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Abstract

Robust computational methods for two-parameter singular perturbation

problems

David Elago

MSc Thesis, Department of Mathematics and Applied Mathematics, University of

the Western Cape.

This thesis is concerned with singularly perturbed two-parameter prob-

lems. We study a fitted finite difference method as applied on two dif-

ferent meshes namely a piecewise mesh (of Shishkin type) and a graded

mesh (of Bakhvalov type) as well as a fitted operator finite difference

method. We notice that results on Bakhvalov mesh are better than

those on Shishkin mesh. However, piecewise uniform meshes provide a

simpler platform for analysis and computations. Fitted operator meth-

ods are even simpler in these regards due to the ease of operating on

uniform meshes. Richardson extrapolation is applied on one of the fitted

mesh finite difference method (those based on Shishkin mesh) as well as

on the fitted operator finite difference method in order to improve the

accuracy and/or the order of convergence. This is our main contribu-

tion to this field and in fact we have achieved very good results after

extrapolation on the fitted operator finite difference method. Extensive

numerical computations are carried out on to confirm the theoretical

results.
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Chapter 1

General Introduction

This chapter provides a general introduction to our work. We discuss some general

information pertaining to singular perturbation problems (SPPs). We compare the

behaviour of the solution to a one-parameter singular perturbation problem (SPP)

to that of a two-parameter SPP. A short account of the areas where two-parameter

SPPs occur is made. A review of the work done about two-parameter SPPs as well

as the scope of this thesis are also provided.

The perturbation methods for ordinary and partial differential equations have

become increasingly important in the world of science and technology. Perturbation

problems are divided into two types: regular and singular perturbation problems.

A problem Pε is called regular if the smoothness of its solution uε depends on a

parameter 0 < ε << 1, otherwise Pε is a singular perturbation problem. The

parameter ε, which is called the singular perturbation parameter, multiplies the

highest derivative term of the differential equation underlying the problem Pε.

This thesis is concerned with two-parameter SPPs. These are SPPs whose un-

derlying differential equation characterised by the presence of small perturbation

parameters µ and ε which multiply the first (convection) and second (diffusion)

derivative terms respectively, namely

Lε,µu = εu′′(x) + µa(x)u′ − b(x)u(x) = f(x), x ∈ Ω = (0, 1) (1.0.1)

1

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION

u(0) = α0, u(1) = α1;α0, α1 ∈ R, (1.0.2)

where 0 < ε, µ ≤ 1 are small parameters and a(x), b(x), f(x) with a(x) ≥ α > 0,

b(x) ≥ β > 0 are sufficiently smooth to ensure that there exists a unique solution

u to the problem (1.0.1)-(1.0.2). As it can be seen, this is one of classical example

of two-parameter singular perturbation problems (TPSPPs). Generally speaking,

a solution to such a problem contains boundary layers with distinct widths in the

surrounding of the sides and the corners of the underlying interval.

Standard numerical methods fail to provide the required accuracy in the approx-

imated solution, therefore establishing a need for appropriate numerical methods.

As far as finite difference methods are concerned, two major classes of numerical

methods can be of interest: Fitted operator methods and fitted mesh ones. The for-

mer are methods where the differential operator of the problem is approximated by

a non-standard finite difference one on a uniform mesh while the later are methods

where the differential operator is approximated by a standard finite difference one

on a layer-adapted mesh.

Layer-adapted meshes include meshes of Shishkin type (S-meshes), of Bakhvalov

type (B-meshes) and of Vulanov́ıc type (V-meshes). S-meshes are piecewise uniform

meshes (they are fine in the layer region of the solution and coarse outside the layer

region), while B-meshes and V-meshes are graded meshes finer in the layer region

and coarser outside.

In next section we shall discuss one-parameter and multi-parameter singular

perturbation problems.

1.1 One parameter vs multi-parameter singular

perturbation problems

Suppose either one of the above-mentioned small perturbation parameters is zero,

then the problem (1.0.1)-(1.0.2) becomes a one parameter problem. The solutions

2

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION

to both one and two parameter singular perturbation problems (TPSPPs) usually

undergo rapid changes in narrow regions called boundary and/or interior layers.

The situation becomes worse, when the problem has two perturbation parameters,

due to presence of multiple scales, both which are small and multiplied to different

derivative terms.

Moreover, what is more important is the relative ratio of ε and µ. To obtain a

better solution, depends on the magnitude of that ratio, the behavior of solution

changes from dispersive when µ2/ε approaches zero as ε approaches zero and dissi-

pative when ε2/µ approaches zero as µ approaches zero, we refer the readers to [50]

and [56].

In [40] Roos and Linss indicated that there is a vast literature dealing with both

convection and reaction-diffusion dominated one parameter singular perturbation

problems, but much less is known about uniform methods for two-parameter SPPs.

There is evidence that one-parameter singular perturbation problems has been

attempted by many researchers, scientists and engineers, but only few have paid

attention to two-parameter ones. Almost two decades ago many researchers have

presented numerous convergence results for linear multi-step methods, Runge-Kutta,

Rosenbrock, one-leg and general linear methods, for one parameter SPPs. [56], while

Liu and Xiao pointed out in [42] that there are few convergence results of A(α)-stable

linear multi-step methods for TPSPPs. It is not easy to get error analysis in case of

two-parameter SPPs.

The number of good quality and quantity research papers concerning the study

of asymptotic behaviour of the solution to one parameter SPPs is huge as compared

to that of two-parameter SPPs. Only few researchers have studied the analytical and

numerical solutions of these problems, while very little is done for their asymptotic

solution [52].

3

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION

1.2 Occurrence of multi-parameter singular per-

turbation problems

This section provides applications and one model concerning two parameter singular

perturbation problems.

The multi-parameter SPPs arise in many areas of applied mathematics. The two

small perturbation parameters ε and µ are associated with diffusion and convection

terms respectively, its applications occur in chemical-reaction theory and lubrication

theories [11, 27, 56]. Some applications of the singular perturbation method to the

bending problems of thin plates and shells [10].

According to Kadalbajoo and Gupta [27] and O’Malley [52], the two-parameter

SPPs play a major role in chemical flow reactor and dc-motor analysis. Kadalbajoo

and Gupta [27] and Gupta [16] mentioned that multi-parameter SPPs occur in fluid

mechanics, quantum mechanics and elasticity.

Bohl and Bigge[6] pointed out that some transport phenomena arising in biology

and chemistry are governed by multi-parameter singular perturbation problems. It

can be found in the case of boundary layers controlled by suction (or blowing) of

some fluid.

In [5] Verma and Bhathawala mentioned that a hydrological situation of one

dimensional vertical ground water recharged by spread is two-parameter singular

perturbation problem. They formulated a problem’s equation of continuity for an

unsaturated porous media which is given by following model:

δ

δt
(ρrθ) = ∇.−→M, (1.2.3)

where ρr is the bulk density of the medium,
−→
M is moisture mass flux, θ and ∇ are

moisture content on a dry weight basis and differential operator vector respectively.

4

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION

They applied Darcey’s law to get:

−→
V = −K∇φ, (1.2.4)

where φ and
−→
V are potentials, the volume flux of the moisture respectively, and K

is aqueous conductivity coefficient. They took into account that

ρr
δθ

δt
=

δ

δz

(
ρK

δψ

δz

)
− δ

δz
ρKg (1.2.5)

where g is the gravitational constant, ρ the fluid density, ψ the capillary pressure

potential and φ = ψ − zg. The gravity and positive direction of Z-axis are similar.

They rewrote (1.2.5) as the following equation

δθ

δt
=

δ

δz

(
D
δθ

δz

)
+

ρ

ρr
g
δK

δz
, (1.2.6)

where D is a small diffusivity coefficient given by: D = ρ
ρr
K δψ

δθ
, By assuming that

K = K0θ√
t

and replaced D by D1 which they considered as an average value of D in

(1.2.6) to get
δθ

δt
= D1

δ2θ

δz2
+

ρ

ρr
gK0

δθ

δz
, (1.2.7)

By considering L the level (depth) of water these authors came up with

ξ =
z

L
, T =

t

L2

and making ρgK0

ρr
= M1 and rewrote (1.2.7) as the following patial differential equa-

tion of order two:
δθ

δT
= D1

δ2θ

δξ2
+
M1

δξ
gK0

δθ

δz
, (1.2.8)

Imposing the set of boundary condition as:

θ(0, T ) = θ0, θ(1, T ) = 1 (1.2.9)

5

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION

For an arbitrary constant C2 and any integer ν the authors expressed a moisture

content into separable variables form:

θ(ξ, T ) = H(T )F (ν); H(T ) = C2T
ν

and they further applied the Boltzman transformation ν = ξ

2
√
T

on equations (1.2.8)

and (1.2.9) yields two-parameter singular perturbation boundary value problem.

εF ′′(ν) + 2µF ′(ν)− F (ν) = 0, F (0) = θ0, F

(
1

2
√
T

)
= 1,

where two perturbation parameters:

ε =
D1

4n
, µ =

M1 − ν
4n

.

In the next section the literature review, arranged in authors’ name alphabet-

ical order, is given. Due to the limited amount of information about TPSPPs, no

separation between asymptotic and numerical methods is made.

1.3 Literature review on the two-parameter sin-

gular perturbation problems

A posteriori error estimates by Linss for two-parameter singular perturbation prob-

lems [41] used fixed number of Shishkin (S-type) and Bakhvalov (B-type) meshes

points concentrated in the boundary layers region that produces the rate of conver-

gence of second order. The accuracy is guaranteed, irrespective of the magnitude

of the parameters and depends on a priori information of the solutions and its

derivatives.

O’Riordan and Pickett in [75] studied a class of two-parameter elliptic PDEs

singular perturbation problem on a rectangular domain. The solution to this kind of

6

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION

problem was decomposed into a sum of corner layer and boundary layer components.

They further explicitly derived perturbation parameter bounds on the derivatives

of each of these two components. The author’s numerical method was based on

monotone upwind finite difference operator. Analysis of tensor product of piecewise

uniform meshes of S-type done and parameter uniform asymptotic error bounds to

the approximated solution established.

The two-parameters SPPs tackled by Cai et al. [7] in which they decomposed

its solutions into smooth and singular components, using piecewise unform meshes

and three transition points scheme to capture the property of boundary layer very

well. The results showed a small parameters uniform convergence of the first order,

which was higher than traditional Shishkin scheme.

Kadalbajoo and Yadaw in [25] presented B-spline collocation method for a class

of two-parameter linear singular perturbation boundary value problems of convection-

diffusion type with two boundary layers. These methods were based on application

of B-spline collocation method on piecewise-uniform Shishkin mesh with two transi-

tion parameters. They suitably formed piecewise-uniform grid so that more points

can be generated within the boundary layer region. They divided underlying domain

[0, 1] into three sub-domains.

Teofanov and Ross considered an elliptic two parameter singular perturbation

boundary value problem on a unit square [72]. They applied the finite element

numerical method to solve the boundary value problem. This was done in such away

that either piecewise linear or piecewise bilinear elements were used on piecewise

uniform mesh of Shishkin type. In their case the method showed small parameters

uniformly convergent in an energy norm. The numerical results confirmed their

theoretical analysis.

Patidar in [56] studied two parameter boundary value problems by using fitted

operator finite difference method (FOFMD). It followed that generally exponentially

fitted finite difference methods (EFFMDs) are more effective inside the layers and

give parameter uniform convergence. Unfortunately, they do not give fairly good
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CHAPTER 1. GENERAL INTRODUCTION

approximations in the whole interval of interest. For this reason Patidar devel-

oped a non-standard finite difference methods (NSFDMs) in order to overcome this

weakness in EFFMDs.

By consindering the fact that two step W-methods is one of the efficient class of

numerical methods for stiff intial value problems of ODEs, Liu and Xiao applied one

of these methods to two parameter SPPs. They concentrated their investigation on

simpler case in article [42] and studied quantitative error behaviour of parallel two

step W-methods (PTSW). This approach was an extension of non order reduction

results described in Weiner et al.’s report in [63]. Their method has a high paral-

lelization and its computational cost less than that of implcit Runge-Kutta methods

with same stages. They indicated that computational results confirmed a theoretical

results PTSW is of third order.

Roos and Teofanov in [71] considered an elliptic singularly perturbed problem

with two parameters on a unit square domain. They pointed out that a solution to

such problems might have exponential, parabolic and corner layers. The solution

was decomposed into regular, layer components and derived pointwise bounds on

the components and its derivatives. The estimates are obtained by the analysis of

appropriate problems on unbounded domains.

In [74] Shishkin et al. investigated a parameter uniform numerical methods for a

class of singular perturbation parabolic PDEs with two parameters on a rectangular

domain. They constructed upwind finite difference operator on suitable piecewise

uniform meshes of Shishkin type. Moreover a parameter explicit theoretical bounds

on the derivatives of the solutions were derived. Finally, parameter unform error

bounds for the numerical approximations are established.

Cheng studied SPPs for non-local reaction-diffusion equation involving two-

parameters [9] by using formal asymptotic solution. This method contains two

steps expansions and unform validity of the solutions that were proven using the

differential inequalities. These ordinary differential equations would be able to be

extended to those of partial differential equations.
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CHAPTER 1. GENERAL INTRODUCTION

Surla and Teofanov [69] studied two-parameter singular perturbation problems of

self-adjoint with two boundary layers. They constructed a numerical method based

on difference scheme obtained using quadratic spline function as an approximation

function. This was done by choosing a suitable collection of points. They proved

that their scheme has the inverse monotone matrix on the corresponding Shishkin

mesh. Based on prior information of error estimation for the simple upwind finite

difference scheme a proper chosen Shishkin mesh is given. Their problem satisfied

the continuous minimum principle and the regular components of solution satisfied

the bounds. They discretized the domain and defined piecewise uniform mesh with

two mesh transition points. The solution to the problem was approximated with

quadratic spline on each subinterval. They collected points and equations to obtain

the system of equations. It was discovered that a standard collection method on

the system of equations do not satisfy the discrete minimum principle because an

inverse monotone matrix was not obtained. To achieve this, a suitable parameter

which moved the collection points to satisfy the discrete minimum principle was

chosen to get inverse monotone matrix. The numerical results indicated uniform

convergence.

