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ABSTRACT

Mesh Free Methods for Differential Models in Financial Mathematics

by

A.O.M. Sidahmed

PhD thesis, Department of Mathematics and Applied Mathematics, Faculty of

Natural Sciences, University of the Western Cape.

Many problems in financial world are being modeled by means of differential equation.

These problems are time dependent, highly nonlinear, stochastic and heavily depend

on the previous history of time. A variety of financial products exists in the market,

such as forwards, futures, swaps and options. Our main focus in this thesis is to use the

numerical analysis tools to solve some option pricing problems. Depending upon the

inter-relationship of the financial derivatives, the dimension of the associated problem

increases drastically and hence conventional methods (for example, the finite difference

methods or finite element methods) for solving them do not provide satisfactory results.

To resolve this issue, we use a special class of numerical methods, namely, the mesh free

methods. These methods are often better suited to cope with changes in the geometry

of the domain of interest than classical discretization techniques. In this thesis, we

apply these methods to solve problems that price standard and non-standard options.

We then extend the proposed approach to solve Heston’s volatility model. The methods

in each of these cases are analyzed for stability and thorough comparative numerical

results are provided.

May 2011.
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Chapter 1

General introduction

There is a growing interest in pricing financial derivatives that can be used to minimize

losses caused by price fluctuations of the underlying assets. These assets are financial

objects whose value is known at present but is liable to change in future. A variety of

financial products exists in the financial market, such as futures, forwards, swaps and

options. In this thesis we will concentrate on options particularly on American options

(which are the standard options) and the exotic options, e.g., barrier options (which

are non-standard options). Such options have become so popular that in many cases

more money is invested in them than in the underlying asset due to the fact that they

are extremely attractive to the investors, both for speculation and hedging.

Even though the American options can be exercised before the maturity date, in

practice, they are rarely exercised early. This is because any option has a non-negative

time value and is usually worth more unexercised. Where American and European

options are otherwise identical (having the same strike price, etc.), the American option

will be worth at least as much as the European one (which it entails). If it is worth

more, then the difference is a guide to the likelihood of early exercise which results into

a free boundary problem. However, relatively much less attention has been paid for

solving such free-boundary problem (related in pricing the American options) directly.

Unlike the evaluation of the expected pay-off, solving the free-boundary problem has

two important advantages. Firstly, it provides the optimal exercise policy. Secondly,

1

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 2

it provides the complete pricing function.

Though the American option pricing problem has been the focus of several numer-

ical methods in the past three decades, it still retains a prominent position amongst

fundamental problems of interest in finance. Most numerical methods in literature

calculate the price of the option for a given time to expiration and stock price. These

methods exploit the representation of the price as the expected pay-off under the risk-

neutral measure. Relatively a smaller number of methods attempt to solve the related

free-boundary problem directly. Solving the free-boundary problem explicitly provides

the entire price function as well as the optimal exercise boundary.

On the other hand, an exotic option is a derivative which has features making it

more complex than commonly traded products (e.g., vanilla options like European and

American options). These products are usually traded over-the-counter (OTC), or are

embedded in structured notes. An exotic option can have the features that the payoff

at maturity depends not just on the value of the underlying index at maturity, but at its

value at several times during the contracts life (it could be an Asian option depending

on some average, a lookback option depending on the maximum or minimum, a barrier

option which ceases to exist if a certain level is reached or not by the underlying, a

digital option, range options, etc.). Even products traded actively in the market can

have the characteristics of exotic options, such as convertible bonds, whose valuation

can depend on the price and volatility of the underlying equity, the credit rating, the

level and volatility of interest rates, and the correlations between these factors.

Under the exotic options, we will be dealing with the barrier and Asian options.

In finance, a barrier option is a type of financial option where the option to exercise

depends on the underlying crossing or reaching a given barrier level. These options were

created to provide the insurance value of an option without charging much premium.

These options are similar in some ways to ordinary options. There are put and calls,

as well as of European and American style. But they become activated or, on the

contrary, null and void only if the underlier reaches a predetermined level (barrier).

The four main types of barrier options are: Up-and-out, Down-and-out, Up-and-in,

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 3

and Down-and-in barrier options. In a nutshell, the barrier options have a payoff that

switches on or off depending on whether the asset crosses a pre-defined level (barrier).

Moreover, unlike other standard options, the barrier options are path-dependent, and

hence their valuation is not straightforward. The value of the option at any time

depends not just on the underlying at that point, but also on the path taken by the

underlying. The classical Black-Scholes approach does not directly provide us the value

of these options and hence we need to use some more complex methods.

For further understanding on option pricing, below we present some more informa-

tion which is fairly standard. However, to keep the thesis readable and self-contained,

we give a very brief discussion on some of the issues from [43, 96].

1.1 Option pricing: a brief overview

An option is the right (but not an obligation) to buy or sell a risky asset at a pre-

specified fixed price within a specified period. The underlying asset typically is a

stock, or a parcel of shares of a company. Other examples of underlying include stock

indices, currencies, or commodities.

There are two types of options: call and put. The call option gives the holder the

right to buy the underlying for an agreed price E (called the strike price) by the date

T (maturity time). The put option gives the holder the right to sell the underlying for

the price E by the date T .

At time t the holder of the option can choose to

• sell the option at its current market price (at t < T ),

• retain the option and do nothing,

• exercise the option (t ≤ T ), or

• let the option expire worthless (t ≥ T ).

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 4

It should be noted that every option can be exercised at any time t ≤ T . For European

options exercise is only permitted at expiration T . American options can be exercised

at any time up to and including the expiration date.

The value of the option, denoted by V , usually depends on the price of the under-

lying, which is denoted by S.

The payoff V (S, T ) of a European call option at expiration date T is given by

V (ST , T ) =




0 in case ST ≤ E (option expires worthless)

ST −E in case ST > E (option is exercised).

(1.1.1)

Hence

V (ST , T ) = max(ST − E, 0), (1.1.2)

or

V (ST , T ) = (ST − E, 0)+, (1.1.3)

where the notation (x, 0)+ means x if it is non-negative, otherwise 0.

For a European put option, exercising only makes sense in case S < E. The payoff

V (S, T ) of a put at expiration time T is

V (ST , T ) =




E − ST in case ST < E (option is exercised)

0 in case ST ≥ E (option is worthless).

(1.1.4)

Hence

V (ST , T ) = max(E − ST , 0), (1.1.5)

or

V (ST , T ) = (E − ST , 0)
+. (1.1.6)

Figures 1.1.1 and 1.1.2 shows the payoff function for European call and put options,

respectively [96].
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SE

V

Figure 1.1.1: Payoff of European call option

1.1.1 Itô’s lemma

The price of any derivative is a function of the stochastic variables underlying the

derivative and time [43]. The variable x has a drift rate of a and a variance rate of b2.

Suppose that the value of a variable x follows the Itô process

dx = a(x, t)dt + b(x, t)dz, (1.1.7)

where dz is a Wiener process and a and b are functions of x and t.

Itô’s lemma shows that a function G of x and t follows the process

dG =

(
∂G

∂x
a +

∂G

∂t
+

1

2

∂2G

∂x2
b2
)
dt+

∂G

∂x
bdz, (1.1.8)

where dz is the same Wiener process as in equation (1.1.7). Thus, G also follows an
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S

V

E

E

Figure 1.1.2: Payoff of European put option

Itô process. It has a drift rate of

∂G

∂x
a +

∂G

∂t
+

1

2

∂2G

∂x2
b2,

and a variance rate of
∂G

∂x
b.

The standard deviation of the change in a short period of time ∆t should be propor-

tional to the stock price and leads to the model

dS = µSdt+ σSdz, (1.1.9)

where σ is the volatility of the stock price S and µ is the expected rate of return.
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Substituting equation (1.1.8) into (1.1.9) we get

dG =

(
∂G

∂S
µS +

∂G

∂t
+

1

2

∂2G

∂S2
σ2S2

)
dt+

∂G

∂S
σSdz. (1.1.10)

Note that both S and G are affected by the same underlying source of uncertainty, dz.

1.1.2 The classical Black-Scholes-Merton differential equation

and Black-Scholes formula

The assumptions that are used to derive the Black-Scholes-Merton differential equation

are as follows:

• The stock price follows the stochastic process with µ and σ constant.

• The short selling of securities with full use of proceeds is permitted.

• There are no transactions costs or taxes. All securities are perfectly divisible.

• There are no dividends during the life of the derivative.

• There are no riskless arbitrage opportunities.

• Security trading is continuous.

• The risk-free rate of interest, r, is constant and the same for all maturities.

Suppose that f is the price of a call option or other derivative contingent on S. The

variable f must be some function of s and t. Hence, from equation (1.1.10) we obtain

df =

(
∂f

∂S
µS +

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2

)
dt+

∂f

∂S
σSdz. (1.1.11)

The discrete versions of equations (1.1.9) and (1.1.11) are

∆S = µS∆t+ σS∆z, (1.1.12)
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and

∆f =

(
∂f

∂S
µS +

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2

)
∆t+

∂f

∂S
σS∆z, (1.1.13)

where ∆f and ∆S are the changes in f and S in a small time interval ∆t.

Define Π as the value of the portfolio

Π = −f +
∂f

∂S
S. (1.1.14)

The change ∆Π in the value of the portfolio in the time interval ∆t is given by

∆Π = −∆f +
∂f

∂S
∆S. (1.1.15)

Substituting equations (1.1.12) and (1.1.13) into equation (1.1.15) we obtain

∆Π = −
(
∂f

∂S
µS +

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2

)
∆t+

∂f

∂S
σS∆z

+
∂f

∂S
(µS∆t+ σS∆z)

= −∂f
∂S

µS∆t+

(
−∂f
∂t

− 1

2

∂2f

∂S2
σ2S2

)
∆t− ∂f

∂S
σS∆z

+
∂f

∂S
µS∆t+

∂f

∂S
σS∆z. (1.1.16)

Further simplification leads to

∆Π =

(
−∂f
∂t

− 1

2

∂2f

∂S2
σ2S2

)
∆t. (1.1.17)

Because this equation does not involve ∆z, the portfolio must be riskless during time

∆t. The assumptions listed above imply that the portfolio must instantaneously earn

the same rate of return as other short–term risk-free securities. If it earned more than

this return, arbitrageurs could make a riskless profit by borrowing money to buy the

portfolio; if it earned less, they could make a riskless profit by shorting the portfolio
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and buying risk-free securities. It follows that

∆Π = rΠ∆t, (1.1.18)

where r is the risk-free interest rate.

Substitutions from equations (1.1.14) and (1.1.17) into (1.1.18), gives

(
∂f

∂t
+

1

2

∂2f

∂S2
σ2S2

)
∆t = r

(
f − ∂f

∂S
S

)
∆t, (1.1.19)

which implies
∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
= rf. (1.1.20)

Equation (1.1.20) is the Black-Scholes-Merton differential equation. It should be noted

that most of the option pricing problems following a differential equation approach

will have a variant of the above equation with some initial (or final) conditions and

appropriate boundary conditions using which one can find the solution of the governing

problem.

The Black-Scholes formulas for the prices at time zero of a European call and put

options on a non-dividend-paying stock are

VCall = S0N(d1)−Ee−rTN(d2), (1.1.21)

and

VPut = Ee−rTN(−d2)− S0N(−d1), (1.1.22)

where

d1 =
ln(S0/E) + (r + 1

2
σ2)T

σ
√
T

, (1.1.23)
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and

d2 =
ln(S0/E) + (r − 1

2
σ2)T

σ
√
T

= d1 − σ
√
T . (1.1.24)

In the above, N(·) is the cumulative probability distribution function for a standard

normal distribution.

1.1.3 Options on dividend-paying assets

A simple modification of the modeling process allows the payment of a continuous and

constant dividend yield on the underlying asset. This dividend yield is usually denoted

by D and is the continuously compounded proportion over a year. The equivalent of

equation (1.1.9) is as follows

dS = (µ−D)Sdt+ σSdz. (1.1.25)

The derivation approach is similar to the one described before, and therefore the mod-

ified Black-Scholes equation is

∂f

∂t
+ (r −D)S

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
− rf = 0. (1.1.26)

With the addition of a dividend yield D, the value of a European call option on a

dividend-paying stock and a European put option on a dividend paying stock at time

zero are

VCall = e−DTS0N(d̃1)− Ee−rTN(d̃2), (1.1.27)

and

VPut = Ee−rTN(−d̃2)− S0e
−DTN(−d̃1), (1.1.28)
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where

d̃1 =
ln(S0/E) + (r −D + 1

2
σ2)T

σ
√
T

,

and

d̃2 =
ln(S0/E) + (r −D − 1

2
σ2)T

σ
√
T

= d̃1 − σ
√
T .

As before, N(·) is the cumulative probability distribution function for a standard nor-

mal distribution.

1.1.4 Greeks

In mathematical finance, the Greeks are quantities that are used to represent the sensi-

tivities of the price of derivatives such as options to a change in underlying parameters

on which the value of an instrument or portfolio of financial instruments is dependent.

In some cases, these also called the risk sensitivities [1], risk measures [71] or hedge

parameters [19]. Below we give a brief discussion on them.

Delta: The delta of an option defined as the rate of change of the option price with

respect to the price of the underlying asset. The seller of the option or its portfolio

should buy ∆ shares of the underlying asset to hedge the risk inherited in selling the

option or portfolio.

∆ =
∂V

∂S
, (1.1.29)

where V is a price of the option and S is the stock price.

For a European call option on a non-dividend-paying stock,

∆(Call) = N(d1). (1.1.30)
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For a European put option on a non-dividend-paying stock,

∆(Put) = N(d1)− 1, (1.1.31)

where d1 and d2 are defined as in equations (1.1.23) and (1.1.29) respectively.

Theta: The theta (Θ) of a portfolio of options, is the rate of change of the value

of the portfolio with respect to the passage of time with all else remaining the same,

i.e.,

Θ =
∂V

∂t
. (1.1.32)

For a European call option on a non-dividend-paying stock,

ΘCall = −S0N
′(d1)σ

2
√
T

− rEe−rTN(d2), (1.1.33)

where d1 and d2 are defined as in equations (1.1.23) and (1.1.24), respectively, and

N ′(x) =
1√
2π
e−x2/2. (1.1.34)

For a European put option on the stock,

ΘPut = −S0N
′(d1)σ

2
√
T

− rEe−rTN(−d2). (1.1.35)

Gamma: The gamma (Γ) of an option on an underlying asset, is the rate of change

of the option’s delta with respect to the price of the underlying asset. It is the second

partial derivative of the portfolio with respect to asset price, i.e.,

Γ =
∂2V

∂S2
. (1.1.36)
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For a European call or put option on a non-dividend-paying stock, the gamma is given

by

Γ =
N ′(d1)

S0σ
√
T
, (1.1.37)

where d1 is defined as in equation (1.1.23) and N ′(x) is as given by equation (1.1.34).

Vega: The sensitivity of the option to changes in volatility is known as ‘Vega’ which

is the rate of change of the value of the option with respect to the volatility of the

underlying asset and is given by

vega =
∂V

∂σ
. (1.1.38)

If the absolute value of vega is high, the option’s value is very sensitive to small changes

in volatility. For a European call or put option on a non-dividend-paying stock, vega

is given by

vega = S0

√
TN ′(d1), (1.1.39)

where d1 is defined as in equation (1.1.23) and the formula for N ′(x) is given by equa-

tion (1.1.34).

Rho: The sensitivity of the option to changes in interest rate is known as ‘rho’ which

is the rate of change of the value of the option with respect to the interest rate and is

given by

rho =
∂V

∂r
. (1.1.40)

For a European call option on a non-dividend-paying stock,

rhoCall = ETe−rTN(d2), (1.1.41)

where d2 is defined as in equation (1.1.24). For a European put option,

rhoPut = −ETe−rTN(−d2). (1.1.42)
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1.2 A brief overview of mesh free methods

Our numerical methods will largely be based on the so-called mesh free methods. These

methods, nowadays, are being used in many different areas of sciences and engineering,

for example, scattered data modeling, problems involving moving discontinuities such

as cracks and shocks, multi-scale resolution, non-uniform sampling, computer graphics,

neural networks, etc. The salient features of mesh free methods which make them very

powerful are the following:

• In mesh free methods the connectivity of the nodes is determined at run-time,

hence no a-priori mesh is required.

• No mesh alignment sensitivity is required. This is a serious problem in mesh-

based algorithms.

• Continuity of shape functions: The shape functions of mesh free methods can be

constructed to have any desired order of continuity.

• Convergence: For the same order of consistency numerical experiments suggest

that the convergence results of the mesh free methods are often considerably

better than the results obtained by mesh-based shape functions.

In the traditional finite difference, finite element and finite volume methods, the

spatial domain is discretized into meshes [67]. A mesh is defined as any of the open

spaces or interstices between the strands of a net that is formed by connecting nodes

in a predefined manner.

The mesh free method is used to establish a system of algebraic equations for the

whole problem domain without the use of a predefined mesh. Mesh free methods

essentially use a set of nodes scattered within the problem domain as well as on the

boundaries to represent the problem domain and its boundaries.

Applications of mesh free methods [28] can be found in

• many different areas of science and engineering via scattered data modeling (e.g.,

fitting of potential energy surfaces in chemistry),
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• many different areas of science and engineering via solution of partial differential

equations,

• non-uniform sampling (e.g., medical imaging),

• computer graphics (e.g., image warping),

• learning theory, neural networks and data mining (e.g., support vector machines),

• optimization, etc.

The key idea of the mesh free methods is to provide accurate and stable numerical

solutions for integral equations or PDEs with all kinds of possible boundary conditions

with a set of arbitrarily distributed nodes (or particles) without using any mesh that

provides the connectivity of these nodes or particles.

1.2.1 Different approaches of constructing the mesh free shape

functions

Smooth Particle Hydrodynamics Approach [6]: Probably the oldest of the mesh

free methods is the smooth particle hydrodynamics (SPH) method [68]. A rationale

for this method was provided by invoking the notion of a kernel approximation for

solution u(x) on a domain Ω generated by

uh(x) =

∫

Ω

W (x− ξ, h)u(ξ)dξ, (1.2.1)

where uh(x) is the approximation, W (x− ξ, h) is a kernel or weight function, and h is

a measure of the size of the support.

The weight function W is a monotonically decreasing function and satisfies the fol-
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lowing properties

W (x− ξ, h) > 0 over Ω (1.2.2)

W (x− ξ, h) = 0 out side Ω (1.2.3)

∫
Ω
W (x− ξ, h)dξ = 1 (1.2.4)

W (s, h) → δ(s) as h→ 0. (1.2.5)

Three commonly used weight functions are the exponential, cubic spline and quartic

spline functions. These are:

The exponential weight function

W (d) =





e−( d
α
)2 for d ≤ 1

0 for d > 1,
(1.2.6)

the cubic spline weight function

W (d) =





2
3
− 4d

2
+ 4d

3
for d ≤ 1

2

4
3
− 4d+ 4d

2 − 4
3
d
3

for 1
2
< d ≤ 1

0 for d > 1,

(1.2.7)

and the quartic spline weight function

W (d) =





1− 6d
2
+ 8d

3 − 3d
4

for 1
2
< d ≤ 1

0 for d > 1.
(1.2.8)

In SPH methods, the following weight function is often used (for 1-D problems):

W (d) =
2

3h





1− 2
3
d
2
+ 3

4
d
3

for d ≤ 1

1
4
(2− d)3 for 1 < d < 2

0 for d ≥ 2,

(1.2.9)
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where α is constant, d = d/h and h is the smoothing length.

The idea in SPH is to obtain a simple formula for uh(x) in terms of nodal values uI ≡
u(xI), I = 1 to nN . The most straightforward quadrature approaches are usually used.

For example, in one dimension, the quadrature can be performed by the trapezoidal

rule, which gives

uh(x) =
∑

I

W (x− xI)uI∆xI , (1.2.10)

for a sequentially numbered set of nodes xI . For interior nodes, ∆xI is

∆xI = (xI+1 − xI−1)/2. (1.2.11)

On the left end,

∆xnN−1 = (xI+1 − xb)/2, (1.2.12)

where xb is coordinate of the left boundary, with a similar expression on the right. The

sum needs to be taken only over the point xI where w(x− xI) > 0.

In multi-dimensions, the quadrature is more difficult to come to the grips with. Gen-

erally, formulas of the type

uh(x) =
∑

I

W (x− xI)uI∆VI , (1.2.13)

are used, where ∆VI represents the volume of node I.

