εm [exp(−iβh) + 4 + exp(iβh)] , (4.4.31)

which implies that

ε =
3− 2 sin2(βh

2
)

3− 2 sin2(βh
2

) + 2r1 sin2(βh
2

)
. (4.4.32)

Clearly, 0 < ε ≤ 1 for all r1 > 0 and all β. Therefore, the proposed numerical method

is unconditionally stable.

4.5 Numerical results
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Figure 4.5.1: European put option: numerical solution obtained via B-spline, for T =
4/12, E = 10, r = 0.06, σ = 0.45 with ∆τ = 0.001, and ∆x = 0.05, x ∈ (−10, 1)

In this section, we present some numerical results for the solution of Black-Scholes

equation describing European put option. The values V (S, t) can be interpreted as a

piece of surface over the subset S > 0, 0 ≤ t ≤ T of the (S, t)-plane.

Figure 4.5.1 illustrates the character of this surface for the European put option for

the fixed values of E, T, r and σ. Through Figure 4.5.2, we explain that the European
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Figure 4.5.2: Values of a European put option at t = 0 for T = 4/12, r = 0.06, σ =
0.45 with ∆τ = 0.001, and ∆x = 0.05. The curve with ’*’ shows payoff whereas the
solid curve represents the value of the option.

Table 4.5.1: Comparison between the exact, Quasi-RBFs and B-spline solutions for the
European put option. E = 10, r = 0.05, T = 0.5, and σ = 0.20. With ∆x = 0.0050
and ∆t = 10−5.

S Exact solution Quasi-RBF solution B-spline solution
2.00 7.7531 7.7531 7.7531
4.00 5.7531 5.7531 5.7531
6.00 3.7532 3.7532 3.7532
7.00 2.7568 2.7568 2.7568
8.00 1.7987 1.7988 1.7987
9.00 0.9880 0.9881 0.9880
10.00 0.4420 0.4420 0.4419
11.00 0.1606 0.1606 0.1606
12.00 0.0483 0.0483 0.0484
13.00 0.0124 0.0124 0.0124
14.00 0.0028 0.0028 0.0028
15.00 0.0006 0.0006 0.0006
16.00 0.0001 0.0001 0.0001

put option can take values above the lower bound Ee−r(T−t) − S. For small values of

S the value V approaches its lower bound.

In Table 4.5.1, we have tabulated the comparative results. It consists of the exact,
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Table 4.5.2: Comparison between the exact and B-spline solutions for the European
put option. E = 10, r = 0.05, T = 0.5, and σ = 0.20. With ∆x = 0.0080 and
∆t = 10−5.

S Exact solution B-spline solution
2.00 7.7531 7.7531
4.00 5.7531 5.7531
6.00 3.7532 3.7532
7.00 2.7568 2.7568
8.00 1.7987 1.7987
9.00 0.9880 0.9880
10.00 0.4420 0.4418
11.00 0.1606 0.1606
12.00 0.0483 0.0483
13.00 0.0124 0.0124
14.00 0.0028 0.0028
15.00 0.0006 0.0006
16.00 0.0001 0.0001

Quasi-RBFs and B-spline solutions for the European put option for E = 10, r = 0.05,

T = 0.5, and σ = 0.20, with ∆t = 10−5 and ∆x = 0.005. In Table 4.5.2 we have

tabulated the exact and B-spline solutions for the European put option for E = 10,

r = 0.05, T = 0.5, and σ = 0.20, with ∆t = 10−5 and ∆x = 0.008. The actual error

is controlled via the numbers n and m. Using Matlab 2009b, with ∆t = 10−5 and

∆x = 0.008, the CPU time that our code took on a 32 bit machine running UBUNTU

linux was 66.96 seconds whereas this code took only 33.2 seconds on a 64 bit Window

machine. One of the works that we could found in the literature where CPU time was

calculated was that of Hon [67], where the computations were performed on a SUN

Sparc workstation by using FORTRAN 77 with double precision. Using, ∆t = 0.005

and ∆x = 0.004 his code took about 12 seconds whereas the same can be done by our

code using only 0.2849 seconds.
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4.6 Summary and discussions

A numerical method is developed to solve the nonlinear Black-Scholes partial differ-

ential equation modelling European option pricing on a single asset. This method is

based on the implicit Euler method for the temporal discretization and the B-spline

collocation method in the spatial direction on a uniform mesh. Applying the von-

Neumann stability analysis, we found that the proposed method is unconditionally

stable. The method is also analyzed for convergence. As is seen from the tabular

results, the proposed approach gave the results which are comparable with those ob-

tained by Quasi-RBFs [67].

In next chapter, we discuss the application of the proposed approach to solve an Amer-

ican option problem.

 

 

 

 



Chapter 5

B-spline approximation method for

pricing American options

The problem of pricing an American option can be cast as a partial differential equation

described by the famous Black-Scholes equation. Analytical solutions of this Black-

Scholes model for pricing American options problems are seldom available and hence

such derivatives must be priced by stable and efficient numerical techniques. The

troublesome factor in pricing American options is the existence of an optimal exercise

boundary.

In this chapter, we construct a numerical method based on spline approximations

to solve a nonlinear Black-Scholes partial differential equation modelling American put

option price on a single asset. The method is shown to be unconditionally stable and

accurate of order O((∆x)2 + ∆τ). The computational performance of the proposed

method is compared with other methods seen in the literature. Furthermore, procedu-

rally we solve a European option pricing problem and then use an update procedure,

therefore, we also give comparative numerical results obtained for this problem so that

the update procedure is pre-justified.

99
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In this chapter, we first use a different transformation to solve the European option

pricing problem and then use an update procedure to solve the problem of pricing

American options.

5.1 Introduction

Most options can be grouped into either of two categories: European options which

can be exercised only on their expiration date, and American options which can be

exercised on or before their expiration date. In practice, most options are American.

American options are much harder to deal with than European ones. The problem is

that it may be optimal to use (exercise) the option before the final expiry date. This

optimal exercise policy will affect the value of the option, and the exercise policy needs

to be known when solving the PDE. In view of this fact, the Black-Scholes equation

for American options results in a free boundary value problem.

For European options, the analytic solution is relatively easier to obtain. However,

pricing American options is a challenging numerical task. First of all there is no closed

form and exact solution to this problem. The basic property of an American option is

the early exercise feature of the option. Hence, at any time, there is specific value of

the asset price that divides the asset domain into the early exercise region, where the

option should be exercised, and the continuation region, where the option should be

held. Therefore, the early exercise feature gives an additional constraint that the value

of an American option must be greater than or equal to its payoff; this constraint re-

quires special treatment. The American option pricing problem can be posed either as

a linear complementarity problem (LCP) or as a free boundary value problem. These

two different formulations have led to a number of different methodologies for solving

American options. Below we review some of the works.

Probably the first algorithm to value an American option was introduced by Bren-
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nan and Schwartz [17]. The convergence of their finite difference method was proved

by Jaillet et al. [75]. Soon after the work of Brennan and Schwartz [17], Cox et al.

[35] introduced the binomial method for solving American options. The convergence

of this method is proved by Amin and Khanna [4]. Since then many other versions of

binomial parameters have been proposed, for example, the one given in Hull [68]. Boyle

[14] gave a trinomial model for option pricing which is similar to the binomial method,

but gives an accurate value faster than the binomial one. Kim [101], Jacka [74] and

Carr et al. [24] provided integral formulas which express the value of American option

as the sum of corresponding European option and integral function of free boundary.

Then they use recursive numerical algorithm to solve for optimal exercise boundary

and option price. Algorithms that solve the discrete linear complementarity problem

at spatial grid points have been suggested in [12, 44].

In [31] Cho et al. considered a free boundary problem arising in the pricing of an

American call option. The free boundary represents the optimal exercise price as a

function of time before a maturity date. They developed a parameter estimation tech-

nique to obtain the optimal exercise curve of an American call option and its price.

For the numerical solution of a forward problem, they adopted a time marching finite

element method.

Choi and Marcozzi [32] considered the valuation of options written on a foreign cur-

rency when interest rates are stochastic and the matrix of the diffusion representing the

global economy is strongly coercive. They solved the associated variational inequality

for the value function numerically by the finite element method. In the European case,

a comparison is made with the exact solution. They also presented a corresponding

result for the American option.

In [47], Engström and Nordén estimated the value of the early exercise premium in

American put option prices using Swedish equity options data. They found the value
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of the premium as the deviation of the American put price from European put-call

parity, and computed a theoretical estimate of the premium. They also used the em-

pirically found premium in a modified version of the control variate approach to value

American puts. Their results indicate a substantial value of the early exercise premium,

where the premium derived from put-call parity is higher than the theoretical premium.

Front-fixing method [122, 156] and the penalty method [50, 100, 122] for pricing Amer-

ican options are widely used by researchers in the past. Front-fixing methods apply a

non-linear transformation to fix the boundary and solve the resulting non-linear prob-

lem. Penalty methods on the other hand eliminate the free-boundary by adding a

non-linear penalty term to the PDE. Both these methods boil down to solving a set of

non-linear equations, the computational speed and accuracy of which largely depends

on the initial guess, the problem size and the underlying non-linear solver used. These

methods are not very efficient for pricing American options but they are far more gen-

eral in their applicability.

Some other popular numerical methods for pricing American option problems are the

method of lines [118], compact finite difference methods [149, 150, 161], adaptive Monte

Carlo simulations [112], operator splitting [72], etc.

