
UNIVERSITY OF THE WESTERN CAPE

The Use of Mobile Phones as

Service-Delivery Devices in a Sign

Language Machine Translation System

by

Mehrdad Ghaziasgar

A thesis submitted in fulfillment for the

degree of Master of Science

in the

Faculty of Science

Department of Computer Science

August 2010

http://www.uwc.ac.z
http://www.cs.uwc.ac.za/~mghazi/iSign/
http://www.cs.uwc.ac.za
http://www.cs.uwc.ac.za

Declaration of Authorship

I, Mehrdad Ghaziasgar, declare that this thesis titled, ‘The Use of Mobile Phones as

Service-Delivery Devices in a Sign Language Machine Translation System’ and the work

presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

“All containers are reduced in capacity by what is placed in them, except a container of

knowledge, which expands.”

-Ali son of Abu Talib

UNIVERSITY OF THE WESTERN CAPE

Abstract

Faculty of Science

Department of Computer Science

Master of Science

by Mehrdad Ghaziasgar

This thesis investigates the use of mobile phones as service-delivery devices in a sign

language machine translation system. Four sign language visualization methods were

evaluated on mobile phones. Three of the methods were synthetic sign language visu-

alization methods. Three factors were considered: the intelligibility of sign language,

as rendered by the method; the power consumption; and the bandwidth usage associ-

ated with each method. The average intelligibility rate was 65%, with some methods

achieving intelligibility rates of up to 92%. The average file size was 162 KB and, on

average, the power consumption increased to 180% of the idle state, across all methods.

This research forms part of the Integration of Signed and Verbal Communication: South

African Sign Language Recognition and Animation (SASL) project at the University of

the Western Cape and serves as an integration platform for the group’s research. In

order to perform this research a machine translation system that uses mobile phones as

service-delivery devices was developed as well as a 3D Avatar for mobile phones. It was

concluded that mobile phones are suitable service-delivery platforms for sign language

machine translation systems.

http://www.uwc.ac.z
http://www.cs.uwc.ac.za
http://www.cs.uwc.ac.za
http://www.cs.uwc.ac.za/~mghazi/iSign/

Acknowledgements

The past 6 years have been a journey, the longest most difficult journey of my life.

Countless challenges and ordeals. But I am here. I thank God for this blessing. For His

help and for growing me from frailty into strength, from inability into competence and

from fear into conviction.

I would to thank my parents. You toiled for me and supported me. You taught me so

many things and this thesis has your essences in it. You believed in me and here I am.

Thank you. I would like to thank Mr. Moses Kanaabi, my Grade 6 teacher. Sir, I don’t

know where you are, but this thesis has your essence in it. You believed in me when no

one else did, not even myself. You found me and gave me direction and here I am. I

would like to thank Mrs. Sharon Slinger. You believed in me and helped me excel and

here I am. I would like to thank Dr. Roderick Julies. Sir, your positive outlook and

your focus on transferring knowledge rather than discharging duty is praiseworthy. I

enjoyed your lectures. I would like to thank the Rector of the University of the Western

Cape Prof. Brian O’Connell. Sir, your positive, kind, humble, wise and helpful outlook is

praiseworthy. Thank you for your help with the Imagine Cup. Thank you for everything.

I would especially like to thank Mr. James Connan. Sir, your expansive knowledge,

wisdom, creativity, confidence and positive outlook never cease to leave me in awe.

Under your supervision, I went from frailty into conviction. Your balanced approach

to supervision is exemplary. You supported in times when it was needed most. I have

always, do always and will always speak of you in acclaim. I am indebted to you always.

Thank you.

I would like to thank all of the people that provided companionship during these six

years. Afshin, Mohsen and Ayesha. Thank you. Fakhree, Theo, Riyaad and Badrudeen.

Thank you.

Nathan, we went through some amazing experiences together. From the Imagine Cup

South Africa awards ceremony, to doing four or five absolute last minute, but expertly

done, presentations to putting together the first ever two-way sign language to English

translation system. Thanks for everything buddy.

Jameel, we’ve been through some difficult times together. But here we are. Thank you

for your friendship.

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

List of Figures ix

List of Tables xi

Abbreviations xiii

1 Introduction 1
1.1 Background . 1
1.2 Research Objectives . 2
1.3 Research question . 3
1.4 Premises . 4
1.5 Thesis outline . 4

2 Communication Tools for the Deaf 6
2.1 General-Purpose Communication Tools 7

2.1.1 Text-Based Tools . 7
2.1.1.1 IM systems . 7
2.1.1.2 SMS . 8
2.1.1.3 Email . 8
2.1.1.4 Faxing . 8
2.1.1.5 Advantages and disadvantages of text-based tools 9

2.1.2 Video-Based Tools . 9
2.1.2.1 Synchronous video communication tools 9
2.1.2.2 Asynchronous video communication tools 10
2.1.2.3 Advantages and disadvantages of video-based tools 10

2.1.3 Bridging communication between devices 11
2.2 Deaf-Specific Communication Tools . 13

2.2.1 Text-Based Tools . 13
2.2.2 Video-Based Tools . 14

v

Contents vi

2.2.3 Gesture-Based Tools . 16
2.2.3.1 Spoken Language to SL Gesture-Based Tools 17
2.2.3.2 SL to Spoken Language Gesture-Based Tools 21

2.3 Summary . 22

3 Java Micro Edition 24
3.1 Java ME in Context – A Background on Java Editions 25
3.2 Java ME Architecture . 25

3.2.1 The Java Community Process (JCP) 26
3.2.2 Configurations . 28

3.2.2.1 The Connected Device Configuration (CDC) 29
3.2.2.2 The Connected, Limited Device Configuration (CLDC) . 30

3.2.3 Profiles . 32
3.2.3.1 The CDC Profiles . 32
3.2.3.2 The CLDC Profiles . 33
3.2.3.3 The Mobile Information Device Profile 33

3.2.4 Additional APIs . 35
3.2.4.1 The Mobile Media API 36
3.2.4.2 The Mobile 3D Graphics API 39

3.3 Summary and Conclusions . 43

4 Sign Language Avatar Creation 44
4.1 SL Avatar Creation . 44

4.1.1 Avatar Modelling and Acquisition 45
4.1.1.1 Interactive Modelling . 45
4.1.1.2 Parametric Modelling . 46
4.1.1.3 Other Modelling Techniques 46

4.1.2 Avatar Parameterization and Deformation 48
4.1.2.1 Skeletal Subspace Deformation 48
4.1.2.2 Other Parameterization and Deformation Techniques . . 49

4.1.3 Avatar Animation . 50
4.1.3.1 Keyframing . 50
4.1.3.2 Motion Capture . 51

4.1.4 Existing Standards and Tools . 52
4.1.4.1 MakeHuman . 52
4.1.4.2 H-Anim . 52
4.1.4.3 MPEG-4 Facial Definition Parameters 53

4.2 Blender – an Open Source 3D Graphics Tool 54
4.2.1 Background . 55
4.2.2 Tools and Features . 56

4.3 Van Wyk’s Methodology . 57
4.3.1 Methodology Overview . 57
4.3.2 Implementation of Man . 58
4.3.3 Performance . 60

4.4 Summary . 62

5 Methodology and Implementation of the Avatars 63

Contents vii

5.1 Creation of the Avatar Phlank . 64
5.1.1 Modelling and Acquisition . 64
5.1.2 Parameterization . 70

5.2 Animation and Exportation of Phlank and Man 73
5.2.1 Animation . 73
5.2.2 Exportation . 74

5.3 Summary . 76

6 Implementation of a Prototype Mobile Framework 77
6.1 The SASL Machine Translation System 78

6.1.1 Conceptual Overview . 78
6.1.2 Existing Components . 79

6.2 The iSign Mobile Framework Architecture 80
6.3 Implementation of the iSign Mobile Framework 81

6.3.1 The Communication Protocol . 82
6.3.2 The Web Service . 84
6.3.3 The Mobile Application . 85

6.3.3.1 The Login Screen . 85
6.3.3.2 The Contacts Screen . 86
6.3.3.3 The Mode-Select Screen 87
6.3.3.4 The Deaf Capture and Hearing Capture Screens 87
6.3.3.5 The Word List Screen . 89
6.3.3.6 Rendering Screens . 89

6.3.4 The Interpretation Services . 91
6.4 Summary . 91

7 Experimental Setup 92
7.1 Sign Language Intelligibility . 92

7.1.1 Collection of SASL Videos and Exportation of Sign Language Files 93
7.1.2 Viewing Sequence . 93
7.1.3 Experimental Setup . 94

7.2 Power Consumption . 96
7.3 Bandwidth Consumption . 98
7.4 Summary . 98

8 Results and Data Analysis 99
8.1 Sign Language Intelligibility . 99
8.2 Power Consumption . 107
8.3 Bandwidth Consumption . 109
8.4 Summary of Results and Discussion . 112
8.5 Summary . 113

9 Conclusion and Directions for Future Research 114
9.1 Feasibility Experimentation . 114
9.2 The iSign Mobile Framework . 115
9.3 Concluding Remarks . 115

Contents viii

A The “TestModel” Application 116

B The iSign Communication Protocol 120
B.1 Signals . 120
B.2 Database Tables . 121

Bibliography 124

List of Figures

2.1 Four bridging scenarios, adapted from [45]. 12
2.2 A typical TDD device. 13
2.3 The Teldem [129]. 14
2.4 Halawani’s architecture [46]. 20

3.1 Java editions and the devices they are built for. 25
3.2 The Java ME architecture. 26
3.3 The packages implemented by and the comparison between the CLDC

1.0, CLDC 1.1 and CDC 1.0. 30
3.4 The packages implemented by and the comparison between the MIDP

1.0, MIDP 2.0 and MIDP 3.0. 35
3.5 Graphical depiction of a simplified scene graph. 42

4.1 A segment of the H-Anim specification for the tree of bones, adapted from
[3]. 54

4.2 MPEG-4 Facial Definition Parameter feature points [146]. 55
4.3 Overview of Van Wyk’s Methodology, taken from [146]. 58
4.4 Completed Man model without (left) and with (right) a completed skeleton. 61
4.5 Completed Man model’s face depicting MPEG-4 FDP facial feature points. 61

5.1 The arm model after extrusion of features up to and including the palm. . 65
5.2 A close-up of the glove strap segments. 65
5.3 The model and smoothed preview with Catmull-Clark subdivision surfac-

ing level 1 applied. 66
5.4 A close-up of the model with background occlusion disabled to show five

faces, A, B, C, D and E of the model. 67
5.5 (a) The resultant model and b) The resultant smoothed preview, after

modelling the glove strap and palm. 68
5.6 The completed fingers. 69
5.7 The tip of the forearm (a) with the crease modified (b) with the crease

unmodified. 69
5.8 The completed arms. 69
5.9 The completed Phlank model. 71
5.10 Hierarchical structure of Phlank ’s skeleton. 73
5.11 The Phlank model with a completed skeleton. 73

6.1 Conceptual overview of the SASL Machine Translation system [28]. 78
6.2 Overview of the iSign Mobile Framework showing the process of a) SASL

to English audio translation and b) English audio to SASL translation. . . 81

ix

List of Figures x

6.3 Sequence diagram of communication exchange signals. 84
6.4 The Sony Ericsson C905. 86
6.5 (a) The initial Login screen. (b) Settings screen for specifying the Trans-

lation Server URL. (c) Login details filled in. (d) Screen shown while
sending information to the Translation Server and verifying login. 86

6.6 (a) The initial Contacts screen. (b) The Contacts screen with the ‘Trans-
lator’ entry selected. (c) Screen shown while sending information to the
Translation Server and attempting to connect to the contact selected. . . 87

6.7 The Mode-Select screen for Translator mode. 87
6.8 (a) The initial Deaf Capture screen. (b) The video viewfinder. (c) The

video viewfinder in the process of recording. (d) The video viewfinder
after recording is complete. (e) The Deaf Capture screen with a recording
loaded. (f) The screen displayed while the file is being sent. 88

6.9 (a) The initial Hearing Capture screen. (b) The audio capture window.
(c) The audio capture window in the process of recording. (d) The audio
capture window after recording is complete. (e) The Hearing Capture
screen with a recording loaded. (f) The screen displayed while the file is
being sent. 89

6.10 The Word List screen. 90
6.11 (a) The user is prompted whether or not to play the message retrieved.

(b) The Avatar Phlank incorporated into iSign. (c) The message log
depicting four messages. 90

7.1 The SASL word ‘Sick’ as rendered by a) the low-detail Avatar Phlank
(LowRes) b) the Avatar Man with non-manual gestures (Facial) c) the
Avatar Man without non-manual gestures (NoFacial) and d) sign lan-
guage video (SLVid). 93

7.2 Experimental design used to determine power consumption. 97

8.1 Percentage of correctly identified phrases per test subject. 100
8.2 Percentage of correctly identified phrases per method. 101
8.3 Percentage of correctly identified viewings per phrase. 103
8.4 Number of correct identifications per method for the four phrases with

recognition rates of less than 50%. 104
8.5 Number of correct identifications per method for the phrases in which

SLVid and Facial performed better than NoFacial and LowRes. 105
8.6 Frequency of reasons given for incorrect identification of phrases. 105
8.7 Percentage increase in power consumption by each method. 110
8.8 File size of each phrase for each SL visualization method. 111
8.9 Average file size of each method. 112

List of Tables

3.1 A list of key JSRs . 29
3.2 Player states, their descriptions and the methods used to invoke them.

The states occur sequentially starting at Unrealized and ending at Closed. 38
3.3 Standard Controls in the MMAPI . 38
3.4 Key classes in the M3G API. 40
3.5 Key methods provided by the Graphics3D instance. 42

4.1 Sample list of H-Anim-assigned names for bones 53
4.2 MakeHuman parameter values for the creation of Man, adapted from [146] 59
4.3 Rotational limits placed on specific bones, adapted from [146] 60
4.4 Geometry details of Man, adapted from [146] 60

5.1 Number of BUs by which each segment was extruded. 64
5.2 Number of BUs by which segments in each finger were extruded. 67
5.3 Rotations and shifts applied to fingers. 68
5.4 Features removed from Phlank in ascending order of importance until the

model was importable and renderable on the mobile phone. 71
5.5 The total number of vertices, edges and faces on the completed Phlank

model. 71
5.6 The bones in the right arm, their assigned names, and the position of

their tips relative to their parent bone. 72
5.7 List of SASL phrases recorded and animated. 74
5.8 Key parameters of the M3G exporter tool. 75
5.9 Features removed from Man in ascending order of importance. 75

6.1 Key components of the iSign Mobile Framework. 82
6.2 Signals in the communication protocol and their descriptions. 83
6.3 Description of the function of each table in the iSign web service database. 85

7.1 Arrangement of method-word viewing groups. 94
7.2 Example viewing sequences of subjects 1 and 2. 94
7.3 Test subjects used in the intelligibility experiment. 95

8.1 Correctly identified phrases per test subject. 100
8.2 Number of viewings required before an attempt at recognition was made. 101
8.3 Correctly identified viewings per method. 101
8.4 Differences of Least Squares Means for pair-wise comparisons between the

four methods. 102
8.5 Correctly identified viewings per phrase. 102

xi

List of Tables xii

8.6 Updated number of correctly identified viewings per method after removal
of problematic words. 106

8.7 Average amount of current drawn Ī for each phrase of each method and
the standard deviation in the mean s. 108

8.8 Average amount of current drawn Ī by each method and the standard
deviation in the mean s. 108

8.9 Z-test result for each pair-wise comparison. 109
8.10 Increase in current drawn Ī, standard deviation s and the percentage

increase in current drawn. 109
8.11 File size for each phrase of each SL visualization method. 110
8.12 Average file size of each method and the percentage standard deviation

from the mean. 111
8.13 Summary of the performance of each SL visualization method in terms of

the factors considered. 113

B.1 Signal pertaining to Login on the phone. 120
B.2 Signals pertaining to the Connect on the phone. 120
B.3 Signals pertaining to the Job Upload on the phone. 121
B.4 Signals pertaining to the Job Processing on the server. 121
B.5 Signal pertaining to the Job Retrieval on the phone. 122
B.6 Data dictionary of the USER table. 122
B.7 Data dictionary of the CONTACTS table. 122
B.8 Data dictionary of the VIDEOIN table. 123
B.9 Data dictionary of the WAVEIN table. 123

Abbreviations

3D Three Dimensional

2D Two Dimensional

API Application Programming Interface

ArSL Arabic Sign Language

ASL American Sign Language

Auslan SL Australian Sign Language

AWT Abstract Windowing Toolkit

BSL British Sign Language

BU Blender Unit

CDC Connected Device Configuration

CLDC Connected, Limited Device Configuration

CSL Chinese Sign Language

CVM C Virtual Machine

DOF Degrees of freedom

DSTBP Digital Set Top Box Profile

EC Executive Committee

EU European Union

FPS Frames Per Second

GR Gesture Recognition

GUI Graphical User Interface

HMM Hidden Markov Model

IM Instant Messaging

IMP Information Module Profile

I/O Input/Output

ISL Irish Sign Language

xiii

Abbreviations xiv

Java ME Java Mobile Edition

Java SE Java Standard Edition

JCP Java Community Process

JSR Java Specification Request

JVM Java Virtual Machine

KSL Korean Sign Language

KVM K Virtual Machine

M3G Mobile 3D Graphics

MB Megabyte

MIDP Mobile Information Device Profile

MMS Multimedia Messaging Service

MT Machine Translation

NURBS Non-Uniform Rational B-Splines

OpenGL Open Graphics Library

OpenGL ES OpenGL for Embedded Systems

PC Personal Computer

PSTN Public Switched Telephone Network

RAM Random Access Memory

ROI Region Of Interest

ROM Read-Only Memory

SASL South African Sign Language

SASL Project Integration of Signed and Verbal Communication: South African

Sign Language Recognition and Animation Project

SASL Group Integration of Signed and Verbal Communication: South African

Sign Language Recognition and Animation Group

SATSA Security and Trust Services API for J2ME

SBML Systems Biology Markup Language

SDK Software Development Kit

SL Sign Language

SMS Short Messaging Service

SVM Support Vector Machine

SWML Sign Writing Markup Language

TCK Technology Compatibility Kit

Abbreviations xv

TDD Telecommunications Device for the Deaf

TISSA Telephone Interpreting Service for South Africa

TSL Taiwanese Sign Language

TTY Telephone Typewriter

UI User Interface

UK United Kingdom

US United States

URL Uniform Resource Locator

UWC University of the Western Cape

VH Virtual Human

VM Virtual Machine

VRML Virtual Reality Markup Language

VRS Video Relay Service

X3D Extensible 3D

xvi

Chapter 1

Introduction

1.1 Background

There are over one million deaf people in South Africa [44]. Approximately 300,000 of

these are profoundly deaf in both ears and use South African Sign Language (SASL)

as their first and only language [44]. Contrary to common belief, sign languages are

not visual-gestural representations of spoken languages. They are rich fully-fledged

languages of their own [117]. Additionally, different countries have sign languages of

their own. Examples include Greek Sign Language (GSL) in Greece, Japanese Sign

Language (JSL) in Japan, Arabic Sign Language (ArSL) in Saudi Arabia, British Sign

Language (BSL) in the United Kingdom and South African Sign Language (SASL) in

South Africa. Each of these sign languages also experience regional variations within

the country. This is akin to dialect and idiolect variations in spoken languages [117].

The majority of deaf people in South Africa are illiterate in spoken languages [44]. Even

those deaf people that have been trained in spoken languages are not able to read and

write at the same proficiency level as hearing people [29] [116].

These facts have contributed to the creation of a firm communication barrier between

the deaf and hearing [40]. Dolnick remarks in [30] that Helen Keller said, “Blindness

cuts people off from things. Deafness cuts people off from people”. Even so, deaf people

necessarily need to communicate with hearing people on a daily basis. Research has

shown that 90% of deaf children are born to hearing parents. These children need to

communicate with their hearing parents on a daily basis as a necessity of life. Other

situations include accessing dental and medical services, purchasing bus and train tick-

ets, seeking directions and purchasing groceries. The inability to access these services

effectively because of communication constraints is a source of stress for the deaf [47].

1

Chapter 1. Introduction 2

Another significant problem arising from this communication barrier is that deaf people

face discrimination in employment opportunities [19]. There is a reluctance to employ

people that are illiterate and cannot communicate or be communicated with. This has

lead to a state of poverty amongst the South African deaf [44].

The solution hitherto employed to remedy this situation was the use of highly skilled and

trained interpreters [146]. The use of interpreters has proven inadequate and inefficient.

There is an acute shortage of such interpreters [44] [146]. Their services are also very

costly [146]. Most deaf people in South Africa cannot afford this service. Also, the use

of interpreters is unsuitable in contexts in which confidentiality is vital such as when

a deaf person seeks medical or psychological treatment. In such cases, the deaf person

may not be keen to have a human interpreter present.

The Integration of Signed and Verbal Communication: South African Sign Language

Recognition and Animation project (henceforth referred to as the SASL project) at the

University of the Western Cape [28], of which this research is part, has proposed a

Machine Translation (MT) system that will eventually be able to carry out automated

translation between SASL and English. Ideally, given video input, the system aims

to produce and render the corresponding English audio, and given English audio as

input, the system aims to produce and render the corresponding sign language video.

Milestones have been achieved in this project with the production of sign language

recognition [88] [106] [144] [99] and rendering [146] systems. Naidoo [88] and Rajah

[99] produced gesture recognition systems that can track hand-motions, Segers [106]

produced a hand-shape recognition system and Whitehill [144] produced a robust facial

animation recognition and classification system. Van Wyk [146] produced a full-body

high-resolution humanoid Avatar that can be used to produce synthetic sign language

phrases in the form of animations. However, these systems were not unified and existed

as independent systems built to run on desktop PCs.

It is a key aim of the SASL project to make the services of such a translation system

accessible on mobile phones. Prior to this study, the feasibility of implementing such a

system had not yet been investigated. Several feasibility factors needed to be considered

and investigated in order to inform the development process of the SASL project and

other projects involved with translation between sign language and spoken language.

1.2 Research Objectives

First and foremost, it is necessary to determine whether or not mobile phones have the

required application programming interfaces (APIs) for the implementation of such a

Chapter 1. Introduction 3

MT system. Mobile phones would be required to record audio and video, communicate

with a server over the Internet and play back audio and video. We intend to investigate

this.

Secondly, it is necessary to investigate the feasibility factors of displaying synthetic sign

language on mobile phones. To our knowledge, no study has dealt with this issue com-

prehensively. It is crucial to establish whether or not synthetic sign language displayed

on a mobile phone screen is intelligible to deaf people. This is, by far, the most important

feasibility factor. It is also desirable to investigate the bandwidth and power consump-

tion associated with displaying synthetic sign language on a mobile phone. These factors

are of less significance but are, nevertheless, useful in informing projects dealing with

the display of synthetic sign language on mobile phones.

This research focuses on pioneering this much-needed feasibility study and furthering

the expanse of knowledge in this field in a bid to inform the SASL project and other

projects in the field of translation between sign language and spoken language.

As an extra step, we desired to apply our feasibility findings and show that an implemen-

tation of the SASL project’s Machine Translation system, that uses mobile phones as

translation service-delivery devices, is feasible, by designing and implementing a work-

ing proof-of-concept version of it. To our knowledge, no unified Machine Translation

systems exist, either on desktop PCs or on mobile phones, that provide both sign lan-

guage to spoken language and spoken language to sign language translation. As such,

this implementation would constitute a pioneer in the field of translation between sign

and spoken languages as well as constituting a highly significant milestone in the SASL

project.

1.3 Research question

Are mobile phones feasible service-delivery devices in a sign language Machine Transla-

tion (MT) system?

This question is broken down into the following sub-questions:

1. Do mobile phones have the required APIs for the service-delivery needs of the sign

language MT system?

2. Is synthetic sign language rendered on a mobile phone intelligible to deaf people?

3. What are the power and bandwidth consumption implications of displaying sign

language on mobile phones?

Chapter 1. Introduction 4

4. Can we design and implement a working proof-of-concept sign language MT system

that uses mobile phones as a service-delivery mechanism?

1.4 Premises

The past decade has witnessed trends of rapid development and cost reduction in mobile

device technology. Thus, mobile devices considered novel just two years ago have now

been replaced by far superior technologies and the high cost of those devices has reduced

significantly. For this reason, the SASL project makes use of the latest technology in its

implementations in order to remain as up-to-date as possible.

Based on this premise, this research adopts the latest most suitable mobile device tech-

nology at the time of its commencement. We assume, based on this reasonable premise,

that towards the completion of the SASL project, deaf people will be able to obtain

mobile devices that have comparable capabilities to the one we select and use.

1.5 Thesis outline

The rest of this thesis is organized as follows:

• Chapter 2 Communication Tools for the Deaf : This chapter presents a survey

of existing tools that can be used to translate between sign and spoken language.

These are dealt with based on those that were (deaf-specific tools) and were not

(general-purpose tools) specifically created to facilitate communication between

the deaf and the hearing. We mention the use of general-purpose tools, such as

instant messaging systems and the short messaging service (SMS), and any research

studies conducted to assess the feasibility factors of these tools to the problem of

deaf-hearing communication. We also present a survey of research projects aimed

at creating tools to solve the problem of deaf-hearing communication and the

studies, if any, that have aimed to assess the feasibility factors of these tools.

• Chapter 3 Java Micro Edition: This chapter evaluates the suitability of the Java

Micro Edition (Java ME) programming language in providing the required APIs

for service-delivery functions in a MT system. A top-down overview of Java ME is

provided, specifically focusing on and explaining those components that satisfy the

feasibility requirements under investigation. We also mention the mobile phone

that provided these required components that we selected for use in our feasibility

study.

Chapter 1. Introduction 5

• Chapter 4 Sign Language Avatar Creation: In this chapter, we explain the generic

process used to create sign language Avatars that can be used to display synthetic

sign language. This is the process that we used to create a sign language Avatar and

Van Wyk used to create his Avatar[146], both of which we used in our feasibility

study. We explain the tool Blender which we used to carry out the generic Avatar

creation process and explain its suitability to our needs.

• Chapter 5 Methodology and Implementation of the Avatars: This chapter explains

the implementation of the Avatars Man and Phlank. We explain the creation and

parameterization of Phlank, as well as the animation and exportation of both

Man and Phlank. This is in accordance with the generic Avatar creation process

explained in Chapter 4.

• Chapter 6 Implementation of a Prototype Mobile Framework : In this chapter, we

provide details of our implementation of a working proof-of-concept sign language

MT system that uses mobile phones as a service-delivery mechanism, as per our

objectives. We provide a structural overview of the framework and explain our

implementation of each component in the framework.

• Chapter 7 Experimental Setup: This chapter explains the experimental design we

used to test the three feasibility requirements: intelligibility; power consumption;

and bandwidth usage.

• Chapter 8 Results and Data Analysis: The results of the experiments carried out

are summarized in this chapter. An analysis of these results is carried out and

explained.

• Chapter 9 Conclusion: This is the final chapter of the thesis and draws con-

clusions from the analysis of the results explained in Chapter 8. It also provides

directions for future work in this field.

Chapter 2

Communication Tools for the

Deaf

In this chapter we describe existing tools that can facilitate deaf-hearing communication.

As is expected, these tools are communication tools that employ a non-auditory mode

of communication suitable for deaf use. Tools that do not fit into this category are

excluded. As will be explored, and as noted in [148], deaf people have a limited set of

communication tools available to them.

These tools can be subdivided primarily according to their generality of use. This

yields: those tools that are built for general-purpose communication and are suitable

for deaf-hearing communication as well; and those tools that have been built specifically

to facilitate deaf-hearing communication. The next two sections describe these tools in

detail. Where possible, we mention any studies done that relate to the effectiveness of

a particular tool in solving the problem of deaf-hearing communication. The chapter

concludes with a summary.

It is important, at this point, to mention that deaf people can be subdivided into two

distinct groups; literate and illiterate1 deaf people. The second group comprises those

deaf people whose first and only language is Sign Language (SL). They have no knowl-

edge of spoken languages. They are, for all practical purposes, completely unable to

communicate with hearing people. This group is referred to as the deaf with a capital

letter D – the Deaf [98] [69]. The first group comprises those deaf people that have been

educated in spoken languages and are able to lip-read, speak and/or read and write

written text. For this reason this group is able to communicate with the hearing in spo-

ken languages with varying degrees of proficiency. This group is referred to as the deaf
1Traditional definition of literacy – literacy as applied to proficiency in reading and writing in spoken

languages.

6

Chapter 2. Communication Tools for the Deaf 7

with a small letter d – the deaf [98] [69]. With regards to interaction with the hearing

world, the literate group are in a much better position than the illiterate group. They

are less marginalized from the hearing community and suffer from fewer communication

limitations. As mentioned in the previous chapter, the large majority of deaf people

in the South African context are illiterate [116]. This is taken into consideration when

evaluating the effectiveness of the tools mentioned within the South African context.

2.1 General-Purpose Communication Tools

General-purpose communication tools are those that have been developed for commu-

nication in general but are also suitable for deaf-hearing communication. We subdivide

these tools according to the modality of communication exchange, into two categories.

Each category is discussed in each of the following subsections: text-based tools; and

video-based tools. As will be explained, some of these tools require additional infras-

tructure and human-intervention in order to facilitate deaf-hearing communication. In

other words, communication needs to be bridged between the deaf and hearing. The

subsection that follows describes how bridging has been achieved.

2.1.1 Text-Based Tools

The general-purpose text-based tools that can be used for deaf communication include,

but are not limited to: general-purpose Instant Messaging (IM) systems; the Short

Messaging Service (SMS); Email; and Fax. Power et al. [98], Bowe [19], Pilling et al.

[96] and Power et al. [97] conducted studies on the use of these tools by deaf people in

Australia, the United States (US), the United Kingdom (UK) and Germany, respectively.

A comparison of these studies reveals that the preference of applying a particular tool

to a particular communicative task varies sharply from region to region and depends

heavily on social and cultural norms. Where possible, we indicate the preferences of

each text-based tool in each of the regions mentioned.

2.1.1.1 IM systems

IM systems are systems that allow for synchronous real-time text-based communication

over a network which, in the general case, is the Internet. They can be accessed on a

variety of platforms that include mobile phones and personal computers (PCs). Exam-

ples of such systems include MXit and Fring-Mini which are mobile-based systems, and

PC-based systems such as Yahoo! Messenger, MSN Messenger and GTalk. IM systems

Chapter 2. Communication Tools for the Deaf 8

are the closest text-based alternative to a telephone call. This is because they are syn-

chronous in nature, highly responsive and incorporate a presence-service [38]. On the

other hand, they are dependent on both communicating parties being present in the

same time span, and do not incorporate dialling facilities. Bowe [19] suggests that this

communication tool is very popular amongst American deaf people.

