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Abstract

Higher Order Numerical Methods for Singular Perturbation Problems

J.B.Munyakazi

PhD Thesis, Department of Mathematics and Applied Mathematics, University of the

Western Cape.

In recent years, there has been a great interest towards the higher order nu-

merical methods for singularly perturbed problems. As compared to their

lower order counterparts, they provide better accuracy with fewer mesh points.

Construction and/or implementation of direct higher order methods is usually

very complicated. Thus a natural choice is to use some convergence accel-

eration techniques, e.g., Richardson extrapolation, defect correction, etc. In

this thesis, we will consider various classes of problems described by singularly

perturbed ordinary and partial differential equations. For these problems, we

design some novel numerical methods and attempt to increase their accuracy

as well as the order of convergence. We also do the same for existing numer-

ical methods in some instances. We find that, even though the Richardson

extrapolation technique always improves the accuracy, it does not perform

equally well when applied to different methods for certain classes of problems.

Moreover, while in some cases it improves the order of convergence, in other

ii

 

 

 

 



cases it does not. These issues are discussed in this thesis for linear and non-

linear singularly perturbed ODEs as well as PDEs. Extrapolation techniques

are analyzed thoroughly in all the cases, whereas the limitations of the defect

correction approach for certain problems is indicated at the end of the thesis.

May 2009.
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Chapter 1

General Introduction

In this chapter, we provide a state-of-the-art on some works on higher order methods

developed in recent years for singular perturbation problems (SPPs). To motivate the

works, firstly we present some singularly perturbed models and briefly review the methods

of solving them with a particular attention to the fitted methods. Two popular meshes

(Bakhvalov mesh and Shishkin mesh) for resolving the difficulties associated with the

layer(s) in the solutions of SPPs are also discussed. Finally, we present the summary of

this thesis at the end of this chapter.

1.1 Introduction

In real life we often encounter many problems which are described by parameter depen-

dent differential equations. The behaviour of the solutions of these differential equations

depend on the magnitude of the parameters. If the parameter is small and multiplies the

highest derivative term in such an equation, then the problem is said to be singularly

perturbed and the small parameter is referred to as the singular perturbation parameter.

More precisely, consider a problem depending on a small parameter ε (the singular pertur-

bation parameter) which we denote by Pε where ε is multiplied to the highest derivative
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CHAPTER 1. GENERAL INTRODUCTION

term(s). Setting ε = 0 in Pε, we obtain a reduced problem which we denote by P0. Let us

assume further that u(x, ε) is a solution of Pε, and u(x, 0) is the solution of the reduced

problem.

Now, if

lim
ε→0

u(x, ε) = u(x, 0)

then Pε is a regular perturbation problem (RPP); otherwise Pε is a singular perturbation

problem (SPP). Notice that the solutions of this type of differential equations typically

contain layers [124]. We explain the layer behaviour of the solutions through the following

examples.

Example 1.1.1. Consider the following initial value problem [102]

εu′(x, ε) + u(x, ε) = 0

u(0, ε) = u0.

The exact solution of the above problem is u(x, ε) = u(0, ε)e−x/ε. The reduced problem

has the trivial solution v(x, 0) = 0, which does not agree with the initial condition unless

u0 = 0. This explains that there is a boundary layer in the neighbourhood of x = 0.

Example 1.1.2. Consider the reaction-diffusion problem [102]

−εu′′(x, ε) + u(x, ε) = 0, x ∈ [0, 1],

u(0, ε) = u0, u(1, ε) = u1.

When u0 = u1 = 1, the exact solution of the above problem will be

u(x, ε) =
e−x/

√
ε + e−(1−x)/

√
ε

1 + e−1/
√

ε
.
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Figure 1.1: Exact solution of Example 1.1.2 for ε = 10−3

The solution to the reduced problem of this reaction-diffusion problem is again the trivial

function v(x, 0) = 0. It does not agree with the boundary values u0 and u1, unless these

values vanish. Thus, the solution possesses two boundary layers: one in the neighourhood

of x = 0 and the other in the neighbourhood of x = 1.

Example 1.1.3. Consider the linear convection-diffusion problem [102]

−εu′′(x, ε) + u′(x, ε) = 0

u(0, ε) = u0, u(1, ε) = u1.

The exact solution is of the form

u(x, ε) = A + Be−(1−x)/ε

The solution of the reduced problem solves the first order ordinary differential equation
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CHAPTER 1. GENERAL INTRODUCTION

v′0(x) = 0 in which only one integration parameter is allowed. Therefore only one boundary

condition can be used to determine the solution of the reduced problem. Since the problem

does not agree with the other boundary condition, a layer will occur. It is clear from the

form of u(x, ε) that, unless u0 = u1, a boundary layer arises in the neighbourhood of

x = 1.

Example 1.1.4. Consider the following two-point boundary value problem for the Burger’s

equation on the interval Ω = (−1, 1) [102]

−εu′′(x, ε) + u(x, ε)u′(x, ε) + u(x, ε) = 0

u(−1, ε) = u−1, u(1, ε) = u1.

The reduced equation v(x, 0)v′(x, 0)+v(x, 0) = 0 has two families of solutions, namely

v(x, 0) = 0 and the solutions of v′(x, 0) = −1 which are v+(x, 0) = −(x + 1) + u−1 and

v−(x, 0) = −(x− 1) + u1.

The layer occurs at:

xs =
u−1 + u1

2

The terminology boundary layers was introduced by Ludwig Prandtl at the Third

International Congress of Mathematicians in Heidelberg [124]. In his paper, Prandtl

explained the boundary layer phenomenon which occurs in fluid and gas dynamics. It

is however believed that the idea of boundary layer has its roots in the early nineteenth

century [36]. The great natural philosophers of that era such as Laplace and Lorenz

applied this idea first to the static liquid drop of meniscus, and then to elasticity, creeping

viscous flow, electrostatics and acoustics.

Singular perturbation problems arise in many other areas of applied mathematics.

Fluid mechanics, quantum mechanics, plasticity, chemical-reaction theory, aerodynamics,

rarefied-gas dynamics, oceanography, meteorology, modelling of semiconductor devices,

diffraction theory and reaction-diffusion processes are some of these areas. The singularly
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Figure 1.2: The exact solution of the Burger’s problem and the two reduced solutions v+
0

and v−0
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CHAPTER 1. GENERAL INTRODUCTION

perturbed differential equations have a variety of features depending on the situations

that they describe. These features may be taken into account in the selection of the

methods for solutions.

Asymptotic methods can be used to give qualitative information about the solutions,

for instance the width and the location of layers. When analytical solutions are not

available, SPPs can be solved by means of numerical methods (finite difference methods,

finite elements methods, spline approximation methods, etc). However, these standard

methods fail to resolve the layer(s) for all values of the parameter ε, unless a very fine grid

is considered, which unfortunately raises up the computational complexities. Therefore,

methods providing reliable numerical results on a mesh with a reasonable number of grid

points are to be sought.

The rest of this chapter is organized as follows. Section 1.2 presents some models

describing singularly perturbed problems. Methods for solution of SPPs are discussed in

Section 1.3. Two mesh selection strategies for resolving the layer difficulties occurring in

the solution of SPPs, namely the Bakhvalov-type and the Shiskhin-type meshes are also

dealt within this section. The focus of Section 1.4 is to provide a brief account of works

on higher order methods which are applied so far to solve SPPs, and finally in Section

1.5, we give a short discussion about different issues presented in this chapter.

1.2 Some models of singular perturbation problems

(SPPs)

Several real life situations are described by singularly perturbed differential equations.

Below, we give some models describing these situations.

1. Fluid and gas dynamics are described by Navier-Stokes equations [102]. In two di-

mensions, these are made of the following system of four nonlinear partial differential
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equations for the conservation of mass, momentum, and energy.

∂ρ

∂t
+

∂ρu

∂x
+

∂ρv

∂y
= 0,

∂ρu

∂t
+

∂(ρu2 + p)

∂x
+

∂(ρvu)

∂y
− µ

(
∂τxx

∂x
+

∂τxy

∂y

)
= 0,

∂ρv

∂t
+

∂(ρuv)

∂x
+

∂(ρv2 + p)

∂y
− µ

(
∂τyx

∂x
+

∂τyy

∂y

)
= 0,

∂ρe

∂t
+

∂

∂x

(
ρu

(
e +

p

ρ

))
+

∂

∂y

(
ρv

(
e +

p

ρ

))

−µ

(
∂

∂x
(uτxx + vτxy) +

∂

∂y
(uτyx + vτyy)

)
− k

(
∂2T

∂x2
+

∂2T

∂y2

)
= 0,

where ρ, u, v and e are the dependent variables; ρ is density of the material (fluid),

u and v, the components of the velocity of the fluid, and e the internal energy. The

coefficient µ and k are respectively the inverse of the Reynolds number Re and that

of the Prandtl number Pr. The component τxx, τxy, τyx and τyy of the viscous stress

tensor τ are expressed in terms of the rate of change in space of the velocities by

the relations:

τxx =
4

3

∂u

∂x
− 2

3

∂v

∂y
; τyy = −2

3

∂u

∂x
+

4

3

∂v

∂y
; τxy = τyx =

∂v

∂x
+

∂u

∂y
.

Notice that last three of the above mentioned Navier-Stokes equations are of second

order. When µ = 0 and k = 0 in these equations, their orders drops to first

order. The equations thus obtained are the Euler equations. The solutions of the

Navier-Stokes equations contain more integration parameters than those of the Euler

equations and, consequently, more boundary conditions are required to specify the

solution of the Navier-Stokes equations. For instance, the imposition of a condition

of zero velocity (the ‘no-slip’ condition) at the surface of the plate, in the case

of steady incompressible laminar flow over an infinite flat plate is allowed for the

Navier-Stokes equations and not for the Euler equations. In this case the ‘no-slip’
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condition creates a layer near the surface of the infinite flat plate.

boundary layer

Figure 1.3: The profile of a viscous flow for Euler and Navier-Stokes models

2. Consider the free motion of the undamped linear spring mass system with a very

resistant spring [114]. Let the prescribed specific displacement be at times t = 0

and 1. Then one can obtain the two-point problem

ε2ẍ + x = 0, 0 ≤ t ≤ 1, x(0) = 0, x(1) = 1

where ε2 (the ratio of the mass to the spring constant) is small. For non-exceptional

small positive values of ε the exact solution oscillates rapidly, so no pointwise limit

exists as ε → 0.

3. Consider the Dirichlet problem [113, 152]:

εẍ + xẋ = 0 on 0 ≤ t ≤ 1,

where x(0) and x(1) are prescribed. It could describe the motion of a mass moving

in a medium with damping proportional to the displacement, where either the mass

is small or the damping is large. Depending on the particular end values x(0) and

x(1), the solution may have initial/shock/boundary layers.
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4. The example:

εẍ−
(

t− 1

2

)
ẋ = 0, 0 ≤ t ≤ 1, x(0) and x(1) are prescribed

relates to an exit time problem for randomly perturbed dynamical systems [127].

5. Consider the swirling flow between two rotating, coaxial disks, located at x = 0 and

at x = 1 [13]. The BVP is

εf ′′′′ + f ′′′ + g′ = 0,

εg′′ + fg′ − f ′g = 0,

f(0) = f(1) = f ′(0) = f ′(1) = 0,

g(0) = Ω0, g(1) = Ω1,

where Ω0 and Ω1 are the angular velocities of the infinite disks, |Ω0| + |Ω1| 6= 0,

and ε is a velocity parameter, 0 < ε ¿ 1. For this BVP, multiple solutions are

possible. Taking, e.g., Ω1 = 1, one can obtain different cases for different values

of Ω0. If Ω0 < 0 (with a special symmetry when Ω0 = −1), then the disks are

counter-rotating; if Ω0 = 0 then one disk is at rest, while if Ω0 > 0 then the disks

are co-rotating.

6. The mathematical model describing the motion of the sunflower is [120]

εx′′(t) + ax′(t) + b sin x(t− ε) = 0, ε > 0, t ∈ [−ε, 0],

with x′(0) prescribed. Here the function x′(t) is the angle of the plant with the

vertical, the time lag say ε is geotropic reaction, and a and b are positive parameters

which can be obtained experimentally.

7. In the modelling of a semiconductor device, the model equations [101] governing the
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static one-dimensional case are

ψ′′ =
q

ε
(n− p− C(z)) Poisson’s equation,

n′ =
µn

Dn

nψ′ +
I

qDn

Jn electron current relation,

p′ = − µp

Dp

pψ′ − I

qDp

Jp hole current relation,

J ′n = qR(n, p) continuity equation for electron,

J ′p = −qR(n, p) continuity equation for holes, for− l ≤ z ≤ l

subject to the boundary conditions

ψ(−l) = UT ln
ni

p(−l)
+ UA (anode),

ψ(l) = UT ln
n(l)

n(i)
+ UC (cathode),

n(±l)p(±l) = n2
i ,

n(±l)− p(±l)− C(±l) = 0,

where ψ is potential, Jn is electron current density, Jp is hole current density, n is

electron density, p is hole density, q is electron charge, ε is permittivity constant, µn

is electron mobility, µp is hole mobility, Dn is electron diffusion constant, Dp is hole

diffusion constant, ni is intrinsic number, UT ≡ Dn/µn ≡ Dp/µp is thermal voltage,

C(z) = N+
D (z)−N−

A (z) is impurity distribution, N+
D is the donor density, N−

A is the

accepter density and R(n, p) is the recombination rate.

8. A model of an armature controlled DC-motor [79] is

ẋ = az,

Lż = bx−Rz + u
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where x, z and u are, respectively, speed, current, and voltage, R and L are ar-

mature resistance and inductance, and a and b are some motor constants. In most

DC-motors L is small parameter which we consider as the singular perturbation

parameter ε.

9. The point mass equations of motion for two-dimensional flight using the sum of

kinetic and potential energy

E = h +
v2

2g
(1.2.1)

as a state variable, can be written as [79]

ẋ = v cos γ, v =
√

(E − h)/2g,

εĖ =
(T −D)v

W
,

ε2ḣ = v sin γ,

ε3ḣ = g
L−W cos γ

Wv
,

where T is thrust, D is drag, L is lift, W is weight, γ is the flight path angle, x is

down range position, h is altitude, g is the gravitation constant and v is velocity, in

this case not a state variable.

More models can be found in the standard texts on singular perturbation problems. We

refer the readers to Kadalbajoo and Patidar ([66]) for an exhaustive list of related works

on some of these models.

1.3 A brief survey of some numerical techniques for

solving SPPs

The main difficulty lies in resolving the boundary and/or interior layers. The use of Stan-

dard Finite Difference like methods fail to resolve the layers when ε → 0. The truncation

11

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION

error is reduced in refining the mesh more and more. A better level of accuracy may be

achieved with a large number of mesh points and this makes the methods expensive. A

very fine mesh may resolve the layers but if considered on the whole interval, then it may

increase the round off errors and therefore such a solution is not really appreciable.

Asymptotic methods (Matched Asymptotic Expansion (MAE), Method of Multiple

Scales (MMS), etc.) are used to analyze the qualitative behavior of solutions to singu-

lar perturbation problems. Finite Difference Methods (FDM), Finite Element Methods

(FEM), Spline Approximation Methods are some of the numerical methods that can be

modified in order to capture the difficulties arising in the layers. Two families of FDM are

commonly used in this respect: the Fitted Mesh Finite Difference Methods (FMFDM)

and the Fitted Operator Finite Difference Methods (FOFDM).

The use of FMFDM requires the knowledge of the location of the layer(s). The method

aims at designing a mesh which is more refined in the layers. However, it is not always easy

to detect the location of the layers, even for some simple singularly perturbed ordinary

differential equations, e.g., turning point problems. In this case, FOFDM is a possible

approach. In these methods, a fitting factor is sought. The fitting factor is then utilized

to construct the finite difference operator for approximating the differential operator of

the concerned problem.

The FMFDMs are easily extendable to higher dimensional and nonlinear problems

(provided a suitable mesh selection strategy is chosen). However, they require some a

priori knowledge of the location and the width of the layer(s). On the other hand, the

FOFDMs give reliable results on a uniform mesh. The only major disadvantage of this

later class of methods is that they are sometimes difficult to extend to higher dimensional

problems.

Fitted (also called “layer adapted”) meshes lie under two classes: graded and piecewise

uniform meshes. The most successful and popular ones are those of Bakhvalov-type and

Shishkin-type [72]. A Bakhvalov mesh is designed in such a way that in the layer region
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the mesh is fine at one end and gradually becomes coarse and outside the layer region

the mesh is uniform. A Shishkin mesh is a union of two or more uniform meshes with

different discretization parameters. Below we explain these two meshes briefly.

Bakhvalov-type meshes

The basic tool for the construction of a layer adapted mesh is the mesh generating function.

It is a strictly monotone function ϕ : [0, 1] → [0, 1] that maps a uniform mesh in ξ onto a

layer-adapted mesh in x by x = ϕ(ξ). We now discuss how this tool is used to generate

meshes of Bakhvalov-type [87].

Bakhvalov’s idea is to use an equidistant ξ-grid near x = 0, then to map this grid back

onto the x-axis by means of the (scaled) boundary layer function. That is, grid points xi

near x = 0 are defined by

q
(
1− e−

βxi
σε

)
= ξi =

i

N
for i = 0, 1, . . . , (1.3.2)

where the scaling parameters q ∈ (0, 1] and σ > 0 are user chosen: q is the ratio of mesh

points used to resolve the layer, while σ determines the grading of the mesh inside the

layer. Away from the layer a uniform mesh in x is used with the transition point τ such

that the resulting mesh generating function is C1[0, 1], i.e.,

ϕ(ξ) =





χ(ξ) := −σε
β

ln (1− ξ
q
) for ξ ∈ [0, τ ],

π(ξ) := χ(τ) + χ′(τ)(ξ − τ) for ξ ∈ [τ, 1],

where the point τ satisfies

χ(τ) + χ′(τ)(1− τ) = 1. (1.3.3)

Geometrically this means that (τ, χ(τ)) is the contact point of the tangent π to x = χ(ξ)

that passes through the point (1,1).
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Equation (1.3.2) gives

xi = χ(ξi) = −σε

β
ln

(
1− ξi

q

)
. (1.3.4)

The transition point τ is chosen such that

χ(τ) = γ
ε

β
| ln ε|. (1.3.5)

Using (1.3.5) in (1.3.3), we obtain

χ′(τ) =
1− γ ε

β
| ln ε|

1− τ
.

Therefore

xi = π(ξi) = γ
ε

β
| ln ε|+

(
1− γ

ε

β
| ln ε|

)
ξi − τ

1− τ
. (1.3.6)

Equations (1.3.4) and (1.3.6) serve to determine the mesh points inside and outside the

layer region, respectively.

0 1χ(τ)

Figure 1.4: A presentation of a Bakhvalov mesh

Shishkin-type meshes

Another frequently studied mesh is the so-called Shishkin mesh. We describe this mesh

for the problem

−εu′′ − bu′ + cu = f in (0, 1), u(0) = u(1) = 0,
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where ε is a small positive parameter, b(x) ≥ β > 0 and c(x) ≥ 0 for x ∈ [0, 1]. Let

q ∈ (0, 1) and σ > 0 be two mesh parameters.

We define a mesh transition point τ by

τ = min

{
q,

σε

β
ln N

}
.

Then the intervals [0, τ ] and [τ, 1] are divided into qN and (1−q)N equidistant subintervals

(assuming that qN is an integer). This mesh may be regarded as generated by the mesh

generating function

ϕ(ξ) =





σε
β

ln N ξ
q

for ξ ∈ [0, q],

1−
(
1− σε

β
ln N

)
1−ξ
1−q

for ξ ∈ [q, 1],

if q ≥ τ . The mesh points are therefore the xi’s such that xi = ϕ(ξi), ξi = i/N, i =

0, 1, . . .

Again the parameter q is the amount of mesh points used to resolve the layer. The mesh

transition point τ has been chosen such that the layer term eβx/ε in

|u(k)(x)| ≤ C{1 + ε−ke−βx/ε} for k = 0, 1, . . . , q and x ∈ [0, 1],

is smaller than N−σ on [τ, 1]. Typically σ will be chosen equal to the formal order of the

method or sufficiently large to accommodate the error analysis.

Note that unlike the Bakhvalov mesh (and Vulanović modification of it) the underlying

mesh generating function is only piecewise C1[0, 1] and depends on N, the number of mesh

elements. For simplicity, it is assumed that q ≥ τ as otherwise N is exponentially large

compared to 1/ε and a uniform mesh is sufficient to cope with the problem.

A Shishkin-type mesh can be constructed on (0, 1) for the initial value problem of

Example 1.1.1 as follows: Choose τ such that 0 < τ ≤ 1/2 and assume N = 2r, r ≥ 2.

The transition point τ divides (0, 1) into (0, τ) and (τ, 1). Divide each of these subintervals
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into N/2 equal subintervals. The transition point is located at τ = min{1/2, ε ln N}. For

N sufficiently large, ε ln N ≥ 1/2, therefore the mesh is uniform.

A typical presentation of a Shishkin mesh is given in Figure 1.5.

τ 0 1

Figure 1.5: A presentation of a Shishkin mesh

Using variable mesh schemes on one of these meshes, reliable results can be obtained

for a class of SPPs.

Fitted operators and fitted meshes are well discussed in many research works, some

example of these being [72], [87] and [102].

The use of fitted meshes is immensely documented. The work by Bakhvalov in [15]

pioneered the use of an a priori mesh to solve a singular perturbation problem. Vu-

lanović [142] later performed a generalization of this mesh. Numerical methods based on

Bhakhvalov meshes have successfully solved a wide range of SPPs (see, e.g., [46, 95, 94,

96, 143, 144, 146]).

The idea that ε-uniform results can be obtained by using a simple piecewise equidistant

mesh was put forward by Shishkin [130]. More researchers then adhered to the use of the

piecewise uniform meshes (of Shishkin-type) even though they appear to be inferior to the

graded ones (of Bakhvalov-type), as far as convergence and accuracy are concerned. The

superiority of methods based on Bakhavalov meshes is due to the fact that these meshes

are better adapted to the layer structure [148]. Comparative results to support this fact

can be found in [92, 125, 148]

Research has been conducted also in the line of improving on performance of Shishkin

meshes while retaining some of their simplicity. The use of a piecewise uniform mesh with

several transition points is suggested in [150]. Strategies of combining ideas of Bakhvalov

and Shishkin are exposed in [90, 91]. An idea of equidistribution [34] combined with
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Shishkin type transition point is presented in [17].

The extendability of the methods using meshes of Shishkin type to higher dimensional

problem explains why people are interested in using them. Another advantage of Shishkin

meshes over Bakhvalov ones, pointed out in [150], is the convenience to handle complicated

higher order methods. Since, in this thesis, we aim at constructing higher order methods,

we will rather use Shishkin type meshes.

The fitted operator methods were introduced by Allen and Southwell [10] to solve the

problem of viscous fluid pass a cylinder. Subsequently, Doolan et al. [33] studied one type

of exponentially fitted methods considered by Liniger and Willoughby [89] which is in fact

a special class of the θ-method of Lambert [83]. The discussion about the construction of

a suitable fitting factor in the above methods is provided in [33].

The research is ongoing in this field and hence there is no end to the literature ac-

countable to this topic.

1.4 Literature review on higher order numerical meth-

ods for SPPs

In this section, we survey some of the works done so far on higher order methods for

singular perturbation problems in recent years, some of which are found in [66]. The

works are presented in the chronological order.

Fitted methods have been shown to be superior to standard methods in solving singular

perturbation problems because they attempt to capture the singular behaviour of the

solution in the layers. However, higher order methods can be used to obtain an expected

degree of accuracy with fewer mesh points as compared to lower order methods. Table 1.1

shows that the maximum error is reduced by a factor of 1/16 if the number of subintervals

of a mesh is multiplied by 16 for a first order method. The same degree of accuracy is

attained when the number of subintervals of the mesh is only doubled for a fourth order
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method. Another comparison can be made as follows: if one multiplies the number of

subintervals of a mesh by 16, the maximum error is only divided by 16 for a first order

method whereas this error is divided by 65536 for a fourth order method. This explains

our interest in designing higher order methods.

Vulanović [145] solved the singularly perturbed problem

−εu′′ − b(x)u′ + c(x)u = f(x),

subject to one of the following boundary conditions

u(0) = γ0, u(1) = γ1,

or

−εu′(0) = γ0, u(1) = γ1.

The functions b, c, f are sufficiently smooth and b(x) > β > 0, c(x) ≥ 0, while 0 < ε ¿
1. He obtained the second-order convergence uniform in ε due to the treatment of the

boundary layer function, to a special non-equidistant mesh (dense in the layer), and to

the use of a combination of central and mid-point finite difference schemes.

Stynes and O’Riordan [137] examined the problem

εu′′ + a(x)u′ − b(x)u = f(x),

Table 1.1: The reduction of the maximum error by higher order methods.

Order 10 20 40 80 160
1 1/2 1/4 1/8 1/16
2 1/4 1/16 1/64 1/256
3 1/8 1/64 1/512 1/4096
4 1/16 1/256 1/4096 1/65536
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for 0 < x < 1, a(x) ≥ α > 0, b(x) ≥ β, α2 + 4αβ > 0; a, b and f in C2[0, 1], ε in (0, 1],

u(0) and u(1) given. Using finite elements and a discretized Green’s function, they showed

that the El-Mistikawy and Werle difference scheme on an equidistant mesh of width h is

uniformly second order accurate for this problem. With a natural choice of trial functions,

they obtained uniform first order accuracy in L∞(0, 1) norm. Choosing piecewise linear

trial functions (“hat” functions) they obtained the same accuracy in the L1(0, 1) norm.

O’Riordan and Stynes [115] considered the numerical solutions of the differential equa-

tion

ε(p(x)u′)′ + (q(x)u)′ − r(x)u = f(x),

0 < x < 1; u(0) = u0; u(1) = u1,

where p > 0, q > 0, r ≥ 0, 0 < ε ≤ 1, and p, q, r and f ∈ C2[0, 1]. Using finite

elements with uniform mesh h, they generated a tridiagonal difference scheme which

has uniform O(h2) nodal accuracy. Using piecewise linear trial functions, they obtained

uniform O(h) accuracy in the L1(0, 1) norm. Using certain other trial functions (L-

splines), they obtained uniform O(h) accuracy in the L∞(0, 1) norm.

Farell [38] gave some results which characterize the behavior of a linear nonselfad-

joint singular perturbation problem. He also gave criteria for uniform convergence of a

nonturning, simple turning point and one multiple turning point case and indicated the

uniform methods for higher-order cases. Then he discussed the consequences for quasi-

linear problems.

Using a finite difference framework of Doedel [32] and Lynch and Rice [99], Gartland

[45] constructed a family of uniformly accurate finite difference schemes for the problem

−εu′′(x) + a(x)u′ + b(x)u = f(x),

0 < x < 1 ; u(0) = g0 , u(1) = g1.

with the assumptions that a, b and f are bounded continuous functions and a(x) ≥ a > 0
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on [0,1]. A scheme of order hp (uniform in ε) is constructed to be exact on a collocation

of functions of the type

1, x, · · · · · · , xp, exp

(∫ 1

x

a

)
, x exp

(∫ 1

x

a

)
, · · · · · · ,

xp−1 exp

(∫ 1

x

a

)
.

The high order is achieved through extra evaluations of f . He also presented some nu-

merical experiments which exhibit uniform orders hp, p = 1, 2, 3 and 4.

Sklyar [134] constructed a conservative difference scheme for singularly perturbed dif-

ferential problems. In the construction a suitable decomposition of a symmetric bilinear

form is applied. The method is presented for the model problem

εu′′ + au′ = f, x ∈ (0, 1); u(0) = α0, u(1) = α1.

The coefficients of the scheme are obtained by recursion; the number of iterations depends

on ε. The order of convergence is proved to be O(h2) and is independent of ε.

Herceg et al. [56] considered singularly perturbed semilinear selfadjoint two-point

boundary value problems, with Dirichlet boundary conditions. Using a Bakhvalov-type

mesh, they gave a difference scheme for numerically solving such problems. It is shown

that the solution of this difference scheme is amenable to Richardson extrapolation, and

that one can thereby obtain sixth-order convergence at each node, uniformly in the sin-

gular perturbation parameter.

Herceg [57] used the Hermitian approximation of the second order derivative for a

linear singularly perturbed nonlocal problem

ε2u′′ + b(x)u = f(x) , 0 ≤ x ≤ 1,
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u(0) = 0, u(1) =
m∑

i=1

ciu(si) + d,

d, ci ∈ R,

si ∈ (0, 1), i = 1, 2, · · · ,m,

0 < ε << 1, b ∈ Ck[0, 1],

k ∈ N, b(x) ≥ β2 > 0,

for some positive constant β. He proved that the technique is fourth order uniformly

convergent.

Stojanovic [136] considered a linear, self-adjoint, singularly perturbed, two-point bound-

ary value problem. She generated a difference scheme for this problem by approximating

the forcing term with a piecewise cubic polynomial, and approximating the coefficient

of the zero-order term with a piecewise constant function. This scheme is shown to be

second-order accurate, uniformly in the singular perturbation parameter.

Schmitt [126] constructed a symmetric difference scheme for linear, stiff, or singularly

perturbed boundary value problems of first-order with constant coefficients. His scheme

is based on a stability function containing a matrix square root. Its essential feature

is the unconditional stability function in the absence of purely imaginary eigenvalues of

the coefficient matrix. He proved local damping of errors, uniform stability, and uniform

second-order convergence. He also discussed the computation of the specific matrix square

root by a well-known stable variant of Newton’s method.

Based on the coupling of the central difference scheme with the Abrahamsson-Keller-

Kreiss box scheme on a special nonuniform mesh, Sun and Wu [138] proposed a scheme

for the numerical solution of the singular boundary value problem

εu′′ + b(x)u′ − c(x)u = f(x), u(0) = α, u(1) = β.
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They proved that this scheme is uniformly second-order convergent.

Kadalbajoo and Bawa [65] presented a variable-mesh method based on cubic spline

approximation for nonlinear singularly perturbed boundary-value problems of the form

εy′′ = f(x, y) , y(a) = α , y(b) = β.

They gave convergence analysis and the method is shown to have third-order convergence.

In [151], Wang solved a nonlinear singular perturbation problem numerically on non-

equidistant meshes which are dense in the boundary layers. The method is based on the

numerical solution of integral equations. He proved the fourth-order uniform accuracy of

the scheme.

Grekov and Krasnikov [51] examined a linear singularly perturbed reaction-diffusion

problem in one dimension. Assuming that its coefficients are piecewise smooth, they con-

sidered any mesh whose nodes include the points of discontinuity of these coefficients.

The solution u is expressed as a series, each term of which can be computed by numer-

ically solving a singularly perturbed reaction-diffusion problem with piecewise constant

coefficients. They proved that by truncating this series, u can be approximated in the

L∞-norm, uniformly in the singular perturbation parameter, up to O(hm), where h is the

mesh diameter and m is an arbitrary positive integer.

Hu et al. [62] developed a discretization method for one-dimensional singular pertur-

bation problems based on Petrov-Galerkin finite element, or an equivalent finite volume,

scheme. The model one-dimensional problem which they considered was

−εu′′ + βu′ + σu = f in (a, b),

u(a) = ua, u(b) = ub.
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This problem has its origin in the physical conservation law

q′ + (σ − β′)u = f,

and Fick’s diffusion law

q = −εu′ + βu,

where q is the flux, ε the diffusivity, β the velocity, and σ the absorbing coefficient (or

reactivity). The scheme that they developed is not only O(h2) accurate uniformly in

ε, but also satisfies certain discrete versions of both the conservative law and maximum

principle.

Beckett and Mackenzie [18] studied the numerical approximation of a singularly per-

turbed reaction-diffusion equation using a p-th order Galerkin finite element method on a

non-uniform grid. The grid was constructed by equidistributing a strictly positive moni-

tor function which is a linear combination of a constant floor and a power of the second

derivative of a representation of the boundary layers-obtained using a suitable decom-

position of the analytical solution. By the appropriate selection of the monitor function

parameters they proved that the numerical solution is insensitive to the size of the singu-

lar perturbation parameter and achieves the optimal rate of convergence with respect to

the mesh density.

In [43], a defect correction method based on finite difference schemes is considered

for a singularly perturbed boundary value problem on a Shishkin mesh. The method

combines the stability of the upwind difference scheme and the higher-order convergence

of the central difference scheme. The almost second-order convergence of the scheme

with respect to the discrete maximum norm, uniformly in the perturbation parameter, is

proved.

A boundary value problem for a singularly perturbed parabolic equation of convection

diffusion type on an interval is studied. For the approximation of the boundary value prob-
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lem, Hemker et al. [53] use earlier developed finite difference schemes, epsilon-uniformly

of a high order of accuracy with respect to time, based on defect correction.

Vulanović [150] solved numerically a class of singularly perturbed quasilinear boundary

value problems with two small parameters by finite differences on a Shishkin-type mesh.

The discretization combined a four-point third-order scheme inside the boundary layers

with the standard central scheme outside the layers. This results in an almost third-order

accuracy which is uniform with respect to the perturbation parameters. The paper also

showed that the Shishkin meshes are more suitable for higher-order schemes than the

Bakhvalov meshes, since complicated non-equidistant schemes can be avoided.

Hemker et al. [54] used a defect correction technique to construct ε-uniformly con-

vergent schemes of high-order time-accuracy. The efficiency of the new defect-correction

schemes is confirmed with numerical experiments. An original technique for an experi-

mental study of convergence orders is developed for cases when the orders of convergence

in the x-direction and in the t-direction can be essentially different.