The rest of the chapter is organized as follows. In Section 5.2, we describe the op-

tion pricing problem for American puts. The numerical method is constructed and

analyzed for convergence in Section 5.3. Comparative numerical results are presented

in Section 5.4 whereas Section 5.5 deals with some concluding remarks and scope for

future research.
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5.2 Problem description

In this chapter, we are concerned with the numerical valuation of American put option

that satisfies the Black-Scholes equation which is actually used in real markets to

obtain the current theoretical option value. The governing equation for American

put problems take the form of free-boundary problems. The American early exercise

constraint leads to the following model for the value V (S, t) of an American put option

to sell the underlying asset

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV = 0, S > Sf (t), 0 ≤ t < T (5.2.1)

V (S, T ) = max(E − S, 0), S ≥ 0,

∂V

∂S
(Sf , t) = −1,

V (Sf (t), t) = E − Sf (t),

lim
S→∞

V (S, t) = 0,

Sf (T ) = E,

V (S, t) = E − S, 0 ≤ S < Sf (t),

where Sf (t) represents the free (and moving) boundary. Since early exercise is permit-

ted, the value V of the option must satisfy

V (S, t) ≥ max(E − S, 0), S ≥ 0, 0 ≤ t ≤ T. (5.2.2)

In the above, S denotes the market price of the underlying asset, σ is the volatility of

the underlying asset, E is the exercise price, T is the expiry time, and r is the risk-free

interest rate.

The essential difficulty in solving the above problem lies in the fact that the early

exercise right purchased by the holder of the option has changed the problem into a

so-called free boundary value problem. The optimal exercise price prior to the expira-
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tion of the option is time-dependent. As a result of the unknown boundary being part

of the solution of the problem, the valuation of American options becomes a nonlinear

problem.

5.3 Computation of the American put options and

analysis of the numerical method

Before we proceed, it is worth mentioning here that to solve the problem of pricing

American put options we firstly solve a corresponding option pricing problem for Eu-

ropean puts and then use an update procedure. To this end then we construct and

analyze the numerical method to solve European options and then we will explain the

update procedure.

The governing Black-Scholes equation for V (S, t) on a single asset is given by

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV = 0. (5.3.1)

The domain of the independent variables S, t is (0,∞)× (0, T ]. The final condition at

t = T is given by the maximum payoff valuation

V (S, T ) = max(E − S, 0). (5.3.2)

The boundary condition at S = 0 satisfies ([141])

V (S, t) = Ee−r(T−t) − S, (5.3.3)

and the boundary condition at S = +∞ satisfies

V (S, t) = 0. (5.3.4)
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For numerical applications, we transform the time variable t to

τ = T − t, (5.3.5)

the domain still (0,∞)× (0, T ] (i.e, we convert the final-boundary value problem to an

initial-boundary value problem), we consider the initial-boundary value problem

∂V

∂τ
=

1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV, (5.3.6)

V (S, τ = 0) = max(E − S, 0),

V (0, τ) = Ee−rτ ,

V (S∞, τ) = 0.

A simple transformation

S = ex, (5.3.7)

changes equation (5.3.6) to

∂U

∂τ
=

1

2
σ2∂2U

∂x2
+ (r − 1

2
σ2)

∂U

∂x
− rU, (5.3.8a)

U(x, τ = 0) = U0(x) = max(E − ex, 0), (5.3.8b)

U(x−∞, τ) = U−∞(τ) = Ee−rτ , (5.3.8c)

U(x∞, τ) = U∞(τ) = 0. (5.3.8d)

In view of the time and space transformations mentioned in (5.3.5) and (5.3.7), the

expiration time t = T is determined in the “new” time by τ = 0, and t = 0 is trans-

formed to τ = T . The new time variable τ represents the remaining life time of the

option. And the original domain of the half strip S > 0, 0 ≤ t ≤ T belonging to (5.3.1)

becomes the strip

−∞ < x < ∞, 0 ≤ τ ≤ T, (5.3.9)
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on which we are going to approximate a solutions U(x, τ) to (5.3.8). After this we

again apply the transformations mentioned in (5.3.5) and (5.3.7) to derive the value of

the option V (S, t) from U(x, τ).

It should be noted that the Black-Scholes equation in the version (5.3.1) has vari-

able coefficients Sj with powers matching the order of the derivative with respect to

S. That is, the relevant terms in (5.3.1) are of the type

Sj ∂
jV

∂Sj
, j = 0, 1, 2.

Linear differential equations with such terms are known as Euler’s differential equa-

tions; their analysis motivates the transformation S = ex. The transformed version

in equation (5.3.8a) has constant coefficients, which simplifies implementing numerical

algorithms.

5.3.1 Construction of the numerical method

Our numerical method is based on B-spline for the discretization in space and the finite

difference techniques for the temporal one. We consider a two-dimensional grid as fol-

lows: Let ∆τ and ∆x, be the mesh step-sizes in the τ and x-directions. The step-size

in τ -direction is given by ∆τ = T/m, where m is an integer. In order to avoid technical

complications, let us accept that, since we are going to restrict any numerical scheme

to a finite mesh, we may as well restrict the problem to a finite interval. That is, the

infinite interval −∞ < x < ∞ must be replaced by a finite interval x−∞ ≤ x ≤ x∞.

The end values x−∞ = xmin < 0 and x∞ = xmax > 0 should be chosen in such a way

that for Smin = ex−∞ , Smax = ex∞ and the interval Smin ≤ S ≤ Smax, a sufficient smooth

approximation is obtained. Then for a suitable integer n the step length in x is defined

by ∆x = (x∞ − x−∞)/n.

In the computations, we choose xmin = −2.0 and xmax = 3 and 5 so that the
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range for the stock S is sufficiently large to satisfy the boundary conditions (5.3.3) and

(5.3.4). Transforming the (x, τ)-grid back to the (S, t)-plane, leads to a nonuniform

grid with unequal distances of the grid lines S = Si = exi . The actual error is then

controlled via the numbers n and m of grid lines.

To discretize (5.3.8) in the temporal discretization, we use an implicit finite differ-

ence technique with uniform step-size ∆τ and obtain the following system of linear

ordinary differential equations:

1

2
σ2∂2Um+1

∂x2
+ (r − 1

2
σ2)

∂Um+1

∂x
− (r +

1

∆τ
)Um+1 = −Um

∆τ
. (5.3.10)

We rewrite (5.3.10) as

a
∂2Um+1

∂x2
+ b

∂Um+1

∂x
− gUm+1 = fm, (5.3.11)

where

a =
1

2
σ2, b =

(
r − 1

2
σ2

)
, g =

(
r +

1

∆τ

)
, and fm = −Um

∆τ
.

The spatial discretization is done as follows. Given n distinct knots x1 < x2 < ... < xn

in the open interval (a, b) and an integer k ≥ 1, let Sk(x) be the space of functions

of class Ck−1 over [a, b] which coincide with polynomials of degree at most k on each

interval [xj, xj+1], for 1 ≤ j ≤ n, with x0 = a and xn+1 = b. The space Sk(x) is called

the space of splines of degree k [134]. With the above spatial mesh, we recall from

Chapter 4, that a B-spline is a function of the form:

B
(0)
j (x) =





1, x ∈ [xj, xj+1]

0, x /∈ [xj, xj+1]
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It is a function of degree k > 1 defined on segment [a, b] is constructed by the recurrent

relation

B
(k)
j (x) =

x− xj

xj+1 − xj

B
(k−1)
j (x) +

xj+k+1 − x

xj+k+1 − xj+1

B
(k−1)
j+1 (x). (5.3.12)

Let

Ω := {B−1, B0, B1, ..., Bn+1}.

The functions in Ω are linearly independent on [a, b].

Now suppose the approximate solution is given by

S(x) =
n+1∑
i=−1

ciBi(x), (5.3.13)

where ci are unknown real coefficients and Bi(x) are cubic B-spline functions defined

by

Bi(x) =





(x−xi−2

h

)3
, if x ∈ [xi−2, xi−1],

1 + 3
(x−xi−1

h

)
+ 3

(x−xi−1

h

)2 − 3
(x−xi−1

h

)3
, if x ∈ [xi−1, xi],

1 + 3
(xi+1−x

h

)
+ 3

(xi+1−x
h

)2 − 3
(xi+1−x

h

)3
, if x ∈ [xi, xi+1],

(xi+2−x
h

)3
, if x ∈ [xi+1, xi+2],

0, otherwise.

(5.3.14)

Since it is required that the approximate solution S(x) satisfies the given problem

(5.3.1) at mesh points ω as well as boundary conditions at x = x0 and x = xn, we

 

 

 

 



CHAPTER 5. B-SPLINE APPROXIMATION METHOD FOR PRICING
AMERICAN OPTIONS 109

have therefore introduced two extra splines B−1 and Bn+1 to force S(x) to satisfy the

boundary conditions.

To illustrate how to apply the B-spline formula given by (5.3.13) for solving the option

pricing model, we let S(x) satisfy the equation (5.3.11), i.e.,

LS(xj) = fm(xj), 0 6 j 6 n, (5.3.15)

where LUm+1 ≡ aUm+1
xx + bUm+1 − gUm+1. Thus at time level m = 0, we have

a

n+1∑
i=−1

ciB
′′
i (xj) + b

n+1∑
i=−1

ciB
′
i(xj)− g

n+1∑
i=−1

ciBi(xj) = f 0
j , f 0

j = f 0(xj).

By solving this equation and noting that the support of the function Bi(x) is the

segment [xi−2, xi+2], we have

cj−1

[
aB

′′
j−1(xj) + bB

′
j−1(xj)− gBj−1(xj)

]
+ cj

[
aB

′′
j (xj) + bB

′
j(xj)− gBj(xj)

]

+cj+1

[
aB

′′
j+1(xj) + bB

′
j+1(xj)− gBj+1(xj)

]
= f 0

j , ∀j = 0, 1, ..., n.

