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ABSTRACT 
 
Studies involving the use of natural clays such as bentonite, montmorillonite and 

natural zeolite clinoptilolite in water treatment have been reported. Researchers 

suggested cost effective processes, such as ion-exchange and adsorption for the 

removal of heavy metals from waste waters by using naturally occurring and 

synthetic materials. The current study investigated application of natural adsorbents 

in brine treatment. Brines are hypersaline waters generated in power stations and 

mining industries rich in Mg2+, K+, Ca2+, Na+, SO4
2-

, Cl- and traces of heavy metals, 

thus there is a need for these brines to be treated to recover potable water and remove 

problematic elements. Natural adsorbents have been successfully used in waste water 

treatment because of their high surface area and high adsorptive properties when they 

are conditioned with acid or base. 

 

The natural adsorbents used in this study were obtained from Ecca Holdings company 

(Cape bentonite mine) Western Cape in South Africa, comprising bentonite clay and 

natural zeolite (clinoptilolite) and another clinoptilolite sample was obtained from 

Turkey. These adsorbents were investigated in their natural and pretreated form for 

removal of toxic elements in brine water. The pretreatment was aimed at removing 

Na+, K+, Ca2+, Mg2+ from the clinoptilolite as well as the bentonite and replacing 

these cations with the H+ cation to activate the materials. 

 

The cation exchange capacity (CEC) of natural zeolite from South Africa was found 

to be 2.14 meq/g, Turkish Clinoptilolite was 2.98 meq/g while South African 

bentonite was 1.73 meq/g. at 25ºC using ammonium acetate (pH 8.2) method. 

Characterization of these natural adsorbents was done prior to pretreatment and after 

the treatment. ICP-AES analysis was used for determination of toxic elements in 

brines before and after sorption. The morphology of clays was characterized by X-ray 

diffraction (XRD), Brunauer Emmett Teller (N2-BET) and Scanning electron 

microscopy (SEM) for confirmatory purposes and X-ray Fluorescent spectroscopy 
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(XRF) was used for the composition analysis of the natural adsorbent. The results 

from batch experiments prior to pretreatment of the natural adsorbents showed that 

these natural adsorbents contained  Mg2+, K+, Ca2+, Na+ in their structures as charge 

balancing cations, thus needed pretreatment to remove the cations. The natural 

adsorbents were pre-treated with 0.02M HCl. After the pretreatment of natural 

adsorbents it was possible to enhance the percentage removal of the major cations 

from brine, and the Na+ and Mg2+ removal achieved (86 % and 85% respectively) 

from brine was more than Co2+ (70% ) the SC was the adsorbent  one that gave 

highest removal of cations in the brines. Trace elements removal was high with 

Cu2+and Zn2+ being the highest of toxic elements in brine. The optimum contact for 

the toxic element removal was found to be 30 min for the Turkish clinoptilolite and 1 

hr for the South African clinoptilolite and South African bentonite clay. Leaching of 

Al3+ and Si4+ during adsorption was also investigated and it was found that less than 1 

ppm of Al3+ and Si4+ were leached into the solution during adsorption experiments 

indicating that these materials were stable. The investigation of pH showed that 

natural adsorbents did not perform well at low pH of 4 and 6. The adsorbents were 

able to work efficiently at the natural pH of 8.52 of the brine solution. These results 

show that natural adsorbents hold great potential to remove cationic major 

components and selected heavy metal species from industrial brine wastewater. 

Heterogeneity of natural adsorbents samples, even when they have the same origin, 

could be a problem when wastewater treatment systems utilizing natural clinoptilolite 

and bentonite are planned to be developed. Therefore, it is very important to 

characterize the reserves fully in order to make them attractive in developing 

treatment technologies.  
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1 

OUTLINE OF THE THESIS 

This thesis consists of five chapters and is structured as follows: 

Chapter 1: Background  

This chapter outlines the introduction, brief overview of the background, motivation of 

the study objectives of the study, problem statement, hypothesis, research approach, 

scope and delimitations together with research frame work. 

Chapter 2: Literature review 

This chapter gives insight on the significance, and general literature on clays, brines 

and applications and characteristics of clays and natural zeolites, the impact of brine on 

the environment, the methods used in brine treatment. 

Chapter 3: Methodology 

This chapter details the methodological approach and characterization of the clays 

using various characterization tools such as X-ray diffraction, N2-BET analysis, Cation 

Exchange capacity and the research design as well as procedures selected for the 

adsorption experiments, instruments used and motivation of the choice of the 

adsorption methods and techniques used. 

Chapter 4: Results and Discussion 

In this chapter the results of characterization, adsorption, equilibrium of adsorption 

process for natural clays and natural zeolites are presented and discussed with relevant 

references to literature. 

Chapter 5: Conclusion and Recommendations 
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This chapter draws the conclusion of this thesis by summarising all the main points, 

highlights and recommendations. It also outlines future research from the results 

obtained in this study. 
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CHAPTER 1 

1 INTRODUCTION 
 
This chapter presents the background, problem statement, aims and objectives, 

motivation of the study, research questions, hypothesis, research approach and scope 

and delimitations of the thesis. The study will to a great extent focus on the 

preparation of natural clay and natural zeolite materials and their uses as adsorbents 

in waste water. 

 

1.1 Background 

Water treatment has been the subject of much interest due to pollution of water by 

heavy metals and toxic elements. Hence, many researchers have suggested a cost 

effective process, such as ion-exchange, to remove heavy metals from waste waters by 

using naturally occurring and synthetic materials (Szostak et al., 1989; Zamzow et al., 

1992); Zoumis et al., 2000). The term heavy metal refers to metals such as Cd, Cr, Hg, 

Ni, Pb and Zn which are commonly associated with pollution and toxicity problems 

(Griffin, 1988). 

Several methods of water purification such as ion-exchange, adsorption, precipitation, 

ultra filtration, reverse osmosis, phytoextraction and electrodialysis have been studied 

(Morali, 2006; Mamba et al., 2009). However industrial water such as mine water 

and effluents such as brines often contain toxic metals or elements that impose cost 

restraints when it comes to their purification. Ion-exchange and adsorption are two 

main methods that are well-known for heavy metal removal by natural clays and 

zeolites (Morali, 2006). 

 

Brines are hyper saline waters that contain high concentrations of salts and toxic 

elements. They are problematic effluents created by the desalination processes such 

as Reverse Osmosis (RO), electrodialysis (ED), used for coal and gold mining, 
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evaporative cooling power stations and process industries. Such brines are also found 

in nature in the interior of earth, and they are also found on the earth’s surface as 

byproducts of mining, gas production and oil production (Ndlovu-Yalala, 2010). The 

mine drainage arising from mining operations has a daily contribution of chlorides 

and sulphates to water streams or rivers. The high salt content in mine water prevents 

its use in agriculture and for consumption and causes tremendous economic losses 

due to corrosion attacks on pipes and machines etc (Ericsson, 1996).     

 

Clay refers to naturally occurring minerals composed mainly of fine grained minerals 

that make up colloid fraction (particle size of ~2 µm) which possess plasticity when 

exposed to water and harden when dried (Guggenheim, 1995). There are several clay 

types, among others there are smectites, chlorite, illite and kaolin. The low cost 

material such as fly ash and clays were studied for waste water treatment (Sanchez et 

al., 1997). Clays have high surface areas which previously had been suggested as 

sites where concentration and catalysis can take place (Jiang et al., 2004). Natural 

zeolites have open, three dimensional structures that help in losing and gaining water 

reversibly and to exchange extra framework cations, both without change of crystal 

structure (Mumpton, 1999). For this reason natural clay and natural zeolite have been 

of interest in water treatment studies among other adsorbent. In the current study 

clays and zeolites were chosen because of their unique properties to adsorb toxic 

metals in the layered and swelling structure of clays and zeolites for their open three 

dimensional structures from concentrate water such as brine and cost effectiveness 

because of their abundance all over the world.  

 

1.2 Problem statement 

 

There is a need for cost effective ion exchangers to purify effluents with lower cost 

and beneficial outcomes (Sanchez et al., 1997). 
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Recent studies have focused on wastewater and brine treatment using low cost ion 

exchangers such as natural zeolites and clays (Vega et al., 2005; Mamba et al., 2010; 

Bhattacharya et al., 2008 ). Some of these studies showed removal of heavy metal 

and toxic elements from waste waters from mining industries all over the world 

including South Africa. Clays play an important role in the environment by acting as 

natural scavenger by taking up some elements through ion exchange or adsorption 

(Bhattacharya et al., 2008). Zeolites act as molecular sieves also natural scavengers, 

have properties including adsorption, cation exchange, catalysis and dehydration and 

rehydration (Mumpton, 2009). In South Africa there are large deposits of these 

natural zeolites and natural clays in Kwazulu Natal, Gauteng and Western Cape 

provinces. However these natural materials have not been used intensively in South 

Africa for treatment of waste waters as compared to other countries where the use of 

the natural materials have been extensively studied.  

 

The disposal of brines known as hypersaline waters has been a challenge to South 

African power utilities and mines due to the large volumes generated and the high 

concentration of contaminants in the wastewaters. To combat this problem several 

methods are used to treat this kind of water but many of the methods used for 

purification end up releasing two types  of water, clean water and the concentrated 

reject brine. Thus there is a need for their remediation and purification of water using 

less expensive and abundantly available materials. 

Mine water can be broadly classified into two distinct groups, the one kind which has 

a scaling potential with CaSO4 and those waters which do not. These concentrated 

process brines also need to be treated to obtain clean water from them as South Africa 

is a country that has water shortages. The major disadvantage for waste water 

treatment utilization comes from economic consideration, since other adsorbents such 

activated carbons or ion exchange materials such as commercial resins are quite 

expensive therefore rendering them costly for large scale operation (Putra et al., 

2009). Acid water treatments plants, such as Emalahleni water treatment plant near 

Mpumalanga, have provided a challenge of how to recover residue water left in the 
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brines and to develop a process to produce saleable by-product from brines (Coaltech, 

2008). 

 

1.2.1 Study area 

The source of brine studied in this research was a stage 3 effluent waste from 

Emalahleni water desalination plant in Mpumalanga province in South Africa. The feed 

source to the reverse osmosis plant (RO) is a large volume of excess coal mine water 

with a high salt concentration from four fully operational coal mines in the 

Mpumalanga area which water is  associated with ions such as Ca2+, Mg2+, SO4
2-

[neutral type of water] or is slightly acidic associated with iron, manganese and 

aluminum metal (Ndlovu-Yalala, 2010). Natural adsorbents are of interest in treatment 

of waste water streams because of their abundance in all over the world, cost 

effectiveness and success in recovering metal ions in waste streams. 

The natural clay (bentonite) and natural zeolite (clinoptilolite) from Ecca Holdings 

Company in South Africa and natural zeolite (clinoptilolite) from Turkey and also 

attapulgite clay from South Africa were used in the treatment of Stage 3 brine effluent 

from Emalahleni water desalination (RO) plant, which effluent is high in salt. This RO 

treatment plant is fed by acidic, saline mine waters from four different coal mines in the 

Witbank area. The natural adsorbents, bentonite and clinoptilolite from South Africa 

were obtained from the Ecca holdings Holdings Company from the Western Cape 

displayed in the geology map below. 
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Figure 1.1: Map displaying bentonite and clinoptilolite and active mines in South 

Africa (DME, 2004) 

 

1.3 Motivation of the study 

Several studies (Onyango et al., 2010; Langella et al., 2000) have been reported on 

the use of natural and functionalized adsorbents materials such as natural zeolite 

clinoptilolite and bentonite to adsorb contaminants from wastewaters. This study was 

motivated by studies carried out by  Sanchez et al., (2007) and Hamidpour et al., 

(2010) who explored the use of natural adsorbents such as clays and zeolites for the 

removal of heavy metals from wastewaters. It has been shown that the edges and 

faces of clay particles can adsorb anions, cations, non-ionic and polar contaminants 
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from natural water or contaminated water. The contaminants accumulate on the clay 

surface leading to their immobilization through the processes of ion exchange, 

coordination or ion-dipole interactions (Bhattacharya et al., 2008). Extensive research 

has been conducted on different natural adsorbents such as bentonite clays as well 

clinoptilolite under laboratory such studies are lacking on zeolites and clays from 

South Africa. This study, therefore investigates the use of natural zeolites 

(clinoptilolite) and clays from South Africa in the treatment of waste water. Turkish 

natural zeolite (clinoptilolite) was used as comparison. Addition of using the Turkish 

natural zeolite in this process would be useful. 

 

1.4 Aims and objectives of the research 

The main aim of this research was to investigate the possibility of using different 

low-cost natural adsorbents materials mined in South Africa for the treatment of brine 

generated by power and mining industries in South Africa.  

 

The objectives of this study included the following: 

i. Understand the mineralogical, physicochemical characteristics and surface 

areas of the different natural South African  clays and zeolite as adsorbents  

ii. Determine the effect of untreated natural adsorbents materials and pretreated 

adsorbents in toxic elements removal from industrial waste water (brines). 

iii. Compare characteristics of naturally occurring South African zeolites and 

clays to adsorbent from Turkey 

iv. Compare the adsorption capacity of South African natural adsorbents with the 

natural zeolite from Turkey 

v. Investigate the use of several natural adsorbents for the uptake of toxic 

elements and heavy metals in the stage 3 brine effluent from Emalahleni 

power plant. 

 

 

 

 

 



  
    

 10

1.5 Research questions 

To achieve the above objectives the following questions need to be answered:  

1. What is the chemical composition of brines produced by industrial power 

stations? 

2. What are the mineral and chemical composition and characteristics of natural 

adsorbents? 

3. What is the best method to activate these natural adsorbents in order to enhance 

their adsorption capacity without destroying their structure? 

4. What is the adsorption capacity of these adsorbents materials for both treated and 

untreated? 

5. Can the natural clays effectively remove alkali/alkaline earth elements/species in 

brines 

6. What are the mechanisms involved in the removal of the species from brine by 

the clay material?  

7. Do the natural adsorbents leach? 

 

1.6 Research Approach 

The experimental approach was divided into four stages. The first stage involved the 

characterization of natural clays and zeolites.  The second stage involved the 

preliminary adsorption experiments of adsorbents (before activation) using the stage 3 

brine solutions obtained from Emalahleni water reclamation plant. The third stage 

involved the pretreatment of clays and zeolites for improved sorption capacity. The last 

stage involved the actual adsorption experiments after pretreatment with acid and the 

comparison of the various materials before and after activation. 

Adsorption experiments performed included the investigation of various parameters 

such as temperature, contact time and pH and adsorption experiments were studied to 

understand the adsorption capacity for Ca2+, Mg2+, Na+ and K+ of the various locally 
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sourced natural adsorbents. The suite of toxic elements such as Cu2+, Zn2+, Pb2+ that 

could be removed by these materials was also evaluated  

The study was carried out by focusing on the following: 

 Characterization of the natural clay and zeolite material 

 Pretreatment of the natural adsorbents 

 Comparative batch adsorption experiments comparing clays and zeolites 

              Investigation of metals that leached during adsorption. 

1.6.1 Characterization of the natural clay and zeolite materials 
 
In the first stage of the experimental procedure, the clays and zeolites used were 

obtained via Ecca Holdings Company mined in the Cape bentonite mine in South 

Africa and the other natural zeolite used was obtained from Turkey. The choice for 

the use of the natural clays from Ecca Holdings is because limited research has been 

carried out on this deposit compared to the natural zeolite (clinoptilolite) from 

Kwazulu Natal sold by Pratleys Company. Turkish zeolite was used based on the 

previous study by (Cakicioglu-Ozkan et al., 2005). It proved to be a high-silica 

clinoptilolite that meant it was a reasonably pure zeolite. The natural zeolites and 

bentonite clay were characterized by using different techniques such as X-ray 

diffraction (XRD) for mineralogy of the materials, X-ray fluorescence (XRF) for  

elemental composition, scanning electron microscopy (SEM) for morphology, 

adsorption-desorption Nitrogen N2 BET for surface area and pore size, cation 

exchange capacity (CEC) for the exchange capacity.  

1.6.2 Preliminary adsorption experiments 

The second stage of the study involved the preliminary adsorption experiments of 

clays (before activation) using the stage 3 brine solutions obtained from the 

Emalahleni RO water reclamation plant. In the second stage of the experimental 

 

 

 

 



  
    

 12

procedure, the preliminary adsorption experiments were performed using these 

natural clays and zeolites to remove major cations or toxic elements from brines 

obtained from Emalahleni water reclamation plant. The parameters that showed a 

significant experimental influence in the first stage and also those parameters of 

importance as identified from the literature were investigated in more detail. It was 

important to vary the contact time to see if time had an effect on the adsorption 

capacity of natural zeolites and clays.  

These first two stages of the study were all geared towards obtaining percentage 

purity of each material, information on mineral phases present; obtain cation 

exchange capacity and adsorption capacity. The last two stages were geared towards 

obtaining improved adsorption capacity by natural clays and natural zeolites. Among 

other clays attapulgite (palygorskite) was also briefly investigated in this study since 

it also consist of smecticte clay. Replication of some experiments was conducted to 

check the reproducibility of adsorption procedures. To carry out adsorption 

experiments, the cation exchange capacity of the clays had to be investigated first to 

better understand the exchange sites of the clays, and thus identify which activation 

method to use and also to identify their baseline ion exchange capacity before 

activation. The application of untreated clays and zeolites was carried out to 

understand the effect of pretreatment and activation on improvement of the 

adsorption capacity. 

 

1.6.3 Pretreatment of clays (activation) 
 

The third stage involved the pretreatment of clays for improved sorption capacity. 

This section of the study was motivated by results reported by (Mamba et al., 2009); 

(Cakicioglu-Ozkan et al., 2005) who used HCl in the activation of zeolites and found 

that they adsorb Co2+, Cu2+ and water vapour respectively when the zeolites were 

treated with HCl as compared to  NaCl and KCl treated zeolites.  
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1.6.4 Adsorption experiments after pretreatment 

The last stage involved the actual adsorption experiments after pretreatment with the 

acid and the comparison of the various materials before and after activation. This 

section of the study involved obtaining optimum contact time and pH for effective 

adsorption of cations and toxic elements. 

1.7 Scope and delimitations of the study 

All the relevant work to this study has been highlighted and acknowledged. Due to time 

constraints this study mainly focused on one type of natural clay out of more than 50 

natural and 200 synthetic zeolites. The smectite clay and natural zeolite (clinoptilolite) 

were chosen for the current study. The smectite clay also known as swelling clay or 

bentonite and natural zeolite clinoptilolite from South Africa chosen for this study were 

obtained from Ecca Holdings Company in South Africa, and for comparison purposes, 

the natural zeolite clinoptilolite from Turkey. The choice of these clay materials was 

motivated by the outcome of relevant studies from literature and the fact that they are 

cost effective adsorbent and locally available. 

In the current study the following areas were not investigated: 

 Modification of clays for heavy metal removal 

 Effect of adsorbent dose 

 Kinetics of adsorption because of time constraints 

 Modeling of solutions 

Factorial design 

1.8 Hypothesis 

Natural South African minerals can be optimized for effective adsorption of toxic 

cations and elements from brine wastewaters.  
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CHAPTER 2 

LITERATURE REVIEW 

It is important in this section to discuss brines, the origin of the clay materials and 

natural zeolites, their background in use as adsorbents as well as their applications and 

properties. This chapter is going to present the relevant literature on use of clays and 

zeolites as alternative adsorbents in waste water treatment as well as brines. 

2.1 Water Pollution 

Water is the essence of life and its scarcity causes huge problems for populations and 

societies. All over the world preservation of water is crucial. South Africa is a semi-arid 

country with water shortages and the need for fresh water is increasing because of 

rapidly increasing population. In South Africa the greatest pollution of water comes 

from mining industries. Industrial power plants handle large volume of process waters, 

which are contaminated with fines, chemicals, metal ions, and other materials (Feng, 

2004). These streams often contain heavy metals and these heavy metals are very 

common in electroplating, electrolytic refining plants and acid mine drainage waters. 

Brine is water saturated with dissolved salts such as sodium, calcium, potassium, 

chlorides, sulphates and nitrates ions and high total dissolved solids (> 1,500 mg/kg 

TDS). Since brine is a by-product of various water treatment processes such as 

desalination, mine water, power generating station it needs proper handling when 

disposed because of its potential to pollute ground water. Surface water pollution 

resulting in salinity levels in excess of the Department of Water Affairs and Forestry 

(DWAF)’ limits (Guther et al., 2008).                                                                    

2.2 Brines 

Brines are saline waters that are saturated or near saturation with dissolved salts such as 

Na+, Cl-, Ca2+, Mg2+, K+, SO4
2- and NO2

-
 ions (Sonqishe et al., 2009), thus brines 
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consist of high concentrations of dissolved components such as sodium and 

magnesium. Brines are of commercial interest, especially in the production of table salt. 

