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Abstract

This thesis presents a system for performing whole gesture recognition for South African

Sign Language. The system uses feature vectors combined with Hidden Markov models.

In order to constuct a feature vector, dynamic segmentation must occur to extract

the signer’s hand movements. Techniques and methods for normalising variations that

occur when recording a signer performing a gesture, are investigated. The system has a

classification rate of 69%.
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Chapter 1

Introduction

Verbal communication forms an integral part of our daily lives. It is used to convey,

share or exchange information and ideas, and it helps human beings to connect with one

another as individuals and as independent groups, such as families or work colleagues.

Verbal communication channels are ubiquitous and are evident everywhere in society—

telephones or cellphones, radio, television and voice over internet protocol. Communi-

cation is the very fabric, that binds societies together and allows them to function not

only interdependently and independently, but also cohesively.

Not all members of society, however, are able to participate fully in the exchange of ver-

bal communication. Deaf people, for example, are unable to hear verbal communication

and for this reason have largely been marginalised in society. Throughout the world and

especially in developing countries such as South Africa, deaf communities are faced with

severely limited access to information, education and work opportunities in comparison

to hearing communities. This has severely marginalised and impeded development in

deaf society. An automated translation system that converts spoken language into sign

language and sign language back into spoken language, would greatly benefit both the

hearing and deaf communities and allow facilitated verbal communication between indi-

viduals from these communities. In the past decade there have been great strides in the

field of human-computer interaction [1]. The reliance on the keyboard and mouse is seen

as an inefficient and obtrusive way of interacting with a personal computer (PC). This

has resulted in the development of alternative ways of interacting with the PC, such as

speech and gesture recognition [2]. Advances in these technologies in recent years may

offer a solution that can allow the deaf and the hearing to communicate with each other.

The Integration of Signed and Verbal Communication: South African Sign Language

Recognition and Animation (SASL) project at the Computer Science Department at

1

 

 

 

 



Chapter 1. Introduction 2

the University of the Western Cape (UWC), of which this research is part, aims to de-

velop a full, unobtrusive translation system which will not only aid in the communication

between the deaf and hearing, but also aid in deaf to deaf communication. This comput-

erised system would need to identify three components of a sign simultaneously, namely,

hand gestures, hand articulation and facial expressions. These three components would

then need to be analysed linguistically to determine the meaning, before converting it

into a spoken language [3, 4].

This research focuses solely on dynamic hand gesture recognition, and adds to the body

of knowledge already acquired in the SASL group at UWC. Some of the research com-

pleted at UWC, pertaining to SASL recognition include: a real-time facial recognition

system which was developed by J.R. Whitehill[4] and a hand shape recognition system

developed by V.M. Segers [3].

1.1 Thesis Objectives

The research goals of this thesis are three-fold:

1. We wish to develop an automatic gesture recognition system that recognises dy-

namic hand gestures, and is able to convert gestures signed in SASL into English,

without the use of additional, obtrusive equipment. Such obtrusive equipment in-

cludes: datagloves, coloured gloves and coloured markers on the hand. To this end

we employ computer vision techniques that use a camera and image manipulation

algorithms to interpret gestures.

2. We wish to maximise gesture recognition (GR) rates across different signers by

developing an algorithm that normalises each video, before attempting to classify

the gesture. The objective of this method is to minimise variations that can occur

in multiple videos of signs, using multiple signers. The method must cater for the

following variations:

• Variations in body dimensions,

• Variations in the distance of the signer from the camera, and

• Variations in the position of the signer within the video frame.

3. Using the GR system and the normalising method that we aim to develop, we aim

to construct and design a software prototype and framework for the GR system to

work on. The prototype system must allow us to record SASL using a standard

webcam attached to a personal computer or cellphone camera. The prototype

 

 

 

 



Chapter 1. Introduction 3

system must interpret the gestures and output English text or audio using text-

to-speech technology. Ultimately this framework can be used in future work to

allow the constitutive contributions such as that of Whitehill and Segers [3, 4] to

be merged into the system.

Our GR system consists of three processes:

1. Image preprocessing,

2. Feature extraction, and

3. Feature classification.

In this thesis we investigate several methods and techniques used to implement and

develop each of the above mentioned processes.

1.2 Problem Statement

Our goal, as mentioned in Section 1.1, is to create an unobtrusive GR system, using

hand gestures, which is be able to convert SASL words or phrases into English text. In

order to achieve this goal, we need to address the following problems:

• Describe the hand movements within a sign for a computer to interpret them, and

• To maximise GR rates across multiple signers, we need to minimise variations that

occur in videos of signed gestures using different signers.

1.3 Research Questions

In order to solve the above problem statements, we need to analyse and answer the

following research questions:

• GR systems use frames from a video as input. The system relies on the extraction

of appropriate information from a video. What are the appropriate features that

will allow us to classify a signed gesture accurately and how are these features

extracted?

• Since we are using only hand gestures to attempt to classify a sign gesture, it is

imperative to question whether it is possible to interpret a SASL gesture by only

using hand gestures?
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• SASL gestures are dynamic. We therefore need to ask: “What is an appropriate

manner for describing hand movement in a video that can be used to train and

test the system?”

• Given that no two signers have the same physical body structure, how do we

dynamically normalise the features that would need to be extracted?

1.4 Technical Objectives

In order to address the above mentioned research questions, we need to achieve the

following technical objectives:

• Gesture definition: Breaking down hand gestures in SASL into smaller components

can aid the classification process and allow for easy identification of the beginning

and end points of a sign.

• Preprocessing: Image preprocessing and feature extraction are paramount to the

success and accuracy of a GR system. The image preprocessing consists of the

following attributes:

– Normalisation that caters for variances in different videos taken of different

signers,

– Background modelling in order to differentiate the background from the fore-

ground, and

– Feature extraction that extracts motion information of the hands, from each

frame in a video.

For each of these attributes we identify and implement a method that is appropriate

for our purpose.

• Feature vector development: What distinguishes gestures from one another is their

dynamic behaviour. We therefore need to identify an appropriate way to store

extracted features and temporal information from a video of a SASL gesture.

• Performance analysis: We need to verify that our system can indeed correctly

identify different signed gestures from several different signers.
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1.5 Research Methodology

In order to build our system and achieve the above mentioned technical objectives, we

use an adapted version of the waterfall model used to design and implement software.

The waterfall model is shown in Figure 1.1.

Figure 1.1: The waterfall model is used to design our system.

We use the waterfall model must be used to design, implement and test three core

components of our system.

• Implementation of an image preprossessing algorithm which first, normalises vari-

ance that may occur in the video. Second, uses background modelling to distin-

guish the foreground from the background. Third, extracts hand gesture features

that are appropriate for our objectives,

• Construction of a feature vector, using the features extracted in the preprocessing

stage, and

• Classification of different gestures must be achieved by using the discriminating

nature of Hidden Markov Models (HMMs).

1.6 Thesis Outline

The chapters of this thesis are outlined as follows:

In Chapter 2 we look at the taxonomy of gestures to find the context of gestures in South

African Sign Language (SASL). We evaluate the structure of signed words or phrases

by looking at two models proposed by Stokoe, and Liddell and Johnson [5, 6], which
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breaks up signs into sub-components (called cheremes) but differ substantially. We then

describe gesture recognition and evaluate systems that have been implemented.

In Chapter 3 we discuss our preprocessing techniques. We begin by defining skin seg-

mentation. An evaluation of different colour spaces is provided. We then assess both

adaptive and non-adaptive modelling in background subtraction techniques. Finally, we

look at the normalising of a signer in a video frame and the feature extraction of skin

regions.

HMMs are discussed in chapter 4. The theory and application of HMMs in real-world

solutions is discussed. The evaluation, decoding and recognition problems associated

with HMMs are reviewed, followed by their solutions.

In Chapter 5 and 6 we describe our experimental setup and present our results. Con-

cluding remarks and recommendations for future work are presented in Chapter 7.

 

 

 

 



Chapter 2

Gesture Recognition

In this chapter we review the literature of gesture recognition systems. We discuss the

taxonomy of gestures to set the context of gestures in South African Sign Language. A

comparison between three-dimensional (3D) and two-dimensional (2D) modelling deter-

mines an appropriate approach for our study. We examine several static and dynamic

gesture solutions that have been developed. We compare these solutions, followed with

a conclusion and summary.

2.1 Gestures

Gestures encapsulate a large family of body movements that express ideas or meaning

[7, 8]. Gestures can be categorised as follows:

• Manipulative gestures (e.g. picking up a ball) are used to move objects and convey

no direct meaning in conversation [9], and

• Communicative gestures (e.g. waving goodbye) are used to express meaning and

intent in conversation [10–12].

Figure 2.1 illustrates the gesture hierarchy. Gestures can be broken down into two main

classes: manipulative and communicative. We refer to the different sub-classes of com-

municative gestures to identify an appropriate context for South African Sign Language

recognition. For our research we only consider the manual movement class. The manual

class is sub-divided into two categories, static and dynamic. Static gestures denote ges-

tures when no perceived change takes place in the orientation, shape or position of the

hands for a period of time. Dynamic gestures are gestures where the hands are moving.

There are three distinguishable types of dynamic manual movements in SASL:

7

 

 

 

 



Chapter 2. Gesture Recognition 8

Figure 2.1: A taxonomy of the gesture classes used to find the context of sign
gestures[13].

• Global movement is where the start and end location of the signer’s hands are

in a different place in front of the signer (sign space). These include movements

from side to side, up and down, toward and away from the signer, and circular

movement along these three axes,

• Secondary or local movement usually accompanies the global movement and can

be characterised by localised movements of the fingers, and

• Epenthesis movement. This is not part of any particular sign. It is usually found

at the beginning of the sign or between signs [14].

2.2 Stokoe’s Model

Stokoe realised that signs can be broken down into smaller units, cheremes or phonemes1

[5]. A phoneme is defined as the smallest unit in a language. Phonemes allow humans

to distinguish one word from another. He demonstrated the applicability of phonemes

in sign language. For GR purposes phonemes are suitable, as there is a limited number

of these units in any language, as opposed to an unlimited number of words that can

be built from the phonemes. Stokoe used three parameters or descriptors to describe a

phoneme in sign language. These parameters are the location of the hands (tabula or

tab), the hand shape (designator or dez) and the movement of the hand (signation or

sig). He emphasised that phonemes occur simultaneously in sign language and assumed

that variations in the sequence of these descriptors within a sign are not considered to

be significant [15].

1The term chereme was coined in 1960 by William Stokoe as part of an attempt to demonstrate

that signed languages are full languages. It is a technical term for the smallest meaningful units of a

sign language. Phoneme is the technical term for the smallest unit in the sound system of a spoken

language. The position is now universally accepted that phonemes and cheremes are organisationally

and functionally equivalent at every level of linguistic structure.
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2.3 Segmental Model

Liddell and Johnson argued against Stokoe’s assumption [6]. They outlined the phono-

logical structure and processes of sign language and emphasised, in contrast to Stokoe,

that phonemes occur sequentially in sign language. Such models are called segmental

models [15]. Liddell and Johnson called their model the Movement-Hold model.

2.3.1 Movement-Hold Model

Signs are made up of sequences of movements and holds [6, 15]. A complex sign is

divided into two elements, that is, movement and hold elements as indicated in Figure

2.2. This model can also be classified as segmental, where each sign is broken down

into a series of phonemes. Movement elements are characterised by segments where

some aspect of the sign’s configuration has changed, such as a change in hand shape,

orientation or movement. Hold elements are defined as those segments where no change

has taken place (e.g. a stationary hand).

Figure 2.2: The structure of the Movement-Hold model.

A hold is a static sub-unit of a gesture, which is composed of three simultaneous and

inseparable components as shown in the Equation 2.1. Let P represent the pose, h, o

and l denote hand shape, palm orientation and hand location, respectively.

P = (h, o, l) (2.1)

A movement, M , is a dynamic sub-unit of a gesture composed of the velocity, v, and the

direction, d, of the hands as they travel between successive poses in sign space. This is

shown in Equation 2.2.

M = (d, v) (2.2)

A manual gesture is therefore made up of a sequence of holds (H) and movements (M)

elements. Table 2.1 shows an example of words in American Sign Language (ASL) with

the sequence of hold and movement elements.
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Word Sequence

Good H-M-H

Sit M-H

Chair M-M-M-H

Table 2.1: American Sign Language words and their sequence of holds and movements
derived from the Movement-Hold model [15].

2.4 Comparing the Two Models

Liang and Ouhyoung adopted Stokoe’s model by using modified Cybergloves to extract

the tab, dez and sig features of a sign [16]. They use Hidden Markov Models (HMMs)

to recognise 250 words in Taiwanese Sign Language. Their system is continuously able

to recognise gestures in real-time and achieve a classification rate of 80.4%. Volger and

Metaxas use the Movement Hold model when designing their system [15]. They exper-

imented on a 22 word ASL vocabulary. Even though their vocabulary is considerably

smaller compared to that of Liang and Ouhyoung’s vocabulary, they achieve a higher

recognition rate of 91.82%. Volger and Metaxas, and Liddell and Johnson argued that

the fundamental weakness in Stokoe’s model [6, 15], is that his model cannot distinguish

between gesture components with a single movement and repeated movements, with all

other features being equal [17]. Even though the Movement-Hold model does not in-

clude non-manual features and inherits some redundancy, its sequential nature is ideally

suited for HMMs and has widely been used to classify gestures [15, 18].

2.5 3D and 2D Modelling

2.5.1 3D Modelling

3D modelling entails capturing a gesture or sign in a three-dimensional space [19]. Data-

gloves have been widely used to track the 3D movement of hands. It uses an array of

sensors fitted to gloves that the user wears. The sensors are able to record information

such as hand shape, hand orientation, hand global position and hand velocity. A pinch

glove was used by Kim and Waldron to obtain a sequence of 3D positions of a hand’s

trajectory [20]. The sequential data obtained from the datagloves is used to classify

the gesture. Kim and Waldron were able to achieve a GR accuracy of 86% using the

pinch glove. 3DV systems have developed an image sensor which is capable of producing

RGBD signals, where R stands for red, G for green, B for blue and D stands for the dis-

tance of each pixel relative to the camera’s position [21]. This makes it possible to track

hand movements in 3D without the signer having to wear datagloves. While still under
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development 3DV systems let Fujimura and Liu develop a GR system for Japanese Sign

Language (JSL) [22]. Fujimura and Liu use the information captured by 3DV system’s

image sensor 2 to classify JSL. Depth information is displayed in an image produced by

the camera. Dark regions denote objects that are far away from the camera with lighter

regions describing objects that are closer. An example of an image produced by the

3DV system’s camera is shown in Figure 2.3.