(5.3.16)

Now we note from (5.3.14) that

Bi(xj) =





4, if i = j,

1, if i− j = ±1,

0, if i− j = ±2,

(5.3.17)
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Bi(x) = 0 for x > xi+2 and x 6 xi−2,

B
′
i(xj) =





0, if i = j,

± 3
h
, if i− j = ±1,

0, if i− j = ±2,

(5.3.18)

and

B
′′
i (xj) =





−12
h2 , if i = j,

6
h2 , if i− j = ±1,

0, if i− j = ±2.

(5.3.19)

By using equations (5.3.17)-(5.3.19), we get

[
a

(
6

h2

)
+ b

(−3

h

)
− g

]
cj−1 +

[
a

(−12

h2

)
+ b (0)− 4g

]
cj

+

[
a

(
6

h2

)
+ b

(
3

h

)
− g

]
cj+1 = f 0

j , ∀j = 0, 1, ..., n. (5.3.20)

The boundary conditions (5.3.8c) and (5.3.8d) becomes

c−1 + 4c0 + c1 = Ee−rτ , (5.3.21)

and

cn−1 + 4cn + cn+1 = 0. (5.3.22)

 

 

 

 



CHAPTER 5. B-SPLINE APPROXIMATION METHOD FOR PRICING
AMERICAN OPTIONS 111

Equations (5.3.20), (5.3.21) and (5.3.22) lead to a (n+3)× (n+3) system with (n+3)

unknowns c−1, c0, ..., cn+1.

By eliminating c−1 from the first equation of (5.3.20) and (5.3.21), we get

[(−36

h2

)
a +

(
12

h

)
b

]
c0 +

[(
6

h

)
b

]
c1 = f 0

0 −
[(

6

h2

)
a +

(−3

h

)
b− g

]
Ee−rτ .

(5.3.23)

Similarly, eliminating cn+1 from the last equation of (5.3.20) and (5.3.22), we get

[(−6

h

)
b

]
cn−1 +

[(−36

h2

)
a +

(−12

h

)
b

]
cn = f 0

n. (5.3.24)

From the terminal condition (5.3.8b), the initial elements U0(j) of the initial vector U0

are computed by

U0(j + 1) = U(xj, τ) = max{E − exj , 0}, j = 0, 1, ..., n. (5.3.25)

Using equations (5.3.23) and (5.3.24) along with the (n − 1) remaining equations of

(5.3.20), we get a system of (n + 1) linear equations:

AxN = dN , (5.3.26)

in the unknowns xN = (c0, c1, , ..., cn)T of the form




β0 γ0

α β γ

α β γ
. . . . . . . . .

α β γ

αn βn







c0

c1

c2

...

cn−1

cn




=




f0h
2 − αu−∞(τ0)

f1h
2

f2h
2

...

fn−1h
2

fnh2




, (5.3.27)

where

 

 

 

 



CHAPTER 5. B-SPLINE APPROXIMATION METHOD FOR PRICING
AMERICAN OPTIONS 112

β0 = (−36a + 12bh) and γ0 = 6bh,

α = 6a− 3bh− gh2,

β = −12a− 4gh2,

γ = 6a + 3bh− gh2,

αn = −6bh, and βn = (−36a− 12bh).

We can see that the system is strictly diagonally dominant and hence non-singular.

So we can solve the system for c0, c1, ..., cn and substitute into the boundary equations

(5.3.21) and (5.3.22) to obtain c−1 and cn+1. At each time level we solve (5.3.27) and

recover the solution via (5.3.5) and (5.3.7).

5.3.2 Convergence analysis of the numerical method

As we have mentioned earlier, we discretized the time variable by implicit Euler with

uniform step-size ∆τ , therefore we get the following system of linear ordinary differen-

tial equations:

U0 = U0(x), −∞ < x < ∞, (5.3.28a)

Um+1 − Um

∆τ
− 1

2
σ2∂2Um+1

∂x2
− (r − 1

2
σ2)

∂Um+1

∂x
+ rUm+1 = 0, (5.3.28b)

Um+1(x−∞) = U−∞(τm+1), Um+1(x∞) = U∞(τm+1), (5.3.28c)

which gives semi-discrete approximations Um(x), at time levels τm = m∆τ , to the

exact solution U(x, τ) of (5.3.8).

For the sake of simplicity, let us denote

Lx ≡ −1

2
σ2 ∂2

∂x2
− (r − 1

2
σ2)

∂

∂x
+ rI,
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so that we rewrite (5.3.28) as

U0 = U0(x), −∞ < x < ∞, (5.3.29a)

(I + ∆τLx)U
m+1 = Um, −∞ < x < ∞, τ > 0, (5.3.29b)

Um+1(x−∞) = U−∞(τm+1), Um+1(x∞) = U∞(τm+1). (5.3.29c)

The stability of (5.3.29) follows from the maximum principle for the operator I+∆τLx,

because

‖(I + ∆τLx)
−1‖∞ ≤ 1

1 + b̃∆τ
. (5.3.30)

The local truncation error of the time semi-discretization method (5.3.29) is given by

em+1 = U(τm+1)− Ûm+1,

where Ûm+1 is the solution of

(I + ∆τLx)Û
m+1(x) = U(x, τm), −∞ < x < ∞, τ > 0, (5.3.31a)

Ûm+1(x−∞) = U−∞(τm+1), Ûm+1(x∞) = U∞(τm+1). (5.3.31b)

This error measures the contribution at each time step to the global error of the time

semi-discretization which is defined as

Em ≡ U(x, τm)− Um(x).

Now we show that the following accuracy results hold:
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Lemma 5.3.1 (Local error estimate). If

∣∣∣∣
∂i

∂ti
u(x, τ)

∣∣∣∣ ≤ C0, −∞ < x < ∞, 0 < τ < T, 0 ≤ i ≤ 2, (5.3.32)

then the local error satisfies

‖em+1‖∞ ≤ C0(∆τ)2, (5.3.33)

where C0 is a positive constant independent of ∆τ .

Proof. Since the function Ûm+1 satisfies

(I + ∆τLx)Û
m+1(x) = U(x, τm),

and as the solution of (5.3.8) is smooth enough, we have

U(τm) = U(τm+1) + ∆τLxU(τm+1) +

∫ τm+1

τm

(τm − s)
∂2U

∂τ 2
(s)ds

= (I + ∆τLx)U
m+1(x) +O(∆τ 2). (5.3.34)

Then em+1 is the solution of a boundary value problem of type

(I + ∆τLx)em+1 = O(∆τ 2), em+1(x−∞) = em+1(x∞) = 0. (5.3.35)

Thus (5.3.33) follows when applying the stability result (5.3.30).

Theorem 5.3.1 (Global error estimate). Under the hypotheses of Lemma 5.3.1, we

have

‖Em‖∞ ≤ C0∆τ, ∀ m ≤ T

∆τ
. (5.3.36)
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Proof. Using the local error estimate up to the mth time level given by Lemma (5.3.1),

we get the following global error estimate at (m + 1)th time level

‖Em+1‖∞ =

∥∥∥∥∥
m∑

l=1

el

∥∥∥∥∥ , m ≤ T

∆τ

≤ ‖e1‖∞ + ‖e2‖∞ + ... + ‖em‖∞

≤ C1(m∆τ)∆τ using (5.3.33)

≤ C1(T )∆τ since m∆τ ≤ T

= C0∆τ. (5.3.37)

Therefore the time semi-discretization process converge with order one.

¤

Now we prove that the B-spline collocation method converge with order two in the

spatial direction. To proceed with, we first prove the following lemma:

Lemma 5.3.2 The B-splines B−1, B0, B1, ..., Bn+1 defined in equation (5.3.14), satisfy

the inequality
n+1∑
i=−1

|Bi(x)| ≤ 10, x−∞ ≤ x ≤ x∞.

Proof. We know that ∣∣∣∣∣
n+1∑
i=−1

Bi(x)

∣∣∣∣∣ ≤
n+1∑
i=−1

|Bi(x)|.

At any node xi, we have

n+1∑
i=−1

|Bi| = |Bi−1|+ |Bi|+ |Bi+1| = 6 < 10.
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Also

|Bi(x)| ≤ 4 and |Bi−1(x)| ≤ 4, xi−1 ≤ x ≤ xi.

Similarly

|Bi−2(x)| ≤ 1 and |Bi+1(x)| ≤ 1, xi−1 ≤ x ≤ xi.

Therefore, for any point xi−1 ≤ x ≤ xi, we have

n+1∑
i=−1

|Bi(x)| = |Bi−2|+ |Bi−1|+ |Bi|+ |Bi+1| ≤ 10.

¤

Theorem 5.3.2 Let S(x) be the approximation from the space of cubic splines S3(ω)

to the solution Ûm+1(x) of the semi-discrete boundary value problem (5.3.31) at the

(m + 1)th time level. If f(x) ∈ C2[x−∞, x∞], then the uniform error estimate is given

by

‖Ûm+1(x)− S(x)‖∞ ≤ Mh2,

where M is a positive constant independent of h.

Proof. To estimate the error ‖ûm+1 − S(x)‖∞, let us assume that Yn be the unique

spline interpolant from S3(ω) to the solution ûm+1(x) of our semi-discrete boundary

value problem (5.3.31). If f(x) ∈ C2[x−∞, x∞], then ûm+1(x) ∈ C4[x−∞, x∞], and it

follows from the de Boor-Hall error estimates [11] that

‖Dj(ûm+1(x)− Yn)‖∞ ≤ ζjh
4−j, j = 0, 1, 2, (5.3.38)

where ζj’s are constants independent of h and m.