Brines also occur in nature and are found in the interior of the earth as well as on 

earth’s surface as salts lakes or by-products of mining, gas production and oil 

production.  

The feed source of South African brine produced from coal mining industries in the 

Witbank region is a large volume of excess ground water with considerably high salt 

concentration from coal mines which are either associated with Ca, Mg, SO4
2- (neutral 

type of water) or is slightly acidic (associated with Fe, Mn and Al metals) (Ndlovu-

Yalala, 2010). Brines have many applications besides the production of salts. Studies 

have shown that brines can also be used in oil production. In the USA crude oil and 

processed hydrocarbons are easily stored in caverns produced in domes by solution 

mining salt. These hydrocarbons float on brines within the cavern and are readily 

recovered by simply pumping brine back into the well (Varjian, 2003). Subsurface 

caverns especially those used for the mining of table salt, saline lakes and the saltwater 

ocean are three principal sources of brine for commercial use. Even though brines have 

economic value in some circumstances, brines may cause considerable problems where 

they leak into potable drinkable water supplies or contaminate water for drinking or 

irrigation water used for animals, crops, gardens, or agricultural land. The most 

problematic brines are those that contain toxic elements released from industry or 

mines. The mine drainage of water arising from mines has a daily contribution of Cl- 

and SO4
2- to water streams or rivers. The high salt content in water prevents its use 

from agriculture and for consumption and causes tremendous economic losses due to 

corrosion attacks on pipes and machines, etc (Ericsson, 1996). 

To combat this problem several methods are used to treat saline waters but many of 

the methods used for purification end up releasing two kinds of water, clean water 

and the even more concentrated reject brine. The removal of metal cations from 

aqueous solutions can be achieved by several processes such as solvent extraction, 

precipitation, adsorption and ion exchange (Tehrani, 2005). There is a need to recover 
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salts and potable water from brines produced by industries in South Africa due to 

water shortages. Acid water treatments plants such as the Emalahleni plant near 

Mpumalanga has provided a challenge of how to recover residue water left in the 

brines and to develop a process to produce saleable by-product from reject brines 

(Coaltech, 2008). This study is focused on the treatment of brines produced at the 

Emalahleni plant using natural adsorbents. 

 

Figure 2.1: Emalahleni Water Reclamation plant (www.mmma.org.za/presentations) 
 

2.2.1 Brine Formation 
 

Brine is formed as result of water treatment when a Tubular Reverse Osmosis (TRO) 

process takes places to treat wastewater such as the case at the Emalahleni treatment 

plant. It is a concentrate stream that contains a TDS concentration greater than 36 

g/L. Brines may also contain low amounts of certain chemicals used during 

pretreatment and post-treatment (cleaning). Concentrates are high in salinity and may 

contain low concentrations of various chemical as well as elevated temperatures pose 

a threat to riverside habitats and receiving water environments. TRO is a pressure-
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driven membrane process operating at about 4000 kPa (Juby, 1992). The membranes 

available in this configuration are made of cellulose acetate thinly coated on the 

inside of synthetic support tubes of 12 mm diameter. The membrane allows water to 

pass through it but rejects up to 95 per cent of the salts, which remain inside the tubes 

as the brine stream (Juby, 1992). In this study the brine studied was an effluent waste 

from Emalahleni water (RO) desalination plant, stage three brine effluents.  

2.2.2 Desalination processes 

Desalination is the process whereby salty water is turned into fresh water. Water re-use 

and desalination emerged because of limited water resources to support daily fresh 

water supplies in many countries. Greenlee et al, (2009) define fresh water as 

containing less than 1000 mg/L of salts or total dissolved solids (TDS). The 

desalination processes give rise to a concentrated brine stream after the treatment of 

salty water. In the production of fresh water, dissolved salts are concentrated to produce 

saline stream or concentrate brine which must be disposed of. Currently potable water 

production by desalination is increasing world-wide because of increasing population 

and demand for water. Fresh water resources like groundwater, rivers and lakes are 

misused or overused, and as result these resources are diminishing or becoming saline. 

Desalination of water had been used to provide water for uses in irrigation, power plant 

cooling water, industrial process water and ground water recharge and has been 

accepted as a method for indirect drinking water production. Desalination methods 

consist of two main categories, (1) thermal processes or (2) membrane processes. There 

are three membrane processes available for desalination, electrodialyis (ED), reverse 

osmosis (RO) and nanofiltration (NF). Electrodialysis membranes operate under a 

electric field that causes ions to move through parallel membranes and are typically 

only used for brackish water desalination. Nanofiltration membranes are newer 

technology developed in the mid-1980s and have been tested on a range of salt 

concentrations. It has been shown through research that NF is a singular process that 

cannot reduce seawater salinity to drinking water standards; however NF has been 

successfully used to treat mildly brackish water feed water. Together with RO, NF can 
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be used to treat seawater. Nanofiltration is  mainly used for removal of divalent ion 

such as Ca-2+, Mg2+ that contribute to water hardness as well as dissolved organic 

material whereas RO is able to reject monovalent ions such as sodium and chloride 

(Greenlee et al., 2009). 

 

 

Figure 2.2 : Distribution of desalination production capacity by process technology for 

(a) the world, (b) the United States and (c) the Middle East( countries include Arabia, 

Kuwait, United Arab Emirates, Qatar, Bahrain, and Oman (Greenlee et al., 2009) 

 

Various technologies are used in water treatment Reverse osmosis (RO), Electrodialyis 

(ED), Multi-stage-flash (MSF), Multi-effect-distillation (MED), Vapor compression 

(VC), Nanofiltration (NF) apart from electrodialysis desalination and reverse osmosis. 

Ultra filtration, ion exchange, adsorption, nanofiltration, filtration or coagulation and 

other types of micro-filtration and membrane processes are used for purification of 

effluent from secondary or tertiary level effluents generated at wastewater treatment 

systems. RO membranes can reject the smallest contaminants, monovalent ions while 

other membranes, including nanofiltration (NF), ultrafiltration (UF) and microfiltration 

(MF) are designed to remove materials of increasing size. The current study focuses on 
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brine water from RO processes because the Emalahleni treatment plant is a reverse 

osmosis water treatment. 

2.2.2.1 Thermal Processes 

Distillation or thermal desalination has been the main distillation process for 

hundreds of years for production of fresh water, however large-scale municipal 

drinking water distillation plants began to operate during 1950s. The countries in the 

Middle East are the ones that initiated the design and implementation of thermal 

distillation; they firstly used a process called multi-effect distillation (MED) and then 

later developed a process called multi-stage-flash (MSF) distillation. Greenlee et al., 

(2009) states that currently Middle East holds about 50% of world’s desalination 

capacity and primary uses of MSF technology. The thermal desalination technology 

is being surpassed by the development of membrane processes in the Middle East 

since 1960s because of new plants installations. However countries in the Middle 

East still use thermal desalination due to easily accessible fossil fuel resources and 

poor water quality of the local feed water. Thermal desalination helps when feed 

water is more concentrated at high temperatures (Greenlee et al., 2009). 

2.2.2.2 Reverse Osmosis  

Reverse Osmosis is one of the basic treatment technologies of membrane 

desalination. In the reverse osmosis separation process pressure is applied and forces 

water through a membrane overcoming the natural osmotic pressure, to divide the 

water into dilute product stream and a concentrated brine stream. Water molecules 

pass through the membrane while contaminants are flushed along the surface of 

membrane and come out as concentrate brine in a separate stream. RO membranes 

have a negative surface charge and repel negatively charged ions or molecules and 

more cations are then present near the membrane surface, thus an electric potential 

that is known as the Donnan potential, is created (Greenlee et al.,2009). This whole 

process of the creation of the Donnan potential helps in repelling ions by the 

membrane; however increasing salinity or divalent ions decreases the Donnan 

potential effect on membrane salt rejection. RO membranes typically achieve NaCl 
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rejections of 98-99.8%. Figure 2.3 illustrates a schematic diagram of a typical RO 

process. 

 

 

 

Figure 2.3: Schematic diagram of Reverse Osmosis (RO) sea water plant. Each box 

represents one RO pass, and the recovery (in %) is shown for each pass (Greenlee et 

al., 2009) 

2.2.2.3 Eletrodialysis (ED) 
 
Electrodialysis removes contaminants from water by using an electric current field to 

pull ionic impurities through ion selective membranes and away from the purified 

water.  ED is cost competitive with reverse osmosis especially when used to make 

drinkable water from relatively clean brackish feed water. The ED process is effective 

for salt removal from feed water because cathode attracts the sodium ions and anode 

attracts chloride ions. The recovery rate is high and the ED process can remove 75 to 

98 % of total dissolved solids from the feed water (Chamier, 2007). However the ED 

process has several drawbacks when producing laboratory grade water and is rarely 

used in laboratory settings.  First it is limited in the contaminants it can remove.  It 

cannot remove organics, pyrogens and elemental metals which have weak or 

nonexistent surface charges because they are attached to the membranes.  Secondly, 

the system requires a skilled operator and routine maintenance.  Some colloids and 
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detergents can plug the membranes' pores reducing their ionic transport ability and 

thus membranes requiring frequent cleaning (Korngold et al., 2009). Figure 2.4 

illustrates a schematic diagram for a typical electrodialyis desalination cell. 

 

 Figure 2.4: Schematic diagram of electrodialysis desalination process (Chamier, 

2007) 

 

A study conducted by (Korngold et al., 2009) revealed that brine concentration can be 

increased from 1.5% to 10% using electrodialysis in combating the volume of brine 

effluent and the cost of its disposal. Korngold showed that ED has a drawbacks when 

producing laboratory grade water and is rarely used in laboratory settings because of 

CaSO4 precipitation on the membrane during brine concentration. The overall study 

of Korngold showed that the ED process combined with continuous CaSO4 

precipitation could be successfully carried out under reverse polarity in a non-

continuous operation.  

2.2.2.4 Impact of brine on the environment 
 
The only aspect of desalination which has been relatively neglected is the 

environment and impact of the process. There are some methods applied in the 
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disposal of brine and each method has disadvantages and advantages and often 

represents a compromise between cost, local available resources, environmental 

impact and technology. Desalination and the environment, with the main issue being 

solutions for brine disposal, should be brought into more focus. The most important 

environmental issues for a desalination plant are the location of the plant, brine 

disposal and energy considerations. The plant location is an obvious issue where 

selection of site should be determined by considerations of the energy supply 

available and the distance in relation to feed water intake, brine disposal site and 

water end-user (Svensson, 2005). 

2.2.2.5 Brine Disposal  
 
Brine disposal is a major problem because of development and execution of 

environmental policies that are protecting the environment from pollution hence 

rendering the current disposal methods prohibited. New methods for use in brine 

disposal are vital. There are two completely different ways regarding brine disposal 

which is determined by the location of the plant. There are brine disposal in inland 

areas and in coastal areas with the main difference being possibility for discharge to a 

large saltwater body, i.e. the sea. Ocean disposal is recognized as the most simple and 

least costly method and is therefore almost solely used wherever it is possible. 

However, in inland locations too far from the sea, alternative methods have to be 

used, increasing both the economical and environmental impacts of brine disposal 

(Sabah et al, 2009). 

Land disposal can have a negative impact because of water pollution that results 

when concentrated brine is discharged into fresh water sources and unprotected wells. 

Chemistry of brines has an impact on soils which become saline and thus prevents 

crop growth because of the plant’s intolerance to salt. Absorption of soil water 

decreases from plants in contaminated ground water thus polluting drinking waters 

(Svensson, 2005). 
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2.3 Clays 

Since clays have attracted much research in their use for water treatment they are of 

interest for treatment of brines or sludges which are the waste products from mining 

industries when treating water in processes such reverse osmosis and desalination. 

This section presents formation of natural clays, classification, properties and uses of 

clays. 

2.3.1 Formation of clays 

In the definition by Guggenheim (1995), clay is used to refer to naturally occurring 

minerals composed mainly of fine grained minerals that make up the colloid fraction 

(particle size of ~2 µm) which possess plasticity when exposed to water and harden 

when dried. Clays also have other materials in them that do not impart plasticity and 

organic matter, formed over long periods of time by gradual chemical weathering of 

rocks, usually silicate bearing (Tehrani, 2005). They are also grouped to approximately 

4 groups, namely smectites, illite, chlorite and kaolin. Among this variety of clays  this 

present study focused on smectites because of their unique properties as adsorbents 

(Hofmann et al., 2004). Natural clays exhibit specific surface properties such as cation 

exchange capacity and adsorptive affinity for some organic and inorganic compounds. 

Natural clays can easily adsorb heavy metals via ion exchange reactions (McBride, 

1994). Recent studies showed the use of clays such as bentonite as adsorbents in waste 

water and have been found to be cost effective (Sanchez et al., 1997). Several studies 

showed many processes exist for removing dissolved heavy metals including but not 

limited to, ion exchange, precipitation, ultrafiltration, reverse osmosis, electrodialysis 

and adsorption (Morali, 2006; Mamba et al., 2009) 

Water pollution involving waste spills and contamination of water is a great 

challenge. Clays as common adsorbent for removal of hazardous contaminants have 

been studied. The potential use of clays as adsorbents for treating heavy metals and 

organic pollutants, or as coagulant aids for improving the settling performance in 

water treatment has been studied (Zhao et al., 2007). 
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Activated carbon has been extensively studied as an adsorbent because it exhibits 

good capacity for removing pollutants from waste and drinking water but this process 

is expensive and thus requires regeneration. The low cost material such as fly ash and 

clays were studied by various researchers for waste water treatment (Guggenheim, 

1995). 

2.3.2 Classification of clays 

Since they fall within the larger class of silicate minerals known as the 

phyllosilicates/layered silicates, clays are generally classified in terms of the 

differences in the layered structures that make up the clay material. Different classes 

of clays include smectites (beidellite, montmorillonite, nontronite, saponite and 

hectorite), mica (illite), kaolinite, serpentine, pylophyllite (talc), vermiculite and 

sepiolite (Gre’gorio, 2006).  

The main minerals in bentonites are smectites such as montmorillonite, beidellite, 

saponite, nontrolinte and hectorite. Smecticte clay is 2:1 layer clay mineral and has 

two silica tetrahedral (T) sheets bonded to a central aluminium octahedral (O) sheet. 

These clays contain Mg2+and Fe2+ ion in the octahedral sites and Si4+ and Al3+ in the 

tetrahedral sites and charges are balanced by the cations such as Na+ and Ca2+ located 

between the layers and surrounding edges. All smectites have very high cation 

exchange capacity when activated with strong acids (Onal et al., 2002). 
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Table 2.1: Phyllosillicates/Layered silicates classifications (Myriam et al., 2005) 

 

 

In the smectite family there are hundreds of different types of clays, each consisting o 

between 8 and 145 minerals. The most common sub family is montmorillonite. 

Further along the montmorillonite family tree are the various bentonites. 

Montmorillonite is a well known crystal that consists of an aluminum sheet between 

two silica sheets, for example 2:1 mineral in the montmorillonite structure. Interlayer 

swelling occurs when it is exposed to water. There are 2 types of montmorillonite 

namely a Na montmorillonite and Ca montmorillonite. Na montmorillonite is also 

known as bentonite. Bentonite is particularly useful industrially in drilling muds, for 

moulds in foundries, for pelletizing iron ores, in civil engineering and as absorbents 

in pet litters among other uses (DME, 2004).  

Smectite clays are of interest in water treatment as they have swelling properties. The 

schematic diagram presented in (figure 2.3). These smectite clays are among the 

important solids that contain natural mesopores and they also contain small amounts 

of micro pores (Turek et al., 1995). Bentonite is colloidal; aluminosilicate clay 

derived from weathered volcanic ash and largely composed of montmorillonite. It 

consists of flat platelets that have high specific surface area, high plasticity, expand 

when wet and is a non toxic material on the clay surface leads to  immobilization of 

toxic or contaminant species through the processes of ion exchange, coordination or 

ion-dipole interactions (Bhattacharya et al., 2008). The following table is adapted 
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from a selected number of reviews that have highlighted the use of clays for the 

treatment of simulated waste waters containing dyes or inorganic contaminants. None 

of the examples given used complex systems such as brine or acid mine drainage 

water. 

 

Table 2.2 a)-2.3 b): Examples of studies on the adsorption of different metals using 

natural adsorbents adopted from (Fiset et al., 2008) 

Aluminium (Al)   (III)  Crist et al. (1994), Orhan and Büyükg üngör 
(1993), Cui et al. (2006) 

Antimony (Sb) (III)) Coupal and Lalancette (1976), Masri and Friedman 
(1974 

Arsenic (As) (II, V)  Loukidou et al. (2003), Masri and Friedman 
(1974) 

Barium (Ba) (II) Crist et al. (1994), Smith et al. (1977) 
Bismuth (Bi) (III)  Masri and Friedman (1974), Shimizu and Takada 

(1997) 
Cadmium (Cd) (II)  Volesk y and Prasetyo (1994), YU et al. (1999) 
Calcium (Ca) (II)  Fiset et al. (2002), Fourest and Volesk y (1997) 
Cerium (Ce) (III)  Masri and Friedman (1974) 
Chromium (Cr)(III, VI)  Bailey et al. (1992), Fisher et al. (1984) 
Cobalt (Co) (II)  Flynn et al. (1980), Kuyucak and Volesk y (1988) 
Copper (Cu) (I, II)  Mckay et al. (1999), yu et al. (1999), CUI et al. 

(2006) 
Europium (Eu) (III)  Andres et al. (1993) 
Gold (Au) (III)  Kuyucak and Volesk y (1988), Nakajima (2003) 
Iridium (Ir) (IV)  Ruiz et al. (2003) 
Iron (Fe) (II, III)  Fiset et al. (2002), Nassar et al. (2004), CUI et al. 

(2006) 
Lanthanum (La) (III)  Bloom and mcbride (1979), Crist et al. (1994) 
Lead (Pb) (II)  Holan and Volesk y (1994),YU et al.(1999), 

Murathan and Bütün (2006) 
Magnesium (Mg) (II)  Crist et al. (1994), Fiset et al. (2002), CUI et al. 

(2006) 
Manganese (Mn) (II)  Fiset et al. (2002), Nassar et al. (2004), CUI et al. 

(2006) 
Mercury (Hg) (I, II)  Fisher et al. (1984), Virarag havan and Kapoor 

(1994) 
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Molybdenum (Mo) (VI ) Guibal et al. (1999), Sakag ushi et al. (1981) 

Nickel (Ni) (II)  Flynn et al. (1980), Leusch et al. (1995) 

Osmium (Os) (IV)  Ruiz et al. (2003) 

Palladium (Pd) (II)  Baba and Hirakawa (1992), Guibal et al. (2001) 

Platinum (Pt) (IV)  Baba and Hirakawa (1992), Guibal et al. (2001) 

Radium (Ra) (II)  Tsezos (1997), Tsezos And Keller (1983) 

Silver (Ag) (I)  Fisher et al. (1984), Flynn et al. (1980) 

Sodium (Na) (I)  Fiset et al. (2002), Spinti et al. (1995) 

Strontium (Sr) (II)  Shimizu and Takada (1997); Small et al. (1999) 

Technetium (Tc) (VII)  Garnham et al. (1992a, 1993b) 

Thallium (Tl) (I)  Masri and Friedman (1974) 

Titanium (Ti) (IV)  Parkash and Bro wn (1976) 

Vanadium (V) (V)  Guibal et al. (1994) 

Ytterbium (Yb) (III)  Andres et al. (1993) 

Zinc (Zn) (II) Artola and Rigola (1992); Kuyucak and Volesky 
(1988) 
 

 

 

Previous studies have demonstrated that using clays in water treatment can be 

effective and less expensive technology (Zhao et al., 1998). Natural clays can easily 

adsorb heavy metals via ion exchange reactions (McBride, 1994). They are also 
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grouped in approximately 4 groups namely smectites, illite, chlorite and kaolin. 

Adsorption is considered to be very effective to remove contaminants within waste or 

wastewater even at very low concentration (1 mg/L) (Putra et al., 2009). The major 

advantage  for waste water treatment utilization comes from economic consideration, 

since other adsorbents such as activated carbons are quite expensive therefore 

rendering them infeasible for large scale operation (Putra et al., 2009). 

