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South Africa’s coal and platinum mineral resources are crucial resources towards 

creating an alternative and environmentally sustainable energy system. The 

beneficiation of these natural resources can help to enhance a sustainable and 

effective clean energy base infrastructure and further promote their exploration and 

exportation for economics gains. By diversification of these resources, coal and the 

platinum group metals (PGMs) especially palladium market can be further harnessed 

in the foreseeable future hence SA energy security can be guaranteed from the 

technological point of view. 

The South Africa power industry is a critical sector, and has served as a major 

platform in the SA’s socio-economic development. This sector has also been 

identified as a route towards an independent energy base, with global relevance 

through the development of membrane technologies to effectively and economically 

separate and purify hydrogen from the gas mixtures released during coal gasification. 

Coal gasification is considered as a source of hydrogen gas and the effluent gases 

released during this process include hydrogen sulphide, oxides of carbon and 

nitrogen, hydrogen and other particulates. In developing an alternative hydrogen gas 

separating method, composite membrane based on organic-inorganic system is being 

considered since the other available methods of hydrogen separation are relatively 

expensive. 

 

The scientific approach of this study involves the use of palladium modified 

polyimide composite membrane. Palladium metal serves as hydrogen sorption 

material, deposited on polyimide substrates (composite film) by electroless technique. 

Polyimide is a class of polymer with excellent physico-chemical properties such as 

good mechanical strength, superior thermal stability and high resistance to chemical 

attack. In this study, a composite polymer-palladium membrane was developed and 

investigated to determine the prospect of using this membrane as a cheap, accessible, 

reliable and efficient system to separate and purify hydrogen gas. Prior to the 

palladium metal plating, the challenge of metal adhesion on glassy polymer such as 

polyimide film was addressed by chemical etching and unirradiated and irradiated 

polyimide film surface using NaOH, NaOCl and a mixture of NaOH/NaOCl 
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solutions. The time of etching was varied and the overall effect of this surface 

treatment was deeply investigated using Fourier transform infrared (FTIR) 

spectroscopy. The FTIR study focused on the structural deformation of the polyimide 

functional group units and the emergence of ‘active sites’ along the polyimide 

backbone structures that have been identified to allow the Pd metal exchange on the 

functionalised polyimide film. The detailed use of FTIR spectroscopic technique in 

this study on the etched unirradiated and irradiated polyimide film was to understand 

the chemical interaction between the polyimide functional group units and the 

chemical etchants. The surface morphology of unirradiated and irradiated polyimide 

samples was studied using SEM, the depth profile (penetration) of palladium particles 

after electroless deposition on the polyimide matrix was investigated by SEM and 

TEM analysis. As for the alkaline etched irradiated polyimide, pore distribution, 

shape and size depended on the etching time and solution. In the XRD analysis, the 

palladium modified unirradiated polyimide film indicated the diffraction peaks of 

palladium metal in the (1,1,1), (2,2,0) and (2,0,0) planes present in the polyimide 

surface, and the peel test showed that the strength of adhesion of palladium on 

unirradiated surface was low compared to the palladium modified irradiated 

polyimide. The NaOH solution showed the best etchant at 20 minutes for the 

unirradiated palladium modified polyimide.  

 

The hallmark of this study was the design, fabrication and assemblage of home-built 

hydrogen diffusion reactor unit used to measure rate of hydrogen diffusion property of 

unirradiated and irradiated polyimide films from 25 oC to 325 oC. The rate of 

hydrogen diffusion was observed to depend on the etching time of polyimide surface 

before and after the polyimide surface irradiation treatment. 
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CHAPTER 1 

1.0 INTRODUCTION  

 

Chapter 1 of this study provides brief background information on the global 

perspective on the hydrogen energy status and the available technologies associated 

with hydrogen gas separation. It gives a brief summary of the beneficiation of 

platinum group metals (PGMs). The approach adopted for this work is discussed in 

the motivation, problem statement and research questions. This chapter also highlights 

the aims and objectives, scope, the research methodology and delimitation of this 

project. The concluding part of this chapter describes the thesis structure.  

 

1.1  BACKGROUND  

 

The availability of cheap, clean, secure and reliable energy continues to be a major 

global concern due to the high cost in energy production and increasing energy 

demand, environmental pollution, rapid industrialization and growing human 

population. Fossil fuel still remains the single largest source of energy and accounts 

for more than 80 % of the world energy need with 40 % of this energy generated from 

coal combustion process (Shoko et al., 2006; Gray et al., 2001; Gary et al., 2006). 

The energy generated from coal is used for domestic, agricultural and industrial 

purposes especially in South Africa.  

 

South Africa (SA) is a major world producer of platinum group metals (PGMs) and 

also with large deposit of coal. The PGMs and coal are strategic to the economy of 

SA. The SA Department of Trade and Industry (DTI) reported that the PGMs precious 

metals account for about 25 % of the country’s gross domestic product (GDP). Both 

Coal and PGMs resources continue to serve as a source of foreign exchange earnings 

for SA according to DTI report (2004). In recent years, there has been a renewed 

focus on the need for the diversification of SA energy resources in an effort to 
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beneficiate coal so as to serve as a source of hydrogen gas (Shoko et al., 2006). 

Pursuant to this national mandate towards SA hydrogen energy technology, the PGMs 

especially palladium metal has been identified to play a pivotal role in the PGMs 

beneficiation, and act as the purifier of hydrogen gas from impurities associated with 

effluent gases produced from the coal gasification process. For this process, PGMs 

such as palladium metal are required as a component in composite polymer-PGM 

membranes for separation and purification of hydrogen. Such polymer-PGM 

composite membranes can offer cheap and alternative means of hydrogen separation 

technology. Most significantly, the beneficiation of coal and PGMs for hydrogen 

production and separation promises to promote environmental remediation and 

sustainable development (Shoko et al., 2006). By employing polymer-PGM 

composite membranes for hydrogen separation, PGMs may provide future alternative, 

affordable and dependable energy security through hydrogen processes. Also, the 

composite membrane can contribute to a sustainable environment through the 

reduction of greenhouse gases which are released during coal combustion. Moreover, 

this route would provide for technology advancement in energy security in SA (DTI 

report 2004). 
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The table below shows the list of PGM metal resources global reserve base and 

demand (Robinson et al., 2006). 

 

Table 1-1: List of PGM metal global resources 
 

    RESERVE BASE SUPPLY/ DEMAND 

COUNTRY             

    Tonnage            %     Rank Kg        % Rank 

                 

South Africa   70, 000         87.7 1 302,979 56.7 1 

                

Russia    6,600 8.3 2 174,180 32.6 2 

                

USA   2000 2.5 3 18,400 3.4 4 

                

Canada   390 0.5 4 21,568 4 3 

                

Other   850 1.1   17,480 3.3  - 

                   

Total   79,840 100   534,607 100  - 

 

 

The table above indicates the commercial and economically recoverable PGMs. South 

Africa leads the pack with the highest reserve base of over 80 % and distantly 

followed by Russia with 8.3 %. From the supply-demand section in the table, South 

Africa and Russia are both responsible for the global supply of PGMs to other 

countries with USA being the major destination country with over 93 % as at 2002. 

The exploration and exportation of PGMs remain pivotal to the economy of these 

countries. PGMs deposits in SA are located in Merensky Reef of the Bushveld 

Complex, Noril’sk-Talnakh District in Russia, and the Stillwater Complex in the 

United States.  

 

Hydrogen gas is a high value product with unique energy properties hence used as an 

energy carrier gas. It is often referred to as “A Clean and Secure Energy Future”. This 

 

 

 

 



Chapter One                      Introduction 
 

 

  

4 

 

   

is because of its non-polluting nature when applied as a source of energy (Nathan et 

al., 2007). During combustion of hydrogen for energy purposes, H2O is the final 

product. This therefore implies that environmental sustainability is feasible with 

hydrogen energy application. Some of the industrial processes such as petroleum 

refining and methane gas reforming have been used to produce hydrogen and they 

account for about 80 % of global hydrogen production (Nenoff et al., 2006; Stiegel et 

al., 2006).  

 

Hydrogen as an energy carrier is expected to replace non-renewable energy sources 

such as coal, natural gas and petroleum which are dwindling resources due to 

environmental concerns and price instability. The continuous depletion of these fossil 

fuel resources and the need to create a sustainable environment makes hydrogen (H2) 

an attractive alternative (Shao et al., 2009). The conceptualization of the hydrogen 

economy has increased in recent decades with resources channelled towards research 

and development (R&D) to investigate and advance hydrogen utilization for energy 

application (US DOE, 2006). There are several factors that have been identified to 

limit the success of hydrogen economy technology. These include; cost associated 

with hydrogen production, separation and purification technologies, storage, 

distribution networks and conversion of pre-existing technologies to hydrogen based 

infrastructure (Gary et al, 2006; Stiegel et al, 2006; Moore  et al, 2006; Shoko  et al, 

2006). 
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The table below highlights the available sources of hydrogen production and their 

percentage composition. 

 

Table 1-2: Feedstock contribution (%) of hydrogen production 
 

Sources Composition (%) 

Coal 19 

Natural gas 47 

Electrolysis 46 

Oil 30 

 

Several advantages of hydrogen based energy include; ability to generate from a wide 

range of natural resources such as water, coal, natural gas and petroleum. Hydrogen 

has low or zero emission thereby making it environmentally friendly with relatively 

high energy density. Hydrogen serves as raw material or intermediate in the 

manufacture of numerous products such as metals, microelectronics, semi-conductors 

and various chemical products (Edlund et al., 2000; Edwards et al., 2008; Robinson et 

al., 2006; Hurley and McCollor.1997). The production of pure hydrogen gas from 

fossil fuel for energy application continues to pose enormous challenges due to 

economic cost of the available technologies for hydrogen separation and purification 

processes such as pressure swing adsorption (PSA), cryogenic distillation (CD), 

absorption and membranes (Shao et al., 2009; Sircar et al., 2000). 
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1.2 AVAILABLE TECHNOLOGIES FOR HYDROGEN GAS SEPARATION  

 

The traditional hydrogen separation and purification technologies are; Pressure Swing 

Adsorption (PSA), cryogenics distillation (CD) and membrane systems. Each of these 

technologies has limitations that hinder wide – scale production of hydrogen which is 

considered to limit the prospective large scale hydrogen production to meet future 

demands of hydrogen as an energy carrier. PSA recovers less hydrogen and it is 

limited to modest temperatures (Sircar, 2002). The cryogenics technology is only used 

in large-scale facilities with liquid hydrocarbon recovery because of its high capital 

cost (Shao et al., 2009). Membrane systems are suggested to offer promising 

potentials in hydrogen separation and purification. The use of membranes in hydrogen 

separation is more economical than traditional separation technologies such as PSA, 

provided that suitable membranes are commercially available (Shao et al., 2009). 

Membrane separation devices are potentially much simpler, more compact and use 

less energy. Moreover, membranes do not suffer from efficiency losses and high 

operational costs for heat exchangers associated with the cooling of the synthesis gas 

(Powell et al., 2006; Koros et al., 1993; Shao et al., 2009). 

 

Membranes for gas separation processes have shown great promise with respect to 

output and cost efficiency (Gary J.S., 2006). This method of gas separation has been 

fully incorporated into the hydrogen from coal programme of the United States 

Department of Energy (US DOE, 2006; Report, 2005). Membranes can be used in the 

concentration, purification or separation of gases (Nenoff et al., 2006). They serve as 

barriers or permeable interfaces capable of selectively permitting preferred molecules 

to permeate across. For hydrogen permeable membrane, the thinner the membrane, 

the higher the permeability and such membrane must be defect-free (Naotsugu et al., 

2005). Some of the advantages of this technology in hydrogen processes include; 

continuity of operation and simplicity of application. Membrane technology is 

considered to be economically beneficial with relatively high separation and 

purification efficiency. Other advantages are; ease of application, versatility and 

availability of membranes 
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Generally, hydrogen production processes from coal gasification or methane steam 

reforming occurs at high temperatures and pressures along with the release of gases 

such as oxides of nitrogen, sulphur, carbon and heavy particulate matters (Gray  et la., 

2001). These gases act as surface poison in hydrogen separation and purification 

systems such as PSA, thereby limiting the regeneration of absorbents used in the PSA 

technology for reuse (Escand’on et al., 2008). The use of membranes in hydrogen 

separation requires thermally stable inorganic materials (Checchetto et al., 2004), 

while membrane performance depends on the physico-chemical interaction of the 

gaseous components (Ramachandranraghu et al., 1998). The selectivity properties of 

a membrane to transport individual component from the feed-gas mixtures more 

readily than the other components is another major boost to their acceptability and 

wide range application.  

 

For high-purity hydrogen, Pd membranes are considered to have shown promising 

results being highly selective for hydrogen flux (Paglieri et al., 2002). The limitation 

of this technology includes; the high cost of palladium, palladium embrittlement due 

to phase change in hydrogen atmosphere, poor thermal stability especially at elevated 

temperature and poisoning by hostile surface adsorbates (i.e. H2S, CO, CO2, O2, H2O) 

over prolonged operation ( Paglieri et al., 2002; Escand’on et al., 2008; Kilicarslan et 

al., 2008).   

 

1.3 MOTIVATION 

 

In recent time, there has been a growing need for the identification and 

implementation of relevant technologies aimed at harnessing South Africa platinum 

group metals (PGMs) resources. These resources can be diversified through the 

beneficiation of SA PGMs resources for sustainable economic development. The 

PGMs natural resources exist in large deposit in the North and Eastern province of SA 

with about 70 % recoverable reserve (Robinson et al., 2006). In this project, the focus 

is to enhance the beneficiation of PGM resources in SA which is found in abundance 
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in the country. The exploration of SA abundant PGMs resources towards energy 

security can be beneficial through the production of hydrogen using cheap, reliable, 

efficient and affordable hydrogen gas separation and purification method by means of 

a polymer-PGM composite membrane system (Uemiya et al., 2001). The polymer-

PGM composite membrane being developed in this study should be economical, easy 

to use and should not require complex synthetic processes compared with other 

known hydrogen separation and purification technologies such as PSA, CD and 

absorption (Robinson et al., 2006). In the utilization of South African PGMs, 

hydrogen gas can be generated from gasified coal and separated or purified using 

polymer-PGM composite membrane. Therefore availability of resources and national 

drive towards environmentally sustainable energy sources are among the factors 

responsible for undertaking this study through resources beneficiation towards energy 

application.  

 

1.4 PROBLEM STATEMENT 

 

Hydrogen is not available in its free molecular form on earth but is bound up in 

compounds such as water and valuable hydrocarbon deposits such as coal, natural gas 

among others.  In other to obtain molecular hydrogen from these resources for energy 

purposes, it is imperative to use a cost-effective method of hydrogen separation from 

the other elements such as carbon, oxygen and nitrogen to which it is chemically 

bound. Conventional methods used for separating hydrogen from gas mixtures 

include; PSA, cryogenic distillation, absorption and membrane filtration (Nenoff et 

al., 2006). These techniques do not achieve the expected separation and purification 

level of hydrogen needed for energy application (Shao et al., 2009). Therefore, the 

amount of hydrogen recovery in the presence of impurities determines the choice of 

separation techniques. The task of producing hydrogen on an industrial scale is 

tremendous so also the techniques involved in its purification. Hydrogen separation 

and purification operations such as cryogenic distillation, adsorption and pressure 

swing absorption (PSA) account for high capital investment in large-scale chemical 

plants (Lu et al., 2007). This has therefore made membrane separation technology a 
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preferred path in-term of cost and efficiency. This study will focus on composite 

polymer metal membrane as a medium for hydrogen separation and purification 

technique. 

 

Polymer such as polyimide has been reported with poor surface adhesion with metals 

(Yi et al., 2004). As a result of this, the use of surface treatment techniques to 

functionalise the polyimide structure and increase polyimide-metal adhesion becomes 

imperative. The surface treatment required for depth profiling of the polyimide 

surface must be carefully controlled so as to create the roughness and ‘catalytic active 

sites’ that can act as chemical bonding site for the metal (Mitrofanov et al., 2006). A 

composite polyimide-metal membrane is predicted to. For an effective composite 

polyimide-metal membrane application in hydrogen gas separation and purification, 

such metal must show promising surface adhesion structures with polyimide 

(Dazinger and Voitus, 2003). Metals such as palladium (Pd) have been proven to 

show infinite affinity for hydrogen, hence Pd metal has been in use for hydrogen gas 

separation and purification in a composite membrane arrangement (Nam and Lee, 

2000; Paglieri et al., 2002). The problem associated with Pd is the hydrogen 

embrittlement phenomenon which occurs due to phase change of Pd at low (below 

300 oC) temperature environment (Nam and Lee, 2000). This therefore implies that 

the operation of such composite membrane must be in a high temperature 

environment. Due to the high temperature environment in which hydrogen gas can be 

obtained, the composite membrane structure must exhibit considerable tolerance with 

high thermally stability. 

 

1.5 RESEARCH QUESTIONS 

 

i. How can surface modification of polyimide by etching enhance metal 

adhesion to the polyimide surface? 

ii. What is the suitable surface functionalization condition for polyimide film 

to promote metal adhesion to the polymer surface?  
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iii. What is the influence of conditions such as temperature and pressure on 

the rate of diffusion of hydrogen gas across modified polyimide 

membrane? 

 

1.6 HYPOTHESIS 

 

In order to answer these key questions, a number of hypotheses based on the literature 

review will be developed and presented in this thesis. These include: 

i. Prove that depth profile of polyimide by chemical etching can enhance 

palladium adhesion on the polyimide surface after electroless plating. 

ii. Prove that etching at low temperature and low concentration of etching 

solution can be used to control of surface roughness of polyimide during 

etching. 

iii. Prove that surface adhesion of polyimide can be enhanced by simple 

method of chemical etching. 

 

1.7 AIMS AND OBJECTIVES 

 

The aims of this work are as follows; 

i. To determine the effect of surface functionalisation on polyimide as a 

function of time and temperature stability. 

ii. To determine whether the effect of conditions such as etching time and 

the type of etchant of polyimide will improve adhesion property of 

composite polymer-PGM membrane 

iii. To study the thermal stability of polyimide film in hydrogen  atmosphere 

at high temperature 

iv. To investigate surface depth profile of etched polyimide by hydrogen 

diffusion.  

v. To determine the rate of hydrogen diffusion through the functionalized 

polyimide and polyimide-PGM composite membrane 

 

 

 

 



Chapter One                      Introduction 
 

 

  

11 

 

   

vi. To develop home built hydrogen diffusion reactor for hydrogen 

diffusion measurement. 

 

1.8 SCOPE  

 

Polyimide is a unique polymer structure with excellent chemical, thermal, electrical 

and physical properties. In developing the composite polyimide-metal membrane for 

this study, the polyimide will serve as support. The scope of this study is to determine 

the use of commercial polyimide as a possible substrate in a composite membrane 

structure. Polyimide properties such as adhesion strength, thermal stability and 

hydrogen diffusion measurement will be examined after surface functionalisation 

methods. The surface modification of the polyimide film will be performed by etching 

in NaOH and NaOCl solutions to form porous (depth profile) polyimide surface and 

to improve the polymer-metal adhesion properties (Mitrofanov et al., 2006). This 

surface treatment is followed by sensitisation/activation procedure to create active 

sites in the polyimide bonds for metal exchange, and acceleration in Na2EDTA and 

the polyimide surface is plated with palladium metal using the electroless plating 

technique (Shuxiang et al., 2010; Edlung et al., 2000).  

 

1.9 DELIMITATION 

 

For this study, the polymer of choice is Kapton® type of polyimide. The polyimide 

samples used are the unirradiated and irradiated as-received polyimide film. The 

chemical etching was carried out at low concentrations of 0.4 M NaOH while the 13 

% NaOCl solution was used as received. For the PGMs, only palladium (Pd) metal is 

used for this study. The Pd is not alloyed with any other metal during electroless 

plating on the polyimide substrate. The polyimide-palladium composite membrane is 

used to test for hydrogen diffusion measurement using a home-designed, fabricated 

and installed hydrogen diffusion reactor unit from ambient to 350 oC. Hydrogen 
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selectivity and purity properties of the polyimide-palladium composite membranes 

were not considered in this study. This is because only hydrogen gas was fed tested. 

 

1.10 RESEARCH APPROACH 

 

The improvement of polyimide metal adhesion properties by surface functionalization 

of the polymer film using irradiation with heavy ion prior to chemical etching will be 

investigated. Chemical etchants such as NaOH and NaOCl at known concentration 

will be used at constant temperature and as a function of time. The measurement of 

hydrogen diffusion through the as-received, etched unirradiated and irradiated 

polyimide samples will be studied from room temperature to 350 oC to determine the 

thermal stability of the polyimide film.  

 

In order to achieve the objectives of this study, the research approach is outlined; 

 

a. Characterization of as-received commercial polyimide. SEM, FTIR, TGA and 

XRD analysis were conducted to determine the physico-chemical properties of the 

commercial polyimide and establish a baseline data set. 

 

b. Etching of the as-received unirradiated and irradiated polyimide in known 

concentration of sodium hypochlorite and sodium hydroxide solutions. The duration 

of etching for the unirradiated samples was 5, 10, 20 or 30 minutes. The irradiated 

films were etched for 10, 20, 30, 40 or 60 minutes. All samples were etched in fresh 

solution for the different time and at constant temperature of 50 oC. Surface 

morphology was studied using SEM. The presence or absence of functional groups in 

the polymer structure was investigated using FTIR. This surface treatment is expected 

to create surface roughness of the polyimide film and also introduce a functional 

regime that will serve as anchor for palladium adhesion to the polymer surface in a 

polyimide-palladium interface (Schiedt, 2007; Mitrofanov et al., 2006; Charbonnier et 

al., 2003).  
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c. Electroless plating of palladium on functionalised polyimide surface was 

carried out after successive activation and sensitization steps. Acceleration the 

sensitized polyimide was investigated in acidic, basic and complexing agents such as 

Na2EDTA. 

 

The characterisation techniques used are; X-ray diffraction (XRD), Fourier-

transformed infrared spectroscopy/attenuated total reflection (FT-IR/ATR), 

transmission electron microscopy (TEM), thermo gravimetric analysis (TGA), 

scanning electron microscopy (SEM). A home-grown hydrogen reactor was designed, 

built and used to investigate the hydrogen gas diffusion of the fabricated Pd/polyimide 

composite membrane. 

 

1.11 THESIS STRUCTURE 

 

Chapter 2: Literature review 

 

This chapter provides a comprehensive review of the background status of hydrogen 

as a future energy carrier; the conventional hydrogen separation and purification 

technologies as well as polyimide as a polymer support for gas separation application. 

The various polyimide surface treatments such as etching, heavy ion irradiation and 

ion implantation to improve adhesion of metals are discussed. Other sections of this 

chapter focus on palladium, palladium membranes, and limitations of such 

membranes such as the effect of surface poisons on purity and gas recovery. A review 

on the application of palladium membrane for gas purification and separation is 

discussed. The use of composites such as polymer-metal structure and the various 

transport mechanisms for gas permeation across membrane structure is examined. The 

concept of electroless plating method for metal layer deposition on polymer surfaces 

is explained based on the available literatures. The different characterisation 

techniques were discussed.  
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Chapter 3: Experimental approach and methodology 

 

In order to address and answer the outlined objectives and questions of this study, 

chapter three of this study explains the systematic experimental methodology applied 

for the surface functionalisation of polyimide using the NaOH and NaOCl etchants. It 

also covers materials and experimental protocols. It details the design, fabrication and 

assemblage of hydrogen separation reactor unit to measure the rate of hydrogen 

diffusion across commercial, etched unirradiated and irradiated polyimide film. 

Samples preparation and each of the instrument set-up conditions for the different 

characterisation techniques were also included in this chapter.   

 

 

Chapter 4: Result and discussion of as-received, unirradiated and 

irradiated polyimide 

 

This chapter presents the results obtained from the experimental steps carried out on 

polyimide membrane before and after chemical etching of the samples. The results are 

discussed and compared with the literature.  

 

Chapter 5: Palladium plated polyimide 

 

In this chapter, the etched unirradiated polyimide is plated with palladium metal via 

electroless deposition. The palladium plated samples were characterised with SEM, 

TEM and FTIR techniques and their results are presented in this chapter.   

The veracity of the hypothesis of this research is assessed based on the results 

obtained and discussions in chapter 4.  
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Chapter 6: Conclusion and recommendation 

 

This chapter discuss the findings of the study and draw up a conclusion based on the 

results and recommendations for future work were highlighted.  

 

Chapter 7: References 

 

This chapter gives detail information of the materials consulted in this study. 
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CHAPTER 2 

2.0 LITERATURE REVIEW 

2.1 INTRODUCTION 

 

Hydrogen as an energy carrier gas has been identified to possess some advantages such as its 

availability from a variety of sources such as fossil fuels and non-fossil fuels, and its high 

energy density properties. These properties, if harnessed, are expected to create a reliable 

global clean energy base with zero pollution and minimal negative environmental impacts. 

The major limitation to the hydrogen fuel application is the availability of infrastructure for 

large scale application, hydrogen distribution and storage facilities (Shoko et al., 2006). 

 

The ‘Hydrogen economy’ has been considered a future energy choice and proponents of this 

agenda consider it to hold great promise in addressing some of the aforementioned 

environmental and energy security problems. Although building an alternative economic base 

using hydrogen as an energy carrier has great potential to overcome several environmental 

and socio – economic problems when compared to the current hydrocarbon based (fossil fuel) 

energy carriers, fundamental problems such as safety (both in storage and transportation) and 

efficient method towards hydrogen economy remain a huge challenge (Nathan et al., 2007; 

Shoko et al., 2006; Nenoff et al., 2006).  

 

2.2 HYDROGEN AS FEEDSTOCK FOR INDUSTRIAL PROCESSES 

 

Pure hydrogen constitutes an important industrial feedstock material with a global annual 

consumption in hundreds of millions cubic meters (Paglieri et al., 2002). In recent decades, 

there has been a steady increase in the demand for hydrogen for various industrial 

applications and also as an alternative energy carrier. As a replacement for fossil fuels, 

hydrogen as an energy carrier has the potential to promote energy sustainability with positive 

impacts on climate change abatement; energy safety and security, reduce dependence on 
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fossil fuel resources such as oil and create a robust platform for environmentally benign 

technology (Lu et al., 2006; Amor et al., 1999; Nenoff et al., 2006). Technical challenges to 

developing cost effective hydrogen technologies include cost-effective hydrogen production, 

delivery and storage techniques for a commercially viable application such as in fuel cells. 

For industrial application, hydrogen purification systems such as pressure swing adsorption 

(PSA), cryogenic distillation, can be used to obtain pure hydrogen (Amor et al., 1999), and 

this purity percentage is directly related to the industrial applications and separation 

techniques. Hydrogen is used as feedstock in the chemical, petrochemical and metallurgical 

industrial processes. Some, if not all of these industrial processes require pure hydrogen to 

serve as feedstock or intermediate species (Ramachandranraghu et al., 1998; Lu  et al., 2007). 