2.1.1.2 SMS

SMS allows for asynchronous or semi-synchronous text-based communication. The ser-

vice is mainly accessed on mobile phones but it is also possible to send SMSs from a

PC to mobile phone over the Internet. In cases where there are long periods of time

between messages, it is considered asynchronous in nature, but if the communicating

parties send messages in rapid succession, the communication may be reclassified as

semi-synchronous. According to Power et al. [97], this communication tool is the most

popular tool amongst deaf people in Germany. Also, Power et al. [98] state that, given

a choice of only a single text-based communication tool, the majority of deaf people in

the UK would prefer this communication tool. Pilling et al. [96] also state that this

communication tool is the most popular amongst deaf youth in the UK. It is mostly

used for personal- and social-related matters [98] but is not suitable for more formal

communication requirements [44].

2.1.1.3 Email

Email, like SMS, may be asynchronous or semi-synchronous, depending on the nature

of communication taking place. Emails can be sent and received on PCs and most

modern day mobile phones. Power et al. [98] suggest that this mode of communication

is preferable for formal and business-related communication purposes, since the previous

two tools are generally unsuitable for such purposes. Bowe [19] and Pilling et al. [96]

indicate that this form of communication is popular in the US and UK, respectively.

2.1.1.4 Faxing

Faxing is, by-and-large, asynchronous in nature. Faxes can be sent by means of facsimile

devices as well as PCs. They are similar to email in terms of the format of the message

content and, as suggested by Power et al. [98], are preferable for personal and business-

related interactions.

Chapter 2. Communication Tools for the Deaf 9

2.1.1.5 Advantages and disadvantages of text-based tools

Text-based tools are relatively low cost, which is favourable to deaf people. A very

significant advantage of such systems is the fact that they enable the deaf involved to

communicate with the hearing, without the need for any additional intermediary tools.

Also, the fact that they are ubiquitous makes them accessible. According to Pilling et

al. [96], they are preferable because they are fast and easy to use. For this reason, they

are popular among the deaf, albeit in the developed world [98] [19] [96] [97].

This popularity, however, owes itself to the fact that the deaf people involved are able

to read and write text. The ability to read and write is critical to using such tools as

noted by Bowe [19]. Unfortunately, this is a minority case in the South African context

since, as mentioned in Chapter 1, the majority of South African deaf people are illiterate

[44] [116] and have a low aptitude for reading and writing English, even if trained [116]

[146]. In addition, the fact that conventional deaf communication makes use of signing,

and such tools do not, has raised concerns that such tools threaten to “wipe out” Deaf

culture entirely [98]. Therefore, such tools cannot serve as a general solution to the

problem of deaf communication in South Africa. Other pros and cons of this mode of

communication exist that apply to all user groups, deaf and non-deaf alike, such as the

difficulty incurred in expressing a variety of emotions [140] [102]. These factors are not

discussed.

2.1.2 Video-Based Tools

Video-based tools carry out a video message exchange. The deaf person can record

SL using a webcam. This video is then sent over the network to another person who

views it. Such tools require additional translation infrastructure in order for the deaf

person to communicate with a hearing person. These are discussed in Section 2.1.3. The

general-purpose video-based tools available today can be broadly sub-divided into two

categories based on the synchronicity of communication employed, namely: synchronous

video communication tools; and asynchronous video communication tools.

2.1.2.1 Synchronous video communication tools

Synchronous video communication tools allow all communicating parties to see and

hear each other in real-time. Cameras and microphones capture the images and voices

of communicating parties which are then sent over a network, either the PSTN or the

Internet. Numerous software clients exist for PCs that facilitate synchronous video com-

munication including Skype, Google Talk and Yahoo! messenger. All of these operate

Chapter 2. Communication Tools for the Deaf 10

over the Internet. Modern mobile phones provide video calling and video conferencing

capabilities which operate over the cellular network. Also, certain specialized tools such

as Videophones and Video conferencing equipment allow for video calling.

2.1.2.2 Asynchronous video communication tools

Asynchronous video communication tools involve the sending of video over the network,

but with significant periods of time between messages from communicating parties. Two

significant examples of such tools are video mail and the Multimedia Messaging Service

(MMS). Video mail is a video version of email. Similar to email, a video message is

captured and sent to a recipient’s video mail box, and can be accessed by the recipient

at a later time. The video mail service is divided into those services that require a client

to be downloaded to the sender’s PC, to be used for capturing and sending purposes,

and those that provide a web-based capture and send mechanism, with no additional

software required. Prominent providers of video mail of the former type are Comcast

[27] and Sightspeed [108], and prominent providers of the latter type are Eyejot [37]

and TokBox [132]. The Multimedia Messaging Service, similar to the email/video-mail

analogy, is a video version of SMS. The mobile phone camera is used to capture a short

video, which is then sent as a message to another mobile phone user.

2.1.2.3 Advantages and disadvantages of video-based tools

Video-based communication is the most natural form of SL communication after face-

to-face communication [69] since the deaf communicating party is able to speak in SL.

Their cultural norms can be expressed and they are not required to be literate in spoken

languages. Emotions can also be communicated with great ease by the use of facial

expressions.

However, such systems do not allow deaf people to communicate with hearing people

on an as-is basis, and require additional intermediary systems to be in place, better

known as bridging systems. Bridging systems are dealt with in the next subsection,

Section 2.1.3. Therefore, the ability of these tools to solve the problem of deaf-hearing

communication depends on the availability of bridging tools in a particular region. As

is noted in the section that follows, Section 2.1.3, no video bridging tools are available

in South Africa. This rules out the use of these tools as a solution to the problem

of deaf-hearing communication in South Africa. Other less significant challenges also

exist. Research has shown that deaf people become concerned with their appearance

when using video-based communication unlike in the case of text-based communication.

This is because the appearance of the communicating parties needs to be presentable

Chapter 2. Communication Tools for the Deaf 11

and cannot be used, say, in the middle of the night out of bed [69]. Also, it has been

found that this type of communication is not completely natural to SL speakers. Given

the limited visual field of webcams [69], certain signs cannot be signed naturally. For

example, when signing signs that required the hands to be moved to the space to the

far sides of the person, it is necessary for the signer to move away from the webcam

to capture the whole gesture in the camera’s field of view [69]. However, the desperate

need for these services means that these challenges can be overlooked.

2.1.3 Bridging communication between devices

When using devices of the same modality, communication between the two parties is

direct. No intermediary system is required. However, when devices of different modality

are used by two communicating parties, such as a text-based instant messenger by

one party and a sign-language video-based video-chat application by the other party, it

becomes necessary to put in place a system that effects the necessary translation between

the two modalities. Such systems can either be machine- or human-based.

They are referred to as relay services. Relay services effect many communication modal-

ity switches such as text to speech and vice versa, SL video to speech and vice versa, etc.

Theoretically, relay services should be able to switch between any two communication

modalities, devices and applications. However, this is not the case. Most relay services

currently in place worldwide switch between text and speech and between video and

speech.

Thus, a relay service that converts between text and speech must be able to convert text

to speech and speech back into text, and a relay service that converts between video

and speech must be able to convert SL video to speech and speech back into SL video.

Ideally, all such conversions should be carried out in an automated fashion by a machine

in order to make the process efficient, effective and low-cost. As is discussed in Section

2.2.3, this has not yet been fully achieved. Therefore, most current relay services are

human-based.

Typically, a deaf person, by means of a text-based platform such as a text-based IM

on a computer or a video-based platform such as a Videophone, calls a relay service

operator with the same device in front of them. The operator is, in most cases, a highly

trained SL interpreter. The deaf person requests a connection to a phone number. The

operator then dials the number on a telephone and makes contact with the other party.

In this way, the operator is connected to both parties simultaneously on the different

devices. Thereafter, a turn-taking method is used in which the communicating parties

send alternating messages to the operator who translates it and sends the message

Chapter 2. Communication Tools for the Deaf 12

across to the other device. Figure 2.1 has been adapted from [45] and depicts several

such scenarios.

Figure 2.1: Four bridging scenarios, adapted from [45].

Examples of relay services include the Royal National Institute for the Deaf’s TypeTalk

of the United Kingdom [134], the Australian Communication Exchange’s National Re-

lay Service [10], Australian-based Talking Text [127] and American-based AT&T’s TTY

relay service [9]. No national relay service is available in South Africa [44]. This renders

video-based communication tools unable to solve the problem of deaf-hearing commu-

nication in South Africa. Attempts, however, have been made at providing bridging

services of limited capability in South Africa.

TalkingSMS is a service provided by the cellular telecommunications company Vodacom

in South Africa. It converts SMS text messages sent by mobile phones into speech played

back on landline telephones and is seen as a valuable tool for facilitating communication

between the deaf and hearing [138] [44]. Another project that provided bridging services

was the Telephone Interpreting Service for South Africa (TISSA) [128] that was piloted

in 2002. This project incorporated all eleven South African official languages, as well as

SASL. Two communicating parties in the same location, and only in specific locations

such as government offices with special infrastructure in place, could dial in to an in-

terpreter in a remote location. Using a videophone for SASL and telephone for spoken

language, the interpreter would then bridge communication between the two parties.

This bridging service was, however, distinct from a relay service since both participants

had to be in the same location to communicate, and only specific locations were catered

for.

Chapter 2. Communication Tools for the Deaf 13

2.2 Deaf-Specific Communication Tools

Deaf-specific communication tools are those that have been developed specifically to

facilitate communication between the deaf and the hearing. We subdivide them, again,

according to the modality of communication exchange. We again yield the following two

subsections: text-based tools; and video-based tools. A third type of tool is introduced

in this section that makes use of Machine Translation (MT) to translate between English

and SL. We refer to this type of tool as a gesture-based tool since these tools exchange

and use SL gesture information.

2.2.1 Text-Based Tools

Telecommunications Devices for the Deaf (TDD), based on the Telephone Typewriter

(TTY), are the main text-based type of devices that are designed specifically for the deaf.

They typically take the form of a small laptop-sized device with a keyboard and a display

screen or, in older devices, a printer, and have a connection to the Packet Switched

Telephone Network (PSTN) [69] [45]. Figure 2.2 depicts a typical TDD device. The

operator of the device types text on the keyboard of the device. The text is converted

into tones which are then sent over the PSTN using Baudot encoding. Finally, the tones

are converted back into text by the TDD on the other end of the call and displayed

on the screen or printed to the printer. The South African version of a TDD is the

Teldem, developed by the South African-based telecommunications company Telkom.

Figure 2.3 depicts the Teldem. Like most other TDDs, it communicates in half-duplex

mode, meaning that only one party is able to type at a given time. As such, a method

of turn-taking between the communicating parties is employed while communication is

taking place.

Figure 2.2: A typical TDD device.

Chapter 2. Communication Tools for the Deaf 14

Figure 2.3: The Teldem [129].

Having dialling capabilities and employing a synchronous mode of communication, these

devices are the closest deaf alternative to telephones. As mentioned, however, they are

half-duplex, making them unlike traditional SL communication [69]. Many modifica-

tions to TDDs have been proposed including, but not limited to: simulated full-duplex

capabilities by an alternate transmission of packets [32]; increasing the character set

and the speed of data transfer by means of a backward-compatible yet improved com-

munication protocol [33] [35] [34]; and increasing the typing efficiency by introducing an

augmentation device that helps predict the word being typed based on a network based

dictionary service [101].

A substantial number of deaf people in developed countries use this tool [98] [96]. This

is due to the fact that the deaf of those regions are able to read and write text, required

to be able to use this tool, which is a minority case in the South African context, and

the fact that those regions have relay services. As has been mentioned, this is not the

case in South Africa and the Teldem is not a common tool amongst deaf people in South

Africa [133]. Like other text-based tools, it is an ineffective solution to the problem of

Deaf communication in South Africa.

Other text-based tools have also been developed specifically for the deaf but are similar

to one or more of the general-purpose tools. The tool described in [6], for example, is

very similar to mobile phone-based instant messaging systems with minor modifications.

These are not discussed further.

2.2.2 Video-Based Tools

Attempts at creating video-based tools specifically for use by deaf people have, by-and-

large, taken the form of minimizing the limitations of the general-purpose video-based

Chapter 2. Communication Tools for the Deaf 15

communication tools. Specifically, attempts have targeted one or both of the following

two areas with a much greater emphasis on the first, namely: reduction of transfer cost

and time of the video over the network i.e. reduction of video size; and increase in

the usability of the application specifically for SL. Thus, research has mainly aimed at

taking general-purpose video-based communication tools and improving them to make

them suitable for deaf communication.

At the forefront of research in the reduction of video size is the optimization of codecs –

algorithms used to compress videos by removing redundant information. When selecting

and/or optimizing a codec for use with SL video, a balance needs to be struck between

the quality of the video, the quantity of the data needed to represent the compressed

video, the complexity of the encoding and decoding algorithms which will proportionally

increase the time required for both operations, robustness of the compression scheme

to data losses and errors, and a number of other factors. Research has shown that the

H.264 encoding standard provides the best such balance possible at the time of writing

[78]. As such, most projects involving video compression, including those involving SL

video, have used codecs based on this encoding scheme [23] [85] [105] [86].

When optimizing codecs for SL video, a popular technique has been to assess key regions

of interest (ROIs) in SL videos and to optimize codecs to provide better quality in those

regions, while reducing the unnecessary quality in other regions of the video. Projects

such as the MobileASL project [23], as well as those of Muir et al. [85] [86] and Seersb

et al. [105] have all carried out ROI assessments for SL videos by tracking the gaze of

SL-speakers viewing SL videos. Their research has consistently and unanimously shown

that the key region of interest is the facial region, specifically the region around the

mouth and chin, with the gaze of viewers fixed on this region for the greatest portion

of the viewing time. As such, these projects also optimized their codecs, based on the

H.264 standard, to provide a higher quality in the facial region and lower quality in all

other regions of the video. Also, the MobileASL project was able to determine that

providing fewer higher quality frames per second had a much higher utility for SL video

than providing a higher number of lower quality frames per second [23].

The usability of video-based communication tools have also been the subject of research.

The HIT-wear project [103] involved the use of a wearable computer mounted on the

head of a deaf user, equipped with a screen and camera. System events, such as selecting

menus, were initiated by pointing the index finger of the one hand at one of five fingertips

of the other hand, each of which represented one of five available menus. Other projects,

such as that of Zhu et al. [149], attempted to provide hand-driven interfaces in a similar

manner. Although these systems aim at providing a more familiar interface to deaf

users, since they enable the use of hands to carry out various functions, the requirement

Chapter 2. Communication Tools for the Deaf 16

of a wearable computer poses as an excluding factor since wearable computers are by no

means ubiquitous. This is especially not the case amongst the South African deaf.

While we have presented these enhancements to video-based tools for reasons of com-

pleteness, we re-iterate that video-based tools do not solve the problem of deaf-hearing

communication in South Africa for reasons mentioned in previous sections.

2.2.3 Gesture-Based Tools

Gesture-based tools refer to all those tools that are built specifically to translate between

SL and spoken language. They use Machine Translation (MT) to effect this translation.

As noted previously, all other types of tools either do not require translation, such as

text-based tools, or use human translators to carry out translation, such as video-based

tools. We refer to this type of tool as a gesture-based tool since these tools generate

and/or use SL gesture information. We elaborate on this shortly. These tools are

conceptually required to cater for two distinct translation pipelines:

1. Translation from spoken language to SL.

2. Translation from SL to spoken language.

In translating from SL to spoken language, gesture recognition (GR) algorithms are

used to recognize SL from some form of SL input, such as a SL video or wired gloves2

fitted on a person speaking SL. The output of these systems is information pertaining

to the gesture(s) made in the SL input. This may be in a SL notation system such as

SignWriting [125], Stokoe [117], HamNoSys [135] [136] [137] or simple gloss notation.

This output is then analyzed and translated into a spoken language.

Conversely, in translating from spoken language to SL, the input which is some form of

spoken language, audio or text, is translated into SL gesture information. Again, this

could be in one of the SL notation systems mentioned previously. This SL gesture infor-

mation is then used to synthesize SL. The most prominent methods used to synthesize

SL are the use of a 3D humanoid Avatar and SL video blending/joining.

The fact that these systems use SL gesture information sets them apart from other types

of tools. We term these gesture-based tools.

For a system to be able to provide two-way communication between deaf and hearing

users, both translation pipelines would have to be included in the same system. We
2Wired gloves are a set of gloves fitted with sensors to gauge motion or position. Examples are Data

Gloves, CyberGloves, Power Gloves and AcceleGloves.

Chapter 2. Communication Tools for the Deaf 17

are not aware of any systems that incorporate both translation pipelines. All of these

systems have aimed at implementing one of the translation pipelines mentioned. For

this reason, we treat the projects done on each translation pipeline separately in each

of the two following subsections. Also, most of these systems have been implemented

on desktop computers, with very few implemented on mobile architectures. In each

subsection that follows, we first mention desktop computer-based systems followed by

those implemented on mobile architectures, where applicable.

2.2.3.1 Spoken Language to SL Gesture-Based Tools

The translation from spoken language to SL involves the following processes: capturing

spoken language input as audio or text; if audio has been captured, converting it into

text using speech recognition technology; translating the text into a SL transcription

notation such as those mentioned previously; and finally synthesizing SL using the SL

transcription. Various projects have carried out variants and subsets of this process.

Some have attempted to implement as much of it as possible while others have focused

on perfecting particular parts of the process.

Capturing spoken language is trivial and can be carried out by means of a microphone.

Also, many speech recognition technologies currently exist that can convert from spoken

language audio to text, many of them open-source such as Simon [110], CMU Sphinx

[26] and VoxForge [139]. On the other hand, translation from spoken language text to a

SL transcription notation and SL synthesis from that notation are the subject of current

SL research. The majority of research on this translation pipeline focus on these two

processes.

Additionally, some of these projects have carried out assessments on the intelligibility

of their SL, while others have not. We will indicate those that have.

Two projects that are actively working on and have achieved milestones in such systems

for SASL are the SASL project [28] of the University of the Western Cape and the

SASL-MT project [150] of the University of Stellenbosch. The SASL project has, to-

date, focused on SL synthesis and, more recently, SL synthesis from a SL transcription

notation. Van Wyk [146] created a full-body anatomically-correct humanoid Avatar that

can sign SASL gestures, including all non-manual gestures. His Avatar’s model was built

on the MakeHuman project [79]. Its skeleton was built on the H-Anim standard and he

extended this standard to include additional features and bones for full facial animation.

We explain his work in more detail in Chapter 4.

The SASL-MT project has focused both on translating from English text to SL tran-

scription notation, in this case the gloss notation, and on synthesizing SASL. Van Zijl

Chapter 2. Communication Tools for the Deaf 18

and Olivirin [152] of this group produced a graphical user interface (GUI) that allows a

hearing person to compose English sentences for translation into SASL. The resulting

sentence is then translated into SASL using a tree-based rule-based translation. It is

not clear how robust and extensive their system is in this regard. Van Zijl and Fourie

[151] of the same group developed a generic 3D humanoid Avatar that is capable of

gesturing manual signs. Their Avatar was built using the H-Anim standard which is the

standard in humanoid Avatar skeletons. In this way, it conforms to standards and is

skinnable. They also developed a custom SL transcription format called SignStep. Sign-

Step is an XML representation of the SL notation and includes details of the particular

gesture to be animated, such as hand position, motion and shape. Their Avatar could be

fed gestures in the SignStep format. It would then animate the appropriate sign. Their

Avatar, however, is only capable of animating a small number of facial expressions. This

is because the H-Anim standard, which they used, only incorporates a small number of

animation specifications in the face. Plans are in way, by the project, to implement

facial animations [151].

Many projects also exist that attempt to translate from spoken languages into non-SASL

SLs. The most prominent of these projects was the ViSiCAST project [70] [29] that

attempted to translate from English to British Sign Language (BSL) and other European

SLs. The project aimed at implementing a full translation system for English to BSL in

post offices in the UK. They used a commercial-off-the-shelf speech recognition package

that was very robust. Their system could also parse the resulting text and translate it

into a computer-readable Extensible Markup Language (XML) form of HamNoSys called

SiGML. The SiGML would then be parsed by a module called Animgen to determine the

sequence of BSL gestures required [70]. Their Avatar, Tessa, then gestured the resulting

BSL animation. Tessa could perform body and hand animations but could not perform

facial animations. The whole project is closed-source and very few details are available

as to exact implementations. The system could recognize and animate 115 distinct BSL

phrases that are used in day-to-day post office interactions [29].

This project is particularly applicable to our research in that it is one of the few projects

that we know of that has carried out SL intelligibility evaluation of their Avatar with

deaf people [29], albeit on desktop computers and not mobile devices. We mention their

experimentation methodology. Their experimentation was conducted in a post office

environment. From their 115 phrases, they generated 133 phrases by incorporating

numbers and days of the week. These phrases were made up of a total of 444 signs,

with repetitions of signs between different phrases. For example, the sign for “Pound”

may have been used in multiple phrases involving money [29]. Using these signs, they

conducted two types of experiments, the first of which was objective and the second,

Chapter 2. Communication Tools for the Deaf 19

subjective. We focus on the first experiment that objectively tested intelligibility of the

signs.

Six deaf people took part in the experimentation. Each deaf person was shown all 133

phrases in blocks of between 20 or 24 phrases per viewing, with gaps in between viewings.

For each phrase, the deaf person was instructed to write down what they understood.

The deaf person was able to control the playback of the phrase and could repeat the

animation until it was intelligible or a maximum of 5 viewings had occurred without the

sign having been intelligible. The results were evaluated by determining the percentage

of signs in each phrase that had been identified correctly as well as determining the

percentage of signs that had been identified correctly for each sign across all phrases.

On average, 61% of phrases and 81% of signs were identified correctly. It was found

that, on average, 1.8 viewings were required before an attempt at recognition was made.

Each incorrectly identified phrase was then re-presented along with its text to the deaf

person. The deaf person was asked to specify whether the error made was attributed

to the SL phrase being inappropriate, such as in a different dialect or accent of BSL, or

just not clear. It was found that 30% of errors made were due to inappropriateness of

the phrase and the remaining 70% was attributed to unclear signing.

Morrissey [83] created a system similar in function to the previous one for English to

Irish Sign Language (ISL) translation. Her system takes in English text phrases and

uses an existing system to translate the English into ISL in the form of gloss-notation.

Her system then displays the corresponding ISL by means of a dictionary look-up of

pre-stored videos of animations of her Avatar for the required signs. She also carried

out experiments with deaf people, the details of which are unclear. She achieved an 82%

intelligibility rate for her ISL signs.

Many other projects have implemented Avatar systems that can animate signs on desk-

top computers from a computer-readable SL notation similar to the projects mentioned,

with variation at the implementation level. These include those done for Greek to Greek

Sign Language [68], Korean to Korean Sign Language (KSL) [89], English to Australian

Sign Language [145] [147] and Polish to Polish Sign Language [41], to mention but a

few prominent examples. These vary in terms of the technologies their Avatars are built

on and the SL notation system they use to control and animate them. Some of them

can perform non-manual gestures [89] [145] [147] while others can only perform manual

gestures [68] [41]. The general concept remains the same. No studies that we are aware

of have been carried out to assess the intelligibility of any of these systems.

Other projects have implemented translation systems on mobile devices, albeit for non-

SASL SLs. Halawani [46], for instance, proposed a mobile architecture for the translation

of Arabic text into Arabic Sign Language (ArSL). His architecture consists, mainly, of a

Chapter 2. Communication Tools for the Deaf 20

mobile device, a proxy server and a web server. The mobile device sends text to the web

server for translation, apparently through the web browser on the mobile device. The

web server’s translation module performs a translation of the text into ArSL and sends

back the corresponding ArSL animation to the mobile device. Few details are provided

beyond this. His overall architecture resembles the one proposed in the current research.

His architecture is illustrated in Figure 2.4.

Figure 2.4: Halawani’s architecture [46].

Igi et al. [51] developed a similar system for mobile devices that could animate man-

ual gestures as well as 19 representative facial expressions for Japanese Sign Language

(JSL). Their architecture, however, is limited in scope and size, making use of a limited-

radius infrared wireless system. It was implemented in a museum. It consists of a PDA

(Personal Digital Assistant) hosting Windows Mobile, a position-detecting server and

an information-providing server. The position-detecting server is used to track the po-

sition of the PDA in the limited-size network using an infrared sensor and transmitter

on the server and PDA, respectively. The information-providing server can be queried

and sends back a video of a JSL-signing Avatar. Their system had a dictionary size

of not less than 60 words, although the exact size is not clear. Their SL animations

were created by means of specialized and expensive motion-capture equipment and led

to high quality signing. They also carried out intelligibility evaluations on their Avatar

with deaf people. Seven deaf people were shown 60 JSL words using their Avatar, 3

times each. They achieved an overall average recognition rate of 77% for their signs

across all participants.

Chittaro et al. [25] [21] developed a system that allows novice-animators to animate Sign

Language signs with relative ease and subsequently play those files on certain mobile

devices. Their animation tool HAnimator allows novice users to create SL poses by a

Chapter 2. Communication Tools for the Deaf 21

method of GUI-based rotations of joints on their Avatar. The user is also able to piece

poses together to create SL animations. These animations may then be exported in the

X3D format [2]. The X3D format is a 3D vector graphics format for 3D objects. They

also developed an X3D file player for mobile devices called MobiX3D [82]. This allows

for the animation files previously created to be played back. It was compatible with

Windows Mobile PDAs. No studies were carried out to assess the effectiveness of the

approach in rendering intelligible SL.

As is observed, very little work has been done to provide mobile device-based MT tools

for deaf-hearing communication. Also, although work has been done to assess the feasi-

bility of such systems, none of it has focused on the South African situation and SASL.

2.2.3.2 SL to Spoken Language Gesture-Based Tools

The translation from SL to spoken language involves the following processes: capturing

SL input; carrying out gesture recognition (GR) on the input to extract SL information;

carrying out translation from SL gesture information to spoken language in text; using

text-to-speech technology to convert from spoken language text to spoken language

audio; and finally rendering the audio. Different projects have carried out variants and

subsets of this process.

Capturing SL video input is a trivial process that can be carried out by a video cam-

era, motion-detection equipment or wired gloves. Text-to-speech technology is a highly

researched topic and many robust text-to-speech systems exist, many of which are open-

source such as Festival [39], FreeTTS [42] and eSpeak [36]. On the other hand, GR for

SL is a relatively new field [115] [84].

GR systems can be classified broadly according to: those that make use of data from

obtrusive equipment such as Data Gloves [76], Power Gloves [67], CyberGloves [141],

AcceleGloves [49], coloured gloves [20] and motion-detection equipment as input; and

those that use video data from a single camera [114] [7] as input known as vision-based

systems. The output of GR systems may include manual gestures, which are hand

movements and shapes, and non-manual gestures which include facial expressions and

head, neck, shoulder and body movements. The output of GR is then used with a variety

of techniques to classify the SL sign according to that information, including the use

of correlation, Hidden Markov Models (HMMs), Neural Networks and decision trees.

Below, we briefly mention work done in the field, first mentioning the projects dealing

with SASL followed by those that deal with other SLs. We do not focus on the details

of GR or translation techniques since this is not the subject our research.

Chapter 2. Communication Tools for the Deaf 22

The only project actively working on such systems for SASL is the SASL project [28]

of the University of the Western Cape. With regards to this particular translation

pipeline, the SASL project has mainly produced systems that can carry out GR. It

has further focused on making these GR systems vision-based systems. Rajah [99] and

Naidoo [88] both produced vision-based systems that can recognize SASL gestures. Both

their systems made use of HMMs to classify signs. Rajah’s system could recognize 23

SASL signs and achieved a recognition accuracy of 71%. Naidoo’s system could classify

20 SASL signs and achieved a recognition accuracy of 73%. Whitehill [144] created a

vision-based system that uses Support Vector Machines (SVMs) to classify and recognize

SASL facial expressions from real-time input with an accuracy of 90%. Also, Segers [106]

created a vision-based hand-shape recognition system from real-time input. His system

uses eigenvectors to classify and recognize SASL hand shapes with an accuracy of 74%.

The SASL project has not focused on translation from SL gesture information to English

at all. To our knowledge, no other systems currently exist that carry out GR for SASL

signs and no systems exist at all that carry out translation from SASL GR output into

English.

Many projects have also attempted to translate from other SLs into spoken languages.

The most prominent of these projects are those that have done so for American Sign

Language (ASL) to English [114] [20] [49], Arabic Sign Language (ArSL) into Arabic [7],

Taiwanese Sign Language (TSL) into Taiwanese [76], Australian Sign Language (Auslan

SL) into English [67] and Chinese Sign Language (CSL) into Chinese [141].

These projects have achieved varied recognition accuracies that range from 73% [20]

to 97% [114]. They also use varying techniques to classify and translate signs such

as correlation analysis, HMMs and decision trees, and can recognize a varied number

of signs ranging from 30 [7] to 5100 [141] signs. Some of these projects use obtrusive

hardware [20] [49] [76] [67] [141] while others use vision-based techniques [114] [7]. Vision-

based techniques are preferred over the use of obtrusive hardware since the latter is

usually specialized, expensive and/or undesirable as it adds additional and unrealistic

hardware constraints to the system, while the former does not. None of the systems

mentioned cater for SASL.

2.3 Summary

We have presented a summary of the tools that may be considered capable of addressing

the problem of deaf-hearing communication. We subdivided them, primarily, according

to the generality of use and then according to the modality of communication employed

and exchanged by the tools. We showed that the majority of the existing tools, general

Chapter 2. Communication Tools for the Deaf 23

or specific to the deaf, are not effective in the South African context. We also showed

that the work done on developing tools specifically for the deaf in South Africa and

SASL is very limited and demonstrated the pressing need for the current research.

Chapter 3

Java Micro Edition

Our mobile phone application, iSign Mobile, was developed using Java Micro Edition

(Java ME). In this chapter we describe the Java ME programming language used to

create applications for Java-enabled mobile devices. We describe its structure and the

features that it provides for rich application functionality. In so doing, we demonstrate

its suitability to our needs. Developing a proof-of-concept SASL Machine Translation

system using mobile phones as service-delivery mechanisms was stated as an objective

in Chapter 1. From a usability perspective, such a system would require that the mobile

phone application used as a service-delivery mechanism have the following capabilities:

1. Ability to capture video and audio.

2. Ability to render video, 3D graphics and audio.

3. Ability to communicate with a server over the internet.

As such, this chapter investigates whether Java ME provides the required APIs to provide

these basic capabilities.

This chapter first gives a background of Java ME, distinguishing it from other Java

versions. It then explains the process by which Java ME APIs develop in the Java

Community Process. It also describes the process by which these APIs are structured

and standardized into three specification types. These are: Configurations such as

the Connected Device Configuration and the Connected, Limited Device Configuration;

Profiles such as the Mobile Information Device profile; and Optional APIs such as the

Mobile Media API and the Mobile 3D Graphics API. Each of these is explained in detail

indicating those that are used in our implementation.