Equation (1.2.13) can be written in the following form

uh =
∑

I

φI(x)uI , (1.2.14)
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where φI(x) are the SPH shape functions given by

φI(x) =W (x− xI)∆VI . (1.2.15)

Moving Least-Squares Approach [6]: In this approach, we let u(x) be the function

of a field variable defined in the domain Ω. The approximation of u(x) at point x is

denoted as uh(x). The Moving Least-Squares (MLS) approximates the field function

in the form of series representation

uh(x) =

m∑

j=1

pj(x)aj(x) ≡ PT(x)a(x), (1.2.16)

where m is the number of terms of monomials (polynomial basis), pi(x) are monomial

basis functions, and a(x) is a vector of coefficients given by

a(x) = [a0(x) , a1(x) , · · · , am(x)]T , (1.2.17)

which are functions of x.

In 1D space, a complete polynomial basis of order m is given by

P(x) = [P0(x), P1(x), · · · , Pm(x)]
T = [1, x, x2, · · · , xm], (1.2.18)

whereas in 2D space, it is given by

P(x) = P(x, y) = [1, x, y, xy, x2, y2, · · · , xm, ym]T , (1.2.19)

Assuming the support domain of x contains a set of n local nodes x1, x2, · · · , xn, equa-
tion (1.2.16) is then used to calculate the approximated values of the field function at

the nodes

uh(x, xI) = P T (xI)a(x), I = 1, 2, · · · , n. (1.2.20)

A functional of weighted residual is then constructed using the approximated values of
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the field function and the nodal parameters uI = u(xI) as

J =

n∑

I

W (x− xI)[u
h(x, xI)− u(xI)]

2 (1.2.21)

=

n∑

I

W (x− xI)[P
T (xI)a(x)− u(xI)]

2, (1.2.22)

whereW (x−xI ) is a weight function, and uI is the nodal parameter of the field variable

at node I with compact support the same weight functions as in SPH are used.

Equation (1.2.22) can be rewritten in the form

J = (Pa− u)TW (x)(Pa− u), (1.2.23)

where

u = [u1, u2, · · ·un]T , (1.2.24)

P =




p1(x1) p2(x1) . . . pm(x1)

p1(x2) p2(x2) . . . pm(x2)
...

...
. . .

...

p1(xn) p2(xn) . . . pm(xn)




(1.2.25)

and

W (x) =




W (x− x1) 0 . . . 0

0 W (x− x1) . . . 0
...

...
. . .

...

0 0 . . . W (x− x1)



. (1.2.26)

To find the coefficients a(x), we obtain the extremum of J by

∂J

∂a
= A(x)a(x)− B(x)u = 0, (1.2.27)
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where A is called the moment matrix and is given by

A(x) = P TW (x)P. (1.2.28)

Also

B(x) = P TW (x). (1.2.29)

Therefore, we have

a(x) = A−1(x)B(x)u. (1.2.30)

The approximation uh(x) can then be expressed as

uh(x) =

n∑

I=1

φk
I (x)uI , (1.2.31)

where the shape functions are given by

Φk = [φk
1(x) · · ·φk

n(x)] = P T (x)A−1(x)B(x), (1.2.32)

where k is the order of the polynomial basis.

Point Interpolation Method [67]: In this approach, a function u(x) is defined in

the problem domain Ω with a number of scattered field nodes. For a point of interest

xQ, the field function u(x) is approximated using the following series representation:

uh(x, xQ) =

n∑

i=1

Bi(x)ai(xQ), (1.2.33)

where Bi(x) are the basis functions, n is the number of nodes in support domain of a

given point xQ, and ai(xQ) is a coefficient for the basis function Bi(x) corresponding

to the given point xQ.

The Point Interpolation Method (PIM) obtains its approximation by letting the

interpolation function passing through the function values at each scattered node.
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The formulation of polynomial PIM starts with the following representation:

uh(x, xQ) =
n∑

i=1

pi(x)ai(xQ) = P (x)a(xQ), (1.2.34)

where pi(x) is the basis function of monomials, n is the number of nodes in support

domain of a given point xQ, and ai(xQ) is a coefficient for the monomial pi(x) corre-

sponding to the given point xQ. The vector a is defined as

a(xQ) = [a1, a2, a3, · · · , an]T . (1.2.35)

The coefficients ai in equation (1.2.34) can be determined by enforcing that equation

(1.2.34) be satisfied at the n nodes in support domain of point xQ. At node i we can

have equation

ui = P T (xi)ai, i = 1 to n, (1.2.36)

where ui is the nodal value of u at x = xi.

Equation (1.2.36) can be written in the matrix form

Us = PQa, (1.2.37)

where Us is the vector that collects the values of field variables at all the n nodes in

the support domain:

Us = [u1, u2, · · · , un]T , (1.2.38)

and PQ is called the moment matrix given by

PQ = [P T (x1), P
T (x2), · · · , P T (xn)]

T . (1.2.39)

Using equation (1.2.37) and assuming that the inverse of the moment matrix PQ exists,
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we can have

a = P−1
Q Us. (1.2.40)

Substituting equation (1.2.40) into equation (1.2.34), we obtain

uh(x) =

n∑

i=1

φi(x)ui, (1.2.41)

or in matrix form

uh(x) = Φ(x)Us, (1.2.42)

where Φ(x) is a matrix of PIM shape functions φi defined by

Φ(x) = P T (x)P−1
Q = [φ1, φ2, φ3, · · · , φn]. (1.2.43)

1.2.2 Radial basis functions

A radial basis function [67] interpolant takes the form

uh(x) =
n∑

i=1

Ri(x)ai = RTa, (1.2.44)

where a is a vector of unknown constants, and Ri is i-th radial basis functions.

There are two kinds of radial basis functions: the piecewise smooth and the infinitely

smooth radial functions. For the infinitely smooth radial basis functions, we have a

shape parameter, c. The closer this parameter is to 0, the flatter the radial function

becomes. Table 1.2.1 contains a list of most widely used radial basis functions whereas

Figure 1.2.1 shows the surface of some of these functions. The specific radial basis

functions that will be used in the thesis are indicated in individual chapters.

The vectors of coefficients a in equation (1.2.44) are determined by enforcing inter-

polation passing through all the n local support nodes selected by means of support
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domain. The interpolation has the form

ds = Ra, (1.2.45)

where ds is the vector that collects all the field nodal variables at the n local nodes

and R is the moment matrix of RBF expressed as

R =




R1(r1) R2(r1) . . . Rn(r1)

R1(r2) R2(r2) . . . Rn(r2)
...

...
. . .

...

R1(rn) R2(rn) . . . Rn(rn)



, (1.2.46)

where

rk = [(xk − xi)
2 + (yk − yi)

2]1/2. (1.2.47)

Because the distance is directionless, we have

Ri(rj) = Rj(ri). (1.2.48)

Therefore, the moment matrix R is symmetric. This symmetry property of R hints

that R will likely be symmetric positive definite (SPD), and hence invertible. It is

indeed proven true [109]. A unique solution for vectors of coefficients a can then be

obtained if the inverse of R exists

a = R−1ds. (1.2.49)

Substituting equation (1.2.53) into equation (1.2.44) leads to

uh(x) = RTR−1ds = φ(x)ds, (1.2.50)
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where the matrix of shape functions has the form

Φ(x) = [R1(x), R2(x), · · · , Rn(x)]R
−1 (1.2.51)

= [φ1(x), φ2(x), · · · , φn(x)], (1.2.52)

in which φk(x) is the shape function for the kth node and is given by

φk(x) =
n∑

i=1

Ri(x)S
a
ik, (1.2.53)

where Sa
ik is the (i, k)th element of matrix R−1, which is a constant matrix for given

locations of the n nodes in the support domain.

Table 1.2.1: Some well-known radial basis functions used in the literature

Name of RBF φ(r), r ≥ 0 Type References

Multiquadric
√
r2 + c2 Smooth, global Islam et al. [46]

Inverse multiquadric 1√
r2+c2

Smooth, global Islam et al. [46]

Inverse quadratic 1
r2+c2

Smooth, global Islam et al. [46]

Gaussian e−(cr)2 Smooth, global Fornberg and Piret [31]

Cubic |r|3 Piecewise smooth, global Fornberg and Piret [31]
Thin plate spline r2ln|r| Piecewise smooth, global Fornberg and Piret [31]

The direct method expressed in equations (1.2.44) and (1.2.45) entails inverting the

collocation matrix R in order to find the expansion coefficients, thus the RBF inter-

polant. We now consider the invertibility of the collocation matrices associated with

the most common radial functions from the sources [28, 89] and [110]:
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Figure 1.2.1: The most commonly used radial functions
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Definition 1.2.1 Positive Definite Matrices. A real symmetric matrix A is called

strictly positive definite if its associated quadratic form is positive

n∑

j=1

n∑

k=1

cjckAjk > 0, (1.2.54)

for all non-vanishing coefficients c ∈ R
n. Consequently, the eigenvalues of a positive

definite matrix are all strictly positive.

Theorem 1.2.1 Assume that d is any positive integer and that the points xi ∈ R
d,

i = 1, 2, · · · , n, are all distinct. If φ can be written in the form

φ(r) =

∫ ∞

0

e−αr2w(α)dα, (1.2.55)

where w(α) ≥ 0 for α ≥ 0 and
∫∞
δ
w(α)dα > 0 for some δ > 0, then the collocation

matrix A with entries Ai,j = φ(xi − xj) is positive definite.

Definition 1.2.2 Completely monotonic functions. A function φ(r) =
∫∞
0
e−αr2w(α)dα,

r ≥ 0, where w ≥ 0 is said to be completely monotonic on [0,∞) if, when considering

ψ(r) = φ(r1/2) =

∫ ∞

0

e−αrw(α)dα, (1.2.56)

• ψ(r) ≥ 0, and

• (−1)kψ(k)(r) ≥ 0, r ≥ 0 for all positive integers k.

Theorem 1.2.2 φ(r) can be expressed as φ(r) =
∫∞
0
e−αr2w(α)dα if and only if ψ(r) ≥

0, r ≥ 0 is completely monotonic.

Examples of completely monotonic functions:

• Gaussian: φ(r) = e−c2r2,

• Generalized inverse multiquadric: φ(r) = (1 + (cr)2)β, β < 0.
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By virtue of the fact that these radial functions are completely monotonic, they give

rise to strictly positive definite collocation matrices.

Theorem 1.2.3 Let ψ(r) = φ(r1/2) ∈ C0[0,∞), ψ(r) > 0 for r > 0, and ψ′(r)
completely monotone but not constant on (0,∞). Then, for any set of n distinct points

{xj}nj=1, the n×n matrix A with entries Ai,j = φ(‖xixj‖) is non-singular. Furthermore,

for n ≥ 2, the matrix has n− 1 negative eigenvalues and one positive eigenvalue.

Examples of radial functions to which Theorem 1.2.3 applies:

• φ(r) = r,

• φ(r) = (1 + (cr)2)1/2.

So, although these radial functions do not give rise to strictly positive definite matri-

ces, they nonetheless give rise to invertible matrices, permitting the interpolant to be

uniquely solvable unconditionally via (1.2.45).

1.3 Literature review on use of mesh free methods

for other problems

The work presented in this thesis is largely based on the applications of mesh free

methods and therefore below we provide a little survey on the approaches that used

these methods in the past.

The earliest work in mesh free methods originated about thirty years ago. However,

the research efforts devoted to them until recently are miniscule. The starting point

which seems to have the longest continuous history is the smooth particle hydrodynam-

ics (SPH) method. Lucy [70] used it for modeling astrophysical phenomena without

boundaries such as exploding stars and dust clouds. Compared to other methods in

these times of prolific academicians, the rate of publications was very modest for many

years and is mainly reflected in the work of Monaghan [76].
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Probably the most widely cited pioneering work that used the RBF approach was

that of Kansa [53]. He first used it for solving some problems in computational fluid

dynamics. He presented a powerful, enhanced multiquadrics (MQ) scheme developed

for spatial approximations for these problems. The MQ is a grid free scheme suited for

scattered data and represents surfaces and bodies in an arbitrary number of dimensions.

The associated multiquadratic function is continuously differentiable and integrable

and is capable of representing functions with steep gradients and very high accuracy.

In fact, in [54], Kansa used Multiquadric RBFs for parabolic, hyperbolic and elliptic

PDEs. He showed that MQ is not only exceptionally accurate, but is more efficient

than finite difference schemes which require many more operations to achieve the same

degree of accuracy.

Swegle et al. [98] showed the origin of the so-called tensile instability through a

dispersion analysis of the linearized equations and proposed a viscosity term to stabilize

it.

Belytschko et al. [6] examined meshless approximations based on moving least

squares, kernels, and partitions of unity. They showed that the three methods are

in most cases identical except for the important fact that partitions of unity enable

p-adaptivity to be achieved.

Johnson and Beissel [49] proposed a normalized smoothing function algorithm that

can improve the accuracy of smooth particle hydrodynamics impact computations.

Their approach consists of adjusting the standard smoothing functions for every node

(and every cycle) such that the normal strain rates are computed exactly for condi-

tions of constant strain rates (linear velocity distributions). This, in turn, generally

improves accuracy for non-uniform strain rates and therefore significantly improves

the accuracy for free boundaries, for non-uniform arrangements of SPH nodes, and for

small smoothing distances.

Sharan [97] used the multiquadric (MQ) approximation scheme for the solution of

elliptic partial differential equations with Dirichlet and Neumann boundary conditions.

They took two-dimensional Laplace, Poisson, and biharmonic equations describing the
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various physical processes as the test examples.

Giinther and Liu [35] described a computational algorithm based on d’Alembert’s

principle that can be used for general constraints both in meshless methods and finite

elements. They developed a method of partitioning meshless shape functions suitable

for imposing linear boundary conditions and then extended the approach for nonlinear

constraints.

Fedoseyev et al. [29] formulated an improved Kansa-MQ method with PDE collo-

cation on the boundary (MQ-PDECB). They added an additional set of nodes adjacent

to the boundary and, correspondingly, added an additional set of collocation equations

obtained via collocation of the PDE on the boundary. They applied the MQ-PDECB

method to several model 1D and 2D linear and nonlinear elliptic PDEs and have pre-

sented results of their numerical experiments.

Li et al. [64] developed a meshless method for modeling groundwater contaminant

transport using collocation method with radial basis functions. Their numerical results

are presented for several cases: pure diffusion; advection and dispersion for continuous

source; advection and dispersion for instantaneous source; advection and dispersion for

patch-source. They showed that from the results their method is accurate.

Gao-lian and Xiao-wei [34] proposed a new mesh free method in which the deriva-

tives at each node were constructed using whole derivative formulas through the nodes

selected around the node using local Cartesian frame in an autonomous manner. They

tested the method with a numerical example, and obtained a reliable solution with

high accuracy and efficiency.

Wen et al. [108] reproduced a mesh free method based on kernel approximation

and point collocation for analysis of metal ring compression. They introduced corrected

kernel functions to the stabilization of free-surface boundary conditions. The solution

of symmetric ring compression problem is compared with a conventional finite element

solution.

Islam et al. [46] presented a mesh free technique for the numerical solution of the

regularized long wave (RLW) equation. They used a global collocation method using
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the radial basis functions (RBFs). They tested the accuracy of their method in terms

of L2 and L∞ error norms.

Islam et al. [47] discussed a classical radial basis functions (RBFs) collocation

(Kansa’s) method for the numerical solution of the coupled Korteweg-de Vries (KdV)

equations, coupled Burgers’ equations, and quasi-nonlinear hyperbolic equations. They

assessed the accuracy of their method in terms of the error in L1 and L2 norms, number

of nodes in the domain of influence, time step length; and parameter free and parameter

dependent RBFs. They performed numerical experiments to demonstrate the accuracy

and robustness of the method for the three classes of partial differential equations

(PDEs).

Kindelan et al. [59] introduced a radial basis function collocation method for com-

puting solutions to the time-dependent radiative transfer equation. They used finite

differences to discretize the time coordinate, a discrete ordinate method to discretize

the directional variable, and an expansion in radial basis functions to approximate the

spatial dependence of the solution.

Tatari et al. [101] proposed a technique for solving partial differential equations

using radial basis functions. The radial basis functions are very suitable instruments

for solving partial differential equations of various types. However, the matrices which

result from the discretization of the equations are usually ill-conditioned especially in

higher dimensional problems. They proposed a method for solving the partial differ-

ential equations and generalized to solve higher-dimensional problems.

Some mesh free methods or element free methods have been developed and achieved

significant progress in recent years, such as the smooth particle hydrodynamics (SPH)

[92], the element-free Galerkin (EFG) [6], the reproducing kernel particle method

(RKPM) [66].

Wang and Liu [106] proposed a point interpolation meshless method based on com-

bining radial and polynomial basis functions. The interpolation function obtained

passes through all scattered points in an influence domain and thus shape functions

are of delta function property. This makes the implementation of essential boundary
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conditions much easier than the meshless methods based on the moving least-squares

approximation. In addition, the partial derivatives of shape functions are easily ob-

tained.

In [107], Wang et al. proposed an algorithm to solve Biots consolidation problem

using meshless method called a radial point interpolation method (radial PIM). In time

domain they proposed fully implicit integration scheme to avoid spurious ripple effect.

They studied some examples with structured and unstructured nodes and compared

with closed-form solution or finite element method solutions.

Dai et al. [24] presented a mesh free model for the static and dynamic analysis

of functionally graded material (FGM) plates based on the radial point interpolation

method (RPIM). They studied the convergence rate and accuracy and compared with

the finite element method (FEM).

The RPIM has the following advantages ([69]):

• The shape function has the Kronecker delta property, which facilitates easy treat-

ment of the essential boundary conditions.

• The moment matrix used in constructing shape functions is always invertible for

irregular nodes.

• The polynomials can be exactly reproduced up to desired order by polynomial

augmentation.

Some of these properties make the RPIM as a very powerful tool when solving complex

problems like those considered in this chapter as well as their possible extensions to

price multi-asset options.
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1.4 Literature review on methods for option pricing

problems

There are two main approaches to study the problems in finance: a statistical approach

and a differential equation approach. Our research is focused on the Differential Equa-

tion approach and therefore most of the literature that we present in this thesis will

be based on this approach.

Two classical references for the Black-Scholes theory are the paper [7] in which

Black and Scholes derive the key equation and the paper [73] by Merton which adds a

rigorous mathematical analysis.

Most of the numerical methods for American options exploit the representation of

the option price as expected pay-off under the risk-natural measure and calculate the

price for a given time to expiration and stock price, they do not solve the related free

boundary problem explicitly.

Landau [61] Wu and Kwok [113] Nielsen et al. [80] apply a non-linear transforma-

tion to fix the boundary and solve the resulting non-linear problem using Front-fixing

methods. On the other hand, Nielsen et al. [80] applied penalty methods by eliminating

the free-boundary and adding a non-linear penalty term to the PDE.

Friedman [32] discussed relations of the free-boundary formulation to the variational

inequality formulation. The method developed in Brennan and Schwartz [9] is justified

rigorously through the use of variational inequalities in Jaillet et al. [48].

Chiarella et al. [17] present a path-integral approach to price American puts by

using Hermite polynomials to represent the price function for any given time, rather

than by storing price values at discrete grid points (as in binomial methods and the

method by Brennan and Schwartz [9]).

Zhao et al. [115] gave three ways of combining compact finite difference methods

for American option price on a single asset with methods for dealing with this optimal

exercise boundary. The first one is the compact finite difference method which uses

the implicit condition that solutions of the transformed partial differential equation be
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nonnegative to detect the optimal exercise value. The second one is the compact finite

difference method that solves an algebraic nonlinear equation obtained by Pantazopou-

los [84] at every time step. The third one is the compact finite difference method that

refines the free boundary value by a method developed by Adesi [3].

In [18], Chiarella et al. considered the problem of numerically evaluating American

options under the combined stochastic volatility and jump-diffusion model of Bates

[4]. They extended the method of lines solution proposed by Meyer [74] for pric-

ing American options under jump-diffusion dynamics to allow for stochastic volatility.

One of the strengths of their method is that the option price, delta, gamma, and

the free boundary are all computed as part of the solution process. As a benchmark

for the method of lines, they considered two finite difference schemes. The first is

a standard two-dimensional Crank-Nicholson implicit scheme solved using projected

successive over-relaxation (PSOR) techniques, with appropriate adjustments to deal

with the integral over the jumps term. They used this algorithm with a large order

of discretization as the ‘true’ solution for the option price. The second method they

considered is a generalization of the component-wise splitting algorithm of Ikonen and

Toivanen [44] to include jump-diffusion.