Until an approach by Roos (in one of his technical reports in 2005: complete cita-

tion details are not available), the best way to construct high order uniformly convergent

schemes for singular perturbation problems was to apply exponentially fitted compact

difference schemes. His approach consists of the following steps: firstly solve an auxil-

iary problem with piecewise or nearly piecewise constant coefficients, secondly improve

the approximation iteratively using the defect correction idea and piecewise polynomial

approximations of higher order. An important advantage of this approach lies in the

fact that it is possible to start from a classical or weak formulation of a boundary value

problem. Therefore, the approach is useful for singular perturbations related to ordinary

as well as partial differential equations.

Patidar [118] considered the self-adjoint singularly perturbed two-point boundary

value problems

−ε(a(x)y′)′ + b(x)y = f(x), x ∈ [0, 1],
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y(0) = η0, y(1) = η1.

Highest possible order of uniform convergence for such problems achieved so far via fitted

operator methods, was one. Reducing the original problem into the normal form and then

using the theory of inverse monotone matrices, he derived a FOFDM via the standard

Numerov’s method. His scheme is fourth order accurate for moderate values of ε and

ε-uniformly convergent with order two for very small values of ε.

A one-dimensional singularly perturbed problem of mixed type is considered by

Brayanov [24]. The domain under consideration is partitioned into two subdomains. In

the first subdomain a parabolic reaction-diffusion problem is given and in the second one

an elliptic convection-diffusion-reaction problem. The solution is decomposed into regular

and singular components. The problem is discretized using an inverse-monotone finite

volume method on condensed Shishkin meshes. He establishes an almost second-order

global pointwise convergence in the space variable.

Gracia et al. [49] constructed a second order monotone numerical method for a sin-

gularly perturbed ordinary differential equation with two small parameters affecting the

convection and diffusion terms. The monotone operator is combined with a piecewise-

uniform Shishkin mesh. An asymptotic error bound in the maximum norm is established

theoretically whose error constants are shown to be independent of both singular pertur-

bation parameters.

A numerical study is made in [71] to examine a singularly perturbed parabolic initial-

boundary value problem in one space dimension on a rectangular domain. The solution of

this problem exhibits the boundary layer on the right side of the domain. They constructed

a Crank-Nicolson finite difference method consisting of an upwind finite difference operator

on a fitted piecewise uniform mesh. The resulting method has been shown to be almost

first order accurate in space and second order in time. Numerical experiments have been

carried out, which validate the theoretical results. It is also shown that a numerical

method consisting of same finite difference operator on uniform mesh does not converge
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uniformly with respect to the singular perturbation parameter.

Mohanthy and Singh [108] derived a difference method of O(h4), so called, arithmetic

average discretization for the solution of two dimensional non-linear singularly perturbed

elliptic partial differential equation of the form

ε(uxx + uyy) = f(x, y, u, ux, uy),

0 < x, y < 1,

subject to appropriate Dirichlet boundary conditions where ε > 0 is a small parameter.

They also derived new methods of higher order for the estimates of ∂u/∂n, which are

quite often of interest in many physical problems. In all cases, only 9-grid points and a

single computational cell were required. The main advantage of the proposed methods is

that the methods are directly applicable to singular problems.

In [12], a high-order (second and fourth of convergence, but with first and third-order

local truncation error, respectively) compact finite difference schemes for elliptic equa-

tions with intersecting interfaces is derived. The approach uses the differential equation

and the jump (interface) relations as additional identities which can be differentiated to

eliminate higher order local truncation errors. Numerical experiments are carried out to

demonstrate the high-order accuracy and to show that our method is effective to sharp

contrast in the diffusion coefficients of the problems.

Rao and Kumar [122] present a B-spline collocation method of higher order for a class

of self-adjoint singularly perturbed boundary value problems. The essential idea in this

method is to divide the domain of the differential equation into three non-overlapping

subdomains and solve the regular problems obtained by transforming the differential

equation with respective boundary conditions on these subdomains using the present

higher order B-spline collocation method. The boundary conditions at the transition

points are obtained by the asymptotic approximation of order zero to the solution of the

26

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION

problem. The convergence analysis is given and the method is shown to have optimal

order convergence; by collocating the perturbed differential equation, which is satisfied

by a special cubic spline interpolate of the true solution.

Franz [42] analyzed a continuous interior penalty (CIP) method for elliptic convection-

diffusion problems with characteristic layers on a Shishkin mesh. The method penalizes

jumps of the normal derivative across interior edges. He shows that it is of the same order

of convergence as the streamline diffusion finite-element method and is superclose in the

CIP norm induced by its bilinear form for the difference between the FEM solution and

the bilinear nodal interpolant of the exact solution. Furthermore, he studies numerically

the behaviour of the method for different choices of the stabilization parameter.

A fourth-order finite-difference method for singularly perturbed one-dimensional

reaction-diffusion problem is presented by Herceg and Herceg in [58]. The problem is

discretized using a Bakhvalov-type mesh. They gave a uniform convergence with respect

to the perturbation parameter.

Kadalbajoo and Kumar [73] develop a method which deals with the singularly per-

turbed boundary value problem for a linear second order differential-difference equation

of the convection-diffusion type with small delay parameter τ of O(ε) whose solution has

a boundary layer. The fitted mesh technique is employed to generate a piecewise-uniform

mesh condensed in the neighborhood of the boundary layers. B-spline collocation method

is used with fitted mesh. Parameter-uniform convergence analysis of the method is dis-

cussed. The method is shown to have almost second order parameter-uniform convergence.

The effect of small delay τ on boundary layer has also been discussed.

Kadalbajoo and Yadaw [74] presented a B-spline collocation method for solving a class

of two-parameter singularly perturbed boundary value problems. They used B-spline

collocation method on piecewise-uniform Shishkin mesh, which leads to a tridiagonal

linear system. They analyzed the method for convergence and showed that it is uniformly

convergent of second order.
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Lin et al. [88] developed a new method by detecting the boundary layer of the solution

of a singular perturbation problem. On the non-boundary layer domain, the singular

perturbation problem is dominated by the reduced equation which is solved with standard

techniques for initial value problems. While on the boundary layer domain, it is controlled

by the singular perturbation. Its numerical solution is obtained using finite difference

methods. The numerical error is maintained at the same level with a constant number of

mesh points for a family of singular perturbation problems.

Shahraki and Hosseini [128] presented a new scheme for discretization of singularly

perturbed boundary value problems based on finite difference methods. This method is

a combination of simple upwind scheme and central difference method on a special non-

uniform mesh (Shishkin mesh) for the space discretization. Numerical results show that

the convergence of method is uniform with respect to singular perturbation parameter

and has a higher order of convergence.

In the paper, Solin and Avila [135] present a new piecewise-linear finite element mesh

suitable for the discretization of the one-dimensional convection-diffusion equation

−εu′′ − bu′ = 0, u(0) = 0, u(1) = 1.

The solution to this equation exhibits an exponential boundary layer which occurs also

in more complicated convection-diffusion problems of the form

−ε∆u− b
∂u

∂x
+ cu = f.

Their new mesh is based on the equidistribution of the interpolation error and it takes

into account finite computer arithmetic. It is demonstrated numerically that for the above

problem, the new previous mesh has remarkably better convergence properties than the

well-known previous shishkin and Bakhvalov meshes.

Xie et al. [154] presented a novel approach for solving parameterized singularly per-
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turbed two-point boundary value problems with a boundary layer. By the boundary layer

correction technique, the original problem is converted into two non-singularly perturbed

problems which can be solved using traditional numerical methods, such as Runge-Kutta

methods. Several non-linear problems are solved to demonstrate the applicability of the

method.

The bilinear finite element methods on appropriately graded meshes are considered in

Zhu and Chen [155] both for solving singular and semisingular perturbation problems. In

each case, the quasi-optimal order error estimates are proved in the ε-weighted H1-norm

uniformly in singular perturbation parameter ε, up to a logarithmic factor. By using

the interpolation postprocessing technique, the global superconvergent error estimates in

ε-weighted H1-norm are obtained.

Kadalbajoo and Gupta [75] designed a numerical scheme to solve a singularly per-

turbed convection-diffusion problem. The scheme involves B-spline collocation method

and appropriate piecewise-uniform Shishkin mesh. Bounds were established for the deriva-

tive of the analytical solution. Moreover, the method is boundary layer resolving as well

as second-order uniformly convergent in the maximum norm. They give a comprehensive

analysis to prove the uniform convergence with respect to singular perturbation parame-

ter.

Surla et al. [139] considered finite difference approximation of a singularly perturbed

one-dimensional convection-diffusion two-point boundary value problem. The problem

is numerically treated by a quadratic spline collocation method on a piecewise uniform

slightly modified Shishkin mesh. The position of collocation points is chosen so that

the obtained scheme satisfies the discrete minimum principle. They prove pointwise con-

vergence of order O(N−2 ln2 N) inside the boundary layer and second order convergence

elsewhere. Further, they approximate normalized flux and give estimates of the error at

the mesh points and between them.

They determine the conditions under which the difference schemes, applied indepen-
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dently on subdomains may accelerate (epsilon-uniformly) the solution of the boundary

value problem without losing the accuracy of the original schemes. Hence, the simulta-

neous solution on subdomains can in principle be used for parallelization of the compu-

tational method.

Ilicasu and Schultz [63] developed a high-order finite-difference technique for the

second-order, singularly perturbed linear BVP in one dimension. Taylor series expan-

sions and error conversions are used for the development of the techniques. Convergence

and stability conditions of these techniques are proved.

Liu and Shen [97] proposed a new spectral Galerkin method for the convection-

dominated convection-diffusion equation. This method employs a new class of trial func-

tion spaces. The available error bounds provide a clear theoretical interpretation for the

higher accuracy of the new method compared to the conventional spectral methods when

applied to problems with this boundary layers.

Some of the works that are more specific for the problems considered in the individual

chapters are described further in the introduction sections of those chapters. There might

be little repetitions but we do so in order for the chapters to be self contained.

1.5 Summary of the thesis

The order of the various numerical methods that we mentioned in previous section vary

from less that one to three or four. Quite often a numerical analyst prefers a higher

order method due to the fact that it offers the opportunity to attain a better degree of

accuracy with fewer mesh points as compared to lower order methods. Since in most cases,

techniques of constructing directly higher order methods are tedious, we will rather focus

on Richardson’s extrapolation which is one of the convergence acceleration techniques. It

consists of taking a linear combination of k solutions (k ≥ 2) corresponding to different

but nested meshes on the intersection of these meshes which is in fact the coarsest mesh

[41]. Due to time limitation the other convergence technique, the defect correction is not
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considered in this thesis. While we will investigate the effect of Richardson extrapolation

on some existing fitted methods in some instances, we will use this technique on some

novel fitted methods in other instances.

In Chapter 2, we investigate the effect of Richardson extrapolation on the fitted mesh

finite difference method (FMFDM) of [119] for a self-adjoint problem. We note that even

though the accuracy is improved, the order of convergence remains unchanged. This unex-

pected fact contradicts the assertion met in the literature about Richardson extapolation

that “A numerical solution of required accuracy can be obtained by using Richardson

extrapolation method [11, 133] and it can be used to improve the ε-uniform rates of

convergence of computed solutions [133].

We go on investigating what impact the extrapolation technique will have on other

methods to solve the above mentioned self-adjoint problem in Chapter 3. We consider

two fitted operator finite difference methods (FOFDMs) which we denote by FOFDM-I

and FOFDM-II, presented in [118] and [98], respectively. In the first case, Richardon

extrapolation does not improve the convergence which is of order four and two for some

moderate and smaller values of ε. In the latter case, the second order accuracy is improved

up to four, irrespective of the value of ε.

Chapter 4 deals with construction and analysis of a FMFDM and a FOFDM to solve

a singularly perturbed turning point problem whose solution has boundary layers. We

study the performance of Richardson extrapolation on these methods.

In Chapter 5, we consider a singularly perturbed nonlinear two-point boundary value

problem. We first apply the quasilinearization process [19] to linearize the problem. Then

the resulting sequence of linear problems is solved by a FOFDM.

A time-dependent nonlinear Burgers’ equation is considered in Chap 6. We again lin-

earize the problem using the quasilinearization process. The process results in a sequence

of linear problems at each time level which we solve using a FOFDM.

The FOFDM-II of Chapter 3 is extended to singularly perturbed elliptic problems in
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2-dimensions in Chapter 7. This method is of order 2 in both x- and y-direction. The

fourth order convergence is achieved after applying Richardson extrapolation.

Due to the space limitations, we give only necessary details in the latter chapters.

Finally, some concluding remarks and directions for further research are provided in

Chapter 8.
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Chapter 2

Higher Order Fitted Mesh Finite

Difference Scheme for a Singularly

Perturbed Self-adjoint Problem

Numerous methods have been developed for singularly perturbed self-adjoint boundary

value problems in past three decades. The order of these methods vary from less than

one to three or four. Quite often a numerical analyst prefers a higher order method due

to the fact that it offers the opportunity to attain a better degree of accuracy with fewer

mesh points as compared to lower order methods. Motivated by this fact, we would like to

investigate in this chapter whether we can accelerate the order of convergence of existing

high order methods.

We consider the fitted mesh finite difference method of Patidar [119] applied on a

Shishkin-type mesh for the solution of self-adjoint problem which is ε-uniform convergent

of order four. We attempt to increase the order of convergence by Richardson’s ex-

trapolation and notice that this well-known convergence acceleration technique has some

limitations. We observe that even though Richardson extrapolation improves the accu-

racy slightly, this technique does not increase the rate of convergence which is originally
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four for the underlying method for the problem above. This fact was unexpected and

contradicts the assertion met in the literature so far about Richardson extrapolation.

2.1 Introduction

Solutions of singular perturbation problems (SPPs) present large gradients when the per-

turbation parameter approaches zero. The solution of these SPPs typically contains layers.

This behavior lowers the order of convergence of the underlying numerical method and

results in low accuracy. Standard methods have failed to resolve the layer(s) for all values

of ε (the singular perturbation parameter), unless a very fine mesh is considered, which

unfortunately increases the computational complexities. To overcome this difficulty, fitted

methods have been considered by various authors since they provide reliable numerical

results on a mesh with a reasonable number of grid points and hence make the method

practically applicable. However, some fitted methods perform better than others.

Various numerical methods have been developed so far to solve such problems, some

of which we will mention below. The order of these methods vary from less than one to

three or four. Since quite often a numerical analyst prefers a higher order method due

to the fact that it offers the opportunity to attain a better degree of accuracy with fewer

mesh points as compared to lower order methods, we would like to investigate in this

paper whether we can accelerate the order of convergence of existing high order methods.

Direct techniques to obtain high order methods for singularly perturbed problems are

well documented. We provide few examples. For a one-dimensional convection-diffusion

problem, a second order ε-uniformly convergent method was designed in [145]. In [137],

the same order of convergence was obtained using finite elements and discretized Green’s

functions and applying the El-Mistikawy and Werle difference scheme on an equidistant

mesh. This problem was also examined in [45] where a scheme of order p (p = 1, 2, 3, 4)

was constructed using collocation approach.

By using Hermitian approximation of the second order derivative, a fourth order uni-
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formly convergent scheme for a reaction-diffusion problem was presented in [57].

For a self-adjoint problem, a second-order nodal accuracy using finite elements with

uniform mesh is obtained in [115], whereas in [118] a fitted operator finite difference

method (FOFDM) was derived via Numerov’s method that showed to be fourth order

accurate for moderate value of ε and second order uniformly convergent for small values

of ε. On the other hand in [119] a fitted mesh finite difference method (FMFDM) was

shown to be fourth order ε-uniformly convergent. The third order of convergence was

found for quasilinear problems in [149] and [150]. The third and fourth order of conver-

gence was obtained for a nonlinear problem [151] by using numerical solution of integral

equations. While none of these methods is of order higher than four, there exist methods

of arbitrary order (see, e.g., [51]). However, because designing and implementing such

methods appears not to be an easy task, no numerical experiment has supported this

assertion.

Beside the various techniques of constructing directly higher order methods (which are

tedious in most cases), one would rather use a convergence acceleration strategy. Several

methods for improvement of solutions have been designed (see, e.g., [11, 47, 64, 123, 132,

133] and the references therein). One of these methods, which was subsequently termed as

the Richardson extrapolation, is a post-processing procedure where a linear combination

of two computed solutions approximating a particular quantity gives a third and better

approximation. It was implemented in [77] for a system of first order linear ordinary

differential equation, in [93] and [111] for a one-dimensional linear convection-diffusion

problem and in [133] for a quasilinear parabolic singularly perturbed convection-diffusion

equations.

Our aim in this Chapter is to investigate the limitations of the Richardson’s extrap-

olation when it is applied for a method which is already of high order. To this end, we

consider the following problem (2.1.1) for which Patidar [119] constructed a fourth order

35

 

 

 

 



CHAPTER 2. HIGHER ORDER FITTED MESH FINITE DIFFERENCE SCHEME
FOR A SINGULARLY PERTURBED SELF-ADJOINT PROBLEM

ε-uniformly convergent FMFDM (on a mesh of Shishkin-type):

Ly ≡ −ε(a(x)y′)′ + b(x)y = f(x), x ∈ (0, 1), y(0) = η0, y(1) = η1, (2.1.1)

where η0 and η1 are given constants and ε ∈ (0, 1]. The functions f(x), a(x) and b(x) are

assumed to be sufficiently smooth and to satisfy the conditions

a(x) ≥ a > 0, b(x) ≥ b > 0.

The rest of this chapter is organized as follows. Some theoretical estimates are provided

in Section 2.2. For the sake of completeness, we present the FMFDM of [119] in Section

2.3. We establish the extrapolation formula in Section 2.5. This section deals also with the

error analysis of the FMFDM after extrapolation where analysis before extrapolation is

reviewed. Two numerical examples are considered in section 2.5 to confirm our theoretical

results. Section 2.7 is devoted to the conclusions and further research plans.

2.2 Reduction to normal form and some theoretical

estimates

The following lemmas [119] are necessary for the existence and uniqueness of the solution

and for the problem to be well-posed.

Lemma 2.2.1. (Maximum Principle) Let L be the operator as in (2.1.1) such that

B0y(0) ≡ y(0) = η0, B1y(1) ≡ y(1) = η1. Suppose φ(x) is any smooth function satis-

fying B0y(0) ≥ 0, B1y(1) ≥ 0 and let Lφ(x) ≥ 0, ∀ 0 < x < 1 then φ(x) ≥ 0,∀ 0 ≤ x ≤ 1.

Proof. The proof is by contradiction. Let x∗ be such that φ(x∗) = minx∈[0,1] φ(x) and

assume that φ(x∗) < 0. Clearly, x∗ /∈ {0, 1} and therefore φ′(x∗) = 0 and φ′′(x∗) ≥ 0.
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Further,

Lφ(x∗) = −ε(a(x∗)φ′(x∗))′ + b(x∗)φ(x∗) < 0,

which is a contradiction. It follows that φ(x∗) ≥ 0 and thus φ(x) ≥ 0∀ x ∈ [0, 1].

The uniqueness of the solution is implied by this maximum principle. Its existence fol-

lows trivially (as for linear problems, the uniqueness of the solution implies its existence).

This principle is now applied to prove that the solution of (2.1.1) is bounded.

Lemma 2.2.2. Let y(x) be the solution of the problem (2.1.1), then we have

||y|| ≤ b−1||f ||+ max(η0, η1).

Proof. We construct two barrier functions Π± defined by

Π±(x) = b−1||f ||+ max(η0, η1)± y(x).

Then we have

Π±(0) = b−1||f ||+ max(η0, η1)± y(0)

= b−1||f ||+ max(η0, η1)± η0

≥ 0,

Π±(1) = b−1||f ||+ max(η0, η1)± y(1)

= b−1||f ||+ max(η0, η1)± η1

≥ 0,

and we have

LΠ±(x) = −ε(a(x)(Π±(x))′)′ + b(x)Π±(x)

= b(x)(b−1||f ||+ max(η0, η1))± Ly(x)
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= b(x)[b−1||f ||+ max(η0, η1)]± f(x)

≥ 0, since ||f || ≥ f(x).

Therefore, by the maximum principle (Lemma 2.2.1), we obtain Π±(x) ≥ 0, for all x ∈
[0, 1], which gives the required estimate.

Now, let

P (x) =
a′(x)

a(x)
, Q(x) = − b(x)

εa(x)
and R(x) = − f(x)

εa(x)
.

Equation (2.1.1) therefore becomes

y′′ + P (x)y′ + Q(x)y = R(x). (2.2.2)

Via the substitutions

U(x) = exp
(
− 1

2

∫ x

0

P (ζ)dζ
)

and

y(x) = U(x)V (x), (2.2.3)

into equation (2.2.2), the problem (2.1.1) is transformed into the normal form

L̃V ≡ −εV ′′ + W (x)V = Z(x), (2.2.4)

V (0) = α0

(
≡ y(0)

U(0)

)
, V (1) = α1

(
≡ y(1)

U(1)

)
, α0, α1 ∈ R

where

W (x) = −ε

(
Q(x)− 1

2
P ′(x)− 1

4
(P (x))2

)
,

Z(x) = −ε

(
R(x) exp

(1

2

∫ x

0

P (ζ)dζ
))

.

It is worthwhile noting that the operator L̃ also satisfies the maximum principle:
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Lemma 2.2.3. Let ψ(x) be any sufficiently smooth function such that ψ(0) ≥ 0 and

ψ(1) ≥ 0. Then L̃ψ(x) ≥ 0,∀ x ∈ (0, 1) implies that ψ(x) ≥ 0,∀x ∈ [0, 1].

In the error analysis of problem (2.2.4), it is convenient to decompose the solution Vε

into a smooth (regular) component Vε,r and a singular component Vε,s. Bounds on these

components and on their derivatives are provided in the following Lemma [105]:

Lemma 2.2.4. The solution Vε of the problem (2.2.4) can be decomposed into the form

Vε := Vε,r + Vε,s

where for all k ∈ 0, 1, 2, · · · , 6 and x ∈ [0, 1], the regular component Vε,r satisfies

|V (k)
ε,r | ≤ M [1 + ε−(k−2)/2E(x, β)],

and the singular component Vε,s satisfies

|V (k)
ε,s | ≤ Mε−k/2E(x, β),

where

0 < β ≤ W (x)

and

E(x, β) =
{

exp
(
− x/

√
β/ε

)
+ exp

(
− (1− x)

√
β/ε

)}

.

Lemma 2.2.5. For a fixed mesh and for all integers k, we have

lim
ε→0

max
1≤j≤n−1

exp(−Mxj/
√

ε)

εk/2
= 0,
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and

lim
ε→0

max
1≤j≤n−1

exp(−M(1− xj)/
√

ε)

εk/2
= 0,

where xj = jh, h = 1/n, ∀j = 1(1)n− 1.

Proof. Consider the partition

[0, 1] := {0 = x0 < x1 < x2 < · · · < xn−1 < xn = 1}.

It is clear that, for the interior grid points, we have

max
1≤j≤n−1

exp(−Mxj/
√

ε)

εk/2
≤ exp(−Mx1/

√
ε)

εk/2
=

exp(−Mh/
√

ε)

εk/2

and

max
1≤j≤n−1

exp(−M(1− xj)/
√

ε)

εk/2
≤ exp(−M(1− xn)/

√
ε)

εk/2
= M

exp(−Mh/
√

ε)

εk/2

(as x1 = h, 1− xn−1 = 1− (n− 1)h = h). An application of L’Hospital’s rule the gives

lim
ε→0

exp(−Mh/
√

ε)

εk/2
= lim

p(=1/
√

ε)→∞
pk

exp(Mhp)
≡ lim

p→∞
k!

(Mh)k exp(Mhp)
= 0,

which completes the proof.

2.3 The numerical method

The FMFDM that we use in Chapter has been derived in Patidar [119] on the Shishkin

mesh described below.

The interval [0, 1] is divided into three sub-intervals:

[0, 1] := [0, δ] ∪ [δ, 1− δ] ∪ [1− δ, 1],
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where δ is the width of the boundary layer. Let n be a positive integer such that n = 2m

with m ≥ 5. The intervals (0, δ) and (1 − δ, 1) are each divided into n/4 equal mesh

elements, while the interval (δ, 1− δ) is divided into n/2 equal mesh elements. Therefore,

we have n/4 + 1 equidistant grid points in the intervals [0, δ] and [1 − δ, 1] and n/2 − 1

equidistant grid points in (δ, 1− δ). The parameter δ is defined by

δ = min
{

1/4, 4
(√

ε/β
)

ln(n/16)
}

(2.3.5)

where 0 < β ≤ W (x), ∀x ∈ [0, 1]. Assuming that j0 = n/4, xj0 = δ, xn−j0 = 1− δ and

[0, 1] := 0 = x0 < x1 < · · · < xj0 < · · · < xn−j0 < · · · < xn = 1,

we have hj = xj − xj−1 where the mesh spacing is given by

hj =





4δn−1, j = 1, . . . , j0, n− j0 + 1, . . . , n,

2(1− 2δ)n−1, j = j0 + 1, . . . , n− j0.

(2.3.6)

We denote this mesh by µn,δ and assume that

δ = 4
(√

ε/β
)

ln(n/16), (2.3.7)

since if δ = 1/4, i.e, 1/4 < 4
(√

ε/β
)

ln(n/16), then n−1 is very small relative to ε. (This

is very unlikely in practice and in such a case the method can be analyzed using the

standard techniques).

We use the notation Vj = V (xj),Wj = W (xj), and Zj = Z(xj), the approximations

of Vj at the grid points are denoted by the unknowns νj. The scheme of [119] is given by

the tridiagonal system

Aν = F, (2.3.8)
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where A is the matrix of the system and ν and F are corresponding vectors. The various

entries of this matrix and the components of the right-hand-side vector are given by

(diag(A))j = rc
j , j = 1, 2, . . . , n− 1,

(subdiag(A))j = r−j , j = 2, 3, . . . , n− 1,

(supdiag(A))j = r+
j , j = 1, 2, . . . , n− 2,

F1 = q−1 Z0 + qc
1Z1 + q+

1 Z2 − r−1 ν0,

Fj = q−j Zj−1 + qc
jZj + q+

j Zj+1, j = 2, 3, . . . , n− 2,

Fn−1 = q−n−1Zn−2 + qc
n−1Zn−1 + q+

n−1Zn − r+
n−1νn,

ν0 = α0, νn = α1,





(2.3.9)
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where

q−j =
hj+1

hj(hj+hj+1)

(
h3

j−h3
j+1

6
+

h4
j+h4

j+1

12hj+1

)
,

q+
j = − hj

hj+1(hj+hj+1)

(
h3

j−h3
j+1

6
− h4

j+h4
j+1

12hj

)
,

qc
j =

h2
j+h2

j+1

2
+

2(hj−hj+1)(h
3
j−h3

j+1)−(h4
j+h4

j+1)

12hjhj+1
,

r−j = −ε
{

1− hj+1(hj−hj+1)

hj(hj+hj+1)

}
+ q−j Wj−1,

r+
j = −ε

{
1 +

hj(hj−hj+1)

hj+1(hj+hj+1)

}
+ q+

j Wj+1,

rc
j = ε

{
2 +

(hj−hj+1)
2

hjhj+1

}
+ qc

jWj.





(2.3.10)

If hj = hj+1 = h (i.e, uniform mesh throughout the region), then (2.3.10) reduces to

r−j = −ε + h2Wj−1/12, r+
j = −ε + h2Wj+1/12, rc

j = 2ε + 5h2Wj/6,

q±j = h2

12
, qc

j = 5h2

6
.





(2.3.11)

Using equations (2.3.8)-(2.3.10) or (2.3.11), we get the approximate solution of V (x) at

the grid points xj. The solution of the original problem (2.1.1) at these grid points is

obtained using (2.2.3) since U(x) is known.

The method consisting of (2.3.8)-(2.3.10) is referred to as the Fitted Mesh Finite Dif-

ference Method (FMFDM) whereas the method consisting of (2.3.8), (2.3.9), and (2.3.11)

is the Standard Numerov’s Finite Difference Method (SNFDM).

In the rest of the chapter, M denotes various positive constants independent of the

mesh spacing hj and of ε and may take different values in different equations and inequal-

ities.

The discrete operator in the FMFDM, which we denote by L̃h, satisfies the following

43

 

 

 

 



CHAPTER 2. HIGHER ORDER FITTED MESH FINITE DIFFERENCE SCHEME
FOR A SINGULARLY PERTURBED SELF-ADJOINT PROBLEM

Lemmas (see [105] for proofs).

Lemma 2.3.1. (Discrete maximum principle) For any mesh function φi satisfying φ0 ≥
0, φn ≥ 0 and L̃hφi ≥ 0, ∀ 0 < i < n, we have φi ≥ 0,∀ 0 ≤ i ≤ n.

Lemma 2.3.2. (Uniformly stability estimate) If ζi is any mesh function such that ζ0 =

ζn = 0, then

|ζi| ≤ 1

β
max

1≤j≤n−1
|L̃hζj| for 0 ≤ i ≤ n.

2.4 Convergence analysis of the method

In this section, we succinctly present the relevant results of [119] and then we provide

convergence analysis.

Error estimates before extrapolation

The main result of [119] which is mentioned in (2.5.12) is stated in the following theorem.

Theorem 2.4.1. Let W (x), Z(x) be sufficiently smooth so that V (x) ∈ C6[0, 1] and

W (x) ≥ β > 0. Let νj, j = 0(1)n, be the approximate solution of (2.2.4), obtained using

(2.3.8)-(2.3.10) with ν0 = V (0), νn = V (1). Then, there is a constant M independent of

ε and h such that

sup
0<ε≤1

max
0<j≤n

|Vj − νj| ≤ Mn−6 ln6(n/16) ≤ Mn−4,

since ln3(n/16) ≤ Mn, ∀ n.

Next, we derive the extrapolation formula that will be used in the extrapolation tech-

nique.
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2.5 Extrapolation

Richardson extrapolation is a convergence acceleration technique where a linear combi-

nation of two computed solutions approximating a particular quantity gives a third and

better approximation. These solutions are calculated on two different but nested meshes.

This method is used to increase the accuracy of computed approximations of the solutions

of classical boundary value problems and to improve the ε-uniform rates of convergence

of computed solutions for linear singularly perturbed problems ([133] and some of the

references therein).

2.5.1 Extrapolation formula

We outline below how we implement this procedure to the solution of FMFDM (2.3.8)-

(2.3.10).

Consider the mesh µ2n,δ where δ is given by (2.3.7), and µ2n,δ is obtained from µn,δ by

bisecting each mesh sub-interval. Thus,

µn,δ = {xj} ⊂ µ2n,δ = {x̃j}

and x̃j − x̃j−1 = h̃j = hj/2.

Solving the discrete analogue of (2.2.4) on µn,δ, the following estimate was established

in [119]:

sup
0<ε≤1

max
0<j≤n

|Vj − νj| ≤ Mn−6 ln6(n/16) ≤ Mn−4, since ln3(n/16) ≤ Mn, ∀ n. (2.5.12)

Denoting by ν̃ the numerical solution computed on the mesh µ2n,δ, (2.5.12) reads:

sup
0<ε≤1

max
0<j≤n

|Vj − ν̃j| ≤ M(2n)−6 ln6(n/16) ≤ M(2n)−4. (2.5.13)

It is to be noted that the factor ln(n/16) in both (2.5.12) and (2.5.13) comes from equation
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(2.3.7) and one need not substitute n by 2n in this factor on the mesh µ2n,δ, since the two

meshes use the same mesh transition parameter δ. It follows that

V (xj)− ν(xj) = Mn−6 ln6(n/16) + Rn(xj), ∀ xj ∈ µn,δ

and

V (x̃j)− ν̃(x̃)j = M(2n)−6 ln6(n/16) + R2n(x̃j), ∀ x̃j ∈ µ2n,δ,

where the remainders Rn(xj) and R2n(x̃j) are of o(n−6 ln6(n/16)).

A combination of the two equations above gives

(
V (xj)− ν(xj)

)
− 64

(
V (xj)− ν̃(xj

)
= Rn(xj)− 64R2n(xj) = o(n−6 ln6(n/16)),

∀ xj ∈ µn,δ.

Hence,

V (xj)− 64ν̃j(xj)− ν(xj)

63
= o(n−6 ln6(n/16)), ∀ xj ∈ µn,δ

and therefore we set

νext
j :=

64ν̃j(xj)− ν(xj)

63
, ∀ xj ∈ µn,δ. (2.5.14)

as the extrapolation formula which we shall use in next section.

2.5.2 Error estimates after extrapolation

For any j ∈ {1, 2, . . . , n−1}, the local truncation error of the scheme (2.3.8)-(2.3.10) after

extrapolation is

[
L̃h

(
V − νext

)]
j
=

64

63

(
L̃h(V − ν̃)

)
j
− 1

63

(
L̃h(V − ν)

)
j
. (2.5.15)
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Now

(
L̃h(V − ν)

)
j

= (r−j − q−j Wj−1)Vj−1 + (rc
j − qc

jWj)Vj + (r+
j − q+

j Wj+1)Vj+1

+ε(q−j V ′′
j−1 + qc

jV
′′
j + q+

j V ′′
j+1) (2.5.16)

and

(
L̃h(V − ν̃)

)
j

= (r̃−j − q̃−j Wj−1)Vj−1 + (r̃c
j − q̃c

jWj)Vj + (r̃+
j − q̃+

j Wj+1)Vj+1

+ε(q̃−j V ′′
j−1 + q̃c

jV
′′
j + q̃+

j V ′′
j+1). (2.5.17)

The quantities r−j , rc
j , r

+
j , q−j , qc

j and q+
j are given in (2.3.10) while the quantities r̃−j , r̃c

j , r̃
+
j , q̃−j , q̃c

j

and q̃+
j , are obtained by substituting hj by h̃j in the expressions for r−j , rc

j , r
+
j , q−j , qc

j , and q+
j ,

respectively.

We will use two versions of the expansions of Vj−1, Vj+1 and their derivatives depending

on whether we want to apply them in (2.5.16) or in (2.5.17).