 In hydrogen fuel cell applications, the purity level of hydrogen is critical hence removal of 

impurities is an important condition for any preferred separation and purification method 

adopted for hydrogen production. To obtain pure hydrogen, factors like economics of 

infrastructure, durability of process and simplicity of technique must be considered (Hart et 

al., 2003; Nenoff et al., 2006). Hydrogen gas has been identified as a future alternative 

energy source thus preferred to fluid fuels and non-renewable energy sources due to its 

desirable qualities such as high energy density and efficiency. 
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Table 2.1 below outlines the different fuels and their corresponding energy density values 

      

Table 2-1: Comparison of energy density of different fuels 
 

 

 

 

Hydrogen on combustion with O2 yields water with zero or near zero emission of gas 

pollutants (Lu et al., 2007). However, the challenge to achieve a competitive and alternative 

hydrogen energy infrastructure which can compete favourably with other sources of energy 

will require an effective approach which is cheap, simple, reliable and sustainable for the 

purpose of separation, purification, storage and transportation of hydrogen gas (Amor et al., 

1999). Traditionally, methods used for hydrogen purification and separation are pressure 

swing absorption, cryogenic distillation and membranes. Based on economic implications as 

well as other factors, membrane technology is considered a cheap and affordable pathway 

approach to achieving hydrogen separation and purification from different sources. Several 

studies in thin film metal composites have been carried out to improve on the separation of 

Fuel Specific energy 

(kW/kg) 

Energy density 

(kWh/dm3) 

Liquid hydrogen 33.3 2.37 

Hydrogen (200 bar) 33.3 0.53 

Liquid natural gas 13.9 5.6 

Natural gas (200 bar) 13.9 2.3 

Petrol 12.8 9.5 

Diesel 12.6 10.6 

Coal 8.2 7.6 

NH3BH3 6.5 5.5 

Methanol 5.5 4.4 

Wood 4.2 3.0 

Electricity (Li-ion battery) 0.55 1.69 
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hydrogen in gas mixture using membrane technology. This will be discussed in subsequent 

section. 

2.3 SOURCES OF HYDROGEN 

 

Hydrogen gas is present in different renewable or non-renewable resources such as mineral 

deposits and this has been a major boost towards hydrogen energy feasibility and utilization. 

The non-renewable sources are carbonaceous based i.e. fossil fuels, petroleum and natural 

gas while the renewable sources of hydrogen are wind, solar and water electrolysis (Johanna 

et al., 2007). Hydrocarbons such as natural gas, oil and coal are the primary known sources of 

hydrogen (Hart et al., 2003; Paglieri et al., 2002).  

 

2.4 HYDROGEN PRODUCTION 

 

The choice of hydrogen production techniques is determined largely by the availability of 

resources and economic costs of the hydrogen gas from these resources. There are several 

techniques employed to produce hydrogen and these techniques depend on the source of 

hydrogen. Hydrogen can be produced from coal by gasification technology, while the 

hydrogen from natural gas can be produced by water gas shift reaction or steam reforming 

process. Other sources of hydrogen include the non-fossil fuels such as water biomass, wind 

and nuclear sources (Amor et al., 1999). Metal hydrides such as sodium and lithium 

borohydrides have been reported to serve as storage material for hydrogen due to their high 

hydrogen storage capacity (Umegaki et al., 2009). These metals hydride are known to be a 

safe and low-cost practical route to produce hydrogen via electrochemical mechanisms such 

as electrolysis. Hydrogen can be produced from coal by coal gasification and the hydrogen 

produced can be separated using membrane technology at high temperatures with low 

economic cost (Gray et al., 2001). In considering the existing resources for hydrogen 

production, coal remains a viable resource because it offer the lowest production cost for 

hydrogen compared with other sources (Amor et al., 1999).. Hydrogen production method 

such as coal gasification is a mature technology compared with other methods such as water 

electrolysis. Unfortunately, water electrolysis method of hydrogen production is not 
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appealing in terms of economics and technology blueprint to a level that could compete 

effectively with coal as a source of hydrogen at this stage (Shoko et al., 2006). It is 

anticipated that if coal resources are properly harnessed by developing simple and cost 

effective methods, coal can serve as a source of hydrogen for energy and other hydrogen 

industrial application processes to meet the local energy needs as well as creating a clean and 

safe environment (Turner et al., 2004). The preference for fossil fuel is largely due to its 

availability and existence of infrastructure for hydrogen production. Although fossil fuel 

remains a major source of greenhouse gas with several consequences resulting in ecological 

imbalance, the production of hydrogen gas alongside carbon sequestration technique can help 

mitigate environmental concerns by reducing carbon dioxide emission (Lu et al., 2007).  

 

2.4.1 Hydrogen production by coal gasification 

 

Coal is found in large deposit in many countries including South Africa and has served as a 

source of energy to produce electricity (Shoko et al., 2006). The coal reserve in South Africa 

is estimated at about fifty three (53) billion tonnes (www.eskom.co.za). Due to the large 

reserve of coal and its potential as a source of hydrogen through gasification technology, coal 

is expected to compete with other fossil fuels resources in the foreseeable future in the 

production of hydrogen gas. This is due to cost of the processes involved in producing 

hydrogen gas from coal and the abundance of coal resources which is predicted to last for 

several decades (Cleeton et al., 2009). The gasification of carbonaceous and hydrogen-

containing fuels such as coal has been proven to be one of the more effective methods of 

hydrogen production and is critical to the transition to a hydrogen economy (Stiegel et al., 

2006). Coal gasification technology is a high temperature reaction which is used to generate 

gas mixtures such as H2, CO2, CH4, H2S, H2O, CO and other trace elements and particulates 

(Shoko et al., 2006). The process is carried out in the presence of O2 or steam by partial 

oxidation of coal feedstock. To increase hydrogen content in coal gasification system, the 

water gas shift reaction (carbon monoxide and steam) is used to collect and catalyze the 

syngas produced from the gasified coal.  
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This reaction can be represented as: 

 

1EqationkJ/mol.41.1298
0ΔH2H2COO2HCO −=+→+  

 
Equation 1: Hydrogen production by water gas shift reaction 
 

 In general, coal gasification technology is classified based on the process of coal feed 

preparation and state on delivery. Other basis of coal gasification classification is the method 

of ash removal and the configuration of gas effluents after gasification. There are various 

available methods of coal gasification techniques and these are determined by factors such as 

intended use of product gases, coal morphology and availability and environmental 

regulations. These coal gasification methods can be the  underground coal gasification (UCG) 

which is an in-situ coal processing technique to produce gas mixtures, the integrated 

gasification combined cycle (IGCC), Winkler process and fluid bed systems (FBS) (Shoko et 

al., 2006).  

 

Coal gasification (CG) has been in use for decades and hydrogen production from the 

gasification processes is suggested to show significant economic benefit by using membrane 

technology. By using the CG and membrane technology, hydrogen gas can be produced in a 

coal gasification and membrane technology process integration. Although CG is a 

commercial technology, it is not a widely practiced technology except in countries such as 

SA and China where natural gas or oil is less abundant and expensive (Shoko et al., 2006). 

The economic cost of this method is high plus the negative environmental impact due to other 

wastes i.e. ash generated. The disposal of coal wastes has been reported to pollute soil and 

underground water due to some geological phenomenon. Hence, an alternative and available 

option for coal gasification is the use of underground coal gasification (UCG) process to 

replace the conventional mining method where coal is first mined before gasification.  

 

In applying UCG, it is suggested that more hydrogen can be produced by employing an in-

situ membrane technology through the separation of hydrogen gas produced along with other 

gas mixtures in gasification processes (Gray et al., 2001). The increase in greenhouse gases 
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(GHGs) such as oxides of carbon, nitrogen, sulphur emission has prompted the need for an 

environmentally benign technology to reduce these gases and UCG technique addresses these 

problems considerably by reducing the atmospheric air pollution (DTI 2004). Gases released 

during UCG can be captured hence this technique can serve as an environmental remedial 

measure even though it can be on a short term approach. Although coal has a considerably 

low hydrogen to carbon ration, coal gasification technology has been suggested to address the 

continuous and unabated emission of GHGs by integration of processes to sequester carbon 

capture, reduce nitrogen oxides (NOx) and serve  as a source of hydrogen (Shoko et al., 

2006). Some of the advantages of UCG process include the potential to put hydrogen 

production within realistic economic benefits, high coal utilization and also ensure the 

extraction of unmineable coal at depths or geologically difficult terrains. Another benefit of 

UCG method is that waste water can be used as feedstock alongside a decent waste handling 

mechanism through an underground ash dump technique.  

 

The integrated gasification combined cycle (IGCC) is an advanced system process with 

different unit integrations. This technology is not cost effective because of the high 

maintenance requirement. Unlike IGCC, the Winkler method is an economical technique but 

energy intensive since it operates at high temperature. The fluidized beds used in Winkler 

method have good heat and material transfer between the gas and solid phases with the 

excellent temperature distribution, high specific heat capacity among other factors. The 

disadvantage of the fluidized beds used in Winkler method include the high dust content in 

the gas phase and the inconsistency between high reaction temperatures with good conversion 

efficiency (Shoko et al., 2006; Warnecke et al., 2000).  

 

2.4.2 Hydrogen production by methane steam reforming 

 

The methane steam reforming of fossil fuel accounts for about 80 % of the global hydrogen 

production (Nenoff et al., 2006). This method of hydrogen production is a relatively less 

expensive practice but largely dependent on fuel cost due to the unstable cost of natural gas 

(methane) (Gray et al., 2001). In this method, methane is converted to hydrogen, carbon 
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dioxide and carbon monoxide in the presence of steam. Steam reforming is an endothermic 

reaction with nickel catalyst and occurs at high temperature (700 oC - 1000 oC) and pressure 

(30 atm). 

 

The reaction is represented below: 

 

2Equation206kJ/molΔHCO23HO2H4CH +=+→+  

Equation 2: Hydrogen production by steam reforming reaction 

The methane is fed through multiple beds of zinc oxide or activated carbon to prevent 

deactivation of the nickel catalyst used and also for the removal of sulphur impurities. To 

increase the conversion of methane to hydrogen, excess steam is added which also prevents 

thermal cracking and coking. This reaction has been reported to be susceptible to 

accumulation of carbon soot which leads to deactivation of the catalyst particle, causes 

blockage of the reactor tubes and fouling in downstream system (Gray et al., 2001). 

 This can be represented by nickel-catalyzed Boudouard reaction:  

3quationE172kJ/molΔHC2CO2CO −=+→  

Equation 3: Boudouard reaction
  

2.5 CHARACTERISTICS OF HYDROGEN 

 

Several characteristics of hydrogen have been utilized in various industrial applications. 

Hydrogen is a colourless, odourless, non-toxic but highly flammable gas. The flammability 

and detonability limits of hydrogen are determined by the ratio of hydrogen/air mixture 

(Amor et al., 1999; Sakintuna et al., 2007). It has low boiling point (−252.87 oC) and its 

density in the gaseous state is 0.08988 g/L at low temperature 0 oC and pressure 1atm 

(Sakintuna et al., 2007). Hydrogen can exist in different state such as solid, liquid and 

gaseous phase. These states depend on temperature and density (Zuttel et al., 2003). 
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Chemically, hydrogen is a reactive element and has been employed in organic synthesis of 

hydrocarbon in the hydrogenation reaction process (Ramachandranraghu et al., 1998). 

 

2.6 USES OF HYDROGEN 

 

Hydrogen has been used as raw material feedstock in several industrial processes such as 

synthesis of ammonia, methanol and higher alcohols. It is also used in catalytic 

hydrogenation of unsaturated aromatic and aliphatic organic compounds, and removal of 

sulphur and nitrogen atoms from these organic compounds. The need to develop 

environmentally friendly energy fuel has resulted in intensive research on the application of 

hydrogen as energy carrier for automobile industries and generation of heat and power 

systems for households. Hydrogen energy is used in fuel cells which is an effective and 

efficient energy conversion system with significant reduction in the emission of air pollutants 

(Ramachandranraghu et al., 1998). Hydrogen is used in the semi-conductor industry; in 

doped silicon wafers and chemical vapour deposition techniques and applied in 

hydrosulfurisation process of fuels, military application, scientific balloons and rocket fuel 

(Paglieri et al., 2002). 

 

2.7 HYDROGEN STORAGE AND TRANSPORTATION 

 

Prior to a successful application of hydrogen for energy purposes, finding the most 

economical, reliable and abundant source of hydrogen is imperative (Umegaki et al., 2009).  

Beside this, there are several hurdles such as hydrogen storage and transportation in the drive 

towards a realistic hydrogen energy implementation. Hydrogen can be stored as a gas, liquid 

or solid depending on the end use. Therefore, for a material to be considered as an effective 

medium of hydrogen storage and transportation, such materials must show strong interaction 

hydrogen in a reaction process. This interaction can be in form of the ease of uptake and 

release of hydrogen gas by these storage materials. Hydrogen density and molecular size are 
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the two properties responsible for its limitations in safe and reliable storage methods 

(Sakintuna et al., 2007).  

Conventional storage methods for hydrogen include; (i) compressed gas (ii) cryogenic liquid 

and (iii) solid state systems and (iv) complex metals (Sakintuna et al., 2007; Zuttel et al., 

2003). These storage methods depend on the source, amount to be stored and application as 

in industrial or domestic usage (Hart et al., 2003; Amor et al., 1999). The hydrogen storage 

capacity for commercialisation status is 6.5wt% and within a temperature range of 60oC to 

120 oC. Hydrogen is mostly stored as solid in metals (as hydrides) due to the safety, weight 

and economics, and problems associated with liquid and gaseous storage techniques. Other 

storage systems such as metal hydrides, complex metal hydrides and carbon materials such as 

carbon nanostructures have been discussed by Sakintuna et al., 2007.  

 

Metal hydrides are a solid hydrogen storage technique and have been considered as a 

potential system to store hydrogen due to their high hydrogen storage density, ability to 

release hydrogen when heated and safety advantages over the gas and liquid storage methods. 

Hydrogen forms hydrides with metals such as Li, Ti, Be, B, Mg, Al, Na storing hydrogen at 

moderate temperature and pressure (Amor et al., 1999; Ramachandranraghu et al., 1998; 

Sakintuna et al., 2007). These metals can form various metal-hydride compounds such as 

LiAlH4, NaAlH4 and Mg2NiH4 among others due to their light weight property and the high 

number of hydrogen-metal atom ratio. Mg hydride has the highest hydrogen energy density 

(9 MJ/kg Mg) and combines with hydrogen at a high capacity of 7.6 wt %. Mg is a readily 

available metal and forms MgH2 with low cost and processing reversibility (Sakintuna et al., 

2007). Its use is limited due to its high storage temperature and reactivity with oxygen or air. 
 

Metals differ in their hydrogen dissociation strength which depends on surface structure, 

morphology and purity. Metal and hydrogen combine in two ways to form hydrides. The α-

phase is a partial metal-hydride phase due to the absorption of some hydrogen atoms by the 

contacting metal, or the completely metal hydride β-phase (Sakintuna et al., 2007). This 

study will not focus on metal hydride for hydrogen storage thus these materials will not be 

further reviewed. 
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2.8 HYDROGEN PURIFICATION AND SEPARATION METHODS 

 

In recent time, a new global focus has been on system with excellent hydrogen separation and 

purification capacity. Such system is required to show hydrogen separation and purification 

efficiency output with minimal economic cost, and unique ability to produce highly pure 

hydrogen gas for energy application such as in fuel cells.  Pure hydrogen is important in the 

hydrogen energy application and the hydrogen purity requirement is closely related with the 

type of separation and purification techniques (Paglieri et al., 2002). Hydrogen is a by-

product of many industrial reactions such as coal gasification (Nenoff et al., 2006; Ilias et al., 

1996) hence hydrogen requires an effective separation and purification methods from the 

effluent gas mixtures. In most cases, the separation and reaction processes are often 

combined to remove the desired gas products from gas mixtures. For hydrogen separation, an 

integration of side reaction process using a membrane reactor can be used to alter equilibrium 

so as to increase hydrogen conversion and removal from the gas mixtures (Quicker et al., 

2000). 

 

In reactions such as methane steam reforming, coal gasification and other industrial 

processes, there is a need to employ an efficient H2 recovery technique. Such a technique 

when optimized can increase production and improve hydrogen purity yield. There are 

several traditional methods used to separate and purify hydrogen from the various industrial 

processes, and these methods have been considered as matured technology except for 

membranes techniques. Processes such as pressure swing adsorption (PSA), cryogenic 

distillation and membrane technology are well known separation techniques and will be 

discussed in the subsequent sections (Ilias et al., 1996; Shao et al., 2009). 

 

2.8.1 Pressure swing adsorption 

 

Pressure swing adsorption (PSA) is a conventional and advanced separation technique for 

hydrogen recovery from gas mixtures (Sircar et al., 2000). PSA process of hydrogen 

separation can reduce impurities to a low level and increase the purity of hydrogen up to 
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99.9999% (Adhikari et al., 2006). In PSA technique, hydrogen recovery depends on inlet 

pressure, level of impurities, purge gas pressure and hydrogen concentration (Adhikari et al., 

2006). PSA is an expensive method to operate and requires understanding of the gas-solid 

interaction and chemical compositions of adsorbents.  

 

This method has been used for recovery of a wide range of gases in chemical industries. 

Some important applications  of PSA are; steam-methane reformer off-gas (SMROG) for gas 

drying and solvent vapour recovery, fractionation of air and the refinery off-gas (ROG) for 

petroleum refinery of gases, separation of carbon dioxide and methane from landfill gas, 

carbon monoxide-hydrogen separation, n-isoparaffin separation, and alcohol dehydration 

(Sircar et al., 2000). PSA is a high pressure system where the feed gas contacts with the solid 

in a packed column of the adsorbents such as activated carbon and zeolites. Purification of 

hydrogen from impurities can be enhanced depending on the adsorbent type (Sircar et al., 

2000). PSA process steps for hydrogen production involve adsorption, co-current 

depressurization, countercurrent purge and countercurrent pressurization. These cycles are 

often modified depending on the separation columns adsorbents. The adsorbents selected 

determine the extent of performance in PSA. Desorption of hydrogen from the solid 

adsorbent occur at lowered gas phase of the feed gas (Paglieri et al., 2002). 

 

2.8.2 Cryogenic distillation 

 

Cryogenic distillation is another technique employed to separate gas mixtures. This method 

uses a low-temperature separation process to isolate different gas components depending on 

their boiling temperatures.  The advantages of cryogenic distillation are their large separation 

factors and process flow rate (Kinoshita et al., 1981). It is energy consuming and yields 

hydrogen purity level of about 95% or less. Cryogenic distillation does not offer very high 

hydrogen purity gas compared with PSA (Sircar et al., 2000). 

Although the different hydrogen separation and purification techniques such as PSA, 

cryogenic have been discussed in previous section of this literature review, the subsequent 

section will focus on the membrane separation and its potential applications 
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2.8.3 Membrane separation 

 

Membrane gas-separation efficiency is often governed in terms by its selectivity and 

permeability potentials. Permeability is defined as the ratio of mobility of a penetrating 

species across a membrane due to the pressure gradient (Shao et al., 2009). Selectivity can be 

defined as the preferential adsorption of a specific species from a mixture.  The selectivity 

and permeability properties of a membrane depend on the properties of the contacting species 

and membrane structure. In effect, such species can be gas or particulates depending on the 

membrane type and the desired products. These two phenomena determine to a large extent 

the efficiency of any membrane structure and also its potential application in the separation or 

isolation of any species. A membrane is a thin film or sheet of natural or synthetic material 

that is permeable to substances in either liquid or gaseous phase and selectively transports 

specific species across it. Factors such as selectivity potentials i.e. ability to separate a single 

desired component from the feed mixture, permeability strength i.e. flux of mass through a 

membrane per unit of area and time at a given pressure gradient, durability and mechanical 

tolerance in severe conditions like high temperature are important in the choice of the 

membrane (Nenoff et al., 2006; Hassan et al., 2006). Membrane investigation and 

development spans over a number of decades while their industrial application for gas 

separation and purification has existed for years. Several gases have been enriched and 

separated using the membrane techniques. They include; oxygen, carbon dioxide, methane, 

hydrogen (Powell et al., 2006). Membrane systems offer competitive economic value, 

simplicity, compatibility with the environment, multiple applications for other gases and 

reactor set-up, high energy efficiency and excellent operational capacity and good unit 

recovery costs compared with other established separation methods. This technique still has 

the following limitations; restricted industrial application, gas diffusion kinetic ambiguity, 

low purity level and relatively new technology (Lu et al., 2007). 

The separation principle in membrane systems is governed by pressure and concentration 

gradients across a permeable barrier with or without selectivity while film microstructure 

determines membrane separation efficiency. For dense microstructure without pin-holes, high 

permselectivity can be achieved while thin film membranes exhibit high permeation rate. 

Thick membranes are generally more thermally stable (Yeung et al., 1999).These film 
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structure properties determine the performance and choice of membrane either the polymeric 

or non-polymeric type. Gas separation membrane was first reported by Mitchell using 

hydrogen and carbon dioxide mixtures (Lu et al., 2007).  

 

Several other advanced membrane materials for hydrogen separation have been discussed by 

(Nenoff et al., 2006; Paglieri et al., 2002). Some of these membranes are (i) polymer, (ii) 

metal, (iii) silica, (iv) zeolites and (v) carbon. In this thesis, the work focuses on polymer-

metal composite membranes, thus polymer and metal membranes will be discussed, and 

literature on similar materials will be summarized.  

 

The diagram below is a representation of the direction of gas permeability and selectivity 

flow in a membrane. 
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Figure 2-1: Schematic of membrane structure showing mechanism of separation 
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2.9 TYPES OF MEMBRANES 

 

Membranes are grouped based on their chemical characteristics. They can be organic, 

inorganic and hybrid i.e. mixture of both organic and inorganic materials (composite). 

Organic membranes can be asymmetric in nature. The classification of membranes can also 

be based on their separation mechanisms such as Knudsen diffusion and solubility diffusion. 

These membrane separation mechanisms are governed by the presence of pores on the 

membrane surface after chemical or physical surface modification or during synthesis. 

Knudsen diffusion occurs due to collisions of gas molecules with the pore walls instead of 

intramolecular collisions. In Knudsen diffusion, gas mixture can be separated based on this 

difference in pore diameter of the separating barrier and the gas being separated or isolated 

(Sircar et al., 2002; Malek et al., 2003; Shao et al., 2009). Solubility diffusion mechanism 

occurs due to the change in chemical potential gradient which is the driving force during the 

gas separation process. In solubility diffusion, gases are adsorbed via upstream boundary, 

diffused across the membrane before being desorbed in the downstream side (Shao et al., 

2009). 

 

Inorganic membranes include mesoporous membranes, microporous membranes and dense 

membranes. These membranes are distinguished by their pore sizes and separation 

mechanisms. The mesoporous membranes have an average pore size of 3-5 nm range and are 

reported to show poor separation efficiency as their separation occur by Knudsen diffusion 

mechanism due to the large pore size distribution and high permeability properties (Li et al., 

1998). As for the microporous membranes, the pore sizes are less than 1 nm, therefore such 

membranes possess high selectivity due to the shape and size of the microporous structure. 

However, microporous membranes typically show low permeability (Li et al., 1998). The 

dense inorganic membranes can be oxygen or hydrogen permeable depending on the 

properties and composition of their structures, most oxygen permeable membrane have 

ceramic properties while hydrogen gas is mostly permeable in metallic membranes. Examples 

of the metal used in the hydrogen metal permeable membrane are; palladium, vanadium, as 

well as alloys of these metals with transition metals.  
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Almost all viable hydrogen permeable membranes are PGMs based such as palladium metal. 

In the selection of a suitable membrane for hydrogen purification, the membrane must 

possess properties such as good operating temperature and pressure as these two conditions 

directly affect the separation performance of hydrogen gas. In addition, the composition of 

the feedstock gases to be separated, the material and fabrication costs of the membranes as 

well as the general process design, energy availability need to be taken into account (Wu et 

al., 2005).  

 

2.9.1 Polymeric membranes 

 

The organic membranes are generally derived from polymer materials. These types of 

membranes exist in different forms and usually are synthesised from organic sources. They 

have been under scientific investigation for gas separation application due to their unique 

chemical, thermal, mechanical and gas separation properties. The choice of polymeric 

membranes for application in industrial gas separation processes has been on the increase 

because they are readily available, economical, easy to process and bind in a composite 

configuration and can operate at low temperature (Nenoff et al., 2006; Powell et al., 2006). 

Polymeric membranes chemical functionality can be manipulated through the introduction of 

reactive groups along the polymer backbone structure to enhance adhesion and achieve 

specific gas permeability properties via surface modification (Shao et al., 2009). The gas 

separation polymeric membranes must possess certain characteristics and the most important 

of the properties is to have good and preferential permeation for specific gases in gas 

mixtures and an ability to bind metal film layers. Several gas separating polymer membranes 

such as polyimides, polyamides, polycarbonates, polyanilines, polyarylates, polyacetylenes, 

poly (arylene ethers), poly (pyrrolones) and polysulfones have been reported in the literature 

(Powell et al., 2006).  

 

The two types of polymeric membranes are glassy such as polyimides or rubbery as found in 

poly-ethyleneterephthalate. Generally, both solubility and diffusivity factors determine the 

performance, selectivity and preference of polymeric membranes for different gases. The 
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glassy polymeric membrane is used to separate lighter gases such as hydrogen because of its 

small molecular size. Glassy polymers can generate high purity gas products due to their 

available small free-volume pores which have been suggested to allow the permeation of 

penetrating gases. The volume size of the polymer structure depends on synthesised 

polymeric material and operating temperature during gas separation. Unlike glassy polymers, 

rubbery polymers are used to separate heavy gases like CO2 (Nenoff et al., 2006). Gas 

separation through a polymeric membrane occurs by solution-diffusion mechanism model 

which can be represented by the equation below:  

 

4EquationSDP =  

Equation 4: Gas permeability equation 
 

P = permeability coefficient 

D = diffusion coefficient 

S = solubility coefficient 

 

Some of the most investigated polymer structures used as organic membrane application are 

presented below. 
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Figure 2-2: Polymer structures (Powell et al., 2006) 
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2.9.2 Metallic membranes  

 

Metallic membranes have been an attractive type of membranes because they are 

commercially available. These membranes exist in various forms such as thin film layer in a 

composite structure (Lu et al., 2007). The principles of gas separation by metallic membranes 

occur by processes of adsorption and desorption and not the pore size mechanism as in 

polymeric membrane structures. They can be applied in high temperature processes for gas 

separation (Nenoff et al., 2006). In this section, the focus will be on palladium membranes 

since they have been proven to show unique affinity for hydrogen gas. 

 

Among all the known metallic membranes structure, palladium (Pd) membranes remain the 

most effective and viable metal used to separate or purify hydrogen. This is due to their 

natural catalytic nature, high operating temperature and excellent permeability properties 

towards hydrogen gas (Nenoff et al., 2006; Paglieri et al., 2002). In considering palladium 

membranes for hydrogen separation purposes, it has been suggested that alloying palladium 

membrane with other metals will safe cost, increase selectivity and permeability of hydrogen 

across the membranes structures (Nenoff et al., 2006). Some of the sacrificial metals that 

have been alloyed with palladium metallic membrane include; Ag (Zhao et al., 2000), Cu 

(Roa et al., 2005), Ni (Nam et al., 1999). Also, these alloys have been suggested to enhance 

the chemical stability of Pd based membranes ( Paglieri et al., 2002). Alloyed Pd based 

membranes serve to address some limitations such as cost and the hydrogen embrittlement 

phenomenon which will be discussed in the subsequent sections. It can also reduce the effects 

of surface contamination from impurities such as H2S, CO, hydrocarbon, which reduce 

metallic membrane efficiency and performance ( Paglieri et al., 2002). 