Figure 2.3: An example of an image containing depth information produced by the
3DV system’s camera. Lighter areas are closer to the camera [22].

Using this technology Fujimura and Liu were able to achieve an error rate of less than

5% with a vocabulary size of 15 JSL gestures.

2.5.2 2D Modelling

2D modelling is perspective based, that is, where 2D image data is captured from a single

camera’s point of view. Image segmentation and manipulation algorithms are used to

extract information from the image. This information is used to classify the gesture.

Grobel and Assam achieve a classification rate of 91.3% by extracting features from a

video of signers wearing coloured gloves [23]. The coloured gloves made segmenting and

extracting the hands’ position and shape more robust. 2D modelling techniques rely

on computer vision algorithms to extract information of a gesture, rather than using

specialised equipment.

2.5.3 Comparing 3D and 2D Modelling

Grobel and Assam use HMMs to classify 262 isolated signs with a 91.3% accuracy.

Starner and Pentland use a similar technique to obtain two-dimensional features [24].

23DV Systems has been acquired by Microsoft Inc.. Attempts to acquire this technology has been

unsuccessful.
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They treated signs as whole units and made no attempts to break them down into

phonemes. They trained HMMs on a 40 word vocabulary and obtained a 91.9% accuracy.

Both teams’ results indicate that comparable recognition rates can be achieved without

the cost of three-dimensional techniques. Kim and Waldron trained neural networks

(NN) with data obtained from a modified pinch glove, to recognise phonemes within sign

language [20]. The phonology included 36 hand shapes, 10 locations, 11 orientations,

and 11 hand motions. Kim and Waldron were able to achieve an overall GR accuracy

of 86%.

There are a number of complexities with 3D modelling as argued by Nam, Korea and

Wohn [19]:

• Temporal Variance : Variations exist in speed and location of movement between

different people performing the same sign,

• Spatial complexity : The human body possesses a high degree of freedom in 3D

space. This is due to the following aspects:

– Large variations of shape,

– Rotation variance, and

– Translation variance.

• No start and end point : There is no explicit start and end points in a gesture,

• Repeatability and connectivity : The way gestures are connected to each other

makes it difficult to classify them. Segmentation is therefore crucial, and

• Multiple attributes : Features such as the hand shape, hand orientation and hand

position needs to be simultaneously processed.

In addition to these challenges, hardware for retrieving 3D information is extremely spe-

cialised and expensive. Nam, Korea and Wohn argue that 3D modelling is an extremely

complex task, when classifying gestures [19]. They describe how 3D data of hand move-

ments can be reduced to 2D, thus reducing the complexity. Figure 2.4 shows some of

the attributes tracked in three-dimensions. The process of fitting 3D to 2D is shown in

Figure 2.4(c).

The hand is shown moving in three-dimensional space, illustrating a high degree of

freedom in the rotational and transformation aspects. They used a chain encoding
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Figure 2.4: 3D hand gesture attributes.

Figure 2.5: 3D to 2D reduction by plane fitting.

scheme for describing the hand movement path in 2D, shown in Figure 2.5. They were

able to achieve a GR accuracy of 80%, which compares well to the pinch glove systems

accuracy of 86%, developed by Kim and Waldron.

2.6 Gesture Recognition

Communication is a complex platform that is made up of several components. It is often

carried out by means of gestures, facial expressions and vocal sounds. In addition to

these components, body language plays a key role when interpreting communication. In

many cases, such as a person waving, most of the communicative information is contained

in the gesture. [25–27]. Gestures can either be used to assist voice communication, or

independently in sign language. Virtual reality applications have previously used this

technology for virtual manipulation and communication. Gestures have proven effective

as a suitable means of communication in such applications [28, 29].

Datagloves and computer vision-based techniques are the two well-known means of

recognising hand gestures [17]. To date, most research on gesture and sign language

recognition have made use of wired datagloves. Datagloves are input devices that the

user wears. They use an array of motion and pressure sensors. These sensors are used

to capture the global position, rotation and deformation of the hand. These systems

have predominantly focused on finger spelling, where the user spells each word with the
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appropriate hand gestures [30]. However, this is counter intuitive and time consuming

as sign language consists of gestures that represent whole words. Glove based gestu-

ral interfaces require users to wear cumbersome hardware, which inhibits the natural

movement of the signer.

Computer vision based techniques use a camera and image manipulation algorithms

to interpret gestures. This provides a more natural way of interactions between the

system and user. The process of finding and analysing hand postures in cluttered images

is extremely complex and troublesome. This has led to the development of methods

involving wearing of coloured markers or coloured gloves on the hands and restricting the

background of the video. The wearing of extra equipment and restricting the background

of the video are widely acknowledged limitations of computer vision based techniques.

2.6.1 Gesture Recognition using Computer Vision

In this section we will examine two types of manual gestures namely, static and dynamic

gestures. First, an examination on two solutions for static GR using histograms and

eigenvectors is provided. Second, a discussion on several dynamic GR solutions is then

provided.

2.6.1.1 Static Gesture Recognition

Kirillov uses a simple yet efficient gesture recognition method based on analysing hori-

zontal and vertical histograms [31]. Background modelling is used to extract the signer

from the image. This is done by subtracting the nth frame from a reference frame,

where the reference frame is the background. Figure 2.6(c) shows the absolute differ-

ence between image a and b. The difference produces a grey scaled image with only the

Figure 2.6: Framed differenced image, used to construct a vertical and horizontal
histogram signature for classification by Kirillov’ system 2.6.

signer present, without the background. Darker areas indicate areas of less difference,

whereas lighter areas show areas of higher difference. Using the frame differenced image,
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the system generates a vertical and horizontal histograms of key regions in the video

frame. The vertical histograms of the arm regions are shown in Figure 2.6(d). By using

statistical methods Kirillov compares peaks in both histograms of an image to that of a

predefined histogram data set. Figure 2.7 shows the vertical histograms and associated

Figure 2.7: Vertical histograms of the arm regions.

arm gesture used by the system. In a controlled environment and lexicon size of 15 static

gestures the system is able to achieve an accuracy of 97%. Segers implemented a static

GR system for the classification of hand shapes found in SASL [3]. He used eigenvectors

to classify 9 different hand shapes in real-time as shown Figure 2.8. Using 10 images to

Figure 2.8: Hand shape classifiers used in Segers’ system [3].

train an eigenvector on each hand shape, Segers is able to achieve a real-time recognition

rate of 88.9%.

2.6.1.2 Summary On Static Gesture Recognition

Most GR systems have focused on dynamic GR solutions. As a result, there are fewer

systems that focus solely on static gestures. Though Kirillov’s and Segers’ systems have

a high recognition rate, both lexicon sizes are small. In addition to this, their system
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fails when there is background noise. In Kirillov’s case, his system fails when shadows

fall on the wall behind the signer, creating two peaks in the vertical histogram.

2.6.1.3 Dynamic Gesture Recognition

Rajah describes a gesture recognition system based on recognising sub-components of a

gesture [17] (i.e. phonemes). He argues that it is sensible to break down signs into their

smallest component in order to handle variations in two signs performed by different

people. He employs the Movement-Hold model and defines phonemes by extracting the

intensity flows of the signer in a video. His segmentation involves searching for natural

abrupt variations in movement. This involves identifying changes in the signer’s arm and

hand movements. He thus ignores the hand shapes and orientations and only focuses

on the velocity and direction of skin regions. Rajah calculates the local minima and

Figure 2.9: Motion sequence for ”open” sign [17].

maxima of velocity for skin regions. He uses this to identify the movements and holds

within a sign. Figure 2.9 shows sample frames of a signer signing the SASL word Open

and Figure 2.10 plots the intensity flows for each frame. He trains HMMs to recognise

these intensity flows and identified 23 phonemes based on 102 training signs. He achieves

an individual phoneme recognition rate of 71%.

Bowden et al. describe a HMM based recognition system for sign language recognition

with a lexicon size of 49 signs [32]. They use high level descriptors to classify signs.
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Figure 2.10: Intensity of Motion [17].

They argue that features such as hand shape, hand orientation and hand position are

important and can be used not only to shorten training a HMM, but also to improve

GR rates [32]. They employ the high level descriptors that were developed by Stokoe,

shown in Table 2.2, to describe a series of actions in a sign. HMMs are trained on each

of the 49 signs using the descriptors. A high classification rate of 97.67% is achieved.

This result compares well to Starner and Pentland’s system which uses coloured gloves

and has a vocabulary of 40 signs. Starner and Pentland’s system achieves an accuracies

of 91.3% [33]. Bowden et al. show that by extracting HA, TAB, SIG and DEZ from a

Name Description

HA Position of the hands relative
to each other

TAB Position of the hands relative
to key body locations

SIG Relative movements of the
hands

DEZ The Shape of the hands(s)

Table 2.2: The high level features used to describe a gesture [32].

video sequence they are able to eliminate a significant amount of noise and thus reduce

the amount of transition states required in the Markov chains [32]. Their system is able

to generalise these features across different individuals making it possible for the system

to classify signs from different people to that of the training set. Figure 2.11(a) shows

the ASL word Different being performed by two people with the extracted features

represented by the binary vectors. The two binary vectors are very similar and are

classified correctly by their system.
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Figure 2.11: Generalisation of feature vectors across different individuals. [32].

Figure 2.11(b) shows two more sign feature vectors, indicating how similar binary feature

vectors are produced for the same sign.

Kadous developed a gesture recognition system using PowerGloves [34]. The gloves are

worn on both the left and right hands and use an array of sensors to provide real time

information about their shape orientation and movement. Instrumented gloves have

in the past been extensively used in direct manipulation of 3D virtual environments

[35]. They have more recently been applied to gesture recognition [34]. Kudous uses a

PowerGlove originally designed for gaming on the Nintendo 8 bit console and applies

it in gesture recognition. Using the data captured by the PowerGloves, he constructed

Figure 2.12: A simple decision tree for deciding to pay golf. [34].

a decision tree using C4.5 [36] for a particular sign. An example of a decision tree for

deciding whether or not to play golf is shown in Figure 2.12. He achieves a classification

rate of 80%.

Wang et al. describe a Chinese sign language system that uses instrumented gloves

[37, 38]. However, they use HMM isolated recognition for their classification. They

have an extensive lexicon of 5100 signs. Due to the size of their vocabulary, a fast

matching algorithm was implemented to run in real-time [37]. Each of the 5100 signs
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was performed five times, four were used for training and one was used for testing. They

achieved real-time recognition rate of 95%.

2.6.2 Summary on Dynamic Gesture Recognition

Table 2.3 presents the above discussed systems, highlighting techniques and method-

ologies used. Rajah uses the Movement-Hold model and omits the use of hand shape

and orientation but rather focuses on their movements. It should be noted that he does

not achieve a high accuracy and he does not use any specialised equipment. Bowden et

al., Starner and Pentland use coloured gloves, making extracting hand features easier.

Bowden et al. use red long sleeved shirts, shown in Figure 2.11, worn by different signers

making segmentation easier. The black background also ensures no background noise.

A common hurdle with gesture classification systems is signer-independent recognition.

System
Created
By:

Model: 3D/2D
Mod-
elling:

Specialised
Equip.:

Classification
Technique

Lexicon
Size:

Accuracy

Kirillov n/a 2D none Correlation 15 97%
Segers n/a 2D none Eigenvectors 9 80%
Rajah Movement

-Hold
2D none HMMs 23 71%

Bowden et
al.

Stokoe 2D Coloured
gloves

HMMs 49 97.67%

Starner and
Pentland

Movement
-Hold

2D Coloured
gloves

HMMs 40 91.3%

Kadous Stokoe 3D Datagloves Decision tree 95 80%
Wang et al. Stokoe 3D Datagloves HMMs 5100 95%

Table 2.3: A comparison of gesture recognition systems.

Kadous cited a major caveat of his system: that people who were not used to train the

system achieve accuracies of about 12% to 15% [34]. This weak classification can be par-

tially attributed to the strict deterministic nature of decision trees. The inability of the

system to generalise input across interpersonal variations severely impedes the scalabil-

ity and feasibility of such a solution. Vamplew and Adams describe a gesture recognition

system for 52 Australian signs [39]. It uses neural networks to classify gestures and is

able to achieve classification rate of 94% on seen data and 85% on unseen data [39].

Akyol and Canzler describes an information terminal that has a vocabulary size of 16

German signs [40]. Ten people were recorded performing these signs, seven were used

for training the HMM and three were used for testing. They achieved a classification

accuracy of 94% [40].
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2.6.3 Conclusion

In the preceding sections we have described several implementations of gesture recog-

nition systems, for both static and dynamic gestures. For the purpose of this study

we focused only on dynamic gestures. Decision trees are not feasible for interpersonal

classification systems, however their rigidity can be exploited to determine a subset of

the vocabulary for the system to classify, rather than searching through the whole vo-

cabulary. HMMs have been used extensively to implement gesture recognition solutions.

Most of these systems use cumbersome equipment i.e. datagloves and coloured gloves.

Our research focuses on developing an interpersonal HMM classification system without

the use of restrictive equipment. Our study focuses on how to normalise input across

different signers. This is an important aspect as this greatly affects the performance of

the system.

2.6.4 Summary

We have discussed the taxonomy of gestures and provided a context of gestures in SASL.

Our research will focus on dynamic GR. A comparison between 3D and 2D modelling

was discussed, showing that 2D modelling can be as effective as 3D modelling. We have

compared a range of gesture recognition systems and highlighted their strengths and

weaknesses.

 

 

 

 



Chapter 3

Preprocessing Techniques

In this section, we describe preprocessing techniques and feature extraction methods used

by our GR system. The human form consists of several complex appendages. Tracking

the face, hand and torso’s simultaneous movements is very complicated in comparison

to tracking artificial objects [41]. There are a number of cues or features which can be

considered when trying to narrow the search space in tracking or identification systems.

The most important of these features are spatial, temporal and textural [41]. We begin

by discussing skin colour segmentation as it has proved to be a useful and robust feature

for localisation and tracking. Many researchers have built up a wide range of knowledge

on this tracking technique [8, 42–44]. This is followed by a discussion on background

modelling. Background noise is one of the main factors that influence a computer vision

system’s accuracy. Many systems have used constrained backgrounds to control this

factor [32]. A discussion on methods used to normalise features across different people

is provided. Finally we describe how the system extracts features from the preprocessed

image for classification.