24

Chapter 3. Java Micro Edition 25

3.1 Java ME in Context – A Background on Java Editions

Sun Microsystems has developed Java in a variety of editions, catering for a range

of target platform capabilities. These editions are as follows: Standard, Enterprise,

Micro and Java Card. Common-place Java, as found on most desktop computers, is

the Standard edition of Java – Java 2 Standard Edition (Java SE). It includes a set

of core Java libraries as well as the Java Virtual Machine (JVM). The JVM mediates

between the Java program and the underlying hardware on the platform so as to enable a

“write-once-run-anywhere” approach [119]. It allows for an abstraction of the underlying

hardware from the programmer to enable a standardized programming approach. A full

specification of the JVM is available on the official Java website [90]. Java SE allows for

the development of software for desktop-computers with highly sophisticated capabilities

and Graphical User Interfaces (GUIs). The Enterprise Edition of Java – Java EE – was

built on top of Java SE, with additions made to cater for server-side development.

Java SE, while highly portable, was too big to be implemented on devices with limited

memory and processing capabilities. At the same time, many interfaces that would be

required and useful on mobile devices but not on desktop computers were not provided

by Java SE. An example of such an interface is the JSR177 package – the Security and

Trust Services API (SATSA) which is used to provide a security verification mechanism

for applications developed for mobile phones. As such, the need arose for compact

versions of Java SE that could run on devices with more limited capabilities. The two

remaining editions of Java – Micro and Java Card editions – catered for this need. Java

Card was developed to run on smart cards and Java Micro Edition was developed for

devices whose hardware capabilities fall in between that of desktop computers and smart

cards [143]. Figure 3.1 depicts the various Java editions and the devices they are built

for. This chapter focuses specifically on Java ME, excluding all other editions of Java.

Servers
Desktop

PCs

Set-top boxes
PDAs

Mobile phones
Pagers

Smart cards

Java
Enterprise

Edition
Java EE

Java
Standard
Edition

Java SE

Java
Micro

Edition
Java ME

 Java
Card

Figure 3.1: Java editions and the devices they are built for.

3.2 Java ME Architecture

Java ME is not a programming language on its own [93]. Rather, it is an adaptation

of other existing Java technologies to make them suitable for devices less powerful than

Chapter 3. Java Micro Edition 26

desktop computers [93]. The Java ME architecture is comprised of three components

that are stacked on top of each other as follows; configurations, profiles and optional

APIs. A configuration specifies a fixed subset of both the JVM [90] and the Java SE

APIs that should be implemented by a given device to be able to run basic Java applica-

tions. A profile specifies the libraries available for the development of more sophisticated

applications on a specific family of devices. The additional APIs allow access to special-

ized capabilities on a particular device. Each component in this layered architecture,

therefore, provides an increasing level of specialized hardware access on devices they are

aimed at. Each component is explained in further detail in the subsections that follow.

The combination of a configuration, a profile and the optional APIs that a device has

implemented is referred to as a stack [73]. The different configurations, profiles and

optional API stacks are illustrated in Figure 3.2.

Device Operating System

CDC
Connected Device

Configuration

CLDC
Connected, Limited Device

Configuration

Foundation
Profile

Personal
Basis
Profile

MIDP
Mobile

Information
Device
Profile

Other
Profile

Personal
Profile

Optional APIs
Optional

APIs

Optional API
layer

Profile
Layer

Configuration
Layer

Java ME

Figure 3.2: The Java ME architecture.

Different devices can be constructed to implement various configurations and profiles,

each implementing varied interfaces and APIs. This form of construction would cause

a severe lack of standardization which would make development for these devices very

difficult. For this reason, a finite set of standard configurations and profiles have been

developed. Device manufacturers must then select and conform to one of these configu-

rations and profiles when constructing a particular mobile device. Section 3.2.1 explains

the Java Community Process (JCP) and how Java ME components are developed, in

order for the reader to fully understand the components of a Java ME stack explained

thereafter. The subsections that follow then describe the components of a Java ME

stack.

3.2.1 The Java Community Process (JCP)

The Java Community Process (JCP) was established in 1998. The role of this process

was to provide a mechanism by which different Java technologies could be developed by

Chapter 3. Java Micro Edition 27

consensus [57]. Anyone can register with the JCP and become a member[55]. Any mem-

ber can propose or request a specification of a Java technology. These specifications are

termed as Java Specification Requests (JSRs). JSRs can serve many functions including

the following [73]:

• Proposal of new API(s) that should be integrated into Java technology to cater

for new hardware.

• Extension of an existing JSR. Thus, a new JSR can be an extension to an existing

JSR, specifying additional features that the old JSR should implement.

• Amendment of an existing JSR. A new JSR may propose solutions to the draw-

back(s) of an existing JSR.

• Combination of multiple other JSRs into functional units. For example, a JSR may

be proposed to combine the JSR 82 (Java APIs for Bluetooth) [66] with the JSR

135 (Java Mobile Media API) [58] if all devices in use were capable of supporting

both of those JSRs.

JSRs may serve one or more of these functions. For example, a JSR may be proposed

to, both, amend and extend an existing JSR. The current development process of JSRs

takes place as follows [57]:

1. Initiation: A member of the JCP proposes a specification. This is then briefly

reviewed by an Executive Committee (EC) composed of major stakeholders in

that technology, such as representatives of manufacturing companies, as well as

members of the JCP.

2. Early draft: A group of experts is established consisting of members of the JCP.

This group develops a preliminary draft of the specification. This is then put on

the Internet where members of the JCP and the general public can review and

comment on it, the comments received are used by the group to re-assess and

improve the specification.

3. Public draft: The specification is put up for review by the general public again.

The new feedback is used by the expert group to further amend the specification.

At this stage, the EC decides whether or not the specification should continue. If

accepted, a reference implementation of the specification and a Technology Com-

patibility Kit (TCK) are completed and provided to the EC for final approval by

the leader of the expert group. The TCK is a set of tools and tests that verify the

validity of a particular implementation of the specification. This shall be further

explained shortly.

Chapter 3. Java Micro Edition 28

4. Maintenance: The completed specification and its reference implementation and

TCK are amended and extended on an ongoing basis to cater for demands. Re-

quests for clarification and interpretation are also catered for.

A JSR is only a specification. No working programs are produced or provided under the

JCP. It is the responsibility of device manufacturers to produce an actual implementa-

tion of a JSR on a device based on the reference implementation of the JSR [73]. For

this reason, implementations of JSRs may differ slightly or greatly, usually depending

on the manufacturer of the device. TCKs provide a mechanism of verifying a partic-

ular manufacturer’s implementation of the specification for accuracy and correctness.

Nevertheless, implementations between manufacturers do vary.

The JCP itself has been the subject of several JSRs [56]. In June of 2000, the original

JCP was replaced by the JCP 2.0. The JCP 2.0 made amendments to the process of

making new JSR submissions and was proposed by the JSR 913 [54]. Maintenance on

this JSR led to refinements on the rules for voting and resulted in the introduction of

the JCP 2.1 in July of 2001. Further maintenance on this JSR then led to a revision of

the rules of licensing and changes in policy which produced the JCP 2.5 in October of

2002. A new JSR – the JSR 215 [53] – then made further changes to the JCP, amending

mistakes in voting, amending the format of the TCK, Reference Implementation and

Specification, proposing more transparency and proposing changes in the EC structures,

to name but a few. This produced the JCP 2.6 in May of 2006. The current version of

the JCP is the JCP 2.7, produced by maintenance done on the JSR 215.

Table 3.1 summarizes key JSRs mentioned in this chapter and others used in our imple-

mentation.

3.2.2 Configurations

A configuration is a specification of a particular JVM and a set of core APIs that will

be used to run and construct Java applications. It provides very basic functionality

such as (but not necessarily limited to) the support for Java data types, input/output

(I/O) operations including network connections and the provision of fundamental data

structures such as Hash tables and Stacks.

Different configurations accommodate varying levels of standard mobile device process-

ing and memory capabilities. A configuration is, therefore, a specification of those

components of Java SE that can be run on a given class of mobile device. It categorizes

mobile devices at the lowest level and is generally described in terms of the minimum

memory capacity that it requires a mobile device to have. Currently, two standard

Chapter 3. Java Micro Edition 29

Table 3.1: A list of key JSRs

Type JSR Name JSR No.

C
on

fig
ur

at
io

n Connected Device Configuration 36
CDC 1.0
Connected, Limited Device 30
Configuration CLDC 1.0
Connected, Limited Device 139
Configuration CLDC 1.1

P
ro

fil
e

Digital Set-Top Box Profile DSTBP 242
Foundation Profile 46
Information Module Profile IMP 195
Mobile Information Device Profile 37
1.0
Mobile Information Device Profile 118
2.0
Mobile Information Device Profile 271
3.0
Personal Basis Profile 129
Personal Profile 62

P
ro

ce
ss Java Community Process 2.0, 2.1 913

and 2.5
Java Community Process 2.6 and 215
2.7

O
pt

io
na

l
A

P
I Java APIs for Bluetooth 82

Location API for Java ME 179
Mobile 3D Graphics M3G 184
Mobile Media API MMAPI 135
Wireless Messaging API WMA 120

configurations exist: the Connected Device Configuration (CDC) and the Connected,

Limited Device Configuration (CLDC). These configurations group mobile devices into

two large groups based on device capability as explained below.

3.2.2.1 The Connected Device Configuration (CDC)

This configuration can be implemented by devices that have a minimum of 512KB of

read-only memory (ROM), 256KB of random access memory (RAM) and some form of

network connectivity [64]. It must also implement a full implementation of the Java

Virtual Machine as defined in the Java Virtual Machine Specification, 2nd Edition [64].

Devices that meet these requirements are then referred to as connected devices, hence,

the Connected Device Configuration. Connected devices refer to devices that are not

as capable as desktop computers but still have ample memory, processing power and

network connectivity. A typical connected device would have a 32-bit CPU as well as 2

MB of RAM and ROM [5]. Examples of connected devices include high-end PDAs and

Chapter 3. Java Micro Edition 30

set-top boxes. Current mobile phones do not qualify as connected devices since they are

not powerful enough to host the components of the CDC.

Unlike Java SE and Java EE that run on the JVM, the CDC runs on a virtual machine

known as the C Virtual Machine (CVM). This VM provides all the same functionality

as the JVM but is smaller in size and provides a far superior performance to the JVM

[5]. It manages memory efficiently and runs effectively on 32-bit processors, as required

for connected devices [91].

The CDC exists in two versions: version 1.0 and 1.1. We will not focus on the CDC

any further since this configuration is not suited to mobile phones and is not used in

our project. A summary of the packages that the CDC 1.0 implements is illustrated in

Figure 3.3.

javax.microedition.io Provides a variety of I/O operations and network access

java.io Provides access to system I/O operations

java.util A variety of utility classes from Java SE

java.lang Core Java language programming classes

java.lang.ref Functions for extended interaction with the garbage collector e.g support for weak references

java.lang.reflect Collection of classes and interfaces giving reflective information about classes and objects

java.math Classes for carrying out integer arithmetic to an arbitrary precision level

java.text Classes and interfaces for text handling

java.util.zip Classes for reading files of the ZIP format

java.util.jar Classes for reading files of the JAR format

java.net Classes for the implementation of application with advanced networking capabilities

java.security Classes and interfaces that manage application security

java.security.cert Classes and interfaces that read, parse and manage application security certificates

Package Description

CDC 1.0

CLDC 1.0

CLDC 1.1

Figure 3.3: The packages implemented by and the comparison between the CLDC
1.0, CLDC 1.1 and CDC 1.0.

3.2.2.2 The Connected, Limited Device Configuration (CLDC)

This configuration is a subset of the CDC [93] and was designed for devices implementing

the Java Micro Edition but that are not powerful enough to implement the CDC. Two

versions of the CLDC exist, version 1.0 and 1.1. The CLDC 1.0 can be implemented by

devices that meet the following requirements [62] [73]:

Chapter 3. Java Micro Edition 31

• Have between 160KB and 512KB total memory available with 256KB or less

ROM/Flash memory and 256KB or less RAM.

• A limited power source (battery or otherwise).

• Some form of connectivity to some type of network but with smaller bandwidth

than that of CDC.

• Varying degrees of sophistication as regards their user interfaces, and possibly not

having any at all.

The CLDC 1.1 extended the CLDC 1.0. Several features were added and amended [63]

[93]. The most important of these changes are the following[63] [93]:

• Support for floating-point data types has been added. The classes, Double and

Float, have been added and methods have been added to various other classes such

as String to allow, among other things, for conversions to and from the floating-

point data type classes. A very important advantage of this addition is that it

makes it possible to display 3D graphics on the device.

• The minimum memory budget has been raised from 160KB to 192KB to support

floating point arithmetic.

• Support for weak references1 has been added.

Devices that meet these requirements are then referred to as connected limited devices,

since they have very limited resources, hence, the Connected, Limited Device Configu-

ration. Current mobile phones and pagers are connected limited devices. The CLDC

implements a VM known as the K Virtual Machine (KVM) [122]. The ‘K’ in KVM

stands for kilo and is an indicator of the fact that the memory usage of this VM is

measured in kilobytes [122] [5] [73]. This VM was made to include the key features of

the JVM but with improvements made in the following key areas [122] [5] [73]:

• Reduction and optimization of the size of the VM.

• Severely minimize the memory usage of the VM.

• Modularization of the framework for ease of extensibility and to allow it to be

selectively configured for use with different devices.
1A reference to a memory location that does not keep it protected from garbage collection. An

example of a structure that uses weak references is a list to keep track of the variables currently in use
in an application. References to these variables by the list must be weak so that they do not stop the
process of garbage collection once other references to these variables have been removed.

Chapter 3. Java Micro Edition 32

The packages implemented by the CLDC 1.0 and CLDC 1.1 as well as their place in

relation to the CDC superset are illustrated in Figure 3.3. Our mobile application makes

use of the CLDC 1.1 since this configuration, as has been mentioned, provides support

for floating point data types necessary for the Mobile 3D Graphics (M3G) API to display

our 3D Avatar. The M3G API is explained later in this chapter.

3.2.3 Profiles

A profile is layered on top of and extends a configuration. It adds a set of APIs to a con-

figuration that aid in application development for a specific family of devices. Examples

include APIs for user interface (UI) creation, persistent storage and multimedia render-

ing. Built on top of the CDC are three profiles, namely, the Foundation profile, the

Personal Basis profile and the Personal profile, only one of which need be implemented

as seen in Figure 3.2. The reason for this will be explained.

The most prevalent, popular and ubiquitous profile built on top of the CLDC is the

Mobile Information Device profile (MIDP) [92] [93]. This profile is designed for mobile

phones and has been implemented by millions of mobile phones world wide [73]. This is

the profile used in our implementation. Other profiles also exist to accommodate other

device types such as the Information Module profile (IMP) [60] [43] and the Digital Set

Top Box profile (DSTBP) [61]. The following subsections provide an overview of the

profiles listed. The first two subsections briefly describe the CDC and CLDC profiles

that are not used in our implementation. The section thereafter describes the MIDP in

more detail.

3.2.3.1 The CDC Profiles

The Foundation profile [121] complements the CDC as seen in Figure 3.2. It provides ad-

ditional packages that provide non-Graphical User Interface (GUI)-related functionality.

Many of these packages are dedicated to providing increased security to an application

such as the encryption of data and setting up secure socket connections.

The Personal Basis profile [123] is a superset of the Foundation profile. It provides all

the packages and functionality of the Foundation profile and adds packages for the devel-

opment of light-weight GUIs as well as the ability to develop and run Xlet2 applications.

The Personal profile [124] is a superset of the Personal Basis profile. It provides all

of the packages and functionality of the Personal Basis profile and provides the full
2A Java program designed to run on and manage set-top boxes for Digital television. Xlets differ

from Applets in that they can be paused and resumed in runtime.

Chapter 3. Java Micro Edition 33

Abstract Windowing Toolkit (AWT) [120] GUI rendering library. It also supports the

development and running of Applets.

Due to the fact that these profiles provide an increased amount of backward-compatible

functionality, only one need be implemented, depending on the capabilities of the target

device. These profiles are not used in our implementation and are not discussed any

further.

3.2.3.2 The CLDC Profiles

The Information Module profile (IMP) is aimed at devices that have similar capabilities

to MIDP devices described in the next subsection, but have alternative forms of GUI

display or no GUI display at all [60] [43]. Examples include vending machines and

tracking devices [43]. It is a direct subset of the MIDP, including all the features of the

MIDP with the MIDP graphics rendering library – the LCDUI library – removed. It

provides no features additional to the MIDP.

The Digital Set Top Box profile (DSTBP) is aimed at small-footprint television set top

boxes, hence, the name. It includes APIs such as those used to provide I/O operations

and the location of resources from a Uniform Resource Locator (URL), networking capa-

bilities and graphics rendering capabilities in a manner that is appropriate for television

set top boxes. A subset of the Java TV API is also included. The Java TV API, like the

CDC-based Personal Basis profile, provides support for an Xlet application programming

model appropriate for such devices.

3.2.3.3 The Mobile Information Device Profile

The Mobile Information Device profile (MIDP) is aimed at embedded devices such as

mobile phones and PDAs. It caters for devices that are, in one way or another, more

capable than IMP- and DSTBP-compliant devices. Three versions of the MIDP cur-

rently exist: versions 1.0, 2.0 and 3.0. Figure 3.4 summarizes the packages contained in

each of these versions. The MIDP 1.0 was developed under the JSR 37 and is aimed at

devices that have [65]:

• A total memory of 512 KB (ROM and RAM) available to the Java runtime and

libraries.

• A limited power source. This is usually a battery.

• A limited-bandwidth connection to some form of wireless network.

Chapter 3. Java Micro Edition 34

• User interfaces of some form that can be of varied sophistication.

Devices with these specifications are then referred to as Mobile Information devices [65].

The MIDP 1.0 provided the most basic necessities of a complete application runtime

environment. It provides APIs for displaying and managing a GUI suitable for limited

depth and size displays (the lcdui package), carry out persistent storage and retrieval of

information using record management system (RMS) stores (the rms package) and pro-

vide a basis on which to build and manage a complete application (the midlet package).

It also provides the ability to interface with user input systems on such devices such as

touchscreens and keypads, and setup and use wireless network connections. Applications

built on this profile are called MIDlets.

The MIDP 2.0 was developed under the JSR 118 and extended the MIDP 1.0 vastly.

It extended the networking capabilities previously provided by adding support for UDP

datagrams and TCP socket streams. It also added support for secure (HTTPS), push-

initiated and serial connections. Furthermore, it extended the graphics library (the lcdui

package) and added a new package dedicated to the creation of two-dimensional (2D)

games. This new library allows for the creation of gaming canvases and sprites, among

other things. The newly added media and media.control packages provided the ability

to render and control sound, including, for example, volume and tone control. A robust

security API (pki) was also added. This handles security as regards the use of, for

example, network connections. For a complete and detailed list of the additions made

by the MIDP 2.0, the reader is referred to the article by Knudsen [74].

The MIDP 3.0, a very recent development (December of 2009), was developed under

the JSR 271 and made further advancements to the MIDP family. A new package has

been added (event) that provides enhanced MIDlet application control and cross MIDlet

communication. The following list summarizes some of the improvements and additions

made:

• Enhanced application control:

– Enable inter-MIDlet communication to take place.

– Support daemon MIDlets – MIDlets that run in the background and have no

UI.

– Support auto-launch MIDlets – MIDlets that automatically start up when

the platform boots up.

– Support the concurrent running of multiple MIDlets on one VM.

– Better manage the MIDlet lifecycle and allow firewalling capabilities.

Chapter 3. Java Micro Edition 35

• Provide greater UI rendering capabilities, catering for more sophisticated displays.

• Provide greater functionality for gaming.

• Support secure RMS stores and remote and removable RMS stores.

• Support for the Internet Protocol version 6 (IPv6).

It also amends the MIDP 2.0 and attempts to standardize the specification for improved

cross-device interoperability. A complete and detailed list of enhancements made by the

MIDP 3.0 is provided by the article by Hopkins [50]. As mentioned, it is a very recent

development and has not, as yet, been implemented on any notable or usable scale.

The MIDP 2.0 is currently the most popular CLDC profile, having been implemented

by over 2 billion mobile phones worldwide [50]. The MIDP 3.0 is not widely adopted

as yet. The MIDP 1.0 does not provide the media and media.control packages that

we required in order to be able to use the Mobile Media API Optional API for the

capturing and rendering of video and audio. Therefore, we made use of the MIDP 2.0 in

our implementation, since this provides all the functionality we required and is widely

supported.

javax.microedition.rms Classes and interfaces that provide persistent data storage and retrieval services

java.microedition.midlet Classes and interfaces that form the basis of the MIDlet application

javax.microedition.lcdui Classes for User Interface creation and management

javax.microedition.lcdui.game Classes that provide gaming functionality such as sprites

javax.microedition.media.control Classes to control sound such as volume and tone control

javax.microedition.media Classes for rendering and controlling audio

javax.microedition.pki Classes to authenticate information from secure connections

javax.microedition.event Package to capture cross-application messaging and capture and access changes in system state

Package Description

MIDP 3.0

MIDP 1.0

MIDP 2.0

Figure 3.4: The packages implemented by and the comparison between the MIDP
1.0, MIDP 2.0 and MIDP 3.0.

3.2.4 Additional APIs

Optional APIs provide additional functionality and access to special hardware capabili-

ties. Examples are the Java APIs for Bluetooth – JSR 82 – which provide access to the

device’s Bluetooth adapter and the Mobile 3D Graphics (M3G) API – JSR 184 – which

Chapter 3. Java Micro Edition 36

enables rendering of 3D graphics by accessing the graphics adapter. These APIs are not

central or core to creating MIDlets but provide additional functionality. Even when a

device has the necessary hardware capabilities, it remains at the discretion of a device

manufacturer to implement the respective additional API, providing Java ME access to

that hardware. Table 3.1 on page 29 lists important additional APIs. The two most

important additional APIs that are used in our implementation are the Mobile Media

API – JSR 135 – and the M3G API – JSR 184. The former is used to record and render

video and audio while the latter is used to render our 3D Sign Language Avatar. The

following two sections provide some details about these two APIs.

3.2.4.1 The Mobile Media API

The Mobile Media API (MMAPI) [58] builds on the MIDP 2.0 packages media and

media.control (see Figure 3.4) and extends those packages. It also provides an additional

package media.protocol that allows the creation and use of custom protocols. It provides

the following extensions to the MIDP 2.0 media API:

• It added support for video and graphics capture/rendering. The MIDP 2.0 subset

was audio-only capable.

• It supports the synchronizing of multiple Players using a common time base. Thus

multiple Players may start at an exact time.

• It supports the creation and use of custom protocols.

• The Manager class has been extended and provides, among other things, support

for more media types.

The MMAPI makes use of four main classes, namely:

1. Manager

2. Player

3. Control

4. PlayerListener

The Manager class is the first class invoked when accessing media services. It is re-

sponsible for creating a working instance of the Player class which will capture/render

the content required. Typically, the static method createPlayer of the Manager class is

Chapter 3. Java Micro Edition 37

invoked, having passed into it a Uniform Resource Identifier (URI) or InputStream of

data, and an optional MIME type for the data requested. The URI determines whether

a capture or render operation will take place and the source from which to receive input.

The general format of a simplified URI is “[protocol] : //[location]”.

For a capture operation, the protocol is set to “capture”. The location is then set to ei-

ther “audio” for audio capture or “video” for video capture with audio. While this is the

standard method for carrying out a capture operation according to the JSR specification

[58], not all manufacturers abide by this implementation style. Sony Ericsson mobile

phones, for example, differ from the standard and use a location of “audio video” for

video capture with audio. Using a location of “video” on these phones causes a runtime

error.

When retrieving a resource, the protocol may be set to a variety of protocols such as

“http” for internet resources, “file” for resources on the mobile phone’s filesystem and

“rtsp” for real-time streaming resources, to name but a few. The location will be set to

the location of the file to be retrieved.

The getPlayer method returns an instance of a Player class. The instance of this class

provides methods that allow control over the media such as starting, pausing and stop-

ping the media. It also has a setPlayerListener method. This method can be passed an

object implementing the PlayerListener interface. That object will then be able to cap-

ture and respond to state changes in the Player. The states that a Player goes through

are sequential. When the Player is first created it is in the Unrealized state in which

the Player does not have enough information to gather the required resources to process

the media. Resources include the media that is to be captured/rendered and hardware

resources such as the speaker, processor and video adapter. Thereafter, a sequence of

methods in the Player class are invoked to move the Player forwards through the states

until it processes the media and is eventually closed. A complete list of these states, the

methods used to take the Player into those states and the description of those states is

provided in Table 3.2.

The PlayerListener assigned to the Player can then capture and respond to these states

as required. For example, a label may inform the user that the Player is initializing

when the Player is in states before the Started state and a play button can turn into a

pause button when the Player enters the Started state.

The Player class also provides a getControl method which takes in a parameter specifying

the type of Control requested and returns an instance of that Control. Controls enable

the manipulation of the content being captured/rendered. Many different Control types

exist that serve various functions. A list of Control types and their descriptions is

Chapter 3. Java Micro Edition 38

Table 3.2: Player states, their descriptions and the methods used to invoke them.
The states occur sequentially starting at Unrealized and ending at Closed.

Player State Invoker Method Description

Unrealized - Player does not have enough information
to gather necessary resources to process
the media

Realized realize() Player has obtained the necessary
information to acquire necessary
resources

Prefetched prefetch() Player has obtained all necessary
resources. It is ready to carry out its
tasks

Started start() Player is processing the content required
Closed deallocate() Player has released all its resources. It

close() has also stopped processing the content

provided in Table 3.3. The type of Controls available varies with the type of media

that is being captured or rendered. Additionally, whether or not all, some or any of the

Controls listed have been implemented and are available on a particular device is at the

discretion of the manufacturer.

Table 3.3: Standard Controls in the MMAPI

Control Description

FramePositioningControl A Control to access individual frames in a
video

GUIControl A Control for display-dependent data such
as video

MetaDataControl A Control to access metadata information
contained in a stream such as the author
and copyrights

MIDIControl A Control that provides access to a
device’s MIDI player

PitchControl A Control to set the audio pitch
RateControl A Control to set the playback rate of the

media
RecordControl A Control that allows control over data

being captured such as storage location
StopTimeControl A Control that sets a preset amount of

time after which the Player is
automatically stopped

TempoControl A Control to set the tempo of an audio
player, usually a MIDI Player

ToneControl A Control to play monotonic tone
sequences

VideoControl This builds on GUIControl. It controls the
display of video

VolumeControl A Control to set the volume of audio

Chapter 3. Java Micro Edition 39

We use this optional API in our implementation of the capturing of Sign Language video

and English Speech. We also use it to render Sign Language video.

3.2.4.2 The Mobile 3D Graphics API

The Mobile 3D Graphics (M3G) API [59] is used in conjunction with the CLDC 1.1 and

either MIDP 1.0 or MIDP 2.0. The CLDC 1.1 provides the floating-point data types

Float and Double required for 3D computations. Both MIDPs provide the lcdui package

which contains a class required by the API – the Graphics class. Its specification was

based heavily on the first version of the OpenGL for Embedded Systems (OpenGL ES

[71]) graphics library which is a version of the popular OpenGL [72] 3D Graphics library,

reduced to run on embedded devices such as mobile phones and PDAs. However, as is

the case with all other JSRs, it remains at the discretion of device manufacturers to

actually use the OpenGL ES library in their M3G implementations.

The API is contained in a single package, the m3g package. This package contains 30

classes of varied function. Table 3.4 lists key classes in the API that were of use in

our implementation and has been taken from the official documentation of the API. A

complete specification may be found at the official JCP website [59]. It also makes use

of the Graphics class in the lcdui package provided by the MIDP.

The basic structure of any M3G program is a continuous sequence of four steps:

1. Obtain the Graphics3D singleton instance.

2. Bind a target 2D buffer to the Graphics3D instance.

3. Render objects to the Graphics3D instance.

4. Release the target from the Graphics3D instance, thus, writing the 3D display to

the 2D buffer.

As can be seen in the listing, all the steps in this basic structure involve the Graphics3D

class. This class is the most fundamental class in the M3G API. It provides the only

means to carry out rendering operations. Only one instance of this class exists for

each program execution – it is a singleton instance. All functions needed to carry out

rendering are accessed through this instance. Table 3.5 lists and briefly describes key

methods accessed via the Graphics3D instance. These methods are described below.

Obtaining the singleton instance of the Graphics3D class is done by invoking the static

function getInstance() of the same class. The function then returns the singleton instance

Chapter 3. Java Micro Edition 40

required. The instance then requires that a 2D buffer in the form of a Graphics object

or Image2D object be bound to it. This buffer will be updated with the 2D projection

of the 3D graphics rendered, as viewed from the device screen. This process is carried

out by invoking the bindTarget() function of the Graphics3D instance and passing a

Graphics or Image2D object to it.

Table 3.4: Key classes in the M3G API.

Class Description

AnimationController Controls the position, speed, and weight of an animation

sequence. For example, it can be used to control the

blinking and movement of a light in an animation

application.

AnimationTrack Associates a KeyframeSequence with an

AnimationController and an animatable property, which is

a scalar or vector variable that the animation system can

update directly.

Camera A scene graph node that defines the position of the viewer

in the scene and the projection from 3D to 2D. The camera

always faces towards the negative end of the Z axis (0, 0,

-1).

Graphics3D A singleton 3D graphics context that can be bound to a

rendering target. All rendering is done through the

render() methods in this class.

KeyframeSequence Encapsulates animation data as a sequence of

time-stamped, vector-valued keyframes, each of which

represents the value of an animated quantity at a specified

instant. Can be associated with multiple animation targets.

Light A scene graph node that represents different kinds of light

sources, which are used to determine the color of each

object, according to its Material attributes.

Loader Downloads and deserializes graph nodes and node

components, as well as entire scene graphs. Downloading

ready-made pieces of 3D content from an M3G file is

generally the most convenient way for an application to

create and populate a 3D scene.

Continued on next page

Chapter 3. Java Micro Edition 41

Table 3.4 – continued from previous page

Class Description

Mesh A scene graph node that represents a 3D object defined as

a polygonal surface. It represents a conventional rigid body

mesh, and its subclasses MorphingMesh and SkinnedMesh

extend it with capabilities to transform vertices

independently of each other.

Object3D An abstract base class for all objects that can be part of a

3D world. These include the world itself, other scene graph

nodes, animations, textures, and so on. Everything in the

API is an Object3D except Graphics3D, Loader,

RayIntersection, and Transform.

World A special Group node that is a top-level container for scene

graphs. A scene graph is constructed from a hierarchy of

nodes. In a complete scene graph, all nodes are ultimately

connected to each other by a common root, which is a

World node.