2.3.3 South African Clays as Low Cost Adsorbents 
 

In terms of South African clays, there are very few publications in the open literature. 

Potgieter et al., 2006 studied the use of palygorskite clay, mined in Gauteng province, 

for the adsorption of Pb (II), Ni (II), Cr (VI) and Cu (II) from separate solutions with 

the individual metal ions. From the batch adsorption experiments done, they found 

that the adsorption of metals from the single-metal solutions followed the order of: 

Pb2+> Cr4+ > Ni2+ > Cu2+. Increasing the pH from 3 – 10 increased the amount of 

metal ion absorbed, and 100% removal was obtained using 0.5 g absorbent on a 20 

mg/L solution of Pb2+, 0.25 g absorbent on 20 mg/L Ni (II), 0.25 g absorbent with 80 

mg/L Cr (VI), and 1.0 g absorbent with 20 mg/L Cu (II) (Potgieter et al., 2006). 

 

Coetzee et al., 2003 studied the use of kaolin, palygorskite, and bentonites from 

Kwazulu – Natal, Free State, Gauteng, and Mpumalanga for the removal of fluoride 

from NaF stock solutions. The absorption capacities for of fluorine were 0.03 mg/g 

for kaolinite, 0.1 mg/g for bentonite, varied between 0.21 – 0.29 mg/g for 

palygorskite, and 0.2 mg/g for goethite/kaolinite. These fluoride removal values were 

generally lower than a commercial activated alumina (0.5 mg/g). The pH dependence 

was as expected with the best fluoride adsorption properties seen between pH 3 & 8. 

Activation of the clays prior to their use was done by heat treatment, chemical 

treatment with 1% Na2O3 or 1% HCl, and use of either treatment only had a marginal 

effect on the clays. Overall the study concluded that natural clays were not a good 
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option for the removal of fluoride ions from the model solutions used (Coetzee et al., 

2003). 

2.3.4 Characterization of clays 
 
Montmorillonite is a well known bentonite with lamellar structure (Hocine et al., 

2004). It is a clay mineral with substantial isomorphic substitution, since it is 2:1 

layer silicate the ions in the layer are balanced by isomorphic substitution. This 

montmorillonite is composed of units made up of two silica tetrahedral sheets with 

central alumina octahedral sheet. The swelling of smectites, such as montmorillonite, 

occurs when the material is dispersed in water, and the interlamellar spaces absorb 

enough water and result in the aggregates disintegrating into elementary sheets.  

 

The amount of swelling depends on the size and charge of the cations and the cation 

exchange capacity (CEC) of the clay. The maximum amount of swelling is observed 

with small univalent cations such as Li+ and Na+, whereas polyvalent cations such as 

Ca2+ or Mg2+ result in incomplete swelling due to strong interactions between the 

cation and water. When the interlamellar layer contains at least a single layer of 

water, virtually any cation can be exchanged irrespective of the size and charge; such 

as, heavy metals, organic cations, dyes and cationic polymers (Gre´gorio, 2006). 

Schematic on the general structure and swelling of smectites is given below. 
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Figure 2.5: Structure of smectites, showing ingress of water in the interlamellar 

region (DME ,2004). 

In figure 2.5 exchanges of cations occurs in the interlamellar region after at least a 

monolayer of water has penetrated this region, montmorillonite (Ca& Na bentonite) 

structure. Bentonites are clays whose basic clay mineral is a montmorillonite or 

smectite. It may also have other mineral phases present in it such as quartz, kaolinite, 

mica, feldspar, and pyrite and illite. The quality of bentonite raw materials depends 

on several parameters such as colour, rheological properties, and swelling behavior 

(Kaufhold et al., 2002). Bentonite clays consisting mainly of montmorillonite are 

widely utilized in various engineering applications. After special treatment or 

modification bentonite can become a good adsorbent material (DME, 2004). 
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Figure 2.6: Schematic diagram of bentonite porosity (Kurosawa et al., 2006) 

 

2.3.4.1 Bentonite 

More than 75% of bentonite consumed in South Africa is produced by two open cast 

mines, Cape Bentonite mine owned by Ecca Holdings near Heidelberg in the Western 

Cape and the Ocean Bentonite mine owned by G & W Base & Industrial Minerals near 

Koppies in the Free State (DME, 2004). Bentonite is natural clay that occurs in 

abundant amounts in South Africa. It is an aluminium phyllosilicate, and generally 

impure clay consisting mostly of montmorillonite. Bentonite consists of aggregates of 

flat platelets that have high specific area, plasticity, expand when wet and is inert and 

non-toxic. 

Since bentonite is of smectite group of clays it has a wide variety of industrial 

applications. A particular feature of this group of minerals is the substitution of Si4+ and 

Al4+ in the crystal structure by lower valency cations, thus unsatisfied negative charges 

are balanced by loosely-held ‘exchangeable’ cations such as Na+. There are a few types 

of bentonites and their names depend on the dominant elements present in the structure 

such as K+, Ca2+, Na+ and Al3+. Bentonite is valued for its sorptive properties, catalytic 

action, bonding power and cation exchangeability. Quartz is a non-clay material found 

in most bentonites but traces of feldspars, biotite, muscovite, pyrites, calcite and other 
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minerals can also be found in it. The two types of bentonite sodium and calcium are 

three-layered aluminosilicate clays with water molecules between their layers (DME, 

2004). Deposits sites of bentonite in South Africa are shown in a map in (section 1.2.1). 

2.3.4.2 Na-Bentonite 

Sodium-bentonite expands when wet possibly absorbing several times its dry mass in 

water. Sodium has this property because of its excellent colloidal properties. The 

swelling property of sodium bentonite also makes it useful as a sealant, especially for 

sealing subsurface disposal systems for spent nuclear fuel and quarantine metal 

pollutants of ground water (DME, 2004). 

2.3.4.3 Calcium- Bentonite 

Calcium-bentonite is also mined like Na bentonite but its swelling properties are lower 

than that of the sodium type. The Ca bentonites are best suited for acid activation 

(exclusively H+ activation) which enhances surface area. When both types of bentonites 

come in contact with water sodium-bentonite expands more than calcium bentonite, this 

is because Na+ can hydrolyse more than Ca2+ (DME, 2004). 

2.3.4.4 Applications of Bentonite 

Bentonites are applied in various industry uses such as binder, pelletising agent, and 

clarifying agent for wines, adsorbent of cat litter and toxic elements, pharmaceuticals as 

well as animal feed (Kawatra et al., 1999). 

The importance of these practical applications is related to the rheological properties 

of clays. Sodium montmorillonite clay is particularly of interest due to its high 

swelling capacity and formation of a gel (Amorima et al., 2004). 

2.3.4.5 Attapulgite 

Attapulgite is a hydrated magnesium aluminum silicate present in nature as a fibrillar 

clay mineral containing ribbons of a 2:1 structure. Attapulgite has permanent negative 

charges on its surface, which enable it to be modified by cationic surfactants, to 
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enhance contaminant retention, and to retard contaminant migration. Several studies 

have been presented on the adsorption of heavy metals from aqueous solutions by 

attapulgite (Chiu et al., 2009). Attapulgite also contains many structural hydroxyl 

groups (such as Al-OH and Mg-OH). In addition, some isomorphic substitutions in 

the tetrahedral layer, such as Al3+for Si4+, develop negatively charged adsorption sites 

to electro-statically adsorb cation ions. 

 

Attapulgite has been intensively investigated as adsorbent in the removal of organic 

contaminants and heavy metal ions from the solutions and heavy metal polluted soils 

in the natural environment (Fan et al., 2008). Attapulgite has three kinds of water at 

room temperature adsorption water on the mineral surface by physical effect, zeolitic 

water that is weakly bound in the micro-channel; and crystalline water that is tightly 

bound water molecules completing the coordination of the (Mg, Al) cations at the 

borders of each octahedral layer structural water. 

 

Figure 2.7: Schematic diagram of attapulgite that shows water molecules, Si, Mg, Al 

and O in the structure of attapulgite (Ping et al., 2004).  
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Attapulgite has been briefly studied as well in this study for comparative 

characterization purposes only not adsorption. 

 

2.4 Zeolites 

Zeolites are crystalline hydrated aluminosilicates of alkali and alkaline earth cations 

having an infinite, open, and three dimensional structures. There are further able to 

lose and gain water reversibly and to exchange extra framework cations, both without 

change of crystal structure (Mumpton, 1999). Clinoptilolite is the most well known 

natural zeolite and is one of the more useful. It is used in many applications such as a 

chemical sieve, a gas absorber, a feed additive, a food additive, an odor control agent 

and as a water filter for municipal and residential drinking water and aquariums. It is 

well suited for these applications due to its large amount of pore space, high 

resistance to extreme temperatures and chemically neutral basic structure. 

Clinoptilolite can easily absorb ammonia and other toxic gases from air and water and 

thus can be used in filters (Tehrani, 2005). 

 

2.4.1 Description of Zeolites 
 
They are two main types of zeolites, synthetic and the natural zeolites. Zeolites  

names were discovered by Axel F Crownsted from Sweden who was a mineralogist 

in 1756 (Musyoka, 2009). It is well known that about 40 natural zeolites were 

identified 200 years ago with clinoptilolite, chabazite, erionite, analcime, ferrite, 

heulandite, limonite, mordenite and phillisite being the most important types.  More 

than 150 zeolites have been synthesized including type A, X, Y and ZMS-5 being the 

most common. Zeolites have attracted scientist’s attention for their commercial use 

because of their adsorption, ion exchange, molecular sieves and catalytic properties 

(Zhao et al., 2007). Natural zeolites are abundantly found all over the world and are 

of commercial interest because they are easily mineable and they are low cost 

adsorbents and thus have gained attention by many researchers (Morali, 2006).  
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Figure 2.8: Examples of zeolite framework and pore system: MFI and MOR 

topologies (Houssin, 2003) showing voids and channels which defines the specific 

properties of the zeolite mineral 

 
Zeolites are crystalline, hydrated alumina silicates of group 1 and group 2 elements 

that consists of SiO4 and AlO4
-
 tetrahedra linked by oxygen atoms to compose the 

framework. The aluminum atoms introduce a negative charge on the framework 

which must be balanced by an exchangeable cation (Ca2+, Mg2+, Na+, K+ and others). 

These cations located as charge balancing elements to stabilize the framework play an 

important role in the adsorption and thermal properties of the zeolites (Cakicioglu-

Ozkan et al., 2004). Zeolites are able to gain or lose water without a change in crystal 

structure (Ivkovic et al., 2004).  

 

The most important feature of the zeolite structure is the presence of voids and 

channels which defines the specific properties of the zeolite mineral. These structural 

cavities and channels are occupied by the charge balancing alkaline and alkaline-earth 
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cations and water molecules. The physicochemical properties displayed by the 

zeolite, many of which are of potential in the industrial. 

 

(a)                                                                (b)  

 

Figure 2.9: Illustration of (a) primary building block of zeolite (b) two tetrahedral 

sharing oxygen atoms (Morali, 2006) 

 

The general chemical composition formula of zeolites can be expressed as: 

(M+, M2+) O.Al2O3.gSiO2.zH2O  

M+ is usually Na+ or K+ and M2+ is Mg2+, Ca2+ or Fe2+; unusually but Li+, Sr2+ or Ba2+ 

may substitute for M+ or M2+. Fe3+ is commonly assumed to substitute into the 

tetrahedral framework position. Zeolite structure is mainly composed of three 

components (Morali, 2006): (1) Aluminosilicate frame work. (2) Exchangeable 

cations. (3) Zeolite water 

Almost every application of zeolites has been driven by environmental concerns, or 

plays a significant role in reducing toxic waste (Weitkamp et al., 2007) and 

stabilizing hyper saline solutions like brines. 
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2.4.2 Clinoptilolite	

The typical chemical formula of clinoptilolite is (Na6 [Al6Si30O72]. 24H2O). Natural 

zeolite clinoptilolite is abundant in many countries, and the interesting properties and 

varieties of the application have attracted so many areas, it possesses the heulandite 

(HEU) type framework (Inglezakis et al., 2001). The HEU topology contains a ten-

member ring channel pore system with eight-member ring cross channels. The higher 

silica member of this family is identified as clinoptilolite. Clinoptilolite can be 

Table 2.3: Different generic types of natural zeolites generated from   (Musyoka, 2009)

Hydrothermal-geothermal deposits  Alteration of basaltic lava as a result

                                              hydrothermal or hotspring activity 

Saline, alkaline lake type deposits       Zeolites formed by alteration of 

volcanic          sediments deposited in saline lakes 

    

Deposits from open hydrological systems          Formed when water with high pH and 

salt content flows thro ugh vitric 

volcanic ash causing crystal growth 

          

  

         

Saline, alkaline salts deposits                            Formed at land surface in saline soils 

           as a result of evapotransporation in  

           arid and semi-arid regions  

Zeolite in marine deposits                                  Result from alterations of volcanic or  

non-volcanic material in sea-beds due 

to     low temperature or hydrothermal 

alteration of marine sediments    

Burial diagenesis            This is a low grade metamorphism  

 involving reactions pathway   

 influenced by circulation      

            of ground water and transportation of  

            reactants 
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classified by Si/Al ratio. If this ratio is between 4-5 bigger than 4, it can be classified 

as clinoptilolite. Zeolites also can be classified as clinoptilolite if the criteria of 

(Na+K) > Ca is available. The difference between natural heulandite and 

clinoptilolite is its thermal stability. While clinoptilolite is thermally stable above 

500°C, heulandite is stable up to 350°C because its structure collapses at 

temperatures higher than 350°C can offer environmental protection through sorption 

and binding toxic elements because of its extraordinary ion exchange capacity 

(YetGin et al., 2006). 

 

The negative charge of the clinoptilolite framework comes from tetrahedral 

coordinated aluminum. Clinoptilolite zeolites have CEC values between 100 and 400 

meq 100 g−1 (Grim, 1968). It is mostly applicable in soil benefaction, in water and 

waste water treatment. Clinoptilolite has been widely studied for removal of 

ammonium from waste water and municipal water streams. It has been proved to be 

the most attractive material for ammonium removal, the removal of ammonium 

occurs via cation exchange from the structure of zeolite or through adsorption in 

pores of the aluminosilicates system. (Sprynskyy et al., 2004). The clinoptilolite is a 

member of heulandite group and has framework structure that consists of three 

channels. The channel A and B, 10-member rings, respectively, are parallel to each 

other while channel C, 8-member ring intersects the channel A and B. (Cakicioglu-

Ozkan et al., 2005). The structure of clinoptilolite is as shown in the Figure 2.8 
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Figure 2.10: a) Orientation of clinoptilolite channel axis b) Model framework for the 

structure of clinoptilolite (YetGin et al., 2006) 

 

2.4.3 Abundant Reserves 

Natural zeolites are abundant all over the world, however only seven zeolites occur in 

sufficient quantity and purity to be considered as exploitable natural resources. These 

are namely, clinoptilolite, mordenite, phillipsite, chabazite, eronite, ferrerite and 

analcime. Clinoptilolte is a widely distributed natural zeolite and thus huge 

occurrences of clinoptilolite are mined in many countries (Morali, 2006). In South 

Africa clinoptilolite is found in reserves such as Cape Bentonite mine in the Western 

Cape and in Kwazulu Natal. In this study the clinoptilolite used was obtained from 

the Cape Bentonite mine in the Western Cape and the other source of clinoptilolite 

was from Turkey. 

2.5 Characterization of natural clays and natural zeolites 

Natural clays and natural zeolites need to be characterized before their use in order to 

understand the framework, purity, ion exchange capacity and the capacity to perform 

when used in adsorption studies. This section gives overview the methods used to 

characterize clays and zeolites. 
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2.5.1 Mineralogy and crystallinity by X-ray diffraction spectroscopy 

X-ray diffraction (XRD) can be used for identification of the clay and zeolite 

framework structure which is the common method to determine identity and 

crystallinity of material and this method gives a unique fingerprint of each mineral 

phase. 

  

                           a)                                                                            b) 
Figure 2.11: Representation of XRD spectra a) Clinoptilolite and b) Bentonite 

(Morali, 2006; Vlasova et al., 2007). 

 

2.5.2 Structural configuration by infra red spectroscopy 

Infra Red spectroscopy (IR) provides vibrational spectroscopic information on a 

molecular level. This technique can be used to provide direct information about the 

nature of surfaces and adsorbed surface species.  

2.5.3 Morphology by microscopy 

There are different techniques in the field of electron optical instrumentation 

available to provide information concerning crystal shape and particle size and as 

well as other characteristics of clays and zeolites. Transmission Electron Microscopy 

(TEM) and Scanning Electron Microscopy (SEM) used in conjunction with scanning 

microprobe analysis which yields a great deal of information on zeolites are the most 

important ones applied in zeolite research (Szostak, 1989) 
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2.5.3.1. Scanning Electron Microscopy 

In Scanning Electron Microscopy (SEM), an electron probe is used to scan the 

surface of a specimen using deflection coils. The interaction between the primary 

beam and the specimen produces various signals from back scattered electrons, 

secondary electrons, X-rays, etc. which may be utilized to form an image of the 

surface.. 

  

2.5.3.2. Transmission electron microscopy 

Transmission Electron Microscope (TEM) can achieve resolution of about 3Å at a 

magnification of approximately 106 µm. The resolution can be improved by using 

special imaging techniques known as bright field, dark field, or lattice imaging. High 

resolution microscopy can provide information on structural defects within molecular 

sieve crystals and also generate information on the planar spacing and  arrangement 

of channels and pores within the clay and zeolite when enhanced with computer 

imaging (Szostak, 1989).  

2.5.4 Elemental composition by X-Ray fluorescence spectroscopy 

X-ray fluorescence (XRF) is the emission of characteristic secondary (or fluorescent) 

X-rays from a material that has been excited by bombarding with high-energy X-rays 

or gamma rays by which electrons are expelled from the different atoms leaving 

“holes” in the low lying orbitals. The phenomenon is widely used for elemental 

analysis and chemical analysis, particularly in the investigation of metals, glass, 

ceramics and building materials, and for research in geochemistry, forensic science 

and archaeology. XRF is used for multielement analysis of zeolite and clay starting 

materials as well as products of synthesis. Si and Al in clinoptilolite obtained by 

various authors (Morali, 2006) SiO2 of 71.83% and Al2O3 with 11.68%; (Mamba et 

al., 2009) with SiO2 74% and Al2O312.4%; Inglezakis et al., 2001) and Si and Al in 

bentonite by various authors (Hamidpour et al., 2009 with 59.6% SiO2 and 12.5% 

Al2O3). 
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2.5.5 Cation exchange capacity 

Cation Exchange Capacity (CEC) can be defined as a measure of the charge 

compensating cations per unit of weight of the zeolite or clay. It represents the 

number of exchangeable extra framework cations available for exchange from the 

zeolite  

2.5.6 Other characterization technique 

2.5.6.1. Thermal analysis 

 

Thermal analysis of zeolite or clay can be used to give information on the water 

content and the amount of organic templating molecules which are occluded in the 

cavities and pores of clays and zeolites during the synthesis process. This technique 

can also be used to determine thermal stability of a zeolite since exothermic heat 

flows over 600 ºC is a general characteristic of the structural collapse of zeolites 

(YetGin et al., 2006) 

2.6 Applications of zeolites 

Abundance of natural zeolites all over the world makes them an attractive and cost 

effective tool for removal of toxic elements and heavy metals from waste waters. The 

value of zeolites depends primarily on their ion exchange and adsorption properties, 

which have been the focus of studies carried by a number of researchers. The 

applications of natural zeolites and synthetic zeolites have been widely studied in 

several fields such as pollution control, energy conservation, agriculture, catalysis etc. 

Zeolites in both cation-exchange and adsorption applications should be mechanically 

strong to resist abrasion and disintegration, highly porous to allow solutions and 

gases to diffuse readily in and out of the rock, and soft enough to be crushed. The 

applications of natural zeolites in the environment have been studied by various 

researchers :water pollution (Zhao et al., 2007; Mamba et al., 2009; Ouki and 

Kavannagh, 1999). Air pollution (Tehrani, 2005). NH4
+ removal from municipal 

wastewaters (Langella et al., 2000). 
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2.6.1 Catalysis 

Mainly synthetic zeolites have been studied for catalysis. Due to lack of purity, 

applications such as in catalysis and other potential uses based on the adsorption 

properties of natural zeolites are in general limited in catalysis (Musyoka, 2009). 