3.1 Skin Segmentation

The objective of skin colour segmentation is to build a decision rule that determines if

a pixel is skin or not. Pixel-based skin detection methods functions by sequentially and

independently analysing each pixel’s colour in an image and determining whether it is

skin or non-skin [45]. Methods that incorporate pixel spatial relationships, take into

account what the current pixel’s neighbour’s values are in order to classify the current

pixel. However, spatial relationship algorithms depend on certain aspects of pixel-based

methods and can be partially dependent on the performance of the pixel-based methods

21
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[45–48]. For this reason, we focus on pixel-based approaches to classify skin regions

rather than spatial relationship approaches.

Skin colour pixels vary under different lighting conditions, making pixel-based classi-

fication a non-trivial task. Identifying what is considered to be skin colour, involves

finding the range of values, attributed to skin, in a given colour space. An example of

skin segmentation is shown in Figure 3.1, with 3.1(a) being the source image and 3.1(b)

being the output binary image, which is also known as the skinmap.

Figure 3.1: Skin segmentation with skin pixels marked with white.

3.1.1 Colour Space

In order to optimise skin recognition, an appropriate colour space is needed. The ob-

jective of using a colour space or a colour model is to standardise the specification of

colours in some standard format. A colour space is a specification of a coordinate system

and a subspace within that system where each colour is represented by a single point

[49]. When designing a skin based segmentation system an important factor to consider

is choosing the correct colour space. Most colour models that are in use today focus

either towards hardware interpretation or towards applications where colour manipu-

lation is key. Colour spaces that are generally used include the Red, Green, Blue or

RGB model, the Cyan, Magenta, Yellow, Key or CMYK model and finally the Hue,

Saturation, Intensity or HSI model. Pixel-based skin colour localisation is extremely

sensitive to environmental influences, such as noise and illumination changes. Choosing

the correct colour space minimises false positive skin detections.

3.1.2 The RGB Colour Model

RGB is probably the most commonly hardware-oriented model used today. It is used

in colour monitors and a wide range of colour video cameras [49]. Each colour in the

RGB model appears in its primary spectral components of red, green and blue. Using

24 bit colour, each RGB component value ranges from 0, being the lowest intensity that
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can be displayed on a monitor, to 255 being the highest. All three components are used

to produce a single colour. Figure 3.2 represents an example of the RGB colour space.

When all three components are combined at their highest intensity, white is produced.

Figure 3.2: RGB primaries.

3.1.3 The CMYK Colour Model

Cyan, Magenta, and Yellow are the secondary colours of light and are the primary

colours of pigments [49]. Figure 3.2 shows how CMY component colours are created

by combining half of any two primary colours e.g. when red and blue are combined in

equal amounts, Magenta is formed. The K, also known as Key, refers to the black colour

component, it is formed when CMY colours are combined. The CMYK colour space is

typically used in colour printers and copiers.

3.1.4 The HSI Colour Model

The HSI model describes colour in terms of hue, saturation and brightness. The hue

attribute describes a pure colour. Hue is associated with the prevailing wavelength in a

mixture of light waves which represent the dominant colour as viewed by an observer.

Saturation measures to what degree pure colour is diluted with white light. Collectively

hue and saturation is called chromaticity. Colour can be characterised by its colour

sensation or brightness and chromaticity. Tristimulus is the quantity of red green and

blue that is required to form a particular colour and is denoted, X, Y, and Z,respectively.

x =
X

X + Y + Z
(3.1)

y =
Y

X + Y + Z
(3.2)

and

z =
X

X + Y + Z
(3.3)
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From these equations it is noted that

x+ y + z = 1 (3.4)

The intensity element expresses colour sensation by using brightness as a subjective

descriptor. The HSI model owes its usefulness to two important facts. First, by sepa-

rating the intensity component from colour carrying information (hue and saturation),

the HSI colour model is ideally suited for algorithmic image manipulation that is based

on a colour description [49]. Second, the chromaticity component is related to the way

in which human beings perceive colour [49]. The HSI model is ideally suited for skin

segmentation, however hardware uses the RGB colour space to communicate with moni-

tors. Since the HSI colour space is not natively used by hardware, the RGB colour space

is converted to the HSI colour space.

3.1.5 Conversion from RGB to HSI

The RGB model can be defined with respect to a cube as shown in Figure 3.3. The

Figure 3.3: Schematic of the RGB colour cube.

attributes of the HSI model are defined with respect to a diamond shown in Figure 3.4.

To ascertain how hue can be determined from a given set of RGB values, consider Figure

Figure 3.4: Schematic of the HSI colour triangle.
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3.3, which shows a plane defined by three points(black, white, and cyan). The black and

white points on the plane map onto the HSI intensity attribute on Figure 3.4. Further-

more, we note that all points contained in the plane segment, defined by the intensity

axis and the boundaries of the cube, have the same hue (cyan). It can be concluded that

all colours generated by RGB are contained in the HSI colour triangle which is defined

by those colours. Given an image in RGB colour space, the HSI equivalent is obtained

using the following formulas. Hue is calculated by: with

h =
{

θ ifB ≤ G

360 − θ ifB>G
(3.5)

θ = cos−1

{

1

2
[(R−G) + (R−B)]

[(R−G)2 + (R−B)(G−B)]
1

2

}

(3.6)

The saturation component is given by:

s = 1 −
3

(R+G+B)
[min(R,G,B)] (3.7)

The intensity component is given by:

i =
1

3
(R+G+B) (3.8)

3.1.6 Comparing the RGB and HSI Colour Space

The RGB colour space on its own is not sufficient for the classification of skin regions

as it not only represents colour but luminance as well. Various skin tones reflect light

differently due to varying ambient lighting conditions. These variations make it difficult

to classify, let alone different skin types accurately, using a pixel-based approach in the

RGB colour space.

Figure 3.5: Images captured under different lighting conditions.
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3.1.6.1 Skin Segmentation With RGB

Figure 3.5(a) was captured in adequate lighting conditions, 3.5(b,c,d) were captured

under varying light conditions. Skin values for the signer are calculated by averaging

the RGB values of the face region in image 3.5(a). The region used for extracting the

skin values is indicated with the red square. The RGB values for the skin of this signer

is calculated to be in the range: R : 65 − 135, G : 30 − 100, B : 0 − 60. Using this

information an algorithm is applied to 3.5(a,b,c,d) to obtain the skinmap. The red,

green and blue values for the skinmap are computed as:

isSkin = red ≥ 65 and red ≤ 135 and green ≥ 30 and green ≤ 100 and blue ≤ 60

The resultant skin maps using the RGB colour space are shown in Figure 3.6. When the

algorithm is applied to image 3.5(a), from where the skin values was extracted, it yields

the best results, show in Figure 3.6(a). However the lighter region of the palm is not

correctly classified. In the darker image 3.5(b) the intensity value of the RGB colour

Figure 3.6: Skin maps produced in the RGB colour space.

space decreases, diminishing the overall accuracy, shown in Figure 3.6(b). When lighting

is increased slightly, shown in Figure 3.5(c), more background noise is introduced. This

skinmap produced a marginally higher false positive detection rate, but is comparable to

3.6(a). However when lighting is drastically increased in Figure 3.5(d), no skin regions

are detected, as no pixel values fall within the predetermined ranges. This experiment

confirms that the RGB colour space and pixel based classification methods are not

reliable for identifying skin coloured pixels in varying lighting conditions.

3.1.6.2 Skin Segmentation With HSI

Chromatic colours are more reliable and are derived by separating luminance from the

colour information. The HSI colour space owes its usefulness to this very fact. By

separating the luminance, the HSI colour space is reliable when classifying the same

skin coloured pixels across varying lighting conditions.
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The images in Figure 3.5 are converted into the HSI colour space by using the formulas

3.5,3.6,3.7 and 3.8 respectively. The skin (h, s, i) values are extracted from inside the

red square in Figure 3.5(a). The HS values for the skin of this signer is calculated to

be in the range: H : 0 − 0.8, S : 0.2 − 0.8. Using this information an algorithm is then

applied to Figures 3.5(a,b,c,d). The algorithm is computed as:

h ≥ 0 and h ≤ 0.8 and s ≥ 0.2 and s ≤ 0.8

Lighting variation needs to be ignored as we want to classify skin under different light

conditions. We therefore exclude the i value, as it contains the intensity value of each

pixel. The skinmap results that are computed in the HSI colour space, are shown in

Figure 3.7. The results show that the algorithm classifies skin colour accurately across

Figure 3.7: Skin maps produced in the HSI colour space.

all images with varying light intensities. All skin maps in Figure 3.7 indicate that very

little or no loss of accuracy was produced by the algorithm in the HSI colour space. We

choose to work in the HSI colour space as this produces better results than the RGB

colour space. We therefore covert all images to the HSI colour space before attempting

to segment them.

3.2 Background Subtraction

Background subtraction involves extracting information of the background in order to

distinguish between the background and foreground. This eliminates the noise pro-

duced by background objects. There are two well known approaches: adaptive and

non-adaptive background modelling [50]. We look at these two approaches to determine

which one is optimally suited for our implementation of a GR system. Adaptive mod-

elling involves some sort of learning process in which the algorithm tries to learn what

the background is over a series of frames, so that the background can be eliminated.

Non-adaptive approaches subtract the current frame from a reference frame, or a previ-

ous frame. The resultant image contains only the pixels that have changed between the
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two subtracted frames, showing where motion has taken place or where pixel colour has

changed.

3.2.1 Adaptive Modelling

A real-time adaptive background mixture model was proposed by Stauffer and Grimson

[51]. Each pixel is modelled as a mixture of Gaussian distributions. Every pixel’s value

in a series of images is tracked over time in what is know as the pixel process. The

probability of observing the current pixel’s value t is given by:

P (Xt) =
K

∑

i=1

ωi,tη(Xt, µi,t,Σi,t) (3.9)

The recent history of each pixel is modelled by a mixture of K Gaussian distributions.

Where K is the number of distributions, ωi,t represents the estimate of the weight of

the ith Gaussian in the mixture and µi,t is the average Gaussian at time t. Every new

pixel obtained in the next sequential image of the video is validated against the existing

K Gaussian distributions. When a match is found, using a threshold, it is considered to

be part of the background.

This adaptive modelling method was modified to work with our GR system. When

background modelling is applied to an incoming image, all skin regions are ignored.

This is to ensure that important static regions, such as the face, are not computed in the

Gaussian distributions. This guarantees that all skin regions stay in the foreground. An

example of this is shown in Figure 3.8(b). Figure 3.8 exhibits a series of frames depicting

a signer, signing the SASL word Hello. The video consists of a total of 129 frames.

Figure 3.8(a) shows the signer with the background included. When the adaptive model

classifies a background pixel, the system grey-scales it according to how recently it has

been recognised as part of the background. Dark regions indicate a recent classification

and lighter regions indicate older classifications. The background takes between 10 and

20 frames to stabilise, leaving the skin regions behind, shown in Figure 3.8(d). The

adaptive background mixture model has been successfully applied to this sequence of

frames and accurately recognises and subtracts the background, over a period of time,

as shown in the series of images in Figure 3.8.

3.2.2 Non-Adaptive Modelling

For our non-adaptive modelling approach, we build on Kirillov’s simple method of frame

differencing [31]. In comparison to his method however, we assume that we have no prior
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Figure 3.8: Background subtraction using an adaptive background mixture model.

knowledge of the background. For this reason our method needs to construct an image

containing background information. This new image is used as the reference frame for

the frame differencing method.

We realise that the entire background information is not needed. We limit the back-

ground only to where motion takes place. Areas that do not include motion, other than

the head, carry no meaning, are redundant and can be ignored. This simple step elim-

inates all of the background information that is not needed and greatly reduces noise

created by background objects.

To build the reference frame, the system first converts all images to their equivalent grey

scale. The system then frame differences all successive frames in the video. The same

series of images used in the adaptive model approach is applied here, in order to compare

the methods. Example binary images produce by the differencing method are shown in

Figure 3.9. The white segments in the image indicate where pixel values have changed,

Figure 3.9: Images produced by frame differencing.

thus showing where movement has taken place. Black indicates no pixel value change

or no movement. To build the background image, the system evaluates each binary
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image and compiles a new image, of all motion in the video, shown in 3.10(a). The

system subsequently extract all the white regions, where movement has taken place,

from the original series of colour images. This process produces the reference image

shown in Figure 3.10(b). The new background image contains skin colour information

that should be in the foreground. The system therefore extracts all skin regions from

the background image producing a new image, shown in Figure 3.10(c). The system

Figure 3.10: Background images.

now frame differences the original set of images with the reference image by taking into

account only to difference the current frame’s pixels that correspond to the position of

the non-black pixels in the reference image. Once again this produces a set of binary

images. The binary images are evaluated by analysing the white areas in the differenced

image, and extracting skin colour pixels from the original set of colour images. The

Figure 3.11: Background subtraction using an adaptive background mixture model.

non-adaptive approach has been applied successfully to the same set of images used in

the adaptive approach, shown in Figure 3.11. The background is limited to where only

movement has taken place to ensure minimal background noise. This produces a clean

set of skin coloured segmented images shown in Figure 3.11(b-l).
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3.2.3 A Comparison of Adaptive and Non-Adaptive Modelling

Both adaptive and non-adaptive methods produced promising results. Both methods

generate similar results when comparing the segmented images produced. In addition

both methods do not require any prior knowledge of the background. In the example

above, the non-adaptive model eliminates an average of 90.97% of the background in

all 129 frames, effectively eliminating most of the background noise in this video. Skin

regions can be extracted from the first frame, as no time is needed for the background

to stabilize. For this method to fail two criteria need to be satisfied: first, a background

object needs to be the same colour as the colour of the signer’s skin and second, the

same object must move. The adaptive mixture model needs time for the background

to be stabilised. For the adaptive model to fail, any of the following two criteria must

be met: first, a background object is the same colour as the signer’s skin and second,

a background object must move. For the purpose of our research, a quick and reliable

way of eliminating background noise is needed. Therefore the non-adaptive approach

proves to be a more suitable means for our purpose.

3.3 Normalising Method

In this section we explain methods and techniques used to normalise input for classifi-

cation across different signers. The objective is to minimise variations that can occur

in multiple videos of signs, using multiple signers. Some variations that may adversely

affect the performance of the system are:

• Variations in body dimensions,

• Variations in the distance of the signer from the camera, and

• Variations in the position of the signer within the video frame.