 

2.9.3 Composite membranes 

 

In view of the potentially infinite hydrogen selectivity that can be obtained from metallic 

membranes such as Pd based membranes, there is a continuous attempts to combine the high 

selectivity of Pd with the good processability of polymers in a metal-polymeric 
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nanocomposite membranes structure (Shao et al., 2009). By depositing metallic film into a 

polymer matrix, it is anticipated that H2 selectivity could be enhanced. Hence, fabrication of 

metal-polymeric nanocomposite membranes requires the polymer to possess high thermal 

stability since the infinite H2 selectivity of the pure Pd membrane occurs at elevated 

temperatures (above 300 ◦C). In principle, three different types of membranes have been 

suggested to remove hydrogen in high-temperature applications. These are microporous 

membranes, dense metal membranes or composite membranes. The composite membranes 

are considered to show high hydrogen permeability and selectivity, combined with good 

mechanical properties, metal composite membranes are often preferred due to their ability to 

undergo physico-chemical modifications (Li et al., 1998). The subsequent sections of this 

study will focus on literature review of palladium composite in a palladium-polymer 

composite membrane for hydrogen separation. 

 

Composite membranes for hydrogen gas separation and purification application have been in 

practice with the use of palladium-based membranes as thin walled tubes or free-standing 

foils (Maryam et al., 2009; Yeung et al., 1999). Hydrogen selective composite membranes 

consist of a thin metallic layer being deposited on a porous substrate. In addition, these 

composite membranes can exit as a combination or blend of one or more substrates of either 

organic-organic or organic-inorganic constituents with the desired properties and 

characteristics required for their application in gas separation technology (Hollein et al., 

2001). These supports have porous and conductive properties and exist in many forms such 

as stainless-steels ceramics and vycor glass are among the few supports that have been 

extensively alongside palladium metal (Lee et al., 2002). Other reasons for the choice of 

these supports include economic cost and unlimited ability for hybrid materials as composite 

Pd based membranes supports (Paglieri et al., 2002; Nam et al., 2000). Metals such as nickel, 

vanadium and silver have been alloyed with palladium for hydrogen permeation tests as 

reported by Paglieri et al., (2002). Composite membranes for hydrogen gas processes offer 

several advantages in the form of cost reduction, improved gas separation and permeation 

characteristics of membrane layers and provide the mechanical strength required for 

palladium based membranes (Quicker et al., 2000).  
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Composite membrane applications have been used in catalytic reactor by chemical and 

petrochemical industries for purification purposes (Quicker et al., 2000; Hsiung et al., 1999). 

There are several parameters such as high temperature, which must be considered during gas 

separation processes for composite palladium membranes. During the synthesis of the 

palladium composite membranes, metals film must be thin, defect-free and thermally stable 

on the supports (Li et al., 1999a). 

 

Polymeric composite membranes have been adopted for gas separations as well although with 

little success due to the purity level required for the separated gases. Another issue is the need 

to understand the compatibility of hybrid materials, transport mechanism and adsorption-

desorption properties of species across membrane structure are among the drawbacks of 

polymer/ metal composite material potentials (Paglieri, 2002). In developing composite 

polymer-metal membranes, it is important not to compromise the bulk-structural properties of 

the polymer structure and the metal film integrity during metal plating on the polymer 

surface. Other factors such as Pd thin film deposition with good high gas flux must be 

considered during the development of these polymer-metal composite membranes. Another 

challenge with thin film metal deposit is the fabrication of defect-free films for application 

under extreme conditions such as high temperatures and the presence of contaminants, which 

could result in metal lattice expansion (Li et al., 2000). Polymeric-metal composite 

membranes must have good separation factors, highly stable in different operating 

environments and cost effective. Inorganic palladium composite membranes have been used 

by numerous researchers especially in hydrogen related reactions or gas permeability 

measurements (Paglieri et al., 2002). Other form of membranes being studied for gas 

permeability and selectivity properties include composite metal-polymer matrix with 

modified electronegative specie such as fluorinated polyimide (Xu et al., 2007; Rezac et al., 

1997).  

 

Several studies have been reported on Pd composite membranes and their hydrogen 

separation or purification characteristics. Quicker et al., (2000) prepared a Pd-alumina 

composite membrane and palladium-stainless steel for high temperature catalytic conversion 

of ethylbenzene to styrene and propane to propylene through dehydrogenation reaction. The 
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porous stainless-steel support membranes were coated by palladium using different coating 

techniques such as electroless, electroplating, and high velocity oxy-fuel spraying (HVOF), 

as well as the physical vapour deposition (PVD). The electroless plating of Pd on porous 

stainless-steel tubes resulted in uniform palladium layers deposition on the alumina and 

stainless supports and reported to yield the highest hydrogen permeance at temperature 

representative of hydrocarbon reaction (400 oC - 600 oC). The composite membrane also 

showed a good separation factor of hydrogen in a mixture of nitrogen and hydrogen gases. 

 

A comparison of gas mixtures of hydrogen, helium and nitrogen gas for permeability 

measurement was investigated by Collins et al., (1993). In their study, they developed a 

composite Pd-ceramic membrane by electroless plating technique. The palladium film 

thickness ranged from 11.4 μm to 20 μm. This composite membrane was subjected to 

temperature treatment between 450 oC to 640 oC and feed pressures from 160 to 2445 kPa. 

Hydrogen flux rate tested shows an increase from 20 % to 40 % at temperature up to 600 oC 

while hydrogen permeability measurement for the composite membrane was given as 3.23 x 

mol.m/ (m2.s.Pa) at 550 oC for a 11.4 µm Pd film thickness. The permeability test for helium 

and nitrogen gases indicated a poor flux rate under the same condition. Their work suggested 

that the increase in flux rate of hydrogen is influenced by elimination of surface 

contamination from the composite membrane structure at high temperature thus leading 

enhanced hydrogen gas permeation.   

 

Shamsuddin et al., (1996), developed composite Pd-ceramic membrane suitable for high 

temperature hydrogen separation performance by depositing Pd thin film on the microporous 

ceramic support. The deposited Pd film was observed to cover the pores of the support and 

the hydrogen gas permeability was monitored at elevated temperature and pressure. Under 

these conditions of high temperature and pressure, hydrogen gas permeability was reportedly 

high with no significant defect in membrane structure and the Pd-ceramic membrane thermal 

property showed good stability at high temperature as well. 

 

Peachey et al., (1996) in their work used groups (IV) b and (V) b metals as core central layer 

for palladium film deposition in a layer-by-layer sandwiched structure. The catalytic Pd metal 
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is deposited by electron evaporation in a vacuum chamber and ion beam sputtering 

techniques on the substrate. The result showed high hydrogen flux at elevated temperature 

(700 oC). There was no report of hydrogen separation from gas mixtures given except for 

argon gas which was used as a sweep gas for hydrogen across the composite membrane. 

Li et al., (1999b) used a mesoporous α-alumina membrane as a support to deposit a 10 μm 

thick Pd thin film by modified electroless plating combined with osmotic technique to 

enhance a defect-free Pd film. The hydrogen permeability performance of this membrane in 

pure hydrogen and nitrogen/hydrogen mixtures at different temperature was investigated. In 

their study, nitrogen was used as the sweep gas and found to have a proportional effect on 

hydrogen permeation rate. Although most hydrogen catalytic reactions occur at a temperature 

range between 300 oC to 600 oC, the composite membrane was tested for hydrogen 

permeability at 467 oC. Hydrogen permeability was found to increase with an increase in 

flow feed rate as well as at increasing sweep gas feed, in this case nitrogen gas. 

 

Yeung et al., (1999) prepared and examined Pd/vycor glass composites for kinetic, micro 

film growth and membrane performance for hydrogen permeation. Pd film thickness was 

manipulated by controlling the concentrations of Pd, hydrazine and ammonia solution as 

plating parameters and grain growths of the Pd seeds were obtained on the vycor glass 

support. A palladium film thickness of 1.6 μm was obtained on the vycor glass while the 

membrane was annealed at high temperature (350 oC, 450 oC and 550 oC) in a flowing 

hydrogen gas. Their work reported high hydrogen permeability of the membrane which was 

observed at 550 oC with defects on the Pd surface film microstructure due to structural 

transformation and hydride phase formation of Pd membrane. 

 

In the work of Jun et al., (2000), palladium and palladium alloyed composite membranes on 

porous γ- alumina and stainless steel supports with metal film were synthesised. Pd was 

alloyed with nickel and nobium by modified chemical vapour deposition. Metal-organic 

chemical vapour deposition was used to decompose metals of interest from their organo-

metallic substrates at a relatively low temperature. Hydrogen permeation was examined at 

350 oC and 450 oC for the synthesised membrane. The Pd on γ –alumina support synthesised 
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membrane was observed to show low hydrogen permeation as compared with the palladium 

alloyed stainless steel support at 450 oC. 

 

Bryden et al., (2002) used a composite nanocyrstalline Pd-Fe membrane deposited on porous 

stainless steel by pulsed electrodeposition to determine the effect of crystal size Pd-Fe on 

hydrogen permeability. Their work postulated a faster diffusion of hydrogen across 

nanocyrstalline palladium membrane due to the presence of available free volume of grain 

boundaries in the composite membrane. The crystal size of the composite membrane was 

investigated for variation in hydrogen selectivity, flux rate and surface poison effects of the 

as-prepared membrane and hydrogen permeated membrane. The composite Pd-porous 

stainless steel was also evaluated for its conversion rate in hydrogenation of ethene to ethane. 

Hydrogen flux, selectivity and surface poison resistance was increased with the 

nanocyrstalline Pd-Fe alloy. A stable reaction for ethene hydrogenation was achieved with 

the Pd-Fe nanocyrstalline Pd-Fe alloy membrane compared with Pd-Fe alloy polycrystalline 

membrane. 

 

Theon et al., (2006) examined hydrogen purity, flux rate and resistance to sulphur 

contaminants in the hydrocarbon feedstock using Pd-Cu alloy. In their study, a composite 

membrane of Pd/Cu alloy deposited on zirconia coated α-alumina support is developed with 

film thickness of 1.3 μm Pd/Cu deposited via electroless plating with defect-free surface. The 

single gas permeability test was carried out at high temperature (365 oC) using hydrogen and 

nitrogen gases in a separate measurement and hydrogen gas permeation is reported to 

increase with increase in temperature upto an approximately flux rate value of 190 scfh/ft2 

which is close to the United States department of energy (USDOE) target value of 200 

scfh/ft2. 

 

Singh et al., (2006) synthesised palladium-porous alumina composite membrane by laser 

surface treatment technique. This method was compared with other traditional methods like 

electroplating and physical vapour deposition to determine the most effective composite 

membrane for separation of hydrogen from gasified product gas. Pd/γ-alumina composite 

showed an increased separation of hydrogen in a high-temperature reactor system when a 
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mixture of hydrogen and different percentages of CO, CO2 and CH4 were tested by nitrogen 

sweeping across the membrane. 

 

Okazaki et al., (2009) demonstrated the influence of temperature on hydrogen permeability 

due to variation of grain size of Pd deposited on a porous alumina composite membrane. The 

phase change in the crystallinity of palladium on porous α- alumina support at high 

temperature is suggested to have been due to the difference in structural and morphological 

arrangement of the thin film composite Pd/alumina, with a strong peak intensity observed at 

2θ = 40 o while other  diffracted but weak peaks emerged at 48 o and 68 o. These intensities 

indicated the crystal arrangement of deposited palladium and their lattice constant was 

changed. The grain size of palladium particles were reportedly increased from 44 nm to 150 

nm at elevated temperature. 

 

2.10 MECHANISMS OF HYDROGEN PERMEATION THROUGH MEMBRANE  

 

Hydrogen permeation across a composite membrane can occur in two directions. It could be 

from metal film to support or vice versa and the route of diffusion can affect permeation rate 

of hydrogen gas across a dense or porous substrates (Liang et al., 2005). Materials with 

improved gas separation and purification properties can be synthesised alongside membranes 

structures capable of achieving excellent gas selectivity and permeability. These materials 

can be fabricated by one or combination of techniques such as chemical vapour deposition 

(CVD), physical vapour deposition (PVD), magnetron sputtering, electroplating and 

electroless plating (Paglieri et al., 2002).  

 

Gas transport mechanism through metals membrane can occur by one or combination of 

these separation mechanisms: (i) Knudsen diffusion, (ii) surface diffusion, (iii) molecular 

sieving and (iv) solution diffusion. The type of membrane structure determines the separation 

mechanism for the species (Adhikari et al., 2006). Diffusion of hydrogen across dense 

membrane materials depends on the chemical potential or concentration gradients of the feed 

gas. The difference in gases permeabilities determines gas separation across a membrane 
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(Meyer. 2006). There are several mechanisms that govern gases separation across membrane 

structures and each of these mechanisms will be discussed as follows: 

 

2.10.1 Surface diffusion 

 

Surface diffusion occurs in parallel with Knudsen diffusion mechanism in which gas 

molecules are adsorbed on the pore walls and drift along the membrane surface due to the 

interactions between the membrane surface and gas molecules (Sircar et al., 2002; Jaguste et 

al., 1995). 

 

2.10.2 Molecular sieve 

 

In molecular sieving, separation is governed by the size- exclusion principle. The mean free 

path of the gas molecules is relatively short compared to the pore size of the membrane and is 

described by Fick's law as follows:  

5  Equationv)c(tDj =  

Equation 5: Fick's law 
 

  j = mass flux. 

 Dt = transport diffusion coefficient  

v = concentration gradient. 

c = constant 

 

2.10.3 Solution-diffusion 

 

The solution-diffusion separation is determined by solubility and mobility of the participating 

gas species in a membrane system and this depend on the free mean path of the separating 

species. 
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2.11 HYDROGEN DIFFUSION 

 

The performance of a membrane is a function of flux or permeance and selectivity. The flux 

property of a membrane is defined as the cumulative transport of species such as liquid or gas 

across the membrane structures. Flux can be expressed as mass or mole per unit time per unit 

area. Permeance is defined as the flux per unit pressure of the difference between the 

upstream which is the retentate side and downstream also called the permeate side. The linear 

dependence of the hydrogen flux with the square root of pressure indicates that hydrogen flux 

obeys Sievert’s law. The selectivity of membranes is expressed as their ratio of penetrating 

gas preference. 

 

Thus the permeance rate of hydrogen gas across a membrane is represented by: 

 

( ) 6Equation5.0
pP5.0

fPQJ −δ=
 

Equation 6: Permeance rate equation 

 

 Q= permeability at any given temperature 

 δ = metal film thickness 

 Pf = hydrogen partial pressure in the feed streams 

Pp= hydrogen partial pressure in the permeate streams 

 

The crystalline structure of a material can influence the rate of diffusion due to the presence 

of grain boundary components which act as diffusion pathways for hydrogen. In the case of 

crystalline membranes, hydrogen diffusion is determined by the atomic structure and the 

chemical nature of the membrane material and when compared to lattice diffusion, grain 

boundary diffusion is significantly faster due to the excess free volume in the grain 

boundaries (Bryden et al., 2002).  

 

 

 

 

 

 



      Chapter Two                                  Literature review 
 

 

  

43 

 

   

2.12 HYDROGEN PERMEABILITY 

 

Permeability can be expressed as the product of the diffusion coefficient and the solubility 

constant of the contacting species with membrane structure. Permeability is an important 

property of any membrane structure. Permeability is temperature dependent but varies 

inversely with the membrane thickness (Adhikari et al., 2006). The hydrogen permeability 

follows the same phenomenon according to equation (4). 

 

Hydrogen selective membranes have been grouped based on their preferential selectivity, flux 

rate, transport phenomenon and diffusion coefficient (Checchetto et al., 2004). These 

selective membranes can occur as dense metallic, ceramics or thin films. Hydrogen is 

transported through the membrane in dissociated form hence dense metallic and ceramic 

membranes have been reported to show high selectivity for hydrogen gas 

(Ramachandranraghu et al., 1998). Dense ceramic membranes have found numerous 

applications for hydrogen separation from mixed gas streams. Some advantages of dense 

ceramics membranes include ability to operate at high temperature, mechanical stability, and 

high hydrogen selectivity. However, these membrane show low hydrogen flux rates at 

gasified effluent and gas clean-up technology operating conditions (Hydrogen from coal 

programme, external review 2005). The selectivity of a membrane is defined by the product 

of ratio of diffusivity and solubility of gases across it and can be represented as: 

 

7EquationBSBDASADBPAPB/A ==α  

 
Equation 7: Gas selectivity equation 
 

PA = Pressure gradient of A 

PB = Pressure gradient of B 

DA = Diffusivity gradient of A 

SA = Solubility gradient of A 

DB = Diffusivity gradient of B 

SB = Solubility gradient of B 
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2.13 POLYIMIDE 

 

Polyimides (PI) are nitrogen-carrying, condensed aromatic rings in a polymeric structure with 

high glass transition (Tg) temperature and tight chain packing. They have functional groups 

such as phenyl, ether linkages (C-O-C), carbonyl groups (C=O) and C-N which act as 

electron donors and acceptors, and these properties are responsible for their excellent 

physico-chemical characteristics (Ramos et al., 2003). PI being high-performing polymeric 

material possess important properties of inorganic materials such as rigidity, excellent 

thermal stability and chemical properties, high heat resistance and mechanical strength (Li et 

al., 2004; Koros and Fleming 1993).  The organic characteristics of PI include flexibility, 

ductility and ease of processability. These properties have been attributed to the wide range 

of studies on polyimides and also responsible for polyimides application in material science 

and for gas separation purposes (Nenoff et al., 2006; Mishra et al., 2003). 

 

2.13.1 Synthesis of polyimide 

 

The synthesis of PI occurs by condensation polymerisation reaction of the aromatic 

monomers of dianhydride and diamine components to yield polyamic acid in a two-step 

reaction process. This is followed by spin coating and thermal curing to obtain an insoluble 

polyimide film which varies in thickness and comes under different trade names (Liberman et 

al., 1996).  
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The synthesis of polyimide reaction schematics is presented below. 

 

NH2 O NH2 + O

O

O

O

O

O

4,4'-diaminodiphenylether ODA pyromellitic dianhydride PMDA  

↓
 

NH O NH OH

O

O

O

OH

O

H

x

Polyamic acid  

↓  

ndehydratiochemicalorheat  

 

N

O

O

O N

O

O

RR

Polyimide

x

 
 
Figure 2-3: Reaction scheme for the synthesis of polyimide 

 

In the synthesis of PI, the variation of the dianhydride and diamine monomers determines the 

final physico-chemical properties of PI. The synthesised PI can be linear or branched chain 

structures with amine or anhydride termination ends depending on starting materials (Park et 

al., 2008a). 
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2.13.2 Properties of polyimide 

 

PI compounds show unique thermal stability within temperature range of -296oC to +400oC 

(Trautmann et al., 1996a), mostly amber in colour, they exhibit excellent stability against 

radiation compared with other investigated polymers (Trautmann et al., 1996a). Polyimides 

are widely used as membranes for gas separation, and also in the microelectronics, photonics 

and optics industries due to their unique properties as polymers (Liberman et al., 1996; 

Stephens et al., 2000; Kawakami et al., 2003; Tran et al., 2008; Mathakari et al., 2009). 

 

2.14 METHODS OF POLYIMIDE SURFACE PRE-TREATMENT 

 

The use of polyimide as a support for metal deposition or dispersion of metals into its 

polymer matrix requires surface treatment to create vacant or active sites in the polyimide 

structure and to enhance metal film adhesion to the polyimide surface (Charbonnier et al., 

2003). Such sites can be hydrophilic or hydrophobic depending on the method of the surface 

treatment used. The surface modifiers enhance chemical interaction between the polyimide 

and metal species by interlocking processes, enhance polyimide-metal surface adhesion 

strength and increase surface roughness. Adhesion of metals to the polymer surface also 

determines the type of surface treatment chosen. The improvements of polymer surface 

wettability increase the adhesion properties while ion irradiation can lead to the exposure of 

the polyimide surface to improve adhesion due to the alteration of the polymer backbone 

structures (Park et al., 2008b).  

 

The choice of polyimide surface treatment depends on the purpose of application of the 

polyimide hence multiple surface treatments can be used simultaneously (Esinger et al., 

2007; Ramos et al., 2003). Such surface modification techniques can be done by dry or wet 

approach. The dry methods such as plasma treatment, ion implantation and irradiation have 

been used as surface treatment of polyimide, whereas wet surface treatment approach such as 

chemical etching using NaOH and NaOCl solutions is one of the most used surface 

modification method for polyimide (Esinger et al., 2007; Tran et al., 2008). These surface 
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treatments techniques can be used to introduce desirable functionalities such as polar groups 

(Liang et al., 2005) into PI structure, chemical fusion of more than one polyimide as in 

copolyimidization through cross-linking reactions (Wang et al., 2008) and chloromethylation 

(Li et al., 2008a; Xu et al., 2007). Depending on the type of functional group being 

introduced into the polyimide structure, alkyl groups can inhibit the backbone chain packing 

and increase the free volume available for molecular transport which was observed to 

increase gas permeability (Nenoff et al., 2006). The newly introduced functional groups in 

the PI are carefully manipulated to ensure that the bulk physico-chemical properties of the 

polyimide structure are maintained (Rezac et al., 1997).  Surface treatment of PI by wet or 

dry methods are important in the use of polyimide as a support in a composite membrane 

system especially for gas separation purposes (Ramos et al., 2003). In the study of Wang et 

al., (2008), a blend of polyimides with the addition of alkyl were synthesised to study their 

gas permeability and selectivity ratio. This study showed that gas permeability decreased 

with increase in addition of alkyl aniline substituent in the co-polymer blend during the 

reaction process. 

 

 For the gases investigated, it was reported that the permeabilities decreased due to the 

difference in the kinetic diameter of the gas molecules in the order of H2 > CO2 > O2 > N2 > 

CH4. The effect of irradiation (2 MeV) was reported by Mishra et al., (2003) to cause surface 

modification of PI leading to decrease in thermal stability and an increased intensity of 

absorbance of the existing bonds of the PI. Other properties affected by ion bombardment 

include chain scission, generation of free radicals and cross-linking (Park et al., 2008b; 

Mathakari et al., 2009; Bhansali et al., 1995).  

 

The overall objective of this study is to functionalise polyimide surface by using a simple and 

effective surface treatment such as alkaline etching method. This is expected to modify the 

polymer backbone compositions by molecular rearrangements, cross linking or chain scission 

across polymer structures. By using etching method, surface roughness is expected to 

enhance the adhesion of palladium thin film on the polyimide surface. 
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2.14.1 Heavy ion irradiation technology in polyimide surface treatment 

 

Heavy ion bombardment on polymer films such as polyimide is a successful method of 

surface treatment and has been reported to promote structural changes in the physical and 

chemical properties of this material (Esinger et al., 2007). Both bulk and surface properties of 

polyimide can significantly change under different fluence rate of ion (Mathakari et al., 

2009). Their work showed the characteristic overall effect of heavy ion irradiation on the 

polyimide back-bone structure by chain scission and carbonisation, cross linking and 

amorphisation with reduced intensities of functional groups. Among the importance of heavy 

ion surface treatment include creation of defined pores with various diameters after etching of 

heavy ion treated polymer films in alkaline solutions (Sciedt, 2007). Ion track etched 

polyimide can be applied for various applications such as aerosol collection, particle filtration 

in liquids and gas separation purposes. The surface of the polyimide was observed to be 

roughened after ion bombardment as observed by SEM studies (Esinger et al., 2007).  

 

Tian-Xiang et al., (2009) studied the surface resistivity of polyimide by using Si ion to 

irradiate polyimide at 2 MeV. The spectral analysis after irradiation indicated a decrease in 

the intensity of functional groups of the irradiated species as the irradiation was increased. 

The irradiation was reported to change the crystalline property of the polyimide and reduced 

the lattice spacing from 4.37 Å to 3.93 Å. After irradiation, weakened poorly defined peaks 

were observed suggesting a partial destruction of the crystallinity property of the irradiated 

polyimide film. 

 

The structural and surface morphology of heavy ion irradiated polyimide film was 

investigated by Mathakari et al., (2009). The study indicated significant alteration of the 

surface properties in polyimide after heavy ion irradiation on the polyimide film and they 

concluded that processes of cross linking, molecular rearrangement and chain scissions 

occurred along the polyimide backbone structure which resulted in the physico-chemical 

modification of the polyimide film with characteristic properties due to the heavy ion 

bombardment. 
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2.14.2 Etching processes in non and irradiated polyimide   

 

Etching of the irradiated polyimide film using sodium hypochlorite and sodium hydroxide for 

improved surface adhesion properties is considered promising due to several advantages such 

as simplicity of the procedure. During etching process, the imide rings of polyimide are 

attacked and opened up for incorporation of metal ions via ion exchange reaction in carboxyl 

groups and the formation of amide and sodium polyamate (Nurdan et al., 2008; Shuxiang et 

al., 2010). The etching of irradiated polyimide in alkaline solution requires extra caution 

because polyimide dissolves in strong alkaline solution such as high concentration Li et al., 

(2004).  The pH of the etching solution is an important parameter for controlling the degree 

of etching along the polyimide surface (Trautmann et al., 1996b; Ferain et al., 2003). The rate 

of polyimide etching increases as the pH and temperature of the etchant is increased. In 

effect, the pH values and the type of etching determine the shape and size of pores formed on 

the polyimide surface which can be cylindrical or conical in shape. 

 

Nurdan et al., (2008) used NaOH solution as a surface modification technique to enhance the 

deposition of silver metal on flexible polyimide membrane. This approach resulted in the 

metallisation of polyimide surface by the silver metal ion which was deposited after the 

polyimide was treated with NaOH solution. It was suggested that the NaOH solution to open 

the imide rings cleavage active sites exposing the imide ring for Ag ion exchange.    

 

2.15 POLYIMIDE AS GAS SEPARATION MEMBRANE 

 

Polyimide as a material for gas separation can be symmetric and asymmetric type of 

membranes. These two types of membranes can be composite (i.e. contain more than one 

blend of material) in nature but differ due to the presence of non-homogenous porous 

channels in the asymmetric types. In asymmetric membranes, the pore gradients at the top 

layer vary in size to the pore at the bottom layers. The symmetrical membranes can be non-

porous, porous of channels or spongy structure depending on the method of preparation and 

applicability. 
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Marin et al., (1995), studied diffusion of Cu and Ti into the polyimide after irradiation and 

annealing of the polyimide surface. The annealing temperature and irradiation were used as 

surface treatment techniques to alter the polyimide surface properties, and incorporate Cu and 

Ti metals into the polyimide structure. It was observed that Cu formed clusters near the 

annealed polyimide surface at temperature below the polyimide glass transition temperature. 

Cu cluster was observed to diffuse into polymer film at temperature above the polyimide 

glass transition temperature hence the study concluded that increase in annealing temperature 

can be responsible for metal impregnation into polyimide film. The irradiation of polyimide 

was observed to create depth profile of 500 nm on the polymer surface which resulted in the 

penetration of Cu cluster into the polyimide matrix. The Ti did not show good dispersion in 

the metal-polyimide after annealing and irradiation. This was suggested to be due to Ti high 

reactivity with oxygen which has been made surplus by the annealing and irradiation of the 

polymer surface. The non-diffusion of Ti was explained to be due to the strong bond between 

the Ti and carbonyl oxygen that was made available after annealing and irradiation of the 

polyimide. Mei-Hui et al., (2009) demonstrated that the modification of surface functionality 

of polyimide membrane using silane and metal oxide can alter the surface composition 

thereby increasing polyimide adhesive strength. The study was to determine copper adhesion 

to the polyimide surface which showed an excellent adhesion of metal-polymer matrix and 

improved thermal stability.  