O’Riordan et al. [18] used the same method on two parameters singular pertur-

bation problems of second order, but in this case fitted finite difference method is

a combination of the central difference, mid-point and standard upwind difference

operators. These three finite difference operators are monotone in various subdo-

mains of the parameter space. It is a known fact that the standard upwind operator

is always monotone and has a second order truncation error, when both two small

parameters ε and µ are relatively small so that ε, µ ≤ CN−1, the central differ-

ence operator is monotone if ε is relatively large and µ is relatively small so that

Nε ≥ C1µ while the mid-point scheme is monotone for all ε and for µ relatively

large so that µN ≥ C2.

Roos and Linss in journal [40] considered a class of linear reaction-convection-

diffusion two parameters singular perturbation problem. The numerical solution to
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CHAPTER 1. GENERAL INTRODUCTION

such a problem might display two exponential layers at both end of the interval

of interest (x = 0 and x = 1) which depends on the size of two perturbation

parameters. They applied a simple upwind finite difference scheme on piecewise

meshes of Shishkin. The sharp bounds for the derivatives were derived with the

aid of appropriate barrier function and comparison principle techniques. These

bounds were applied in the analysis numerical method. This method indicated

uniform convergence with almost one order and of the two perturbation parameters

independent.

Koren et al. studied the boundary value problem for two-parameter singular

perturbation parabolic equation in [32]. This ordinary differential equation (ODE)

can be either convection-diffusion or reaction-diffusion SPPs and its boundary layers

can be parabolic or regular all these depends on the relation between two parameters.

They considered case of parabolic layer and constructed a monotone finite difference

scheme on piecewise unform meshes. This numerical method showed the parameters

uniform convergence and of the O(N−1 lnN + N−1
0 ) where N and N0 are numbers

of mesh points and nodes in time mesh respectively.

In [73] O’Riordan and Pickett studied a two parameter singular perturbation

problems of higher order, based on upwind finite difference operator and an appro-

priate piecewise uniform mesh of Shishkin. They noticed that a boundary layer of

width O(ε) appeared in the neighborhood of the end point x = 0. The relative ra-

tios of two perturbation parameters were very important. Their analysis argument

consists of establishment of maximum principle, decomposition of the solution into

regular and layer components and derivation of sharp parameter-explicit bounds on

these components and their derivatives.

Moreover, discrete solution was decomposed and, using discrete maximum princi-

ple, truncation error analysis and appropriate barrier function to analyze numerical

error between continuous and discrete components. It has been pointed out that two

parameter singular perturbation problems naturally should be split into two cases

µ ≤ c
√
ε which was close to single parameter reaction-diffusion problems case and
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CHAPTER 1. GENERAL INTRODUCTION

µ ≥ c
√
ε which they considered to be more intricate. The numerical approximated

solution showed a parameter unform convergence.

Furthermore, numerical results were obtained and extended to finite difference

schemes without an assumption of maximum principle. It was shown that apart

from the mesh which is fitted, finite element methods are not suitable for SPPs

whose solutions have a parabolic boundary layers. In the nature of the solution

in the neighborhood of the boundary layer, one should consider that the discrete

maximum norm is appropriate than any other norm. So in this manner, one can

obtained a parameters uniform convergence of the solution of the boundary value

problem.

The SPPs involving several small parameters have attracted considerable atten-

tion and there are some notable and interesting convergence results of spline differ-

ence schemes for linear singular perturbation boundary value problems by combin-

ing a cubic spline and central difference schemes on Shishkin and Bakhavalov type

meshes [68]. Although, in most known Bakhavalov mesh type (B-type) there are

results better than Shishkin type mesh (S-type), which require a very simple use

if the small loss of accuracy occurs, one should consider it as an irrelevant. The

rate of convergence O(n−2) and O(n−2 ln2 n) are proved on the B-type and S-type

respectively and truncation error less than or equal to 2. There was no parameter

convergence of polynomial approximation or spline collocations on uniform meshes.

Clavero et al. [47] studied problem (1.0.1)-(1.0.2) by using a defect correction

method for its numerical solution on one dimension. This method consist of a

combination of the stable upwind scheme of the first order and unstable central

difference to obtain not only higher order convergent results, but also a numerical

solution with efficiency and accuracy on two dimensional, in which they got second-

order. In this regards the rate of convergence were calculated and showed almost

second order of convergence by using a double mesh principle.

The two parameters singular perturbation problems were tackled by Chen et

al. [79] based on A(α)-stable linear multistep method. The authors considered as
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CHAPTER 1. GENERAL INTRODUCTION

special class of stiff problems on three dimensions. The classical applications of such

a problems often arise on chemical reactor theory, fluid mechanics and combustion.

Li considered a bilinear finite element method for two parameter singular pertur-

bation with elliptic layer in article [36]. They used Butozov asymptotic expansion.

This method is small parameter uniformly convergent. Their numerical results was

much better than a classical finite element method.

In a paper [64], Shishkin studied a two-parameter singularly perturbed boundary

value problems for parabolic and elliptic equation by constructing a grid approxi-

mation which was based on fitted operator method. More specifically it dealt with

a solution that contains a parabolic boundary layer. On the one hand, it shows that

finite difference schemes, finite element techniques are included in the term grid

approximation methods. Furthermore, it has also shown that no finite difference

scheme from the natural class of fitted operation methods on a uniform mesh exists,

whose numerical solutions would converge uniformly with respect to the parameter

discrete maximum norm.

Sukon in a paper [66] tackled two parameters SPPs using alternating group

explict(TAGE) method for singular perturbation problems. The variable coeffi-

cients singularly perturbed elliptic two points boundary value problem of convection-

diffusion type were considered. The derivatives are approximated both by compact

fourth order differences and central differences. The solution obtained using fourth

order scheme are found to be both oscillation free and convergent for large cell

Reynolds number. They concluded that TAGE method is flexible and very suitable

for use on parallel computers.

Saydy in [60] studied a two-parameter singular perturbation problem by consid-

ering the stability of the families of matrices relatively to domains with a polynomial

guarding map. They obtained sufficient and necessary condition for the stability of

the new problem.

Abed [1] derived explicit two upper bounds on the singular perturbation param-

eters to ensure a uniform asymptotic stability of the general time-varying multi-
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CHAPTER 1. GENERAL INTRODUCTION

parameter singularly perturbed problems. The upper bounds were obtained on the

weighted norm of the vector of singular perturbation parameters by using Lyapunov

function. These two upper bounds gave an indication that a uniform asymptotic

stability and bounded decoupling transformation for fast subsystem do exist.

Verma and Bhathawala in [5] tackled and discussed two-parameter singular

perturbation problems of one dimensional flow through unsaturated porous me-

dia. They mathematically formulated a non-linear diffusion type of equation. This

equation was transformed by similar method into an ordinary differential equation

containing two small parameters.

The research in this field is ongoing and one may have a longer list of works to

this account than what we have mentioned above.

The major objective of this study is to investigate Richardson extrapolation

effects on fitted operator finite difference methods (FOFDMs) for two-parameter

singular perturbation problems. It is a postprocessing procedure where a linear

combination of two computed solutions approximating a particular quantity to give

a better third approximation [44]. It was implemented for the first order differential

equations by Keller in [29], Stynes and Natividad [48] for linear diffusion-convection

of dimension one, Munyakazi and Patidar [44], for fitted operator finite difference

methods and for a high order fitted mesh method for self-adjoint singularly perturbed

problems in [45].

1.4 Outline and scope of the work in this thesis

We give analytical results for two-parameter singular perturbation problems in gen-

eral. The asymptotic analysis results and some error estimates on numerical ap-

proaches of upwinding scheme on Bakhvalov and Shishkin meshes are given in Chap-

ter 2 after a succinct description of these meshes.

Chapter 3 deals with error analysis of the Fitted Mesh Finite Difference Methods

(FMFDMs). Performance of Richardson extrapolation on these numerical methods
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CHAPTER 1. GENERAL INTRODUCTION

is studied in this chapter.

The complexity of the use of B-meshes and S-meshes is mitigated by employing

fitted operator finite difference method (FOFDM) in Chapter 4. We also proceed

to investigate the impact of a Richardson extrapolation on the above-mentioned

FOFDM.

Lastly Chapter 5 concludes this piece of work and provides some orientation for

future research.
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Chapter 2

Some analytical and numerical

results

In this chapter some analytical results, which will be required for numerical analysis

in subsequent chapters, and their proofs are provided. We shall give results from

asymptotic analysis and conclude the chapter with some a priori error estimates.

2.1 Analytical results for two-parameter singular

perturbation problems

In this section, we prove two lemmas and a theorem which will be needed in the

next two chapters.

Lemma 2.1.1. [56] (Continuous minimum principle) Assume that Π(x) is any suffi-

ciently smooth function satisfying Π(0) ≥ 0 and Π(1) ≥ 0. Then Lε,µΠ(x) ≤ 0,∀x ∈

(0, 1) implies Π(x) ≥ 0, ∀x ∈ [0, 1].

Proof. Let x∗ be such that Π(x∗) = minx∈[0,1] Π(x) and assume that Π(x∗) < 0,

Clearly x∗ /∈ {0, 1}, Π
′
(x∗) = 0 and Π

′′
(x∗) ≥ 0. We have

Lε,µΠ(x∗) = εΠ
′′
(x∗) + µa(x∗)Π

′
(x∗)− b(x∗)Π(x∗) ≥ 0,
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CHAPTER 2. SOME ANALYTICAL AND NUMERICAL RESULTS

which is a contradiction. It follows that Π(x∗) ≥ 0 and thus Π(x) ≥ 0,∀x ∈ [0, 1].

Lemma 2.1.2. [56] Let u(x) be the solution of the problem (1.0.1), then

||u|| ≤ β−1||f ||+ max(|α0|, |α1|).

Proof. Consider two barrier functions Π± defined by:

Π±(x) = β−1||f ||+ max(|α0|, |α1|)± u(x).

We have

Π±(0) = β−1||f ||+ max(|α0|, |α1|)± u(0)

= β−1||f ||+ max(|α0|, |α1|)± α0 ≥ 0

and

Π±(1) = β−1||f ||+ max(|α0|, |α1|)± u(1)

= β−1||f ||+ max(|α0|, |α1|)± α1 ≥ 0

Thus Π± ≥ 0 at x = {0, 1}. For all x ∈ (0, 1), we have

Lε,µΠ±(x) = ε(Π±(x))
′′

+ µa(x)(Π±(x))′ − b(x)Π±(x)

= −b(x)(β−1||f ||+ max(|α0|, |α1|)± Lε,µu(x)

= −b(x)(β−1||f ||+ max(|α0|, |α1|)± f(x)

=
−b(x)

β
||f || ± f(x)− b(x) max(|α0|, |α1|)

= −(||f || ± f(x))− b(x) max(|α0|, |α1|) ≤ 0

Therefore by applying Lemma 2.1.1, Π± ≥ 0,∀x ∈ Ω̄.

Theorem 2.1.1. Assuming that a(x), b(x), f(x) are sufficiently smooth, with b(x)
a(x)
≥
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CHAPTER 2. SOME ANALYTICAL AND NUMERICAL RESULTS

δ ≥ 0, then the solution u(x) of the boundary value problem ((1.0.1) satisfies

|u(k)
ε,µ(x)| ≤M(1 + ε−ke

−µαx
ε + µ−ke−δ

1−x
µ ), k = 1(1)4. (2.1.1)

Proof The result follows using the techniques for the proof analogous of the theorem

in Miller et al. [43] , (pp 55-57).

In the next section we shall describe some results that were obtained through

extensive asymptotic analysis by O’Malley in [50].

2.2 Results from asymptotic analysis

Consider the following two-parameter singular perturbation problem:

Y = εu
′′

+ µa(x)u′ − bxu = 0, u(0) = u0, u(1) = u1. (2.2.2)

Case I. ε/µ2 → 0 as µ → 0 .

In solving this problem the author in [50] considered the auxiliary polynomial

given by:

εD2 + µa(x)D − bx = 0, (2.2.3)

with solutions

D = −µa
2ε

(
1±

(
1 +

4εb

µ2a2

)1/2
)
.

The explicit solution of the constant coefficient boundary value problem (2.2.2) has

the asymptotic expansion:

u(x) ∼= u(1) exp

[
−µa

2ε

(
1±

(
1 +

4εb

µ2a2

)1/2
)

(x− 1)

]

+u(0) exp

[
−µa

2ε

(
1±

(
1 +

4εb

µ2a2

)1/2
)
x ] (2.2.4)

Clearly, u(x) = v(x) ≡ 0 as µ→ 0 uniformly convergent on interval [δ, 1− δ], δ > 0,
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CHAPTER 2. SOME ANALYTICAL AND NUMERICAL RESULTS

but it is not uniform convergent near x = 0 and x = 1 for u(0) 6= 0 and u(1) 6= 0

again v(x) ≡ 0 satisfies the reduced equation but, in general, it fails to satisfy the

boundary conditions. Note that the boundary layer at x = 0 is due to the root

−µa
2ε

(
1 +

(
1 +

4εb

µ2a2

)1/2
)

of the auxiliary equation (2.2.4) which approaches −∞ as µ→ 0, while the boundary

layer at x = 1 can be associated with the root

−µa
2ε

(
1−

(
1 +

4εb

µ2a2

)1/2
)

which approaches +∞ as µ → 0.