However natural zeolites like erionite-clinoptilolite have also been studied as a 

selective-reforming catalyst by Mobil Corporation. A hydrogen exchanged natural 

mordenite was studied for hydrocarbon conversion catalyst for the disproportionate of 

toluene to benzene and xylene.  Cation-exchanged clinoptilolite from Tokaj, Hungary 

was used for the hydromethylation of toluene,  and clinoptilolite catalysts were 

applied for the isomerization of n-butene, the dehydration of methanol to dimethyl 

ether, and the hydration of acetylene to acetaldehyde (Mumpton, 1999). 

 

2.6.2 Ion exchange 

Ion exchange is one of the methods used for the removal of several toxic substances, 

including heavy metals and toxic elements from industrial and municipal wastewater. 

It is defined as stiochiometric replacement of one equivalent of an ion in solid phase 

by an equivalent of another ion in liquid phase.  The application of zeolites for ion 

exchange is simple and safe because of mild operating conditions. The ion exchange 

reaction takes place between exchangeable cations (Na+, K+, Ca2+, Mg2+) located in 

the zeolite structure and cations in the water (Inglezakis et al., 2001). Ion exchange 

capacity is among the most important properties of microporous materials. The ion-

exchange capacity of zeolites depends on: the nature of the cation species in the 

liquid phase, for example, the cation size and valence, the pore size in the crystalline 

structure, and the number of exchangeable cations bonded to the zeolite framework. 

This property enables zeolites to exchange their cations with those of the surrounding 

fluid during the process of cleaning waste water containing heavy metals (Musyoka, 

2009).  
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2.6.3 Use as adsorbents  

Natural zeolites have been used as adsorbents because of their unique structures as 

molecular sieves. The adsorption mechanism involves the uptake of heavy metals, 

unlike ion exchange, formation of bonds which are mainly covalent and some 

combinations of covalent and ionic bonding are involved in this mechanism. The 

adsorption mechanism is sometimes referred to as chemisorptions or inner sphere 

complexation. In zeolite particles adsorption is defined as reaction of heavy metal 

species with surface functional groups forming a chemical bond. This mechanism is 

however difficult due to the porous structure of  inner and outer charged surfaces , 

mineralogical heterogeneity, existence of crystal edges, broken bonds and 

imperfections on the surface of zeolite (Morali, 2006). Natural zeolite clinoptilolite 

since is abundant in high purity in many parts of the world and in South Africa, it was 

used in this study. 

 

In table 2.4 above selectivity of clinoptilolite in heavy metals removal is summarised 

with studies carried out by various researchers. Depending on the metal ions tested 

and the origin of clinoptilolite, the selectivity series tend to show variations. A 

common finding, however, is the high selectivity of clinoptilolite for Pb2+, Cd2+, Cu2+, 

Cr2+ and Zn2+. 

Table 2.4: Selectivity series for various heavy metal ions (generated from (Morali,  
2006)    
Selectivity Series  Reference 

Pb 2+> Cd2+> Cs + > Cu 2+> Co 2+> Cr3+ > Zn2+> Ni2+ > Hg2+
 Zamzow et al. (1990) 

Pb 2+> Cu2+> Cd 2+> Zn2+> Cr3+> Co2+> Ni2+
  Ouki and Kavannagh (1999)  

Pb 2+> Cd2+> Cu 2+> Zn2+> Ni2+
 Panayotova and Velikov (2002) 

Pb 2+> Cr 2+ > Fe 2+ > Cu 2+ 
  Inglezakis and Grigoropoulou  (2004)  

Pb 2+> NH 4+ > Cu2+, Cd2+ , Sr2+ > Zn2+> Co2+
   Blanchard et al. (1984)  

Pb 2+>K +>Ba>NH4
+>Ca2+ >Cd 2+ >Cu 2+>Na+

  Semmens and Martins (1988)   
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2.7 Factors affecting removal of toxic elements 

Toxic element removal by zeolite and clay in aqueous solutions is affected by a number 

of factors, thus this section discuss some of these factors. Temperature, pH, 

pretreatment applied to zeolites and clays, particle size, pore clogging, mineral 

properties and presence of other contaminants in the solution (Morali, 2006). The 

current study focused review effect of temperature, pretreatment, contact time and pH 

among the other factors. The reason for reviewing these factors is because of the 

information obtained from literature about zeolites material behaving differently under 

different conditions in ion exchange and adsorption studies (Inglezakis et al., 2004). 

2.7.1 Effect of Temperature 

Many studies conducted using zeolites and clays as adsorbents or ion exchangers 

showed that temperature can be one the factors affecting removal of heavy metal in 

aqueous solution. In many of the studies carried out, researchers found that removal of 

Pb2+ was independent of temperature, however other studies showed that increasing the 

temperature affected Ni2+ removal positively, whereas Pb2+ removal increases when 

temperature range is between 23-45 ºC (Morali, 2006). On the other hand (Cakicioglu-

Ozkan et al., 2005) revealed that an increase in temperature and concentration caused 

an increase in removal of univalent cations such as Mg2+, Fe3+ and Ca2+. Heavy metal 

removal is enhanced by the increase in temperature due to activation of metal ions by 

enhancing adsorption at coordination sites of zeolites and at higher temperatures ions 

becomes smaller due to their reduced hydration spheres and their movement become 

faster resulting in higher removal efficiencies (Morali, 2006). High temperatures can 

also cause dealumination in zeolites. The high operation temperature heat breaks the 

aluminium-oxygen bonds and the aluminium atom is expelled from the zeolite frame 

work (YetGin et al., 2006). 
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2.7.2 Effect of pH 
 

The effect of pH has been investigated in many studies (Onyango et al., 2010) ; 

Inglezakis et al., 2001) among other factors affecting efficient removal of toxic 

elements in wastewater and has a significant impact on heavy metal removal by 

zeolites since it can influence metal speciation, integrity of zeolite and also H+ ions 

considered as competitive in ion exchange. Solution pH is one of the factors that have 

been found to affect the sorption process significantly. Onyango et al., (2010) 

practically revealed that nitrate removal is affected by pH. Adsorption processes 

using zeolites and clays are not only influenced by pH but zeolite or clay addition is 

also capable of affecting the solution pH. Clinoptilolite tends to neutralize the 

solution to be treated by acting as H+ acceptor or donor (Morali, 2006). 

2.7.3 Effect of pre-treatment 
 
Zeolites and clays can be tailored to obtain better properties. Some modification can 

be based on creation of secondary pores by either dealumination or acid leaching 

(Nagy and Nairn, 1998), or by modifying external surface area or internal pore 

volume by unblocking pores and also by varying the chemical composition by 

isomorphous substitution of Al or Si by elements with ionic radii and coordination 

requirements which are compatible with the tetrahedral sites in the structures of the 

zeolite. Pretreatment of zeolite has been widely studied and frequently is considered 

as a first step for zeolites in adsorption and ion exchange studies. Pretreatment aims at 

removing certain ions from the structure of zeolite material and locate more easily  

results in the zeolite material being converted to the homoionic form to increase 

content of single cation (Semmens et al., 1988). Mumpton F.A, (1999) stated that 

modifying of zeolite with quaternary amines may enhance their adsorption capacity. 

 

The significance of pre-treatment to the homoionic or near homoionic state in the 

case of zeolites was found to improve their effective exchange capacity and 

performance in ion exchange applications (Inglezakis et al., 2001). Clinoptilolite has 
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selectivity among ions and Na+ is the lowest selectivity and thus increasing the Na+ 

content of clinoptilolite by pre-treatment improves its ion exchange ability. Semmens 

and Martin, (1988) presented the series Pb2+>K+>Ba2+>NH4
+>Ca2+>Cd2+>Cu2+>Na+ 

respectively meaning clinoptilolite has a high selectivity for Pb2+ than for Na+. 

Previous studies investigated the use of hydrochloric acid, sodium chloride, 

ammonium acetate, potassium hydroxide and sodium hydroxide as activating or pre-

treatment agents (Inglezakis et al., 2001; Cakicioglu-Ozkan et al., 2005; Langella et 

al., 2000) to replace K+, Ca2+ and Mg2+which are strongly held by clinoptilolite with 

Na+ ions. Even with extensive exposure of the zeolite clinoptilolite material to high 

Na+ concentration on the other hand, it was found not possible to replace all other 

exchangeable ions from the structure with Na+ (Langella et al., 2000). 

However, acid treatment as an activation procedure results in a highly crystalline H- 

form of the zeolite, but has a slight disadvantage since the acid (depending on the 

concentration used) can remove some of the alumina from the framework (Mamba et 

al., 2010). Washing after pre-treatment is essential in order to remove excess 

activating agent entrapped in zeolite structure. Some researchers found that pre-

treatment of the natural zeolite with acid has no effect on the crystal structure of 

zeolites (Mamba, 2010). 

2.7.4 Effect of pore clogging and presence of other contaminants 

Pore clogging has an effect in the adsorption of heavy metal uptake by preventing 

heavy metal ions from entering the zeolite pore structure, and that causes a decrease in 

their removal. Fine particles on zeolite surface and precipitation as a result of heavy 

metal accumulation on the surface are possible causes of pore clogging. Researchers 

such as Inglezakis et al., (2004) stated that pore clogging as result of dust particles 

produced during grinding makes clinoptilolite surface and pore opening partially 

covered resulting slower ion exchange rates. 

 

 

 

 



  
    

 49

2.8 Chapter summary 

Significant information related to brines, clays and natural zeolites has been presented 

in this chapter. The applications of the natural adsorbents bentonite and clinoptilolite 

for removal of contaminants from waste water have also been highlighted. 

Desalination for water supply has grown steadily since the 1960s. Since then, many 

plants have been created in various parts of the world as containing innovations in 

seawater and industrial waste water desalination technology continue to reduce the 

effective cost of produced water (Ericsson and Hallmans, 2009; Colin et al., 1997; 

Korngold et al., 2009; Grenlee et al., 2009). Although there are many benefits the 

desalination technology offers, concerns arise over potential negative impacts of 

desalination activity on the environment particularly the disposal of the reject brine 

released after desalination of wastewater to clean water (Mohamed et al., 2005; 

Glater and Cohen, 2003; Amhed et al., 2001). Key issues are the brine discharges to 

the marine environment, impacts caused by feed water intake, the emissions of air 

pollutants, land disposal and the energy demand of the processes (Younos, 2005). 

Desalination processes produces two streams of water. One, the product water, is 

fresh water. The other is concentrate water containing salts also known as reject 

water, reject brine or wastewater. The concentrate consists of highly concentrated 

salts that can stress the environment (Sabah et al., 2009). In both the RO and the 

thermal plants, the salinity of the concentrate is higher than source feed water salinity. 

 

The salinity of the concentrate stream will vary with the type of desalting plant. Thus 

this chapter informed the current study on the gaps or weakness that the desalination 

processes have on the treatment of waste water, by not considering how to treat their 

reject brine before disposing it and the choice for research questions, research 

approach, the study site chosen and materials used. Natural adsorbents on the other 

hand are potential adsorbents of the toxic elements or salts present in the reject brine 

because of their abundance all over the world and in South Africa, cost effectiveness 

and unique properties to adsorb (Sanchez et al., 1997) 
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CHAPTER 3 

EXPERIMENTAL 

This chapter is divided to several parts. The first section is on materials and the 

methods used to characterise clays and zeolites before execution of adsorption 

experiments. The second section deals with preliminary adsorption experiments. The 

third section deals the activation or pretreatment of clays required to get a better 

adsorption capacity. The last section deals with the actual adsorption experiments using 

the pre-treated natural adsorbents for brine treatment. 

3.1 Materials  

Natural clay bentonite and natural zeolite clinoptilolite were obtained from Ecca 

Holdings Company in the Western Cape from the Cape Bentonite mine (see section 

1.2.1) For Comparison purposes the other clinoptilolite source from Balıkesir-

Bigadiçi deposit, Turkey and also attapulgite clay from South Africa.  

 

 

3.2 Methods 

3.2.1 Sample preparation 

Natural adsorbents were firstly used without any chemical modifications they were 

milled, sieved to 106 µm particle size and dried in an oven at 105ºC for 24 hours 

Table 3.1 : Reagents  used  

Chemical                               Percentage purity                     Suppliers   

Ammonium acetate               98.50%  Kimix  

Acetic Acid                           99.8%                                       Kimix  

Nitric Acid                            55%                                         Merck Chemicals  

Propan -  1-ol                             99%      Merck Chemicals  

Hydrochloric acid                 32%                                         Sigma Aldrich 
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prior adsorption. The 106 µm particle size was used for the natural adsorbents 

throughout the study. 

 

3.2.2 Brine analysis 

The brine sample used in this study was collected from the highly saline retentate stream 

of the reverse osmosis (RO) desalination plant at Emalahleni RO plant, South Africa. 

The brine was not simulated or diluted it was used as a raw as it was obtained from 

RO plant. Emalahleni brine was chosen for this study because of the high concentrations 

of the major species such as Na+, Cl- and SO4
2-, and in order to avoid inconsistency. The 

brine sample was collected in plastic containers and stored in a refrigerator at 4 °C. The 

brine sample used for this study was sampled at once because of the large variability 

found over time. The chemical composition (Table 4.4and 4.5) of the two brine solutions 

used in this study was analyzed using ICP-AES and IC for cation and anion respectively. 

 

3.2.3 Characterization of natural adsorbents 

It is necessary to characterize every adsorbent material before its use or application. 

Characterization makes it possible to match the physical and chemical properties of 

the material to the environment in which it must operate. Characterization begins at 

the clay/zeolite deposit. This means the clay or zeolite mineral material deposit must 

be thoroughly explored to determine its extent, continuity and quality. Both the mined 

and processed product must be carefully sampled to insure the buyer a dependable 

supply of clay/zeolite that is of a uniform quality. 

 

The characterization of clay and zeolite minerals initially requires carefully screening 

techniques to identify the clay and zeolite and gangue minerals and determine the 

percentage of each present in the product. The following techniques are the 

appropriate methods used to determine elemental and mineralogy of the clay and 

zeolite materials. The initial screening involves mineralogical characterization and 
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chemical analysis, pore size determination and the determination of cation exchange 

capacity. These methods will be briefly given in the following section. 

 

3.2.4. Mineralogical characterization by X-ray Diffraction Spectroscopy 
 
3.2.4.1 Qualitative X-ray Diffraction Spectroscopy analysis 

 
Clays and zeolites have a characteristic X-ray-powder-diffraction pattern (XRD), 

which is used for phase identification and also to determine the phase purity or 

quality of clay or zeolite present. By comparing the spectra generated by XRD 

characterization with that of a reference sample, it is possible to identify the 

mineralogical phases present in the clay and even determine its purity by checking 

whether it is a mixture of phases or one pure mineral phase. Natural clays and natural 

zeolites were grounded to fine powder and were placed in sample holder and the 

crystalline phases were evaluated using Phillips X-ray diffractometer with Cu-Kα 

radiation. The XRD instrument operating conditions were given as table 3.2 below: 

 

Table 3.2: The XRD operating parameters 

Radiation source                                             Cu-Kα 

Radiation Wavelength (λ)                              104 

Range                                                             1.54056< 2⁰<80⁰ 

Time constant                                                 1 s 

Preset (counts/s)                                             1000  

Voltage (kV)                                                  40 

Current (mA)                                                  25  

2θ range                                                         4⁰ 

2 θ/step                                                          0.1⁰ 

Anti-scatter                                                    4⁰ 
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Identification of phases present in the clays and zeolites was performed by searching 

and matching obtained spectra with powder diffraction files from the data base with 

the help of JCPDS (Joint committee of powder diffraction standards) files for 

inorganic compounds. 

 

3.2.4.2 Quantification of mineral phases of clays and zeolites 

 

Quantitative X-ray Diffraction (XRD) was performed to identify the percentage of 

clay or zeolite material present in one adsorbent in order to tell how much of other 

minerals are present in that particular clay or zeolite. The samples were prepared for 

XRD analysis using a back loading preparation method. They were analysed with a 

PANalytical X’Pert Pro powder diffractometer with X’Celerator detector and variable 

divergence- and fixed receiving slits with Fe filtered Co-Kα radiation. The phases 

were identified using X’Pert Highscore plus software. The relative phase amounts 

(weights %) were estimated using the Rietveld method (Autoquan Program). Errors 

are on the 3 sigma level in the column to the right of the amount. 

3.2.5. Surface area and pore determination  

Surface areas and pore size of clays and zeolites were determined using the 

gravimetric nitrogen Brunauner-Emmett-Teller (N2-BET) surface analysis technique. 

The sample to be analysed (0.3- 0.5g) was outgassed at 110⁰ C for 14 hours on the 

Flow Prep 060 using helium gas The Micromeritics Tristar instrument was used with 

nitrogen as the analysis gas based on a 5 point with 30 adsorption and 30 desorption 

points together with total pore size measurement.  

 

3.2.6 Elemental analysis 
 

3.2.6.1 X-Ray Fluorescence Spectroscopy (XRF)  
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In this study X-ray fluorescence (XRF) was used for multi-element analysis of 

starting adsorbent materials of clays and natural zeolite clinoptilolite. Major elements 

were analyzed on a fused glass bead at 40 kV and 50 mA tube operating conditions 

and trace elements were analyzed on a powder briquette at 50 kV and 40 mA, tube 

operating conditions. Matrix effects in the samples were corrected for by applying 

theoretical alpha factors and measured line overlap factors to the raw intensities 

measured with the SuperQ Phillips software. The powder samples were prepared by 

mixing 8 g of clay with 2 g of a binder (which was made up of 10 % C-wax binder 

and 90% electron microscopy unit (EMU) powder) and this mixture was then 

thoroughly shaken, poured into a mould and pelletized at a pressure of 15 tons for 

about 1 minute using a Dickie and Stockler manual pelletizer of ignition was 

measured by placing the samples in the furnace at 1000 ºC for at least 45 minutes. All 

elemental analyses were done using a Phillips PW 1480 X-ray spectrometer. The 

spectrometer was fitted with a chromium tube, five LIF 200, LIF, 220, GE, PE and 

PX and the detectors are a combination of gas-flow proportional counter and a 

scintillation detector. The gas used was a mixture of 90 % argon and 10 % methane.  

 

3.2.6.2 Inductively Coupled Plasma Spectrometry (ICP-AES) 

Elemental analysis study of the zeolite and clay filtrates collected after cation 

exchange capacity, adsorption procedure and after activation procedure of the natural 

adsorbents was done in order to gain a better understanding of the trace and major 

heavy metal species contained in the filtrates, and also to determine which element 

species stays trapped in the zeolite sample and which are released. The concentrations 

of ionic species in the post-synthesis aqueous supernatant solution were measured by 

the use of inductively coupled plasma atomic emission (ICP-AES). The instrument 

used for the majors and traces, is a Varian Radial ICP-AES using a High Matrix 

Introduction (HMI) accessory and He as collision gas. The instrument, external 

calibration was performed daily, and results of a quality control standard verifying 

accuracy was included with every batch of samples analyzed. For ICP-AES analysis, 
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internal standards were used to correct for matrix effects and instrument drift. 

Samples were diluted thousand times for majors and traces, with data corrected for 

dilution factor 
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3.2.7 Cation Exchange Capacity 

This method is used for determining cation exchange capacity and measuring 

exchangeable cations and it is the method of interest in this study. The procedure used 

adopted from Amrhein et al., (1999) and the reagents were prepared as follows; 

(i) Sodium acetate: 136 g of Na2C2H2O2.3H2O  was diluted in water into a volume of 

1,000 mL .The pH was adjusted to 8.2 with a few drops of acetic acid  or NaOH and 

this was time-consuming because it  was difficult to maintain the pH of 8.2  

(ii) Ammonium acetate: 114 mL of glacial acetic acid (99.5%) was diluted with water 

to a volume of approximately 1 liter, 138 mL of concentrated (NH4OH) was added 

and made up with water to obtain a volume of about 1,980 mL. The pH was 

maintained to 8.2 and more NH4OH was added to obtain a pH of 8.2.The procedure 

was adopted from (Amrhein and Torre 1996) for fly ash. The CEC was determined by 

extracting 0.5 g of bentonite clay and clinoptilolite with four 25-mL aliquots of 1.0M 

ammonium acetate (pH 8.2). Bentonite and clinoptilolite samples were continuously 

shaken with the extracting solution for 15 min, then centrifuged for 15 min, to 

separate the solids and then the supernatant was decanted. This extraction was 

repeated a total of four times. The cumulative extract was brought to 100 mL and 

then analyzed for major cations by ICP-AES and major anions by IC, traces were 

determined using ICP-AES. 