Let

Yn(x) =
n+1∑
i=−1

biBi(x). (5.3.39)
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It is clear from the estimates (5.3.38) that

|LS(xi)− LYn(xi)| = |f(xi)− LYn(xi) + Lûm+1(xi)− Lûm+1(xi)|

≤ λh2, (5.3.40)

where

λ = [
1

2
σ2ζ2 + (r − 1

2
σ2)ζ1h + rζ0h

2]. (5.3.41)

Also

LS(xi) = Lûm+1(xi) = f(xi).

Let

LYn(xi) = f̂n(xi), ∀ i

and

f̂n = (f̂n(x0), f̂n(x1), ..., f̂n(xn))T .

From system (5.3.26) and (5.3.40), it is clear that the ith component of A(xN − yN),

where yN = (b0, b1, ..., bN)T , satisfies the inequality

|[A(xN − yN)]i| = h2|fi − f̂i| ≤ λh4. (5.3.42)

Now

(AxN)i = h2f(xi)

and

(AyN)i = h2f̂(xi), ∀ i = 1, 2, 3, ..., n.

Also

(AxN)0 = h2f(x0)− (6a− 3bh− gh2)u−∞(τ)
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and

(AyN)0 = h2f̂n(x0)− (6a− 3bh− gh2)u−∞(τ).

However, the ith component of [A(xN − yN)] is the ith equation

(6a−3bh−gh2)ηi−1−(12a+4gh2)ηi+(6a+3bh−gh2)ηi+1 = ξi, 1 ≤ i ≤ n−1, (5.3.43)

where

ηi = bi − ci, −1 ≤ i ≤ n + 1,

and

ξi = h2[f(xi)− f̂n(xi)], 1 ≤ i ≤ n− 1.

Obviously

|ξi| ≤ λh4.

Let

ξ = max
1≤i≤n−1

|ξi|,

and consider

η = (η−1, η0, ..., ηn+1)
T .

Then define

%i = |ηi| and %̃ = max
1≤i≤n

|%i|.

equation (5.3.43) then becomes

−(12a+4gh2)ηi = ξi+(gh2−6a)(ηi−1+ηi+1)+3bh(ηi−1−ηi+1), 1 ≤ i ≤ n−1. (5.3.44)

Taking absolute value and simplifying, we have

(12a + 4gh2)%i ≤ ξ + 2%̃(gh2 + 3bh− 6a). (5.3.45)
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Therefore,

(12a + 4gh2)%i ≤ ξ + 2%̃(gh2 + 3bh− 6a) ≤ ξ + 2%̃(gh2 + 3bh + 6a).

In particular,

(12a + 4gh2)%̃ ≤ ξ + 2%̃(gh2 + 3bh + 6a). (5.3.46)

Solving for %̃, we obtain

(2gh2 − 6bh)%̃ ≤ ξ ≤ λh4,

which gives

%̃ ≤ λh3

2gh− 6b
. (5.3.47)

Now to estimate %−1, %0, %n and %n+1, we observe that the first equation of the system

A(xN − yN) = h2(fn − f̂n) where fn = (f0, f1, ..., fn) yields

(−36a + 12bh)η0 + 6bhη1 = h2(f0 − f̂0).

Taking absolute value and simplifying, we have

%0 ≤ 2λgh5

(−36a + 12bh)(2gh− 6b)
. (5.3.48)

Similarly, we obtain

%n ≤ 2λgh5

(36a + 12bh)(2gh− 6b)
. (5.3.49)

Now %−1 and %n+1 can be evaluated using the boundary conditions given by Eqs.

(5.3.21) and (5.3.22) (note that η−1 = (0− 4η0 − η1) and ηn+1 = (−4ηn − ηn−1)) as

%−1 ≤ λh3

2gh− 6b

[
2gh2 − 9a + 3bh

−9a + 3bh

]
(5.3.50)

and

%n+1 ≤ λh3

2gh− 6b

[
2gh2 + 9a + 3bh

9a + 3bh

]
. (5.3.51)
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Using the value from 5.3.41, it is easy to see that there exits a constant C̃ such that

% = max
−1≤i≤n+1

{%i} ≤ C̃h2. (5.3.52)

The above inequality enables us to estimate ‖S(x)− Yn(x)‖∞, and hence ‖Ûm+1(x)−
S(x)‖∞. In particular, we will have

S(x)− Yn(x) =
n+1∑
i=−1

(ci − bi)Bi(x). (5.3.53)

Thus,

|S(x)− Yn(x)| = max |ci − bi|
n+1∑
i=−1

|Bi(x)|. (5.3.54)

Since

n+1∑
i=−1

|Bi(x)| ≤ 10, x−∞ ≤ x ≤ x∞, (using Lemma 5.3.2). (5.3.55)

Combining Eqs. (5.3.52), (5.3.54) and (5.3.55), we see that

‖S − Yn‖∞ ≤ 10C̃h2. (5.3.56)

Moreover,

‖Ûm+1 − Yn‖∞ ≤ ζ0h
4

and

‖Ûm+1(x)− S(x)‖∞ ≤ ‖Ûm+1(x)− Yn‖∞ + ‖Yn − S(x)‖∞.

This implies that

‖Ûm+1(x)− S(x)‖∞ ≤ Mh2, (5.3.57)

where M = 10C̃ + ζ0h
2.

¤
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We have therefore proved the following main result.

Theorem 5.3.3 Let U(x, τ) be the solution of problem (5.3.8) and S(x, τm) be the

B-spline collocation approximation from the space S3(ω) to the solution U(x, τm). If

f(x, τm) ∈ C2[x−∞, x∞], then under the hypotheses of Theorems 5.3.1 and 5.3.2, the

error estimate is given by

‖U(x, τm)− S(x)‖∞ ≤ M̃(∆τ + h2), (5.3.58)

where M̃ is independent of mesh parameters.

Proof. The proof is accomplished by using the results from theorems 5.3.1 and 5.3.2.

¤

Remark 5.3.1 To determine the functional relationship between the two step-sizes

used in the numerical simulation, we apply the conventional von-Neumann stability

analysis for the system (5.3.20). Using

cm
j = εm exp(iβjh), i =

√−1, (5.3.59)

along with (5.3.20), where ε is the growth factor and β is the mode number, we obtain

at mth time level

α−cm+1
j−1 + α̃cm+1

j + α+cm+1
j+1 = cm

j−1 + 4cm
j + cm

j+1, ∀j = 0, 1, ..., n, (5.3.60)

where

α− = −r1 + r2 + r3, α̃ = 2r1 + 4r3, α+ = −r1 − r2 + r3,

r1 = 6a
∆τ

h2
, r2 = 3b

∆τ

h
, r3 = 1 + r∆τ.
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Using equation (5.3.59) and the recurrence relation (5.3.60), we get

εm+1
[
α− exp(−iβh) + α̃ + α+ exp(iβh)

]
= εm [exp(−iβh) + 4 + exp(iβh)] . (5.3.61)

Equation (5.3.61) can be rewritten in a simple form as

ε =
X1

X − iY
, (5.3.62)

where X1, X and Y are expressed as

X1 = 2

[
1 + 2 cos2

(
βh

2

)]
,

X = 2r3

[
1 + 2 cos2

(
βh

2

)]
+ 4r1

[
1− cos2

(
βh

2

)]
,

Y = 2r2 sin (βh) .

We note that X1 < X, and therefore

|ε| =
√

X2
1

X2 + Y 2
< 1.

Hence the proposed numerical scheme is unconditionally stable.

5.3.3 Numerical computation of the American put option

It is well known that the American options valuation can be treated as a free boundary

value problem and until recently no analytical formula is available. The American

options allow early exercise at any time τ ∈ [0, T ] with optimal exercise stock value

S = Sf (τ). The difficulty for most numerical methods to an accurate solution for the

American options is due to the unknown free boundary Sf (τ). To satisfy this early

optimal exercise, the Black–Scholes equation for the American put options valuation
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(5.2.1) and (5.2.2) is imposed by Wilmott et al. [155] as

∂U

∂τ
=

1

2
σ2∂2U

∂x2
+ (r − 1

2
σ2)

∂U

∂x
− rU, x > xopt(τ)

(5.3.63)

U(x, τ) = max{U(x, τ), U(x, 0)}, x ≤ xopt(τ)

where xopt(τ) = log(Sf (τ)) is the corresponding optimal exercise point due to the trans-

formations τ = T − t and S = ex and U(x, 0) = E − ex is the transformed payoff value

given by the equation V (S, T ) = max(E − S, 0). The region x ≤ xopt(τ) corresponds

to where the American options should be exercised early to attain the optimal value

U(x, τ).

The difficulty to solve equation (5.3.63) is due to the unknown optimal exercise point

xopt(τ). The valuation of the American put options can easily be performed by modify-

ing the boundary update procedure for the European put options. To satisfy this early

optimal exercise for the valuation of the American put options, we used the update

procedure as mentioned by Hon [67], we update at each time level in the valuation of

the European put option, the elements of Um by

Um(j) = max{E − exj , Um(j)}.

This makes the valuation of the American options relatively simple. Note that in the

physical point of view, the difference between pricing the American options and the

European options is the propagation process as an effect of the moving of the unknown

free boundary xopt(τ). This places an additional restriction at any time τ on the solu-

tion that its value must be at least U(x, 0) (see [157] for further details).

We now go back to equation (5.3.63). Following lemma will be useful in obtaining

the total error when the update procedure is used.
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Lemma 5.3.3 [157] Let ν, w, z be any functions or vectors. Then

|max{ν, w} −max{ν, z}| ≤ |w − z|,

where the inequality holds for functions and every entry of vectors point-wise.

Proof. Lemma 5.3.3 follows simply from the following facts that when w > z,

max{ν, w} =





ν, ν > w > z,

w, w > ν > z,

w, w > z > ν,

and

max{ν, z} =





ν, ν > w > z,

ν, w > ν > z,

z, w > z > ν.