Case II. µ2/ε as ε → 0, here the author in [50] considered the auxiliary polynomial

equation (2.2.4) having one solution

−
(
b

ε

)1/2
((

µ2a2

4εb

)1/2

−
(

1 +
µ2a2

4εb

)1/2
)

approaches +∞ as ε approaches zero, while the other solution

−
(
b

ε

)1/2
((

µ2a2

4εb

)1/2

+

(
1 +

µ2a2

4εb

)1/2
)

approaches −∞ as ε approaches zero. The solution of the boundary value problem

(2.2.2) has the asymptotic expansion:

u(x) ∼= u(1) exp

[
−
(
b

ε

)1/2
((

µ2a2

4εb

)1/2

−
(

1 +
µ2a2

4εb

)1/2
)

(x− 1)

]

+u(0) exp

[
−
(
b

ε

)1/2
((

µ2a2

4εb

)1/2

+

(
1 +

µ2a2

4εb

)1/2
)
x

]
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Similar to above-mentioned case I, u(x) = v(x) ≡ 0 as µ → 0 uniformly on every

closed interval [δ, 1 − δ], for all δ > 0, but non-uniform convergence near x = 0

and x = 1 provided that u(0) 6= 0 and u(1) 6= 0. The boundary layer at x = 0

is associated with a root of the auxiliary polynomial which approaches −∞ as ε

approaches zero, while the boundary layer at x = 1 is associated with a root of 2.2.4

which approaches +∞ as ε approaches zero.

To split off these terms which were not singular as ε → 0 by expanding the

exponents in the powers of µ2/ε. Moreover, if µ = O(ε) then

u(x) ∼= u(1) exp

[(
b

ε

)1/2

(x− 1)

]
+ u(0) exp

[(
−b
ε

)1/2

x

]

which is the solution of the semi-reduced boundary value problem

εz′′ − bz = 0, z(0) = z0, z(1) = z1.

2.3 Some error estimates on numerical approaches

used for two-parameters singular perturba-

tion problems

In this section we describe the S- and B-meshes. Then we provide error estimates

of some numerical methods used on these meshes.

2.3.1 Description of Bakhvalov meshes (B-mesh)

Bakhavalov meshes are non-uniform mesh which can be constructed to overcome

the difficulties that arise in using uniform meshes to solve SPPs [68]. In 1969 the

prominent Russian mathematician Nikolai Sergeevich Bakhvalov invented a graded

mesh type which was more applicable to one dimensional problems, but very difficult

to use on non-linear problems in several dimensions. He used an equidistant ξ-grid
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near x = 0, then to map this grid back onto x−axis by means of the boundary

layer function y = e−υx/2 where υ ≥ 0 and occur in the exact solution. In order

to design these meshes successfully, a very complicated construction and theoretical

techniques are required.

We follow the construction provided in [39]. An equidistant ξ-grid is considered

near x = 0, then mapped back onto the x-axis by means of the (scaled) boundary

layer function. That is, grid points xi near x = 0 are defined by

q

(
1− exp

(
−βxi
σε

))
= ξi =

i

N
for i = 0, 1, 2, ......

where the scaling parameters 0 < q < 1 and σ > 0 are user chosen in such away

that q is the ratio of mesh points used to resolve the layer and σ determines the

grading of the mesh inside the layer. Away from the layer a uniform mesh in x

is used with transition point τ such that the resulting mesh generating function is

C1[0, 1], algebraically we have:

ϕ(ξ) =


χ(ξ) := −σε

β
ln(1− ξ

q
), for ξ ∈ [0, τ ],

π(ξ) := χ(τ) + χ
′
(τ)(ξ − τ) for ξ ∈ [τ, 1]

where χ(τ) + χ
′
(τ)(1− τ) = 1.

2.3.2 An error estimate on Bakhvalov mesh

In [41], the equation of reaction-convection-diffusion two-parameter singular pertur-

bation boundary value problem on (0, 1) is

Lu = −εdu′′ − εcu′ + cu = f, u(0) = u(1) = 0 (2.3.5)

A streamline diffusion finite element method on Bakhvalov mesh with chosen mesh

parameters κ0, κ1 > 0 and 0 < σ0, σ1. The author uses and analyze the method by
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generating Bakhvalov meshes for equation (2.3.5) used the following equidistributing

monitor function:

N

∫ xi

xi−1

MBa(s)ds =

∫ 1

0

MBa(s)ds

to produce mesh points xi for i = 0(1)n this method yields order 2 and error bound:

||u− UN || ≤ CN−2.

2.3.3 Description of Shishkin meshes (S-meshes)

These meshes are known as piecewise equidistant and are most frequently studied,

can be for the following reasons:

• They are very simple to construct.

• The ability to solve numerous singular perturbation problems.

• They can make it possible to study perturbation parameters uniformly con-

vergent grid methods on non-uniform meshes.

• It encourages a very significant progression in techniques for obtaining a priori

estimates.

• It contributes widely to the development of the parameters uniformly conver-

gent difference schemes to both ordinary differential equations (ODEs) and

partial differential equations (PDEs).

We describe S-mesh for our problem (1.0.1) as follows [39]: Let two mesh pa-

rameters be 0 ≤ q ≤ 1 and σ > 0. We define a mesh transition point λ by

λ = min

{
q,
σε

β
lnN

}
.

Then intervals [0, λ] and [λ, 1] are divided into qN and (1− q)N equidistant subin-

tervals (assuming that qN is an integer). This mesh may be generated by the mesh
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generating function

ϕ(ξ) =


σε
β

lnN ξ
q
, for ξ ∈ [0, q],

1−
(

1− σε
β

lnN
)

for ξ ∈ [q, 1]

The parameter q is the amount of mesh points used to resolve the layer. The

mesh transition point λ has been chosen such that the layer term exp(−βx/ε) is

smaller than N−σ 0o [λ, 1]. Typically σ will be chosen equal to the formal order of

the method or sufficiently large to accommodate the error analysis.

Note that unlike Bakhvalov the underlying mesh generating function is only

piecewise Cc[0, 1] and depends on N, the number of mesh points. For simplicity we

assume throughout that q ≥ λ as otherwise N is exponentially large compared to

1/ε and uniform mesh is sufficient to cope with the problem.

Although Shishkin meshes have a simple structure and numerical methods us-

ing them are easier to analyze than methods using Bakhvalov meshes, they give

numerical results that are inferior to those obtained by B-type meshes.

The S-type mesh is piecewise uniform which finer near the layer(s) and coarse

elsewhere [43]. For the problem 1.0.1, we assume that an error is locally generated in

the boundary layer region near x = 0 and then transported throughout the domain

of interest. Let denote a non-negative integer N = 2m, m ≥ 2 and we divide unit

interval [0, 1] into two subintervals: [0, δ] and [δ, 1] each of these ones has N/2

points and are equally spaced, where δ is a transition point defined by

δ = min{1/2, ε lnN}. (2.3.6)

The mesh grids xj is given by the following:

hj = {xj : xj = 2δ/N, j ≤ N/2; xi = xj−1 + 2(1− δ)/N,N/2 < j}
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where hj = xj − xj−1 and we denote this mesh by Ωn,δ.

2.3.4 An error estimate on Shishkin mesh

On the above-mentioned method and problem 2.3.5 applied on a Shishkin mesh with

fixed mesh parameters 0 < q0, q1 and 0 < σ0, σ1 with positive sum of q0, q1[41]. The

author uses two transition parameters:

τ0 = min

{
q0,

σ0

|µ0|
lnN

}

and

τ1 = min

{
q1,

σ1

|µ1|
lnN

}
,

with q0, q1 = 1/4 and σ0, σ1 = 3. The quarter of the mesh points used to resolve

both layers. The method produces a second order parameters uniform error bound

of the form

||u− UN || ≤ C(N−2 ln2N).

By considering two parameters singular perturbation boundary value problem:

εu′′ + µau′ − bu = f(x),

where ε ∈ (0, 1], µ ∈ [0, 1], 0 < α ≤ a(x), 0 < β ≤ b(x) and u(0), u(1) are

given in[73]. The authors employ a monotone numerical method on suitable Shishkin

mesh with two transition parameters σ1 and σ2 defined by:

σ1 =

 min{1
4
, 4
√
ε√

γα
lnN}, if µ2 ≤ γε

α
,

min{1
4
, 4ε
µα

lnN}, if µ2 ≤ γε
α
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and

σ2 =

 min{1
4
, 4
√
ε√

γα
lnN}, if µ2 ≤ γε

α
,

min{1
4
, 4µ
γ

lnN}, if µ2 ≤ γε
α
.

Depends on the relative ratio of two parameters the error bound obtained

||u− U || ≤

 CN2 ln3N}, if γε ≤ αµ2,

C(N−1 lnN)2}, if γε ≤ αµ2.


In paper [73], the authors considered a problem (1.0.1) and applied finite differ-

ence operator on piecewise uniform mesh consists of two transition points:

σ1 = min

{
1

4
,

2

θ1

lnN

}
,

σ2 = min

{
1

4
,

2

θ2

lnN

}
.

This numerical method produces first order and second order in cases of µ >
√
ε

and µ <
√
ε respectively and the parameters uniform error bound [18], of the form:

||u− UN ||ΩN ≤ C(N−1 lnN)2

In the case of class of singularly perturbed elliptic problems posed on the unit

square Ω = (0, 1)2 O’Riordan and Pickett discretized a problem and defined the

tensor product of two piecewise uniform Shishkin meshes ΩN and ΩM in recent

paper [75]. They used upwind finite difference and central difference operators on

above-mentioned S-type meshes. These meshes contains two transition points given

by:

σN1 = min

{
1

4
,

2ε

µα
lnN

}
,
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and

σN2 = min

{
1

4
,
2µ

γ
lnN

}
.

This produces the order of convergence which tends towards (N−1 lnN)2 and is

in the line with the theoretical order of convergence N−1(lnN)2. For the reaction-

convection-diffusion problem (1.0.1), Gracia et al [18], employed a finite difference

scheme that uses upwind, midpoint schemes and central difference on Shishkin mesh.

Considering the reaction-convection-diffusion two parameter problem, Kadalba-

joo and Yadaw [25] established a numerical method contains a B-spline collocation

method and Shishkin mesh selection strategy of the second order. The interval

Ω = [0, 1] is divided into three subinterval:

Ω0 = [0, σ1],Ωc = [σ1, 1− σ2],Ω1 = [1− σ2, 1],

with transition parameters of form:

σ1 = min

{
1

4
,

2

µ1

lnN

}
,

σ2 = min

{
1

4
,

2

µ2

lnN

}
.

In the next chapter we will discuss the implementation of extrapolation tech-

niques on both Bakhvalov and Shishkin meshes and then compare the numerical

results obtained by using the FMFDM on these meshes.
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Chapter 3

A comparison of extrapolation

technique on Bakhvalov and

Shishkin meshes

In this chapter, we describe an upwinding scheme on the Bakhvalov and Shishkin

meshes. Some error estimates are given. The comparative numerical results are

provided.

3.1 Decomposition of the solution

In [73] the solution u of a problem (1.0.1) can be decomposed into regular and

singular components, in order to achieve a parameters-uniformly convergent. The

existance a function v (regular component) with the boundary conditions such that

Lv = f

on (0, 1) and ||v(k)|| ≤ C for i ∈ {0, 1, 2}.
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Consider the following decomposition:

u = v + wL + wR

where

Lv = f, v(0), v(1)chosen

LwL = 0, wL(0) = u(0)− v(0), wL(1) = 0,

LwR = 0, wR(0) = 0, wR(1) = u(1)− v(1).

3.2 An upwind numerical method on S-mesh and

B-mesh

We adopt the notation wj = w(xj). Also, let: D+wj =
wj+1−wj
hj+1

, D−wj =
wj−wj−1

hj

and D+D−wj = 2
hjhj+1(hj+hj+1)

[hj+1uj−1 − (hj+1 + hj)uj + hjuj+1] , where D+wj,

D−wj and D+D−wj are first and second order finite differences respectively. Using

the finite difference above, we discretize problem 1.0.1 as follows:

LNwj ≡ εD+D−wj + µajD
+wj = fj

LNwj ≡ 2ε
hj+hj+1

[
hj+1wj−1−(hj+hj+1)wj+hjwj+1

hjhj+1

]
+ µã(j)

wj+1−wj
hj

− b̃(j)wj = fj

LNwj ≡
2ε

hj(hj + hj+1)
Wj−1−

2ε
hjhj+1

Wj+
2ε

hj+1(hj + hj+1)
Wj+1+

µã(j)
hj

wj+1−
µã(j)
hj

wj−b̃(j)wj = fj .

Now we have

r−j =
2ε

hj(hj + hj+1)
;

rcj =
−2ε

hjhj+1

− µãj
hj
− b̃(j);

r+
j =

2ε

hj+1(hj + hj+1)
+
µãj
hj

,
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where r−j is sub-diagonal, rcj and r+
j are main and super diagonals, respectively.

Therefore

LNwj ≡ r+
j wj+1 + rcjwj + r−j wj−1 = fj, j = 1(1)n− 1 (3.2.1)

In the next section, we shall analyze the above-mentioned numerical method.

3.3 Error analysis of the numerical methods

We first prove some lemmas which are required in the analysis.

Lemma 3.3.1. [56] (Discrete minimum principle). Let Γi be any mesh function that

satisfies Γ0 ≥ 0, Γn ≥ 0 and LNε,µΓi ≤ 0, for i = 1(1)n−1, then Γi ≥ 0 ∀i = 0(1)n.