3D graphics are then rendered to the Graphics3D instance. The instance provides four

different render methods that correspond to two rendering modes: immediate mode

and retained mode. Retained mode is an extension that M3G made over and above

the capabilities of OpenGL ES. In retained mode, an entire world is rendered to the

Graphics3D instance. This world is created in the form of a tree structure. It may

contain cameras, lights and objects such as spheres, cubes, lines, and other such objects.

Objects may also be grouped into sets of objects using Group nodes. Each of these

objects have attributes such as position, orientation and appearance. The World node is

the root node and all other objects are attached to this node or its children nodes. This

type of structure is known as a scene graph. A very simplified scene graph is depicted

in Figure 3.5.

Any number of additional objects may be added to this world. This is done by creating

new instances of those objects using the classes provided in the API such as Camera,

Light, Sprite3D and Mesh. Table 3.4 lists key classes in the M3G API. The new objects

are then added to the World node or one of its children nodes. This representation of the

3D world provides a high-level abstracted level of control over the objects in that world.

To render the world, one of the four render methods mentioned before is used. This

Chapter 3. Java Micro Edition 42

render method takes only one parameter – the World node. It then displays everything

within that world from the viewpoint of the active camera in that world. The display of

this world is then retained from frame to frame and manipulations can be made to it to

change the display as required. Retained mode greatly simplifies 3D graphics creation.

It has an intuitive nature and encapsulates many low-level display details, providing

high-level access to them.

World

Light Camera Group

Group

Mesh Mesh

Group

Mesh Mesh

Figure 3.5: Graphical depiction of a simplified scene graph.

Immediate mode is a drawing mode that is inherited from the underlying OpenGL ES

specification. In this mode, 3D objects are rendered individually and directly to the

Graphics3D instance. The remaining three render methods of the Graphics3D instance

render individual 3D objects in the form of nodes, or vertex lists. Lights are added

directly to the Graphics3D instance using the addLight method. Also, an active camera

has to be specified by invoking the setCamera method. All additions and changes made

in this mode take immediate effect on the display since they are made to the Graphics3D

object directly. The graphics content of each and every frame must be specified in order

to maintain a persistent display. This approach provides fine-grained low-level control

over the display.

Lastly, the target is to be released. This is done by invoking the releaseTarget method.

This causes the 3D display to be written to the 2D buffer and displayed on the device

screen.

Table 3.5: Key methods provided by the Graphics3D instance.

Method Description

addLight Adds a light for immediate mode rendering
bindTarget Sets a target Graphics or Image2D object to render graphics

to. These objects serve as a 2D buffer that will be written
to the device screen

getInstance Returns the singleton Graphics3D instance for the currently
running program

releaseTarget Releases the bound target, thus, flushing the rendered 3D
display to the 2D buffer

render Renders the World, Node or sub-mesh
setCamera Set the active camera for immediate mode rendering

Chapter 3. Java Micro Edition 43

M3G comes with a standard export format, the M3G format. 3D modelling tools can

be used to design complex animated 3D scenes. These scenes can then be exported in

the M3G format which is a scene graph representation of the scene. All standard 3D

modelling tools such as Blender and Maya3D have M3G exporters. The Loader class in

the M3G API then provides invaluable functions that allow the M3G file to be imported

as a scene graph into M3G. This is a trivial process of making a call to the static function

load of the Loader class, having passed into it a path to the M3G-formatted file. The

function reconstructs the world and returns the World node of the resulting scene graph.

This can then be rendered in retained mode as has already been explained.

This is the exact process that we used in the implementation of our 3D Avatar. This

feature of M3G made it highly suitable to our needs. Our Avatar was modelled and

animated in Blender, exported in the M3G format, and imported into M3G, and subse-

quently rendered and animated on the mobile phone.

3.3 Summary and Conclusions

In this chapter we described the Java ME programming language. We explained what

it is and where it fits in with other Java versions. We described the Java Community

Process (JCP) which develops Java ME APIs. We described the Java ME architecture

which comprises of three layers: Configurations, Profiles and Optional APIs. We ex-

plained in detail what each of these are. We also gave relevant examples of each, namely,

the Connected, Limited Device Configuration (CLDC), the Mobile Device Information

profile (MIDP), the Mobile Media API (MMAPI), which is an Optional API, and the

Mobile 3D Graphics (M3G) API, which is also an Optional API, all of which were used

in our implementation.

At this point we state that the Sony Ericsson C905 Java ME implementation provides

the configuration, profile and optional APIs that we have pointed out are necessary for

our implementation [113]. We have, thus, selected this phone as our implementation

target.

Chapter 4

Sign Language Avatar Creation

As mentioned in Chapter 1, three of the four methods we use to visualize SASL and

investigate SASL intelligibility use 3D humanoid Avatars. Two of our methods make use

of Van Wyk’s Avatar [146] that he called “Man”. Henceforth, we refer to this Avatar

as Man. Our third method makes use of a less detailed Avatar that we developed based

on Man that we call “Phlank”. Henceforth, we refer to our Avatar as Phlank.

In this chapter we explain the methodology, techniques and tools used in the process

of Avatar creation. We focus on those techniques and tools that apply to the current

research.

Section 4.1 is a generic methodology for the creation of SL Avatars. It details the steps

involved, as well as the techniques used to achieve those steps. Section 4.2 then describes

the tool Blender which may be used with the SL Avatar creation methodology to create

SL Avatars. Van Wyk used Blender to create Man and we used it to create Phlank.

Section 4.3 then provides an overview of the SL Avatar creation methodology that Van

Wyk proposed [146] and explain how it was used to implement Man. We also explain

Man’s performance in light of experiments conducted with it.

4.1 SL Avatar Creation

The creation of SL Avatars takes place in steps. The first step involves creating or

acquiring a Virtual Human (VH) model. The second step requires the parameterization

of the model in order to be able to apply deformation to it for animation. The third

step is the creation of SL animation databases for the model for various SL signs. The

following subsections provide an overview of the steps, as well as the techniques used to

achieve each of these steps. We mainly focus on those techniques relevant to the current

44

Chapter 4. Sign Language Avatar Creation 45

research, but also provide overviews of other techniques. Section 4.1.4 then provides an

overview of existing technologies and standards that may be used to facilitate specific

parts of the process.

4.1.1 Avatar Modelling and Acquisition

Arriving at a VH model that will represent the SL Avatar may involve the creation of

the model or parts of the model and/or acquisition of the model or parts of the model

from a pre-made model or by means of 3D scanning (see Section 4.1.1.3). In other words,

this process falls in between two extremes of: modelling the whole VH from scratch; and

obtaining the whole VH from a pre-made source or by means of 3D scanning. In our

research, we acquire Man from Van Wyk’s work, and model part of Phlank from scratch

and acquire part of it from Man, as is explained in Chapter 5.

There are set techniques for modelling Avatars. These are: interactive modelling; para-

metric modelling; procedural modelling; photogrammetry; and 3D scanning. Our re-

search only makes use of the first two techniques and we focus on these two in the

following two subsections. Subsection 4.1.1.3 then provides a brief overview of the other

three methods which we do not use.

4.1.1.1 Interactive Modelling

Interactive modelling is a hands-on approach to modelling. It involves the creation and

manipulation of primitives such as vertices, lines, polygons, curves and Non-Uniform

Rational B-Splines (NURBS) to model 3D objects [131]. There are many techniques

used to guide this process. These techniques are mostly combinations of extrusion

modelling and box modelling. In both techniques, the artist starts with a simple 3D

object such as a cube.

In extrusion modelling, the initial object is extruded outwards in one or more directions

repeatedly, modelling the overall shape of the target object. In box modelling, the initial

object is subdivided and cut to mould the target object. These techniques may be used

inclusively to model various parts of the Avatar.

When using this technique, it may be challenging to produce models that are smooth

and have a large number of vertices, that is, are highly refined. Methods and algorithms

have been devised to automate a process of increasing the number of vertices on a model,

making it smoother and more refined. This process is known as subdivision surfacing.

Three well-known methods that carry out this task are the Catmull-Clark method [22],

the Doo-Sabin method [31] and Loop’s method [77]. Catmull-Clark subdivision surfacing

Chapter 4. Sign Language Avatar Creation 46

allows for variable levels of subdivision starting at level 1. The higher the level, the more

refined the model.

The greatest advantage of interactive modelling is that it provides absolute control over

the modelling process and the results obtained. On the other hand, it is an art and

requires artistic skills to realize good results. It is also much more time consuming than

other methods.

4.1.1.2 Parametric Modelling

Parametric modelling involves the manipulation of an existing parameterized model,

known as a template model, to form the desired model. The template model may have

been created or acquired using other techniques. It is divided into segments and pa-

rameterized with adjustable attributes such as length, width, height and weight. These

attributes have maximum and minimum values. Varying attribute values then affect the

appearance of the model.

Two methods have been used to tie attribute values to appearance changes in the model.

The first method is the use of a database of scanned models of varied attributes. These

are used to construct a target vector space bound to the provided attributes. Manipu-

lation of the attributes transforms the template model into a target in the vector space

[107]. The second method makes use of morphing. The maximum and minimum at-

tributes are tied to a database of modelled maximum and minimum morph targets.

Manipulation of the attributes then transform parts of the template model to the mod-

elled morph targets [13].

Parametric modelling is a quick, easy and intuitive process. In this respect, it is very

user-friendly. It requires minimal skills on the part of the modeller. It can be carried

out using a parametric modelling tool, the most prominent of which are the open-source

tool MakeHuman [79] and the proprietary tool Poser [112]. On the other hand, it

provides a limited degree of modelling freedom. The modeller is completely bound by

the attributes, attribute ranges and the target models provided. It also takes very long

periods of time, typically years, to develop a template model and target database.

4.1.1.3 Other Modelling Techniques

The following are three additional modelling techniques not relevant to our research:

Chapter 4. Sign Language Avatar Creation 47

• Procedural modelling: This technique generates models by generating graphics

from a set of base rules describing the model. The modeller describes the tar-

get model or parts of the target model in terms of a set of instructions that may

be executed sequentially to generate the target model or its parts. Most mod-

ern interactive modelling software provide interfaces to programming languages

such as Python or VBScript. These programming languages can then be used

for procedural modelling. The advantage of this technique is that it can be used

to produce well-defined, re-usable, flexible, parameterized scripts of small size for

model creation. On the other hand, it can be a complicated technique to use since

it provides no instant visual feedback mechanism. Watt and Watt [142] provide

more information on this technique.

• Photogrammetry: This technique uses images of a 3D object captured from multi-

ple calibrated well-positioned cameras. The images are then analyzed to determine

common points. A line of sight may then be extended from the location of the

camera to the point on the object. This is done for all images and the intersection

of all such lines of sight determines a three-dimensional point location for that

point. This process may be repeated until the location of the three-dimensional

points for the entire object have been determined. This process will ideally be au-

tomated although it may be done manually. This method is suitable for modelling

people. The advantage of this technique is that it is much less expensive than 3D

scanning and is relatively easy to carry out when automated. On the other hand,

it is unsuitable for modelling features that are not completely visible such as eyes,

ears and the tongue. Slama et al. [111] and Atkinson [8] provide more information

on this technique.

• 3D Scanning: This technique makes use of a 3D laser scanner to scan an object

and collect numerous data points that represent the 3D model. While different

technologies exist with different hardware, most project a laser onto the object

and re-collect the reflected photons to determine the shape of the object. Other

characteristics may also be determined such as the colour. The advantage of this

technique is that it is a very fast automated modelling method and requires very

little work from the operator of the scanning device. It is also the most accurate

method of modelling and can obtain results that no other method can. On the

other hand, it is by far the most expensive method of modelling. 3D scanners are

very costly. It is also not capable of scanning in features such as eyes, ears and

the tongue. Also, post-processing of the data obtained may be difficult due to the

large amount of data involved. Bernardini and Rushmeier [15] and Böhler and

Marbs [18] provide more information on this technique.

Chapter 4. Sign Language Avatar Creation 48

4.1.2 Avatar Parameterization and Deformation

After the VH model has been created or acquired, it needs to be animated. Animation

of the model involves deforming the model or parts of it by applying geometric transfor-

mations such as rotation, scaling or translation to it. In order to achieve this, the model

needs to be parameterized. The parameters can then be varied to deform the model in

an appropriate fashion using a deformation technique.

Techniques that can be used to parameterize and deform a model are: direct param-

eterization; morphing; skeletal subspace deformation; and free form deformation. Our

research only makes use of skeletal subspace deformation and Subsection 4.1.2.1 focuses

on this parameterization and deformation technique. Subsection 4.1.2.2 then provides a

brief overview of the other three methods which we do not use.

4.1.2.1 Skeletal Subspace Deformation

This deformation technique is the most popular technique for the parameterization and

deformation of models [52]. It is specifically suited to the task of Sign Language visual-

ization [29] [151] [153]. It involves the construction of a skeleton-like structure under the

3D model. The skeleton is primarily made up of a root bone. The skeleton’s co-ordinate

frame known as the skeleton space is placed at the root bone. A tree of additional bones

is then attached to the root bone. Each bone has a local co-ordinate frame known as the

bone space and is influenced by the bone spaces of all bones higher up in the tree. Each

bone may be transformed by scaling as well as rotation and translation with degrees of

freedom (DOFs) that may be adjusted.

Having constructed the skeleton within the model, the model is parameterized by attach-

ing the bones in the skeleton to points on the model. This process is commonly known

as “rigging” or “skinning”. It involves defining the degree to which transformations of

a bone should influence points on the model by assigning deformation weights to each

point. Initial methods only assigned a single weight to each point producing irregular

deformations. Later, methods of assigning multiple weights to each point and linearly

blending the weights over the model surface were devised. These produced much more

natural and smooth deformations. The rigging process can either be done manually by

means of a process known as vertex weight painting or automatically by means of an

automatic rigging algorithm.

Vertex weight painting involves manually assigning deformation weights to points on

the model. Automatic rigging algorithms determine and assign weights automatically.

An automatic rigging algorithm relevant to this research is the algorithm by Baran and

Chapter 4. Sign Language Avatar Creation 49

Popović. This algorithm determines and assigns deformation weights to points based on

the heat equilibrium over the surface of the model. It is fast and produces deformations

of very high quality that can be used to produce high quality animations. Baran and

Popović [12] provide further information regarding this algorithm. This algorithm has

been implemented in and integrated into Blender.

There are many advantages to skeletal subspace deformation. It is very efficient [11]

[16], it is very intuitive in Avatar animation since it is a representation of the normal

body movements of a human being and it is easy to implement using automatic rigging

algorithms provided by many interactive modelling packages. On the other hand, it

has shortcomings and is unable to model a real skeleton exactly. Certain undesirable

deformations may occur such as the so-called “candy wrapper” and “collapsing elbow”

effects. Both of these effects take place when joints are rotated to extreme angles causing

the model to experience a collapse in volume which is not characteristic of a human body

[52]. The candy wrapper effect takes place when a bone is rotated on the axis of the

bone while the collapsing elbow takes place when the bone is rotated perpendicular to

the bone axis.

The advantages provided by this method as well as the integrated support for this

method by Blender in the form of the algorithm by Baran and Popović weighs heavily

in its favour above other parameterization techniques for the parameterization of Man

and Phlank. No such integrated support exists for other parameterization techniques.

It is used to rig both Man and Phlank.

4.1.2.2 Other Parameterization and Deformation Techniques

The following are three other parameterization and deformation techniques not relevant

to our research:

• Direct Parameterization: This technique involves selecting a number of key points

on the surface of the model that will have transformations applied to them to

produce the required deformations. These points may be defined explicitly or by

means of a density function that maps onto a region of points. The advantage

of this technique is that it is well-suited to the parameterization of facial models

since the face has key locations such as the cheeks and eyebrows, that can be

manipulated to produce facial expressions and is not very complex. On the other

hand, it is not suitable for body animations since it takes long periods of time to

parameterize the body correctly. For more information, we refer the reader to the

research papers by Parke [94] and Pasquariello and Pelachaud [95].

Chapter 4. Sign Language Avatar Creation 50

• Free Form Deformation: This technique places the model inside a volume, usually

a parallelepiped. A grid of control points is defined on the volume surface. The

control points are then assigned to points on the model surface be means of a

triple tensor product Bernstein polynomial [104]. Transformations may be applied

to the control points which then affect points on the model. The advantage of

this technique is that it provides a good level of control over deformations in the

model, depending on the number of control points used. On the other hand, it

may be challenging to express animations in this form. The reader is referred

to the research paper by Sederberg and Parry [104] for more information on this

technique.

• Morphing: In this technique, a “source morph” and “target morph” are defined

and stored, and refer to the initial and final positions of the points on the model to

realize a required deformation change. Morphing is a definition of the process of

applying transforms to the source morph to arrive at the target morph by means

of interpolation. This method is capable of producing very high quality facial

and body animations. It is very flexible and can be used to define very complex

deformations since one is free to define the target morph as one pleases. On the

other hand, it can be extremely challenging to define a sufficient number of target

morphs, requiring time and energy. For more information on this technique the

reader is referred to the research paper by Lee and Magnenat-Thalmann [75].

4.1.3 Avatar Animation

After the VH model has been parameterized, it can be deformed in different ways to

create SL animations (and animations in general). Depending on the parameterization

and deformation technique used, a database of parameters needs to be constructed that

may be used to realize different animations. This database is referred to as an animation

database and the data stored in it is called animation data.

Two techniques exist that may be used to construct the animation database, namely,

keyframing and motion capturing. The first technique involves creating animation data

while the second technique acquires this data. The following subsections describe these

two techniques.

4.1.3.1 Keyframing

This technique involves the manual creation of animation data. The animation data may

take different forms for different parameterization and deformation techniques and the

Chapter 4. Sign Language Avatar Creation 51

process of keyframing may differ in each case. For the case of morphing, the animation

database consists of target morph models. It is constructed by manually deforming

points on the model to various target morphs. Each target morph is then stored in the

animation database. For the case of direct parameterization and free form deformation,

the animation data consists of control point locations. It is constructed by identifying

key poses in the animation, known as keyframes, and manually deforming the model to

match those poses. Keyframes are then stored in the animation database along with the

time values at which they occur. Interpolation is used to animate between these poses.

We do not discuss the animation of these parameterization techniques any further.

We now consider the process of animating a model that has a skeleton and has been

parameterized using skeletal subspace deformation. Key poses of the model are identified

for a particular SL gesture animation. These are called keyframes. Each bone of the

skeleton is manually transformed to a desired location, rotation and size to match the

pose in each of these keyframes. The location, rotation and size of each bone is stored

corresponding to the time values of each of the keyframes. Spline-based interpolation is

used to animate between these poses to create the animation.

Two methods exist that are used to pose the model, namely, forward kinematics (FK)

and inverse kinematics (IK). Forward kinematics involves transforming each bone into

the correct pose starting at bones higher up in the skeleton tree and working down

the tree in the same manner. Inverse kinematics involves transforming a bone lower in

the tree and automatically calculating and assigning rotation angles to its parent and

ancestor bones such that the bones remain connected and the transformation is valid

[87].

Keyframing is advantageous in that it is inexpensive as compared to motion capture and

it creates much less animation data than motion capture. On the other hand, it is a far

more complex, time consuming and laborious process as compared to motion capture. It

also requires additional skills since it involves the use of animation modelling packages.

4.1.3.2 Motion Capture

This technique makes use of highly advanced motion capture equipment to capture poses

of a live human performance. The data capture may take place at variable sampling

rates, with higher sampling rates producing more refined animation databases. Initial

motion capture equipment took the form of full body suits or gloves fitted with po-

tentiometers that could detect the motion of the body or hands. Modern equipment,

however, makes use of optical data capture means. Optical markers are placed on key

Chapter 4. Sign Language Avatar Creation 52

positions on the performer and specialized cameras capture the motion of these mark-

ers [118]. The captured data can then be used to construct highly detailed animation

databases.

Motion capture produces extremely realistic and accurate animations. However, it re-

quires equipment that is very costly and it is non-trivial to set up and calibrate the

equipment correctly.

4.1.4 Existing Standards and Tools

Many standards have been developed to guide the Avatar modelling process. We explain

two of these standards, namely, H-Anim and the MPEG-4 Facial Definition Parameters

(MPEG-4 FDP). Many tools have also been developed that greatly simplify parts of

the process. We focus on the tool MakeHuman. The following subsections provide an

overview of these technologies.

4.1.4.1 MakeHuman

MakeHuman [79] is an open-source parametric modelling tool that enables the creation

of state-of-the-art [14] 3D humanoid Avatars in a very short period of time, with times

as short as two minutes claimed [79]. One of the goals of the project is to ensure that the

model is optimized so that it is anatomically correct and accurate with the least number

of vertices. It therefore ensures computational efficiency [79]. It provides numerous

parameters that can be manipulated to produce many variations of the original model.

Examples of the attributes provided are gender, age, muscle tone, weight and stature. It

also provides tools to export the model to many standard formats, such as the Wavefront

object file format.

It was originally developed by Manuel Bastioni as a Python script embedded in Blender.

Due to its complexity, however, it was later developed as a standalone C++ application.

The model used in the project has been through several iterations leading up to the

current model of MakeHuman (version 1.0) called HM06, a state-of-the-art model [79].

MakeHuman version 0.9.0 was used in Van Wyk’s implementation of Man as is explained

in Section 4.3.2.

4.1.4.2 H-Anim

H-Anim, short for Humanoid Animation [3], is an open standard developed by the

H-Anim working group [48] to model VHs for the Virtual Reality Markup Language

Chapter 4. Sign Language Avatar Creation 53

(VRML) [4] and X3D [2] formats. It specifies a standard implementation for the skele-

ton structure of humanoid Avatars parameterized using skeletal subspace deformation

described in Section 4.1.2.1. Specifically, it fully defines the structure of the tree of

bones, defining individual bones and their names, as well as specifying where in the tree

of bones they are to be placed. Table 4.1 provides a small sample of bones and the names

assigned to them by the H-Anim specification. Figure 4.1, adapted from the H-Anim

specification, depicts part of the tree structure and the bone hierarchy. The complete

tree is available in the specification [3].

Table 4.1: Sample list of H-Anim-assigned names for bones

Bone Name

Sacrum HumanoidRoot
Skull skullbase
Right Thigh r hip
Left Calf l knee
Left Clavicle l sternoclavicular
Right Forearm r elbow
Left Pinky
Metacarpal

l pinky0

H-Anim was developed to address the need to share animation data between models

as well as sharing models themselves between modellers in different parts of the world.

H-Anim made it possible to use the same modelling software to view and/or edit H-

Anim-compliant models from different modellers [3].

The H-Anim specification defines a term “Level of Articulation” (LoA) that ranges from

0 to 3 and refers to standard quantities of joints (articulations) present in a skeleton

structure. A LoA 0 skeleton is the lowest LoA and contains only one bone, the root

bone known as the HumanoidRoot. LoAs from 1 onwards have arms and hands and an

increasing number of bones in the spine, with LoA 3 containing 72 bones in total and

imitating a near realistic spine.

The H-Anim specification falls short when it comes to the face and only specifies bones

for the jaw, eyeballs, eyebrows, eyelids and one bone for the skull. The specification

provides the bare-minimum of what is required in the skeleton and suggests extension

where necessary, for example, by suggesting the implementation of the MPEG-4 Facial

Definition Parameters on an H-Anim skeleton for facial expressions [3].

4.1.4.3 MPEG-4 Facial Definition Parameters

The MPEG-4 Facial Definition Parameters (MPEG-4 FDP) is a subset of the MPEG-

4 Face Body Animation Parameters (MPEG-4 FBAP) [1] which is an ISO standard

Chapter 4. Sign Language Avatar Creation 54

HumanoidRoot : sacrum
 sacroiliac : pelvis
 | l_hip : l_thigh
 | l_knee : l_calf
 | l_ankle : l_hindfoot
 | l_subtalar : l_midproximal
 | l_midtarsal : l_middistal
 | l_metatarsal : l_forefoot
 | r_hip : r_thigh
 | r_knee : r_calf
 | r_ankle : r_hindfoot
 | r_subtalar : r_midproximal
 | r_midtarsal : r_middistal
 | r_metatarsal : r_forefoot
 vl5 : l5
 vl4 : l4
 vl3 : l3
 vl2 : l2
 vl1 : l1
 vt12 : t12
 vt11 : t11
 vt10 : t10
 vt9 : t9
 vt8 : t8
 .
 .
 .

Figure 4.1: A segment of the H-Anim specification for the tree of bones, adapted
from [3].

that specifies a standard parameterization technique for both the face and body of 3D

Avatars. We focus on the FDP subset of the standard.

The MPEG-4 FDP is a direct parameterization specification for the face. It specifies

two sets of feature points on the face. The first set are parameter control points (Facial

Animation Parameters), the motion of which, represent fundamental facial actions. The

second set represents standard face locations. The first set and second set are depicted

in Figure 4.2 as red and blue dots, respectively.

The MPEG-4 FDP can be used to produce complex facial expressions including complex

mouth shapes.

4.2 Blender – an Open Source 3D Graphics Tool

Blender [16] is a free and open-source generic 3D modelling, animation and rendering

tool. It provides numerous features that facilitate the SL Avatar creation process ex-

plained in the previous section. We adopt the use of this tool for developing Phlank. The

following subsections provide an overview of Blender and explain the tools and features

it provides that facilitate the SL Avatar creation process.

Chapter 4. Sign Language Avatar Creation 55

Figure 4.2: MPEG-4 Facial Definition Parameter feature points [146].

4.2.1 Background

Blender was developed by the Blender Foundation [16]. It was originally developed

closed-source and in-house by the Dutch-based animation studio NeoGeo and Not a

Number Technologies (NaN). After NaN went bankrupt in 2002, Blender was released to

the public under the terms of the GNU General Public License, making it free and open-

source. Since then, Blender has received wide acclaim and is actively being developed

on an open-source basis under the supervision of the Blender Foundation [16]. It has

a very large user community. This is attributed to, both, the fact that it is free and

open-source and that its features are characteristic of high-end 3D graphics modelling

software [24] such as Maya and 3ds Max, both commercial software packages.

Blender version 2.48 was used to develop both Man and Phlank. In the next section we

mention some of the tools that this version provides. Towards the completion of this

research, a new version of Blender was released, version 2.49. The new version boasts

Chapter 4. Sign Language Avatar Creation 56

new features and enhancements. For a full specification of these new features, we refer

the reader to the official Blender 2.49 website [17].

4.2.2 Tools and Features

Blender provides a vast array of tools that satisfy all our requirements for modelling,

animating and exporting SL Avatars. These include:

• A user-friendly multi-window user interface. The Blender user interface is

fully customizable and may be subdivided, both, horizontally and vertically. Each

window may be customized to display any of the available windows in Blender.

• Advanced character modelling and sculpting tools. Blender provides a

vast array of tools to enable and facilitate the creation of high quality models.

It supports the creation of numerous primitives such as vertices, edges, polygons,

metaballs, NURBS and curves. It also has sculpting tools that facilitate both

box modelling and extrusion modelling such as face, edge and vertex extrusion,

3D path extrusion, and face and edge subdivision. It has an advanced toolset

for applying transformations to model primitives such as pivot-based transforms

on various axes and transforms with a variety of proportional edit falloffs such

as smooth, sphere, root and sharp falloff patterns. Furthermore, it provides tools

that automate complicated duplication processes such as spin- and screw-based

duplication. In addition, its advanced modifier toolset automates complicated

processes such as model subdivision surfacing to obtain more defined models by

means of the Catmull-Clark method, model smoothing and mesh mirroring.

• An advanced armature (skeleton) system. Blender facilitates skeletal sub-

space parameterization of models. It provides a skeleton construction toolkit in

which an armature represents a bone. Armatures can be scaled, rotated and trans-

lated at will. Each armature has a root and tip. The root acts as a joint on which

the bone rotates, and the tip serves as a point of articulation for other armatures.

Blender also provides tools to apply constraints to the DOF of armatures where

necessary and may be applied to, for example preventing a neck bone from rotating

360◦. Additional armatures can be added to any other armature to construct a

tree of bones. Blender also provides multiple ways to rig a model. It facilitates

manual vertex weight painting but also provides automatic rigging algorithms such

as the algorithm by Baran and Popović. Rigging a model using this algorithm in

Blender involves only a few mouse clicks.

Chapter 4. Sign Language Avatar Creation 57

• Advanced animation tools. Blender provides advanced tools for keyframing

animation. It provides an intuitive interface for posing rigged models. Poses can

then be added to a timeline as keyframes with a few simple mouse clicks. Blender

then interpolates between keyframes automatically. The timeline can be edited

by shifting, duplicating and removing keyframes. Bones on the skeleton can also

be grouped to create an orderly workspace, which is especially useful for models

with many bones. Blender also provides an IK-solver constraint modifier which

may be added to armatures in the skeleton which automatically enables Inverse

Kinematics on that armature.

• Rendering and export capabilities. Blender provides a built-in rendering

engine, the Blender rendering engine, as well as many other rendering engines

such as YafRay, Mental Ray, Sunflow and Kerkythea. These provide a variety of

rendering capabilities. It also provides exporting capabilities by means of Python

scripting to enable the export of models into many standard formats, including

M3G, VRML, X3D, WaveFront, and many others.

Blender is therefore very well-suited to our needs.

4.3 Van Wyk’s Methodology

Van Wyk’s work [146] produced a methodology for the creation of high-quality 3D

humanoid Avatars using open technologies and standards. He demonstrated the effec-

tiveness of his methodology by using it to implement his Avatar Man. In this section we

describe his methodology and its use in the implementation of Man. We also summarize

the performance of Man.

4.3.1 Methodology Overview

Van Wyk’s methodology made use of open technologies and standards to facilitate and

guide the SL Avatar creation process of Section 4.1. His work proposed the use of Make-

Human to create a high quality VH. As explained in Section 4.1.4.1, MakeHuman makes

it possible to create a high quality tailor-made Avatar in a very short period of time. He

then proposed that the model be rigged using the H-Anim standard for the body and

the MPEG-FDP for the face. In this way, the Avatar would be parameterized so as to

allow realistic animations of the body and face. He further proposed that an animation

database be constructed by means of keyframing. The Avatar can then be animated

by calling up animations manually or procedurally. Figure 4.3 is a graphical depiction

Chapter 4. Sign Language Avatar Creation 58

of this methodology taken from [146]. For a full specification of his methodology, the

reader is referred to [146].

Figure 4.3: Overview of Van Wyk’s Methodology, taken from [146].

His methodology is highly advantageous in that it makes use of available technologies

and produces a high quality Avatar. It can be used to display high quality SL gestures

on desktop PCs. On the other hand, the resultant Avatar is very refined and has many

vertices. It requires large amounts of memory and processing power only characteristic

of desktop PCs. This makes it difficult, if not impossible, to export it and display it

as a 3D model on mobile devices. We explain our attempt at exporting his Avatar and

importing it onto a mobile phone in Chapter 5.