 

3.2.8 Physical characterization by morphological analysis 
 

3.2.8.1 Scanning Electron Microscopy 

The morphology and particle size of the clays and zeolites used in this investigation 

untreated and treated clays and zeolite was obtained using a Hitachi X-650 scanning 

Electron Microanalyser equipped with a CDU- lead detector at 25kV. Samples were 

mounted on Aluminum pegs and coated with a thin film of gold to make them 

conductive. 
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3.2.8.2 Transmission Electron Microscopy 

To get an insight on the crystalinity of the material TEM was used to as analysis tool 

for packed rings that shows crystalinity. Samples were prepared by diluting the 

suspension clay/zeolite in ethanol, ultra sonicating and depositing a drop onto S147-4 

Holey carbon film 400 mesh Cu grids. 200 kV 

Field Emission gun lens 1 was used with spot size 3, at 200 kV using HRTEM Tecnai 

G2 F20 XT winMAT. 

 

3.2.9 Fourier Transform Infrared Spectroscopy 

Fourier Transform Infrared spectroscopy (FT-IR) was used to monitor evolution of 

crystallinity during pretreatment and also provide information about molecular 

structure. FT-IR requires virtually no sample preparation so in this case, 

approximately 15 mg of the zeolite sample was placed on the Attenuated Total 

Reflectance (ATR) sample holder of a Perkin Elmer spectrum 100 FT-IR 

spectrometer. The sample was recorded in the range of 1800 – 250 cm-1, baseline was 

corrected and the spectra smoothened. Vibrations common to zeolites and clays were 

identified. The use of diamond cells with beam condenser or microscope allowed 

adjustment of the thickness of a sample by squeezing which enables analysis of 

microgram samples to be performed. 

 

3.3 Batch adsorption studies 

3.3.1 Preliminary Batch Adsorption experiment 
 
The main purpose of this experiment was to establish if the natural adsorbents can 

remove toxic elements from brine without pretreatment or being modified. 
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3.3.1.1 Sample preparation 
 

Natural adsorbents were firstly used without any chemical modifications they were 

milled, sieved to 106 µm particle size and dried in an oven at 105ºC for 24 hours 

prior adsorption. The 106 µm particle size was used for the natural adsorbents 

throughout the study. 

3.3.1.2 Materials and methods 

Standard batch adsorption experiments were carried out at room temperature 25 ºC. A 

total of four samples, two clay samples (bentonite and attapulgite) and two zeolite 

samples were used namely South African clinoptilolite (SC) and South African 

bentonite (SB) sourced from Ecca Holdings Company in the Western Cape South 

Africa, as well as a clinoptilolite sample originating from a mineral deposit in Turkey 

(TC) and attapulgite clay (AS) from South Africa. 

About 0.5 g clay absorbent was weighed on a 100ml Erlenmeyer flask and 50 ml of 

Emalahleni brine effluent was added. All experiments were performed in duplicate. 

The mixture was shaken for 2 and 24 hr respectively in water bath at 25 ºC. Initially 

the preliminary batch experiments were done using only the Emalahleni brine with no 

adjustment to its pH (i.e. natural pH). After contacting the brine with the absorbent, 

the absorbent was removed via filtration, and the recovered aqueous solutions were 

analyzed with an ICP – AES.  

3.3.2 Leaching experiments  
 
The purpose was to establish which elements are leaching from the clay or zeolite and 

at what concentration thus was necessary to estimate what elements could be 

removed from the brine versus what elements originated from the adsorbent and may 

leach upon contact with water. 
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3.3.2.1 Materials and methods 
 
Total of four samples, two clay samples (bentonite and attapulgite) and two zeolite 

samples were used namely clinoptilolite from South Africa, as well as a clinoptilolite 

from Turkey. Firstly all clay samples were milled, sieved to 106 µm and dried in an 

oven at 105 ºC for 24 hours prior to the leaching experiments.  About 0.5 g clay 

absorbent was weighed on a 100 ml Erlenmeyer flask and 50 ml of deionised water 

was added. All experiments were done in duplicate. The mixture was shaken for 1hr 

and 2hr respectively in a water bath at 25 ºC. After contacting water for the set period 

with the absorbent, the absorbent was removed via filtration, and the recovered water 

was analyzed with an ICP – AES.  

3.4 Pre-treatment of natural adsorbents 

The purpose was to remove the major cations that originated from the natural 

adsorbents so that they will thus adsorb the cations that are present in the brine 

effluent. Secondly pretreatment was done to increase surface area by creating more 

pores. 

 

3.4.1 Activation of natural adsorbents 
 

The method for activation used was adapted from (Mamba 2009) and was optimised. 

The bentonite and clinoptilolite samples were milled and then sieved to <106 μm. 

South African clinoptilolite, South African bentonite and Turkish clinoptilolite were 

contacted with 0.02 M HCl. In a typical experiment, 5.0 g of the natural adsorbent 

was mixed with 100 ml of 0.02M HCl in a 250.0 ml Erlenmeyer flask. The flask was 

placed in water bath shaker for a set period of time at a temperature of 25 ˚C and a 

constant agitation setting of 250 rpm. Samples were washed six times with 0.02M 

HCl by initially agitating for 2hr, 1hr and thereafter 4 times for 30 min. With each 

washing, a fresh aliquot of HCl was used the supernatant recovered for further 

analysis. After the last HCl wash, samples were washed with distilled water until a 
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pH 4.5 – 5.0 was obtained. Samples were then filtered with a 0.45 μm membrane 

filter paper and analysed then dried in the oven for 24hrs at 105˚C. 

3.4.2 Batch Adsorption experiment after pretreatment 

The purpose was to establish the effect of pretreatment on the adsorption capacity of 

the natural adsorbents on toxic elements, to determine optimum contact time of the 

adsorbent with Emalahleni brine and to also determine optimum pH for toxic element 

removal. The pH study was done on Tutuka brine solution not on the Emalahleni 

brine because the Emalahleni brine sample was not enough. 

3.4.3 Materials 
 
A total of three adsorbent samples, bentonite clay and two zeolite samples were used 

namely clinoptilolite from Ecca Holdings Company in South Africa, as well as 

clinoptilolite from Turkey pretreated with the 0.02 M HCl for better adsorption 

capacity and removal of cations in the natural adsorbents and then tested for their 

adsorption capacity using a real raw Emalahleni RO brine obtained from the stage 3 

reject stream and Tutuka brine from ESKOM’s RO plant in South Africa. 

3.4.4 Determination of optimum contact time 

All three treated natural adsorbents (SC, TC and SB) samples were dried in an oven 

at 105 ºC for 24 hours prior to adsorption experiment as set out in and then were 

applied in adsorption studies. About 0.5g clay absorbent was exactly weighed into a 

100 ml Erlenmeyer flask and 50ml of stage 3 Emalahleni brine concentration in 

triplicates for replicability. The mixture was shaken for 30 min, or 1, 2, 6, 8 and 24 hr 

respectively in water bath at 25 ºC. Initially experiments were done using only the 

brine with no adjustment to its pH (i.e. natural pH) the pH adjustment was checked 

by experiment outlined in (section 3.4.5). After contacting the brine with the 

absorbent, the absorbent was removed via filtration using 0.45µm membrane filter 

paper, and the supernatant solutions were analyzed for components with an ICP – 

AES.  
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3.4.5 Determination of optimum pH 

All three treated natural adsorbents samples (SC, TC and SB) were dried in an oven 

at 105 ºC for 24 hours prior to adsorption experiment and then were applied in 

adsorption studies. About 0.5 g clay absorbent was exactly weighed into a 100 ml 

Erlenmeyer flask and 50 ml of Tutuka brine concentration in triplicates for 

replicability. The mixture was shaken for 30 min for South African clinoptilolite and 

bentonite clay respectively and shaken 1 hr for the Turkish clinoptilolite in water bath 

at 25 ºC. The initial Tutuka brine pH was adjusted to pH 4 and 6 using 32% 

hydrochloric acid. After contacting the brine with the absorbent, the absorbent was 

removed via filtration using 0.45µm membrane filter paper, and the supernatant 

solutions were analyzed for components with an ICP – AES.  
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CHAPTER 4 

RESULTS AND DISSCUSION 

This chapter is divided into four sections. The first section deals with characterization 

results of as received and treated clays and zeolites before execution of adsorption 

experiments. The second section deals with preliminary adsorption results prior to pre-

treatment to establish baseline data. The third section deals the activation or 

pretreatment of clays and zeolites in order to get a better adsorption capacity by 

removing cation originating from the natural adsorbents that block the pores during 

adsorption. The last section presents the actual adsorption results using the pretreated 

adsorbents for brine treatment. 

4.1 Characterization results 

This section presents characterization of the natural adsorbents using different 

characterization techniques such XRF for elemental analysis, SEM for morphology, 

XRD for phase identity and purity, N2-BET to obtain surface area and pore volume, 

CEC for cation exchange capacity, FTIR for structural configuration, by peak identity 

and peak shift in wave numbers, and HRTEM for confirmation of the crystalinity of 

the material. 

4.1.1 Elemental composition of the different clays 

The X-ray Fluorescence Spectroscopy (XRF) data showing the elemental 

composition of bentonite clay and clinoptilolite according to Section 3.2.3.1 is 

presented in Table 4.1  (a-b), Table 4.2( a-b) and Table 4.3 (a-b) showing Si/Al ratio 

of the South African clinoptilolite (SC),Turkish (TC) and South African bentonite 

(SB). 
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Table 4.1 a) : Major oxides analysis  of the South African clinoptilolite untreated 

(SC-U) and treated S outh African clinoptilolite (SC   -  T) and Standard deviations 

(STDEV) from XRF  

Majors 
wt %   

SC-
U1 

SC-
U2  

 
Mean STDEV  SC-T1  SC-T2 Mean  STDEV   

              
SiO2   67.80   63.28   65.54 3.1970 69.83 69.55 69.69  0.2007   
  
TiO2   0.27  0.24  0.26 0.0214 0.22 0.22 0.22 0.0007   
  
Al 2 O 3   13.61   12.33   12.97 0.9077 13.68 13.82 13.75  0.0981   
  
Fe 2 O 3   2.30  2.05  2.18 0.1727 1.85 1.84 1.84 0.0060   
  
MnO  0.03  0.03  0.03 0.0007 0.00 0.00 0.00 0.0000   
  
MgO  1.69  1.45  1.57 0.1690 1.20 1.20 1.20 0.0008   
  
CaO 1.24  1.16  1.20 0.0538 0.94 0.95 0.94 0.0085   
  
Na2 O  1.86  1.69  1.77 0.1202 0.62 0.60 0.61 0.0141   
  
K 2 O   2.90  2.65  2.78 0.1757 2.56 2.60 2.58 0.0292   
  
P2 O 5   0.03  0.07  0.05 0.0281 0.03 0.02 0.03 0.0005   
  
SO3   0.12  0.21  0.17 0.0667 0.04 0.04 0.04 0.0030   
  
Cr 2O 3   0.01  0.01  0.01 0.0007 0.00 0.00 0.00 0.0013   
  
N iO   0.01  0.01  0.01 0.0009 0.00 0.00 0.00 0.0000   
              
  
LOI  7.28  8.07  7.67 0.5577 9.04 9.17 9.10 0.0897   
  
Si/Al     6.29     5.74    
  
Total  99.14   99.58   99.36 0.3154 100.00 100.00 100.00  0.0000    
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Table 4.1 b): Trace elemental analysis of the South African clinoptilolite (SC) 

obtained from XRF. 

                      Traces in ppm 

 

Ba 2129.88±4 

Sr 2285±70 

Zr 491.7±1 

Mn 139.7±1 

Rb 139.4±5 

Zn 70.8±1.4 

Pb 63.1±0.7 

Y 61.6±0.7 

Cr 26.5±1.4 

Ni 20.8±0.7 

V 13.6±0.1 

U 11.7±0.7 

Sc 6.8±0.1 

Cu 6.2±0.1 

Co 5.3±0.1 

Mo 1.1±0.7 
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Table 4 .2 a): Major oxides and   analysis of the Turkish clinoptilolite untreated (TC–U)   - 

treated Turkish clinoptilolite (TC       T) -      and Standard          deviations (STDEV) from XRF 
Majors
wt %  CT-U1   

CT -
U2  

  
Mean STDEV CT-T1 CT-T2  Mean   STDEV   

 
SiO2   69.11   70.12  69.62 0.7173 71.64 71.54 71.59 0.0740  
 
TiO2  0.08  0.13   0.10 0.0345 0.09 0.08 0.08 0.0013  
 
Al2 O 3   11.73   11.78  11.76 0.0383 11.52 11.54 11.53 0.0156  
 
Fe2 O 3   0.97  1.39   1.18 0.2984 0.96 0.96 0.96 0.0068  
 
MnO  0.04  0.06   0.05 0.0134 0.01 0.01 0.01 0.0006  
 
MgO  1.06  1.31   1.18 0.1758 0.96 0.95 0.95 0.0043  
 
CaO  2.99  3.10   3.04 0.0778 2.04 2.06 2.05 0.0162  
 
Na2 O  0.56  0.41   0.49 0.1006 0.17 0.18 0.18 0.0044   

  
K 2 O  2.40  2.52 2.46 0.0865 2.11 2.10 2.11 0.0048   
  
P 2 O 5   0.03  0.03 0.03 0.0054 0.02 0.02 0.02 0.0006   
  
SO 3   0.01  0.04 0.03 0.0189 0.02 0.02 0.02 0.0006   
  
Cr 2 O 3   

 
0.00  

  
0.00 

 
0.00 0.0020

 
0.00 0.00 

 
0.00 

  
0.0013   

  
NiO   0.00  0.00 0.00 0.0013 0.00 0.00 0.00 0.0006   
            
LOI  11.02   8.83 9.92 1.5442 10.45 10.53 10.49 0.0550   
  
Si/Al   3.26          3.41   
  
Total  100.00  99.74   99.87 0.1860 100.00 100.00 100.00 0.0000   
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Table 4 .2 b): Trace elemental analysis of the Turkish clinoptilolite obtained from XRF   

Traces in ppm  

     
  
Sr  1042.6±1  

     Mn 380.4±1  
     Rb   346.9±1  
   Ba   301.79±1  
   Zr 266.6±2  
   Pb  125.3±1  
   Th  85.1±0.5   
   Y   70.1±1.2  
   Nb  55.3±1.2  
   Zn  45.3±0.4  
   S  34.5±1.4  
   Mo 15.9±0.6  
   U   12.4±0.3  
   Cr   7.7±0.1  
   Sc   5.0±0.6  
   V   3.1±0.1  
   Co   2.4±0.2  
   Cu     1.3 ±0.1  
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Table 4. 3   a) :  Major oxides analysis of the South African bentonite untreated (   SB-U)))

and treated South African bentonite ( SB-T )            and Standard         deviations (STDEV) from XRF  

Majors 

wt %  SB -U2 SB -U1    Mean  STDEV SB-T2 SB-T2  Mean STDEV   
  

SiO 2  59.27   65.15   62.21 4.1574 63.17 67.60 65.38 3.1289   

TiO 2 0.18  0.17   0.17 0.0098 0.17 0.18 0.18 0.0085   

Al 2O 3 14.42   15.86   15.14 1.0169 15.03 16.09 15.56 0.7447   

Fe 2O 3 2.56  2.44   2.50 0.0842 2.26 2.42 2.34 0.1121   

MnO   0.08  0.06   0.07 0.0152 0.04 0.04 0.04 0.0019   

MgO   2.76  2.97   2.87 0.1499 2.28 2.44 2.36 0.1129   

CaO  1.74  1.77   1.75 0.0197 0.79 0.85 0.82 0.0392   

Na 2O   1.31  1.76   1.53 0.3221 0.59 0.63 0.61  0.0290 

K 2O   0.87   0.95  0.91 0.0557 0.86 0.92 0.89 0.0425 

P2O 5  0.03   0.04  0.03 0.0082 0.02 0.02 0.02 0.0008 

SO3  0.19   0.12  0.16 0.0512 0.04 0.04 0.04 0.0018 

Cr2 O 3  0.01   0.01  0.01 0.0031 0.00 0.00 0.00 0.0000 

NiO   0.00   0.00  0.00 0.0011 0.00 0.00 0.00 0.0000 

          

LOI  9.37   8.70  9.04 0.4740 6.217 8.782 7.499 1.8134 

 

  

             

Si/Al 

 
Total

 

  

  2.20   

  
100.00 

  

  100.00 

    

 
100.00

 

  
100.00

 

2.31 

1.98
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Tables 4.1 a-b) and 4.3a-b) show that the natural clinoptilolite and bentonite clays are 

mainly composed of Si, Al and Fe with exchangeable cations such as Na+, K+, Ca2+ 

and Mg2+. The Si/Al ratio of South African clinoptilolite (SC) was 6.29 for the 

untreated sample and 5.74 for the treated sample. The South African clinoptilolite 

showed highest sodium content of 1.77 wt% before pretreatment and 0.61 wt% after 

acid treatment. High potassium content was observed before and after treatment with 

concentration of 2.78 wt% and 2.58 wt% respectively. The Si/Al ratio of SC 

decreased after pretreatment and that could be attributed to dealumination due to acid 

treatment but the Si/Al ratio decrease was not observed in the TC and SB. Instead an 

increase in Si/Al ratio was observed for TC and SB after pretreatment. 

Table 4.3   b):  Trace elements analysis of the South African bentonite from XRF    

    Trace elements (ppm)

   
Ba   776.05 ±1  
Sr 249.25±1  
Mn    186.20   ±1     
Zr  147.23±1  
Cr  101.52±1  
Zn   58.27±0.7  
Pb   24.35±0.7  
Rb    24.09±0.7  
Y   23.91±0.7  
Th   21.03±0.1  
Nb    15.26±0.1    
Sc    6.59±0.1   
Ni    5.87±0.1  
Cu     3.69±0.1   
U    3.6±0.1  
V    1.71±0.1  
Mo   1.1±0.5  

 
 

 

 

 

 

 



  
    

 71

The minor elements found in the South African clinoptilolite are presented (Table 4.1 

b). The highest concentrations were recorded for barium and strontium (> 2000 ppm), 

with significant amounts of zirconium (491 ppm), and some small amounts, above 

100 ppm, of manganese and rubidium. Various other elements are present in amounts 

below 100 ppm. The material is mined, the plausible factors that may account for the 

distribution includes the geology of the area, the mining process and subsequent 

packaging.  

 

The average Si/Al ratio for Turkish clinoptilolite (TC) was 3.26 before pretreatment 

and 3.41 after pretreatment. Turkish clinoptilolite has a low sodium content of 0.56 

wt% before pretreatment and 0.18 wt% after pretreatment the treated sample. 

However the Turkish sample showed a high calcium content of untreated sample 

(3.04 wt%) , and 2.05 wt% for the treated sample and high potassium content of 2.46 

wt% before pretreatment and 2.11 wt% after pretreatment. The minor elements found 

in the Turkish clinoptilolite are presented (Table 4.1 b). The highest concentrations 

are strontium (>1000 ppm), with significant amounts of manganese (380 ppm), 

barium (346 ppm), zirconium (266 ppm), and some small amounts of lead, (>100 

ppm). Various other elements such as Zn, Cr, Cu, Co and Nb are present in amounts 

below 100 ppm.  

 

The average Si/Al ratio of South African bentonite was found to be 2.20 and 2.31 for 

untreated and treated respectively. The South African bentonite showed highest 

magnesium content of 2.87 wt% before pretreatment and 2.36 wt% after 

pretreatment. Sodium content before pretreatment was found to 1.53 wt % but 

reduced to 0.61 wt% after treatment. Similar trend was observed for K where the 

concentration before pretreatment was 0.87 and 0.89 wt% after treatment. Ca in the 

bentonite was 1.75 wt% before treatment and reduced to 0.82 wt% after pretreatment. 

The minor elements found in the South African bentonite are presented in Table 4.3 

b. The high concentrations of barium (776 ppm) and strontium (249 ppm), zirconium 
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(141 ppm), Chromium (>100 ppm) and various other elements are present in amounts 

below 100 ppm. It is clear that the South African clinoptilolite has a higher Si/Al ratio 

than Turkish clinoptilolite and the bentonite clay from South Africa before and after 

pretreatment with acid. The presence of CaO and MgO for natural zeolites is 

important when considering their exchange capacity because Ca2+ and Mg2+ act as 

exchangeable cations in the adsorption of heavy metals. 