Proof The proof is obtained by contradiction. Let Γi, i = 0(1)n, be a mesh function.

Assume that Γj < 0 and Γj = miniΓi.

We have Γj+1 − Γj ≥ 0 and Γj − Γj−1 ≤ 0. Now

LNε,µΓj =
ε

h̄j
[
Γj+1 − Γj
hj+1

− Γj − Γj−1

hj
] + µãj(

Γj+1 − Γj
hj

)− b̃jΓj ≥ 0,

which is a contradiction.

By using the above-mentioned discrete minimum principle, we now show that the

FMFDM (3.2.1) also satisfies the uniform stability result provided in the following

lemma.

Lemma 3.3.2. [56] The operator LNε,µ is uniformly stable, in the sense that if Zi is

any mesh function such that Z0 = Zn = 0, then

|Zi| ≤
1

α
max

1≤j≤n−1
|LNε,µZj|,∀ 0 ≤ i ≤ n.

Proof See [56].

Consider the mesh Ω2n,δ where δ is given by (2.3.6), and Ω2n,δ is obtained from
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Ωn,δ by bisecting each mesh sub-interval. Thus

Ωn,δ = {xj} ⊂ Ω2n,δ = {x̃j}

and x̃j − ˜xj−1 = h̃j = hj/2.[45].

Lemma 3.3.3. [73] Let u be the solution of the differential equation (1.0.1) and v

the numerical solution is obtained via (3.2.1). Then at each mesh point xj ∈ Ωn,δ

we have

|(u− v)(xj)| ≤ Cn−1(lnn)2. (3.3.2)

Proof See [73].

3.3.1 Extrapolation formula

Let us denote by ṽj the numerical solution computed via (3.2.1). Estimate (3.3.2)

implies that

u(xj)− vnj = CN−1(lnn)2 +Rn(N−1(lnn)2), ∀xj ∈ Ωn,δ (3.3.3)

and

u(x̃j)− ṽj = C(2n)−1(lnn)2 +R2n((2n)−1(lnn)2), ∀x̃j ∈ Ω2n,δ, (3.3.4)

where the remainders Rn and R2n are O((2n)−1(lnn)2).

We multiply equation (3.3.4) by factor 2 yields:

2[u(x̃j)− ṽj] = C(n)−1(lnn)2 + 2R2n((n)−1(lnn)2) ∀xj ∈ Ωn,δ. (3.3.5)

Then the difference of equations (3.3.5) and (3.3.3) gives

2[u(xj)− ṽj]− (u(xj)− vnj ) = 2R2n(n−1/2(lnn)2)− (Rn(n−1(lnn)2), ∀xj ∈ Ωn,δ,
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Hence

[u(xj)− (2ṽj − vj)] = O(n−1(lnn)2), ∀x̃j ∈ Ωn,δ

and therefore, we shall use

vextj = (2ṽj − vj), ∀xj ∈ Ωn,δ

as the extrapolation formula in next section. Now using stability Lemma 3.3.2, on

the mesh function (uj − vextj )j to obtain

max
0<j≤n

|u(xj)− vext| ≤ Cn−1(lnn)2.

Therefore

sup
0<ε,µ≤1

max
0<j≤n

|u(xj)− vext| ≤ Cn−1(lnn)2.

3.4 Comparative numerical results

In this section, numerical results are presented for two test examples. Maximum

errors on both Shishkin and Bakhvalov meshes are computed. Results before and

after extrapolation are also provided.

Example 3.4.1. [56] Consider the problem:

εu′′(x) + µu′(x)− u(x) = −x, x ∈ Ω (3.4.6)

whose exact solution is given by:

u(x) = (x+ µ) +
((1− µ) + (1 + µ)e−D2)eD1x − ((1 + µ) + (1− µ)eD1)e−D2(1−x)

1− e
√

(µ2+4ε/ε)

(3.4.7)

where D1,2 = (−µ±
√
µ2 + 4ε)/2ε.

Maximum errors at all the mesh points are evaluated using the following formu-

30

 

 

 

 



CHAPTER 3. A COMPARISON OF EXTRAPOLATION TECHNIQUE ON
BAKHVALOV AND SHISHKIN MESHES

lae:

Before Extrapolation

EB
n,ε,µ := max

0≤j≤n
|u(xj)− vj| (3.4.8)

After Extrapolation

EA
n,ε,µ := max

0≤j≤n

∣∣u(xj)− vext
∣∣ (3.4.9)

where vj is the solution of (1.0.1) obtained using (3.2.1) and vext is the solution after

extrapolation of vj.

Example 3.4.2. [56] Consider the problem:

εu′′(x) + µ(1 + x)u′(x)− u(x) = (1 + x)2, x ∈ Ω; u(0) = u(1) = 0 (3.4.10)

For this problem the exact solution is not known, therefore we shall use double

mesh principle [44]. From above example, let vj ≡ vnj , then we denote maximum

errors for different values of n, ε and µ at all the mesh points by EB
n,ε,µ and EA

n,ε,µ as

follows:

Before Extrapolation

EB
n,ε,µ := max

0≤j≤n

∣∣vnj − v2n
2j

∣∣ (3.4.11)

After Extrapolation

EA
n,ε,µ := max

0≤j≤n

∣∣vextj − vext2j

∣∣ (3.4.12)

where v2n
2j is the numerical solution of (1.0.1) obtained using (3.2.1) on the mesh

Ω2n,δ and vext2j is the solution after extrapolation of vextj on same mesh.

The numerical rates of convergence are calculated using the following formula

[44]:

rk ≡ rε,µ,k := log2(Ẽnk/Ẽ2nk), k = 1, 2, 3, ...
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where Ẽ stands for En,ε,µ and Eext
n,ε,µ respectively. Moreover, we compute

En = max
0≤j≤1

En,ε,µ

and

En = max
0≤j≤1

Eext
n,ε,µ

whereas the numerical rate of uniform convergence is computed as

Rn := log2(En/E2n)

and

Rext
n := log2(Eext

n /Eext
2n ).

3.5 Discussion

In this chapter we have investigated the performance of Richardson extrapolation

on fitted mesh finite difference methods for two-parameter singular perturbation

problems. Our observation that Richardson extrapolation improves accuracy is con-

vincing, with the rates of convergence slightly increased. This was our as expected

and confirms the assertion that Richardson extrapolation [44] improves accuracy

of the lower order methods. However, the order of convergence is still not up to

the level one would expect and therefore in next chapter, we perform the Richard-

son extrapolation on a fitted operator finite difference method where we find some

wonderful results. In fact the improved results are perfectly of order two.
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Table 3.1: Results for Example 3.4.1, Max. Errors using Shishkin mesh before
extrapolation for µ = 1

ε n=32 n=64 n=128 n=258 n=512 n=1024
1 1.54E-003 7.79E-004 3.92E-004 1.96E-004 9.84E-005 4.92E-005

2−1 4.75E-003 2.42E-003 1.22E-003 6.15E-004 3.08E-004 1.54E-004
2−2 1.21E-002 6.24E-003 3.17E-003 1.60E-003 8.03E-004 4.02E-004
2−3 2.57E-002 1.37E-002 7.02E-003 3.56E-003 1.80E-003 9.01E-004
2−5 3.35E-002 2.29E-002 1.48E-002 9.02E-003 5.32E-003 3.05E-003
2−6 3.26E-002 2.21E-002 1.42E-002 8.71E-003 5.16E-003 2.97E-003

Table 3.2: Results for Example 3.4.1, Max. Errors using Bakhvalov mesh for µ = 1
ε n=32 n=64 n=128 n=258 n=512 n=1024
1 2.66E-003 1.96E-003 1.56E-003 1.30E-003 1.05E-003 7.91E-004

2−1 6.97E-003 3.96E-003 2.65E-003 2.03E-003 1.73E-003 1.57E-003
2−2 1.88E-002 9.97E-003 5.39E-003 3.22E-003 2.30E-003 1.85E-003
2−3 4.00E-002 2.21E-002 1.17E-002 6.25E-003 3.59E-003 2.41E-003
2−5 1.02E-001 7.91E-002 4.56E-002 2.52E-002 1.33E-002 7.05E-003
2−6 8.54E-002 1.07E-001 8.06E-002 4.65E-002 2.56E-002 1.35E-002

Table 3.3: Results for Example 3.4.1, Max. Errors using Shishkin mesh before
extrapolation for µ = 2−3

ε n=32 n=64 n=128 n=258 n=512 n=1024
2−3 1.69E-003 8.49E-004 4.25E-004 2.13E-004 1.07E-004 5.33E-005
2−4 4.62E-003 2.34E-003 1.17E-003 5.89E-004 2.95E-004 1.48E-004
2−6 2.50E-002 1.33E-002 6.83E-003 3.46E-003 1.74E-003 8.74E-004
2−8 4.78E-002 2.71E-002 1.67E-002 1.00E-002 5.81E-003 3.30E-003
2−10 7.23E-002 3.86E-002 1.98E-002 1.12E-002 6.47E-003 3.66E-003
2−12 8.24E-002 4.45E-002 2.32E-002 1.18E-002 6.75E-003 3.82E-003

Table 3.4: Results for Example 3.4.1, Max. Errors using Bakhvalov mesh for µ = 2−3

ε n=32 n=64 n=128 n=258 n=512 n=1024
2−3 2.99E-003 1.49E-003 7.53E-004 3.88E-004 2.11E-004 1.27E-004
2−4 8.65E-003 4.34E-003 2.19E-003 1.10E-003 5.58E-004 2.88E-004
2−6 4.55E-002 2.47E-002 1.30E-002 6.68E-003 3.39E-003 1.71E-003
2−8 1.20E-001 9.64E-002 5.52E-002 3.05E-002 1.61E-002 8.25E-003
2−10 7.56E-002 1.24E-001 1.50E-001 1.08E-001 6.26E-002 3.41E-002
2−12 8.32E-002 4.51E-002 8.31E-002 1.44E-001 1.62E-001 1.13E-001
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Table 3.5: Results for Example 3.4.1, Max. Errors using Shishkin mesh before
extrapolation for µ = 2−6

ε n=32 n=64 n=128 n=258 n=512 n=1024
2−6 3.75E-003 1.68E-003 7.90E-004 3.82E-004 1.88E-004 9.31E-005
2−8 1.51E-002 6.95E-003 3.34E-003 1.63E-003 8.05E-004 4.00E-004
2−10 5.99E-002 2.42E-002 1.40E-002 7.01E-003 3.51E-003 1.76E-003
2−12 1.46E-001 9.50E-002 4.69E-002 2.26E-002 1.09E-002 5.24E-003
2−14 1.75E-001 1.60E-001 8.92E-002 4.95E-002 2.55E-002 1.29E-002
2−15 1.80E-001 1.79E-001 1.08E-001 5.97E-002 3.19E-002 1.63E-002

Table 3.6: Results for Example 3.4.1, Max. Errors using Bakhvalov mesh for µ = 2−6

ε n=32 n=64 n=128 n=258 n=512 n=1024
2−6 9.52E-003 3.70E-003 1.63E-003 7.68E-004 3.73E-004 1.84E-004
2−8 3.54E-002 1.51E-002 6.86E-003 3.30E-003 1.61E-003 7.99E-004
2−10 9.00E-002 5.49E-002 2.72E-002 1.39E-002 6.98E-003 3.50E-003
2−12 1.48E-001 1.06E-001 9.27E-002 5.37E-002 2.95E-002 1.56E-002
2−14 1.74E-001 1.63E-001 9.61E-002 1.40E-001 1.11E-001 6.37E-002
2−15 1.79E-001 1.79E-001 1.09E-001 1.22E-001 1.60E-001 1.18E-001

Table 3.7: Results for Example 3.4.2, Max. Errors using Shishkin mesh before
extrapolation for µ = 1

ε n=32 n=64 n=128 n=256 n=512 n=1024
1 2.44E-003 1.25E-003 6.32E-004 3.18E-004 1.59E-004 7.98E-005

10−1 2.71E-002 1.47E-002 7.65E-003 3.91E-003 1.98E-003 9.94E-004
10−2 1.12E-001 8.61E-002 6.83E-002 5.59E-002 4.71E-002 4.08E-002
10−3 1.14E-001 8.78E-002 6.93E-002 5.66E-002 4.76E-002 4.12E-002
10−5 1.15E-001 8.80E-002 6.95E-002 5.67E-002 4.77E-002 4.12E-002
10−6 1.15E-001 8.80E-002 6.95E-002 5.67E-002 4.77E-002 4.12E-002

Table 3.8: Results for Example 3.4.2, Max. Errors using Bakhvalov mesh before
extrapolation for µ = 1

ε n=32 n=64 n=128 n=256 n=512 n=1024
1 1.74E-002 1.43E-002 1.75E-002 2.09E-002 2.53E-002 3.17E-002

10−1 6.20E-002 5.61E-002 4.86E-002 4.21E-002 3.70E-002 3.31E-002
10−2 7.73E-002 8.09E-002 7.38E-002 6.14E-002 5.28E-002 4.39E-002
10−4 2.91E-002 3.08E-002 3.20E-002 3.35E-002 3.61E-002 4.08E-002
10−6 2.88E-002 3.01E-002 3.06E-002 3.06E-002 3.03E-002 2.99E-002
10−8 2.88E-002 3.01E-002 3.06E-002 3.05E-002 3.02E-002 2.98E-002
10−10 2.88E-002 3.01E-002 3.06E-002 3.05E-002 3.02E-002 2.98E-002
10−11 2.88E-002 3.01E-002 3.06E-002 3.05E-002 3.02E-002 2.98E-002
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Table 3.9: Results for Example 3.4.2, Max. Errors using Shishkin mesh after ex-
trapolation for µ = 1