Expansions to be used in (2.5.16):

Vj−1 = Vj − hjV
′
j +

h2
j

2
V ′′

j −
h3

j

6
V ′′′

j +
h4

j

24
V

(4)
j − h5

j

120
V

(5)
j +

h6
j

720
V (6)(ξ1,j),

Vj+1 = Vj + hj+1V
′
j +

h2
j+1

2
V ′′

j +
h3

j+1

6
V ′′′

j +
h4

j+1

24
V

(4)
j +

h5
j+1

120
V

(5)
j +

h6
j+1

720
V (6)(ξ2,j),

V ′′
j−1 = V ′′

j − hjV
′′′
j +

h2
j

2
V

(4)
j − h3

j

6
V

(5)
j +

h4
j

24
V (6)(ξ3,j),

V ′′
j+1 = V ′′

j + hj+1V
′′′
j +

h2
j+1

2
V (4)j +

h3
j+1

6
V

(5)
j +

h4
j+1

24
V (6)(ξ4,j),

where

ξ1,j ∈ (xj−1, xj), ξ3,j ∈ (xj−1, xj)
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and

ξ2,j ∈ (xj, xj+1), ξ4,j ∈ (xj, xj+1).

Expansions to be used in (2.5.17):

Vj−1 = Vj − h̃jV
′
j +

h̃2
j

2
V ′′

j −
h̃3

j

6
V ′′′

j +
h̃4

j

24
V

(4)
j − h̃5

j

120
V

(5)
j +

h̃6
j

720
V (6)(ξ̃1,j),

Vj+1 = Vj + h̃j+1V
′
j +

h̃2
j+1

2
V ′′

j +
h̃3

j+1

6
V ′′′

j +
h̃4

j+1

24
V

(4)
j +

h̃5
j+1

120
V

(5)
j +

h̃6
j+1

720
V (6)(ξ̃2,j),

V ′′
j−1 = V ′′

j − h̃jV
′′′
j +

h̃2
j

2
V

(4)
j − h̃3

j

6
V

(5)
j +

h̃4
j

24
V (6)(ξ̃3,j),

V ′′
j+1 = V ′′

j + h̃j+1V
′′′
j +

h̃2
j+1

2
V (4)j +

h̃3
j+1

6
V

(5)
j +

h̃4
j+1

24
V (6)(ξ̃4,j),

where

ξ̃1,j ∈
(xj−1 + xj

2
, xj

)
, ξ̃3,j ∈

(xj−1 + xj

2
, xj

)

and

ξ̃2,j ∈
(
xj,

xj + xj+1

2

)
, ξ̃4,j ∈

(
xj,

xj + xj+1

2

)
.

Equations (2.5.16) and (2.5.17), respectively, become

(
L̃h(V − ν)

)
j

= T0Vj + T1V
′
j + T2V

′′
j + T3V

′′′
j + T4V (4)j + T5V

(5)
j + T6,1V

(6)(ξ1,j)

+T6,2V
(6)(ξ2,j) + T6,3V

(6)(ξ3,j) + T6,4V
(6)(ξ4,j) (2.5.18)
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and

(
L̃h(V − ν̃)

)
j

= T̃0Vj + T̃1V
′
j + T̃2V

′′
j + T̃3V

′′′
j + T̃4V (4)j + T̃5V

(5)
j + T̃6,1V

(6)(ξ̃1,j)

+T̃6,2V
(6)(ξ̃2,j) + T̃6,3V

(6)(ξ̃3,j) + T̃6,4V
(6)(ξ̃4,j) (2.5.19)

where

ξ1,j, ξ3,j ∈ (xj−1, xj), ξ2,j, ξ4,j ∈ (xj, xj+1)

and

ξ̃1,j, ξ̃3,j ∈
(

xj−1 + xj

2
, xj

)
, ξ̃2,j, ξ̃4,j ∈

(
xj,

xj + xj+1

2

)
.

In the above

T0 = (r−j + rc
j + r+

j )− (q−j Wj−1 + qc
jWj + q+

j Wj+1),

T1 = hj+1(r
+
j − q+

j Wj+1)− hj(r
−
j − q−j Wj−1),

T2 =
h2

j

2
(r−j − q−j Wj−1) +

h2
j+1

2
(r+

j − q+
j Wj+1) + ε(q−j + qc

j + q+
j ),

T3 = −h3
j

6
(r−j − q−j Wj−1) +

h3
j+1

6
(r+

j − q+
j Wj+1) + ε(hj+1q

+
j − hjq

−
j ),

(2.5.20)

T4 =
h4

j

24
(r−j − q−j Wj−1) +

h4
j+1

24
(r+

j − q+
j Wj+1) +

ε

2
(h2

j+1q
+
j + h2

jq
−
j ),

T5 = − h5
j

120
(r−j − q−j Wj−1) +

h5
j+1

120
(r+

j − q+
j Wj+1) +

ε

6
(h3

j+1q
+
j − h3

jq
−
j ),

T6,1 =
h6

j

720
(r−j − q−j Wj−1), T6,2 =

h6
j+1

720
(r+

j − q+
j Wj+1)
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T6,3 =
εh4

jq
−
j

24
, T6,4 =

εh4
j+1q

+
j

24
.

The expressions for T̃0, T̃1, T̃2, T̃3, T̃4, T̃5, T̃6,1, T̃6,2, T̃6,3, and T̃6,4 can similarly be found as

in (3.3.19) by replacing hj by h̃j.

Now two cases are to be considered:

Either

j ∈ {1, . . . , j0 − 1} ∪ {n− j0 + 1, . . . , n− 1} (2.5.21)

(i.e, the grid point xj lies in the fine mesh),

or

j ∈ {j0, . . . , n− j0} (2.5.22)

(i.e, the point lies in the coarse mesh).

Using (2.3.6), (2.3.7) and (2.3.10), we see that in both cases, all T ’s and T̃ ’s vanish

except T6,1, . . . , T6,4, each of which being equal to Mεh6
j and T̃6,1, . . . , T̃6,4 each of which

being equal to Mεh̃6
j .

It follows from (2.5.18) and (2.5.19) that

∣∣∣
(
Lh(V − ν)

)
j

∣∣∣ ≤ Mεh6
j

∣∣∣V (6)(ξ)
∣∣∣ and

∣∣∣
(
L̃h(V − ν)

)
j

∣∣∣ ≤ Mεh̃6
j

∣∣∣V (6)(ξ̃)
∣∣∣,

where

ξ ∈ (xj−1, xj+1) and ξ̃ ∈
(xj−1 + xj

2
,
xj + xj+1

2

)
.

Therefore, (2.5.15) leads to

∣∣∣
[
L̃h

(
V − νext

j

)]
j

∣∣∣ ≤ Mεh6
j

∣∣∣V (6)(ξ)
∣∣∣, (2.5.23)
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where

ξ ∈ (xj−1, xj+1).

We denote νext
ε,r and νext

ε,s , respectively, the regular and the singular components of νext.

By virtue of Lemma (2.2.4), we have,

∣∣∣
[
L̃h

(
Vε,r − νext

ε,r

)]
j

∣∣∣ ≤ Mεh6
j

∣∣∣V (6)
ε,r (ξ)

∣∣∣ ≤ Mεh6
j

(
1 + ε−2E(xj, β)

)
(2.5.24)

which finally leads to the estimate

∣∣∣
[
L̃h

(
Vε,r − νext

ε,r

)]
j

∣∣∣ ≤ M





n−6 ln6(n/16), in case of (2.5.21),

n−6
(

ε
−xj0

√
β/ε

+e
−(1−xj0

)
√

β/ε

ε

)
, in case of (2.5.22).

(2.5.25)

Likewise, ∣∣∣
[
L̃h

(
Vε,s − νext

ε,s

)]
j

∣∣∣ ≤ Mεh6
j

∣∣∣V (6)
ε,s (ξ)

∣∣∣ ≤ Mεh6
jε
−3E(xj, β) (2.5.26)

leads to

∣∣∣
[
L̃h

(
Vε,s − νext

ε,s

)]
j

∣∣∣ ≤ M





n−6 ln6(n/16), in case of (2.5.21),

n−6
(

e
−xj0

√
β/ε

+ε
−(1−xj0

)
√

β/ε

ε

)
, in case of (2.5.22).

(2.5.27)

Combining (2.5.25) and (2.5.27), and using Lemma (2.2.5) along with Lemma (2.3.2)

(uniform stability estimate), we obtain our main result stated in the following theorem.

Theorem 2.5.1. Let W (x), Z(x) be sufficiently smooth so that V (x) ∈ C6[0, 1] and

W (x) ≥ β > 0. Let νext
j , j = 0(1)n be the approximate solution of (2.2.4) after using the
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Richardson extrapolation. Then, there is a constant M independent of ε and h such that

sup
0<ε≤1

max
0<j≤n

∣∣∣Vj − νext
j

∣∣∣ ≤ Mn−6 ln6(n/16) ≤ Mn−4.

2.6 Numerical results

To demonstrate the theoretical outcomes, we consider the following examples and present

the results before and after extrapolation.

Example 2.6.1. [119] Consider problem (2.1.1) with

a(x) = 1 + x2, b(x) = 1 + x(1− x),

f(x) = 1 + x(1− x)− exp(−x/
√

ε)[x(2x2 − 3x + 1)− 2
√

ε(2x2 − x(1 +
√

ε) + 1)]

+ exp(−(1− x)/
√

ε)[x2(2x− 1) + 2
√

ε(2x2 + x
√

ε + 1)].

Its exact solution is given by

y(x) = 1 + (x− 1) exp[−x/
√

ε]− x exp[−(1− x)/
√

ε].

Example 2.6.2. [119] Consider problem (2.1.1) with

a(x) = 1, b(x) = 1, f(x) = −(cos2 πx + 2επ2 cos 2πx).

Its exact solution is given by

y(x) =
(
exp[−(1− x)/

√
ε] + exp[−x/

√
ε]

)
/
(
1 + exp[−1/

√
ε]

)− cos2 πx.

Maximum errors at all the mesh points are evaluated using the formulae:

En,ε := max
0≤j≤n

|y(xj)− vj|, before extrapolation,
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and

Eext
n,ε := max

0≤j≤n
|y(xj)− vext

j |, after extrapolation,

where νj is the solutions of (2.1.1) obtained using (2.2.3) and (2.2.4) and νext
j is the

solution after extrapolation of νj.

The numerical rates of convergence are computed using the formula [33]:

rk ≡ rε,k := log2(Ẽnk
/Ẽ2nk

), k = 1, 2, . . .

where Ẽ stands for En,ε and Eext
n,ε , respectively. Further, we compute

En = max
0<ε≤1

En,ε

and

Eext
n = max

0<ε≤1
Eext

n,ε

whereas the numerical rate of uniform convergence is computed as

Rn := log2(En/E2n)

and

Rext
n := log2(E

ext
n /Eext

2n ).

2.7 Discussion

In this chapter we have investigated whether Richardson extrapolation improves the ac-

curacy of the numerical solution obtained through a high order method applied to a

self-adjoint singular perturbation problem.

We observe that even though Richardson extrapolation improves the accuracy slightly,
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Table 2.1: Results for Example 2.6.1 before extrapolation (Maximum errors)
ε n=64 n=128 n=256 n=512 n=1024

1.00E-02 1.10E-06 6.87E-08 4.30E-09 2.69E-10 1.68E-11
1.00E-03 4.57E-05 4.75E-06 2.99E-07 1.87E-08 1.17E-09
1.00E-04 6.26E-04 8.41E-06 1.01E-06 1.55E-07 2.01E-08
1.00E-05 4.46E-03 9.06E-05 1.13E-06 1.48E-07 1.92E-08
1.00E-06 1.00E-02 3.98E-04 1.13E-05 1.87E-07 1.90E-08
1.00E-07 1.31E-02 6.73E-04 3.07E-05 1.14E-06 2.80E-08
1.00E-08 1.43E-02 7.98E-04 4.29E-05 2.18E-06 9.70E-08
1.00E-09 1.47E-02 8.42E-04 4.77E-05 2.68E-06 1.47E-07
1.00E-10 1.48E-02 8.56E-04 4.93E-05 2.87E-06 1.68E-07
1.00E-11 1.49E-02 8.61E-04 4.98E-05 2.93E-06 1.75E-07
1.00E-12 1.49E-02 8.62E-04 5.00E-05 2.95E-06 1.77E-07
1.00E-13 1.49E-02 8.63E-04 5.00E-05 2.96E-06 1.78E-07

En 1.49E-02 8.63E-04 5.00E-05 2.96E-06 1.78E-07

Table 2.2: Results for Example 2.6.1 after extrapolation (Maximum errors)
ε n=64 n=128 n=256 n=512 n=1024

1.00E-02 5.24E-08 3.27E-09 2.05E-10 1.28E-11 7.54E-13
1.00E-03 1.08E-05 2.27E-07 1.42E-08 8.89E-10 5.56E-11
1.00E-04 1.06E-04 1.82E-06 4.83E-08 7.38E-09 9.56E-10
1.00E-05 1.30E-03 1.55E-05 1.78E-07 7.07E-09 9.16E-10
1.00E-06 5.90E-03 1.71E-04 2.78E-06 2.58E-08 9.02E-10
1.00E-07 9.98E-03 4.72E-04 1.77E-05 4.33E-07 5.52E-09
1.00E-08 1.18E-02 6.59E-04 3.41E-05 1.53E-06 5.17E-08
1.00E-09 1.25E-02 7.33E-04 4.21E-05 2.32E-06 1.18E-07
1.00E-10 1.27E-02 7.58E-04 4.50E-05 2.65E-06 1.53E-07
1.00E-11 1.27E-02 7.67E-04 4.60E-05 2.77E-06 1.67E-07
1.00E-12 1.28E-02 7.69E-04 4.63E-05 2.81E-06 1.71E-07
1.00E-13 1.28E-02 7.70E-04 4.64E-05 2.82E-06 1.73E-07

En 1.28E-02 7.70E-04 4.64E-05 2.82E-06 1.73E-07
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Table 2.3: Results for Example 2.6.2 before extrapolation (Maximum errors)
ε n=64 n=128 n=256 n=512 n=1024

1.00E-02 4.81E-07 3.01E-08 1.88E-09 1.18E-10 7.42E-12
1.00E-03 7.41E-05 2.85E-06 1.78E-07 1.12E-08 6.97E-10
1.00E-04 4.10E-04 7.94E-06 6.93E-07 1.81E-07 4.56E-08
1.00E-05 2.10E-03 5.05E-05 7.78E-07 1.05E-07 1.37E-08
1.00E-06 4.03E-03 1.70E-04 5.37E-06 1.07E-07 1.37E-08
1.00E-07 5.00E-03 2.60E-04 1.22E-05 4.85E-07 1.37E-08
1.00E-08 5.35E-03 2.97E-04 1.60E-05 8.27E-07 3.86E-08
1.00E-09 5.47E-03 3.10E-04 1.74E-05 9.82E-07 5.43E-08
1.00E-10 5.51E-03 3.15E-04 1.79E-05 1.04E-06 6.05E-08
1.00E-11 5.52E-03 3.16E-04 1.81E-05 1.06E-06 6.27E-08
1.00E-12 5.52E-03 3.16E-04 1.81E-05 1.07E-06 6.45E-08
1.00E-13 5.52E-03 3.17E-04 1.82E-05 1.10E-06 7.10E-08

En 5.52E-03 3.17E-04 1.82E-05 1.10E-06 7.10E-08

Table 2.4: Results for Example 2.6.2 after extrapolation (Maximum errors)
ε n=64 n=128 n=256 n=512 n=1024

1.00E-02 2.29E-08 1.43E-09 8.97E-11 5.67E-12 3.62E-13
1.00E-03 1.77E-05 1.36E-07 8.50E-09 5.31E-10 3.32E-11
1.00E-04 7.76E-05 1.81E-06 1.67E-07 4.32E-08 1.09E-08
1.00E-05 7.05E-04 1.03E-05 1.38E-07 5.02E-09 9.21E-10
1.00E-06 2.47E-03 8.06E-05 1.59E-06 1.79E-08 6.50E-10
1.00E-07 3.79E-03 1.86E-04 7.52E-06 2.12E-07 3.34E-09
1.00E-08 4.35E-03 2.44E-04 1.29E-05 6.07E-07 2.26E-08
1.00E-09 4.54E-03 2.67E-04 1.53E-05 8.57E-07 4.47E-08
1.00E-10 4.60E-03 2.74E-04 1.62E-05 9.56E-07 5.56E-08
1.00E-11 4.62E-03 2.76E-04 1.65E-05 9.90E-07 5.99E-08
1.00E-12 4.63E-03 2.77E-04 1.66E-05 1.00E-06 6.09E-08
1.00E-13 4.63E-03 2.77E-04 1.66E-05 1.00E-06 6.13E-08

En 4.63E-03 2.77E-04 1.66E-05 1.00E-06 6.13E-08
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Table 2.5: Results for Example 2.6.1 before extrapolation (Rates of convergence) nk =
64, 128, 256, 512, 1024

ε r1 r2 r3 r4 r5

1.0E-02 4.00 4.00 4.00 4.00 4.07
1.0E-03 3.27 3.99 4.00 4.00 4.00
1.0E-04 6.22 3.05 2.71 2.95 3.11
1.0E-05 5.62 6.33 2.93 2.95 3.11
1.0E-06 4.65 5.15 5.91 3.30 3.11
1.0E-07 4.28 4.45 4.76 5.34 3.67
1.0E-08 4.16 4.22 4.30 4.49 4.88
1.0E-09 4.12 4.14 4.15 4.19 4.31
1.0E-10 4.11 4.12 4.10 4.10 4.12
1.0E-11 4.11 4.11 4.09 4.07 4.06
1.0E-12 4.11 4.11 4.08 4.06 4.04
1.0E-13 4.11 4.11 4.08 4.05 3.34

Rn 4.11 4.11 4.08 4.05 3.34

Table 2.6: Results for Example 2.6.1 after extrapolation (Rates of convergence) nk =
64, 128, 256, 512, 1024

ε r1 r2 r3 r4 r5

1.0E-02 4.00 4.00 4.00 4.08 -0.29
1.0E-03 5.57 4.00 4.00 4.00 3.99
1.0E-04 5.86 5.23 2.71 2.95 3.11
1.0E-05 6.39 6.44 4.66 2.95 3.11
1.0E-06 5.11 5.94 6.75 4.84 3.09
1.0E-07 4.40 4.74 5.35 6.29 5.62
1.0E-08 4.16 4.27 4.48 4.89 5.63
1.0E-09 4.09 4.12 4.18 4.30 4.57
1.0E-10 4.06 4.07 4.08 4.11 4.19
1.0E-11 4.06 4.06 4.05 4.05 4.07
1.0E-12 4.05 4.05 4.04 4.04 4.03
1.0E-13 4.05 4.05 4.04 4.03 3.30

Rn 4.05 4.05 4.04 4.03 3.30
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Table 2.7: Results for Example 2.6.2 before extrapolation (Rates of convergence) nk =
64, 128, 256, 512, 1024

ε r1 r2 r3 r4 r5

1.0E-02 4.00 4.00 4.00 3.99 4.01
1.0E-03 4.70 4.00 4.00 4.00 4.00
1.0E-04 5.69 3.52 1.94 1.99 2.28
1.0E-05 5.38 6.02 2.88 2.95 3.11
1.0E-06 4.57 4.98 5.65 2.97 3.11
1.0E-07 4.27 4.41 4.65 5.14 3.11
1.0E-08 4.17 4.22 4.27 4.42 4.61
1.0E-09 4.14 4.15 4.15 4.18 4.27
1.0E-10 4.13 4.13 4.11 4.10 4.11
1.0E-11 4.13 4.13 4.10 4.07 4.06
1.0E-12 4.13 4.12 4.08 4.05 3.72
1.0E-13 4.12 4.12 4.05 3.95 2.02

Rn 4.12 4.12 4.05 3.95 2.02

Table 2.8: Results for Example 2.6.2 after extrapolation (Rates of convergence) nk =
64, 128, 256, 512, 1024

ε r1 r2 r3 r4 r5

1.0E-02 4.00 4.00 3.98 3.97 0.23
1.0E-03 7.02 4.00 4.00 4.00 3.16
1.0E-04 5.42 3.44 1.95 1.99 2.28
1.0E-05 6.10 6.23 4.78 2.45 1.67
1.0E-06 4.94 5.66 6.47 4.78 3.09
1.0E-07 4.35 4.63 5.15 5.99 5.35
1.0E-08 4.15 4.24 4.41 4.75 5.39
1.0E-09 4.09 4.12 4.16 4.26 4.48
1.0E-10 4.07 4.08 4.08 4.10 4.16
1.0E-11 4.06 4.07 4.06 4.05 4.07
1.0E-12 4.06 4.06 4.05 4.04 3.64
1.0E-13 4.06 4.06 4.05 4.03 1.81

Rn 4.06 4.06 4.05 4.03 1.81
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this technique does not increase the rate of convergence which is originally four. This

fact was unexpected and contradicts the assertion met in the literature so far about

Richardson extrapolation that “A numerical solution of required accuracy is obtained by

using Richardson extrapolation method to increase the accuracy of the difference solution

[11, 133] and to improve the ε-uniform rates of convergence of computed solutions [133].”

Since the ε-uniform rate of convergence of the FMFDM remains unimproved after

applying Richardson extrapolation to a method of order four for a self-adjoint SPP, it is

natural to check up to which extent this technique improves the order of convergence for

a particular class of SPPs. We are also interested in investigating the limitations of the

technique as applied to methods for high-dimensional SPPs.
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Chapter 3

Higher Order Fitted Operator Finite

Difference Scheme for a Singularly

Perturbed Self-adjoint Problem

Recently, there has been a great interest towards the higher order methods for singu-

larly perturbed problems. As compared to their lower order counterparts, they provide

better accuracy with fewer mesh points. Construction and/or implementation of direct

higher order methods is usually very complicated. Thus a natural choice is to use some

convergence acceleration techniques, e.g., Richardson extrapolation, etc. However, as we

see in this chapter, such techniques do not perform equally well on all type of methods.

To investigate this, we consider two fitted operator finite difference methods (FOFDMs)

developed by Patidar [118] and Lubuma and Patidar [98], referred to as FOFDM-I and

FOFDM-II, respectively. The FOFDM-I is fourth and second order accurate for mod-

erate and smaller values of ε, respectively. Unfortunately, the Richardson extrapolation

does not improve the order of this method. The FOFDM-II is second order uniformly

convergent and we show that its order can be improved up to four by using Richardson

extrapolation. Both the methods are analyzed for convergence and comparative numerical
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results supporting theoretical estimates are provided.

3.1 Introduction

The main aim of this chapter is to investigate the performance of Richardson extrapolation

when applied to various FOFDMs for Singular Perturbation Problems (SPPs).

It is known that the solutions of SPPs have large gradients when the singular pertur-

bation parameter ε approaches zero. In such limiting cases, boundary/interior layers are

developed. The layer behavior of the solution lowers the order of convergence of the under-

lying numerical method. Standard methods have failed to resolve these problems unless a

very fine mesh is considered, which unfortunately raises the computational complexities.

To overcome this difficulty, fitted mesh methods have been considered by various authors

(see, e.g., [68, 111, 105, 119]) since they provide reliable numerical results on a mesh with

a reasonable number of grid points and hence make the method practically applicable.

However, there are certain limitations of these fitted mesh methods (when one intend to

design a direct higher order method) and therefore we consider in this paper the fitted

operator type of methods.

Direct techniques to obtain high order methods for singularly perturbed problems are

well documented. We provide here some of those works.

Gartland [45] examined a one-dimensional convection-diffusion problem where he con-

structed a scheme of order p (p = 1, 2, 3, 4) using collocation approach whereas a fourth

order uniformly convergent scheme for a reaction-diffusion problem was presented in [57]

where the Hermitian approximation of the second order derivative was used.

For a self-adjoint problem, O’Riordan and Stynes [115] gave a method using finite

elements with uniform mesh. This method is second order accurate in L∞-norm. In [118]

a fitted operator finite difference method (FOFDM) was derived via Numerov’s method

and shown to be fourth order accurate for moderate value of ε and second order accurate

for very small values of ε. On the other hand, in [119] a fitted mesh finite difference
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method (FMFDM) was shown to be fourth order ε-uniformly convergent.

On the other hand, Vulanovic presented a second order ε-uniformly convergent method

in [145] for a nonlinear problem. The same author gave a third order method for quasi-

linear problems in [149] and [150] whereas Wang [151] achieved third and fourth order

convergence for a nonlinear problem.

While none of the methods above is of order higher than four, there exist methods of

arbitrary order (see, e.g., [51]) for certain class of problems.

Since the aim is to achieve a better accuracy, one would rather use a convergence

acceleration strategy than any of the direct methods (which are tedious in most cases).

Several methods for improving the accuracy have been designed in the past (see for ex-

ample [11, 47, 64, 123, 132, 133] and the references therein). One of these convergence

acceleration techniques (presented in [64]) was subsequently termed as the Richardson ex-

trapolation. It is a postprocessing procedure where a linear combination of two computed

solutions approximating a particular quantity gives a third and better approximation

([111]). It was implemented in [77] for a system of first order linear ordinary differential

equation, in [93] and [111] for a one-dimensional linear convection-diffusion problem, and

in [133] for a quasilinear parabolic singularly perturbed convection-diffusion equations.

In this paper, we consider two FOFDMs for the solution of the self-adjoint problem

Ly ≡ −ε(a(x)y′)′ + b(x)y = f(x), x ∈ [0, 1], y(0) = η0, y(1) = η1, (3.1.1)

where η0 and η1 are given constants and ε ∈ (0, 1]. The functions f(x), a(x) and b(x) are

assumed to be sufficiently smooth that satisfy the conditions

a(x) ≥ a > 0, b(x) ≥ b > 0.

The existence and uniqueness of a solution of the above problem can be obtained by

using the following two results (both of which are proved in Patidar [118]):
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Lemma 3.1.1. Let Ψ(x) be any sufficiently smooth function that satisfies Ψ(0) ≥ 0 and

Ψ(1) ≥ 0. Then LΨ(x) ≥ 0 for all x ∈ (0, 1) implies that Ψ(x) ≥ 0 for all x ∈ [0, 1].

Lemma 3.1.2. Let y(x) be the solution of the problem (3.1.1), then we have

||y|| ≤ b−1||f ||+ max(η0, η1),

where ‖.‖ is the usual maximum norm.

The rest of this chapter is organized as follows. We present two FOFDMs in Section

3.2 which are analyzed in Section 3.3. Comparative numerical results (before and after

extrapolation) for these two methods are presented in Section 3.4. Finally, we conclude

the chapter in Section 3.5.

3.2 Two fitted operator finite difference methods

Now, let n be a positive integer. Consider the following partition of the interval [0, 1]:

x0 = 0, xj = x0 + jh, j = 1(1)n, h = xj − xj−1, xn = 1.

We denote the above mesh by µn whereas the mesh µ2n is obtained by bisecting each

mesh interval in µn , i.e.,

µ2n = {x̃j} with x̃0 = 0, x̃n = 1 and x̃j − x̃j−1 = h̃ = h/2, j = 1(1)2n.

These two meshes will be used to derive the extrapolation formulae in the next section.

Furthermore, we use the notations Vj = V (xj), Wj = W (xj) and Zj = Z(xj) and we

denote the approximations of Vj at the grid points xj by the unknowns νj.
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3.2.1 FOFDM-I

Using the theory of inverse monotone matrices, Patidar [118] designed a high order

FOFDM to solve (3.1.1) via (2.2.4) and (2.2.3) as follows:

He defined the fitting comparison problem associated with (2.2.4) by

−σ(x, ε)V ′′ + W (x)V = Z(x), V (0) = α0, V (1) = α1, (3.2.2)

where σ(x, ε) is a fitting factor. Then the approximate solution of the problem (3.2.2) is

sought by the Numerov’s method:

−
[
σ−j −

h2

12
Wj−1

]
νj−1 +

[
2σc

j +
5h2

6
Wj

]
νj −

[
σ+

j −
h2

12
Wj+1

]
νj+1

=
h2

12
[Zj−1 + 10Zj + Zj+1], (3.2.3)

where σ±j and σc
j are given by

σ±j =
h2Wj±1

12

(
1 +

3

sinh2(
ρjh

2
)

)
and σc

j =
h2Wj

12

(
1 +

3

sinh2(
ρjh

2
)

)
. (3.2.4)

In matrix notation, the scheme (3.2.3) can be written as the following tridiagonal system

Aν = F. (3.2.5)

The entries corresponding to A and F in this case are

Aij = r−j , i = j + 1; j = 1, 2, · · · , n− 2;

Aij = rc
j , i = j; j = 1, 2, · · · , n− 1;

Aij = r+
j , i = j − 1; j = 2, 3, · · · , n− 1;
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F1 = q−1 Z0 + qc
1Z1 + q+

1 Z2 − r−1 α0,

Fj = q−j Zj−1 + qc
jZj + q+

j + Zj+1, j = 2, 3, . . . , n− 2,

Fn−1 = q−n−1Zn−2 + qc
n−1Zj + q+

n−1Zn − r+
n−1α1,

where

r−j = −
[
σ−j − h2

12
Wj−1

]
,

rc
j =

[
2σc

j + 5h2

6
Wj

]
,

r+
j = −

[
σ+

j − h2

12
Wj+1

]
,

q−j = q+
j = h2

12
, qc

j = 5h2

6
; j = 1, 2, . . . , n− 1.





(3.2.6)

3.2.2 FOFDM-II

Subsequent to Patidar [118], Lubuma and Patidar [98] developed the following FOFDM

(using the nonstandard finite difference modeling rules of Mickens [103]) to solve (2.2.4):

−ε
νj−1 − 2νj + νj+1

φ̃2
j

+ W̃jνj = Zj, (3.2.7)

where

W̃j =
Wj−1 + Wj + Wj+1

3
, ρ̃j =

√
W̃j

ε
, and φ̃j ≡ 2

ρ̃j

sinh

(
ρ̃jh

2

)
.

This leads to a tridiagonal system of linear equations

Aν = F. (3.2.8)
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Corresponding entries of A and F in this case are

Aij = r−j , i = j + 1; j = 1, 2, · · · , n− 2,

Aij = rc
j , i = j; j = 1, 2, · · · , n− 1,

Aij = r+
j , i = j − 1; j = 2, 3, · · · , n− 1,

F1 = Z1 − r−1 α0, Fn−1 = Zn−1 − r+
n−1α1,

Fj = Zj; j = 2, 3, · · · , n− 2,

where

r−j = − ε

φ̃2
j

, r+
j = − ε

φ̃2
j

, and rc
j =

2ε

φ̃2
j

+ W̃j. (3.2.9)

We analyze the above FOFDMs in next section whereas the comparative numerical results

obtained via these methods are presented in Section 4.

3.3 Analysis of the numerical methods

FOFDM-I was analyzed for convergence (before extrapolation) in [118]. Here we provide

additional analysis, that is, the one after the extrapolation. Regarding FOFDM-II, we

revisit the analysis (before extrapolation) presented in [98] and then present the analysis

after extrapolation.

The analysis for each of the methods is divided into three parts. Firstly, we provide the

error estimates where the approximate solution is the one obtained before extrapolation.

These estimates are then used to derive the extrapolation formula. Finally, we provide the

error estimates in which the approximate solution obtained after extrapolation is used.
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3.3.1 Analysis of FOFDM-I

Error estimates before extrapolation

The following estimates are obtained in [118]:

max
1≤j≤n−1

|V (xj)− νj| ≤





Mh4

ε

[
1 + max1≤j≤n−1

E(xj ,β)

ε2

]
, when Ch ≤ ε,

Mh2
[
1 + h2 max1≤j≤n−1

E(xj ,β)

ε

]
, when Ch ≥ ε.

(3.3.10)

where

E(x, β) =
{

exp
(
− x/

√
β/ε

)
+ exp

(
− (1− x)

√
β/ε

)}
, and 0 < β ≤ W (x).

Here and after, M and C denote positive constants which may take different values in

different equations and inequalities but are always independent of h and ε.

Extrapolation formula

The FOFDM-I on the mesh µn satisfies (3.3.10). Denoting by ν̃ the numerical solution

computed on the mesh µ2n, the estimate (3.3.10) reads

max
1≤ j≤2n−1

|V (x̃j)− ν̃j| ≤





M
ε
(h

2
)4

[
1 + max1≤ j≤2n−1

E(x̃j ,β)

ε2

]
, when Ch ≤ ε,

M(h
2
)2

[
1 + (h

2
)2 max1≤ j≤2n−1

E(x̃j ,β)

ε

]
, when Ch ≥ ε.

(3.3.11)

To establish the suitable extrapolation formula, it is important to consider the two cases

separately.

We start with the case in which Ch ≤ ε.
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It follows, from (3.3.10) and (3.3.11), that

V (xj)− νj =
Mh4

ε

[
1 +

E(xj, β)

ε2

]
+ Rn(xj), 1 ≤ j ≤ n− 1,

and

V (x̃j)− ν̃j =
M

ε

(
h

2

)4 [
1 +

E(x̃j, β)

ε2

]
+ R2n(x̃j), 1 ≤ j ≤ 2n− 1,

where both the remainders, Rn(xj) and R2n(x̃j), are of O(h4).

Therefore,

(V (xj)− νj)− 16 (V (xj)− ν̃j) = Rn(xj)− 16R2n(xj) = o(h4), ∀ xj ∈ µn.

Hence,

V (xj)− 16ν̃j − νj

15
= O(h4), ∀ xj ∈ µn. (3.3.12)

In the case when Ch ≥ ε, estimates (3.3.10) and (3.3.11), respectively, give

V (xj)− νj = Mh2

[
1 + h2E(xj, β)

ε

]
+ R∗

n(xj), 1 ≤ j ≤ n− 1,

and

V (x̃j)− ν̃j = M

(
h

2

)2
[
1 +

(
h

2

)2
E(x̃j, β)

ε

]
+ R∗

2n(x̃j), 1 ≤ j ≤ 2n− 1,

where both the remainders, R∗
n(xj) and R∗

2n(x̃j) are of O(h2).