Muthuraman [78] presented a computational method (based on Finite Elements

and Finite Difference) that efficiently solves the free-boundary problem to obtain the

price function as well as the optimal exercise boundary. He showed that this method

provides a monotone sequence of boundaries that converges to the optimal exercise

boundary. At the end, he presented runtime and error comparisons, and compared his

approach against the 10000-step binomial tree method, the method of Brennan and

Schwartz [9] the front-fixing method, penalty method and the integral method. He

also computed the hedge ratios using the integral method and compared it to those

computed using the moving boundary method because the integral method has the

advantage of being able to compute the hedge ratios (Greeks) of American option

without numerical differentiation.

As far as the barrier options are concerned, we mention below some of the works:
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Platen and West [90] proposed a consistent approach to the pricing of weather deriva-

tives. They showed that the classical actuarial pricing methodology is a particular case

of the fair pricing concept. They constructed a discrete time model to approximate

historical weather characteristics. They derived fair prices of some particular weather

derivatives by using historical and Gaussian residuals.

Khaliq et al. [56] developed a strongly stable (L-stable) and highly accurate method

for pricing exotic options. Their method is based on Padé schemes and also utilizes

partial fraction decomposition to address issues regarding accuracy and computational

efficiency.

In [99], Sun et al. developed an algorithm to price the barrier options in the

presence of proportional transaction costs. Using the optimal portfolio framework, they

computed numerically barrier options prices by using a Markov chain approximation

to the continuous-time singular stochastic optimal control problem when the utility

function is of exponential type. As a result, they obtain two option prices which

correspond the upper boundary and lower boundary of no-transaction region.

Rambeerich et al. [91] considered exponential time integration schemes for fast

numerical pricing of European, American, barrier and butterfly options when the stock

price follows a dynamics described by a jump-diffusion process. The resulting pricing

equation which is in the form of a partial integro-differential equation is approximated

in space using finite elements. Their methods required the computation of a single

matrix exponential. They demonstrated the method using a wide range of numerical

tests that the combination of exponential integrator and finite element discretizations

with quadratic basis functions. They made Comparisons with other time-stepping

methods to illustrate the effectiveness of their methods.

Some other works related to the European and /or American options [2, 5, 12, 13,

15, 16, 21, 27, 30, 39, 52, 55, 57, 65, 72, 75, 79, 81, 88, 87, 104, 111, 114, 115, 116], exotic

options[11, 14, 22, 33, 36, 41, 43, 50, 82, 86, 93, 94, 95, 102, 105, 118] and multi-asset

options [20, 40, 45, 62, 83, 88, 103, 117].

Some of the books that are dealing with various issues (including options) in finan-
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cial mathematics are [8, 25, 60, 96].

It should be noted that there are many other relevant works that we are not listing

here, simply because we will be focusing on them more in the individual chapters where

they are reviewed further.

1.5 Outline of the thesis

We have organized the rest of this thesis as follows.

In Chapter 2, we develop efficient mesh free methods based on the radial basis

functions (RBFs) to solve European and American option pricing problems in com-

putational finance. The application of RBFs leads to system of differential equations

which are then solved by a time integration scheme. This is done by using a θ-method.

The main difficulty in pricing the American options lies in the fact that these options

are allowed to be exercised at any time before their expiry. Such an early exercise right

purchased by the holder of the option results into a free boundary problem. We use a

small penalty term to remove the free boundary. The method is analyzed for stability.

Numerical results describing the payoff functions and option values are also presented.

In Chapter 3, we extend the method presented in Chapter 2 to solve problems for

pricing American and European put options on a dividend paying asset. The resulting

method is analyzed for stability. Comparative numerical results along with evaluation

of some Greeks are presented at the end.

In Chapter 4, the mesh free method is presented for pricing two type of exotic

options, namely, European barrier and European Asian options. Using the RBF ap-

proximation, we obtain a system of ordinary differential equations which is then solved

by a time integration technique. As compared to the work done in Goto et al. [36],

in this chapter we provide a simplified presentation of the approach. We also analyzed

the method for stability which was not done in the above mentioned work. Further-

more, the proposed approach in this chapter is extended to solve problems of pricing

European style double barrier options and digital options. Finally, we present some
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numerical experiments using a number of radial basis functions.

In Chapter 5, we introduce a radial point interpolation method (RPIM) to price

European and American put options. To resolve the difficulties associated in solving

this free boundary problem in the case of American options, we add a penalty term

to the governing partial differential equation. The proposed method is analyzed for

stability. Some comparative numerical results are also presented.

In Chapter 6, we extend the mesh free method to price some put options of European

and American type for the Heston’s model [38]. In the case of American style options,

we use an update procedure to solve the free boundary problem. The resulting method

is analyzed for stability and comparative numerical results are presented.

Finally, in Chapter 7, we provide some concluding remarks and discuss the scope

for the future research.

Before we start the next chapter, we list some of the very important notations in

Table 1.5.1 that are used throughout the thesis.

Table 1.5.1: Some notations used in the thesis

Parameter Descriptions
E Strike price
r Risk-free interest rate
σ Volatility of the stock price
V (S, t) Value of European option at time t
P (S, t) Value of American option at time t
S Asset (Stock) price
T Maturity time
c Shape function parameter
D Dividend paying asset
K Barrier value
ϑ Market price of risk
ρ Correlation between the two underlying assets
α Mean-reversion rate
β Long-term mean

 

 

 

 



Chapter 2

A mesh free method for pricing

options on a non-dividend paying

asset

In this chapter, we develop efficient mesh free methods based on the radial basis func-

tions (RBFs) to solve European and American option pricing problems in computa-

tional finance. The application of RBFs leads to systems of differential equations which

are then solved by a time integration scheme. This is done by using a θ-method. The

main difficulty in pricing the American options lies in the fact that these options are

allowed to be exercised at any time before their expiry. Such an early exercise right

purchased by the holder of the option results into a free boundary problem. We use a

small penalty term to remove the free boundary. The method is analyzed for stability.

Numerical results describing the payoff functions and option values are also presented

along with valuation of option’s delta and gamma.

2.1 Introduction

Options are frequently priced by means of partial differential equations (PDEs). The

work in this chapter deals with the standard options (European and American options).

37
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A large amount of work has already been done to solve the PDEs representing European

options. However, the same for American options is not fully explored.

Researchers have attempted to solve these problems using a variety of techniques.

Fasshauer et al. [27] studied multi-asset American options. They considered a penalty

method which allows the removal of the free and moving boundary by adding a small

and continuous penalty term to the Black-Scholes equation. Zhao et al. [115], devel-

oped three compact finite difference methods for American options on a single asset.

Chawla et al. [16] described generalized trapezoidal formulas (GTF(α) schemes,

α a positive parameter) for the valuation of American options and compared their

performance with that of the Crank-Nicolson’s scheme. They found that the Crank-

Nicolson’s scheme suffers oscillations near the exercise price where the payoff is either

non-differentiable or discontinuous. In comparison the GTF(1/3) scheme could provide

consistently superior approximations for valuation of American options.

Khaliq et al. [55] considered the numerical solution of American option problems

using a penalty approach followed by semi-discretization of the resulting partial dif-

ferential equation on a fixed domain. They used a second-order linearly implicit time

stepping method to estimate option values. Their numerical results indicate that a

constraint on the time step-size due to the explicit treatment of the penalty term is

not more restrictive than that of the linearly implicit first-order methods.

In [57], Khaliq et al. developed adaptive θ-methods for solving the Black-Scholes

PDE for American options.

Nielsen et al. [81] presented a penalty method for solving multi-asset American

put option problems. They added a small nonlinear penalty term to the Black-Scholes

equation to remove the free and moving boundary imposed by the early exercise feature

of the contract. They derived explicit, semi-implicit and fully implicit finite difference

schemes.

Liao and Khaliq [65] proposed an unconditionally stable high-order compact finite

difference scheme to compute both the option price and the hedging parameter delta.

On the other hand, the methods based on mesh free approximations have been used
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a lot for problems in other domains of science and engineering, see e.g., [53, 54, 101].

One of these popular mesh free methods are those based on the radial basis functions

(RBFs). Wua and Hon [114] used such an approximation for solving diffusion type

problems under free boundary condition. In their work, the numerical solution of the

Black-Scholes equation for pricing American options, which is a classical heat diffusion

equation under free boundary value condition, is obtained and compared with the

traditional binomial method for numerical verification.

In this work, we construct a mesh free method based on RBFs to solve European

and American option pricing problems. For American put option we remove the free

boundary by adding a small penalty term. The basic idea behind the use of RBFs is

to use interpolation with a linear combination of basis functions of the same type. A

variety of RBFs are found in the literature. The two RBFs that we will use in this

chapter are Gaussian and Multi-quadratic.

The rest of the chapter is organized as follows. Two option pricing problems are

described in Section 2.2. Section 2.3 deals with the application of radial basis functions

to solve these problems. The stability analysis of the numerical methods is presented

in Section 2.4. Finally some numerical results along with a discussion on them are

given in Section 2.5.

2.2 Problem description

The options give the owner the right, but not the obligation, to buy (in the case of a

call option) or sell (in the case of a put option) an asset at a specified price and time.

If the owner of the contract exercises this right, the counter-party is obliged to carry

out the transaction. A thorough discussion on them can be found in any standard

text on financial derivatives, see, e.g., Hull [43]. In this chapter, we are considering

the European and American options. A European option can only be exercised on the

expiration date whereas the American option can be exercised at any time before the

expiration date.
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The European option satisfies the following Black-Scholes equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (2.2.1)

where r is the risk-free interest rate, σ is the volatility of the stock price, and V (S, t)

is the option value at time t for the stock’s price S.

The initial condition is given by the terminal payoff

V (S, T ) =




max(E − S, 0) for put

max(S − E, 0) for call

(2.2.2)

and the boundary conditions are given by

V (S, T ) =




V (0, t) = Ee−r(T−t), V (S, t) → 0 as S → ∞ for put

V (0, t) = 0, V (S, t) → S as S → ∞ for call

(2.2.3)

where T is the maturity time and E is the strike price of the option.

The exact solution of equation (2.2.1) with the initial condition (2.2.2) and the

boundary conditions (2.2.3) is given by [112]

V (S, T ) =




Ee−r(T−t)N(−d2)− SN(−d1) for put

SN(d1)−Ee−r(T−t)N(d2) for call

(2.2.4)

where N(·) is the cumulative distribution function of the standard normal distribution

with

d1 =
log(S/E) + (r + 1

2
σ2)(T − t)

σ
√
T − t

(2.2.5)

and

d2 =
log(S/E) + (r − 1

2
σ2)(T − t)

σ
√
T − t

. (2.2.6)

On the other hand, the American option problem takes the form of a free-boundary
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problem. The early exercise constraint leads to the following model for the value P (S, t)

of an American put to sell the underlying asset [55]:

∂P

∂t
+

1

2
σ2S2∂

2P

∂S2
+ rS

∂P

∂S
− rP = 0, S > Sf (t), 0 ≤ t < T

P (S, T ) = max(E − S, 0), S ≥ 0,

∂P

∂S
(Sf , t) = −1,

P (Sf(t), t) = E − Sf(t),

lim
S→∞

P (S, t) = 0,

Sf(T ) = E,

P (S, t) = E − S, 0 ≤ S < Sf(t), (2.2.7)

where Sf(t) represents the free boundary, σ is the volatility of the underlying asset,

r is the risk-free interest rate, and E is the exercise price of the option. Since early

exercise is permitted, the value P of the option must satisfy

P (S, t) ≥ max(E − S, 0), S ≥ 0, 0 ≤ t ≤ T. (2.2.8)

In next section, we explain how the RBFs (explained in detail in Chapter 1) are

used to solve the above option pricing problems.

2.3 Application of radial basis functions in pricing

options

To proceed with, let us assume that x1, x2, · · · , xN be a given set of distinct points in

R
d, d ≥ 1. The basic idea behind the use of RBFs is that we interpolate the function

by a linear combination of RBFs of the same type as follows

F (x) =

N∑

i=1

aiφ(‖x− xi‖), (2.3.1)
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where ‖.‖ denotes the Euclidean norm, ai are unknown scalars and φ denotes the radial

basis function.

Assume that we want to interpolate the given values fi = f(xi), i = 1, · · · , N . The

unknown scalars ai are chosen in such a way that F (xj) = fj for j = 1, · · · , N . This

results in the following linear system of equations

Az = f , (2.3.2)

where Ai,j = φ(‖xi − xj‖), z = [a1, · · · , aN ] and f = [f1, · · · , fN ].
We apply this procedure to the two option pricing problems mentioned in the

previous section.

2.3.1 Pricing European options on a non-dividend paying as-

set

We approximate the unknown function V (the value of the European option) using the

radial basis functions as

V (S, t) ≈
N∑

j=1

aj(t)φ(‖S − xj‖), (2.3.3)

where aj are unknown coefficients and φ(‖S − xj‖) are the RBFs. We will use the

following Gaussian radial basis functions for this problem

φ(S) = e−‖S−xj‖2/c2 , (2.3.4)

where c is a positive parameter.

Collocating at the N points xj (j = 1, 2, · · · , N), equation (2.2.1) becomes

∂V (xi, t)

∂t
+

1

2
σ2S2

i

∂2V (xi, t)

∂S2
+ rSi

∂V (xi, t)

∂S
− rV (xi, t) = 0. (2.3.5)
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Differentiating (2.3.3) we get

∂V (xi, t)

∂t
=

N∑

j=1

daj(t)

dt
φ(‖S − xj‖), (2.3.6)

∂V (xi, t)

∂S
=

N∑

j=1

aj
∂φ(‖S − xj‖)

∂S
, (2.3.7)

∂2V (xi, t)

∂S2
=

N∑

j=1

aj
∂2φ(‖S − xj‖)

∂S2
. (2.3.8)

Now from (2.3.4) we have

∂φ(‖S − xj‖)
∂S

= −2(S − xj)

c2
e−‖S−xj‖2/c2 (2.3.9)

and
∂2φ(‖S − xj‖)

∂S2
=

4(S − xj)
2 − 2c2

c4
e−‖S−xj‖2/c2 . (2.3.10)

Substituting equations (2.3.6)-(2.3.10) into (2.3.5), we obtain

N∑

j=1

d

dt
(aj(t))φ(‖xi − xj‖) +

1

2
σ2x2i

N∑

j=1

aj(t)

[
4(xi − xj)

2 − 2c2

c4
φ(‖xi − xj‖)

]

+rxi

N∑

j=1

aj(t)

[−2(xi − xj)

c2
φ(‖xi − xj‖)

]
− r

N∑

j=1

aj(t)φ(‖xi − xj‖) = 0.(2.3.11)

We write equation (2.3.11) in form of a system of differential equations as

Φ
da

dt
+Ra = 0, (2.3.12)

where

Φij = e−‖xi−xj‖2/c2 (2.3.13)
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and

Rij =
1

2
σ2x2i

(
4(xi − xj)

2 − 2c2

c4

)
Φij + rxi

(−2(xi − xj)

c2

)
Φij − rΦij . (2.3.14)

To solve the system described by equation (2.3.12), we use a θ-method

Φ
an+1 − an

∆t
+ θRan+1 + (1− θ)Ran = 0, (2.3.15)

with the initial condition given by the first part of equation (2.2.2) and boundary

conditions given by the first part of equation (2.2.3).

We can rewrite equation (2.3.15) as

[Φ− (1− θ)∆tR]an = [Φ + θ∆tR]an+1, (2.3.16)

an = [Φ− (1− θ)∆tR]−1[Φ + θ∆tR]an+1. (2.3.17)

Equation (2.3.3) applied at all collocation points can be written in the matrix form as

V = Φa. (2.3.18)

Using equation (2.3.18), equation (2.3.17) can be written as

V n = Φ[Φ− (1− θ)∆tR]−1[Φ + θ∆tR]Φ−1V n+1. (2.3.19)

The above equation is solved along with (2.2.2) and the first part of equation (2.3.3)

to obtain the numerical solution. Also the form of this equation should be read in

context to the computing process because in the problems like those considered in this

chapter, we usually have a final boundary value problem rather than an initial boundary

value problem. To this end, note that the scheme given by (2.3.16) corresponding to

θ = 0, 0.5, and 1 are the implicit Euler, Crank-Nicolson and explicit Euler methods,

respectively.

 

 

 

 



CHAPTER 2. A MESH FREE METHOD FOR PRICING OPTIONS ON A
NON-DIVIDEND PAYING ASSET 45

2.3.2 Pricing American options on a non-dividend paying as-

set

To solve the American option problem (2.2.7), which is a free boundary problem, we

approximate the model by adding a penalty term. This leads to a nonlinear partial

differential equation on a fixed domain.

We consider the initial-boundary value problem

∂Pǫ

∂t
+

1

2
σ2S2∂

2Pǫ

∂S2
+ rS

∂Pǫ

∂S
− rPǫ +

ǫC

Pǫ + ǫ− q(S)
= 0, (2.3.20)

with the initial condition as the first part of equation (2.2.2), and the boundary con-

ditions as

Pǫ(0, t) = E, lim
S→∞

Pǫ(S, t) = 0, (2.3.21)

where C ≥ rE, q(S) = E − S, and 0 < ǫ≪ 1.

Using Multiquadric radial basis functions (mentioned in Table 1.2.1) we find

∂φ(S − xj)

∂S
=

(S − xj)√
(S − xj)2 + c2

(2.3.22)

and
∂2φ(xi − xj)

∂S2
=

c2√
((xi − xj)2 + c2)3

. (2.3.23)

By inserting equations (2.3.3), (2.3.6)-(2.3.8), (2.3.22) and (2.3.23) into equation (2.3.20)

we get

N∑

j=1

d

dt
(aj(t))φ(xi − xj) +

1

2
σ2x2i

N∑

j=1

aj(t)

[
c2√

((xi − xj)2 + c2)3

]

+rxi

N∑

j=1

aj(t)

[
(xi − xj)√

(xi − xj)2 + c2

]
− r

N∑

j=1

aj(t)φ(xi − xj)

+
ǫC

∑N
j=1 aj(t)φ(xi − xj) + ǫ− q(S)

= 0. (2.3.24)
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We write equation (2.3.24) in the form of a system of differential equations

Φ
da

dt
+Ra+Q(a) = 0, (2.3.25)

where

Φij =
√
(xi − xj)2 + c2, i, j = 1, · · · , N, (2.3.26)

Q(a) =
ǫC

Φia+ ǫ− q(xi)
, i = 1, · · · , N

with Φi denoting the i-th row of the matrix Φ and

Rij =
1

2
σ2x2i

(
c2√

((xi − xj)2 + c2)3

)
+ rxi

(
(xi − xj)√

(xi − xj)2 + c2

)
− rΦij. (2.3.27)

Using θ-method, equation (2.3.25) becomes

Φ
an+1 − an

∆t
+ θRan+1 + (1− θ)Ran + θQ(an+1) + (1− θ)Q(an) = 0. (2.3.28)

Consequently, the nonlinear penalty term gives rise to a nonlinear system of equations

whose solution is typically found by a modified Newton method. However, by replacing

an in the penalty term by an+1(as in [55]), the linearly implicit scheme corresponding

to equation (2.3.28) is given by

Φ
an+1 − an

∆t
+ θRan+1 + (1− θ)Ran +Q(an+1) = 0, (2.3.29)

with the initial condition given by the first part of equation (2.2.2) and boundary

conditions given by equation (2.2.3).
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2.4 Stability analysis of the numerical method

To proceed with the stability analysis, let us define the error at the nth time level by

en = V n
exact − V n

app, (2.4.1)

where V n
exact is the exact solution and V n

app is the numerical solution obtained by either

(2.3.15) or (2.3.29).

For the scheme given by (2.3.15) the error equation at (n+1)th level can be written

as

en = Ben+1, (2.4.2)

where B is the amplification matrix given by

B = Φ−1[Φ + θ∆tR][Φ− (1− θ)∆tR]−1Φ.

The numerical scheme is stable if ρ(B) ≤ 1, where ρ(B) is the spectral radius of B.