ε n=32 n=64 n=128 n=256 n=512 n=1024
1 5.68E-005 1.44E-005 3.64E-006 9.12E-007 2.28E-007 5.72E-008

10−1 2.46E-003 7.09E-004 1.92E-004 4.98E-005 1.27E-005 3.21E-006
10−2 6.69E-002 5.43E-002 4.55E-002 3.95E-002 3.52E-002 3.19E-002
10−3 6.82E-002 5.48E-002 4.58E-002 3.98E-002 3.54E-002 3.21E-002
10−5 6.83E-002 5.49E-002 4.59E-002 3.98E-002 3.55E-002 3.21E-002
10−6 6.83E-002 5.49E-002 4.59E-002 3.98E-002 3.55E-002 3.21E-002

Table 3.10: Results for Example 3.4.2, Max. Errors using Bakhvalov mesh after
extrapolation for µ = 1

ε n=32 n=64 n=128 n=256 n=512 n=1024
1 1.84E-002 2.14E-002 2.55E-002 3.18E-002 4.09E-002 5.02E-002

10−1 5.01E-002 4.10E-002 3.56E-002 3.20E-002 2.91E-002 2.67E-002
10−2 7.05E-002 6.98E-002 5.80E-002 4.42E-002 3.50E-002 3.01E-002
10−3 4.08E-002 4.86E-002 5.93E-002 6.84E-002 6.75E-002 5.50E-002
10−5 3.15E-002 3.12E-002 3.10E-002 3.09E-002 3.13E-002 3.26E-002
10−6 3.14E-002 3.10E-002 3.06E-002 3.00E-002 2.95E-002 2.90E-002

Table 3.11: Results for Example 3.4.2, Max. Errors using Shishkin mesh before
extrapolation forµ = 2−3

ε n=32 n=64 n=128 n=256 n=512 n=1024
10−3 1.33E-001 1.08E-001 8.89E-002 7.43E-002 6.35E-002 5.55E-002
10−5 1.28E-001 1.04E-001 8.56E-002 7.17E-002 6.12E-002 5.34E-002
10−7 1.28E-001 1.04E-001 8.56E-002 7.16E-002 6.12E-002 5.34E-002
10−9 1.28E-001 1.04E-001 8.56E-002 7.16E-002 6.12E-002 5.34E-002
10−11 1.28E-001 1.04E-001 8.56E-002 7.16E-002 6.12E-002 5.34E-002
10−13 1.28E-001 1.04E-001 8.56E-002 7.16E-002 6.12E-002 5.34E-002
10−14 1.28E-001 1.04E-001 8.56E-002 7.16E-002 6.12E-002 5.34E-002

Table 3.12: Results for Example 3.4.2, Max. Errors using Bakhvalov mesh before
extrapolation for µ = 2−3

ε n=32 n=64 n=128 n=256 n=512 n=1024
10−3 1.18E-001 5.05E-002 1.63E-002 5.48E-003 2.30E-003 2.32E-003
10−5 1.10E-001 1.94E-001 2.64E-001 2.33E-001 1.24E-001 5.87E-002
10−7 1.05E-001 1.88E-001 2.87E-001 3.55E-001 3.26E-001 2.11E-001
10−9 1.05E-001 1.88E-001 2.88E-001 3.57E-001 3.31E-001 2.18E-001
10−11 1.05E-001 1.88E-001 2.88E-001 3.57E-001 3.31E-001 2.18E-001
10−13 1.05E-001 1.88E-001 2.88E-001 3.57E-001 3.31E-001 2.18E-001
10−14 1.05E-001 1.88E-001 2.88E-001 3.57E-001 3.31E-001 2.18E-001
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Table 3.13: Results for Example 3.4.2, Max. Errors using Shishkin mesh after
extrapolation for µ = 2−3

ε n=32 n=64 n=128 n=256 n=512 n=1024
10−3 8.85E-002 7.32E-002 6.19E-002 5.41E-002 4.83E-002 4.38E-002
10−5 8.64E-002 7.08E-002 5.97E-002 5.20E-002 4.64E-002 4.21E-002
10−7 8.63E-002 7.08E-002 5.97E-002 5.20E-002 4.64E-002 4.21E-002
10−9 8.63E-002 7.08E-002 5.97E-002 5.20E-002 4.64E-002 4.21E-002
10−11 8.63E-002 7.08E-002 5.97E-002 5.20E-002 4.64E-002 4.21E-002
10−13 8.63E-002 7.08E-002 5.97E-002 5.20E-002 4.64E-002 4.21E-002
10−14 8.63E-002 7.08E-002 5.97E-002 5.20E-002 4.64E-002 4.21E-002

Table 3.14: Results for Example 3.4.2, Max. Errors using Bakhvalov mesh after
extrapolation for µ = 2−3

ε n=32 n=64 n=128 n=256 n=512 n=1024
10−3 3.90E-002 1.79E-002 5.36E-003 2.37E-003 2.33E-003 2.32E-003
10−5 7.83E-002 8.20E-002 3.73E-002 2.44E-002 1.10E-002 4.20E-003
10−7 8.01E-002 9.96E-002 6.05E-002 4.24E-002 8.17E-002 4.99E-002
10−9 8.01E-002 9.98E-002 6.11E-002 4.29E-002 8.66E-002 5.51E-002
10−11 8.01E-002 9.98E-002 6.11E-002 4.29E-002 8.66E-002 5.51E-002
10−13 8.01E-002 9.98E-002 6.11E-002 4.29E-002 8.66E-002 5.51E-002
10−14 8.01E-002 9.98E-002 6.11E-002 4.29E-002 8.66E-002 5.51E-002

Table 3.15: Result for Example 3.4.2, Max. Errors: Using Shishkin mesh before
extrapolation for µ = 2−6

ε n=32 n=64 n=128 n=256 n=512 n=1024
10−6 3.43E-001 2.30E-001 1.44E-001 8.21E-002 4.79E-002 4.19E-002
10−8 3.43E-001 2.30E-001 1.45E-001 8.24E-002 4.79E-002 4.19E-002
10−10 3.43E-001 2.30E-001 1.45E-001 8.24E-002 4.79E-002 4.19E-002
10−12 3.43E-001 2.30E-001 1.45E-001 8.24E-002 4.79E-002 4.19E-002
10−14 3.43E-001 2.30E-001 1.45E-001 8.24E-002 4.79E-002 4.19E-002
10−16 3.43E-001 2.30E-001 1.45E-001 8.24E-002 4.79E-002 4.19E-002
10−17 3.43E-001 2.30E-001 1.45E-001 8.24E-002 4.79E-002 4.19E-002

Table 3.16: Results for Example 3.4.2, Max. Errors using Bakhvalov mesh before
extrapolation for µ = 2−6

ε n=32 n=64 n=128 n=256 n=512 n=1024
10−6 1.34E-002 5.30E-003 1.55E-002 5.07E-002 1.08E-001 1.02E-001
10−8 1.37E-002 6.31E-003 2.99E-003 1.63E-003 4.60E-003 1.39E-002
10−10 1.37E-002 6.32E-003 3.03E-003 1.48E-003 2.06E-003 4.17E-003
10−12 1.37E-002 6.32E-003 3.03E-003 1.48E-003 2.03E-003 4.07E-003
10−14 1.37E-002 6.32E-003 3.03E-003 1.48E-003 2.03E-003 4.07E-003
10−16 1.37E-002 6.32E-003 3.03E-003 1.48E-003 2.03E-003 4.07E-003
10−17 1.37E-002 6.32E-003 3.03E-003 1.48E-003 2.03E-003 4.07E-003
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Table 3.17: Results for Example 3.4.2, Max. Errors using Shishkin mesh after
extrapolation forµ = 2−6

ε n=32 n=64 n=128 n=256 n=512 n=1024
10−6 8.94E-002 5.86E-002 4.71E-002 4.11E-002 3.66E-002 3.31E-002
10−8 8.97E-002 5.90E-002 4.71E-002 4.10E-002 3.66E-002 3.31E-002
10−10 8.97E-002 5.90E-002 4.71E-002 4.10E-002 3.66E-002 3.31E-002
10−12 8.97E-002 5.90E-002 4.71E-002 4.10E-002 3.66E-002 3.31E-002
10−14 8.97E-002 5.90E-002 4.71E-002 4.10E-002 3.66E-002 3.31E-002
10−16 8.97E-002 5.90E-002 4.71E-002 4.10E-002 3.66E-002 3.31E-002
10−17 8.97E-002 5.90E-002 4.71E-002 4.10E-002 3.66E-002 3.31E-002

Table 3.18: Results for Example 3.4.2, Max. Errors using Bakhvalov mesh after
extrapolation for µ = 2−6

ε n=32 n=64 n=128 n=256 n=512 n=1024
10−6 7.75E-003 3.77E-003 1.36E-002 3.13E-002 4.04E-002 3.99E-002
10−8 8.01E-003 3.79E-003 1.81E-003 1.64E-003 4.50E-003 1.27E-002
10−10 8.01E-003 3.80E-003 1.85E-003 1.00E-003 2.05E-003 4.14E-003
10−12 8.01E-003 3.80E-003 1.85E-003 9.96E-004 2.03E-003 4.04E-003
10−14 8.01E-003 3.80E-003 1.85E-003 9.96E-004 2.03E-003 4.04E-003
10−16 8.01E-003 3.80E-003 1.85E-003 9.96E-004 2.03E-003 4.04E-003
10−17 8.01E-003 3.80E-003 1.85E-003 9.96E-004 2.03E-003 4.04E-003

Table 3.19: Results for Example 3.4.2, The rate of convergence of Shishkin mesh
before extrapolation for µ = 1

ε r1 r2 r3 r4 r5

1 0.98 0.99 1.00 1.00 1.00
2−1 0.97 0.99 0.99 1.00 1.00
2−2 0.95 0.98 0.99 0.99 1.00
2−3 0.91 0.96 0.98 0.99 0.99
2−5 0.55 0.64 0.71 0.76 0.80
2−6 0.56 0.64 0.71 0.76 0.79

Table 3.20: Results for Example 3.4.2, The rate of convergence of Shishkin mesh
after extrapolation for µ = 1

ε r1 r2 r3 r4 r5

1 1.97 1.99 1.99 2.00 2.00
2−1 1.95 1.98 1.99 1.99 2.00
2−2 1.91 1.96 1.98 1.99 1.99
2−3 1.83 1.92 1.96 1.98 1.99
2−5 0.39 0.46 0.58 0.83 1.71
2−6 0.19 0.14 0.16 0.17 0.17
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Table 3.21: Results for Example 3.4.2, The rate of convergence of Bakhvalov mesh
before extrapolation for µ = 1

ε r1 r2 r3 r4 r5

1 0.44 0.33 0.27 0.31 0.40
2−1 0.82 0.58 0.38 0.23 0.15
2−2 0.91 0.89 0.74 0.49 0.31
2−3 0.85 0.92 0.90 0.80 0.57
2−4 0.78 0.85 0.92 0.91 0.83
2−5 0.36 0.79 0.86 0.92 0.92

Table 3.22: Results for Example 3.4.1, The rate of convergence of Shishkin mesh
before extrapolation for µ = 2−3

ε r1 r2 r3 r4 r5

2−3 1.00 1.00 1.00 1.00 1.00
2−4 1.00 1.00 1.00 1.00 1.00
2−5 1.00 1.00 1.00 1.00 1.00
2−6 0.99 1.00 1.00 1.00 1.00
2−7 0.98 0.99 1.00 1.00 1.00
2−8 0.96 0.98 0.99 1.00 1.00
2−9 0.90 0.97 0.98 0.99 1.00

Table 3.23: Results for Example 3.4.1, The rate of convergence of Shishkin mesh
after extrapolation for µ = 2−3

ε r1 r2 r3 r4 r5

2−3 2.00 2.00 2.00 2.00 2.00
2−4 1.99 2.00 2.00 2.00 2.00
2−5 1.98 1.99 2.00 2.00 2.00
2−6 1.97 1.99 1.99 2.00 2.00
2−7 1.95 1.97 1.99 1.99 2.00
2−8 1.92 1.96 1.98 1.99 1.99
2−9 1.85 1.91 1.96 1.98 1.99
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Table 3.24: Results for Example 3.4.1, The rate of convergence of Shishkin mesh
before extrapolation for µ = 2−6

ε r1 r2 r3 r4 r5

2−6 1.17 1.09 1.05 1.02 1.01
2−7 1.17 1.09 1.05 1.03 1.01
2−8 1.17 1.09 1.05 1.03 1.01
2−9 1.18 1.09 1.05 1.03 1.01
2−10 1.20 1.09 1.05 1.03 1.01
2−11 1.17 1.09 1.05 1.03 1.01
2−12 1.16 1.09 1.05 1.02 1.01
2−13 1.13 1.08 1.04 1.02 1.01
2−14 1.12 1.06 1.03 1.02 1.01
2−15 1.06 1.02 1.02 1.01 1.01
2−17 1.06 1.09 1.14 1.13 0.83

Table 3.25: Results for Example 3.4.1, The rate of convergence of Shishkin mesh
after extrapolation for µ = 2−6

ε r1 r2 r3 r4 r5

2−6 2.00 2.00 2.00 2.00 2.00
2−7 2.00 2.00 2.00 2.00 2.00
2−8 2.00 2.00 2.00 2.00 2.00
2−9 1.99 2.00 2.00 2.00 2.00
2−10 1.99 1.99 2.00 2.00 2.00
2−11 1.98 1.99 2.00 2.00 2.00
2−12 1.97 1.99 1.99 2.00 2.00
2−13 1.94 1.98 1.99 2.00 2.00
2−14 1.87 1.96 1.98 1.99 2.00
2−15 1.79 1.91 1.96 1.98 1.99
2−17 0.30 0.36 0.48 0.72 1.51
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Chapter 4

A convergence acceleration

technique on a fitted operator

method

In this chapter, we introduce a convergence acceleration techniques, namely, the

Defect-correction method and the Richardson extrapolation method which are two of

the most important acceleration techniques seen in the literature. The extrapolation

formula and some results on the fitted operator finite difference method before and

after extrapolation are given. Then we supply some numerical results to confirm

the theoretical estimates.