 

A blend of polyimide structures studied by Lau et al., (2003) for surface modification showed 

an effective use of alkaline etchant to promote Cu film adhesion on polyimide. The adhesion 

of Cu layer on the polyimide was attributed to the ease of surface modification of the BPDA-

PDA polyimide, while 4,4’-(hexafluoroisopropylidene)diphthalic anhydride-4,4’-

oxydianiline 6FDA-ODA polyimide type showed poor adhesion to Cu. (Park, 2008b), also 

studied the adhesion of Cu metal after oxygen ion bombardment on polyimide surface. They 

concluded that the surface modification of polyimide as a function of oxygen ion dose 

bombardment increased metal adhesion to the polyimide surface.  

 

 

 

 

 

 



      Chapter Two                                  Literature review 
 

 

  

51 

 

   

2.15.1 Polyimide for gas permeability applications 

 

Several surface modification processes have been used to modify polyimide characteristics 

and test for their gas permeability capacity. Some of the polyimide gases permeability have 

been investigated using various approaches (Tsutomu et al., 1996; Janes et al., 1997; Matsui 

et al., 1998; Mathakari et al., 2009). In cases where poor gas permeability was observed, the 

densification of polyimide and low cross-linking of the polymer backbone structure have 

been suggested as the factors responsible for polyimide poor gas permeability.  

Kawakami et al., (2003) investigated the gas selectivity properties of asymmetric polyimide 

by induced shear stress. The molecular orientation of the synthesised asymmetric polyimide 

was used to assess its gas permeance efficiency. Comparisons between dense and asymmetric 

membranes show that the gas selectivities of the asymmetric polyimide membranes were 

similar to or greater than those of the dense composite membrane. Structural arrangement 

such as chain packing and thin surface skin layer of polyimide film was the two major 

phenomena used to describe the gas permeability of asymmetric polyimide.  

 

Reza et al., (1997) studied the effect cross-linking of polyimide by blending of different 

polyimides to examine the density and gas permeability measurement of the blended 

polyimides. They reported an improved gas permselectivity measurement after cross linking 

and higher chemical resistance of the blended polyimide. The density of the blended 

polyimide was also found to increase while their gas permeability is reduced by 50%.   

 

Tsutomu et al., (19996) reported the influence of UV irradiation on gas selectivity and 

permeability of polyimide. A benzophenone sensitiser was used on cross linked polyimide 

which was treated with UV irradiation, the UV treated polyimide was reported to show a 

decrease in H2/N2 permeation as the UV radiation time was increased. Their study also 

reported that the H2/N2 gas separation factor of the polyimide was increased after addition of 

the sensitiser. 
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2.16 LIMITATIONS OF POLYIMIDE 

 

A major challenge is the poor selectivity of polymeric membranes compared with their 

metallic counterparts especially for gas separation purposes. PI show poor adhesion 

properties with metals due to the rigid molecular structure and the dominance of high surface 

(aromatic ring) energy by low surface (polar) energy in the surface phase. PI which is a 

glassy type of polymer has smooth surface which makes deposition of metals on polyimide 

surface very difficult (Ree et al., 2000), thus there is a limit to metal incorporation into 

polyimide matrix for polymer-metal composite development (Ramos et al., 2003; Li et al., 

2004). The adhesion of metal-polyimide system depends on the physical interaction, strength 

of chemical bond and mechanical interlocking of the metal-polyimide composite at the 

polyimide surface. Such chemical or mechanical interlocking can be induced by the use of 

surface treatment methods such as ions bombardments or chemical etchants. The chemistry 

of this metal exchange into the polyimide structure is suggested to occur at the electron 

deficient sites of the polyimide according to Park et al., (2008b). Metals deposited on 

polyimide surface are predicted to bond at five and six fold ring sites of polyimide structure 

where the amide and imide functional groups are present. The metal-polymer interaction 

occurs by amide-imide rings opening after the polymer has been treated in alkaline solution 

(Ramos et al., 2003; Lau et al., 2003). 

 

Polyimide being a high performance polymer plays a unique role as a support in a polymer-

metal composite system for gas separation purposes. Several steps ranging from different 

surface modifications to polyimide synthesis conditions have been developed to improve the 

structural, chemical and physical characteristics for better performance in metal adhesion and 

gas permeability. This is because gas transportation property of polyimide has been 

associated to their structures. The surface modification of polyimides tailored by novel 

structural architecture and molecular rearrangement cannot be trade-off if their gas separation 

properties must be improved. From the literatures reviewed, there seems to be a common 

trend of multiple surface modification of polyimide film. The adhesion of metal to polyimide 

surface has not been proven to show good even after surface modification hence the need to 

examine depth profile of polyimide surface. In this study, a single step surface treatment by 
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alkaline etching is used to modify the polyimide film. This is due to the chemical availability, 

cost and the time frame for this study. 

 

2.17 GLOBAL STATUS OF PALLADIUM 

 

In this section, the palladium as a metal will be reviewed as well as its application as a metal 

for hydrogen separation and purification. This section will discuss palladium beneficiation, 

palladium membrane and the effects of surface poisoning on the palladium membranes. 

   

The global demand of palladium (Pd) has risen in the last decade primarily as a result of the 

increase in palladium aesthetic values as well as its applications in automobile and electronic 

industries. In addition, the hydrogen enrichment property of palladium metal due to its ability 

to purify and separate hydrogen gas from gas mixtures has been identified as a future 

potential to influence the increase in demand of the precious metal. Palladium has been 

employed in several chemical processes and ‘green’ application in automobile (converter) 

industries, and as membrane electrode in fuel cells (Brodgen et al., 1970). Palladium is used 

in medicine, ornamental (jewellery), electrical appliances and source of foreign earnings for 

countries rich in mineral deposit of palladium (Antler et al., 1987).  

 

Pd as a transition and rare element, is inert in nature, and occurs naturally as ores of copper 

and nickel.  This ore is soluble in aqua-regia (a combination of nitric and hydrochloric acids 

in ratio 1:3 respectively) and this acid solution mixture is often used to separate palladium 

from the ore. In terms of solubility, palladium can be dissolved in strong acids and strong 

bases. Palladium acetate and chlorides are the two important compounds often applied to 

prepare catalysts. Pd has excellent conductive properties and serves as a replacement for 

microcircuit components when alloyed with other metals. The versatility of palladium in 

nano-particulate state has been employed in a wide range of applications in catalysis and 

material sciences (Fleischmann et al., 1989). Chemically, Pd is a good catalyst for 

hydrogenation or dehydrogenation reaction processes especially for hydrocarbon compounds 

(Sakintuna et al., 2007).  
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2.18 PALLADIUM STRUCTURAL CONFIGURATION 

 

Pd metal has a face-centred cubic (fcc) structure. The phases of palladium crystal 

arrangement can be in (1 1 1), (1 1 0) and (1 0 0) planes. Although most studies focus on the 

(1 1 1) plane, which is the most densely packed, and also identified as the plane with a higher 

hydrogen adsorption sites. In Pd (1 1 1) surface plane, there are four different potential 

adsorption sites for hydrogen atoms. In the case of hydrogen absorption in a palladium crystal 

lattice, the absorption occurs at octahedral interstice and the rate of absorption depends on 

amount of palladium atoms available for hydrogen attachment. This is closely related with 

the (fcc) adsorption phenomenon for hydrogen. Palladium can adsorb and absorb hydrogen, 

stores hydrogen at high density and form a stable palladium hydride (Stevens et al., 2008).  

 

Pd has two overlapping bands of allowed electron states. These are the ‘s’ and ‘d’ bands. 

Other naturally occurring palladium is found in isotopic forms of Pd104, Pd 102, Pd106, Pd108 

and Pd 110. Palladium like other transition elements has variable oxidation states of 0, +2, +4 

oxidation states. These oxidation states determine the physico-chemical characteristics of Pd, 

with the most stable of the oxidation states being +2 states which are very reactive and 

excellent catalytic properties. Palladium is reduced from +2 oxidation state to zero oxidation 

state during electroless plating of palladium on support. This zero oxidation state is 

considered as the active catalytic state obtained during palladium electroless deposition 

technique (Liang et al., 2005).  

 

Palladium alloyed with other metals like Cu, Au, Ag, etc as membrane structure have been 

employed in separation, ultra-purification and isolation of hydrogen gas from different gas 

mixtures where hydrogen is present. Metals such as silver (Ag) are often alloyed with 

palladium metal to prevent hydrogen embrittlement phenomenon and increase gas flux 

(Keuler et al., 1999; Huiyuan et al., 2004).   
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2.19 APPLICATION AND BENEFITS OF PALLADIUM MEMBRANE FOR 

HYDROGEN ECONOMY 

 

For hydrogen energy application, the role of palladium as a source of hydrogen storage and 

purification metal will be of enormous importance. Palladium will continue to be relevant in 

the drive towards the hydrogen economy goal. However, the overall applications of 

palladium have been limited by its cost as a precious metal. 

 

Pd membranes have been used for numerous applications especially in the recovery of 

hydrogen from industrial processes. The enrichment of hydrogen gas from the stream of 

effluent gas mixtures, as well as in in-situ membrane reactor hydrogenation reactions are 

other aspect of Pd membrane applications. Pd membranes have also been applied to produce 

ultra-pure hydrogen for industrial applications such as in metallurgical processes and the 

manufacture of semiconductors. Pd metal has been in use for hydrogen gas selectivity for 

several decades and is the only known metal with excellent preference and an exclusively 

permeable medium for hydrogen gas separation and purification. Pd is capable of hydrogen 

uptake of about 900 times its own volume without Pd metal lattice deformation under high 

temperature and pressure conditions. During permeation processes, hydrogen readily 

dissociates on palladium surfaces. This unique property and affinity for hydrogen by 

palladium has made Pd the preferred metal for hydrogen related reactions in the chemical, 

automobile and petrochemical industries (Stevens et al., 2008). 

 

Palladium interaction with H2 has been studied in hydrogenation catalysis with promising 

potential for hydrogen selectivity in separation and purification applications. The process of 

H2 permeation across palladium membranes structure is a sequential path which follows H2 

adsorption, dissociation, diffusion through the metal lattice, recombination and desorption of 

molecular H2 (Buxbaum et al., 1996; Paglieri et al., 2002; Klienert et al., 2005; Zhongliang et 

al., 2006a; Zhongliang et al., 2006b). To achieve hydrogen gas separation potentials of 

palladium, Naotsugu et al., (2005) proposed that a thin film of palladium be deposited on 

supports at various thickness ranges as low as nanometer scales. The thickness of Pd based 

membrane that is deposited on supports is proportional to the hydrogen flux and serve as a 
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cost benefit measure for Pd metal. This is because Pd membrane has been fabricated at 

different thickness of microns range especially with alloying with other metals (Thoen et al., 

2006).  

 

2.20  PALLADIUM COMPOSITE MEMBRANES 

 

The membranes used for supporting palladium metal are mainly dense structural 

configuration such as ceramic supports. Other supports for Pd metal layer deposition include 

stainless steel, vycor glass among others but mostly porous. The use of porous substrates as a 

support for the Pd metal layer in a membrane system is to improve the adhesion of the 

deposited metal layer on the support surface and also reduce Pd metal thickness to obtain a 

high gas flux rate (Li et al., 2000b). Such porous surface can be macro porous with pore size 

less than 5nm, mesoporous materials have pore size range between 3-5 nm and or 

microporous have pore size less than 1nm (Pan et al., 2003). Economic and mode of 

application of the fabricated palladium membrane determines the choice of these supports for 

any industrial usage.  

  

Among the different metallic membrane techniques used for H2 purification, the use of semi-

permeable membranes has gained an increasing interest because of its low cost and eases of 

processability. This separation technique requires membranes that can withstand 

contamination and possess good thermal integrity and mechanical strength under high 

temperature conditions (Paglieri et al., 2002). Pd membrane applications for hydrogen 

processes (i.e. separation, purification and possibly storage abilities) have witnessed 

increased interest. Pd is often alloyed with other metals e.g. silver, titanium, vanadium and 

niobium, copper and gold. Alloying of Pd with these metals has been found to improve the 

efficiency as well as the enhancement of Pd membrane set-up for hydrogen. These 

membranes are often employed in in-situ membrane reactor processes at high temperature for 

hydrogenation and dehydrogenation reactions. Palladium based membrane has remained the 

preferred metallic membrane for hydrogen because Pd membranes allows H2 permeation and 

can be used to produce, separate and purify hydrogen gas for the purpose of hydrogen 

enrichment (Paglieri et al., 2002; Zhongliang et al., 2006a; Zhongliang et al., 2006b). Despite 
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the choice of palladium to separate hydrogen, the cost of palladium being a precious metal 

remains a huge challenge hence the development of Pd-composite membranes. Alloying Pd 

with other metal will reduce the Pd thickness. Pd-based membranes have high temperature 

resistance due to the metallic properties of palladium metal. In a Pd-composite membrane, 

ultrathin layer of the Pd is deposited on supports (Nam et al., 1999). Such Pd-layer must be 

thin and defect-free so as to enhance hydrogen permeability or permselectivity outputs. The 

permeation of hydrogen gas is controlled by the diffusion of atomic hydrogen through the 

palladium membrane and not by the dissociative adsorption of hydrogen molecules on the 

membrane surface (Okazakia et al., 2009). This implies that hydrogen permeability and high 

hydrogen selectivity can be achieved with the Pd-based membranes. Also, ultrapure hydrogen 

can be obtained by separating hydrogen from the hydrogen-containing mixtures and 

equilibrium switch for dehydrogenation reactions can be realised by continuous removal of 

hydrogen from the reaction zone using these Pd-based membranes (Li, 1998). In such 

palladium membranes, the thickness of the metal on the supports determines the hydrogen 

flux rate (Uemiya et al., 1991) and the rate determining step for hydrogen diffusion is the 

permeation of hydrogen gas through the bulk of  the Pd film membrane (Li et al., 2000a).  

 

One of the advantages of Pd based membranes is their high temperature and reaction 

capability which make Pd membranes most suitable for hydrogen gas separation. These 

membranes can be used to achieve high level of hydrogen gas permeation over a prolong 

time. The permeation of hydrogen across Pd composite membrane occurs with good 

separation factors. Other advantages include stable thermal cycling and resistance to 

poisoning by the common contaminants (Thoen et al., 2006).  

 

A major drawback in the application of Pd composite membrane metal is poor adhesion on 

polymer film surfaces. Also, Pd based membrane undergoes phase change of palladium 

lattice in hydrogen atmosphere at lower temperature as in hydrogen embrittlement. Other 

limitations which will be discussed in subsequent sections Pd susceptibility to chemical 

attack such as surface poisoning by other gases during gas separation (Nathan et al., 2007; 

Paglieri et al., 2002).  
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This study is aimed to address and examine the adhesion strength of palladium metal film 

layer deposited on etched polyimide surface performed by peel test. 

 

2.21 DEFECTS OF PALLADIUM MEMBRANE 

 

One of the major defect in Pd membrane is the irregular thermal coefficient expansion 

between the Pd metal and the membrane substrates due to their difference in thermal 

properties. Another source of defects on Pd composite membranes occur when such 

membranes are used at high temperature for catalytic and separation reactions such that 

carbonaceous impurities may be deposited on the membrane surface. Such impurities can 

accumulate and diffuse into the bulk of the membrane hence leading to formation of defects 

in the membrane. A third source of defects on the Pd membrane could be from the use of 

impure chemicals during deposition processes such as in plating solutions as in electroless 

method (Li et al., 1999b).  

 

2.22 LIMITATIONS OF Pd MEMBRANES 

 

A key problem with Pd membrane for hydrogen gas separation in a gas mixture is surface 

poisoning or chemical damage suffered from associated gas pollutants such as H2S, CO, 

steam and other organic gases like methane, ethylene. This is because hydrogen is bounded 

up with other gases and these gases reduce the rate of permeation across palladium membrane 

by forming compound of palladium. Another limitation of Pd membranes is  hydrogen 

embrittlement phenomenon due to Pd phase change from α-β phase in hydrogen atmosphere 

at lower temperature <300oC (Uemiya et al., 1991; Sakamoto et al., 1997).  The presence of 

contaminant gases limits hydrogen permeation across Pd membranes. This results in the poor 

hydrogen gas selectivity due to the reduction in the free volume size of the Pd membrane 

after poisoning by these gases, hence the efficiency of Pd based membranes for hydrogen 

processes is reduced. The poisoning of palladium surface by impurities is in general related to 
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the chemisorption of contaminants along with the formation of compounds of the 

contaminants with the palladium metal.  

Alloying of Pd membrane with other metals to adjust the crystal structures and lattice 

arrangement of Pd metal and the synthesis of nanophase or amorphous metal membranes has 

been used to address these limitations. The effect of the presence of trace of sulfide 

compound on reduction of hydrogen permeance across the Pd and Pd coated membranes was 

investigated. These membranes were reported to rupture in the presence of gas contaminants 

with palladium sulfide film formed on the surfaces of Pd membrane due to the presence of 

hydrogen sulfide in a gas stream and reduced the hydrogen flux rate by 25 % across the Pd 

membrane (Nathan et al., 2007; Huiyuan et al., 2004; Kawijara et al., 1999). 

 

A detailed overview presented by Unemoto et al., (2007) gave a summary on the effect of 

various gas mixtures with hydrogen gas when tested for hydrogen permeability performance 

in Pd and palladium alloyed membranes. Some of these limitations associated with the 

selectivity and permeability of hydrogen across palladium membrane are discussed below. It 

is worthy of note that the effects of these gases impurities on Pd membrane hydrogen 

permeation and diffusion capacity are dependent on the methods of plating and the precursor 

of the precious metal used as discussed by (Uemiya et al., 2001).  

i. Carbon monoxide 

 

Carbon monoxide (CO) hinders the permeation flux rate of hydrogen gas through Pd 

membrane when CO is present in a gas stream. Studies by Amandusson et al., 2001 and 

reports from Li et al., 2000b indicated that the presence of CO gas at different temperatures 

(below 300 oC) and at increased concentration of carbon monoxide lowers the rate of 

hydrogen transport across palladium membrane. Their study revealed the influence of film 

thickness of the Pd membrane upon the structure and transport mechanism of CO and 

hydrogen. CO acts as an inhibitor to hydrogen permeance on Pd based membrane, but it is a 

reversible process thus hydrogen permeance can be reasonably restored after the removal of 

CO (Uemiya et al., 2001).  
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In the work of Li et al., (2000b), CO gas fed into the permeator at lower feed flux showed a 

decrease in hydrogen gas permeation through the Pd membrane and they concluded that 

when a mixture of hydrogen and CO gas were permeated through Pd membrane, a decrease 

in hydrogen diffusion occurred. They suggested that the decrease in hydrogen permeation 

was due to the adsorption of CO gas on the Pd surface thereby decreasing the available 

channel of hydrogen passage hence reducing the rate of diffusion of hydrogen through the 

bulk Pd membrane. 

ii. Water vapour poisoning 

 

At increased concentration, water vapour decreases hydrogen permeability across Pd 

membranes. Steam is adsorbed on Pd membrane surface and unlike CO and CO2 gases, 

hydrogen recovery is possible with Pd membrane after a gradual removal of steam as 

reported by Li et al., (2000b), and this agreed with the result obtained by Jung et al., (2000). 

They suggested that the reduction in hydrogen permeation may be caused by competitive 

adsorption between hydrogen and steam on the surface Pd active sites. This process makes 

steam surface poisoning of Pd membrane a reversible reaction. The concept of irreversible 

reaction of palladium and steam is due to the bond formation on Pd surface after exposure to 

steam. It was explained that the surface diffusion-dissociation of hydrogen was due to higher 

operational temperature was responsible for the reversible reaction of steam poisoning of 

palladium surface (Huiyuan et al., 2004). 

iii. Coke poisoning 

 

Carbonaceous matters such as hydrocarbons are the known source of carbon, which are 

dissolved in palladium thereby reduce hydrogen gas permeability rate. Several conditions 

such as reaction parameters and the compositions of the feedstock determine the amount of 

carbon deposited on the Pd membrane. This has been explained to result in the decline of the 

Pd hydrogen permeability properties. Coke retards the catalytic activities of the Pd membrane 

surface, decreasing hydrogen permeability and permselectivity at high temperature (Li et al., 

2000b). 
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iv. Sulphur poisoning 

 

Organic chemical reactions especially those of volatile organic compounds often result in the 

release of sulfur and other sulfur related compounds i.e. oxides and sulfides. Sulfur from H2S 

gas inhibits the performance of electroless plated Pd membrane. The Pd lattice constant has 

been reported to expand on exposure to sulfur poison which results in the formation of cracks 

on the Pd membrane surface (Uemiya  et al., 2001) This lattice constant expansion can alter 

the physico-chemical properties of the Pd metal and reduce the permeability property of the 

Pd membrane structure (Escand’on et al., 2008). As a result, there is partial or complete 

inhibition of the prospective active sites for catalytic reactions in the presence of sulfur. 

Palladium catalytic property as investigated by (Escand’on et al., 2008) using different 

supports concluded that zirconia supported palladium performs better in methane compared 

with alumina, silica and titania supports. 

v. Hydrocarbon poisoning  

  

Pd membranes can suffer surface poisoning due to the presence of contaminant gas from 

different sources. Hydrocarbon sources with product gases like oxides of carbon and sulphide 

have been the major challenge in Pd membrane surface poisoning. This is because 

hydrocarbons serve as the main source of hydrogen gas, and the carbon and sulphide gases in 

the hydrocarbon mixture inhibits hydrogen permeation through Pd membrane which is vital 

for hydrogen separation and also critical for optimal performance with minimal effects of the 

gas poisons.  

 

Methane is one of the known volatile organic molecules which require high temperature 

reaction for its oxidation to generate hydrogen and carbon. Pd-based membranes can be used 

for the separation of H2 from refinery off-gas streams, which often contain CH4 and other 

hydrocarbons in considerable concentrations (Li et al., 2008b). The presence of methane in 

gas streams has been shown to reduce H2 permeation through Pd-based membranes. The 

presence of hydrocarbons such as methane in gas streams forms layer of palladium carbide 

(PdC) on Pd membrane surfaces, and this inhibits H2 dissociation and recombination 
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reactions on the Pd membrane surface through adsorption phenomenon thereby decreasing 

the H2 permeation rate (Li et al., 2008b). Li et al., (2008b) focused on the use of methane gas 

at different concentrations to investigate the effects of CH4 on hydrogen flux in Pd 

membrane. Their study indicated that the permeability rate of hydrogen through Pd 

membrane was temperature dependent as they observed a decrease in hydrogen permeation 

rate as temperature increases when methane gas is fed into Pd membrane system. They 

proposed that methane served as a source of carbonaceous deposits on Pd membrane which 

lowers the hydrogen transport across the membrane. Jung et al., (2000) explained that heating 

of the Pd membrane at high temperature in air after contamination can serve as a mean of 

regeneration of the Pd or Pd alloyed membrane after exposure to gas contaminants. 

 

2.23 METHODS OF DEPOSITION OF PALLADIUM ON SUBSTRATES 

 

Palladium membranes have been the subject of research due to their numerous application 

potentials in hydrogen gas separation and purification, sensor and sorption tests, various 

hydrogenation reactions mainly for unsaturated hydrocarbon compounds, and Pd catalytic 

properties. This versatility of palladium has been the basis of scientific enquiries for the 

purpose of optimization especially for hydrogen separation and purification from gas 

mixtures. Specifically, the quest to increase hydrogen permeation has been responsible for the 

fabrication of Pd-composite membranes using various supports and also evaluation of the Pd 

alloyed membranes to analyse their gas separation properties.  

 

The need to increase hydrogen permeation, understand hydrogen gas separation in gas 

mixtures, fabricate thin film Pd-metal composite membrane and study their hydrogen flux 

rate as well as other properties of the Pd membrane system after exposure to gas mixtures has 

led to the development (for comparison purposes) of different deposition techniques. These 

methods include; thermal deposition, sputter coating, chemical vapour deposition, 

electrochemical plating and electroless plating. Electroless plating (EP) technique has been 

the conventional and most accepted method of metal deposition on supports. EP offers better 

approach because of its ease of application and simplicity compared with other plating 

techniques (Rothenberger et al., 2004). 
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In considering the task of achieving uniformity of palladium metal deposition on polyimide 

surface, this study will focus on the use of electroless plating technique. Electroless plating 

has several advantages which includes economic cost and easy alternative to other methods 

of metal deposition on supports. This section will review the electroless plating technique and 

discuss its principles 

 

2.23.1 Electroless deposition method of palladium on substrates 

 

Electroless plating (EP) deposition is one of the conventional methods of metallization on 

different substrates. EP is an electrochemical process which involves a reduction–oxidation 

reaction with cathodic metal deposition and anodic oxidation of reductants due electron 

transfer across the metal substrates interface (Ye et al., 2007). Electroless plating is a 

heterogeneous reaction process with metal deposition occurring at the solid–liquid interface 

between the plating surface and the solution. EP is an auto-catalytic procedure where the 

plating mechanism of metal ions by reduction occurs on the targets referred to as supports or 

substrates in an appropriate reducing agents i.e. hydrazine or hypophosphate. Palladium 

electroless plating of etched PI sample was conducted in alkaline solution in the presence of 

hydrazine (N2H4) as the palladium metal reductant. Hydrazine is a better reducing agent in 

alkaline solution rather than acidic solution. Hydrazine ensures that the high pH value 

reduces losses of the metal precursor, acts as stabilizer for the plating solution and facilitates 

high cation exchange. The stability of the metal complexes increase the Pd2+ → Pd0 turnover 

rate, and ensure the correct potential difference for the oxidation of the reducing agent 

(Williams, 2009). The reaction below represents the process of metal electroless deposition 

on a support. 

 

8EquationxMsurfaceCatalyticductionReMn O+⎯⎯⎯⎯⎯⎯⎯ →⎯++  

 
Equation 8: Reaction scheme of electroless deposition 
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This process of metallization on substrates affords the utilization of inexpensive and simple 

approach for gas separation and recovery processes. Electroless deposition technique is 

attractive for fabricating thin film of uniform metal coatings on various types of substrates in 

the absence of an external electric current. EP requires a compromised balance between the 

plating conditions of the electroless plating solutions and the stability of the supports 

(Maurizio et al., 2006). 

 

For metal deposition in the electroless plating technique, the dipping of supports for Pd 

deposition can result in a two sided such as a sandwiched structure or one sided Pd metal 

plating on the substrates. The fully immersed substrate in the plating bath results in Pd metal 

plated on both sides of the support giving a “sandwich-like” structure. On the contrary, when 

the support floats in the solution of the plating bath, palladium is plated only the surface in 

contact with the plating solution and such type of coverage could be useful in the field of 

catalysis for the fabrication of systems with only one catalytic surface (Maurizio et al., 2006).  