Substituting B in equation (2.4.2) and simplifying, we obtain

[Φ− (1− θ)∆tR]Φ−1en = [Φ + θ∆tR]Φ−1en+1. (2.4.3)

This implies

[I − (1− θ)∆tM ]en = [I + θ∆tM ]en+1 (2.4.4)

where M = RΦ−1 and I ∈ R
N×N is the identity matrix.

It is clear from equation (2.4.4) that the numerical scheme is stable if all the eigen-

values of the matrix [I − (1 − θ)∆tM ]−1[I + θ∆tM ] are less than unity, which means

that ∣∣∣ 1 + θ∆tλM
1− (1− θ)∆tλM

∣∣∣≤ 1, (2.4.5)

where λM represent the eigenvalues of the matrix M .

Now we consider different cases. Firstly, when θ = 1, we have explicit Euler method.
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The above condition for stability becomes

|1 + ∆tλM | ≤ 1, (2.4.6)

which upon simplification implies that the explicit Euler method will be stable if

∆t ≥ −2

λM
and λM ≤ 0. (2.4.7)

Secondly, when θ = 0, we have implicit Euler method which is unconditionally stable

as can be seen from (2.4.5) because λM ≤ 0. Finally, when θ = 0.5, we have the Crank-

Nicholson’s method. Even in this case, the inequality (2.4.5) will hold as long as λM ≤ 0

and this does happen. Therefore the Crank-Nicholson’s method is unconditionally

stable. The stability analysis for (2.3.29) can be done along the similar lines.

2.5 Numerical results and discussion

Using the RBF approach, the resulting problems for European and American put

options on a non-dividend paying asset are solved via Crank-Nicolson’s method (i.e.,

θ = 0.5) with ∆t = 0.01. Results are presented in Table 2.5.1.

The parameters used for the simulations for European put option problem are:

r = 0.05, σ = 0.2, D = 0, E = 10, t0 = 0, T = 0.5, S0 = 0 and Smax = 30. We have

set the parameter c in the radial basis function as 2h where h = (Smax − S0)/(N − 1).

The first column in this table represents values of the asset price S, the second column

represents the exact solution and the other three columns indicated the numerical values

of the European put option that we obtain using the radial basis function approach

with 21, 41 and 101 nodes, respectively.

For the American put options, we choose r = 0.1, σ = 0.2, D = 0, E = 1, t0 =

0, T = 1, ǫ = 0.01, S0 = 0, and Smax = 2. We again use the Crank-Nicolson method

with ∆t = 0.01. Using the multiquadratic radial basis function
√
r2 + c2, we obtain

reasonably accurate results in the sense that they are very close to those obtained by
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Fasshauer in [27]. This can be seen from Table 2.5.2. In Table 2.5.3 and Table 2.5.4,

Table 2.5.1: Values of European put option using radial basis functions on a non-
dividend paying asset

S Exact RBF21 RBF41 RBF101
2 7.7531 7.7525 7.7533 7.7531
4 5.7531 5.7533 5.7533 5.7531
6 3.7532 3.7528 3.7529 3.7532
7 2.7568 2.7659 2.7594 2.7572
8 1.7987 1.8510 1.8080 1.8003
9 0.9880 1.0079 0.9908 0.9886
10 0.4420 0.5280 0.4628 0.4454
11 0.1606 0.2087 0.1754 0.1629
12 0.0483 0.0499 0.0504 0.0486
13 0.0124 0.0206 0.0147 0.0127
14 0.0028 0.0040 0.0035 0.0029
15 0.0006 0.0003 0.0006 0.0006
16 0.0001 0.0002 0.0001 0.0001

RBF21: radial basis functions with 21 nodes.

RBF41: radial basis functions with 41 nodes.

RBF101: radial basis functions with 101 nodes.

Table 2.5.2: Values of American put option using radial basis functions on a non-
dividend paying asset

S RBF21 RBF41 RBF101
0.6 4.00E-01 4.00E-01 4.00E-01
0.7 3.00E-01 3.00E-01 3.00E-01
0.8 2.02E-01 2.02E-01 2.02E-01
0.9 1.17E-01 1.17E-01 1.17E-01
1.0 5.97E-02 6.02E-02 6.03E-02
1.1 2.88E-02 2.92E-02 2.93E-02
1.2 1.37E-02 1.40E-02 1.41E-02
1.3 6.75E-03 7.02E-03 7.22E-03
1.4 3.62E-03 3.91E-03 4.25E-03

RBF21: radial basis functions with 21 nodes.

RBF41: radial basis functions with 41 nodes.

RBF101: radial basis functions with 101 nodes.

we tabulate the mean errors and root mean square errors (RMSE).
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Table 2.5.3: Mean and RMS Errors for European put options for difference values of
N with ∆t = 0.01

N Mean error RMSE
21 1.76E-02 3.14E-02
41 4.30E-03 9.90E-03
61 1.60E-03 4.20E-03
81 1.10E-03 2.30E-03
101 7.05E-04 1.60E-03
121 4.08E-04 1.10E-03
141 3.69E-04 8.60E-04

Table 2.5.4: Mean and RMS Errors for European put options for difference values of
∆t with N = 101

∆t Mean error RMSE
0.1 8.28E-04 1.80E-03
0.01 7.05E-04 1.60E-03
0.001 7.05E-04 1.60E-03
0.0001 7.05E-04 1.60E-03

Finally, figures 2.5.1, 2.5.2 and 2.5.3 depict some special cases for European and

American options as indicated in the figure captions.

The accuracy of the mesh free methods solution depends on the choice of the shape

parameter c. The choice of the optimal value of this parameter is still an open problem

(see [31], [67]). Many researchers chose it as c = 2h, where h = (Smax − S0)/(N − 1).

However, we have done some numerical simulations to find the appropriate value of

this parameter. We plot the values of the shape parameter versus max-error in order

for us to determine the optimal value of this shape parameter. From Figure 2.5.4

we found that the optimal value of shape parameters using Gaussian RBFs is in the

approximately of 0.79.

Since the radial basis functions are infinitely differentiable, the computations of the

derivatives of the options values are readily available from the derivatives of the basis

functions. Then using equation (2.3.7) we can calculate the value of the delta of an

option, which is the rate of change of the option value with respect to the asset price.
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Figure 2.5.1: Values of the European put on a non-dividend paying asset at t0 using
101 points and r = 0.05, σ = 0.2, E = 10, t0 = 0, T = 0.5, S0 = 0 and Smax = 30.
The curve with ‘*’ shows payoff whereas the solid curve represents the value of the
option

Table 2.5.5 and Table 2.5.6 give the values of delta for European and American put

options using radial point interpolation method. It is clear from the results presented

in these tables that the numerical values of the option’s delta lie between −1 and 0

which is in agreement with what is mentioned in Hull [43]. Furthermore, in Table

2.5.7 we compare the option’s delta for American put with some other works seen

in the literature and found that our results are comparable with those obtained by

others. Figure 2.5.5 shows the values of European delta put option using radial point

interpolation method.

We also calculate the gamma (Γ) of a portfolio of options on an underlying asset

which is the rate of change of the portfolio’s delta with respect to the price of the
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Figure 2.5.2: Values of an American put on a non-dividend paying asset at t0 using 101
points and r = 0.1, σ = 0.2, E = 1, T = 1, ǫ = 0.01. The curve with ‘*’ shows payoff
whereas the solid curve represents the value of the option

underlying asset. To do so, we use (2.3.8). It is the second partial derivative of the

portfolio with respect to the asset price. If the absolute value of gamma is large, delta

is highly sensitive to the price of the underlying asset. Table 2.5.8 gives the values of

gamma for European put options. The first column in this table represents the values

of the asset price S, the second column represents the analytical values of option’s

gamma and the third column represents the numerical values of it using the proposed

approach.
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Figure 2.5.3: Values of American put option on a non-dividend paying asset using
radial basis functions

Table 2.5.5: Values of option’s delta (∆) for European put on a non-dividend paying
asset

S Analytic values Numerical values
of option’s ∆ of option’s ∆

6.0000 -0.9996 -0.9992
7.0000 -0.9885 -0.9879
8.0000 -0.9083 -0.9066
9.0000 -0.6906 -0.6902
10.0000 -0.4023 -0.4031
11.0000 -0.1784 -0.1798
12.0000 -0.0622 -0.0625
13.0000 -0.0177 -0.0181
14.0000 -0.0043 -0.0044
15.0000 -0.0009 -0.0012
16.0000 -0.0002 0.0010
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Figure 2.5.4: Effect of parameter c to computational error using radial basis functions

Table 2.5.6: Values of option’s delta (∆) for American put on a non-dividend paying
asset

S American delta (∆)
0.6 -0.9999
0.7 -0.9964
0.8 -0.9480
0.9 -0.7201
1.0 -0.4218
1.1 -0.2152
1.2 -0.1010
1.3 -0.0445
1.4 -0.0183
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Figure 2.5.5: Analytical and numerical values for option’s delta (∆) of European put
on a non-dividend paying asset

Table 2.5.7: Comparison of option’s delta (∆) for American put options on a non-
dividend paying asset

S LUBA EXP QFK RBFs
80 -1.0000 -1.0000 -1.0000 -0.9997
90 -0.6173 -0.6207 -0.6212 -0.6220
100 -0.3588 -0.3582 -0.3581 -0.3602
110 -0.2108 -0.2109 -0.2108 -0.2129
120 -0.1256 -0.1257 -0.1256 -0.1280

LUBA: Lower and Upper bound Approximations [10].

EXP: The multipiece Exponention [51].

QFK: Quadrature Formula of Kim equations [52].

RBF: Radial Basis Function approach proposed in this chapter.
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Table 2.5.8: Values of option’s gamma (Γ) for European put on a non-dividend paying
asset

S Analytic values Numerical values
of option’s Γ of option’s Γ

6.0000 0.0016 0.0014
7.0000 0.0303 0.0315
8.0000 0.1455 0.1461
9.0000 0.2770 0.2767
10.0000 0.2736 0.2722
11.0000 0.1677 0.1678
12.0000 0.0722 0.0723
13.0000 0.0238 0.0242
14.0000 0.0064 0.0066
16.0000 0.0003 0.0003

 

 

 

 



Chapter 3

A mesh free method for pricing

options on a dividend paying asset

In this chapter we introduce a mesh free numerical method based on radial basis

functions (RBFs) to solve problems for pricing American and European put options on

a dividend paying asset. The system of differential equations that we obtain solved by

a time integration methods. Again to resolve the difficulties associated in solving the

free boundary problem associated with American options, we use a penalty approach.

The resulting method is analyzed for stability. Comparative numerical results along

with valuation of some Greeks are presented at the end.

3.1 Introduction

Options on dividend paying assets are more popular than those on non-dividend paying

assets.

Several attempts are made in the past to solve these option pricing problems through

a variety of techniques. We describe a few of them below.

Whaley [111] examined the pricing performance of the valuation equation for Amer-

ican call options on stocks with known dividends and compares it with two approxima-

tion methods. They showed that the approximation obtained by substituting the stock

57
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price net of the present value of the escrowed dividends into the Black-Scholes model

induces spurious correlation between prediction error and (i) the standard deviation of

stock return, (ii) the degree to which the option, is in-the-money or out-of-the-money,

(iii) the probability of early exercise, (iv) the time to expiration of the option, and (v)

the dividend yield of the stock.

Barone-Adesi andWhaley [2] gave simple analytic approximations for pricing exchange-

traded American call and put options written on commodity futures contracts. Their

approximations were computationally efficient than those obtained by binomial method

or standard finite-difference methods.

Fischer [30] derived an analytic approximation for the valuation of American put

options on stocks paying known dividends. The results obtained by his formula are

comparable to other approximations seen in the literature.

Mallier and Alobaidi [72] used Laplace transform methods to study the valuation

of American call and put options with constant dividend yield.

Meyer [75] illustrated that a straightforward numerical implementation of the time

discrete method of lines for the Black-Scholes equation can readily cope with the dis-

appearance and reappearance of the early exercise boundary. They discussed the per-

formance of the method by computing option prices when dividends are paid discretely

at a known rate or known amount as well as with a constant dividend yield.

Kallast and Kivinukk [52] derived a method for pricing and hedging American op-

tions written on a dividend-paying asset. This method is based on Kim equations

presented in [58]. They demonstrated that a simple approximation of the Kim in-

tegral equations by quadrature formulas leads to an efficient and accurate numerical

procedure. This approximation was accompanied by the Newton-Raphson iteration

procedure in order to compute the optimal exercise boundary at each time. The pro-

posed sequence of approximations converges monotonically.

Battauz and Pratelli [5] analyzed some problems arising in the evaluation of Amer-

ican options when the underlying security pays discrete dividends. They studied the

problem of maximizing the expected gain process over stopping times taking values in
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the union of disjoint, real compact sets. The results that they obtained can be applied

to evaluate options with restrictions on exercise periods.

Company et al. [21] obtained the numerical solution of a modified Black-Scholes

equation modelling the valuation of stock options with discrete dividend payments.

They used a delta-defining sequence of the involved generalized Dirac delta function

and applied an approach based on the Mellin transforms.

Vellekoop and Nieuwenhuis [104] presented a method to deal with cash dividends

pricing equity options, under the assumption that in between dividend dates the as-

set follows lognormal dynamics, and where the same dynamics are used to price all

derivative products. They defined an algorithm which is computationally efficient and

guarantees to generate prices that exclude arbitrage possibilities. They showed that

for the method to work a mild uniform convergence condition must be satisfied which

does happen in the case of standard options like European and American ones.

Some other relevant works that can be worth mentioning here are those of Khaliq

et al. [57] who developed adaptive θ-methods for solving the Black-Scholes PDE for

American options; Zhao et al. [115] who discussed some compact finite difference

methods for pricing American options on a single asset with methods for dealing with

optimal exercise boundary, and Tangman et al. [100] who described an improvement

of Han and Wu’s algorithm [37] for American options.

The rest of the chapter is organized as follows. The option pricing problems on

dividend paying assets are described in Section 3.2. Section 3.3 deals with the appli-

cation of radial basis functions to solve these problems. The stability analysis of the

numerical methods is presented in Section 3.4. Finally some numerical results along

with a discussion on them are given in Section 3.5.

3.2 Problem description

The Black-Scholes model for pricing American and European options on dividend pay-

ing assets is also an initial-boundary value problem. For European options this problem
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reads as
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r −D)S

∂V

∂S
− rV = 0, (3.2.1)

where r is the risk-free interest rate, S is the price of the stock, σ is the volatility of

the stock price, D is the dividend yield (which is constant in the present case) on the

stock, and V (S, t) denotes the option’s value at time t for the stock price S.

The initial condition is given by the terminal payoff function

V (S, T ) =




max(E − S, 0) for put

max(S − E, 0) for call

(3.2.2)

whereas the boundary conditions are given by

V (S, T ) =




V (0, t) = Ee−r(T−t), V (S, t) → 0 as S → ∞ for put

V (0, t) = 0, V (S, t) → Se−D(T−t) as S → ∞ for call

(3.2.3)

where T is the maturity time and E is the strike price of the option.

The exact solution of the differential equation (3.2.1) with the initial condition

(3.2.2) and the boundary conditions (3.2.3) is given by ([112]):

V (S, T ) =




V (S, t) = Ee−r(T−t)N(−d̃2)− e−D(T−t)SN(−d̃1) for put

V (S, t) = e−D(T−t)SN(d̃1)−Ee−r(T−t)N(d̃2) for call

(3.2.4)

where N(·) is the cumulative distribution function of the standard normal distribution

with

d̃1 =
log(S/E) + (r −D + 1

2
σ2)(T − t)

σ
√
T − t

, (3.2.5)

and

d̃2 = d1 − σ
√
T − t. (3.2.6)

On the other hand, the American option pricing problem takes the form of a free-
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boundary problems. The early exercise possibility leads to the following model for the

value P (S, t) of an American put option to sell the underlying asset ([55]):

∂P

∂t
+

1

2
σ2S2∂

2P

∂S2
+ (r −D)S

∂P

∂S
− rP = 0, S > Sf(t), 0 ≤ t < T (3.2.7)

P (S, T ) = max(E − S, 0), S ≥ 0,

∂P

∂S
(Sf , t) = −1,

P (Sf(t), t) = E − Sf(t),

lim
S→∞

P (S, t) = 0,

Sf (T ) = E,

P (S, t) = E − S, 0 ≤ S < Sf(t).

where Sf(t) represents the free boundary, E represent the exercise price of the option,

P denotes the value of the option and as before, σ is the volatility of the underlying

asset, r is the risk-free interest rate, D is the dividend yield on the stock.

Since early exercise is permitted, the P of the option must satisfy

P (S, t) ≥ max(E − S, 0), S ≥ 0, 0 ≤ t ≤ T. (3.2.8)

In the next section, we explain how the radial basis functions are used to solve the

above option pricing problems.

3.3 Application of radial basis functions in pricing

options

In order for us to apply the radial basis function approach, we proceed in a manner

similar to the one described in the previous chapter.
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3.3.1 Pricing European options on a dividend paying asset

We approximate the unknown function V (the value of the European option) using the

radial basis functions as

V (S, t) ≈
N∑

j=1

aj(t)φ(‖S − xj‖), (3.3.1)

where a′js are unknown coefficients and φ(‖S − xj‖) are the RBFs. We will use the

following radial basis functions for this problem

φ(S) = e−‖S−xj‖2/c2 , (3.3.2)

where c is a positive parameter.

Collocating at the same N points {xj}Nj=1, equation (3.2.1) becomes

∂V (xi, t)

∂t
+

1

2
σ2S2

i

∂2V (xi, t)

∂S2
+ (r −D)Si

∂V (xi, t)

∂S
− rV (xi, t) = 0. (3.3.3)

Differentiating (3.3.1), we get

∂V (xi, t)

∂t
=

N∑

j=1

daj(t)

dt
φ(‖S − xj‖), (3.3.4)

∂V (xi, t)

∂S
=

N∑

j=1

aj
∂φ(‖S − xj‖)

∂S
, (3.3.5)

and
∂2V (xi, t)

∂S2
=

N∑

j=1

aj
∂2φ(‖S − xj‖)

∂S2
. (3.3.6)

In case of Gaussian basis functions, we have

∂φ(‖S − xj‖)
∂S

= −2(S − xj)

c2
e−‖S−xj‖2/c2 (3.3.7)
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and
∂2φ(‖S − xj‖)

∂S2
=

4(S − xj)
2 − 2c2

c4
e−‖S−xj‖2/c2 . (3.3.8)

Substituting the expressions for various partial derivatives from equations (3.3.4)-

(3.3.6) into (3.3.3), we obtain

N∑

j=1

d

dt
(aj(t))φ(‖xi − xj‖)

+
1

2
σ2x2i

N∑

j=1

aj(t)

[
4(xi − xj)

2 − 2c2

c4
φ(‖xi − xj‖)

]

+(r −D)xi

N∑

j=1

aj(t)

[−2(xi − xj)

c2
φ(‖xi − xj‖)

]

−r
N∑

j=1

aj(t)φ(‖xi − xj‖) = 0. (3.3.9)

We can write equation (3.3.9) in form of a system of differential equations as

Φ
da

dt
+Ra = 0, (3.3.10)

where

Φij = e−‖xi−xj‖2/c2 (3.3.11)

and

Rij =
1

2
σ2x2i

(
4(xi − xj)

2 − 2c2

c4

)
Φij + (r−D)xi

(−2(xi − xj)

c2

)
Φij − rΦij . (3.3.12)

To solve the system described by (3.3.10), we use a θ-method

Φ
an+1 − an

∆t
+ θRan+1 + (1− θ)Ran = 0, (3.3.13)

with the initial condition given by the first part of equation (3.2.2) and boundary

conditions given by the first part of equation (3.2.3).
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We can rewrite equation (3.3.13) as

[Φ− (1− θ)∆tR]an = [Φ + θ∆tR]an+1, (3.3.14)

an = [Φ− (1− θ)∆tR]−1[Φ + θ∆tR]an+1. (3.3.15)

Equation (3.3.1) applied at all collocation point can be written in the matrix form as

V = Φa. (3.3.16)

Using equation (3.3.16), equation (3.3.15) can be written as

V n = Φ[Φ− (1− θ)∆tR]−1[Φ + θ∆tR]Φ−1V n+1. (3.3.17)

The above equation is solved along with (3.2.2) and the first part of equation (3.2.3)

to obtain the numerical solution. Also the form of this equation should be read in

context to the computing process because in the problems like those considered in this

chapter, we usually have a final boundary value problem rather than an initial boundary

value problem. To this end, note that the scheme given by (3.3.14) corresponding to

θ = 0, 0.5, and 1 are the implicit Euler, Crank-Nicolson and explicit Euler methods,

respectively.