Thus,

(V (xj)− νj)− 16 (V (xj)− ν̃j) = O(h2), ∀ xj ∈ µn

67

 

 

 

 



CHAPTER 3. HIGHER ORDER FITTED OPERATOR FINITE DIFFERENCE
SCHEME FOR A SINGULARLY PERTURBED SELF-ADJOINT PROBLEM

and consequently,

V (xj)− 16ν̃j − νj

15
= O(h2), ∀ xj ∈ µn. (3.3.13)

In view of equations (3.3.12) and (3.3.13), it is natural to use the formula

νext
j :=

16ν̃j − νj

15
, j = 1(1)n− 1 (3.3.14)

in the extrapolation process, irrespective of the cases Ch ≤ ε or Ch ≥ ε.

Error estimates after extrapolation

Unless indicated otherwise, in what follows, the functions with a symbol ‘˜’ means that

they are evaluated at the mesh µ2n. The only exceptions to this notation are with the

denominator functions used in FOFDM-II and the functions W used in (3.3.47) where we

use ‘ − ’ with the denominator function evaluated at the mesh µ2n whereas the one at

the mesh µn has a ‘˜’ on top of it.

The local truncation error of the scheme (3.2.5) and (3.2.6) after extrapolation is

[
L̃h

(
V − 16ν̃ − ν

15

)]

j

=
16

15

[
Ã(V − ν̃)

]
j
− 1

15
[A(V − ν)]j , (3.3.15)

j = 1(1)n− 1.

Here

(A(V − ν))j = (r−j − q−j Wj−1)Vj−1 + (rc
j − qc

jWj)Vj + (r+
j − q+

j Wj+1)Vj+1

+ε(q−j V ′′
j−1 + qc

jV
′′
j + q+

j V ′′
j+1), (3.3.16)

and

(Ã(V − ν̃))j = (r̃−j − q̃−j Wj−1)Vj−1 + (r̃c
j − q̃c

jWj)Vj + (r̃+
j − q̃+

j Wj+1)Vj+1
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+ε(q̃−j V ′′
j−1 + q̃c

jV
′′
j + q̃+

j V ′′
j+1). (3.3.17)

Using the Taylor series expansions, we obtain (when Ch ≤ ε)

(A(V − ν))j = T0Vj + T1V
′
j + T2V

′′
j + T3V

′′′
j

+T4V
(4)(ξ1,j) + T4V

(4)(ξ2,j), (3.3.18)

and

(
Ã(V − ν̃)

)
j

= T̃0Vj + T̃1V
′
j + T̃2V

′′
j + T̃3V

′′′
j

+T̃4V
(4)(ξ̃1,j) + T̃4V

(4)(ξ̃2,j), (3.3.19)

where

ξ1,j ∈ (xj−1, xj), ξ2,j ∈ (xj, xj+1),

and

ξ̃1,j ∈
(

xj−1 + xj

2
, xj

)
, ξ̃2,j ∈

(
xj,

xj + xj+1

2

)
.

Also

T0 = −σ−j + 2σc
j − σ+

j ,

T1 = h(σ−j − σ+
j ),

T2 = −h2
[

1
2
(σ−j + σ+

j )− ε
]
,

T3 =
h3

j

6
(σ−j − σ+

j ),

T4 = −h4
j

24
[σ−j + σ+

j − 2ε].





(3.3.20)
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The different expressions for T̃0, T̃1, T̃2, T̃3, and T̃4, are equivalently found as in (3.3.20)

by replacing h by h̃ and σ by σ̃.

Some algebraic manipulations yield

|T0| ≤ Mh6

ε
, |T̃0| ≤ Mh̃6

ε
; |T1| ≤ Mh6

ε
, |T̃1| ≤ Mh̃6

ε
;

|T2| ≤ Mh6

ε
, |T̃2| ≤ Mh̃6

ε
;

|T3| ≤ Mh8

ε
, |T̃3| ≤ Mh̃8

ε
; |T4| ≤ Mh8

ε
, |T̃4| ≤ Mh̃8

ε
.





(3.3.21)

On the other hand, the following lemma (proved in [105]) provides bounds on the deriva-

tives of solution:

Lemma 3.3.1. For all k ∈ {0, 1, 2, 3, 4} and x ∈ [0, 1], the solution V (x) of (2.2.4)

satisfies

|V (k)(x)| ≤ M [1 + ε−k/2E(x, β)],

where

0 < β ≤ W (x) and E(x, β) =
{

exp
(
−x/

√
β/ε

)
+ exp

(
−(1− x)

√
β/ε

)}
.

Using the above lemma, relations (3.3.18)-(3.3.19), and the fact that h̃ < h, we obtain

max
1≤j≤n−1

∣∣∣(A(V − ν))j

∣∣∣ ≤ Mh6

ε

[
1 + max

1≤j≤n−1

E(xj, β)

ε2

]
, (3.3.22)

and

max
1≤j≤n−1

∣∣∣∣
(
Ã(V − ν̃)

)
j

∣∣∣∣ ≤
Mh6

ε

[
1 + max

1≤j≤n−1

E(xj, β)

ε2

]
. (3.3.23)

Furthermore, the matrices A and Ã are diagonally dominant by rows, therefore, we

have the following result (due to Varah [140]) to estimate the norm of the associated
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matrix:

||A−1|| ≤ max
j
{|rc

j | − (|r−j |+ |r+
j |)}−1. (3.3.24)

Using (3.2.6), we get

{|rc
j | − (|r−j |+ |r+

j |)} ≥ Mh2.

Hence from the inequality (3.3.24), we have

||A−1|| ≤ M

h2
, (3.3.25)

and similarly

||Ã−1|| ≤ M

h̃2
. (3.3.26)

Now, using the inequality

max
j

∣∣∣∣V (xj)− 16ν̃j − νj

15

∣∣∣∣ ≤
16

15
max

j
|V (xj)− ν̃j|+ 1

15
max

j
|V (xj)− νj|,

along with (3.3.22)-(3.3.23) and (3.3.25)-(3.3.26) into

max
j
|Vj − νj| ≤ ||A−1||max

j

∣∣∣(A(V − ν))j

∣∣∣ , (3.3.27)

and

max
j
|Vj − ν̃j| ≤ ||Ã−1||max

j

∣∣∣∣
(
Ã(V − ν̃)

)
j

∣∣∣∣ , (3.3.28)

we obtain

max
j

∣∣V (xj)− νext
j

∣∣ ≤ Mh4

ε

(
1 + max

j

E(xj, β)

ε2

)
. (3.3.29)

On the other hand, when Ch ≥ ε, we introduce some new notations

r−j = r−j (Wj−1), r+
j = r+

j (Wj+1), rc
j = rc

j(Wj),

R−
j = r−j (W0), R+

j = r+
j (W0), Rc

j = rc
j(W0),
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r̃−j = r̃−j (Wj−1), r̃+
j = r̃+

j (Wj+1), r̃c
j = r̃c

j(Wj),

R̃−
j = r̃−j (W0), R̃+

j = r̃+
j (W0), R̃c

j = r̃c
j(W0),

and since qj’s and q̃j’s are independent of Wj’s, we will have Qj = qj, Q̃j = q̃j, etc.

In this case, then we have

(A(V − ν))j = {[(r−j − q−j Wj−1)Vj−1 + (rc
j − qc

jWj)Vj + (r+
j − q+

j Wj+1)Vj+1

+ε(q−j V ′′
j−1 + qc

jV
′′
j + q+

j V ′′
j+1)]

−[(R−
j −Q−

j W0)Vj−1 + (Rc
j −Qc

jW0)Vj + (R+
j −Q+

j W0)Vj+1

+ε(Q−
j V ′′

j−1 + Qc
jV

′′
j + Q+

j V ′′
j+1)]}

and

(
Ã(V − ν̃)

)
j

= {[(r̃−j − q̃−j Wj−1)Vj−1 + (r̃c
j − q̃c

jWj)Vj + (r̃+
j − q̃+

j Wj+1)Vj+1

+ε(q̃−j V ′′
j−1 + q̃c

jV
′′
j + q̃+

j V ′′
j+1)]

−[(R̃−
j − Q̃−

j W0)Vj−1 + (R̃c
j − Q̃c

jW0)Vj + (R̃+
j − Q̃+

j W0)Vj+1

+ε(Q̃−
j V ′′

j−1 + Q̃c
jV

′′
j + Q̃+

j V ′′
j+1)]},

which when simplified, reduce to

(A(V − ν))j = [(r−j −R−
j )− q−j (Wj−1 −W0)]Vj−1 + [(rc

j −Rc
j)− qc

j(Wj −W0)]Vj

+[(r+
j −R+

j )− q+
j (Wj+1 −W0)]Vj+1 (3.3.30)

and

(
Ã(V − ν̃)

)
j

= [(r̃−j − R̃−
j )− q̃−j (Wj−1 −W0)]Vj−1 + [(r̃c

j − R̃c
j)− q̃c

j(Wj −W0)]Vj

+[(r̃+
j − R̃+

j )− q̃+
j (Wj+1 −W0)]Vj+1, j = 1(1)n− 1. (3.3.31)
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Simplifying (3.3.30), we obtain

∣∣∣[A(V − ν)]j

∣∣∣ ≤ Mh4

[
3Vj + h2V ′′

j +
h4

24

(
V (4)(ξ1,j) + V (4)(ξ2,j)

)]
. (3.3.32)

Applying Lemma 3.3.1, we get

max
1≤j≤n−1

∣∣∣[A(V − ν)]j

∣∣∣ ≤ Mh4

[
1 + h2 max

1≤j≤n−1

E(xj, β)

ε

]
. (3.3.33)

Similarly, Eq. (3.3.31) yields

max
1≤j≤n−1

∣∣∣[Ã(V − ν̃)]j

∣∣∣ ≤ Mh4

[
1 + h2 max

1≤j≤n−1

E(xj, β)

ε

]
. (3.3.34)

Hence, from (3.3.25)-(3.3.28) and (3.3.33)-(3.3.34), we obtain

max
0<j≤n

∣∣Vj − νext
j

∣∣ ≤ Mh2

[
1 + h2 max

0<j≤n

E(xj, β)

ε

]
. (3.3.35)

We have therefore established that

max
1<j≤n−1

∣∣Vj − νext
j

∣∣ ≤





Mh4

ε

[
1 + max1≤j≤n−1

E(xj ,β)

ε2

]
, when Ch ≤ ε,

Mh2
[
1 + h2 max1≤j≤n−1

E(xj ,β)

ε

]
, when Ch ≥ ε.

(3.3.36)

which means that the Richardson extrapolation does not improve the order of convergence

of FOFDM-I.
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3.3.2 Analysis of FOFDM-II

Error estimates before extrapolation

The local truncation error of the scheme (3.2.8) and (3.2.9) is given by

τj(V ) = T0Vj + T1V
′
j + T2V

′′
j + T3V

′′′
j + T4V

(4)(ξj); ξj ∈ (xj−1, xj+1), (3.3.37)

where

T0 = r−j + rc
j + r+

j − W̃j,

T1 = h(r+
j − r−j ),

T2 = h2

2
(r+

j + r−j ) + ε,

T3 = h3

6
(r+

j − r−j ),

and T4 = h4

24
(r+

j + r−j ).





(3.3.38)

Further simplifications yield

T0 = T1 = T3 = 0, |T2| ≤ Mh2, and |T4| ≤ Mh2. (3.3.39)

Finally using Lemma 3.3.1 we obtain

max
1≤j≤n−1

|τj(V )| ≤ Mh2

[
1 + max

1≤j≤n−1

E(xj, β)

ε2

]
. (3.3.40)
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Now since A is diagonally dominant by rows, we can estimate ||A−1|| by the relation

(3.3.24). Since, {|rc
j | − (|r−j |+ |r+

j |)} ≥ M , we conclude that,

‖A−1‖ ≤ M. (3.3.41)

But the relation

τj(V ) = (AV )j −
(
L̃V

)
j
= (A(V − ν))j (3.3.42)

implies that

max
j
|Vj − νj| ≤ ‖A‖−1 max

j

∣∣∣(A(V − ν))j

∣∣∣ . (3.3.43)

Hence, using (3.3.40) and (3.3.41), we obtain

max
1≤j≤n−1

|Vj − νj| ≤ Mh2

[
1 + max

1≤j≤n−1

E(xj, β)

ε2

]
. (3.3.44)

Now using the lemma (see, [118] for details) on exponential behavior of the solution, we

find that

sup
0<ε≤1

max
1≤j≤n−1

|Vj − νj| ≤ Mh2. (3.3.45)

Extrapolation formula

In this case, ν and ν̃ denote the computed solutions of problem (2.2.4) by the scheme

(3.2.8) and (3.2.9) on the meshes µn and µ2n, respectively. This implies that

|Vj − νj| ≤ Mh2

[
1 +

E(xj, β)

ε2

]
, j = 1(1)n− 1

and

|Vj − ν̃j| ≤ M(h/2)2

[
1 +

E(x̃j, β)

ε2

]
, j = 1(1)2n− 1.
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Therefore,

Vj − νj = Mh2

[
1 +

E(xj, β)

ε2

]
+ Rn(xj),∀ xj ∈ µn

and

Vj − ν̃j = M(h/2)2

[
1 +

E(x̃j, β)

ε2

]
+ R2n(x̃j), ∀ x̃j ∈ µ2n.

where both the remainders, Rn(xj) and R2n(x̃j) are o(h2).

Hence,

(Vj − νj)− 4(Vj − ν̃j) = Rn(xj)− 4R2n(xj) = o(h2),∀ xj ∈ µn

indicates that in the extrapolation process, we should use the formula

νext
j :=

4ν̃j − νj

3
, j = 1(1)n− 1. (3.3.46)

Error estimates after extrapolation

An analogue of (3.3.15) implies that the local truncation error of the scheme (3.2.8) and

(3.2.9) after extrapolation should be given by

(Lh
∗(V − νext))j =

4

3
(Lh̃

∗(V − ν̃))j − 1

3
(Lh

∗(V − ν))j

=
4

3

[(
−εṼ ′′

j + W̄jṼj

)

−
(
−ε

Ṽj+1 − 2Ṽj + Ṽj−1

φ̄2
j

+ W̄jṼj

)]

−1

3

[(
−εV ′′

j + W̃jVj

)

−
(
−ε

Vj+1 − 2Vj + Vj−1

φ̃2
j

+ W̃jVj

)]
, (3.3.47)

76

 

 

 

 



CHAPTER 3. HIGHER ORDER FITTED OPERATOR FINITE DIFFERENCE
SCHEME FOR A SINGULARLY PERTURBED SELF-ADJOINT PROBLEM

where Lh
∗ and Lh̃

∗ denote the discrete operators associated with FOFDM-II (i.e., relations

(3.2.8) and (3.2.9)) when considered on meshes µn and µ2n, respectively. (Note that φ̄j is

obtained from φ̃j by replacing h by h̃).

Some algebraic manipulations yield

(Lh
∗(V − νext))j ≤ Mh4V (vi)(ξj), ξj ∈ (xj−1, xj+1). (3.3.48)

Using Lemma 3.3.1, we obtain

max
1≤j≤n−1

|Lh
∗(V − νext)|j ≤ Mh4

[
1 + max

1≤j≤n−1

E(xj, β)

ε3

]
. (3.3.49)

Finally, using the lemma (see, [118] for details) on exponential behavior of the solution,

we find that

sup
0<ε≤1

max
0<j≤n

∣∣Vj − νext
j

∣∣ ≤ Mh4.

In summary, we have the following main result:

Theorem 3.3.1. Let W (x), Z(x) be sufficiently smooth so that V (x) ∈ C4[0, 1]. Let

νext
j , j = 0(1)n be the approximate solutions of (2.2.4) obtained after extrapolation, with

ν0 = νext
0 = V (0), and νn = νext

n = V (1). Then, there is a constant M independent of ε

and h such that

sup
0<ε≤1

max
0<j≤n

∣∣Vj − νext
j

∣∣ ≤ Mh2 for FOFDM-I.

sup
0<ε≤1

max
0<j≤n

∣∣Vj − νext
j

∣∣ ≤ Mh4 for FOFDM-II.

3.4 Numerical results

In this section we present some comparative numerical results for two test problems

considered in [118].
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Example 3.4.1. Consider problem (3.1.1) with

a(x) = 1 + x2, b(x) = (cos x)/(3− x)3, f(x) = 4(3x2 − 3x + 1)
[
(x− 1/2)2 + 2

]
;

y(0) = −1, y(1) = 0.

The exact solution for this problem is not available.

Example 3.4.2. Consider problem (3.1.1) with

a(x) = 1, b(x) = 1 + x(1− x),

f(x) = 1 + x(1− x) +
[
2
√

ε− x2(1− x)
]
exp

[−(1− x)/
√

ε)
]

+
[
2
√

ε− x(1− x)2
]
exp

[−x/
√

ε
]
.

Its exact solution is given by

y(x) = 1 + (x− 1) exp
[−x/

√
ε
]− x exp

[−(1− x)/
√

ε
]
.

Since the exact solution is available for Example 3.4.2, the maximum errors at all the

mesh points are calculated using the formula

eε,n := max
0≤j≤n

|y(xj)− νj|, before extrapolation,

and

eext
ε,n := max

0≤j≤n
|y(xj)− νext

j |, after extrapolation,

where νj is the solution of (3.1.1) obtained by using (2.2.4) and (2.2.3), and νext
j is the

solution after extrapolation.

For Example 3.4.1, the exact solution is not available and therefore we use the double
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mesh principle [33] to evaluate the maximum errors at all the mesh points:

eε,n := max
0≤j≤n

|νn
j − ν2n

2j |, before extrapolation,

and

eext
ε,n := max

0≤j≤n
|νext

j − νext
2j |, after extrapolation,

where ν2n
2j is the numerical solution of (3.1.1) obtained by using (2.2.4) and (2.2.3) on

the mesh µ2n. The numerical rates of convergence are computed using the formula [33]:

rk ≡ rε,k := log2(ẽnk
/ẽ2nk

), k = 1, 2, . . . where ẽ stands for eε,n and eext
ε,n, respectively.

Furthermore, we compute en := max0<ε≤1 eε,n and eext
n = max0<ε≤1 eext

ε,n whereas the

numerical rate of uniform convergence is computed as rn := log2(en/e2n) and rext
n :=

log2(e
ext
n /eext

2n ). (Note that the negative entries in some of the tables for rates of conver-

gence are due to the fact that the round-off errors propagate which can be seen from the

corresponding entries in the error tables).
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Table 3.1: Results for example 3.4.1 before extrapolation (maximum errors using
FOFDM-I)

ε n=20 n=40 n=80 n=160 n=320 n=640 n=1280
1.0e-01 3.62e-06 2.26e-07 1.41e-08 8.84e-10 5.59e-11 1.55e-12 8.33e-12
1.0e-02 3.79e-05 2.37e-06 1.48e-07 9.23e-09 5.84e-10 2.24e-11 9.42e-11
1.0e-04 1.29e-02 8.94e-04 5.78e-05 3.67e-06 2.30e-07 1.44e-08 8.86e-10
1.0e-06 2.67e-01 3.56e-02 1.89e-02 3.17e-03 2.25e-04 1.48e-05 9.35e-07
1.0e-08 2.99e-01 7.79e-02 1.99e-02 4.77e-03 7.15e-04 2.56e-03 6.54e-04
1.0e-10 2.99e-01 7.79e-02 1.99e-02 5.02e-03 1.26e-03 3.16e-04 7.80e-05
1.0e-11 2.99e-01 7.79e-02 1.99e-02 5.02e-03 1.26e-03 3.16e-04 7.92e-05
1.0e-12 2.99e-01 7.79e-02 1.99e-02 5.02e-03 1.26e-03 3.16e-04 7.92e-05

en 2.99e-01 7.79e-02 1.99e-02 5.02e-03 1.26e-03 3.16e-04 7.92e-05

Table 3.2: Results for example 3.4.1 after extrapolation (maximum errors using FOFDM-
I)

ε n=20 n=40 n=80 n=160 n=320 n=640 n=1280
1.0e-01 3.64e-10 5.86e-12 3.89e-13 7.31e-13 2.68e-12 8.81e-12 4.15e-11
1.0e-02 6.99e-09 1.10e-10 4.07e-12 7.99e-12 1.62e-11 9.91e-11 3.26e-10
1.0e-04 9.68e-05 1.64e-06 2.61e-08 4.10e-10 1.03e-11 3.68e-11 9.51e-11
1.0e-06 2.34e-02 2.91e-03 7.28e-04 2.91e-05 5.19e-07 8.49e-09 1.36e-10
1.0e-08 5.97e-02 1.56e-02 3.73e-03 4.97e-04 2.06e-04 1.38e-04 9.11e-06
1.0e-10 5.97e-02 1.56e-02 3.98e-03 1.00e-03 2.52e-04 6.21e-05 1.01e-05
1.0e-11 5.97e-02 1.56e-02 3.98e-03 1.00e-03 2.52e-04 6.33e-05 1.58e-05
1.0e-12 5.97e-02 1.56e-02 3.98e-03 1.00e-03 2.52e-04 6.33e-05 1.58e-05

eext
n 5.97e-02 1.56e-02 3.98e-03 1.00e-03 2.52e-04 6.33e-05 1.58e-05
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Table 3.3: Results for example 3.4.1 before extrapolation (rates of convergence using
FOFDM-I) nk = 20× 2k−1, k = 1(1)5

ε r1 r2 r3 r4 r5

1.0e-01 4.00e+00 4.00e+00 4.00e+00 3.98e+00 5.17e+00
1.0e-02 4.00e+00 4.00e+00 4.00e+00 3.98e+00 4.70e+00
1.0e-04 3.85e+00 3.95e+00 3.98e+00 4.00e+00 4.00e+00
1.0e-06 2.91e+00 9.18e-01 2.57e+00 3.81e+00 3.93e+00
1.0e-08 1.94e+00 1.97e+00 2.06e+00 2.74e+00 -1.84e+00
1.0e-10 1.94e+00 1.97e+00 1.98e+00 1.99e+00 2.00e+00
1.0e-11 1.94e+00 1.97e+00 1.98e+00 1.99e+00 2.00e+00
1.0e-12 1.94e+00 1.97e+00 1.98e+00 1.99e+00 2.00e+00

rn 1.94e+00 1.97e+00 1.98e+00 1.99e+00 2.00e+00

Table 3.4: Results for example 3.4.1 after extrapolation (rates of convergence using
FOFDM-I) nk = 20× 2k−1, k = 1(1)5

ε r1 r2 r3 r4 r5

1.0e-01 5.96e+00 3.91e+00 -9.08e-01 -1.87e+00 -1.72e+00
1.0e-02 5.99e+00 4.75e+00 -9.71e-01 -1.02e+00 -2.62e+00
1.0e-04 5.89e+00 5.97e+00 5.99e+00 5.32e+00 -1.84e+00
1.0e-06 3.01e+00 2.00e+00 4.64e+00 5.81e+00 5.93e+00
1.0e-08 1.94e+00 2.06e+00 2.91e+00 1.27e+00 5.81e-01
1.0e-10 1.94e+00 1.97e+00 1.98e+00 1.99e+00 2.02e+00
1.0e-11 1.94e+00 1.97e+00 1.98e+00 1.99e+00 2.00e+00
1.0e-12 1.94e+00 1.97e+00 1.98e+00 1.99e+00 2.00e+00

rext
n 1.94e+00 1.97e+00 1.98e+00 1.99e+00 2.00e+00
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Table 3.5: Results for example 3.4.2 before extrapolation (maximum errors using
FOFDM-I)

ε n=20 n=40 n=80 n=160 n=320 n=640 n=1280
1.0e-01 5.19e-07 3.27e-08 2.05e-09 1.28e-10 8.00e-12 5.38e-13 1.14e-12
1.0e-02 2.14e-05 1.43e-06 8.99e-08 5.63e-09 3.52e-10 2.21e-11 1.32e-12
1.0e-04 1.08e-03 6.00e-04 9.44e-05 6.53e-06 4.31e-07 2.71e-08 1.70e-09
1.0e-06 3.82e-04 9.94e-05 1.39e-04 1.52e-04 9.33e-05 1.98e-05 1.67e-06
1.0e-08 3.82e-04 9.94e-05 2.54e-05 1.01e-05 1.50e-05 1.62e-05 1.63e-05
1.0e-10 3.96e-04 1.00e-04 2.54e-05 6.43e-06 1.62e-06 1.26e-06 1.56e-06
1.0e-11 3.97e-04 1.01e-04 2.54e-05 6.43e-06 1.62e-06 4.06e-07 4.25e-07
1.0e-12 3.98e-04 1.02e-04 2.56e-05 6.43e-06 1.62e-06 4.06e-07 1.02e-07

en 3.98e-04 1.02e-04 2.57e-05 6.43e-06 1.62e-06 4.06e-07 1.02e-07

Table 3.6: Results for example 3.4.2 after extrapolation (maximum errors using FOFDM-
I)

ε n=20 n=40 n=80 n=160 n=320 n=640 n=1280
1.0e-01 3.86e-11 6.13e-13 1.61e-14 2.50e-14 1.12e-13 1.25e-12 7.47e-13
1.0e-02 1.61e-08 2.79e-10 4.41e-12 7.47e-14 6.35e-14 4.34e-13 6.75e-13
1.0e-04 5.56e-05 3.11e-06 3.51e-07 7.25e-09 1.25e-10 2.43e-12 2.37e-12
1.0e-06 9.02e-05 3.12e-05 1.58e-05 8.13e-06 8.54e-08 9.81e-08 2.78e-09
1.0e-08 8.06e-05 2.14e-05 6.24e-06 2.40e-06 1.43e-06 1.20e-06 1.06e-06
1.0e-10 7.97e-05 2.04e-05 5.25e-06 1.40e-06 4.35e-07 1.92e-07 1.31e-07
1.0e-11 7.96e-05 2.04e-05 5.18e-06 1.33e-06 3.60e-07 1.16e-07 5.54e-08
1.0e-12 7.96e-05 2.03e-05 5.16e-06 1.31e-06 3.36e-07 9.23e-08 3.14e-08

eext
n 7.96e-05 2.03e-05 5.15e-06 1.30e-06 3.28e-07 8.48e-08 7.41e-08
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Table 3.7: Results for example 3.4.2 before extrapolation (rates of convergence using
FOFDM-I) nk = 20× 2k−1, k = 1(1)5

ε r1 r2 r3 r4 r5

1.0e-01 3.99e+00 4.00e+00 4.00e+00 4.00e+00 3.89e+00
1.0e-02 3.90e+00 4.00e+00 4.00e+00 4.00e+00 4.00e+00
1.0e-04 8.49e-01 2.67e+00 3.85e+00 3.92e+00 3.99e+00
1.0e-06 1.94e+00 -4.82e-01 -1.33e-01 7.06e-01 2.23e+00
1.0e-08 1.94e+00 1.97e+00 1.33e+00 -5.71e-01 -1.15e-01
1.0e-10 1.99e+00 1.98e+00 1.98e+00 1.99e+00 3.63e-01
1.0e-11 1.97e+00 1.99e+00 1.98e+00 1.99e+00 2.00e+00
1.0e-12 1.97e+00 1.99e+00 1.99e+00 1.99e+00 2.00e+00

rn 1.97e+00 1.99e+00 2.00e+00 1.99e+00 2.00e+00

Table 3.8: Results for example 3.4.2 after extrapolation (rates of convergence using
FOFDM-I) nk = 20× 2k−1, k = 1(1)5

ε r1 r2 r3 r4 r5

1.0e-01 5.98e+00 5.25e+00 -6.34e-01 -2.16e+00 -3.48e+00
1.0e-02 5.85e+00 5.98e+00 5.88e+00 2.35e-01 -2.77e+00
1.0e-04 4.16e+00 3.15e+00 5.60e+00 5.86e+00 5.69e+00
1.0e-06 1.53e+00 9.84e-01 9.55e-01 6.57e+00 -1.99e-01
1.0e-08 1.91e+00 1.78e+00 1.38e+00 7.44e-01 2.55e-01
1.0e-10 1.96e+00 1.96e+00 1.90e+00 1.69e+00 1.18e+00
1.0e-11 1.97e+00 1.98e+00 1.96e+00 1.89e+00 1.63e+00
1.0e-12 1.97e+00 1.98e+00 1.98e+00 1.96e+00 1.86e+00

rext
n 1.97e+00 1.98e+00 1.99e+00 1.98e+00 1.95e+00
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Table 3.9: Results for example 3.4.2 before extrapolation (maximum errors using
FOFDM-II)

ε n=16 n=32 n=64 n=128 n=256 n=512
1.0e-01 2.66E-03 6.55E-04 1.63E-04 4.07E-05 1.02E-05 2.54E-06 6.36E-07
1.0e-02 8.15E-03 2.02E-03 5.04E-04 1.26E-04 3.15E-05 7.87E-06 1.97E-06
1.0e-04 9.48E-03 2.58E-03 8.41E-04 1.86E-04 7.21E-05 2.06E-05 5.49E-06
1.0e-06 9.48E-03 2.47E-03 6.32E-04 1.60E-04 4.69E-05 4.70E-05 1.10E-05
1.0e-08 9.48E-03 2.47E-03 6.32E-04 1.60E-04 4.04E-05 1.01E-05 2.54E-06
1.0e-10 9.48E-03 2.47E-03 6.32E-04 1.60E-04 4.04E-05 1.01E-05 2.54E-06
1.0e-11 9.48E-03 2.47E-03 6.32E-04 1.60E-04 4.04E-05 1.01E-05 2.54E-06
1.0e-12 9.48E-03 2.47E-03 6.32E-04 1.60E-04 4.04E-05 1.01E-05 2.54E-06

en 9.48E-03 2.47E-03 6.32E-04 1.60E-04 4.04E-05 1.01E-05 2.54E-06

Table 3.10: Results for example 3.4.2 after extrapolation (maximum errors using
FOFDM-II)

ε n=16 n=32 n=64 n=128 n=256 n=512
1.0e-01 1.31E-05 8.39E-07 5.28E-08 3.30E-09 2.07E-10 1.33E-11 3.17E-12
1.0e-02 1.83E-04 1.53E-05 1.03E-06 6.58E-08 4.13E-09 2.58E-10 1.63E-11
1.0e-04 2.17E-05 2.47E-05 4.34E-05 3.21E-05 3.48E-06 2.35E-07 1.50E-08
1.0e-06 2.23E-05 1.52E-06 9.99E-08 6.24E-09 1.81E-06 9.90E-07 4.93E-06
1.0e-08 2.23E-05 1.52E-06 9.99E-08 6.42E-09 4.08E-10 2.57E-11 2.44E-11
1.0e-10 2.23E-05 1.52E-06 9.99E-08 6.42E-09 4.08E-10 2.57E-11 1.61E-12
1.0e-11 2.23E-05 1.52E-06 9.99E-08 6.42E-09 4.08E-10 2.57E-11 1.61E-12
1.0e-12 2.23E-05 1.52E-06 9.99E-08 6.42E-09 4.08E-10 2.57E-11 1.61E-12

eext
n 2.23E-05 1.52E-06 9.99E-08 6.42E-09 4.08E-10 2.57E-11 1.61E-12
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Table 3.11: Results for example 3.4.2 before extrapolation (rate of convergence using
FOFDM-II), nk = 8× 2k−1, k = 1(1)6

ε r2 r3 r4 r5 r6

1.0e-01 2.02E+00 2.01E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00
1.0e-02 2.01E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00 2.00E+00
1.0e-04 1.88E+00 1.62E+00 2.17E+00 1.37E+00 1.80E+00 1.91E+00
1.0e-06 1.94E+00 1.96E+00 1.98E+00 1.77E+00 -3.53E-03 2.09E+00
1.0e-08 1.94E+00 1.96E+00 1.98E+00 1.99E+00 1.99E+00 2.00E+00
1.0e-10 1.94E+00 1.96E+00 1.98E+00 1.99E+00 1.99E+00 2.00E+00
1.0e-11 1.94E+00 1.96E+00 1.98E+00 1.99E+00 1.99E+00 2.00E+00
1.0e-12 1.94E+00 1.96E+00 1.98E+00 1.99E+00 1.99E+00 2.00E+00

rn 1.94E+00 1.96E+00 1.98E+00 1.99E+00 1.99E+00 2.00E+00

Table 3.12: Results for example 3.4.2 after extrapolation (rate of convergence using
FOFDM-II), nk = 8× 2k−1, k = 1(1)6

ε r2 r3 r4 r5 r6

1.0e-01 3.96E+00 3.99E+00 4.00E+00 4.00E+00 3.96E+00 2.06E+00
1.0e-02 3.58E+00 3.89E+00 3.96E+00 3.99E+00 4.00E+00 3.98E+00
1.0e-04 -1.86E-01 -8.14E-01 4.38E-01 3.20E+00 3.89E+00 3.97E+00
1.0e-06 3.88E+00 3.93E+00 4.00E+00 -8.18E+00 8.74E-01 -2.32E+00
1.0e-08 3.88E+00 3.93E+00 3.96E+00 3.98E+00 3.99E+00 7.26E-02
1.0e-10 3.88E+00 3.93E+00 3.96E+00 3.98E+00 3.99E+00 3.99E+00
1.0e-11 3.88E+00 3.93E+00 3.96E+00 3.98E+00 3.99E+00 3.99E+00
1.0e-12 3.88E+00 3.93E+00 3.96E+00 3.98E+00 3.99E+00 3.99E+00

rext
n 3.88E+00 3.93E+00 3.96E+00 3.98E+00 3.99E+00 3.99E+00
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3.5 Discussion

In this Chapter, we have investigated the performance of the Richardson extrapolation on

some fitted operator finite difference methods. We considered two FOFDMs referred to

as FOFDM-I and FOFDM-II which were designed to solve a class of self-adjoint problems

in [119] and [98], respectively. These methods are analyzed for convergence (where the

solution before and after extrapolation is used to derive the error estimates).