We propose that his SASL Avatar system as well as all other processing power- and

memory-intensive systems be implemented as services on a client/server architecture. It

can be queried to produce SASL animation videos that a mobile device may request and

render.

4.3.2 Implementation of Man

Using the methodology described in the previous section, Van Wyk implemented his

SASL Avatar Man.

In modelling his Avatar, he used MakeHuman version 0.9.0. This version of MakeHuman

makes use of a model called the K-Mesh. It has 10936 vertices forming 10857 faces,

10387 of which are square faces, and 470, triangular faces. Table 4.2 summarizes the

Chapter 4. Sign Language Avatar Creation 59

MakeHuman parameter adjustments he made to the initial model to produce Man. By

default, the model assumes the “Crucifixion” pose, with hands stretched out to its sides,

in accordance with the H-Anim standard [3] and has its jaw closed. The model was

left in the Crucifixion pose. The jaw was opened because this was required in order to

parameterize the face correctly [146]. It was then exported as a WaveFront object file.

Table 4.2: MakeHuman parameter values for the creation of Man, adapted from [146]

Parameter Value

head baby 0.20
jaw open 0.20
neck muscular 0.30
dorsi muscular 0.50
pectoral muscular 0.20
pectoral forward 0.50
trapezious muscular 0.30
r shoulder move
sideways out

0.40

r shoulder move
sideways in

0.50

l shoulder move
sideways out

0.40

l shoulder move
sideways in

0.50

r upper arm fat 0.50
l upper arm fat 0.50
r lower arm fat 0.30
l lower arm fat 0.30
abdomen muscular 1.00

The model was then imported into Blender. It was scaled up 30 times. Small impor-

tation errors caused incorrect assignment of vertices and he interactively and manually

corrected them. The eyeball models were found to be too complicated and were inter-

actively and manually replaced with half-spheres modelled to look like realistic eyes. A

different colour material was applied to the torso and upper legs of the model in place of

clothes. The eyebrows were similarly created by applying a black material to the correct

region on the face of the model.

The model was parameterized using H-Anim. An H-Anim LoA 2 skeleton was fitted

inside the model using the H-Anim specification, that is, starting at the HumanoidRoot

and adding additional armatures. Armatures were named according to the H-Anim

specification as well. Rotational constraints were placed on various bones. Table 4.3

summarizes rotational limits placed on key bones but the reader is referred to Van

Wyk’s thesis [146] for a complete specification. The completed model is displayed in

Chapter 4. Sign Language Avatar Creation 60

Figure 4.4. Figure 4.5 is a close-up of the face of the model showing the MPEG-4 FDP

feature points.

Table 4.3: Rotational limits placed on specific bones, adapted from [146]

Bone X-axis range (◦) Y-axis range (◦) Z-axis range (◦)

acromio-
-5 to 50 -13 to 30 -13 to 24

clavicular
shoulder -90 to 80 -53 to 158 -45 to 135
elbow 0 -71 to 84 0 to 146
wrist -73 to 71 0 -33 to 19
thumb3 -90 to 60 0 0
ring0 0 0 -5 to 5
pinky0 0 0 -5 to 5

The face of the model was parameterized using the MPEG-4 FDP specification. Arma-

tures were placed at MPEG-4 FDP feature points. Also, a separate skeleton consisting

of 4 armatures was placed inside the tongue model.

The tongue, eyes and teeth were manually attached to their respective armatures by

means of vertex weight painting. The algorithm by Baran and Popović was used to

attach the skeleton to the remaining parts of the model automatically.

At this point, his Avatar was ready to be animated. He then used keyframing techniques

to create animations, although this was not the focus of his work.

4.3.3 Performance

The performance of Man in displaying real-time animation was tested [146] on a Mac-

Book Pro with a 2.16 GHz Intel Core 2 Duo processor, 1GB RAM and ATI Mobility

Radeon X 1600 graphics card. The geometry details of Man are summarized in Table

4.4.

Table 4.4: Geometry details of Man, adapted from [146]

Section Faces Edges Vertices

Skin, Eyelashes and Lips 9302 18585 9247
Teeth 1140 2291 1215

Tongue 143 294 152

Man was shown to be capable of all necessary poses. The posing results are summarized

below:

1. The spine was shown to be capable of lateral and forward bending as well as

rotation and extension.

Chapter 4. Sign Language Avatar Creation 61

Figure 4.4: Completed Man model without (left) and with (right) a completed skele-
ton.

Figure 4.5: Completed Man model’s face depicting MPEG-4 FDP facial feature
points.

2. The neck was shown to be capable of extension, flexion, rotation and lateral

bending.

3. The shoulder was shown to be capable of extension, flexion, external and internal

rotation in the neutral pose, elevation, abduction, as well as internal and external

rotation in abduction.

4. The elbow was shown to be capable of supination, pronation and flexion.

Chapter 4. Sign Language Avatar Creation 62

5. The wrist was shown to be capable of dorsiflexion, palmar flexion, radial deviation

and ulnar deviation.

Man was also found to be free from deformation defects such as “Collapsing elbow” and

“Candy wrapper” effects, both described in Section 4.1.2.1. Man was also animated and

the animation frame rate, recorded. The aim was to be able to provide a frame rate for

real-time animation which is between 15 and 25 frames per second (fps). It was shown

that it could be rendered at between 120 and 230 fps, much higher than the requirement.

4.4 Summary

In this chapter we described a methodology, tools and techniques for the creation of

SL Avatars. We explained the steps involved in a generic methodology for SL Avatar

creation as well as describing the techniques that may be used to achieve each of the

steps. We also described the tool Blender which we showed to be well-suited to the

task of SL Avatar creation. We also explained the methodology used to create Van

Wyk’s Avatar Man and its implementation based on that methodology, as well as its

performance.

Chapter 5

Methodology and Implementation

of the Avatars

In this chapter we describe the creation methodology of our reduced Avatar Phlank as

well as the animation and exportation of both Phlank and Man. Phlank was developed

specifically to run as a 3D model on the mobile phone. Rendering an Avatar as a 3D

model, as opposed to rendering it as video, makes it possible to manipulate its structure

and animations in real-time and provides a level of flexibility that is difficult to provide

using video.

It was initially hoped that it would be possible to export and render the Avatar Man

as a 3D model on the mobile phone and we attempted to carry this out. This process

is explained in this chapter. It was found that it was not possible to export Man and

render it on the mobile phone as a 3D model. As a result, we decided to implement a

reduced Avatar that could run as a 3D model on the mobile phone and compare the

feasibility of the two Avatars. While this was the chronological order of events, this

chapter explains the implementation of the two Avatars according to the structure of

the generic SL Avatar creation methodology, explained in Chapter 4.

As mentioned in Chapter 2, the research conducted by the MobileASL project [23]

showed that the quality of frames in a SL video had a greater impact on SL intelligibility

than the frame rate. They found that reductions in frame rate while increasing frame

quality enhanced the intelligibility of the SL in the video. This was a major consideration

in the implementation of Phlank.

The following sections describe the modelling and parameterization of Phlank and the

animation and exportation of both Phlank and Man.

63

Chapter 5. Methodology and Implementation of the Avatars 64

5.1 Creation of the Avatar Phlank

5.1.1 Modelling and Acquisition

Phlank was specifically designed to be able to run as a 3D model on mobile devices.

A model with an excessive number of vertices is not able to run on the mobile phone.

An “out of memory” error is reported in such instances. Therefore, a basic Mobile

3D Graphics Java ME application was developed with the sole purpose of periodically

evaluating whether or not the model could run at a particular level of detail. This

application, called and referred to henceforth as “TestModel”, may be found in Appendix

A. The model was exported according to the procedure detailed in Section 5.2.2 at key

points in the modelling process and imported into TestModel.

In order to provide some consistency between the two Avatars Man and Phlank, both

belonging to the SASL project, we decided to acquire the face of Man and model the

rest of the Phlank interactively. It was also decided that Phlank would not be given a

body or upper arms since these would add unnecessary detail to the model.

We started by interactively modelling the right arm, assigning dimensions to each part

intuitively based on the appearance of the result. A box was added to the scene. It

was scaled to dimensions that were suitable for the forearm, a length, width and height

of 0.10, 0.42 and 0.810 Blender Units (BUs) respectively. We then used an extrusion

modelling technique to map out the general structure of the remaining parts of the arm

and hand. The arm was repeatedly extruded outwards to form one segment for the

forearm, three segments for the glove strap, one pre-palm segment and one segment

for the palm. The number of BUs by which each segment was extruded is summarized

in Table 5.1. The resultant model can be seen in Figure 5.1. Note that two of the

glove strap segments and the pre-palm segment are not clearly visible due to their small

height. Figure 5.2 provides a clearer image of the glove strap section. Experimentation

showed that these segments were necessary to model the glove strap region correctly.

This is explained shortly.

Table 5.1: Number of BUs by which each segment was extruded.

Segment Extrusion (BUs)

Glove strap segment 1 0.005
Glove strap segment 2 0.060
Glove strap segment 3 0.005
Pre-palm segment 0.006
Palm 0.630

Chapter 5. Methodology and Implementation of the Avatars 65

Before the modelling process continued, a level 1 Catmull-Clark subdivision surfacing

modifier was added to the model. This modifier allows the modeller to view a preview

of the smoothed model and increase the subdivision surfacing level without modifying

the original model. The vertices on the underlying model then act as control points

that parametrically deform the smoothed model preview. The modifier can later be

permanently applied to the model in which case the underlying model is converted into

the smoothed model by increasing the number of vertices and transforming them as

required.

We decided not to apply the modifier to the model during the modelling process. The few

vertices on the underlying model provided sufficient control over the modelling process.

The preview facility was used to monitor the outcome of modifications made to the

model. Figure 5.3 depicts the model and the smoothed preview after applying the

subdivision surfacing modifier.

Lower Arm
Glove strap
Segment 2

Palm

Front face
of

Palm

Side face of
Palm

Glove strap
Segment 3

Glove strap
Segment 1

Pre-Palm
Segment

Figure 5.1: The arm model after extrusion of features up to and including the palm.

Glove strap
Segment 3

Glove strap
Segment 1

Glove strap
Segment 3

Pre-Glove
Segment

Figure 5.2: A close-up of the glove strap segments.

Chapter 5. Methodology and Implementation of the Avatars 66

Figure 5.4 is a close-up of the model with background occlusion disabled to show five

faces, A, B, C, D and E of the model. Henceforth, we refer to the faces of each segment

in terms of these five faces.

The glove strap and the palm were modelled to give them a more swollen glove-like look.

The palm was also modelled to a size slightly wider and thicker than the arm. Faces A

and C of segment 2 of the glove strap were shifted outwards by 0.03 BUs while faces B and

D were shifted outwards by 0.04 BUs. Faces A and C of the palm were shifted outwards

by 0.09 BUs while faces B and D were shifted outwards by 0.03 BUs. The difference in

units by which these faces were shifted outwards was in line with the difference in width

and thickness of the arm. The four vertices joining the pre-palm segment and the palm

were then shifted towards and aligned with the vertices of segment 3 of the glove strap.

This created a clear buffer between the glove strap region and the palm. The result of

these processes is depicted in Figure 5.5a. For further clarity, Figure 5.5b shows a solid

version of the smoothed preview model.

Underlying
Model

Smoothed
Preview

Vertices

Figure 5.3: The model and smoothed preview with Catmull-Clark subdivision sur-
facing level 1 applied.

A box modelling technique was then used to model the fingers. Face E depicted in Figure

5.4 was subdivided into four equally-sized faces using the subdivision tool, one square

for each of the four fingers. The fingers were modelled one at a time sequentially starting

with the index finger and ending with the pinky. For each finger, the square on face E was

extruded outwards 3 times, one segment for a pre-finger segment, and two segments for

proximal and distal phalanges. It was decided to leave out the middle phalanges since

two phalanges provided a sufficient amount of detail on the finger. Experimentation

showed that the pre-finger segment was necessary to model the joints between fingers

and the palm correctly. The number of BUs by which the segments of each finger were

extruded is summarized in Table 5.2.

Chapter 5. Methodology and Implementation of the Avatars 67

B

D
A

C

E

Figure 5.4: A close-up of the model with background occlusion disabled to show five
faces, A, B, C, D and E of the model.

Table 5.2: Number of BUs by which segments in each finger were extruded.

Finger
Extrusion (BUs)

Pre-Finger Segment Proximal Phalange Distal Phalange

Index 0.03 0.21 0.31
Middle 0.03 0.24 0.38
Ring 0.03 0.21 0.31
Pinky 0.03 0.12 0.21
Thumb 0.03 0.14 0.20

Each finger was then modelled such that the joint was collapsed and the finger progres-

sively grew in size up to the finger tips. The four edges between the pre-finger segment

and the proximal phalange were selected and scaled down by a factor of 0.44 in the x and

y directions. The vertices on these edges were shifted towards the palm perpendicularly

by 0.05 BUs. The face on the tip of the finger was then selected and scaled up by a

factor of 1.6 in the x and y directions. At this point, all four fingers had been modelled

but overlapped.

This was resolved by rotating and shifting fingers. This was done by rotating all vertices

in the finger, pivoted on the joint between the finger and the palm, and shifting the

vertices as required. Table 5.3 summarizes the number of BUs by which each finger was

shifted and the angle by which it was rotated.

The thumb was then modelled. Face A on the palm segment was subdivided into three

faces F, G and H, as shown in Figure 5.6. The two edges between faces F and G, and

G and H were shifted along the z-axis until the three faces were of the lengths seen

in Figure 5.6. Face G was extruded outwards 3 times to form a pre-finger segment, a

proximal phalange and a distal phalange. The lengths of these segments are summarized

in Table 5.2. The edges between the pre-finger segment and the proximal phalange were

then scaled down by a factor of 0.70 in the z-direction and 0.43 in the y-direction. They

Chapter 5. Methodology and Implementation of the Avatars 68

Table 5.3: Rotations and shifts applied to fingers.

Finger Rotation (◦)
Shift (BUs)

X-axis Y-axis Z-axis

Index -12 0.012 0 0.018
Middle 0 0 0 0
Ring 11 0 0 0
Pinky 19 -0.06 0 0.006
Thumb 32 0.026 0 -0.01

were shifted towards the palm perpendicularly by 0.025 BUs. The face on the tip of the

thumb was scaled up by factor of 2.2 in the z direction. The whole thumb was rotated

and shifted to a location and angle that looked plausible for a thumb. The shift and

rotation applied are summarized in Table 5.3.

b)

a)

Glove strap
Segment 3

Palm

Figure 5.5: (a) The resultant model and b) The resultant smoothed preview, after
modelling the glove strap and palm.

The edges of the face on the tip of the forearm were then creased by 0.76 BUs to provide

a more rounded look, as seen in Figures 5.7a and 5.7b respectively. At this point,

we attempted to determine the highest Catmull-Clark subdivision surfacing level that

was renderable on the mobile phone. A mirror modifier was added and applied to the

arm model to obtain an exact copy of the right arm inverted in the x direction. This

formed the left arm. The subsurface division level was increased to 2 and the modifier

was permanently applied to the model to obtain the smoothed model. The model was

exported and tested with TestModel. It was found that the importation failed. It was

decided to keep the subsurface division level at 1.

Chapter 5. Methodology and Implementation of the Avatars 69

The subsurface division level was set back to 1 and the modifier permanently applied

to the model. A white material was applied to the faces of the glove strap, palm and

fingers. A skin-coloured material, with red, green and blue values of 240, 209 and 163

respectively, was applied to the faces of the forearm. Finally, The arms were placed 2

BUs away from either side of the z-axis and 4.6 BUs above it, with no offset from the

y-axis, as measured from the vertex at the tip of the forearms. The completed arms are

shown in Figure 5.8.

0.142
0.0980.362

F G H

Figure 5.6: The completed fingers.

a)

b) Forearm

Figure 5.7: The tip of the forearm (a) with the crease modified (b) with the crease
unmodified.

Figure 5.8: The completed arms.

At this stage, the model was exported and imported into the application TestModel. It

was found that the animation of the model took place at approximately 7 frames per

second (fps).

Chapter 5. Methodology and Implementation of the Avatars 70

We then acquired the head of Man for use with Phlank. We imported the entire Man

model into the Blender project and all but its head and neck was then deleted. At this

point the model was exported and imported into TestModel to test its performance.

It was found that the model could not be imported into TestModel. An error was

reported that indicated that the phone had run out of memory. This meant that the

model had too many vertices and was too detailed. We resolved to reduce the detail on

the head. Reduction of features was carried out until the model successfully imported

into and rendered in TestModel. Features were systematically removed in order of their

importance which was determined as explained shortly. After each removal, the model

was tested in TestModel to test for importation success.

The face itself was considered the most important feature on the head. All other features

on the head were considered to be of varied importance. Features that were not visible

during rendering were regarded as the least important features. The importance of all

other features was graded according to their distance from the face. Features closer to

the face provide more detail to the face and were graded as more important that those

farther away.

Table 5.4 lists the features removed in ascending order of importance. The last entry

in this table was the final feature removed before the model imported into TestModel

successfully. The frame rate of animation reduced to approximately 4 fps. The small

reduction in frame rate was justified by the increase in detail of the Avatar. As men-

tioned previously, increasing the quality of frames with reductions in frame rate provides

enhanced SL intelligibility. The head was then positioned at 7.6 BUs above the z-axis

and -0.6 BUs from the y-axis, with no offset from the x-axis, all measured with respect

to the highest vertex in the center of the forehead. The completed model is depicted in

Figure 5.9. Table 5.5 summarizes the number of vertices, edges and faces on the model.

5.1.2 Parameterization

The model was parameterized using a skeleton as in Section 4.1.2.1 of Chapter 4. We

started by adding the bones of the right arm. An armature was added and positioned

such that its root was at x-, y- and z-coordinates -2.0, -2.0 and 6.3 respectively, and its

tip was at x-, y- and z-coordinates -2.0, -2.0 and 4.6 respectively. Its root was positioned

at the approximate location of the shoulder, had there been one, and its tip, at the tip

of the forearm, where an elbow would have been. Other armatures were then added to

form a skeleton for the arm. This was done by estimating the locations of joints. Table

5.6 summarizes all the bones in the skeleton of the right arm, the names they were

assigned, and the position of their tips relative to their parent bone. Figure 5.10 depicts

Chapter 5. Methodology and Implementation of the Avatars 71

Table 5.4: Features removed from Phlank in ascending order of importance until the
model was importable and renderable on the mobile phone.

Order Feature

1 Tongue, teeth and all parts of the inner mouth and inner
ears

2 Back of the head
3 Back of the eyes leaving only two sphere segments slightly

wider than the space between the eyelids
4 Back of the neck
5 Back of the ears
6 Side of the head
7 Remaining parts of the neck up to the portion just under

the chin
8 Top of the head
9 Remaining parts of the ears
10 Forehead up to three vertex rows above the eyebrows
11 Sides of the face leaving only the cheeks

Figure 5.9: The completed Phlank model.

Table 5.5: The total number of vertices, edges and faces on the completed Phlank
model.

Subset Vertices Edges Faces

Head 1073 2071 996
Arms 864 1720 860
Total 1937 3791 1856

the hierarchical structure of the tree of bones in a format similar to that of H-Anim. It

indicates the parent-child relationships between armatures.

The bones of the right arm were then duplicated and rotated by 180◦ on the z-axis. The

Chapter 5. Methodology and Implementation of the Avatars 72

Table 5.6: The bones in the right arm, their assigned names, and the position of their
tips relative to their parent bone.

Bone Assigned
Name

Relative Position (BUs)
X-axis Y-axis Z-axis

Upper Arm r upper - - -
Forearm r fore 0 0 -2.0
Wrist r wrist 0 0 -0.2
Pinky Metacarpal r h1 -0.246 0 -0.478
Ring Finger
Metacarpal

r h2 -0.095 0 -0.527

Middle Finger
Metacarpal

r h3 0.069 0 -0.535

Index Finger
Metacarpal

r h4 0.240 0 -0.528

Thumb Metacarpal r h5 0.309 0 -0.129
Pinky Proximal
Phalange

r pinky1 -0.053 0 -0.130

Ring Finger Proximal
Phalange

r ring1 -0.041 0 -0.207

Middle Finger
Proximal Phalange

r middle1 -0.004 0 -0.242

Index Finger Proximal
Phalange

r index1 0.034 0 -0.199

Thumb Proximal
Phalange

r thumb1 0.129 0 -0.076

Pinky Distal Phalange r pinky2 -0.063 0 -0.158
Ring Finger Distal
Phalange

r ring2 -0.050 0 -0.248

Middle Finger Distal
Phalange

r middle2 0.007 0 -0.303

Index Finger Distal
Phalange

r index2 0.034 0 -0.226

Thumb Distal Phalange r thumb2 0.113 0 -0.088

new bones were then placed onto the left arm, 4 BUs away from the bones of the right

arm in the x-direction and with the same z- and y-offset as the bones of the right arm.

The entire skeleton was then attached to the model automatically by means of the built-

in algorithm by Baran and Popović. Figure 5.11 depicts the model with its attached

skeleton.

Chapter 5. Methodology and Implementation of the Avatars 73

r_upper
 r_fore
 r_wrist
 r_h1
 r_pinky1
 r_pinky2
 r_h2
 r_ringfinger1
 r_ringfinger2
 r_h3
 r_middlefinger1
 r_middlefinger2
 r_h4
 r_indexfinger1
 r_indexfinger2
 r_h5
 r_thumb1
 r_thumb2

Figure 5.10: Hierarchical structure of Phlank ’s skeleton.

Figure 5.11: The Phlank model with a completed skeleton.

5.2 Animation and Exportation of Phlank and Man

5.2.1 Animation

For the purpose of this project, we selected 16 short common phrases from a phrase book,

most of which consisted of single words. Table 5.7 lists these phrases. The corresponding

SASL of these phrases was obtained by recording SASL speakers. We enlisted the help

of the Dominican School for the Deaf in Wynberg, Cape Town. Five profoundly deaf

students whose first language was SASL were requested to sign each of the phrases under

the supervision of a hearing teacher with expert knowledge of SASL. Each phrase was

recorded and labelled. We obtained ethics clearance and each subject was provided

a consent form whose contents were explained to the subject by the hearing teacher.

Chapter 5. Methodology and Implementation of the Avatars 74

The student was informed of the purpose of the research as well as of the fact that

participation was voluntary and it was possible to withdraw from the exercise at any

time.

Table 5.7: List of SASL phrases recorded and animated.

No Phrase No Phrase
1 Bus 9 Medicine
2 Doctor 10 Restaurant
3 Good Evening 11 Right
4 Hello 12 Sick
5 Help Me 13 Soccer
6 Help You 14 South Africa
7 How 15 Toilet
8 Left 16 Water

Using the SASL videos as a basis and with careful attention to detail, both Phlank

and Man were animated using a keyframing technique. Two sets of animations were

produced for Man. The first set included the non-manual gestures observed in the SASL

videos while the second set excluded them. Two techniques were used in keyframing

each phrase. The first technique involves identifying frames in the SASL video at which

the hands make extreme direction or speed changes. These frames are then noted as

keyframes. The second technique was proposed by Terra and Metoyer in [130]. They

proposed that making a clear distinction between keyframe values and keyframe timing

simplifies the animation process.

Our animation methodology took place in the following steps:

1. Identify frames in the SASL video where the hands make extreme direction or

speed changes.

2. For each of these frames, pose the model in the same pose as in the frame.

3. Add the pose as a keyframe in the animation.

4. Once all keyframes have been added, shift each keyframe in the timeline of the

action editor to the correct time.

5.2.2 Exportation

Exportation of the Phlank model was carried out by means of the M3G exporter plug-

in. This was a simple process of invoking the M3G exporter script, setting the required

parameters and initiating the exportation process. The script produces an M3G file of

Chapter 5. Methodology and Implementation of the Avatars 75

the model that can be imported onto the mobile phone using the Mobile 3D Graphics

library in Java ME and subsequently played back as a 3D model.

Parameters of the M3G exporter that we made use of are summarized in Table 5.8.

Table 5.8: Key parameters of the M3G exporter tool.

Parameter Description

All Armature Actions Sets whether or not to export all actions in the animation
database of the skeleton

Smooth Shading Sets whether or not to use smooth shading in PolygonMode
Lighting Sets whether or not the lights in the scene should be ex-

ported with the model

All three parameters were set to the “On” position.

It was initially hoped that it would be possible to export Man using the same method

of exportation used for Phlank. It was discovered that this was not possible due to

the extreme large size of the model. A process of systematically minimizing Man was

then carried out by removing the least critical features. As was the case with the

minimization of the face of Phlank, explained in a previous section, the importance of

features was determined by their necessity in sign language visualization. The face,

forearms and hands were considered the most important features. All other features

were assigned an importance based on their visibility during rendering followed by their

distance from the most important features. In this case, the head could not be minimized

to the same extent as with the face of Phlank since this would lead to a dislocation of

its facial parameterization, thereby invalidating a key justification for doing so. After

each removal, an attempt at exportation and importation into TestModel was made.

Reduction of the model took place in the order summarized in Table 5.9.

Table 5.9: Features removed from Man in ascending order of importance.

Order Feature

1 Removal of the lower body.
2 Removal of the abdomen region.
3 Removal of the faces on the body that are not visible during

animation, that is, the back.
4 Removal of the faces on the head that are not visible during

animation, that is, the back of the head.
5 Removal of all faces excepting the arms and the head.
6 Removal of the upper arms leaving the forearms and hands.

Exportation was found to be unsuccessful at every stage. After the removal of the upper

arms, it was decided that no additional features could be removed such that Man could

still be considered useful for detailed SL rendering. We resolved to export the animations

and render them on the mobile phone as video. They were exported to the MPEG-4

Chapter 5. Methodology and Implementation of the Avatars 76

Part 14 (MP4) format and imported into the Mobile Media API of Java ME and played

as a video file.

5.3 Summary

We have presented the methodology used in the creation of our low-detail Avatar Phlank.

We explained our implementation of each step of the SL Avatar creation methodology.

We also explained the method of animating and exporting the Avatars Phlank and Man.

We showed that it was not possible to export Man as a 3D model that can be rendered

on a mobile phone.

Chapter 6

Implementation of a Prototype

Mobile Framework

In Chapter 2, we established the need for a mobile-based communication tool for the deaf.

In addition to developing the mobile Avatar Phlank, we developed and implemented

a prototype mobile phone-based machine translation system that we called the iSign

Mobile Framework into which we integrated our Avatar. This implementation is not

only the first tangible implementation of a unified translation system for the SASL

group but, as we have mentioned in Chapter 2, is the first unified implementation that

can carry out translation from spoken language to sign language and sign language to

spoken language, that we aware of. In addition to this, it has been implemented on a

mobile phone framework, the most powerful application of such a system. Therefore,

our work is a pioneer in the field.

The iSign Mobile Framework is a realization of the objective of the SASL project at

the University of the Western Cape [28], to adapt the conceptual design of the Machine

Translation (MT) system of the same project onto a mobile framework. In this section,

we first provide a conceptual overview of the generic Machine Translation system of

the SASL project followed by an enumeration of the components of the system that

currently exist, having been the subjects of previous projects. We then propose an

adaptation of the generic architecture into a mobile framework architecture. We explain

our implementation of a prototype of the iSign Mobile Framework architecture as a proof

of concept.

77

Chapter 6. Implementation of a Prototype Mobile Framework 78

6.1 The SASL Machine Translation System

6.1.1 Conceptual Overview

The SASL project of the SASL group at the University of the Western Cape is in the

process of designing and implementing a MT system [28] that automates the translation

process between SASL and English using unobtrusive hardware. Within this system,

two separate functions are catered for; converting sign language video into English and

converting English into Sign Language video. The implementation of these two functions

in the translation system allows for two-way communication between deaf and hearing

users. Each function can be subdivided into four sequential steps; capturing input,

recognizing the captured input, translating the input into the target language, and

rendering the target language. Figure 6.1 depicts the conceptual structure of the SASL

MT system.

Figure 6.1: Conceptual overview of the SASL Machine Translation system [28].

With reference to Figure 6.1, the conversion of SASL into English is ideally carried out

in the following four steps:

1. Capture: Video of a person gesturing SASL is recorded. This is carried out by

means of a webcam or mobile phone camera.

2. Recognition: Computer vision techniques are used to extract semantic informa-

tion from the input video. The information that is extracted includes both manual

gestures, such as hand motions and shapes, and non-manual gestures, such as body,

neck and head motion and facial expressions. The information extracted is tran-

scribed using a machine-readable form of a SL transcription notation such as Sign

Writing Markup Language (SWML) [109] and Systems Biology Markup Language

(SBML) [126] for SignWriting [125] or ASCII-Stokoe [80] for Stokoe[117].

Chapter 6. Implementation of a Prototype Mobile Framework 79

3. Translation: The transcribed SASL is translated into English text.

4. Conversion: The English text is converted into English audio using a text-to-

speech synthesizer.

5. Rendering: The English audio is rendered through the speaker. This can either

be on a desktop computer or on a mobile phone.

The conversion of English into SASL is ideally carried out in the following four steps:

1. Capture: The audio of a person speaking English is recorded. This is carried

out by means of an external or internal microphone on a desktop computer or the

microphone on the mobile phone.

2. Recognition: Speech recognition is carried out on the audio, converting it to

English text.

3. Translation: The English text is translated into transcribed SASL.

4. Conversion: The transcribed SASL is used to synthesize an Avatar signing SASL.

5. Rendering: The Avatar is rendered. This may be done on a desktop computer

or mobile phone screen.

6.1.2 Existing Components

To-date, the SASL group has focused on developing the various components of the MT

system described in the previous subsection independently. Thus far, these components

have all been built for desktop computers.

The recognition of captured SASL has been the subject of many projects of the SASL

group. These systems were explained in Section 2.2.3.2 of Chapter 2. Naidoo [88] and

Rajah [99] created systems that can recognize SASL from video input. Segers [106]

created a system that can recognize hand-shapes from video input. Whitehill’s system

[144] can recognize and classify facial expressions from video input. However, these

systems do not currently produce computer-readable SL transcription but English text

instead.

The SASL group currently focuses on recognition and animation and is yet to focus on

translating between SASL and English.

The conversion of English text into English audio is an active field of research with

projects such as Festival [39], FreeTTS [42] and eSpeak [36]. These systems can be

integrated into the SASL MT system proposed.

Chapter 6. Implementation of a Prototype Mobile Framework 80

The conversion of English audio into English text is also an active field of research with

projects such as Simon [110], CMU Sphinx [26] and VoxForge [139]. These systems are

also open-source and can be adopted in the SASL MT system.

As explained in Chapter 4, Van Wyk’s system [146] is capable of rendering high quality

SASL signs from SBML input.