 

2.23.2 Conditions for electroless plating 

 

For a successful electroless plating technique, parameters such as temperature, PH, plating 

bath composition and the type of reducing agent determine the metal grain size of deposited 

metal on the substrate surface and the gases evolved during the plating process (Kilicarslan et 

al., 2008). In most electroless plating processes, gases such as nitrogen, hydrogen and 

ammonia can be bubbled out during plating and this may reduce the uniformity of metal 

plating on support and the overall completion of plating process in the bath. It is therefore 

imperative to understand the chemistry of the metal precursors, support to be used and the 

reducing agents of the electroless bath composition metal plating technique (Cheng et al., 

2001). There are two commonly used reducing agents during electroless plating. These are 

the hydrazine and the hypophosphate solutions. Hydrazine is a better metal reducing agent 

because it does not generate hydrogen gas, and can be used in basic medium. It is less stable 

and must be used when freshly prepared. Hypophosphate is more stable than hydrazine but 

has shown to be less attractive reducing agent during electroless plating (Maurizio et al., 

2006). 

 

 

 

 



      Chapter Two                                  Literature review 
 

 

  

65 

 

   

In EP technique, the surfaces of supports to be plated undergo surface activation which is a 

seeding process followed by the sensitisation or nucleation process before the metal plating. 

These two steps are essential during electroless deposition procedure. The activation process 

involves the use of acidic SnCl2 solution to activate the surface of the support so as to create 

active sites for palladium metal exchange during electroless plating. This is followed by 

sensitisation of the supports where the supports are immersed in acidic PdCl2 solution to seed 

the surface of the support and initiate the exchange of SnCl2 metal by PdCl2 metal present in 

the activation solution (Mardilovich et al., 1998). The activation and sensitization step is 

followed by rinsing the supports in deionised water after each activation and sensitisation 

procedures. From literatures, other activation method that have been reported include; ion 

implantation (Bhansali et al., 1995), laser-assisted decomposition of spin-coated metal-

organic films, (Zhang et al., 1997), photo-aided or immersion of supports in a Pd metal 

solution for ion exchange process (Li et al., 2004; Shuxiang  et al., 2010), sol-gel method 

(Zhao et al., 1998) and by induced osmotic technique (Li et al., 1998), as well as metal 

organic chemical vapour deposition (MOCVD) technique (Huang et al., 2007). 

In the case of using a polymer substrate, it is necessary to achieve good adhesion of metals on 

the polymer surface. Thus pre-treatment such as surface modifications of support as in 

polyimide (PI) film is required before the electroless deposition of Pd metal on the polyimide 

surface. To this effect, alteration of the polymer surface morphology by chemical or physical 

etching methods is often adopted to improve adhesion of a metal film to substrate surface (Li 

et al., 2004). Several attempts have been made to advance the adhesion property of the PI 

surface using electroless plating techniques but with little success. Attention is also being 

given to synthesis of polymer structure with unique chemical and physical properties so as to 

achieve functionalized material with desired compositions. Physical processes such as plasma 

grafting, UV laser treatment and ion-beam irradiation require somewhat expensive 

equipments (Naddaf et al., 2004).  

 

In the work of Maurizio et al., (2006), palladium metal was deposited by electroless 

technique on anodic alumina support in an optimized plating bath composition. The stability 

and adhesion of metal on anodized alumina membrane was considered in the choice of the 

plating bath composition and the optimized time. The amount of Pd metal plated on the 
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support was determined by complexometric titration method. Their work established that the 

effect of plating time on membrane resulted in notable damage of membrane due to the 

alkalinity strength of the plating bath. It was concluded that varying alkalinity of bath affects 

the stability of membrane since high alkaline solution dissolved the membrane structure. 

Also, at low high acidic solution, Pd layer was not uniformly deposited on the membrane. 

This was attributed to non-stability of the plating bath under acidic condition.     

 

Robertis et al., (2008) investigated the influence of plating time and concentration of plating 

bath in the electroless deposition of alloyed Pd-P metal on carbon steel. They assessed the 

quality of Pd-P film layers formed at different plating times and reducing agent 

concentration. It was observed that an overall increase of hydrogen evolution reaction activity 

by Pd adsorption/desorption process was enhanced at low phosphorus content in the Pd-P 

alloy. This was attributed to that phosphorus acted as a reducing agent and allowed for 

hydrogen permeation. Their work showed a homogenous distribution of  Pd-P metals, the use 

of hypophosphate as reducing agent in the electroless plating bath resulted in cracks of the of 

the Pd-P films due to the evolution of hydrogen gas during plating. 

Ye et al., (2007) used the electroless technique to deposit Pd and Ag metal layers on silicon 

wafer. The surface of the silicon wafer was etched in a mixture of hydrofluoric acid and 

ammonium fluoride and the silicon surface was activated by immersion in separate solutions 

of Ag and Pd which was referred to as the co-deposition method. The Pd and Ag seeding 

technique used in this study nucleated the surface of the silicon wafer.  They observed that Pd 

seeded surfaces preferentially accommodate the film deposition of Ag whereas with the Ag 

seeded silicon support, low Ag metal film deposition was reported on the Ag silicon activated 

surface. The Pd/Ag bimetallic activated (seeded) surface of the silicon wafer showed positive 

activation potentials of the seeding mechanism as catalytic sites for ease of plating of each Pd 

and Ag metals. 

 

In the work of Liang, et al., (2008), copper metal was plated via the electroless technique on 

the polyimide surface which was activated by an atom-transfer radical polymerisation 

method.  The atom-transfer radical polymerization (ATRP) procedure was used to induce the 

creation of activated sites for Cu plating on polyimide (Kapton®) surface, and a comparison 
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with Cu electroless deposition on the polyimide (Pristine®) showed that a good adhesion of 

Cu metal can be achieved on the polyimide (Kapton®) surface. They suggested that the use 

of the ATRP method of surface treatment improved the ease of Cu electroless plating on the 

polyimide surface compared to the conventional two step surface activation procedure using 

the acidified palladium and tin solutions. 

 

Williams et al., (2009) discussed an approach to improve palladium electroless plating on 

rare earth metal hydride-forming alloys by using hydrophilic γ- aminopropyltriethylsilane at 

different concentrations to activate the surface of the composite material and to determine the 

hydrogen sorption kinetic of the electroless Pd plated alloy.  

 

They showed that it is possible to activate the surface of metal hydrides alloys in assembly 

formation of functional groups and therefore facilitate the nucleation of Pd particles for 

hydrogen adsorption kinetic. Their study indicated that electroless deposition of Pd film in a 

layer by layer pattern on the activated metal-hydride alloy showed improved adhesion after 

silane treatment at increased concentration.   

 

Cheng et al., (2001) studied the palladium microstructure and the palladium film reaction 

kinetic on glass and stainless steel supports. The palladium was deposited using the hydrazine 

and hypophosphate based electroless plating baths. Their work examined the Pd film quality 

deposited on the two different supports for the hydrazine and hypophosphate reductant 

solutions. These reductants were applied and varied in time and concentration. The plating 

efficiency of hydrazine-based solution proved excellent for Pd film deposition on the glass 

and stainless steel supports. The palladium film showed better adhesion to the supports in the 

hydrazine-based electroless bath compared with hypophosphate-based electroless solutions. 

Although hypophosphate gives better plating rate for a longer plating time, the release of 

hydrogen by oxidation of hypophosphate caused film delamination and crack formation 

hence poor adhesion of the Pd film on support after removal from the plating bath. 

 

This scope of this study does not cover the industrial application of electroless plated hence 

further literatures will not be reviewed.  
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The image below represents the schematic of the electroless plating experimental set-up 

 

 

 
 
Figure 2-4: Experimental set-up for electroless plating technique 
 

 Some of the advantages of electroless deposition techniques mentioned earlier such as its 

simplicity of application, uniform dense coatings on both conducting and non-conducting 

surfaces and cost are responsible for the choice of electroless plating (Zhang et al., 2007). 

However, EP is time consuming compared with other metal plating techniques. The 

generation of toxic wastes is another limitation of electroless plating technique as well as low 

deposition rate, metal loss, film impurities and difficulty in the control of metal film thickness 

on the substrates (Maurizio et al., 2006). A careful selection of plating bath parameters such 

as metal precursors of the plating bath, concentrations of the plating components, pH of bath 

and temperature has been reported to help to address these limitations (Kirlicarslan et al., 

2008). The importance of electroless plating method has been demonstrated in industrial 

applications of materials with metals such as nickel, cobalt, silver and some platinum group 

metals (PGMs) have been commercially plated using electroless plating technique (Robertis 

et al., 2008).   

 

In summary, the use of palladium as a selective metal membrane for hydrogen permeability 

and separation from gas mixture and purification processes is highly significant in numerous 
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high temperature industrial applications. Consequently, the use of the electroless plating 

method to deposit palladium metal on various supports has been discussed and the influence 

of substrate type, surface morphology, plating kinetics, plating bath concentrations and time 

on the thickness of palladium film during electroless plating technique was reviewed. The 

preference for electroless plating method by many workers is indicative of the simplicity of 

the method, the ease of application and the wide range of substrates that can be used.  

 

2.24 CHARACTERISATION TECHNIQUES AND SAMPLE PREPARATION  

 

This section will discuss the different characterization techniques used in this study and their 

relevance. The as-received unirradiated and irradiated polyimide film, the alkaline etched and 

palladium plated as-received unirradiated polyimide samples were characterised. Emphasis is 

given to the importance of each technique to understand how the samples are investigated. 

 

2.24.1 Scanning Electron Microscope/ x-ray energy dispersion (SEM/EDX) 

 

Scanning electron microscopy (SEM) is a versatile imaging analytical technique and capable 

of producing three-dimensional profiles of material surfaces. SEM can be used to obtain both 

quantitative and qualitative information pertaining to particle size/shape and surface 

dispersion of sample on a template as in the case of palladium electroless plating on PI 

(Esinger et al., 2003). The basic instrumental operation in SEM entails the interaction of an 

accelerated highly mono-energetic electron beam sourced from a cathode tungsten filament, 

with the atoms at a sample surface. The electron beam is focused into a fine probe and 

rastered over the sample surface. The scattered electrons are collected by a detector, 

modulated, and amplified to produce an exact reconstruction of the sample surface and 

particle profile displayed on monitor screens. 

 

 

 

 

 

 

 



      Chapter Two                                  Literature review 
 

 

  

70 

 

   

2.24.2 X-ray diffraction (XRD) 

 

XRD analytical technique is a powerful and valuable tool in the research and development of 

advanced materials. XRD is a resourceful and a non-destructive technique in the study of 

crystallinity, chemical structure and phase orientation of metal arrangement in materials, and 

forms an integral part in a comprehensive characterization study thereof. This technique can 

be employed to investigate unknown materials as it is capable of  identifying single and 

multiple phases, quantification of minerals of interest, detection of impurities, determination 

of the crystallographic structure of materials (i.e. space Methodology  group determination; 

indexing; structure refinement; structure identification, orientation of crystallites), texture 

analysis, structure deformation, residual stress analysis, studies of lattice properties, and 

crystallite size determination. The benefits of this analytical technique cannot be overstated 

as no comprehensive materials characterization study would be complete without an XRD 

investigation. Information obtained from XRD analysis can be used to establish the presence 

of elemental phases of a given sample. 

 

For the purpose of this study, XRD was used to investigate the presence of palladium metal 

planes and determine the crystallite phases of as-received polyimide film, irradiated 

polyimide film before and after palladium electroless plating of the PI samples (Mu et al., 

2010; Ke  et al., 2007). 

In XRD analysis, solids are bombarded with a collimated x-ray beam which causes crystal 

planes atoms, serving as diffraction gratings, to diffract x-rays in numerous angles. Each set 

of crystal planes (hkl) with interplanar spacing (dhkl) can give rise to diffraction at only one 

angle. The diffractions are defined from Braggs’ Law (nλ = 2d sin θ), where the intensities of 

diffracted x-rays are measured and plotted against corresponding Bragg angles (2θ) to 

produce a diffractogram. The intensities of diffraction peaks are proportional to the densities 

or abundance of the corresponding crystal facets in the sample lattice. Diffractograms are 

unique for different materials and can therefore qualitatively be used in material 

identification. 
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2.24.3 Transmission electron microscopy (TEM) 

 

The use of microcopies technique to image samples has been an important in the 

investigation of particle size distribution, agglomeration and surface morphology. In this 

study, TEM analysis is employed to probe the palladium metal into the polyimide matrix 

after palladium plating of the polymer as adapted from the work of Yoda et al., (2004); Marin 

et al., (1995); Yi et al., (2004). 

Transmission Electron Microscopy (TEM) is used in the investigation of surface morphology, 

average particle size and shape and particle size distribution of these particles across the 

surface of a material. 

In TEM characterisation technique, a special sample preparation is required using the 

microtome method. Details of this sample preparation will be presented in the next section. 

 

2.24.3.1 Ultra microtome 

 

Reichert ultracuts (microtome machine) consists of block of metal which sits the metal tabs 

segment for sample holding. This sample holder has a self-locking precision drive for 

eucentric movement of sample during trimming and cutting of the specimen. There are two 

types of knives used in ultracuts, the glass or diamond knives. The knife is attached to the 

cutting block first to trim resin, exposing the embedded samples prior to cutting the samples 

and collected on a copper grid. 

 The knife sits on block with locking lever base and an attachment of moveable stage to 

adjust the knive to desired position. Glass knife is often preferred to diamond knives due to 

cost and availability of the glass knives. The knives which are either glass or diamond cut at 

cross-section thus palladium metal layer cannot be peeled from the polyimide surface. The 

stereo zoom microscope and knob changer, focusing knob and breath shield are used to adjust 

the focus of sample during trimming and cutting of sample. 
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2.24.4 Fourier transformed infra-red (FTIR) 

 

Fourier transformed infrared (FT-IR) spectroscopy is an analytical technique used to 

determine the bond characteristics of a material by identifying the functional groups present 

in a sample. In FT-IR analysis, bonds vibrate at frequencies which are transmitted or 

absorbed at specific wavelengths with corresponding peaks identical to the bonds (Coates, 

2000; Naddaf et al., 2004; Quarmara and Garg, 2007; Mathakari et al., 2009). 

 

2.24.5 Thermo-gravimetric analysis (TGA) 

 

Thermo gravimetric analysis (TGA) is an analytical technique used to determine materials 

thermal stability and its fraction of volatile components by monitoring the weight change that 

occurs as a specimen is heated at steady rate increasing temperature. TGA measurement is 

carried out in air or in an inert atmosphere such as helium or argon, and the weight is 

recorded as a function of increasing temperature. The technique can characterise materials 

that exhibit weight loss or gain due to decomposition, oxidation, or dehydration (Quershi et 

al., 2007; Yi et al., 2004). 

 

2.24.6 Peel test analysis 

 

The Peel Test measures the strength required to separate a bonded surface. This method of 

analysis has found application in material science to determine the degree of bonding 

between two surfaces. Peel test can be used to evaluate adhesives and adhesive tapes and in 

other attachment methods. This analysis is useful in the application of composite membranes 

systems where metal can be deposited on polymer surface hence employed in this study to 

investigate the adhesion of palladium on polyimide surface after etching (Dazinger and 

Voitus, 2003; Park  et al,. 2008; Tsai et al., 2009). 
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2.25 CONCLUSION 

 

In other to achieve effective gas separation and purification, the choice of membrane as a 

separation technology requires careful selection of materials to accomplish this task. This is 

because of the conditions such as the gas purity level; economic cost and availability of such 

technique are needed in the membrane application. Ultimately, the overall application of this 

membrane separation technique at industrial level is another major consideration. Upscale of 

the membrane separation method could serve as an alternative to the pre-existing separation 

techniques that have been identified in the literature. 

 

Palladium represents the most effective hydrogen separation metallic membrane and its 

availability in South Africa can enhance its beneficiation through application in a composite 

polymer membrane configuration. The ability of palladium to withstand surface poisoning 

from hydrocarbon sources during hydrogen separation application remain a challenge and 

this is due to the fact that coal contains mixtures of gases that affect the effective permeation 

property of palladium as a metallic membrane material. On the other hand, the use of 

polymer and choice of polyimide as a support in the composite organic-inorganic membrane 

for this study could project a promising potential if the problem of surface adhesion of the 

polyimide film is solved. The hurdle is to find the suitable surface treatment processes for the 

polyimide film by surface functionalisation to improve metal adhesion to the polyimide 

surface. These conditions must be cheap, available and easy without compromising the bulk 

properties of the polyimide film structures. 

 

2.26 RESEARCH AIMS 

 

The overall aims and objective of this study is summarised as follow: 

 

a. To develop scientific approach for successful synthesis of composite membrane based 

on polyimide modified with palladium thin film layer by electroless deposition and as an 

attractive alternative for inorganic and organic membranes for hydrogen gas separation. 
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b.  To develop simple material and technologies which can effectively and economically 

separate hydrogen from coal gasification processes 

c. To develop composite membrane with pre-defined tolerance limits such as excellent 

adhesion property and stable at high temperature.  

d.   To investigate the effect of surface functionalisation on polyimide film as a function 

of time and temperature. 

 

e.  To investigate surface depth profile of etched polyimide by hydrogen diffusion.  

f. To design, fabricate and install a home-grown hydrogen diffusion reactor unit for 

hydrogen diffusion measurement of the composite membrane 

 

2.27 EXPERIMENTAL TASK 

 

In this study, different surface functionalisation treatment will be considered to determine a 

cheap, available and easy method for improved metal adhesion property of the polyimide. 

The conditions found in literature will be modified to address some of the problems identified 

as stated in section 2.27. For this study, low concentration of etching solutions and 

temperature of etching will be used as compared with the reports from literature. The 

characterisation techniques that will be employed will help to investigate the physico-

chemical properties and hydrogen gas diffusion polyimide film after successive treatment. 

 

The scope of this study will be to examine polyimide film as a suitable polymer for polymer-

metal composite membrane. In other to study the rate of etching with time on the polyimide 

surface, a simple hydrogen diffusion reactor unit will be designed, fabricated and installed for 

express gas diffusion test. This unit will be designed to accommodate single gas diffusion test 

but can be upgraded for more advanced gas diffusion analysis such as multiple gas diffusion 

analysis in composite membrane material. 
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Based on the available literature reviewed, the summary of the experimental schematic as 

presented below was formulated for the surface functionalisation and palladium plating of 

etched polyimide film. This research design will be to focus on the use of easy method of 

metal plating on polymer surface and the details of the step-by-step approaches are discussed 

in details in chapter 3 of this study. 

     
Figure 2-5: Experimental approach 
 

2.28 DELIMITATION OF STUDY 

 

This study was limited to the use of Kapton® type of polyimide. Although several other 

polymers can be applied for gas separation purposes as found in the literature, polyimide 

posses excellent thermal and mechanical properties. Hence the study focused on chemical 

etching of polyimide film at low concentrations using 0.4 M NaOH and 13 % NaOCl 

solution. The effective etching of the polyimide samples was investigated for the non and 

irradiated polyimide film. In the case of palladium (Pd) metal used for this study, only the 

unirradiated polyimide samples were plated with palladium metal and the samples 

characterised. In the hydrogen diffusion analysis, only hydrogen gas is fed into the hydrogen 

reactor unit hence gas selectivity was not examined. 
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CHAPTER 3 

3.0 EXPERIMENTAL 

This chapter will focus on the materials, methods and equipment used for this work. Also 

included in this section is the experimental protocol, the instrumental set-up used for 

sample analysis and procedures for samples preparation.  

 

3.1 MATERIALS    

Table 3-1: Materials and chemicals 
 

Chemicals  Specifications                 Source 
 

Polyimide 50 μm thickness          

Goodfellows 

(UK) 

NaOH AR 98 % Kimix (SA) 

NaOCl 15% 

Sigma Aldrich 

(SA) 

N2H4 35% 

Sigma Aldrich 

(SA) 

PdCl2 PDS002 

SA precious 

metals  

NH4OH  2 5 % (CP) Kimix (SA) 

Na2EDTA 98.50% Kimix (SA) 

SnCl2 98% 

Sigma Aldrich 

(SA) 

HCl 37% 

Sigma Aldrich 

(SA) 
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3.2 SCHEMATIC OF METHODOLOGY 

 

In this section, the various experimental procedures are presented schematically to show 

the sequential processing step as carefully analysed. 

The as-received polyimide film (Kapton®) was first cleaned and treated to allow for 

comparison with the irradiated polyimide film. The procedure was thereafter as indicated 

in Section 3.3 for etching in alkaline solutions and Section 3.4 for sample characterisation 

techniques. The experimental protocol is represented schematically in Table 3.2 below;
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Irradiated polyimide  

Characterisation techniques:  

   XRD, FT-IR, SEM, TEM, TGA, 

Hydrogen Diffusion test 

    Sensitisation/activation in Pd-Sn colloidal solution 

Acceleration in NaOH, HCl and EDTA 

Unirradiated polyimide 

Cleaned in acetone Cleaned in acetone

   Etched for 10 or 20 or 30 or 40 or 60 minutes 

NaOH, NaOCl/NaOH or NaOCl 

solution 

Palladium electroless plating 

CHARACTERISATION TECHNIQUES:  

FTIR, TGA, XRD, SEM, TEM,  

Peel test characterisation of 

palladium plated polyimide 

Etched for 5, 10, 20 or 30 minutes 

NaOH, NaOCl/NaOH  

or NaOCl solution

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 3-1: Experimental protocol 
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3.3 METHODOLOGY 

This section covers the pre-plating procedures i.e. preparation of the different etching, 

activation and sensitization solutions, and the plating procedure i.e. preparation of 

electroless bath for palladium plating on surface treated polyimide samples. 

 

3.3.1 Pre-plating procedure 

 

3.3.1.1 Preparation of polyimide films  

 

As-received unirradiated and irradiated PI films were cut into circular discs of 20 mm 

diameter size. In all, twelve (12) samples were prepared; six (6) samples each for etching 

in two separate solutions of 0.4 M NaOH and 0.4 M NaOH in 13 % NaOCl respectively 

for 5, 10, 20, or 30 minutes (Table 3.3) for the unirradiated polyimide samples. The 

irradiated polyimide samples were etched for 10, 20, 30, 40 or 60 minutes (Table 3.4). 

All samples were etched at 50 °C in a water-bath system in the etching set-up. Prior to 

etching in alkaline solution, each PI piece was cleaned in 5 mL acetone and deionised 

water to remove dirt and other impurities. The pieces were air dry and stored in carefully 

labelled vials. 

 

3.3.1.2 Preparation of 0.4 M NaOH solution  

 

8.000 g NaOH pellets were accurately weighed using a weighing boat and dissolved in 

deionised water, agitated using a mechanical shaker to dissolve the pellets. The solution 

was quantitatively transferred and made up to the mark in a 500 mL volumetric flask. For 

each irradiated PI sample, 20 mL of 0.4 M NaOH solution was measured using a 

measuring cylinder and poured into cleaned 105/95 cm petri dish. Cleaned PI film was 
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then immersed in the solution to etch the irradiated PI surface. Each PI sample was 

treated in a 10 mL fresh solution of 0.4 M NaOH, removed and carefully rinsed with 

deionised water to remove the excess sodium hydroxide.  

 

3.3.1.3 Preparation of 13 % NaOCl solution  

 

As-received NaOCl (Sigma Aldrich) contains 13 % chlorine. The solution was stored in 

cold (4 oC) and well shaken before each use. 10 mL of 13 % NaOCl solution was used for 

the surface etching of irradiated polyimide films. 10 mL of the 13 % NaOCl was 

measured into 105/95 cm petri dishes and PI film samples immersed for different time 

(Table 3.3 and 3.4) at 50 °C in a water bath system using hot plate heater and 

thermometer to monitor the temperature during etching. Fresh solutions of 13 % NaOCl 

were used for each PI samples piece, and samples were rinsed with deionised water after 

etching to remove excess solution from PI surface. 

 

3.3.1.4 Preparation of mixture of 0.4M NaOH in 13% NaOCl solution  

 

To prepare 500 mL of 0.4 M NaOH in 13 % NaOCl solution, 8.000 g NaOH pellets was 

dissolved in 500 mL 13 % NaOCl solution. The mixture is shaken to complete NaOH 

pellet dissolution in 13 % NaOCl solution, and stored in volumetric flask. Each of the 

cleaned irradiated PI pieces is soaked in petri dish of 10 mL fresh 0.4 M NaOH in 13 % 

NaOCl solution at 50 oC according to the sample matrix in Table 3.3 and 3.4 as indicated 

in Table 3.3 and 3.4. After etching, each sample is rinsed with deionised water and stored 

in rubber vial. 
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3.3.1.5 Preparation of 0.1 M palladium solutions and plating etched polyimide 

 

For a 250 mL 0.1 M PdCl2 solution, 0.445 g PdCl2  (SA Precious Metal) was accurately 

weighed on a 4 place balance using a plastic weighing boat and dissolved in 2 mL  

hydrochloric acid (Sigma Aldrich). The dissolved PdCl2 solution was made up to the 

mark with deionised water in 250 mL volumetric flask. 10 mL of the solution is collected 

with a measuring cylinder and transferred into 105/95 cm petri dish. 

Each of the polyimide samples treated in either 0.4 M NaOH, or 13 % NaOCl or a 

mixture of 0.4 M NaOH in 13 % NaOCl and sensitised (section 3.3.1.6) were soaked 

separately in 0.1 M PdCl2 solution in the ion exchange bath for 24 hours.  

 

3.3.1.6 Preparation of colloidal Pdx-Sny solution for activation and sensitisation of 

etched polyimide film 

 

Prior to palladium electroless plating, surface of unirradiated polyimide films were 

activated using “one-step” sensitization / activation method after the samples have been 

separately etched in 0.4 M NaOH or 13 % NaOCl or mixture of 0.4 M NaOH/13 % 

NaOCl solutions according the time indicated in sections (sections 3.3.1.2 – 3.3.1.4). 

Fresh solution of 10 mL each of the Pd-Sn colloidal solution was used to sensitised and 

activate the etched unirradiated polyimide samples 30 minutes at room temperature.  

The Pd-Sn colloidal solution was prepared as follows: 

Solution A: 0.3 g PdCl2 was dissolved in 2.15 g HCl solution and 5.0 mL deionised water 

at 70 ºC with stirring (200 rpm). 

Solution B: 25 g SnCl2.2H2O was dissolved in 14.5 g HCl solution (preheated to 50 ºC). 

The mixture was cooled to room temperature after which 30 mL deionised H2O was 

added. 

Solution B was added to Solution A and Solution (A+B) was heated to 90 - 100 ºC for 

15-20 minutes. 
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Solution C: 8.75 g KCl was dissolved in 250 mL deionised H2O. 80 mL HCl was then 

added to the KCl solution. 

Solution C was then added to Solution (A+B) and made up to 500 mL with deionised 

water. 

Following sensitization / activation of etched unirradiated PI samples in Pd-Sn colloidal 

solution for 20 minutes, samples were carefully rinsed with deionised H2O and the Sn 

layer was removed by ‘acceleration’ through immersion of samples in 100 mL of 100 g/L 

disodium ethylenediaminetetraacetic acid (Na2EDTA) or NaOH (30 g/L) or HCl ( 100 

g/L)  solutions for 10 minutes. The samples were accelerated in these solutions separately 

and plated afterwards. A comparison of the effect of acceleration of these different 

solutions was studied on the palladium film uniformity on polyimide surface.   

 

The Na2EDTA was dissolved in deionized water by heating at 70 ºC, with constant 

agitation, and allowed to cool. The accelerated samples were then rinsed in deionised 

H2O and air dried. Fresh Pd-Sn colloidal solution was used for the activation of each 

sample. 