Richardson extrapolation does not improve the convergence of FOFDM-I which is of

order four and two for some moderate and smaller values of ε respectively. In the case

of FOFDM-II, its second order accuracy is improved up to four, irrespective of the value

of ε. The observations (made through tables 3.1-3.12) and the associated analysis show

that the performance of Richardson extrapolation is scheme dependent.
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Chapter 4

Performance of Richardson

Extrapolation on Various Numerical

Methods for a Singularly Perturbed

Turning Point Problem whose

Solution has Boundary Layers

In this chapter, we consider singularly perturbed turning point problems. There exist two

classes of such type of problems: the one whose solution possesses boundary layer(s) and

the one whose solution possesses interior layer(s). After we design some fitted methods,

the performance of the Richardson extrapolation is studied here for the problems of the

former class. The same for the later class of problems is being considered elsewhere.
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4.1 Introduction

In this Chapter we develop a fitted operator finite difference method (FOFDM) and a

fitted mesh finite difference method (FMFDM) to solve a singularly perturbed turning

point problem (TPP) whose solution displays boundary layers. Since we aim at achieving

high order of convergence, we investigate the performance of Richardson extrapolation on

these methods.

Several authors have attempted to solve singularly perturbed TPPs, but up to the

best of our knowledge, the acceleration techniques such as the one above have not yet

been explored.

Abrahamsson [4] and Berger et al. [21] derived a number of a priori estimates for

solutions of singularly perturbed TPPs. Adzic in [5], [6] and [8] developed modified

standard spectral methods for singularly perturbed problems without turning points, with

turning point with boundary layers and with turning point with interior layer, respectively.

The same author used a domain decomposition method (in [7]) to solve some turning point

problems via the asymptotic behavior of the exact solution.

We consider the problem

Lu := εu′′ + a(x)u′ − b(x)u = f(x), x ∈ Ω = (−1, 1), (4.1.1)

u(−1) = A, u(1) = B. (4.1.2)

where A and B are given constants and ε ∈ (0, 1], and the coefficients a(x), b(x) and f(x)

are sufficiently smooth functions in Ω̄.

The distinct zeros αi, i = 1, 2, · · · , r of a(x) in the interval Ω̄, if they exist, are called

the turning points of (4.1.1)-(4.1.2), provided that a(−1)a(1) 6= 0.

Berger et al. [21] showed that the bounds of the solution u(x) near a given turning

point αi depend on ε and the constant βi = b(αi)/a
′(αi). For βi < 0, u(x) is “smooth”

near x = αi whereas βi > 0 indicates that u(x) has a large gradient at x = αi resulting
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in an “interior layer”. Moreover, u(x) has a boundary layer at x = −1 and x = 1 if and

only if a(−1) > 0 and a(1) < 0, respectively.

In the rest of this chapter, we assume that

a(0) = 0, a′(0) ≤ 0, a(−1) > 0, a(1) < 0, and |a(x)| ≥ a0 > 0, for 0 < |x| ≤ 1,

thus ensuring that the solution to (4.1.1)-(4.1.2) has two boundary layers. Also it is

required that b(x) ≥ b0 > 0 so as to ensure that the solution of (4.1.1)-(4.1.2) satisfies

a minimum principle. The condition |a′(x)| ≥ |a′(0)/2|, −1 ≤ x ≤ 1 guarantees the

uniqueness of the turning point in the interval [-1,1].

Under the requirements mentioned above, the operator L admits the following contin-

uous minimum principle

Lemma 4.1.1. Let ξ be a smooth function satisfying ξ(−1) ≥ 0, ξ(1) ≥ 0 and Lξ(x) ≤
0, ∀x ∈ (−1, 1). Then ξ(x) ≥ 0, ∀x ∈ [−1, 1].

Proof Let x∗ ∈ [−1, 1] such that ξ(x∗) = minx∈[−1,1] ξ(x) and assume ξ(x∗) < 0. Then,

obviously, x∗ /∈ {−1, 1}, ξ′(x∗) = 0 and ξ′′(x∗) ≥ 0. We have

Lξ(x∗) = εξ′′(x∗) + a(x∗)ξ′(x∗)− b(x∗)ξ(x∗) > 0,

which is a contradiction. It follows that, ξ(x∗) ≥ 0 and thus, ξ(x) ≥ 0, ∀x ∈ [−1, 1].

The minimum principle implies the existence and unicity of the solution. We use this

principle to prove the following results which states that the solution depends continuously

on the data.

Lemma 4.1.2. Let u(x) be the solution of (4.1.1)-(4.1.2). Then, we have

||u|| ≤ C
(
b−1
0 ||f ||+ max{|A|, |B|}) ,∀x ∈ [−1, 1].
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Proof Consider the comparison function

Π±(x) = b−1
0 ||f ||+ max{|A|, |B|} ± u(x).

Then we have

LΠ±(x) = ±f(x)− b(x)

b0

||f || − b(x) max{|A|, |B|} ≤ 0.

implying that Π±(x) ≥ 0, ∀x ∈ [−1, 1], which completes the proof.

The rest of this chapter is organized as follows. In section 4.2, we state some a

priori estimates of the bounds of the solution and its derivatives, the use of which will

be apparent in the analysis of the numerical methods. The construction and analysis

of FOFDM and FMFDM are presented in sections 4.3 and 4.4. In these sections, the

performance of extrapolation on the underlying methods is studied. Numerical results to

support our theoretical findings are displayed in section 4.5. A short discussion on these

results is provided in section 4.6.

4.2 Some a priori estimates for the bounds of the

solution and its derivatives

In this section, we present the bounds on the solution of the problem (4.1.1)-(4.1.2) and

its derivatives.

We shall denote by Ωl = [−1,−δ], Ωc = [−δ, δ], Ωr = [δ, 1], where 0 < δ ≤ 1
2
; the

left, central and right part of the domain, respectively. Note that β = b(0)/a′(0) < 0.

Let k be a positive integer. We define

S1(k) = {||a||k, ||b||k, ||f ||k, a0, 1− δ, |B|, u(δ), k},
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S2(k) = {||a||k, ||b||k, ||f ||k, a0, 1− δ, |A|, u(−δ), k}

and

S3(k) = {||a||k, ||b||k, ||f ||k, βs, b0, |A|, |B|, k}.

Depending on whether x belongs to Ωl, Ωc or Ωr, the appropriate bounds are provided in

the following lemmas.

Lemma 4.2.1. [21] If u(x) is the solution of the TPP (4.1.1)-(4.1.2) and a, b and f ∈
Ck(Ω̄), k > 0, then there exist positive constants η and C depending only on S1(k) such

that

|u(j)(x)| ≤ C[1 + ε−j exp(−a0(1− x)/ε)], j = 1(1)k + 1, x ∈ Ωr.

Proof. See [21].

Lemma 4.2.2. [21] If u(x) is the solution of the TPP (4.1.1)-(4.1.2) and a, b and f ∈
Ck(Ω̄), k > 0, then there exist positive constants η and C depending only on S2(k) such

that

|u(j)(x)| ≤ C[1 + ε−j exp(−a0(1 + x)/ε)], j = 1(1)k + 1, x ∈ Ωl.

Proof. See [21].

Lemma 4.2.3. [21] If u(x) is the solution of the TPP (4.1.1)-(4.1.2) and a, b and f ∈
Ck(Ω̄), k > 0, then there exists a positive constant C depending only on S3(k) such that

|u(j)| ≤ C, ∀x ∈ Ωc, j = 0(1)k.

Proof. See [21].
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Lemma 4.2.4. [105] The solution u of the TPP (4.1.1)-(4.1.2) can be decomposed as

u = v + w,

where, for all j, 0 ≤ j ≤ k, and all x ∈ [−1, 1], the smooth component v satisfies

∣∣v(j)(x)
∣∣ ≤ C(1 + ε−(k−2) exp(−a0(1 + x)/ε), x ∈ [−1, 0],

∣∣v(j)(x)
∣∣ ≤ C(1 + ε−(k−2) exp(−a0(1− x)/ε), x ∈ [0, 1],

and the singular component w satisfies

∣∣w(j)(x)
∣∣ ≤ Cε−k exp(−a0(1 + x)/ε), x ∈ [−1, 0],

∣∣w(j)(x)
∣∣ ≤ Cε−k exp(−a0(1− x)/ε), x ∈ [0, 1],

for some constant C independent of ε.

Proof. See [105].

4.3 Richardson extrapolation on fitted operator fi-

nite difference method

Here we first present the FOFDM which is developed in [110] and the associated error

estimates. Then we analyze the effect of Richardson extrapolation on this scheme.

4.3.1 The fitted operator finite difference method (FOFDM)

Let n be any positive integer. Consider the following partition of the interval [−1, 1]:

µn = {xj = x0 + jh, x0 = −1, xn = 1, j = 1(1)n, h = xj − xj−1}.
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The denominator function φ2
j appearing in the discrete form of the approximation of

the second derivative term of the differential equation (4.1.1) is considered as

φ2
j =





hε
aj

(
exp

(
ajh

ε

)
− 1

)
, j = 0(1)n

2
− 1,

hε
aj

(
1− exp

(
−ajh

ε

))
, j = n

2
+ 1(1)n,

h2, j = n
2
.

(4.3.3)

The above is normally obtained by using the theory of difference equations (see, e.g.,

[103]).

Hence, the problem (4.1.1)-(4.1.2) is discretized as follows

LhUj ≡





ε
Uj+1−2Uj+Uj−1

φ̃2
j

+ ãj
Uj+1−Uj

h
− b̃jUj = f̃j, j = 1(1)n

2
− 1,

ε
Uj+1−2Uj+Uj−1

φ̃2
j

+ ãj
Uj−Uj−1

h
− b̃jUj = f̃j, j = n

2
(1)n− 1,

(4.3.4)

U0 = A, Un = B. (4.3.5)

where

ãj =
aj + aj+1

2
,

b̃j =
bj−1 + bj + bj+1

3
,

f̃j =
fj−1 + fj + fj+1

3
,

and φ̃j is obtained as in (4.3.3) by substituting aj by ãj.

Equations (4.3.4) can be written in the form

r−j Uj−1 + rc
jUj + r+

j Uj+1 = f̃j, j = 1(1)n− 1. (4.3.6)
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where

r+
j =

ε

φ̃2
j

+
ãj

h
, rc

j = −2ε

φ̃2
j

− ãj

h
− b̃, r−j =

ε

φ̃2
j

, for j = 1, 2, · · · , n

2
− 1,

and

r+
j =

ε

φ̃2
j

, rc
j = −2ε

φ̃2
j

+
ãj

h
− b̃, r−j =

ε

φ̃2
j

− ãj

h
, for j =

n

2
,
n

2
+ 1, · · · , n− 1.

In view of the scheme above, we now prove the following Lemma which states that

the discrete problem LhUj = fj, 1 ≤ j ≤ n− 1, U0 = A, Un = B, satisfies the discrete

minimum principle.

Lemma 4.3.1. For any mesh function ξj such that Lhξj ≤ 0, ∀j = 1(1)n−1, ξ0 ≥ 0 and

ξn ≥ 0, we have ξj ≥ 0, ∀j = 0(1)n.

Proof

Let k be such that ξk = min0≤j≤n ξj and suppose that ξk < 0. It’s clear that k /∈ {0, n}.
Also ξk+1 − ξk ≥ 0, ξk − ξk−1 ≤ 0.

On one hand we have

Lhξk = ε
ξk+1 − 2ξk + ξk−1

φ2
k

+ ak
ξk+1 − ξk

h
− bkξk > 0, for 1 ≤ k ≤ n/2− 1.

On the other hand

Lhξk = ε
ξk+1 − 2ξk + ξk−1

φ2
k

+ ak
ξk − ξk−1

h
− bkξk > 0, for n/2 ≤ k ≤ n− 1.

Thus Lhξk > 0, 1 ≤ k ≤ n− 1, which is a contradiction. It follows that ξk ≥ 0 and thus

ξj ≥ 0, 0 ≤ j ≤ n.

This minimum principle is used to prove the following lemma.
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Lemma 4.3.2. If Zi is any mesh function such that Z0 = Zn = 0, then

|Zi| ≤ 1

a∗
max

1≤j≤n−1
|LhZj| for 0 ≤ i ≤ n.

where

a∗ =




−a0 if 0 ≤ i ≤ n/2− 1,

a0 if n/2 ≤ i ≤ n.

Proof Let us define two comparison functions Y ±
i by

Y ±
i =

xi

a∗
max

1≤j≤n−1
|LhZj| ± Zi, 0 ≤ i ≤ n.

It is clear that Y ±
0 ≥ 0 and Y ±

n ≥ 0. Also, observe that

LhY ±
i =

ai − bixi

a∗
max

1≤j≤n−1
|LhZj|+ LhZi, 0 ≤ i ≤ n.

If 0 ≤ i ≤ n/2 − 1, then ai > 0, ai > a0 and since bi > 0 and xi < 0, we have (ai −
bixi)/(−a0)) < −1. Likewise, if n/2 ≤ i ≤ n, then ai < 0, |ai| > a0 and since bi > 0 and

xi > 0, we have (ai− bixi)/a0 < −1. In either case, LhY ±
i ≤ 0. By the discrete minimum

principle (Lemma 4.3.1), we conclude that Yi ≥ 0, ∀0 ≤ i ≤ n and this completes the

proof.

We will be requiring the following lemma in the analysis below.

Lemma 4.3.3. For a fixed mesh and for all integers k, we have

lim
ε→0

max
1≤j≤n/2−1

exp(−M(1 + xj)/ε)

εk
= 0

and

lim
ε→0

max
n/2≤j≤n−1

exp(−M(1− xj)/ε)

εk
= 0,
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where xj = jh− 1, h = 2/n, ∀j = 1(1)n− 1.

Proof

We extend the proof provided in [118] to cater for the turning point problems here. In fact,

to prove the second limit above we consider the partition [0, 1] := {0 = xn
2

< xn
2
+1 < · · · <

xn−1 < xn = 1}. The first limit is established by replacing xj by −xj in the second limit.

In this case, we use the partition [−1, 0] := {−1 = x0 < x1 < x2 < · · · < xn
2
−1 < xn

2
= 0}.

Now, the truncation error of our method is calculated as follows.

For j = 1(1)n/2− 1 we have

L̃h(uj − Uj) =
(
r−j uj−1 + rc

juj + r+
j uj+1

)− f̃j

= T0uj + T1u
′
j + T2u

′′
j + T3u

′′′
j + T4u

(iv)(ξj), (4.3.7)

where ξj ∈ (xj−1, xj+1) and

T0 = r−j + rc
j + r+

j + bj +
1

3
h2b′′j ,

T1 = h
(
r+
j − r−j

)− aj − 1

3
h2

(
a′′j − 2b′j

)
,

T2 =
h2

2

(
r+
j + r−j

)− ε− 1

3
h2

(
2a′j − bj − h2

2
b′′j

)
,

T3 =
h3

6

(
r+
j − r−j

)− 1

3
h2

(
aj +

h2

2
a′′j

)
,

T4 =
h4

24

(
r+
j + r−j

)− 1

3
h2ε.

We note that T0 = 0, |T1| ≤ Mh, |T2| ≤ Mh, |T3| ≤ Mh2, and |T4| ≤ Mh2.

(Hereinafter, M denotes a positive constant which may take different values in different

equations and inequalities but is always independent of h and ε.) Therefore, (4.3.7) leads

to

|L̃h(uj − Uj)| ≤ Mh

[
1 +

exp (−a0(1 + xj)/ε)

ε

]
, (4.3.8)
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where we have used Lemma 4.2.2 and considered only dominating terms.

Following the same procedure, and using both lemmas 4.2.2 and 4.2.3, we establish

that for j = n/2(1)n− 1,

|L̃h(uj − Uj)| ≤ Mh

[
1 +

exp (−a0(1− xj)/ε)

ε

]
. (4.3.9)

Finally, using lemmas 4.3.2 and 4.3.3, we have the following result.

Theorem 4.3.1. Let a(x), b(x) and f(x) be sufficiently smooth functions in the problem

(4.1.1)-(4.1.2) and so that u(x) ∈ C4([−1, 1]). The numerical solution U obtained via the

FOFDM (4.3.6)-(4.3.5) satisfy the following estimate:

sup
0<ε≤1

max
0≤j≤n

|uj − Uj| ≤ Mh. (4.3.10)

4.3.2 Richardson extrapolation for FOFDM

Let us denote by µ2n the mesh obtained by bisecting each mesh interval in µn, i.e,

µ2n = {x̄j} with x̄0 = −1, x̄n = 1 and x̄j − x̄j−1 = h̄ = h/2, j = 1(1)2n.

We denote the analytical and numerical solutions on the mesh µ2n by ūj and Ūj, respec-

tively.

From estimate (4.3.10), we have on one hand

uj − Uj = Mh + Rn(xj), 1 ≤ j ≤ n− 1.

On the other hand, we have

ūj − Ūj = Mh̄ + R2n(x̄j), 1 ≤ j ≤ 2n− 1.
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Therefore,

uj − (2Ūj − Uj) = O(h), ∀1 ≤ j ≤ n− 1.

Let

U ext
j := 2Ūj − Uj.

Thus U ext is another numerical approximation of uj.

Using some algebraic manipulations, we established that

∣∣Lh(uj − Uj)
∣∣ ≤ Mh.

Therefore, ∣∣∣Lh̄(uj − Ūj)
∣∣∣ ≤ Mh

and consequently

max
1≤j≤n−1

|uj − Uj| ≤ Mh

and

max
1≤j≤n−1

∣∣uj − Ūj

∣∣ ≤ Mh.

Finally, the inequality

max
1≤j≤n−1

∣∣uj − U ext
j

∣∣ ≤ 2 max
1≤j≤n−1

∣∣uj − Ūj

∣∣ + max
1≤j≤n−1

|uj − Uj| (4.3.11)

leads to

Theorem 4.3.2. Let a(x), b(x) and f(x) be sufficiently smooth functions in the problem

(4.1.1)-(4.1.2) and so that u(x) ∈ C4([−1, 1]). Then the numerical solution U ext obtained

via Richardson extrapolation based on FOFDM (4.3.6) along with (4.3.5) satisfies the

following estimate:

sup
0<ε≤1

max
1≤j≤n−1

|uj − U ext
j | ≤ Mh. (4.3.12)
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4.4 Richardson extrapolation on fitted mesh finite

difference method

The idea from Chapter 8 of Miller et al. [105] is used in this section to develop a fitted mesh

finite difference scheme. The convergence of the scheme is analyzed before embarking on

the study of the effect of Richardson extrapolation on its accuracy and rate of convergence.

4.4.1 The fitted mesh finite difference method (FMFDM)

It is assumed that there are two boundary layers, one at each end, and let the interval

[−1, 1] be partitioned as

[−1, 1] := [−1,−1 + τ ] ∪ [−1 + τ, 1− τ ] ∪ [1− τ, 1],

where τ is a parameter denoting the width of the boundary layer.

Let n be a positive integer such that n = 2m with m ≥ 3.

To construct the piece-wise mesh (of Shishkin type), we subdivide both the intervals

[−1,−1 + τ ] and [1− τ, 1] into n/4 equal mesh elements while we subdivide the interval

[−1 + τ, 1− τ ] into n/2 equal mesh elements. This gives

[−1, 1] := −1 = x0 < x1 < · · · < xn/4 < · · · < xn/2 = 0 < · · · < x3n/4 < · · · < xn = 1.

The parameter τ is defined by

τ = min

{
1

4
,

ε

a0

ln
(n

4

)}
. (4.4.13)
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The mesh spacing hj = xj − xj−1 is given by

hj =





4τn−1 j = 1, 2, · · · , n/2, 3n/4 + 1, 3n/4 + 2, · · · , n− 1, n

4(1− τ)n−1 j = n/2 + 1, n/2 + 2, · · · , 3n/4.
(4.4.14)

We denote this mesh by µn,τ .

Using the above conventions, we discretize the problem (4.1.1)-(4.1.2) on µn,τ as





εD̃Uj + ajD
+Uj − bjUj = fj, aj > 0;

εD̃Uj + ajD
−Uj − bjUj = fj, aj ≤ 0;

(4.4.15)

U0 = A, Un = B, (4.4.16)

where

D+Uj =
Uj+1 − Uj

hj+1

,

D−Uj =
Uj − Uj−1

hj

,

and

D̃Uj =
2

hj + hj+1

(
D+Uj −D−Uj

)
.

Equations (4.4.15) can be written in the form

r−j Uj−1 + rc
jUj + r+

j Uj+1 = fj, j = 1(1)n− 1, (4.4.17)

where, for j = 1, 2, · · · , n
2
− 1, we have

r+
j =

2ε

hj+1(hj+1 + hj)
+

aj

hj+1

,

rc
j = − 2ε

hjhj+1

− aj

hj+1

− bj,
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r−j =
2ε

hj(hj + hj+1)
,

and for j = n
2
, n

2
+ 1, · · · , n− 1, we have

r+
j =

2ε

hj+1(hj+1 + hj)
,

rc
j = − 2ε

hjhj+1

+
aj

hj

− bj,

r−j =
2ε

hj(hj + hj+1)
− aj

hj

.

Convergence analysis of FMFDM

The restrictions of problem (4.1.1)-(4.1.2) to the intervals [0, 1] and [−1, 0] feature like the

convection-diffusion problem of Chapter 8 in [105]. In our analysis, we will implement the

ideas provided in this work, for the interval [0, 1]. The analysis on [−1, 0] follows similar

steps.

We decompose the solution U of the discrete problem (4.4.15)-(4.4.16) in its regular

part V and singular part W . The components V and W of U are solutions of the problems

LnV = f, V (−1) = v(−1), V (1) = v(1)

and

LnW = 0, W (−1) = w(−1),W (1) = w(1),

respectively, where Ln denotes the discrete operator associated with (4.4.17).
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We can write the error in the form

U − u = (V − v) + (W − w) (4.4.18)

and estimate the components of the error separately.

We start with the regular component.

The local truncation error is given by

Ln(V − v) = ε

(
d2

dx2
− D̃

)
v + a

(
d

dx
−D−

)
v. (4.4.19)

Using Lemma 4.1 ([105]), we obtain

|Ln(Vj − vj)| ≤ ε

3
(xj+1 − xj−1) |v′′′j |+

aj

2
(xj − xj−1) |v′′j |, for

n

2
≤ j ≤ n− 1. (4.4.20)

Since hj = xj − xj−1 ≤ 4n−1 for any j, therefore using lemma 4.2.4,we obtain

|Ln(Vj − vj)| ≤ Mn−1. (4.4.21)

Hence, by Lemma 4.3.2,

|Vj − vj| ≤ Mn−1. (4.4.22)

The estimate on Ln(W − w) depends on whether τ = 1/4 or τ = (ε/a0) ln(n/4).

If τ = 1/4, the mesh is uniform and 1/4 ≤ (ε/a0) ln(n/4). The local truncation error

Ln(W − w) is given by

|Ln(Wj − wj)| ≤ ε

3
(xj+1 − xj−1)|w′′′

j |+
aj

2
(xj − xj−1)|w′′

j |, for
n

2
≤ j ≤ n− 1. (4.4.23)

By Lemma 4.2.4 and the fact that hj = xj − xj−1 = 4n−1, the above inequality gives

|Ln(Wj − wj)| ≤ Mε−2n−1. (4.4.24)
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Now since ε−1 is less than (4/a0) ln(n/4), we have

|Ln(Wj − wj)| ≤ Mn−1(ln(n/4))2 (4.4.25)

Using Lemma 4.3.2 then we obtain

|Wj − wj| ≤ Mn−1(ln(n/4))2. (4.4.26)

If τ = (ε/a0) ln(n/4), then the mesh is piecewise uniform. In each of the subintervals

[0, 1− τ ] and [1− τ, 1], a different argument is used to bound W − w.

Both W and w are small on the subinterval with no boundary layer, namely [0, 1− τ ].

Therefore, since |W − w| ≤ |W | + |w|, we will bound W and w separately. Before we

move any further, let us note that w can also be decomposed as w = w0 + εw1 (see [105],

p.59). Introducing the function ϕ by

ϕ(x) =

∫ 1

x
exp(−A(t)/ε)dt∫ 1

0
exp(−A(t)/ε)dt

, A(t) =

∫ 1

x

a(s)ds.

It can be shown that w0 can be written in the form

w0(x) = w0(0)ϕ(x) + w0(1)(1− ϕ(x))

and therefore

w′
0(x) = (w0(0)− w0(1))ϕ′(x).

But w0(0) = w0(1) exp(−a0/ε) and hence

w′
0(x)

w0(1)
= −(1− exp(−a0/ε)ϕ

′(x) > 0.

It follows that w0(x)/w0(1) is positive and increasing in the interval [0, 1].
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Thus

0 ≤ w0(x)

w0(1)
≤ w0(1− τ)

w0(1)

and hence

|w0(x)| ≤ |w0(1− τ)|, ∀x ∈ [0, 1− τ ].

The same is true for w1(x) and since w = w0 + εw1, it follows that

|w(x)| ≤ |w(1− τ)|, ∀x ∈ [0, 1− τ ].

Using the estimate for |w| and the fact that τ = (ε/a0) ln(n/4), we obtain

|w(x)| ≤ M exp(−a0τ/ε) = Mn−1. (4.4.27)

Now we define an auxiliary mesh function W̃ analogous to W except that the coefficient

a in the difference operator Ln is replaced by a0. Then Lemma 7.5 on page 53 of [105]

suggests that

|Wj| ≤ |W̃j|, ∀0 ≤ j ≤ n.

Thus by Lemma 7.3(p.51 of [105]) , we conclude that

|Wj| ≤ Mn−1, for n/2 ≤ j ≤ 3n/4. (4.4.28)

Hence, from inequalities (4.4.27) and (4.4.28) , we have

|Wj − wj| ≤ Mn−1, for n/2 ≤ j ≤ 3n/4. (4.4.29)

In the subinterval [1− τ, 1], the classical argument leads to

|Ln(Wj − wj)| ≤ Mε−2|xj+1 − xj−1| = 8Mε−2τn−1.
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But also from the (4.4.29), we have

|Wn − wn| = 0

and

|W3n/4 − w3n/4| ≤ |W3n/4|+ |w3n/4| ≤ Mn−1.

By introducing the barrier function

Φj = (xj − (1− τ))M1ε
−2τn−1 + M2n

−1,

we see that the mesh functions

Ψ±
j = Φj ± (Wj − wj)

satisfy

Ψ±
3n/4 ≥ 0, Ψ±

n = 0,

provided that the constants M1 and M2 are chosen suitably.

Note that

LnΨ±
j ≤ 0, 3n/4 + 1 ≤ j ≤ n− 1.

By the discrete minimum principle (Lemma 4.3.1), on [1− τ, 1] we get

Ψ±
j ≥ 0, 3n/4 ≤ j ≤ n.

Consequently,

|Wj − wj| ≤ Φj ≤ M1ε
−2τ 2n−1 + M2n

−1,
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and making use of the inequality τ ≤ (ε/a0) ln(n/4), we obtain

|Wj − wj| ≤ Mn−1(ln(n/4))2. (4.4.30)

Combining (4.4.29) and (4.4.30), we obtain the following estimate on the singular com-

ponent of the error over the interval [0,1]:

|Wj − wj| ≤ Mn−1(ln(n/4))2, n/2 ≤ j ≤ n. (4.4.31)

Estimates (4.4.22) and (4.4.31) along with the inequality (4.4.18) immediately gives

|Uj − uj| ≤ Mn−1(ln(n/4))2, n/2 ≤ j ≤ n. (4.4.32)

Similarly,

|Uj − uj| ≤ Mn−1(ln(n/4))2, 0 ≤ j ≤ n/2− 1. (4.4.33)

We therefore have the following result.

Theorem 4.4.1. Let a(x), b(x) and f(x) be sufficiently smooth functions in the problem

(4.1.1)-(4.1.2) and so that u(x) ∈ C4([−1, 1]). The numerical solution U obtained via

FMFDM (4.4.17) along with (4.4.16) satisfies

sup
0<ε≤1

max
0≤j≤n

|uj − Uj| ≤ Mn−1(ln(n/4))2. (4.4.34)

4.4.2 Richardson extrapolation for FMFDM

We bisect each mesh sub-interval of µn,τ and obtain a new mesh which we denote by µ2n,τ .

µ2n,τ = {x̄j, 0 ≤ j ≤ 2n + 1} ⊃ µn,τ and x̄j − x̄j−1 = h̄j = hj/2.

We denote the numerical solution computed on the mesh µ2n,τ by Ū .
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From the estimate (4.4.34), we have

uj − Uj = Mn−1(ln(n/4))2 + Rn(xj), ∀xj ∈ µn,τ (4.4.35)

and

uj − Ūj = M(2n)−1(ln(n/4))2 + R2n(x̄j), ∀x̄j ∈ µ2n,τ . (4.4.36)

The remainders Rn(xj) and R2n(x̄j) are of O(n−1(ln(n/4))2). It is to be noted that in

practice, we assume

τ =
ε

a0

ln
(n

4

)
, (4.4.37)

because the possibility τ = 1/4 suggested in equation (4.4.13) means that

1/4 < (ε/a0) ln(n/4), and so n−1 is very small relative to ε. This unlikely situation can

be dealt with using the standard techniques.

The presence of the factor ln(n/4) in both (4.4.35) and (4.4.36) explains the fact that

the two meshes µn,τ and µ2n,τ use the same parameter τ given by (4.4.37).

A combination of equations (4.4.35) and (4.4.36) suggests that

uj − (2Ūj − Uj) = O(n−1(ln(n/4))2), ∀j = 1, · · · , n− 1

and therefore we set

U ext
j := 2Ūj − Uj, ∀j = 1, · · · , n− 1 (4.4.38)

as the numerical approximation of u at the grid point xj ∈ µn,τ resulting from the extrap-

olation process.

The decomposition of the error after extrapolation in a similar manner as in (4.4.18)

gives

U ext − u =
(
V ext − v

)
+

(
W ext − w

)
, (4.4.39)

where V ext and W ext are the regular and singular components of U ext, respectively. We
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will estimate the components of the error separately.

For similar reasons as mentioned in the previous subsection, we will provide the anal-

ysis only on the interval [0, 1].

The local truncation error of the scheme (4.4.17) along with (4.4.16) at the grid point

xj after extrapolation is given by

Ln(u− U ext) =
[
2Ln

∗ (vj − V̄j)− Ln(vj − Vj)
]

+
[
2Ln

∗ (wj − W̄j)− Ln(wj −Wj)
]
, (4.4.40)

where, like Ln, Ln
∗ is a discrete operator associated with (4.4.17) along with (4.4.16) but

on the mesh µ2n,τ .

For the regular part of the local truncation after extrapolation, we use Lemma 4.1

([105]). An analogous result as in (4.4.20) is

∣∣2Ln
∗ (vj − V̄j)− Ln(vj − V j)

∣∣ ≤ 2ε

3
(xj+1/2 − xj−1/2)|v′′j |+ aj(xj − xj−1/2)|v′j|

+
ε

3
(xj+1 − xj−1)|v′′′j |+

aj

2
(xj − xj−1)|v′′j |,

for
n

2
≤ j ≤ n− 1.

Using Lemma 4.3.2, we therefore have

∣∣vj − V ext
j

∣∣ ≤ Mn−1, for
n

2
≤ j ≤ n− 1. (4.4.41)

For the estimates on wj −W ext
j , we discuss two different cases.

If τ = 1/4, the mesh is uniform and we have ε−1 ≤ (4/a0) ln(n/4). Therefore, by

Lemma (4.4.17), we have

∣∣2Ln
∗ (wj − W̄j)− Ln(wj −Wj)

∣∣ ≤ Mn−1ε−2 ≤ Mn−1(ln(n/4))2.
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An application of Lemma 4.3.2 then gives

∣∣wj −W ext
j

∣∣ ≤ Mn−1(ln(n/4))2, for
n

2
≤ j ≤ n− 1. (4.4.42)

If τ = (ε/a0) ln(n/4), the mesh is piecewise uniform with mesh spacing of 4(1 − τ)/n in

the interval [0, 1− τ ] and 4τ/n in the interval [1− τ, 1].

In the subinterval [0, 1 − τ ], the functions w, W and W̄ are small and therefore we

have
∣∣wj −W ext

j

∣∣ ≤ |w|+ 2|W̄ |+ |W |.

The bounds on |w| and |W | are obtained in the previous subsection. Also, bounds of |W |
are those of |W̄ |. Hence,

∣∣wj −W ext
j

∣∣ ≤ Mn−1, for
n

2
≤ j ≤ 3n

4
. (4.4.43)

In the subinterval [1 − τ, 1], we use the discrete minimum principle (Lemma 4.3.1) to

bound
∣∣wj −W ext

j

∣∣. For 3n/4 + 1 ≤ j ≤ n− 1, we have

Ln(wj −W ext
j ) ≤ Mε−2|xj+1 − xj−1| = Mε−2τn−1.

Furthermore,
∣∣∣w3n/4 −W ext

3n/4

∣∣∣ ≤ Mn−1 and |wn −W ext
n | = 0.

Defining the barrier function

Φ̄j = (xj − (1− τ))M1ε
−2τn−1 + M2n

−1,

we notice that, for a suitable choice of M1 and M2, the mesh function

Ψ̄±
j = Φ̄j ± (wj −W ext

j )
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satisfies

Ψ̄±
3n/4 ≥ 0, Ψ̄±

n = 0

and

LnΨ̄±
j ≤ 0, for

3n

4
+ 1 ≤ j ≤ n− 1.

It follows, by the discrete minimum principle (Lemma 4.3.1) that on the interval [1− τ, 1]

Ψ̄±
j ≥ 0, for

3n

4
+ 1 ≤ j ≤ n− 1.

Therefore

|wj −W ext
j | ≤ Φ̄j ≤ M1ε

−2τ 2n−1 + M2n
−1.