4.1 A brief introduction to convergence accelera-

tion techniques

Higher order methods are preferred over their lower order counterparts in the sense

that an expected degree of accuracy can be obtained via the former. However, it is

not always easy to design direct higher order methods. To circumvent this difficulty,

convergence acceleration techniques can be useful. The two major types of these
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techniques are the defect-correction method and Richardson extrapolation method.

The defect-correction technique proceeds in three steps:

• Compute the defect which is a quantity that shows how well the problem has

been solved.

• Use this defect in a simplified version of the problem to obtain a correction

quantity.

• Apply the correction to the approximate solution to obtain a new and better

approximate solution.

This process can be repeated until satisfactory results are reached.

The Richardson extrapolation is a convergence acceleration technique in which

a linear combination of two computed solutions approximating a particular quan-

tity gives a third and better approximated solution. Typically these solutions are

calculated on single and double nested meshes. This method is used to increase the

accuracy of computed approximations of the solutions of boundary value differential

equations and to improve the parameter-uniform rates of convergence of computed

solutions for one parameter linear singular perturbation problems (see, e.g., [48] and

some of the references therein). In this chapter, we are only going to use Richardson

extrapolation.

4.2 A fitted operator finite difference method (FOFDM)

Let n be a non-negative integer and consider the division of closed unit interval [0, 1]

into equidistant subintervals with:

x0 = 0, xn = 1, xj = x0 + hj, h = xj − xj−1

for all j = 1(1)n.
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We denote the above mesh by Ωn while the mesh Ω2n is obtained by bisecting

each mesh interval in Ωn, that means

Ω2n = {x̃j} with x̃0 = 0, x̃2n = 1 and x̃j − ˜xj−1 = h̃ = h/2, j = 1(1)2n.

These two meshes will be used to derive the extrapolation formula in subsection

4.3.2.

With an assumption that all coefficient functions in the differential equation

(1.0.1) are constant everywhere in the above-mentioned interval of interest, Patidar

in [56] considered equation (1.0.1) at fixed points xj:

Lε,µu(xj) = εu′′(xj) + µu(xj)u
′(xj)− b(xj)u(xj) = f(xj), j = 1(1)n− 1. (4.2.1)

Lhε,µvj ≡ ε
vj+1 − 2vj + vj−1

ϕ2
j

+ µb̆j
vj+1 − vj

h
− b̆jvj = f̆j (4.2.2)

where

ăj =
aj + aj+1

2
, b̆j =

bj + bj+1

2
, f̆j =

fj+1 + fj + fj−1

3

and a dummy variable denominator function:

ϕ2
j(µ, h, ε) = ϕ2

j ≡
(
µăj
εh

)−1
exp

(
ε

µ ˘ajh

)−1

− 1

 ≡ h2 +O
(
µh3

ε

)

The equation (4.2.2) is referred to as fitted operator finite difference method (FOFDM)and

applied the system of linear equation, it can be written as the following tridiagonal

matrix:

Au = F

With corresponding entries of A and F as follows:

Aij = r+
j , i = j − 1; j = 2(1)n− 1,

Aij = rcj , i = j; j = 1(1)n− 1,
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Aij = r−j , i = j + 1; j = 1(1)n− 2,

F1 = f1−r−1 ω0 and Fn−1 = fn−1−r+
n−1ω1 where r+ = ε

ϕ2
j
+

µăj
h
, rc = − 2ε

ϕ2
j
+

µăj
h
− b̆j,

r− = ε
ϕ2
j
.

4.3 Extrapolation techniques applied to FOFDM

given in Section 4.2

The existence and uniqueness of continuous boundary value problem (1.0.1) does

not imply the same for the corresponding discrete problems. Hence it is a basic

requirement to determine whether this discrete solution has a unique solution. To

this end, the method (4.2.2) should satisfy the discrete minimum principle in the

next subsection.

4.3.1 The error before extrapolation

Lemma 4.3.1. [56] (Discrete minimum principle) Let Φi be any mesh function that

satisfies Φ0 ≥ 0, Φn ≥ 0, and Lhε,µΦi ≤ 0, for all for i = 1, 2, 3, ...n− 1, then Φi ≥ 0

for all i = 1, 1, 3, ....n.

Proof. Let Φj = mini Φi and assume that Φj < 0. It can be seen that j /∈ {0, 1},

Φj − Φj−1 ≤ 0 and Φj+1 − Φj ≥ 0

We have

Lhε,µΦj =
ε

ϕ2
j

(Φj+1 − 2Φj + Φj−1) +
µăj
h

(Φj+1 − Φj)− bjΦj

=
ε

ϕ2
j

[(Φj+1 − Φj)− (Φj − Φj−1)] +
µăj
h

(Φj+1 − Φj)− bjΦj > 0

which is a contradiction. Therefore Φj ≥ 0, ∀i.

Theorem 4.3.1. Assume that a(x), b(x) and f(x) are sufficiently smooth so that

u(x) ∈ C4[0, 1]. Then the FOFDM (4.2.2) is first order ε and µ-uniformly convergent

43

 

 

 

 



CHAPTER 4. A CONVERGENCE ACCELERATION TECHNIQUE ON A
FITTED OPERATOR METHOD

in the sense that the numerical solution v of problem (1.0.1) obtained via (4.2.2)

(with v0 = α0, vn = α1 ) satisfies the error estimate

sup
0<ε,µ≤1

max
0≤j≤n

|uj − vj| ≤Mh (4.3.3)

Proof. The truncation error of method is given by:

τj(u) = Lε,µuj − f̃j, (4.3.4)

= (εu′′j + µa(x)u′ − b(x)u)− (ε
uj+1 − 2uj + uj−1

ξ2
j

+ µãj
uj+1 − uj

h
− b̃juj)

= εu′′j + µaju
′
j − bjuj −

ε

ξ2
j

[uj+1 − 2uj + uj−1]− µãj
h

[uj+1 − uj] + b̃juj

= εu′′j + µaju
′
j − bjuj −

ε

ξ2
j

[uj + huj +
h2

2
u
′′

j +
h3

6
u
′′′

j +
h4

24
u4
j

−2uj +
h2

2
u
′′

j −
h3

6
u
′′′

j +
h4

24
u4
j + .....]− µãj

h
[uj + huj +

h2

2
u
′′

j

+
h3

6
u
′′′

j +
h4

24
u4
j − uj + ...] + b̃juj

= εu
′′

j + µaju
′

j − bjuj −
ε

ξ2
j

[h2u
′′

j +
h4

12
u4
j + ..]− µãj

h
[hu

′

j

+
h2

2
u
′′

j +
h3

6
u
′′′

j +
h4

24
u4
j + ...] + b̃juj

= εu
′′

j + µaju
′

j − bjuj − ε
µaj
hε

[
ε

µajh
− 1

2
+

1

12

µajh

ε

]
+

1

120

(
µajh

ε

)3

+ ..][h2u
′′

j +
h4

12
u4
j + ..]

−µãj[u
′

j +
h

2
u
′′

j +
h2

6
u
′′′

j +
h3

24
u4
j + ...] + b̃juj

= εu′′j + µaju
′

j − bjuj −
[
ε

h2
− ajµ

2h
+
a3
jµ

3

12ε

]
[h2u

′′

j

+
h4

12
u4
j + ....]− µãj[u

′

j +
h

2
u
′′

j +
h2

6
u
′′′

j +
h3

24
u4
j + ...] + b̃juj

= εu′′j + µaju
′

j − bjuj − εu
′′

j −
εh2

12
u4
j +

1

2
hµaju

′′ −
a2
jµ

2h2

ε
u
′′

j

−µãj[u
′

j +
h

2
u
′′

j +
h2

6
u
′′′

j ] + b̃juj

44

 

 

 

 



CHAPTER 4. A CONVERGENCE ACCELERATION TECHNIQUE ON A
FITTED OPERATOR METHOD

= µaju
′

j − bjuj −
εh2

12
u4
j +

1

2
hµaju

′′ −
a2
jµ

2h2

ε
u
′′

j

−µaj + aj+1

2
[u
′

j +
h

2
u
′′

j +
h2

6
u
′′′

j ] +
bj + bj+1

2
uj

= µaju
′

j − bjuj −
εh2

12
u4
j +

1

2
hµaju

′′ −
a2
jµ

2h2

ε
u
′′

j −
µ

2
(2aj + ha

′

j +
h2

2
a
′′

j

+
h3

6
a
′′′

j )[u
′

j +
h

2
u
′′

j +
h2

6
u
′′′

j ] +
1

2
[2bj + hb

′

j +
b2

2
b
′′

j +
h3

6
b
′′′

j ]uj

= µaju
′

j − bjuj −
εh2

12
u4
j +

1

2
hµaju

′′ −
a2
jµ

2h2

ε
u
′′

j (µaj +
µh

2
a
′

j +
µh2

4
a
′′

j

+
µh3

12
a
′′′

j )[u
′

j +
h

2
u
′′

j +
h2

6
u
′′′

j ]bjuj +
b
′
jh

2
uj +

b
′′
jh

2

4
uj +

b
′′′
j h

3

12
uj

= µaju
′

j −
εh2

12
u4
j +

hµaj
2

u
′′

j −
h2µ2a2

j

12ε
u
′′

j − µaju
′

j −
hµaj

2
u
′′

j

−h
2µaj
6

u
′′′

j −
hµa

′
j

2
u
′

j +
h2µa

′
j

4
u
′′

j

=
h2µa

′′
j

4
u
′

j +
h2b

′
j

2
uj +

h4b
′′
j

4
uj +

h3b
′′′
j

12
uj

= −
hµa

′
j

2
u
′

j +
hb
′
j

2
uj −

εh2

12
u4
j −

h2µ2a2
j

12ε
u
′′

j −
h2µaj

6
u
′′′

j

+
h2µa

′
j

4
u
′′

j +
h2µa

′′
j

4
u
′

j +
h4b

′′
j

4
uj +O(h3).

Therefore

L(uj − vj) = −
hµa

′
j

2
u
′

j +
hb
′
j

2
uj −

εh2

12
u4
j −

h2µ2a2
j

12ε
u
′′

j −
h2µaj

6
u
′′′

j (4.3.5)

+
h2µa

′
j

4
u
′′

j +
h2µa

′′
j

4
u
′

j +
h4b

′′
j

4
uj +O(h3)

=

(
hb
′
j

2
+
h4b

′′
j

4

)
uj +

(
h2µa

′′
j

4
−
hµa

′
j

2

)
u
′

j

+

(
h2µa

′
j

4
−
h2µ2a2

j

12ε

)
u
′′

j −
(
h2µaj

6

)
u
′′′

j

−
(
εh2

12

)
u4
j +O(h3).
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Now let

T0 =

(
hb
′
j

2
+
h2b

′′
j

4

)
, T1 =

(
h2µa

′′
j

4
−
hµa

′
j

2

)
, T2 =

(
h2µa

′
j

4
−
h2µ2a2

j

12ε

)
,

T3 =

(
−h

2µaj
6

)
, T4 =

(
−εh

2

12

)
.

From 4.3.5 we have

L(uj − vj) = T0uj + T1u
′

j + T2u
′′

j + T3u
′′′

j + T4u
iv
j +O(h3)

since

|T0| ≤Mh, |T1| ≤Mh, |T2| ≤Mh2, |T3| ≤Mh2, |T4| ≤Mh2.

Where M is a positive constant which independent of ε, µ and the mesh size h.

Hence

|L(uj − vj)| = |T0uj + T1u
′

j + T2u
′′

j + T3u
′′′

j + T4u
iv
j +O(h3)| (4.3.6)

≤ |T0||uj|+ |T1||u
′

j|+ |T2||u
′′

j |+ |T3||u
′′′

j |+ |T4||uivj |

≤ Mh|uj|+Mh|u′j|+Mh2|u′′j |+Mh2|u′′′j |+Mh2|uivj |

|L(uj − vj)| ≤ Mh.

4.3.2 Extrapolation formula

Again, we denote by ṽj the numerical solution computed on the mesh Ω2n. From

estimate (4.3.3) we have:

u(xj)− vnj = Mh+Rn(xj), ∀xj ∈ Ωn (4.3.7)
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and

u(x̃j)− ṽj = M

(
h

2

)
+R2n(x̃j), ∀x̃j ∈ Ω2n, (4.3.8)

where the remainders Rn(xj) and R2n(x̃j) are O(h). We multiply equation (3.3.4)

by factor 2 yields

2[u(x̃j)− ṽj] = Mh+ 2R2n(x̃j) ∀x̃j ∈ Ω2n (4.3.9)

Then subtracting equation (4.3.7) from (4.3.9) we obtain

2[u(xj)− ṽj]− u(xj)− vnj ) = 2R2n(xj)−Rn(xj), ∀xj ∈ Ω2n

which gives

u(x̃j)− (2ṽ2j − vj) = O(h2), ∀x̃j ∈ Ω2n

and therefore, we use

vextj = 2ṽ2j − vj, ∀xj ∈ Ωn

as the extrapolation formula in next section.