The normalising method is divided into several steps. We designed these steps with the

above variations in mind. The normalise methods perform the following steps sequen-

tially:

• Find Head. This method finds the location and the dimensions of the signers head,

• Centring. This method centres the signer in the video frame, using the location of

the head found in the first step, and
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• Construct Grid. This method constructs a grid around the signer’s head. The grid

size is proportioned to the signer’s head as the signer’s head dimensions, found in

the first step, is used to construct the grid.

Each of these steps is applied to every frame extracted from the video, before attempting

to classify the sign.

3.3.1 Find Head Method

The Find Head Method is important for three reasons. First, we need to determine if

a signer is present in the video. Second, the coordinates of the signer’s position within

the video frame is needed in the Centring Method. Third, the dimensions of the signer’s

head are essential in the Construct Grid Method.

To find the head in a given frame, the method described by Viola and Jones (Viola-

Jones method) is used [52, 53]. The OpenCV library’s implementation of the Viola

Jones method is used by our system [54–56]. The Viola-Jones face detector method uses

a Haar Cascade classifier. Viola and Jones combined four fundamental concepts in the

face detector method:

• Haar features,

• An integral image for rapid feature detection,

• The AdaBoost machine-learning method, and

• A cascade classifier to combine many features.

The method is based on Haar wavelets. Haar wavelets are single wavelength square

waves, i.e one high interval and one low interval. An example of these Haar wavelets

used in the original Viola-Jones cascade is shown in Figure 3.12. A square wavelet is a

Figure 3.12: The first two Haar features in the original Viola-Jones cascade [53].

pair of adjacent rectangles, one light and the other dark. The Haar feature is determined

by differencing the average dark region pixel value from the average light region pixel
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value. Using a threshold determined in the training phase, the resulting value determines

the presence or absence of a Haar feature. This produces many Haar features at every

image location over multiple scales. To find all the Haar features in an image efficiently,

Viola and Jones implemented an integral image technique. The integral value for each

pixel is the sum of all the pixels to its left and above it. The entire image can be

integrated with a few operations per pixel.

For the training method Viola and Jones used a machine learning method called Ad-

aBoost. The idea behind AdaBoost is to combine many weak classifiers to create a

strong one. A weak classifier is defined as a classifier that correctly recognises a feature

more often than random guessing would. By combining many weak classifiers, and each

classifier ultimately boosting the final outcome, a strong classifier is built. AdaBoost

first selects a set of weak classifiers to combine, then each classifier is weighted. The

resultant strong classifier consists of a weighted combination of classifiers.

Viola and Jones used an efficient filter chain, shown in Figure 3.13, to classify image

regions. Each filter consists of one Haar feature. If a region at any moment fails to

pass through the cascade, it is classified as non-face, and the next region is applied to

the cascade. The order of filters is determined by the AdaBoost assigned weights. The

heavier weighted filters are assigned first in the cascade, in order to eliminate regions

as quickly as possible. If a region passes through all of the filters without failing, it is

considered to contain a face region. The OpenCV implementation of the Viola-Jones face

Figure 3.13: The classifier cascade is a chain of single feature filters that determines
if a region is a face or not.

detector method comes trained with a frontal face pose classifier. We apply the Viola-

Jones method to all images in the video sequence. An example of the face detector

output is shown in Figure 3.14. Any frames that do not contain a face are discarded.

Once the face region is identified, the region is grey-scaled and the Marr/Hildreth and
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Figure 3.14: A correctly classified face using the Viola-Jones face detector method.

Canny edge detection algorithm is applied to find the outline of the face [57]. The edge

detection method applies a 7 × 7 convolution mask to every pixel and analyses each

surrounding pixel’s intensity. A sharp change in intensity, most likely indicates an edge.

The entries of the mask are calculated using a variation of the Gaussian equation show

in Equation 3.10.

▽2 g(x, y) =
1

σ2
(2 − (

x2 + y2

σ2
)(e−

x2
+y2

σ2 )) (3.10)

An example of an image after the edge detection algorithm has been applied is shown in

Figure 3.15. The dimensions of the head (in pixels) are measured by our system. The

Figure 3.15: Marr/Hildreth and Canny edge detection applied to the face region
classified by Viola-Jones face detector.

height and width dimensions of the head in 3.15 are measured to be 84 and 63 pixels

respectively, with the x, y coordinates of the center of the head being x = 158, y = 75.

These dimensions are forwarded to the Construct Grid method for further use. The

coordinates of the detected face are sent to the Centring method to centre the signer

in the frame. In addition, the system averages the colour of the original image within

the edge detected regions, producing an average skin model of the signer. This skin

information is sent to the Feature Extraction method.

3.3.2 Centring Method

The Centring method uses the coordinates of the location of the head found in the Find

Head method. Predefined x and y coordinates for a 320×240 image are chosen to centre

signers in a video frame, with x = 160 and y = 60. Each frame in the video is analysed

and adjusted, shifting the signer left/right or up/down, aligning the centre of the head

on the predefined set of coordinates. With the example frame shown in Figure 3.14, the

system shifts the signer right 2 pixels and up 15 pixels, centring the signer in the frame
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as shown in Figure 3.16. The extra pixels are filled in red in order to illustrate, in this

Figure 3.16: The is signer shifted up and to the right, to a predefined location on the
frame.

example, the right and upward shift of the signer. The Centring method is applied to

all frames, thus normalising the location of different signers in various locations within a

frame. Since this method is applied to each frame, it not only normalises the position of

the signer but also stabilises the vertical and horizontal movement of the video camera.

This allows the video camera to move while a video of a sign is recorded. This feature

is invaluable when recording a video on an unstable platform, such as using a cellphone

or hand held camera. Once every frame is adjusted by this method, they are sent to the

Construct Grid method.

3.3.3 Construct Grid Method

Our system needs to normalise different body sizes in order to achieve similar results

when signing the same sign across signers with various body types. To this end we

adapt a technique, used by artists throughout history to draw or sculpt the human body

accurately, to work with our system. The artistic technique of using body proportions

to draw the human form is best illustrated by Leonardo da Vinci famous drawing of

the Vitruvian Man around 1487, shown Figure 3.17 [58]. The drawing depicts a man

Figure 3.17: The Vitruvian Man drawn by Leonardo da Vinci to illustrate body
proportions. [59]
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superimposed in a circle and square and is also referred to as the Canon of Proportions

or Proportions of a Man. The drawing is based on the correlations of ideal human body

geometrical proportions described by an ancient Roman architect Marcus Vitruvius

Pollio [59]. Vitruvius’s works was based on the famous Greek philosopher Pythagoras,

who concluded that the human body itself is a construct of both the square and circle

[60]. Da Vinci merged science with art to prove the existence of proportions in nature.

According to Da Vinci [61], the Vitruvian Man was a study on human body proportions

as described by Vitruvius to be:

• a palm is the width of four fingers,

• a foot is the width of four palms,

• a cubit is the width of six palms,

• a pace is four cubits,

• a man’s height is four cubits (and thus 24 palms),

• the length of a man’s outspread arms (arm span) is equal to his height,

• the distance from the hairline to the bottom of the chin is one-tenth of a man’s

height,

• the distance from the top of the head to the bottom of the chin is one-eighth of a

man’s height,

• the distance from the bottom of the neck to the hairline is one-sixth of a man’s

height,

• the maximum width of the shoulders is a quarter of a man’s height,

• the distance from the middle of the chest to the top of the head is a quarter of a

man’s height,

• the distance from the elbow to the tip of the hand is a quarter of a man’s height,

• the distance from the elbow to the armpit is one-eighth of a man’s height,

• the length of the hand is one-tenth of a man’s height,

• the distance from the bottom of the chin to the nose is one-third of the length of

the head,

• the distance from the hairline to the eyebrows is one-third of the length of the

face,
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• the length of the ear is one-third of the length of the face, and

• the length of a man’s foot is one-sixth of his height.

Even though this does not prove true for everybody, it gives a good approximation of

the human body. For the purpose of our study, which focuses on GR in sign language,

we concentrate on the body regions above the waist. Using Da Vinci’s work, we can

now infer the general location of key body regions in videos of various signers.

The Construct Grid method uses the head dimensions obtained from the Find Head

method. A grid is constructed around the signers head, shown in Figure 3.18 in red.

The dimensions are then halved and an additional grid is added to the image, to increase

the resolution, shown in Figure 3.18 in blue. Once the grid is constructed, we can infer

the location of regions of interests in the image. Figure 3.18 illustrates this: Shoulder

regions are indicated in green; chest regions are indicated in blue, and stomach regions

are indicated in yellow. Using the adapted body proportion techniques, the system is

Figure 3.18: Image with grid superimposed on the signer.

able to infer key body regions accurately from the head dimensions. This allows the

signer to stand at various distances from the camera. Due to the system using the head

dimensions of the signer, the grid is in proportion to the signer’s body.

3.3.4 Feature Extraction

The Feature Extraction method uses the grid which was constructed in the previous

method. Each frame in the video is analysed with the grid superimposed on it. For

each frame, the system computes a skinmap for each block in the grid using the skin

information obtained in the Find Head method. A block is said to be fired if 40% or

more of its pixels are skin values. Figure 3.19 shows the grid applied to a video of a

signer signing the word Hello in SASL. The blue blocks indicate the head regions and

the orange regions indicate the hand regions. Figure 3.19(a) shows the Grid method

applied to the original image without the use of background modelling. Both the left

and right hand regions are identified by the system, even though the right hand is not
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used in the Hello sign. Figure 3.19(b-l) shows the Grid method applied to the non-

adaptive background subtracted image. Only the left hand is identified as movement

only occurs with this hand. For each frame, the fired blocks (indicating skin regions)

Figure 3.19: Grid superimposed on frames, showing blocks that have been triggered
by skin regions.

are recorded and compiled in sequential order into a feature vector, shown in Figure

3.20(a). The y axis depicts temporal information, while the x axis depicts locations

of blocks of the grid in sign space. The red colour shows skin regions identified with

Figure 3.20: Feature vector produced by our system.

40% or more skin coloured pixels within it, while blue indicates skin regions with less

than 40% skin coloured pixels. Figure 3.20(b) illustrates that segments in the feature

vector represent one frame in the video. It can be said that the feature vector contains

movement information pertaining to the hand in frames over a period of time.
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3.4 Summary and Conclusions

In the preceding sections we have first described skin segmentation. We evaluated several

colour spaces to work in, and compared two well known coordinate colour systems, HSI

and RGB. Due to the separation of the light information from the colour information in

the HSI colour space, we chose to work in the HSI colour space.

Two methods for background subtraction were implemented and compared. Both meth-

ods assumed no prior knowledge of any background information. Adaptive background

modelling uses machine learning techniques to classify the background in an image.

However, several frames were required for the algorithm to classify the background.

This would mean the signer would have to stand stationary for several frames before

commencing with the sign. The non-adaptive modelling approach, which used several

background subtraction techniques, proved to be the better option for our system. This

non-adaptive method classifies the background regions where no movement takes place,

effectively reducing the overall amount of background noise in a frame. In addition, this

method does not require the signer to stand stationary at the beginning of the sign,

increasing the effectiveness of this method.

We then developed three methods to normalise information pertaining to signs across

different signers. We developed a novel approach by adapting body proportion tech-

niques used by artists. These methods allow the signer not to be restricted by signing

in a specific position and distance from the camera. In addition, the system caters for

signers of various body types.

Lastly we discussed a method for extracting hand movement information from a series

of frames in a video. This information is then stacked into a feature vector. The feature

vector is used to classify the sign and is further discussed in Chapter 5.
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Hidden Markov Models

For the sake of completeness we look at a statistical model of Markov source also known

as hidden Markov modelling, named after Russian mathematician Andrey Markov. It

was studied and introduced in the late 1960s and has become increasingly popular.

According to L. R. Rabiner, this is due to two important reasons [62]. First, the models

are based on mathematical structures and therefore can form the theoretical basis for

use in a wide range of applications. Second, Markov models when implemented properly,

work extremely well in practice.

4.1 Markov Process

When evaluating real-world processes, we are often interested in finding patterns in the

signal produced over time, by these processes. The signals can either be discrete in

nature, i.e. letters in an alphabet, or continuous, i.e. speech samples or temperature

readings. These patterns help us to understand what is currently happening, but can

also help us understand what may happen in the future. Some examples of such patterns

that occur include: fluctuation of stock prices, birth and mortality rates, interest rates,

sequences of phonemes in spoken words, foreign exchange rates, etc. Such patterns may

be generated deterministically or non-deterministically.

To solve a non-deterministic pattern recognition problem such as weather prediction,

where there are 3 observable states:

• State 1: Rain,

• State 2: Cloudy, and

• State 3: Sunny.
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It is often useful to assume that each state is independent and all states are only influ-

enced by the values of the state that directly precedes it. This assumption is known as

the Markov assumption and greatly simplifies the complexity of planning a sequence of

actions. It allows for the elimination of possible states once they have left a specified

time window because it is assumed that the state no longer has any effect on the current

state.

In the weather example, the Markov model would look at a combination of the 3 states

in a long sequence, and analyse the likelihood that one kind of weather is proceeded

by another. Let’s say it was found that 25% of the time, a sunny day was followed by

a cloudy day, and 75% of the time a rainy day was followed by another rainy day. In

addition sunny days were followed by a rainy day 50% of the time, and a rainy day

was followed by a cloudy day 25% of the time by a cloudy day. Given this analysis, we

can generate a new sequence of states that yields statistically similar weather events to

that which we observed. To generate a new sequence, first start with today’s weather.

Second, given today’s weather, choose a random number to pick tomorrow’s weather.

Third, make tomorrow’s weather today’s weather and repeat from the second step. This

would produce sequence of states such as:

{Sunny,Cloudy,Rain,Rain, Sunny,Cloudy,Rain,Rain, Sunny, Sunny....}

It can be said that the output chain or sequence would reflect statistically the transition

probabilities derived from the weather we observed.

A Markov process transitions from state to state depending solely on the information

obtained from the previous n states. This process is called an order n Markov model,

where n is the number of states effecting the current state’s decision to move to the next

state. In the non-deterministic weather example where the current state only depends

on the previous state, the simple Markov process is known as a first-order process.