 

3.4  PLATING PROCEDURE 

3.4.1 Preparation of palladium-based electroless plating bath 

 

Each sample of etched polyimide was plated with 10 mL of electroless plating solution 

for 10 minutes. The table below highlights the electroless plating bath used in this study. 

 

 

 

 

 

 

 

 

 



Chapter Three                     Experimental 
 

 

  

83 

 

   

Table 3-2: Composition of palladium electroless plating bath 
 

Chemical     Amount (g/L) or (mL/L) 

Palladium chloride (PdCl2) 0.8 g 

Na2EDTA 60 g 

NH4OH 200 mL 

Hydrazine 30 mL 

Temperature 70 oC 

 

 

Fresh palladium plating solution of 10 mL was used for each sample. After plating is 

completed; the samples were carefully removed, dried in air and stored in plastic vials for 

characterisation using the SEM/EDS, XRD, TEM, FTIR, TGA analytical techniques. 
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The table below represent the sample matrix of the unirradiated polyimide film for 

different etching time, the sensitisation/activation and electroless plating conditions. The 

samples for each etching solution treatment time are in triplicates. 

 

Table 3-3: Sample matrix for etching and plating time of unirradiated polyimide 
 

 

 

Sample 

Numbers 

0.4 M 
NaOH 

solution 

13 % 
NaOCl 
solution 

0.4 M NaOH 
+ 13 % 
NaOCl 
solution 

Sensitisatio
n/Activation

Palladium 
electroless 
plating 

OA1-1 

OA1-2 

OA1-3 

 

5 minutes 

10minutes 

20 minutes 

30 minutes 

 

 

 

 

 

 

10 minutes 

 

10 minutes 

OA2-1 

OA2-2 

OA2-3 

  

5 minutes 

10minutes 

20 minutes 

30 minutes 

 

 

 

 

10 minutes 

 

10 minutes 

OA3-1 

OA3-2 

OA3-3 

 

 

 

 

 

5 minutes 

10minutes 

20 minutes 

30 minutes 

 

 

10 minutes 

 

10 minutes 
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Table 3-4 below represent the sample matrix of irradiated polyimide for NaOH and 

mixture of NaOH/NaOCl etching solution. The irradiated polyimide samples are not 

prepared in triplicate because of the limited amount of irradiated polyimide sample. 

 
Table 3-4: Sample matrix of etching time for irradiated polyimide 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Numbers 
0.4 M NaOH 

solution 

0.4 M NaOH + 13 % 
NaOCl solution 

OB1-1 

 

 

10 minutes 

20minutes 

30 minutes 

40 minutes 

60 minutes 

 

 

 

OB2-1 

 

 

 

 

10 minutes 

20minutes 

30 minutes 

40 minutes 

60 minutes 
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3.5 SAMPLE PREPARATION FOR CHARACTERIZATION 

 

3.5.1 Sample preparation (SEM) 

 

Etched polyimide samples were air-dried for SEM analysis to determine the pore size and 

distribution across the surface of the irradiated polyimide film. Samples were prepared by 

mounting the cut pieces on a double-sided carbon conductive adhesive tape on aluminium 

sample stubs. The samples were then gold-coated to make them conductive with an 

Edward sputter coater for 5 minutes. 

 

3.5.1.1 Instrumental set-up condition (SEM) 

 

Model       Hitachi X-650 EM  

Working distance (15 mm)  

Accelerating voltage  (25 kV)  

Emission current      (75-80 A)  
 

3.5.2 Sample preparation (TEM) 

 

Palladium plated samples are neatly sliced and embedded in epoxy resin to cure for 24 

hours at 60 oC in an oven. The Reichert ultracuts microtome machine is used to prepare 

(section) the samples for TEM analysis. 
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3.5.2.1 Instrumental set-up condition (TEM) 

 

Model         Tecnai G2    

Accelerating voltage (kV)  200 
Current (µA) 20 
Condenser aperture  1 
Objective aperture  3 
Exposure time        3   

 

3.5.3   Sample preparation (XRD) 

 

For sample preparation in XRD analysis, air-dried etched polyimide samples are mounted 

on aluminium stubs by adhesive tapes and the surface was flattened to promote maximum 

x-rays exposure. After the collection of the XRD spectra, the crystalline and plane 

identification was performed by matching with the JCPDS (Joint committee of powder 

diffraction standards) file data base software is used to investigate the qualitative and 

relative abundance of the palladium or other metals present in the sample.  

3.5.3.1 Instrumental set-up condition (XRD) 

 

Model        Bruker AXS D8 Advance   

Detector  Sodium Iodide 
Monochromator Graphite 
Generator current (mA) 40 
Electron Intensity (keV) 40 
X-ray source Cu-Kα 
Radiation wavelength (λ) 1.542 Å 
α1/α2  0.497 
Scan range (2θ °) 5-100 
Scan rate        0.05 /min     
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3.5.4 Sample preparation (FT-IR) 

 

Etched and palladium plated PI samples are cut into small pieces (~2 mm X 2 mm) size 

and placed in the metal disc plate for analysis. IR spectra are collected from 4000 cm-1 - 

380 cm-1 at 4 cm-1 scan rate and pressure gauge of 150. Spectra are auto corrected for 

background noise, smoothened and normalised. 

 

3.5.4.1 Instrumental set-up (FTIR) 

 

Model (FT-IR/ATR)        PerkinElmer 100series  

Wave number range (cm-1)  4000- 380  

Scan rate (cm-1) 4 

Force gauge        150 
 

3.5.5 Sample preparation (TGA) 

 

Samples of polyimide films are cut into pieces and placed into a platinum pan. The pan is 

supported on an analytical balance, located outside the heating furnace. The balance is 

calibrated to zero prior to heating of the sample. The rate of heating is adjusted to 10 °C 

until the maximum temperature set at 900 °C. The balance sends the weight signal to the 

computer for storage, along with the sample temperature and elapsed time. The TGA 

curve plots the TGA signal, converted to percentage weight change on the Y-axis against 

the reference material temperature on the X-axis 
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3.5.5.1 Instrumental set-up (TGA) 

 

Model 
(TGA/DSC)     Q500 thermo-gravimetric analyzer 

Atmosphere N2 

Temperature (oC) 25-900 

Rate (oC/min)     10       
 

3.5.6 Sample preparation (Peel test) 

 

The sample preparation for the peel test was performed using the Cu foil as the substrates 

to adhere the palladium–polyimide composite films. The peel test analysis was carried 

out according to the instrumental set-up in section 3.5.6.1 below. 

 

3.5.6.1 Instrumental set-up (Peel test) 

 

 

 

 

 

3.6 HYDROGEN DIFFUSION REACTOR UNIT 

 

The hallmark of this project was the development of a simple, efficient and cheap 

hydrogen reactor unit. This unit was designed, fabricated and installed to evaluate the 

hydrogen diffusion across the different samples. The hydrogen diffusion unit was 

developed due to the economic cost of sample analysis using industrial gas diffusion 

Method  90 degree 
Pressure 20 kg/cm2 
Angle 190 degree 
Time 5 minutes 

Peel rate 50.8 mm/min 
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installation and to also ensure express analysis of polyimide samples. In developing this 

hydrogen membrane unit, basic understanding of material science in membrane 

application and engineering expertise is enhanced. Also included in the design of the 

design of the reactor unit is the upgrade of the unit by coupling with gas chromatography 

and computerised for future application as a multi-gas diffusion system.  

 

3.6.1 Sample preparation (hydrogen diffusion test) 

 

Samples are prepared using a 22 mm2 size circular puncher to cut into size and placed in 

the membrane holder with copper gasket supports. The holder is screw tight and leak 

tested using the soup bubble test method. 

 

3.7 HYDROGEN DIFFUSION TEST 

 

Preliminary hydrogen diffusion measurement is carried out in the home-grown hydrogen 

diffusion reactor on samples of as-received, irradiated and etched polyimide samples 

from ambient temperature to 325 oC in hydrogen atmosphere.  The home-grown 

hydrogen reactor is developed to measure hydrogen gas permeation across polyimide 

membrane samples and to investigate the effect of surface treatment and temperature on 

irradiated, etched and palladium plated samples. A comparison of the rate of diffusion of 

hydrogen gas can establish if pinholes are present in samples to allow permeation of 

hydrogen gas. 

 

The apparatus for hydrogen diffusion experiments is shown below. The main components 

are: a gas storage and supply system (gas cylinder) a temperature regulator, membrane 

holder, buffer cylinders (high and low) to regulate the flow of hydrogen gas across the 

membrane and reduce diffusion kinetics, stainless steel block which sits the membrane 
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holder for temperature transmission via band heater cable. A thermocouple probe is 

clamped between the steel block and membrane holder to monitor the original 

temperature of the membrane holder. 

The diagram below represents the schematic outlay of the hydrogen diffusion unit with 

all the unit components. 

 

 

 
 

 
Figure 3-2: Schematic diagram of home-grown hydrogen reactor unit 
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3.8 OPERATION PROCEDURE OF HYDROGEN DIFFUSION REACTOR 

 

Prior to hydrogen diffusion measurement, the home-grown hydrogen diffusion reactor 

system is evacuated by switching on the vacuum pump and valves V3, V4, V5 and V6 of 

the system. The evacuation is maintained and monitored on the vacuum meter display for 

a minimum of 30 minutes to establish vacuum in the gas line and ensure the stability of 

the corresponding pressures such as the high and low pressure readings which are 

monitored on the pressure digital display screen. To ensure complete vacuum, calibrated 

pressure values for the high and low pressure digital display are -0.147 bar and 0.021 bar 

respectively must be displayed. To feed hydrogen gas into the system, valves V3, V4, V5 

and V6 are closed. The valves V2 and V3 are turned on to introduce hydrogen into the 

line at the low pressure side of the membrane holder via the buffer cylinder. Valves V2 

and V3 are closed after few minutes which depend on the preferred pressure volume 

displayed on the digital sensor for the amount of hydrogen gas fed into the system. The 

pressure sensor has a maximum capacity of 3 bar. To study the rate of hydrogen 

diffusion, valve V4 is opened to transport hydrogen gas into membrane holder which 

contains the sample while V2 and V3 are closed. The effective membrane area is 22 mm2 

and sample is sandwiched between two perforated copper gaskets in the membrane 

holder. Heat is conducted into the membrane holder by the stainless steel block where the 

membrane holder is encased. This is followed by the feeding of the primary gas to the 

high pressure buffer chamber of the diffusion cell. 

The details of the home-built hydrogen diffusion reactor components is presented in 

Appendix 1 
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CHAPTER 4 

4.0 RESULTS AND DISCUSSIONS  

4.1 INTRODUCTION 

 

This chapter will present results and discussions of the as-received (commercial) 

polyimide (section 4.2), alkaline etched unirradiated (section 4.4) and alkaline etched 

irradiated polyimide samples (section 4.5). The first part of this section will focus on 

the results and discussions of the as-received polyimide samples to serve as baseline 

data. In the latter section of this chapter, the results and discussions of alkaline etched 

unirradiated and irradiated polyimide samples will be presented. 

 

4.2 CHARACTERISATION OF AS-RECIEVED POLYIMIDE SAMPLE 

 

The FTIR, XRD, TGA and hydrogen diffusion measurement results and analysis 

performed on the as-received polyimide will serve as the baseline data for the cleaned 

as-received polyimide samples. After the baseline characterisation of the as-received 

polyimide samples, freshly cleaned unirradiated and irradiated polyimide samples are 

etched with separate alkaline solution of 0.4 M NaOH, 13 % NaOCl and a mixture of 

0.4 M NaOH/13 % NaOCl solutions. The procedure for preparation of the alkaline 

etching solutions has been fully described in sections 3.3.1.2 – 3.3.1.4 and detailed 

schematic of the pre-treatment and characterisation procedures are presented in 

section 3.2. 

 

4.2.1 Fourier transformed infrared transmission spectroscopy  

 

In the spectroscopic study of the as-received (commercial), alkaline etched 

unirradiated and irradiated polyimide samples, was performed using the Fourier 

transformed infra-red spectroscopy (FTIR) using the Perkin Elmer® (Universal ATR) 
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machine as discussed in section 3.5.4 and the instrumental set-up conditions presented 

in section 3.5.4.1. In using the FTIR study for the different polyimide samples, 

absorption intensities were examined to determine the presence of specific functional 

groups according to Table 4.1. In effect, the presence, absence and reduction in 

absorption intensity of these functional groups (Table 4.1) along the polyimide 

structure can indicate the effect of surface treatment as function of etchant 

composition and time on the polyimide samples. The distortion or molecular 

rearrangement in the polyimide bonds, due to the effects of chemical (alkaline) or 

physical (irradiation) treatment of polyimide samples has been predicted to determine 

the ion exchange capacity during the etching of polyimide samples. 
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Figure 3: Polyimide structure showing the electron donor and acceptor species as 
indicated in the Table 4.1 below 
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Table 4-1: Summaries of the Fourier transformed infra-red spectra and their 

associated wavenumbers located in commercial polyimide. The bracket alphabets 

indicated in the table below represent the different functional groups identified in the 

polyimide structure presented above.  

 

  WAVENUMBERS (cm-1)  FUNCTIONAL GROUPS 

721 deformation of imide ring (a) 

1079 carbonyl stretching (b) 

1164-1491 cyclic ketone and amide stretch (c) 

1706 cyclic ketone and imide bending (d) 

1773 cyclic imide and C=O bending (e) 

2017-2159 aromatic amide stretch (f)  
 

 

From table 4.1 above, a summary of the polyimide structures, their respective 

wavenumbers and functional groups are presented. From these selected wavenumbers 

of interest and their corresponding functional groups, the reaction process and choice 

of etchant reactivity on the polyimide structure during alkaline etching can be 

predicted based on the overall change in the absorption intensities. This IR study is 

aimed at understanding the bonds that are available along the polyimide structure and 

to determine how the polyimide physico-chemical properties may be affected after 

etching in different solutions of 0.4M NaOH, 13 % NaOCl and 0.4 M NaOH/13 % 

NaOCl. For the FTIR analysis, polyimide absorbance values have been classified into 

three (3) according to Shriner et al., (2004). The first region of the polyimide 

absorbance value is called ‘functional groups’ and has wavenumbers between 1600 

cm-1 and 4000 cm-1. The ‘finger print’ region lies within 1000-1600 cm-1 and the 

aromatic regions occur from 675 cm-1 to 900 cm-1. 
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 Figure 4-2: Selected FTIR spectra of unirradiated polyimide 
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The FTIR result of as-received polyimide (Fig. 4.1) showed the absorption intensity 

bands present and their functional groups as highlighted in Table 4.1. The major 

functional groups observed in the as-received polyimide structure are the imide-amide 

bonds which occurred within the spectra collected and as labelled in Fig. 4.1. These 

bonds constitute the main back bone of the polyimide ring structures and have been 

identified as the site for ion exchange (Chae et al., 2002; Mathakari et al., 2010).  

 

4.2.2 X-ray diffraction  

 

X-ray diffraction (XRD) characterisation was performed on the as-received polyimide 

to investigate the polymer crystalline properties. Polyimides are known to be semi-

crystalline polymer structure with characteristic diffraction intensity that lies between 

14o – 26o 2Ө. The XRD instrumental set-up has been described in section 3.5.2.1 and 

the XRD sample preparation explained in section 3.5.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3: XRD analysis of as-received polyimide 
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Fig. 4.2 showed the XRD spectra of as-received polyimide film. The XRD diffraction 

peaks indicated sharp peaks at 14 o, 22 o and 26o 2Ө. These XRD peaks suggest that 

polyimide possesses crystalline properties even though most polymers are non-

crystalline while semi-crystallinity is often ascribed to polymers such as polyimides. 

The presence of peaks at 14 o and 26o agreed with the result of Shuxiang et al, (2010). 

According to the study of Shuxiang et al, (2010), Pristine® type of polyimide used 

compared to the Kapton® type investigated in this project. From Fig. 4.2, a new peak 

was observed at 22 o 2Ө for the Kapton® polyimide film. The presence of a new 

diffraction peak could due to the structural configuration such as regular structure at 

defined d-spaces of the intermolecular arrangement and the tight chain packing of 

atoms in the Kapton® type of polyimide film. Also, the crystalline property of 

Kapton® could be higher than the Pristine® type of polyimide investigated by 

Shuxiang et al, (2010).   

 

4.2.3 Hydrogen diffusion measurement  

 

The hydrogen diffusion measurement was performed on the as-received polyimide 

samples; to investigate the presence of pinholes defect on the polyimide surface and to 

determine its thermal stability over 10 hours at various temperatures. The 

temperatures for hydrogen diffusion across the polyimide sample were varied between 

25 oC, 250 oC and 325 oC using the home-built hydrogen diffusion unit. The detail of 

the hydrogen reactor set-up has been described in section 3.6.  

 

 

 

 

 

 

 

 

 

 

 



Chapter Four                Results/Discussions of unirradiated/irradiated polyimide 
 

 

  

99 

 

   

2.1

2.15

2.2

2.25

2.3

2.35

0 2 4 6 8 10
Time (Hrs)

Pr
es

su
re

 (b
ar

)

325 oC

250 oC

25 oC

 

 

 

 

 

 

 

 

 

In Fig. 4-3 above, the pressure value was plotted against time to determine the 

presence of surface defects such as pinholes and thermal rigidity of the as-received 

polyimide samples at various temperatures. For the hydrogen diffusion measurement 

at 25 oC, the pressure drop across the polyimide samples was observed to show steady 

hydrogen gas diffusion difference of 0.07 bar after 10 hours. The slow rate of 

hydrogen gas diffusion could be attributed to the defect-free surface and thermal 

stability of the as-received polyimide at room temperature. At temperatures of 250 oC 

and 325 oC, the polyimide sample showed increase in flux rate of hydrogen diffusion 

across polyimide film and the pressure drops were 0.12 bar and 0.17 bar respectively 

after 10 hours.  Although a comparative increase in hydrogen gas diffusion could be 

observed after the polyimide samples were heated at 250 oC and 325 oC, the rates of 

diffusion at these high temperatures were relatively stable over time. The hydrogen 

diffusion analysis suggests that at higher temperature, as-received polyimide samples 

Figure 4-4: Hydrogen diffusion measurement of as-received polyimide film at 25oC, 250oC
and 325oC 
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do not indicate any surface defects and thermal degradation of the polyimide samples. 

Although polyimides are known to be relatively stable at high temperature, the as-

received polyimide sample showed good thermal rigidity in high temperature 

environment and agreed with the result of Trautmann et al., (1996a). 

 

4.2.4 Thermo-gravimetric  

 

In this section, the thermo-gravimetric analysis (TGA) of as-received polyimide 

samples is presented. The detail of sample preparation for TGA analysis has been 

described in section 3.5.5, and the instrumental set-up is presented in section 3.5.5.1. 

The investigated the thermal stability and degradation of as-received polyimide 

samples in extreme conditions such as high temperature environment, and measured 

the amount and rate of weight change of the polyimide sample as a function of 

temperature or time in a controlled environment.  
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Fig 4.4 represents the thermal degradation of the as-received polyimide film before 

surface treatment by etching in alkaline or irradiation. From figure 4.4 above, it was 

observed that the as-received polyimide sample showed relative stability without any 

weight loss of polyimide film beyond 500 oC in nitrogen atmosphere. The polyimide 

sample thereafter decomposed with a large exotherm at 600 oC and about 60 % of the 

polymer was combusted. This exotherm indicated the decomposition of polyimide 

volatile side chains. The backbone structure could have been the residual 40 % left 

over. The residual polymer may be indicative of the durability of Kapton® compared 

to the Pristine® type of polyimide film studied by Qureshi et al., (2000). In their 

work, Pristine® was reported to be thermally stable up to 500 oC. The DSC showed 

an exotherm profile of two consecutive peaks with maximum intensity at 600 oC and 

800 oC. The exotherm peak at 50 oC has been suggested due to dehydration during 

polyimide imidization reaction (Suzuki et al., 2004). The exotherm reaction observed 

at 600 oC is assigned to the thermal degradation of the volatile units of the polyimide 

sample since the peak appeared with high intensity. However, it is obvious that a 

Figure 4-5: Thermo-gravimetric study of unirradiated polyimide 
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thermally initiated reaction occurred on the unirradiated polyimide samples due to the 

emergence of these two exotherm peaks. It was observed that beyond 800 oC, the 

exotherm goes up again and is accompanied by further 15 % loss which was 

interrupted by the termination of the experiment. This could suggest that the residue 

remaining after the large decomposition at 600 oC was thermally stable until 800 oC. 

 

4.3 ETCHING BY ALKALINE SOLUTION OF UNIRRADIATED AND 

IRRADIATED POLYIMIDE FILM 

 

The use of a chemical etching procedure was employed to activate the polyimide 

surface. This surface treatment method of the unirradiated and irradiated polyimide 

samples was adapted from the work of Mitrofanov et al., (2006). In their method, the 

irradiated polyimide samples were track etched at higher concentrations (0.8 M) of 

NaOH/NaOCl solutions mixtures and high etching temperature (80 oC). In 

comparison, this study employed etching of the polyimide samples at 50 oC with 0.4 

M NaOH, 13 % NaOCl and mixture of 0.4 M NaOH/13 % NaOCl solutions. The use 

of lower temperature and concentration of etchants is to control the depth profile of 

the polyimide film during etching. The details of the preparation of the etchants used 

in this study (NaOH and NaOCl), and etching procedure have been discussed in 

chapter 3 (section 3.4.1). The etching solutions and variable parameter (time) used has 

been discussed in Table 3.3. 

 

4.4 CHARACTERISATION OF ALKALINE ETCHED UNIRRADIATED 

AND HEAVY ION IRRADIATED POLYIMIDE SAMPLES 

 

This section will present the characterisation results of alkaline etched unirradiated 

polyimide samples with the use of separate solutions of NaOH, NaOCl and 

NaOH/NaOCl. Fresh etching solutions were used for each polyimide sample in a 

thermometer-control water bath to keep the temperature constant 50 oC for all etching 

time. The characterisation techniques employed to investigate the etched unirradiated 
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polyimide samples include; the Fourier transformed infra-red/Attenuated total 

reflection (FTIR/ATR) which was used to study the presence of functional groups and 

their respective bonds as a function of etching time. The Scanning electron 

microscopy (SEM) technique was used to examine the effect etching on surface 

morphology of the samples after each successive etching time.  

 

4.4.1 FTIR of etched unirradiated polyimide sample using 13 % NaOCl solution  

 

The etched unirradiated polyimide samples were analysed by FTIR technique after 

etching with 5 mL of 13 % NaOCl solution. This section will present the spectra 

results for the various etching time at 5, 10, 20 and 30 minutes.  
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 Figure 4-6: FTIR of unirradiated polyimide and 5 minutes 13 % NaOCl etched unirradiated polyimide 
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The IR spectra of unirradiated polyimide etched with 13 % NaOCl solution for 5 

minutes (Figure 4.5) showed a reduction in absorption intensity for almost all the 

functional groups present in the polyimide structure except the bands at 1497 cm-1 and 

1708 cm-1 which correspond to amide stretch and imide bending groups. The 

treatment after 5 minutes suggest that the less tightly packed chains with weaker 

bonds are attacked immediately by NaOCl etching solution whereas there has not 

been any literature report for etching of polyimide at such a low treatment time 

probably due to the less effective chemical modification of polyimide. Some broad 

peaks appeared at regions of 2017 cm-1 with bumps located at 2092 cm-1. This region 

contains the aromatic amide group and the increase in the absorption band suggests 

ring closure after etching.     
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Figure 4-7: FTIR of unirradiated polyimide and 10 minutes 13 % NaOCl etched unirradiated polyimide 
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In Fig 4.6, the effect of etching on unirradiated polyimide with 13 % NaOCl for 10 

minutes resulted in overall decrease in the absorbance intensities across the major 

functional groups that have been identified according to Table 4.1. A similar trend as 

observed in the 5 minutes of polyimide etching appears consistent in the 10 minutes 

treatment, with a new peak observed at 2343 cm-1. This peak has been identified due 

to a methyl group according to Zhang et al., (2007). The tight chain packing of the 

polyimide structure could have been affected during etching time.  
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   Figure 4-8: FTIR of unirradiated polyimide and 20 minutes 13% NaOCl etched unirradiated polyimide 
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The spectra in fig. 4.7 represent the unirradiated polyimide and the 20 minutes etched 

unirradiated polyimide film. The etching was performed in 13 % NaOCl solution. It 

could be observed that there was a continuous decrease in the absorption bands 

intensity across the functional groups of the etched polyimide sample compared with 

the untreated commercial polyimide film. The absorption bands from 1774 cm-1 to 

1454 cm-1 remained unaffected for the etched polyimide sample. This may be 

attributed to the rigidity of the polyimide film, since these bonds regions make up the 

polyimide backbone structure hence their high resistance to chemical attack. The 

absorption band at 1973 cm-1, 2017 cm-1, 2157 cm-1 and 2338 cm-1 became visible for 

this treatment time. 
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 Figure 4-9: FTIR of unirradiated polyimide and 30 minutes 13 % NaOCl etched unirradiated polyimide 
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In figure 4.8, after the 30 minutes of etching the unirradiated polyimide film in 13 % 

NaOCl solution, it can be seen that the absorption band at 1454 cm-1 and 2343 cm-1 

had disappeared and the absorption at 1497 cm-1 showed reduced intensity. The 30 

minutes etching seems to affect the selective chain structures such as the absorption 

band at 1497 cm-1, 1977 cm-1, 2017 cm-1 and 2157 cm-1. The emergence of these 

bonds varied from other polyimide samples at lower etching time. The absorption 

peak at 2338 cm-1 was absent while peaks at 1708 cm-1 and 1774 cm-1 did not show 

any significant change in absorption intensity as compared with the untreated 

polyimide sample.  