Hence

|wj −W ext
j | ≤ Mn−1(ln(n/4))2, for

3n

4
+ 1 ≤ j ≤ n− 1. (4.4.44)

Combining estimates (4.4.43) and (4.4.44), we obtain

|wj −W ext
j | ≤ Mn−1(ln(n/4))2, for

n

2
≤ j ≤ n. (4.4.45)

By virtue of (4.4.39), estimates (4.4.41) and (4.4.45) lead to

|uj − U ext
j | ≤ Mn−1(ln(n/4))2, for

n

2
≤ j ≤ n. (4.4.46)

Following the similar lines on the interval [−1, 0], i.e, when a > 0, we obtain the same

estimate.

Combining the two, we have

Theorem 4.4.2. Let a(x), b(x) and f(x) be sufficiently smooth functions in the problem

(4.1.1)-(4.1.2) and so that u(x) ∈ C4([−1, 1]). The numerical solution U ext obtained via
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FMFDM (4.4.17) along with (4.4.16) after extrapolation satisfies

sup
0<ε≤1

max
0≤j≤n

|uj − U ext
j | ≤ Mn−1(ln(n/4))2. (4.4.47)

In next section, we provide test examples to support these theoretical estimates.

4.5 Numerical results

For the following two test examples we provide comparative numerical results before and

after extrapolation using the two fitted methods.

Example 4.5.1. [82] Consider problem (4.1.1)-(4.1.2) with

a(x) = 2(1− 2x), b(x) = 4, f(x) = 0

for 0 < x < 1.

The exact solution is

u(x) = exp

(
−2x

1− x

ε

)
.

The solution to this problem has a turning point at x = 0.5.

Example 4.5.2. Consider problem (4.1.1)-(4.1.2) with

a(x) = −2x3, b(x) = exp(x2),

f(x) =

[
2

(
1 +

2x2

ε
− 2x4

ε

)
− exp(x2)

]
exp

[
x2 − 1

ε

]
.

Its exact solution is given by

u(x) = exp

[
−(1− x)(1 + x)

ε

]
.

The solution has a turning point at x = 0.
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The maximum errors before extrapolation at all mesh points are evaluated using the

fomulae

eε,n := max
0≤j≤n

|uj − Uj|, (4.5.48)

for both FOFDM (4.3.6) along with (4.3.5) and FMFDM (4.4.17) along with (4.4.16).

After extrapolation, the maximum errors are calculated as

eext
ε,n := max

0≤j≤n
|uj − U ext

j |. (4.5.49)

The numerical rates of convergence are computed by using the formula [33]:

rk ≡ rε,k := log2(ẽnk
/ẽ2nk

), k = 1, 2, ...

where ẽ stands for eε,n, and eext
ε,n, respectively.
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Table 4.1: Results for Example 4.5.2: Maximum errors via FOFDM (4.3.6) along with
(4.3.5) before extrapolation.

ε n=16 n=32 n=64 n=128 n=256 n=512 n=1024
1.0E-02 3.62E-02 1.46E-02 8.06E-03 9.07E-03 7.21E-03 3.17E-03 1.34E-03
1.0E-04 3.60E-02 1.45E-02 6.37E-03 2.99E-03 1.45E-03 7.12E-04 3.53E-04
1.0E-05 3.60E-02 1.45E-02 6.37E-03 2.99E-03 1.45E-03 7.12E-04 3.53E-04
1.0E-06 3.60E-02 1.45E-02 6.37E-03 2.99E-03 1.45E-03 7.12E-04 3.53E-04
1.0E-07 3.60E-02 1.45E-02 6.37E-03 2.99E-03 1.45E-03 7.12E-04 3.53E-04
1.0E-08 3.60E-02 1.45E-02 6.37E-03 2.99E-03 1.45E-03 7.12E-04 3.53E-04
1.0E-09 3.60E-02 1.45E-02 6.37E-03 2.99E-03 1.45E-03 7.12E-04 3.53E-04
1.0E-10 3.60E-02 1.45E-02 6.37E-03 2.99E-03 1.45E-03 7.12E-04 3.53E-04
1.0E-11 3.60E-02 1.45E-02 6.37E-03 2.99E-03 1.45E-03 7.12E-04 3.53E-04

en 3.60E-02 1.45E-02 6.37E-03 2.99E-03 1.45E-03 7.12E-04 3.53E-04

Table 4.2: Results for Example 4.5.2: Maximum errors via FOFDM (4.3.6) along with
(4.3.5) after extrapolation.

ε n=16 n=32 n=64 n=128 n=256 n=512 n=1024
1.0E-02 2.43E-02 1.01E-02 6.24E-03 3.86E-03 1.54E-03 5.05E-04 1.49E-04
1.0E-04 2.42E-02 9.78E-03 4.28E-03 2.00E-03 9.67E-04 4.75E-04 2.36E-04
1.0E-05 2.42E-02 9.78E-03 4.28E-03 2.00E-03 9.67E-04 4.75E-04 2.36E-04
1.0E-06 2.42E-02 9.78E-03 4.28E-03 2.00E-03 9.67E-04 4.75E-04 2.36E-04
1.0E-07 2.42E-02 9.78E-03 4.28E-03 2.00E-03 9.67E-04 4.75E-04 2.36E-04
1.0E-08 2.42E-02 9.78E-03 4.28E-03 2.00E-03 9.67E-04 4.75E-04 2.36E-04
1.0E-09 2.42E-02 9.78E-03 4.28E-03 2.00E-03 9.67E-04 4.75E-04 2.36E-04
1.0E-10 2.42E-02 9.78E-03 4.28E-03 2.00E-03 9.67E-04 4.75E-04 2.36E-04
1.0E-11 2.42E-02 9.78E-03 4.28E-03 2.00E-03 9.67E-04 4.75E-04 2.36E-04

eext
n 2.42E-02 9.78E-03 4.28E-03 2.00E-03 9.67E-04 4.75E-04 2.36E-04
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Table 4.3: Results for Example 4.5.2: Rates of convergence via FOFDM (4.3.6) along
with (4.3.5) before extrapolation

ε r1 r2 r3 r4 r5 r6

1.0E-02 1.31 0.85 -0.17 0.33 1.19 1.24
1.0E-04 1.32 1.18 1.09 1.05 1.02 1.01
1.0E-05 1.32 1.18 1.09 1.05 1.02 1.01
1.0E-06 1.32 1.18 1.09 1.05 1.02 1.01
1.0E-07 1.32 1.18 1.09 1.05 1.02 1.01
1.0E-08 1.32 1.18 1.09 1.05 1.02 1.01
1.0E-09 1.32 1.18 1.09 1.05 1.02 1.01
1.0E-10 1.32 1.18 1.09 1.05 1.02 1.01
1.0E-11 1.32 1.18 1.09 1.05 1.02 1.01

Rn 1.32 1.18 1.09 1.05 1.02 1.01

Table 4.4: Results for Example 4.5.2: Rates of convergence via FOFDM (4.3.6) along
with (4.3.5) after extrapolation

ε r1 r2 r3 r4 r5 r6

1.0E-02 1.27 0.69 0.69 1.33 1.61 1.76
1.0E-04 1.31 1.19 1.10 1.05 1.02 1.01
1.0E-05 1.31 1.19 1.10 1.05 1.02 1.01
1.0E-06 1.31 1.19 1.10 1.05 1.02 1.01
1.0E-07 1.31 1.19 1.10 1.05 1.02 1.01
1.0E-08 1.31 1.19 1.10 1.05 1.02 1.01
1.0E-09 1.31 1.19 1.10 1.05 1.02 1.01
1.0E-10 1.31 1.19 1.10 1.05 1.02 1.01
1.0E-11 1.31 1.19 1.10 1.05 1.02 1.01

Rext
n 1.31 1.19 1.10 1.05 1.02 1.01
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Table 4.5: Results for Example 4.5.1: Maximum errors via FMFDM (4.4.17) along with
(4.4.16) before extrapolation.

ε n=16 n=32 n=64 n=128 n=256 n=512 n=1024
1.0E-02 1.36E-01 9.02E-02 5.83E-02 3.67E-02 2.25E-02 1.33E-02 7.71E-03
1.0E-04 1.43E-01 9.44E-02 6.04E-02 3.77E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-05 1.43E-01 9.44E-02 6.04E-02 3.77E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-06 1.43E-01 9.44E-02 6.04E-02 3.77E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-07 1.43E-01 9.44E-02 6.04E-02 3.77E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-08 1.43E-01 9.44E-02 6.04E-02 3.77E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-09 1.43E-01 9.44E-02 6.04E-02 3.77E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-10 1.43E-01 9.44E-02 6.04E-02 3.77E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-11 1.43E-01 9.44E-02 6.04E-02 3.77E-02 2.29E-02 1.36E-02 7.84E-03

en 1.43E-01 9.44E-02 6.04E-02 3.77E-02 2.29E-02 1.36E-02 7.84E-03

Table 4.6: Results for Example 4.5.1: Maximum errors via FMFDM (4.4.17) along with
(4.4.16) after extrapolation.

ε n=16 n=32 n=64 n=128 n=256 n=512 n=1024
1.0E-02 6.61E-02 4.23E-02 2.46E-02 1.56E-02 1.11E-02 8.37E-03 6.60E-03
1.0E-04 6.46E-02 4.35E-02 2.56E-02 1.61E-02 1.13E-02 8.51E-03 6.69E-03
1.0E-05 6.45E-02 4.35E-02 2.56E-02 1.61E-02 1.13E-02 8.51E-03 6.69E-03
1.0E-06 6.45E-02 4.35E-02 2.56E-02 1.61E-02 1.13E-02 8.51E-03 6.69E-03
1.0E-07 6.45E-02 4.35E-02 2.56E-02 1.61E-02 1.13E-02 8.51E-03 6.69E-03
1.0E-08 6.45E-02 4.35E-02 2.56E-02 1.61E-02 1.13E-02 8.51E-03 6.69E-03
1.0E-09 6.45E-02 4.35E-02 2.56E-02 1.61E-02 1.13E-02 8.51E-03 6.69E-03
1.0E-10 6.45E-02 4.35E-02 2.56E-02 1.61E-02 1.13E-02 8.51E-03 6.69E-03
1.0E-11 6.46E-02 4.35E-02 2.56E-02 1.61E-02 1.14E-02 8.51E-03 6.75E-03

eext
n 6.45E-02 4.35E-02 2.56E-02 1.61E-02 1.14E-02 8.51E-03 6.69E-03
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Table 4.7: Results for Example 4.5.1: Rates of convergence via FMFDM (4.4.17) along
with (4.4.16) before extrapolation

ε r1 r2 r3 r4 r5 r6

1.0E-02 0.59 0.63 0.67 0.71 0.75 0.79
1.0E-04 0.60 0.64 0.68 0.72 0.76 0.79
1.0E-05 0.60 0.64 0.68 0.72 0.76 0.79
1.0E-06 0.60 0.64 0.68 0.72 0.76 0.79
1.0E-07 0.60 0.64 0.68 0.72 0.76 0.79
1.0E-08 0.60 0.64 0.68 0.72 0.76 0.79
1.0E-09 0.60 0.64 0.68 0.72 0.76 0.79
1.0E-10 0.60 0.64 0.68 0.72 0.76 0.79
1.0E-11 0.60 0.64 0.68 0.72 0.76 0.79

Rn 0.60 0.64 0.67 0.72 0.76 0.79

Table 4.8: Results for Example 4.5.1: Rates of convergence via FMFDM (4.4.17) along
with (4.4.16) after extrapolation

ε r1 r2 r3 r4 r5 r6

1.0E-02 0.64 0.78 0.66 0.50 0.40 0.34
1.0E-04 0.57 0.77 0.67 0.51 0.41 0.35
1.0E-05 0.57 0.77 0.67 0.51 0.41 0.35
1.0E-06 0.57 0.77 0.67 0.51 0.41 0.35
1.0E-07 0.57 0.77 0.67 0.51 0.41 0.35
1.0E-08 0.57 0.77 0.67 0.51 0.41 0.35
1.0E-09 0.57 0.77 0.67 0.51 0.41 0.35
1.0E-10 0.57 0.77 0.67 0.51 0.41 0.35
1.0E-11 0.57 0.77 0.67 0.50 0.42 0.33

Rext
n 0.57 0.77 0.67 0.50 0.42 0.33
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Table 4.9: Results for Example 4.5.2: Maximum errors via FMFDM (4.4.17) along with
(4.4.16) before extrapolation.

ε n=16 n=32 n=64 n=128 n=256 n=512 n=1024
1.0E-02 9.82E-02 8.49E-02 5.82E-02 3.71E-02 2.27E-02 1.35E-02 7.78E-03
1.0E-04 9.85E-02 8.58E-02 5.88E-02 3.75E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-05 9.85E-02 8.58E-02 5.88E-02 3.75E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-06 9.85E-02 8.58E-02 5.88E-02 3.75E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-07 9.85E-02 8.58E-02 5.88E-02 3.75E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-08 9.85E-02 8.58E-02 5.88E-02 3.75E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-09 9.85E-02 8.58E-02 5.88E-02 3.75E-02 2.29E-02 1.36E-02 7.84E-03
1.0E-10 9.85E-02 8.58E-02 5.88E-02 3.75E-02 2.29E-02 1.36E-02 7.83E-03
1.0E-11 9.85E-02 8.58E-02 5.88E-02 3.74E-02 2.29E-02 1.35E-02 7.83E-03

en 9.85E-02 8.58E-02 5.88E-02 3.74E-02 2.29E-02 1.35E-02 7.83E-03

Table 4.10: Results for Example 4.5.2: Maximum errors via FMFDM (4.4.17) along with
(4.4.16) after extrapolation.

ε n=16 n=32 n=64 n=128 n=256 n=512 n=1024
1.0E-02 3.78E-02 3.47E-02 2.35E-02 1.55E-02 1.11E-02 8.40E-03 6.62E-03
1.0E-04 3.83E-02 3.53E-02 2.40E-02 1.58E-02 1.13E-02 8.50E-03 6.69E-03
1.0E-05 3.83E-02 3.53E-02 2.40E-02 1.58E-02 1.13E-02 8.50E-03 6.69E-03
1.0E-06 3.83E-02 3.53E-02 2.40E-02 1.58E-02 1.13E-02 8.50E-03 6.69E-03
1.0E-07 3.83E-02 3.53E-02 2.40E-02 1.58E-02 1.13E-02 8.50E-03 6.69E-03
1.0E-08 3.83E-02 3.53E-02 2.40E-02 1.58E-02 1.13E-02 8.50E-03 6.69E-03
1.0E-09 3.83E-02 3.53E-02 2.40E-02 1.58E-02 1.13E-02 8.50E-03 6.69E-03
1.0E-10 3.83E-02 3.53E-02 2.40E-02 1.59E-02 1.13E-02 8.54E-03 6.69E-03
1.0E-11 3.83E-02 3.53E-02 2.40E-02 1.58E-02 1.15E-02 8.50E-03 1.18E-02

eext
n 3.83E-02 3.53E-02 2.40E-02 1.59E-02 1.13E-02 8.54E-03 6.69E-03
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Table 4.11: Results for Example 4.5.1: Rates of convergence via FMFDM (4.4.17) along
with (4.4.16) before extrapolation

ε r1 r2 r3 r4 r5 r6

1.0E-02 0.75 0.86 0.92 0.96 0.98 0.99
1.0E-04 0.27 0.54 0.63 0.75 0.97 0.98
1.0E-05 0.24 0.55 0.64 0.70 0.75 0.79
1.0E-06 0.22 0.54 0.65 0.71 0.75 0.79
1.0E-07 0.21 0.54 0.65 0.71 0.75 0.79
1.0E-08 0.20 0.54 0.65 0.71 0.76 0.79
1.0E-09 0.20 0.54 0.65 0.71 0.76 0.79
1.0E-10 0.20 0.54 0.65 0.71 0.76 0.79
1.0E-11 0.20 0.54 0.65 0.71 0.76 0.79

Rn 0.20 0.54 0.65 0.71 0.76 0.79

Table 4.12: Results for Example 4.5.1: Rates of convergence via FMFDM (4.4.17) along
with (4.4.16) after extrapolation

ε r1 r2 r3 r4 r5 r6

1.0E-02 0.12 0.56 0.60 0.49 0.40 0.34
1.0E-04 0.12 0.56 0.60 0.49 0.41 0.35
1.0E-05 0.12 0.56 0.60 0.49 0.41 0.35
1.0E-06 0.12 0.56 0.60 0.49 0.41 0.35
1.0E-07 0.12 0.56 0.60 0.49 0.41 0.35
1.0E-08 0.12 0.56 0.60 0.49 0.41 0.35
1.0E-09 0.12 0.56 0.60 0.49 0.41 0.35
1.0E-10 0.12 0.56 0.60 0.49 0.40 0.35
1.0E-11 0.12 0.56 0.60 0.47 0.43 -0.48

Rext
n 0.12 0.56 0.60 0.49 0.40 0.35
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4.6 Discussion

In this chapter, we have constructed two fitted finite difference methods to solve the

singularly perturbed turning point problem (4.1.1)-(4.1.2): a FOFDM and a FMFDM.

The former is first order convergent and the latter is almost first order. These theoretical

results are confirmed by our numerics presented in Table 4.3 in the case of FOFDM and

tables 4.7 and 4.11 in the case of FMFDM. We have also investigated the performance

of the Richardson extrapolation when applied on these methods and noticed that this

convergence acceleration technique does not improve the order of convergence of either

of the methods above as seen in tables 4.4, 4.8 and 4.12. However, the Richardson

extrapolation improves the accuracy of the methods as supported by the comparative

results before and after extrapolation in tables 4.1 and 4.2, 4.5 and 4.6 and 4.9 and 4.10.
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Chapter 5

A High Accuracy Fitted Operator

Finite Difference Method for a

Nonlinear Singularly Perturbed

Two-point Boundary Value Problem

In this chapter, we extend the ideas developed for the singularly perturbed linear two-

point boundary value problems to solve a class of singularly perturbed nonlinear two-

point boundary value problems. The original nonlinear problem is linearized and each

of the linear problems is then solved using an appropriate FOFDM. The Richardson

extrapolation is then carried out to find whether we can achieve higher accuracy. Error

estimates before and after extrapolation are also provided.
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5.1 Introduction

We consider the following class of singularly perturbed nonlinear two-point boundary

value problems ([33])

Ly ≡ εy′′ = F (x, y, y′), (5.1.1)

y(0) = η0, y(1) = η1, (5.1.2)

where y(0) = η0, y(1) = η1 ∈ R and x ∈ (0, 1) and ε is a small positive parameter. We

assume that F is a smooth function satisfying the following conditions:

• (∂/∂z)F (x, y, z) ≤ 0,

• (∂/∂y)F (x, y, z) ≥ 0,

• (∂/∂y − ∂/∂z)F (x, y, z) ≥ α > 0,

• the growth condition F (x, y, z) = O(|z|2), as z →∞, for all x ∈ [0, 1] and all real y

and z.

Under the above assumptions, a unique solution exists for the problem (5.1.1)-(5.1.2).

The details can be found in [29, 61].

The solution to the above problem is sought in two steps: The first step is the quasi-

linearization and the second one is to solve the sequence of linear problems.

In general, one linearizes the equation (5.1.1) around a nominal solution, which satisfies

the specified boundary conditions [19]. This process leads to a sequence of linear two-

point boundary-value problems in which the solution of the k-th linear problem satisfies

the specified boundary conditions and is taken as the nominal profile for the (k + 1)-th

linear problem. Each of the linear problems in this sequence is then solved by using an

appropriate method for a linear problem. The iterative procedure is continued until the

desired convergence is achieved.
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The readers are referred to chapter 1 for some of the works found in the literature

regarding the numerical solutions of nonlinear two-point boundary value problems. How-

ever, we are not aware of the use of the convergence acceleration techniques for such

problems and hence, the present work is an attempt to fill this gap.

The rest of this chapter is organized as follows. We linearize the nonlinear problem

above via quasilinearization and prove the convergence of this process in Section 5.2.

The sequence of linear boundary value problems obtained via quasilinearization is solved

using a fitted operator finite difference method (FOFDM) which we introduce in Section

5.3. In Section 5.4, the analysis of this FOFDM is presented. Section 5.5 provides the

error estimate of the extrapolation of this FOFDM. Numerical results which validate our

findings are displayed in Section 5.7. Finally, a brief discussion of our results is given in

Section 5.8.

5.2 Quasilinearization process and its convergence

Following some of the works, for example, [19, 67], in this section we discuss the quasilin-

earization process and its convergence.

5.2.1 Quasilinearization

Let
(
y(k)(x), (y′)(k)(x)

)
be the kth nominal solution to problem (5.1.1)-(5.1.2) over the

interval [0, 1]. This means that the profiles y(k)(x) and (y′)(k)(x) satisfy the boundary

conditions exactly and the differential equation (5.1.1) approximately.

Taking the Taylor expansion of the right-hand side of (5.1.1) up to first-order terms

around the above nominal solution, we get

ε(y′′)(k+1) ≈ F
(
y(k), (y′)(k)

)
+ Fy

[
y(k+1) − y(k)

]
+ Fy′

[
(y′)(k+1) − (y′)(k)

]
, (5.2.3)
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and therefore

ε(y′′)(k+1) − Fy′(y
′)(k+1) − Fy(y)(k+1) = F

(
y(k), (y′)(k)

)− Fyy
(k) − Fy′(y

′)(k), (5.2.4)

which is linear in yk+1(x).

Now, instead of solving the nonlinear problem (5.1.1)-(5.1.2), we will solve a sequence

of linear problems (5.2.4) for k = 0, 1, 2, · · · along with the boundary conditions

y(k)(0) = y(0) = η0, y(k)(1) = y(1) = η1. (5.2.5)

Theoretically, for a solution to the nonlinear problem, we require that

lim
k→∞

y(k)(x) = y∗(x), 0 ≤ x ≤ 1,

where y∗(x) is the solution of the nonlinear problem. Numerically, we require that

∣∣y(k+1)(x)− y(k)(x)
∣∣ ≤ Tol, 0 ≤ x ≤ 1.

where Tol is a small tolerance prescribed by us.

5.2.2 Convergence of the quasilinearization process

For the sake of simplicity, in this subsection we will denote F (x, y, y′) by F (y). Consider

the problem

εy′′ = F (y), (5.2.6)

y(x0) = 0, y(xn) = 0. (5.2.7)

We recall that x0 and xn are respectively 0 and 1 in this chapter. However, to keep the

exposition wider, we present the analysis in this section by considering the general values.
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Let y0(x) be some initial approximation and consider the sequence {yk} determined

by the recurrence relation

εy′′k = F (yk−1) + (yk − yk−1)F
′(yk−1), (5.2.8)

yk(x0) = 0, yk(xn) = 0. (5.2.9)

Equation (5.2.8) implies that

ε(yk+1 − yk)
′′ = F (yk)− F (yk−1) + (yk+1 − yk)F

′(yk)− (yk − yk−1)F
′(yk−1). (5.2.10)

This equation can be regarded as a differential equation in yk+1 − yk. We convert it into

the following integral equation

ε (yk+1 − yk) =

∫ xn

x0

G(x, s) [F (yk)− F (yk−1) + (yk+1 − yk)F
′(yk)

−(yk − yk−1)F
′(yk−1)] ds, (5.2.11)

where the Green function G(x, s) is given by

G(x, s) =





(xn−x)(s−x0)
xn−x0

, x0 ≤ s ≤ x,

(x−x0)(xn−s)
xn−x0

, x ≤ s ≤ xn.
(5.2.12)

It is to be noted that the function G(x, s) reaches its maximum value (xn − x0)/4 at

s = (x0 + xn)/2. Also, we note from the mean value theorem that

F (yk)− F (yk−1)− (yk − yk−1)F
′(yk−1) = (yk − yk−1)F

′′(θ), yk−1 < θ < yk.

Define

K = max
|y|≤1

|F ′′(y)|, and M̃ = max
|y|≤1

|F ′(y)|.
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It follows from equation (5.2.11) that

|yk+1 − yk| ≤ xn − x0

4ε

∫ xn

x0

[
K

2
(yk − yk−1)

2 + M̃ |yk+1 − yk|
]

ds.

Taking maximum over x after rearranging the terms, we get

max
x

(yk+1 − yk) ≤
[

K(xn − x0)
2

8ε

/(
1− M̃(xn − x0)

2

4ε

)]
max

x
(yk − yk−1)

2 . (5.2.13)

This shows a quadratic convergence, provided that

[
K(xn − x0)

2

8ε

/ (
1− M̃(xn − x0)

2

4ε

)]
< 1.

If xn − x0 is small enough, the above inequality holds. If xn − x0 is large, an adequate

choice of the initial approximation y0(x) will keep |y1(x) − y0(x)| sufficiently small. It

follows that max |yk+1 − yk| is small enough for all x ∈ (x0, xn), which is sufficient for

convergence.

5.3 Fitted operator finite difference method (FOFDM)

for the sequence of linear problems

At each iteration, equation (5.2.4) can be written as

Lu ≡ −εu′′ + a(x)u′ + b(x)u = f, for x ∈ (0, 1), (5.3.14)

where

a(x) = Fy′ , b(x) = Fy, f(x) = Fyy
(k) + Fy′(y

(k))′ − F (y(k), (y(k))′),

and

u = y(k+1).
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The boundary conditions at each iteration are given by

u(0) = η0, and u(1) = η1. (5.3.15)

It is to be noted that the solution profile of problem (5.3.14)-(5.3.15) depends on the sign

patterns of the coefficient functions a(x) and b(x).

• If a(x) 6= 0 for 0 ≤ x ≤ 1, then the solution has a boundary layer at x = 0 for

a(x) < 0 and at x = 1 for a(x) > 0.

• If a(x) ≡ 0 for 0 ≤ x ≤ 1, then the solution may have boundary layers at x = 0 and

x = 1 for b(x) > 0 and may oscillate rapidly for b(x) < 0.

We will develop a FOFDM for one of the above cases, namely, the case where a(x) ≥ α > 0.

We discretize problem (5.3.14)-(5.3.15) as in Chapter 4 and obtain the following

FOFDM (note that the notation U used below denotes the approximations for u):

LhUj ≡ −ε
Uj+1 − 2Uj + Uj−1

φ2
j

+ ãj
Uj − Uj−1

h
+ b̃jUj = f̃j,

where

ãj =
aj + aj+1

2
,

b̃j =
bj−1 + bj + bj+1

3
,

f̃j =
fj−1 + fj + fj+1

3
,

and

φ2
j =

hε

ãj

(
exp

(
ãjh

ε

)
− 1

)
.
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In the above, Lh is the discrete operator associated with the linear operator L. This

discretization results in the following tridiagonal system

AU = G. (5.3.16)

The corresponding entries of A and G are

Aij = r−j , i = j + 1; j = 1, 2, . . . , n− 2,

Aij = rc
j , i = j; j = 1, 2, . . . , n− 1,

Aij = r+
j , i = j − 1; j = 2, 3, . . . , n− 1,

G1 = f̃1 − r−1 η0, Fn−1 = f̃n−1 − r+
n−1η1,

Gj = f̃j, j = 2, 3, . . . , n− 1,

where

r−j = − ε

φ2
j

− ãj

h
, rc

j =
2ε

φ2
j

+
ãj

h
+ b̃j, and r+

j = − ε

φ2
j

. (5.3.17)

If the form of the linear equation is different from the one considered in this chapter,

then the above process can be suitably adjusted.

In next section, we analyze this method for convergence.

5.4 Convergence analysis of FOFDM

The local truncation error of the scheme (5.3.16) and (5.3.17) is given by

Lh(uj − Uj) = T0uj + T1u
′
j + T2u

′′
j + T3u

′′′
j + T4u

(iv)(ξj), (5.4.18)

where ξj ∈ (xj−1, xj+1) and

T0 = r−j + rc
j + r+

j − bj − h2

3
b′′j ,
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T1 = h(r+
j − r−j )− aj − 1

3
h2

(
a′′j + 2b′j

)
,

T2 =
h2

2

(
r+
j + r−j

)
+ ε− h2

3

(
2a′j + bj +

1

2
b′′j h

2

)
, (5.4.19)

T3 =
h3

6

(
r+
j − r−j

)− h2

3

(
aj +

1

2
a′′j h

2

)
,

T4 =
h3

24

(
r+
j + r−j

)
+

1

3
εh2.

After some algebraic manipulations, we obtain

T0 = 0, |T1| ≤ Mh, |T2| ≤ Mh + Mh2/ε, |T3| ≤ Mh2, |T4| ≤ Mh2. (5.4.20)

Considering the dominating terms and using Lemma 4.2.2 we obtain

|Lh(uj − Uj)| ≤ Mh

(
1 +

h

ε

) [
1 +

exp(−α(1− xj)/ε)

ε2

]
, for j = 1, 2, · · · , n− 1.

(5.4.21)

where α is such that a(x) ≥ α > 0, ∀x ∈ [0, 1].

Finally, using lemmas (4.3.2) and (2.2.5), we have the following result.

Theorem 5.4.1. Let U be the numerical approximation to u of (5.3.14)-(5.3.15) obtained

by using (5.3.16)-(5.3.17). Then there is a positive constant M , independent of h and ε,

such that

max
0≤j≤n

|uj − Uj| ≤ Mh

(
1 +

h

ε

)
, (5.4.22)

where M is a constant independent of h and ε.

5.5 Richardson extrapolation

We have used the FOFDM presented in an earlier section to solve the sequence of linear

problems. The extrapolation formula as well as the error estimates after extrapolation

are derived in this section.
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5.5.1 Extrapolation formula for linear problems

Let µ2n be the mesh obtained by bisecting each mesh interval in µn. We have

µ2n = {x̃j}, with x̃0 = 0, x̃n = 1, and x̃j − x̃j−1 = h̃ = h/2, j = 1(1)2n.

Denoting by Ū the numerical approximation of u computed using (5.3.16)-(5.3.17) on the

mesh µ2n, the estimate in Theorem 5.4.1 suggests that

uj − Uj = Mh + O(h2/ε), j = 0(1)n.

Similarly,

uj − Ūj = Mh̃ + O(h̃2/ε), j = 0(1)2n.

A straightforward calculation therefore shows that

uj − (2Ũj − Uj) = O(h2/ε), j = 0(1)n.

Thus, we will use

U ext
j := 2Ūj − Uj, j = 0(1)n. (5.5.23)

as the approximation of u after extrapolation.

5.5.2 Error estimates for the linear problems after extrapolation

The local truncation error of the scheme (5.3.16)-(5.3.17) after extrapolation is

L̃h
(
uj − U ext

j

)
= 2Lh̃(uj − Ūj)− Lh(uj − Uj), j = 1(1)n− 1. (5.5.24)
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The quantity Lh(uj − Uj) is given by equation (5.4.18) and

Lh̃(uj − Ūj) = T̃0uj + T̃1u
′
j + T̃2u

′′
j + T̃3u

′′′
j + T̃4u

(iv)(ξ̃j), (5.5.25)

where ξ̃j ∈ (xj − h̃, xj + h̃) and

T̃0 = r̃−j + r̃c
j + r̃+

j − bj − h̃2

3
b′′j ,

T̃1 = h̃(r̃+
j − r̃−j )− aj − 1

3
h̃2

(
a′′j + 2b′j

)
,

T̃2 =
h̃2

2

(
r̃+
j + r̃−j

)
+ ε− h̃2

3

(
2a′j + bj +

1

2
b′′j h̃

2

)
, (5.5.26)

T̃3 =
h̃3

6

(
r̃+
j − r̃−j

)− h̃2

3

(
aj +

1

2
a′′j h̃

2

)
,

T̃4 =
h̃3

24

(
r̃+
j + r̃−j

)
+

1

3
εh̃2,

and the r̃’s are obtained from the r’s by substituting h by h̃. It follows that

L̃h
(
uj − U ext

j

)
= (2T̃0−T0)uj+(2T̃1−T1)u

′
j+(2T̃2−T2)u

′′
j +(2T̃3−T3)u

′′′
j +(2T̃4−T4)u

(iv)(ξ̄j),

(5.5.27)

where ξ̄j ∈ (xj − h̃, xj + h̃). We note that

2T̃0 − T0 = 0, |2T̃1 − T1| ≤ Mh2, |2T̃2 − T2| ≤ Mh2/ε,

|2T̃3 − T3| ≤ Mh2, |2T̃4 − T4| ≤ Mh2. (5.5.28)

Thus, from (5.5.27), we obtain

∣∣∣L̃h
(
uj − U ext

j

)∣∣∣ ≤ Mh2|u′j|+ M
h2

ε
|u′′j |+ Mh2|u′′′j |+ Mh2|uiv

j |.
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Using Lemma 4.2.2, we get

∣∣∣L̃h
(
uj − U ext

j

)∣∣∣ ≤ Mh2

(
1 +

1

ε

)[
1 +

exp(−α(1− xj)/ε)

ε2

]
(5.5.29)

Finally, using lemmas (4.3.2) and (2.2.5) we obtain the following result

Theorem 5.5.1. Let U ext be the numerical approximation of the solution u of problem

(5.3.14)-(5.3.15) obtained after extrapolation of (5.3.16)-(5.3.17). Then there exists a

positive constant M independent of h and ε, such that

max
0≤j≤n

|uj − U ext
j | ≤ Mh2

(
1 +

1

ε

)
, (5.5.30)

where M is a constant independent of h and ε.

5.6 The case a(x) ≡ 0, b(x) > 0, for all x ∈ (0, 1)

For this case, we briefly describe the method, give the basic steps of its analysis then we

embark in Richardson extrapolation.

5.6.1 The method

The continuous problem (5.3.14)-(5.3.15) is discretized on the mesh µn as follows.

LhUj ≡ −ε
Uj+1 − 2Uj + Uj−1

ψ̃2
j

+ b̃jUj = f̃j,

where

b̃j =
bj−1 + bj + bj+1

3
,

f̃j =
fj−1 + fj + fj+1

3
,
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and

ψ̃j ≡ 2

ρ̃j

sinh

(
ρ̃jh

2

)
, ρ̃j =

√
b̃j

ε
.