In contrast to the non-deterministic pattern recognition example, a deterministic sys-

tem’s, transitions between states are performed probabilistically. For a first order

Markov process with M states, there are M2 possible transitions between states, since

all states are connected to every state. Associated with each state is a state transition

probability, this is a the probability, given state n, that state n will move to the next

state. The transition probabilities are stored in the state transition matrix. A first-order

Markov process can be defined as:

• States: Number of observed states in the model,

• π: The probability of the system being in each of the states at the time of initial-

isation, and

• State transition matrix: The probability of moving from one state to the another.
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Any system that can be described in this manner is a Markov process.

4.2 Hidden Markov Model

A HMM, denoted by λ, is a double stochastic process [63]. The first stochastic layer is the

underlying first-order Markov process. The second stochastic layer of the HMM is the set

of output probabilities for each state. Given a sequence of observations, the actual states

are ambiguous, in other words it is hidden from the observer. For example, we apply an

HMM to a non-trivial problem in speech recognition. The audible sound that we hear

when someone speaks is a product of air passing through the vocal chords, shape of the

mouth, position of the tongue and several other factors. We can observe some processes

in this example, such as the actual utterance or the shape of the mouth. These observed

output sequences can be related probabilistically to an underlying Markov process. This

underlying Markov process can be non-observable and in our example will include the

state of the vocal chord, position of the tongue and force of the air passing through the

vocal chords. Therefore, for the recognition of any vocal utterance, a model consists of

a number of observed and non-observed states.

A formal definition of HMMs consists of the following elements:

1. N is the number of states in the model,

2. M is the number of distinct observation symbols per state,

3. A is the state probability distribution. A = {aij} where aij = P [qt+1 = j|qt =

i], 1 ≤ i, j ≤ N and qt denotes the current state.

The transition probabilities must satisfy the normal stochastic constraints aij ≥

0, 1 ≤ i, j ≤ N and
∑N

j=1
aij = 1, 1 ≤ i ≤ N ,

4. B is the observation symbol probability distribution in state j, B = {bj(k)}, where

bj(k) = P [vk at t|qt = Sj ]

The observation symbol probabilities must satisfy the following stochastic con-

straints 1 ≤ j ≤ N and 1 ≤ k ≤M , and

5. π is the initial state distribution. π = {πi} where πi = p{q1 = i}, 1 ≤ i ≤ N .

We can now use the compact notation, shown in Equation 4.1 to denote HMMs with

discrete probabilities.

λ = (A,B, π) (4.1)
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4.2.1 The Three Basic Problems for HMMs

Given the HMM in the previous section, there are three fundamental problems that

must be solved for the model to be useful in real-world applications, as noted by L. R

Rabiner [62]. These problems are summarised as follows:

1. Given the observation sequence O = O1O2...OT , and a model λ = (A,B, π), how

do we compute P (O|λ) the probability of the observation sequence efficiently.

2. Given the observation sequence O = O1O2...OT , and a model λ where T it the

number of observations, how do we choose a corresponding state sequence Q =

q1q2...qT which bests explains the observations?

3. How do we adjust the model parameters λ = (A,B, π) to maximize P (O|λ)?

4.2.2 A Solution to the Evaluation Problem

The evaluation problem deals with how well a model matches a given observation. This

is extremely useful when trying to choose which model out performs other models [62].

Given an observation sequence O = O1O2...OT and model λ = (A,B, π), we need

to calculate P (O|λ). Using probabilistic reasoning, it is realised that the number of

operations needed to compute (O|λ), is of the order of NT . This proves exponentially

inefficient even for moderate values of T and N .

An alternative method found in the forward-backward algorithm, with considerably lower

time complexity, can be used. The forward-backward algorithm uses two auxiliary vari-

ables, namely the forward and backward variables. Only the forward section of the

algorithm is used in the solution of the evaluation problem. The backward variable is

used in the solution to the learning problem. The forward variable, αt(i), is defined as

the probability of the partial observation sequence O = O1O2...OT until termination at

state Si at time t. αt(i) is defined in equation 4.2.

αt(i) = P (O1O2...Ot, qt = Si|λ) (4.2)

αt(i) can be solved by induction, using the following equations.

1. Initialisation:

αt(i) = πibi(O1), 1 ≤ i ≤ N. (4.3)
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2. Recursion:

αt+1(j) =

[ N
∑

i=1

αt(i)aij

]

bj(Ot+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N. (4.4)

3. Termination:

P (O|λ) =
N

∑

i=1

αT (i). (4.5)

Similar to αt(i), the backward variable, defined by βt(i), is the probability of the partial

observation sequence O = O1O2...OT from time t + 1 until termination at state Si at

time T . The time complexity for both the forward and backward section of this method

is proportional to N2T , which is linear with respect to T . This is considerably shorter

compared to the initial time complexity of NT .

4.2.3 A Solution to the Decoding Problem

The solution to the decoding problem aims to find the optimal sequence of states for

a given sequence of observations O = O1O2...OT . A problem arises in some solutions

where invalid state sequences are produced. In other words, given a HMM with some

states having a probability of 0 and given observations O = O1O2...OT , the solution

may result in a meaningless set of state sequences. This is due to the fact that this

solutions simply determines the most likely state at every instant, without regard to the

probability of occurrence of sequence of states [62].

The Viterbi algorithm does not suffer from the above mentioned complication. The

Viterbi algorithm was created by Andrew Viterbi in 1967 for error correction in noisy

communication links [64]. The algorithm tries to find the entire state sequence which

maximises the probability of observing each state. It dynamically finds the most correct

sequence of states given an observation, this sequence is also known as the Viterbi path.

To find the Viterbi path or the most correct sequence of states Q = q1, q2...qr, given

observations O = O1O2...OT , an auxiliary variable δt(i) is defined in Equation 4.6.

δt(i) = max
q1,q2,...,qt−1

P [q1q2...qt = i, O1O2...Ot|λ] (4.6)

δt(i) is the Viterbi path with the highest probability of observing the first t observations,

until termination at state Si and time t. Given δt(i), the following recursive relationship

holds:

δt+1(j) =
[

max
1≤i≤N

δt(i)aij

]

, 1 ≤ N, 1 ≤ t ≤ T − 1 (4.7)
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where

δ1(i) = πibi(O1), 1 ≤ i ≤ N. (4.8)

In order to retrieve the Viterbi path, the algorithm needs to keep track of each state that

was computed to have the highest probability in equation 4.7. This is done by using an

array ψt(j). The whole procedure can now be solved as:

1. Initialisation:

δ1(i) = πibi(O1), 1 ≤ i ≤ N, (4.9)

ψ1(i) = 0. (4.10)

2. Recursion:

δt(j) = max
1≤i≤N

[

δt−1(i)aij

]

bj(Ot), 2 ≤ t ≤ T, 1 ≤ j ≤ N, (4.11)

ψt(j) = argmax1≤i≤N

[

δt−1(i)aij

]

, 2 ≤ t ≤ T, 1 ≤ j ≤ N. (4.12)

3. Termination:

P ∗ = max
1≤i≤N

[

δT (i)
]

, (4.13)

q∗t = argmax1≤i≤N

[

δT (i)
]

. (4.14)

4. Path backtracking:

q∗t = ψt+1(q
∗
t+1), t = T − 1, T − 2, · · ·, 1. (4.15)

For our application, this formulation of the Viterbi algorithm can lead to underflow as

the probabilities can become very small. Thus, we used logarithmic scaling in order

to prevent an underflow from occurring. The equations for the Viterbi algorithm thus

become:

1. Initialisation:

δ1(i) = log (πi) + log (bi(O1)). (4.16)

2. Recursion:

δt(j) = max
1≤i≤N

[

δt−1(i) log (aij)
]

+ log (bj(Ot)). (4.17)

3. Termination:

log (P ∗) = max
1≤i≤N

[

φT (i)
]

. (4.18)

The other equation remains unchanged.
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4.2.4 A Solution to the Learning Problem

Even though this solution is not used in our application, for completeness we briefly

discuss it. The optimisation of the parameters in HMMs, so that it best describes a

series of observations, can effect the performance of a model. The series of observations

used to optimise the model, is known as the training sequence. The learning problem

aims to find a method that can adjust the parameters of a model (A,B, π) optimally,

given a set of training sequences. However, with a finite number of training sequences,

there is no known way of estimating the model’s parameters optimally [62].

To get around this dilemma, we can select λ = (A,B, π) so that P (O|λ) is iteratively

locally maximised. This procedure is called the Baum-Welch method. It was created by

the mathematicians, Leonard E. Baum and Lloyd R. Welch. The method is a generalised

expectation maximisation method, in other words it is able to compute the transition and

emission parameters of a model given a set of training sequences. In order to calculate

the Baum-Welch algorithm we need to define ξt(i, j) as the probability of being in state

si at time t and state Sj at time t + 1, given the HMM λ = (A,B, π) and the training

sequence:

ξt(i, j) = P (qt = si, qt+1 = Sj |O, λ). (4.19)

We define γt(i) as the probability of being in state Si at time t as:

γt(i) =
N

∑

j=1

ξt(i, j) (4.20)

with the re-estimation formula for (A,B, π) being:

π̄i = expected frequency in state Si at time (t = 1) = γ1(i), (4.21)

āij =

∑T−1

t=1
ξt(i, j)

∑T−1

t=1
γt(i)

, (4.22)

and

b̄j(k) =

∑T
t=1, with Ot=vk

γt(j)
∑T

t=1
γt(j)

. (4.23)

The re-estimation formula is denoted by λ̄ = (Ā, B̄, π̄). The Ā variable is the probability

or expected number of times that a transition will be made from state i to state j or

remain in state i . The B̄ variable is the ratio of observing symbol ok while being in

state j. Lastly, the π̄ variable is the probability of being in state i at time t

 

 

 

 



Chapter 4. Hidden Markov Models 47

4.3 Summary

In this chapter we have discussed the HMM model. We have evaluated the 3 problems

associated with HMMs, namely the evaluation problem, the decoding problem and the

learning problem. We then discussed each of their solutions. In the next chapter we will

discuss the implementation of HMMs in our GR system.

 

 

 

 



Chapter 5

Experimental Setup

In this chapter we discuss the physical setup for our experiments. We use two different

equipment setups. Their performance is evaluated in the next chapter. The first equip-

ment setup uses of a webcam attached to a PC to record a gesture. The second uses a

camera on a cellphone to record a gesture. The system developed in conjunction with

this study is called iSign. It consists of two applications: iSign desktop and iSign mobile.

Although neither iSign desktop nor iSign mobile are used in their entirety in this study,

for completeness, we will describe them briefly. We then look at the training procedure

of the HMMs and describe how the feature vector is used, followed by a summary and

conclusion.

5.1 iSign Desktop

Our first setup consists of a single webcam connected to a PC. The specifications of the

system hardware is shown in Table 5.1. The system captures fifteen frames per second

Hardware Description

Operating System Microsoft Windows XP professional
Service pack 2

CPU Intel Core 2 Extreme 2.93 GHz

RAM 2GB of Corsair 1800 mhz

Hard Drive 150GB Western Digital Raptor
10000 RPM

Webcam Logitech notebook Quick Cam Chat

Table 5.1: Hardware Specifications.

using the webcam, producing a series of 320 × 240 images. These images are processed
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using the techniques and methods outlined in Chapter 3. The process of capturing and

interpreting SASL gestures commences by: first, a signer stands in front of the camera

in the neutral pose. The neutral pose helps us to identify the start and end of a sign

easily. In our experiments the neutral pose is characterised by the signer standing facing

the camera with his or her arms down, located at the side of the body. Second, the

system is activated and begins to record frames. Third, the signer commences with the

SASL gesture and returns to the neutral pose when done and the system is stopped.

The captured frames are processed, producing the feature vector for the specific gesture.

The feature vector is classified using the trained HMMs, by applying it to each HMM

in our lexicon. The HMM which produces the highest probability is chosen as the most

likely interpretation.

5.1.1 System Description

A high level view of the iSign desktop application is shown in Figure 5.1. A brief

description is provided by means of an example.

Figure 5.1: Experimental setup A.

Lets say a deaf person, Geoff, wanted to communicate with a hearing person, James.

Geoff would record himself performing a SASL gesture, which would be interpreted

by our system on his PC. Via a network, a text translation of the gesture would be

forwarded to James’ computer. Using text to speech, James will be able to listen to the

message sent on by Geoff. Alternatively, James can record himself speaking and by using

speech to text the message gets forwarded on to Geoff’s computer as text. The system

on Geoff’s computer then renders the message in SASL as a 3D humanoid Avatar, as

shown in 5.1.

This system is also capable of deaf to deaf and hearing to hearing communication.
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5.2 iSign Mobile

The second setup, shown in Figure 5.2, uses of a cellphone’s video camera to record a

gesture. The video is processed using the same PC used for iSign desktop, set up as a

remote server. The cellphone used in our experiments is a Sony Ericsson C905. The

process of capturing and classifying a SASL gestures using the cellphone begins by: first,

recording a signer performing a SASL gestures using the cellphone. The signer starts

and ends in the neutral pose. Second, the video is sent to the server to be processed

using an available wireless technology such as 3G, EDGE, or GPRS. Third, the system

extracts the frames from the video received and processes them, producing a feature

vector. The feature vector is then applied to our database of HMMs and the HMM that

produces the highest probability is chosen as the interpretation.

5.2.1 System Description

Figure 5.2: Experimental setup B.

Continuing with the example in Section 5.1.1: If Geoff replies using the iSign mobile

setup, he records himself performing a SASL gesture using the camera on his phone.

The video recording is then sent to the server and subsequently interpreted into English

text. The text is converted into an audio file using text to speech and forwarded to

James’ phone which in turn plays the audio file.

5.3 Data Collection and Training

For our experiments a lexicon of twenty SASL gestures was randomly chosen from an

English phrase book. We enlisted the help of deaf and hard of hearing students at the

Dominican School for the Deaf in Wynberg Cape Town, to translate these words and

phrases into SASL. A list of these words and phrases, with their sequences of holds and

movements are shown in Table 5.2 The first and last hold and movement elements of

each SASL gesture is attributed to the neutral state that the signer starts and ends with.
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Word Sequence

Hello H-M-M-H-M-H

How are you H-M-H-M-H-M-H

Goodbye H-M-M-M-H

Water H-M-H-M-H

Restaurant H-M-M-H-M-H

Right H-M-H-M-H

Left H-M-H-M-H

Bus H-M-M-H-M-H

Help me H-M-M-M-H-M-H

Help you H-M-M-M-H-M-H

Where is the toilet H-M-H-M-H-M-H

Medicine H-M-M-M-H

Doctor H-M-M-M-M-H

Good evening H-M-H-M-H-M-H

South Africa H-M-M-H-M-H-M-H

Sick H-M-H-M-H

Soccer H-M-M-M-M-H

I have stomach pain H-M-H-M-M-M-H

How H-M-H-M-H

Thank you H-M-M-H-M-H

Table 5.2: South African Sign Language words and phrases with their sequences of
holds and movements derived from the Movement-Hold model.