6.2 The iSign Mobile Framework Architecture

The SASL MT system explained in the previous subsection was adapted into a mobile

framework – the iSign Mobile Framework. Mobile phones are still far less powerful than

desktop computers. They lack memory and processing power. This was a major con-

sideration in designing the iSign Mobile Framework. We aimed to use existing systems

mentioned in subsection 6.1.2. However, these systems rely on the capabilities of desktop

computers. It was necessary to redistribute the components of the generic SASL MT

system architecture in a way that would enable the use of these components within the

mobile framework.

Our architecture proposes that all capturing and rendering processes be carried out on

mobile phones since these are within the capabilities of the mobile phone that we have

selected. A mobile application on the phone facilitates all such processes. We then

propose that all systems carrying out recognition and translation processes, as well as

the conversion of English text into English audio, be placed on a server referred to as the

translation server. The mobile phone can then access these systems as services on the

server using a web-based client/server architecture. The conversion of transcribed SASL

into an Avatar may be placed on the mobile phone if the Avatar is compact enough to

be rendered as a 3D model on the phone and the phone supports 3D rendering. If not,

this process is also carried out on the translation server.

A web service on the server mediates between the mobile phone and the services on the

server by means of a communication protocol. Figure 6.2a depicts the generic architec-

ture of the iSign Mobile Framework and the process of translating SASL into English

audio. Figure 6.2b depicts the same architecture and the process of translating English

audio into SASL.

The Internet cloud depicted in Figure 6.2 is an abstraction of the underlying Internet

infrastructure that necessarily consists of Edge, GPRS, WiFi or 3G technologies. These

technologies are required to establish wireless connectivity between the phone and the

Chapter 6. Implementation of a Prototype Mobile Framework 81

Conversion

English to SASL

Recognition Translation

SASL to English

Web service

Internet cloud

Translation server

SASL video

English audio

ConversionTranslationRecognition

Video Capture

Audio Render

Conversion

English to SASL

Recognition Translation

SASL to English

Web service

SASL video

English audio

ConversionTranslationRecognition

Audio Capture

Avatar Render

a)

b)

Figure 6.2: Overview of the iSign Mobile Framework showing the process of a) SASL
to English audio translation and b) English audio to SASL translation.

network. Within these figures, the “conversion” process has been included in the trans-

lation from English audio to SASL but this need not be the case if the Avatar can be

rendered on the phone, as mentioned previously.

Table 6.1 summarizes the key components of the iSign Mobile Framework. It is impor-

tant to note that this architecture establishes a well-defined modularized approach to

the SASL/English MT problem. Each of the components of this architecture may be

developed, improved and changed independently of all other components as long as the

communication protocol is adhered to. This is particularly suitable since many of these

components are actively being developed in various SASL project research efforts.

6.3 Implementation of the iSign Mobile Framework

The implementation of the iSign Mobile Framework involved putting prototype com-

ponents in place for each of the components mentioned in Table 6.1. The components

configured included the interpretation services for SASL to English and English to SASL,

the web-service, the mobile application and a prototype communication protocol.

Chapter 6. Implementation of a Prototype Mobile Framework 82

Table 6.1: Key components of the iSign Mobile Framework.

Component Description

Mobile application
Facilitates video and audio capturing and
rendering, rendering of 3D models and
communication with the translation server

SASL to English
interpretation services

Carry out interpretation from SASL video to
English audio

English to SASL
interpretation services

Carry out interpretation from English audio to
SASL video or Avatar

Web service
Mediates between the mobile phone application
and the interpretation services

Communication protocol
Defines a standard mode of communication
between other components

6.3.1 The Communication Protocol

We developed a reduced communication protocol for the purposes of the prototype. It

should be noted ahead of time that this protocol, like the other components in the

prototype implementation, may be subject to improvement or replacement by a com-

prehensive standard protocol such as the Session Initiation Protocol (SIP).

The protocol defines five communicative tasks utilized in this translation system frame-

work. These are:

1. Login: The mobile phones in the framework are required to login to the web

service with a pre-stored username and password. A session is initiated.

2. Connecting to a phone: The user of the mobile phone selects a target phone

logged into the system to which interpreted messages will be sent.

3. Uploading a job: A mobile phone may send ‘jobs’ in the form of SASL video or

English audio to the web-service for interpretation.

4. Processing the job: An uploaded job is retrieved and processed by the relevant

interpretation services.

5. Retrieving the job: The resultant interpreted message is retrieved by the phone

for rendering.

As mentioned, the protocol allows a phone to connect to other phones for communication.

It also supports a ‘Translator’ mode in which the phone itself is the target phone. In

this case, the phone acts as a stand-alone interpreter, capturing both SASL and English

jobs and retrieving processed jobs and rendering them. Figures 6.2a and 6.2b depict

Chapter 6. Implementation of a Prototype Mobile Framework 83

translator mode-type operation. We limit the current discussion to the ‘Translator’

mode.

The web service is at the core of the protocol. Each of the tasks mentioned involves a set

of defined communication exchanges between the web service – the server – and either

the interpretation services or the mobile application – the client. Each communication

exchange is defined by a signal and a set of accompanying parameters that are sent to

the web service by the client. The signal and parameters invoke a specific reaction on

the web service. The web service may also return a value depending on the task at hand.

Table 6.2 lists the signals in the communication protocol and provides a description of

each signal. For more information, including the parameters and return values of each

signal, the reader is referred to Tables B.1, B.2, B.3, B.4 and B.5 of Appendix B.

Table 6.2: Signals in the communication protocol and their descriptions.

Signal Description

login
Sends the pre-stored phone number and pin. If login is successful,
a session id is returned. If not the phrase “Error” is returned.

contacts
Retrieves a list of phones registered on the framework that are
currently logged in and available.

connect
Attempts to connect to a phone. Return values correspond to
the target phone being unavailable and waiting for it to respond
to the connect request.

setmode
Sets the current capture and render mode to either deaf (SASL)
or hearing (English) mode. Returns “Error” if the connection
was interrupted.

vidin
Sends a SASL video message to be processed and sent to the
target phone. Return values correspond to success and failure of
the upload respectively.

wavin
Sends a English audio message to be processed and sent to the
target phone. Return values correspond to success and failure of
the upload respectively.

getvidjob
Queries for any unprocessed video jobs. Returns “None” if there
are no such jobs or information on the file to be retrieved.

getwavjob
Queries for any unprocessed audio jobs. Returns “None” if there
are no such jobs or information on the file to be retrieved.

vidjobdone
Notification of successful completion of SASL to English
interpretation processing.

wavjobdone
Notification of successful completion of English to SASL
interpretation processing.

vidjobfailed
Notification of unsuccessful completion of SASL to English
interpretation processing.

wavjobfailed
Notification of unsuccessful completion of English to SASL
interpretation processing.

querymsg
Queries for any interpreted messages directed at this phone.
Returns “None” or a URL to the file to be retrieved.

Chapter 6. Implementation of a Prototype Mobile Framework 84

Specific signals in Table 6.2 are sent to the web-service at regular intervals in order

to poll it for a response, based on which an action is taken. These are the contacts,

querymsg, getvidjob and getwavjob signals. The polling interval was set to 8 seconds

since this provided a balance between polling latency and bandwidth usage. Figure 6.3

is a sequence diagram containing the sequence of signals sent for the five tasks. It is to

be noted that the polling tasks are shown separately with a ‘polling’ box around them.

polling

Web Service Interpretation
Services

Mobile Phone

login

login(return)

contacts

contacts(return)

connect

connect(return)

setmode

setmode(return)

vidin / wavin

vidin / wavin(return)

querymsg

querymsg(return)

polling

getvidjob / getwavjob

getvidjob / getwavjob(return)

vidjobdone / wavjobdone

if there was a job

Figure 6.3: Sequence diagram of communication exchange signals.

6.3.2 The Web Service

The web service is implemented on an Apache HTTP server installation. It takes the

form of a PHP script that can be passed signals of the aforementioned protocol and their

parameters in the form of HTTP GET and POST parameters. The signal is specified

Chapter 6. Implementation of a Prototype Mobile Framework 85

by passing the script a GET parameter called ‘act’ and its value is set to the signal. The

parameters of the signal are passed in as either GET or POST parameters named as in

Table 6.2.

The web service makes use of a MySQL database to store information pertaining to

phones registered on the service, login sessions and jobs. It contains 4 tables: USER,

CONTACTS, VIDEOIN and WAVEIN. Table 6.3 provides a brief description of each of

these tables. For more information, the reader is referred to Tables B.6, B.7, B.8 and

B.9 of Appendix B which are data dictionaries for the tables in the database.

Table 6.3: Description of the function of each table in the iSign web service database.

Table Description

USER
Stores information pertaining to mobile phones registered
on the service.

CONTACTS
Stores a list of contacts that have been added and can be
connected to, for each phone.

VIDEOIN
Keeps track of SASL video jobs sent to the web service for
translation.

WAVEIN
Keeps track of English audio jobs sent to the web service for
translation.

6.3.3 The Mobile Application

We developed a mobile application in Java ME that we called iSign. This application

facilitates all processes involving capturing, rendering and network communication. It

further adheres to other requirements of the communication protocol such as facilitating

a login process, displaying a list of contacts, allowing the selection of a contact to be

connected to and allowing the selection of a capture and render mode. Figure 6.4 depicts

the Sony Ericsson C905 that we used. We have labelled three specific buttons, button

1, button 2 and button 3, on the phone for reference in the subsections that follow.

The subsections that follow provide screenshots and a brief description of the interface

of the application that facilitates the processes mentioned.

6.3.3.1 The Login Screen

Figure 6.5a shows the initial state of the Login screen. It is the default iSign screen.

The user may specify the URL of an iSign Translation Server. This is done by pressing

button 1 which invokes the Settings screen depicted in Figure 6.5b. The user may

specify their login details, consisting of a pre-registered mobile phone number and a pin

as seen in Figure 6.5c and pressing the ‘Login’ button. The current implementation

Chapter 6. Implementation of a Prototype Mobile Framework 86

Button 1

Button 2
Button 3

Figure 6.4: The Sony Ericsson C905.

does not include a registration process but this feature can be incorporated. iSign sends

the information entered to the iSign Translation Server for verification and displays the

screen depicted in Figure 6.5d.

a) b) c) d)

Figure 6.5: (a) The initial Login screen. (b) Settings screen for specifying the Transla-
tion Server URL. (c) Login details filled in. (d) Screen shown while sending information

to the Translation Server and verifying login.

6.3.3.2 The Contacts Screen

Figure 6.6a shows the initial Contacts screen. The main feature of this screen is the

contacts list that displays a list of all contacts currently added by the user of this mobile

phone, as well as an entry entitled ‘Translator’. Each contact entry has a status light

Chapter 6. Implementation of a Prototype Mobile Framework 87

that may be grey, green or orange corresponding to not logged in, available and not

available, respectively. The list may be navigated to select any of its entries. Figure

6.6b shows the Translator entry selected. The user presses button 2 to connect to that

contact. In this case, the user initiates the Translator mode. Figure 6.6c is displayed

while iSign sends the required signal and parameters to the Translation Server.

a) b) c)

Figure 6.6: (a) The initial Contacts screen. (b) The Contacts screen with the ‘Trans-
lator’ entry selected. (c) Screen shown while sending information to the Translation

Server and attempting to connect to the contact selected.

6.3.3.3 The Mode-Select Screen

The Mode-Select screen prompts the user to select the translation mode he/she would

like to operate in. Deaf mode allows the user to capture and render SASL video as well

as rendering a 3D Avatar signing SASL. Hearing mode allows the user to capture and

render English audio. Figure 6.7 depicts the Mode-Select screen for Translator mode.

Figure 6.7: The Mode-Select screen for Translator mode.

6.3.3.4 The Deaf Capture and Hearing Capture Screens

Depending on the initial mode selected, either the Deaf Capture or Hearing Capture

screens are displayed. The initial Deaf Capture and Hearing Capture screens are depicted

Chapter 6. Implementation of a Prototype Mobile Framework 88

in figures 6.8a and 6.9a respectively. It is possible to switch between these screens in the

Translator mode by accessing the ‘Navigate’ menu available on both screens by pressing

button 1.

On either screen, the user may press button 2 while the ‘Record’ button is highlighted.

This activates a viewfinder window and audio capture window for the respective modes,

depicted in figures 6.8b and 6.9b. The viewfinder allows the user to adjust the image

before pressing button 2 to record. Once the stop button, depicted in figures 6.8c and

6.9c, has been pressed and the recording process is complete, the user may play, accept or

cancel the recording using the buttons depicted in figures 6.8d and 6.9d. If the ‘Accept’

button is pressed, the respective Capture screens indicate that a recording is now loaded

and ready to be sent to the Translation Server, as shown in figures 6.8e and 6.9e. The

file can be sent by pressing the ‘Send’ button, which is now enabled. The screen depicted

in figures 6.8f and 6.9f is displayed while the file is being sent.

a) b) c)

d) e) f)

Figure 6.8: (a) The initial Deaf Capture screen. (b) The video viewfinder. (c) The
video viewfinder in the process of recording. (d) The video viewfinder after recording
is complete. (e) The Deaf Capture screen with a recording loaded. (f) The screen

displayed while the file is being sent.

Chapter 6. Implementation of a Prototype Mobile Framework 89

a) b) c)

d) e) f)

Figure 6.9: (a) The initial Hearing Capture screen. (b) The audio capture window.
(c) The audio capture window in the process of recording. (d) The audio capture
window after recording is complete. (e) The Hearing Capture screen with a recording

loaded. (f) The screen displayed while the file is being sent.

6.3.3.5 The Word List Screen

As seen in Figure 6.9a, the Hearing Capture screen has a button ‘Word List’ that is not

present in the Deaf Capture screen. Pressing this button invokes the Word List screen

depicted in Figure 6.10. The Word List is a feature that allows hearing users to learn

SASL by enabling them to perform a dictionary lookup of the English words provided.

The user may select a word from the list and press button 2. The Hearing Capture screen

indicates that a recording is loaded and ready to be sent as in Figure 6.9e. The word

may be sent to the Translation Server as explained in the previous section to retrieve

the SASL animation associated with that word. From interaction with SASL instructors

and teachers, it became apparent that this feature could prove very useful, especially

for hearing parents with deaf children.

6.3.3.6 Rendering Screens

Once a job has been sent and translated, the result may be retrieved and played back.

The user is prompted whether or not to playback the message received as shown in

Chapter 6. Implementation of a Prototype Mobile Framework 90

Figure 6.10: The Word List screen.

Figure 6.11a. We incorporated our Avatar Phlank into iSign for the rendering of SASL.

Phlank is rendered and animated as a 3D model in the application. The playback of

this Avatar is shown in Figure 6.11b. An audio playback screen is used to playback

English audio that has been retrieved. This screen looks very similar to the screen in

Figure 6.9d except that it has no ‘Accept’ button and has a ‘Close’ button in place of

the ‘Cancel’ button in the figure.

Messages are stored in a log that can be accessed using the ‘Navigate’ menu, and is

depicted in Figure 6.11c. The log can be used to play back captured messages and

their corresponding translated messages. Messages are labelled according to the type of

message sent and the order in which they were sent. Messages sent by Deaf capture are

labelled as ‘Deaf’, and messages sent by Hearing capture are labelled ‘Hearing’. Figure

6.11c depicts a log containing four messages.

a) b) c)

Figure 6.11: (a) The user is prompted whether or not to play the message retrieved.
(b) The Avatar Phlank incorporated into iSign. (c) The message log depicting four

messages.

Chapter 6. Implementation of a Prototype Mobile Framework 91

6.3.4 The Interpretation Services

A phrase dictionary lookup was used in place of the interpretation systems since the

SASL group has not yet produced systems in this area. This implementation can convert

a set of 20 phrases between English and SASL.

The interpretation services in our prototype implementation consist of an extended

version of Naidoo’s Gesture Recognition system [88]. Naidoo adapted his system to

conform to our prototype communication protocol. He built a timer into the system that

polls the web service with the getvidjob and getwavjob signals explained in a previous

section. The polling interval was set to 8 seconds. It handles one request at a time.

As mentioned before, his system carries out Gesture Recognition on SASL videos and

produces a text file of the phrase recognized. His system was also extended to convert

the text of the phrase into English audio using the Text To Wave ActiveX Client/Server

DLL SDK v2.0 [100].

Naidoo’s system was further extended to carry out speech recognition on English audio

files using Microsoft Speech API (SAPI) 5.3 [81] to produce a text file of the phrase

recognized. Our implementation places the conversion of English text to SASL Avatar

on the phone using the Phlank Avatar. Therefore, the interpretation services for English

to SASL interpretation in this prototype perform speech recognition and a dictionary

lookup.

6.4 Summary

We have presented an overview of the conceptual SASL MT system framework of the

SASL project as well as indicated those components that currently exist. We also pre-

sented our adaptation of this conceptual system into a mobile framework and explained

our implementation of the mobile framework. This working prototype is usable and has

been demonstrated at various technology events 1. The mobile phone application meets

the requirements specified in Chapter 3.

1This system won first place in the Software Design category in the Microsoft Imagine Cup South
Africa 2008.

Chapter 7

Experimental Setup

In this chapter we describe the experiments we carried out. These experiments were

aimed at determining whether or not synthetic sign language rendered on a mobile

phone is intelligible to deaf people and investigating the cost factors involved in doing

so. The two cost factors considered are the power and bandwidth usage.

For each experiment, we compared four methods of sign language visualization. The first

method was the use of the low-detail Avatar Phlank rendered as a 3D model, depicted

in Figure 7.1a. The second and third methods made use of the Avatar Man, depicted in

Figures 7.1b and 7.1c. The difference between the second and third methods is that one

does and one does not incorporate non-manual gestures. The final method was used as a

comparative base and was the display of sign language videos of SASL speakers, depicted

in Figure 7.1d. Henceforth, we refer to the methods as ‘LowRes’, ‘Facial’, ‘NoFacial’

and ‘SLVid’, respectively.

Each method was expected to have strengths and weaknesses in terms of intelligibility

and cost factors. Our aim was to, both, determine the feasibility of each method, as

well as compare the four methods.

The following sections describe each of the experiments carried out.

7.1 Sign Language Intelligibility

Sign language intelligibility was considered the most crucial feasibility factor in the use

of mobile phones to visualize sign language.

92

Chapter 7. Experimental Setup 93

Figure 7.1: The SASL word ‘Sick’ as rendered by a) the low-detail Avatar Phlank
(LowRes) b) the Avatar Man with non-manual gestures (Facial) c) the Avatar Man

without non-manual gestures (NoFacial) and d) sign language video (SLVid).

7.1.1 Collection of SASL Videos and Exportation of Sign Language

Files

In Chapter 5 we described the collection of our SASL videos from the Dominican School

for the Deaf in Wynberg, Cape Town. We also described the method we used to animate

and export the animations of the LowRes, Facial and NoFacial methods. We explained

that the LowRes animations were exported as M3G model files that can be imported

and rendered on the mobile phone as 3D models. We also explained that the Facial and

NoFacial animations were too complex to be exported in the same manner and were

exported as MPEG-4 Part 14 (MP4) format videos instead. The videos of the SLVid

method were exported to the MPEG-4 Part 14 (MP4) format and imported into the

Mobile Media API of Java ME and played as video files on the mobile phone.

7.1.2 Viewing Sequence

It was decided to use 16 test subjects. All 16 signs were shown once to each of the 16

test subjects yielding a total of 256 viewings. For each subject, the 16 viewings were

divided into 4 groups, each of which was displayed using one of the 4 methods. This

meant that each subject viewed 4 signs using each of the 4 methods.

Chapter 7. Experimental Setup 94

The test subjects were also divided into 4 groups. Each group was shown a particular set

of phrases with particular methods. Table 7.1 depicts the 4 viewing groups constructed

such that each of the words in the word array was assigned to each of the methods in the

corresponding method array, where words 1 to 16 are displayed in Table 5.7 in Chapter

5, and methods 1 to 4 correspond to LowRes, Facial, NoFacial and SLVid, respectively.

This determined the word-method combinations for each group and ensured that each

word-method would be viewed exactly 4 times by 4 different subjects. The viewing

order for word-method combinations was then randomized for each subject to obtain 16

distinct viewing sequences. As an example, Table 7.2 shows the word-method viewing

sequence of the first two subjects.

Table 7.1: Arrangement of method-word viewing groups.

Group Subjects Arrangement

1
1, 5, 9, 13

Word: {1,2,3,4,5,6,7,8,9,10,...,14,15,16}
Method: {1,2,3,4,1,2,3,4,1, 2 ,...,2 , 3 , 4}

2
2, 6, 10, 14

Word: {1,2,3,4,5,6,7,8,9,10,...,14,15,16}
Method: {2,3,4,1,2,3,4,1,2, 3 ,...,3 , 4 , 1}

3
3, 7, 11, 15

Word: {1,2,3,4,5,6,7,8,9,10,...,14,15,16}
Method: {3,4,1,2,3,4,1,2,3, 4 ,...,4 , 1 , 2}

4
4, 8, 12, 16

Word: {1,2,3,4,5,6,7,8,9,10,...,14,15,16}
Method: {4,1,2,3,4,1,2,3,4, 1 ,...,1 , 2 , 3}

Table 7.2: Example viewing sequences of subjects 1 and 2.

Viewing Number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
u

b
je

ct
1 W

or
d

9 5 11 1 8 2 13 16 12 4 6 10 7 3 15 14

M
et

h
o
d

1 1 3 1 4 2 1 4 4 4 2 2 3 3 3 2

S
u

b
je

ct
2 W

or
d

3 4 2 9 7 16 13 12 6 5 8 14 10 1 11 15

M
et

h
o
d

2 3 1 4 2 3 4 3 1 4 3 1 1 4 2 2

7.1.3 Experimental Setup

In Chapter 2, we explained the experimentation carried out by Cox et al. of the ViSi-

CAST project to determine the intelligibility of the sign language rendered by their

Avatar [29]. In [29], Cox et al. remark that variations in sign language dialect posed

Chapter 7. Experimental Setup 95

a serious challenge to the intelligibility of the sign language rendered by their Avatar.

Taking note of this, we attempted to limit the effect of dialect variations by carrying

out our experimentation in the same school from which we collected our signs.

Table 7.3 summarizes information pertaining to all 16 test subjects. The 16 test subjects

consisted of 9 students, 3 teachers and 4 staff members. All 9 students were profoundly

deaf and used SASL as their first language. 5 of them were females and 4 males. The

students were in Grades that ranged from Grade 5 to Grade 9. The teachers were

all hearing but had expert knowledge in SASL. 2 were female and 1 male. The staff

members were all female. 3 were profoundly deaf and used SASL as their first language

and 1 was hearing but had extensive experience and knowledge of SASL. As seen in

Table 7.3, the subjects were tested in no particular order.

Table 7.3: Test subjects used in the intelligibility experiment.

Subject Gender Type Grade Deaf

1 M Teacher - No
2 M Student 9 Yes
3 M Student 8 Yes
4 F Student 5 Yes
5 F Staff - No
6 F Staff - Yes
7 F Teacher - No
8 F Student 7 Yes
9 F Staff - Yes
10 F Student 9 Yes
11 F Teacher - No
12 M Student 8 Yes
13 F Staff - Yes
14 M Student 6 Yes
15 F Student 5 Yes
16 F Student 5 Yes

Our experimental setup was an adaptation of the experimental setup of Cox et al. of

the ViSiCAST project [29]. A teacher acted as an interpreter between the experimenter

and the deaf subjects. A consent form was presented to each subject and the contents

thereof were explained to the subject by the teacher. The form explained the purpose of

the research as well as of the fact that participation was voluntary and it was possible

to withdraw from the exercise at any time.

The teacher was requested to explain the experimental procedure to the subjects. Each

subject was handed an answer sheet containing a table with 16 rows marked from 1 to

16. He/she was shown the viewing sequence explained in a previous section. Each of

the words in the sequence was shown without context. For each viewing, the subject

was instructed to write down the phrase they had seen in the corresponding row in

Chapter 7. Experimental Setup 96

the answer sheet provided, or to write “I dont know” in the that row. Students that

struggled with writing were assisted by an interpreter.

The subject was allowed to replay the sign up to a maximum of 10 times, after which

the phrase was marked as unknown. Those signs that had been indentified incorrectly

were then re-presented to the subject and the subject was informed of the meaning

that we had assumed. He/she was then asked whether this discrepancy was due to

inappropriateness of the sign or whether it was due to unclearness of the sign on the

mobile phone screen. Inappropriateness included the sign being of a varied dialect and

errors in the animation such as incorrect hand shape or motion.

The results of the four methods were compared amongst each other to determine whether

or not they were significantly different. Logistic regression was used to analyse the di-

chotomous outcome variable where the outcomes were correct and incorrect identifica-

tion. Least Squares Means were used to make pair-wise comparisons among the four

methods. The null hypothesis stated that there was no significant difference between

the methods while the alternate hypothesis stated that there was, in fact, a significant

difference between the methods. These results were used to draw conclusions.

7.2 Power Consumption

We aimed to obtain an indication of the power consumption of each method. Power

consumption may be affected by many factors. It is dependent on the mobile phone

used in the experiment, the firmware on the mobile phone, and many other factors. We

did not, therefore, aim to obtain absolute values. Rather, we resolved to determine the

relative increase in power consumption between the idle state of the phone and the state

in which sign language was being rendered using each of the four methods.

The experimental design is depicted in Figure 7.2. The mobile phone charger was con-

nected to a 12V power supply. An ammeter was used to measure the current drawn and

a voltmeter was used to measure the voltage in the circuit. It was found that the mobile

phone could not operate without the battery in place, in spite of the phone being con-

nected to the power supply with the charger. This fact is assumed to affect the result.

To compensate for this, the experiment was carried out with the battery was charged

to 100%. We only wished to obtain an indication of the relative power consumption.

This setup sufficed for our purposes. Also, the phone that we used was found to auto-

matically turn its display off after 5s of receiving no user input. It does not provide a

mechanism to override this behaviour. Experimentation showed that key-presses caused

Chapter 7. Experimental Setup 97

increases in the current drawn and directly affected the result. It was decided to begin

all measurements 10s after the display turned off.

To mobile phone

Mobile phone charger

V

A

Mobile phone charger

Figure 7.2: Experimental design used to determine power consumption.

The power consumption of the idle operation of the mobile phone were first measured.

The mobile phone was left idle and the current and voltage were measured every second

for 200s.

Thereafter, the power consumption of each SL visualization method was measured. Each

phrase of each method was measured separately. The Java ME application was modified

to play a selected phrase using a selected method repeatedly until this process was

manually interrupted. The current and voltage were measured every second for 40s.

This method was repeated for each phrase of each method. These values were then used

to compute an average power consumption per method across all phrases.

The power consumption P in an electrical circuit of current I and voltage V is given by

the mathematical expression in equation 7.1.

P = IV (7.1)

Similar to the intelligibility experimentation, the results of the four methods were com-

pared amongst each other to determine whether or not they were significantly different.

Pair-wise comparisons were carried out between the methods by means of hypothesis

testing using a Z-test with a 95% confidence interval. The null hypothesis stated that

there was, in fact, a significant difference between the pair being compared, in terms

of the current drawn, while the alternate hypothesis stated that this difference was not

significant. These results were used to draw conclusions.

Chapter 7. Experimental Setup 98

7.3 Bandwidth Consumption

The bandwidth consumption of each method is directly related to the file size of the

animations. The files for SLVid, Facial and NoFacial were all video files in the format

described in a previous chapter while those of LowRes were M3G files. We determined

the size of the file for each phrase in our dictionary. This was used to compute an

average. The averages of the four methods were then compared.

7.4 Summary

In this chapter, we have described the experiments we carried out in testing our research

question. We mentioned the three requirements of a feasible mobile phone-based com-

munication tool for the deaf, namely, feasibility in power and bandwidth usage and the

ability to render intelligible Sign Language. We also described the experiments that we

carried out to test for each requirement in detail.

Chapter 8

Results and Data Analysis

In this chapter, we present the results of the experiments explained in Chapter 7 and

present an analysis of those results.

8.1 Sign Language Intelligibility

For the purpose of the analysis, all answers marked as “I don’t know” were treated as

incorrect answers. Therefore, answers were strictly either correct or incorrect. Table

8.1 summarizes the number of correctly identified phrases and their percentages of the

total per test subject. Figure 8.1 is a graphical depiction of this data. Out of a total

256 viewings, 168 viewings, about 65% of the total, were identified correctly. The mean

number of phrases recognized correctly was 10.5, with a standard deviation of 1.8 in this

value. The number of correctly identified signs per person ranged between 13, about

81% of the total, and 6, about 38% of the total. This indicates diversity in test subjects.

Table 8.2 summarizes the number of viewings that were required before an attempt at

recognition was made. 181 attempts at recognition, about 70% of the total, were made

after only 1 viewing and an additional 58 attempts, about 23% of the total, were made

after only 2 viewings. This suggests that the majority of recognition attempts – 93%

– were made with conviction. Only 1 recognition attempt was made after more than 5

viewings. It was made after 6 viewings.

Table 8.3 summarizes the number of correctly identified phrases and their percentages

of the total per method and this data is depicted graphically in Figure 8.2. Surprisingly,

the sign language videos (SLVid) did not achieve 100% recognition. It fell short of this

expected value and scored 81% recognition. The Facial method was observed to achieve

a recognition rate that was comparable to that of SLVid (73%). The remaining two

99

Chapter 8. Results and Data Analysis 100

Table 8.1: Correctly identified phrases per test subject.

Subject Number Correct (out of 16) Percentage Correct (%)

1 9 56
2 13 81
3 12 75
4 6 38
5 12 75
6 13 81
7 8 50
8 11 69
9 11 69
10 10 62
11 10 62
12 12 75
13 11 69
14 10 62
15 10 62
16 10 62

Total 168 65

Figure 8.1: Percentage of correctly identified phrases per test subject.

methods, NoFacial and LowRes, achieved lower but similar recognition rates of about

54%.

We attempted to determine whether the differences between the recognition rates of

Chapter 8. Results and Data Analysis 101

Table 8.2: Number of viewings required before an attempt at recognition was made.

Number of Viewings
1 2 3 4 5 6 Total

A
n

sw
er Correct 146 17 3 1 0 1 168

Incorrect 35 41 10 0 2 0 88
Total 181 58 13 1 2 1 256

Table 8.3: Correctly identified viewings per method.

Method Number Correct (out of 64) Percentage Correct (%)

SLVid 52 81
Facial 47 73
NoFacial 34 53
LowRes 35 55
Total 168 65

Figure 8.2: Percentage of correctly identified phrases per method.

the methods were statistically significant. We used logistic regression in analysing the

dichotomous outcome variable where the outcomes were correct and incorrect identifi-

cation. The fact that each subject provided repeated samples was accounted for. Least

Squares Means were used to make pair-wise comparisons among the four methods. The

null hypothesis stated that there was no significant difference between the methods while

the alternate hypothesis stated that there was, in fact, a significant difference between

the methods. Table 8.4 summarizes the results of carrying out pair-wise differences in

Chapter 8. Results and Data Analysis 102

Least Squares Means for the methods with a 95% confidence interval.