The tridiagonal system resulting from this discretization is

AU = G, (5.6.31)

where the corresponding entries of A and G are

Aij = r−j , i = j + 1; j = 1, 2, . . . , n− 2,

Aij = rc
j , i = j; j = 1, 2, . . . , n− 1,

Aij = r+
j , i = j − 1; j = 2, 3, . . . , n− 1,

G1 = f̃1 − r−1 η0, Fn−1 = f̃n−1 − r+
n−1η1,

Gj = f̃j, j = 2, 3, . . . , n− 1,

and

r−j = − ε

φ2
j

, rc
j =

2ε

φ2
j

+ b̃j, and r+
j = − ε

φ2
j

. (5.6.32)

5.6.2 Convergence analysis of the method

The local truncation error of the scheme above is calculated as in (5.4.18). Note that in

this case, in the expressions for the Tjs, all the ajs vanish and the φjs are substituted by

ψj as necessary. We obtain

T0 = T3 = 0; |T1| ≤ Mh2; |T2| ≤ Mh2(1 + h2/ε); |T4| ≤ Mh2.

The following lemmas will be used below.

Lemma 5.6.1. If u(x) is the solution of the problem (5.3.14)-(5.3.15), and b, f ∈
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Ck(Ω̄), k > 0, with a(x) ≡ 0, then there exists a constant C such that

|u(k)| ≤ C
[
1 + ε−k/2

(
exp(−x

√
β/ε) + exp(−(1− x)

√
β/ε)

)]
,

where 0 < β ≤ b(x), x ∈ [0, 1].

Proof. See [105].

Lemma 5.6.2. If Zi is any mesh function such that Z0 = Zn = 0, then

|Zi| ≤ 1

β
max

1≤j≤n−1
|LhZj| for 0 ≤ i ≤ n.

Proof. See [105].

Using lemmas (4.3.2), (2.2.5) and (5.6.1), we obtain the following result.

Theorem 5.6.1. Assume that a(x) ≡ 0, and b(x) and f(x) are sufficiently smooth func-

tions in equation (5.3.14) for x ∈ [0, 1]. Let Uj, j = 0(1)n, be the approximate solution

of (5.3.14)-(5.3.15) obtained using the method (5.6.31)-(5.6.32). Then we have

max
0≤j≤n

|uj − Uj| ≤ Mh2

(
1 +

h2

ε

)
. (5.6.33)

5.6.3 Richardson extrapolation

Extrapolation formula

In this section, U and Ũ denote the computed solutions of problem (5.3.14) by the scheme

(5.6.31)-(5.6.32) on the meshes µn and µ2n, respectively. This implies that

uj − Uj = Mh2

(
1 +

h2

ε

)
+ Rn(xj), xj ∈ µn

and

uj − Ũj = M

(
h

2

)2
(

1 +
1

ε

(
h

2

)2
)

+ R2n(x̃j), x̃j ∈ µ2n
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where both the remainders Rn(xj) and R2n(x̃j) are 0(h4). The linear combination

4(uj − Ũj)− (uj − Uj) = O(h4/ε)

suggests that we should use

U ext
j :=

4Ũj − Uj

3
, j = 1(1)n− 1,

as the approximation of uj after extrapolation.

Error estimates after extrapolation

The local truncation error of the scheme (5.6.31)-(5.6.32) after extrapolation is

L̃h
(
uj − U ext

j

)
=

4

3
Lh̃(uj − Ūj)− 1

3
Lh(uj − Uj), j = 1(1)n− 1. (5.6.34)

An analogous of (5.5.27) is then obtained in the form

L̃h
(
uj − U ext

j

)
=

(
4

3
T̃0 − 1

3
T0

)
uj +

(
4

3
T̃1 − 1

3
T1

)
u′j +

(
4

3
T̃2 − 1

3
T2

)
u′′j

+

(
4

3
T̃3 − 1

3
T3

)
u′′′j +

(
4

3
T̃4 − 1

3
T4

)
u(iv)(ξ̄j), (5.6.35)

where ξ̄j ∈ (xj − h̃, xj + h̃).

The T̃ s are obtained from the T s by substituting h by h̃. Straightforward calculations

show that
4

3
T̃0 − 1

3
T0 =

4

3
T̃1 − 1

3
T1 =

4

3
T̃3 − 1

3
T3 = 0

and ∣∣∣∣
4

3
T̃2 − 1

3
T2

∣∣∣∣ ≤ Mh4

(
1 +

1

ε

)
,

∣∣∣∣
4

3
T̃4 − 1

3
T4

∣∣∣∣ ≤ Mh4.

With these bounds, applying lemmas (4.3.2), (2.2.5) and (5.6.1) to equation (5.6.35),
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we obtain the following result.

Theorem 5.6.2. Assume that a(x) ≡ 0, and b(x) and f(x) are sufficiently smooth func-

tions in equation (5.3.14) for x ∈ [0, 1]. Let U ext
j , j = 0(1)n, be the approximate solution

of (5.3.14)-(5.3.15) obtained using the method (5.6.31)-(5.6.32) after extrapolation. Then

we have

max
0≤j≤n

∣∣uj − U ext
j

∣∣ ≤ Mh4

(
1 +

1

ε

)
. (5.6.36)

5.7 Numerical results

In this section we solve the following singularly perturbed nonlinear problems in order to

illustrate our theoretical results.

Example 5.7.1. ([112]) Consider the problem

εy′′ − yy′ − y = 0, y(0) = 1, y(1) = 1.

Its exact solution is not available.

The quasilinear process equations are

−ε(y′′)(k+1)(x) + y(k)(x)(y′)(k+1)(x) +
(
1 + (y′)(k)(x)

)
y(k+1)(x) = y(k)(x)(y′)(k)(x),

y(k)(0) = 1, y(k)(1) = 1.

Example 5.7.2. ([28]) Consider the problem

εy′′ − y − y2 = − exp(−2x/
√

ε), y(0) = 1, y(1) = exp(−1/
√

ε).

The exact solution of this problem is

y(x) = exp(−x/
√

ε).
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The quasilinear process equations are

ε(y′′)(k+1)(x)− [
1 + 2y(k)(x)

]
y(k+1) = − [

y(k)(x)
]2 − exp(−2x/

√
(ε)),

y(k)(0) = 1, y(k)(1) = exp(−1/
√

ε).

Example 5.7.3. ([20]) Consider the problem

εy′′ − xy − y2 = 0; y(0) = 1, y(1) = 0. (5.7.37)

Its exact solution is not available.

The quasilinear process equations are

−ε(y′′)(k+1)(x) +
[
x + 2y(k)(x)

]
y(k+1)(x) =

(
y(k)(x)

)2
,

y(k)(0) = 1, y(k)(1) = 0.

The maximum errors as tabulated in tables 5.1 and 5.2 at all mesh points are calculated

using the formula

Eε,n := max |uj − Uj| and Eext
ε,n := max |uj − U ext

j |

before and after extrapolation, respectively for Example 5.7.2 since its exact solution is

available. For examples 5.7.1 and 5.7.3, the exact solutions are not available. Therefore,

we use the formula

Eε,n := max |Un
j − U2n

2j | and Eext
ε,n := max |U ext

j − U ext
2j |

before and after extrapolation, respectively, where U2n
2j and U ext

2j are the computed solu-

tions before and after extrapolation on the mesh µ2n, respectively. The maximum errors

for these examples are presented in tables 5.5, 5.6, 5.9 and 5.10.
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The numerical rates of convergence are calculated using the formula [33]:

rk ≡ rε,k := log2(Ẽnk
/Ẽ2nk

), k = 1, 2, . . .

where Ẽ stands for E and Eext, respectively. These rates are given in tables 5.3, 5.4, 5.7,

5.8, 5.11 and 5.12.
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Table 5.1: Results for Example 5.7.1: Maximum errors via FOFDM before extrapolation
ε n=16 n=32 n=64 n=128 n=256 n=512 n=1024

2−1 5.83E-04 2.36E-04 1.02E-04 4.66E-05 2.22E-05 1.08E-05 5.35E-06
2−2 2.64E-03 1.10E-03 4.73E-04 2.14E-04 1.01E-04 4.90E-05 2.41E-05
2−3 9.38E-03 3.95E-03 1.69E-03 7.48E-04 3.45E-04 1.65E-04 8.04E-05
2−4 2.65E-02 1.15E-02 4.87E-03 2.10E-03 9.40E-04 4.38E-04 2.10E-04
2−5 6.07E-02 2.83E-02 1.24E-02 5.31E-03 2.31E-03 1.04E-03 4.86E-04
2−6 1.08E-01 6.38E-02 2.89E-02 1.28E-02 5.52E-03 2.41E-03 1.09E-03
2−7 1.59E-01 1.13E-01 6.49E-02 2.91E-02 1.30E-02 5.59E-03 2.44E-03
2−8 2.03E-01 1.65E-01 1.15E-01 6.50E-02 2.93E-02 1.30E-02 5.59E-03
2−9 2.29E-01 2.08E-01 1.67E-01 1.15E-01 6.49E-02 2.92E-02 1.29E-02

Table 5.2: Results for Example 5.7.1: Maximum errors via FOFDM after extrapolation
ε n=16 n=32 n=64 n=128 n=256 n=512 n=1024

2−1 1.15E-04 3.23E-05 8.76E-06 2.30E-06 5.91E-07 1.50E-07 3.78E-08
2−2 4.73E-04 1.52E-04 4.52E-05 1.26E-05 3.32E-06 8.55E-07 2.17E-07
2−3 1.57E-03 5.82E-04 1.94E-04 5.81E-05 1.61E-05 4.24E-06 1.09E-06
2−4 3.97E-03 1.75E-03 6.68E-04 2.21E-04 6.54E-05 1.80E-05 4.73E-06
2−5 8.38E-03 4.55E-03 1.90E-03 7.04E-04 2.30E-04 6.77E-05 1.85E-05
2−6 1.56E-02 1.01E-02 4.75E-03 1.95E-03 7.13E-04 2.31E-04 6.75E-05
2−7 2.68E-02 1.98E-02 1.07E-02 4.78E-03 1.95E-03 7.08E-04 2.28E-04
2−8 4.17E-02 3.56E-02 2.10E-02 1.08E-02 4.74E-03 1.93E-03 6.99E-04
2−9 5.19E-02 5.89E-02 3.75E-02 2.13E-02 1.08E-02 4.71E-03 1.91E-03
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Table 5.3: Results for Example 5.7.1: Rates of convergence via FOFDM before extrap-
olation nk = 16, 32, 64, 128, 256, 512.

ε r1 r2 r3 r4 r5 r6

2−1 1.31 1.21 1.13 1.07 1.04 1.02
2−2 1.27 1.21 1.14 1.08 1.05 1.02
2−3 1.25 1.23 1.17 1.11 1.07 1.04
2−4 1.21 1.24 1.21 1.16 1.10 1.06
2−5 1.10 1.19 1.23 1.20 1.15 1.10
2−6 0.76 1.14 1.18 1.21 1.20 1.15
2−7 0.49 0.80 1.16 1.17 1.21 1.20
2−8 0.30 0.52 0.82 1.15 1.17 1.22

Table 5.4: Results for Example 5.7.1: Rates of convergence via FOFDM after extrapola-
tion nk = 16, 32, 64, 128, 256, 512.

ε r1 r2 r3 r4 r5 r6

2−1 1.83 1.88 1.93 1.96 1.98 1.99
2−2 1.64 1.74 1.85 1.92 1.96 1.98
2−3 1.43 1.58 1.74 1.85 1.92 1.96
2−4 1.18 1.39 1.60 1.75 1.86 1.93
2−5 0.88 1.26 1.43 1.61 1.77 1.87
2−6 0.63 1.09 1.28 1.45 1.63 1.77
2−7 0.44 0.89 1.16 1.29 1.46 1.63
2−8 0.23 0.76 0.96 1.19 1.30 1.46
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Table 5.5: Results for Example 5.7.2: Maximum errors via FOFDM before extrapolation
ε n=16 n=32 n=64 n=128 n=256 n=512 n=1024

2−1 2.21E-03 5.10E-04 1.23E-04 3.02E-05 7.48E-06 1.86E-06 4.65E-07
2−2 3.39E-03 8.03E-04 1.94E-04 4.77E-05 1.18E-05 2.94E-06 7.33E-07
2−3 6.50E-03 1.57E-03 3.79E-04 9.25E-05 2.28E-05 5.67E-06 1.41E-06
2−4 1.28E-02 3.17E-03 7.65E-04 1.86E-04 4.57E-05 1.13E-05 2.81E-06
2−5 2.42E-02 6.44E-03 1.56E-03 3.76E-04 9.19E-05 2.27E-05 5.64E-06
2−6 4.54E-02 1.28E-02 3.17E-03 7.64E-04 1.86E-04 4.56E-05 1.13E-05
2−7 7.64E-02 2.42E-02 6.44E-03 1.56E-03 3.76E-04 9.19E-05 2.27E-05
2−8 1.18E-01 4.54E-02 1.28E-02 3.17E-03 7.64E-04 1.86E-04 4.56E-05
2−9 1.82E-01 7.64E-02 2.42E-02 6.44E-03 1.56E-03 3.76E-04 9.19E-05

Table 5.6: Results for Example 5.7.2: Maximum errors via FOFDM after extrapolation
ε n=16 n=32 n=64 n=128 n=256 n=512 n=1024

2−1 9.36E-05 2.80E-05 7.49E-06 1.93E-06 4.89E-07 1.23E-07 3.09E-08
2−2 1.04E-04 3.00E-05 8.22E-06 2.13E-06 5.42E-07 1.37E-07 3.44E-08
2−3 1.52E-04 2.45E-05 7.02E-06 1.85E-06 4.72E-07 1.19E-07 3.00E-08
2−4 3.67E-04 5.47E-05 7.88E-06 1.13E-06 2.91E-07 7.37E-08 1.86E-08
2−5 1.18E-03 1.38E-04 2.10E-05 2.91E-06 3.84E-07 4.94E-08 7.13E-09
2−6 3.49E-03 3.68E-04 5.45E-05 7.87E-06 1.06E-06 1.38E-07 1.76E-08
2−7 9.22E-03 1.18E-03 1.38E-04 2.09E-05 2.91E-06 3.84E-07 4.94E-08
2−8 2.11E-02 3.49E-03 3.68E-04 5.45E-05 7.87E-06 1.06E-06 1.38E-07
2−9 4.10E-02 9.22E-03 1.18E-03 1.38E-04 2.09E-05 2.91E-06 3.84E-07
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Table 5.7: Results for Example 5.7.2: Rates of convergence via FOFDM before extrap-
olation, nk = 16, 32, 64, 128, 256, 512.

ε r1 r2 r3 r4 r5 r6

2−1 2.11 2.05 2.03 2.01 2.01 2.00
2−2 2.08 2.05 2.03 2.01 2.01 2.00
2−3 2.05 2.05 2.03 2.02 2.01 2.00
2−4 2.01 2.05 2.04 2.02 2.01 2.01
2−5 1.91 2.05 2.05 2.03 2.02 2.01
2−6 1.83 2.01 2.05 2.04 2.02 2.01
2−7 1.66 1.91 2.05 2.05 2.03 2.02
2−8 1.38 1.83 2.01 2.05 2.04 2.02
2−9 1.26 1.66 1.91 2.05 2.05 2.03

Table 5.8: Results for Example 5.7.2: Rates of convergence via FOFDM after extrapola-
tion, nk = 16, 32, 64, 128, 256, 512.

ε r1 r2 r3 r4 r5 r6

2−1 1.74 1.90 1.96 1.98 1.99 1.99
2−2 1.79 1.87 1.95 1.98 1.99 1.99
2−3 2.63 1.80 1.93 1.97 1.98 1.99
2−4 2.75 2.79 2.81 1.96 1.98 1.98
2−5 3.10 2.72 2.85 2.92 2.96 2.79
2−6 3.25 2.76 2.79 2.89 2.94 2.97
2−7 2.96 3.10 2.72 2.85 2.92 2.96
2−8 2.60 3.25 2.76 2.79 2.89 2.94
2−9 2.15 2.96 3.10 2.72 2.85 2.92

141

 

 

 

 



CHAPTER 5. A HIGH ACCURACY FITTED OPERATOR FINITE DIFFERENCE
METHOD FOR A NONLINEAR SINGULARLY PERTURBED TWO-POINT
BOUNDARY VALUE PROBLEM

Table 5.9: Results for Example 5.7.3: Maximum errors vi FOFDM before extrapolation
ε n=16 n=32 n=64 n=128 n=256 n=512 n=1024

2−1 5.96E-04 1.45E-04 3.56E-05 8.80E-06 2.19E-06 5.46E-07 1.36E-07
2−2 1.11E-03 2.64E-04 6.39E-05 1.57E-05 3.88E-06 9.65E-07 2.41E-07
2−3 2.11E-03 4.99E-04 1.19E-04 2.89E-05 7.11E-06 1.76E-06 4.39E-07
2−4 4.14E-03 9.87E-04 2.33E-04 5.59E-05 1.37E-05 3.38E-06 8.41E-07
2−5 8.13E-03 2.00E-03 4.68E-04 1.11E-04 2.70E-05 6.64E-06 1.65E-06
2−6 1.52E-02 4.02E-03 9.47E-04 2.23E-04 5.35E-05 1.31E-05 3.24E-06
2−7 2.70E-02 7.91E-03 1.92E-03 4.48E-04 1.07E-04 2.59E-05 6.38E-06
2−8 4.52E-02 1.50E-02 3.89E-03 9.11E-04 2.14E-04 5.14E-05 1.26E-05
2−9 6.80E-02 2.65E-02 7.67E-03 1.86E-03 4.32E-04 1.03E-04 2.49E-05

Table 5.10: Results for Example 5.7.3: Maximum errors via FOFDM after extrapolation
ε n=16 n=32 n=64 n=128 n=256 n=512 n=1024

2−1 5.84E-06 9.28E-07 1.28E-07 1.67E-08 2.14E-09 2.70E-10 3.23E-11
2−2 1.97E-05 2.96E-06 3.98E-07 5.14E-08 6.52E-09 8.21E-10 1.05E-10
2−3 5.60E-05 8.39E-06 1.13E-06 1.45E-07 1.84E-08 2.31E-09 2.90E-10
2−4 1.41E-04 2.22E-05 3.03E-06 3.94E-07 5.00E-08 6.29E-09 7.90E-10
2−5 3.25E-04 5.62E-05 8.04E-06 1.06E-06 1.35E-07 1.71E-08 2.14E-09
2−6 9.98E-04 1.38E-04 2.11E-05 2.85E-06 3.68E-07 4.66E-08 5.87E-09
2−7 2.92E-03 3.26E-04 5.42E-05 7.65E-06 1.00E-06 1.28E-07 1.61E-08
2−8 7.69E-03 9.33E-04 1.34E-04 2.03E-05 2.73E-06 3.52E-07 4.45E-08
2−9 1.78E-02 2.78E-03 3.21E-04 5.26E-05 7.40E-06 9.69E-07 1.23E-07
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Table 5.11: Results for Example 5.7.3: Rates of convergence via FOFDM before extrap-
olation, nk = 16, 32, 64, 128, 256, 512.

ε r1 r2 r3 r4 r5 r6

2−1 2.04 2.03 2.02 2.01 2.00 2.00
2−2 2.06 2.05 2.03 2.01 2.01 2.00
2−3 2.08 2.07 2.04 2.02 2.01 2.01
2−4 2.07 2.09 2.06 2.03 2.02 2.01
2−5 2.02 2.10 2.07 2.04 2.02 2.01
2−6 1.92 2.09 2.09 2.06 2.03 2.02
2−7 1.77 2.04 2.10 2.07 2.04 2.02
2−8 1.59 1.95 2.09 2.09 2.06 2.03
2−9 1.36 1.79 2.05 2.10 2.07 2.04

Table 5.12: Results for Example 5.7.3: Rates of convergence via FOFDM after extrapo-
lation, nk = 16, 32, 64, 128, 256, 512.

ε r1 r2 r3 r4 r5 r6

2−1 2.65 2.86 2.94 2.97 2.98 3.06
2−2 2.74 2.89 2.95 2.98 2.99 2.96
2−3 2.74 2.90 2.96 2.98 2.99 2.99
2−4 2.67 2.87 2.95 2.98 2.99 2.99
2−5 2.53 2.81 2.92 2.97 2.99 2.99
2−6 2.85 2.71 2.89 2.95 2.98 2.99
2−7 3.17 2.59 2.82 2.93 2.97 2.99
2−8 3.04 2.79 2.73 2.89 2.96 2.98
2−9 2.68 3.11 2.61 2.83 2.93 2.97
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5.8 Discussion

In this chapter, we considered a singularly perturbed nonlinear two point boundary value

problem. We first linearized the problem via the quasilinearization method. This process

led to a sequence of linear problems. For the case where the functional F of equation

(5.1.1) contains the argument y′, we developed and analyzed a fitted operator method

designed for the resulting sequence of linear problems. We noted that the method is first

order convergent. Richardson extrapolation was then carried out and both the accuracy

and order of convergence were improved.

Similar steps are also taken for the case where the functional F does not contain the

argument y′. However this is done with less details. The second order convergence of the

underlying fitted operator finite difference method is improved to four.

Some numerical results are not of higher order as expected but this is due to the con-

vergence properties of the sequence of linear problems. This is issue is being investigated

further.
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Chapter 6

Higher Order Numerical Method for

Singularly Perturbed Parabolic

Problems in One Dimension

This chapter deals with singularly perturbed parabolic problems. Our basic aim is to

extend the ideas generated in chapters 4 and 5 to solve this class of problems. After

we linearize the problem, each of the linear problems is discretized as follows: the time

derivative is approximated by a forward Euler approximation and then the stationary

problem is solved using a fitted operator finited difference method (FOFDM). The overall

method is analyzed for convergence. We also discuss why the extrapolation process can

not improve the order of convergence of the proposed FOFDM.

6.1 Introduction

We consider the problem

∂u

∂t
= ε

∂2u

∂x2
− u

∂u

∂x
, (x, t) ∈ Ω× (0, T ], (6.1.1)
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where Ω = (0, 1).

The initial and boundary conditions are respectively given by

u(x, 0) = f(x), for 0 ≤ x ≤ 1, (6.1.2)

u(0, t) = 0 u(1, t) = 0 for 0 ≤ t ≤ T. (6.1.3)

Equation (6.1.1) is a one-dimensional quasi-linear parabolic partial differential equa-

tion, which is referred to in the literature as Burgers’ equation (see [25, 26, 40]).

The parameter ε ∈ (0, 1] is the coefficient of kinematic viscosity and the function f(x)

is sufficiently smooth. In order for the data to match at the two corners (0, 0) and (1, 0)

of the domain Ω̄× [0, T ], we impose the compatibility conditions

f(0) = 0, f(1) = 0. (6.1.4)

In [22], it was proved that there exists a constant C such that

|u(x, t)− f(x)| ≤ Ct, t ∈ (0, T ), (6.1.5)

|u(x, t)− 0| ≤ Cx, x ∈ (0, 1), (6.1.6)

with (x, t) ∈ Ω× [0, T ].

Equation (6.1.1) was introduced by Bateman [16], presenting its steady state solutions.

It was after Burgers who studied this model for turbulent flows in [26], that it is referred

to as Burgers’ equation. Several researchers have studied this important fluid dynamic

model whose use was subsequently extended to other fields such as gas dynamics, heat

conduction, elasticity, turbulence and shock wave theory [26, 31, 60]. These references,

amongst others, provide the exact solutions (in the form of infinite series) to Burgers’

equations for given initial and boundary conditions.

One important fact presented by Miller [104] is that these exact solutions have no prac-
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tical meaning when ε is very small due to the occurrence of slow convergence. Numerous

numerical schemes are available in the literature to circumvent this difficulty.

Abbasbandy and Darvishi [1] used the modified Adomian’s decomposition method

for calculating a numerical solution of problem (6.1.1)-(6.1.3) without recourse to any

transformation in the above equation such as Hopf-Cole transformation. Kutluay et al.

[80] presented the exact-explicit finite difference scheme to achieve a reliable accuracy. A

variational method built on the method of time discretization was suggested by Aksan and

Ödzes [9]. Subsequently, Kadalbajoo et al. [70] semidiscretized the equation in time by

backward Euler scheme with uniform time step and then used the quasilinerization process

[19] to linearize the stationary Burgers’ equation. There are other numerical methods to

solve the Burgers’ equation that are based on finite differences [37, 80, 117, 141], on

finite element approaches [27, 81, 76] and on splines [3]. Other notable works include

[2, 59, 106, 107].

In this chapter, we intend to extend the FOFDM developed in Chapter 5 to solve the

Burgers’ equation. The quasilinearization of the original problem gives us a sequence of

linear parabolic problems. After the time semi-discretization for these parabolic problems,

the stationary problems are solved using this FOFDM.

The rest of this chapter is organized as follows. Section 6.2 deals with quasilineariza-

tion and time semi-discretization. Section 6.3 is concerned with the FOFDM and its error

analysis. A result of Richardson extrapolation on this FOFDM is presented in Section

6.4. Some numerical illustrations are given in Section 6.5 and these results are discussed

in Section 6.6.
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6.2 Quasilinearization and time semidiscretization

6.2.1 Quasilinearization

Writing Eq. (6.1.1) in the form

ut = εuxx − uux on Ω× (0, T ], (6.2.7)

and setting

g(u, ux) = −uux,

we have gu = −ux and gux = −u.

Assuming that (un, un
x) is the n-th nominal solution to problem (6.1.1) along with the

initial and boundary conditions (6.1.2)-(6.1.3) and taking the Taylor expansion of g up

to first-order terms around this nominal function, we get

g(un+1, un+1
x ) = g(un, un

x) + gu(u
n+1 − un) + gux(u

n+1
x − un

x).

Hence the quasilinearization process for equation (6.2.7) (see [19]) gives

un+1
t = εun+1

xx − un+1
x un − un

xun+1 + un
xun, (6.2.8)

along with

un+1(0, t) = 0, un+1(1, t) = 0 for 0 ≤ t ≤ T (6.2.9)

and

un+1(x, 0) = f(x) for 0 ≤ x ≤ 1. (6.2.10)

Letting un+1 = U , we get the quasilinear process equations

Ut = εUxx − unUx − un
xU + un

xun. (6.2.11)
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With this new notation, the boundary and initial conditions take the form

U(0, t) = 0, U(1, t) = 0 for 0 ≤ t ≤ T (6.2.12)

and

U(x, 0) = f(x) for 0 ≤ x ≤ 1. (6.2.13)

6.2.2 Time semidiscretization

We discretize the time variable by means of the implicit Euler method (IEM). To do so,

firstly we partition the time interval [0, T ] into M subintervals such that the time step ∆t

is given by ∆t = T/M .

Then the IEM reads:

Uj+1 − Uj

∆t
= ε(Uj+1)xx − un

j+1(Uj+1)x − (un
j+1)xUj+1 + (un

j+1)xu
n
j+1. (6.2.14)

Rearranging this equation and using the notation

un
j+1 = an(x),

1

∆t
+ (un

j+1)x = bn(x),

Uj

∆t
+ (un

j+1)xu
n
j+1 = F n(x),

we obtain from equation (6.2.14)

−ε (Uj+1(x))xx + an(x) (Uj+1(x))x + bn(x)Uj+1 = F n(x), (6.2.15)

with j = 0(1)M − 1.
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Finally, equations (6.2.10) and (6.2.15) can be written in the form

U0 = f(x),

LUj+1(x) = F n(x), 0 ≤ j ≤ M − 1, (6.2.16)

where

LUj+1(x) ≡ −ε (Uj+1(x))xx + an(x) (Uj+1(x))x + bn(x)Uj+1(x),

and the boundary conditions are

Uj+1(0) = 0, Uj+1(1) = 0.

Letting

k = max
|Uj+1|≤1

|HUj+1Uj+1
(Uj+1)| and m = max

|Uj+1|≤1
|HUj+1

(Uj+1)|,

the following result was proved in [70].

max
x

∣∣∣
(
U

(n+2)
j+1 − U

(n+1)
j+1

)∣∣∣ ≤
(

k
8

1− m
4

)
max

x

(
U

(n+1)
j+1 − U

(n)
j+1

)2

. (6.2.17)

This inequality shows that the quasilinearization process enjoys a quadratic convergence.

The linear operator L satisfies the following maximum principle.

Lemma 6.2.1. Let ψ ∈ C2(Ω̄) be any function satisfying ψ(0) ≥ 0, ψ(1) ≥ 0 and

Lψ(x) ≥ 0 for all x ∈ Ω. Then ψ(x) ≥ 0 for all x ∈ Ω̄.

Proof. See [105].
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6.3 A fitted operator finite difference method for the

solution of Burgers’ equation

6.3.1 The method

Let N be a positive integer. The interval [0, 1] is partitioned as follows.

x0 = 0, h = 1/N, xi = x0 + ih, i = 1(1)N.

For the sake of simplicity, we assume that an(x) ≥ α > 0, for all x ∈ (0, 1).

At each iteration n, and each time level j = 1, 2, . . . , M − 1, we discretize (6.2.16) as

LhU(i, j) := −ε
Ui+1,j − 2Ui,j + Ui+1,j

φ2
i

+ ãn
i

Ui,j − Ui−1,j

h
+ b̃n

i Ui,j = F̃ n
i,j (6.3.18)

where the function φ is given by

φ2
i =

hε

ãn
i

(
exp

(
ãn

i h

ε

)
− 1

)
.

where

ãn
i =

an
i + an

i+1

2
,

b̃n
i =

bn
i−1 + bn

i + bn
i+1

3
,

and

F̃ n
i =

F n
i−1 + F n

i + F n
i+1

3
.

Equation (6.3.18) leads to a tridiagonal system of linear equation

AU = G. (6.3.19)

151

 

 

 

 



CHAPTER 6. HIGHER ORDER NUMERICAL METHOD FOR SINGULARLY
PERTURBED PARABOLIC PROBLEMS IN ONE DIMENSION

Corresponding entries of A and G in this case are

Aik = r−k , i = k + 1; k = 1, 2, . . . , N − 2,

Aik = rc
k, i = k; k = 1, 2, . . . , N − 1,

Aik = r+
k , i = k − 1; k = 2, 3, . . . , N − 1,

G1 = F n
1 − r−1 U(0),

GN−1 = F n
N−1 − r+

N−1U(1),

Gk = F n
k , k = 2, 3, . . . , N − 1,

where

r−k = − ε

φ2
k

− ãn
k

h
, r+

k = − ε

φ2
k

, and rc
k = 2

ε

φ2
k

+
ãn

k

h
+ b̃n

k . (6.3.20)

6.3.2 Convergence analysis

Below we present the bounds on the solution of Burgers’ equation. Then we provide the

error analysis of both the time discretization (see [70]) and the FOFDM introduced above.

Finally we will summarize the two results at the end of this subsection.

Lemma 6.3.1. The solution u(x, t) of (6.1.1) enjoys the following bound

|u(x, t)| ≤ C, for all (x, t) ∈ Ω× [0, T ].

Proof. Inequality (6.1.5) implies that

|u| ≤ Ct + |f |.

The proof follows using the fact that f(x) is sufficiently smooth and x and t lie in bounded

intervals.

Lemma 6.3.2. By keeping x fixed along the line {(x, t) : 0 ≤ t ≤ T}, the bound of ut is
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given by

∣∣∣∣
∂iu(x, t)

∂ti

∣∣∣∣ ≤ C, for i = 0, 1, 2, 3. (6.3.21)

Proof. Assuming that the solution u(x, t) is sufficiently smooth in the domain Ω× [0, T ],

the mean value theorem suggests that there exists t∗ ∈ (t, t + k) along the line {(x, t) :

0 ≤ t ≤ T} such that

ut(x, t∗) =
u(x, t + k)− u(x, t)

k

thus implying that

|ut(x, t∗)| ≤ 2|u(x, t)|
k

.

By Lemma 6.3.1, we get

ut(x, t) ≤ C.

We get the bounds on utt(x, t) and uttt(x, t) along the line {(x, t) : 0 ≤ t ≤ T} in a similar

manner.

It follows from this lemma that, by keeping x fixed along the line {(x, t), 0 ≤ t ≤ T},
the solution U of equation (6.2.11) satisfies

U(tj) = U(tj+1)−∆t
∂U(tj+1)

∂t
+

∫ tj

tj+1

(tj − s)
∂2U

∂t2
(s)ds, (6.3.22)

i.e.,

U(tj) = U(tj+1)−∆t (εUxx − unUx − un
xU + un

xu
n) (tj+1)

+

∫ tj

tj+1

(tj − s)
∂2U

∂t2
(s)ds. (6.3.23)

Subtracting (6.2.14) from (6.3.23) and denoting the local truncation error U(tj+1)−Uj+1

by ej+1, we obtain

max
j
|∆tLej+1| ≤ C(∆t)2 (6.3.24)
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and since the operator ∆tL satisfies the maximum principle (Lemma 6.2.1), we deduce

that

max
j
|ej+1| ≤ C(∆t)2. (6.3.25)

We now derive the estimate of the global error at the (j + 1)th time step, Ej+1 as follows

max
j
|Ej+1| = max

j

∣∣∣∣∣
j∑

l=1

el

∣∣∣∣∣ , j ≤ T/∆t,

≤
j∑

l=1

max
j
|el|,

≤ jC(∆t)2,

≤ CT∆t,

≤ C∆t. (6.3.26)

We have thus proved that

Theorem 6.3.1. If

∣∣∣∣
∂ku(x, t)

∂kt

∣∣∣∣ ≤ C, (x, t) ∈ Ω× [0, T ], 0 ≤ k ≤ 2

then the local and global error estimates of the time discretization satisfy the following

estimates

max
j
|ej+1| ≤ C(∆t)2,

max
j
|Ej+1| ≤ C∆t, for all j ≤ T/∆t.

In other words, the time discretization process is uniformly convergent of first order.