To determine an appropriate sample size for our training data, we selected 3 SASL

gestures at random. Using the information gained from the Dominican School for the

Deaf, we recorded 30 students at UWC performing each SASL gesture twice. This is

done first with a short sleeve shirt and then with a long sleeve shirt. This was to ensure

the robustness of the system for varying amounts of skin that is detected. A total of

60 recordings per SASL gesture was recorded yielding total of 180 recordings. We then

trained each model in increments of two gestures and tested each model with all the

training data. The average accuracy of the 3 selected SASL gestures was recorded at

each increment. The results are shown in a line graph in Figure 5.3.

The graph indicates that the average accuracy of the 3 chosen gestures increases as more

training samples are used. However when training samples exceeded 42, the average

accuracy stabilises at around 93%. We therefore chose a sample size of 42 gestures to

use in training each of our 20 SASL gestures. A total of 840 sample videos was recorded

for all gestures.
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Figure 5.3: Graphical representation on experimental results.

In addition, 3 different students were asked to perform each gesture and were recorded

using the web camera as well as the cellphone camera. They were again first recorded

with a short sleeve shirt and then with a long sleeve shirt. The feature vectors of these

recordings were computed. This subset of feature vectors was then used to test the

HMM’s performance for each of our twenty SASL gestures on unseen data.

5.4 Feature Vectors and Training

In Chapter 3 we discussed how skin regions within each frame of a video are extracted

and compiled into a feature vector. Figure 5.4 shows a feature vector produced by our

system for the SASL word Hello. Each segment in the feature vector describes the skin

location of the signer within each frame of the video. The start of the video begins

at the top and ends at the bottom of the feature vector. Both iSign applications use

the feature vector by extracting each segment of the vector beginning from the top.

Each segment is converted to a binary representation, the black colour is represent by

a 0 and red or blue colour is represent as a 1. An example of this representation, for

the vector shown in Figure 5.4, is shown in Table 5.3. Each unique row of the binary

values is a state in our HMMs, shown in the third column in Table 5.3. For training a

model λ = (A,B, π), A, the state probability distribution and B, the observation symbol

probability distribution are computed using the binary values of a feature vector, with

each unique row of binary values being a state. The training data for a given SASL

gesture consistes of 42 sets of states for each of the 42 feature vectors. These states are
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Figure 5.4: Feature vector produced by our system for the SASL word Hello.

Frame Binary Value State

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12

3 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12

4 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12

5 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12

6 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12

7 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 14

8 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 14

9 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 15

10 1 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 4

11 1 1 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12

12 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 7

13 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8

14 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8

15 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8

16 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

17 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

18 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

19 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

20 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

21 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 10

22 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 10

23 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 10

24 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 10

25 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 10

26 1 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 11

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 5.3: Binary representation of a feature vector for the SASL word Hello.

then used to train the model. For testing, the binary representation of the feature vector

is applied to all the trained models of each SASL word in our lexicon. The model that

produces the highest probability is chosen as the interpretation of the SASL gesture.
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5.5 Summary and Conclusions

In this section, we have highlighted the hardware that we used. We have discussed

two hardware setups and described both of the systems which were used to run our

experiments. Finally, an overview of our data collection was provided followed by our

training procedure.

 

 

 

 



Chapter 6

Results and Discussion

This chapter presents our results and contributions to GR of SASL. We first describe

certain preliminary parameters and techniques that are common to all our experiments.

6.1 Preliminary Parameters and Techniques

For each video sample in the testing set, we perform the following processes:

1. Preprocess all videos to minimise variances pertaining to the signer,

2. Perform temporal segmentation using methods outlined in Chapter 3,

3. Build a feature vector with the information extracted in Process 2, and

4. Apply the feature vector to all HMMs and determine the most likely match.

6.1.1 Cropping a Frame Sequence of a SASL Gesture

Before we can start with Process 1, it is imperative that we find the beginning and end

of a SASL gesture. We employ a similar technique to that used by Rajah [17]. It is

essential to discard any unwanted frames that do not contain useful information. In

addition this process will also determine the movement and hold elements of a SASL

gesture. For illustrative purposes, we show how the SASL gesture for the word Hello is

segmented using frame difference techniques outlined in Chapter 3.
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Figure 6.1: Motion sequence for Hello SASL gesture at different stages of execution.

Using frame differencing techniques, we are able to calculate the intensity of motion in

each frame. This allows us to detect the start and end of a gesture accurately as well as

the hold and movement elements shown in Table 5.2. Figure 6.2 shows the graph of the

motion intensity calculated from the frames in Figure 6.1.

Figure 6.2: Intensity of motion is plotted to find the start and end of a SASL gesture.

From Figure 6.2 we can make the following observations.

1. To find the beginning of a SASL gesture we can simply detect where motion has

started. This is done by frame differencing a series of frames from a video. In

addition this allows us to align the gesture to the movement-hold model as outlined

in Chapter 2. In Figure 6.2 we note that by using a threshold of 1, we can detect

the dynamic unit of the SASL gesture. In this case, for the SASL word Hello, it

is represented between points A and G,

 

 

 

 



Chapter 6. Results and Discussion 57

2. Frames before point A and frames after point G can be ignored as they contain

no movement and therefore no information pertaining to dynamic SASL gestures,

3. The frames between points A and B represent the hand moving towards the top

of the head, as shown in the frames in Figure 6.1,

4. Frames between points B and C represent the hand slowing down as it reaches

the head, before it changes direction away from the head, as shown in the frames

in Figure 6.1,

5. The frames between points C and D represent the hand moving away from the

head, as shown in the frames in Figure 6.1,

6. Frames between points D and E represent the hand slowing down and coming to

a complete stop, as shown in the frames in Figure 6.1. The motion intensity drops

below the threshold of 1 illustrating that in this example the hand has stopped

moving,

7. The frames between points E and F represent the hand picking up speed as the

signer returns to the neutral pose, as shown in the frames in Figure 6.1, and

8. Frames between points F and G represent the hand slowing down as the signer

reaches the neutral pose, as shown in the frames in Figure 6.1.

6.1.2 Training

A fully connected HMM, in which every possible state can be reached from every other

state, would require a large amount of memory. A three state fully connected or ergodic

HMM is shown in Figure 6.3. Recall that an HMM is give as:

λ = (A,B, π) (6.1)

Where:

1. A is the state probability matrix of size N ×N ,

2. N is the number of hidden states,

3. B denotes the observation symbol probability distribution matrix of size N ×M ,

and

4. M represents the number of distinct observation symbols per state.
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With thirty two features in the binary feature vector, an ergodic HMM would produce

232 possible states, in which every state is connected to every other state. However, due

the constraints of the human body, only a small number of these states will ever occur.

For example, the left hand cannot be in two places at the same time. Thus, an ergodic

HMM was not constructed. Rather we add new states to the model as they appear

in training. The resulting model consists of only the required states with transitions

between states determined by the state probability distribution matrix. An example of

such a 3 state HMM, is shown in Figure 6.4.

Figure 6.3: A three state ergodic HMM.

Figure 6.4: A three state HMM.

6.2 Results

In this section we present our results. The results of the tests listed below, are examined,

followed by a summary of our tests:

1. Test on seen data,

2. Test on unseen data, and

3. Test the normalising method.
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6.2.1 Testing on Seen Data

In order to validate that our trained HMMs have learned, i.e., are able to discriminate

between SASL gestures, we first test each of them on seen gestures. That is, we used the

same data for training and for testing. Forty two samples of each gesture were used in

training, with the same 42 sample videos used for testing. A break down of the testing

and training sample videos are shown in Table 6.1.

Training and Testing Sample Sets on Seen Data for each SASL Gesture

Sample Size per SASL Gesture Native SASL Signers UWC Students

42 10 32

Table 6.1: Training and testing sample sets on seen data.

We expect the models to perform well, as the HMM for each of the SASL word(s) or

phrases in our lexicon has been trained on each of the SASL gesture. The results of

these tests are shown in Table 6.2.

Test on Seen Data

Word(s) Right Wrong Accuracy

1 Bus 34 8 80.95%

2 Doctor 39 3 92.86%

3 Good evening 22 20 52.38%

4 Goodbye 40 2 95.24%

5 Hello 39 3 92.86%

6 Help me 16 26 38.1%

7 Help you 19 23 45.24%

8 How 29 13 69.05%

9 How are you 12 30 28.57%

10 Stomach pain 30 12 71.43%

11 Left 42 0 100%

12 Medicine 39 3 92.86%

13 Restaurant 31 11 73.81%

14 Right 39 3 92.86%

15 Sick 27 15 64.29%

16 Soccer 20 22 47.62%

17 South Africa 42 0 100%

18 Thank you 35 7 83.33%

19 Water 22 20 52.38%

20 Toilet 36 6 85.71%

Average: 73.38%

Table 6.2: Testing Performance: The table shows the test results on seen data, for
each trained HMM. The column named Right, lists the number of correctly classified

gestures and the column named Wrong lists the number of misclassified gestures.
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Sixteen out of the twenty HMMs classify gestures correctly more than 50% of the time.

1. 10 out of 20 SASL gestures obtain an accuracy of over 80%,

2. 12 out of 20 SASL gestures obtain an accuracy of over 70%, and

3. 16 out of 20 SASL gestures obtain an accuracy of over 50%.

Even though the above test results are very promising for the majority of SASL gestures,

we need to determine why the rest performed poorly. To determine why some models

performed poorly, we cross-test each SASL gesture with all gestures in our lexicon. We

use the same testing set as above, whereby each HMM is tested on data that was used

in training. The results for this test are shown in Tables 6.3 and 6.4, with the average

log probability logP (B|Mi) for each SASL gesture shown in Table 6.3 and the number

of correctly classified SASL gestures shown in Table 6.4.
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Probabilities Produced by the HMM Test On Seen Data
HMMs

W
or

d
(s

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 -30.164 -98.797 -46.325 -57.535 −∞ -46.123 -40.016 -64.200 -51.324 -41.432 -59.083 -29.187 -43.317 -90.654 -95.238 -44.506 -32.282 -85.189 -76.222 -32.810
2 −∞ -16.623 −∞ -26.532 -35.027 -95.268 −∞ -97.547 −∞ -90.628 −∞ -99.061 -72.688 -26.290 -37.253 -94.306 -81.350 -35.282 -49.164 −∞
3 -75.313 -83.590 -57.663 −∞ −∞ -54.413 -37.060 -61.542 -65.718 -57.284 -53.722 -35.057 -47.329 -87.403 -78.278 -60.488 -44.667 -85.167 -82.153 -31.311
4 −∞ -22.803 -89.662 -19.608 -48.292 -86.641 -97.649 -96.152 -99.017 −∞ -92.395 −∞ -85.163 -19.513 -41.450 -94.042 -93.323 -22.728 -33.022 -93.679
5 −∞ -32.025 -80.649 -52.333 -16.625 -96.350 −∞ −∞ -92.561 -81.761 −∞ -90.151 -94.280 -23.301 -32.568 -93.127 -81.208 -15.517 -43.636 -89.271
6 -93.712 −∞ -65.127 -95.386 -74.733 -56.400-31.388 -55.731 -63.105 -38.233 -93.261 -28.079 -37.188 −∞ -84.351 -53.691 -62.193 -97.222 -74.675 -44.623
7 -76.712 -93.582 -37.559 -70.314 -68.704 -20.195-60.207 -67.024 -20.817 -31.482 -92.530 -36.013 -43.253 -92.275 -68.016 -41.276 -42.489 −∞ -84.582 -31.629
8 -38.254 -99.647 -25.557 −∞ -92.182 -58.687 -44.575 -54.133 -47.528 -42.247 -73.316 -33.125 -59.311 -82.057 -91.767 -58.859 -53.646 -77.733 -94.164 -29.810
9 -49.013 -83.603 -80.024 -97.051 −∞ -50.079 -36.645 -76.241 -79.220 -35.277 −∞ -35.216 -33.903 -86.442 -86.553 -45.581 -45.573 -80.494 -97.722 -49.429
10 −∞ -90.264 −∞ -84.524 -90.727 -55.706 -47.864 -68.611 -57.407 -26.548-79.278 -46.116 -42.592 -92.323 -79.143 -51.770 -36.506 -89.526 -72.800 -27.937
11 −∞ −∞ -91.578 −∞ −∞ −∞ -99.679 -94.350 −∞ −∞ -8.738 -93.476 -91.661 −∞ −∞ −∞ -99.148 -93.545 −∞ −∞
12 -69.600 −∞ -19.489 −∞ −∞ -38.164 -43.614 -57.260 -61.097 -31.500 -86.625-25.024 -42.812 -96.146 -78.375 -58.122 -24.351 -98.618 -88.511 -39.333
13 -76.766 -76.508 -26.424 -69.511 -90.284 -44.143 -59.242 -58.241 -63.129 -30.823 -69.151 -48.648 -29.820 -75.694 -94.770 -39.085 -34.118 -80.350 -98.781 -37.202
14 −∞ -28.485 -83.314 -26.263 -21.576 −∞ −∞ -92.038 −∞ -80.067 −∞ −∞ -87.056 -14.139 -37.644 -84.091 -78.494 -30.656 -34.643 -79.690
15 −∞ -45.015 -92.583 -31.494 -30.241 -76.533 -83.179 −∞ -86.671 −∞ -98.041 -98.173 -90.578 -18.184 -55.415 -89.344 -95.443 -14.174 -58.426 -87.229
16 -48.892 -82.790 -33.548 −∞ -81.441 -42.727 -38.205 -58.481 -42.313 -40.230 −∞ -30.662 -39.267 -71.442 -80.012 -62.630 -51.127 -71.387 -91.273 -30.091
17 -40.048 -89.730 -34.179 -81.182 −∞ -32.549 -49.047 -60.466 -35.443 -35.676 -85.456 -53.535 -32.289 -80.067 -86.310 -66.533 -20.030-28.058 -83.443 -27.180
18 −∞ -18.714 -95.429 -38.011 -38.118 -96.455 -84.069 −∞ -87.831 -80.439 -95.365 -91.081 −∞ -40.475 -40.200 -93.290 -92.529 -10.45-29.384 -87.676
19 −∞ -22.595 −∞ -42.917 -22.039 -87.078 -98.048 -99.691 -93.515 -94.377 −∞ -84.743 -93.667 -25.305 -47.732 -79.115 -84.584 -21.092-59.250 -75.839
20 -62.414 -92.365 -62.524 -92.414 -94.615 -58.684 -42.781 -67.622 -37.607 -39.617 -72.367 -36.579 -45.062 -71.236 -77.506 -35.748 -48.157 -99.135 -92.538 -26.809