 

4.4.2 FTIR of unirradiated polyimide etched with 0.4M NaOH solution 

  

In this section, the FTIR analysis results of the unirradiated polyimide will be 

presented. The unirradiated polyimide samples were etched with 10 mL 0.4M NaOH 

solution for 5, 10, 20 0r 30 minutes. 
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 Figure 4-10: FTIR of unirradiated polyimide and 5 minutes 0.4 M NaOH etched unirradiated polyimide 
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Fig. 4.9 represents the FTIR spectra of etched polyimide film in 0.4 M NaOH solution 

for 5 minutes. The spectra showed reduced band intensity at 721 cm-1 assigned to 

imide ring deformation in the polyimide structure. The amide stretch region which lies 

between 1164 cm-1 and 1491 cm-1 can be seen to show a new peak at 1454 cm-1, a 

shoulder at 1550 cm-1 and a bump can be seen at 1690 cm-1. These new peaks suggest 

opening of amide ring and the ketone bonds associated with these absorption bands 

and agreed with the result of Mathakari et al., (2009). This could suggest that a strong 

chemical reactivity between the NaOH solution and amide functional which may 

result in the reorientation amide/imide chain and molecular rearrangement after 

etching.   
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Figure 4-11: FTIR of unirradiated polyimide and 10 minutes 0.4 M NaOH etched unirradiated polyimide 
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The etching of polyimide in 0.4 M NaOH solution is presented in figure 4.10 for the 

10 minutes etching time. It can be observed that some new absorption bands emerged 

after etching the polyimide samples. These bands are; 1400 cm-1, 1546 cm-1, 1575 cm-

1 and 1633 cm-1. The absorption band intensity at 1708 cm-1 was completely 

eliminated while absorption at 1774 cm-1 showed a reduced intensity. The effect of 

NaOH on the imide-amide ring of the polyimide appeared significant hence could 

result in ring opening and formation of polyamates structure. In effect, the availability 

of metal for ion exchange capacity could be enhanced since the affected bands 

constitute the polyimide backbone structure. The results agreed with the account of Yi 

et al., (2004). Their work reported a superimposition of the amide I (1650 cm-1) and 

the amide II bonds located at 1550 cm-1 due to a broad spread of absorption bands at 

1500 - 1700 cm-1 after surface treatment of polyimide with 0.5 M KOH solution. 
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 Figure 4-12: FTIR of unirradiated polyimide and 20 minutes 0.4 M NaOH etched unirradiated polyimide 
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After 20 minutes of etching unirradiated polyimide sample, it can be seen that the 

following absorption bands were reduced 721 cm-1 and 1774 cm-1. This was also 

noticed for the 10 minutes treated polyimide sample. These bands are the imide 

deformation and cyclic imide bending respectively. The absorption bands located at 

1400 cm-1, 1546 cm-1, 1575 cm-1 and 1633 cm-1 are still obvious but not with the 

intensity noticed for the 10 minutes etched sample. This suggests a continuous effect 

of the etchants on the polyimide backbone and the cyclic ring in the polyimide 

structure. 
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Figure 4-13: FTIR of unirradiated polyimide and 30 minutes 0.4 M NaOH etched unirradiated polyimide
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Figure 4.12 represent the 30 minutes etched polyimide sample. It can be seen from the 

IR spectra that the characteristic absorption bands intensities have been significantly 

reduced. The bands at 721 cm-1, 1164 and 1088 cm-1 appeared reduced while there 

was complete elimination of absorption bands at 1285 cm-1, 1454 cm-1 1708 cm-1 and 

1303 cm-1. The band at 1774 cm-1 can be seen but at a more reduced intensity. The 30 

minutes etching of the unirradiated polyimide can be seen to undergo significant 

molecular rearrangement due to the elimination and emergence of new bands. The IR 

study from fig. 4.12 can suggest that the treatment of the polyimide sample in 0.4 M 

NaOH has resulted in the creation of new functionality where the backbone structure 

of the polyimide altered. 
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4.4.3 FTIR of unirradiated polyimide etched with 0.4M NaOH dissolved in 13 % 

NaOCl solution 

 

A mixture of 0.4 M NaOH and 13 % NaOCl solution was prepared according to the 

procedure in section 3.2.1.4. The unirradiated polyimide samples were etched in the 

solution 5, 10, 20 or 30 minutes.  
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Figure 4-14: FTIR of unirradiated polyimide and 20 minutes 0.4 M NaOH/13 % NaOCl etched unirradiated polyimide
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Figure 4.13 represents the polyimide film etched with 0.4M NaOH dissolved in 13 % 

NaOCl solution. This spectra is for the 20 minutes etching time. The absorption band 

appeared similar for the unirradiated and the etched polyimide sample except for a 

bump peak which appeared around 1622 cm-1 and the increased absorption intensities 

noticed at 2017 cm-1 and 2057 cm-1. The relative stability of the spectrum of the 

etched polyimide with the as-received polyimide sample can be attributed to the fact 

that the mixture of NaOH/NaOCl did not result in any significant change in the 

polyimide functionality after etching.  
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4.5 SURFACE TREATMENT OF IRRADIATED POLYIMIDE FILM 

4.5.1 Introduction 

 

This section will discuss the results of irradiated polyimide samples after etching in 

NaOCl and mixture of NaOH/NaOCl solutions. The procedures and conditions of 

etching have been discussed in section 4.5 and 4.6. The aim of this section is to 

understand if etching of irradiated polyimide would enhance the surface changes after 

etching and to make a comparison with the unirradiated polyimide samples and 

literatures. The samples of PI for heavy ion bombardment was performed in Russia 

and due to time constraint on the project, only alkaline chemical etching was done 

after the heavy ion irradiation surface treatment due to the non-availability of 

accelerator in SA to perform heavy ion bombardment. A detailed analysis such as 

cross-sectional study to determine pore formation on polyimide surface of etched 

irradiated PI is necessary prior to electroless plating. 

 

4.5.2 Characterisation of track etched polyimide 

 

The depth profile of track etched polyimide film (after etching with NaOCl, NaOH or 

NaOH/NaOCl solutions) is important for the application polyimide in gas separation. 

This section will present the characterisation of the etched polyimide films using the 

FTIR, SEM and hydrogen diffusion techniques. After etching in alkaline solutions, 

the samples were characterised using FTIR to examine any variance in absorption 

band intensity due to the difference in etching time. The surface morphology of the 

irradiated samples was studied by SEM in other to investigate surface roughness and 

pores distribution and shapes before and after etching. The pore depth profile on the 

polyimide samples after etching was studied using the hydrogen diffusion 

measurement.  
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4.5.2.1 Visual inspection 

 

The track etched polyimide samples were subjected to visual inspection. Polyimide 

film colour and texture were examined. A colour change from amber to yellow was 

observed after etching of the irradiated polyimide samples compared to the unetched 

samples. The colour change was similar for NaOCl and NaOH solutions track etched 

polyimide samples. It was noticed that after 30 minutes of etching, colour change of 

the track etched polyimide film was more intense which suggest strong chemical 

interaction between the etchants and the polyimide samples. The surface textures of 

the samples were observed to become coarse as a function of etching time.   

 

4.6 MORPHOLOGICAL STUDY BY SCANNING ELECTRON 

MICROSCOPY (SEM) OF IRRADIATED POLYIMIDE ETCHED WITH 

13 % NaOCl AND 0.4M NaOH/13 % NaOCl SOLUTIONS. 

 

This section will present the SEM results (Fig. 4.14 and Fig 4.16) of the track etched 

polyimide film. The etchings of the irradiated polyimide samples were limited to the 

use of NaOH/NaOCl and NaOCl solutions. These etchants were selected since etching 

rate depends on the etching temperature and active chlorine concentration of the 

etchants (Sudowe et al., 2001). The surface morphology of the track etched polyimide 

film was studied to determine the depth profile through pores formation, pore 

distribution and pore sizes after the samples were etched. The etching of the samples 

was performed in NaOH and NaOCl solutions under same conditions as previously 

discussed in section 3. The average pores diameter (Fig. 4.15) of the track etched 

polyimide samples was measured as (~0.43 μm) for 0.4 M NaOH/13 % NaOCl 

solution and (0.51 μm) for 13 % NaOCl solution. The similarity of pore sizes after 

etching the polyimide samples in different solutions further confirms the FTIR results 

where the absorption spectra as seen in Fig 4.19 – Fig. 4.22. The SEM morphological 

results for the track etched polyimide samples after etching with NaOH/ NaOCl 

solutions are presented below. The overall effect of etching of irradiated polyimide 

surface was studied using the SEM technique. The samples were etched for 10, 15, 
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20, 30, 40 or 60 minutes. The pore size, pore distribution and surface roughness of the 

polyimide samples after etching were imaged and carefully examined. 
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a                   b          c       d 

   

 

(a) 10 minutes, (b) 15minutes, (c) 20 minutes, (d) 30 minutes,  

(e) 40 minutes, (f) 60 minutes 

 

 

 

e                       f 

Figure 4-15: SEM images of 0.4 M NaOH/13 % NaOCl track etched 
irradiated polyimide 
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The SEM surface morphology was obtained at 10,000x magnification so as to image 

the surface of the polyimide samples and investigate the pore sizes and determine the 

surface roughening effects due to etching time.  

 

Fig. 4.14 (a) - (f) represents the SEM analysis of the irradiated polyimide samples 

etched with 0.4M NaOH dissolved in 13 % NaOCl solution. The etching of the 

samples indicated the creation of pores on the polyimide surface. The pores appeared 

circular and dispersed according to fig. 4.14 (a) - (c) when shorter etching time was 

used (10 - 30 minutes). An increase in the etching time showed pore walls being 

destroyed and pores becoming enlarged at longer etching time of 60 minutes as 

observed in fig. 4.14 (d) - 4.14 (f). The pores of the etched film appeared conical in 

shape as observed in the surface after longer etching time. Also, the SEMs of 

polyimide surface samples indicated an increase in the film surface roughness with an 

increase in etching time. It was observed that the pore increased after the 20 minutes 

etching time. The pore size distribution was calculated and confirmed from the SEM 

images using the arbitrary measurement technique. The pore density from of the 

polyimide samples (Fig. 4.14d – 4.14f) agreed with the study of   Mitrofanov et al., 

(2006). A significant improvement from the result obtained in this work is the use of 

lower etching temperature (50 oC), lower concentration of etchant (0.4 M NaOH) and 

reduced time of etching (60 minutes). Mitrofanov et al., (2006), reported the treatment 

of polyimide film at 80 oC. In the work of Mu et al., (2010), higher concentration of 

2.5 M NaOH was employed for 12 hours. According to Schiedt (2007), 5 M NaOH 

was used to etch polyimide film at 60 oC and 13 % NaOCl solutions at 55 oC for an 

average of approximately 4 hours treatment time. By using low temperature, lower 

etchant concentration and shorter time, this study successfully demonstrates that the 

depth profile and size of the pore formation can be controlled according to the results 

obtained from the SEM and pore size distribution reported.  
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4.6.1 The pore size distribution of track etched polyimide using 0.4 M NaOH/ 13 

% NaOCl mixture and 13 % NaOCl solutions 

 

The graph below represents the pore radii measurement of tracked etched membrane. 

The pores were measure for each polyimide samples and compared for the two 

differently track etched polyimide film. This was to compare the effect of rate of 

etching as a function of time on the pore size of the track etched samples. 

                                       

 

 

 

 

 

 

 

 

 

 

 

The pore size measurement graphs are presented in Fig. 4.15 to show the relationship 

of pore diameter as a function of the etching time. The graph represents track etched 

polyimide samples of NaOH/NaOCl solution and NaOCl solution. From the graph 

obtained in Fig 4.15, there is a linear relationship between etching time and pore radii. 

It was observed that the longer the etching time, the larger the pore radii. For 

Figure 4-16: Graph with the compared pore size of track etched polyimide with (a) 13 % NaOCl 
 
and (b) 0.4M NaOH/13 % NaOCl 
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NaOH/NaOCl track etched polyimide, the pore diameter was measured as 0.19 μm 

and 0.73 μm as smallest and largest pore radii respectively. As for the NaOCl track 

etched polyimide film, pore radii were 0.25 μm and 0.80 μm as the smallest and 

largest pore diameter. This increase in pore suggests that chemical etchants are more 

readily available to act on the tracks bombarded with heavy ion after a prolonged time 

thereby creating more pores (Mitrofanov et al., 2006). 

 

4.7 SCANNING ELECTRON MORPHOLOGICAL STUDY FOR NaOCl 

TRACK ETCHED POLYIMIDE SAMPLES 

 

In the SEM images below (Fig. 4.16), the morphological study of the track etched 

polyimide samples with 13 % NaOCl solution is presented. The etching time was 

varied from 10, 15, 20, 30 40 or 60 minutes. The rate of NaOCl etching as a function 

of surface pore formation, pore size and pore distribution were examined and 

discussed.  
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a      b       c        d 

 

      

 (a) 10 minutes; (b) 15 minutes; (c) 20 minutes; (d) 30 minutes;  

(e) 40 minutes and (f) 60 minutes  

 

            

e      f     

Figure 4-17: SEM images of 13 % NaOCl track etched polyimide 
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Fig 4.16 represent track etched polyimide using 13 % NaOCl solution between 10 – 

60 minutes etching time. From the SEM images above, it was observed that the pores 

are well ordered, randomly distributed and there was a progressive increase in pore 

formation on the polyimide surface as a function of etching time. Also, the time of 

etching was seen to have destroyed the pore walls thereby increasing the pore 

diameter after etching for 60 minutes as seen in Fig. 4.16f. In Fig. 4.16d which 

represented track etched polyimide sample after 30 minutes, it was observed that the 

process of pore formation was probably the function of chemical reactivity between 

the polyimide surface and etchants to reveal the ion track areas. The pores showed 

circular shapes and the pore diameter graph in Fig. 4.15 showed that the pore diameter 

increased as a function of etching time. The rate of pore formation could have been 

due to the thickness of the polyimide film according to Esinger (2007). The overall 

effect of pore formation, pore distribution and pore radii after irradiation agreed with 

other reports (Sudowe et al., 2001; Esinger et al., 2003; Esinger 2007; Esinger et al., 

2010).  
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4.7.1 Hydrogen diffusion measurement of 0.4 M NaOH/13 % NaOCl track etched 

polyimide sample  

 

The hydrogen diffusion measurement was performed on track polyimide sample 

etched with NaOH/NaOCl solution. This result is to investigate the effect of pore radii 

on the permeation of hydrogen gas. The graphs below represent a compared hydrogen 

permeation study of different track etched polyimide samples at different time. The 

diffusion test was performed in the home-grown hydrogen diffusion reactor unit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                               

Fig. 4.17 showed the rate of hydrogen gas permeation across the track etched 

polyimide surface after etching for 10, 15, 20, 30, 40 and 60 minutes in NaOH/NaOCl 

Figure 4-18: Hydrogen diffusion test for 0.4 M NaOH/13 % NaOCl track etched polyimide 
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solution. The diffusion measurement was performed for about 7 hours as a function of 

pressure drop for each sample. From the result above, the rate of diffusion of 

hydrogen was relatively stable until after the 30 minutes etched sample. The diffusion 

of hydrogen for the 10 minutes and 15 minutes sample was identical and relatively 

stable for almost 4 hours with pressure drop values 2.348 bar to 2.344 bar. This was 

expected since the etching time was minimal hence formation of pore diameter was 

small for any fast rate of hydrogen diffusion. As from the 20 minutes etching time, the 

rate of diffusion can be seen to occur gradually than the 10 and 15 minutes since the 

pore radii have increased while the corresponding pressure drop value was 2.27 bar 

after about 3 hours of diffusion measurement. The diffusion rate after 30 minute was 

relatively steady as pressure as indicated in the pressure drop value of 2.054 bar.  For 

the 40 and 60 minutes etched samples, there was fast hydrogen diffusion kinetic with 

a sharp drop in pressure. This was apparently due to the large pore radii after etching 

above 40 minutes. From the hydrogen diffusion measurement, it was obvious that the 

rate of diffusion is a function of pore radii which is dependent on the time of etching 

of polyimide samples. 
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The graphs below represent the hydrogen diffusion measurement of 13 % NaOCl 

track etched polyimide.  

 

 

 

 

 

 

 

 

 

 

In Fig. 4.18, the hydrogen diffusion analysis graphs of track etched polyimide samples 

for 10, 15, 20, 30, 40 and 60 minutes. From the result above, the 10 and 15 minutes 

track etched polyimide samples indicated identical diffusion rate. The pressure values 

dropped from 2.350 bar to 2.329 bar after about 6 hours of diffusion measurement. It 

could be seen that hydrogen diffusion across 10 and 15 minutes track etched samples 

did not show significant difference unlike the 20 minutes track etched polyimide film. 

As for the 20 minutes track etched sample, a steady rate of diffusion was observed 

while 1.991 bar was recorded as the pressure drop after about 6 hours. After 30 

minutes of etching, the rate of diffusion increased which indicated the effect of pore 

radii on gas permeation across track etched polyimide surface.  

 

Figure 4-19: Hydrogen diffusion test for 13 % NaOCl track etched polyimide 
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4.7.2 FTIR spectra of irradiated polyimide etched with 0.4M NaOH dissolved in 

13 % NaOCl solution 

 

The FTIR spectra will be presented for the irradiated polyimide etched with 0.4 M 

NaOH dissolved in 13 % NaOCl solution. The FTIR results presented represent a 

comparison of spectra for the unirradiated polyimide film and the irradiated polyimide 

etched between 10 minutes and 60 minutes. The first section of the IR spectra will 

focus on the deformation of the imide ring which is located at 720 cm-1 while second 

section of the FTIR covered from 2000 cm-1 to 1200 cm-1 where other functional 

groups (table 4.1) of interest in the polyimide structure are present.  
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 Figure 4-20: Compared FTIR (800-600cm-1) spectra of irradiated polyimide etched with 0.4M NaOH/13 % NaOCl
solution (a) As-received polyimide, (b) 10 minutes etched, (c) 20 minutes etched, (d) 30 minutes etched, (e) 40 
minutes etched and (f) 60 minutes etched. 

 

 

 

 



Chapter Four                Results/Discussions of unirradiated/irradiated polyimide 
 

 

  

137 

 

   

The spectra of irradiated polyimide spectra are compared in figure 4.19 after etching 

in 0.4 M NaOH/NaOCl solution. Almost all of the absorption bands for the functional 

groups increased in intensity compared to the unirradiated sample shown in figure 

4.19a. The absorption bands at 720 cm-1 represents the imide deformation bonds and 

could be seen to increase in absorbance intensity with an increase in time of exposure 

to the etching solution with peal maximum at 40 minutes treatment time. The increase 

in the absorption band intensity of the imide deformation bonds as seen from this 

spectra indicated that the imide deformation bond was not affected by the chemical 

etchant. Although no direct correlation can be deduced from the absorption intensity 

and etching time, increase in absorption intensity of these spectra could strengthened 

the imidization but there is no literature report that has indicated the influence of this 

absorption band on polyimide reactivity. 
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Figure 4-21: Compared FTIR (2000-1200cm-1) spectra of irradiated polyimide etched with 0.4M NaOH/13 % NaOCl
solution (a) As-received polyimide, (b) 10 minutes etched, (c) 20 minutes etched, (d) 30 minutes etched, (e) 40 minutes
etched and (f) 60 minutes etched. 
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The IR spectra range 2000 cm-1 – 1200 cm-1 in Fig. 4.20 represents the compared 

spectra of irradiated polyimide after etching with NaOH/NaOCl solution. It can be 

observed that the intensity of the imide structures represented by bands at 1303 cm-1 

and 1775 cm-1 increased while the peak assigned to imide functional groups at 1710 

cm-1 is reduced. The region of 1650 cm-1 (amide 1) and 1550 cm-1 (amide 2), showed 

broad and reduced intensity compared with the original polyimide structure and 

agreed with the study of Yi Li  et al., (2004) and Mathakari et al., (2009). The broad 

spectrum observed in 1650 cm-1 (amide 1) and 1550 cm-1 (amide 2) regions has been 

suggested to result in the formation of polyamate of sodium metal due to the 

conversion of imide to amide after alkaline hydrolysis. These regions have been 

reported to serve as ‘cation-exchange’ areas for the alkaline hydrolysed polyimide 

structure where a cation such as Pd2+ can substitute during reaction with the sodium 

polyamates. The ease of cationic exchange could also result from the electro-

positivity of metals and preferential displacement in a stronger cationic solution bath. 

Several studies from literature suggested this could be due to the presence of the C=O 

functional group in the polyimide backbone structure (Yi Li et al., 2004; Mathakari et 

al., 2009). 

 

At 1598 cm-1, complete elimination of peak was observed after etching of polyimide 

structure. The observed peak disappearance at 1303 cm-1 and 1285 cm-1 of imide 

stretching can be observed for the etched film.  An interesting absorption peak could 

be noticed at 1708 cm-1 with reduced absorbance intensities. These reductions of 

bands intensities agreed with the wok of Yi Li et al., (2004) where they used 0.5 M 

KOH to etched polyimide at 50 oC for 20 minutes. They observed a reduction in 

intensity after polyimide treatment and concluded that this is due to the conversion of 

imide to amide and superimposition of the amide rings. The tight packing of the imide 

structure along the backbone of polyimide structure after etching in alkaline solutions 

could have been responsible for the reduction in absorbance intensity. 
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4.7.3 FTIR spectra of irradiated polyimide etched with 13 % NaOCl solution 

 

The FTIR results for the NaOCl track etched polyimide are presented in this section. 

The etching procedures have been discussed in previous sections. 
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Figure 4.21  Comparison FTIR (800-600 cm-1) spectra of irradiated polyimide sample etched with 13 % NaOCl solution;  

a (As-received polyimide), b (10 minutes), c (20 minutes), d (30 minutes), e (40 minutes) and f (60 minutes). 
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Figure 4.21 represents the compared spectra of irradiated polyimide etched with 13 % 

NaOCl solution. The spectra above cover the imide deformation band which is located 

at 720 cm-1. The characteristics absorption intensity appeared reduced for all 

irradiated etched samples. It can be observed from Fig. 4.21e which represent the 

etching time of 60 minutes appeared reduced and this suggest that the deformation of 

the polyimide functional groups at 720 cm-1 can be degraded over prolonged time 

with some few bumps of absorption intensity peaks observed between 640 cm-1 and 

680 cm-1. In literature, there has not been any report of these functional groups in the 

polyimide structure for these absorption peaks probably because they do not constitute 

the main chain structures of the polyimide units.   
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Figure 4. 22  Comparison FTIR (2000-1200 cm-1) spectra of irradiated polyimide sample etched with NaOCl solution; 

 a (As-received polyimide), b (10 minutes), c (20 minutes), d (30 minutes), e (40 minutes) and f (60 minutes).
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Figure 4.22 represent the compared spectra of etched irradiated polyimide with 13 % 

NaOCl solution for 10 or 20 or 30 or 40 or 60 minutes. From the spectra above, it was 

observed that the peak at 1285 cm-1 completely disappeared after the sample was 

etched for 60 minutes. This disappearance could be as a result of the opening of the 

ketone-amide groups thereby making this unit available for metal exchange 

mechanism. The other peak affected by this surface treatment is the imide ring stretch 

located at 1708 cm-1. All the samples showed reduction in the band intensity at 1708 

cm-1 with the 60 minutes showing a broad spread of peaks relative to samples. The 

broad spectrum could be attributed to the degree of distortion of the back bone 

structure of the polyimide after 60 minutes. The other samples which were treated at 

lower time appeared to main relative sharp peaks suggesting that the tight chain 

packing were relatively stable. This is indicative that both solutions can promote 

identical effect on the polyimide samples resulting in the formation of polyamates by 

exchange of carboxylic groups with Na metal according to Yi Li et al., (2004). 
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CHAPTER 5 

5.0 RESULTS AND DISCUSSION OF PALLADIUM MODIFIED 

POLYIMIDE 

5.1 CHARACTERISTIZATION OF PALLADIUM MODIFIED 

UNIRRADIATED POLYIMIDE 

 

This chapter will focus on the characterisation results of palladium on modified 

unirradiated polyimide film. Palladium electroless plating was deposited on 

unirradiated polyimide (Kapton®) because the irradiated polyimide samples could not 

be afforded due to cost and time constraint. In this section, the results for palladium 

modified unirradiated polyimide will be presented and discussed. The unirradiated 

polyimide film (Kapton®) was modified with palladium (see section 3.4) after the 

polyimide samples have been etched with in separate solutions of NaOH and NaOCl 

as specified in sections 3.3.1.2 – 3.3.14. The palladium modified unirradiated 

polyimide samples were characterised using, SEM, TEM, TGA, XRD and the peel 

test. These characterisation techniques were used to determine the surface 

morphological structure using SEM and TEM analytical techniques. The crystalline 

structure of the palladium modified samples was investigated with XRD technique 

(refer to section 3.5.3) while thermal stability of the modified polyimide was 

measured by TGA analysis as discussed in section 3.5.5. The adhesive strength of 

palladium on treated polyimide surface was investigated by a peel test section 3.5.6 

for the experimental details. 

 

5.2 MORPHOLOGICAL (SEM) STUDY OF UNIRRADIATED 

PALLADIUM MODIFIED ETCHED POLYIMIDE  

 

The use of electroless deposition of metal on a substrate is considered to be a cheap, 

simple technique and enhances uniformity of metal films on supports (Li et al., 1998). 
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Prior to the plating of polyimide with palladium, the surface of the polyimide film was 

etched to promote adhesion by increasing surface roughness and creating ‘active sites’ 

along the polyimide for palladium metal exchange. Fig. 5.1 shows SEM micrograph 

of NaOH etched polyimide, Fig. 5.2 shows SEM micrograph of NaOCl etched 

polyimide samples and Fig. 5.3 represents the SEM micrograph of NaOCl/NaOH 

etched polyimide. All the etched polyimide samples were plated with palladium by 

electroless deposition for 10 minutes according to the experimental approach set out 

in Fig 3.1 and the etching time for the samples was between 5 minutes to 30 minutes.  

 

5.2.1 The SEM images below represent NaOH etched polyimide film modified 

with palladium.  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1: SEM micrograph of palladium modified unirradiated polyimide etched 
with 0.4 M NaOH (a) 5 minutes, (b) 10 minutes, (c) 20 minutes, (d) 30 minutes. 
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Figure 5.1 (a) – (d) represent the SEM palladium plated unirradiated polyimide after 

etching in 0.4 M NaOH solution. From the SEM images above, palladium metal 

particles can be seen to show disperse spherical particles in Fig. 5.1 (a) for 5 minutes 

palladium modified polyimide. In Fig. 5.1 (b), Fig 5.1 (c) and Fig. 5.1 (d) which 

represent the 10, 20 and 30 minutes etched polyimide samples; the dense layer of 

palladium particles structure appeared to increase with the surface etching time. In 

Fig. 5.1 (c), the rate of nucleation appears prevalent while Fig. 5.1 (d) shows increase 

in the growth of the palladium particles. The dense metal layer can increase the 

palladium-polyimide interlocking matrix through depth profile of palladium with the 

available active in the polyimide structure after etching thereby increasing adhesion 

strength of polyimide film. The palladium particles particle growth seems to occur via 

the ‘Stranski-Krastonov’ principle (Baskaran et al., 2011) which is the layer-by-layer 

growth before agglomeration of particles as observed in Fig. 5.1 (b) and 5.1 (c) to 

form dense metal layer. Although electroless plating was employed to deposit 

palladium as a uniform layer on polyimide, a variance in the FTIR results as explained 

in section 4.4.2 could be responsible for the layer-by-layer growth since the available 

active sites after etching is accomplished as a function of etching time of the 

polyimide surface.  
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5.2.2 The SEM micrograph result images are presented for 0.4 M NaOH/13 % 

NaOCl etched unirradiated polyimide film modified with palladium.  

 

The time was varied from 5 minutes to 30 minutes. As reported in the previous 

section, palladium electroless deposition was kept constant for all samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2: SEM micrograph of palladium modified unirradiated polyimide etched 
with 0.4 M NaOH/ 13 % NaOCl (ai) 5 minutes, (bi) 10 minutes, (ci) 20 minutes, (di) 
30 minutes. 
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Fig. 5.2 (ai) – Fig. 5.2 (di) represents the unirradiated polyimide etched with a mixture 

of 0.4 M NaOH/13 % NaOCl solution from 5 minutes - 30 minutes. It was observed 

Fig. 5.2 (ai) – Fig. 5.2 (di) that the palladium particles formed on polyimide surface 

appeared as spherical clusters and not uniformly distributed over the surface of the 

polyimide membrane. Palladium particles can be seen to be sparsely distributed across 

the polyimide surface Fig. 5.2 (ai), instead under layer of particles can be noticed as 

seen in Fig 5.2 (ai) and Fig 5.2 (ci). These palladium particles can be seen to increase 

size in Fig. 5.2 (bi) which could due to increase in layer growth as a result of the 

continuous plating. In Fig 5.2 (ci), a new form of ‘under-layer’ growth of palladium 

particles was noticed while in Fig. 5.2 (di), palladium particles were observed to form 

a ‘mesh-like’ layer over the polyimide surface. Agglomeration of the palladium 

cluster particles can be seen to increase across the etching time Fig. 5.2 (bi) – Fig. 5.2 

(di) and appeared in a ‘mesh-like’ structure with smaller particle sizes Fig. 5.2 (di). 