Similar situation occur when w < z.

Hence,

max{ν, w} −max{ν, z} =





0, ν > w > z,

w − ν < w − z, w > ν > z,

w − z, w > z > ν.

¤

Comparing Eqs. (5.3.8) and (5.3.63), we can see that both Eqs. (5.3.8) and (5.3.63)

satisfy a diffusion process but equation (5.3.63) has a restriction that its solution values

must be greater than or equal to U(x, 0). This turns out to be an easy task in our

proposed method by making a simple updating of data at every time step τ + ∆τ

as follows. The difference between solving Eqs. (5.3.8) and (5.3.63) is that solution

(5.3.63) needs an extra updating of solution values at every time step τ +∆τ . The total

 

 

 

 



CHAPTER 5. B-SPLINE APPROXIMATION METHOD FOR PRICING
AMERICAN OPTIONS 125

error is in fact can be obtained by using Lemma 5.3.3. From Theorem 5.3.2 we then

obtain an estimate of the same convergence order of solution for equation (5.3.63). In

conclusion, we have

Theorem 5.3.4 Let S(x) be the approximation from the space of cubic splines S3(ω)

to the solution U(x) of the problem (5.3.63). Then the error can be estimated as

‖U(x)− S(x)‖∞ ≤ O(h2).

From Lemma 5.3.3, we finally have

Theorem 5.3.5 The error estimate given in Theorem 5.3.3 also holds for the free

boundary-value problem.

5.4 Numerical results

In this section, we present some numerical results for the solution of the Black-Scholes

equation describing European and American put options. Note that algorithmically

first we solve a European option pricing problem and then we use an update procedure,

therefore, it is important to give comparative numerical results obtained for European

option pricing problem too so that the update procedure is pre-justified.

In Table 5.4.1, we have tabulated the comparative results. It consists the exact, Quasi-

RBFs and B-spline solutions for the European put option for E = 10, r = 0.05, T = 0.5,

and σ = 0.20. The numerical result shown in Table 5.4.1 indicate that the B-spline

approach provide a highly accurate approximation to the solution of the European

option. The actual error is controlled via the numbers n and m.

To demonstrate the accuracy of this B-spline method for the American put options,

we have tabulated the binomial, Quasi-RBFs and B-spline solutions (see Table 5.4.2).

Numerical simulations are done with E = 100, r = 0.1, T = 1, and σ = 0.30. In
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Table 5.4.1: Comparison between the exact, Quasi-RBFs [67] and B-spline solutions
for the European put option. E = 10, r = 0.05, T = 0.5, and σ = 0.20, with different
time and space step-sizes.

B-spline solutions
S Exact solution Quasi-RBF solution [67] ∆x = 0.006 ∆x = 0.003

∆t = 0.0004 ∆t = 0.0002
2.00 7.7531 7.7531 7.7531 7.7531
4.00 5.7531 5.7531 5.7531 5.7531
6.00 3.7532 3.7532 3.7532 3.7532
7.00 2.7568 2.7568 2.7568 2.7568
8.00 1.7987 1.7988 1.7987 1.7987
9.00 0.9880 0.9881 0.9881 0.9880
10.00 0.4420 0.4420 0.4420 0.4420
11.00 0.1606 0.1606 0.1606 0.1606
12.00 0.0483 0.0483 0.0484 0.0483
13.00 0.0124 0.0124 0.0124 0.0124
14.00 0.0028 0.0028 0.0028 0.0028
15.00 0.0006 0.0006 0.0006 0.0006
16.00 0.0001 0.0001 0.0001 0.0001

Table 5.4.2: Comparison between the Binomial, Quasi-RBFs [67] and B-spline solutions
for the American put option. E = 100, r = 0.1, T = 1, and σ = 0.30, with different
time and space step-sizes.

B-spline solutions
S Binomial solution [67] Quasi-RBF solution [67] ∆x = 0.01 ∆x = 0.001

∆t = 0.001 ∆t = 0.0001
80 20.2689 20.2655 20.2665 20.2684
85 16.3467 16.3427 16.3438 16.3450
90 13.1228 13.1185 13.1173 13.1202
95 10.4847 10.4813 10.4818 10.4826
100 8.3348 8.3363 8.3367 8.3373
105 6.6071 6.6020 6.6021 6.6027
110 5.2091 5.2079 5.2066 5.2084
115 4.0976 4.0935 4.0935 4.0938
120 3.2059 3.2072 3.2069 3.2074
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this computation, we take x ∈ [−5, 5.5] so that S ∈ [e−5, e5.5]. The numerical result

shown in Table 5.4.2 also indicate that the B-spline approach provide a highly accurate

approximation to the solution of the American option.

5.5 Summary and discussions

A numerical method is developed to solve the nonlinear Black-Scholes partial differen-

tial equation for modelling European and American options pricing on a single asset.

This method is based on the implicit Euler method for the temporal discretization and

the B-spline collocation method in the spatial direction on a uniform mesh. Numerical

results show that the B-spline collocation method, offers a very high accuracy in the

computations of both European and American options.

The free boundary condition in the valuation of American options usually places a

great difficulty to most existing numerical methods for obtaining an accurate approx-

imation. This, however, does not apply to this proposed method because we first

evaluate an analogous European option and then use an update procedure to evaluate

the actual American option. As can be seen from the tabular results, the proposed

approach gave the results which are comparable with those obtained by quasi-radial

basis functions [67].

In next chapter, we will explore the use of B-splines to solve a class of exotic options.

 

 

 

 



Chapter 6

B-spline approximation method for

pricing the barrier options

Barrier options are financial derivative contracts that are activated or extinguished

when the price of the underlying asset crosses a certain level. Most models for pricing

barrier options assume continuous monitoring of the barrier. However in practice many

(if not all) barrier options traded in markets are discretely monitored.

There are two main types of difficulties in solving problems for discrete barrier op-

tions: I. When the barrier is discretely monitored, a numerical method may be used

to value the option. However this method will increase calculation time exponentially

with the numbers of barrier. II. For problems pricing discrete barrier options, the tri-

nomial method is useful, but it is less effective when the barrier is very close to the

current asset price.

In order to resolve these two problems, we construct a new class of numerical method.

This methods is based on the spline approximations for the solution of the nonlin-

ear Black-Scholes partial differential equation modeling barrier options. We use the

classical Euler implicit method for the time discretization and the B-spline colloca-
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tion method for the spatial discretization. The method is shown to be unconditionally

stable and accurate of order O((∆x)2 + ∆τ). The computational performance of the

proposed method is compared with other methods seen in the literature.

6.1 Introduction

There is a very large over-the-counter market in which financial institutions sell a va-

riety of exotic options tailored to meet particular client demands. Examples of these

options include Asian, Lookback and Barrier options. Asian options feature payoffs

which depend on the average price of the underlying asset during the contract. Look-

back options depend on the highest or lowest price reached by the underlying asset.

Barrier options are financial derivatives that are activated or extinguished when the

price of the underlying asset crosses a certain level. Barrier options can take either

American or European forms, and despite their seemingly complex payoffs, they are

widely used in the markets and are generally cheaper than plain vanilla options.

Options with the barrier feature are considered to be the simplest types of path depen-

dent options. Barrier option’s distinctive feature is that the payoff depends not only on

the final price of the underlying asset, but also on whether the asset price has breached

(one-touch) some barrier level during the life of the option. Barrier options can be

classified into knock-out and knock-in options. Assuming that the barrier price is X,

the knock-out option can be exercised unless the asset price S reaches the barrier X

during the day of purchase and expiration day. The knock-in option can be exercised

if the asset price S overtakes the barrier X. The knock-out options can be classified

into “up-and-out” and “down-and-out”. The up-and-out option can be exercised unless

the asset price S reaches the barrier X from below the barrier and the down-and-out

option can be done unless the asset price reaches the barrier from above the barrier.

The knock-in options can be classified into “up-and-in” and “down-and-in”. The up-

and-in option can be exercised if the asset reaches the barrier from below the barrier
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whereas the down-and-in option can be exercised if the asset price reaches the barrier

from above the barrier.

Barrier options have become widespread, particularly for foreign currency contracts.

There are also a variety of other instruments with similar kinds of contingent payoffs,

including capped options, ladder options, and interest rate corridors. The problem can

be readily generalized to incorporate early exercise, although we must then find solu-

tions numerically. In principle, barrier features may be applied to any options. The

valuation algorithms of the options are almost similar and therefore we discuss only

the down-and-out option.

As far as the relevant research in this direction is concerned, we list some of them

below.

Arciniega and Allen [5] analyzed the fully implicit and Crank–Nicolson difference

schemes for solving option prices. They proved that the error expansions for the differ-

ence methods have the correct form for applying Richardson extrapolation to increase

the order of accuracy of the approximations. They applied the difference methods to

European, American, and down-and-out knock-out call options. Their computational

results indicated that Richardson extrapolation significantly decreases the amount of

computational work in estimation of option prices.

Boyle and Tian [15] considered an explicit finite difference approach to solve problem of

pricing barrier options. They discuss the issue of aligning grid points with barriers by

constructing a grid which lies right on the barrier and mentioned that if necessary, in-

terpolation can be used to find the option value corresponding to the initial stock price.

In [48], Figlewski and Gao illustrated the application of an adaptive mesh technique to

solve a barrier option problem. Their basic idea is to use a fine mesh in regions where
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it is required (e.g. close to a barrier) and to graft the computed results from this onto

a coarser mesh which is used in other regions. This is an interesting approach and

would appear to be both quite efficient and flexible, though in their chapter, they only

examined a simple case of a down-and-out European call option with a flat, continu-

ously monitored barrier.