Table 6.3: Cross-Testing Performance: The table shows the average logarithmic probability logP (B|Mi) produced by each HMM. The largest
value for logP (B|Mi) is chosen as the most likely interpretation by our system.
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Classification Rate on the Test on Seen Data

HMMs

W
or

d
(s

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 39 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
3 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 40 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0
5 0 0 0 0 39 0 0 0 0 0 0 0 0 0 13 0 0 6 0 0
6 0 0 0 0 0 16 23 8 0 0 0 3 0 0 0 0 0 0 0 0
7 0 0 3 0 0 24 19 0 23 6 0 0 0 0 0 0 0 0 0 0
8 8 0 2 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 12 0 0 0 8 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 42 0 0 0 0 0 0 0 0 0
12 0 0 15 0 0 0 0 3 0 2 0 39 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 1 0 4 0 0 31 0 0 0 0 0 0 0
14 0 0 0 1 2 0 0 0 0 0 0 0 0 39 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 27 0 0 1 0 0
16 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 20 0 0 0 0
17 0 0 0 0 0 2 0 0 5 0 0 0 3 0 0 0 42 0 0 6
18 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 19 0
19 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0
20 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 22 0 0 0 36

Table 6.4: Cross-Testing Performance: The table shows the number of correctly classified and incorrectly classified SASL words or phrases,
for each trained HMM on seen data.
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For analysis purposes, we divided the gestures in our data set into three distinct cate-

gories:

1. Single left hand movements (left),

2. Single right hand movements (right), and

3. Both left and right hand movements (both).

We expect that the HMMs should be able to discriminate between left, right and both

accurately due to the distinct differences in the patterns of the motion of the hands.

The twenty gestures and their corresponding hand movements are shown in Table 6.5.

Gesture Hand Movements

1 Bus both

2 Doctor right

3 Good evening both

4 Goodbye right

5 Hello right

6 Help me both

7 Help you both

8 How both

9 How are you both

10 Stomach pain both

11 Left left

12 Medicine both

13 Restaurant both

14 Right right

15 Sick right

16 Soccer both

17 South Africa both

18 Thank you right

19 Water right

20 Toilet both

Table 6.5: SASL Gestures divided up into their corresponding hand movements.

Recall Chapter 5, where an incoming feature vector produced by a gesture is applied to

every trained HMM in our lexicon. The HMM which produces the highest probability is

then chosen as the most likely interpretation. Analysing Table 6.3 and 6.4 shows that our

system fails to accurately classify certain gestures, while others perform extremely well.

As expected, the trained HMMs are able to discriminate among gestures with different

patterns of hand motion, i.e. left, right and both. However for gestures that display

similar patterns of hand motion, such as gestures within the both category, the HMMs
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fail to accurately classify them. All 20 HMMs and their misclassified interpretations are

shown in Table 6.6.

Misclassified Gestures

Input Gestures Word/Phrase Number Total

1 Bus (both) How (both) 8 8

2 Doctor (right)
Goodbye (right) 1

3
Thank you (right) 2

3 Good evening (both)
Help you (both) 3

20How (both) 2
Medicine (both) 15

4 Goodbye (right)
Doctor (right) 1

2
Right (right) 1

5 Hello (right)
Right (right) 2

3
Water (right) 1

6 Help me (both)
Help you (both) 24

26
South Africa (both) 2

7 Help you (both) Help me (both) 23 23

8 How (both)

Help me (both) 8

13
Medicine (both) 3
Restaurant (both) 1
Soccer (both) 1

9 How are you (both)
Help you (both) 23

30South Africa (both) 5
Toilet (both) 2

10 Stomach pain (both)
Help you (both) 6

12Medicine (both) 2
Restaurant (both) 4

11 Left (left) n/a 0 0

12 Medicine (both) Help me (both) 6 6

13 Restaurant (both)
How are you (both) 8

11
South Africa (both) 3

14 Right (right)
Goodbye (right) 2

3
Sick (right) 1

15 Sick (right)
Doctor (right) 2

15
Hello (right) 13

16 Soccer (both) Toilet (both) 22 22

17 South Africa (both) n/a 0 0

18 Thank you (right)
Hello (right) 6

7
Sick (right) 1

19 Water (right)
Goodbye (right) 1

20
Thank you (right) 19

20 Toilet (both) South Africa (both) 6 6

Table 6.6: The table shows misclassified gestures and the number of misclassified
gestures for each trained HMM on seen data.

The six gestures indicated in bold text in Table 6.6 show the SASL gestures which were

incorrectly classified more 45% of the time. While the remaining 14 gestures achieve
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and error rate of less than 35%. Gestures which were misclassified more than 45% of

the time are listed in Table 6.7.

Most Frequently Misclassified

Trained HMM Accuracy

HMM 3 (Good evening) 52.38%

HMM 6 (Help me) 38.1%

HMM 7 (Help you) 45.24%

HMM 9 (How are you) 28.57%

HMM 16 (Soccer) 47.62%

HMM 19 (Water) 52.38%

Table 6.7: Misclassified: The table shows the frequently misclassified SASL gestures
for the test on seen data.

To ascertain the reason for these misclassifications, we need to decompose the gestures

into their movement and hold elements. As an illustration, we will dissect the gesture

Help you, used to train HMM 7 in Table 6.7. It obtained a misclassification for the SASL

gesture Help me, 54% of the time. Figure 6.5 shows the movement and hold elements of

the SASL gesture Help you. We compare the elements in Figure 6.5 of the gesture Help

you, with that of the Help me gesture shown in Figure 6.6.

Figure 6.5: Movement and hold elements for the SASL gesture Help you.

Figure 6.6: Movement and hold elements for the SASL gesture Help me.
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The movement and hold frames shown in Figure 6.5 and 6.6 indicate that these two

SASL gestures have similar patterns of hand motions when viewed from the front. The

two feature vectors generated for these two gestures are shown in Figure 6.7

Figure 6.7: Feature vectors produced for the gestures Help you and Help me.

The feature vector for the SASL gesture Help you is shown in Figure 6.7(a), with the

SASL gesture Help me shown in Figure 6.7(b). The two similar feature vectors produced

by the gestures make it virtually impossible for an HMM to discriminate between them.

When viewing Figures 6.5(b) and 6.6(b) from the side, it can be seen that movement

and hold information is lost due to the lack of 3D information in the frontal 2D view.

Figure 6.8 and 6.9 show the lost movement and hold information. With this additional

information we can now clearly see the differences between the SASL gestures Help

me from Help you. It can be concluded, for this example, that the misclassified results

obtained in Table 6.7 can be attributed to two factors. First, signs that have very similar

patterns of hand motions can cause misclassifications. Second, due to frontal point of

view of the camera, crucial movement and hold information can be lost, and therefore

may hinder the classification performance of the HMMs.

Figure 6.8: Side view of the SASL gesture Help me.
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Figure 6.9: Side view of the SASL gesture Help you.

6.2.2 Testing on Unseen Data

In the next test, we assess the discrimination performance of the trained HMMs on

unseen data. Unseen data refers to data that was not used during training. Five signers

were required to sign all twenty SASL gestures, first wearing long sleeved shirts and then

with short sleeved shirts. A total of 200 signs were recorded with 10 samples per SASL

gesture used for testing. The same training sample, as used for training the HMM on

seen data, was used for training the models. An overview of the training and testing

sample videos for each HMM are shown in Table 6.8 and 6.9 respectively.

Training Sample Set on Unseen Data for each SASL Gesture

Sample Size per SASL Gesture Native SASL Signers UWC Students

42 10 32

Table 6.8: Training sample set on unseen data.

Testing Sample Set on Unseen Data for each SASL Gesture

Sample Size per SASL Gesture Native SASL Signers UWC Students

10 4 6

Table 6.9: Testing sample set on unseen data.

The test results are shown in Table 6.10. The test on unseen data produced an overall

accuracy of 69%. We note that the HMMs that produced an accuracy below 50%

in Table 6.10, are the same six trained models that produced misclassified results in

the test on seen data shown in Table 6.7. The low overall accuracy can therefore be

attributed to the HMMs inability to discriminate between SASL gestures with similar

hand movements.

Even though our testing sample set size is small, by plotting the results of the seen data

test in Table 6.3 against the results on the unseen data test in Table 6.10, we can see a

trend appearing. Figure 6.10 shows a graph comparing the results on the seen data test

with the results on the unseen data test.
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Test on Unseen Data

Word(s) Right Wrong Accuracy

1 Bus 9 1 90%

2 Doctor 9 1 90%

3 Good evening 5 5 50%

4 Goodbye 8 2 80%

5 Hello 9 1 90%

6 Help me 4 6 40%

7 Help you 4 6 40%

8 How 9 1 90%

9 How are you 2 8 20%

10 Stomach pain 9 1 90%

11 Left 10 0 100%

12 Medicine 8 2 80%

13 Restaurant 8 2 80%

14 Right 9 1 90%

15 Sick 4 6 40%

16 Soccer 3 7 30%

17 South Africa 9 1 90%

18 Thank you 8 2 80%

19 Water 4 6 40%

20 Toilet 9 1 90%

Average: 69%

Table 6.10: Testing Performance: The table shows the test results on unseen data,
for each trained HMM.

By comparing the two results we notice:

1. Both achieve a similar average classification rate, with seen data achieving 73.38%

and unseen data achieving 69%,

2. The same six models that performed poorly in the seen data test, performed poorly

in the unseen data test, and

3. All trained models that achieved an accuracy of 80% and more in the seen data

test, performed equally well in the unseen data test.

To evaluate how well these test results fit each other, we use the Pearson product moment

correlation. It measures the correlation between two variables and reflects the degree

of linear relationship between two variables. It ranges from −1 to +1, 0 reflecting no

linear relationship, +1 reflecting a perfect positive linear relationship between variables
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Figure 6.10: Testing Performance: The graph shows the results on the test seen
data from Table 6.3 plotted with the results of the test on unseen data from Table 6.10.

and −1 reflecting a perfect negative linear relationship between variables. The Pearson

product moment correlation produces a high correlation of 0.90 and a standard deviation

of 0.29 for the two data sets, indicating a strong positive relationship between the two

test results. We can see that HMMs are able to generalise well and classify gestures

across different signers, both with seen and unseen data.

6.2.3 Testing the Normalising Method

In Chapter 3, we discussed variations that may occur when recording different signers

performing the same gesture. These variations include: body dimensions, distance of

signer from the camera and position of the signer within the video frame. In order to

test the performance of the algorithms constructed to cater for these variations within

our normalising method, we conducted three separate tests. The overview for these test

is listed below:

• (Test A) Test the performance of the normalising method with signers with varying

body dimensions,

• (Test B) Test the performance of the normalising method with signers at varying

distances from the camera, and

• (Test C) Test the performance of the normalising method with signers at varying

positions within the video frame.
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6.2.3.1 Test A

Recall Chapter 3 where a grid is constructed around the signer’s head. The grid di-

mensions are then halved and an additional grid is added to the image, to increase the

resolution of the grid. For Test A, we test if the resolution of the grid affects the perfor-

mance of the normalising method for signers of varying body dimensions. Figure 6.11

shows 3 examples of different signers with varying body dimensions used in this exper-

iment. In addition, for this test, 3 grid resolutions are used. First, the grid resolution

is determined by the width and height of the signer’s head, shown in Figure 6.12(a).

Second, the grid resolution is determined by half the width and height of the signer’s

head, shown in Figure 6.12(b). Third, the grid resolution is determined by a quarter of

the width and height of the signer’s head, shown in Figure 6.12(c).

Figure 6.11: Signers with different body types.

Figure 6.12: Different grid sizes used to test the performance of the normalising
method on signers with varying body types.

The same training data as used for training the HMMs on seen data is used for training

the models in this experiment. An overview of the training sample videos for each HMM

is shown in Table 6.11. The same sample set used for training is used for testing. The

results for each of the three different grid resolutions are shown in Table 6.12.
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Training and Testing Sample Set for Test A

Sample Size per SASL Gesture Native SASL Signers UWC Students

42 10 32

Table 6.11: Training and Testing sample set for Test A.

Results for Test A

Grid 1 Grid 2 Grid 3

States 28 110 448

Log Probability -67.325 -38.065 -39.351

Accuracy 54.25% 73.38% 71.42%

Table 6.12: Testing Performance: The table shows the test results for Test A.

The test on Grid 1 in Figure 6.12 performed the worst, achieving a classification accuracy

of 54.25%. Only 28 unique states were identified during training, which means that the

HMMs only has 28 states to discriminate one SASL gesture from another. The low

resolution of the grid thus negatively impacted the performance of our system. The

test on Grid 2 performed the best, and achieved an overall accuracy of 73.38%, which

is identical to the results of the test on seen data in Table 6.2. This was expected as

the same grid resolution was used in both tests. The test on Grid 3 performed similar

to the test Grid 2, but used more than 3 times more states than the test on Grid 2,

drastically slowing down the training and testing process. These results confirm that

using the grid resolution determined by half the width and height of the signers head,

produce the optimal results.

6.2.3.2 Test B

For this test we validate that our system correctly classifies gestures when signers stand

at various distances from the camera. We could not use the training set for testing as all

the signers stood at a similar distance from the camera. Due to constraints of collecting

a new testing sample for this test, we manually manipulate each video in our testing set

by enlarging and cropping each frame in the video. For the testing samples we modified

each video by scaling each frame and cropping the images to fit a 320 × 240 resolution.

This process was performed twice on each video, zooming in on each frame in each video

at 125% and 150% respectively. The two new videos produced, give an illusion that the

signer is standing at different distances from the camera, when compared to the original

video. An example of the image manipulation that was done is shown in Figure 6.13.
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Figure 6.13: Image (a) shows the original frame in a video with Image (b) and (c)
showing the manipulated frames, appear as if the signer is closer to the camera.