Mamba et al., (2010) reported on the chemical composition of naturally occurring, 

and extensively mined South African clinoptilolite obtained from Vulture creek, 

Kwazulu-Natal province,  the major components  reported were 70% SiO2, 12% 

Al2O3, 2% Na2O, 5% K2O, 2% CaO and 2.5% Fe2O3 with a Si/Al ratio of 5.96 and 

the ( Na+K )/Ca ratio of 3.4 (Mamba 2010). The higher Si/Al ratio and Ca content 

reported in their study did suggest that this was not the isostructural form heulandite, 

but may have been mordenite, and could possibly explain the large disparity between 

their and the current results. In addition, it should be noted that there are no ‘hard and 

fast’ rules when classifying natural zeolites, and recommendations on naming and 

classification are to be treated as a guideline (Coombs, 1997). Manson and Sand, 

(1960) compared clinoptilolite and mordernite, and reported a ratio of Si/Al≥4.0 for 

clinoptilolite, and they found that the sum of monovalents (Na and K) exceeded that 

of the divalent. The ratio of (Na and K)/Ca were found to be 4.3 and similar value 

was reported by Coombs et al., 1997). However Coombs et al., (1997) did advise that 

zeolite minerals could not be distinguished based on the Si/Al ratio but an exception 

can be made with heulandite and clinoptilolite due to the distinct framework topology 

inherent to these zeolites (Coombs et al., 1997) 

 

Whether the differences can simply be explained by the geology of the area, and the 

mining process is beyond the scope of this project. However, some references did 

show that several forms of naturally occurring zeolites can be found at a particular 

mining site or geographical location (Manson and Sand, 1960). Clinoptilolite can be 

classified by Si/Al ratio. If this ratio is between 4 and 5 or greater than 4, it can be 

classified as clinoptilolite. Zeolites also can be classified as clinoptilolite if the 
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criteria of (Na+K) > Ca is available (Inglezakis et al., 2001). In this study South 

African clinoptilolite could be classified as clinoptilolite according to Si/Al ratio of 

6.29 for the untreated sample and 5.74 samples which is greater than 5. The Si/Al 

ratio of Turkish clinoptilolite was 3.26 before pretreatment and 3.41 after 

pretreatment and these values are below 5 thus could not be classified according to its 

Si/Al and also the (Na+K)> Ca criteria was not met by the Turkish. However Coombs 

et al., (1997) did advise that zeolite minerals could not be distinguished based only on 

the Si/Al ratio. In appendix A1, A2, A3 it observed that after pretreatment of natural 

adsorbents with acid the Al and Si are still present the adsorbents with some cations 

such Mg, Ca and K meaning the acid washing did remove all the cations and didn’t 

remove Si and Al. 

 

4.1.2 Brine Composition 

The brine solutions (see section 3.2.2 for analysis details) collected from the 

Emalahleni RO plant and RO desalination plant at Tutuka power station was adopted 

from (Fatoba, 2011) for comparison South Africa were analysed by ICP-AES. The 

initial Emalahleni brine and Tutuka brine compositions prior contact with the 

adsorbents (SC, TC and SB) are provided in Tables 4.4 and 4.5 respectively.  

 

 

Table 4. 4   a): Composition of the Emalahleni RO brine (concentration in ppm except pH 
and EC (mS/cm))  major and minor elements 
  
   Major elements          Concentration (ppm)   

       B   8.24 ±2.0   
 Ca   71.71 ±0.9  

  K                             108.75 ±1  
  Mg 133.66 ±1  
  Na   4323.71 ±95  

 Cl  17.55 ± 0.3  
 SO4

2- 
     65.93 ± 0.3  

       pH     8.54± 0.0  
  EC (mS/cm)  15.83 ± 0.5    
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The chemical composition (major, minor and trace species) of Emalahleni brine used 

in this study was determined using ICP-AES and IC analytical techniques and the 

results are presented in Table 4.4(a-c) above. It was observed that the concentration 

of major species Na was 4323.71 ppm. The other major elements are Mg, Ca and K 

in the range of 100 to 700 to ppm. The minor and trace elements present in the brine 

Table 4. 4   c): Elemental composition Emalahleni brine (stage 3) 

  Anions     Concentration (ppm)  

    Bromide   0.249 ± 0.005 

    Chloride 17.5 ±0.308 

    Fluoride                       0.049 ±0.003 

    Sulfate  65.25 ± 0.320 

  
Table 4. 4   b) Minor elements analysis of the Emalahleni RO plant 
  
    Minor elements  Concentration (ppm) 

      Al    1.14 ± 0.1
As     0.13 ± 0.3
Ba     0.05 ± 0.0
Cd    0.03 ± 0.1
Co     0.03 ± 1.4
Cr    0.06 ± 0.1
Cu      0.39 ±0.1  
Fe    0.10 ± 0.1
Mn      0.01 ± 0.1  
Mo     0.25 ± 0.1
Ni     0.20 ± 0.1
P     1.80 ± 0.7
Se      0.24 ± 0.9
Sr     3.30± 0.3  
Ti     0.05 ± 0.2
V     0.13 ±0.2  
Zn     0.46 ± 0.1
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are B, Al, P, Fe, Sr, Li, Ti, Hg, Mn, Ni, Cu, Zn, Mo, Ba and P (concentrations 

ranging between 0.1 to 66 ppm ). 

 

 

   

  

Table 4. 5   : Composition of the Tutuka RO (concentration in ppm except pH and  

EC (mS/cm)) major and minor elements adopted from (Fatoba, 2011)   

  
       Major elements (ppm)  
  
    Al    0.045 ± 0.1  
      Ca     106.99 ± 12      
  K     106.2 ± 1       
      Mg    163.36 ± 1    
      Na    4804.88 ± 3  

Si     13.11 ± 0.1   
      Cl     2424 ± 17  
      SO 4

2-     8858 ± 86  
      pH     7.75 ± 0.0   
      EC (mS/cm)   16.69 ± 0.5  
      TDS                 5400             ± 283  
  
  

         

  
   Minor elements (ppm)  

B     2.24 ± 0.0     
        As      0.0068 ± 0.0  

  Ba    0.057 ± 0.0  
     Cd    0.00017 ± 0.0  

Co    0.014 ± 0.0  
    Cr    0.014 ± 0.0
    Cu    0.26 ± 0.1
    Fe    0.24 ± 0.2  
       Mn    0.0017 ± 0.0  

P    0.82 ± 0.3  
  Pb    0.0039 ± 0.0  

Se    0.0049 ± 0.0  
Sr   3.055 ± 0.1  
Ti     0.00069 ± 0.0  
V    0.019 ± 0.0  
Zn   0.13 ± 0.0  
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It was observed that the Emalahleni brine and Tutuka brine are not significantly 

different in terms of their chemical composition. However the Tutuka brine 

composition has higher concentrations of Na, Ca, Mg and K than the Emalahleni 

brine and also has higher S composition. The Tutuka brine was used only to study 

optimum pH in this study because there was not enough sample of the Emalahleni 

brine to conduct this particular test, whereas Emalahleni brine was used throughout 

the study. However the Emalahleni brine pH is slightly higher than the Tutuka brine 

with 8.54 and 7.75 respectively. The Emalahleni brine used in this study was less 

saline than the Tutuka brine. 

4.1.3 Morphology characterization of the natural adsorbents 

The morphology analysis of natural adsorbents before and after acid treatment was 

done using scanning electron microscopy (SEM) and high resolution transmission 

electron microscopy (HRTEM). 

4.1.3.1 Scanning electron microscopy analysis 

 The SEM analysis was performed in order to determine the morphological changes 

brought about by acid treatment. Figure 4.1 shows the scanning electron microscope 

(SEM) images of the South African clinoptilolite (SC), Turkish clinoptilolite (TC) 

and South African bentonite (SB) aggregated particles.      
 

 

  

D) E)

F)
) 

Figure 4.1: Scanning electron microscopy micrographs of untreated a) SC, (b) TC and 

(c) SB and Figure 4.2 : 0.02 M HCl treated d) SC, (e) TC and (f) SB. 
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Figure 4.1 (a & b) shows the original clinoptilolite from South Africa and Turkey 

respectively. There was no crystalinity observed on the surfaces of the adsorbents. 

The crystalline calcium sites are where most ion-exchange takes place, in the case of 

original clinoptilolite (Mamba et al., 2010). All three images shown in Figure 4.1 

show various sized agglomerated particles with different geometries, however the 

characteristic layered structure of clay platelets expected for the bentonite sample 

which is often seen with clay minerals is not visible at this resolution. The crystal 

structures of the clinoptilolite material from South Africa are also not clear. This 

could be attributed to the impure mineral phase in the South African clinoptilolite as 

it will be shown in the qualitative and quantitative XRD in section 4.2. 

 

After pretreatment the SC image before and after treatment are not the same there is a 

noticeable change in morphology from smooth surface into holes and voids on Figure 

4.1 image A and Figure 4.2 image A in the surface. And it was also stated by Mamba 

et al., (2010) stated that HCl-treatment is able to eliminate the particles that clog the 

pores of the natural adsorbent thus improving its adsorption and ion-exchange 

properties However the South African materials did not show an open structure after 

acid treatment at this resolution. The crystalinity of the natural adsorbents was also 

studied with HRTEM in the next section. Pretreatment of the natural adsorbents was 

expected to have an effect on their morphology, to open more pores by exchange of 

cations. 

4.1.3.2 High resolution transmission emission microscopy analysis 

The porous well structured crystalline zeolitic material and natural clays formed 

during the pretreatment was also confirmed by the use of High Resolution 

Transmission Microscopy (HRTEM) analysis as shown in Figure 4.3 
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Figure 4.3: HRTEM images of untreated SC 

 

 

A  B

C 

 

Figure 4.4: HRTEM images of 0.02 M HCl treated a) SC, b) TC and c) SB 
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Figure 4.3 above shows untreated sample of SC with aligned fringes in one direction 

showing that the material is polycryastalline , however the Figure 4.4 a) above, the 

SC shows  that fringes are changing in different directions which indicates that the 

material structure is not monocrystalline, but polycrystalline and as indicated in 

Figure 4.5. This indicates that the material is crystalline. Figures 4.4 b) and 4.4 c) 

showed that the materials are electron sensitive under the beam (Terasaki, 1993). The 

images did not show fringes that are aligned but TC shows crystalinity as shown in 

selective area diffraction images given in Figure 4.4 b) below where the diffraction 

spots are aligned and not random showing large crystals whereas the other materials 

show diffuse rings indicating polycrystallinity 

 

Figure 4.5: Diffraction images of untreated SC showing crystalinity 
 

 

B)

C) 

A) 

 

Figure 4.6: Diffraction images of 0.02 M HCl treated a) SC, b) TC and c) SB 

showing crystalinity 
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Figure 4.6 above shows diffraction images of the three natural adsorbents (SC, TC 

and SB). The TC is the one that shows more ordered crystalinity with the spots in 

figure 4.6 b) the material is considered monocrystalline. In figure 4.6 a) the SC shows 

crystalinity but the material shows that it is polycrystalline while SB is not showing 

any crystalinity in the diffraction images above. The natural clinoptilolites from both 

South Africa and Turkey were thus crystalline as shown by the HRTEM analysis 

whereas bentonite clay’s crystalinity was not clearly observed.  

4.2 Qualitative XRD spectra analysis 

The mineral phases identified by X-ray Diffraction (XRD) in the natural adsorbents, 

bentonite clay (SB), clinoptilolite (SC and TC) and attapulgite clay (AS) are 

presented in the sections that follow. 

4.2.1 Mineralogical composition of natural zeolites and natural clays 
 
The qualitative and quantitative X-ray diffraction (XRD) patterns of the samples used 

throughout the studies is demonstrated in Figure 4.7 (a-d). Characteristic clinoptilolite 

and bentonite peaks in the XRD pattern are indicated on the Figure 4.7 (a-d) below.  
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Figure 4.7: X-ray diffraction spectra a) SC b) TC c) SB and d) AS (Q=Quartz, C= 

clinoptilolite, M = montmorillonite and I= illite) 

The above X-ray diffraction data clearly shows that the clinoptilolite from Turkey is 

more pure than the clinoptilolite from South Africa which contained some quartz as 

an impurity as can be seen in figure 4.7 a) above. The bentonite from South Africa 

has some non-clay mineral impurities such as quartz. From the above Figures it 

observed that TC is more pure than SC and the bentonite clay has more 

Montmorillonite phases than impurities such quartz and illite. 

 

4.2.2 Quantitative X-ray diffraction analysis 

Quantitative X-ray Diffraction (XRD) was performed to identify the percentage of 

clay or zeolite material present in one adsorbent in order to determine how much of 

other minerals are present in clay or zeolite. The samples were prepared as described 

in section 3.2.3.1 a). The quantitative X-ray diffraction (XRD) data of natural clays 
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and natural zeolite shows that the natural materials were not pure mineral phases as 

can be seen from Figure 4.8-4.11 below. 

 

 

Figure 4.8: Quantitative XRD of Turkish clinoptilolite (TC)  

 

Figure 4.9: Quantitative XRD of South African clinoptilolite (SC) 
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Figure 4.10: Quantitative XRD of South African bentonite (SB) 

 

Figure 4.11: Quantitative XRD of South African attapulgite (AS)  

 

(Smectitedi1wMg) denotes lower smectite spacing with magnesium and 

(Smectitedi1wCa) denotes denotes lower smectite spacing with calcium. Quantitative 

XRD showed that the South African deposits of clinoptilolite and bentonite contained 

significant amounts of other dimensional phases such as smectite, quartz and illite, 

compared to the Turkish clinoptilolite. Hence it would be necessary to establish the 
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cation exchange capacity and the performance as adsorbent of these locally mined 

materials. As shown in Figures 4.8 and 4.9 Turkish clinoptilolite is more pure 

containing 93% clinoptilolite than the South African clinoptilolite which only 

contained 54% of clinoptilolite. South African clinoptilolite also contains quartz; this 

result was confirmed by the qualitative XRD where other phases were present and not 

only clinoptilolite phases, and also by the Cation exchange capacity (CEC) results (in 

section 4.3.1) which show Turkish clinoptilolite having higher CEC than the South 

African clays and natural zeolite.  
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4.3 Determination of cation exchange capacity 

This method was used for determining cation exchange capacity and measuring 

exchangeable cations and it is the method of interest in this study. The weight of the 

zeolite sample used to determine the cation exchange capacity was 0.5 g as specified 

in (Section 3.2.7) (Radojević & Bashkin, 1999). 

4.3.1 Cation exchange capacity 
 

In this section, the results obtained during CEC experiments (see section 3.2.7) which 

were conducted to determine the cation exchange capacity of natural clays and 

natural zeolite are discussed. The concentrations of cations obtained from ICP-AES 

analysis were converted to meq (milliequivalents) per gram of sample as follows 

(Radojević & Bashkin, 1999) 

Mass (mg) of cation per gram of zeolite = Volume (L) x Cca / (weight of zeolite 

sample used)  

 

Where Cca is the concentration of cationic species in the sample extract in mg/l-1 

Therefore, meq of cation g-1 of sample = [Volume (L) x Cca/ (weight of zeolite 

sample used)] / (equivalent weight of the cation) 

 

Equivalent weight of the cation is the mass needed to provide 1 mole of charge or 

atomic weight divided by the valence. 

Therefore: 

MeqCa g-1 sample = [0.1 x Cca / 0.5] / 40.0 

Meq Mg g-1 sample = [0.1 x Cca / 0.5] / 24.4 

Meq Na g-1 sample = [0.1 x Cca / 0.5] / 23.0 

Meq K g-1 sample = [0.1 x Cca / 0.5] / 39.1 

The calculated milliequivalents per g of each cation (Ca2+, Mg2+, Na+, and K+) was 

summed up to get the total cation exchange capacity (CEC) of the zeolitic and clay 

material.  
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Various zeolites including clinoptilolite have been shown to have a preference for the 

ammonium ion over Na+, Ca2+ and Mg2+; but having a greater selectivity for K+ than 

the ammonium ion (Collela, 1996). It is this selectivity that can be exploited in 

determining the CEC of zeolites. Figure 4.12 gives a comparison of the CEC values 

obtained for natural zeolite clinoptilolite from South Africa (SC), natural zeolite 

clinoptilolite from Turkey (TC), bentonite clay from South Africa (SB) and 

attapulgite clay from South Africa (AS).  The procedure used to obtain the CEC 

results was adopted from (Amrhein et al., 1996) and optimised because the procedure 

was for fly ash not clays or zeolites. The experiment was performed in triplicate for 

reproducibility 

Figure 4.12: Total cation exchange of South African clinoptilolite (SC), Turkish 

clinoptilolite (CT), South African bentonite (SB) and South Africa attapulgite (AS) 

 

In Figure 4.12 above, the results of CEC for natural adsorbents showed that the 

Turkish clinoptilolite have a higher cation exchange capacity of 2.8 meq/g than the 

South African clinoptilolite which had a CEC of 2.2 meq/g and South African 

bentonite (SB) which had a CEC of 1.2 meq/g and attapulgite clay (AS) with the 

lowest CEC value of 0.8 meq/g.   
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Natural zeolites have CECs from 2 to 4 milliequivalents (meq/g), about twice the CEC 

of bentonite clay (Mumpton, 1999). Unlike most non crystalline ionexchangers, e.g. 

organic resins and inorganic aluminosilicate gels (mislabelled in the trade as 

‘‘zeolites’’), the framework of a crystalline zeolite dictates its selectivity toward 

competing ions such as K+, Ca2+, Mg2+ and Na+. The hydration spheres of high field-

strength cations prevent their close approach to the seat of charge in the framework; 

hence, cations of low field strength are generally more tightly held and selectively 

exchanged by the zeolite than other ions.  

Clinoptilolite is reported to have a relatively small CEC (2.25 meq/g) but within the 

range of 2 to 4 (meq/g) according to Mumpton, (1999), but its cation selectivity is Cs+ 

>Rb+>K+ >NH4
+ > Ba2+ >Sr2+> Na+ >Ca2+>Fe3+ >Al3+ >Mg2+ >Li+ (Mumpton, 1999). 

The CEC values obtained for South African clinoptilolite in this study are higher than 

those reported by Schoeman, (1986). The higher values obtained can be attributed to 

the smaller particle size of the adsorbents (106 µm) used in this study compared to the 

particle size 500 – 1000 µm of the adsorbents in the work reported by Schoeman, 

(1986), and the deviation from theoretical values is most likely due to imperfections 

and impurities in the natural sample and diffusional constraints in larger particle sizes. 

The particle size has an effect on CEC, the smaller the particle the higher the CEC. The 

Turkish clinoptilolite showed higher CEC than South African clinoptilolite and that 

could be attributed to its purity as shown by the XRD. 

4.4 N2- BET (Brunauer-Emmett-Teller) 

 
Figure 4.13-4.14 presents the results obtained for N2-BET surface area, pore diameter 

and volume of the natural zeolite (clinoptilolite) from South Africa (SC), natural 

zeolite clinoptilolite from Turkey (TC), bentonite clay from South Africa (SB) and 

attapulite clay from South Africa (AS).  
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Table 4.6 shows that the surface area of the material before pretreatment of SC (51.21 

m2/g), TC (38.80 m2/g), SB (56.15 m2/g) and AS (125.96 m2/g). However these 

natural adsorbents needed to be activated to increase their surface areas before they 

can be used for adsorption purposes as it can be seen above their surface areas are 

low in the natural form without pretreatment. Attapulgite is the natural adsorbent with 

a higher surface area. However South African clinoptilolite showed higher surface 

area than the Turkish clinoptilolite. The SC has more micropores than the TC, SB and 

AS, however it was observed that SB has more mesopores and the SC has more 

mesopores than the TC as seen in Table 4.6 above showing the South African 

adsorbents are more porous than the Turkish adsorbent. 

Table 4.6:   The BET Surfa ce area, m icropore, mesopore and macropore  untreated  

of natural  adsorbents.     

Adsorb  ent   BET surface area Micropore  Mesopore          

      m2/g       m2/g m2/g  
 

    

SC     51.21      12.792 38.42      
TC    38.8 0                     3.139    35.66  
SB     56.15      9.61 7 46.53        
AS    125.96     2.526 23.431      
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Figure 4.13: Adsorption/desorption isotherms for the SC, TC, SB and AS  

 

These isotherms were used to calculate the specific surface area by the BET method. 