Table 8.4: Differences of Least Squares Means for pair-wise comparisons between the
four methods.

Method 1 Method 2 Chi-Square p-value

Facial LowRes 6.29 0.0121
Facial NoFacial 8.23 0.0041
Facial SLVid 1.76 0.1852
LowRes NoFacial 0.11 0.7381
LowRes SLVid 16.49 < 0.0001
NoFacial SLVid 19.34 < 0.0001

It is observed that the Least Squares Comparison between recognition rates of the two

method pairs SLVid-Facial and LowRes-NoFacial yield very high p-values of 0.1852 and

0.7381, respectively. Therefore, in line with our initial speculation, the difference in

recognition rate between the two method pairs SLVid-Facial and LowRes-NoFacial is

not statistically significant.

Table 8.5 summarizes the number of correctly identified viewings per phrase. This data

is depicted graphically in Figure 8.3.

Table 8.5: Correctly identified viewings per phrase.

Phrase Number Correct (out of 16) Percentage Correct (%)

Help Me 16 100
South Africa 16 100
Toilet 16 100
Help You 15 94
Soccer 15 94
Good Evening 14 88
Hello 13 81
Water 12 75
Bus 11 69
Left 10 63
How 9 56
Right 8 50
Sick 6 38
Medicine 4 25
Doctor 2 13
Restaurant 1 6

It is observed that three phrases, ‘Help Me’, ‘South Africa’ and ‘Toilet’, achieved 100%

recognition. There was a wide range in recognition over the 16 phrases but no phrase was

completely unrecognizable. Only four phrases, ‘Sick’, ‘Medicine’, ‘Doctor’ and ‘Restau-

rant’, fell below 50% recognition. Figure 8.4 depicts the number of correct identifications

for each method, for each of these four phrases. As an example, it can be seen in Figure

Chapter 8. Results and Data Analysis 103

Figure 8.3: Percentage of correctly identified viewings per phrase.

8.4 that the word ‘Sick’ had a total of 6 correct identifications, 2 in the SLVid and Fa-

cial methods each, and 1 in the NoFacial and LowRes methods each. The most poorly

performing phrase was ‘Restaurant’ with only one correct identification in the SLVid

method. This phrase performed poorly across all methods and it is apparent that di-

alect variations in the school was the primary cause of the low recognition rate in this

phrase.

While performing the experiment, it was observed that subjects regularly and repeatedly

identified the phrase ‘Sick’ as ‘Doctor’ and the phrase ‘Doctor’ as ‘Sick’. This was the

biggest cause of recognition errors in these two words. This initially suggested that these

signs may have been confused and mis-labelled at the time of collection. On the other

hand, the word ‘Sick’ scored 6 correct identifications. We learned from the teachers that

different SASL dialects use these two signs interchangeably and they are identified in

context.

The word ‘Medicine’ scored 100% correct recognition using the SLVid method and 0%

in all other methods. Comments from test subjects indicated that a detail in the shape

and motion of the right hand in our animations changed the meaning of the sign from

‘Medicine’ to ‘Cool drink’. This was therefore an error with the animation of the sign.

At first glance, it appeared that non-manual gestures played a major role in sign lan-

guage intelligibility. The methods that included non-manual gestures (SLVid and Facial)

Chapter 8. Results and Data Analysis 104

Figure 8.4: Number of correct identifications per method for the four phrases with
recognition rates of less than 50%.

performed at least 20% better than those that did not (NoFacial and LowRes). However,

closer observation of the data revealed that the latter methods fell short in a few specific

phrases rather than in general. The most prominent of these phrases were ‘How’ and

‘Water’, and to some extent, ‘Right’. Figure 8.5 depicts the graphs of correct identi-

fications per method for each of these words. It is observed that, overall, the LowRes

and NoFacial methods performed significantly worse than SLVid and Facial for these

phrases. Across the three phrases, the SLVid and Facial methods scored a combined

recognition rate of 92% whereas NoFacial and LowRes scored a combined recognition

rate of 29%. This suggests that non-manual gestures may play a significant role only in

certain phrases.

Even though the percentage of correctly identified phrases per subject, per method

and overall are very encouraging, and suggest that we can in fact successfully display

intelligible sign language on mobile phones using all four methods, we analyze the reasons

for incorrect identifications. As mentioned in our experimental setup, subjects were

prompted to decide whether incorrect identifications made were due to the sign being

inappropriate or unclear. Figure 8.6 depicts the number of incorrect classifications that

were attributed to each of these factors for each phrase.

It is very clear that the majority of incorrect identifications – 61 viewings, about 70% of

Chapter 8. Results and Data Analysis 105

Figure 8.5: Number of correct identifications per method for the phrases in which
SLVid and Facial performed better than NoFacial and LowRes.

Figure 8.6: Frequency of reasons given for incorrect identification of phrases.

Chapter 8. Results and Data Analysis 106

incorrect identifications – were due to inappropriateness of the sign, and only 27 viewings,

about 30% of incorrect identifications, were due to unclearness of the sign on the mobile

phone screen. Therefore, it has clearly been demonstrated that the size limitation on

the mobile phone screen is not a significant drawback to displaying intelligible sign

language on the mobile phone. Also, with the exception of the phrase ‘Medicine’ which

registered a low recognition rate due to incorrect animation and phrases such as ‘How’

which suffered low recognition rates due to a lack of non-manual gestures, all remaining

incorrect identifications were found to be caused by test subjects not being familiar with

the dialect of phrases. This was in spite of our efforts to eliminate this factor, as has

been explained. Comments such as “I don’t use that sign”, “I do that sign like this...”

and “That sign is mostly used by this other group” were oft repeated. Cox et al. [29]

also found this factor to be a significant challenge.

Subject 4, that had the lowest number of correct identifications, revealed that she had

only recently joined the school and the dialect she used differed in many ways to the

one used in the school. We also learned from multiple teachers that students had a

sub-dialect of their own that had non-standard variations of certain signs.

We have stated our results as is. For investigative purposes, we wished to obtain an

indication of the intelligibility of the four methods in the absence of factors that did not

relate to clearness on the mobile phone screen. We eliminated all samples, correct and

incorrect, of the four problematic words ‘Sick’, ‘Doctor’, ‘Medicine’ and ‘Restaurant’, all

of which rated poorly due to factors that were irrelevant with respect to the experimental

variable, as mentioned in detail. A total of 4×16 = 64 samples were removed reducing the

total number of samples from 256 to 192. Table 8.6 summarizes the updated percentage

of correctly indentified phrases after this removal.

Table 8.6: Updated number of correctly identified viewings per method after removal
of problematic words.

Method Number Correct (out of 48) Percentage Correct (%)

SLVid 44 92
Facial 44 92
NoFacial 33 69
LowRes 34 71
Total 155 81

It is observed from Table 8.6 that all results increase significantly with the overall recog-

nition rate increasing from 65% to 81%. The recognition rates for all methods is observed

to have increased significantly. It is very interesting to note that, even after this removal,

the trend in recognition rates of the methods remains consistent such that SLVid and Fa-

cial have the same recognition rate and NoFacial and LowRes have the same recognition

rate, as previously proven.

Chapter 8. Results and Data Analysis 107

8.2 Power Consumption

It was found that the voltage was constant to a high degree accuracy across all methods,

including the idle state of the phone. The average Voltage was 10.04V with a 0%

standard deviation in all significant figures of this result. This was not the case with

the current. Since power is the product of voltage and current – as given in equation

7.1 – and the voltage was found to be constant, the power is directly proportional to

the current. We therefore utilize the current alone to determine an increase in power

consumption between the idle state and the four SL visualization methods.

The average amount of current drawn in the idle state was 10.7 mA with a standard

deviation of 1.5mA. The average amount of current drawn Ī for each phrase of each

method and the standard deviation in the mean s is summarized in Table 8.7.

Clearly, all three methods that rendered SL as video – SLVid, Facial and NoFacial –

drew very comparable amounts of current. LowRes, on the other hand, drew a different

and lower amount of current. This is further strengthened by the data in Table 8.8 which

summarizes the average amount of current drawn Ī over all phrases for each method and

the standard deviation in the mean s .

We sought to determine whether the current drawn by the three video-based methods

were statistically equivalent, in accordance with observation. We also sought to deter-

mine whether the three video-based methods did in fact statistically differ from LowRes

in this respect, in accordance with observation. We carried out pair-wise comparisons

between the methods by means of hypothesis testing using a Z-test with a 95% confi-

dence interval. The null hypothesis stated that there was, in fact, a significant difference

between the pair being compared, in terms of the current drawn, while the alternate hy-

pothesis stated that this difference was not significant. Table 8.9 summarizes the Z-test

result for each pair-wise comparison.

As per our initial speculation, it is observed that the pairs Facial-NoFacial, Facial-SLVid

and NoFacial-SLVid have very large p-values and support the alternate hypothesis that

the difference in mean current drawn by all these methods is not significant – they are

all equivalent. Therefore, for the remainder of this section, we treat them as one and

refer to SLVid, Facial and NoFacial, collectively, as the video-based methods. The three

pairs involving LowRes are observed to have very small p-values and support the null

hypothesis that the difference between LowRes and the other three methods is, in fact,

significant.

It should be noted that, while it was expected that the video-based methods would all

have comparable power consumption rates and would differ from LowRes, which displays

Chapter 8. Results and Data Analysis 108

Table 8.7: Average amount of current drawn Ī for each phrase of each method and
the standard deviation in the mean s.

P
h

ra
se

S
LV

id
F
ac

ia
l

N
oF

ac
ia

l
L

ow
R

es
Ī

(m
A

)
s

(m
A

)
Ī

(m
A

)
s

(m
A

)
Ī

(m
A

)
s

(m
A

)
Ī

(m
A

)
s

(m
A

)

B
us

32
.8

3.
6

32
.0

2.
9

32
.3

3.
3

23
.0

3.
1

D
oc

to
r

31
.7

2.
5

30
.8

2.
9

32
.2

3.
1

23
.7

2.
7

G
oo

d
E

ve
ni

ng
32

.1
2.

3
30

.8
3.

6
32

.2
3.

7
23

.2
2.

5
H

el
lo

33
.0

3.
1

32
.0

3.
0

31
.2

2.
9

23
.0

2.
7

H
el

p
M

e
31

.7
2.

5
31

.4
4.

4
31

.1
3.

1
23

.4
2.

8
H

el
p

Y
ou

31
.3

3.
0

31
.4

2.
9

31
.6

5.
1

24
.1

2.
9

H
ow

31
.6

2.
7

32
.4

3.
6

32
.2

3.
1

24
.1

2.
9

L
ef

t
31

.8
2.

3
32

.7
3.

4
32

.5
3.

0
24

.1
3.

5
M

ed
ic

in
e

31
.1

2.
4

31
.4

2.
4

32
.0

3.
3

23
.9

2.
8

R
es

ta
ur

an
t

31
.9

3.
2

32
.5

3.
5

31
.0

3.
0

23
.0

2.
4

R
ig

ht
31

.2
2.

3
32

.0
2.

7
32

.6
3.

5
23

.7
2.

5
Si

ck
32

.0
3.

4
32

.7
3.

8
31

.7
3.

6
23

.9
2.

5
So

cc
er

31
.6

2.
7

31
.0

2.
7

32
.2

3.
1

23
.7

2.
5

So
ut

h
A

fr
ic

a
32

.1
2.

5
33

.2
3.

2
32

.1
3.

3
25

.7
3.

5
T

oi
le

t
31

.9
2.

7
31

.7
2.

9
32

.1
3.

0
25

.0
3.

7
W

at
er

31
.9

2.
7

31
.7

2.
9

32
.1

3.
0

23
.8

2.
4

Table 8.8: Average amount of current drawn Ī by each method and the standard
deviation in the mean s.

Method Ī (mA) s (mA) 95% Confidence Interval

SLVid 31.9 2.8 (31.6 , 32.1)
Facial 31.9 3.3 (31.6 , 32.1)
NoFacial 31.9 3.4 (31.7 , 32.2)
LowRes 24.0 3.0 (23.6 , 24.1)

Chapter 8. Results and Data Analysis 109

Table 8.9: Z-test result for each pair-wise comparison.

Method 1 Method 2 t p-value

Facial LowRes 45.51 <0.005
Facial NoFacial -0.66 0.73
Facial SLVid -0.07 0.95
LowRes NoFacial -45.68 <0.005
LowRes SLVid -48.30 <0.005
NoFacial SLVid 0.63 0.53

SL as a 3D model, it was against expectation to note that the latter method had a lower

power consumption than the former methods. It was expected that displaying SL as a

3D model would consume more power than displaying it as video since it requires extra

processing such as computing vertex locations and motions.

Table 8.10 summarizes the increase in current drawn (and, therefore, the power con-

sumption) between the idle state of the phone and the SL visualization methods. This

data is depicted graphically in Figure 8.7. For the sake of consistency with the final

result of other sections, the graph of Figure 8.7 treats each of the video-based methods

separately.

Table 8.10: Increase in current drawn Ī, standard deviation s and the percentage
increase in current drawn.

Method Increase in Ī (mA) s (mA) Percentage increase (%)

SLVid 21.2 3.4 198
Facial 21.2 3.7 198
NoFacial 21.2 3.7 198
LowRes 13.3 3.3 124

It should be noted that these results are likely device-specific and possibly only apply

to the mobile phone we used.

8.3 Bandwidth Consumption

Table 8.11 summarizes the file size for each phrase in each method which is directly

proportional to the bandwidth usage. This data is depicted graphically in Figure 8.8.

The individual file sizes are not of particular significance since they may vary depending

on the complexity and duration of the animation as seen in the data. The comparison in

file size between the methods for each phrase is of relevance and a trend is observed. It

can clearly be seen that the file size for SLVid animations significantly exceed that of all

other methods for all phrases. It can also be seen that Facial and NoFacial animation

Chapter 8. Results and Data Analysis 110

Figure 8.7: Percentage increase in power consumption by each method.

Table 8.11: File size for each phrase of each SL visualization method.

Phrase
File Size (Bytes) of method

SLVid Facial NoFacial LowRes

Bus 358 845 127 845 126 742 88 786
Doctor 331 137 120 910 113 974 89 938
Good Evening 313 987 167 314 166 394 93 178
Hello 317 585 94 179 89 042 87 994
Help Me 265 067 147 690 146 199 91 234
Help You 275 540 153 751 152 552 91 306
How 310 837 160 820 136 081 95 122
Left 272 507 107 780 96 470 87 994
Medicine 360 854 185 147 154 501 91 234
Restaurant 283 002 138 142 129 401 91 234
Right 231 622 105 852 94 252 87 994
Sick 324 624 162 552 134 957 91 234
Soccer 251 791 129 235 128 085 91 234
South Africa 300 192 142 247 140 441 91 774
Toilet 222 723 141 216 140 514 91 234
Water 247 757 111 376 104 619 89 938
Total 4 668 070 2 196 056 2 048 935 1 451 428

files have comparable file sizes but animation files for Facial slightly exceed those of

NoFacial for all phrases. LowRes animation files are seen to have the smallest file size

for all phrases. Table 8.12 summarizes the average file size of each method and the

Chapter 8. Results and Data Analysis 111

Figure 8.8: File size of each phrase for each SL visualization method.

percentage standard deviation from the mean, and this data is depicted graphically in

Figure 8.9.

Table 8.12: Average file size of each method and the percentage standard deviation
from the mean.

Method Average File Size (Bytes) Percentage Std. Dev. (%)

SLVid 291 754 14.5
Facial 137 254 18.4
NoFacial 128 389 17.9
LowRes 90 714 2.1

It is observed that SLVid, Facial and NoFacial have a large variation in file size of about

15%. This is not the case with LowRes which has a very low variation in file size of only

2% across all phrases. The large variation in file size for the methods that make use of

video is attributed to the fact that as the complexity in the phrase increases, so does

its duration and the number of frames in the video file. On the other hand, increases

in complexity and duration of M3G animations are accounted for by appending only

animation data of particular vertices that are involved in the added complexity to the

original file.

It is also observed that Facial and NoFacial have comparable file sizes. Both, the file size

and the variation in file size are observed to be similar. In this respect, it is observed

Chapter 8. Results and Data Analysis 112

Figure 8.9: Average file size of each method.

that the inclusion of non-manual gestures does not have a significant impact on file size.

8.4 Summary of Results and Discussion

Table 8.13 summarizes the performance of each SL visualization method investigated in

terms of the factors considered in this chapter.

LowRes provides a high intelligibility rate, although not as high as any other method,

but has the lowest power and bandwidth consumption and the lowest variation in file size

across phrases. Facial and NoFacial have comparable bandwidth and power consumption

and variation in file size, but Facial has a higher intelligibility rate than NoFacial. The

performance of these two methods generally falls in between LowRes and SLVid. We

conclude that non-manual gestures do affect the intelligibility of the method but only

for certain phrases. SLVid, while providing the highest intelligibility rate, also has the

highest bandwidth consumption, as well as a high variation in file size and high power

consumption as compared to other methods.

We have shown that all four methods can be used effectively in SL visualization on

mobile phones with cost advantages and disadvantages.

Chapter 8. Results and Data Analysis 113

Table 8.13: Summary of the performance of each SL visualization method in terms
of the factors considered.

SLVid Facial NoFacial LowRes Average

Intelligibility
(%) (reduced
external
factors)

92 92 69 71 81

Intelligibility
(%) (with
external
factors)

81 73 53 55 65

Power
Consumption
Increase (%)

198 198 198 124 180

Bandwidth
Consumption
(Bytes)

291 754 137 254 128 389 90 714 162 028

Variation in
File Size (%)

14.5 18.4 17.9 2.1 13.2

8.5 Summary

We have presented the results of our experiments. Our analyses have indicated that it

is, in fact, possible to use all four methods of SL visualization to effectively display SL

on mobile phones.

Chapter 9

Conclusion and Directions for

Future Research

This thesis has made several important contributions to the field of sign language vi-

sualization on mobile phones as well as Machine Translation between spoken and sign

languages. We evaluated the state of APIs in the popular mobile development language

Java ME and showed that many mobile phones provide the APIs required to use them

as service-delivery devices for sign language Machine Translation systems.

We also showed, for the first time, that it is possible to display intelligible South African

Sign Language (SASL) on mobile phones using a variety of methods. We further eval-

uated the power consumption and bandwidth usage of displaying SASL on the mobile

phone. These results are an invaluable asset to any project that focuses on developing

mobile phone-based sign language visualization methods.

Last but not least, we developed the first prototype system that provides automated

translation from spoken to sign language and sign to spoken language, with the service

delivered to users on a mobile phone. In so doing, we demonstratively showed that the

use of mobile phones as service-delivery devices in such a translation system is feasible.

We provide two sets of directions for future research.

9.1 Feasibility Experimentation

In this thesis we made use of the Sony Ericsson C905. This mobile phone has an

average size screen. Trends in mobile phone technology are observed to be slanting

heavily towards large displays such as all modern iPhones, the Sony Ericsson Satio and

114

Chapter 8. Results and Data Analysis 115

XPERIA, the HTC Magic and Desire and the Samsung S8000 Jet. We recommend that

the intelligibility testing be extended to different display sizes.

Similarly, we recommend that the power consumption associated with the four sign

language visualization methods be investigated on a variety of mobile phones as a com-

parison with our results.

9.2 The iSign Mobile Framework

The iSign Mobile Framework has been developed with scalability in mind. All compo-

nents of the framework may be subject to development. We recommend that switching

to a standard protocol such as the Session Initiation Protocol (SIP) be investigated.

This may make it possible to link the iSign Framework to other communication systems

that use SIP.

The interpretation services in the framework may also be improved. Many systems

that the SASL Group has produced have not yet been incorporated into the framework.

Examples are the hand-shape recognition system of Segers [106], the facial expression

recognition and classification system of Whitehill [144], the gesture recognition system of

Rajah [99] and Van Wyk’s sign language visualization system Man [146]. Incorporating

these systems into the framework will provide a more robust translation service.

Also, many requirements were taken into consideration when developing the iSign mobile

application. Simplicity and ease of use were two very important considerations taken

into account but were not a focus of the research. We suggest that usability testing be

carried out on the iSign mobile phone application to cater for the special needs of the

deaf, if required.

9.3 Concluding Remarks

This research has served as an extremely educational experience for this researcher. Our

iSign Mobile Framework is a significant milestone for the SASL Group. We hope that

this system, as well as our feasibility study, serves as a firm foundation for research and

learning of many other researchers in the same group and worldwide.

Appendix A

The “TestModel” Application

Listings A.1 and A.2 are source code listings for the two files TestModel.java and Test-

ModelCanvas.java of the TestModel application. The TestModel class is the MIDlet.

Listing A.1: TestModel.java

import javax.microedition.lcdui.CommandListener;

import javax.microedition.lcdui.Displayable;

import javax.microedition.lcdui.Display;

import javax.microedition.midlet.MIDlet;

import javax.microedition.lcdui.Command;

import javax.microedition.midlet.MIDletStateChangeException;

public class TestModel extends MIDlet implements CommandListener

{

private static MIDlet self = null;

private TestModelCanvas thecanvas = null;

private Display display = null;

protected void startApp () throws MIDletStateChangeException

{

display = Display.getDisplay(this);

thecanvas = new TestModelCanvas ();

thecanvas.addCommand(new Command("Quit", Command.EXIT , 1));

thecanvas.setCommandListener(this);

thecanvas.start ();

display.setCurrent(thecanvas);

self = this;

}

public void commandAction(Command c, Displayable d) {

if(c.getCommandType () == Command.EXIT)

116

Appendix A. The “TestModel” Application 117

notifyDestroyed ();

}

protected void pauseApp ()

{

}

public static void die()

{

self.notifyDestroyed ();

}

protected void destroyApp(boolean unconditional)

throws MIDletStateChangeException

{

notifyDestroyed ();

}

}

Listing A.2: TestModelCanvas.java

import javax.microedition.m3g.Graphics3D;

import javax.microedition.m3g.Camera;

import javax.microedition.m3g.Transform;

import javax.microedition.m3g.Light;

import javax.microedition.m3g.World;

import javax.microedition.m3g.Loader;

import javax.microedition.m3g.Object3D;

import javax.microedition.lcdui.Graphics;

import javax.microedition.lcdui.game.GameCanvas;

public class TestModelCanvas extends GameCanvas implements Runnable {

World world = null;

Graphics3D g3d = null;

public TestModelCanvas ()

{

super(true);

setFullScreenMode(true);

loadWorld ();

}

private void loadWorld ()

{

try

{

Object3D [] tmpworld = Loader.load("/model.m3g");

Appendix A. The “TestModel” Application 118

for(int i = 0; i < tmpworld.length; i++)

{

if(tmpworld[i] instanceof World)

{

world = (World)tmpworld[i];

break;

}

}

tmpworld = null;

}

catch(Exception e)

{

System.out.println("Loading error!");

printe(e);

}

}

private void draw(Graphics g)

{

try

{

g3d = Graphics3D.getInstance ();

g3d.bindTarget(g, true , Graphics3D.ANTIALIAS

| Graphics3D.TRUE_COLOR | Graphics3D.DITHER);

g3d.render(world);

}

catch(Exception e)

{

printe(e);

}

finally

{

g3d.releaseTarget ();

}

}

public void start() {

Thread trd = new Thread(this);

trd.start ();

}

public void run() {

while(true) {

try {

draw(getGraphics ());

flushGraphics ();

try{ Thread.sleep (30); } catch(Exception e) {}

}

Appendix A. The “TestModel” Application 119

catch(Exception e) {

printe(e);

}

}

}

private void printe(Exception e) {

System.out.println(e.getMessage ());

}

}

Appendix B

The iSign Communication

Protocol

B.1 Signals

Tables B.1, B.2, B.3, B.4 and B.5 summarize the parameters, return values and descrip-

tion of each signal of the communication protocol. The signals have been sub-divided

according to the task to which they apply.

Table B.1: Signal pertaining to Login on the phone.

Signal Parameters Return Values Description

login –cellno –sessionid
〈or〉
–“Error”

Sends the pre-stored phone number and
pin. If login is successful, a session id is
returned. If not the phrase “Error” is
returned.

Table B.2: Signals pertaining to the Connect on the phone.

Signal Parameters Return Values Description

contacts –sessionid –[List of
contacts]

Retrieves a list of phones registered on
the framework that are currently logged
in and available.

connect –sessionid
–otherno

–“Waiting”
〈or〉
–“Not
available”

Attempts to connect to a phone. Return
values correspond to the target phone
being unavailable and waiting for it to
respond to the connect request.

setmode –sessionid
–mode

–Null
〈or〉
–“Error”

Sets the current capture and render
mode to either deaf (SASL) or hearing
(English) mode. Returns “Error” if the
connection was interrupted.

120

Appendix B. The iSign Communication Protocol 121

Table B.3: Signals pertaining to the Job Upload on the phone.

Signal Parameters Return Values Description

vidin –sessionid
–otherno
–[Video
File]
–fileno

–“OK”
〈or〉
–“Error”

Sends a SASL video message to be
processed and a response sent to the
target phone. Return values correspond
to success and failure of the upload
respectively.

wavin –sessionid
–otherno
–[Audio
File]
–fileno

–“OK”
〈or〉
–“Error”

Sends an English audio message to be
processed and a response sent to the
target phone. Return values correspond
to success and failure of the upload
respectively.

Table B.4: Signals pertaining to the Job Processing on the server.

Signal Parameters Return Values Description

getvidjob –None –“None”
〈or〉
–[directory,
destmode,
fileno,
clientno]

Queries for any unprocessed video jobs.
Returns “None” if there are no such jobs
or information on the file to be retrieved.

getwavjob –None –“None”
〈or〉
–[directory,
destmode,
fileno,
clientno]

Queries for any unprocessed audio jobs.
Returns “None” if there are no such jobs
or information on the file to be retrieved.

vidjobdone –fileno
–clientno

–Null Notification of successful completion of
SASL to English interpretation
processing.

wavjobdone –fileno
–clientno

–Null Notification of successful completion of
English to SASL interpretation
processing.

vidjobfailed –fileno
–clientno

–Null Notification of unsuccessful completion of
SASL to English interpretation
processing.

wavjobfailed –fileno
–clientno

–Null Notification of unsuccessful completion of
English to SASL interpretation
processing.

B.2 Database Tables

Tables B.6, B.7, B.8 and B.9 are data dictionaries for the tables in the MySQL database.

Appendix B. The iSign Communication Protocol 122

Table B.5: Signal pertaining to the Job Retrieval on the phone.

Signal Parameters Return Values Description

querymsg –sessionid ‘–‘None”
〈or〉
–[URL of
interpreted
file to be
retrieved]

Queries for any interpreted messages
directed at this phone. Returns “None”
or a URL to the file to be retrieved.

Table B.6: Data dictionary of the USER table.

Field Type Description

no int(10) Primary key: Unique integer assigned to each phone
registered on the service.

cellno text Cell phone number of the mobile phone.
pin text Pin number of the mobile phone, used when logging in.
nick varchar(20) Nickname specified by the mobile phone user, to be

displayed to other contacts.
session text Uniquely generated session id generated according to the

time of login by the PHP web-service.
accesstime datetime Date and time of login.
connect int(10) Field used to connect to other contacts or be connected to.

Values are: 0 (available for connection), -1 (not availble,
connecting to another contact), [any integer higher than 0]
(not available - received connection request from phone
[integer greater than 0]).

isignmode enum(‘0’, ‘1’, ‘2’) Stores the capture and render mode of the phone. Values
are: 0 (Hearing mode), 1 (Deaf mode), 2 (Translator mode
- both).

Table B.7: Data dictionary of the CONTACTS table.

Field Type Description

userno int(10) Foreign key of field ‘No’ in table User.
contactno int(10) Foreign key of field ‘No’ in table User.
active enum(‘0’, ‘1’) Specifies whether or not the invite sent by the contact

specified by field ‘contactno’ has been accepted by the
contact specified by field ‘userno’. It may also be used to
block this contact after the invite has been accepted.

Appendix B. The iSign Communication Protocol 123

Table B.8: Data dictionary of the VIDEOIN table.

Field Type Description

no int(10) Foreign key of field ‘No’ in table User. Specifies the phone
from which the unprocessed video job came.

destno int(10) Foreign key of field ‘No’ in table User. Specfies the phone
to which the processed video job should be delivered.

fileno int(10) Integer uniquely identifying each video job sourcing from a
phone. Incremented on the phone.

status tinyint(3) Specifies the status of the video job in the translation
pipeline. Values are: 0 (unprocessed), 1 (under process), 2
(completed successfully), 3 (completed unsuccessfully).

Table B.9: Data dictionary of the WAVEIN table.

Field Type Description

no int(10) Foreign key of field ‘No’ in table User. Specifies the phone
from which the unprocessed audio job came.

destno int(10) Foreign key of field ‘No’ in table User. Specfies the phone
to which the processed audio job should be delivered.

fileno int(10) Integer uniquely identifying each audio job sourcing from a
phone. Incremented on the phone.

status tinyint(3) Specifies the status of the audio job in the translation
pipeline. Values are: 0 (unprocessed), 1 (under process), 2
(completed successfully), 3 (completed unsuccessfully).

Bibliography

[1] ISO/IEC 14496–2:2004, Information technology—Coding of audio-visual objects—

Part 2: Visual.

[2] ISO/IEC 19775–1:2008, Information technology—Computer graphics and image

processing—Extensible 3D (X3D). [Online] Available at http://www.web3d.or

g/x3d/specifications/ISO-IEC-19775-1.2-X3D-AbstractSpecification/index.html,

(Accessed: January 2010).

[3] ISO/IEC FCD 19774:200x, Information technology—Computer graphics and im-

age processing—Humanoid animation (H-Anim). [Online] Available at http://h-

anim.org/Specifications/H-Anim200x/ISO IEC FCD 19774/, (Accessed: January

2010).

[4] ISO/IEC FDIS 14772–1:1997, Information technology—Computer graphics

and image processing—The Virtual Reality Modeling Language (VRML)—

Part 1: Functional specification and UTF-8 encoding. [Online] Available at

http://www.web3d.org/x3d/specifications/vrml/ISO-IEC-14772-VRML97/, (Ac-

cessed: January 2010).

[5] L. Aarnio. Small-scale Java virtual machines. Citeseer. doi: 10.1.1.25.1651.

[6] A.K. Adesemowo and W.D. Tucker. Affective gesture feedback instant messaging

on handheld. In Proceedings of the 5th IEE International Conference on 3G Mobile

Communication Technologies, pages 499–503, 2004.