3.3.2 Pricing American options on a dividend paying asset

To solve the American option problem (3.2.7), which is a free boundary problem, we

approximate the model by adding a penalty term. This leads to a nonlinear partial

differential equation on a fixed domain.

We consider the initial-boundary value problem

∂Pǫ

∂t
+

1

2
σ2S2∂

2Pǫ

∂S2
+ (r −D)S

∂Pǫ

∂S
− rPǫ +

ǫC

Pǫ + ǫ− q(S)
= 0, (3.3.18)
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with the initial condition as the first part of equation (3.2.2), and the boundary con-

ditions as

Pǫ(0, t) = E, lim
S→∞

Pǫ(S, t) = 0, (3.3.19)

where C ≥ rE, q(S) = E − S, and 0 < ǫ≪ 1.

By inserting equations (3.3.1),(3.3.4)-(3.3.8) into equation (3.3.18), we obtain

N∑

j=1

d

dt
(aj(t))φ(‖xi − xj‖) +

1

2
σ2x2i

N∑

j=1

aj(t)

[
4(xi − xj)

2 − 2c2

c4
φ(‖xi − xj‖)

]

+(r −D)xi

N∑

j=1

aj(t)

[−2(xi − xj)

c2
φ(‖xi − xj‖)

]
− r

N∑

j=1

aj(t)φ(‖xi − xj‖)

+
ǫC

∑N
j=1 aj(t)φ(‖xi − xj‖) + ǫ− q(S)

= 0. (3.3.20)

We write equation (3.3.20) in form of a system of differential equations as

Φ
da

dt
+Ra+Q(a) = 0, (3.3.21)

where

Φij = e−‖xi−xj‖2/c2 , (3.3.22)

Qi(a) =
ǫC

Φia+ ǫ− q(xi)
, i = 1, · · · , N (3.3.23)

with Φi denoting the i-th row of the matrix Φ and

Rij =
1

2
σ2x2i

(
4(xi − xj)

2 − 2c2

c4

)
Φij + (r−D)xi

(−2(xi − xj)

c2

)
Φij − rΦij . (3.3.24)

The θ-method for equation (3.3.21) reads

Φ
an+1 − an

∆t
+ θRan+1 + (1− θ)Ran + θQ(an+1) + (1− θ)Q(an) = 0. (3.3.25)

By replacing an in the penalty term by an+1, the linearly implicit scheme for (3.3.25)
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is given by

Φ
an+1 − an

∆t
+ θRan+1 + (1− θ)Ran +Q(an+1) = 0, (3.3.26)

with the initial condition given by the first part of equation (3.2.2) and boundary

conditions given by equation (3.3.19).

3.4 Stability analysis of the numerical method

To proceed with the stability analysis, let us define the error at the nth time level by

en = V n
exact − V n

app, (3.4.1)

where V n
exact is the exact solution and V n

app is the numerical solution obtained by either

(3.3.13) or (3.3.26), respectively.

For the scheme given by (3.3.13) the error equation at (n+1)th level can be written

as

en = Ben+1, (3.4.2)

where B is the amplification matrix is given by

B = Φ−1[Φ + θ∆tR][Φ− (1− θ)∆tR]−1Φ.

The numerical scheme is stable if ρ(B) ≤ 1, where ρ(B) is the spectral radius of B.

Substituting B in equation (3.4.2) and simplifying, we obtain

[Φ− (1− θ)∆tR]Φ−1en = [Φ + θ∆tR]Φ−1en+1. (3.4.3)

This implies

[I − (1− θ)∆tM ]en = [I + θ∆tM ]en+1, (3.4.4)

where M = RΦ−1 and I ∈ R
N×N is the identity matrix.

It is clear from equation (3.4.4) that the numerical scheme is stable if all the eigen-
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values of the matrix [I − (1 − θ)∆tM ]−1[I + θ∆tM ] are less than unity, which means

that ∣∣∣ 1 + θ∆tλM
1− (1− θ)∆tλM

∣∣∣≤ 1, (3.4.5)

where λM represent the eigenvalues of the matrix M .

Now we consider different cases. Firstly, when θ = 1, we have explicit Euler method.

The above condition for stability becomes

|1 + ∆tλM | ≤ 1. (3.4.6)

Simplifying (3.4.6), we see that the explicit Euler method will be stable if

∆t ≥ −2

λM
and λM ≤ 0. (3.4.7)

Secondly, when θ = 0, we have implicit Euler method which is clearly unconditionally

stable as can be seen from (3.4.5). Finally, when θ = 0.5, we have the Crank-Nicholson’s

method. Even in this case, the inequality (3.4.5) will hold as long as λM ≤ 0 and this

does happen. Therefore the Crank-Nicholson’s method will be unconditionally stable.

3.5 Numerical results and discussion

Using the RBF approach, the resulting problems for European and American put

options on dividend paying assets are solved via Crank-Nicolson’s method (i.e., θ =

0.5), for European put option problem (3.2.1). Results are presented in Table 3.5.1.

The parameter values used in the simulation are r = 0.05, σ = 0.2, D = 0.05, E =

10, t0 = 0, T = 0.5, S0 = 0, and Smax = 30. The first column in this table represents

values of the asset price S, the second column represents the exact solution and the

other three columns indicated the numerical values of the European put option that we

obtain using the radial basis function approach with 21, 41 and 101 nodes, respectively.

Figure 4.5.2 shows the value of a European put option at t0 using 101 nodes and
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Figure 3.5.2 shows the effect of the dividend paying in European put option with

D = 0, 0.05, 0.1 and 0.2.

Table 3.5.1: Values of European put option using radial basis functions on a dividend
paying asset

S Exact RBF21 RBF41 RBF101
2 7.8025 7.8044 7.8033 7.8026
4 5.8519 5.8527 5.8526 5.8519
6 3.9013 3.8987 3.9007 3.9013
8 1.9808 2.0232 1.9878 1.9820
10 0.5498 0.6357 0.5707 0.5532
12 0.0703 0.0731 0.0728 0.0706
13 0.0195 0.0310 0.0226 0.0200
14 0.0047 0.0068 0.0059 0.0049
15 0.0010 0.0006 0.0011 0.0010
16 0.0002 0.0004 0.0003 0.0002

RBF21: radial basis functions with 21 nodes.

RBF41: radial basis functions with 41 nodes.

RBF101: radial basis functions with 101 nodes.

As in the previous chapter, we chose c = 2h, where h = (Smax − S0)/(N − 1) and

done some numerical simulations. We search the value of shape parameter in RBFs

by the step 0.01 and plot the relationship between shape parameter and max-error

to select the optimal value of shape parameter. From Figure 3.5.3 we found that the

optimal value of shape parameters using Gaussian RBFs is in the neighborhood of 0.44.

The numerical solution of American put option is obtained for r = 0.08, σ =

0.2, D = 0.12, 0.08, 0.04 and 0, E = 100, t0 = 0, T = 3, S0 = 0, and Smax = 180.

We used the Crank-Nicolson method (θ = 0.5) together with a constant time step of

∆t = 0.001. The result listed in Table 3.5.2.

In Table 3.5.2, the first column represents the parameters used for simulation, the

second column represents values of the asset price S, the next three columns represent

results obtained by other researchers as mentioned below the table for the American

put option on a dividend paying asset whereas the last column contains the numerical
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Figure 3.5.1: Values of a European put option on a dividend paying asset at t0 using
101 points and r = 0.05, σ = 0.2, E = 10, D = 0.05, t0 = 0, T = 0.5, S0 =
0, and Smax = 30. The curve with ‘*’ shows payoff whereas the solid curve represents
the value of the option

results that we obtained using our RBF based mesh free approach.

Figure 3.5.4 illustrates the value of an American put option at different values of t

using 101 points and Figure 3.5.5 shows value of the American put option for all cases.

Since the radial basis functions are infinitely differentiable, the computations of

the derivatives of the options values are readily available from the derivatives of the

basis functions. Then using equation (3.3.7) we can calculate the value of the delta

of an option, which is the rate of change of the option value with respect to the asset

price. Tables 3.5.3 and 3.5.5 present comparative results for the delta of European and

American put options. It is clear from the results presented in these tables that the

numerical values of the option’s delta lie between −1 and 0 which is in agreement with

what is mentioned in Hull [43].
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Figure 3.5.2: The effect of the dividend in European put option with D =
0, 0.05, 0.1, 0.2

We also calculate the gamma (Γ) using (3.3.7). Table 3.5.4 gives the values of

gamma for European put options. The first column in this table represents the values

of the asset price S, the second column represents the analytical values of option’s

gamma and the third column represents the numerical values of it using the proposed

approach.
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Figure 3.5.3: Effect of parameter c to computational error with D = 0.05 using radial
basis functions
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Table 3.5.2: Values of an American put option using radial basis functions on a dividend
paying asset with E = 100

Parameters S FDM COM QFK RBF
80 25.66 25.59 25.66 25.83

D = 0.12, r = 0.08, 90 20.08 20.05 20.08 20.23
σ = 0.20, T = 3. 100 15.50 15.51 15.50 15.61

110 11.80 11.83 11.80 11.87
120 8.88 8.91 8.89 8.89
80 22.20 22.35 22.21 22.32

D = 0.08, r = 0.08, 90 16.21 16.18 16.21 16.31
σ = 0.20, T = 3. 100 11.70 11.65 11.70 11.78

110 8.37 8.34 8.37 8.43
120 5.93 5.93 5.93 5.98
80 20.35 20.60 20.35 20.42

D = 0.04, r = 0.08, 90 13.50 13.69 13.50 13.56
σ = 0.20, T = 3. 100 8.94 8.95 8.94 8.99

110 5.91 5.85 5.91 5.93
120 3.90 3.85 3.89 3.89
80 20.00 19.44 20.00 20.00

D = 0, r = 0.08, 90 11.69 11.96 11.69 11.75
σ = 0.20, T = 3. 100 6.93 7.06 6.93 6.97

110 4.15 4.13 4.15 4.17
120 2.51 2.45 2.51 2.50

FDM: Finite Difference Method [2].

COM: Compound Option Methods [2].

QFK: Quadrature Formula of Kim equations [52].

RBF: Radial Basis Function approach proposed in this chapter.
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Figure 3.5.4: Values of an American put option on a dividend paying asset at different
values of t and r = 0.08, σ = 0.2, D = 0.04, E = 100, T = 3

Table 3.5.3: Values of option’s delta (∆) for European put using radial basis functions
on a dividend paying asset

S Analytic values Numerical values
of option’s ∆ of option’s ∆

2 -0.9753 -0.9831
4 -0.9753 -0.9781
6 -0.9751 -0.9741
7 -0.9684 -0.9680
8 -0.9111 -0.9095
9 -0.7314 -0.7310
10 -0.4602 -0.4605
11 -0.2226 -0.2239
12 -0.0848 -0.0850
13 -0.0264 -0.0269
14 -0.0070 -0.0072
15 -0.0016 -0.0016
16 -0.0003 -0.0004
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Figure 3.5.5: American put option using RBFs on a dividend paying asset

Table 3.5.4: Values of option’s gamma (Γ) for European put using radial basis functions
on a dividend paying asset

S Analytic values Numerical values
of option’s Γ of option’s Γ

4 0.0000 0.0000
6 0.0009 0.0009
7 0.0195 0.0204
8 0.1105 0.1113
9 0.2435 0.2435
10 0.2744 0.2729
11 0.1896 0.1893
12 0.0909 0.0910
13 0.0331 0.0336
14 0.0098 0.0100
15 0.0025 0.0025
16 0.0005 0.0006
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Table 3.5.5: Values of option’s delta (∆) for American put using radial basis functions
on a dividend-paying asset with E = 100

Parameters S LUBA EXP QFE RBF
80 -0.61 -0.61 -0.61 -0.61

D = 0.12, r = 0.08, 90 -0.50 -0.51 -0.51 -0.51
σ = 0.20, T = 3. 100 -0.41 -0.41 -0.41 -0.42

110 -0.33 -0.33 -0.33 -0.33
120 -0.26 -0.26 -0.27 -0.27
80 -0.69 -0.69 -0.69 -0.69

D = 0.08, r = 0.08, 90 -0.52 -0.52 -0.52 -0.52
σ = 0.20, T = 3. 100 -0.39 -0.39 -0.39 -0.39

110 -0.28 -0.28 -0.28 -0.29
120 -0.21 -0.21 -0.21 -0.21
80 -0.83 -0.84 -0.84 -0.84

D = 0.04, r = 0.08, 90 -0.55 -0.55 -0.55 -0.55
σ = 0.20, T = 3. 100 -0.37 -0.37 -0.37 -0.37

110 -0.25 -0.25 -0.25 -0.25
120 -0.16 -0.16 -0.16 -0.17
80 -1.00 -1.00 -1.00 -1.00

D = 0, r = 0.08, 90 -0.62 -0.62 -0.62 -0.62
σ = 0.20, T = 3. 100 -0.36 -0.36 -0.36 -0.36

110 -0.21 -0.21 -0.21 -0.21
120 -0.13 -0.13 -0.13 -0.13

LUBA: Lower and Upper bound Approximations [10].

EXP: The multipiece Exponention [51].

QFE: Quadrature Formula of Eim equations [52].

RBF: Radial Basis Function approach proposed in this chapter.

 

 

 

 



Chapter 4

A mesh free method for pricing

exotic options

In this chapter, we extend the mesh free method that developed in previous chapters

to solve problems for pricing two type of exotic options, namely, European barrier and

Asian options. Even in these cases we obtain a system of ordinary differential equations

which are then solved by a time integration techniques. As compared to the work done

in Goto et al. [36], in this chapter we provide a simplified presentation of the approach.

We also analyzed the method for stability which was not done in the above mentioned

work. The proposed approach in this chapter is further extended to solve problems of

pricing European style double barrier options and digital options. Finally, we present

some numerical experiments using a number of radial basis functions.

4.1 Introduction

Exotic options are non-standard options. The features of these options are more com-

plex features than the standard (plain vanilla) European and American options. These

exotic options are option contracts that can be exercised according to the average value

of the asset price during a specified period of time and their maximum and minimum

prices. There are many exotic options available in the literature. However, in this

76
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chapter, we will focus on the European barrier and Asian options. Below we describe

each one of them along with some literature work.

Barrier options are options where the payoff depends on whether the underlying

asset’s price reaches a certain level during a certain period of time. These barrier

options can be classified as either knock-out options or knock-in options. A knock-

out option ceases to exist when the underlying asset price reaches a certain barrier

whereas a knock-in option comes into existence only when the underlying asset price

reaches a barrier [43]. Most of these options are priced by means of partial differential

equations. Below we describe some of the techniques that are used in the past to solve

the problems that price the barrier options.

Zvan et al. [118] described an implicit finite difference method to solve the problem

of pricing barrier options. They illustrated its application to a variety of such contracts.

They handled barrier options with and without American-style features in a similar

way. They found that the use of the implicit method leads to convergence in fewer

time steps as compared to explicit schemes.

Sanfelici [95] analyzed the Galerkin infinite element method for pricing European

barrier options with discontinuous payoff. They considered three main aspects: the

degeneracy of the pricing PDE models; the presence of discontinuities at the barriers

or in the payoff clause and their effects on the numerical approximation process; and

the need for resorting to suitable numerical methods for unbounded domains when

appropriate asymptotic conditions are not specified.

In [86], Pelsser provided valuation formulas for a wide range of double-barrier knock-

out and knock-in options. They derived Laplace transforms which were inverted ana-

lytically using contour integration methods.

Using an optimal portfolio framework, Chao et al. [14] developed an algorithm

to price the barrier options in the presence of proportional transaction costs. They

computed the option prices numerically by using a Markov chain approximation to the

continuous-time singular stochastic optimal control problem.

Wade et al. [105] presented some higher order schemes for pricing barrier options.
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They explored the smoothing strategy for the Crank-Nicolson’s method in an attempt

to achieve optimal order of convergence for barrier option problems. They discussed

numerical experiments for one asset and two asset problems.

In [82], Ökten et al. used a Monte Carlo Simulation technique to price down-and-

in barrier options. Their approach was based on two variance reduction techniques:

the use of conditional expectation and importance sampling. They used a simulated

annealing algorithm to estimate the optimal parameters of exponential twisting in

importance sampling.

On the other hand, the Asian options are popular path-dependent financial deriva-

tives. These options are securities with payoff which depend on the average value of an

underlying stock price over some time interval. These options have either fixed strike

(also known as an average rate) or a floating strike (or floating rate). The pricing of

arithmetic Asian options has been tackled by a variety of analytical approximations

and numerical algorithms. Below we describe some of them.

In the methods based on Monte Carlo simulations, researchers usually calculate

the price by directly simulating the stock price process. Joy et al. [50] introduced

a different version of the Monte Carlo method that has attractive properties for the

numerical valuation of derivatives. They suggested Quasi-Monte Carlo methods that

use sequences that are deterministic instead of random. This improved convergence and

gave rise to deterministic error bounds. The method is well explained and illustrated

through several examples including complex derivatives such as basket options, Asian

options, and energy swaps.

Methods based on partial differential equation (PDE) approaches are mostly based

on finite differences methodology. Sak et al.[94] discussed the use of parallel computing

for pricing Asian options and evaluated the efficiency of various algorithms. They

implemented a PDE approach that involves a single state variable to price the Asian

option, and implemented the same methodology to price a standard European option

to check the accuracy. They solved a parabolic PDE by using both explicit and Crank-

Nicolson’s implicit finite-difference methods.
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Some researchers used lattices and Binomial trees which are closely related to finite-

difference methods. Costabile et al. [22] proposed a model for pricing both European

and American Asian options based on the arithmetic average of the underlying asset

prices. Their approach relies on a binomial tree describing the underlying asset evolu-

tion. They associated a set of representative averages chosen among all the effective

averages realized at that node at each node of the tree. They used backward recursion

and linear interpolation to compute the option price.

Hsu and Lyuu [41], used lattices to price fixed-strike European-style Asian options

that are discretely monitored. They presented the first provably quadratic-time con-

vergent lattice algorithm for pricing fixed-strike European-style discretely monitored

Asian options.

Vanmaele et al. [103] studied the pricing of European-style discrete arithmetic

Asian options with fixed and floating strike by deriving analytical lower and upper

bounds. They used a general technique for deriving upper (and lower) bounds for

stop-loss premiums of sums of dependent random variables. It is to be noted that

analytical representations in terms of infinite series and integral formula (including

Laplace transforms) usually require numerical algorithms in order to recover the price.

Tsao and Huang [102] solved European and American discrete average price Asian

options by using Taylor expansion to obtain the approximation formula for continuous

average strike Asian options. They showed numerically that their formula are robust

in terms of volatility.

Rogers and Shi [93] approached the problem of computing the price of an Asian

option in two different ways. Firstly, exploiting a scaling property, they reduced the

problem to the problem of solving a parabolic PDE in two variables. Secondly, they

provided a sufficiently accurate lower bound.

The rest of the chapter is organized as follows. Some pricing problems for exotic

options are described in Section 4.2. Section 4.3 deals with the application of radial

basis functions to solve these problems. The stability analysis of the numerical methods

is presented in Section 4.4. Finally some numerical results along with a discussion on
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them are given in Section 4.5.

4.2 Problem description

In this section we describe the pricing problems for two type of exotic options, namely,

barrier and Asian options.

Barrier option

The Black-Scholes partial differential equation for the valuation of an option V is

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (4.2.1)

where r is the risk-free interest rate, σ is the volatility of the stock price, and V (S, t)

is the option value at time t for the stock’s price S.

With boundary conditions

V (0, t) = 0, V (X, t) = 0, (4.2.2)

and barrier constraint:

• For a single barrier option

V (S, t) =





0 S ≤ K

V (S, t) S > K.

(4.2.3)
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• For a double barrier option

V (S, t) =





0 S ≤ K1 or S ≥ K2

V (S, t) otherwise,

(4.2.4)

and initial condition (payoff):

• For a single barrier option

V (S, 0) =





0, S ≤ K,

S − E S > K.

(4.2.5)

• For a double barrier option

V (S, 0) =





0, S ≤ K1,

S −E K1 ≥ S < K2,

0, S ≥ K2,

(4.2.6)

where K is the barrier level in the case of a single barrier option whereas K1 and

K2 are the lower and upper barriers in the case of a double barrier option, respectively;

E is the strike price, and X is chosen sufficiently large in this case.