Zeolites are microporous materials with voids smaller than 2 nm in diameters. The 

zeolite pore space is filled in volumetric manner rather than a layer-layer mechanism 

because of proximity of the surrounding pore walls to the adsorbate molecules. The 

sorption uptake increases with pressure, saturation of each pore domain with 

adsorbate molecules depends not only on the size and shape of microporous channels 

and cavities, but also size and geometry of the adsorbate molecules (Korkuna et al., 

2006). Based on the classification the adsorption isotherms, all the measured 

isotherms for the natural adsorbents can be considered as isotherms type V. The BET 

results shown above indicate that these natural adsorbents are microporous because of 

their hysteresis loops starting above 0.4. Figure 4.13 a) and b) shows that these 

natural adsorbents show type V isotherms that shows condensation and hysteresis. 

The initial part of these isotherms shows micropore filling (Lowell et al., 2006). Type 

V isotherm observed for water vapour adsorption. 
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Figure 4.14: BJH dA/dV pore area of a) SC, b) TC, c) SB and d) AS 

The pore distribution was determined by BJH method. The BET results shown above 

indicate that these natural adsorbents are microporous as well as mesoporous because 

they have hysteresis loop and their pore size distribution is between 20 and 80 Å. The 

SC in Figure 4.14 a) shows a mesoporous pore size distribution before pretreatment. 

4.5 Preliminary adsorption experiments 

The results for the preliminary adsorption experiment (experimental details in section 

3.3.1) are discussed in this section. The experiment was performed with 50 ppm 

initial concentration of brine and 0.5 g adsorbent dose. Figure 4.15 (a-d) shows the 

removal of major elements from Emalahleni brine at 2 hr and 24 hr contact time. 

 

 

 

 



  
    

 91

‐80

‐60

‐40

‐20

0

20

40

60

80

100

Na Mg K Ca
%
 R
e
m
o
v
a
l/
le
a
c
h
in
g
 

Elements

2 hr

24 hr

d)

‐80

‐60

‐40

‐20

0

20

40

60

80

100

120

Na Mg K Ca

%
 R
e
m
o
v
a
l/
le
a
c
h
in
g
 

Elements

2 hr

24 hr

b)

‐60

‐40

‐20

0

20

40

60

80

100

Na Mg K Ca

%
 R
e
m
o
v
a
l/
le
a
c
h
in
g

Elements

2 hr

24 hr

a)

‐200
‐180
‐160
‐140
‐120
‐100
‐80
‐60
‐40
‐20
0
20
40
60
80

100
120

Na Mg K Ca

%
 R
e
m
o
v
a
l/
le
a
c
h
in
g

Elements

2 hr

24 hr

c)

 

Figure 4.15: Percentage removal efficiency of major elements from brine using a) SC 

b) CT c) SB and d) AS 

The removal of major elements from Emalahleni brine is shown in Figure 4.15 (a-d) 

above. Significant amounts of the major exchangeable cations Mg2+ and Ca2+, 

contained in the adsorbents were leached/exchanged out of the adsorbents during the 

testing period. Clinoptilolite from South Africa showed above 20 % Na+ removal in 

24 hr contact time and the bentonite from South Africa showed highest removal 

efficiency of K+. It is evident that these natural adsorbents are able to adsorb 

univalent elements when they are untreated and leaches out divalent ions such as 

Mg2+ and Ca2+. The results above are consistent with the XRF results. The untreated 

Turkish clinoptilolite (TC-U) was able to adsorb about 5 % of Na+ and about 86 % of 

K+ however leaching Ca2+ (162 %) and Mg2+ (37 %) into the solution was observed. 
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The XRF results showed that the Turkish adsorbent has high Ca2+ content compared 

to the South African clinoptilolite. South African clinoptilolite XRF data showed that 

this adsorbent has high Na+ and K +content but it was able to adsorb the cations 

instead of leaching them out, thus there was competitive adsorption. These natural 

adsorbent thus needs activation prior adsorption because it clearly observed that they 

leach more elements than adsorbing in their untreated form. Figure 4.16 (a-d) shows 

preliminary changes in concentration of selected trace elements in Emalahleni. 

Elements that did not vary by at least 1 ppm from the real brine concentration from 

Emalahleni are not included in the figure.  Initial (Init) represents the raw brine, 2 hr 

represents after contacting the adsorbent with the raw brine for 2 hr and 24hr 

represents after contacting the adsorbent with the raw brine for 24hr. 
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Figure 4.16: Changes in concentration of selected trace elements after a) SC b) TC c) 

SB and d) AS adsorbents are contacted with the raw brine (Init), after 2hr and 24hr 

contact times. 

 

Figure 4.16 d) shows that B was not adsorbed at 2hr instead it leached out but was 

adsorbed again after 24hr, and Figure 4.16 a, b and d) shows that some trace elements 

(Se, Sr and B) were leached from the natural clinoptilolite and bentonite clay 

however these natural adsorbents were able to adsorb B in the 2 hr and 24 hr contact 

time in Figure 4.16 (a,b and c) shown above. South African clinoptilolite and 

attapulgite clay were able to adsorb P. Some of the clays and zeolite were able to 
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reduce the concentration of some metals (Table 4.7); which is a promising result for 

these low cost materials. This aspect will require further optimization. The bentonite 

and attapulgite clay from South Africa leaches out Fe and V respectively after 2 hr 

and 24 hr contact time, meaning that the V is leaching from the attapugite clay. 

However the concentration of metals leached were below the target DWAF limit 

Table 4.7: Change in brine concentration of iron and vanadium (ppm) 

Element 

Initial 

brine 

content 

2hr     

contact 

24 hr 

contact Adsorbent 

V 0.129 0.557 0.306 Attapulgite SA 

V 0.129 0.000 0.000 Clinoptilolite Turkish 

Fe 0.097 0.000 0.000 Attapulgite SA 

Fe 0.097 0.000 0.000 Clinoptilolite Turkish 
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Figure 4.17: Leaching of anions from a) SC b) TC c) SB after contact with brine 

 

The removal of anions using SC, TC and SB natural adsorbents in Figure 4.17 (a-c) 

above shows that Turkish clinoptilolite and South African bentonite were not able to 

adsorb anions that were in the Stage 3 brine from Emalahleni in the 2 hr and 4hr 

contact time. These natural adsorbents leached phosphate and chloride into the brine 

solution instead of adsorbing and that is because of high pH of the brine thus when in 

contact with the natural adsorbents the surface of the adsorbents became negative and 

repelled anions and could only adsorb cations. 

The toxic element leachability is an important factor as zeolite and clays should not 

contaminate the water they intend to treat (Petrik et al., 2007). The conducted 

experiments using the dosage (50 g/mL) of impure zeolite P showed some toxic 

elements such as Pb , Cd, Mn, Mo and Sr leached out from the impure phase zeolite P 
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into the treated water solution. Chlorides and phosphate in this study were found to 

be leaching out of these adsorbents (SC, CT and SB) as shown in figure 4.17 (a-c). 

4.6 Leaching experiments 

The results for the leaching experiments based on details in the section 3.3.2 are 

discussed in this section. These experiments were conducted to investigate what 

elements are being leached out by the natural clays and natural zeolites during 

adsorption. The negative values in the graphs below shows that elements were 

readsorbed or removed by the natural adsorbents. 
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Figure 4.18: Leaching of a) major elements b) trace elements c) Si, Al and Fe from 

the South African clinoptilolite after contact with deionised water. 
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Figure 4.19: Leaching of a) major elements b) trace elements c) Si, Al and Fe from 

the Turkish clinoptilolite after contact with deionised water 
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Figure 4.20: Leaching of a) major elements b) trace elements c) Si, Al and Fe from 

the South African bentonite after contact with deionised water 

 
From the figures 4.18-4.20 shown above it was observed that these natural adsorbents 

have higher amounts of readily soluble and thus leachable silica and aluminium 

species than other elements and trace elements. It is also shown that calcium and 

magnesium are leached in higher amounts than elements due to the solubility of these 

elements from the clay and zeolite adsorbents, which indicates their presence in the 

natural materials as soluble salts. It is important to conduct leaching experiments so 

that we can know what these natural adsorbents are leaching to solution during 

adsorption studies. The leaching of Si after 2hr shows that some Si was not bound  on 
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the zeolite frame work. Figure 4.18-4.20 above. Shows Mg and K are soluble because 

they leached out more with deionised water in the South clinoptilolite and South 

African bentonite adsorbents. In the Turkish clinoptilolite less Si was leached.  South 

African clinotilolite leached more Sr, because the zeolites contain Sr observed in the 

XRF data in section 4.1.1. but the Sr leached was still below the Target water quality 

range (TWQR) by the Department of Water Affairs (DWA). 

 

4.7 Pretreatment results  

In this section, the results of the pretreatment experiments based on the experimental 

procedure set out in section 3.3 are presented and discussed. These experiments were 

conducted to activate the natural adsorbents to remove Na+, K+, Ca2+ and Mg2+ to 

enhance adsorption and prevent leaching. The results below represent the extraction 

of four major cations, magnesium (Mg), sodium (Na), potassium (K) and calcium 

(Ca) from the clinoptilolite sample from Turkey. This was compared to natural zeolite 

(clinoptilolite) and natural clay (bentonite) from South Africa. These samples were 

obtained from Ecca Holdings Company, Heidelberg, Western Cape in South Africa. 

In figures 4.21-4.23 the Na+, K+, Ca2+ and Mg2+ concentration remaining in the 

leachates after each of several extractions are presented. Aliquots were taken after 

contacting 5 g natural adsorbents with 100 ml 0.02 M HCl for 2 hr, 1 hr and 30 min 

(x4) represented as  (a), (b), (c) and (d) respectively. These experiments were carried 

out in duplicate for reproducibility. 
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Figure 4.21: Removal of major cations from South African clinoptilolite after 

contacting 5 g SC with 100 mL, 0.02 M HCl: a) Ca removal b) Na removal c) K 

removal and d) Mg removal  

0

100

200

300

400

500

600

2hr 1hr 30min(a) 30min(b)  30min (c) 30min (d)

C
a 

re
m

o
va

l (
p

p
m

) 

Time

a)

0

50

100

150

200

250

300

2hr 1hr 30min(a) 30min(b)  30min (c) 30min (d)

N
a 

re
m

o
va

l (
p

p
m
)

Time

b)

0

10

20

30

40

50

60

70

80

2hr 1hr 30min(a) 30min(b)  30min (c) 30min (d)

M
g

 r
em

o
va

l (
p

p
m

)

Time

d)

0

20

40

60

80

100

120

140

2hr 1hr 30min(a) 30min(b)  30min (c) 30min (d)

K
 r

em
o

va
l (

p
p

m
)

Time

c)

 
Figure 4.22: Removal of major cations from Turkish clinoptilolite after contacting 5 g 

TC with 100 mL, 0.02 M HCl: a) Ca removal b) Na removal c) K removal and d) Mg 

removal  
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The pretreatment applied to the natural material was aimed at improving its ion 

exchange capability. After six extractions of the South African clinoptilolite in figure 

4.21 (a-d) the content of all cations in the extraction solution (0.02 M HCl) decreased. 

Sodium reached a plateau at 87 ppm on the sixth extraction (initially at 849 ppm) and 

this is a good extraction in terms of sodium. These results are consistent with the 

XRF data showing high sodium but not all sodium can come out easily because of the 

presence of other phases. Calcium reached 17 ppm on the sixth extraction, from an 

initial value of 104 ppm on the first extraction, potassium showed an initial good 

extraction from 81 ppm to 60 ppm. However the extraction of potassium showed 

steady low incremental removal after initial release and plateaued at 50 ppm, (from 

the XRF data initial potassium was high at 2.78 (% wt). Magnesium showed easy 

extraction (from (66 to 13 ppm). 

It is evident that the South African clinoptilolite contained higher amounts of sodium, 

but it can also been seen that 0.02 M HCl can extract the cationic sodium almost 

completely from the SA clinoptilolite with sufficient extractions. In the case of the 

Turkish clinoptilolite, the content of all cations decreased in the extraction solution of 

0.02 M HCl (figure 4.22 (a-d). It can be observed that Turkish clinoptilolite contained 

high amounts of calcium as exchangeable cation because the calcium content in the 

leachant was 522 ppm after the first extraction whereas in the last extraction calcium 

content was 85 ppm. These results are consistent with the XRF data of untreated 

Turkish clinoptilolite with calcium content being 3% wt and the highest. Sodium 

showed a very high extraction with the first extraction of 241 ppm and the sixth 

extraction down to 25 ppm. Magnesium showed similar good extraction (from 73 to 

18 ppm with the first extraction). Potassium underwent a very gradual decrease from 

119 ppm in the first extraction, to 40 ppm on the sixth extraction.  

Extraction was generally nearly complete after the second extraction hence activation 

by HCl extraction of the zeolite adsorbents was shown to be generally effective after 

2 extractions. These results obtained in this study show that the activation step 

requires optimization, whereas literature activation studies, such as reported by 
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(Mamba et al., 2009 and Cakicioglu-Ozkan and Ulku, 2009), only showed that 

activation using HCl enhanced adsorption of clinoptilolite for trace elements and 

vapour respectively and did not report exactly how much HCl extracts are necessary 

to displace the major cations in natural zeolite clinoptilolite. The study also showed 

that the extraction achieved was different for purities of natural clinoptilolite, thus the 

extraction/ activation step should be optimized specifically for each particular 

adsorbent material. Potassium was shown to be the least readily removed from the 

zeolite because in the XRF data the South African clinoptilolite showed highest K 

content and clinoptilolite has high affinity for K so it was not easily exchanged with 

H+ ion. The removal values differ from XRF data which gave the total wt % and 

showed that not all of each cation is exchangeable, they maybe entrapped in other 

mineral phases. Continuous extraction for long time maybe a better solution rather 

than 6 extractions but concentration of the acid needs to be monitored. 

 

Natural bentonite obtained from Ecca Holdings Company in South Africa mined at 

the Cape bentonite mine was studied under the same conditions as the clinoptilolite to 

extract major cations from the bentonite. Figure 4.23 shows the removal of major 

cations from South African bentonite. 

 

 

 

 



  
    

 103

0

100

200

300

400

500

600

700

800

900

1000

2hr 1hr 30min(a) 30min(b)  30min (c) 30min (d)

N
a 

re
m

o
va

l (
p

p
m

)

Time

b)

0

20

40

60

80

100

120

140

160

2hr 1hr 30min(a) 30min(b)  30min (c) 30min (d)

M
g

 r
em

o
va

l (
p

p
m

)

Time

d)

0

5

10

15

20

25

2hr 1hr 30min(a) 30min(b)  30min (c) 30min (d)

K
 r

em
o

va
l (

p
p

m
)

Time

c)

0

50

100

150

200

250

2hr 1hr 30min(a) 30min(b)  30min (c) 30min (d)

C
a 

re
m

o
va

l p
(p

m
) 

a)

Time

 
Figure 4.23: Removal of major cations from South African bentonite after contacting 

5 g SB with 100 mL, 0.02 M HCl: a) Ca removal b) Na removal c) K removal and d) 

Mg removal. 

 

A fairly high removal of all cations was observed after six extractions of South 

African bentonite in Figure 4.23 (a-d). Sodium reached 37 ppm on the sixth 

extraction whereas the amount was high in leachate after the first extraction (942 

ppm) and the XRF data is not consistent with this result because in the XRF data the 

sodium content was lower than magnesium and that means sodium is easier to 

exchange than magnesium. Calcium reached 77 ppm on the sixth extraction, from an 

initial value of 167 ppm on the first extraction, and underwent various fluctuations in 

concentration with each successive extraction showing competitive readsorption until 

other cations were extracted, or that it could only come out after sodium was removed 

from pores as bigger cation moves more slowly. Magnesium showed similar good 

extraction (from 139 – 55 ppm with the first extraction) with fluctuations between the 

4th and the 5th extraction (13 ppm in the 4th extraction and 77 ppm in the 5th 

extraction. Potassium decreased from low levels of 19 ppm in the first extraction, to 
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12 ppm on the 3rd extraction; with some minor fluctuations e.g. an increase from 

12.5 to 16 ppm between the 4th and 5th extractions. SB showed more fluctuations 

than the natural zeolite and that could be because the SB is a swelling clay so it 

adsorbs and swells and takes longer to release the acid again. 

 

The results obtained in Figure 4.21-4.23 show that it was not possible to extract the 

full cation load in one extraction with HCl in any case. Several extractions with 0.02 

M HCl were required in most cases to displace the available cations. South African 

bentonite also had high sodium content as well as high calcium content with 942 and 

167 ppm respectively. ICP was used to analyse the cations from the leachate solution. 

However it can be seen from the decreasing trends in these extractions from different 

materials that the 0.02 M HCl worked well as leachant in effectively extracting the 

cations from the clay and zeolite material.  

 

The extractions were done six times to check to what extent the exchangeable cations 

would  be removed, and it is evident that on the 5th extraction a large part of the 

available cations had been removed from the clay and zeolite materials. It is possible 

to remove all the cations from the natural adsorbents using the 0.02 M HCl but 

dealumination can occur if the natural adsorbents are washed too many times with an 

acid or with higher concentration of HCl (Mamba et al., 2009) and that can also be 

seen in the shift on the FTIR bands results presented in section 4.6. The XRF data in 

section 4.1.1 showed that the total load of cation could not be removed but only about 

65% of sodium, 7% potassium, 24% magnesium and 22% calcium were extracted 

based upon the initial XRF data for the South African clinoptilolite. In the case of 

Turkish clinoptilolite 63% sodium, 14 % potassium, 32% and 20% magnesium were 

extracted. In the extraction of cations with the bentonite clay 60% sodium, 2% 

potassium, 53% calcium and 15% magnesium were extracted. It is notable in all three 

adsorbents that sodium is the most easily extracted cation even though the initial 

content was high and that could be because of the size of the ion since it a univalent 

and is easily exchangeable or is present as a soluble salt. The bentonite clay showed 
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highest removal of calcium of about 53% but low potassium removal based upon 

initial XRF data. XRD shows that these materials contained impurities and were not 

only clinoptilolite or clay, thus some of Na+, Ca2+. Mg2+ and K+ could be entrapped in 

the other mineral phases. The fact that the major cations were easily removed is 

because some of these cations are soluble salts, thus easily washed away by the acid. 

From the CEC data more Na+ and Ca2+ was exchanged. The extraction of major 

elements using HCl was different from leaching of elements with deionized water. 

The extraction fluactions might be due to the instrumental error.  

4.8 Fourier Transform Infra Red analyses 

The FTIR technique was used to determine the functionalities in the HCl-treated and 

original forms of natural adsorbents. This characterization was done in order to 

ascertain whether acid treatment of natural adsorbents exposed other latent functional 

groups. The Fourier Transform Infra – Red Spectroscopy (FT-IR) vibration bands 

from the analysis of natural adsorbents, that were prepared according to the procedure 

highlighted in section 3.2.9, were assigned in accordance to the generally accepted 

practice for silicates and the zeolite family of compounds as shown in (figures 4.24-

4.28).

Figure 4.24: The expanded region FTIR spectra for untreated and 0.02 M HCl treated 

SC between 1300 and 300 cm-1 
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Figure 4.25: The FTIR spectra for untreated SC (600 and 300 cm-1) 
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Figure 4.26: The  expanded region FTIR spectra for untreated and 0.02 M HCl treated 

TC between 600 and 300 cm-1 
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Figure 4.27: The FTIR spectra untreated TC between 600 and 300 cm-1 
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Figure 4.28: The expanded region FTIR spectra for untreated and 0.02 M HCl treated 

SB between 1200 and 300 cm-1 

 

FTIR spectra of the untreated natural zeolite clinoptilolite from South Africa in 

Figure 4.24 clearly showed strong bands at 990 and 516 cm-1and two weak bands at 

599 and 436 cm-1. These bands are T-O (Tetrahedral-Oxygen) asymmetric stretching 
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vibration modes of the internal SiO4 and AlO4 tetrahedral structure. These strong 

bands are characteristic of zeolite materials. The weak bands (600 cm-1) are the O-T-

O stretching vibration modes and T-O bending vibration modes (436 cm-1) of the 

external SiO4 and AlO4 tetrahedral. The effect of the acid was determined by looking 

at shifts in the position of these specific zeolite bands, such shifts are indicative of 

degradation of the framework. The shifts were observed with T–O stretching 

vibration mode, from 990 cm-1 (untreated SC) to 992 cm-1(treated SC sample), and as 

shown in (figure 4.24). The generation of the sharp peaks around 418 to 300 cm-1 in 

the treated samples may be due to the ring opening of SiO4 and AlO4 tetrahedra in the 

zeolite framework. These peaks are not seen in the untreated South African 

clinoptilolite sample where the peaks around 436 to 300 cm-1 appear to be weak. 