[7] O. Al-Jarrah and A. Halawani. Recognition of gestures in arabic sign language

using neuro-fuzzy systems. Artificial Intelligence, 133(1–2):117–138, 2001.

[8] K.B. Atkinson. Close range photogrammetry and machine vision. Whittles, 1996.

[9] AT&T. AT&T video relay service official website. [online] available at http://ww

w.attvrs.com/, (Accessed: April 2009).

124

Bibliography 125

[10] Australian Communication Exchange. Australian Communication Exchange’s Na-

tional Relay Service official website. [Online] Available at http://www.relayservic

e.com.au/, (Accessed: April 2009).

[11] Autodesk. Autodesk Maya. [Online] Available at http://usa.autodesk.com/sadsk

/servlet/index?id=7635018&siteID=123112, (Accessed: November 2008).

[12] I. Baran and J. Popović. Automatic rigging and animation of 3D characters.

In Proceedings of the 2007 ACM SIGGRAPH International Conference, page 72.

ACM, 2007.

[13] M. Bastioni. New mesh model in MakeHuman 0.8. 2005. [Online] Available at htt

p://www.dedalo-3d.com/docs/2005-12-01-new-model.pdf, (Accessed: June 2009).

[14] M. Bastioni, S. Re, and S. Misra. Ideas and methods for modeling 3D human

figures. ACM Bangalore, 2008.

[15] F. Bernardini and H. Rushmeier. The 3D model acquisition pipeline. In Computer

Graphics Forum, volume 21, pages 149–172. John Wiley & Sons, 2002.

[16] Blender Foundation. Blender official website. [Online] Available at http://www.b

lender.org/, (Accessed: January 2010).

[17] Blender Foundation. Blender version 2.49 official website. [Online] Available at ht

tp://www.blender.org/development/release-logs/blender-249, (Accessed: January

2010).

[18] W. Böhler and A. Marbs. 3D scanning instruments. Proceedings of the CIPA WG,

6:1–2, 2002.

[19] F.G. Bowe. Deaf and hard of hearing Americans’ instant messaging and e-mail

use: A national survey. American Annals of the Deaf, 147(4):6–10, 2002.

[20] H. Brashear, V. Henderson, K.H. Park, H. Hamilton, S. Lee, and T. Starner.

American sign language recognition in game development for deaf children. In

Proceedings of the 8th International ACM SIGACCESS Conference on Computers

and Accessibility, page 86. ACM, 2006.

[21] F. Buttussi, L. Chittaro, and D. Nadalutti. H-animator: a visual tool for model-

ing, reuse and sharing of X3D humanoid animations. In Proceedings of the 11th

International Conference on 3D Web Technology, page 117. ACM, 2006.

[22] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary

topological meshes. Computer-Aided Design, 10(6):350–355, 1978.

Bibliography 126

[23] A. Cavender, R.E. Ladner, and E.A. Riskin. Mobileasl:: intelligibility of sign

language video as constrained by mobile phone technology. In Proceedings of the

8th International ACM SIGACCESS Conference on Computers and Accessibility,

page 78. ACM, 2006.

[24] CGSociety. Comparison of 3D tools. [Online] Available at http://wiki.cgsociety.o

rg/index.php/Comparison of 3d tools, (Accessed: January 2010).

[25] L. Chittaro, F. Buttussi, and D. Nadalutti. MAge-AniM: a system for visual

modeling of embodied agent animations and their replay on mobile devices. In

Proceedings of the Working Conference on Advanced Visual Interfaces, page 351.

ACM, 2006.

[26] CMU Sphinx Project Team. CMU Sphinx project official website. [Online] Avail-

able at http://cmusphinx.sourceforge.net/wordpress/, (Accessed: April 2009).

[27] Comcast Team. Comcast official website. [Online] Available at http://www.comc

ast.net/videomail/, (Accessed: April 2008).

[28] J. Connan. Integration of signed and verbal communication: South African sign

language recognition and animation. [Online] Available at http://www.coe.uwc.a

c.za/index.php/SASL.html, (Accessed: April 2010).

[29] S. Cox, M. Lincoln, J. Tryggvason, M. Nakisa, M. Wells, M. Tutt, and S. Abbott.

TESSA, a system to aid communication with deaf people. In Proceedings of the 5th

International Acm Conference On Assistive Technologies, page 212. ACM, 2002.

[30] E. Dolnick. Deafness as culture. Atlantic Monthly, 272(3):37–53, 1993.

[31] D.W.H. Doo. A subdivision algorithm for smoothing down irregular shaped poly-

hedrons. In Proceedings of the Conference on Interactive Techniques in Computer

Aided Design, pages 157–165, 1978.

[32] R.M. Engelke, K. Colwell, and R.W. Schultz. Telecommunication device for

the deaf with interrupt and pseudo-duplex capability, July 5 1994. US Patent

5,327,479.

[33] R.M. Engelke, K. Colwell, R.W. Schultz, J. Hilliard, and T. Vitek. Telecommu-

nication device for the deaf with automatic transmission capability, July 11 1995.

US Patent 5,432,837.

[34] R.M. Engelke, K. Colwell, R.W. Schultz, J. Hilliard, and T. Vitek. Telecommu-

nication device operating under an enhanced TDD protocol, May 14 1996. US

Patent 5,517,548.

Bibliography 127

[35] R.M. Engelke and K.R. Colwell. Telecommunications device with automatic code

detection and switching, September 25 1990. US Patent 4,959,847.

[36] eSpeak Project Team. eSpeak project official website. [Online] Available at http:

//espeak.sourceforge.net/, (Accessed: April 2009).

[37] Eyejot Team. Eyejot official website. [Online] Available at http://www.eyejot.co

m/, (Accessed: April 2009).

[38] R. Farmer. Instant messaging—collaborative tool or educator’s nightmare? In

Proceedings of the North American Web-based Learning Conference, 2003.

[39] Festival Project Team. Festival project official website. [Online] Available at

http://www.cstr.ed.ac.uk/projects/festival/, (Accessed: April 2009).

[40] S. Foster. Communication as social engagement: implications for interactions

between deaf and hearing persons. Scandinavian Audiology, 27(4):116–124, 1998.

[41] J. Francik and P. Fabian. Animating sign language in the real time. In Proceedings

of the Conference on Applied Informatics, pages 276–281. Citeseer, 2002.

[42] FreeTTS Project Team. FreeTTS project official website. [Online] Available at h

ttp://freetts.sourceforge.net/, (Accessed: April 2009).

[43] E. Giguere. The Information Module profile. August 2004. [Online] Available at

http://developers.sun.com/mobility/imp/impintro/, (Accessed: January 2010).

[44] M. Glaser and W.D. Tucker. Telecommunications bridging between Deaf and

hearing users in South Africa. In Proceedings of the Conference and Workshop on

Assistive Technologies for People with Vision and Hearing Impairments. Citeseer.

[45] M. Glaser and W.D. Tucker. Web-based telephony bridges for the Deaf. In Proceed-

ings of the South African Telecommunications Networks and Applications Confer-

ence, Wild Coast Sun, South Africa, 2001. Citeseer.

[46] S.M. Halawani. Arabic sign language translation system on mobile devices. Com-

puter Science and Network Security, 8(1):251, 2008.

[47] A. Hameed. Information and communication technologies as a new learning tool

for the deaf. Relation, 10(1.129):7856, 2009.

[48] H-Anim Working Group. H-Anim Working Group official website. [Online] Avail-

able at http://h-anim.org/, (Accessed: January 2010).

Bibliography 128

[49] J.L. Hernandez-Rebollar, N. Kyriakopoulos, and R.W. Lindeman. A new instru-

mented approach for translating American sign language into sound and text.

In Proceedings of the 6th IEEE International Conference on Automatic Face and

Gesture Recognition, pages 547–552, 2004.

[50] B. Hopkins. MIDP 3.0 features: Inter-MIDlet communication and events. October

2009. [Online] Available at http://java.sun.com/developer/technicalArticles/java

me/midp3 enhance/, (Accessed: January 2010).

[51] S. Igi, M. Tamaru, Y. Yamamoto, M. Ujitani, and S. Sugita. Sign language synthe-

sis for mobile environments. In Proceedings of the 11th International Conference

in Central Europe on Computer Graphics, Visualization and Computer Vision.

Citeseer, 2003.

[52] D. Jacka, A. Reid, B. Merry, and J. Gain. A comparison of linear skinning tech-

niques for character animation. In Proceedings of the 5th International Conference

on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa,

pages 29–31. Citeseer, 2007.

[53] Java Community Process Team. JSR 215: The Java Community Process version

2.6. [Online] Available at http://jcp.org/en/jsr/detail?id=215, (Accessed: June

2008).

[54] Java Community Process Team. JSR 913: The Java Community Process version

2.0. [Online] Available at http://jcp.org/en/jsr/detail?id=913, (Accessed: June

2008).

[55] Java Community Process Team. Java Community Process official website. [Online]

Available at http://www.jcp.org/, (Accessed: January 2010).

[56] Java Community Process Team. JCP 2 procedures overview. [Online] Available

at http://www.jcp.org/en/procedures/overview, (Accessed: January 2010).

[57] Java Community Process Team. JCP 2: Process document. May 2009. [Online]

Available at http://www.jcp.org/en/procedures/jcp2/, (Accessed: January 2010).

[58] Java Community Process Team. JSR 135: Mobile Media API [Online] Available

at http://www.jcp.org/en/jsr/detail?id=135, (Accessed: January 2010).

[59] Java Community Process Team. JSR 184: Mobile 3D Graphics API [Online]

Available at http://www.jcp.org/en/jsr/detail?id=184, (Accessed: January 2010).

[60] Java Community Process Team. JSR 195: Information Module profile. [Online]

Available at http://www.jcp.org/en/jsr/detail?id=195, (Accessed: January 2010).

Bibliography 129

[61] Java Community Process Team. JSR 242: Digital Set Top Box profile. [Online]

Available at http://jcp.org/en/jsr/detail?id=242, (Accessed: January 2010).

[62] Java Community Process Team. JSR 30: Connected, Limited Device configu-

ration version 1.0. [Online] Available at http://www.jcp.org/en/jsr/detail?id=30,

(Accessed: January 2010).

[63] Java Community Process Team. JSR 30: Connected, Limited Device configura-

tion version 1.1. [Online] Available at http://www.jcp.org/en/jsr/detail?id=139,

(Accessed: January 2010).

[64] Java Community Process Team. JSR 36: Connected Device configuration. [Online]

Available at http://www.jcp.org/en/jsr/detail?id=36, (Accessed: January 2010).

[65] Java Community Process Team. JSR 37: Mobile Information Device profile. [On-

line] Available at http://www.jcp.org/en/jsr/detail?id=37, (Accessed: January

2010).

[66] Java Community Process Team. JSR 82: Java APIs for Bluetooth. [Online] Avail-

able at http://www.jcp.org/en/jsr/detail?id=82, (Accessed: January 2010).

[67] M.W. Kadous. Machine recognition of Auslan signs using PowerGloves: Towards

large-lexicon recognition of sign language. In Proceedings of the Workshop on the

Integration of Gesture in Language and Speech, 1996.

[68] K. Karpouzis, G. Caridakis, S.E. Fotinea, and E. Efthimiou. Educational resources

and implementation of a Greek sign language synthesis architecture. Computers

& Education, 49(1):54–74, 2007.

[69] E. Keating and G. Mirus. American sign language in virtual space: Interactions

between deaf users of computer-mediated video communication and the impact of

technology on language practices. Language in Society, 32(05):693–714, 2004.

[70] R. Kennaway. Experience with and requirements for a gesture description language

for synthetic animation. Gesture-Based Communication in Human-Computer In-

teraction, pages 449–450, 2004.

[71] Khronos Group. OpenGL ES official website. [Online] Available at http://www.k

hronos.org/opengles/, (Accessed: January 2010).

[72] Khronos Group. OpenGL official website. [Online] Available at http://www.open

gl.org/, (Accessed: January 2010).

[73] J. Knudsen. Wireless Java: developing with J2ME. Apress, 2003.

Bibliography 130

[74] J. Knudsen. The Information Module profile. November 2002. [Online] Available at

http://developers.sun.com/mobility/midp/articles/midp20/, (Accessed: January

2010).

[75] W.S. Lee and N. Magnenat-Thalmann. Virtual body morphing. In Proceedings of

the 14th Conference on Computer Animation. Citeseer, 2001.

[76] R.H. Liang and M. Ouhyoung. A real-time continuous gesture recognition system

for sign language. In Proceedings of the International Conference on Automatic

Face and Gesture Recognition, pages 558–567, 1998.

[77] C. Loop. Smooth subdivision surfaces based on triangles. Master’s thesis, Depart-

ment of Mathematics, University of Utah, 1987.

[78] Z. Ma and W.D. Tucker. Adapting x264 to asynchronous video telephony for

the Deaf. In Proceedings of the South African Telecommunications Networks and

Applications Conference, 2008.

[79] MakeHuman Project Team. MakeHuman project official website. [Online] Avail-

able at http://www.makehuman.org/, (Accessed: April 2009).

[80] M.A. Mandel. ASCII-Stokoe notation: A computer-writable transliteration system

for Stokoe notation of American sign language. [Online] Available at http://www

.speakeasy.org/ mamandel/ASCII-Stokoe.html, (Accessed: January 2008).

[81] Microsoft Corporation. Microsoft Speech API official webpage. [Online]

Available at http://www.microsoft.com/speech/speech2007/speechdevarticle.msp

x, (Accessed: January 2010).

[82] MobiX3D Project Team. MobiX3D project official website. [Online] Available at

http://hcilab.uniud.it/MobiX3D/, (Accessed: April 2009).

[83] S. Morrissey. Assistive translation technology for deaf people: translating into and

animating Irish sign language. 2008. [Online] Available at http://doras.dcu.ie/15

199/1/Morrissey icchp 08.pdf, (Accessed: April 2009).

[84] S. Morrissey and A. Way. An example-based approach to translating sign lan-

guage. In Workshop on Example-Based Machine Translation, pages 109–116,

Phuket, Thailand, 2005. Citeseer.

[85] L. Muir, I. Richardson, and S. Leaper. Gaze tracking and its application to video

coding for sign language. In Picture Coding Symposium, pages 321–325. Citeseer,

2003.

Bibliography 131

[86] L.J. Muir and I.E.G. Richardson. Perception of sign language and its applica-

tion to visual communications for deaf people. Deaf Studies and Deaf Education,

10(4):390, 2005.

[87] T. Mullen and T. Roosendaal. Introducing character animation with blender.

Sybex, 2007.

[88] N. Naidoo. Gesture recognition using feature vectors. Master’s thesis, University

of the Western Cape, 2009.

[89] Y.J. Oh, K.H. Park, H. Jang, D.J. Kim, J.W. Jung, and Z. Bien. A development

of sign language avatar for text to sign translator. In Proceedings of the Korea

International Conference on Intelligent Systems, pages 1141–1145. Korea Institute

of Intelligent Systems, 2005.

[90] Oracle Corporation. The Java Virtual Machine specification. [Online] Available at

http://java.sun.com/docs/books/vmspec/, (Accessed: January 2010).

[91] E. Ort. FAQs: Java virtual machine and C virtual machine. March 2001. [Online]

Available at http://developers.sun.com/mobility/configurations/questions/vmdif

f/, (Accessed: January 2010).

[92] C.E. Ortiz. Summary of CLDC-based profiles. June 2006. [Online] Available at h

ttp://developers.sun.com/mobility/midp/ttips/cldc/, (Accessed: January 2010).

[93] C.E. Ortiz. A survey of Java ME today. November 2007. [Online] Available at h

ttp://developers.sun.com/mobility/getstart/articles/survey/, (Accessed: January

2010).

[94] F.I. Parke. Computer generated animation of faces. In Proceedings of the ACM

International Annual Conference, volume 1, pages 451–457. ACM, 1972.

[95] S. Pasquariello and C. Pelachaud. Greta: A simple facial animation engine. In

Proceedings of the 6th Online World Conference on Soft Computing in Industrial

Applications, Session on Soft Computing for Intelligent 3D Agents. Citeseer, 2001.

[96] D. Pilling and P. Barrett. Text communication preferences of deaf people in the

United Kingdom. Deaf Studies and Deaf Education, 13(1):92, 2008.

[97] D. Power, M.R. Power, and B. Rehling. German deaf people using text commu-

nication: Short Message Service, TTY, relay services, fax, and e-mail. American

Annals of the Deaf, 152(3):291, 2007.

[98] M.R. Power, D. Power, and L. Horstmanshof. Deaf people communicating via

SMS, TTY, relay service, fax, and computers in Australia. Deaf Studies and Deaf

Education, 12(1):80, 2007.

Bibliography 132

[99] C. Rajah. Chereme-based recognition of isolated, dynamic gestures from South

African Sign Language with hidden Markov models. Master’s thesis, University of

the Western Cape, 2006.

[100] Research Lab, Inc. Text To Wave ActiveX Client/Server DLL SDK v2.0 product

page. [Online] Available at http://www.research-lab.com/texax03read.htm, (Ac-

cessed: January 2010).

[101] B.N. Riskin. Method and means for telecommunications by deaf persons utilizing

a small hand held communications device, April 6 1993. US Patent 5,200,988.

[102] M. Sarbaugh-Thompson and M.S. Feldman. Electronic mail and organizational

communication: does saying “hi” really matter? Organization Science, pages

685–698, 1998.

[103] H. Sasaki, T. Kuroda, Y. Manabe, and K. Chihara. Hit-wear: A menu system

superimposing on a human hand for wearable computers. In Proceedings of the

International Conference on Artificial Reality and Teleexistence, pages 146–153,

1999.

[104] T.W. Sederberg and S.R. Parry. Free-form deformation of solid geometric models.

ACM SIGGRAPH Computer Graphics, 20(4):151–160, 1986.

[105] H. Seersb and M. Dyec. A perceptually optimised video coding system for sign lan-

guage communication at low bit rates. Signal Processing: Image Communication,

21:531–549, 2006.

[106] V.M. Segers. The efficacy of the eigenvector approach to South African Sign

Language identification. Master’s thesis, University of the Western Cape, 2009.

[107] H. Seo and N. Magnenat-Thalmann. An automatic modeling of human bodies from

sizing parameters. In Proceedings of the Symposium on Interactive 3D Graphics,

page 26. ACM, 2003.

[108] SightSpeed Team. SightSpeed official website. [Online] Available at http://www.

sightspeed.com/, (Accessed: April 2009).

[109] SignWriting Markup Language Team. SignWriting Markup Language official web-

site. [Online] Available at http://sign-net.ucpel.tche.br/swml/, (Accessed: June

2008).

[110] Simon Project Team. Simon project official website. [Online] Available at http://

simon-listens.org/, (Accessed: April 2009).

Bibliography 133

[111] C.C. Slama, C. Theurer, and S.W. Henriksen. Manual of photogrammetry. Falls

Church, Virginia, 1980. American Society of Photogrammetry.

[112] Smith Mirco Software. Poser: Discover the art of 3D figure design. [Online] Avail-

able at http://my.smithmicro.com/mac/poser/index.html, (Accessed: November

2008).

[113] Sony Ericsson. Sony Ericsson C905 white paper. [Online] Available

at http://developer.sonyericsson.com/cws/download/1/708/297/1260890274/100

360-wp c905 cybershot 1.pdf, (Accessed: January 2010).

[114] T. Starner, J. Weaver, and A. Pentland. Real-time American sign language recog-

nition using desk and wearable computer-based video. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 20(12):1371–1375, 1998.

[115] D. Stein, P. Dreuw, H. Ney, S. Morrissey, and A. Way. Hand in hand: auto-

matic sign language to English translation. In Proceedings of the Conference on

Theoretical and Methodological Issues in Machine Translation. Citeseer, 2007.

[116] C. Stobbart and E. Alant. Home-based literacy experiences of severely to pro-

foundly deaf preschoolers and their hearing parents. Developmental and Physical

Disabilities, 20(2):139–153, 2008.

[117] W.C. Stokoe. Sign language structure: An outline of the visual communication

systems of the American deaf. Deaf Studies and Deaf Education, 10(1):3–37, 2005.

[118] D.J. Sturman. A brief history of motion capture for computer character animation.

In Proceedings of the ACM SIGGRAPH International Conference on Character

Motion Systems, 1994.

[119] Sun Microsystems, Inc. JavaSoft ships Java 1.0. [Online] Available at ht

tp://www.sun.com/smi/Press/sunflash/1996-01/sunflash.960123.10561.xml, (Ac-

cessed: June 2008).

[120] Sun Microsystems, Inc. The AWT in 1.0 and 1.1. April 1999. [Online] Available

at http://java.sun.com/products/jdk/awt/, (Accessed: January 2010).

[121] Sun Microsystems, Inc. Foundation profile overview. [Online] Available at http:/

/java.sun.com/products/foundation/overview.html, (Accessed: January 2010).

[122] Sun Microsystems, Inc. The K virtual machine (kvm). [Online] Available at http:

//java.sun.com/products/cldc/wp/, (Accessed: January 2010).

[123] Sun Microsystems, Inc. Personal Basis profile overview. [Online] Available at

http://java.sun.com/products/personalbasis/overview.html, (Accessed: January

2010).

Bibliography 134

[124] Sun Microsystems, Inc. Personal profile overview. [Online] Available at http://ja

va.sun.com/products/personalprofile/overview.html, (Accessed: January 2010).

[125] V. Sutton. SignWriting official website. [Online] Available at http://www.signwri

ting.org/, (Accessed: April 2009).

[126] Systems Biology Markup Language Team. Systems Biology Markup Language

official website. [Online] Available at http://www.sbml.org/, (Accessed: January

2008).

[127] Talking Text Team. Talking Text official website. [Online] Available at http://www

.telstra.com.au/homephone/features services/talking-text.html, (Accessed: April

2009).

[128] Telephone Interpreting Service for South Africa Team. Telephone Interpreting

Service for South Africa official website. [Online] Available at http://www.dac.go

v.za/projects/language service.htm, (Accessed: April 2009).

[129] Telkom SA. Teldem product website. [Online] Available at http://www.telkom.c

o.za/attheoffice/products/phoneinstruments/cordlessphones/accessories/teldem/

index.html, (Accessed: April 2009).

[130] S.C.L. Terra and R.A. Metoyer. Performance timing for keyframe animation.

In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer

animation, pages 253–258. Eurographics Association, 2004.

[131] D. Thalmann, J. Shen, and E. Chauvineau. Fast realistic human body deforma-

tions for animation and VR applications. In Proceedings of the 1996 Computer

Graphics International Conference. Citeseer, 1996.

[132] TokBox Team. TokBox official website. [Online] Available at http://www.tokbox

.com/, (Accessed: April 2009).

[133] W. Tucker, M. Glaser, and J. Penton. A bridge for the problem of Deaf telephony.

Science in Africa, 2002.

[134] TypeTalk Team. TypeTalk official website. [Online] Available at http://www.tex

trelay.org/, (Accessed: April 2009).

[135] University of Hamburg. HamNoSys official website. [Online] Available at http://

www.sign-lang.uni-hamburg.de/projects/hamnosys.html, (Accessed: April 2009).

[136] University of Hamburg. HamNoSys version 3.0 official website. [Online] Available

at http://www.signlang.uni-hamburg.de/Projekte/HamNoSys/HamNoSysErklaer

ungen/englisch/Contents.html, (Accessed: April 2009).

Bibliography 135

[137] University of Hamburg. HamNoSys version 4.0 official website. [Online] Avail-

able at http://www.signlang.uni-hamburg.de/Projekte/HamNoSys/HNS4.0/HNS

4.0eng/Contents.html, (Accessed: April 2009).

[138] Vodacom. TalkingSMS official website. [Online] Available at http://www.vodaco

msp.co.za/vspc/products/word to mouth.html, (Accessed: April 2009).

[139] VoxForge Project Team. VoxForge project official website. [Online] Available at h

ttp://www.voxforge.org/, (Accessed: April 2009).

[140] J.B. Walther and K.P. D’Addario. The impacts of emoticons on message interpre-

tation in computer-mediated communication. Social Science Computer Review,

19(3):324, 2001.

[141] C. Wang, G. Wen, and J. Ma. A real-time large vocabulary recognition system for

Chinese sign language. Lecture Notes in Computer Science, pages 86–95, 2002.

[142] A. Watt and M. Watt. Advanced animation and rendering techniques. Citeseer,

1992.

[143] J. White. An introduction to Java 2 Micro Edition (J2ME); Java in small things.

In Proceedings of the 23rd International Conference on Software Engineering, page

725. IEEE Computer Society, 2001.

[144] J.R. Whitehill. Automatic real-time facial expression recognition for signed lan-

guage translation. Master’s thesis, University of the Western Cape, 2006.

[145] J. Wong, E.J. Holden, N. Lowe, and R. Owens. Real-time facial expressions in

Auslan tuition system. In Proceedings of the 5th IASTED International Conference

on Computer Graphics and Imaging. Citeseer, 2003.

[146] D. van Wyk. Virtual human modelling and animation for sign language visualisa-

tion. Master’s thesis, University of the Western Cape, 2008.

[147] S. Yeates, E.J. Holden, and R. Owens. An animated Auslan tuition system. Ma-

chine Graphics And Vision, 12(2):203–214, 2003.

[148] L. Yi. Kiara: an open source SIP system to support Deaf telephony. In Proceedings

of the South African Telecommunications Networks and Applications Conference,

2008.

[149] X. Zhu, J. Yang, and A. Waibel. Segmenting hands of arbitrary color. In Pro-

ceedings of the IEEE International Conference on Automatic Face and Gesture

Recognition, page 446, 2000.

Bibliography 136

[150] L. van Zijl and D. Barker. South African Sign Language machine translation

system. In Proceedings of the 2nd International Conference on Computer Graphics,

Virtual Reality, Visualisation and Interaction in Africa, page 52. ACM, 2003.

[151] L. van Zijl and J. Fourie. Design and development of a generic signing avatar.

In Proceedings of the Conference on Graphics and Visualization in Engineering,

pages 95–100, Florida, USA, 2007.

[152] L. van Zijl and G. Olivrin. South African Sign Language assistive translation. In

Proceedings of the International Conference on Telehealth/Assistive Technologies,

pages 7–12. ACTA Press, 2008.

[153] I. Zwitserlood, M. Verlinden, J. Ros, and S. van der Schoot. Synthetic signing for

the deaf: eSign. Mai, 2005.

	Title Page
	Abstract
	Contents
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Background
	1.2 Research Objectives
	1.3 Research question
	1.4 Premises
	1.5 Thesis outline

	2 Communication Tools for the Deaf
	2.1 General-Purpose Communication Tools
	2.1.1 Text-Based Tools
	2.1.1.1 IM systems
	2.1.1.2 SMS
	2.1.1.3 Email
	2.1.1.4 Faxing
	2.1.1.5 Advantages and disadvantages of text-based tools

	2.1.2 Video-Based Tools
	2.1.2.1 Synchronous video communication tools
	2.1.2.2 Asynchronous video communication tools
	2.1.2.3 Advantages and disadvantages of video-based tools

	2.1.3 Bridging communication between devices

	2.2 Deaf-Specific Communication Tools
	2.2.1 Text-Based Tools
	2.2.2 Video-Based Tools
	2.2.3 Gesture-Based Tools
	2.2.3.1 Spoken Language to SL Gesture-Based Tools
	2.2.3.2 SL to Spoken Language Gesture-Based Tools

	2.3 Summary

	3 Java Micro Edition
	3.1 Java ME in Context -- A Background on Java Editions
	3.2 Java ME Architecture
	3.2.1 The Java Community Process (JCP)
	3.2.2 Configurations
	3.2.2.1 The Connected Device Configuration (CDC)
	3.2.2.2 The Connected, Limited Device Configuration (CLDC)

	3.2.3 Profiles
	3.2.3.1 The CDC Profiles
	3.2.3.2 The CLDC Profiles
	3.2.3.3 The Mobile Information Device Profile

	3.2.4 Additional APIs
	3.2.4.1 The Mobile Media API
	3.2.4.2 The Mobile 3D Graphics API

	3.3 Summary and Conclusions

	4 Sign Language Avatar Creation
	4.1 SL Avatar Creation
	4.1.1 Avatar Modelling and Acquisition
	4.1.1.1 Interactive Modelling
	4.1.1.2 Parametric Modelling
	4.1.1.3 Other Modelling Techniques

	4.1.2 Avatar Parameterization and Deformation
	4.1.2.1 Skeletal Subspace Deformation
	4.1.2.2 Other Parameterization and Deformation Techniques

	4.1.3 Avatar Animation
	4.1.3.1 Keyframing
	4.1.3.2 Motion Capture

	4.1.4 Existing Standards and Tools
	4.1.4.1 MakeHuman
	4.1.4.2 H-Anim
	4.1.4.3 MPEG-4 Facial Definition Parameters

	4.2 Blender -- an Open Source 3D Graphics Tool
	4.2.1 Background
	4.2.2 Tools and Features

	4.3 Van Wyk's Methodology
	4.3.1 Methodology Overview
	4.3.2 Implementation of Man
	4.3.3 Performance

	4.4 Summary

	5 Methodology and Implementation of the Avatars
	5.1 Creation of the Avatar Phlank
	5.1.1 Modelling and Acquisition
	5.1.2 Parameterization

	5.2 Animation and Exportation of Phlank and Man
	5.2.1 Animation
	5.2.2 Exportation

	5.3 Summary

	6 Implementation of a Prototype Mobile Framework
	6.1 The SASL Machine Translation System
	6.1.1 Conceptual Overview
	6.1.2 Existing Components

	6.2 The iSign Mobile Framework Architecture
	6.3 Implementation of the iSign Mobile Framework
	6.3.1 The Communication Protocol
	6.3.2 The Web Service
	6.3.3 The Mobile Application
	6.3.3.1 The Login Screen
	6.3.3.2 The Contacts Screen
	6.3.3.3 The Mode-Select Screen
	6.3.3.4 The Deaf Capture and Hearing Capture Screens
	6.3.3.5 The Word List Screen
	6.3.3.6 Rendering Screens

	6.3.4 The Interpretation Services

	6.4 Summary

	7 Experimental Setup
	7.1 Sign Language Intelligibility
	7.1.1 Collection of SASL Videos and Exportation of Sign Language Files
	7.1.2 Viewing Sequence
	7.1.3 Experimental Setup

	7.2 Power Consumption
	7.3 Bandwidth Consumption
	7.4 Summary

	8 Results and Data Analysis
	8.1 Sign Language Intelligibility
	8.2 Power Consumption
	8.3 Bandwidth Consumption
	8.4 Summary of Results and Discussion
	8.5 Summary

	9 Conclusion and Directions for Future Research
	9.1 Feasibility Experimentation
	9.2 The iSign Mobile Framework
	9.3 Concluding Remarks

	A The ``TestModel" Application
	B The iSign Communication Protocol
	B.1 Signals
	B.2 Database Tables

	Bibliography