From the SEM images Fig. 5.2 (ai) – Fig.5.2 (di), the loosely packed palladium 

particle could be responsible for the poor adhesion of palladium particles and possible 

penetration of palladium particles into polyimide surface even though the FTIR result 

as discussed in section 4.4.3 showed the effect of etching solution as a function of 

time on polyimide surface. The poor adhesion as confirmed by the peel test could be 

due to poor depth profile of unirradiated polyimide surface hence binding strength 

between palladium particles and polyimide surface is low. This may also be 

responsible for the poor penetration of palladium metal into the polyimide matrix after 

electroless deposition. 
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5.2.3 The SEM micrograph of unirradiated polyimide film samples was etched in 

13 % NaOCl and modified with palladium plating by electroless deposition.  

 

Palladium electroless plating time on the etched polyimide film was kept constant for 

all samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-3: SEM micrograph of palladium modified unirradiated polyimide etched 
with 13 % NaOCl (aii) 5 minutes, (bii) 10 minutes, (cii) 20 minutes, (dii) 30 minutes 
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The palladium modified unirradiated polyimide samples were etched with 13 % 

NaOCl solution Fig. 5.3 (aii) – Fig. 5.3 (dii). SEM images indicated a spherical and 

well-ordered palladium particle arrangement over the polyimide surface which was 

confirmed by the XRD as discussed in Fig 5.7. The under-layer observed in Fig 5.3 

(aii) resulted in ‘robust’ palladium particle agglomeration and tight packing of the 

palladium particles Fig. 5.3 (bii) – Fig. 5.3 (dii). These particles can be seen to 

increase in size with uniform spread over the polyimide surface Fig 5.4 (cii) and Fig. 

5.4 (dii). Sodium hypochlorite solution is a strong etchant due to the chlorine content 

as confirmed with the FTIR result in section 4.4.3 (Trautmann et al., 1999; Schiedt, 

2007) and since the time of surface functionalization of polyimide is the only variable 

parameter in this case, it can be inferred that the palladium particle agglomeration 

grains is increased with increase in the polyimide surface treatment. It is also evident 

that palladium nucleation was initiated as seen in Fig. 5.3 (aii) and the particle growth 

occurred thereafter leading to the increase in grain sizes. The individual grain size of 

the palladium particles was 0.5 μm (Fig. 5.3 (cii)) and the particle size for Fig 5.3 (dii) 

was 1.6 μm. This result is found to be in agreement with the work of Yeung et al., 

(1999) where palladium is plated on vycor support and the electroless microstructure 

investigated. According to Yeung et al., (1999), metal film can show similar grain size 

and microstructure under similar initial plating rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter Five          Results/Discussions of palladium modified polyimide 
 

 

  

152 

 

   

5.3 MORPHOLOGICAL STUDY: TEM MICROGRAPH OF PALLADIUM 

MODIFIED UNIRRADIATED POLYIMIDE 

 

Figure 5.4 – 5.6 represents the cross-section TEM micrograph results of unirradiated 

polyimide etched with 13 % NaOCl, 0.4 M NaOH and a mixture of 0.4 M NaOH/13 

% NaOCl solutions. The TEM analysis is performed on polyimide modified with 

palladium to investigate the depth profile of the palladium particles and distribution of 

palladium particle on the polyimide surface. A visual study of the TEM images 

suggests the darker regions represent the presence of palladium particles while the 

lighter region is the polyimide support according to Shuxiang et al., (2010). The 

palladium nanoparticles dispersion varies from uniform particle distribution to sparse 

and agglomeration which resulted in the formation of palladium clusters. Palladium 

penetration is observed along the polyimide surface suggest a distribution of 

palladium in ordered stretch of layer, clustered particles and thin film of palladium 

after electroless plating. 
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5.3.1 TEM micrograph results are presented for 0.4 M NaOH etched unirradiated 

polyimide film modified with palladium.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-4: Cross-section of TEM micrograph of palladium modified unirradiated 
polyimide etched with 0.4 M NaOH (a) 5minutes, (b) 10 minutes, (c) 20 minutes, (d) 
30 minutes 
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In Fig.5.4 (a) – Fig. 5.4 (d), TEM micrograph of palladium plated polyimide etched 

with 0.4 M NaOH shows isolated or scattered palladium particles from Fig. 5.4 (a) 

and clustered or agglomerated palladium particles along the polyimide surface as seen 

in Fig. 5.4 (b). In Fig. 5.4 (c), there is a homogenous penetration and dispersion of 

palladium metal particles into polyimide matrix. The chemical interaction between 

NaOH and the carboxyl units of the polyimide could have favour the palladium 

dispersion into the polyimide matrix (Yi Li et al., 2004). The FTIR results in sections 

4.4.3 can be related to palladium dispersion as seen in the significant change in the 

absorption intensity especially within the carbonyl functional group regions of the 

polyimide structure. A comparison of Fig 5.4 (c) with the SEM study Fig. 5.1 (c) 

seems to agree and the SEM result showed uniform ‘nucleated’ layer of palladium 

before the growth of the particles in Fig. 5.1 (d).  
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5.3.2 TEM cross-section micrograph of 0.4 M NaOH/13 % NaOCl etched 

unirradiated polyimide film modified with palladium 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-5: Cross-section of TEM micrograph of palladium modified unirradiated 
polyimide etched with 0.4 M NaOH dissolved in 13 % NaOCl (aii) 5 minutes, (bii) 10 
minutes, (cii) 20 minutes, (dii) 30 minutes. 
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Cross section micrograph of TEM shown in Fig. 5.5 (aii) – Fig 5.5 (cii), palladium 

particles are seen to be arranged along the surface of the polyimide with each particles 

in a ‘speck-like’ form and distant apart in a pattern in the polyimide film Fig 5.5 (aii). 

In other cases Fig. 5.5 (bii) – Fig. 5.5 (dii), the palladium particles appeared to have 

agglomerated to form a thick film layer and with irregular penetration and embedding 

into the polyimide matrix. The effective rate and differences of palladium dispersion 

into the polyimide matrix can be due to the rate of etching time. Another possible 

reason for the significant rate of palladium dispersion could be due to the chemical 

interaction between the carboxyl unit of polyimide and NaOH solution (Yoda et al., 

2004). 
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5.3.3 The TEM cross-section analysis of 13 % NaOCl etched unirradiated 

polyimide film modified with palladium.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-6: Cross-section of TEM micrograph of palladium modified unirradiated 
polyimide etched with 13 % NaOCl (aiii) 5 minutes, (biii) 10 minutes, (ciii) 20 
minutes, (diii) 30 minutes 
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The TEM result from Fig. 5.6 for NaOCl etched polyimide modified with palladium 

showed palladium particles randomly distributed into the polyimide matrix (Fig. 5.6 

aiii), while stretch of palladium particles was observed on the polyimide surface as in 

Fig. 5.6 (biii), (ciii) and (diii) along with the formation of clusters or aggregated 

particles. This pattern of metal distribution has been previously reported by [Marin 

and Serruys, (1995); Yoda et al., (2004)]. In the case of palladium particle penetration 

into polyimide being studied, the difference in the particle sizes and distribution could 

be due to the effect of etching time and the absence of depth profile which may have 

promoted the penetration of palladium into the polyimide matrix.   

 

5.4 PEEL STRENGTH MEASUREMENT ON PALLADIUM-POLYIMIDE 

LAMINATES 

 

The image below represents the peel test technique to study the adhesion strength of 

palladium on unirradiated and irradiated polyimide surface. 

 

 
 
Figure 5-7: Schematic of Peel test measurement technique. 
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The peel strength was performed for 20 min etched unirradiated polyimide and track 

etched polyimide with electroless deposited palladium. Details of the sample 

preparation and instrumental set-up conditions have been highlighted in sections 3.6 

and 3.6.1 respectively. It was found that as we are predict peel strength of palladium 

on unirradiated polyimide showed poor adhesion and equivalent to 0.27 ± 0.05 N/mm. 

Unlike the irradiated polyimide film which showed peel strength value of 1.36 ± 0.07 

N/mm for the surfaces depth relief with cylindrical pores and for conical pores, the 

peel strength value was 1.38 ± 0.09 N/mm. The influence of depth relief morphology 

study after peel strength analysis of palladium modified polyimide surfaces suggest 

that the creation of depth profile after etching irradiated polyimide increased the 

adhesion of palladium on polyimide surface. The peel strength of irradiated polyimide 

modified with palladium was investigated after exposing the palladium plated 

polyimide membrane to high temperature environment. The sample was treated at 250 
oC in hydrogen atmosphere within 120 hours. It was observed that the value of peel 

strength decreased significantly. The cylindrical and conical pores peel strength 

values was measured as 1.04 ± 0.12 N/mm and 0.98 ± 0.14 respectively, while the 

unirradiated polyimide plated with palladium completely loose adhesion between 

palladium films and Polyimide support. 

 

5.5 XRD RESULTS OF PALLADIUM MODIFIED POLYIMIDE AFTER 

ETCHING IN 13 % NaOCl SOLUTION 

 

X-ray diffraction (XRD) result of palladium modified polyimide will be presented and 

discussed. The palladium modified polyimide (Kapton®) as presented in Fig. 5.8 

below represent the unirradiated polyimide etched in 13 % NaOCl solution prior to 

palladium deposition. A detail of the etching time has been discussed in section 

3.3.1.1. Palladium plating time of the etched polyimide was kept constant at 10 

minutes for all samples. The plating procedure has been discussed in section 3.4. 
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Figure 5.8 (a) – (d) represents the X-ray diffraction measurement of unirradiated 

polyimide samples that have been etched with 13% NaOCl solution for 5 – 30 

minutes and then plated with palladium metal. The palladium plating of the polyimide 

samples was performed by electroless deposition for 10 minutes. From the XRD 

result, characteristic diffraction peaks which can be indexed for the presence of 

palladium in the polymer matrix were observed at 40 o and 48 o and 68 o 2 θ. These 

diffraction peaks have been assigned to (1,1,1), (2,0,0) and (2,2,0) planes for the  40o,  

48 o and 68o 2θ peaks respectively (Ke  et al., 2007).  It can be observed from Figure 

5.8 that palladium diffraction peaks appeared for all etched and electroless plated 

polyimide samples at the 40 o which is the (1,1,1) plane. The peak was common to all 

etched polyimide samples. In the case of 10 minutes etching with NaOCl polyimide, 

 
Figure 5-8: XRD of palladium plated polyimide etched with 13 % NaOCl solution (a) 5
minutes, (b) 10 minutes, (c) 20 minutes and (d) 30minutes. 
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no peak was visible whereas peaks of Pd started to emerge for the 20 minutes etched 

polyimide (2,2,0) plane peaks starts to emerge for the 20 minutes etched polyimide. 

This seems to suggest the preference of palladium to orientiate in the (1,1,1) planes 

compared with other planes. The preference of palladium in the (1,1,1) could have 

been as a result of the t overall effect of etching of the polyimide samples as 

confirmed by the FTIR results in Fig. 4.5 – Fig. 4.8. In the result, the etching appeared 

to be relatively similar for all the NaOCl etched unirradiated polyimide except for the 

30 minutes (Fig. 4.8). Also, the distinct peaks at 48 o and 68 o 2 θ for the polyimide 

etched for 20 minutes imply deeper deposition of palladium into the polyimide matrix 

due to availability of active sites after etching as was confirmed by FTIR in Fig. 4.7.  

 

5.6 XRD RESULTS OF POLYIMIDE PLATED WITH PALLADIUM AFTER 

ETCHING WITH 0.4 M NaOH SOLUTION 

 

In Fig 5.9 below, the XRD results are presented of the palladium modified polyimide 

that was etched with 0.4 M NaOH solution (see section 3.3.1.2).  

 

 

 

 

 

 

 

 

 

 

Figure 5-9: XRD of palladium modified polyimide after etching with 0.4 M NaOH
solution for (a) 5 minutes, (b) 10 minutes, (c) 20 minutes and (d) 30 minutes 
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In the case of Fig. 5.9 (a) – (d) above, the XRD result for Pd plated polyimide film 

that had firstly been etched with 0.4 M NaOH solution showed a similar trend of 

palladium diffraction peaks at 40 o, 48 o and 68 o 2 θ as presented earlier in Fig. 5.8. 

Although three different etchants namely NaOCl, NaOH and 0.4M NaOH/13 % 

NaOCl solutions were used, the similarity of diffraction peaks observed after 

palladium plating of the variously etched polyimide samples did not agree with the 

FTIR analysis where different absorption peak intensity were observed for the various 

etchants. The similarity of the palladium deposition as confirmed by XRD result could 

be due to uniformity of palladium deposition by electroless deposition. Another 

reason that can be attributed to the similarity of diffraction peaks of palladium is the 

overall effect of either NaOCl or NaOH etching solution. These etchants have been 

reported to etch polymer surface in a similar way but with different surface 

roughening effects (Schiedt, 2007; Mitrofanov et al., 2006). Although unirradiated 

polyimide was plated, the similarity of etching effect of NaOCl and NaOH/NaOCl 

was confirmed by the SEM morphological study as reported in section 4.6 and 4.7.  

From Fig. 5.1, 5.2 and 5.3, the time of etching seems not to translate to more 

palladium metal into the polymer matrix. This could be attributed to the fact that the 

commercial polyimide still maintains a degree of rigidity in its structure even after 

etching with either NaOCl or NaOH solutions. It has been suggested that multiple 

surface conditioning such as irradiation of polyimide surface with heavy ion prior to 

etching is more effective method to functionalise polyimide film surface (Esinger et 

al., 2001; Mitrofanov et al., 2006). This was confirmed with the IR study discussed 

earlier in Fig. 4.5 – Fig. 4.13. The single method surface conditioning has not been 

proven to be effective hence only etching method used for these polyimide samples 

could be responsible for the less availability of active sites for ion exchange during 

palladium electroless plating. In the work of Schiedt, (2007), it was established that 

conical pores formation is promoted by NaOH solution results in conical shapes while 

NaOCl solution gave cylindrical shape of pores. The pore shapes could determine the 

effective penetration of metal into the polyimide matrix. 
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5.7 XRD RESULTS OF POLYIMIDE PLATED WITH PALLADIUM AFTER 

ETCHING WITH 0.4 M NaOH SOLUTION 

 

In Fig 5.10, the XRD results are presented of the palladium modified polyimide that 

was etched with 0.4 M NaOH/NaOCl solution. The detail of the etching and plating 

procedures are discussed in section 3.3.1.4 and 3.4 respectively. 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 5.10, palladium metal particles could be seen for the NaOH etched polyimide 

film. From the XRD result above, the diffraction peaks at (1,1,1) plane appeared to 

reduce as a function of the etching time with the 20 minutes etched polyimide 

showing the minimum diffraction intensity. The (1,1,1) plane could be seen to have 

Figure 5-10: XRD of palladium modified polyimide after etching with 0.4 M NaOH
solution for (a) 5 minutes, (b) 10 minutes, (c) 20 minutes and (d) 30 minutes 
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increased after the 20 minutes etched sample. Along the (2,0,0) and (2,2,0) planes, the 

diffraction peaks did not show such intensity as the (1,1,1). This could suggest that 

palladium particles preferred the (1,1,1) plane compared to the (2,0,0) or (2,2,0) 

planes. Although the FTIR result in section 4.4.2 showed significant change in 

absorption intensity as a function of etching time, the emergence of these bonds did 

not imply that palladium uptake by the etched polyimide sample. This could probably 

be due to non-availability of active sites in the polyimide units when etched with 

NaOH and as such do not favour metal exchange during plating. The SEM result in 

Fig. 5.1 showed particles of palladium in layered form (Fig. 5.1c) seem to suggest that 

only surface coverage of palladium occurred without penetration into the polyimide 

matrix as expected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter Six             Conclusions and Recommendations 
 

 

  

165 

 

   

CHAPTER 6 

6.0 CONCLUSIONS AND RECOMMENDATIONS 

 

The scientific goal of this project was to develop simple and effective methodological 

approach for surface modification of polyimide film that will meet practical 

application as a composite membrane structure for hydrogen separation and 

purification. The requirements for a successful composite palladium-polyimide film 

include; high thermal stability above 400oC, exhibit good adhesion of palladium film 

on polyimide surface and high permeability in hydrogen atmosphere. These targets 

have been highlighted in the hypothesis and the aims/objectives of this project 

(sections 1.6 and 1.7). In considering these targets, unirradiated and irradiated 

polyimide films were etched with alkaline (NaOH, NaOCl and NaOH/NaOCl) 

solutions as a pathway to functionalise and create depth profile by pore formation on 

the polyimide surface prior to palladium plating. A successful composition of the 

alkaline solution was developed for the etching process at low temperature (less than 

70 oC) and concentration. The alkaline etching of irradiated polyimide at low 

temperature proved successful for the control of depth profile of polyimide surface in 

relatively stable conditions of etching process. Of the available deposition techniques, 

electroless plating was considered for the plating of modified polyimide surface as a 

result of its simplicity, ease of film deposition control, film uniformity and economic 

costs. The composite palladium-polyimide film was investigated by peel test to 

determine the adhesion properties of the palladium on the polyimide surface. 

 

In addressing the hypothesis (section 1.7), the following approaches were applied; the 

commercial (as-received), etched unirradiated and irradiated and palladium modified 

polyimide samples were characterised by Scanning Electron Microscopy (SEM), 

Transmission Electron Microscopy (TEM), Fourier Transformed Infra-Red (FTIR), 

X-ray Diffraction (XRD), Thermo-gravimetric Analysis (TGA) and hydrogen 
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diffusion measurement were applied to study the effects of etching as a function time 

and composition of etching solution.  

 

The following results based on the characterisation of the unirradiated, irradiated and 

palladium-polyimide composite film, and conclusions are presented as follows: 

 

1. Method for identification of functional groups present in both unirradiated and 

irradiated polyimide film by FTIR technique showed the presence of characteristics 

absorption bands in commercial (as-received) polyimide film. After etching of the 

unirradiated polyimide in alkaline (NaOH, NaOCl and NaOH/NaOCl) solutions at 

varying time, the effect of etching as a function of time showed the emergence of 

some characteristic absorption bands after etching with NaOH. In other FTIR results, 

characteristic absorption bands were destroyed as observed in the unirradiated 

polyimide etched with NaOH/NaOCl mixture while the NaOCl etched unirradiated 

polyimide showed reduction in absorption intensity after successive increase in 

etching time. From the experimental data, the 20 minutes is the most suitable etching 

time for both unirradiated and irradiated PI as seen in the FTIR results. The affected 

characteristic absorption bands lie along the polyimide backbone structure and have 

been identified to facilitate ion exchange mechanism by substitution of Na with Pd 

during electroless plating according to literature. By the surface modification of 

polyimide and using alkaline etching method, the difference in absorption band 

intensities as observed from the FTIR results, and due to the use of different etching 

solution suggested a preferential chemical interaction between the polyimide units and 

the etching solutions. The FTIR analytical technique was deeply employed in this 

study in other to understand the chemical relationship between the polyimide bond 

units (both side chains and backbone structures) and the chemical etchants.     

 

2. Method for “depth profile” surface modification of irradiated polyimide using 

alkaline (NaOH/NaOCl and NaOCl) solution was developed. Overall effect of etching 

time and solution was confirmed by FTIR analysis as well as the SEM surface 

morphology study. The surface of treated and irradiated polyimide showed different 
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pores sizes and pore distribution as a function of etching time and etching solution. 

NaOCl and NaOH/NaOCl solutions were used to etch the irradiated polyimide. The 

preference of these two solutions was based on the effect of chlorine concentration 

during etching. The results from the FTIR and SEM studies agreed with other results 

found in literature for high temperature (70 oC – 80 oC) pores formation treatment in 

irradiated polyimide (Mitrofanov et al., 2006; Esinger et al., 2003; Esinger et al., 

2010) and also further confirmed that the amount of active chlorine concentration in 

etchants determine the rate of etching, size and shape of pores formed after etching 

(Sudowe et al., 2001).  

  

3. Method of palladium electroless plating on unirradiated polyimide surface was 

successfully adapted. Comparison of methods for surface activation by acceleration of 

unirradiated polyimide in process palladium electroless plating layers was deeply 

studied. Na2EDTA, NaOH and HCl solutions were applied to determine the effective 

acceleration solution prior to electroless deposition. During electroless plating of 

surface, removal by stripping of Sn from the seeded surface is important as well as to 

enhance uniformity of palladium on polyimide surface. The three accelerated 

solutions were applied and palladium film deposited via electroless technique. 

Polyimide surface accelerated with Na2EDTA showed better palladium film coverage 

and uniformity of the composite palladium-polyimide film. The palladium layer on 

polyimide film formed agglomerated particles which allowed to obtain continuous 

palladium films. The process of growing palladium film at different time of etching 

the polyimide was observed in the SEM study and palladium film deposition was 

optimized. It was found that for the creation of continuous palladium film on the 

surface of polyimide after alkaline treatment, electroless process must not be more 

than 20 minutes time.  

  

The TEM morphology study to determine palladium film penetration into the 

polyimide matrix of palladium modified polyimide composite film was studied. The 

rate of palladium penetration for the NaOH etched polyimide surface indicated that 

the NaOH etched polyimide with excellent particle distribution and penetration into 
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the polyimide matrix after etching for 20 minutes for the unirradiated PI. In other 

cases (NaOCl and NaOH/NaOCl), disperse palladium particle with marginal 

penetration were observed. The availability of active sites as a result of ring opening 

during etching could have been a possible reason especially as noted for the alkaline 

etched polyimide sample. In the XRD analysis of palladium film on the surface of 

polyimide has shown the following; palladium occupied the (1,1,1) diffraction plane 

and was observed for all samples. Other planes occupied by the palladium metal are 

(2,2,0) and (2,0,0) which was not obvious as seen for the (1,1,1) plane. The (1,1,1) 

plane has been reported as the  face cubic centre for palladium and with the highest 

sorption site for hydrogen due to the large surface available for hydrogen uptake. The 

preference of palladium to occupy this plane could be relative to the ease of atom 

arrangement at this plane or palladium metal stability property in this diffraction 

plane.  

 

4. Analysis of thermal stability of palladium-polyimide composite film showed 

improved thermal properties for the palladium modified polyimide film above 450 oC. 

The commercial polyimide film was stable up to 350 oC. The thermal property 

observed to be relatively stable for all palladium modified sample. This suggested that 

palladium metal due to its high lattice expansion property increased the polyimide 

thermal property of the composite film.  

5. Method of adhesion palladium on polyimide surface by peel test for this study 

was performed on the palladium modified unirradiated and irradiated polyimide 

composite films. The peel test for the palladium modified unirradiated polyimide 

composite film showed poor adhesion (0.27 ± 0.05 N/mm) of the palladium film layer 

on the unirradiated polyimide surface whereas the palladium modified irradiated 

polyimide composite showed good adhesion (1.36 ± 0.07 N/mm) of the palladium 

layer on the polyimide surface. The effects of heavy ion bombardment of polyimide 

and alkaline etching showed good palladium adhesion after plating on irradiated 

polyimide surface. The irradiated palladium modified polyimide was treated at 250 oC 

in hydrogen atmosphere over 120 hours and the peel strength decreased significantly.  
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6. The hallmark of this project was the design and assemblage of hydrogen 

diffusion reactor unit. The hydrogen diffusion test performed for alkaline etched 

unirradiated and irradiated polyimide samples.  As for the alkaline etched unirradiated 

polyimide, the rate of hydrogen diffusion measurement at room temperature (25 oC) 

showed low hydrogen permeation with minimal decrease in pressure of 0.07 bar after 

10 hours. At higher temperature of 250 oC and 325 oC, the diffusion rate was 

measured by pressure drop was 0.12 bar and 0.17 bar respectively.  

 

The alkaline etched irradiated polyimide showed a relatively steady rate of hydrogen 

diffusion till 20 minutes. The successive increase in the time of etching increased the 

pore size of the irradiated polyimide surface and the rate of hydrogen diffusion of the 

sample. The relative increase in the pore size with time of etching indicates that pore 

size of the irradiated polyimide surface can be controlled with time of etching. 

 

Based on the analyses and conclusions of the study, the following recommendations 

regarding future research direction were made: 

 

1. Although the multiple surface modification of polyimide by irradiation, 

followed by chemical etching is an effective technique to alter the polyimide 

backbone structure, the introduction of functional groups that can act as ion exchange 

sites during electroless plating should be further investigated especially by 

introduction of exchangeable metal into the polyimide units during synthesis. From 

the experimental data, only heavy ion bombarded polyimide showed effective surface 

etching process due to pore formations and well distributed surface roughening. A 

conclusive analysis to determine the most suitable pore shape is required since both 

NaOH and NaOCl etching give different pore shapes.  

 

2. Following the successful pre-testing of the home built hydrogen diffusion unit 

for etched unirradiated and irradiated polyimide, test for hydrogen permeability 

should be performed on the palladium-polyimide composite films to determine the 
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efficiency of the films in hydrogen separation and purification in industrial 

application.
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APPENDIX 1 1: LIST OF COMPONENTS FOR THE HOME-GROWN HYDROGEN DIFFUSION REACTOR UNIT 
 

Gas supply 
accessories 

GC1 Gas cylinder (H2)   

V1 
Pressure regulator / 

reducer 
output pressure < 4 bar 

  

Fittings 

J1 

Union tee / DN 16   
Clamps (3x)   

Pfeiffer adapter, DN 16 
ISO-Kf / 6 mm Swagelock PF 141 522-X 

J2 
SS Swagelok Tube Fitting, 
Union, 6 mm x 1/8 in. Tube 

OD  
SS-6M0-6-2 

J3 
SS Swagelok Tube Fitting, 
Union Cross, 1/8 in. Tube 

OD  
SS-200-4 

J4 SS Swagelok Tube Fitting, 
Union Tee, 1/8 in. Tube 

OD  
SS-200-3  

J5 

J6 
SS Swagelok Tube Fitting, 

Male Connector, 1/8 in. 
Tube OD x 1/4 in. Male 

NPT 

SS-200-1-4 
J7 
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J8 

SS Swagelok Tube Fitting, 
Female Connector, 1/8 in. 
Tube OD x 1/4 in. Female 

NPT 

SS-200-7-4 

M1 

Membrane block - male 
fitting 

SS Swagelok Tube Fitting, 
Male Connector, 1/8 in. 
Tube OD x 1/4 in. Male 

ISO Parallel Thread 

SS-200-1-4RP 

M2 

Membrane block - female 
fitting 

SS Swagelok Tube Fitting, 
Female Connector, 1/8 in. 
Tube OD x 1/4 in. Female 

ISO Parallel (Gauge) 
Thread 

SS-200-7-4RG 

M3 

Membrane block - gasket 
(10x) 

Copper Gasket for 1/4 in. 
ISO Parallel (Gauge) 
Thread (RG) Fittings  

CU-4-RG-2  

P1 SS tubing 6 mm OD SS-T6M-S-1.5M-
6ME  

P2 SS tubing 1/8'' OD SS-T2-S-028-6ME  
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