Cakicioglu-Ozkan et al., (2005) reported on the effect of different HCl concentrations 

and different treatment temperatures on Turkish Clinoptilolite. The strong bands were 

found to appear near 1056 and 451.2 cm-1 and weak bands at 790 and 604.8 cm-1 in 

the untreated sample. The strong bands were identified to be zeolite bands and 

assigned to the asymmetric stretching vibration modes of the internal T-O bands in 

the SiO4 and AlO4 tetrahedral whereas the weak bands are assigned to the stretching 

vibration modes of O-T-O bands and bending vibration modes of T-O in the external 

tetrahedral structure of zeolite. The degree of dealumination was found to increase 

with increasing acid concentration during acid-zeolite treatment (Cakicioglu-Ozkan  

et al., 2005).  

 

The vibrations common to all zeolites are the asymmetric stretching modes, which 

appear in the region 950–1250 cm-1
. The broad peaks observed in Figure 4.26 which 

depicts FTIR spectra for the original and treated natural zeolite (clinoptilolite) from 

Turkey shows strong bands for original and treated clinoptilolite from 997 to 443 cm-

1 and 1010 to 407 cm-1 respectively and weak bands from 784 to 306 cm-1 and 788 to 

592 cm-1 respectively. These results for the Turkish clinoptilolite are comparable to 

results by (Cakicioglu-Ozkan et al., 2005). FTIR spectra of the untreated natural clay 

(bentonite) from South Africa in figure 4.26 showed strong bands at 983 and 515 cm-
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1and two weak bands at 1115 and 592cm-1. The peak at 1115 cm-1 has disappeared in 

the treated bentonite and the peak at 983 cm-1has shifted to 989 cm-1, and the peak at 

913 cm-1 in the treated bentonite is not observed in Figure 4.28. Dealumination is 

observed when wave numbers shift (Cakicioglu-Ozkan  et al., 2005) , thus in all three 

samples, dealumination occurred but in a small degree due to the use of low 

concentrations of HCl in activation . In this study it was observed that pretreatment of 

the natural adsorbents by 0.02 M HCl did not cause much dealumination because of 

the small shift in wave numbers observed in the figures above. 
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4.9 Adsorption after pretreatment with 0.02 M HCl 

This section presents adsorption results Figure 4.29 4.40 after the pretreatment of the 

natural adsorbents with 0.02 M HCl in the experimental method shown in section 

3.4.2. Batch adsorption studies on Emalahleni brine on natural adsorbents were 

conducted at room 25°C by varying contact time and pH. 

4.9.1 Determination of optimum contact time  

This section presents adsorption Figure 4.29 4.37 results after the pretreatment of the 

natural adsorbents with 0.02 M HCl in the experimental method shown in section 

3.4.2. Batch adsorption studies on Emalahleni brine on natural adsorbents were 

conducted at room 25°C by varying contact time and pH. 

 

Initially experiments were done using only the brine with no adjustment to its pH (i.e. 

natural pH of 8.52) to obtain optimum contact time by natural adsorbents for 

adsorption of toxic elements from Emalahleni brine. 
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Figure 4.29 a): Removal /leaching of major elements from brine after contacting with 

0.02 M HCl treated SC. 
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Figure 4.29 b): Removal /leaching of trace elements from brine after contacting with 

0.02 M HCl treated SC 

 

The South African clinoptilolite from Ecca Holdings Company performed well for 

brine treatment after 30 min following the pretreatment with 0.02 M HCl. From the 

results in figures 4.29 a) and 4.29 b), the optimum time for element removal was 

found to be 1 hr, as it can be seen that after 1 hr, clinoptilolite is adsorbing Na+, Mg2+, 

Ca2+ but leaches out more K+ and some trace elements as well. This trend of 

percentage removal was expected after the pretreatment of the clinoptilolite to adsorb 

more metals, however leaching of K+ was not expected as it has been reported that 

the clinoptilolite has a greater affinity for K+ than Na+ (Langella et al., 2000). In this 

study it was found that Na+ removal was the highest after the pretreatment of 

clinoptilolite as about 86% Na+ removal was obtained, compared to the untreated 

South African clinoptilolite which removed only about 20% Na+ from brine. High 

removal of 80% of Mg2+ was also found whereas on the untreated clinoptilolite Mg 
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could not be adsorbed and Mg2+ leached out onto the solution. Ca2+ removal was 

about 51% and this was a good removal because on the untreated sample the, Ca2+ 

was leached out and not being adsorbed. After the 24 hr contact time it was observed 

that Na+ and Mg2+ removal was low and that in the case of Ca2+, what was adsorbed 

at 2 hr contact was leached out into the solution over time. More K+ was also released 

into the solution. Only B and trace elements removal was high as well; Cu2+ 96%, 

Zn2+ 96%, with Mo 77%, B 96%, Ni 98% removal was obtained. Mamba et al., 

reported removal of Cu2+ of 79% in 1hr contact time using 0.02 M HCl treated 

clinoptilolite (Mamba et al., 2010). 
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Figure 4.30 a): Removal /leaching of major elements from brine after contacting  

with 0.02 M HCl treated TC 
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Figure 4.30 b): Removal /leaching of trace elements from brine after contacting with 

0.02 M HCl treated TC 

 

In the first 30 min contact time the Turkish clinoptilolite showed highest removal of 

major elements and trace elements, leaching few in elements in small concentrations 

onto the solution. Na+ and Mg2+ were also the highest removal obtained with 86 and 

81% removal respectively. About 42% removal of Ca2+ was obtained and this was 

lower percentage removal and it can explained by the fact that Turkish clinoptilolite 

has high Ca2+ content from XRD data as well as pretreatment of natural adsorbents 

data, it was thus difficult to adsorb what was already in the clinoptilolite material. 

The order of major elements ion selectivity for both (SC and TC) is Na+>Mg+>Ca2+). 

The trace element ion selectivity for SC is B>Ti>Cu>Zn>V>Cd>Mo. The Turkish 

clinoptilolite trace elements ion selectivity is Cd>Cu>Ti>Se>V>Mo>Co.  
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Figure 4.31 a): Removal /leaching of major element from brine after contacting with 

0.02 M HCl treated SB 
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Figure 4.31 b): Removal /leaching of trace elements from brine after contacting with 

0.02 M HCl treated SB 

 

In the first 30 min contact time the South African bentonite showed highest removal  

of major elements and trace elements, leaching few in elements in small 

concentrations onto the solution. Na+ and Mg2+ had the highest removal obtained with 

86 and 81% removal respectively. The major elements ion selectivity for the SB is 

Na+>Mg2+>Ca2+ and the trace elements ion selectivity is 

Cu2+>Mo>V>Zn2+>Co2+>Sr2+>Ti+. About 42% removal of Ca2+ was obtained and 

this was lower percentage removal and it can explained by the fact that Turkish 

clinoptilolite has high Ca2+ content from XRD data as well as pretreatment of natural 

adsorbents data, it was thus difficult to adsorb what was already in the clinoptilolite 

material.  
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Figure 4.32 a, b and c) below presents results of leaching of trace elements from the 

natural adsorbents (SC, TC & SB) after acid treatment and after the brine adsorption. 

These results were obtained by analysis of the brine by ICP AES after the adsorption 

experiments. 
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Figure 4.32a): Leaching of trace elements from SC during adsorption 
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Figure 4.32 b): Leaching of trace elements from TC during adsorption 
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Figure 4.32 c): Leaching of trace elements from SB during adsorption 
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The South African clinoptilolite in Figure 4.32 a) above leached about 5.8 ppm of 

lithium in 8 hr contact whereas in 1 hr contact it leached about 5.4ppm of lithium. 

The SC also leached Al and Si in low concentrations of less than 1ppm in 5 hr contact 

time, however more Al and Si leached (about 4.8 ppm) after the 24 hr contact time. 

South African clinoptilolite leached Fe and Rb. The Turkish clinoptilolite in Figure 

(4.32 b) shows leaching of 11 ppm of Li in 24 hr contact time and less than 4 ppm of 

Li was leached in 1hr and 30 min contact time. Leaching of Si and Al by TC was less 

than 1 ppm at 30 min contact time and above 2 ppm of Al was leached in the 24hr 

contact time. TC leached about 4 ppm of Si in the 24 hr contact time. Other elements 

leached in low concentrations i.e. less than 1 ppm, such Fe, Rb, B and P. The South 

African bentonite in Figure (4.32 c) leached about 13 ppm of B in 8 hr and 12.5 ppm 

in 24 hr. However less than 1 ppm of B was leached in the 30 min and 1 hr contact 

time by SB. Leaching Si of Al was less than 1 ppm in 30 min and the 1 hr contact 

time, however Si leaching was above 4 ppm in the 6 hr, 8 hr and 24 hr contact time. 

The studies carried out on leaching of metals from natural adsorbents (Petrakakis et 

al., 2007; Tomasevic-Canovic, 2005) both studies were conducted in leaching of lead 

from clinoptilolite. 

 

The high Si/Al ration of clinoptilolite results in typical low anionic field that gives 

rise to good selectivity towards cations of lower charge e.g Na+ and poor selectivity 

towards cations of higher charge i.e. divalent cations (Langella et al., 2000). It can be 

concluded that these natural adsorbents .The structure of natural adsorbents was not 

destroyed because leaching of Al3+ and Si during adsorption was less than 1 ppm. 
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4.9.2 Determination of optimum pH  

The initial Tutuka brine pH was adjusted to pH 4 and 6 using hydrochloric acid 

according to section 3.4.3. These values have been selected because pH values lower 

than 4 would induce protonation of clinoptilolite binding sites (Morali, 2006) and 

high pH values would lead to precipitation of metal ions. Percentage removal of 

major elements and leaching/removal of trace elements from Tutuka brine using the 

natural adsorbents (SC, TC and SB) are shown in the figure 4.32-4.34 below. 
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Figure 4.33: Percentage removal of major elements by a) SC b) TC c) SB at pH4 and 

pH6 
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It was observed that highest calcium removal from Tutuka brine was obtained in both 

pH 4 and pH 6 using South African clinoptilolite in Figure (4.33 a). However at pH 4 

about 30% of sodium was removed whereas in pH 6 only 20% sodium removal was 

obtained. Potassium removal was 28% in pH 4 and 15% in pH 6 was obtained. The 

Turkish clinoptilolite (Figure 4.33 b) showed about 50% removal of potassium and 

calcium at both pHs with about 20% removal of sodium and less than 10% removal 

of magnesium in both pHs. The South Africa bentonite (Figure 4.33 c) showed 

highest removal of calcium and potassium at both pH4 and pH 6. Above 60% 

removal of calcium was obtained for pH 4 and pH 6 and magnesium removal of 50% 

was obtained at both pH 4 and pH 6.  
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Figure 4.34: Percentage removal of trace elements by a) SC b) TC c) SB at pH4 and 

pH6 
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Removal of trace elements is shown in Figure 4.34 (a-c), it was observed that both 

Turkish and South African clinoptilolites could only remove about 30% of Si in the 

brine and this can be explained by the fact that these two clinoptilolites have a high Si 

content in their structure as shown in the XRF data in section 4.1.1 and in the 

leaching experiments in section 4.6, showed that Si leaching occurred in high 

concentrations in these two materials. The South African clinoptilolite and Turkish 

clinoptilolite both removed less than 10% Sr present in the brine at pH 6 whereas 

above 25% Sr removal was obtained for pH 4. In the case of the South African 

bentonite clay, about 82 % removal of Si was obtained at pH 4 and about 69% Si 

removal was obtained at pH 6. The bentonite clay was also able to remove about 75% 

of Sr at both pH 4 and pH 6 as shown in Figure 4.34 (c) above. From the results 

obtained in Figure 4.33(a-c) and Figure 4.34 (a-c) it was observed that bentonite clay  

performed well removing Ca, K, Si and Sr at  both pH 4 and pH 6. At higher pH 

metals could also precipitate so it could only be adsorption. 
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Figure 4.35: Leaching or removal of trace elements by a) SC b) TC c) SB at pH4 and 

pH6 

The results obtained for trace elements removal is shown in Figure 4.35 (a-c) above. 

It was observed that none of the natural adsorbents used was able to remove the trace 

elements from the Tutuka brine; instead trace elements were leached from the natural 

adsorbents into the solution. It was observed that boron was leached out in high 

concentration when compared with the initial concentration in the Tutuka brine. The 

concentration increased to 8 ppm at pH 4 and 14 ppm at pH 6 from the South African 

clinoptilolite. About 4 ppm of aluminium was leached at pH 4 and ≤ 2 ppm at pH 6 

by the South African clinoptilolite. Cu2+, Zn2+, Fe3+, Pb2+, Se were leached in 

concentrations above 1 ppm from the South African clinoptilolite. The Turkish 
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clinoptilolite (Figure 4.35 b) showed high concentration of B of about 20 ppm, Al3+ 

was 2 ppm, Fe3+ and Cu2+ had above 2 ppm leached into the solution. The South 

African bentonite clay leached the highest concentrations B of about 18 ppm at pH 4 

and 20 ppm at pH 6, the bentonite clay also leached about 10 ppm of Al3+ at pH 4 and 

less 2 ppm at pH 6 but leaching Fe3+, Zn2+, Cu2+ and Pb2+ in concentrations above 1 

ppm. The fact that these elements were leached instead of being removed from 

Tutuka brine could be explained by the fact that the natural adsorbents at low pH 

become positively charged thereby negatively affected the adsorption of cations due 

to repulsive forces. However in natural pH of brine which was 8.55 the major and 

trace elements were adsorbed within the 1 hr contact time of natural adsorbents with 

the Emalahleni brine as shown in Figures 4.33 (a-b) 4.35 (a-b) above. 

 

At natural pH the surface of natural adsorbents becomes negatively charged, thus 

force of attraction occurs and more cations are adsorbed. On the other hand it can also 

be noted that when removing toxic elements from waste waters, the optimum pH for 

removal of the particular element needs to be established before executing the 

adsorption of that element.  

 

Onyango et al., (2010) revealed that solution pH is one of the factors that have been 

found to significantly affect sorption process. Different elements are adsorbed at 

different pHs and there is also what is known as competitive adsorption, where by 

bigger ions will fill the exchange sites and smaller ions will not be adsorbed. Several 

studies conducted on the effect of pH in heavy metal removal (Najim et al., 2009; 

Undabeytia et al., 1998: Marzal et al., 1996) showed that the increase in pH causes an 

increase in adsoption, thus the higher the pH solution the higher the adsorption. 

Najim et al., (2008) reported that adsorption of metal ions were pH dependent and the 

results indicated the optimum pH for the removal of Fe2+ was found to be pH 5.0 and 

that of Cu2+ was 7.0. The effect of pH was studied by Marzal et al ., (1996) in 

removal of Zn2+ and Cd2+ using granular activated carbon, he found that increasing 

pH from 4-8 , Cd2+ and Zn2+ were adsorbed at higher pH. Undabeytia et al., (1998) 
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studied adsorption-desorption of Cd2+ on Ca2+ montmorrilonite and reported that the 

number of high preference sites for heavy metal adsorption increased with the pH. 

Clinoptilolite is known to attract metals, which are not expected to leach out at 

neutral and alkaline conditions. Studies conducted by Aslam et al., (2004) also 

indicated that heavy metals removal proved highly effective as removal efficiency 

increased with increasing pH while it decreased with increasing metals concentration. 

The removal efficiency was quite high for copper ranging from 97 to 70%. The only 

possibility for leaching is during contact with acid solutions, as for example acid rain 

or acid leachates from industrial and municipal landfills. Acidity is known to 

influence heavy metal removal since H+ can be considered as competitive cation in 

ion exchange processes (Petrakakis et al., 2007). In this study it was found that the 

natural adsorbents were able to adsorb the heavy elements from the brine at its natural 

pH. and also observed that removal of toxic elements is pH dependent.  
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CHAPTER 5 
 

This chapter summarizes the major issues addressed in this thesis. This is followed by 

a consideration of possible guidelines for future work and a summary of the main 

contributions made in this thesis. 

 

5.1 GENERAL CONCLUSIONS 

In this study, the natural zeolite clinoptilolite and bentonite clay originated from Cape 

Bentonite Mine deposit, South Africa and the other clinoptilolite originated from 

Balıkesir-Bigadiçi deposit, Turkey were found to be effective for major elements and 

trace elements removal from Emalahleni brine solution in their pretreated form. The 

heavy metal removal was conducted by batch experiments; the untreated natural 

adsorbents did not sufficiently remove the toxic elements from brine. The 

pretreatment was aimed at removing the cations in the natural adsorbents and 

replacing with the H+ ion for easy ion exchange although lower capacities were 

attained for major cations in the preliminary adsorption experiments of the untreated 

adsorbents. It was found that the conditioning or pretreatment of the natural 

adsorbents improved the capacity of clinoptilolite and bentonite clay for Na+, Ca2+, 

Mg2+ removal relatively well. However K+ was leached out by these three adsorbents 

after their pretreatment and this could be attributed to the competitive adsorption on 

the sites.  

 

In this study it was also found that these natural adsorbents can also leach some major 

component elements as well as toxic elements into the solution during adsorption 

processes. Therefore the use of these natural adsorbents for removal of toxic elements 

from waste water needs to be thoroughly investigated and optimized where possible. 

The research approach developed in this study has resulted in better understanding of 

elemental composition of the natural adsorbents, their purity, surface areas and their 

cation ion exchange capacity. Investigation of cations (Na+, K+, Ca2+, Mg2+) released 
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from clinoptilolite structure after pretreatment with 0.02 M HCl indicated that these 

cations cannot be completely removed. It was observed from the XRF data after 

pretreatment that the continuous treatment of the natural adsorbents for longer periods 

would lead to dealumination in their structures. Although irregular trends were 

observed, the amount of exchangeable ions released to solution was increased with 

increase in the contact time and the best contact time was 1 hr. During batch 

adsorption studies, the amounts of exchangeable ions released from clinoptilolite and 

clay structures were shown to increase with time. However, it was found out that this 

increase could not only be attributed to ion exchange only. Additionally, ions were 

released as a result of dissolution of soluble species or of the framework of 

clinoptilolite structure, which was indicated by increase in Si4+ concentration in 

solution with time.  

 

For trace elements at initial time of uptake by clinoptilolite, electrostatic attraction 

between positively charged cations and negatively charged surfaces presumably occur 

and this was followed by ion exchange as the metal ions move through the pores and 

channels of the clinoptilolite and clay. The pH studies revealed that these natural 

adsorbents perform better a higher or solution pH than at pH 4 and pH 6 for toxic 

element removal from the brine.  

 

Heterogeneity of natural adsorbents samples, even when they have the same origin, 

could be a problem when wastewater treatment systems utilizing natural clinoptilolite 

and bentonite are planned to be developed. Therefore, it is very important to 

characterize the reserves fully in order to make them attractive in developing 

treatment technologies.  
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5.2 RECOMMENDATION AND FUTURE WORK 

In this study, natural adsorbents clinoptilolite and bentonite clay originated from 

Cape Bentonite Mine deposit, South Africa and the other clinoptilolite originated 

from Balıkesir-Bigadiçi deposit, Turkey been investigated for their effectiveness in 

removing major and trace elements from Emalahleni brine solution. However in 

actual systems, together with these ions, some inorganics and organics could be 

present. Therefore, effect of presence of inorganics and organics on removal of these 

heavy metal ions should be investigated. Kinetic and equilibrium studies should be 

performed as a further study; Column experiments on the adsorption of toxic 

elements should also be done to confirm the removal efficiency especially for trace 

elements. 

 

In order to simulate full scale applications, investigation of recovery of heavy metals 

from clinoptilolite and bentonite clay and examination of regeneration potential of 

clinoptilolite and bentonite clay could be a guide to real applications. Mass balances 

should be done in future studies to determine the efficiency and mobility and fate of 

trace elements during adsorption. 
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APPENDIX 

 

 
Figure A1: EDS of 0.02 M HCl treated South African clinoptilolite 
 

 
Figure A2: EDS of 0.02 M HCl treated South African bentonite 
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Figure A3: EDSof 0.02 M HCl treated Turkish clinoptilolite 
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