Digital option

A digital call option, also known as cash-or-nothing call or binary option, is an option

with payoff zero before the strike price and one (or any fixed amount) after the strike
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price [56]. This is modeled by the Black-Scholes PDE (4.2.1) with the payoff function

given as

V (S, T ) =





1, for S > E

0, for S < E.

(4.2.7)

Using the average of the payoff, equation (4.2.7) can be written as

V (S, T ) =





1, for S > E

0.5, for S = E

0, for S < E.

(4.2.8)

The boundary conditions are given by

C(0, t) = 0, 0 ≤ t ≥ T, (4.2.9)

C(S, t) ≈ e−rT , S → ∞. (4.2.10)

The analytic solution for the digital option is

V (S, t) = e−rTN(d), (4.2.11)

where N(d) is the cumulative distribution function of the standard normal distribution

with

d =
log(S/E) + (r − 1

2
σ2)T

σ
√
T

. (4.2.12)
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Asian option

Typically an Asian option is a contract giving the holder the right to buy an asset for

its average price over some prescribed time period. The average rate of an asset S is

given as
1

t

∫ t

0

S(τ)dτ.

Introducing the function

I =

∫ t

0

S(τ)dτ. (4.2.13)

The partial differential equation pricing on European Asian option is

∂V

∂t
+ S

∂V

∂I
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0. (4.2.14)

At the expiration date t = T , we have the

payoff =





max
(
S − 1

T

∫ t

0
S(τ)dτ, 0

)
for call option

max
(

1
T

∫ t

0
S(τ)dτ − S, 0

)
for put option.

(4.2.15)

In this chapter, we will consider only a call option. We can write the payoff for the call

option as

S

[
max

(
1− 1

ST

∫ t

0

S(τ)dτ, 0

)]
.

Introducing the variable

R =
1

S

∫ t

0

S(τ)dτ, (4.2.16)

the payoff at the expiry can be written as

S

[
max

(
1− R

T
, 0

)]
.
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In view of the form of the payoff function mentioned above, the option value takes the

form

V (S,R, t) = SH(R, t), with R = I/S. (4.2.17)

Combining the above, we obtain a one dimensional PDE pricing the European Asian

options (see [112] for further details):

∂H

∂t
+

1

2
σ2R2∂

2H

∂R2
+ (1− rR)

∂H

∂R
= 0, (4.2.18)

with

H(R, T ) = max

(
1− R

T
, 0

)
. (4.2.19)

The above problems are solved by applying the mesh free method discussed in next

section.

4.3 Application of radial basis functions in pricing

exotic options

The use of radial basis functions is demonstrated here for two type of exotic options.

4.3.1 Pricing barrier options using RBFs

We approximate the unknown function V (the value of the European barrier option)

using the radial basis functions as

V (S, t) ≈
N∑

j=1

aj(t)φ(‖S − xj‖), (4.3.1)

where aj are unknown coefficients and φ(‖S − xj‖) are the RBFs. We will use the

following Gaussian radial basis functions for this problem

φ(S) = e−‖S−xj‖2/c2 , (4.3.2)
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where c is a positive parameter.

Collocating at the N points xj (j = 1, 2, · · · , N), equation (4.2.1) becomes

∂V (xi, t)

∂t
+

1

2
σ2S2

i

∂2V (xi, t)

∂S2
+ rSi

∂V (xi, t)

∂S
− rV (xi, t) = 0. (4.3.3)

Differentiating (4.3.1) we get

∂V (xi, t)

∂t
=

N∑

j=1

daj(t)

dt
φ(‖S − xj‖), (4.3.4)

∂V (xi, t)

∂S
=

N∑

j=1

aj
∂φ(‖S − xj‖)

∂S
, (4.3.5)

∂2V (xi, t)

∂S2
=

N∑

j=1

aj
∂2φ(‖S − xj‖)

∂S2
. (4.3.6)

Now from (4.3.2) we have

∂φ(‖S − xj‖)
∂S

= −2(S − xj)

c2
e−‖S−xj‖2/c2, (4.3.7)

and
∂2φ(‖S − xj‖)

∂S2
=

4(S − xj)
2 − 2c2

c4
e−‖S−xj‖2/c2 . (4.3.8)

Substituting equations (4.3.4)-(4.3.8) into (4.3.3), we obtain

N∑

j=1

d

dt
(aj(t))φ(‖xi − xj‖) +

1

2
σ2x2i

N∑

j=1

aj(t)

[
4(xi − xj)

2 − 2c2

c4
φ(‖xi − xj‖)

]

+rxi

N∑

j=1

aj(t)

[−2(xi − xj)

c2
φ(‖xi − xj‖)

]
− r

N∑

j=1

aj(t)φ(‖xi − xj‖) = 0. (4.3.9)

We write equation (4.3.9) in form of a system of differential equations as

Φ
da

dt
+Ga = 0, (4.3.10)
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where

Φij = e−‖xi−xj‖2/c2 , (4.3.11)

and

Gij =
1

2
σ2x2i

(
4(xi − xj)

2 − 2c2

c4

)
Φij + rxi

(−2(xi − xj)

c2

)
Φij − rΦij. (4.3.12)

To solve the system described by equation (4.3.10), we use a θ-method

Φ
an+1 − an

∆t
+ θGan+1 + (1− θ)Gan = 0, (4.3.13)

with the initial condition given by equation(4.2.6).

We can rewrite equation (4.3.13) as

[Φ− (1− θ)∆tG]an = [Φ + θ∆tG]an+1, (4.3.14)

an = [Φ− (1− θ)∆tG]−1[Φ + θ∆tG]an+1. (4.3.15)

Equation (4.3.1) applied for all collocation point can be written in the matrix form as

V = Φa. (4.3.16)

Using equation (4.3.20), equation (4.3.19) can be written as

V n = Φ[Φ− (1− θ)∆tG]−1[Φ + θ∆tG]Φ−1V n+1. (4.3.17)

The above equation is solved along with (4.2.6) to obtain the numerical solution. Also

the form of this equation should be read in context to the computing process because

in the problems like those considered in this chapter, we usually have a final boundary

value problem rather than an initial boundary value problem. Also note that the scheme

(4.3.18) corresponding to θ = 0, 0.5, and 1 are the implicit Euler, Crank-Nicolson and

explicit Euler methods, respectively.
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4.3.2 Pricing Asian options using RBFs

To solve an Asian option problem (4.2.18) with initial condition given by equation

(4.2.19) we use inverse multiquadric radial basis function given by

φ(S) =
1√

‖S −Rj‖2 + c2
. (4.3.18)

Differentiating we get

∂φ(‖S − Rj‖)
∂S

=
−(S −Rj)

(‖S − Rj‖2 + c2)3/2
, (4.3.19)

and
∂2φ(‖S − Rj‖)

∂S2
=

2(S −Rj)
2 − c2

(‖S − Rj‖2 + c2)5/2
. (4.3.20)

Substituting equations (4.3.4) - (4.3.6) and (4.3.18) - (4.3.20) into (4.2.18), we obtain

N∑

j=1

d

dt
(aj(t))

[
1√

‖Ri − Rj‖2 + c2

]
+

1

2
σ2x2i

N∑

j=1

aj(t)

[
2(Ri −Rj)

2 − c2

(‖Ri − Rj‖2 + c2)5/2

]

+(1− r)Ri

N∑

j=1

aj(t)

[ −(Ri −Rj)

(‖Ri − Rj‖2 + c2)3/2

]
= 0. (4.3.21)

We can write equation (4.3.21) in form of a system of differential equations as

Φ
da

dt
+Ga = 0, (4.3.22)

where

Φij =
1√

‖Ri − Rj‖2 + c2
, (4.3.23)

and

Gij =
1

2
σ2R2

i

(
1√

‖Ri −Rj‖2 + c2

)
+ (1− r)Ri

( −(Ri − Rj)

(‖Ri −Rj‖2 + c2)(3/2)

)
. (4.3.24)
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To solve the system described by equation (4.3.22), we use a θ-method

Φ
an+1 − an

∆t
+ θGan+1 + (1− θ)Gan = 0, (4.3.25)

with the initial condition given by equation(4.2.19).

Also note that the scheme corresponding to θ = 0, 0.5, and 1 are the implicit

Euler, Crank-Nicolson and explicit Euler methods, respectively.

4.4 Stability analysis of the numerical method

To proceed with the stability analysis, let us define the error at the nth time level by

en = V n
exact − V n

app, (4.4.1)

where V n
exact is the exact solution and V n

app is the numerical solution obtained by either

(4.3.17) or (4.3.25).

For the scheme given by (4.3.17) the error equation at (n+1)th level can be written

as

en = Pen+1, (4.4.2)

where P is the amplification matrix is given by

B = Φ−1[Φ + θ∆tG][Φ− (1− θ)∆tG]−1Φ.

The numerical scheme is stable if ρ(B) ≤ 1, where ρ(B) is the spectral radius of B.

Substituting B in equation (4.4.2), we obtain

[Φ− (1− θ)∆tG]Φ−1en = [Φ + θ∆tG]Φ−1en+1. (4.4.3)

This implies

[I − (1− θ)∆tM ]en = [I + θ∆tM ]en+1, (4.4.4)
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where M = GΦ−1 and I ∈ R
N×N is the identity matrix.

It is clear from equation (4.4.4) that the numerical scheme is stable if all the eigen-

values of the matrix [I − (1 − θ)∆tM ]−1[I + θ∆tM ] are less than unity, which means

that ∣∣∣ 1 + θ∆tλM
1− (1− θ)∆tλM

∣∣∣≤ 1. (4.4.5)

where λM represent the eigenvalues of the matrix M .

Now we consider different cases. Firstly, when θ = 1, we have explicit Euler method.

The above condition for stability becomes

|1 + ∆tλM | ≤ 1, (4.4.6)

which implies that the explicit Euler method will be stable if

∆t ≥ −2

λM
and λM ≤ 0. (4.4.7)

Secondly, when θ = 0, we have implicit Euler method which is clearly unconditionally

stable as can be seen from (4.4.5). Finally, when θ = 0.5, we have the Crank-Nicolson’s

method. Even in this case, the inequality (4.4.5) will hold as long as λM ≤ 0 and this

does happen. Therefore, the Crank-Nicolson’s method will be unconditionally stable.

The stability analysis for (4.3.25) can be done along the similar lines.

4.5 Numerical results and discussion

Using the RBF approach, the resulting problems for European barrier and European

Asian call options are solved via Crank-Nicolson’s method (i.e., θ = 0.5). Results are

presented in Table 4.5.1 and Figure 4.5.1.

The parameters used for the simulations for European barrier option problem are:

r = 0.05, σ = 0.2, E = 10, t0 = 0, T = 0.5, ∆t = 0.005, K = 9, x0 =

0 and X = 30. We have set the parameter c in the radial basis function as 2h
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where h = (X − x0)/(N − 1). The first column in Table 4.5.1 represents values of

the asset price S, the second column represents the exact solution as in [36] and the

other three columns indicated the numerical values of the European barrier option

that we obtain using the radial basis functions with Gaussian, Inverse Multiquadratic,

Multiquadratic respectively.

For double barrier option we used Multiquadratic RBFs with parameters:r =

0.05, σ = 0.25, E = 100, t0 = 0, T = 0.5, K1 = 95, K2 = 110, x0 = 0 and X = 115.

We used Crank-Nicolson’s method (i.e., θ = 0.5)and the numerical results are pre-

sented in Table 4.5.2. The first column of this table represents the time step ∆t,

the second and third column represents the option values at barriers K1 and K2, the

next two columns represents the errors at K1 and K2. We used a reference solution

0.09697960007895 at K1 = 95 and 0.08148159339106 at K2 = 110. We found that our

results for double barrier option are close to those presented in Table 1 in Wade et al.

[105].

Figure 4.5.2 and Table 4.5.3 contain results for digital call option at strike price

E = 0.5 using Multiquadric radial basis functions. The other parameter used are:

S0 = 0, Smax = 1, T = 0.25, r = 0.05, and σ = 0.2 with N = 101 and ∆t = 0.0025.

The first column of this table represents the asset price S, the second column represents

the exact solution using (4.2.11), the third column represents the value of the option

using RBFs, and the last column represents the errors.

For the European Asian call options, we choose r = 0.1, σ = 0.2, D = 0, t0 =

0, T = 0.5, R0 = 0, and Rmax = 1. We again use the Crank-Nicolson’s method with

∆t = 0.005.

Using the multiquadratic and inverse multiquadratic radial basis functions, we ob-

tain reasonably accurate results in the sense that they are very close to those obtained

by Goto et al. in [36].

Numerical results are shown in Table 4.5.4 and Figures 4.5.3, 4.5.4 and 4.5.5. The

values of c used for the simulation are respectively, 0.02, 0.03 and 0.04 in the cases

when Gaussian, Multiquadratic and Inverse Multiquadratic RBFs are used. It is worth
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mentioning here that the authors in [36] pointed out that the Multiquadratic RBFs

when used with c = 0.04 do not provide correct numerical value of the option. Taking

this into account, we have used the value of c as 0.03 and obtained desired results (see

the results in Figure 4.5.4). A slight change in the results as compared to those in [36]

are due to the difference in the value of σ that they have used. The first column in Table

4.5.4 represents the values of the asset price R and the other three columns indicated

the numerical values of the European barrier option that we obtain using the radial

basis functions with Gaussian, Multiquadratic, Inverse Multiquadratic, respectively.

Table 4.5.1: Values of a European down-and-out call option using Radial Basis Func-
tions

S Exact RBF(G) RBF(IMQ) RBF(MQ)
1 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000 0.0000
7 0.0000 0.0000 0.0000 0.0000
9 0.0000 0.0000 0.0000 0.0000
11 1.3998 1.4065 1.4065 1.4065
13 3.2591 3.2591 3.2591 3.2591
15 5.2475 5.2474 5.2474 5.2474
17 7.2469 7.2458 7.2465 7.2469
19 9.2469 9.2243 9.2383 9.2466

G: Gaussian.

MQ: Multiquadratic.

IMQ: Inverse Multiquadratic.

Table 4.5.2: Values of a double barrier European down-and-out call option using Radial
Basis Functions
∆t Option value at K1 Option value at K2 Error at K1 Error at K2

0.025 0.0235 0.2105 7.35E-2 1.29E-2
0.0125 0.0449 0.0503 5.21E-2 3.12E-2
0.00625 0.0411 0.0349 5.58E-2 4.66E-2
0.003125 0.0388 0.0311 5.81E-2 5.04E-2
0.0015625 0.0377 0.0293 5.93E-2 5.22E-2
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Table 4.5.3: Values of digital call Option using radial basis functions with ∆t = 0.0025
S Exact RBF101 Error

0.1000 0.0000 0.0000 0.0000
0.2000 0.0000 0.0000 0.0000
0.3000 0.0000 0.0000 0.0000
0.4000 0.0153 0.0152 0.0001
0.5000 0.5233 0.5233 0.0000
0.6000 0.9591 0.9594 0.0003
0.7000 0.9873 0.9874 0.0001
0.8000 0.9876 0.9874 0.0001
0.9000 0.9876 0.9858 0.0018
1.0000 0.9876 0.9876 0.0000

Table 4.5.4: Values of European Asian call option using Radial Basis Functions
R RBF(G) RBF(MQ) RBF(IMQ)

0.0 0.0527 0.0518 0.0519
0.1 0.0019 0.0017 0.0018
0.2 0.0002 0.0000 0.0001
0.3 0.0001 0.0000 0.0000
0.4 0.0000 0.0001 0.0000
0.5 0.0000 0.0003 0.0002
0.6 0.0000 0.0005 0.0003
0.7 0.0000 0.0005 0.0002
0.8 0.0000 0.0004 0.0001
0.9 0.0000 0.0002 0.0001
1.0 0.0000 0.0000 0.0000

G: Gaussian.

MQ: Multiquadratic.

IMQ: Inverse Multiquadratic.
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Figure 4.5.1: Values of the European barrier (down-and-out) option at t0 using 121
points and r = 0.05, σ = 0.2, E = 10, t0 = 0, T = 0.5, S0 = 0 and Smax = 30
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Figure 4.5.3: Values of the European Asian call option using RBF (Gaussian) with 101
points and r = 0.1, σ = 0.2, t0 = 0, T = 0.5, R0 = 0 and Rmax = 1
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Figure 4.5.4: Values of the European Asian call option using RBF (Multiquadric) with
101 points and r = 0.1, σ = 0.2, t0 = 0, T = 0.5, R0 = 0 and Rmax = 1
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Figure 4.5.5: Values of the European Asian call option using RBF (Inverse multi-
quadric) with 101 points and r = 0.1, σ = 0.2, t0 = 0, T = 0.5, R0 = 0 and Rmax = 1

 

 

 

 



Chapter 5

A radial point interpolation method

to price options

In this chapter we introduce a radial point interpolation method (RPIM) to price

European and American put options. The case when no polynomial basis functions

are used, the RPIM approach reduces to the RBFs approach. The proposed method

is analyzed for stability. Some comparative numerical results are also presented. The

approach presented here is more beneficial for multi-asset problems which is out of the

scope of this thesis due to space limitation. However, it is the scope for our future

research.

5.1 Introduction

There are numerous variants of the mesh free approaches. One of the most popular

ones is the radial point interpolation method (RPIM) which is the subject of study in

this chapter and therefore we provide below a brief account of work using RPIMs.

Wang and Liu [106] proposed a point interpolation meshless method based on com-

bining radial and polynomial basis functions. The interpolation function thus obtained

passes through all scattered points and has an influence on the domain and therefore

shape functions have delta function property. This makes the implementation of es-

98
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sential boundary conditions much easier than the other meshless methods based on

the moving least-squares approximation. In addition, the partial derivatives of shape

functions are easily obtainable.

In [107], Wang et al. proposed an algorithm to solve Biots consolidation problem

using a RPIM. In time domain they proposed fully implicit integration scheme to avoid

spurious ripple effects. They studied some examples with structured and unstructured

nodes.

Dai et al. [24] presented a mesh free method for the static and dynamic analysis

of functionally graded material (FGM) plates based on the radial point interpolation

method (RPIM). They studied the convergence properties of their approach and com-

pared their results with those obtained by the finite element method.

In this chapter we present a radial point interpolation method for pricing American

and European put options. Using RPIM, we obtain a system of ordinary differential

equations which is then solved by a time integration methods. Since the American

options are allowed to be exercised any time before their expiry; they in turn lead

to a free boundary problem. To resolve the difficulties associated in solving this free

boundary problem, we use a penalty method.

The RPIM has the following advantages [69]: The shape function has the Kronecker

delta property, which facilitates easy treatment of the essential boundary conditions;

the moment matrix used in constructing shape functions is always invertible for ir-

regular nodes; and the polynomials can be exactly reproduced up to desired order by

polynomial augmentation. Some of these properties make the RPIM as a very power-

ful tool when solving complex problems like those considered in this chapter as well as

their possible extensions to price multi-asset options.

The rest of the chapter is organized as follows. The partial differential equation

models for pricing the two type of options described in Chapter 2 are again described

in Section 5.2 so as to keep this chapter self-contained. In Section 5.3 we discuss

the development of the radial point interpolation method. Section 5.4 deals with the

application of this method to solve these problems. The stability analysis of the full
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numerical methods is presented in Section 5.5. Some numerical results along with a

discussion on them are given in Section 5.6.

5.2 Problem description

The Black-Scholes model for pricing American and European options is an initial-

boundary value problem. For European options this problem reads as

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (5.2.1)

where r is the risk-free interest rate, S is the price of the stock, σ is the volatility of

the stock price, D is the dividend yield (which is constant in the present case) on the

stock, and V (S, t) denotes the option’s value at time t for the stock price S.

The initial condition is given by the terminal payoff function

V (S, T ) =




max(E − S, 0) for put

max(S − E, 0) for call

(5.2.2)

and the boundary conditions are given by

V (S, T ) =




V (0, t) = Ee−r(T−t), V (S, t) → 0 as S → ∞ for put

V (0, t) = 0, V (S, t) → S as S → ∞ for call

(5.2.3)

where T is the maturity time and E is the strike price of the option.