Goto et al. [60] described the valuation scheme of European, barrier, and Asian op-

tions of single asset by using radial basis function approximation. They discretized

the equation with Crank–Nicolson scheme and then the option price was approximated

with the radial basis functions. They showed that for European and barrier options,

the prices are governed by the Black–Scholes equation, but the governing equation for

Asian options is different from them. To solve the latter, they adopted another radial

basis functions than that for the original Black–Scholes equation.

Zvan et al. [166], proposed an implicit method which has superior convergence (when

the barrier is close to the region of interest) and stability properties as well as offering

additional flexibility in terms of constructing the spatial grid. Their method also al-

lows to place grid points either near or exactly on barriers. They in fact presented an

implicit method which can be used for PDE models with general algebraic constraints

on the solution. Examples of constraints can include early exercise features as well as

barriers. Also in their method, barrier options with or without American constraints

can be handled.

For some further reading on barrier options, the reader may refer to [20, 21, 69, 71,

106, 111, 133, 147, 153, 154].

The rest of the chapter is organized as follows. In Section 6.2, we describe the dif-

ferential equation model that price a down-and-out barrier option. Construction of

the numerical method is given in Section 6.3. In Section 6.4, we analyze the complete
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method for convergence. Comparative numerical results are presented in Section 6.5.

Finally, we summarize the main findings in Section 6.6.

6.2 Problem description

Consider the portfolio of one European in-option and one European out-option; both

having the same barrier, strike price and date of expiration. The sum of their values

is simply the same as that of a corresponding European option with the same strike

price and date of expiration. This is obvious since only one of the two barrier options

survives at expiry and either payoff is the same as that of the European option. Hence,

provided there is no rebate payment upon knock-out, we have [105]

Cordinary = Cdown−and−out + Cdown−and−in, (6.2.1)

Pordinary = Pdown−and−out + Pdown−and−in, (6.2.2)

where C and P denote call and put values, respectively, and Cordinary and Pordinary are

the Black-Scholes ordinary options cost. Above relations imply that the value of an in-

option can be found easily once the value of the corresponding out-option is available,

and vice versa.

In this section, we shall consider the down-and-out option with the exercise price E

and the barrier X. The option becomes invalid if the asset price S reaches the barrier

E from above the barrier during the day of purchase and the expiration date. Unless

the asset price S reaches the barrier E, i.e., S > X, the option is a European call option.

The value of the down-and-out option, denoted by V = V (S, t), is governed by the
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equations

∂V

∂t
+

1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 (S > X), (6.2.3)

V = 0 (S ≤ X), (6.2.4)

where S is the current value of the underlying asset at time t, σ is the annual volatility

of the underlying asset, T is the expiry time and r is the interest rate.

The strike condition on the expiration day is given by

V (S, T ) = max(S(T )− E, 0). (6.2.5)

As S becomes large, the likelihood of the barrier being activated becomes negligible

and so assuming no dividends are paid, we have

V (S, t) ∼ S as S →∞. (6.2.6)

The problem looks identical to that for a vanilla call (see [155]). However, it differs

in that the second boundary condition is applied at S = X rather than S = 0. If S

reaches X, the option is invalid; thus on the line S = X the value of the option is zero,

i.e.,

V (X, t) = 0 on S = X. (6.2.7)

Therefore, the payoff K is

K =





max(S − E, 0) (S > X),

0 (S ≤ X).

(6.2.8)
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To keep this chapter self-contained, we again discuss the reduction of the above prob-

lem to a standard diffusion equation [155].

We use a log transformation to transform the equation (6.2.3) as a standard diffu-

sion equation. With the transformations

S = Eex, t = T − 2τ

σ2
, V (S, t) = E exp

[
−1

2
(k − 1)x− 1

4
(k + 1)2τ

]
u(x, t), (6.2.9)

and setting k = 2r/σ2 which transforms the barrier to

x0 = log(X/E),

we see that the barrier option problem (6.2.3) becomes

∂u

∂τ
=

∂2u

∂x2
. (6.2.10)

The payoff (6.2.8) is transformed to

u(x, 0) = u0(x) = max

(
exp

[
1

2
(k − 1)x

]
− exp

[
1

2
(k + 1)x

]
, 0

)
, x ≥ x0, (6.2.11)

whereas the boundary conditions become

u(x0, τ) = 0, (6.2.12)

and

u(x, τ) ∼ exp

[
1

2
(k + 1)x +

1

4
(k + 1)2τ

]
= u∞(τ) as x →∞. (6.2.13)

We solve problem (6.2.10)-(6.2.13) using a B-spline described in the next section and

then recover the solution of the original problem (6.2.3)-(6.2.8) using (6.2.9).
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6.3 Construction of the numerical method

Our numerical method is based on B-spline for the discretization in space and the

finite difference techniques for the temporal one. We consider a two-dimensional grid

as follows:

Let ∆τ and ∆x, be the mesh step-sizes in the τ and x-directions. The step-size in

τ -direction is given by ∆τ = τmax/m with τmax = σ2T/2 where m is an integer.

The calculation of the step-size for the x-discretization is little complicated. The infi-

nite interval −∞ < x < ∞ must be replaced by a finite interval x−∞ ≤ x ≤ x∞. The

end values x−∞ = xmin < 0 and x∞ = xmax > 0 should be chosen in such a way that

for Smin = Eex−∞ , Smax = Eex∞ and the interval Smin ≤ S ≤ Smax, a sufficient smooth

approximation is obtained. Then for a suitable integer n the step length in x is defined

by ∆x = (x∞ − x−∞)/n. This defines a two-dimensional uniform grid.

Note that the equidistant grid is defined in terms of x and τ , and not for S and t.

Transforming the (x, τ)-grid via the transformation in (6.2.9) back to the (S, t)-plane,

leads to a nonuniform grid with unequal distances of the grid lines S = Si = Eexi . The

actual error is then controlled via the numbers n and m of grid lines.

To discretize (6.2.10) in the temporal discretization, we use an implicit finite differ-

ence technique with uniform step-size ∆τ and obtain the following system of linear

ordinary differential equations:

u0 = u0(x), x0 < x < x∞, (6.3.1a)

um+1 − um

∆τ
= um+1

xx , x0 < x < x∞, τ > 0 (6.3.1b)
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with the boundary conditions,

um+1(x0) = u0(τ
m+1), um+1(x∞) = u∞(τm+1), (6.3.1c)

where um+1 is the solution of Eq.(6.2.10) at (m + 1)th time level. Here um = u(x, τm),

where the superscript m denotes mth time level, i.e., τm = m∆τ .

We rewrite Eq.(6.3.1b) as

−δum+1
xx + um+1 = um, (6.3.2)

where δ = ∆τ .

The solution of (6.3.2) is sought in form of

S(x) =
n+1∑
i=−1

ciBi(x), (6.3.3)

where ci are unknown real coefficients and Bi(x) are cubic B-spline functions defined

as

Bi(x) =





(x−xi−2

h

)3
, if x ∈ [xi−2, xi−1],

1 + 3
(x−xi−1

h

)
+ 3

(x−xi−1

h

)2 − 3
(x−xi−1

h

)3
, if x ∈ [xi−1, xi],

1 + 3
(xi+1−x

h

)
+ 3

(xi+1−x
h

)2 − 3
(xi+1−x

h

)3
, if x ∈ [xi, xi+1],

(xi+2−x
h

)3
, if x ∈ [xi+1, xi+2],

0, otherwise.

(6.3.4)
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It is required that the approximate solution S(x) satisfies the given problem (6.3.2) at

mesh points ω as well as boundary conditions at x = x0 and x = xn. Therefore, we

have introduced two extra splines B−1 and Bn+1 to force S(x) to satisfy the boundary

conditions.

Let S(x) satisfy the equation (6.3.2), then we have

LS(xj) = f(xj), 0 6 xj 6 n, f(xj) = um(xj), (6.3.5)

where Lum+1 ≡ −δum+1
xx + um+1, and therefore

−δ

n+1∑
i=−1

ciB
′′
i (xj) +

n+1∑
i=−1

ciBi(xj) = fj, fj = f(xj).

By solving this equation and noting that the support of the function Bi(x) is the

segment [xi−2, xi+2], we have

cj−1(−δB
′′
j−1(xj) + Bj−1(xj)) + cj(−δB

′′
j (xj) + Bj(xj))

+cj+1(−δB
′′
j+1(xj) + Bj+1(xj)) = fj, ∀j = 0, 1, ..., n,

(6.3.6)

where we recall that

Bi(xj) =





4, if i = j,

1, if i− j = ±1,

0, if i− j = ±2,

(6.3.7)

and that Bi(x) = 0 for x > xi+2 and x 6 xi−2.
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Furthermore, we can show that

B
′
i(xj) =





0, if i = j,

± 3
h
, if i− j = ±1,

0, if i− j = ±2,

(6.3.8)

and

B
′′
i (xj) =





−12
h2 , if i = j,

6
h2 , if i− j = ±1,

0, if i− j = ±2.

(6.3.9)

By using equations (6.3.7) and (6.3.9) we get

(h2 − 6δ)cj−1 + (4h2 + 12δ)cj + (h2 − 6δ)cj+1 = h2fj, ∀j = 0, 1, ..., n. (6.3.10)

The boundary conditions (6.2.12) and (6.2.13) becomes

c−1 + 4c0 + c1 = 0, (6.3.11)

and

cn−1 + 4cn + cn+1 = u∞(τ). (6.3.12)

The equations (6.3.10), (6.3.11) and (6.3.12) lead to a (n + 3) × (n + 3) system of

equations with (n + 3) unknowns c−1, c0, ..., cn+1. By eliminating c−1 from the first
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equation of (6.3.10) and (6.3.11), we get

36δ c0 = f0h
2. (6.3.13)

Similarly, eliminating cn+1 from the last equation of (6.3.10) and (6.3.12), we get

36δ cn = fnh
2 − (h2 − 6δ)u∞(τ). (6.3.14)

Using equations (6.3.13) and (6.3.14) along with (n−1) remaining equations of (6.3.10),

we get a system of (n + 1) linear equations:

AxN = dN , (6.3.15)

in the unknowns xN = (c0, c1, , ..., cn)T of the form




36δ

γ γc γ

γ γc γ
. . . . . . . . .