4.3.3 The error after extrapolation

From (4.3.6) make T̂j = Tj and bisecting h gives,

L(uj − vj) = T̂0uj + T̂1u
′

j + T̂2u
′′

j + T̂3u
′′′

j + T̂4u
iv
j +O(h3)

where

T̂0 =

(
hb
′
j

4
+
h2b

′′
j

16

)
, T̂1 =

(
h2µa

′′
j

16
−
hµa

′
j

4

)
, T̂2 =

(
h2µa

′
j

16
−
h2µ2a2

j

48ε

)

T̂3 =

(
−h

2µaj
24

)
, T̂4 =

(
−εh

2

48

)
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L(uj − vextj ) = 2[L(uj − ṽj)]− [L(uj − vj)]

= 2[T̂0uj + T̂1u
′

j + T̂2u
′′

j + T̂3u
′′′

j + T̂4u
iv
j ]

−[T0uj + T1u
′

j + T2u
′′

j + T3u
′′′

j + T4u
iv
j ]

= T̃0uj + T̃1u
′

j + T̃2u
′′

j + T̃3u
′′′

j + T̃4u
iv
j

where

T̃0 = 2T̂0 − T0, T̃1 = 2T̂1 − T1, T̃2 = 2T̂2 − T2, T̃3 = 2T̂3 − T3, T̃4 = 2T̂4 − T4,

T̃0 = 2T̂0 − T0

= 2

(
hb
′
j

4
+
h2b

′′
j

16

)
−

(
hb
′
j

2
+
h2b

′′
j

4

)

T̃0 =

(
hb
′
j

4
+
h2b

′′
j

16

)
−
hb
′
j

2
−
h2b

′′
j

4

T̃0 = −
b
′′
jh

2

8

|T̃0| = Mh2.

T̃1 = 2T̂1 − T1

= 2

(
h2µa

′′
j

16
−
hµa

′
j

4

)
−

(
h2µa

′′
j

4
−
hµa

′
j

2

)

=

(
h2µa

′′
j

8
−
µha

′
j

2

)
−

(
h2µa

′′
j

4
+
hµa

′
j

2

)

T̃1 = −

(
h2µa

′′
j

8

)
|T̃1| = Mh2.

T̃2 = 2T̂2 − T2

= 2

(
h2µa

′
j

16
−
h2µ2a2

j

48ε

)
−

(
h2µa

′
j

4
−
h2µ2a2

j

12ε

)

=

(
h2µa

′
j

8
−
h2µ2a2

j

24

)
−

(
h2µa

′
j

4
−
h2µ2a2

j

12ε

)
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T̃2 = −
h2µa

′
j

8
+
h2µ2a2

j

24

|T̃2| = Mh2.

T̃3 = 2T̂3 − T3

= 2

(
−µajh2

24

)
+

(
µajh

2

6

)
=
−µajh2

12
+
µajh

2

6

T̃3 =
µajh

2

12

|T̃3| = Mh2.

T̃4 = 2T̂4 − T4

= 2

(
−εh

2

48

)
−
(
−εh

2

12

)
= −εh

2

24
+
εh2

12

T̃3 =
εh2

24

|T̃4| = Mh2.

|L(uj − vextj )| = |T̃0uj + T̃1u
′

j + T̃2u
′′

j + T̃3u
′′′

j + T̃4u
iv
j |

≤ |T̃0||uj|+ |T̃1||u
′

j|+ |T̃2||u
′′

j |+ |T̃3||u
′′′

j |+ |T̃4||uivj |

≤ Mh2|uj|+Mh2|u′j|+Mh2|u′′j |+Mh2|u′′′j |+Mh2|uivj |

|L(uj − vextj )| ≤Mh2

Now applying stability Lemma 3.3.2, on the mesh function (uj − vextj )j to obtain

max
1≤j≤n−1

|uj − vextj ) ≤Mh2.

Finally, we have

sup
1<ε,µ≤1

max
1≤j≤n−1

|uj − vextj ) ≤Mh2.
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4.4 Comparative numerical results

In this section we present some numerical results of two problems from [56] to

demonstrate the theoretical results.

Example 4.4.1. Consider the problem:

εu′′(x) + µ(1 + x)u′(x)− u(x) = (1 + x)2, x ∈ Ω; u(0) = u(1) = 0 (4.4.10)

For this problem the exact solution is not known, we shall use double mesh

principle [56]. Let vj ≡ vnj , then we denote maximum errors for different values of

n, ε and µ at all the mesh points by EB
n,ε,µ and EA

n,ε,µ as follows:

Before Extrapolation

EB
n,ε,µ := max

0≤j≤n

∣∣vnj − v2n
2j

∣∣ (4.4.11)

After Extrapolation

EA
n,ε,µ := max

0≤j≤n

∣∣vextj − vext2j

∣∣ (4.4.12)

where v2n
2j is the numerical solution of (1.0.1) obtained using (4.2.2) on the mesh Ω2n

and vext2j is the solution after extrapolation of vextj on same mesh.

Example 4.4.2. Consider the problem:

εu′′(x) + µu′(x)− u(x) = −x, x ∈ Ω (4.4.13)

whose exact solution is given by

u(x) = (x+ µ) +
((1− µ) + (1 + µ)e−D2)eD1x − ((1 + µ) + (1− µ)eD1)e−D2(1−x)

1− e
√

(µ2+4ε/ε)

(4.4.14)

where D1,2 = (−µ ±
√
µ2 + 4ε)/2ε. The boundary conditions can be obtained by

substituting x = 0 and 1 in (4.4.14).
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Before Extrapolation

EB
n,ε,µ := max

0≤j≤n
|u(xj)− vj| (4.4.15)

After Extrapolation

EA
n,ε,µ := max

0≤j≤n

∣∣u(xj)− vext
∣∣ (4.4.16)

where vj is the solution of (1.0.1) obtained using (4.2.2) and vext is the solution

after extrapolation of vj. The numerical rates of convergence are calculated using

the following formula [44]:

rk ≡ rε,µ,k := log2(Ẽnk/Ẽ2nk), k = 1, 2, 3, ...

where Ẽ stands for En,ε,µ and Eext
n,ε,µ respectively. Moreover, we compute

En = max
0≤j≤1

En,ε,µ

and

En = max
0≤j≤1

Eext
n,ε,µ

whereas the numerical rate of uniform convergence is computed as

Rn := log2(En/E2n)

and

Rext
n := log2(Eext

n /Eext
2n )

4.5 Discussion

As seen in the previous chapter, the numerical results based on the FMFDM on

Shishkin mesh were found to be inferior as compared to those obtained on the
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Bakhvalov mesh. Still the order of convergence of the FMFDM and the extrapolated

scheme was not very good. The main aim of this chapter was therefore to investigate

whether we can gain something by using FOFDM rather than FMFDM. We did so

by performing it on two test problems. There are some discrepancies seen in the

numerical results for the first example but the results for second example invariably

confirm the theoretical estimates. One can also see that the results obtained via the

FOFDM are very stable for much smaller values of µ where the other methods (seen

in the literature) failed to give stable results. This is indeed a big achievement for

us.
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Table 4.1: Results for Example 4.4.1, Max. Errors: Before Extrapolation Using
(4.2.2) and (4.4.11) for µ = 1

ε n=16 n=32 n=64 n=128 n=256 n=512
1 3.30E-004 1.32E-004 6.27E-005 3.30E-005 1.69E-005 8.58E-006

2−1 9.64E-004 4.93E-004 2.50E-004 1.26E-004 6.31E-005 3.16E-005
2−2 3.06E-003 1.42E-003 6.86E-004 3.36E-004 1.67E-004 8.29E-005
2−3 6.36E-003 2.71E-003 1.23E-003 5.87E-004 2.86E-004 1.41E-004
2−4 1.08E-002 4.18E-003 1.75E-003 7.91E-004 3.74E-004 1.82E-004
2−5 1.68E-002 6.21E-003 2.36E-003 9.80E-004 4.39E-004 2.07E-004
2−6 2.24E-002 9.08E-003 3.29E-003 1.24E-003 5.12E-004 2.29E-004

Table 4.2: Results for Example 4.4.1, Max. Errors: After Extrapolation Using
(4.2.2) and (4.4.12) for µ = 1

ε n=16 n=32 n=64 n=128 n=256 n=512
1 8.86E-005 2.32E-005 5.87E-006 1.48E-006 3.70E-007 9.25E-008

2−1 7.55E-005 2.14E-005 5.54E-006 1.40E-006 3.53E-007 8.86E-008
2−2 2.17E-004 5.28E-005 1.30E-005 3.21E-006 7.98E-007 1.99E-007
2−3 9.72E-004 2.47E-004 6.18E-005 1.54E-005 3.85E-006 9.60E-007
2−4 2.52E-003 6.89E-004 1.76E-004 4.41E-005 1.10E-005 2.75E-006
2−5 4.46E-003 1.51E-003 4.07E-004 1.04E-004 2.61E-005 6.52E-006
2−6 4.31E-003 2.54E-003 8.24E-004 2.21E-004 5.63E-005 1.41E-005

Table 4.3: Results for Example 4.4.1, Before Extrapolation Rate of Convergence
Using (4.2.2) and (4.4.11) for µ = 1

ε r1 r2 r3 r4 r5

1 1.32 1.08 0.92 0.96 0.98
2−1 0.97 0.98 0.99 0.99 1.00
2−2 1.10 1.05 1.03 1.01 1.01
2−3 1.23 1.13 1.07 1.04 1.02
2−4 1.37 1.25 1.15 1.08 1.04
2−5 1.44 1.39 1.27 1.16 1.09
2−6 1.30 1.46 1.41 1.28 1.16

Table 4.4: Results for Example 4.4.1, After Extrapolation Rate of Convergence
(4.2.2) and (4.4.12) for µ = 1

ε r1 r2 r3 r4 r5

1 1.93 1.98 1.99 2.00 2.00
2−1 1.82 1.95 1.98 1.99 2.00
2−2 2.04 2.03 2.01 2.01 2.00
2−3 1.97 2.00 2.00 2.00 2.00
2−4 1.87 1.97 2.00 2.00 2.00
2−5 1.57 1.89 1.97 1.99 2.00
2−6 0.77 1.62 1.90 1.97 1.99
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Table 4.5: Results for Example 4.4.1, Max. Errors: Before Extrapolation Using
(4.2.2) and (4.4.11) for µ = 2−3

ε n=16 n=32 n=64 n=128 n=256 n=512
2−3 1.60E-003 6.60E-004 2.93E-004 1.37E-004 6.64E-005 3.26E-005
2−4 4.92E-003 1.82E-003 7.50E-004 3.36E-004 1.58E-004 7.65E-005
2−5 1.16E-002 3.95E-003 1.51E-003 6.40E-004 2.91E-004 1.38E-004
2−6 2.40E-002 7.64E-003 2.67E-003 1.05E-003 4.51E-004 2.07E-004
2−8 7.47E-002 2.53E-002 7.84E-003 2.53E-003 9.10E-004 3.65E-004
2−10 9.95E-002 5.18E-002 2.14E-002 6.97E-003 2.13E-003 6.94E-004
2−12 9.97E-002 5.42E-002 2.82E-002 1.39E-002 5.54E-003 1.79E-003
2−14 9.97E-002 5.42E-002 2.83E-002 1.45E-002 7.31E-003 3.52E-003

Table 4.6: Results for Example 4.4.1, Max. Errors: After Extrapolation Using
(4.2.2) and (4.4.12) for µ = 2−3

ε n=16 n=32 n=64 n=128 n=256 n=512
2−3 3.05E-004 7.53E-005 1.87E-005 4.66E-006 1.16E-006 2.90E-007
2−4 1.29E-003 3.26E-004 8.15E-005 2.03E-005 5.08E-006 1.27E-006
2−5 3.67E-003 9.42E-004 2.36E-004 5.90E-005 1.48E-005 3.69E-006
2−6 8.70E-003 2.31E-003 5.85E-004 1.47E-004 3.67E-005 9.17E-006
2−8 2.40E-002 9.75E-003 2.77E-003 7.17E-004 1.81E-004 4.53E-005
2−10 5.22E-003 9.42E-003 7.45E-003 2.70E-003 7.48E-004 1.92E-004
2−12 9.18E-003 2.52E-003 8.78E-004 2.81E-003 1.97E-003 6.94E-004
2−14 9.18E-003 2.57E-003 6.82E-004 1.64E-004 2.85E-004 7.36E-004

Table 4.7: Results for Example 4.4.1, Before Extrapolation Rate of Convergence
Using (4.2.2) and (4.4.11) for µ = 2−3

ε r1 r2 r3 r4 r5

2−3 1.23 1.13 1.07 1.04 1.02
2−4 1.37 1.25 1.15 1.08 1.04
2−5 1.44 1.39 1.27 1.16 1.09
2−6 1.30 1.46 1.41 1.28 1.16
2−14 0.92 0.96 0.98 0.99 1.00

Table 4.8: Results for Example 4.4.1, After Extrapolation Rate of Convergence
(4.2.2) and (4.4.12) for µ = 2−3

ε r1 r2 r3 r4 r5

2−3 1.97 2.00 2.00 2.00 2.00
2−4 1.87 1.97 2.00 2.00 2.00
2−5 1.57 1.89 1.97 1.99 2.00
2−6 0.77 1.62 1.90 1.97 1.99
2−14 1.89 1.94 1.97 1.99 2.07
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Table 4.9: Results for Example 4.4.1, Max. Errors: Before Extrapolation Using
(4.2.2) and (4.4.11) for µ = 2−6