The exact solution of equation (5.2.1) with the initial condition (5.2.2) and the

boundary conditions (5.2.3) is given by ([112])

V (S, T ) =




Ee−r(T−t)N(−d2)− SN(−d1) for put

SN(d1)−Ee−r(T−t)N(d2) for call

(5.2.4)

 

 

 

 



CHAPTER 5. A RADIAL POINT INTERPOLATION METHOD TO PRICE
OPTIONS 101

where N(·) is the cumulative distribution function of the standard normal distribution

with

d1 =
log(S/E) + (r + 1

2
σ2)(T − t)

σ
√
T − t

(5.2.5)

and

d2 =
log(S/E) + (r − 1

2
σ2)(T − t)

σ
√
T − t

. (5.2.6)

On the other hand, the American option pricing problem takes the form of a free-

boundary problems. The early exercise possibility leads to the following model for the

value P (S, t) of an American put option to sell the underlying asset [55]:

∂P

∂t
+

1

2
σ2S2∂

2P

∂S2
+ rS

∂P

∂S
− rP = 0, S > Sf (t), 0 ≤ t < T

P (S, T ) = max(E − S, 0), S ≥ 0,

∂P

∂S
(Sf , t) = −1,

P (Sf(t), t) = E − Sf(t),

lim
S→∞

P (S, t) = 0,

Sf(T ) = E,

P (S, t) = E − S, 0 ≤ S < Sf(t), (5.2.7)

where Sf(t) represents the free boundary, E represent the exercise price of the option,

P denotes the value of the option and as before, σ is the volatility of the underlying

asset, r is the risk-free interest rate, D is the dividend yield on the stock.

Since early exercise is permitted, the P of the option must satisfy

P (S, t) ≥ max(E − S, 0), S ≥ 0, 0 ≤ t ≤ T. (5.2.8)

In the next section, we give a brief discussion on how to construct the shape functions

and their various derivatives using RPIM.
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5.3 The Radial point interpolation method

Following [69], we approximate the solution using the RPIM as

u(x) =

n∑

i=1

Ri(x)ai +

m∑

j=1

Pj(x)bj = RT (x)a+PT (x)b, (5.3.1)

where Ri(x) is the i-th radial basis function (RBF), n is the number of RBFs, m is

the number of polynomial basis functions (PBFs), and Pj(x) is monomial in the space

coordinates xT = [x, y]. It is clear that the conventional RBF is augmented with m

polynomial basis functions or in another words we can say that when m = 0, this RPIM

will coincide with the conventional RBF approach. Coefficients a and b are constant

vectors yet to be determined. The RBFs that we use in this chapter are described in

Table 1.2.1 in Chapter 1.

Coefficients ai and bj in equation (5.3.1), can be determined by enforcing equation

(5.3.1) to be satisfied at n nodes surrounding the point of interest x. This leads to

n linear equations, one at each node. The matrix form of these equations can be

expressed as

Us = Ra+Pmb, (5.3.2)

where the solution vector is

Us = [u1 u2 · · · un]
T , (5.3.3)

the moment matrix of RBFs is

R =




R1(r1) R2(r1) · · · Rn(r1)

R1(r2) R2(r2) · · · Rn(r2)
...

...
...

R1(rn) R2(rn) · · · Rn(rn)



(n×n)

, (5.3.4)
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with

rk =
√
(xk − xi)2 + (yk − yi)2, (5.3.5)

and the polynomial moment matrix is

Pm =




1 x1 y1 · · · Pm(x1)

1 x2 y2 · · · Pm(x2)
...

...
...

...

1 xn yn · · · Pm(xn)




(n×m)

. (5.3.6)

The coefficient vector multiplying to RBFs in (5.3.1) is

a = [a1 a2 · · · an]
T , (5.3.7)

and the coefficient vector multiplying to PBFs in (5.3.1) is

b = [b1 b2 · · · bm]
T . (5.3.8)

There are n +m variables in equation (5.3.2). The additional m equations comes

from the following m constraints

n∑

i=1

Pj(xi)ai = PT
ma = 0, j = 1, 2, · · · , m. (5.3.9)

Combining equations (5.3.2) and (5.3.9) we obtain the following system of equations

Ûs =


 Us

0


 =


 R Pm

PT
m 0




 a

b


 = Gã (5.3.10)

where

ã = [a1 a2 · · · an b1 b2 · · · bm]
T , (5.3.11)

 

 

 

 



CHAPTER 5. A RADIAL POINT INTERPOLATION METHOD TO PRICE
OPTIONS 104

and

Ûs = [u1 u2 · · · un 0 0 · · · 0]T . (5.3.12)

Because the matrix R is symmetric, it is therefore clear from the structure of the

matrix G that it will also be symmetric.

Solving system (5.3.10), we obtain

ã =


 a

b


 = G−1Ûs. (5.3.13)

Now equation (5.3.1) can be written as

u(x) = RT (x)a+PT (x)b = [RT (x) PT (x)]


 a

b




= [RT (x) PT (x)]G−1Ûs using (5.3.13)

= Φ̂T (x)Ûs, (5.3.14)

where the RPIM shape functions can be expressed as

Φ̂T (x) = [RT (x) PT (x)]G−1 (5.3.15)

= [φ1(x) φ2(x) · · · φn(x) φn+1(x) · · · φn+m(x)]. (5.3.16)

Finally, the RPIM shape functions corresponding to the nodal displacements vector

Φ(x) are obtained as

Φ(x) = [φ1(x) φ2(x) · · · φn(x)], (5.3.17)

where

Φk(x) =

n∑

i=1

Ri(x)Ḡi,k +

m∑

j=1

Pj(x)Ḡn+j,k, k = 1, 2, · · · , n, (5.3.18)

in which Ḡi,k is the (i, k)th element of matrix G−1.
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Equation (5.3.14) can be re-written as

u(x) = Φ(x)Us =

n∑

i=1

φiui. (5.3.19)

The derivatives of u(x) are obtained as

ux(x) = ΦT
x (x)Us. (5.3.20)

In the above, ux indicates a partial differentiation with x.

Equation (5.3.20) gives

∂Φk

∂x
=

n∑

i=1

∂Ri

∂x
Ḡi,k +

m∑

j=1

∂Pj

∂x
Ḡn+j,k (5.3.21)

and

∂2Φk

∂x2
=

n∑

i=1

∂2Ri

∂x2
Ḡi,k +

m∑

j=1

∂2Pj

∂x2
Ḡn+j,k. (5.3.22)

In case of Multiquadric radial basis function

R(‖S − xj‖) =
√

(‖S − xj‖)2 + c2, (5.3.23)

the partial derivatives are obtained as

∂R(‖S − xj‖)
∂S

=
(‖S − xj‖)√

(‖S − xj‖)2 + c2
(5.3.24)

and
∂2R(‖S − xj‖)

∂S2
=

c2

((‖S − xj‖)2 + c2)3/2
. (5.3.25)

In the next section we will discuss the use of above RPIM in pricing European and

American put options.
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5.4 Application of the radial point interpolation method

for pricing options

5.4.1 Pricing European options using RPIM

We approximate the unknown function, the value of the European option, V , using the

radial basis functions as

V (S, t) ≈
N∑

j=1

aj(t)Φ(‖S − xj‖), (5.4.1)

where Φ(‖S − xj‖) are the RPIM shape functions given by equation (5.3.17).

Collocating at the points xj j = 1, 2, · · · , N , equation (5.2.1) becomes

∂V (xi, t)

∂t
+

1

2
σ2S2

i

∂2V (xi, t)

∂S2
+ rSi

∂V (xi, t)

∂S
− rV (xi, t) = 0. (5.4.2)

Differentiating (5.4.1), we get

∂V (xi, t)

∂t
=

N∑

j=1

daj(t)

dt
Φ(‖S − xj‖), (5.4.3)

∂V (xi, t)

∂S
=

N∑

j=1

aj
∂Φ(‖S − xj‖)

∂S
(5.4.4)

and
∂2V (xi, t)

∂S2
=

N∑

j=1

aj
∂2Φ(‖S − xj‖)

∂S2
. (5.4.5)

In the construction of our radial point interpolation method, we use Multiquadric

radial basis functions (mentioned in Table 1.2.1) and the polynomial basis functions (as

indicated in (5.3.6)). By using equations (5.3.21)-(5.3.25) and substituting equations

(5.4.3)-(5.4.5) into (5.4.2), we obtain

Φ
da

dt
+ H̃a = 0, (5.4.6)
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where

H̃ =
1

2
σ2x2i

∂2Φ

∂x2
+ rxi

∂Φ

∂x
− rΦ. (5.4.7)

To solve the system described by equation (5.4.6), we use a θ-method

Φ
an+1 − an

∆t
+ θH̃an+1 + (1− θ)H̃an = 0, (5.4.8)

with the initial condition given by the first part of equation (5.2.2) and boundary

conditions given by the first part of equation (5.2.3).

We can rewrite equation (5.4.8) as

[Φ− (1− θ)∆tH̃ ]an = [Φ+ θ∆tH̃ ]an+1, (5.4.9)

an = [Φ− (1− θ)∆tH̃ ]−1[Φ+ θ∆tH̃ ]an+1. (5.4.10)

Equation (5.4.1) applied for all collocation points can be written in the matrix form as

V = Φa. (5.4.11)

Using equation (5.4.11), equation (5.4.10) can be written as

V n = Φ[Φ− (1− θ)∆tH̃ ]−1[Φ+ θ∆tH̃ ]Φ−1V n+1. (5.4.12)

The above equation is solved along with (5.2.2) and the first part of equation (5.2.3) to

obtain the numerical solution. Also the form of this equation should be read in context

to the computing process because in the problems like those considered in this chapter,

we usually have a final boundary value problem rather than an initial boundary value

problem. Note that the scheme given by (5.4.9) corresponding to θ = 0, 0.5, and 1 are

the implicit Euler, Crank-Nicolson and explicit Euler methods, respectively.
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5.4.2 Pricing American options using RPIM

In the case of the American option problem (5.2.7), we note that it is a free boundary

problem. Therefore before we proceed we modify the model by adding a penalty term.

This leads to the following nonlinear partial differential equation on a fixed domain

which is an initial-boundary value problem:

∂Pǫ

∂t
+

1

2
σ2S2∂

2Pǫ

∂S2
+ rS

∂Pǫ

∂S
− rPǫ +

ǫC

Pǫ + ǫ− q(S)
= 0, (5.4.13)

with the initial condition as the first part of equation (5.2.2), and the boundary con-

ditions as

Pǫ(0, t) = E, lim
S→∞

Pǫ(S, t) = 0, (5.4.14)

where C ≥ rE, q(S) = E − S, and 0 < ǫ≪ 1.

Again as before, in the construction of our radial point interpolation method, we

use Multiquadric radial basis functions (mentioned in Table 1.2.1) and the polynomial

basis functions (as indicated in (5.3.6)).

By using equations (5.3.21)-(5.3.25) and substituting equations (5.4.3)-(5.4.5) into

(5.4.2), we get

Φ
da

dt
+ H̃a+Q(a) = 0, (5.4.15)

where

Qi(a) =
ǫC

Φia+ ǫ− q(xi)
, i = 1, · · · , N

with Φi denoting the i-th row of the matrix Φ and

H̃ =
1

2
σ2x2i

∂2Φ

∂x2
+ rxi

∂Φ

∂x
− rΦ. (5.4.16)
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Now we use a θ-method to solve (5.4.15) which gives

Φ
an+1 − an

∆t
+ θH̃an+1 + (1− θ)H̃an + θQ(an+1) + (1− θ)Q(an) = 0. (5.4.17)

The nonlinear penalty term gives rise to a nonlinear system of equations whose solution

is usually found by a modified Newton’s method. However, by replacing an in the

penalty term by an+1(as in [55]), we obtain a linearly implicit scheme corresponding to

equation (5.4.17) which is given by

Φ
an+1 − an

∆t
+ θH̃an+1 + (1− θ)H̃an +Q(an+1) = 0, (5.4.18)

with the initial condition given by the first part of equation (5.2.2) and boundary

conditions given by equation (5.4.14).

5.5 Stability analysis of the numerical method

To proceed with the stability analysis, let us define the error at the nth time level by

en = V n
exact − V n

app, (5.5.1)

where V n
exact is the exact solution and V n

app is the numerical solution obtained by either

(5.4.8) or (5.4.18).

For the scheme given by (5.4.12) the error equation at (n+1)th level can be written

as

en = Ben+1, (5.5.2)

where B, the amplification matrix, given by

B = Φ−1[Φ+ θ∆tH̃ ][Φ− (1− θ)∆tH̃ ]−1Φ.

The numerical scheme is stable if ρ(B) ≤ 1, where ρ(B) is the spectral radius of B.
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Substituting B in equation (5.5.2) and simplifying, we obtain

[Φ− (1− θ)∆tH̃ ]Φ−1en = [Φ+ θ∆tH̃ ]Φ−1en+1, (5.5.3)

equation (5.5.3) can be written as

[I − (1− θ)∆tM ]en = [I + θ∆tM ]en+1, (5.5.4)

where M = H̃Φ−1 and I ∈ R
N×N is the identity matrix.

It is clear from equation (5.5.4) that the numerical scheme is stable if all the eigen-

values of the matrix [I − (1 − θ)∆tM ]−1[I + θ∆tM ] are less than unity, which means

that ∣∣∣ 1 + θ∆tλM
1− (1− θ)∆tλM

∣∣∣≤ 1. (5.5.5)

where λM represent the eigenvalues of the matrix M .

Equation (5.5.5) is similar to the one obtained in Chapter 2 and therefore we con-

clude that the explicit Euler method will be stable if ∆t ≥ −2/λM , λM ≤ 0; and the

implicit Euler and Crank-Nicholson’s methods are unconditionally stable.

5.6 Numerical results and discussion

Using the RPIM approach, the resulting problems for European and American put

options are solved via Crank-Nicolson’s method (i.e., θ = 0.5) with ∆t = 0.01. Results

are presented in Table 5.6.1 and Figure 5.6.3, respectively.

The parameters used for the simulations for European put option problem using

the multiquadratic radial point interpolation method are: r = 0.05, σ = 0.2, D =

0, E = 10, t0 = 0, T = 0.5, S0 = 0 and Smax = 30. We have set the parameter c

in the radial basis function as 2h where h = (Smax − S0)/(N − 1). The first column in

this table represents values of the asset price S, the second column represents the exact

solution and the other three columns indicated the numerical values of the European
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put option that we obtain using the radial basis function approach with 21, 41 and 101

nodes, respectively.

For the American put options, we choose r = 0.1, σ = 0.2, D = 0, E = 1, t0 =

0, T = 1, ǫ = 0.01, S0 = 0, and Smax = 2. We again use the Crank-Nicolson method

with ∆t = 0.01. Using the multiquadratic radial point interpolation method, we obtain

reasonably accurate results in the sense that they are very close to those obtained by

Fasshauer in [27]. This can be seen from Table 5.6.2.

Table 5.6.1: Values of European put option using radial point interpolation method
S Exact RPIM21 RPIM41 RPIM101
2 7.7531 7.7530 7.7533 7.7531
4 5.7531 5.7533 5.7531 5.7531
6 3.7532 3.7530 3.7593 3.7532
7 2.7568 2.7657 2.7593 2.7572
8 1.7987 1.8508 1.8080 1.8003
9 0.9880 1.0085 0.9909 0.9886
10 0.4420 0.5281 0.4628 0.4454
11 0.1606 0.2086 0.1754 0.1629
12 0.0483 0.0499 0.0504 0.0486
13 0.0124 0.0205 0.0147 0.0127
14 0.0028 0.0040 0.0035 0.0029
15 0.0006 0.0005 0.0006 0.0006
16 0.0001 0.0002 0.0001 0.0001

RPIM21: radial point interpolation method with 21 nodes.

RPIM41: radial point interpolation method with 41 nodes.

RPIM101: radial point interpolation method with 101 nodes.

Finally, figures 5.6.1 and 5.6.2 depict some special cases for European and American

put options as indicated in the figure captions.

In our numerical experiments, we search the value of shape parameter c in RBFs by

proceeding with the step 0.01 and plot the relationship between shape parameter and

max-error to select the optimal value of shape parameter. From Figure 5.6.4 we found

that the optimal value of shape parameters using Multiquadric is in the neighborhood

of 0.53.

Since the radial basis functions are infinitely differentiable, the computations of the
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Figure 5.6.1: Values of the European put on a dividend paying asset at t0 using 101
points and r = 0.05, σ = 0.2, E = 10, t0 = 0, T = 0.5, S0 = 0 and Smax = 30. The
curve with ’*’ shows payoff whereas the solid curve represents the value of the option

Table 5.6.2: Values of American put option using radial point interpolation method
S RPIM21 RPIM41 RPIM101
0.6 4.00E-01 4.00E-01 4.00E-01
0.7 3.00E-01 3.00E-01 3.00E-01
0.8 2.02E-01 2.02E-01 2.02E-01
0.9 1.17E-01 1.17E-01 1.17E-01
1.0 5.97E-02 6.02E-02 6.03E-02
1.1 2.88E-02 2.92E-02 2.93E-02
1.2 1.37E-02 1.40E-02 1.41E-02
1.3 6.79E-03 6.99E-03 7.05E-03
1.4 3.70E-03 3.84E-03 3.896E-03

RPIM21: radial point interpolation method with 21 nodes.

RPIM41: radial point interpolation method with 41 nodes.

RPIM101: radial point interpolation method with 101 nodes.

derivatives of the option’s values are readily available from the derivatives of the basis

functions. Using equation (5.4.3) we can easily calculate the value of the delta of an

option, which is the rate of change of the option value with respect to the asset price.
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Figure 5.6.2: Values of an American put on a dividend paying asset at t0 using 101
points and r = 0.1, σ = 0.2, E = 1, T = 1, ǫ = 0.01. The curve with ’*’ shows payoff
whereas the solid curve represents the value of the option
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Figure 5.6.3: Values of American put option using radial point interpolation method
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Figure 5.6.4: Effect of parameter c to computational error using radial point interpo-
lation method

Table 5.6.3 and Table 5.6.4 give the values of delta for European and American put

options using radial point interpolation method. It is clear from the results presented

in these tables that the numerical values of the option’s delta lie between −1 and 0

which is in agreement with what is mentioned in Hull [43]. Furthermore, in Table

5.6.5 we compare the option’s delta for American put with some other works seen

in the literature and found that our results are comparable with those obtained by

others. Figure 5.6.5 shows the values of European delta put option using radial point

interpolation method.

We also calculate the gamma (Γ) using (5.4.5). Table 5.6.6 gives the values of

gamma for European put options. The first column in this table represents the values

of the asset price S, the second column represents the analytical values of option’s

gamma and the third column represents the numerical values of it using the proposed

approach.
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Table 5.6.3: Values of option’s delta (∆) for European put using radial point interpo-
lation method

S Analytic values Numerical values
of option’s ∆ of option’s ∆

4 -1.0000 -1.0000
6 -0.9996 -0.9996
7 -0.9885 -0.9878
8 -0.9083 -0.9065
9 -0.6906 -0.6903
10 -0.4023 -0.4031
11 -0.1784 -0.1798
12 -0.0622 -0.0624
13 -0.0177 -0.0181
14 -0.0043 -0.0045
15 -0.0009 -0.0009
16 -0.0002 -0.0002

Table 5.6.4: Values of option’s delta (∆) for American put using radial point interpo-
lation method

S Numerical values of option’s ∆
0.6 -0.9999
0.7 -0.9964
0.8 -0.9480
0.9 -0.7202
1.0 -0.4219
1.1 -0.2155
1.2 -0.1017
1.3 -0.0459
1.4 -0.0206
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Figure 5.6.5: Values of option’s delta (∆) for European put option using radial point
interpolation method (Multiquadric)

Table 5.6.5: Comparison of option’s delta (∆) for American Put options
S LUBA EXP QFK RPIM
80 -1.0000 -1.0000 -1.0000 -0.9997
90 -0.6173 -0.6207 -0.6212 -0.6216
100 -0.3588 -0.3582 -0.3581 -0.3593
110 -0.2108 -0.2109 -0.2108 -0.2112
120 -0.1256 -0.1257 -0.1256 -0.1249

LUBA: Lower and Upper bound Approximations [10].

EXP: The multipiece Exponention [51].

QFK: Quadrature Formula of Kim equations [52].