γ γc γ

36δ







c0

c1

c2

...

cn−1

cn




=




f0h
2

f1h
2

f2h
2

...

fn−1h
2

fnh2 − γu∞(τ)




, (6.3.16)

where

γ = h2 − 6δ,

γc = 4h2 + 12δ.

We can see that the system is strictly diagonally dominant and hence non-singular. We

solve this system for c0, c1, ..., cn and use the boundary equations (6.3.11) and (6.3.12)

to obtain c−1 and cn+1. At each time level we solve (6.3.16) and recover the solution

via (6.3.3) and (6.3.7).
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6.4 Analysis of the numerical method

As we have pointed out previously, we discretize only the time variable by means of

the Euler implicit rule with uniform step-size ∆τ . Using L1 ≡ − ∂2

∂x2 , we rewrite (6.3.1)

in the form

u0 = u0(x), x0 < x < x∞, (6.4.1a)

(I + ∆τL1)u
m+1 = um, x0 < x < x∞, τ > 0, (6.4.1b)

um+1(x0) = u0(τ
m+1), um+1(x∞) = u∞(τm+1), (6.4.1c)

which gives semi-discrete approximations um(x) to the exact solution u(x, τ) of (6.2.10)

at the mth time level τm.

The stability of (6.4.1) follows from the maximum principle for the operator I +∆τL1,

because

‖(I + ∆τL1)
−1‖∞ ≤ 1

1 + b̃∆τ
. (6.4.2)

The local truncation error of the time semi-discretization method (6.4.1) is given by

em+1 = u(τm+1)− ûm+1, (6.4.3)

where ûm+1 is the solution of

(I + ∆τL1)û
m+1(x) = u(x, τm), x0 < x < x∞, τ > 0, (6.4.4a)

ûm+1(x0) = u0(τ
m+1), ûm+1(x∞) = u∞(τm+1). (6.4.4b)

This error measures the contribution of each time step to the global error of the time

semi-discretization which is defined as

Em ≡ u(x, τm)− um(x). (6.4.5)

 

 

 

 



CHAPTER 6. B-SPLINE APPROXIMATION METHOD FOR PRICING THE
BARRIER OPTIONS 141

Then the following accuracy result follows.

Lemma 6.4.1 (Local error estimate). If

∣∣∣∣
∂i

∂ti
u(x, τ)

∣∣∣∣ ≤ C0, x0 < x < x∞, 0 < τ <
1

2
σ2T, 0 ≤ i ≤ 2, (6.4.6)

then the local error satisfies

‖em+1‖∞ ≤ C0(∆τ)2, (6.4.7)

where C0 is a positive constant independent of ∆τ .

Proof. Since the function ûm+1 satisfies

(I + ∆τL1)û
m+1(x) = u(x, τm),

and as the solution of (6.2.10) is smooth enough, we have

u(τm) = u(τm+1) + ∆τL1u(τm+1) +

∫ τm+1

τm

(τm − s)
∂2u

∂τ 2
(s)ds

= (I + ∆τL1)u
m+1(x) +O(∆τ 2). (6.4.8)

Then em+1 is the solution of a boundary value problem of type

(I + ∆τL1)em+1 = O(∆τ 2), em+1(x0) = em+1(x∞) = 0. (6.4.9)

Thus (6.4.7) follows when applying the stability result (6.4.2).

Theorem 6.4.1 (Global error estimate). Under the hypotheses of Lemma 6.4.1, we

have

‖Em‖∞ ≤ C0∆τ, ∀ m ≤ σ2T

2∆τ
. (6.4.10)
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Proof. Using the local error estimate up to the mth time level given by Lemma (6.4.1),

we get the following global error estimate at (m + 1)th time level

‖Em+1‖∞ =

∥∥∥∥∥
m∑

l=1

el

∥∥∥∥∥ , m ≤ σ2T

2∆τ

≤ ‖e1‖∞ + ‖e2‖∞ + ... + ‖em‖∞

≤ C1(m∆τ)∆τ using (6.4.7)

≤ C1

(
1

2
σ2T

)
∆τ since m∆τ ≤ 1

2
σ2T

= C0∆τ. (6.4.11)

Therefore the time semi-discretization process converge with order one.

¤

Now we prove that the B-spline collocation method converge with order two in the

spatial direction. To proceed with, we first prove the following lemma:

Lemma 6.4.2 The B-splines B−1, B0, B1, ..., Bn+1 defined in Eq.(6.3.4), satisfy the

inequality
n+1∑
i=−1

|Bi(x)| ≤ 10, x0 ≤ x ≤ x∞.

Proof. We know that ∣∣∣∣∣
n+1∑
i=−1

Bi(x)

∣∣∣∣∣ ≤
n+1∑
i=−1

|Bi(x)|.

At any node xi, we have

n+1∑
i=−1

|Bi| = |Bi−1|+ |Bi|+ |Bi+1| = 6 < 10.
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Also

|Bi(x)| ≤ 4 and |Bi−1(x)| ≤ 4, xi−1 ≤ x ≤ xi.

Similarly

|Bi−2(x)| ≤ 1 and |Bi+1(x)| ≤ 1, xi−1 ≤ x ≤ xi.

Therefore for any point xi−1 ≤ x ≤ xi, we have

n+1∑
i=−1

|Bi(x)| = |Bi−2|+ |Bi−1|+ |Bi|+ |Bi+1| ≤ 10.

¤

Theorem 6.4.2 Let S(x) be the approximation from the space of cubic splines S3(ω) to

the solution ûm+1(x) of the semi-discrete boundary value problem (6.4.4) at the (m+1)th

time level. If f(x) ∈ C2[x0, x∞], then the error estimate is given by

‖ûm+1(x)− S(x)‖∞ ≤ Mh2,

where M is a positive constant independent of h.

Proof. To estimate the error ‖ûm+1 − S(x)‖∞, let us assume that Yn be the unique

spline interpolant from S3(ω) to the solution ûm+1(x) of our semi-discrete boundary

value problem (6.4.4). If f(x) ∈ C2[x0, x∞], then ûm+1(x) ∈ C4[x0, x∞], and it follows

from the de Boor-Hall error estimates [11] that

‖Dj(ûm+1(x)− Yn)‖∞ ≤ ζjh
4−j, j = 0, 1, 2, (6.4.12)

where ζj’s are constants independent of h and m.

Let

Yn(x) =
n+1∑
i=−1

biBi(x). (6.4.13)
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It is clear from the estimates (6.4.12) that

|LS(xi)− LYn(xi)| = |f(xi)− LYn(xi) + Lûm+1(xi)− Lûm+1(xi)| ≤ λh2, (6.4.14)

where

λ = [δζ2 + ζ0h
2]. (6.4.15)

Also

LS(xi) = Lûm+1(xi) = f(xi).

Let

LYn(xi) = f̂n(xi), ∀ i

and

f̂n = (f̂n(x0), f̂n(x1), ..., f̂n(xn))T .

From system (6.3.15) and (6.4.14), it is clear that the ith component of A(xN − yN),

where yN = (b0, b1, ..., bN)T , satisfies the inequality

∣∣[A(xN − yN)]i
∣∣ = h2

∣∣∣fi − f̂i

∣∣∣ ≤ λh4. (6.4.16)

Now

(AxN)i = h2f(xi)

and

(AyN)i = h2f̂(xi), ∀i = 0, 1, 2, ..., n− 1.

Also

(AxN)n = h2f(x∞)− (h2 − 6δ)u∞(τ)

and

(AyN)n = h2f̂n(x∞)− (h2 − 6δ)u∞(τ).
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However, the ith component of [A(xN − yN)] is the ith equation

(h2 − 6δ)ηi−1 + (4h2 + 12δ)ηi + (h2 − 6δ)ηi+1 = ξi, 1 ≤ i ≤ n− 1, (6.4.17)

where

ηi = bi − ci, −1 ≤ i ≤ n + 1

and

ξi = h2[f(xi)− f̂n(xi)], 1 ≤ i ≤ n− 1.

Obviously

|ξi| ≤ λh4.

Let

ξ = max
1≤i≤n−1

|ξi|,

and consider

η = (η−1, η0, ..., ηn+1)
T .

Then define

%i = |ηi| and %̃i = max
1≤i≤n

|%i|.

Eq. (6.4.17) then becomes

(4h2 + 12δ)ηi = ξi + (6δ − h2)(ηi−1 + ηi+1), 1 ≤ i ≤ n− 1. (6.4.18)

Taking absolute value and simplifying, we have

(4h2 + 12δ)%i ≤ ξ + 2%̃(6δ − h2). (6.4.19)

Therefore,

(4h2 + 12δ)%i ≤ ξ + 2%̃(6δ − h2) ≤ ξ + 2%̃(6δ + h2).
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In particular,

(4h2 + 12δ)%̃ ≤ ξ + 2%̃(6δ + h2). (6.4.20)

Solving for %̃, we obtain

2h2%̃ ≤ ξ ≤ λh4,

which gives

%̃ ≤ 1

2
λh2. (6.4.21)

Now to estimate %−1, %0, %n and %n+1, we observe that the first equation of the system

A(xN − yN) = h2(fn − f̂n), where fn = (f0, f1, ..., fn) yields

36δη0 = h2(f0 − f̂0),

which gives

%0 ≤ λh4

36δ
. (6.4.22)

Similarly, we obtain

%n ≤ λh4

36δ
. (6.4.23)

Now %−1 and %n+1 can be evaluated using the boundary conditions given by Eqs.