For the solution Uj+1 of (6.2.16) and its derivatives, the estimates contained in the

following lemma hold (see [70, 105]).

154

 

 

 

 



CHAPTER 6. HIGHER ORDER NUMERICAL METHOD FOR SINGULARLY
PERTURBED PARABOLIC PROBLEMS IN ONE DIMENSION

Lemma 6.3.3. If Uj+1 is the solution of (6.2.16) then there exists a constant C such that

|Uj+1(x)| ≤ C, for all x ∈ Ω.

Lemma 6.3.4. If Uj+1 is the solution of (6.2.16), then the bounds on its derivatives are

given by

∣∣∣U (k)
j+1

∣∣∣ ≤ C(1 + ε−k exp (−α(1− x)/ε) ; for all x ∈ Ω, k = 1, 2, 3. (6.3.27)

For the sake of notational simplicity, we drop the index j + 1. Therefore, at each grid

point xi, i = 0, 1, . . . , N , U(xi) and Ui represent the solution of (6.2.16) and (6.3.19)

respectively.

The local truncation error of FOFDM (6.3.19)-(6.3.20) is therefore given by

Lh (Ui − U(xi)) =− [
r+
i U(xi+1) + rc

iU(xi) + r−i U(xi−1)
]

− [−εU ′′(xi) + an(xi)U
′(xi) + bn(xi)U(xi)] .

This equation implies that

ÃLh (U(xi)− Ui)) = T0U(xi) + T1U
′(xi) + T2U

′′(xi) + T3U
′′′(xi) + T4U

iv(ξi), (6.3.28)

where ξi ∈ (xi−1, xi+1) and

T0 = r−i + rc
i + r+

i − bn
i −

h2

3
b′′i ,

T1 = h(r+
i − r−i )− an

i −
1

3
h2 ((an

i )′′ + 2(bn
i )′) ,

T2 =
h2

2

(
r+
i + r−i

)
+ ε− h2

3

(
2(an

i )′ + bn
i +

1

2
(bn

i )′′h2

)
, (6.3.29)

T3 =
h3

6

(
r+
i − r−i

)− h2

3

(
an

i +
1

2
(an

i )′′h2

)
,
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T4 =
h3

24

(
r+
i + r−i

)
+

1

3
εh2.

Further simplifications yield

T0 = 0, |T1| ≤ Mh, |T2| ≤ Mh + Mh2/ε, |T3| ≤ Mh2, |T4| ≤ Mh2. (6.3.30)

Considering the dominating terms and using lemmas 4.2.2 and 6.3.3 we obtain

|Lh(Ui − U(xi))| ≤ Mh

(
1 +

h

ε

)[
1 +

exp(−α(1− xi)/ε)

ε2

]
, for i = 1, 2, · · · , n− 1.

(6.3.31)

where α is such that an(x) ≥ α > 0, ∀x ∈ [0, 1].

Finally, using Lemma 4.3.2 and re-instating the dropped time indice j + 1, we obtain

|Ui,j+1 − Uj+1(xi)| ≤ Mh

(
1 +

h

ε

)[
1 +

exp(−α(1− xi)/ε)

ε2

]
, for i = 1, 2, · · · , n− 1.

and therefore applying Lemma 2.2.5, we get

Theorem 6.3.2. If Uj+1(xi) is the solution of problem (6.2.16) and Ui,j+1 the solution

of the discrete problem (6.3.18) at the point xi and the (j + 1)-th time level, there is a

constant C such that

max
i
|Ui,j+1 − Uj+1(xi)| ≤ Mh

(
1 +

h

ε

)
.

The results of theorems 6.3.1 and 6.3.2 are now combined to give an estimate of the

fully discrete scheme.

Theorem 6.3.3. Let U(xi, tj+1) be the solution of the linearized problem (6.2.11) of equa-

tion (6.1.1), and Ui,j+1 be the solution of the totally discrete equation (6.3.18). Then, there

156

 

 

 

 



CHAPTER 6. HIGHER ORDER NUMERICAL METHOD FOR SINGULARLY
PERTURBED PARABOLIC PROBLEMS IN ONE DIMENSION

exists a constant M such that

max
i,j

|Ui,j+1 − Uj+1(xi, tj+1)| ≤ M

(
∆t + h

(
1 +

h

ε

))
,

where i = 0, 1, . . . , N and j = 0, 1, . . . ,M − 1.

6.4 Richardson extrapolation

In this section, we adapt the Richardson extrapolation of Section 5.5 to FOFDM 6.3.18.

Denoting by Ūi,j+1 and U ext
i,j+1 the solutions of equation (6.3.19) on the mesh µ2N and

after extrapolation, respectively, we have

U ext
i,j+1 := 2Ūi,j+1 − Ui,j, i = 1(1)N − 1.

Following the same lines as in Section 5.5, we obtain the following result.

Theorem 6.4.1. Let U(xi, tj+1) be the solution of the linearized equation (6.2.11) of

equation (6.1.1) and U ext
i,j+1 the solution of the totally discrete equation (6.3.18). Then,

there exists a constant M such that:

max
i,j

∣∣U ext
i,j+1 − U(xi, tj+1)

∣∣ ≤ M

(
∆t + h2

(
1 +

1

ε

))
. (6.4.32)

6.5 Numerical results

Example 6.5.1. We consider the equation

ut + uux = εuxx, (x, t) ∈ (0, 1)× (0, T )

with initial condition

u(x, 0) = sin(πx), 0 ≤ t ≤ T,
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and boundary conditions

u(0, t) = 0, u(1, t) = 0, 0 ≤ x ≤ 1.

The exact (Fourier) solution is given by ([31])

u(x, t) = 2πε

∑∞
n=1 an exp(−n2π2εt)n sin(nπx)

a0 +
∑∞

n=1 an exp(−n2π2εt) cos(nπx)
,

where a0 and an(n = 1, 2, . . .) are the following Fourier coefficients

a0 =

∫ 1

0

exp{−(2πε)−1[1− cos(πx)]}dx,

an = 2

∫ 1

0

exp{−(2πε)−1[1− cos(πx)]} cos(nπx)dx, n = 1, 2, 3, . . . .

Many researchers have used the above solution to evaluate the errors in their approxima-

tions.

6.6 Discussion

We have considered viscous Burgers’ equation which is a nonlinear parabolic PDE and

shown the quasilinearization for this equation. The set of quasilinear process equations

are then solved at each time level by a novel FOFDM. Each of the quasilinear process

equation is time dependent linear SPP for which it is known that the standard methods

do not perform well.

The profile of the numerical solution is shown in Figure 6.1.

One remarkable issue here is the use of extrapolation with respect to the spatial

variable x. We noted that the order of convergence (in x-direction) after extrapolation

has improved. Due to the convergence properties of the quasilinearization, the FOFDM

appears not to be ε-uniform. This aspect is under investigation.
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Figure 6.1: Profile of the numerical solution of the problem in Example 6.5.1 for various
values of ε.

159

 

 

 

 



Chapter 7

Higher Order Numerical Methods

for Singularly Perturbed Elliptic

Problems

This chapter is devoted to a family of singularly perturbed elliptic problems in two di-

mensions. We extend FOFDM-II (p.64) to solve such problems. Through a rigorous

convergence analysis, we show that the method is second order in both variables. This

order of convergence is improved to four through extrapolation.

7.1 Introduction

We consider the problem

Lu := −ε∆u + b(x, y)u = f(x, y), in Ω = (0, 1)2, (7.1.1)

u = 0, on ∂Ω. (7.1.2)
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where ε ∈ (0, 1] and b and f are sufficiently smooth functions in Ω. It is assumed

that b(x, y) ≥ α2 > 0, in Ω. Also, we impose the following compatibility conditions

[116, 124] which guarantee that the solution u(x, y) to problem (7.1.1)-(7.1.2) is a member

of C4(Ω) ∩ C2(Ω), where Ω = ∂Ω ∪ Ω:

f(0, 0) = f(0, 1) = f(1, 0) = f(1, 1) = 0.

While singularly perturbed two-point boundary value problems are well studied from

different angles, their higher dimensional counterparts are not tackled sufficiently, as far

as FOFDMs are concerned. There were some attempts made to extend the approaches

developed for singularly perturbed ordinary differential equation but the success was very

limited.

On the other hand, some researchers tried to solve these higher dimensional problems

directly. Some notable works include [39, 52, 86, 124, 129, 131, 147].

A careful reading of the work of Kadalbajoo and Patidar [69] indicates that there are

no extensions of any fitted operator methods developed for singularly perturbed ODEs

that can solve the singularly perturbed PDEs, in particular the elliptic ones. To fill this

gap, the first aim of this chapter is to extend a FOFDM (which is developed for singularly

perturbed ODEs) to solve the elliptic singular perturbation problem. Then, in order to

achieve a higher order convergence, we perform the Richardson extrapolation.

The rest of this chapter is organized as follows. In Section 7.2, we presents some

qualitative features of the solution and its derivatives. Section 7.3 is concerned with the

construction and analysis of the numerical method Section 7.4 deals with the extrapolation

of the method developed in Section 7.3. Numerical results to support the theory are

provided in Section 7.5. We end the chapter with a discussion of the results and related

issues in Section 7.6.
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7.2 Bounds on the solution and its derivatives

Lemma 7.2.1. [48] (Continuous maximum principle)

Let ξ(x, y) be any sufficiently smooth function such that ξ(x, y) ≥ 0 on ∂Ω. Then

Lξ(x, y) ≥ 0 on Ω implies that ξ(x, y) ≥ 0, ∀(x, y) ∈ Ω = ∂Ω ∪ Ω.

Proof. Let (x∗, y∗) be such that

ξ(x∗, y∗) = min
(x,y)∈Ω

ξ(x, y)

and assume that ξ(x∗, y∗) < 0. Clearly, (x∗, y∗) /∈ ∂Ω. We have

∂

∂x
ξ(x, y)

∣∣∣
(x∗,y∗)

= 0,

∂

∂y
ξ(x, y)

∣∣∣
(x∗,y∗)

= 0,

∂2

∂x2
ξ(x, y)

∣∣∣
(x∗,y∗)

≥ 0,

and
∂2

∂y2
ξ(x, y)

∣∣∣
(x∗,y∗)

≥ 0.

Therefore

Lξ(x∗, y∗) = −ε∆ξ(x∗, y∗) + b(x∗, y∗)ξ(x∗, y∗) < 0,

which is a contradiction.

The following lemmas provide bounds on the solution of the problem (7.1.1)-(7.1.1)

as well as those of its derivatives [85]. A suitable choice of barrier functions [84, 153] may

be made in the proofs.

Lemma 7.2.2. Let u(x, y) be the solution of problem (7.1.1)-(7.1.2). Then we have

(a). |u(x, y)| ≤ C
(
1− e−αx/

√
ε
)

on Ω̄,
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(b). |u(x, y)| ≤ C
(
1− e−α(1−x)/

√
ε
)

on Ω̄,

(c). |u(x, y)| ≤ C
(
1− e−αy/

√
ε
)

on Ω̄,

(d). |u(x, y)| ≤ C
(
1− e−α(1−y)/

√
ε
)

on Ω̄.

Proof. (a). Using the barrier function

φ(x, y) = C(1− e(−αx/
√

ε)),

we see that

L(φ± u) = −ε∆(φ± u) + b(φ± u),

= Cα2e(−αx/
√

ε) + bC(1− e(−αx/
√

ε))± f,

= C(α2 − b)
(
e(−αx/

√
ε) − 1

)
+ Cα2 ± f.

Since

(α2 − b)
(
e(−αx/

√
ε) − 1

)
≥ 0,

we have

L(φ± u) ≥ Cα2 ± f ≥ 0.

Using the maximum principle and the fact that (φ± u)|∂Ω ≥ 0, we get

|u| ≤ φ.

The proof of part (b), (c) and (d) is done in a similar way by choosing the barrier functions

φ(x, y) =
(
1− e−α(1−x)/

√
ε
)

,

φ(x, y) =
(
1− e−αy/

√
ε
)

,
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and

φ(x, y) =
(
1− e−α(1−y)/

√
ε
)

,

respectively.

Now we have

Lemma 7.2.3. Let u(x, y) be the solution of problem (7.1.1)-(7.1.2). Then we have

(a). |ux(x, y)| ≤ Cε−1/2 on ∂Ω,

(b). |uy(x, y)| ≤ Cε−1/2 on ∂Ω.

Proof

By Lemma 7.2.2, we have

|ux(0, y)| =

∣∣∣∣ lim
x→0+

u(x, y)− u(0, y)

x

∣∣∣∣

≤ lim
x→0+

C(1− e(−αx/
√

ε))

x
= C

α

ε1/2

≤ Cε−1/2.

Similarly, applying the estimate in part (b) of Lemma 7.2.2, we get the estimate for

ux(1, y).

Differentiating the given boundary conditions u(x, y) = 0 at y = 0 and y = 1 with respect

to x gives us ux(x, 0) = ux(x, 1) = 0 and this finishes the proof.

Similarly,

|uy(x, 0)| =

∣∣∣∣ lim
y→0+

u(x, y)− u(x, 0)

y

∣∣∣∣

≤ lim
y→0+

C(1− e(−αy/
√

ε))

y

≤ Cε−1/2.
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We get the estimate of uy(x, 1) by applying the estimate in part (d) of Lemma 7.2.2.

Differentiating the given boundary conditions u(x, y) = 0 at x = 0 and x = 1 with respect

to y we get uy(0, y) = uy(1, y) = 0. This completes the proof.

Lemma 7.2.4. Let u(x, y) be the solution of problem (7.1.1)-(7.1.2). Then we have

(a). |ux(x, y)| ≤ C
(
1− ε−1/2e−αx/

√
ε + ε−1/2e−α(1−x)/

√
ε
)

on Ω̄,

(b). |uy(x, y)| ≤ C
(
1− ε−1/2e−αy/

√
ε + ε−1/2e−α(1−y)/

√
ε
)

on Ω̄.

Proof. By choosing the barrier function

φ(x, y) = C
(
1− ε−1/2e−αx/

√
ε + ε−1/2e−α(1−x)/

√
ε
)

,

we obtain

L(φ± ux) ≥ bC ± (fx − bxu) ≥ 0,

and since (φ±ux)|∂Ω ≥ 0, the proof is completed by making use of the maximum principle

(Lemma [48]).

For the proof of the estimate in part (b), we can use the barrier function

φ(x, y) = C
(
1− ε−1/2e−αy/

√
ε + ε−1/2e−α(1−y)/

√
ε
)

.

Now, the following results for the bounds on the second derivatives hold.

Lemma 7.2.5. Let u(x, y) be the solution of problem (7.1.1)-(7.1.2). Then we have

(a). |uxx(x, y)| ≤ Cε−1 on ∂Ω,

(b). |uyy(x, y)| ≤ Cε−1 on ∂Ω. %endLemma

(c). |uxx(x, y)| ≤ C
(
1 + ε−1e−αx/

√
ε + ε−1e−α(1−x)/

√
ε
)

on Ω̄,
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(d). |uyy(x, y)| ≤ C
(
1 + ε−1e−αy/

√
ε + ε−1e−α(1−y)/

√
ε
)

on Ω̄.

Proof. See [85].

7.3 Construction and analysis of the fitted operator

finite difference method

Let n and m be positive integers.

We consider the following partitions of the interval [0,1]:

x0 = 0, xi = x0 + ih, i = 1(1)n, h = xi − xi−1, xn = 1.

y0 = 0, yj = y0 + jk, j = 1(1)m, k = yj − yj−1, ym = 1.

The tensor product of these two partitions gives the mesh grid

µ(n,m) = {(xi, yj), i = 0(1)n, j = 0(1)m}.

In the rest of this chapter, we adopt the notation W j
i = W (xi, yj) and denote the approx-

imations of uj
i at the grid point (xi, yj) by the unknown vj

i .

Using the theory of difference equations for problems in one dimension, we construct

the following FOFDM (looking at the one dimension at a time):

−ε

[
vj

i+1 − 2vj
i + vj

i−1

(φj
i )

2
h

+
vj+1

i − 2vj
i + vj−1

i

(φj
i )

2
k

]
+ bj

iv
j
i = f j

i , (7.3.3)

with the discrete boundary conditions

v0
i = vj

0 = vm
i = vj

n = 0, i = 0(1)n, j = 0(1)m, (7.3.4)
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where

(φj
i )h ≡ φj

i (h, ε) :=
2

ρj
i

sinh

(
ρj

ih

2

)
(7.3.5)

and

(φj
i )k ≡ φj

i (k, ε) :=
2

ρj
i

sinh

(
ρj

ik

2

)
, (7.3.6)

with ρj
i =

√
bj
i/ε.

Note that

φj
i (h, ε) = h + O

(
h3

ε

)
,

and

φj
i (k, ε) = k + O

(
k3

ε

)
.

For the sake of simplicity, we assume that h = k, and hence the common denominator

will then be φj
i (= (φj

i )h = (φj
i )k). Thus equation (7.3.3) becomes

−ε

[
vj

i+1 − 2vj
i + vj

i−1

(φj
i )

2
+

vj+1
i − 2vj

i + vj−1
i

(φj
i )

2

]
+ bj

iv
j
i = f j

i , (7.3.7)

which we rewrite as

− ε

(φj
i )

2

[
vj

i+1 + vj
i−1 + vj+1

i + vj−1
i − 4vj

i

]
+ bj

iv
j
i = f j

i . (7.3.8)

One should note that, in the above we have considered h = k merely for the sake of

simplicity. However, in the analysis below, we keep the general set up.

We start with stating the following two lemmas whose roles are primordial in the

analysis of the method developed in previous section.

Lemma 7.3.1. (Discrete maximum principle) Let {ξj
i } be any mesh function satisfying

ξ0
i ≥ 0, i = 1(1)n− 1,

ξm
i ≥ 0, i = 1(1)n− 1,

ξj
0 ≥ 0, i = 1(1)m− 1,
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ξj
n ≥ 0, i = 1(1)m− 1,

ξ0
0 ≥ 0, ξ0

n ≥ 0, ξm
0 ≥ 0, ξn

m ≥ 0,

and Lk
hξ

j
i ≥ 0, i = 1(1)n− 1; j = 1(1)m− 1.

Then ξj
i ≥ 0, ∀i = 0(1)n, j = 0(1)m.

Proof Let (s, t) be indices such that

ξt
s = min

(i,j)
ξj
i , ∀ (i, j) ∈ {0, 1, . . . , n} × {0, 1, . . . , m}.

Assume that ξt
s < 0. It is clear that

(s, t) ∈ {1, 2, . . . , n− 1} × {1, 2, . . . , m− 1}

or else, ξt
s ≥ 0.

We observe that

ξt
s+1 − ξt

s > 0,

ξt
s−1 − ξt

s > 0,

ξt+1
s − ξt

s > 0,

ξt
s − ξt−1

s > 0.

Therefore

Lk
hξ

t
s < 0,

which is a contradiction.

Lemma 7.3.2. If Zj
i is any mesh function such that Zj

i = 0 on (∂Ω)j
i , then there exists

a constant C such that

|Zs
l | ≤ C max

1≤i≤n−1;1≤j≤m−1
|Lk

hZ
j
i |, for 0 ≤ l ≤ n; 0 ≤ s ≤ m.
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Proof. The proof follows similar lines as those for the FOFDMs developed for singularly

perturbed linear two-point boundary value problems.

7.3.1 Error estimate before extrapolation

The local truncation error of the FOFDM (7.3.3)-(7.3.4) is

Lk
h(u

j
i − vj

i ) =
{−ε(∆u)j

i + bj
iu

j
i

}

−
{
−ε

[
uj

i+1 − 2uj
i + uj

i−1

(φj
i )

2
h

+
uj+1

i − 2uj
i + uj−1

i

(φj
i )

2
k

]
+ bj

iu
j
i

}

= −ε(uxx)
j
i − ε(uyy)

j
i

+
ε

(φj
i )

2
h

[
h2(uxx)

j
i +

h4

12
(uxxxx)

j
i + · · ·

]

+
ε

(φj
i )

2
k

[
k2(uyy)

j
i +

k4

12
(uyyyy)

j
i + · · ·

]

= −ε(uxx)
j
i − ε(uyy)

j
i

+

(
ε

h2
− bj

i

12
+

h2(bj
i )

2

240ε
+ · · ·

)[
h2(uxx)

j
i +

h4

12
(uxxxx)

j
i + · · ·

]

+

(
ε

k2
− bj

i

12
+

k2(bj
i )

2

240ε
+ · · ·

)[
h2(uyy)

j
i +

k4

12
(uyyyy)

j
i · · ·

]

This implies that

Lk
h(u

j
i − vj

i ) =
εh2

12
(uxxxx)

j
i −

h2(bj
i )

2

12
(uxx)

j
i −

h4(bj
i )

144
(uxxxx)

j
i +

h4(bj
i )

2

240ε
(uxx)

j
i

+
εk2

12
(uyyyy)

j
i −

k2(bj
i )

2

12
(uyy)

j
i −

k4(bj
i )

144
(uyyyy)

j
i +

k4(bj
i )

2

240ε
(uyy)

j
i + · · ·

Using Lemma 7.2.5 we obtain

|Lk
h(u

j
i − vj

i )| ≤ M

[
h2

(
1 +

h2

ε

)
+ k2

(
1 +

k2

ε

)]
.
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Then by Lemma 7.3.2, we have

max
0≤i≤n

max
0≤j≤m

|uj
i − vj

i | ≤ M

[
h2

(
1 +

h2

ε

)
+ k2

(
1 +

k2

ε

)]
. (7.3.9)

Note that, if h = k, then we have the estimate

max
0≤i≤n

max
0≤j≤n

|uj
i − vj

i | ≤ Mh2

(
1 +

h2

ε

)
. (7.3.10)

7.4 Extrapolation on the fitted operator finite differ-

ence method

7.4.1 Extrapolation formula

Let µ(2n,2m) = {(x̄i, ȳj)} be the mesh with x̄0 = 0, x̄n = 1, ȳ0 = 0, ȳm = 1, and

x̄i − x̄i−1 = h̄ = h/2, j = 1(1)2n, and ȳj − ȳj−1 = k̄ = k/2, j = 1(1)2m, and v̄j
i denote

the numerical solution computed on the mesh µ(2n,2m).

On one hand, we have from (7.3.9),

uj
i − vj

i = M(h2 + k2) + Rn(xi) + Rm(yj),

1 ≤ i ≤ n− 1, 1 ≤ j ≤ m− 1.

On the other hand, we have

ūj
i − v̄j

i = M(h̄2 + k̄2) + R2n(x̄i) + R2m(ȳj),

1 ≤ i ≤ 2n− 1, 1 ≤ j ≤ 2m− 1.

Therefore,

uj
i −

4v̄j
i − vj

i

3
= O(h2 + k2), ∀(xi, yj) ∈ µ(2n,2m).
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We therefore set

(vj
i )

ext :=
4v̄j

i − vj
i

3

as the extrapolation formula.

7.4.2 Analysis of the extrapolation process

The local truncation error after extrapolation is

L̄k
h

(
uj

i − (vj
i )

ext
)

=
4

3
Lk̄

h̄(u
j
i − v̄j

i )−
1

3
Lk

h(u
j
i − vj

i ). (7.4.11)

While Lk
h(u

j
i − vj

i ) is given by equation (7.3.9), Lk̄
h̄
(uj

i − v̄j
i ) is obtained from Lk

h(u
j
i − vj

i )

by substituting h and k by h̄ and k̄, respectively. It follows that

L̄k
h

(
uj

i − (vj
i )

ext
)

=
4

3

[
εh̄2

12
(uxxxx)

j
i −

h̄2(bj
i )

2

12
(uxx)

j
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144
(uxxxx)

j
i +

h̄4(bj
i )

2

240ε
(uxx)

j
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+
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12
(uyyyy)

j
i −
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(uyy)
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144
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i +
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240ε
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j
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εh2
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h2(bj
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12
(uxx)

j
i −

h4(bj
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144
(uxxxx)

j
i +
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240ε
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+
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12
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144
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k4(bj
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240ε
(uyy)

j
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]
.

A simplification leads to

L̄k
h

(
uj

i − (vj
i )

ext
)

:=
bj
ih

4

576
(uxxxxx)

j
i −

(bj
i )

2h4

960ε
(uxx)

j
i +

bj
ik

4

576
(uxxxxx)

j
i −

(bj
i )

2k4

960ε
(uxx)

j
i + · · · .

Using Lemma 7.2.5 and its analogues for fourth order derivative terms we obtain

∣∣L̄k
h

(
uj

i − (vj
i )

ext
)∣∣ ≤ M(h4 + k4)

(
1 +

1

ε

)
. (7.4.12)
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By Lemma 7.3.2, we obtain

∣∣uj
i − (vj

i )
ext

∣∣ ≤ M(h4 + k4)

(
1 +

1

ε

)
. (7.4.13)

We summarize the results in the following theorem

Theorem 7.4.1. Let b(x, y) and f(x, y) be sufficiently smooth functions in the problem

(7.1.1)-(7.1.2) so that u(x, y) ∈ C4([0, 1]2). Then the numerical solutions v and vext

obtained via the FOFDM (7.3.3)-(7.3.4) before and after extrapolation, respectively, satisfy

the following estimates

max
0≤i≤n

max
0≤j≤m

|uj
i − vj

i | ≤ M

[
h2

(
1 +

h2

ε

)
+ k2

(
1 +

k2

ε

)]
. (7.4.14)

max
0≤i≤n

max
0≤j≤m

|uj
i − (vj

i )
ext| ≤ M(h4 + k4)

(
1 +

1

ε

)
. (7.4.15)

7.5 Numerical results

In this section, we give some numerical results for a test example corresponding to the

problem (7.1.1)-(7.1.2). In the implementation of the FOFDM (7.3.3)-(7.3.4) before and

after extrapolation, we assume that the step-sizes h and k in x- and y-directions, respec-

tively, are equal.

Example 7.5.1. Consider problem (7.1.1)-(7.1.2) with b = 2,

f(x, y) = −e−x/
√

ε + e−(1−x)/
√

ε

1 + e−1/
√

ε
− e−y/

√
ε + e−(1−y)/

√
ε

1 + e−1/
√

ε

+2 [1 + ε (x(1− x) + y(1− y) + xy(1− x)(1− y))] .
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The exact solution is

u(x, y) =

(
1− e−x/

√
ε + e−(1−x)/

√
ε

1 + e−1/
√

ε

) (
1− e−y/

√
ε + e−(1−y)/

√
ε

1 + e−1/
√

ε

)

+xy(1− x)(1− y).

The maximum errors at all mesh points are calculated using the formulas

Eε,n := max
0≤i,j≤m

|uj
i − vj

i |, before extrapolation

and

Eext
ε,n := max

0≤i,j≤m
|uj

i − (vj
i )

ext|, after extrapolation.

The numerical rates of convergence are computed using the formula [33]

rε,s := log2(Ẽns/Ẽ2ns), s = 1, 2, . . .

where Ẽ stands for Eε,n and Eext
ε,n , respectively.
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Table 7.1: Maximum errors before extrapolation
ε n=8 n=16 n=32 n=64
1 1.62E-04 4.05E-05 1.01E-05 2.53E-06

2−1 3.59E-04 8.98E-05 2.25E-05 5.62E-06
2−2 8.98E-04 2.25E-04 5.64E-05 1.41E-05
2−3 2.26E-03 5.68E-04 1.42E-04 3.56E-05
2−4 4.52E-03 1.15E-03 2.89E-04 7.24E-05
2−5 6.71E-03 1.76E-03 4.46E-04 1.12E-04
2−6 1.10E-02 3.07E-03 7.88E-04 1.99E-04
2−7 1.95E-02 5.76E-03 1.51E-03 3.83E-04
2−8 2.65E-02 1.04E-02 2.91E-03 7.53E-04
2−9 2.30E-02 1.91E-02 5.67E-03 1.49E-03

Table 7.2: Maximum errors after extrapolation
ε n=8 n=16 n=32
1 1.12E-07 7.06E-09 4.43E-10

2−1 8.71E-07 5.49E-08 3.44E-09
2−2 6.01E-06 3.80E-07 2.38E-08
2−3 2.96E-05 1.90E-06 1.19E-07
2−4 1.02E-04 6.78E-06 4.30E-07
2−5 3.51E-04 2.48E-05 1.60E-06
2−6 1.19E-03 9.31E-05 6.19E-06
2−7 3.18E-03 3.40E-04 2.40E-05
2−8 5.14E-03 1.18E-03 9.19E-05
2−9 4.31E-03 3.15E-03 3.38E-04
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Table 7.3: Rates of convergence before extrapolation, ns = 8, 16, 32.
ε r1 r2 r3

1 2.00 2.00 2.00
2−1 2.00 2.00 2.00
2−2 2.00 2.00 2.00
2−3 1.99 2.00 2.00
2−4 1.97 1.99 2.00
2−5 1.93 1.98 2.00
2−6 1.84 1.96 1.99
2−7 1.76 1.93 1.98
2−8 1.35 1.84 1.95

Table 7.4: Rates of convergence after extrapolation, ns = 8, 16
ε r1 r2

1 3.98 3.99
2−1 3.99 4.00
2−2 3.99 4.00
2−3 3.98 4.00
2−4 3.96 3.99
2−5 3.91 3.98
2−6 3.82 3.95
2−7 3.68 3.91
2−8 3.23 3.82
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7.6 Concluding remarks

This chapter was concerned with singularly perturbed elliptic problems in two dimen-

sions. Our aim was to design a fitted operator finite difference method for these problems

and to investigate the effect of extrapolation on the convergence of this novel method.

The method showed to be second order convergent. The extrapolation improves this con-

vergence up to fourth order. Numerical results presented in tables 7.1-7.4 confirm the

theoretical estimates given in (7.4.14)-(7.4.15).
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Concluding remarks and scope for

future research

In this thesis, we have considered many classes of singularly perturbed problems. This

include, linear and non-linear two-point boundary value problems, turning point problems,

time dependent parabolic problems and elliptic problems. Our aim was to construct

some higher order methods for these problems. This could be done either by designing

direct methods or by making use of the convergence acceleration techniques (for example,

Richardson extrapolation, defect corrections, etc.). Due to the fact that the convergence

acceleration techniques can cater for the large class of problems, we have decided to choose

this later option.

The main observation that we have made through the work in this thesis is that if a

singular perturbation model involves the first derivative term(s) of the solution, then the

extrapolation technique improves the accuracy of the underlying fitted method, while the

rate of convergence remains intact in many cases. However, if the model does not involve

the first derivative term(s), the rate of convergence can also be improved. This depends

on the fitted method utilized.

In Chapter 2, we investigated the effect of Richardson extrapolation on the fitted mesh
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finite difference method (FMFDM) for a self-adjoint problem. We noted that even though

the accuracy is improved, the order of convergence remains unchanged. This unexpected

fact contradicts the assertion met in the literature about Richardson extrapolation. This

motivated us to investigate, for the same class of problems, which impact the extrapolation

technique will have on other methods to solve the above mentioned self-adjoint problem

in Chapter 3. We considered two fitted operator finite difference methods (FOFDMs)

which we denoted by FOFDM-I and FOFDM-II. In the first case, the extrapolation does

not improve the convergence which is of order four and two for some moderate and

smaller values of ε. In the latter case, the second order accuracy is improved up to four,

irrespective of the value of ε. We are investigating this issue in more details.

Chapter 4 dealt with the construction and analysis of a FMFDM and a FOFDM to

solve a singularly perturbed turning point problem whose solution has boundary layers.

We studied the performance of Richardson extrapolation on these methods. The conclu-

sions drawn after analysis are in line with the observations made earlier: The turning

point problem involves a first order derivative term and therefore, the rate of convergence

is not increased even though the accuracy is improved in both cases. As a scope of future

work, we intend to explore the proposed method in this chapter to solve multiple turning

point problems.

In Chapter 5, we considered a singularly perturbed nonlinear two-point boundary value

problem. We first applied the quasilinearization process to linearize the problem. Then

the resulting sequence of linear problems was solved by a FOFDM. The ideas developed

here are extended in Chapter 6 to solve a time-dependent nonlinear Burgers’ equation.

Currently we are investigating whether we can use a direct approach to solve these types

of nonlinear problems.

The FOFDM-II of Chapter 3 is extended for solving singularly perturbed elliptic

problems of reaction-diffusion type in 2-dimensions in Chapter 7. This method is of order

2 in both x- and y-directions. A remarkable fact is that the fourth order convergence is
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achieved after applying Richardson extrapolation.

Due to the space limitations, we did not include the impact of defect correction tech-

nique on the various classes of problems mentioned in this thesis. Some work has been

done in this regard (see, e.g., [43]) on a singularly perturbed problem of the convection-

diffusion type in one dimension. We would like to deepen this study to various classes of

singular perturbation problems and come up with general conclusions. Currently, we are

also studying the singularly perturbed turning point problems whose solution has interior

layers.

179

 

 

 

 



Bibliography

[1] S. Abbasbandy, M.T. Darvishi, A numerical solution of Burgers’ equation by mod-

ified Adomian method, Appl. Math. Comput. 163 (2005) 1265-1272.

[2] M.B. Abd-el-Malek, S.M.A. El-Mansi, Group theoretic methods applied to Burgers

equation, J. Comput. Appl. Math. 115 (2000) 112.

[3] A.H.A. Ali, G.A. Gardner, L.R.T. Gardner, A collocation solution for Burgers equa-

tion using cubic B-spline finite elements, Comput. Methods Appl. Mech. Engrg. 100

(1992) 325337.

[4] L.R. Abrahamsson, A priori estimates for solutions of singular perturbations with

a turning point, Stud. Appl. Math. 56 (1977) 51-69.
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[145] R. Vulanović, Higher-order monotone schemes for a nonlinear singular perturbation

problem, J. Angew. Math. Mech. 68(5) (1988) 428-430.
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[148] R. Vulanović, Fourth order algorithm for a semilinear singular perturbation problem,

Numer. Algorith. 16 (1997) 117-128.
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