RBF: Radial Basis Function approach proposed in this chapter.
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Table 5.6.6: Values of option’s gamma (Γ) for European put using radial point inter-
polation method

S Analytic values Numerical values
of option’s Γ of option’s Γ

4 0.0000 0.0000
6 0.0016 0.0017
7 0.0303 0.0315
8 0.1455 0.1461
9 0.2770 0.2768
10 0.2736 0.2722
11 0.1677 0.1678
12 0.0722 0.0723
13 0.0238 0.0242
14 0.0064 0.0066
15 0.0015 0.0015
16 0.0003 0.0003

 

 

 

 



Chapter 6

A mesh free method for solving the

Heston’s volatility model

In this chapter we construct a mesh free method by using radial basis functions (RBFs)

to price some put options of European and American type for the Heston’s model [38].

Using this RBFs approximation, we again obtain a system of ordinary differential

equations in each case which is then solved by a time integration methods. We use an

update procedure to solve this free boundary problem associated with the American

style options in the Heston’s model. The resulting method is analyzed for stability and

comparative numerical results are presented.

6.1 Introduction

The Heston’s model is named after Steven Heston (a professor in the Robert H. Smith

School of Business at the University of Maryland). It is a mathematical model that

describes the evolution of the volatility of an underlying asset [38]. Many attempts

were made to solve this model in the past. Below we provide some literature on the

approaches that are used to solve the problems described by the Heston’s model.

By transforming the original linear two dimensional stochastic volatility option

pricing PDE into a PDE with a nonlinear source term, Zvan et al. [117] proposed a

118
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penalty method for American options with stochastic volatility. They described several

methods for enforcing the early exercise constraint by using a penalty source term in

the discrete equations. The resulting nonlinear algebraic equations are solved using a

Newton’s method.

Clarke and Parrott [20] described an implicit finite difference approach for pricing

of American options on assets with a stochastic volatility. They used a multigrid

procedure for the fast iterative solution of the discrete linear complementarity problems.

They further improved the accuracy and performance of their approach by a strike-price

related analytic transformation of asset prices and adaptive time-stepping.

Dehgha [26] developed three new fully implicit methods which are based on the

(5,5) Crank-Nicolson method, the (5,5) N-H (Noye–Hayman) implicit method and the

(9,9) N-H implicit method for solving the heat equation in two dimensional space with

non-local boundary conditions.

Oosterlee [83] discussed a nonlinear multigrid method for a linear complementarity

problem to solve an American style option pricing problem. The convergence was

improved by a recombination of iterates. He discretized a 2D convection-diffusion

type operator with the help of second order upwind discretizations. The properties

of smoothers are analyzed with Fourier two-grid analysis. He compared his numerical

solutions with some reference results from the literature.

Ikonen and Toivanen [45] considered the numerical pricing of American options

under Heston’s stochastic volatility model. The price was given by a linear comple-

mentarity problem with a two-dimensional parabolic partial differential operator. They

proposed operator splitting methods for performing time stepping after a finite differ-

ence space discretization. Their numerical experiments show that the operator splitting

methods have comparable discretization errors. They also demonstrated the efficiency

of the operator splitting methods when a multigrid method is used for solving the

systems of linear equations.

Recently, Hout and Foulon [40] investigated four splitting schemes of the Alter-

nating Direction Implicit (ADI) type: the Douglas scheme, the Craig-Sneyd scheme,
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the Modified Craig-Sneyd scheme, and the Hundsdorfer-Verwer scheme, each of which

contains a free parameter. They discuss the adaptation of the above four ADI schemes

to the Heston’s PDE. They presented various numerical examples with realistic data

sets from the literature, where they considered European call options as well as down-

and-out barrier options.

In [116], Zhu and Chen applied singular perturbation techniques to price European

puts with a stochastic volatility model, and derived a simple and elegant analytical

formula as an approximation for the value of European put options.

The rest of the chapter is organized as follows. The option pricing problem is

described in Section 6.2. Section 6.3 deals with the application of radial basis functions

to solve this problem. The stability analysis of the numerical methods is presented in

Section 6.4. Finally some numerical results along with a discussion are given in Section

6.5.

6.2 The Heston’s model

The Heston’s model [38] is described by the stochastic differential equations

dxt = µxtdt+
√
ytxtdω1, (6.2.1)

and

dyt = α(β − yt)dt+ σ
√
ytdω2. (6.2.2)

Equation (6.2.1) models the stock price process xt . The parameter µ is the determin-

istic growth rate of the stock price and
√
yt is the standard deviation (the volatility) of

the stock returns dx/x. The model for the variance process yt is given by (6.2.2). The

volatility of the variance process yt is denoted by σ and the variance will drift back to

a mean value β > 0 at a rate α > 0. These two processes contain randomness as w1

and w2 are Brownian motions with a correlation factor ρ ∈ [−1, 1] (see, [45] for further

details).
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Heston’s model is derived by deriving a two-dimensional parabolic partial differ-

ential equation can be derived for the price of the American option using the above

stochastic volatility model ([117]):

∂u

∂t
+
1

2
yx2

∂2u

∂x2
+ρσyx

∂2u

∂x∂y
+
1

2
σ2y

∂2u

∂y2
+rx

∂u

∂x
+(α(β−y)−ϑσ√y)∂u

∂y
−ru = 0, (6.2.3)

where r is a risk free interest rate, and ϑ is a market price of the risk.

In the following, we assume ϑ to be zero as has been done in many previous stud-

ies, for example, in [83].

The option pricing problem is defined in an unbounded domain

(x, y, t)|x ≥ 0, y ≥ 0, t ∈ [0, T ].

In order to use radial basis function approximations for space variables, we truncate a

finite computational domain

(x, y, t) ∈ [0, X]× [0, Y ]× [0, T ] = Ω× [0, T ], (6.2.4)

with Ω := [0, X]× [0, Y ] where X and Y are sufficiently large.

For a put option the payoff function is

g(x) = max(E − x, 0), (6.2.5)

where E is the exercise price.

The value at the expiry gives the initial value for u, that is,

u(x, y, 0) = g(x) ∈ [0, X]× [0, Y ]. (6.2.6)
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On the truncation boundaries, we use the Neumann boundary conditions

∂u

∂x
(X, y, t) =

∂g

∂x
(X), (y, t) ∈ [0, Y ]× [0, T ] (6.2.7)

and
∂u

∂y
(x, Y, t) = 0, (x, t) ∈ [0, X]× [0, T ]. (6.2.8)

Because of the early exercise of the American option, we have to include the following

early exercise constraint for the option price

u(x, y, t) ≥ g(x), (x, y, t) ∈ Ω× [0, T ]. (6.2.9)

We will solve (6.2.3) using the RBF approach described in the next section.

6.3 Application of RBFs for solving Heston’s model

The radial basis function approach proposed for single asset problems in the previous

chapters is now being extended to solve a Heston’s model here. To begin with, we

approximate the unknown function u as

u(x, y, t) ≈
N∑

j=1

aj(t)φ (‖x− xj‖, ‖y − yj‖) , (6.3.1)

where a′js are unknown coefficients and φ(‖x− xj‖, ‖y − yj‖) are the RBFs.

We will use the following radial basis functions for this problem

φ(‖x− xj‖, ‖y − yj‖) = e−(‖x−xj‖2+‖y−yj‖2)/c2, (6.3.2)

where c is a positive parameter.
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Collocating at the same N points {xj}Nj=1 and {yj}Nj=1, equation (6.2.3) becomes

∂u

∂t
+

1

2
yix

2
i

∂2u

∂x2
+ ρσyixi

∂2u

∂x∂y
+

1

2
σ2yi

∂2u

∂y2
+ rxi

∂u

∂x

+ α(β − yi)
∂u

∂y
− rV = 0. (6.3.3)

In case of Gaussian basis functions differentiating (6.3.1), we get

∂u(x, y, t)

∂t
=

N∑

j=1

daj(t)

dt
φ(‖x− xj‖, ‖y − yj‖), (6.3.4)

∂u(x, y, t)

∂x
=

N∑

j=1

aj
−2(x− xj)

c2
e−(‖x−xj‖2+‖y−yj‖2)/c2 , (6.3.5)

∂u(x, y, t)

∂y
=

N∑

j=1

aj
−2(y − yj)

c2
e−(‖x−xj‖2+‖y−yj‖2)/c2, (6.3.6)

∂2u(x, y, t)

∂x∂y
=

N∑

j=1

aj
4(x− xj)(y − yj)

c4
e−(‖x−xj‖2+‖y−yj‖2)/c2 , (6.3.7)

∂2u(x, y, t)

∂x2
=

N∑

j=1

aj
(4(x− xj)

2 − 2c2)

c4
e−(‖x−xj‖2+‖y−yj‖2)/c2, (6.3.8)

∂2u(x, y, t)

∂y2
=

N∑

j=1

aj
(4(y − yj)

2 − 2c2)

c4
e−(‖x−xj‖2+‖y−yj‖2)/c2 . (6.3.9)

Substituting the above expressions for various partial derivatives into (6.3.3), we obtain

Φ
da

dt
+Ra = 0, (6.3.10)

where

Φij = e−(‖xi−xj‖2+‖yi−yj‖2)/c2 , (6.3.11)
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and

Rij =
1

2
yix

2
i

(
4(xi − xj)

2 − 2c2

c4

)
Φij + ρσyixi

(
4(xi − xj)(yi − yj)

c4

)
Φij

+
1

2
σ2yi

(
4(yi − yj)

2 − 2c2

c4

)
Φij + rxi

(−2(xi − xj)

c2

)
Φij

+ (α(β − yi)

(−2(yi − yj)

c2

)
Φij − rΦij . (6.3.12)

To solve the system described by (6.3.10), we use a θ-method:

Φ
an+1 − an

∆t
+ θRan+1 + (1− θ)Ran = 0, (6.3.13)

with the initial condition given by equation (6.2.6) and boundary conditions given by

equations (6.2.7)-(6.2.8).

We can rewrite equation (6.3.13) as

[Φ− (1− θ)∆tR]an = [Φ + θ∆tR]an+1, (6.3.14)

an = [Φ− (1− θ)∆tR]−1[Φ + θ∆tR]an+1. (6.3.15)

Equation (6.3.1) applied at all collocation point can be written in the matrix form as

u = Φa. (6.3.16)

Using equation (6.3.16), equation (6.3.15) can be written as

un = Φ[Φ− (1− θ)∆tR]−1[Φ + θ∆tR]Φ−1un+1. (6.3.17)

The above equation is solved along with (6.2.6) and equations (6.2.7)-(6.2.8) to obtain

the numerical solution. Also the form of this equation should be read in context to

the computing process because in the problems like those considered in this chapter,

we usually have a final boundary value problem rather than an initial boundary value
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problem. To this end, note that the scheme given by (6.3.14) corresponding to θ =

0, 0.5, and 1 are the implicit Euler, Crank-Nicolson and explicit Euler methods,

respectively.

6.4 Stability analysis of the numerical method

To proceed with the stability analysis, let us define the error at the nth time level by

en = unexact − unapp, (6.4.1)

where unexact and u
n
app are the exact and numerical solutions for the Heston’s model.

For the scheme given by (6.3.17) the error equation at (n+1)th level can be written

as

en = Ben+1, (6.4.2)

where B is the amplification matrix is given by

B = Φ−1[Φ + θ∆tR][Φ− (1− θ)∆tR]−1Φ.

The numerical scheme is stable if ρ(B) ≤ 1, where ρ(B) is the spectral radius of B.

Substituting B in equation (6.4.2) and simplifying, we obtain

[Φ− (1− θ)∆tR]Φ−1en = [Φ + θ∆tR]Φ−1en+1. (6.4.3)

This implies

[I − (1− θ)∆tM ]en = [I + θ∆tM ]en+1, (6.4.4)

where M = RΦ−1 and I ∈ R
N×N is the identity matrix.

It is clear from equation (6.4.4) that the numerical scheme is stable if all the eigen-

values of the matrix [I − (1 − θ)∆tM ]−1[I + θ∆tM ] are less than unity, which means
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that ∣∣∣ 1 + θ∆tλM
1− (1− θ)∆tλM

∣∣∣≤ 1, (6.4.5)

where λM represent the eigenvalues of the matrix M .

Note that it is the matrix R that significantly differs in this case. However, the

form of (6.4.4)is similar to the one obtained previously and therefore we conclude that

the explicit Euler method will be stable if ∆t ≥ −2/λM , λM ≤ 0, and the implicit

Euler and Crank-Nicholson’s methods will be unconditionally stable.

6.5 Numerical results and discussion

Using the RBF approach, the resulting problems for European put options in Heston’s

model are solved via implicit Euler methods (i.e., θ = 0). The parameter values used

in the simulation are given in Table 6.5.1. Results are presented in Table 6.5.2. We

use the computational domain as

[0, X]× [0, Y ]× [0, T ] = [0, 20]× [0, 1]× [0, 0.25].

We computed the prices of the American put options using radial basis functions

based on the Crank-Nicolson’s method. These prices are presented in Table 6.5.5 for

the asset values x = 8.0, 9.0, 10.0, 11.0, 12.0, and for the variance values y = 0.0625

and y = 0.25 with N = 32, L = 32 and M = 20.

We also note that even in this case the radial basis functions are infinitely differen-

tiable, therefore, the computations of the derivatives of the options values are readily

available from the derivatives of the basis functions. Thus using equations (6.3.5) and

(6.3.6) we can calculate the value of the delta and vega of an option, which is the rate

of change of the option value with respect to the asset price and volatility, respectively.

Table 6.5.3 present results for the delta and vega of European put options in Heston’s

model using radial basis functions.

We also calculate the gamma (Γ) using equation (6.3.8). It is the second partial
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Table 6.5.1: The parameter values used for European and American put options for
the Heston’s model

Parameter Value
σ 0.9
ρ 0.1
α 5
β 0.16
ϑ 0
r 0.1
Time to expiry (T) 0.25
Exercise price (E) 10

Table 6.5.2: Values of European put option using radial basis functions in Heston’s
model (y = 0.25)

Asset value Exact [45] Option value using RBFs Errors
8 1.9773 1.9855 0.0082
9 1.2780 1.2687 0.0093
10 0.7697 0.7704 0.0007
11 0.4360 0.4369 0.0008
12 0.2373 0.2462 0.0089

derivative of the portfolio with respect to the asset price. If the absolute value of

gamma is large, delta is highly sensitive to the price of the underlying asset. Table

6.5.4 gives the values of gamma for European put options.
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Figure 6.5.1: Values of European put option in Heston’s model using radial basis
functions

Table 6.5.3: Values of option’s delta (∆) and vega for European put option using radial
basis functions in Heston’s model

Asset value ∆ Vega
4 -0.9619 -0.0481
5 -0.9656 -0.0483
6 -0.8979 -0.0449
7 -0.7643 -0.0382
8 -0.6100 -0.0305
9 -0.4658 -0.0233
10 -0.3475 -0.0174
11 -0.2532 -0.0127
12 -0.1848 -0.0092
13 -0.1344 -0.0067
14 -0.0993 -0.0050
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Table 6.5.4: Values of option’s gamma (Γ) for European put option using radial basis
functions in Heston’s model

Asset value Γ
5 0.0299
6 0.0886
7 0.1308
8 0.1390
9 0.1246
10 0.1001
11 0.0756
12 0.0552
13 0.0392
14 0.0276

Table 6.5.5: Values of American put option in Heston’s model

Methods y Asset value
8 9 10 11 12

RBFs
0.0625 2.0081 1.1277 0.5444 0.2097 0.0762
0.25 2.0590 1.3066 0.7907 0.4475 0.2520

OS [45]
0.0625 2.0000 1.1061 0.5178 0.2122 0.0815
0.25 2.0778 1.3323 0.7944 0.4470 0.2420

[83]
0.0625 2.0000 1.1070 0.5170 0.2120 0.0815
0.25 2.0790 1.3340 0.7960 0.4490 0.2430

[117]
0.0625 2.0000 1.1076 0.5202 0.2138 0.0821
0.25 2.0784 1.3337 0.7961 0.4483 0.2428
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Figure 6.5.2: Values of American put option in Heston’s model using using radial basis
functions

 

 

 

 



Chapter 7

Concluding remarks and scope for

future research

In this thesis, we used a special class of numerical methods, namely, Mesh Free Meth-

ods, to study the differential models for pricing options. We applied this method to

solve some standard and nonstandard options and then extended to solve the Heston’s

model. The methods in each of these cases are analyzed for stability and thorough

numerical results are presented and compared with those seen in the literature.

In Chapter 2, We developed an efficient mesh free methods based on the radial

basis functions (RBFs) to solve European and American option pricing problems in

computational finance. The application of RBFs leads to system of differential equa-

tions which are then solved by a time integration scheme. The main difficulty in pricing

the American options lies in the fact that these options are allowed to be exercised at

any time before their expiry. Such an early exercise right purchased by the holder of

the option results into a free boundary problem. We added a small penalty term to

covering PDEs to removed the free boundary. The proposed method is analyzed for

stability. Numerical results describing the payoff functions and option values are also

presented. We also performed some simulations for Greeks, in particular, option’s delta

and gamma.
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In Chapter 3, we extend the approach used in Chapter 2 to solve problems of pricing

European and American put options with dividend yield.

In Chapter 4, we extend the approach to solve two type of exotic options, namely,

European barrier and European Asian options. This approach is further extended to

solve problems of pricing European style double barrier options and digital options.

Finally, we presented some numerical experiments using a number of radial basis func-

tions.

In Chapter 5, we described the valuation of European and American put options

using a mesh free method which is based on a radial point interpolation approximations.

The valuation of European options explained thoroughly and the numerical results are

compared with the analytical ones. In the case of American options, we have a free

boundary condition which usually places a great difficulty for many numerical methods.

We added a penalty term to fix this boundary and obtained reasonably accurate results.

We performed some simulations for Greeks, in particular, option’s delta and gamma.

Furthermore, the proposed method is analyzed for stability and we found that it is

unconditionally stable.

Finally, in Chapter 6, we extend the radial basis functions (RBFs) for solving

Heston’s model. Both European and American style options are solved.

Overall we found the proposed numerical methods very pleasing. However, we

discover that much more can be done using this approaches. Therefore, below we list

some research issues that we would like to address in future.

• Using RBF approximation we obtain a systems of ordinary differential equations,

which are then solved by time integration techniques. When we attempted to

solve multi-dimensional problems, we found that these systems are highly ill-

conditioned. We have partly solved such problems using matrix decomposition

approach (LU factorization). However, currently we are exploring the use of some

matrix regularization technique, for example, truncated singular value decompo-

sition (TSVD).
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• Another aspect that we are looking at currently is to devise high order time

integration schemes.

• RPIM approach presented in Chapter 5 seem a very powerful approach for multi-

asset options. We are exploring it currently.

• Recently we have also started experimenting our approach to solve some partial

integro-differential models in finance. This includes a jump-diffusion model in

which the asset price motion is given by a process of the form

dS

S
= νdt + σdz + (η − 1)dq, (7.0.1)

where ν is the drift rate, σ is the volatility of the Brownian part of the process,

and dq is a Poisson process. Here dq = 0 with probability (1 − λ), and dq = 1

with probability λ dt, where λ is the Poisson arrival intensity, and η − 1 is an

impulse function giving a jump from S to Sη. The average relative jump size,

E(η − 1) is denoted by k. The Poisson process dq is assumed to be independent

of the Wiener process dz.

Merton [77] showed that with the above assumptions that the value of a con-

tingent claim V (S, τ) depending on the asset price S and time τ satisfies the

following partial integro-differential equation:

Vt =
σ2S2

2
VSS + (r − λk)SVS − (r + λ)V + λ

∫ ∞

0

V (Sη)g(η)dη, (7.0.2)

where t = T − τ is the time till expiration at T , r is the risk free interest rate,

and g(η) is the probability density function of the jump size η.

With the change of variables (cf. Cruz-Báez and Rodriguez [23])

S = ex, η = ey, t = 2
τ̃ − T

σ2
, V (S, t) = eαx+βτ̃u(x, τ̃),
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where

α =
1

2
− (r − λk)

σ2
, β = −1

4

(
2r

σ2
− 2λk

σ2
+ 1

)2

− 2
λk

σ2
.

The equation (7.0.2) takes the form

uτ̃ = uxx − λu+ λ

∫ ∞

−∞
h(y − x)u(y, τ̃)dy, τ̃ ∈

(
0,

1

2
σ2T

]
, (7.0.3)

where h(y) = g(ey)eδy, for some suitable real constant δ.

With the help of some adaptive quadrature formula to solve the above integral,

we are busy extending the proposed mesh free method to solve problem described

by equation (7.0.3).
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