(6.3.11) and (6.3.12) (note that η−1 = (0− 4η0 − η1) and ηn+1 = (−4ηn − ηn−1)) as

%−1 ≤ λh4

9δ
+

1

2
λh2 (6.4.24)

and

%n+1 ≤ λh4

9δ
+

1

2
λh2. (6.4.25)

Using 6.4.15, it is easy to see that there exits a constant C̃0 such that

% = max
−1≤i≤n+1

{%i} ≤ C̃0h
2. (6.4.26)
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The above inequality enables us to estimate ‖S(x)− Yn(x)‖∞, and hence ‖ûm+1(x)−
S(x)‖∞. In particular, we will have

S(x)− Yn(x) =
n+1∑
i=−1

(ci − bi)Bi(x). (6.4.27)

Thus

|S(x)− Yn(x)| = max |ci − bi|
n+1∑
i=−1

|Bi(x)|. (6.4.28)

Since
n+1∑
i=−1

|Bi(x)| ≤ 10, x0 ≤ x ≤ x∞, (using Lemma 6.4.2). (6.4.29)

Combining (6.4.26), (6.4.28) and (6.4.29), we see that

‖S − Yn‖∞ ≤ 10C̃0h
2. (6.4.30)

Moreover,

‖ûm+1 − Yn‖∞ ≤ ζ0h
4

and

‖ûm+1(x)− S(x)‖∞ ≤ ‖ûm+1(x)− Yn‖∞ + ‖Yn − S(x)‖∞.

This implies that

‖ûm+1(x)− S(x)‖∞ ≤ Mh2, (6.4.31)

where M = 10C̃0 + ζ0h
2.

¤

We have therefore proved the following main result.

Theorem 6.4.3 Let u(x, τ) be the solution of problem (6.2.10) and S(x, τm) be the

collocation approximation from the space S3(ω) to the solution u(x, τm). If f(x, τm) ∈
C2[x0, x∞], then under the hypotheses of Theorems 6.4.1 and 6.4.2, the error estimate
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is given by

‖u(x, τm)− S(x)‖∞ ≤ M̃(∆τ + h2), (6.4.32)

where M̃ is independent of mesh parameters.

Proof. The proof is accomplished by using the results from theorems 6.4.1 and 6.4.2.

¤

Remark 6.4.1 As in the previous cases, to determine the functional relationship be-

tween the two step-sizes used in the numerical simulation, we apply the conventional

von-Neumann stability analysis for the system (6.3.10). Using

cm
j = εm exp(iβjh), i =

√−1, (6.4.33)

along with (6.3.10), where ε is the growth factor and β is the mode number, we obtain

at mth time level

αcm+1
j−1 + α̃cm+1

j + αcm+1
j+1 = cm

j−1 + 4cm
j + cm

j+1, ∀j = 0, 1, ..., n, (6.4.34)

where

α = 1− r1, α̃ = 4 + r2, r1 = 6
∆τ

h2
, r2 = 2r1.

Using Eq. (6.4.33) and the recurrence relation (6.4.34), we get

εm+1 [α exp(−iβh) + α̃ + α exp(iβh)] = εm [exp(−iβh) + 4 + exp(iβh)] (6.4.35)

which implies that

ε =
3− 2 sin2(βh

2
)

3− 2 sin2(βh
2

) + 2r1 sin2(βh
2

)
. (6.4.36)

Clearly, 0 < ε ≤ 1 for all r1 > 0 and all β. Therefore, the proposed numerical method

is unconditionally stable.
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6.5 Numerical results

In this section, we present some numerical experiments to find the numerical solutions

of Black–Scholes equation which describe the European down-and-out call options.

The parameters used in the numerical simulations are

Expiration date T = 0.5 (year)

Exercise price E = 10.0

Risk free interest rate r = 0.05

Volatility σ = 0.2

Barrier value 9.0

Transformed time-step size ∆(τ) = 0.00001

Transformed space-step size ∆(x) = 0.005

In Table 6.5.1 we have tabulated the comparative results. It contains the exact, radial

basis function approximations as in [60] and B-spline solution obtained by our method.

Table 6.5.1: Comparative numerical results for a European down-and-out call option

Stock S Exact VMQ VRMQ B-spline
1.00 0.0000 0.0000 0.0000 0.0000
3.00 0.0000 0.0000 0.0000 0.0000
5.00 0.0000 0.0000 0.0000 0.0000
7.00 0.0000 0.0000 0.0000 0.0000
9.00 0.0000 0.0000 0.0000 0.0000

11.00 1.3998 1.3985 1.3985 1.3997
13.00 3.2591 3.2589 3.2589 3.2592
15.00 5.2475 5.2474 5.2474 5.2475
17.00 7.2469 7.2469 7.2465 7.2469
19.00 9.2469 9.2466 9.2483 9.2469

VMQ : Approximate solution using Multi-Quadratic radial basis function [60].

VRMQ: Approximate solution using Reciprocal Multi-Quadratic radial basis function [60].
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Figure 6.5.1: Numerical values of European down-and-out call option obtained via B-
spline approach. Here we use T = 6/12, E = 10, σ = 0.20, ∆τ = 0.0001, ∆x = 0.05
and x ∈ (x0, 10)

6.6 Summary and discussions

Exotic options are now widely used in global financial markets such as barrier options.

Their popularity calls for the development of faster and more stable numerical methods.

In general, a closed-form valuation equation exists only in European options with a

continuous barrier. For discrete barrier options, some difficulties arise in the pricing

process. The majority of valuation methods are based on a lattice or other correction

methods, which are limited to handle this feature. In this chapter, we develop an

alternative evaluation model using B-spline to solve the problem. This method is

based on the implicit Euler method for the temporal discretization and the B-spline

collocation method in the spatial direction on a uniform mesh. The method is shown

to be uniformly convergent. As is seen from the tabular results, the proposed approach

gave the results which are comparable with those obtained by the radial basis function

approximation [60].

 

 

 

 



Chapter 7

Concluding remarks and scope for

future research

This thesis deals with the application of robust numerical methods to solve option

pricing problems.

A basic theory and some properties of spline functions are described in Chapter 2,

these properties are very useful in proving some of the theoretical results.

In Chapter 3, we have made a thorough comparison of various numerical methods

to solve a typical option pricing problems. This includes, the application of method of

lines and cubic spline interpolation to discretize the problem in the spatial direction.

For the time integration of the system obtained via method of lines, we have used a

number of MATLAB ode solvers whereas for the one obtained by using cubic spline,

we use an implicit Euler method. We also presented results obtained via B-spline in

this chapter. After comparing, we found that the results obtained by B-spline are more

suitable for a number of reasons which were indicated in subsequent chapters. Also

it is noteworthy that B-splines have the smallest support size among all splines and

therefore, we decided to use them further to solve other option pricing problems.
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Chapter 4 deals with a thorough derivation of B-spline for solving problem that price

a European option. The method is analyzed for stability and convergence.

This method presented in Chapter 4 was extended in Chapter 5 to solve American

option problems where a derivation of the method is discussed by reducing the prob-

lem to a constant coefficient problem. Then using an update procedure, we solve the

American option problem.

In Chapter 6 we solve some exotic options.

Regarding the scope for future research, we indicate the following:

• The applicability of Spline approximation schemes for the solution of multi-asset

American option problems. In this case we intend to use multivariate splines in

the spatial direction.

• We also intend to investigate the applicability of B-splines to solve American

options with stochastic volatility.

• In Chapter 5 we used an update procedure to solve the American option problem.

Currently we are investigating the use of B-splines techniques to approximate the

spatial derivatives with the penalty approach to handle the Black-Scholes partial

differential equation for both single and two-asset American options.

• The proposed approach can also be extended to solve some Jump-diffusion models

in option pricing theory.

• The cases when volatility is very small, we may further design some exponentially

fitted methods (those originally designed to solve singularly perturbed problems).

• We can also extend the B-splines techniques to the Heston partial differential

equation ([63]) which plays an important role in financial option pricing theory.
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A feature of this time-dependent, two-dimensional convection-diffusion-reaction

equation is the presence of a mixed spatial-derivative term, which stems from the

correlation between the two underlying stochastic processes for the asset price

and its variance.

• Since the invention of finite element methods in 1950s, there have been demands

in construction of smooth finite element shape functions over discretizations of

an arbitrary domain of multiple dimensions. This is because in many engineering

applications the related Galerkin weak formulations may be involved with higher

order derivatives of unknown functions. It is known that the B-splines form a

basis of spline spaces and it form a partition of unity, we may further design some

numerical methods based on B-splines basis functions.

The particular approach that we intend to investigate is the Reproducing Kernel

Element Method (RKEM). This RKEM is constructed by combining the virtues

of finite element approximations and reproducing kernel particle approximations.

In RKEM, the global partition polynomials are patched together by associat-

ing them with compactly supported functions defined through a kernel to satisfy

the required reproducing conditions [110]. Such RKEM are advantageous to the

usual FEM in the sense that (i) The smoothness of the global basis functions

is solely determined by that of the kernel function, and is not limited by the

smoothness of the finite elements, and (ii) The global basis functions of RKEM

have the Kronecker delta property at the associated nodes, provided that some

conditions on the support size of the kernel function are met.

• Toward an attempt to improve accuracy in space, one may also think of using

high order splines, for example, Quintic B-splines, Sextic B-splines, or Septic B-

splines. The only challenge would be to adopt the initial and boundary conditions

appropriately. Furthermore, in order to achieve higher order accuracy, some

extrapolation may be used.
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