Figure 6.13(a) shows an original frame of a video, with 6.13(b) and 6.13(c) showing the

modified frames. Figure 6.13(b) and 6.13(c) clearly gives the illusion that the signer is

standing closer to the camera. The two new videos for each SASL gesture was added to

the training set. The testing videos were divided into three subsets:

• (Distance A) The original set of testing videos of 21 different signers performing

the 20 SASL gestures twice,

• (Distance B) The manipulated set of videos of all 21 signers scaled to 125% and

resized to fit a 320 × 240 resolution, and

• (Distance C) The manipulated set of videos of all 21 signers scaled to 150% and

resized to fit a 320 × 240 resolution.

Each subset of this testing sample was individually used to test the performance of our

normalising method. An overview of the training and testing sample videos for each

HMM are shown in Tables 6.13 and 6.14.

Training Sample Set for Test B

Sample Size per SASL Gesture Native SASL Signers UWC Students

42 10 32

Table 6.13: Training sample set for Test B.

Testing Sample Set for Test B

Sample Size per SASL Gesture (Modified/Scaled)

Distance A 42 Original Videos

Distance B 42 125%

Distance C 42 150%

Table 6.14: Testing sample set for Test B.

If the test results produced by each individual subset are substantially different, this

would indicate that our system has failed to cater for signers that stand at varying
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distances from the camera. However, if the test results are similar or identical, it would

indicate that our normalising method has successfully catered for signers that stand at

varying distances from the camera. The results for this test are shown in Table 6.15

Results for Test B

Distance 1 Distance 2 Distance 3

States 110 110 110

Log Probability -34.628 -34.628 -34.628

Accuracy 71.42% 71.42% 71.42%

Table 6.15: Testing Performance: The table shows the test results of Test B.

The results show that our system is able to cater accurately for signers who stand at

varying distances from the camera. Each subset of our testing sample produced exactly

the same result, with an average classification accuracy of 71.42%. This result confirms

that our algorithm accurately normalises videos of signers who stand at varying distances

from the camera.

6.2.3.3 Test C

Due to the constraint of obtaining cellphone recordings of some of the signers used to

train our system on seen data, we were only able to use 120 recordings of gestures made

using the camera on a mobile phone. For the remaining 720 testing samples needed, we

simulated the movement of the camera by randomly shifting the signer within each frame

in the video—ensuring that hand regions do not fall outside of the image frame. This

was to ensure that the position of the signer within each video frame would not be static.

Figure 6.14 shows some frames of a video recorded by the mobile phone. Movement of

the camera can be seen in Figure 6.14(b), where the frame has shifted up and to the

left. Figure 6.14(c) shows the frame has shifted down. Some of the manipulated video

frames are shown in Figure 6.15.

Figure 6.14: An example of video frames of a signer performing the Hello SASL
gesture taken by a cellphone camera.
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Figure 6.15: An example of video frames of various signers, manipulated to simulate
the movement of a camera.

Figure 6.15, shows how we simulated the camera’s movement by shifting the singer

within each video. We combine the cellphone recordings and the image manipulated

videos to use as test data.

For Test C we needed to test the performance of the normalising method with signers

at varying positions within the video frame. To this end, we performed four tests:

• (Test C1) For training, the same training set used in the test on seen data is used.

For testing the models, we used the stabilised cellphone recordings combined with

the stabilised image manipulated videos,

• (Test C2) For this test we disable the stabilising algorithm in the normalising

method. The same test and training set as used in Test C1 is used,

• (Test C3) For training, the unstabilised cellphone recordings combined with the

unstabilised image manipulated videos is used. For testing the same, set of un-

stabilised cellphone recordings combined with the unstabilised image manipulated

videos is used, and

• (Test C4) For training, the unstabilised cellphone recordings combined with the

unstabilised image manipulated videos is used. For testing we again, randomly

shifted the cellphone recordings and manipulated videos. This was to ensure that

the testing set is different to the training set.

For the first test, we recorded the results and compared them to our original test on seen

data with the results shown in Table 6.2. Similar results would indicate that our system

is able to cater for videos where the camera has moved i.e. stabilising the shaking of

video when taken by a mobile phone. The comparison is shown in Table 6.16.

Comparing the two tests we see that they yield similar results, with the test on seen

data classifying 73.38% of SASL gestures correctly and the test using the cellphone and
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Results for First Test on Test C

Testing Set Seen Data Cellphone & Manipulated Videos

States 110 110

Log Probability -38.065 -45.167

Accuracy 73.38% 72.02%

Table 6.16: Testing Performance: The table shows the test results for Test C1.

manipulated videos classifying 72.02% of SASL gestures correctly. This confirms that

our system is able to cater for videos where the camera has moved. We have thus shown

that variations of the position of a signer within a video do not negatively impact the

performance of our system.

For the second test, we disabled the stabilising method and ran the test again. We

expected a weak performance from the models when the stabilising method is enabled

because of the moving of the signer within each video. The results are shown in Table

6.17.

Results for Second Test on Test C

Normalising method Enabled Disabled

States 110 110

Log Probability -45.167 −∞

Accuracy 72.02% 16.67%

Table 6.17: Testing Performance: The table shows the test results for Test C2.

As per our expectation the test performed poorly, obtaining an average classification rate

of 16.67%. The poor results obtained from the cellphone video samples and manipulated

videos when the stabilising method is disabled, can be attributed to the vast differences

of the position of the signer within each frame of the testing set to that of the signers

static positions in the training set.

For the third test, we trained and tested the models on the video samples obtained from

the cellphone as well as the image manipulated videos. We first ran the test with the

stabilising method enabled and then disabled. We expected the models to perform well

when the normalising method, which centralises the location of the signer, is disabled.

This is due to testing the models on the same, seen, un-normalised data that we trained

on. The results for this test are shown in Table 6.18

The test performed as we anticipated, with the HMMs achieving a classification rate of

72.02% when the normalising method was disable. This is because the same seen data

was used for training and testing. However when the normalising method was enabled

the models were unable to accurately discriminate between the gestures.
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Results for Third Test on Test C

Normalising method Enabled Disabled

States 110 110

Log Probability −∞ -45.167

Accuracy 19.04% 72.02%

Table 6.18: Testing Performance: The table shows the test results for Test C3.

For the fourth test, we test the performance of the normalising method, with signers at

various locations within the frame, on unseen data. For training, the cellphone recordings

combined with the image manipulated videos are used. For testing we again, randomly

shifted the cellphone recordings and manipulated videos. The results for this test are

shown in Table 6.19.

Results for Fourth Test on Test C

Normalising method Enabled Disabled

States 110 110

Log Probability −∞ −∞

Accuracy 3.69% 1.79%

Table 6.19: Testing Performance: The table shows the test results for Test C4.

The test performed poorly for when the stabilising method was enabled and disabled.

This is due to the vast differences in the position of the signer in the training and

testing set. This makes HMM discrimination almost impossible. To confirm this, we

compare the feature vector produced from the SASL gesture Goodbye when a static

camera position is used and when one is not used. The feature vectors produced are

shown in Figure 6.16. Feature vector 1 was produced by the system when the camera

position was static. Feature vector 2 was produced by using sample video recorded using

a cellphone camera when the normalising method was enabled and feature vector 3 is

produced when the normalising method was disabled.

Figure 6.16: Feature vectors for the SASL gesture Goodbye. Feature vector 1 is
produced when a static camera position is used, feature vector 2 is produced when
a shaking cellphone recording is normalised and feature vector 3 is produced when a

shaking cellphone recording is not normalised.
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Recall Chapter 3, where red indicates a region of strong skin value, and blue indicates

a region of weak skin value. By comparing the location of skin values in the three

feature vectors we can see that vector 3 shows scattered skin regions. This is due to

the shifting of the signer within each frame of the video. Feature vector 1 and 2 show

a more organised distribution of skin regions. It can be seen that feature vectors 1 and

2 look similar, this is due to the normalising method centring the signer within each

video frame in feature vector 2. The result is that the HMM is able to discriminate

and accurately classify this gesture. The scattered skin regions in feature vector 3 make

HMM discrimination extremely difficult when training of the models was done using

gestures which where recorded using a static camera position. The poor performance of

this test can be attributed to the HMM’s inability to classify a SASL gesture correctly

when the position of the signer is not static in the video frame.

6.2.3.4 Further Testing

The above tests have focused on the three individual components of our Normalising

method. We now test the performance of the method as a whole on all twenty SASL

gestures. For testing our method, we use the same unseen gestures as were used in

Table 6.10, however we randomly shift the signer within each frame in all of the test

videos — making sure that hand regions do not fall outside of the image frame. In

addition we simulated signers standing at varying distances from the camera by manually

manipulating each frame by scaling each frame and cropping the images to fit a 320×240

resolution. Examples of frames that have been modified are shown in Figure 6.17. We

plot the results of this experiment on a graph against the results in Table 6.10 for

comparison. The graph is shown in Figure 6.18.

To evaluate how well these test results fit each other, we use the Pearson product moment

correlation. The Pearson product moment correlation produces a high correlation of

0.99, indicating a near perfect positive linear relationship. The high correlation between

these two experiments confirms that our normalising method performs well, normalising

the three variations, listed below:

• Variations in signers with varying body dimensions,

• Variations in distances of the camera from the signer, and

• Variations in the position of the signer within the video frame.
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Figure 6.17: An example of video frames of various signers, manipulated to simulate
the movement of a camera and signers standing at varying distances from the camera.

Figure 6.18: Testing Performance: The graph shows the results on seen data from
Table 6.2 with the result of the manipulated data.

6.3 Summary

In this chapter we have presented our results and contributions to GR in the SASL

project. We have tested several aspects of our system. First, we tested the performance

of the trained HMMs on both seen and unseen data. While the system only achieved

a classification rate of 69% on unseen gestures, the result can be attributed to our
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HMMs inability to accurately discriminate between SASL gestures with similar hand

movements.

Second, we tested each algorithm within our normalising method individually for vari-

ances that may occur when recording SASL gestures across different signers. All three

algorithms perform exceptionally well.

Finally, we tested normalising as a whole by applying it on unseen data that were

manipulated. The results were then compared to that of the un-manipulated testing

set. The results of both test were similar, proving that our method adequately caters

for variations that occur in video recordings of gestures across different signers.
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Conclusion and Direction for

Further Research

In this thesis we have developed several methods which have contributed to the SASL

objective of creating a full translation system for the deaf community. First, we have

constructed a dynamic preprocessing method. This method consists of several important

processes listed below:

1. Skin segmentation in the HSI colour space,

2. Background modelling using a non-adaptive approach,

3. Centring the signer in each video frame by locating the position of the signer’s

head. This method is part of the normalising method,

4. By using artist’s techniques for drawing the human body, we are able to normalise

input for HMM classification across different signers. This method is part of the

normalising method, and

5. Using features found in each frame of the video, we construct a feature vector

containing hand movement and temporal information for HMM classification.

7.1 Skin Segmentation

Accurate skin segmentation is paramount to the success of our system. Since we do not

use any extra hardware such as datagloves or coloured markers, skin colour information

in SASL gestures is used to classify gestures. To maximise the performance of our skin

segmentation methods, a suitable colour space was required. In this thesis, we have
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have shown the effectiveness of using the HSI colour space over the RGB colour space

for skin segmentation in various lighting conditions. This has enabled our system to

identify skin regions accurately and ultimately classify SASL gestures.

7.2 Background Modelling

By using a non-adaptive approach for background modelling, we achieve a quicker clas-

sification of the background and foreground. For the purpose of this thesis, the non-

adaptive approach proved to be a more suitable means for background modelling. We

illustrated that by combining several frame differencing techniques, we are able to elim-

inate background information which is not needed.

7.3 Normalising method

By centring the signer within each video frame, we have shown that the performance of

the system is not adversely affected when recording a video from a moving device, such

as a cellphone. Our research has demonstrated that by normalising an input video of a

signed gesture, we are able to achieve comparable recognition rates of seen and unseen

data.

7.4 Feature Vector

Using skin segmentation we are able to extract the location of a signer’s hands with

respect to the signer’s body in consecutive frames in a video. This information, is used

to construct a feature vector containing hand position information at any point in time

during the signed gesture. This feature vector is used to classify a SASL gesture using

HMMs. We have thus addressed our first, third and fourth research questions:

1. What are the appropriate features that will allow us to classify a signed gesture

accurately and how will these be extracted?

2. What is an appropriate manner for describing hand movement in a video that can

be used to train and test the system?

3. Given that no two signers have the same physical body structure, how do we

dynamically normalise the features that would need to be extracted?
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Second, we have successfully implemented HMMs which are able to discriminate between

signed gestures with different hand movements. We have thus addressed our second

research question: is it possible to interpret SASL gestures by only using hand gestures?

Further we have illustrated that in cases where hand movements are unique in a SASL

gesture, the hands’ gestures contain sufficient information to interpret signs. In cases

where hand movements are similar or the same in SASL gestures, our system is unable

to classify them accurately. In these cases, the sole use of the pattern of hand motions to

classify SASL gestures does not contain enough information for accurate classification.

7.5 Future Work

In order to differentiate between signed gestures with similar hand movements, future

research can focus on extracting hand articulation and classifying it. This information

can then be added to the feature vector. In addition facial expression information can

also be included in the feature vector. This will provide a richer set of attributes which

will make HMM discrimination of a signed gesture more refined.

While developing each of these steps no attempt was made to optimise these processes

as our primary focus for this thesis was to attempt to answer our research questions

and assess the feasibility of our research. Future research can therefore focus on the

parallelising of these processes, which can greatly improve the overall time complexity

of the system.

Finally, we (together with Mehrdad Ghaziasgar) have constructed the first working

prototype translation system in the SASL project. The iSign system which has achieved

recognition by winning the national Microsoft Imagine Cup competition in 2008 and

representing South Africa in the international leg of the competition in 2009, can readily

form the framework for future research in the SASL project at UWC. The merging of

work such as that of Whitehill [4] and Segers [3] with the iSign system will push the

SASL project ever closer to its goal of creating a full translation system and ultimately

bridge the communication divide between the deaf and hearing communities.

Conducting this research for the SASL project at the University of The Western Cape

has been enormously rewarding for this researcher; we hope that future researchers in

the SASL project will strive to achieve its mandate and be equally rewarded.
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