ε n=16 n=32 n=64 n=128 n=256 n=512
2−12 3.33E-001 1.79E-001 6.73E-002 1.99E-002 5.37E-003 1.48E-003
2−14 3.43E-001 2.30E-001 1.40E-001 6.30E-002 2.05E-002 5.68E-003
2−16 3.43E-001 2.30E-001 1.45E-001 8.24E-002 4.27E-002 1.75E-002
2−18 3.43E-001 2.30E-001 1.45E-001 8.24E-002 4.43E-002 2.30E-002
2−20 3.43E-001 2.30E-001 1.45E-001 8.24E-002 4.43E-002 2.30E-002
2−22 3.43E-001 2.30E-001 1.45E-001 8.24E-002 4.43E-002 2.30E-002
2−23 3.43E-001 2.30E-001 1.45E-001 8.24E-002 4.43E-002 2.30E-002

Table 4.10: Results for Example 4.4.1, Max. Errors: After Extrapolation Using
(4.2.2) and (4.4.12) for µ = 2−6

ε n=16 n=32 n=64 n=128 n=256 n=512
2−12 8.86E-005 2.32E-005 5.87E-006 1.48E-006 3.70E-007 9.25E-008
2−14 7.61E-002 2.54E-002 3.61E-002 1.67E-002 4.98E-003 1.30E-003
2−16 8.97E-002 5.88E-002 1.52E-002 1.25E-002 1.25E-002 4.81E-003
2−18 8.97E-002 5.90E-002 2.03E-002 6.52E-003 8.53E-004 4.31E-003
2−20 8.97E-002 5.90E-002 2.03E-002 6.58E-003 1.84E-003 4.76E-004
2−22 8.97E-002 5.90E-002 2.03E-002 6.58E-003 1.84E-003 4.91E-004
2−23 8.97E-002 5.90E-002 2.03E-002 6.58E-003 1.84E-003 4.91E-004

Table 4.11: Results for Example4.4.1, Before Extrapolation Rate of Convergence
Using (4.2.2) and (4.4.11) for µ = 2−6

ε r1 r2 r3 r4 r5

2−6 1.30 1.46 1.41 1.28 1.16
2−14 0.92 0.96 0.98 0.99 1.00
2−15 0.92 0.96 0.98 0.99 1.00
2−16 0.92 0.96 0.98 0.99 1.00
2−17 0.92 0.96 0.98 0.99 1.00

Table 4.12: Results for Example 4.4.1, After Extrapolation Rate of Convergence
(4.2.2) and (4.4.12) for µ = 2−6

ε r1 r2 r3 r4 r5

2−6 0.77 1.62 1.90 1.97 1.99
2−14 1.89 1.94 1.97 1.99 2.07
2−15 1.89 1.94 1.97 1.99 1.99
2−16 1.89 1.94 1.97 1.99 1.99
2−17 1.89 1.94 1.97 1.99 1.99
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Table 4.13: Results for Example 4.4.1, Max. Errors: Before Extrapolation Using
(4.2.2) and (4.4.11) for µ = 2−20

ε n=16 n=32 n=64 n=128 n=256 n=512
2−20 2.93E-003 7.32E-004 3.03E-004 9.28E-004 1.94E-003 3.88E-003
2−21 2.93E-003 7.32E-004 3.03E-004 9.28E-004 1.94E-003 3.88E-003
2−22 2.93E-003 7.32E-004 3.03E-004 9.28E-004 1.94E-003 3.88E-003
2−23 2.93E-003 7.32E-004 3.03E-004 9.28E-004 1.94E-003 3.88E-003
2−24 2.93E-003 7.32E-004 3.03E-004 9.28E-004 1.94E-003 3.88E-003
2−25 2.93E-003 7.32E-004 3.03E-004 9.28E-004 1.94E-003 3.88E-003
2−26 2.93E-003 7.32E-004 3.03E-004 9.28E-004 1.94E-003 3.88E-003
2−27 2.93E-003 7.32E-004 3.03E-004 9.28E-004 1.94E-003 3.88E-003
2−28 2.93E-003 7.32E-004 3.03E-004 9.28E-004 1.94E-003 3.88E-003
2−29 2.93E-003 7.32E-004 3.03E-004 9.28E-004 1.94E-003 3.88E-003
2−30 2.93E-003 7.32E-004 3.03E-004 9.28E-004 1.94E-003 3.88E-003
2−31 2.93E-003 7.32E-004 3.03E-004 9.28E-004 1.94E-003 3.88E-003
2−32 2.93E-003 7.32E-004 3.03E-004 9.28E-004 1.94E-003 3.88E-003
2−33 2.93E-003 7.32E-004 3.03E-004 9.28E-004 1.94E-003 3.88E-003
2−34 2.93E-003 7.32E-004 3.03E-004 9.28E-004 1.94E-003 3.88E-003
2−35 2.93E-003 7.32E-004 3.03E-004 9.28E-004 1.94E-003 3.88E-003

Table 4.14: Results for Example 4.4.1, Max. Errors: After Extrapolation Using
(4.2.2) and (4.4.12) for µ = 2−20

ε n=16 n=32 n=64 n=128 n=256 n=512
2−20 1.46E-003 3.66E-004 3.94E-004 9.49E-004 1.93E-003 3.85E-003
2−21 1.46E-003 3.66E-004 3.94E-004 9.49E-004 1.93E-003 3.85E-003
2−22 1.46E-003 3.66E-004 3.94E-004 9.49E-004 1.93E-003 3.85E-003
2−23 1.46E-003 3.66E-004 3.94E-004 9.49E-004 1.93E-003 3.85E-003
2−24 1.46E-003 3.66E-004 3.94E-004 9.49E-004 1.93E-003 3.85E-003
2−25 1.46E-003 3.66E-004 3.94E-004 9.49E-004 1.93E-003 3.85E-003
2−26 1.46E-003 3.66E-004 3.94E-004 9.49E-004 1.93E-003 3.85E-003
2−27 1.46E-003 3.66E-004 3.94E-004 9.49E-004 1.93E-003 3.85E-003
2−28 1.46E-003 3.66E-004 3.94E-004 9.49E-004 1.93E-003 3.85E-003
2−29 1.46E-003 3.66E-004 3.94E-004 9.49E-004 1.93E-003 3.85E-003
2−30 1.46E-003 3.66E-004 3.94E-004 9.49E-004 1.93E-003 3.85E-003
2−31 1.46E-003 3.66E-004 3.94E-004 9.49E-004 1.93E-003 3.85E-003
2−32 1.46E-003 3.66E-004 3.94E-004 9.49E-004 1.93E-003 3.85E-003
2−33 1.46E-003 3.66E-004 3.94E-004 9.49E-004 1.93E-003 3.85E-003
2−34 1.46E-003 3.66E-004 3.94E-004 9.49E-004 1.93E-003 3.85E-003
2−35 1.46E-003 3.66E-004 3.94E-004 9.49E-004 1.93E-003 3.85E-003
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Table 4.15: Results for Example 4.4.1, Max. Errors: Before Extrapolation Using
(4.2.2) and (4.4.11) for µ = 2−40

ε n=16 n=32 n=64 n=128 n=256 n=512
2−81 2.93E-003 7.32E-004 1.83E-004 4.58E-005 1.14E-005 2.86E-006
2−82 2.93E-003 7.32E-004 1.83E-004 4.58E-005 1.14E-005 2.86E-006
2−85 2.93E-003 7.32E-004 1.83E-004 4.58E-005 1.14E-005 2.86E-006
2−86 2.93E-003 7.32E-004 1.83E-004 4.58E-005 1.14E-005 2.86E-006
2−89 2.93E-003 7.32E-004 1.83E-004 4.58E-005 1.14E-005 2.86E-006
2−90 2.93E-003 7.32E-004 1.83E-004 4.58E-005 1.14E-005 2.86E-006
2−93 2.93E-003 7.32E-004 1.83E-004 4.58E-005 1.14E-005 2.86E-006
2−95 2.93E-003 7.32E-004 1.83E-004 4.58E-005 1.14E-005 2.86E-006

Table 4.16: Results for Example 4.4.1, Max. Errors: After Extrapolation Using
(4.2.2) and (4.4.12) for µ = 2−40

ε n=16 n=32 n=64 n=128 n=256 n=512
2−81 1.46E-003 3.66E-004 9.16E-005 2.29E-005 5.72E-006 1.43E-006
2−82 1.46E-003 3.66E-004 9.16E-005 2.29E-005 5.72E-006 1.43E-006
2−85 1.46E-003 3.66E-004 9.16E-005 2.29E-005 5.72E-006 1.43E-006
2−86 1.46E-003 3.66E-004 9.16E-005 2.29E-005 5.72E-006 1.43E-006
2−89 1.46E-003 3.66E-004 9.16E-005 2.29E-005 5.72E-006 1.43E-006
2−90 1.46E-003 3.66E-004 9.16E-005 2.29E-005 5.72E-006 1.43E-006
2−93 1.46E-003 3.66E-004 9.16E-005 2.29E-005 5.72E-006 1.43E-006
2−95 1.46E-003 3.66E-004 9.16E-005 2.29E-005 5.72E-006 1.43E-006

Table 4.17: Results for Example 4.4.1, Before Extrapolation Rate of Convergence
using (4.2.2) and (4.4.11) for µ = 2−40

ε r1 r2 r3 r4 r5

2−80 0.92 0.96 0.98 0.99 1.00
2−83 0.92 0.96 0.98 0.99 1.00
2−84 0.92 0.96 0.98 0.99 1.00
2−85 0.92 0.96 0.98 0.99 1.00
2−89 0.92 0.96 0.98 0.99 1.00
2−91 0.92 0.96 0.98 0.99 1.00

Table 4.18: Results for Example 4.4.1 After Extrapolation Rate of Convergence
(4.2.2) and (4.4.12))for µ = 2−40

ε r1 r2 r3 r4 r5

2−80 1.89 1.94 1.97 1.99 1.99
2−83 1.89 1.94 1.97 1.99 1.99
2−84 1.89 1.94 1.97 1.99 1.99
2−85 1.89 1.94 1.97 1.99 1.99
2−89 1.89 1.94 1.97 1.99 1.99
2−91 1.89 1.94 1.97 1.99 1.99
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Table 4.19: Results for Example 4.4.2, Max. Errors: Before Extrapolation Using
(4.2.2) and (4.4.15) for µ = 1

ε n=64 n=128 n=256 n=512 n=1024 n=2048
2−3 8.98E-005 2.25E-005 5.62E-006 1.40E-006 3.51E-007 8.78E-008
2−4 2.11E-004 5.28E-005 1.32E-005 3.30E-006 8.25E-007 2.06E-007
2−5 4.51E-004 1.13E-004 2.83E-005 7.09E-006 1.77E-006 4.43E-007
2−6 9.19E-004 2.33E-004 5.84E-005 1.46E-005 3.65E-006 9.14E-007
2−7 1.78E-003 4.66E-004 1.18E-004 2.96E-005 7.40E-006 1.85E-006
2−8 3.06E-003 8.94E-004 2.34E-004 5.93E-005 1.49E-005 3.72E-006
2−9 4.28E-003 1.54E-003 4.49E-004 1.18E-004 2.97E-005 7.46E-006

Table 4.20: Results for Example 4.4.2, Max. Errors: Before Extrapolation Using
(4.2.2) and (4.4.15) for µ = 2−3

ε n=64 n=128 n=256 n=512 n=1024 n=2048
2−6 3.89E-004 9.74E-005 2.44E-005 6.09E-006 1.52E-006 3.81E-007
2−7 8.47E-004 2.12E-004 5.31E-005 1.33E-005 3.32E-006 8.30E-007
2−8 1.82E-003 4.59E-004 1.15E-004 2.87E-005 7.19E-006 1.80E-006
2−9 3.81E-003 9.72E-004 2.44E-004 6.12E-005 1.53E-005 3.82E-006
2−10 7.51E-003 2.00E-003 5.08E-004 1.27E-004 3.19E-005 7.97E-006
2−11 1.30E-002 3.89E-003 1.03E-003 2.60E-004 6.54E-005 1.64E-005
2−12 1.83E-002 6.73E-003 1.98E-003 5.21E-004 1.32E-004 3.31E-005
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Chapter 5

Concluding remarks and scope for

future research

This thesis dealt with robust numerical methods for singularly perturbed two-

parameter problems. The first two chapters are concerned with a general overview,

including the literature review, of the two-parameter singular perturbation prob-

lems. In chapters 3 and 4, we studied the performance of convergence acceleration

technique, firstly on a fitted mesh finite difference method (FMFDM) as applied

on two different meshes namely a piecewise mesh (of Shishkin type) and a graded

mesh (of Bakhvalov type) and then on a fitted operator finite difference method

(FOFDM).

We notice that results obtained by the FMFDM on Bakhvalov mesh are better

than those on Shishkin mesh. Though the accuracy of the lower order method in

this case was slightly improved, the order of convergence was changed very little.

To overcome this discrepancy, the Richardson extrapolation is also applied on an

FOFDM to investigate whether it improves the accuracy and/or the order of con-

vergence and indeed we found some wonderful results. In fact the improved results

are perfectly of order two. This is the main contribution in this thesis and in fact

we have achieved very good results after extrapolation.
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It is also worth mentioning here that the fitted operator finite difference meth-

ods are found to be simpler to analyze and implement, partly due to the ease of

operating on uniform meshes. Extensive numerical computations were carried out

for comparison and to confirm the theoretical results.

As far as the scope for the future research is concerned, we are currently busy do-

ing the analysis of the Richardson extrapolation technique on a fitted mesh method

based on the Bakhvalov mesh. We are also developing some direct higher order

numerical methods for these two-parameter singular perturbation problems to in-

vestigate whether to use convergence acceleration techniques or to use direct higher

order methods for these class of problems. This issue will mostly be concerned with

computational complexity.

Lastly, we have used MATLAB to do all the computations presented in this

thesis.
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